

React Native Quickly

Azat Mardan

© 2016 Azat Mardan

Contents

Why React Native is Awesome . 2

Setting up React Native Development . 3

Hello World and the React Native CLI . 5

Styles and Flexbox . 9

Main React Native UI Components . 11
View . 12
Text . 12
TextInput . 13
ScrollView . 16
ListView . 17
TouchableHighlight . 19
Switch . 20
Navigator . 21

Importing Modules into the Xcode Project . 23

Project: Timer . 27

Project: Weather App . 36

Quiz . 58

Actions . 59

Summary . 60

Quiz Answers . 61

CONTENTS 1

In this book, I’ll introduce you to React Native for native mobile iOS and Android development…
and do it quickly. We’ll cover topics such as

• Why React Native is Awesome
• Setting up React Native Development for iOS
• Hello World and the React Native CLI
• Styles and Flexbox
• Main React Native UI components
• Importing Modules into an Xcode Project
• Project: Timer
• Project: Weather App

This book is about getting startedwith React quickly and not about React Native, which is technically
a separate library (or some might even call it a framework). But I figured after eight chapters
of working with React for web development, it would be fun to apply our knowledge to mobile
development by leveraging this awesome library. You’ll be amazed how many React Native skills
you already know from React.

There’s always a balance between making examples too complex or too simple, and thus unrealistic
and useless. In this book get ready to build two mobile apps: Timer and Weather apps. The Weather
app has 3 screencasts which you can watch at Node.University¹. They will walk you through the
Weather app.

The source code for the projects (as well as the manuscript to submit issues/bugs) is in https://github.
com/azat-co/react-native-quickly repository. Enjoy!

¹http://node.university/courses/react-native-quickly

http://node.university/courses/react-native-quickly
https://github.com/azat-co/react-native-quickly
https://github.com/azat-co/react-native-quickly
http://node.university/courses/react-native-quickly

Why React Native is Awesome
React Native apps are not the same as hybrid or so-called HTML5 apps. If you are not familiar with
the hybrid approach, it’s when there’s a website wrapped in a headless browser. A headless browser
is a browser view without the URL bar or navigation buttons. Basically, developers build responsive
websites using regular web technologies like JavaScript, HTML, and CSS, and maybe a framework
like jQuery Mobile, Ionic, Ember, or Backbone. Then they package it as a native app together with
this headless browser. In the end you get to reuse the same code base across platforms, but the
experience of using hybrid apps is often lacking. They are usually not as snappy, or lack certain
features compared to native apps. Among the most popular frameworks for hybrid apps are Sencha
Touch, Apache Cordova, PhoneGap, and Ionic.

A React Native app, on the other hand, is not a website wrapped in a headless browser. It’s native
Objective C or Java code that communicates with React’s JavaScript. This allows for the following
benefits over native development:

• Hot/live reload. Developers can reload their apps without recompiling them, which speeds up
development and eliminates the need for complexWhat You See IsWhat YouGet (WYSIWYG)
editors and IDEs.

• Flexbox layout system. This is a synthesized system for layouts that is similar to CSS and
allows for cross-platform development.

• Chrome debugging. Developers can use the already familiar DevTools.
• Write once and make it work across platforms.
• Port from web React easily, for example with frameworks like ComponentKit².
• Leverage the vast amount of open-source tools, utilities, libraries, knowledge, best practices,
ES6/7+, and books on JavaScript (the most popular programming language in the world).

• Use native elements, which are better and more powerful than web tech (the HTML5/wrapper
approach).

• React. No specific data binding, event management, or micromanaging of views, all of
which tend to increase complexity. React uses a declarative approach and simple-to-scale
unidirectional data flow.

For these reasons, it’s no surprise that large and small companies alike are jumping on the React
Native train and abandoning both hybrid and native approaches. Every day I read blog posts saying
that such and such company or some iOS developer has switched to React Native, and how they are
happy with the move. Are you ready to get started with what seems to be the next generation of
mobile development?

²http://componentkit.org

http://componentkit.org/
http://componentkit.org/

Setting up React Native Development
This chapter deals only with React Native development for iOS. I’ll be using only universal cross-
platform components—for example, Navigator and not NavigatorIOS—so the code provided should
work for Android too. However, I won’t go into the details of how you would compile Android
projects.

If you don’t work on Apple hardware with Mac OS X, you can install a virtual machine running
Mac OS X on a Linux or Windows OS by following this guide³. Moving forward, I assume we are
all working on Mac OS X, either virtual or not, to build iOS apps.

To get everything installed, you can do it manually or use a package manager. Since we’re working
in a Mac OS X environment, I recommend using Homebrew (a.k.a. brew) to install some of the
required tools. If you don’t have Homebrew already, you can go to its website, http://brew.sh, or
run this Ruby command (Mac OS X comes with Ruby):

1 $ ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/maste\

2 r/install)"

We will need the following tools and libraries:

• Node.js v5.1 and npm v3.3.12—If you read chapters 1-8, you should have them already. If you
jumped right here, follow the instructions in appendix B.

• Watchman v4.1.0—This tool will monitor and update according to source code file changes.
Use $ brew install watchman@4.1.0 to install it.

• Google Chrome—The browser will allow you to debug React Native apps during development.
Here’s the link to download it⁴.

• React Native CLI v0.1.7—This tool will allow you to create boilerplates for your React Native
apps. Install it with $ npm install -g react-native-cli@0.1.7.

• Xcode v7.2—IDE, compilers, and SDKs for iOS, OS X, tvOS, and watchOS. To install it, click
the link at https://developer.apple.com/xcode/download to open the Mac App Store⁵.

• Flow—A static type checker for JavaScript. To install it with Homebrew, run $ brew install

flow@0.19.1.

³https://blog.udemy.com/xcode-on-windows
⁴https://www.google.com/chrome/browser/desktop/index.html
⁵https://itunes.apple.com/us/app/xcode/id497799835

https://blog.udemy.com/xcode-on-windows
http://brew.sh
https://www.google.com/chrome/browser/desktop/index.html
https://developer.apple.com/xcode/download
https://itunes.apple.com/us/app/xcode/id497799835
https://blog.udemy.com/xcode-on-windows
https://www.google.com/chrome/browser/desktop/index.html
https://itunes.apple.com/us/app/xcode/id497799835

Setting up React Native Development 4

I recommend using NVM v0.29.0, n, or a similar Node version manager. This step is optional but
recommended because it means you can switch to Node.js v5.1 even if your main version is more
recent. To use Homebrew, execute $ brew install nvm and follow the instructions.

Your system should be ready for the development of iOS apps. Let’s start with the quintessential
programming example, Hello World.

Hello World and the React Native CLI
First, navigate into the folder where youwant to have your project. Mine is /Users/azat/Documents/-
Code/react/ch9/. Then run the $ react-native init terminal command to initiate the project by
creating iOS and Android projects, package.json, and other files and folders:

1 $ react-native init hello

Wait. It might take some time. There are a few things happening at this moment. Obviously, the
folder hello is created. Then, the tool creates package.json. (I love howNode and npm are everywhere
nowadays. This wasn’t the case in 2012!) In package.json, the react-native CLI, which is global,
puts a local dependency, react-native. This is similar to running $ npm i react-native --save.

After that step, the global react-nativeCLI runs the local code from the hello/node_modules/react-
native/local-cli/cli.js file, and that in turn runs the helper bash script hello/node_modules/react-
native/init.sh. That bash script creates scaffolding with React Native code in the index.ios.js and
index.android.js files as well as iOS and Android projects in the ios and android folders.

In the ios folder, the tool creates Xcode project files with Objective C code. That’s our focus right
now. Here’s the boilerplate folder structure created by the tool:

1 /android

2 /app

3 /gradle

4 - build.gradle

5 - gradle.properties

6 - gradlew

7 - gradlew.bat

8 - settings.gradle

9 /ios

10 /hello

11 /hello.xcodeproj

12 /helloTests

13 /node_modules

14 - ...

