
S
he

et
:1

,F
ro

nt

S
he

et
:1

,B
ac

k

Th is chapter describes the installation process for
Windows, OS X, and Linux systems. For the
latter, you’re going to ensure that you have the
correct dependencies and compile it from the
source.

INSTALLING NODE.JS IS a painless process.
Since its conception, one of its goals has been
maintaining a small number of dependencies that
would make the compilation or installation of the
project very seamless.

THE SETUP1
C H A P T E R

06_9781119962595-ch01.indd 706_9781119962595-ch01.indd 7 8/1/12 10:55 AM8/1/12 10:55 AM

S
he

et
:2

,F
ro

nt

8 PA RT I • Getting Started: Setup and Concepts

Note: When you see lines prefi xed with $ in the code snippets in the book, you
should type these expressions into your OS shell.

INSTALLING ON WINDOWS
On Windows, go to http://nodejs.org and
download the MSI installer. Every release of
node has a corresponding MSI installer that
you need to download and execute.

Th e fi lename follows the format node-
v?.?.?.msi. Upon executing it, simply
follow the instructions in the setup wizard
shown in Figure 1-1.

To ensure that the installation worked, open
the shell or command prompt by running
cmd.exe and typing $ node –version.

Th e version name of the package you just
installed should display.

INSTALLING ON OS X
On the Mac, similarly to Windows, you can leverage an installer package. From the Node.JS
website, download the PKG fi le that follows the format node-v?.?.?.pkg. If you want to
compile it instead, ensure you have XCode installed and follow the Compilation instructions
for Linux.

Run the downloaded package and follow the
simple steps (see Figure 1-2).

To ensure installation was successful, open
the shell or terminal by running Terminal.
app (you can type in “Terminal” in Spotlight
to locate it) and type in $ node
–version.

Th e version of Node you just installed should
be outputted.

INSTALLING ON LINUX
Compiling Node.JS is almost just as easy as installing binaries. To compile it in most *nix
systems, simply make sure a C/C++ compiler and the OpenSSL libraries are available.

Figure 1-1: The Node.JS setup wizard.

Figure 1-2: The Node.JS package installer.

06_9781119962595-ch01.indd 806_9781119962595-ch01.indd 8 8/1/12 10:55 AM8/1/12 10:55 AM

S
he

et
:2

,B
ac

k

C H A P T E R 1 • The Setup 9

Most Linux distributions come with a package manager that allows for the easy installation of
these.

For example, for Amazon Linux, you use

> sudo yum install gcc gcc-c++ openssl-devel curl

On Ubuntu, the installation is slightly diff erent; you use

> sudo apt-get install g++ libssl-dev apache2-utils curl

COMPILING
From your OS terminal, execute the following commands:

Note: Replace ? with the latest available version of node in the following example.

$ curl -O http://nodejs.org/dist/node-v?.?.?.tar.gz

$ tar -xzvf node-v?.?.?.tar.gz

$ cd node-v?.?.?

$./configure

$ make

$ make test

$ make install

If the make test command aborts with errors, I recommend you stop the installation and
post a log of the ./configure, make, and make test commands to the Node.JS mailing
list.

ENSURING THAT IT WORKS
Launch a terminal or equivalent, such as XTerm, and type in $ node –version.

Th e version of Node you just installed should be outputted.

THE NODE REPL
To run the Node REPL, simply type node.

Try running some JavaScript expressions. For example:

> Object.keys(global)

Note: When you see lines prefi xed with > in the code snippets in the book, you
should run these expressions in the REPL.

06_9781119962595-ch01.indd 906_9781119962595-ch01.indd 9 8/1/12 10:55 AM8/1/12 10:55 AM

S
he

et
:3

,F
ro

nt

10 PA RT I • Getting Started: Setup and Concepts

Th e REPL is one of my favorite tools for quickly verifying that diff erent Node or vanilla
JavaScript APIs work as expected. While developing larger modules, it’s oft en useful to check
a certain API works exactly the way you remember it when unsure. To that end, opening a
separate terminal tab and quickly evaluating some JavaScript primitives in a REPL helps
immensely.

EXECUTING A FILE
Like most scripted programming languages, Node can interpret the contents of a fi le by
appending a path to the node command.

With your favorite text editor, create a fi le called my-web-server.js, with the following
contents:

var http = require(‘http’);

var serv = http.createServer(function (req, res) {

 res.writeHead(200, { ’Content-Type’: ’text/html’ });

 res.end(’<marquee>Smashing Node!</marquee>’);

});

serv.listen(3000);

Run the fi le:

$ node my-web-server.js

Th en, as shown in Figure 1-3, point your web
browser to http://localhost:3000.

