

Table	of	Contents
The	Node.js	Handbook

Introduction

Introduction	to	Node

A	brief	history	of	Node

How	to	install	Node

How	much	JavaScript	do	you	need	to	know	to	use	Node?

Differences	between	Node	and	the	Browser

v8

Basics

Run	Node.js	scripts	from	the	command	line

How	to	exit	from	a	Node.js	program

How	to	read	environment	variables

Node	hosting	options

Command	Line

Use	the	Node	REPL

Pass	arguments	from	the	command	line

Output	to	the	command	line

Accept	input	from	the	command	line

Node	modules	and	npm

Expose	functionality	from	a	Node	file	using	exports

npm

Where	does	npm	install	the	packages

How	to	use	or	execute	a	package	installed	using	npm

The	package.json	file

The	package-lock.json	file

Find	the	installed	version	of	an	npm	package

How	to	install	an	older	version	of	an	npm	package

How	to	update	all	the	Node	dependencies	to	their	latest	version

Semantic	versioning	rules

Uninstalling	npm	packages

2

Global	or	local	packages

npm	dependencies	and	devDependencies

npx

Working	with	the	event	loop

The	event	loop

nextTick

setImmediate

Timers

Asynchronous	programming

Callbacks

Promises

async/await

The	Node	Event	Emitter

Networking

HTTP

How	HTTP	Requests	work

Build	an	HTTP	server

Making	HTTP	requests

Axios

Websockets

HTTPS,	secure	connections

File	System

File	descriptors

File	stats

File	paths

Reading	files

Writing	files

Working	with	folders

Some	essential	core	modules

The	fs	module

The	path	module

The	os	module

The	events	module

3

The	http	module

Miscellaneous

Streams

Working	with	MySQL

Difference	between	development	and	production

4

The	Node.js	Handbook

The	Node	Handbook	follows	the	80/20	rule:	learn	in	20%	of	the	time	the	80%	of	a	topic.

I	find	this	approach	gives	a	well-rounded	overview.	This	book	does	not	try	to	cover	everything
under	the	sun	related	to	Node.	If	you	think	some	specific	topic	should	be	included,	tell	me.

You	can	reach	me	on	Twitter	@flaviocopes.

I	hope	the	contents	of	this	book	will	help	you	achieve	what	you	want:	learn	the	basics
Node.js.

This	book	is	written	by	Flavio.	I	publish	web	development	tutorials	every	day	on	my	website
flaviocopes.com.

Enjoy!

The	Node.js	Handbook

5

https://twitter.com/flaviocopes
https://flaviocopes.com

Introduction	to	Node
This	post	is	a	getting	started	guide	to	Node.js,	the	server-side	JavaScript
runtime	environment.	Node.js	is	built	on	top	of	the	Google	Chrome	V8
JavaScript	engine,	and	it's	mainly	used	to	create	web	servers	-	but	it's	not
limited	to	that

Overview
The	best	features	of	Node.js

Fast
Simple
JavaScript
V8
Asynchronous	platform
A	huge	number	of	libraries

An	example	Node.js	application
Node.js	frameworks	and	tools

Overview
Node.js	is	a	runtime	environment	for	JavaScript	that	runs	on	the	server.

Node.js	is	open	source,	cross-platform,	and	since	its	introduction	in	2009,	it	got	hugely	popular
and	now	plays	a	significant	role	in	the	web	development	scene.	If	GitHub	stars	are	one
popularity	indication	factor,	having	46000+	stars	means	being	very	popular.

Introduction	to	Node

6

https://flaviocopes.com/javascript/

Node.js	is	built	on	top	of	the	Google	Chrome	V8	JavaScript	engine,	and	it's	mainly	used	to
create	web	servers	-	but	it's	not	limited	to	that.

The	best	features	of	Node.js

Fast

One	of	the	main	selling	points	of	Node.js	is	speed.	JavaScript	code	running	on	Node.js
(depending	on	the	benchmark)	can	be	twice	as	fast	than	compiled	languages	like	C	or	Java,
and	orders	of	magnitude	faster	than	interpreted	languages	like	Python	or	Ruby,	because	of	its
non-blocking	paradigm.

Simple

Node.js	is	simple.	Extremely	simple,	actually.

JavaScript

Node.js	runs	JavaScript	code.	This	means	that	millions	of	frontend	developers	that	already
use	JavaScript	in	the	browser	are	able	to	run	the	server-side	code	and	frontend-side	code
using	the	same	programming	language	without	the	need	to	learn	a	completely	different	tool.

The	paradigms	are	all	the	same,	and	in	Node.js	the	new	ECMAScript	standards	can	be	used
first,	as	you	don't	have	to	wait	for	all	your	users	to	update	their	browsers	-	you	decide	which
ECMAScript	version	to	use	by	changing	the	Node.js	version.

V8

Introduction	to	Node

7

https://flaviocopes.com/ecmascript/

Running	on	the	Google	V8	JavaScript	engine,	which	is	Open	Source,	Node.js	is	able	to
leverage	the	work	of	thousands	of	engineers	that	made	(and	will	continue	to	make)	the
Chrome	JavaScript	runtime	blazing	fast.

Asynchronous	platform

In	traditional	programming	languages	(C,	Java,	Python,	PHP)	all	instructions	are	blocking	by
default	unless	you	explicitly	"opt	in"	to	perform	asynchronous	operations.	If	you	perform	a
network	request	to	read	some	JSON,	the	execution	of	that	particular	thread	is	blocked	until	the
response	is	ready.

JavaScript	allows	to	create	asynchronous	and	non-blocking	code	in	a	very	simple	way,
by	using	a	single	thread,	callback	functions	and	event-driven	programming.	Every	time
an	expensive	operation	occurs,	we	pass	a	callback	function	that	will	be	called	once	we	can
continue	with	the	processing.	We're	not	waiting	for	that	to	finish	before	going	on	with	the	rest
of	the	program.

Such	mechanism	derives	from	the	browser.	We	can't	wait	until	something	loads	from	an	AJAX
request	before	being	able	to	intercept	click	events	on	the	page.	It	all	must	happen	in	real
time	to	provide	a	good	experience	to	the	user.

If	you've	created	an	onclick	handler	for	a	web	page	you've	already	used	asynchronous
programming	techniques	with	event	listeners.

This	allows	Node.js	to	handle	thousands	of	concurrent	connections	with	a	single	server
without	introducing	the	burden	of	managing	threads	concurrency,	which	would	be	a	major
source	of	bugs.

Node	provides	non-blocking	I/O	primitives,	and	generally,	libraries	in	Node.js	are	written	using
non-blocking	paradigms,	making	a	blocking	behavior	an	exception	rather	than	the	normal.

Introduction	to	Node

8

https://flaviocopes.com/v8/

When	Node.js	needs	to	perform	an	I/O	operation,	like	reading	from	the	network,	access	a
database	or	the	filesystem,	instead	of	blocking	the	thread	Node.js	will	simply	resume	the
operations	when	the	response	comes	back,	instead	of	wasting	CPU	cycles	waiting.

A	huge	number	of	libraries

	npm		with	its	simple	structure	helped	the	ecosystem	of	node.js	proliferate	and	now	the	npm
registry	hosts	almost	500.000	open	source	packages	you	can	freely	use.

An	example	Node.js	application
The	most	common	example	Hello	World	of	Node.js	is	a	web	server:

const	http	=	require('http')

const	hostname	=	'127.0.0.1'

const	port	=	3000

const	server	=	http.createServer((req,	res)	=>	{

		res.statusCode	=	200

		res.setHeader('Content-Type',	'text/plain')

		res.end('Hello	World\n')

})

server.listen(port,	hostname,	()	=>	{

		console.log(`Server	running	at	http://${hostname}:${port}/`)

})

To	run	this	snippet,	save	it	as	a	 	server.js		file	and	run	 	node	server.js		in	your	terminal.

This	code	first	includes	the	Node.js	 	http		module.

Node.js	has	an	amazing	standard	library,	including	a	first-class	support	for	networking.

The	 	createServer()		method	of	 	http		creates	a	new	HTTP	server	and	returns	it.

The	server	is	set	to	listen	on	the	specified	port	and	hostname.	When	the	server	is	ready,	the
callback	function	is	called,	in	this	case	informing	us	that	the	server	is	running.

Whenever	a	new	request	is	received,	the	 	request		event	is	called,	providing	two	objects:	a
request	(an	 	http.IncomingMessage		object)	and	a	response	(an	 	http.ServerResponse		object).

Those	2	objects	are	essential	to	handle	the	HTTP	call.

The	first	provides	the	request	details.	In	this	simple	example,	this	is	not	used,	but	you	could
access	the	request	headers	and	request	data.

Introduction	to	Node

9

https://flaviocopes.com/npm/
https://nodejs.org/api/http.html
https://nodejs.org/api/
https://nodejs.org/api/http.html#http_event_request
https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nodejs.org/api/http.html#http_class_http_serverresponse

The	second	is	used	to	return	data	to	the	caller.

In	this	case	with

res.statusCode	=	200

we	set	the	statusCode	property	to	200,	to	indicate	a	successful	response.