15 - index.android.js

16 - index.ios.js

17 - package.json

18 - .watchman.config

19 - .flowconfig

Hello World and the React Native CLI 6

Once everything is generated, you’ll be returned to the command prompt. The output on my
computer was this, which even tells me how to start the apps:

1 To run your app on iOS:

2 Open /Users/azat/Documents/Code/react/ch9/hello/ios/hello.xcodeproj in Xcode

3 Hit the Run button

4 To run your app on Android:

5 Have an Android emulator running (quickest way to get started), or a device c\

6 onnected

7 cd /Users/azat/Documents/Code/react/ch9/hello

8 react-native run-android

You have two options. You can manually open Xcode and select Open (Command+O) from the
File menu, open the hello.xcodeproj file, and click the black rectangle to build and run. Or you can
navigate into the folder with $ cd hello, run $ open ios/hello.xcodeproj, and click on “play” in
Xcode to build and run.

If you followed the steps correctly, you will see a new terminal window that says React Packager. It
starts with a message:

1 ~/Documents/Code/react/ch9/hello/node_modules/react-native/packager ~

2 ┌──┐

3 │ Running packager on port 8081. │

4 │ │

5 │ Keep this packager running while developing on any JS projects. Feel │

6 │ free to close this tab and run your own packager instance if you │

7 │ prefer. │

8 │ │

9 │ https://github.com/facebook/react-native │

10 │ │

11 └──┘

12 Looking for JS files in

13 /Users/azat/Documents/Code/react/ch9/hello

14

15 [12:15:42 PM] <START> Building Dependency Graph

16 [12:15:42 PM] <START> Crawling File System

17 [12:15:42 PM] <START> Loading bundles layout

18 [12:15:42 PM] <END> Loading bundles layout (0ms)

So what is happening here? React Native packages our React Native JavaScript files and serves
them on localhost:8081. That’s right, it’s just like any other web server if you open your browser at
http://localhost:8081/index.ios.bundle?platform=ios&dev=true. Open it in your browser now. Search

http://localhost:8081/index.ios.bundle?platform=ios&dev=true

Hello World and the React Native CLI 7

for “hello”. You will see the React Native code bundled up together in one big file. This should sound
familiar to most web developers. ;-)

Where did I get the http://localhost:8081/index.ios.bundle?platform=ios&dev=true URL? It’s in the
hello/ios/hello/AppDelegate.m file, on line 34 (you are using the same version as me, right?):

1 jsCodeLocation = [NSURL URLWithString:@"http://localhost:8081/index.ios.bundle?p\

2 latform=ios&dev=true"];

The Objective C code grabs the JavaScript from the server. That’s default option number one. There’s
a second option, which is commented at the moment. It takes the JavaScript code from the static file
(line 42 in the same file). It’s good to have options!

The comments tell us how we can spin up the server. It’s just the $ npm start command, which
runs $ react-native start, so we can use the latter too. So if you are switching between projects
or you don’t want to use the terminal process opened automatically by Xcode, you can always start a
new server. Just keep in mind, as with any server, that you cannot have two of them listening on the
same port. Therefore, terminate the old process before spinning up a new server on localhost:8081.

It takes some time to launch the Simulator window. I prefer working with iPhone 6, not iPhone
6 Plus. This way I have more space for development on my screen. By now you should have the
Simulator window opened. Poke around. There’s not much to see, as shown in figure 1.

Go ahead and open the index.io.js file. You can see the familiar-looking JavaScript/Node code. If
you’re not comfortable with ES6 yet (or ES2015—its official name), take a look at chapter 10 and
appendix I.

At the beginning of the file, there’s a destructuring statement to import objects from React Native:

1 var React = require('react-native');

2 var {

3 AppRegistry,

4 StyleSheet,

5 Text,

6 View,

7 } = React;

Next, you can see your good old friend React.createClass() with the render method:

http://localhost:8081/index.ios.bundle?platform=ios&dev=true

Hello World and the React Native CLI 8

1 var hello = React.createClass({

2 render: function() {

3 return (

4 <View style={styles.container}>

5 <Text style={styles.welcome}>

6 Welcome to React Native!

7 </Text>

8 <Text style={styles.instructions}>

9 To get started, edit index.ios.js

10 </Text>

11 <Text style={styles.instructions}>

12 Press Cmd+R to reload,{'\n'} Cmd+D or shake for dev menu

13 </Text>

14 </View>

15);

16 }

17 });

Gosh, with good comments like this I’ll soon be out of business—meaning I won’t need to write
books. ;-) As they say, pressing Command+R in the Simulator will reload it. Go ahead and change
“Welcome to React Native!” to “Hello World!” Save index.ios.js, and reload the app in the Simulator
window.

Note: If you are using some nonstandard keyboard layout like Dvorak or Colemak (as I do), in the
Simulator window you will have to use the standard US layout for the shortcuts, and for typing text
as well.

Observe the changes and notice howwe didn’t have to rebuild the Xcode project.Watchman updated
the package after we saved the file. The new code was served on the server at localhost:8081. You
can see the text “Hello World!” in the browser if you go to http://localhost:8081/index.ios.bundle?
platform=ios&dev=true. Once we reloaded the Simulator, the new code was there!

There are two more interesting things in index.ios.js (and then we’ll move on to exploring each
component individually): StyleSheet and AppRegistry. They are not in web React, so let me explain
them.

http://localhost:8081/index.ios.bundle?platform=ios&dev=true
http://localhost:8081/index.ios.bundle?platform=ios&dev=true

Styles and Flexbox
The former is a way to create layout, styles, and formatting in the elements. We create an object
with StyleSheet.create(). For example, these are our Hello World styles:

1 var styles = StyleSheet.create({

2 container: {

3 flex: 1,

4 justifyContent: 'center',

5 alignItems: 'center',

6 backgroundColor: '#F5FCFF',

7 },

8 welcome: {

9 fontSize: 20,

10 textAlign: 'center',

11 margin: 10,

12 },

13 instructions: {

14 textAlign: 'center',

15 color: '#333333',

16 marginBottom: 5,

17 },

18 });

I hope you can guess the meaning of some of the properties, like backgroundColor and fontSize.
They are similar to background-color and font-size in CSS, and you already know that React uses
camelCase instead of dashes. Other style properties, like flex, are specific to React Native. This is
what they mean:

• flex

• justifyContent

• alignItems

• flexDirection

The numbers in the style properties are points, not pixels. The difference is that points can mean 1
or more pixels depending on the screen, so using points liberates developers from writing if/else

conditions for various screen formats. Most notably, on old iPhones like the iPhone 3GS 1 point is 1
pixel (1:1). On the other hand, on new iPhones with Retina screens, such as the iPhone 6, 1 point is
a 2x2 square of pixels (1:2).

The last statement of the file is akin to ReactDOM.render() from web React development:

Styles and Flexbox 10

1 AppRegistry.registerComponent('hello', () => hello);

It registers our component, hello, in the registry. You can change the name in the fat arrow function
(the second argument) to anything else, but refrain from changing the first argument. ES6 fat arrows
are covered in chapter 10 and appendix I. Right now, let’s explore the React Native components in
more detail.

Main React Native UI Components
You might have noticed that in the render method we use special tags/elements like <View> and
<Text> instead of <div> or <p>. Those special elements or React Native components come from
the react-native library. There are whole bunch of them in there, and I’m sure more will come
soon. There are components specific to iOS and Android as well as synthetic ones that would
work across platforms. Typically, iOS-only components have IOS at the end of their name (for
example, NavigatorIOS) while the universal cross-platform components don’t have such endings
(for example, Navigator).

