
© DZONE, INC. | DZONE.COM

REACTIVE PROGRAMMING IN JAVASCRIPT WITH

RxJS
BY LUIS ATENCIO

» Introduction

» The Problem RxJS Solves

» Hello RxJS

» Understanding Streams

» The Observable... and more!C
O

N
T

E
N

T
S

IN T R O D U C T I O N
As experienced JavaScript developers, we’re used to dealing with
a certain level of asynchronous computations in our code. We’re
constantly asked to process user input, fetch data from remote
locations, or run long-running computations simultaneously,
all without halting the browser. Arguably, these are not trivial
tasks and certainly require that we learn to step away from
the synchronous computation paradigm, and step into a
model where time and latency become key issues. For simple
applications, using JavaScript’s main event system directly
or even wrapped with the help of jQuery libraries is common
practice. However, without the proper paradigm in place, scaling
the simple code that solves these asynchronous problems to
a richer and feature-complete app that meets the needs of the
modern day web user, is still difficult. What we find is that our
application code becomes tangled, hard to maintain, and hard
to test. The problem is that asynchronous computations are
inherently difficult to manage, and RxJS solves this problem.

T HE P R O B L E M R X J S S O LV E S

One of the most important goals of any application is to remain
responsive at all times. This means that it’s unacceptable for an
application to halt while processing user input or fetching some
additional data from the server via AJAX. Generally speaking,
the main issue is that IO operations (reading from disk or from
the network) are much slower than executing instructions on the
CPU. This applies both to the client as well as the server. Let’s focus
on the client. In JavaScript, the solution has always been to take
advantage of the browser’s multiple connections and use callbacks
to spawn a separate process that takes care of some long-running
task. Once the task terminates, the JavaScript runtime will invoke
the callback with the data. This a form of inversion of control, as
the control of the program is not driven by you (because you can’t
predict when a certain process will complete), but rather under
the responsibility of the runtime to give it back to you. While very
useful for small applications, the use of callbacks gets messy with
much richer that need to handle an inf lux of data coming from
the user as well as remote HTTP calls. We’ve all been through this:
as soon as you need multiple pieces of data you begin to fall into
the popular “pyramid of doom” or callback hell.

makeHttpCall('/items',
 items => {
 for (itemId of items) {
 makeHttpCall('/items/${itemId}/info',
 itemInfo => {
 makeHttpCall('/items/${itemInfo.pic}',
 img => {
 showImg(img);
 });
 });
 }
});
beginUiRendering();

This code has multiple issues. Once of them is style. As you pile
more logic into these nested callback functions, this code becomes
more complex and harder to reason about. A more subtle issue is
created by the for loop. A for loop is a synchronous control f low

G
et

 M
or

e
R

ef
ca

rd
z!

 V
is

it
 D

Zo
ne

.c
om

/R
ef

ca
rd

z
227

U
N

D
E

R
S

TA
N

D
IN

G
 S

T
R

E
A

M
S

 W
IT

H
 R

X
JS

statement that doesn’t work well with asynchronous calls that
have latency, which could lead to very strange bugs.

Historically, this has been a very big problem for JavaScript
developers, so the language introduced Promises in ES6.
Promises help shoulder some of these issues by providing a nice
f luent interface that captures the notion of time and exposes a
continuity method called then(). The same code above becomes:

makeHttpCall('/items')
 .then(itemId => makeHttpCall('/items/${itemId}/info'))
 .then(itemInfo => makeHttpCall('/items/${itemInfo}.pic}'))
 .then(showImg);

Certainly this is a step in the right direction. The sheer mental
load of reading this code has reduced dramatically. But promises
have some limitations, as they are really efficient for working
with single value (or single error) events. What about handling
user input where there’s a constant f low of data? Promises are
also insufficient to handle events because they lack semantics
for event cancellation, disposal, retries, etc. Enter RxJS.

HE L L O R X J S

RxJS is a library that directly targets problems of an
asynchronous nature. Originating from the Reactive Extensions
project, it brings the best concepts from the Observer pattern
and functional programming together. The Observer pattern is
used to provide a proven design based on Producers (the creators
of event) and Consumers (the observers listening for said events),
which offers a nice separation of concerns.