In this code snippet, you’re leveraging the
power of Node to script a fully compliant
HTTP server that serves a basic HTML
document. Th is is the traditional example
used whenever Node.JS is being discussed,
because it demonstrates the power of creating
a web server just like Apache or IIS with only
a few lines of JavaScript.

NPM
Th e Node Package Manager (NPM) allows you to easily manage modules in projects by
downloading packages, resolving dependencies, running tests, and installing command-line
utilities.

Even though doing so is not essential to the core functionality of the project, you truly need to
work effi ciently on projects that rely on other pre-existing modules released by third parties.

Figure 1-3: Serving a basic HTML document in Node.

06_9781119962595-ch01.indd 1006_9781119962595-ch01.indd 10 8/1/12 10:55 AM8/1/12 10:55 AM

S
he

et
:3

,B
ac

k

C H A P T E R 1 • The Setup 11

NPM is a program written in Node.JS and shipped with the binary packages (the MSI
Windows installer, and the PKG for the Mac). If you compiled node from the source fi les, you
want to install NPM as follows:

$ curl http://npmjs.org/install.sh | sh

To ensure successful installation, issue the following command:

$ npm --version

Th e NPM version should be displayed.

INSTALLING MODULES
To illustrate the installation of a module with NPM, install the colors library in the direc-
tory my-project and then create an index.js fi le:

$ mkdir my-project/

$ cd my-project/

$ npm install colors

Verify that the project was installed by ensuring the path node_modules/colors was
created.

Th en edit index.js with your favorite editor:

$ vim index.js

And add the following contents:

require(‘colors’);

console.log(‘smashing node’.rainbow);

Th e result should look like Figure 1-4.

Figure 1-4: The result of installing a module

06_9781119962595-ch01.indd 1106_9781119962595-ch01.indd 11 8/1/12 10:55 AM8/1/12 10:55 AM

S
he

et
:4

,F
ro

nt

12 PA RT I • Getting Started: Setup and Concepts

DEFINING YOUR OWN MODULE
To defi ne your own module, you need to create a package.json fi le. Defi ning your own
module has three fundamental benefi ts:

◾ Allows you to easily share the dependencies of your application with others, without
sending along the node_modules directory. Because npm install takes care of
fetching everything, distributing this directory wouldn’t make sense. Th is is especially
important in SCM systems like Git.

◾ Allows you to easily track the versions of the modules you depend on that you know
work. For example, when you wrote a particular project, you ran npm install
colors and that installed colors 0.5.0. A year later, due to API changes, perhaps the
latest colors are no longer compatible with your project, and if you were to run npm
install without specifying the version, your project would break.

◾ Makes redistribution possible. Did your project turn out fi ne and you want to share it
with others? Because you have a package.json, the command npm publish.
publishes it to the NPM registry for everyone to install.

In the directory created earlier (my-project), remove the node_modules directory and
create a package.json fi le:

$ rm -r node_modules

$ vim package.json

Th en add the following contents:

{

 “name”: “my-colors-project”

 , “version”: “0.0.1”

 , “dependencies”: {

 “colors”: “0.5.0”

 }

}

Note: Th e contents of this fi le must be valid JSON. Valid JavaScript is not enough.
Th is means that you must make sure, for example, to use double quotes for all
strings, including property names.

Th e package.json fi le is the fi le that describes your project to both Node.JS and NPM. Th e
only required fi elds are name and version. Normally, modules have dependencies, which is an
object that references other projects by the name and version they defi ned in their package.
json fi les.

Save the fi le, install the local project, and run index.js again:

06_9781119962595-ch01.indd 1206_9781119962595-ch01.indd 12 8/1/12 10:55 AM8/1/12 10:55 AM

S
he

et
:4

,B
ac

k

C H A P T E R 1 • The Setup 13

$ npm install

$ node index # notice that you don’t need to include “.js”!

In this case, the intention is to create a module for internal use. If you wanted, NPM makes it
really easy to publish a module by running:

$ npm publish

To tell Node which fi le to look for when someone calls require(‘my-colors-project’)
we can specify the main property in the package.json:

{

 “name”: “my-colors-project”

 , “version”: “0.0.1”

 , “main”: “./index”

 , “dependencies”: {

 “colors”: “0.5.0”

 }

}

When you learn how to make modules export APIs, the main property will become a lot
more important, because you will need it to defi ne the entry point of your modules (which
sometimes are comprised of multiple fi les).

To learn about all the possible properties for the package.json fi le, run:

$ npm help json

Tip: If you never intend to publish a certain project, add “private”: “true” to
your package.json. Th is prevents accidental publication.

INSTALLING BINARY UTILITIES
Some projects distribute command-line tools that were written in Node. When that’s the case,
you need to install them with the -g fl ag.