Describing all the React Native components would take a book on its own. Also, as I’ve said
before, the community and Facebook developers themselves constantly and relentlessly add new
components and update existing ones. It’s better to refer to the official documentation⁶ for the full
up-to-date list of supported components. However, to be able to develop minimal mobile apps with
React Native, you’ll need to learn the main (in my mind) components. They are:

• View—Basic view component. Every render must have at least an empty View.
• Text—Text component. All text must be wrapped in this component, unlike text in web React.
• TextInput—Form input field component. Use it to capture user input.
• ScrollView—View with scrollable content. Use it when your content won’t fit on one screen.
• ListView—View with structured data. Use it to output lists or tables.
• TouchableHighlight—User touch component. Use it to capture user touch events, similar to
anchor tags in web development.

• Switch—Boolean on/off switch. Use it for settings and forms.
• Navigator—Highly customizable navigation component. Use it to navigate between screens
and implement a navigation bar and/or breadcrumbs navigation bar.

All these components were selected because knowing themwill provide you with the bare minimum
to build somewhat useful apps, as you’ll see in the Timer and Weather App projects. Also, these
components are universal; that is, you can (and should) use them for iOS and Android. Maybe you
can even use the same code base for index.ios.js and index.android.js.

For this section of the book, I’ll be using code snippets from the Timer and Weather App projects to
make the examples more realistic than just some foo-bars. The code for Timer is in timer. The code
for Weather App is in weather.

⁶https://facebook.github.io/react-native/docs/getting-started.html

https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html

Main React Native UI Components 12

View

As I mentioned before, View is the most basic component. If you don’t know what to use, then use
View. You can wrap multiple other components in a View, similarly to wrapping them in a <div>,
because render() must return only a single element. For example, to output the number of seconds
left and a label underneath it, wrap them in a View:

1 var Timer = React.createClass({

2 render() {

3 // ...

4 return (

5 <View>

6 <Text style={styles.heading}>{this.props.time}</Text>

7 <Text>Seconds left</Text>

8 </View>

9)

10 }

11 })

Text

The Text component is for rendering text. Like most of the other components, we can supply it with
styles. For example, this Text element is using Flex and has a font size of 36, padding on top of 40,
and a margin of 10:

1 var TimerWrapper = React.createClass({

2 // ...

3 render() {

4 return (

5 <ScrollView>

6 <View style={styles.container}>

7 <Text style={styles.heading}>Timer</Text>

8 ...

9 </View>

10 </ScrollView>

11)

12 }

13 })

14

15 var styles = StyleSheet.create({

16 ...

Main React Native UI Components 13

17 heading: {

18 flex: 1,

19 fontSize: 36,

20 paddingTop: 40,

21 margin: 10

22 },

23 ...

24 })

The result is shown in Figure 1.

Figure 1: Timer text

Conveniently, we can combine two or more style objects in the style property using an array. For
example, this Text element uses styles from navBarText and navBarButtonText:

1 <Text style={[styles.navBarText, styles.navBarButtonText,]}>

2 {'<'} {previousRoute.name}

3 </Text>

The style attribute and combining of styles are not exclusive to Text. You can apply them to other
components.

TextInput

TextInput is an input field component. You would typically use it in forms to capture user input
such as email address, password, name, etc. This component has some familiar properties, such as:

• placeholder—Example text that will be shown when the value is empty
• value—The value of the input field
• style—A style attribute

Other attributes are specific to React Native. The main ones are:

• enablesReturnKeyAutomatically—If false (the default value), prevents a user from submit-
ting an empty text value by disabling the return key.

Main React Native UI Components 14

• onChange—The method to invoke on value change. Passes the event object as the argument.
• onChangeText—The method to invoke on value change. Passes the text value as the argument.
• onEndEditing—The method to invoke when the user presses the return key on the virtual
keyboard.

• multiline—If true (default is false), the field can take multiple lines.
• keyboardType—One of the enumerator values, such as 'default', 'numeric', or 'email-

address'.
• returnKeyType—Enumerator for the return key, such as 'default', 'go', 'google', 'join',
'next', 'route', 'search', 'send', 'yahoo', 'done', or 'emergency-call'. iOS only.

The full list of up-to-date properties for TextInput for iOS and Android is at https://facebook.github.
io/react-native/docs/textinput.html#props.

Consider this example, which renders a city name input field with the handler this.search. The
button on the keyboard will say Search, the value is assigned to the state (a controlled component!),
and the placeholder is San Francisco:

1 <TextInput

2 placeholder="San Francisco"

3 value={this.state.cityName}

4 returnKeyType="search"

5 enablesReturnKeyAutomatically={true}

6 onChangeText={this.handleCityName}

7 onEndEditing={this.search}

8 style={styles.textInput}/>

The result is shown in Figure 2, where you can observe the Search key on the virtual keyboard.

https://facebook.github.io/react-native/docs/textinput.html#props
https://facebook.github.io/react-native/docs/textinput.html#props

Main React Native UI Components 15

Figure 2: Search city by name with a virtual keyboard

Main React Native UI Components 16

With the onChangeText property, we get the value of the input field as the argument to the handler
function (handleCityName(event)). For example, to process the name of the city and set the state of
cityName in a controlled component, we need to implement handleCityName like this:

1 ...

2 handleCityName(cityName) {

3 this.setState({ cityName: cityName})

4 },

5 ...

On the other hand, if you need more than text, there’s onChange. When the event comes to the
onChange handler function, the event argument has a property called nativeEvent, and this property
in turn has a property called text. You can implement the onChange handler like this:

1 ...

2 onNameChanged: function(event) {

3 this.setState({ name: event.nativeEvent.text });

4 },

5 ...

6 render() {

7 return (

8 <TextInput onChange={this.onNameChange} ... />

9)

10 }

11 })

ScrollView

This is an enhanced version of the View component. It allows for the content to be scrollable, so you
can scroll up and down with touch gestures. This is useful when the content won’t fit on one screen.
For example, I can use ScrollView as the root of my render() because I know that timerOptions
can be a very large array, thus rendering many rows of data (Button components):

Main React Native UI Components 17

1 var TimerWrapper = React.createClass({

2 // ...

3 render() {

4 return (

5 <ScrollView>

6 <View style={styles.container}>

7 <Text style={styles.heading}>Timer</Text>

8 <Text style={styles.instructions}>Press a button</Text>

9 <View style={styles.buttons}>

10 {timerOptions.map((item, index, list)=>{

11 return <Button key={index} time={item} startTimer={this.startTimer\

12 } isMinutes={this.state.isMinutes}/>

13 })}

14 </View>

15 ...

16 </View>

17 </ScrollView>

18)

19 }

20 })

ListView

ListView is a view that renders a list of rows from the data provided. In most cases, you want
to wrap a ListView in a ScrollView. The data must be in a certain format. Use dataSource = new

ListView.DataSource() to create the data source object, then use dataSource.cloneWithRows(list)
to populate the data source with data from a standard JavaScript array.

Here is an example. First we create the data source object:

1 let dataSource = new ListView.DataSource({

2 rowHasChanged: (row1, row2) => row1 !== row2

3 })

Then we use the cloneWithRows method to fill in the data from an array, response.list:

Main React Native UI Components 18

1 this.props.navigator.push({

2 name: 'Forecast',

3 component: Forecast,

4 passProps: {

5 forecastData: dataSource.cloneWithRows(response.list),

6 forecastRaw: response

7 }

8 })

Ignore the navigator call for now. It’s coming up later in the chapter.