We	set	the	Content-Type	header:

res.setHeader('Content-Type',	'text/plain')

and	we	end	close	the	response,	adding	the	content	as	an	argument	to	 	end()	:

res.end('Hello	World\n')

Node.js	frameworks	and	tools
Node.js	is	a	low-level	platform,	and	to	make	things	easier	and	more	interesting	for	developers
thousands	of	libraries	were	built	upon	Node.js.

Many	of	those	established	over	time	as	popular	options.	Here	is	a	non-comprehensive	list	to
the	ones	I	consider	very	relevant	and	worth	learning:

Express,	one	of	the	most	simple	yet	powerful	ways	to	create	a	web	server.	Its	minimalist
approach,	unopinionated,	focused	on	the	core	features	of	a	server,	is	key	to	its	success.
Meteor,	an	incredibly	powerful	full-stack	framework,	powering	you	with	an	isomorphic
approach	to	building	apps	with	JavaScript,	sharing	code	on	the	client	and	the	server.
Once	an	off-the-shelf	tool	that	provided	everything,	now	integrates	with	frontend	libs
React,	Vue	and	Angular.	Can	be	used	to	create	mobile	apps	as	well.
koa,	built	by	the	same	team	behind	Express,	aims	to	be	even	simpler	and	smaller,
building	on	top	of	years	of	knowledge.	The	new	project	born	out	of	the	need	to	create
incompatible	changes	without	disrupting	the	existing	community.
Next.js,	a	framework	to	render	server-side	rendered	React	applications.
Micro,	a	very	lightweight	server	to	create	asynchronous	HTTP	microservices.
Socket.io,	a	real-time	communication	engine	to	build	network	applications.

Introduction	to	Node

10

https://expressjs.com/
https://flaviocopes.com/meteor/
https://flaviocopes.com/vue-introduction/
http://koajs.com/
https://flaviocopes.com/nextjs/
https://flaviocopes.com/react/
https://github.com/zeit/micro
https://socket.io/

A	brief	history	of	Node
A	look	back	on	the	history	of	Node.js	from	2009	to	today

Believe	it	or	not,	Node.js	is	just	9	years	old.

In	comparison,	JavaScript	is	23	years	old	and	the	web	as	we	know	it	(after	the	introduction	of
Mosaic)	is	25	years	old.

9	years	is	such	a	little	amount	of	time	for	a	technology,	but	Node.js	seems	to	have	been
around	forever.

I've	had	the	pleasure	to	work	with	Node	since	the	early	days	when	it	was	just	2	years	old,	and
despite	the	little	information	available,	you	could	already	feel	it	was	a	huge	thing.

In	this	post,	I	want	to	draw	the	big	picture	of	Node	in	its	history,	to	put	things	in	perspective.

A	little	bit	of	history
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018

A	little	bit	of	history
JavaScript	is	a	programming	language	that	was	created	at	Netscape	as	a	scripting	tool	to
manipulate	web	pages	inside	their	browser,	Netscape	Navigator.

Part	of	the	business	model	of	Netscape	was	to	sell	Web	Servers,	which	included	an
environment	called	Netscape	LiveWire,	which	could	create	dynamic	pages	using	server-side
JavaScript.	So	the	idea	of	server-side	JavaScript	was	not	introduced	by	Node.js,	but	it's	old
just	like	JavaScript	-	but	at	the	time	it	was	not	successful.

One	key	factor	that	led	to	the	rise	of	Node.js	was	timing.	JavaScript	since	a	few	years	was
starting	being	considered	a	serious	language,	thanks	for	the	"Web	2.0"	applications	that
showed	the	world	what	a	modern	experience	on	the	web	could	be	like	(think	Google	Maps	or

A	brief	history	of	Node

11

https://en.wikipedia.org/wiki/Netscape_Navigator

GMail).

The	JavaScript	engines	performance	bar	raised	considerably	thanks	to	the	browser
competition	battle,	which	is	still	going	strong.	Development	teams	behind	each	major	browser
work	hard	every	day	to	give	us	better	performance,	which	is	a	huge	win	for	JavaScript	as	a
platform.	V8,	the	engine	that	Node.js	uses	under	the	hood,	is	one	of	those	and	in	particular	it's
the	Chrome	JS	engine.

But	of	course,	Node.js	is	not	popular	just	because	of	pure	luck	or	timing.	It	introduced	much
innovative	thinking	on	how	to	program	in	JavaScript	on	the	server.

2009
Node.js	is	born	The	first	form	of	npm	is	created

2010
Express	is	born	Socket.io	is	born

2011
npm	hits	1.0	Big	companies	start	adopting	Node:	LinkedIn,	Uber	Hapi	is	born

2012
Adoption	continues	very	rapidly

2013
First	big	blogging	platform	using	Node:	Ghost	Koa	is	born

2014
Big	drama:	IO.js	is	a	major	fork	of	Node.js,	with	the	goal	of	introducing	ES6	support	and	move
faster

2015

A	brief	history	of	Node

12

https://flaviocopes.com/npm/
https://flaviocopes.com/express/
https://socket.io
https://hapijs.com
https://koajs.com/
https://iojs.org/

The	Node.js	Foundation	is	born	IO.js	is	merged	back	into	Node.js	npm	introduces	private
modules	Node	4	(no	1,	2,	3	versions	were	previously	released)

2016
The	leftpad	incident	Yarn	is	born	Node	6

2017
npm	focuses	more	on	security	Node	8	HTTP/2	V8	introduces	Node	in	its	testing	suite,	officially
making	Node	a	target	for	the	JS	engine,	in	addition	to	Chrome	3	billion	npm	downloads	every
week

2018
Node	10	ES	modules	.mjs	experimental	support

A	brief	history	of	Node

13

https://foundation.nodejs.org/
https://blog.npmjs.org/post/141577284765/kik-left-pad-and-npm
https://flaviocopes.com/yarn/
https://flaviocopes.com/v8/
https://flaviocopes.com/es-modules/

How	to	install	Node
How	you	can	install	Node.js	on	your	system:	a	package	manager,	the	official
website	installer	or	nvm

Node.js	can	be	installed	in	different	ways.	This	post	highlights	the	most	common	and
convenient	ones.

Official	packages	for	all	the	major	platforms	are	available	at	https://nodejs.org/en/download/.

One	very	convenient	way	to	install	Node.js	is	through	a	package	manager.	In	this	case,	every
operating	system	has	its	own.

On	macOS,	Homebrew	is	the	de-facto	standard,	and	-	once	installed	-	allows	to	install	Node.js
very	easily,	by	running	this	command	in	the	CLI:

brew	install	node

Other	package	managers	for	Linux	and	Windows	are	listed	in
https://nodejs.org/en/download/package-manager/

	nvm		is	a	popular	way	to	run	Node.	It	allows	you	to	easily	switch	the	Node	version,	and	install
new	versions	to	try	and	easily	rollback	if	something	breaks,	for	example.

It	is	also	very	useful	to	test	your	code	with	old	Node	versions.

See	https://github.com/creationix/nvm	for	more	information	about	this	option.

My	suggestion	is	to	use	the	official	installer	if	you	are	just	starting	out	and	you	don't	use
Homebrew	already,	otherwise,	Homebrew	is	my	favorite	solution.

In	any	case,	when	Node	is	installed	you'll	have	access	to	the	 	node		executable	program	in	the
command	line.

How	to	install	Node

14

https://nodejs.org/en/download/
https://brew.sh/
https://nodejs.org/en/download/package-manager/
https://github.com/creationix/nvm

How	much	JavaScript	do	you	need	to	know
to	use	Node?
If	you	are	just	starting	out	with	JavaScript,	how	much	deeply	do	you	need	to
know	the	language?

As	a	beginner,	it's	hard	to	get	to	a	point	where	you	are	confident	enough	in	your	programming
abilities.

While	learning	to	code,	you	might	also	be	confused	at	where	does	JavaScript	end,	and	where
Node.js	begins,	and	vice	versa.

I	would	recommend	you	to	have	a	good	grasp	of	the	main	JavaScript	concepts	before	diving
into	Node.js:

Lexical	Structure
Expressions
Types
Variables
Functions
this
Arrow	Functions
Loops
Loops	and	Scope
Arrays
Template	Literals
Semicolons
Strict	Mode
ECMAScript	6,	2016,	2017

With	those	concepts	in	mind,	you	are	well	on	your	road	to	become	a	proficient	JavaScript
developer,	in	both	the	browser	and	in	Node.js.

The	following	concepts	are	also	key	to	understand	asynchronous	programming,	which	is	one
fundamental	part	of	Node.js:

Asynchronous	programming	and	callbacks
Timers
Promises
Async	and	Await
Closures
The	Event	Loop

How	much	JavaScript	do	you	need	to	know	to	use	Node?

15

Luckily	I	wrote	a	free	ebook	that	explains	all	those	topics,	and	it's	called	JavaScript
Fundamentals.	It's	the	most	compact	resource	you'll	find	to	learn	all	of	this.

You	can	find	the	ebook	at	the	bottom	of	this	page:	https://flaviocopes.com/javascript/.

How	much	JavaScript	do	you	need	to	know	to	use	Node?

16

https://flaviocopes.com/javascript/

Differences	between	Node	and	the	Browser
How	writing	JavaScript	application	in	Node.js	differs	from	programming	for
the	Web	inside	the	browser

Both	the	browser	and	Node	use	JavaScript	as	their	programming	language.