Moreover, functional programming concepts such as declarative
programming, immutable data structures, and f luent method
chaining—to name a few—enable you to write very expressive
and easy to reason about code (bye-bye, callbacks).

For an overview of functional programming concepts, please
read the Functional Programming in JavaScript Refcard.

If you’re familiar with functional programming in JavaScript, you can
think of RxJS as the “Underscore.js of asynchronous programming.”

U ND E R S TA ND IN G S T R E A M S
RxJS introduces an overarching data type called the stream.
Streams are nothing more than a sequence of events over time.
Streams can be used to process any type of event such as mouse
clicks, key presses, bits of network data, etc. You can think of
streams as variables with the ability to react to changes emitted
from the data they point to.

Variables and streams are both dynamic, but behave a bit
differently; in order to understand this, let’s look at a simple
example. Consider the following simple arithmetic:

var a = 2;
var b = 4;
var c = a + b;
console.log(c); //-> 6

a = 10; // reassign a
console.log(c); //-> still 6

http://www.dzone.com?refcardz
http://callbackhell.com/
http://www.refcardz.com
https://DZone.com/Refcardz
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
http://reactivex.io
https://en.wikipedia.org/wiki/Observer_pattern
https://dzone.com/refcardz/functional-programming-with-javascript

© DZONE, INC. | DZONE.COM

2 RXJS

Even though variable a changed to 10, the values of the other dependent
variables remain the same and do not propagate through—by design.
This is where the main difference is. A change in an event always gets
propagated from the source of the event (producers) down to any parts
that are listening (consumers). Hypothetically speaking, if these
variables were to behave like streams, the following would occur:

var A$ = 2;
var B$ = 4;
var C$ = A$ + B$;
console.log(C$); //-> 6

A$ = 10;
console.log(C$); //-> 16

As you can see, streams allow you to specify the dynamic behavior of
a value declaratively (As a convention, I like to use the $ symbol in
front of stream variables). In other words, C$ is a specification that
concatenates (or adds) the values of streams A$ and B$. As soon as a
new value is pushed onto A$, C$ immediately reacts to the change
printing the new value 16. Now, this is a very contrived example and
far from actual syntax, but it serves to explain how programming
with streams differs from variables.

Now let’s begin learning some RxJS.

T HE O B S E R VA B L E

Perhaps the most important part of the RxJS library is the declaration
of the Observable type. Observables are used to wrap a piece of data
(button clicks, key presses, mouse movement, numbers, strings,
or arrays) and decorate it with stream-like qualities. The simplest
observable you can create is one with a single value, for instance:

var streamA$ = Rx.Observable.of(2);

Let’s revisit the example above, this time using real RxJS syntax. I’ll
show you some new APIs that I’ll talk about more in a bit:

const streamA$ = Rx.Observable.of(2);
const streamB$ = Rx.Observable.of(4);
const streamC$ = Rx.Observable.concat(streamA$, streamB$)
 .reduce((x, y) => x + y);

streamC$.subscribe(console.log); // prints 6

Running this example prints the value 6. Unlike the pseudo code
above, I can’t really reassign the value of a stream after its been
declared because that would just create a new stream–it’s an
immutable data type. As a convention, since it’s all immutable I can
safely use the ES6 const keyword to make my code even more robust.

In order to push new values, you will need to modify the declaration
of streamA$:

const streamA$ = Rx.Observable.of(2, 10)
...
streamC$.subscribe(console.log); // prints 16

Now, subscribing to streamC$ would generate 16. Like I mentioned
before, streams are just sequences of events distributed over time.
This is often visualized using a marble diagram:

C R E AT IN G O B S E R VA B L E S
Observables can be created from a variety of different sources. Here
are the more common ones to use:

SOURCE OBSERVABLE (STATIC) METHOD

of(arg) Converts arguments to an observable sequence

from(iterable) Converts arguments to an observable sequence

fromPromise(promise)
Converts a Promises/A+ spec-compliant Promise and/or
ES2015-compliant Promise to an observable sequence

fromEvent(element,
eventName)

Creates an observable sequence by adding an event
listener to the matching DOMElement, jQuery element,
Zepto Element, Angular element, Ember.js element, or
EventEmitter

The other noticeable difference when programming with streams is
the subscription step. Observables are lazy data types, which means
that nothing will actually run (no events emitted, for that matter)
until a subscriber streamC$.subscribe(...) is attached. This
subscription mechanism is handled by Observer.