We have the data, so now let’s render the ListView by providing the properties dataSource and
renderRow. For example, this is the list of forecast info, with each row being a forecast on a certain
day. The ListView’s parent is ScrollView:

1 module.exports = React.createClass({

2 render: function() {

3 return (

4 <ScrollView style={styles.scroll}>

5 <Text style={styles.text}>{this.props.forecastRaw.city.name}</Text>

6 <ListView dataSource={this.props.forecastData} renderRow={ForecastRow} s\

7 tyle={styles.listView}/>

8 </ScrollView>

9)

10 }

11 })

As you can guess, renderRow, which is ForecastRow in this example, is another component that is
responsible for rendering an individual item from the data source provided. If there are no methods
or states, you can create a stateless component (more on stateless components in chapter 10). In the
ForecastRow, we output the date (dt_txt), description (description), and temperature (temp):

1 const ForecastRow = (forecast)=> {

2 return (

3 <View style={styles.row}>

4 <View style={styles.rightContainer}>

5 <Text style={styles.subtitle}></Text>

6 <Text style={styles.subtitle}>

7 {forecast.dt_txt}: {forecast.weather[0].description}, {forecast.main.t\

8 emp}

9 </Text>

10 </View>

Main React Native UI Components 19

11 </View>

12)

13 }

You can achieve the functionality of ListView with a simple Array.map() construct. In this case,
there’s no need for a data source.

TouchableHighlight

TouchableHighlight captures user touch events. Developers implement buttons akin to anchor (<a>)
tags in web development. The action is passed as the value of the onPress property. To implement
a button, we also need to put some text inside of it.

For example, this is a button that triggers startTimer and has text that consists of the time property
and either the word “minutes” or “seconds”:

1 var Button = React.createClass({

2 startTimer(event) {

3 // ...

4 },

5 render() {

6 return (

7 <TouchableHighlight onPress={this.startTimer}>

8 <Text style={styles.button}>{this.props.time} {(this.props.isMinutes) ? \

9 'minutes' : 'seconds'}</Text>

10 </TouchableHighlight>

11)

12 }

13 })

The style of TouchableHighlight by itself is nothing; for this reason, when we implement buttons
we either style the text inside of the TouchableHighlight (Figure 3) or use an image with the Image
component.

Figure 3: iOS buttons implemented with TouchableHighlight

Main React Native UI Components 20

Similar components to TouchableHighlight are:

• TouchableNativeFeedback

• TouchableOpacity

• TouchableWithoutFeedback

Switch

You’ve probably seen and used the Switch component or a similar native element many times. A
visual example is shown in Figure 9-X. It’s a small toggle that is not dissimilar to a checkbox. This
is a Boolean on/off input element that comes in handy in forms and app settings.

Figure 4: Switch control on iOS

When implementing Switch, you provide at least two properties, onValueChange and value (a
controlled component again!). For example, this toggle makes the apps save the city name, or not:

1 ...

2 <Text>Remember?</Text>

3 <Switch onValueChange={this.toggleRemember} value={this.state.isRemember\

4 }></Switch>

5

In the handler toggleRemember, I set the state to the value that is the opposite of the current
this.state.isRemember:

1 // ...

2 toggleRemember() {

3 this.setState({ isRemember: !this.state.isRemember}, ()=>{

4 // Remove the city name from the storage

5 if (!this.state.isRemember) this.props.storage.removeItem('cityName')

6 })

7 },

8 // ...

Main React Native UI Components 21

Navigator

Navigator is a highly customizable navigation component to enable navigation between screens
in the app. We can use it to implement a navigation bar and/or a breadcrumbs navigation bar. A
navigation bar is a menu at the top of the screen with buttons and a title.

There’s also NavigatorIOS, which is not used by Facebook and therefore not officially supported
and maintained by the community. NavigatorIOS has a built-in navigation bar, but it works only
for iOS development. Another drawback is that NavigatorIOS won’t refresh routes/screens when
the properties to those routes change. Conversely, Navigator can be used on iOS and Android, and
it refreshes the routes on the change of the properties passed to them. You can customize navigation
bars to your liking.

Because Navigator is flexible, I found a few ways to implement it. There is a method where you
have a route stack and then navigate by using route IDs and forward/back methods. I settled on
this pattern, which uses abstraction and the NavigatorIOS interface (passProps). Let’s say the App
component is the one you register with AppRegistry. Then you want to render the Navigator in
App’s render method:

1 const App = React.createClass({

2 render() {

3 return (

4 <Navigator

5 initialRoute={{

6 name: 'Search',

7 index: 0,

8 component: Search,

9 passProps: {

10 storage: storage

11 }

12 }}

13 ref='navigator'

14 navigationBar={

15 <Navigator.NavigationBar

16 routeMapper={NavigationBarRouteMapper}

17 style={styles.navBar}

18 />

19 }

20 renderScene={(route, navigator) => {

21 let props = route.passProps

22 props.navigator = navigator

23 props.name = route.name

24 return React.createElement(route.component, props)

Main React Native UI Components 22

25 }}

26 />

27)

28 }

29 })

You can observe several attributes of Navigator:

• initialRoute—The very first route object we render.
• ref—The property of the App element that will have the Navigator object. We can use it to
jump to new scenes.

• navigationBar—The top menu with title and left and right buttons.
• renderScene—The method that is triggered on the navigation event for every route. We get
the route object and render the component using route.component and route.passProps.

To navigate to a new screen like Forecast (Forecast component) and pass properties to it, invoke
navigator.push():

1 // ...

2 this.props.navigator.push({

3 name: 'Forecast',

4 component: Forecast,

5 passProps: {

6 forecastData: dataSource.cloneWithRows(response.list),

7 forecastRaw: response

8 }

9 })

10 // ...

In this example, I’m passing the component and props with each push() call. If you’re using a
route stack, which is basically a list of components, then you can pass only an ID or the name of a
component, not the entire object, and get the object from the stack. As usual, there’s more than one
way to skin a catfish.

Importing Modules into the Xcode
Project
What if you want to use a community React Native component, i.e., something that is not part of
react-native, but is provided as a standalone npm module? You can import a module into your
project!

In Timer, we need to play the sound when time is up. There’s no official component for sounds as
of this writing (Jan 2016), but there are several userland modules. One of them is react-native-
audioplayer⁷. First, install it with npm in the project folder:

1 $ npm install react-native-audioplayer@0.2.0 --save

We’re focusing on iOS at the moment, so the installation is as follows:

1. Open your project in Xcode.
2. In Xcode, find the Project Navigator in the left sidebar.
3. In the Project Navigator, right-click Libraries.
4. In the context menu, click Add Files to “timer”. (Substitute another project name for “timer”

if needed.)
5. Navigate to node_modules/react-native-audioplayer. Add the file RNAudioPlayer.xcodeproj.

The result is shown in Figure 5.

⁷https://github.com/andreaskeller/react-native-audioplayer

https://github.com/andreaskeller/react-native-audioplayer
https://github.com/andreaskeller/react-native-audioplayer
https://github.com/andreaskeller/react-native-audioplayer

Importing Modules into the Xcode Project 24

Figure 5: Adding RNAudioPlayer to XCode project to play audio

1. In the Project Navigator, select your project (timer).
2. Click the build target for timer in the Targets list (figure 9-X).

Importing Modules into the Xcode Project 25

Figure 6: Selecting a build target from Targets

1. Click on the Build Phases tab to open it.
2. Expand Link Binary With Libraries by clicking on it.
3. Click on the plus button (+) and add libRNAudioPlayer.a under Workspace, or just drag

and drop libRNAudioPlayer.a from the Project Navigator. It’s under Libraries/RNAudio-

Player.xcodeproj/Products.
4. Run your project (press Command+R or click the black rectangle signifying “play”).

If you did everything correctly, in the index.ios.js file, you can import the module with require():

1 AudioPlayer = require('react-native-audioplayer')

And play the sound with play():

1 AudioPlayer.play('flute_c_long_01.wav')

The sound file needs to be included in the bundle. To do so, select Copy Bundle Resources and add
flute_c_long_01.wav, or your own sound file as shown in Figure 7.

Importing Modules into the Xcode Project 26

Figure 7: Adding a wav file to the bundle

That’s all the prep. Now we can implement Timer!