For example, the web framework you’re going to learn in this book called express contains an
executable utility to create projects.

$ npm install -g express

Th en try it out by creating a directory and running “express” inside:

$ mkdir my-site

$ cd mysite

$ express

06_9781119962595-ch01.indd 1306_9781119962595-ch01.indd 13 8/1/12 10:55 AM8/1/12 10:55 AM

S
he

et
:5

,F
ro

nt

14 PA RT I • Getting Started: Setup and Concepts

Tip: If you want to distribute a script like this, include a fl ag “bin”: “./path/
to/script” pointing to your executable script or binary when publishing.

EXPLORING THE NPM REGISTRY
Once you get comfortable with the Node.JS module system in Chapter 4, you should be able
to write programs that leverage any module in the ecosystem.

NPM has a rich registry that contains thousands of modules. Two commands are instrumen-
tal in your exploration of the registry: search and view.

If you want to search for plugins related to realtime, for example, you would execute the
following:

$ npm search realtime

Th is will search all the published modules that contain MySQL in their name, tags, and
description fi elds.

Once you fi nd a package that interests you, you can see its package.json and other
properties related to the NPM registry by running npm view followed by the module name.
For example:

$ npm view socket.io

Tip: If you want to learn more about a certain NPM command, type “npm help
<command>.” For example, “npm help publish” will teach you more about how to
publish modules.

SUMMARY
Aft er this chapter, you should now have a working Node.JS + NPM environment.

In addition to being able to run the node and npm commands, you should now have a basic
understanding of how to execute simple scripts, but also how to put together modules with
dependencies.

You now know that an important keyword in Node.JS is require, which allows for module
and API interoperability, and which will be an important subject in Chapter 4, aft er quickly
reviewing the language basics.

You also are now aware of the NPM registry, which is the gateway to the Node.JS module
ecosystem. Node.JS is an open source project, and as a result many of the programs that are
written with it are also open source and available for you to reuse, a few keystrokes away.

06_9781119962595-ch01.indd 1406_9781119962595-ch01.indd 14 8/1/12 10:55 AM8/1/12 10:55 AM

S
he

et
:5

,B
ac

k

In addition, most of the code you’ll write is in
compliance with the “good parts” of JavaScript
that Douglas Crockford enounced in his famous
book, JavaScript: Th e Good Parts.

Th is chapter is divided into two parts:
◾ Basic JavaScript. Th e fundamentals of the

language. Th ey apply everywhere: node,
browser, and standards committee.

◾ v8 JavaScript. Some features used in v8 are
not available in all browsers, especially Internet
Explorer, because they’ve recently been
standardized. Others are nonstandard, but you
still use them because they solve fundamental
problems.

In addition, the next chapter covers the language
extensions and features exclusively available in
Node.

INTRODUCTION

JAVASCRIPT IS A prototype-based, object-
oriented, loosely-typed dynamic scripting
language. It has powerful features from the
functional world, such as closures and higher-
order functions, that are of special interest here.

JavaScript is technically an implementation of the
ECMAScript language standard. It’s important to
know that with Node, because of v8, you’ll be
primarily dealing with an implementation that
gets close to the standard, with the exception of a
few extra features. Th is means that the JavaScript
you’re going to be dealing with has some impor-
tant diff erences with the one that earned the
language its bad reputation in the browser world.

JAVASCRIPT:
AN OVERVIEW2

C H A P T E R

07_9781119962595-ch02.indd 1507_9781119962595-ch02.indd 15 8/1/12 10:55 AM8/1/12 10:55 AM

S
he

et
:6

,F
ro

nt

16 PA RT I • Getting Started: Setup and Concepts

BASIC JAVASCRIPT
Th is chapter assumes that you’re somewhat familiar with JavaScript and its syntax. It goes over
some fundamental concepts you must understand if you want to work with Node.js.

TYPES
You can divide JavaScript types into two groups: primitive and complex. When one of the
primitive types is accessed, you work directly on its value. When a complex type is accessed,
you work on a reference to the value.

◾ Th e primitive types are number, boolean, string, null, and undefined.
◾ Th e complex types are array, function, and object.

To illustrate:

// primitives

var a = 5;

var b = a;

b = 6;

a; // will be 5

b; // will be 6

// complex

var a = [‘hello’, ‘world’];

var b = a;

b[0] = ‘bye’;

a[0]; // will be ’bye’

b[0]; // will be ‘bye’

In the second example, b contains the same reference to the value as a does. Hence, when you
access the fi rst member of the array, you alter the original, so a[0] === b[0].

TYPE HICCUPS
Correctly identifying the type of value a certain variable holds remains a challenge in
JavaScript.