T HE O B S E R V E R

Observers represent the consumer side of the model and are in charge
of reacting to values produced or emitted by the corresponding
Observables. The Observer is a very simple API based on the Iterator
pattern that defines a next() function. This function is called on
every event that’s pushed onto an observable. Behind the scenes, the
shorthand subscription above streamC$.subscribe(console.log)
creates an Observer object behind the scenes that looks like this:

const observer = Rx.Observer.create(
 function next(val) {
 console.log(val);
 },
 function error(err) {
 ; // fired in case an exception occurs
 },
 function complete() {
 ; // fired when all events have been processed
 }
);

Observers also specify an API to handle any errors, as well as a
means to signal that all the events have been processed. All of the
Observer methods are optional, you can subscribe to an observable
with just .subscribe(), but the most common approach is to at least
provide a single function which will be mapped to next(). Within the
subscription is where you would typically perform any effectful
computations like writing to a file, logging to the console, appending
to the DOM, or whatever tasks you’re required you to do.

T HE S U B S C R IP T I O N

Subscribing to an Observable returns a Subscription object, which
you can you use to unsubscribe or dispose of the stream at ant point in
time. This mechanism is really nice because it fills in the gap of the
native JavaScript system, where cancelling events and disposing of
them correctly has always been problematic.

To show this, I’ll create an observable to listen for all click events:

const mouseClicks = Rx.Observable.fromEvent(document, 'click');
const subscription = mouseClicks.subscribe(...);
subscription.unsubscribe();

Obviously, this represents an infinite stream of clicks (the completed

http://www.dzone.com?refcardz
ASP.NET/IIS

© DZONE, INC. | DZONE.COM

3

signal will never actually fire). If I want to stop listening for events, I
can simply call the unsubscribe() method on the Subscription
instance returned from the Observable. This will also properly clean
up and dispose of any event handlers and temporary objects created.

Now that you know how to create and destroy streams, let’s take a look
at a how to use them to support any problem domain you’re tackling. I’ll
stick to using numbers as my domain model to illustrate these APIs, but
of course you can use them to supply the business logic of any domain.

S E Q U E N C IN G W I T H S T R E A M S
At the heart of RxJS is to provide a unified programming model to
handle any type of data, whether it’s synchronous (like an array) or
asynchronous (remote HTTP call). RxJS uses a simple, familiar API based
on the functional programming extensions added to JavaScript arrays
(known as the Array#extras) with functions: map, filter, and reduce.

NAME DESCRIPTION

map(fn)
Projects each element of an observable sequence into a new
form

filter(predicate)
Filters the elements of an observable sequence based on a
predicate

reduce(accumulator,
[seed])

Applies an accumulator function over an observable sequence,
returning the result of the aggregation as a single element in
the result sequence. The specified seed value is used as the
initial accumulator value

I’ll begin with arrays. Given an array of numbers from 1 – 5, I will
filter out odd numbers, compute their square, and sum them. Using
traditional imperative code, this will require the use of at least a loop
and a conditional statement. Using the functional Array methods I get:

var arr = [1, 2, 3, 4, 5];
var result = arr
 .filter(x => (x % 2) === 0)
 .map(x => x * x)
 .reduce((a, b) => a + b, 0);
console.log(result); //-> 20

Now, with very minor changes, this can work with Observable
instance methods just as easily. Just like with arrays, the operators
called on the Observable receive data from its preceding operator.
The goal is to transform the input and apply business logic as needed
within the realms of the Observable operators.

Rx.Observable.from(arr)
 .filter(x => (x % 2) === 0)
 .map(x => x * x)
 .reduce((a, b) => a + b)
 .subscribe(console.log); //-> 20

You can visualize what’s happening behind the scenes with this diagram:

Arrays are predictable streams because they are all in memory at the
time of consumption. Regardless, if these numbers were computed as
the result of an HTTP call (perhaps wrapped in a Promise), the same
code would still hold:

Rx.Observable.fromPromise(makeHttpCall('/numbers'))
 .filter(x => (x % 2) === 0)
 .map(x => x * x)
 .reduce((a, b) => a + b)
 .subscribe(console.log); //-> 20