Project: Timer
You’ve seen bits and pieces from the Timer app (Figure 8), which is in timer. I think it will be
beneficial if we go through the implementation at once. The main file is index.ios.js. It has
three components, not unlike my browser/web React Timer from React Quickly (Manning, 2016),
(GitHub⁸):

• TimerWrapper—A smart component that has most of the logic for the timer
• Timer—A dumb component that plays the sound when the time is up and displays the number
of seconds left

• Button—A component that shows a button and triggers the start of the countdown by invoking
the handler passed to it by the parent (TimerWrapper)

⁸https://github.com/azat-co/react-quickly/tree/master/projects/timer

https://github.com/azat-co/react-quickly/tree/master/projects/timer
https://github.com/azat-co/react-quickly/tree/master/projects/timer

Project: Timer 28

Figure 8: Timer with control elements to set the time

Project: Timer 29

We start the index.ios.js file with importations of React Native, its objects, and Audio Player:

1 'use strict'

2

3 var React = require('react-native'),

4 AudioPlayer = require('react-native-audioplayer')

5

6 var {

7 AppRegistry,

8 StyleSheet,

9 Text,

10 View,

11 ScrollView,

12 TouchableOpacity,

13 Switch

14 } = React

The next statement declares the array of options for the Timer buttons, which we will turn into
either number of seconds or number of minutes by using Switch:

1 const timerOptions = [5, 7, 10, 12, 15, 20]

I enhanced TimerWrapper from the chapter 5 project with the dynamic generation of buttons and
the seconds to minutes switch. The switch is using the isMinutes state, so let’s set it to false at the
beginning. Just to remind you, this example uses some ES6+/ES2015+ syntax. If you are not familiar
with it or are not sure whether you’re familiar with it, check out chapter 10 and appendix I.

1 var TimerWrapper = React.createClass({

2 getInitialState () {

3 return {time: null, int: null, isMinutes: false}

4 },

The initial value of isMinutes is false. toggleTime is the handler for the Switch. We flip the value
of isMinutes with the logical not (!). It’s important to set the time to null, as otherwise the sound
will be triggered each time we flip the switch. The sound play is conditioned on time being 0, so
if we set it to null, it won’t play. The sound logic is in the Timer component. The React algorithm
decides to re-render it when we change the state of isMinutes:

Project: Timer 30

1 toggleTime(){

2 let time = this.state.time

3 if (time == 0) time = null

4 this.setState({isMinutes: !this.state.isMinutes, time: time})

5 },

The next method starts the timers. If you followed the project in chapter 5, you know how it works.
React Native provides an API for timers, i.e., clearInterval() and setInterval() as global objects.
The number in the time state is always in seconds, even if we see minutes on the buttons and the
switch is turned on:

1 startTimer(time) {

2 clearInterval(this.state.int)

3 var _this= this

4 var int = setInterval(function() {

5 console.log('2: Inside of setInterval')

6 var tl = _this.state.time - 1

7 if (tl == 0) clearInterval(int)

8 _this.setState({time: tl})

9 }, 1000)

10 console.log('1: After setInterval')

11 return this.setState({time: time, int: int})

12 },

In the render method, we are using a simple map() iterator to generate a column of buttons. It’s
wrapped in a ScrollView, so you can really go crazy with the timerOptions array by adding more
elements, and see what has happened:

1 render() {

2 return (

3 <ScrollView>

4 <View style={styles.container}>

5 <Text style={styles.heading}>Timer</Text>

6 <Text style={styles.instructions}>Press a button</Text>

7 <View style={styles.buttons}>

8 {timerOptions.map((item, index, list)=>{

9 return <Button key={index} time={item} startTimer={this.startTimer\

10 } isMinutes={this.state.isMinutes}/>

11 })}

12 </View>

After the buttons, we have a text label that says Minutes and the Switch controlled component:

Project: Timer 31

1 <Text>Minutes</Text>

2 <Switch onValueChange={this.toggleTime} value={this.state.isMinutes}><\

3 /Switch>

4 <Timer time={this.state.time}/>

5 </View>

6 </ScrollView>

7)

8 }

9 })

The buttons we render in TimerWrapper come from this component. It has a ternary condition (a.k.a.
the Elvis operator) to set either minutes, by multiplying them by 60 (60 seconds in a minute), or
seconds:

1 var Button = React.createClass({

2 startTimer(event) {

3 let time = (this.props.isMinutes) ? this.props.time*60 : this.props.time

4 return this.props.startTimer(time)

5 },

When rendering, we use TouchableOpacity, which is functionally similar to TouchableHighlight

but differs in visual representation (it’s transparent when touched). There is a ternary condition to
output the word “minutes” or “seconds” based on the value of the isMinutes property:

1 render() {

2 return (

3 <TouchableOpacity onPress={this.startTimer}>

4 <Text style={styles.button}>{this.props.time} {(this.props.isMinutes) ? \

5 'minutes' : 'seconds'}</Text>

6 </TouchableOpacity>

7)

8 }

9 })

The Timer component renders the number of seconds left as well as playing the sound when this
number is 0:

Project: Timer 32

1 var Timer = React.createClass({

2 render() {

3 if (this.props.time == 0) {

4 AudioPlayer.play('flute_c_long_01.wav')

5 }

6 if (this.props.time == null || this.props.time == 0) return <View><Text st\

7 yle={styles.heading}> </Text></View>

8 return (

9 <View>

10 <Text style={styles.heading}>{this.props.time}</Text>

11 <Text>Seconds left</Text>

12 </View>

13)

14 }

15 })

The styles object uses Flex. In container, there’s flexDirection, set to column. It positions
elements vertically, as in a column. Another value is row, which will position them horizontally.

1 var styles = StyleSheet.create({

2 container: {

3 flex: 1,

4 flexDirection: 'column',

5 alignItems: 'center'

6 },

7 heading: {

8 flex: 1,

9 fontSize: 36,

10 paddingTop: 40,

11 margin: 10

12 },

13 instructions: {

14 color: '#333333',

15 marginBottom: 15,

16 },

17 button: {

18 color: '#111',

19 marginBottom: 15,

20 borderWidth: 1,

21 borderColor: 'blue',

22 padding: 10,

23 borderRadius: 20,

Project: Timer 33

24 fontWeight: '600'

25 },

26 buttons: {

27 flex: 1,

28 alignItems: 'center',

29 justifyContent: 'flex-start'

30 }

31 })

Lastly, there is the register statement:

1 AppRegistry.registerComponent('timer', () => TimerWrapper)

Now, we can install and import the Audio Player into the Xcode project following the steps in the
previous section. Don’t forget to include the sound file as well. When you’re done, navigate to the
ch9/timer folder and start the local server with $ react-native start. You should see:

1 React packager ready.

Go to your Simulator and refresh it. You should see buttons with seconds on them and the switch in
the off position. Turn it on to use minutes and the buttons will change. Pressing on 5 minutes will
start the countdown showing seconds left, as shown in Figure 9.

Project: Timer 34

Figure 9: Timer using minutes

Project: Timer 35

I dare you to redesign this little app (make it prettier!), publish it to the App Store, and send me the
link. Maybe you can get to the top charts. Flappy Bird did.

Project: Weather App
The idea of this project is to fetch weather forecasts from the OpenWeatherMap API based on the
city name provided by the user (Figure 10). In this project we’ll be utilizing Navigator to switch
between the screens and show a navigation menu on top with a button to go back.

Project: Weather App 37

Figure 10: Weather app with city name search input

Project: Weather App 38

Also, there will be a “remember me” feature to save the entered city name for future uses. The
persistence will be implemented with AsyncStorage.

The resulting forecast data will be shown in a grid with the date, description, and temperature in F
and C, as shown in Figure 11.