Building	apps	that	run	in	the	browser	is	a	completely	different	thing	than	building	a	Node.js
application.

Despite	the	fact	that	it's	always	JavaScript,	there	are	some	key	differences	that	make	the
experience	radically	different.

As	a	frontend	developer	that	writes	Node	apps	have	a	huge	advantage	-	the	language	is	still
the	same.

You	have	a	huge	opportunity	because	we	know	how	hard	it	is	to	fully,	deeply	learn	a
programming	language,	and	by	using	the	same	language	to	perform	all	your	work	on	the	web	-
both	on	the	client	and	on	the	server,	you're	in	a	unique	position	of	advantage.

What	changes	is	the	ecosystem.

In	the	browser,	most	of	the	time	what	you	are	doing	is	interacting	with	the	DOM,	or	other	Web
Platform	APIs	like	Cookies.	Those	do	not	exist	in	Node,	of	course.	You	don't	have	the
	document	,	 	window		and	all	the	other	objects	that	are	provided	by	the	browser.

And	in	the	browser,	we	don't	have	all	the	nice	APIs	that	Node.js	provides	through	its	modules,
like	the	filesystem	access	functionality.

Another	big	difference	is	that	in	Node.js	you	control	the	environment.	Unless	you	are	building
an	open	source	application	that	anyone	can	deploy	anywhere,	you	know	which	version	of
Node	you	will	run	the	application	on.	Compared	to	the	browser	environment,	where	you	don't
get	the	luxury	to	choose	what	browser	your	visitors	will	use,	this	is	very	convenient.

This	means	that	you	can	write	all	the	modern	ES6-7-8-9	JavaScript	that	your	Node	version
supports.

Since	JavaScript	moves	so	fast,	but	browsers	can	be	a	bit	slow	and	users	a	bit	slow	to
upgrade,	sometimes	on	the	web,	you	are	stuck	to	use	older	JavaScript	/	ECMAScript	releases.

YYou	can	use	Babel	to	transform	your	code	to	be	ES5-compatible	before	shipping	it	to	the
browser,	but	in	Node,	you	won't	need	that.

Another	difference	is	that	Node	uses	the	CommonJS	module	system,	while	in	the	browser	we
are	starting	to	see	the	ES	Modules	standard	being	implemented.

Differences	between	Node	and	the	Browser

17

https://flaviocopes.com/dom/
https://flaviocopes.com/web-platform/
https://flaviocopes.com/ecmascript/
https://flaviocopes.com/commonjs/
https://flaviocopes.com/es-modules/

In	practice,	this	means	that	for	the	time	being	you	use	 	require()		in	Node	and	 	import		in	the
browser.

Differences	between	Node	and	the	Browser

18

v8
V8	is	the	name	of	the	JavaScript	engine	that	powers	Google	Chrome.	It's	the
thing	that	takes	our	JavaScript	and	executes	it	while	browsing	with	Chrome.
V8	provides	the	runtime	environment	in	which	JavaScript	executes.	The	DOM
and	the	other	Web	Platform	APIs	are	provided	by	the	browser.

V8	is	the	name	of	the	JavaScript	engine	that	powers	Google	Chrome.	It's	the	thing	that	takes
our	JavaScript	and	executes	it	while	browsing	with	Chrome.

V8	provides	the	runtime	environment	in	which	JavaScript	executes.	The	DOM,	and	the	other
Web	Platform	APIs	are	provided	by	the	browser.

The	cool	thing	is	that	the	JavaScript	engine	is	independent	by	the	browser	in	which	it's	hosted.
This	key	feature	enabled	the	rise	of	Node.js.	V8	was	chosen	for	being	the	engine	chosen	by
Node.js	back	in	2009,	and	as	the	popularity	of	Node.js	exploded,	V8	became	the	engine	that
now	powers	an	incredible	amount	of	server-side	code	written	in	JavaScript.

The	Node.js	ecosystem	is	huge	and	thanks	to	it	V8	also	powers	desktop	apps,	with	projects
like	Electron.

v8

19

Other	JS	engines
Other	browsers	have	their	own	JavaScript	engine:

Firefox	has	Spidermonkey
Safari	has	JavaScriptCore	(also	called	Nitro)
Edge	has	Chakra

and	many	others	exist	as	well.

All	those	engines	implement	the	ECMA	ES-262	standard,	also	called	ECMAScript,	the
standard	used	by	JavaScript.

The	quest	for	performance
V8	is	written	in	C++,	and	it's	continuously	improved.	It	is	portable	and	runs	on	Mac,	Windows,
Linux	and	several	other	systems.

In	this	V8	introduction,	I	will	ignore	the	implementation	details	of	V8:	they	can	be	found	on
more	authoritative	sites	(e.g.	the	V8	official	site),	and	they	change	over	time,	often	radically.

V8	is	always	evolving,	just	like	the	other	JavaScript	engines	around,	to	speed	up	the	Web	and
the	Node.js	ecosystem.

On	the	web,	there	is	a	race	for	performance	that's	been	going	on	for	years,	and	we	(as	users
and	developers)	benefit	a	lot	from	this	competition	because	we	get	faster	and	more	optimized
machines	year	after	year.

Compilation
JavaScript	is	generally	considered	an	interpreted	language,	but	modern	JavaScript	engines	no
longer	just	interpret	JavaScript,	they	compile	it.

This	happens	since	2009	when	the	SpiderMonkey	JavaScript	compiler	was	added	to	Firefox
3.5,	and	everyone	followed	this	idea.

JavScript	is	internally	compiled	by	V8	with	just-in-time	(JIT)	compilation	to	speed	up	the
execution.

This	might	seem	counter-intuitive,	but	since	the	introduction	of	Google	Maps	in	2004,
JavaScript	has	evolved	from	a	language	that	was	generally	executing	a	few	dozens	of	lines	of
code	to	complete	applications	with	thousands	to	hundreds	of	thousands	of	lines	running	in	the
browser.

v8

20

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey

Our	applications	now	can	run	for	hours	inside	a	browser,	rather	than	being	just	a	few	form
validation	rules	or	simple	scripts.

In	this	new	world,	compiling	JavaScript	makes	perfect	sense	because	while	it	might	take	a	little
bit	more	to	have	the	JavaScript	ready,	once	done	it's	going	to	be	much	more	performant	that
purely	interpreted	code.

v8

21

Run	Node.js	scripts	from	the	command	line
How	to	run	any	Node.js	script	from	the	CLI

The	usual	way	to	run	a	Node	program	is	to	call	the	 	node		globally	available	command	(once
you	install	Node)	and	pass	the	name	of	the	file	you	want	to	execute.

If	your	main	Node	application	file	is	in	 	app.js	,	you	can	call	it	by	typing

node	app.js

Run	Node.js	scripts	from	the	command	line

22

How	to	exit	from	a	Node.js	program
Learn	how	to	terminate	a	Node.js	app	in	the	best	possible	way

There	are	various	ways	to	terminate	a	Node.js	application.

When	running	a	program	in	the	console	you	can	close	it	with	 	ctrl-C	,	but	what	I	want	to
discuss	here	is	programmatically	exiting.

Let's	start	with	the	most	drastic	one,	and	see	why	you're	better	off	not	using	it.

The	 	process		core	module	is	provides	a	handy	method	that	allows	you	to	programmatically
exit	from	a	Node.js	program:	 	process.exit()	.

When	Node.js	runs	this	line,	the	process	is	immediately	forced	to	terminate.

This	means	that	any	callback	that's	pending,	any	network	request	still	being	sent,	any
filesystem	access,	or	processes	writing	to	 	stdout		or	 	stderr		-	all	is	going	to	be	ungracefully
terminated	right	away.

If	this	is	fine	for	you,	you	can	pass	an	integer	that	signals	the	operating	system	the	exit	code:

process.exit(1)

By	default	the	exit	code	is	 	0	,	which	means	success.	Different	exit	codes	have	different
meaning,	which	you	might	want	to	use	in	your	own	system	to	have	the	program	communicate
to	other	programs.

You	can	read	more	on	exit	codes	at	https://nodejs.org/api/process.html#process_exit_codes

You	can	also	set	the	 	process.exitCode		property:

process.exitCode	=	1

and	when	the	program	will	later	end,	Node	will	return	that	exit	code.

A	program	will	gracefully	exit	when	all	the	processing	is	done.

Many	times	with	Node	we	start	servers,	like	this	HTTP	server:

const	express	=	require('express')

const	app	=	express()

app.get('/',	(req,	res)	=>	{

		res.send('Hi!')

})

How	to	exit	from	a	Node.js	program

23

https://nodejs.org/api/process.html#process_exit_codes

app.listen(3000,	()	=>	console.log('Server	ready'))

This	program	is	never	going	to	end.	If	you	call	 	process.exit()	,	any	currently	pending	or
running	request	is	going	to	be	aborted.	This	is	not	nice.

In	this	case	you	need	to	send	the	command	a	SIGTERM	signal,	and	handle	that	with	the
process	signal	handler:

Note:	 	process		does	not	require	a	"require",	it's	automatically	available.

const	express	=	require('express')

const	app	=	express()

app.get('/',	(req,	res)	=>	{

		res.send('Hi!')