Alternatively, of course, I can create independent side-effect-free
functions that can be injected into the Observable sequence. This
allows your code to look even more declarative:

const even = x => (x % 2) === 0;
const square = x => x * x; // represent your business logic
const sum = (a, b) => a + b;

Rx.Observable.fromPromise(makeHttpCall('/numbers'))
 .filter(even)
 .map(square)
 .reduce(sum)
 .subscribe(console.log); //-> 20

This is the beauty of RxJS: a single programming model can support
all cases. Additionally, observables allow you to sequence and chain
operators together very f luently while abstracting the problem of
latency and wait-time away from your code. Notice that this way of
writing code also eliminates the complexity involved in looping and
conditional statements in favor of higher-order functions.

D E A L IN G W I T H T IM E
Understanding how RxJS effectively deals with the time and latency
can be done via its time-based operators. Here’s a short list of the
most common ones used to create Observables with time in them:

NAME DESCRIPTION

Rx.Observable.interval(period)
Returns an observable sequence that produces a value
after each period

Rx.Observable.timer(dueTime)
Returns an observable sequence that produces a value
after dueTime has elapsed and then after each period

These are very nice for simulating timed events:

const source$ = Rx.Observable.interval(500)
 .take(5)
 .map(num => ++num);

source$.subscribe(
 (num) => console.log(num),
 (err) => console.err('Error: ${err}'),
 () => console.log('Completed'));

Using interval(500) will emit values every half a second.
Because this is an infinite stream, I’m taking only the first 5 events,
converting the Observable into a finite stream that will actually send
a completed signal.

1 // separated by 500 ms
2
3
4
5
"Completed"

RXJS

http://www.dzone.com?refcardz

© DZONE, INC. | DZONE.COM

4

H A ND L IN G U S E R INP U T

You can also use Observables to interact with the DOM. Using
Rx.Observable.fromEvent I can listen for any DOM events like
mouse clicks, key presses, input changes, etc. Here’s a quick example:

const link = document.querySelector('#go');

const extract = (event, attr) => event.currentTarget.getAttribute(attr);

const clickStream$ = Rx.Observable
 .fromEvent(link, 'click')
 .map(event => extract(event, 'href'));

clickStream$.subscribe(
 href => {
 if(href) {
 if(confirm('Navigate away from this page?')) {
 location.assign(href);
 }
 }
 }
);

I can handle clicks in this case and perform any action within the
observer. The map operator is used here to transform the incoming
click event, extract the underlying element, and read its href attribute.

H A ND L IN G A S Y N C HR O N O U S C A L L S
Handling user input is not the only type of asynchronous actions you
can work with. RxJS also nicely integrates with the ES6 Promise API
to fetch remote data. Suppose I need to fetch users from GitHub and
extract their login names. The power of RxJS lets me do all of this
with just 5 lines of code by taking advantage of lambda expressions.

Rx.Observable.of('http://api.github.com/users')
 .flatMap(url => Rx.Observable.fromPromise(makeHttpCall(url)))
 .concatMap(response => Rx.Observable.from(response))
 .map(user => user.login)
 .subscribe(console.log);

This code introduces a couple of new artifacts, which I’ll explain.
First of all, I start with an Observable wrapping GitHub’s users
REST API. I flatMap the makeHttpCall function over that URL,
which returns a promisified AJAX call. At this point, RxJS will
attempt to resolve the promise and wait for its resolution. Upon
completion, the response (an array containing user objects) from
GitHub is mapped to a function that wraps the single array output
back into an Observable, so that I can continue to apply further
operations on that data. Lastly, I map a simple function to extract
the login attribute over that data.

MAP VS FLATMAP
As I said before, the map function on Observables applies a function onto
the data within it, and returns a new Observable containing that result.
The function you call can return any type—even another Observable.
In the example above, I pass in a lambda expression that takes a URL
and returns an Observable made from the result of a promise:

url => Rx.Observable.fromPromise(makeHttpCall(url))

Mapping this function would yield an observable of observables (this
is a very common scenario in functional programming when working
with data types called Monads). What we need is to be able to map the
function and f latten or join the result back into a single Observable—
like peeling back an onion. This is where flatMap comes in. The
function above returns an Rx.Observable.fromPromise(...), so I
need to f latten this result. As a general rule of thumb, use flatMap
when you project an existing observable onto another. Let’s look at a
simpler example that’s a bit easier to understand:

Rx.Observable
 .interval(500)
 .flatMap(function (x) {
 return Rx.Observable.range(x + 1, 5);
 })
 .subscribe(console.log);

This code will generate a window of 5 consecutive numbers every
half a second. First, it will print numbers 1-5, then 2-6, 3-7, and so on.