Because JavaScript has constructors for most primitives like in other languages with object-
oriented features, you can create a string in these two ways:

var a = ‘woot’;

var b = new String(‘woot’);

a + b; // ‘woot woot’

07_9781119962595-ch02.indd 1607_9781119962595-ch02.indd 16 8/1/12 10:55 AM8/1/12 10:55 AM

S
he

et
:6

,B
ac

k

C H A P T E R 2 • JavaScript: An Overview 17

If you use the typeof and instanceof operators on these two variables, however, things
get interesting:

typeof a; // ‘string’

typeof b; // ‘object’

a instanceof String; // false

b instanceof String; // true

However, both are defi nitely strings that have the same prototypical methods:

a.substr == b.substr; // true

And they evaluate in the same way with the == operator but not with ===:

a == b; // true

a === b; // false

Considering these discrepancies, I encourage you to always defi ne your types in the literal
way, avoiding new.

It’s important to remember that certain values will be evaluate to false in conditional
expressions: null, undefined, ‘’, 0:

var a = 0;

if (a) {

 // this will never execute

}

a == false; // true

a === false; // false

Also noteworthy is the fact that typeof doesn’t recognize null as its own type:

typeof null == ‘object’; // true, unfortunately

And the same goes for arrays, even if defi ned with [], as shown here:

typeof [] == ‘object’; // true

You can be thankful that v8 provides a way of identifying an array without resorting to hacks.
In browsers, you typically inspect the internal [[Class]] value of an object: Object.
prototype.toString.call([]) == ‘[object Array]’. Th is is an immutable
property of objects that has the benefi t of working across diff erent contexts (for example,
browser frames), whereas instanceof Array is true only for arrays initialized within that
particular context.

07_9781119962595-ch02.indd 1707_9781119962595-ch02.indd 17 8/1/12 10:55 AM8/1/12 10:55 AM

S
he

et
:7

,F
ro

nt

18 PA RT I • Getting Started: Setup and Concepts

FUNCTIONS
Functions are of utmost importance in JavaScript.

Th ey’re fi rst class: they can be stored in variables as references, and then you can pass them
around as if they were any other object:

var a = function () {}

console.log(a); // passing the function as a parameter

All functions in JavaScript can be named. It’s important to distinguish between the function
name and the variable name:

var a = function a () {

 ‘function’ == typeof a; // true

};

THIS, FUNCTION#CALL, AND FUNCTION#APPLY
When the following function is called, the value of this is the global object. In the browser,
that’s window:

function a () {

 window == this; // true;

};

a();

By using the .call and .apply methods, you can change the reference of this to a
diff erent object when calling the function:

function a () {

 this.a == ‘b’; // true

}

a.call({ a: ‘b’ });

Th e diff erence between call and apply is that call takes a list of parameters to pass to the
function following, whereas apply takes an array:

function a (b, c) {

 b == ‘first’; // true

 c == ‘second’; // true

}

a.call({ a: ‘b’ }, ‘first’, ‘second’)

a.apply({ a: ‘b’ }, [‘first’, ‘second’]);

07_9781119962595-ch02.indd 1807_9781119962595-ch02.indd 18 8/1/12 10:55 AM8/1/12 10:55 AM

S
he

et
:7

,B
ac

k

C H A P T E R 2 • JavaScript: An Overview 19

FUNCTION ARITY
An interesting property of a function is its arity, which refers to the number of arguments that
the function was declared with. In JavaScript, this equates to the length property of a
function:

var a = function (a, b, c);

a.length == 3; // true

Even though less common in the browser, this feature is important to us because it’s leveraged
by some popular Node.JS frameworks to off er diff erent functionality depending on the
number of parameters the functions you pass around take.

CLOSURES
In JavaScript, every time a function is called, a new scope is defi ned.

Variables defi ned within a scope are accessible only to that scope and inner scopes (that is,
scopes defi ned within that scope):

var a = 5;

function woot () {

 a == 5; // true

 var a = 6;

 function test () {

 a == 6; // true

 }

 test();

};

woot();

Self-invoked functions are a mechanism by which you declare and call an anonymous function
where your only goal is defi ning a new scope:

var a = 3;

(function () {

 var a = 5;

})();

a == 3 // true;

Th ese functions are very useful when you want to declare private variables that shouldn’t be
exposed to another piece of code.