})

const	server	=	app.listen(3000,	()	=>	console.log('Server	ready'))

process.on('SIGTERM',	()	=>	{

		server.close(()	=>	{

				console.log('Process	terminated')

		})

})

What	are	signals?	Signals	are	a	POSIX	intercommunication	system:	a	notification	sent	to
a	process	in	order	to	notify	it	of	an	event	that	occurred.

	SIGKILL		is	the	signals	that	tells	a	process	to	immediately	terminate,	and	would	ideally	act	like
	process.exit()	.

	SIGTERM		is	the	signals	that	tells	a	process	to	gracefully	terminate.	It	is	the	signal	that's	sent
from	process	managers	like	 	upstart		or	 	supervisord		and	many	others.

You	can	send	this	signal	from	inside	the	program,	in	another	function:

process.kill(process.pid,	'SIGTERM')

Or	from	another	Node.js	running	program,	or	any	other	app	running	in	your	system	that	knows
the	PID	of	the	process	you	want	to	terminate.

How	to	exit	from	a	Node.js	program

24

How	to	read	environment	variables
Learn	how	to	read	and	make	use	of	environment	variables	in	a	Node.js
program

The	 	process		core	module	of	Node	provides	the	 	env		property	which	hosts	all	the
environment	variables	that	were	set	at	the	moment	the	process	was	started.

Here	is	an	example	that	accesses	the	NODE_ENV	environment	variable,	which	is	set	to
	development		by	default.

Note:	 	process		does	not	require	a	"require",	it's	automatically	available.

process.env.NODE_ENV	//	"development"

Setting	it	to	"production"	before	the	script	runs	will	tell	Node	that	this	is	a	production
environment.

In	the	same	way	you	can	access	any	custom	environment	variable	you	set.

How	to	read	environment	variables

25

Node	hosting	options
A	Node.js	application	can	be	hosted	in	a	lot	of	places,	depending	on	your
needs.	This	is	a	list	of	all	the	various	options	you	have	at	your	disposal

Here	is	a	non-exhaustive	list	of	the	options	you	can	explore	when	you	want	to	deploy	your	app
and	make	it	publicly	accessible.

I	will	list	the	options	from	simplest	and	constrained	to	more	complex	and	powerful.

Simplest	option	ever:	local	tunnel
Zero	configuration	deployments

Glitch
Codepen

Serverless
PAAS

Zeit	Now
Nanobox
Heroku
Microsoft	Azure
Google	Cloud	Platform

Virtual	Private	Server
Bare	metal

Simplest	option	ever:	local	tunnel
Even	if	you	have	a	dynamic	IP,	or	you're	under	a	NAT,	you	can	deploy	your	app	and	serve	the
requests	right	from	your	computer	using	a	local	tunnel.

This	option	is	suited	for	some	quick	testing,	demo	a	product	or	sharing	of	an	app	with	a	very
small	group	of	people.

A	very	nice	tool	for	this,	available	on	all	platforms,	is	ngrok.

Using	it,	you	can	just	type	 	ngrok	PORT		and	the	PORT	you	want	is	exposed	to	the	internet.	You
will	get	a	ngrok.io	domain,	but	with	a	paid	subscription	you	can	get	a	custom	URL	as	well	as
more	security	options	(remember	that	you	are	opening	your	machine	to	the	public	Internet).

Another	service	you	can	use	is	https://github.com/localtunnel/localtunnel

Zero	configuration	deployments

Node	hosting	options

26

https://ngrok.com/
https://github.com/localtunnel/localtunnel

Glitch

Glitch	is	a	playground	and	a	way	to	build	your	apps	faster	than	ever,	and	see	them	live	on	their
own	glitch.com	subdomain.	You	cannot	currently	have	a	a	custom	domain,	and	there	are	a	few
restrictions	in	place,	but	it's	really	great	to	prototype.	It	looks	fun	(and	this	is	a	plus),	and	it's
not	a	dumbed	down	environment	-	you	get	all	the	power	of	Node.js,	a	CDN,	secure	storage	for
credentials,	GitHub	import/export	and	much	more.

Provided	by	the	company	behind	FogBugz	and	Trello	(and	co-creators	of	Stack	Overflow).

I	use	it	a	lot	for	demo	purposes.

Codepen

Codepen	is	an	amazing	platform	and	community.	You	can	create	a	project	with	multiple	files,
and	deploy	it	with	a	custom	domain.

Serverless
A	way	to	publish	your	apps,	and	have	no	server	at	all	to	manage,	is	Serverless.	Serverless	is	a
paradigm	where	you	publish	your	apps	as	functions,	and	they	respond	on	a	network	endpoint
(also	called	FAAS	-	Functions	As	A	Service).

To	very	popular	solutions	are

Serverless	Framework
Standard	Library

They	both	provide	an	abstraction	layer	to	publishing	on	AWS	Lambda	and	other	FAAS
solutions	based	on	Azure	or	the	Google	Cloud	offering.

PAAS
PAAS	stands	for	Platform	As	A	Service.	These	platforms	take	away	a	lot	of	things	you	should
otherwise	worry	about	when	deploying	your	application.

Zeit	Now

Zeit	is	an	interesting	option.	You	just	type	 	now		in	your	terminal,	and	it	takes	care	of	deploying
your	application.	There	is	a	free	version	with	limitations,	and	the	paid	version	is	more	powerful.
You	simply	forget	that	there's	a	server,	you	just	deploy	the	app.

Node	hosting	options

27

https://glitch.com
https://glitch.com/faq#restrictions
https://codepen.io
https://serverless.com/framework/
https://stdlib.com/

Nanobox

Nanobox

Heroku

Heroku	is	an	amazing	platform.

This	is	a	great	article	on	getting	started	with	Node.js	on	Heroku.

Microsoft	Azure

Azure	is	the	Microsoft	Cloud	offering.

Check	out	how	to	create	a	Node.js	web	app	in	Azure.

Google	Cloud	Platform

Google	Cloud	is	an	amazing	structure	for	your	apps.

They	have	a	good	Node.js	Documentation	Section

Virtual	Private	Server
In	this	section	you	find	the	usual	suspects,	ordered	from	more	user	friendly	to	less	user
friendly:

Digital	Ocean
Linode
Amazon	Web	Services,	in	particular	I	mention	Amazon	Elastic	Beanstalk	as	it	abstracts
away	a	little	bit	the	complexity	of	AWS.

Since	they	provide	an	empty	Linux	machine	on	which	you	can	work,	there	is	no	specific	tutorial
for	these.

There	are	lots	more	options	in	the	VPS	category,	those	are	just	the	ones	I	used	and	I	would
recommend.

Bare	metal
Another	solution	is	to	get	a	bare	metal	server,	install	a	Linux	distribution,	connect	it	to	the
internet	(or	rent	one	monthly,	like	you	can	do	using	the	Vultr	Bare	Metal	service)

Node	hosting	options

28

https://nanobox.io
https://devcenter.heroku.com/articles/getting-started-with-nodejs
https://docs.microsoft.com/en-us/microsoftteams/platform/get-started/get-started-nodejs
https://cloud.google.com/node/
https://www.digitalocean.com
https://www.linode.com/
https://aws.amazon.com
https://www.vultr.com/pricing/baremetal/

Node	hosting	options

29

Use	the	Node	REPL
REPL	stands	for	Read-Evaluate-Print-Loop,	and	it's	a	great	way	to	explore
the	Node	features	in	a	quick	way

The	 	node		command	is	the	one	we	use	to	run	our	Node.js	scripts:

node	script.js

If	we	omit	the	filename,	we	use	it	in	REPL	mode:

node

If	you	try	it	now	in	your	terminal,	this	is	what	happens:

❯	node
>

the	command	stays	in	idle	mode	and	waits	for	us	to	enter	something.

Tip:	if	you	are	unsure	how	to	open	your	terminal,	google	"How	to	open	terminal	on	".

The	REPL	is	waiting	for	us	to	enter	some	JavaScript	code,	to	be	more	precise.

Start	simple	and	enter

>	console.log('test')

test

undefined

>

The	first	value,	 	test	,	is	the	output	we	told	the	console	to	print,	then	we	get	undefined	which
is	the	return	value	of	running	 	console.log()	.

We	can	now	enter	a	new	line	of	JavaScript.

Use	the	tab	to	autocomplete
The	cool	thing	about	the	REPL	is	that	it's	interactive.

As	you	write	your	code,	if	you	press	the	 	tab		key	the	REPL	will	try	to	autocomplete	what	you
wrote	to	match	a	variable	you	already	defined	or	a	predefined	one.

Use	the	Node	REPL

30

Exploring	JavaScript	objects
Try	entering	the	name	of	a	JavaScript	class,	like	 	Number	,	add	a	dot	and	press	 	tab	.

The	REPL	will	print	all	the	properties	and	methods	you	can	access	on	that	class:

Explore	global	objects
You	can	inspect	the	globals	you	have	access	to	by	typing	 	global.		and	pressing	 	tab	:

Use	the	Node	REPL

31

The	_	special	variable
If	after	some	code	you	type	 	_	,	that	is	going	to	print	the	result	of	the	last	operation.