This can be represented visually like this:

DISPOSING OF AN OBSERVABLE SEQ U E N C E
Recall earlier, I mentioned that one of the main benefits of RxJS’s
abstraction over JavaScript’s event system is the ability to dispose or
cancel events. This responsibility lies with the Observer, which gives
you the opportunity to perform your own cleanup. This is done via the
Subscription instance you obtain by subscribing to the Observable.

const source$ = Rx.Observable.create(observer => {
 var num = 0;
 const id = setInterval(() => {
 observer.next('Next ${num++}');
 }, 1000);

 return () => {
 clearInterval(id); // disposal handler
 }
});

const subscription = source$.subscribe(console.log);

setTimeout(function () {
 subscription.unsubscribe();
}, 7000);

This code creates a simple Observable. But this time, instead of
wrapping over a data source such as an event or an AJAX call, I
decided to create my own custom event that emits numbers in one
second intervals indefinitely. Providing my own custom event also
allows me to define its disposal routine, which is done by the
function returned to the subscription.

RxJS maps this action to the Subscription.unsubcribe() method.
In this case, my cleanup action consists of just clearing the
interval function. Instead of printing numbers indefinitely, after
7 seconds, I dispose of the Observable, causing the interval to cease
emitting new numbers.

C O M B ININ G S T R E A M S

While Observables might seem heavyweight, they’re actually very
cheap to create and dispose of. Just like variables, they can be combined,
added, ANDed together, etc. Let’s begin with merging observables.

MERGING MULTIPLE STREAMS
The merge method combines any Observable sequences into a
single one. What’s impressive about this operator is that event
sequences emitted over time by multiple streams are combined
in the correct order. For instance, consider a simple HTML widget
with three buttons to perform three actions on a counter: up,
down, and clear.

RXJS

http://www.dzone.com?refcardz

© DZONE, INC. | DZONE.COM

5

// buttons
const upButton = document.querySelector('#up');
const downButton = document.querySelector('#down');
const clearButton = document.querySelector('#clear');

// counter
const total = document.querySelector('#total');

// helper function used to create a click stream from an HTML element
const buttonStreamWith = (elem, val) =>
 Rx.Observable
 .fromEvent(elem, 'click')
 .map(() => val);

// wrap streams over the buttons
const up$ = buttonStreamWith(upButton, 1);
const down$ = buttonStreamWith(downButton, -1);
const clear$ = buttonStreamWith(clearButton, null);

// subscribe to all and update counter accordingly
Rx.Observable.merge(up$, down$, clear$)
 .subscribe(
 value => {
 if(!value) {
 total.innerHTML = 0;
 }
 else {
 var current = parseInt(total.innerHTML);
 total.innerHTML = current + value;
 }
 }
);

Other means of combining streams can be done via the concat() and
concatAll() operators.

COMBINING ONE STREAM WITH ANOTHER
The withLatestFrom operator is very useful because it allows you
to merge an observable sequence into another by using a selector
function, only when the source observable sequence produces an
element. To show this, suppose I want to print out the list of GitHub
users, one every second. Intuitively, I need to combine a time-based
stream with an HTTP stream.

const request$ =
 Rx.Observable.of('http://api.github.com/users');

const response$ = request$
 .flatMap(url => Rx.Observable.fromPromise(makeHttpCall(url)));

Rx.Observable.interval(1000)
 .withLatestFrom(response$, (i, users) => users[i])
 .subscribe(user => console.log(user.login));

B U F F E R IN G
As I mentioned earlier, streams are stateless data structures, which
means state is never held within them but is immediately f lushed
from the producers to the consumers. However, once in a while
it’s important to be able to temporarily store some data and be able
to make decisions based on it. One example that comes to mind is
tracking double-clicks on an element. How can you detect a second
click action without storing the first one? For this, we can use
buffering. There are multiple cases:

BUFFERING FOR A CERTAIN AMOUNT OF TIME
You can temporarily hold a fixed amount of data into internal arrays
that get emitted as a whole once the count threshold is met.