07_9781119962595-ch02.indd 1907_9781119962595-ch02.indd 19 8/1/12 10:55 AM8/1/12 10:55 AM

S
he

et
:8

,F
ro

nt

20 PA RT I • Getting Started: Setup and Concepts

CLASSES
In JavaScript, there’s no class keyword. A class is defi ned like a function instead:

function Animal () { }

To defi ne a method on all the instances of Animal that you create, you set it on the
prototype:

Animal.prototype.eat = function (food) {

 // eat method

}

It’s worth mentioning that within functions in the prototype, this doesn’t refer to the global
object like regular functions, but to the class instance instead:

function Animal (name) {

 this.name = name;

}

Animal.prototype.getName () {

 return this.name;

};

var animal = new Animal(‘tobi’);

a.getName() == ‘tobi’; // true

INHERITANCE
JavaScript has prototypical inheritance. Traditionally, you simulate classical inheritance as
follows.

You defi ne another constructor that’s going to inherit from Animal:

function Ferret () { };

To defi ne the inheritance chain, you initialize an Animal object and assign it to the Ferret.
prototype.

// you inherit

Ferret.prototype = new Animal();

You can then defi ne methods and properties exclusive to your subclass:

// you specialize the type property for all ferrets

Ferret.prototype.type = ‘domestic’;

07_9781119962595-ch02.indd 2007_9781119962595-ch02.indd 20 8/1/12 10:55 AM8/1/12 10:55 AM

S
he

et
:8

,B
ac

k

C H A P T E R 2 • JavaScript: An Overview 21

To override methods and call the parent, you reference the prototype:

Ferret.prototype.eat = function (food) {

 Animal.prototype.eat.call(this, food);

 // ferret-specific logic here

}

Th is technique is almost perfect. It’s the best performing across the board (compared to the
alternative functional technique) and doesn’t break the instanceof operator:

var animal = new Animal();

animal instanceof Animal // true

animal instanceof Ferret // false

var ferret = new Ferret();

ferret instanceof Animal // true

ferret instanceof Ferret // true

Its major drawback is that an object is initialized when the inheritance is declared (Ferret.
prototype = new Animal), which might be undesirable. A way around this problem is
to include a conditional statement in the constructor:

function Animal (a) {

 if (false !== a) return;

 // do constructor stuff

}

Ferret.prototype = new Animal(false)

Another workaround is to defi ne a new, empty constructor and override its prototype:

function Animal () {

 // constructor stuff

}

function f () {};

f.prototype = Animal.prototype;

Ferret.prototype = new f;

Fortunately, v8 has a cleaner solution for this, which is described later in this chapter.

TRY {} CATCH {}
try/catch allows you to capture an exception. Th e following code throws one:

> var a = 5;

> a()

TypeError: Property ‘a’ of object #<Object> is not a function

07_9781119962595-ch02.indd 2107_9781119962595-ch02.indd 21 8/1/12 10:55 AM8/1/12 10:55 AM

S
he

et
:9

,F
ro

nt

22 PA RT I • Getting Started: Setup and Concepts

When a function throws an error, execution stops:

function () {

 throw new Error(‘hi’);

 console.log(‘hi’); // this will never execute

}

If you use try/catch, you can handle the error and execution continues:

function () {

 var a = 5;

 try {

 a();

 } catch (e) {

 e instanceof Error; // true

 }

 console.log(‘you got here!’);

}

V8 JAVASCRIPT
So far you’ve looked at the JavaScript features that are most relevant to dealing with the
language in most environments, including ancient browsers.

With the introduction of the Chrome web browser came a new JavaScript engine, v8, which
has been quickly pushing the boundaries by providing us with an extremely fast execution
environment that stays up-to-date and supports the latest ECMAScript features.

Some of these features address defi ciencies in the language. Others were introduced thanks to
the advent of client-side frameworks like jQuery and PrototypeJS, because they provided
extensions or utilities that are so frequently used it’s now unimaginable to consider the
JavaScript language without them.

In this section you’ll learn about the most useful features that you can take advantage of from
v8 to write more concise and faster code that fi ts right it with the style of code that the most
popular Node.JS frameworks and libraries adopt.

OBJECT#KEYS
If you wanted to obtain the keys for the following object (a and c)

var a = { a: ‘b’, c: ‘d’ };

Th en normally iterate as follows:

for (var i in a) { }

07_9781119962595-ch02.indd 2207_9781119962595-ch02.indd 22 8/1/12 10:55 AM8/1/12 10:55 AM

S
he

et
:9

,B
ac

k

C H A P T E R 2 • JavaScript: An Overview 23

By iterating over the keys, you can collect them in an array. However, if you were to extend
the Object.prototype as follows:

Object.prototype.c = ‘d’;

To avoid getting c in the list of keys you would need to run a hasOwnProperty check:

for (var i in a) {

 if (a.hasOwnProperty(i)) {}

}

To get around that complication, to get all the own keys in an object, in v8 you can safely use

var a = { a: ‘b’, c: ‘d’ };

Object.keys(a); // [‘a’, ‘c’]

ARRAY#ISARRAY
Like you saw before, the typeof operator will return “object” for arrays. Most of the
time, however, you want to check that an array is actually an array.