Project: Weather App 39

Figure 11: Weather forecast for London, UK for every 3 hours

Project: Weather App 40

To get started, use the scaffolding provided by the React Native CLI tool (if you don’t have v0.1.7,
follow the instructions at the beginning of this chapter to get it):

1 $ react-native init weather

The command will output something like this:

1 This will walk you through creating a new React Native project in /Users/azat/Do\

2 cuments/Code/react/ch9/weather

3 Installing react-native package from npm...

4 Setting up new React Native app in /Users/azat/Documents/Code/react/ch9/weather

5 To run your app on iOS:

6 Open /Users/azat/Documents/Code/react/ch9/weather/ios/weather.xcodeproj in Xc\

7 ode

8 Hit the Run button

9 To run your app on Android:

10 Have an Android emulator running (quickest way to get started), or a device c\

11 onnected

12 cd /Users/azat/Documents/Code/react/ch9/weather

13 react-native run-android

Open the iOS project in Xcode with this command:

1 $ open ios/weather.xcodeproj

In addition to the already existing index.ios.js, create four files, forecast.ios.js, search.ios.js,
weather-api.js, and response.json, so the project structure looks like this:

1 /weather

2 /android

3 ...

4 /ios

5 /weather

6 /Base.Iproj

7 ...

8 /Images.xcassets

9 ...

10 - AppDelegate.h

11 - AppDelegate.m

12 - Info.plist

13 - main.m

Project: Weather App 41

14 /weather.xcodeproj

15 /project.xcworkspace

16 ...

17 /xcshareddata

18 ...

19 /xcuserdata

20 ...

21 - project.pbxproj

22 /weatherTests

23 - Info.plist

24 - weatherTests.m

25 /node_modules

26 ...

27 - .flowconfig

28 - .gitignore

29 - .watchmanconfig

30 - forecast.ios.js

31 - index.android.js

32 - index.ios.js

33 - package.json

34 - response.json

35 - search.ios.js

36 - weather-api.json

The files search.ios.js and forecast.ios.js will be the components for the first screen, which
will have the input field for the city name, and the second screen, which will show the forecast,
respectively. But before we start implementing Search and Forecast, let’s code the App component
and the navigation that will enable us to switch between the Search and Forecast screens.

In the index.ios.js file, add the React Native classes shown in the following listing. The only classes
that should be unfamiliar to you by now are AsyncStorage and PixelRatio—everything else was
covered earlier in this chapter:

1 'use strict'

2

3 var React = require('react-native')

4

5 var {

6 AppRegistry,

7 StyleSheet,

8 Text,

9 View,

10 Navigator,

Project: Weather App 42

11 ListView,

12 AsyncStorage,

13 TouchableOpacity,

14 PixelRatio

15 } = React

Import Search. The const is an ES6 thing. You can use var or learn about const and let in
ES6/ES2016 cheatsheet⁹.

1 const Search = require('./search.ios.js')

Now let’s create an abstraction for the storage, i.e., AsyncStorage. You can use AsyncStorage

directly, but it’s better to have an abstraction like the one shown here. The AsyncStorage interface
is very straightforward. It uses the getItem(), removeItem(), and setItem()methods. I’m sure you
can guess what theymean. The only interesting part is that for getItem()we need to utilize Promise.
The idea behind it is that getItem() results are asynchronous. There’s more on ES6 promises in the
cheatsheet¹⁰.

1 const storage = {

2 getFromStorage(name, callback) {

3 AsyncStorage.getItem(name).then((value) => {

4 console.log(`AsyncStorage GET for ${name}: "${value}"`)

5 if (value) callback(value)

6 else callback(null)

7 }).done()

8 },

9 setInStorage(name, value) {

10 console.log(`AsyncStorage SET for ${name}: "${value}"`)

11 AsyncStorage.setItem(name, value)

12 },

13 removeItem: AsyncStorage.removeItem

14 }

Remove the boilerplate component and replace it with App:

⁹https://github.com/azat-co/cheatsheets/tree/master/es6
¹⁰https://github.com/azat-co/cheatsheets/tree/master/es6

https://github.com/azat-co/cheatsheets/tree/master/es6
https://github.com/azat-co/cheatsheets/tree/master/es6
https://github.com/azat-co/cheatsheets/tree/master/es6
https://github.com/azat-co/cheatsheets/tree/master/es6
https://github.com/azat-co/cheatsheets/tree/master/es6

Project: Weather App 43

1 const App = React.createClass({

2 render() {

3 return (

The App component needs to render Navigator. We provide the Search component as the initial
route:

1 <Navigator

2 initialRoute={{

3 name: 'Search',

4 index: 0,

5 component: Search,

6 passProps: {

7 storage: storage

8 }

9 }}

The ref property is how we can access the Navigator instance in the App component itself. The
navigator object will be in this.refs.navigator, assuming this refers to App:

1 ref='navigator'

The navigation bar is the menu at the top of the screen, and we render it by using the Naviga-

tor.NavigationBar component and supplying the routeMapper property (we still need to implement
this):

1 navigationBar={

2 <Navigator.NavigationBar

3 routeMapper={NavigationBarRouteMapper}

4 style={styles.navBar}

5 />

6 }

While the navigation bar is a nice-to-have but not necessary feature, the next property is important.
It basically renders every route. In this example, I assume that the route argument has everything I
need, such as components and properties. Another way to implement Navigator is to pass only IDs
in route and resolve the component object from the ID by using some hash table (i.e., a route stack
object).

Project: Weather App 44

1 renderScene={(route, navigator) => {

2 let props = route.passProps

You can control where the navigator object is in children by setting it to whatever property you
want to use. I keep it consistent; the navigator object is placed under this.props.navigator:

1 props.navigator = navigator

2 props.name = route.name

After we’ve added navigator and name, the props object is ready for rendering:

1 return React.createElement(route.component, props)

And then, let’s close all the parentheses and tags:

1 }}

2 />

3)

4 }

5 })

We are done with most of the heavy lifting. If you opted not to implement the navigation bar, you
can skip NavigationBarRouteMapper. If you want to use the bar, this is how you can implement it.

The route mapper must have certain methods: LeftButton, RightButton, and Title. This pattern
was inspired by the official React navigation bar example¹¹. The first method checks whether this is
the initial route or not with the index == 0 condition. Alternatively, we can check for the name of
the scene, such as name == 'Search'.

1 var NavigationBarRouteMapper = {

2 LeftButton(route, navigator, index, navState) {

3 if (index == 0) return null

If we pass the first statement, we are on the Forecast. Set the previous route (Search):

1 var previousRoute = navState.routeStack[index - 1]

¹¹https://github.com/facebook/react-native/blob/master/Examples/UIExplorer/Navigator/NavigationBarSample.js

https://github.com/facebook/react-native/blob/master/Examples/UIExplorer/Navigator/NavigationBarSample.js
https://github.com/facebook/react-native/blob/master/Examples/UIExplorer/Navigator/NavigationBarSample.js

Project: Weather App 45

Now, return the button, which is a TouchableOpacity component with Text in it. I use angle brackets
with the previous route’s name as the button label, as shown in Figure 12. You can use Next or
something else. This Navigator component is highly customizable. Most likely, you’d have some
nicely designed images as well.

Figure 12: Navigator menu

1 return (

2 <TouchableOpacity

The event handler uses the pop()method. Similar to Array.pop(), it removes the last element from
a stack/array. The last element is the current screen, so we revert back to the previous route:

1 onPress={() => navigator.pop()}

2 style={styles.navBarLeftButton}>

3 <Text style={[styles.navBarText, styles.navBarButtonText]}>

4 {'<'} {previousRoute.name}

5 </Text>

6 </TouchableOpacity>

7)

8 },

We don’t need the right button in this project, but if you need it, you can implement it analogously
to the left button. You might want to use a list of routes, such that you know which one is the next
one based on the index of the current route.