Dot	commands
The	REPL	has	some	special	commands,	all	starting	with	a	dot	 	.	.	They	are

	.help	:	shows	the	dot	commands	help
	.editor	:	enables	editor	more,	to	write	multiline	JavaScript	code	with	ease.	Once	you	are
in	this	mode,	enter	ctrl-D	to	run	the	code	you	wrote.
	.break	:	when	inputting	a	multi-line	expression,	entering	the	.break	command	will	abort
further	input.	Same	as	pressing	ctrl-C.
	.clear	:	resets	the	REPL	context	to	an	empty	object	and	clears	any	multi-line	expression

Use	the	Node	REPL

32

currently	being	input.
	.load	:	loads	a	JavaScript	file,	relative	to	the	current	working	directory
	.save	:	saves	all	you	entered	in	the	REPL	session	to	a	file	(specify	the	filename)
	.exit	:	exists	the	repl	(same	as	pressing	ctrl-C	two	times)

The	REPL	knows	when	you	are	typing	a	multi-line	statement	without	the	need	to	invoke
	.editor	.

For	example	if	you	start	typing	an	iteration	like	this:

[1,	2,	3].forEach(num	=>	{

and	you	press	 	enter	,	the	REPL	will	go	to	a	new	line	that	starts	with	3	dots,	indicating	you	can
now	continue	to	work	on	that	block.

...	console.log(num)

...	})

If	you	type	 	.break		at	the	end	of	a	line,	the	multiline	mode	will	stop	and	the	statement	will	not
be	executed.

Use	the	Node	REPL

33

Pass	arguments	from	the	command	line
How	to	accept	arguments	in	a	Node.js	program	passed	from	the	command
line

You	can	pass	any	number	of	arguments	when	invoking	a	Node.js	application	using

node	app.js

Arguments	can	be	standalone	or	have	a	key	and	a	value.

For	example:

node	app.js	flavio

or

node	app.js	name=flavio

This	changes	how	you	will	retrieve	this	value	in	the	Node	code.

The	way	you	retrieve	it	is	using	the	 	process		object	built	into	Node.

It	exposes	an	 	argv		property,	which	is	an	array	that	contains	all	the	command	line	invocation
arguments.

The	first	argument	is	the	full	path	of	the	 	node		command.

The	second	element	is	the	full	path	of	the	file	being	executed.

All	the	additional	arguments	are	present	from	the	third	position	going	forward.

You	can	iterate	over	all	the	arguments	(including	the	node	path	and	the	file	path)	using	a	loop:

process.argv.forEach((val,	index)	=>	{

		console.log(`${index}:	${val}`)

})

You	can	get	only	the	additional	arguments	by	creating	a	new	array	that	excludes	the	first	2
params:

const	args	=	process.argv.slice(2)

Pass	arguments	from	the	command	line

34

If	you	have	one	argument	without	an	index	name,	like	this:

node	app.js	flavio

you	can	access	it	using

const	args	=	process.argv.slice(2)

args[0]

In	this	case:

node	app.js	name=flavio

	args[0]		is	 	name=flavio	,	and	you	need	to	parse	it.	The	best	way	to	do	so	is	by	using	the
	minimist		library,	which	helps	dealing	with	arguments:

const	args	=	require('minimist')(process.argv.slice(2))

args['name']	//flavio

Pass	arguments	from	the	command	line

35

https://www.npmjs.com/package/minimist

Output	to	the	command	line
How	to	print	to	the	command	line	console	using	Node,	from	the	basic
console.log	to	more	complex	scenarios

Basic	output	using	the	console	module
Clear	the	console
Counting	elements
Print	the	stack	trace
Calculate	the	time	spent
stdout	and	stderr
Color	the	output
Create	a	progress	bar

Basic	output	using	the	console	module
Node	provides	a	 	console		module	which	provides	tons	of	very	useful	ways	to	interact	with	the
command	line.

It	is	basically	the	same	as	the	 	console		object	you	find	in	the	browser.

The	most	basic	and	most	used	method	is	 	console.log()	,	which	prints	the	string	you	pass	to	it
to	the	console.

If	you	pass	an	object,	it	will	render	it	as	a	string.

You	can	pass	multiple	variables	to	 	console.log	,	for	example:

const	x	=	'x'

const	y	=	'y'

console.log(x,	y)

and	Node	will	print	both.

We	can	also	format	pretty	phrases	by	passing	variables	and	a	format	specifier.

For	example:

console.log('My	%s	has	%d	years',	'cat',	2)

	%s		format	a	variable	as	a	string
	%d		or	 	%i		format	a	variable	as	an	integer

Output	to	the	command	line

36

https://nodejs.org/api/console.html

	%f		format	a	variable	as	a	floating	point	number
	%O		used	to	print	an	object	representation

Example:

console.log('%O',	Number)

Clear	the	console
	console.clear()		clears	the	console	(the	behavior	might	depend	on	the	console	used)

Counting	elements
	console.count()		is	a	handy	method.

Take	this	code:

const	x	=	1

const	y	=	2

const	z	=	3

console.count(

		'The	value	of	x	is	'	+	x	+	'	and	has	been	checked	..	how	many	times?'

)

console.count(

		'The	value	of	x	is	'	+	x	+	'	and	has	been	checked	..	how	many	times?'

)

console.count(

		'The	value	of	y	is	'	+	y	+	'	and	has	been	checked	..	how	many	times?'

)

What	happens	is	that	count	will	count	the	number	of	times	a	string	is	printed,	and	print	the
count	next	to	it:

You	can	just	count	apples	and	oranges:

const	oranges	=	['orange',	'orange']

const	apples	=	['just	one	apple']

oranges.forEach(fruit	=>	{

		console.count(fruit)

})

apples.forEach(fruit	=>	{

		console.count(fruit)

})

Output	to	the	command	line

37

Print	the	stack	trace
There	might	be	cases	where	it's	useful	to	print	the	call	stack	trace	of	a	function,	maybe	to
answer	the	question	how	did	you	reach	that	part	of	the	code?

You	can	do	so	using	 	console.trace()	:

const	function2	=	()	=>	console.trace()

const	function1	=	()	=>	function2()

function1()

This	will	print	the	stack	trace.	This	is	what's	printed	if	I	try	this	in	the	Node	REPL:

Trace

				at	function2	(repl:1:33)

				at	function1	(repl:1:25)

				at	repl:1:1

				at	ContextifyScript.Script.runInThisContext	(vm.js:44:33)

				at	REPLServer.defaultEval	(repl.js:239:29)

				at	bound	(domain.js:301:14)

				at	REPLServer.runBound	[as	eval]	(domain.js:314:12)

				at	REPLServer.onLine	(repl.js:440:10)

				at	emitOne	(events.js:120:20)

				at	REPLServer.emit	(events.js:210:7)

Calculate	the	time	spent
You	can	easily	calculate	how	much	time	a	function	takes	to	run,	using	 	time()		and	 	timeEnd()	

const	doSomething	=	()	=>	console.log('test')

const	measureDoingSomething	=	()	=>	{

		console.time('doSomething()')

		//do	something,	and	measure	the	time	it	takes

		doSomething()

		console.timeEnd('doSomething()')

}

measureDoingSomething()

stdout	and	stderr
As	we	saw	console.log	is	great	for	printing	messages	in	the	Console.	This	is	what's	called	the
standard	output,	or	 	stdout	.

	console.error		prints	to	the	 	stderr		stream.

Output	to	the	command	line

38

It	will	not	appear	in	the	console,	but	it	will	appear	in	the	error	log.

Color	the	output
You	can	color	the	output	of	your	text	in	the	console	by	using	escape	sequences.	An	escape
sequence	is	a	set	of	characters	that	identifies	a	color.

Example:

console.log('\x1b[33m%s\x1b[0m',	'hi!')

You	can	try	that	in	the	Node	REPL,	and	it	will	print	 	hi!		in	yellow.

However,	this	is	the	low-level	way	to	do	this.	The	simplest	way	to	go	about	coloring	the
console	output	is	by	using	a	library.	Chalk	is	such	a	library,	and	in	addition	to	coloring	it	also
helps	with	other	styling	facilities,	like	making	text	bold,	italic	or	underlined.

You	install	it	with	 	npm	install	chalk	,	then	you	can	use	it:

const	chalk	=	require('chalk')

console.log(chalk.yellow('hi!'))

Using	 	chalk.yellow		is	much	more	convenient	than	trying	to	remember	the	escape	codes,	and
the	code	is	much	more	readable.

Check	the	project	link	I	posted	above	for	more	usage	examples.

Create	a	progress	bar
Progress	is	an	awesome	package	to	create	a	progress	bar	in	the	console.	Install	it	using	 	npm
install	progress	

This	snippet	creates	a	10-step	progress	bar,	and	every	100ms	one	step	is	completed.	When
the	bar	completes	we	clear	the	interval:

const	ProgressBar	=	require('progress')

const	bar	=	new	ProgressBar(':bar',	{	total:	10	})

const	timer	=	setInterval(()	=>	{

		bar.tick()

		if	(bar.complete)	{

				clearInterval(timer)

		}

},	100)

Output	to	the	command	line

39

https://github.com/chalk/chalk
https://www.npmjs.com/package/progress

Output	to	the	command	line

40

Accept	input	from	the	command	line
How	to	make	a	Node.js	CLI	program	interactive	using	the	built-in	readline
Node	module

How	to	make	a	Node.js	CLI	program	interactive?