Array.isArray returns true for arrays and false for any other value:

Array.isArray(new Array) // true

Array.isArray([]) // true

Array.isArray(null) // false

Array.isArray(arguments) // false

ARRAY METHODS
To loop over an array, you can use forEach (similar to jQuery $.each):

// will print 1 2 and 3

[1, 2, 3].forEach(function (v) {

 console.log(v);

});

To fi lter elements out of an array, you can use filter (similar to jQuery $.grep)

[1, 2, 3].forEach(function (v) {

 return v < 3;

}); // will return [1, 2]

To change the value of each item, you can use map (similar to jQuery $.map)

[5, 10, 15].map(function (v) {

 return v * 2;

}); // will return [10, 20, 30]

07_9781119962595-ch02.indd 2307_9781119962595-ch02.indd 23 8/1/12 10:55 AM8/1/12 10:55 AM

S
he

et
:1

0,
Fr

on
t

24 PA RT I • Getting Started: Setup and Concepts

Also available but less commonly used are the methods reduce, reduceRight, and
lastIndexOf.

STRING METHODS
To remove space in the beginning and ending of a string, use

‘ hello ‘.trim(); // ‘hello’

JSON
v8 exposes JSON.stringify and JSON.parse to decode and encode JSON, respectively.

JSON is an encoding specifi cation that closely resembles the JavaScript object literal, utilized
by many web services and APIs:

var obj = JSON.parse(‘{“a”:”b”}’)

obj.a == ‘b’; // true

FUNCTION#BIND
.bind (equivalent to jQuery’s $.proxy) allows you to change the reference of this:

function a () {

 this.hello == ‘world’; // true

};

var b = a.bind({ hello: ‘world’ });

b();

FUNCTION#NAME
In v8, the nonstandard property name of a function is supported:

var a = function woot () {};

a.name == ‘woot’; // true

Th is property is used internally by v8 in stack traces. When an error is thrown, v8 shows a
stack trace, which is the succession of function calls it made to reach the point where the error
occurred:

> var woot = function () { throw new Error(); };

> woot()

Error

 at [object Context]:1:32

07_9781119962595-ch02.indd 2407_9781119962595-ch02.indd 24 8/1/12 10:55 AM8/1/12 10:55 AM

S
he

et
:1

0,
B

ac
k

C H A P T E R 2 • JavaScript: An Overview 25

In this case, v8 is not able to assign a name to the function reference. If you name it, however,
v8 will be able to include it in the stack traces as shown here:

> var woot = function buggy () { throw new Error(); };

> woot()

Error

 at buggy ([object Context]:1:34)

Because naming signifi cantly aids in debugging, I always recommend you name your
functions.

PROTO (INHERITANCE)
__proto__ makes it easy for you to defi ne the inheritance chain:

function Animal () { }

function Ferret () { }

Ferret.prototype.__proto__ = Animal.prototype;

Th is is a very useful feature that removes the need to:

◾ Resort to intermediate constructors, as shown in the previous section.
◾ Leverage OOP toolkits or utilities. You don’t need to require any third-party modules to

expressively declare prototypical inheritance.

ACCESSORS
You are able to defi ne properties that call functions when they’re accessed (__define
Getter__) or set (__defineSetter__).

As an example, defi ne a property called ago that returns the time ago in words for a Date
object.

Many times, especially in the soft ware you create, you want to express time in words relative
to a certain point. For example, it’s easier for people to understand that something happened
three seconds ago than reading the complete date.

Th e following example adds an ago getter to all the Date instances that will output the
distance of time in words to the present. Simply accessing the property will execute the
function you defi ne, without having to explicitly call it.

// Based on prettyDate by John Resig (MIT license)

Date.prototype.__defineGetter__(‘ago’, function () {

 var diff = (((new Date()).getTime() - this.getTime()) / 1000)

 , day_diff = Math.floor(diff / 86400);

07_9781119962595-ch02.indd 2507_9781119962595-ch02.indd 25 8/1/12 10:55 AM8/1/12 10:55 AM

S
he

et
:1

1,
Fr

on
t

26 PA RT I • Getting Started: Setup and Concepts

 return day_diff == 0 && (

 diff < 60 && “just now” ||

 diff < 120 && “1 minute ago” ||

 diff < 3600 && Math.floor(diff / 60) + “ minutes ago” ||

 diff < 7200 && “1 hour ago” ||

 diff < 86400 && Math.floor(diff / 3600) + “ hours ago”) ||

 day_diff == 1 && “Yesterday” ||

 day_diff < 7 && day_diff + “ days ago” ||

 Math.ceil(day_diff / 7) + “ weeks ago”;

});

Th en you simply refer to the ago property. Notice that you’re not executing a function, yet it’s
still being executed transparently for you:

var a = new Date(‘12/12/1990’); // my birth date

a.ago // 1071 weeks ago

SUMMARY
Understanding this chapter is essential to getting up to speed with the quirks of the language
and handicaps of most environments the language has traditionally been run in, such as old
browsers.