1 RightButton(route, navigator, index, navState) {

2 return (

3 <View/>

4)

5 },

The last method is straightforward. We render the name of the route as the title. You can use the
title property instead of name if you wish; just don’t forget to update it everywhere (that is, in
initialRoute, renderScene, and push() in Search).

Project: Weather App 46

1 Title(route, navigator, index, navState) {

2 return (

3 <Text style={[styles.navBarText, styles.navBarTitleText]}>

4 {route.name}

5 </Text>

6)

7 }

8 }

Lastly, the styles! They are easy to read. One new addition is PixelRatio. It will give us the ratio of
pixels so we can control the values on a lower level:

1 var styles = StyleSheet.create({

2 navBar: {

3 backgroundColor: 'white',

4 borderBottomWidth: 1 / PixelRatio.get(),

5 borderBottomColor: '#CDCDCD'

6 },

7 navBarText: {

8 fontSize: 16,

9 marginVertical: 10,

10 },

11 navBarTitleText: {

12 color: 'blue',

13 fontWeight: '500',

14 marginVertical: 9,

15 },

16 navBarLeftButton: {

17 paddingLeft: 10,

18 },

19 navBarRightButton: {

20 paddingRight: 10,

21 },

22 navBarButtonText: {

23 color: 'black'

24 }

25 })

Change the weather component to App in the register call:

Project: Weather App 47

1 AppRegistry.registerComponent('weather', () => App)

We are done with one file, and we have two more to go. Moving in the logical sequence of the app
flow, we continue with search.ios.js by importing the objects:

1 'use strict'

2

3 var React = require('react-native')

4 const Forecast = require('./forecast.ios')

5

6 var {

7 StyleSheet,

8 Text,

9 TextInput,

10 View,

11 Switch,

12 TouchableHighlight,

13 ListView,

14 Alert

15 } = React

Next, we want to declare the OpenWeatherMap API key, which you can get from their website after
registering as a developer. Pick the free plan unless you’re sure your app will hit the limits when it
becomes number one on iTunes (or is it the App Store?). Refrain from using my keys, and get your
own:

1 const openWeatherAppId = '2de143494c0b295cca9337e1e96b00e0',

2 // This is Azat's key. Get your own!

In the event that OpenWeatherMap changes the response format or if you want to develop offline
(as I do), keep the real URL commented and use the local version (weather-api.js Node.js server):

1 // openWeatherUrl = 'http://api.openweathermap.org/data/2.5/forecast' // Real \

2 API

3 openWeatherUrl = 'http://localhost:3000/' // Mock API, start with $ node weath\

4 er-api

Because this file is imported by index.ios.js, we need to export the needed component. You can
create another variable/object, but I just assign the component to module.exports for eloquence:

Project: Weather App 48

1 module.exports = React.createClass({

2 getInitialState() {

When we get the initial state, we want to check if the city name was saved. If it was, then we’ll use
that name and set isRemember to true, because the city name was remembered in the previous use:

1 this.props.storage.getFromStorage('cityName', (cityName) => {

2 if (cityName) this.setState({cityName: cityName, isRemember: true})

3 })

While we wait for the asynchronous callback with the city name to be executed by the storage API,
we set the value to none:

1 return ({isRemember: false, cityName: ''})

2 },

Next, we handle the switch by setting the state of isRemember, because it’s a controlled component:

1 toggleRemember() {

2 console.log('toggle: ', this.state.isRemember)

3 this.setState({ isRemember: !this.state.isRemember}, ()=>{

If you remember from previous chapters (I know, it was so long ago!), setState() is actually
asynchronous. We want to remove the city name if the Remember? toggle is off, so we need to
implement removeItem() in the callback of setState(), and not just on the next line (we might
have a race condition and the state will be old if we don’t use a callback):

1 if (!this.state.isRemember) this.props.storage.removeItem('cityName')

2 })

3 },

On every change of the city name TextInput, we update the state. This is the handler for
onChangeText, so we get the value as an argument, not the event:

1 handleCityName(cityName) {

2 this.setState({ cityName: cityName})

3 },

The search() method is triggered by the Search button and the virtual keyboard’s “enter.” First, we
define the states as local variables to eliminate unnecessary typing:

Project: Weather App 49

1 search(event) {

2 let cityName = this.state.cityName,

3 isRemember = this.state.isRemember

It’s good to check that the city name is not empty. There’s a cross-platform component Alert for
that:

1 if (!cityName) return Alert.alert('No City Name',

2 'Please enter city name',

3 [{text: 'OK', onPress: () => console.log('OK Pressed!')}]

4)

The most interesting piece of logic in the entire app is how we make the external call. The answer is
easy. We’ll use the new fetch API, which is already part of Chrome. We don’t care about Chrome
right now too much; all we need to know is that React Native supports it. In this example, I resorted
to the ES6 string interpolation (a.k.a. string template) to construct the URL. If you’re using the local
server, the response will be the same (response.json), so the URL doesn’t matter.

1 fetch(`${openWeatherUrl}/?appid=${openWeatherAppId}&q=${cityName}&units=metr\

2 ic`, {

3 method: 'GET'

4 }).then((response) => response.json())

5 .then((response) => {

Once we get the data, we want to store the city name. Maybe you want to do it before making the
fetch call. It’s up to you.

1 if (isRemember) this.props.storage.setInStorage('cityName', cityName)

The ListView will render the grid, but it needs a special object data source. Create it like this:

1 let dataSource = new ListView.DataSource({

2 rowHasChanged: (row1, row2) => row1 !== row2

3 })

Everything is ready to render the forecast. Use the Navigator object by invoking push() and passing
all the necessary properties:

Project: Weather App 50

1 this.props.navigator.push({

2 name: 'Forecast',

3 component: Forecast,

passProps is an arbitrary name. I followed the NavigatorIOS syntax here. You can pick another
name. For the ListView, we populate the rows from the JavaScript/Node array with cloneWith-

Rows():

1 passProps: {

2 forecastData: dataSource.cloneWithRows(response.list),

3 forecastRaw: response

4 }

5 })

6 })

7 .catch((error) => {

8 console.warn(error)

9 })

10 },

We are done with the methods of Search. Now we can render the elements:

1 render: function() {

2 return (

3 <View style={styles.container}>

4 <Text style={styles.welcome}>

5 Welcome to Weather App, React Quickly project

6 </Text>

7 <Text style={styles.instructions}>

8 Enter your city name:

9 </Text>

The next element is a TextInput for the city name. It has two callbacks, onChangeText, which triggers
handleCityName, and onEndEditing, which calls search:

Project: Weather App 51

1 <TextInput

2 placeholder="San Francisco"

3 value={this.state.cityName}

4 returnKeyType="search"

5 enablesReturnKeyAutomatically={true}

6 onChangeText={this.handleCityName}

7 onEndEditing={this.search} style={styles.textInput}/>

The last few elements are the label for the switch, the switch itself, and the Search button:

1 <Text>Remember?</Text>

2 <Switch onValueChange={this.toggleRemember} value={this.state.isRemember\

3 }></Switch>

4 <TouchableHighlight onPress={this.search}>

5 <Text style={styles.button}>Search</Text>

6 </TouchableHighlight>

7 </View>

8)

9 }

10 })

And of course the styles—without them, the layout and fonts will be all skewed. The properties are
self-explanatory for the most part, so we won’t go into detail on them.