Node	since	version	7	provides	the	 	readline		module	to	perform	exactly	this:	get	input	from	a
readable	stream	such	as	the	 	process.stdin		stream,	which	during	the	execution	of	a	Node
program	is	the	terminal	input,	one	line	at	a	time.

const	readline	=	require('readline').createInterface({

		input:	process.stdin,

		output:	process.stdout

})

readline.question(`What's	your	name?`,	(name)	=>	{

		console.log(`Hi	${name}!`)

		readline.close()

})

This	piece	of	code	asks	the	username,	and	once	the	text	is	entered	and	the	user	presses
enter,	we	send	a	greeting.

The	 	question()		method	shows	the	first	parameter	(a	question)	and	waits	for	the	user	input.	It
calls	the	callback	function	once	enter	is	pressed.

In	this	callback	function,	we	close	the	readline	interface.

	readline		offers	several	other	methods,	and	I'll	let	you	check	them	out	on	the	package
documentation	I	linked	above.

If	you	need	to	require	a	password,	it's	best	to	now	echo	it	back,	but	instead	showing	a	 	*	
symbol.

The	simplest	way	is	to	use	the	 	readline-sync		package	which	is	very	similar	in	terms	of	the
API	and	handles	this	out	of	the	box.

A	more	complete	and	abstract	solution	is	provided	by	the	Inquirer.js	package.

You	can	install	it	using	 	npm	install	inquirer	,	and	then	you	can	replicate	the	above	code	like
this:

const	inquirer	=	require('inquirer')

var	questions	=	[{

		type:	'input',

Accept	input	from	the	command	line

41

https://nodejs.org/api/readline.html
https://www.npmjs.com/package/readline-sync
https://github.com/SBoudrias/Inquirer.js

		name:	'name',

		message:	"What's	your	name?",

}]

inquirer.prompt(questions).then(answers	=>	{

		console.log(`Hi	${answers['name']}!`)

})

Inquirer.js	lets	you	do	many	things	like	asking	multiple	choices,	having	radio	buttons,
confirmations,	and	more.

It's	worth	knowing	all	the	alternatives,	especially	the	built-in	ones	provided	by	Node,	but	if	you
plan	to	take	CLI	input	to	the	next	level,	Inquirer.js	is	an	optimal	choice.

Accept	input	from	the	command	line

42

Expose	functionality	from	a	Node	file	using
exports
How	to	use	the	module.exports	API	to	expose	data	to	other	files	in	your
application,	or	to	other	applications	as	well

Node	has	a	built-in	module	system.

A	Node.js	file	can	import	functionality	exposed	by	other	Node.js	files.

When	you	want	to	import	something	you	use

const	library	=	require('./library')

to	import	the	functionality	exposed	in	the	 	library.js		file	that	resides	in	the	current	file	folder.

In	this	file,	functionality	must	be	exposed	before	it	can	be	imported	by	other	files.

Any	other	object	or	variable	defined	in	the	file	by	default	is	private	and	not	exposed	to	the
outer	world.

This	is	what	the	 	module.exports		API	offered	by	the	 	module		system	allows	us	to	do.

When	you	assign	an	object	or	a	function	as	a	new	 	exports		property,	that	is	the	thing	that's
being	exposed,	and	as	such,	it	can	be	imported	in	other	parts	of	your	app,	or	in	other	apps	as
well.

You	can	do	so	in	2	ways.

The	first	is	to	assign	an	object	to	 	module.exports	,	which	is	an	object	provided	out	of	the	box
by	the	module	system,	and	this	will	make	your	file	export	just	that	object:

const	car	=	{

		brand:	'Ford',

		model:	'Fiesta'

}

module.exports	=	car

//..in	the	other	file

const	car	=	require('./car')

The	second	way	is	to	add	the	exported	object	as	a	property	of	 	exports	.	This	way	allows	you
to	export	multiple	objects,	functions	or	data:

Expose	functionality	from	a	Node	file	using	exports

43

https://nodejs.org/api/modules.html

const	car	=	{

		brand:	'Ford',

		model:	'Fiesta'

}

exports.car	=	car

or	directly

exports.car	=	{

		brand:	'Ford',

		model:	'Fiesta'

}

And	in	the	other	file,	you'll	use	it	by	referencing	a	property	of	your	import:

const	items	=	require('./items')

items.car

or

const	car	=	require('./items').car

What's	the	difference	between	 	module.exports		and	 	exports	?

The	first	exposes	the	object	it	points	to.	The	latter	exposes	the	properties	of	the	object	it	points
to.

Expose	functionality	from	a	Node	file	using	exports

44

npm
A	quick	guide	to	npm,	the	powerful	package	manager	key	to	the	success	of
Node.js.	In	January	2017	over	350000	packages	were	reported	being	listed	in
the	npm	registry,	making	it	the	biggest	single	language	code	repository	on
Earth,	and	you	can	be	sure	there	is	a	package	for	(almost!)	everything.

Introduction	to	npm
Downloads

Installing	all	dependencies
Installing	a	single	package
Updating	packages

Versioning
Running	Tasks

Introduction	to	npm
	npm		is	the	standard	package	manager	for	Node.js.

npm

45

In	January	2017	over	350000	packages	were	reported	being	listed	in	the	npm	registry,	making
it	the	biggest	single	language	code	repository	on	Earth,	and	you	can	be	sure	there	is	a
package	for	(almost!)	everything.

It	started	as	a	way	to	download	and	manage	dependencies	of	Node.js	packages,	but	it	has
since	become	a	tool	used	also	in	frontend	JavaScript.

There	are	many	things	that	 	npm		does.

Yarn	is	an	alternative	to	npm.	Make	sure	you	check	it	out	as	well.

Downloads
	npm		manages	downloads	of	dependencies	of	your	project.

Installing	all	dependencies

If	a	project	has	a	 	packages.json		file,	by	running

npm	install

it	will	install	everything	the	project	needs,	in	the	 	node_modules		folder,	creating	it	if	it's	not
existing	already.

Installing	a	single	package

You	can	also	install	a	specific	package	by	running

npm	install	<package-name>

Often	you'll	see	more	flags	added	to	this	command:

	--save		installs	and	adds	the	entry	to	the	 	package.json		file	dependencies
	--save-dev		installs	and	adds	the	entry	to	the	 	package.json		file	devDependencies

The	difference	is	mainly	that	devDependencies	are	usually	development	tools,	like	a	testing
library,	while	 	dependencies		are	bundled	with	the	app	in	production.

Updating	packages

Updating	is	also	made	easy,	by	running

npm	update

npm

46

https://flaviocopes.com/node/
https://flaviocopes.com/javascript/
https://flaviocopes.com/yarn

	npm		will	check	all	packages	for	a	newer	version	that	satisfies	your	versioning	constraints.

You	can	specify	a	single	package	to	update	as	well:

npm	update	<package-name>

Versioning
In	addition	to	plain	downloads,	 	npm		also	manages	versioning,	so	you	can	specify	any
specific	version	of	a	package,	or	require	a	version	higher	or	lower	than	what	you	need.

Many	times	you'll	find	that	a	library	is	only	compatible	with	a	major	release	of	another	library.

Or	a	bug	in	the	latest	release	of	a	lib,	still	unfixed,	is	causing	an	issue.

Specifying	an	explicit	version	of	a	library	also	helps	to	keep	everyone	on	the	same	exact
version	of	a	package,	so	that	the	whole	team	runs	the	same	version	until	the	 	package.json		file
is	updated.

In	all	those	cases,	versioning	helps	a	lot,	and	 	npm		follows	the	semantic	versioning	(semver)
standard.

Running	Tasks
The	package.json	file	supports	a	format	for	specifying	command	line	tasks	that	can	be	run	by
using

npm	run	<task-name>

For	example:

{

		"scripts":	{

				"start-dev":	"node	lib/server-development",

				"start":	"node	lib/server-production"

		},

}

It's	very	common	to	use	this	feature	to	run	Webpack:

{

		"scripts":	{

npm

47

				"watch":	"webpack	--watch	--progress	--colors	--config	webpack.conf.js",

				"dev":	"webpack	--progress	--colors	--config	webpack.conf.js",

				"prod":	"NODE_ENV=production	webpack	-p	--config	webpack.conf.js",

		},

}

So	instead	of	typing	those	long	commands,	which	are	easy	to	forget	or	mistype,	you	can	run

$	npm	run	watch

$	npm	run	dev

$	npm	run	prod

npm

48

Where	does	npm	install	the	packages
How	to	find	out	where	npm	installs	the	packages

Read	the	npm	guide	if	you	are	starting	out	with	npm,	it's	going	to	go	in	a	lot	of	the	basic
details	of	it.

When	you	install	a	package	using	 	npm		(or	yarn),	you	can	perform	2	types	of	installation:

a	local	install
a	global	install

By	default,	when	you	type	an	 	npm	install		command,	like:

npm	install	lodash

the	package	is	installed	in	the	current	file	tree,	under	the	 	node_modules		subfolder.

As	this	happens,	 	npm		also	adds	the	 	lodash		entry	in	the	 	dependencies		property	of	the
	package.json		file	present	in	the	current	folder.

A	global	installation	is	performed	using	the	 	-g		flag:

npm	install	-g	lodash

When	this	happens,	npm	won't	install	the	package	under	the	local	folder,	but	instead,	it	will
use	a	global	location.