Due to JavaScript evolving really slowly and being somewhat overlooked for years, many
developers have invested signifi cant amounts of time in developing techniques to write the
most effi cient and maintainable code, and have characterized what aspects of the language
don’t work as expected.

v8 has done a fantastic job at keeping up to date with the recent editions of ECMA, and
continues to do so. Th e Node.JS core team of developers always ensures that when you install
the latest version of Node, you always get the most recent version of v8. Th is opens up a new
panorama for server-side development, since we can leverage APIs that are easier to under-
stand and faster to execute.

Hopefully during this chapter you’ve learned some of the features that Node developers
commonly use, which are those that are defi ning the present and future of JavaScript.

07_9781119962595-ch02.indd 2607_9781119962595-ch02.indd 26 8/1/12 10:55 AM8/1/12 10:55 AM

S
he

et
:1

1,
B

ac
k

CONTENTS

PART I: GETTING STARTED: SETUP AND CONCEPTS 5

Chapter 1: Th e Setup 7
Installing on Windows 8
Installing on OS X 8
Installing on Linux 8

Compiling 9
Ensuring that it works 9

Th e Node REPL 9
Executing a fi le 10
NPM 10

Installing modules 11
Defi ning your own module 12
Installing binary utilities 13
Exploring the NPM registry 14

Summary 14
Chapter 2: JavaScript: An Overview 15

Introduction 15
Basic JavaScript 16

Types 16
Type hiccups 16
Functions 18
this, Function#call, and Function#apply 18
Function arity 19
Closures 19
Classes 20
Inheritance 20
try {} catch {} 21

v8 JavaScript 22
Object#keys 22
Array#isArray 23
Array methods 23
String methods 24
JSON 24
Function#bind 24

02_9781119962595-ftoc.indd iv02_9781119962595-ftoc.indd iv 8/1/12 10:45 AM8/1/12 10:45 AM

S
he

et
:1

2,
Fr

on
t

VC O NT E NT S

Function#name 24
proto (inheritance) 25
Accessors 25

Summary 26
Chapter 3: Blocking and Non-blocking IO 27

With great power comes great responsibility 28
Blocking-ness 29
A single-threaded world 31
Error handling 33
Stack traces 35

Summary 37
Chapter 4: Node JavaScript 39

Th e global object 40
Useful globals 40

Th e module system 41
Absolute and relative modules 41

Exposing APIs 44
Events 45
Buff ers 47
Summary 48

PART II: ESSENTIAL NODE APIS 49

Chapter 5: CLI and FS APIs: Your First Application 51
Requirements 52
Writing your fi rst program 52

Creating the module 53
Sync or async? 54
Understanding streams 55
Input and ouput 57
Refactoring 59
Interacting with the fs 61

Exploring the CLI 63
Argv 63
Working directory 64
Environmental variables 65
Exiting 65
Signals 65
ANSI escape codes 66

Exploring the fs module 66
Streams 67
Watch 67

Summary 68

02_9781119962595-ftoc.indd v02_9781119962595-ftoc.indd v 8/1/12 10:45 AM8/1/12 10:45 AM

S
he

et
:1

2,
B

ac
k

VI C O NT E NT S

Chapter 6: TCP 69
What are the characteristics of TCP? 70

Connection-oriented communication
and same-order delivery 70
Byte orientation 70
Reliability 71
Flow control 71
Congestion control 71

Telnet 71
A TCP chat program 74

Creating the module 74
Understanding the net.server API 74
Receiving connections 76
Th e data event 77
State and keeping track of connections 79
Wrap up 81

An IRC Client program 83
Creating the module 83
Understanding the net#Stream API 84
Implementing part of the IRC protocol 84
Testing with a real-world IRC server 85

Summary 85
Chapter 7: HTTP 87

Th e structure of HTTP 88
Headers 89
Connections 93
A simple web server 94

Creating the module 95
Printing out the form 95
Methods and URLs 97
Data 99
Putting the pieces together 102
Bullet-proofi ng 103

A Twitter web client 104
Creating the module 104
Making a simple HTTP request 104
Sending a body of data 106
Getting tweets 107

A superagent to the rescue 110
Reloading HTTP servers with up 111
Summary 112

02_9781119962595-ftoc.indd vi02_9781119962595-ftoc.indd vi 8/1/12 10:45 AM8/1/12 10:45 AM