1 var styles = StyleSheet.create({

2 navigatorContainer: {

3 flex: 1

4 },

5 container: {

6 flex: 1,

7 justifyContent: 'center',

8 alignItems: 'center',

9 backgroundColor: '#F5FCFF',

10 },

11 welcome: {

12 fontSize: 20,

13 textAlign: 'center',

14 margin: 10,

15 },

16 instructions: {

17 textAlign: 'center',

18 color: '#333333',

Project: Weather App 52

19 marginBottom: 5,

20 },

21 textInput: {

22 borderColor: '#8E8E93',

23 borderWidth: 0.5,

24 backgroundColor: '#fff',

25 height: 40,

26 marginLeft: 60,

27 marginRight: 60,

28 padding: 8,

29 },

30 button: {

31 color: '#111',

32 marginBottom: 15,

33 borderWidth: 1,

34 borderColor: 'blue',

35 padding: 10,

36 borderRadius: 20,

37 fontWeight: '600',

38 marginTop: 30

39 }

40 })

So, we invoke the push() method from the Search component when we press Search. This will
trigger an event in the Navigator element: namely renderScene, which renders the forecast. Let’s
implement it. I promise, we are almost done!

The forecast.ios.js file starts with importations. By now, if this is unfamiliar to you, I am powerless.

1 'use strict'

2

3 var React = require('react-native')

4 var {

5 StyleSheet,

6 Text,

7 TextInput,

8 View,

9 ListView,

10 ScrollView

11 } = React

I wrote this function, mostly for Americans, to calculate F from C . It’s probably not very precise,
but it’ll do for now:

Project: Weather App 53

1 const fToC = (f) => {

2 return Math.round((f - 31.996)*100/1.8)/100

3 }

The ForecastRow component is stateless (more on stateless components in chapter 10). Its sole
purpose is to render a single forecast item:

1 const ForecastRow = (forecast)=> {

2 return (

3 <View style={styles.row}>

4 <View style={styles.rightContainer}>

5 <Text style={styles.subtitle}></Text>

6 <Text style={styles.subtitle}>

In the row, we output the date (dt_txt), description (rainy or sunny), and temperatures in C and F
(figure 9-X). The latter is achieved by invoking the fToC function defined earlier in this file:

1 {forecast.dt_txt}: {forecast.weather[0].description}, {forecast.main.t\

2 emp}C/{fToC(forecast.main.temp)}F

3 </Text>

4 </View>

5 </View>

6)

7 }

The result will look as shown in figure 9-X.

Project: Weather App 54

alt text needed

Next, we export the Forecast component, which is a ScrollView with Text and a ListView:

1 module.exports = React.createClass({

2 render: function() {

3 return (

4 <ScrollView style={styles.scroll}>

5 <Text style={styles.text}>{this.props.forecastRaw.city.name}</Text>

The ListView takes dataSource and renderRow properties to render the grid. The data source must
be of a special type. It cannot be a plain JavaScript/Node array:

1 <ListView dataSource={this.props.forecastData} renderRow={ForecastRow} s\

2 tyle={styles.listView}/>

3 </ScrollView>

4)

5 }

6 })

And the styles. Tadaah!

Project: Weather App 55

1 var styles = StyleSheet.create({

2 listView: {

3 marginTop: 10,

4 },

5 row: {

6 flex: 1,

7 flexDirection: 'row',

8 justifyContent: 'center',

9 alignItems: 'center',

10 backgroundColor: '#5AC8FA',

11 paddingRight: 10,

12 paddingLeft: 10,

13 marginTop: 1

14 },

15 rightContainer: {

16 flex: 1

17 },

18 scroll: {

19 flex: 1,

20 padding: 5

21 },

22 text: {

23 marginTop: 80,

24 fontSize: 40

25 },

26 subtitle: {

27 fontSize: 16,

28 fontWeight: 'normal',

29 color: '#fff'

30 }

31 })

The last final touch is if you’re working offline and using a local URL. There are two files you need
to have:

1. response.json—Response to the real API call for London
2. weather-api.js—Ultra-minimalistic Node web server that takes response.json and serves it to

a client

Go ahead and copy response.json from GitHub¹². Then implement this Node.js server using only
the core modules (I love Express¹³ or Swagger, but using them here is an overkill):

¹²https://github.com/azat-co/react-native-quickly/blob/master/weather/response.json
¹³http://proexpressjs.com

https://github.com/azat-co/react-native-quickly/blob/master/weather/response.json
http://proexpressjs.com/
https://github.com/azat-co/react-native-quickly/blob/master/weather/response.json
http://proexpressjs.com/

Project: Weather App 56

1 var http = require('http'),

2 forecastData = require('./response.json')

3

4 http.createServer(function(request, response){

5 response.end(JSON.stringify(forecastData))

6 }).listen(3000)

Start the server with $ node weather-api, bundle the React Native code with $ react-native

start, and reload the Simulator. The bundler and the server must be running together, so you might
need to open a new tab or a window in your terminal app/iTerm.

Note: if you get an “Invariant Violation: Callback with id 1-5” error, make sure you don’t have the
Chrome debugger opened more than once.

You should see an empty city name field. That’s okay, because this is the first time you’ve launched
the app. I intentionally left the logs in the storage implementation. You should see the followingwhen
you open DevTools in the Chrome tab for debugging React Native (it typically opens automatically
once you enable it by going to Hardware->Shake Gestures->Debug in Chrome—not that you are
going to shake your laptop!):

1 AsyncStorage GET for cityName: "null"

Play with the toggle, enter a name (Figure 13), and get the weather report. The app is done. Boom!
Now put some nice UI on it and ship it!

Project: Weather App 57

Figure 13: By using storage, developers can save city name

Quiz
1. How do you create a new React Native project: create files manually, or run $ npm init, $

react-native init, or $ react native init?
2. What type of data does a ListView take: array, object, or data source? (Data source)
3. One of the benefits of React Native vs. native development is that React Native has the live

reload ability. True or false? (True)
4. You can use any CSS in the styles of the React Native StyleSheet object. True or false? (False)
5. Which Objective C file can you switch the React Native bundle location in: bundle.cc,

AppDelegate.m, AppDelegate.h, package.json, or index.ios.js? (AppDelegate.m)

Actions
Learning just by reading is not as effective as learning by reading and then doing. Yes. Even a good
book like this. So take action NOW to solidify the knowledge.

• Watch React Native Quickly screencasts at Node.Unversity¹⁴ which will walk you through the
Weather app

• Run Weather and Timer on your computer from the source code
• Change text such as button labels or menu names, see results in the Simulator
• Change a sound file in Timer
• Add geolocation to Weather (see Geolocation¹⁵)

¹⁴http://node.university/courses/react-native-quickly
¹⁵https://facebook.github.io/react-native/docs/geolocation.html

http://node.university/courses/react-native-quickly
https://facebook.github.io/react-native/docs/geolocation.html
http://node.university/courses/react-native-quickly
https://facebook.github.io/react-native/docs/geolocation.html

Summary
This was a been a quick book, but we covered not not just one but two projects. In addition to that,
we’ve also covered:

• How React Native is glued to the Objective C code in Xcode projects
• Main components, such as View, Text, TextInput, Touchables, and ScrollView

• Implementing an app with Navigator

• How to persist the data locally on the device
• Using the fetch API to communicate with an external HTTP REST API server (you can use
the same method to persist the data on the external server, or do a login or logout)

React Native is an amazing piece of technology. I was really surprised, in a positive way, once I
started learning and using it. There’s a lot of evidence that React Native may become the next de
facto way of developing mobile apps. The live reload feature can enable developers to push code to
their apps without resubmitting them to the App Store—cool, right?

Quiz Answers
1. $ react-native init because manual file creation is tedious and prone to errors
2. Data source
3. True
4. False
5. AppDelegate.m

	Table of Contents
	Why React Native is Awesome
	Setting up React Native Development
	Hello World and the React Native CLI
	Styles and Flexbox
	Main React Native UI Components
	View
	Text
	TextInput
	ScrollView
	ListView
	TouchableHighlight
	Switch
	Navigator

	Importing Modules into the Xcode Project
	Project: Timer
	Project: Weather App
	Quiz
	Actions
	Summary
	Quiz Answers