Rx.Observable.range(1, 9)
 .bufferCount(3)
 .subscribe(console.log);
 //-> prints [1, 2, 3]
 //-> [4, 5, 6]
 //-> [7, 8, 9]

BUFFERING DATA BASED ON TIME
You can also buffer for a predefined period of time. To show this I’ll
create a simple function that simulates sending emails every second
from a set of available email addresses. If I send emails every second,
and buffer for, say, 5 seconds, then buffering will emit a group of
emails once the buffered time has elapsed:

E R R O R H A ND L IN G

// email users
const addresses = [
 "erik.meijer@dzone.com",
 "matthew.podwysocki@dzone.com",
 "paul.daniels@dzone.com",
 "igor.oleinikov@dzone.com",
 "tavis.rudd@dzone.com",
 "david.driscoll@dzone.com"
];

// simulates the arrival of emails every second
// wrapped in an observable
const sendEmails = addresses => {
 return Rx.Observable.interval(1000).map(i => addresses[i]);
};

sendEmails(addresses)
 .buffer(Rx.Observable.timer(5000))
 .forEach(group => console.log('Received emails from: ' + group));
 //-> prints
 Received emails from: erik.meijer@dzone.com,
 matthew.podwysocki@dzone.com,
 paul.daniels@dzone.com,
 igor.oleinikov@dzone.com

Up until now, you’ve learned different types of asynchronous
operations on streams, whether they be on DOM events or fetching
remote data. But none of the examples so far have shown you what
happens when there’s an error or an exception in the stream pipeline.
DOM events are very easy to work with because they won’t actually
throw errors. The same can’t be said about AJAX calls. When not
dealing with simple arrays, streams are actually highly unpredictable
and you must be prepared for the worst.

With errors, if you are passing your own observer, you need to try
catch inside and call observer.onError(error); This will allow you
to catch the error , handle it, and also dispose.

Alternatively, you can use .onErrorResumeNext.

CATCH
The good news is that you can continue to use a good ’ol catch block
(now an operator) just like you’re used to. To show this I’ll artificially
create an error as soon as a stream sees the value 5.

Rx.Observable.of(1, 2, 3, 4, 5)
 .map(num => {
 if(num === 5) {
 throw 'I hate 5!';
 }
 return num;
 })
 .subscribe(
 x => console.log(x),
 error => console.log('Error! ' + error)
);
 // prints 1
 // 2
 // 3
 // 4
 // "Error! I hate 5!"

As soon as the condition is met, the exception is thrown and
propagated all the way down to the Observer subscribed to this
stream. You might want to gracefully catch the exception and
provide a friendly message:

RXJS

http://www.dzone.com?refcardz

© DZONE, INC. | DZONE.COM

6

Rx.Observable.of(1, 2, 3, 4, 5)
 .map(num => {
 if(num % 2 === 0) {
 throw 'I hate even numbers!'
 }
 return num;
 })
 .retry(3)
 .catch(err => Rx.Observable.throw('After 3 attempts. Fail!'))
 .subscribe(
 x => console.log('Found ' + x),
 error => console.log('Error! ' + error)
);

. F IN A L LY ()
As JavaScript developers, our code deals with many events or
asynchronous computations all the time. This can get complicated
quickly as we build comprehensive UIs or state-machines that
need to react and keep responsive in the face of failures. RxJS truly
embodies two of the most important principles of the Reactive
Manifesto, which are Responsive and Resilient.

Moreover, RxJS makes these computations first-class citizens of the
language and offers a state of the art event system for JavaScript.
This provides a unified computing model that allows for readable and
composable APIs to deal with these asynchronous computations,
abstracting out the nitty gritty details of latency and wait time.