S
he

et
:1

3,
Fr

on
t

C O NT E NT S VII

PART III: WEB DEVELOPMENT 113

Chapter 8: Connect 115
A simple website with HTTP 116
A simple website with Connect 119
Middleware 121

Writing reusable middleware 122
Static middleware 127
Query 128
Logger 129
Body parser 131
Cookies 134
Session 134
REDIS sessions 140
methodOverride 141
basicAuth 141

Summary 144
Chapter 9: Express 145

A simple express app 146
Creating the module 146
HTML 146
Setup 147
Defi ning routes 148
Search 150
Run 152

Settings 153
Template engines 154
Error handling 155
Convenience methods 155
Routes 157
Middleware 159
Organization strategies 160
Summary 162

Chapter 10: WebSocket 163
AJAX 164
HTML5 WebSocket 166
An Echo Example 167

Setting it up 167
Setting up the server 168
Setting up the client 169
Running the server 170

Mouse cursors 171
Setting up the example 171
Setting up the server 172

02_9781119962595-ftoc.indd vii02_9781119962595-ftoc.indd vii 8/1/12 10:45 AM8/1/12 10:45 AM

S
he

et
:1

3,
B

ac
k

VIII C O NT E NT S

Setting up the client 174
Running the server 176

Th e Challenges Ahead 177
Close doesn’t mean disconnect 177
JSON 177
Reconnections 177
Broadcasting 177
WebSockets are HTML5: Older browsers don’t support them 177
Th e solution 178

Summary 178
Chapter 11: Socket.IO 179

Transports 180
Disconnected versus closed 180
Events 180
Namespaces 181

A chat program 182
Setting up the program 182
Setting up the server 182
Setting up the client 183
Events and Broadcasting 185
Ensuring reception 190

A DJ-by-turns application 191
Extending the chat 191
Integrating with the Grooveshark API 193
Playing 196

Summary 201

PART IV: DATABASES 203

Chapter 12: MongoDB 205
Installation 207
Accessing MongoDB: A user authentication example 208

Setting up the application 208
Creating the Express app 208
Connecting to MongoDB 212
Creating documents 214
Finding documents 215
Authentication middleware 217
Validation 218
Atomicity 219
Safe mode 219

Introducing Mongoose 220
Defi ning a model 220
Defi ning nested keys 222
Defi ning embedded documents 222

02_9781119962595-ftoc.indd viii02_9781119962595-ftoc.indd viii 8/1/12 10:45 AM8/1/12 10:45 AM

S
he

et
:1

4,
Fr

on
t

C O NT E NT S IX

Setting up indexes 222
Middleware 223
Inspecting the state of the model 223
Querying 224
Extending queries 224
Sorting 224
Making Selections 224
Limiting 225
Skipping 225
Populating keys automatically 225
Casting 225

A mongoose example 226
Setting up the application 226
Refactoring 226
Setting up models 227

Summary 229
Chapter 13: MySQL 231

node-mysql 232
Setting it up 232
Th e Express app 232
Connecting to MySQL 234
Initializing the script 234
Creating data 238
Fetching data 242

sequelize 244
Setting up sequelize 245
Setting up the Express app 245
Connecting sequelize 248
Defi ning models and synchronizing 249
Creating data 250
Retrieving data 253
Removing data 254
Wrapping up 256

Summary 257
Chapter 14: Redis 259

Installing Redis 261
Th e Redis query language 261
Data types 262

Strings 263
Hashes 263
Lists 265
Sets 265
Sorted sets 266

Redis and Node 266
Implementing a social graph with node-redis 267

Summary 276

02_9781119962595-ftoc.indd ix02_9781119962595-ftoc.indd ix 8/1/12 10:45 AM8/1/12 10:45 AM

S
he

et
:1

4,
B

ac
k

X C O NT E NT S

PART V: TESTING 277
Chapter 15: Code Sharing 279

What can be shared? 280
Writing compatible JavaScript 280

Exposing modules 280
Shimming ECMA APIs 282
Shimming Node APIs 283
Shimming browser APIs 284
Cross-browser inheritance 284

Putting it all together: browserbuild 285
A basic example 286

Summary 288
Chapter 16: Testing 289

Simple testing 290
Th e test subject 290
Th e test strategy 290
Th e test program 291

Expect.JS 292
API overview 292

Mocha 294
Testing asynchronous code 295
BDD style 297
TDD style 298
Exports style 298
Taking Mocha to the browser 299

Summary 300

02_9781119962595-ftoc.indd x02_9781119962595-ftoc.indd x 8/1/12 10:45 AM8/1/12 10:45 AM