Where,	exactly?

The	 	npm	root	-g		command	will	tell	you	where	that	exact	location	is	on	your	machine.

On	macOS	or	Linux	this	location	could	be	 	/usr/local/lib/node_modules	.	On	Windows	it	could
be	 	C:\Users\YOU\AppData\Roaming\npm\node_modules	

If	you	use	 	nvm		to	manage	Node.js	versions,	however,	that	location	would	differ.

I	for	example	use	 	nvm		and	my	packages	location	was	shown	as
	/Users/flavio/.nvm/versions/node/v8.9.0/lib/node_modules	.

Where	does	npm	install	the	packages

49

https://flaviocopes.com/npm/
https://flaviocopes.com/yarn/
https://flaviocopes.com/package-json/

How	to	use	or	execute	a	package	installed
using	npm
How	to	include	and	use	in	your	code	a	package	installed	in	your
node_modules	folder

When	you	install	using	 	npm		a	package	into	your	 	node_modules		folder,	or	also	globally,	how	do
you	use	it	in	your	Node	code?

Say	you	install	 	lodash	,	the	popular	JavaScript	utility	library,	using

npm	install	lodash

This	is	going	to	install	the	package	in	the	local	 	node_modules		folder.

To	use	it	in	your	code,	you	just	need	to	import	it	into	your	program	using	 	require	:

const	_	=	require('lodash)

What	if	your	package	is	an	executable?

In	this	case,	it	will	put	the	executable	file	under	the	 	node_modules/.bin/		folder.

One	easy	way	to	demonstrate	this	is	cowsay.

The	cowsay	package	provides	a	command	line	program	that	can	be	executed	to	make	a	cow
say	something	(and	other	animals	as	well	ࢤ).

When	you	install	the	package	using	 	npm	install	cowsay	,	it	will	install	itself	and	a	few
dependencies	in	the	node_modules	folder:

How	to	use	or	execute	a	package	installed	using	npm

50

https://www.npmjs.com/package/cowsay

There	is	a	hidden	.bin	folder,	which	contains	symbolic	links	to	the	cowsay	binaries:

How	do	you	execute	those?

You	can	of	course	type	 	./node_modules/.bin/cowsay		to	run	it,	and	it	works,	but	npx,	included	in
the	recent	versions	of	npm	(since	5.2),	is	a	much	better	option.	You	just	run:

npx	cowsay

and	npx	will	find	the	package	location.

How	to	use	or	execute	a	package	installed	using	npm

51

https://flaviocopes.com/npx/

How	to	use	or	execute	a	package	installed	using	npm

52

The	package.json	file
The	package.json	file	is	a	key	element	in	lots	of	app	codebases	based	on	the
Node.js	ecosystem.

If	you	work	with	JavaScript,	or	you've	ever	interacted	with	a	JavaScript	project,	Node.js	or	a
frontend	project,	you	surely	met	the	 	package.json		file.

What's	that	for?	What	should	you	know	about	it,	and	what	are	some	of	the	cool	things	you	can
do	with	it?

The	 	package.json		file	is	kind	of	a	manifest	for	your	project.	It	can	do	a	lot	of	things,	completely
unrelated.	It's	a	central	repository	of	configuration	for	tools,	for	example.	It's	also	where	 	npm	
and	 	yarn		store	the	names	and	versions	of	the	package	it	installed.

The	file	structure
Properties	breakdown

	name	

	author	

	contributors	

	bugs	

	homepage	

	version	

	license	

	keywords	

	description	

	repository	

	main	

	private	

	scripts	

	dependencies	

	devDependencies	

	engines	

	browserslist	

Command-specific	properties
Package	versions

The	file	structure
Here's	an	example	package.json	file:

The	package.json	file

53

https://flaviocopes.com/npm/
https://flaviocopes.com/yarn/

{

}

It's	empty!	There	are	no	fixed	requirements	of	what	should	be	in	a	 	package.json		file,	for	an
application.	The	only	requirement	is	that	it	respects	the	JSON	format,	otherwise	it	cannot	be
read	by	programs	that	try	to	access	its	properties	programmatically.

If	you're	building	a	Node.js	package	that	you	want	to	distribute	over	 	npm		things	change
radically,	and	you	must	have	a	set	of	properties	that	will	help	other	people	use	it.	We'll	see
more	about	this	later	on.

This	is	another	package.json:

{

		"name":	"test-project"

}

It	defines	a	 	name		property,	which	tells	the	name	of	the	app,	or	package,	that's	contained	in	the
same	folder	where	this	file	lives.

Here's	a	much	more	complex	example,	which	I	extracted	this	from	a	sample	Vue.js
application:

{

		"name":	"test-project",

		"version":	"1.0.0",

		"description":	"A	Vue.js	project",

		"main":	"src/main.js",

		"private":	true,

		"scripts":	{

				"dev":	"webpack-dev-server	--inline	--progress	--config	build/webpack.dev.conf.js",

				"start":	"npm	run	dev",

				"unit":	"jest	--config	test/unit/jest.conf.js	--coverage",

				"test":	"npm	run	unit",

				"lint":	"eslint	--ext	.js,.vue	src	test/unit",

				"build":	"node	build/build.js"

		},

		"dependencies":	{

				"vue":	"^2.5.2"

		},

		"devDependencies":	{

				"autoprefixer":	"^7.1.2",

				"babel-core":	"^6.22.1",

				"babel-eslint":	"^8.2.1",

				"babel-helper-vue-jsx-merge-props":	"^2.0.3",

				"babel-jest":	"^21.0.2",

				"babel-loader":	"^7.1.1",

				"babel-plugin-dynamic-import-node":	"^1.2.0",

				"babel-plugin-syntax-jsx":	"^6.18.0",

The	package.json	file

54

				"babel-plugin-transform-es2015-modules-commonjs":	"^6.26.0",

				"babel-plugin-transform-runtime":	"^6.22.0",

				"babel-plugin-transform-vue-jsx":	"^3.5.0",

				"babel-preset-env":	"^1.3.2",

				"babel-preset-stage-2":	"^6.22.0",

				"chalk":	"^2.0.1",

				"copy-webpack-plugin":	"^4.0.1",

				"css-loader":	"^0.28.0",

				"eslint":	"^4.15.0",

				"eslint-config-airbnb-base":	"^11.3.0",

				"eslint-friendly-formatter":	"^3.0.0",

				"eslint-import-resolver-webpack":	"^0.8.3",

				"eslint-loader":	"^1.7.1",

				"eslint-plugin-import":	"^2.7.0",

				"eslint-plugin-vue":	"^4.0.0",

				"extract-text-webpack-plugin":	"^3.0.0",

				"file-loader":	"^1.1.4",

				"friendly-errors-webpack-plugin":	"^1.6.1",

				"html-webpack-plugin":	"^2.30.1",

				"jest":	"^22.0.4",

				"jest-serializer-vue":	"^0.3.0",

				"node-notifier":	"^5.1.2",

				"optimize-css-assets-webpack-plugin":	"^3.2.0",

				"ora":	"^1.2.0",

				"portfinder":	"^1.0.13",

				"postcss-import":	"^11.0.0",

				"postcss-loader":	"^2.0.8",

				"postcss-url":	"^7.2.1",

				"rimraf":	"^2.6.0",

				"semver":	"^5.3.0",

				"shelljs":	"^0.7.6",

				"uglifyjs-webpack-plugin":	"^1.1.1",

				"url-loader":	"^0.5.8",

				"vue-jest":	"^1.0.2",

				"vue-loader":	"^13.3.0",

				"vue-style-loader":	"^3.0.1",

				"vue-template-compiler":	"^2.5.2",

				"webpack":	"^3.6.0",

				"webpack-bundle-analyzer":	"^2.9.0",

				"webpack-dev-server":	"^2.9.1",

				"webpack-merge":	"^4.1.0"

		},

		"engines":	{

				"node":	">=	6.0.0",

				"npm":	">=	3.0.0"

		},

		"browserslist":	[

				">	1%",

				"last	2	versions",

				"not	ie	<=	8"

]

}

there	are	lots	of	things	going	on	here:

The	package.json	file

55

	name		sets	the	application/package	name
	version		indicates	the	current	version
	description		is	a	brief	description	of	the	app/package
	main		set	the	entry	point	for	the	application
	private		if	set	to	 	true		prevents	the	app/package	to	be	accidentally	published	on	 	npm	
	scripts		defines	a	set	of	node	scripts	you	can	run
	dependencies		sets	a	list	of	 	npm		packages	installed	as	dependencies
	devDependencies		sets	a	list	of	 	npm		packages	installed	as	development	dependencies
	engines		sets	which	versions	of	Node	this	package/app	works	on
	browserslist		is	used	to	tell	which	browsers	(and	their	versions)	you	want	to	support

All	those	properties	are	used	by	either	 	npm		or	other	tools	that	we	can	use.

Properties	breakdown
This	section	describes	the	properties	you	can	use	in	detail.	I	refer	to	"package"	but	the	same
thing	applies	to	local	applications	which	you	do	not	use	as	packages.

Most	of	those	properties	are	only	used	on	the	https://www.npmjs.com/,	other	by	scripts	that
interact	with	your	code,	like	 	npm		or	others.

	name	

Sets	the	package	name.