A D D I T I O N A L R E S O U R C E S

BROWSE OUR COLLECTION OF FREE RESOURCES, INCLUDING:

RESEARCH GUIDES: Unbiased insight from leading tech experts

REFCARDZ: Library of 200+ reference cards covering the latest tech topics

COMMUNITIES: Share links, author articles, and engage with other tech experts

JOIN NOW

DZONE, INC.
150 PRESTON EXECUTIVE DR.
CARY, NC 27513

888.678.0399
919.678.0300

REFCARDZ FEEDBACK WELCOME
refcardz@dzone.com

SPONSORSHIP OPPORTUNITIES
sales@dzone.com

Copyright © 2016 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. VERSION 1.0

DZone communities deliver over 6 million pages each month to more than 3.3 million software
developers, architects and decision makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, research guides, feature articles, source code and more.

"DZone is a developer's dream," says PC Magazine.

LUIS ATENCIO (@luijar) is a Staff Software Engineer for Citrix
Systems in Ft. Lauderdale, FL. He has a B.S. and an M.S. in
Computer Science. He works full time developing and architecting
web applications leveraging both Java, PHP, and JavaScript
platforms. Luis is also very involved in the community and has
presented on several occasions at conferences and local meet-ups.
When he is not coding, Luis writes a developer blog at luisatencio.
net focused on software engineering as well as several magazine
articles for PHPArch magazine and DZone Refcards. Luis is also
the author of Functional Programming in JavaScript (manning.com/
atencio), Functional PHP (leanpub.com/functional-php), as well as
co-author for RxJS in Action (Manning 2016).

ABOUT THE AUTHOR

Rx.Observable.of(1, 2, 3, 4, 5)
 .map(num => {
 if(num === 5) {
 throw 'I hate 5!';
 }
 return num;
 })
 .catch(err => Rx.Observable.of('Sorry. ${err}'))
 .subscribe(
 x => console.log(x),
 error => console.log('Error! ' + error)
);
 // prints 1
 // 2
 // 3
 // 4
 // "Sorry. I hate 5!"

The catch operator allows you to handle the error so that it doesn’t
get propagated down to any observers attached to this stream. This
operator expects another Observable to carry the baton forward, so
you can use this to suggest some default value in case of errors.
Notice that, this time, the error function on the observer never
actually fired!

Now, if we do want to signal an unrecoverable condition, you can
catch and throw the error. Within the catch block, this code will
actually cause the exception to fire. I would caution against this as
throwing exceptions is a side effect that will ripple through and
is expected to be handled somewhere else. This should be used
sparingly in truly critical conditions.

...

.catch(() => Rx.Observable.throw('System error: Can't go any
further!'))

Another option is to attempt a retry.

RETRIES
With observables, you can retry the previous operation for a certain
number of times, before the failure is fired.

RXJS

 • RxMarbles—Interactive diagrams of
Rx Observables

 • ReactiveX—An API for
Asynchronous Programming With
Observable Streams

 • Callback Hell—A Guide to Writing
Asynchronous JavaScript Programs

 • RxJS GitBook

 • JS Promise Documentation on
Mozilla Developer Network

 • The Introduction to Reactive
Programming You’ve Been Missing
by André Staltz

 • RxJS Design Guidelines

RECOMMENDED BOOK RxJS is deeply inspired by the principles
of functional programming. Functional Programming in JavaScript
teaches JS developers functional techniques that will improve
extensibility, modularity, reusability, testability, and performance.
Through concrete examples and jargon-free explanations, this book
shows you how to apply functional programming to real-life JavaScript
development tasks. The book includes insightful comparisons to object-
oriented or imperative programming, allowing you to ease into functional
design. Moreover, you’ll learn a repertoire of techniques and design
patterns including function chaining and pipelining, recursion, currying,
binding, functional composition, lazy evaluation, fluent error handling,
memoization, and much more. By the end of the book, you’ll think about
application design in a fresh new way.

http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://twitter.com/luijar
http://luisatencio.net
http://luisatencio.net
http://manning.com/atencio
http://manning.com/atencio
https://leanpub.com/functional-php
http://rxmarbles.com/
http://rxmarbles.com/
http://reactivex.io/
http://reactivex.io/
http://reactivex.io/
http://callbackhell.com/
http://callbackhell.com/
http://xgrommx.github.io/rx-book/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://gist.github.com/staltz/868e7e9bc2a7b8c1f754

https://gist.github.com/staltz/868e7e9bc2a7b8c1f754

https://github.com/Reactive-Extensions/RxJS/tree/master/doc/designguidelines
http://manning.com/atencio/?a_aid=latenciofpjs&a_bid=09ffe2cc