Example:

"name":	"test-project"

The	name	must	be	less	than	214	characters,	must	not	have	spaces,	it	can	only	contain
lowercase	letters,	hyphens	(-)	or	underscores	(_).

This	is	because	when	a	package	is	published	on	 	npm	,	it	gets	its	own	URL	based	on	this
property.

If	you	published	this	package	publicly	on	GitHub,	a	good	value	for	this	property	is	the	GitHub
repository	name.

	author	

Lists	the	package	author	name

Example:

The	package.json	file

56

https://www.npmjs.com/

{

		"author":	"Flavio	Copes	<flavio@flaviocopes.com>	(https://flaviocopes.com)"

}

Can	also	be	used	with	this	format:

{

		"author":	{

				"name":	"Flavio	Copes",

				"email":	"flavio@flaviocopes.com",

				"url":	"https://flaviocopes.com"

		}

}

	contributors	

As	well	as	the	author,	the	project	can	have	one	or	more	contributors.	This	property	is	an	array
that	lists	them.

Example:

{

		"contributors":	[

				"Flavio	Copes	<flavio@flaviocopes.com>	(https://flaviocopes.com)"

]

}

Can	also	be	used	with	this	format:

{

		"contributors":	[

				{

						"name":	"Flavio	Copes",

						"email":	"flavio@flaviocopes.com",

						"url":	"https://flaviocopes.com"

				}

]

}

	bugs	

Links	to	the	package	issue	tracker,	most	likely	a	GitHub	issues	page

Example:

{

		"bugs":	"https://github.com/flaviocopes/package/issues"

The	package.json	file

57

}

	homepage	

Sets	the	package	homepage

Example:

{

		"homepage":	"https://flaviocopes.com/package"

}

	version	

Indicates	the	current	version	of	the	package.

Example:

"version":	"1.0.0"

This	property	follows	the	semantic	versioning	(semver)	notation	for	versions,	which	means	the
version	is	always	expressed	with	3	numbers:	 	x.x.x	.

The	first	number	is	the	major	version,	the	second	the	minor	version	and	the	third	is	the	patch
version.

There	is	a	meaning	in	these	numbers:	a	release	that	only	fixes	bugs	is	a	patch	release,	a
release	that	introduces	backward-compatible	changes	is	a	minor	release,	a	major	release	can
have	breaking	changes.

	license	

Indicates	the	license	of	the	package.

Example:

"license":	"MIT"

	keywords	

This	property	contains	an	array	of	keywords	that	associate	with	what	your	package	does.

Example:

The	package.json	file

58

"keywords":	[

		"email",

		"machine	learning",

		"ai"

]

This	helps	people	find	your	package	when	navigating	similar	packages,	or	when	browsing	the
https://www.npmjs.com/	website.

	description	

This	property	contains	a	brief	description	of	the	package

Example:

"description":	"A	package	to	work	with	strings"

This	is	especially	useful	if	you	decide	to	publish	your	package	to	 	npm		so	that	people	can	find
out	what	the	package	is	about.

	repository	

This	property	specifies	where	this	package	repository	is	located.

Example:

"repository":	"github:flaviocopes/testing",

Notice	the	 	github		prefix.	There	are	other	popular	services	baked	in:

"repository":	"gitlab:flaviocopes/testing",

"repository":	"bitbucket:flaviocopes/testing",

You	can	explicitly	set	the	version	control	system:

"repository":	{

		"type":	"git",

		"url":	"https://github.com/flaviocopes/testing.git"

}

You	can	use	different	version	control	systems:

The	package.json	file

59

https://www.npmjs.com/

"repository":	{

		"type":	"svn",

		"url":	"..."

}

	main	

Sets	the	entry	point	for	the	package.

When	you	import	this	package	in	an	application,	that's	where	the	application	will	search	for	the
module	exports.

Example:

"main":	"src/main.js"

	private	

if	set	to	 	true		prevents	the	app/package	to	be	accidentally	published	on	 	npm	

Example:

"private":	true

	scripts	

Defines	a	set	of	node	scripts	you	can	run

Example:

"scripts":	{

		"dev":	"webpack-dev-server	--inline	--progress	--config	build/webpack.dev.conf.js",

		"start":	"npm	run	dev",

		"unit":	"jest	--config	test/unit/jest.conf.js	--coverage",

		"test":	"npm	run	unit",

		"lint":	"eslint	--ext	.js,.vue	src	test/unit",

		"build":	"node	build/build.js"

}

These	scripts	are	command	line	applications.	You	can	run	them	by	calling	 	npm	run	XXXX		or
	yarn	XXXX	,	where	 	XXXX		is	the	command	name.	Example:	 	npm	run	dev	.

You	can	use	any	name	you	want	for	a	command,	and	scripts	can	do	literally	anything	you
want.

The	package.json	file

60

	dependencies	

Sets	a	list	of	 	npm		packages	installed	as	dependencies.

When	you	install	a	package	using	npm	or	yarn:

npm	install	<PACKAGENAME>

yarn	add	<PACKAGENAME>

that	package	is	automatically	inserted	in	this	list.

Example:

"dependencies":	{

		"vue":	"^2.5.2"

}

	devDependencies	

Sets	a	list	of	 	npm		packages	installed	as	development	dependencies.

They	differ	from	 	dependencies		because	they	are	meant	to	be	installed	only	on	a	development
machine,	not	needed	to	run	the	code	in	production.

When	you	install	a	package	using	npm	or	yarn:

npm	install	--dev	<PACKAGENAME>

yarn	add	--dev	<PACKAGENAME>

that	package	is	automatically	inserted	in	this	list.

Example:

"devDependencies":	{

		"autoprefixer":	"^7.1.2",

		"babel-core":	"^6.22.1"

}

	engines	

Sets	which	versions	of	Node.js	and	other	commands	this	package/app	work	on

Example:

"engines":	{

The	package.json	file

61

		"node":	">=	6.0.0",

		"npm":	">=	3.0.0",

		"yarn":	"^0.13.0"

}

	browserslist	

Is	used	to	tell	which	browsers	(and	their	versions)	you	want	to	support.	It's	referenced	by
Babel,	Autoprefixer,	and	other	tools,	to	only	add	the	polyfills	and	fallbacks	needed	to	the
browsers	you	target.

Example:

"browserslist":	[

		">	1%",

		"last	2	versions",

		"not	ie	<=	8"

]

This	configuration	means	you	want	to	support	the	last	2	major	versions	of	all	browsers	with	at
least	1%	of	usage	(from	the	CanIUse.com	stats),	except	IE8	and	lower.

(see	more)

Command-specific	properties

The	 	package.json		file	can	also	host	command-specific	configuration,	for	example	for	Babel,
ESLint,	and	more.

Each	has	a	specific	property,	like	 	eslintConfig	,	 	babel		and	others.	Those	are	command-
specific,	and	you	can	find	how	to	use	those	in	the	respective	command/project	documentation.

Package	versions
You	have	seen	in	the	description	above	version	numbers	like	these:	 	~3.0.0		or	 	̂ 0.13.0	.
What	do	they	mean,	and	which	other	version	specifiers	can	you	use?

That	symbol	specifies	which	updates	you	package	accepts,	from	that	dependency.

Given	that	using	semver	(semantic	versioning)	all	versions	have	3	digits,	the	first	being	the
major	release,	the	second	the	minor	release	and	the	third	is	the	patch	release,	you	have	these
rules:

	~	:	if	you	write	 	~0.13.0	,	you	want	to	only	update	patch	releases:	 	0.13.1		is	ok,	but

The	package.json	file

62

https://caniuse.com
https://www.npmjs.com/package/browserslist

	0.14.0		is	not.
	̂ 	:	if	you	write	 	̂ 0.13.0	,	you	want	to	update	patch	and	minor	releases:	 	0.13.1	,	 	0.14.0	
and	so	on.
	*	:	if	you	write	 	*	,	that	means	you	accept	all	updates,	including	major	version	upgrades.
	>	:	you	accept	any	version	higher	than	the	one	you	specify
	>=	:	you	accept	any	version	equal	to	or	higher	than	the	one	you	specify
	<=	:	you	accept	any	version	equal	or	lower	to	the	one	you	specify
	<	:	you	accept	any	version	lower	to	the	one	you	specify

There	are	other	rules,	too:

no	symbol:	you	accept	only	that	specific	version	you	specify
	latest	:	you	want	to	use	the	latest	version	available

and	you	can	combine	most	of	the	above	in	ranges,	like	this:	 	1.0.0	||	>=1.1.0	<1.2.0	,	to	either
use	1.0.0	or	one	release	from	1.1.0	up,	but	lower	than	1.2.0.

The	package.json	file

63

The	package-lock.json	file
The	package-lock.json	file	is	automatically	generated	when	installing	node
packages.	Learn	what	it's	about

In	version	5,	npm	introduced	the	 	package-lock.json		file.

What's	that?	You	probably	know	about	the	 	package.json		file,	which	is	much	more	common
and	has	been	around	for	much	longer.

The	goal	of	the	file	is	to	keep	track	of	the	exact	version	of	every	package	that	is	installed	so
that	a	product	is	100%	reproducible	in	the	same	way	even	if	packages	are	updated	by	their
maintainers.

This	solves	a	very	specific	problem	that	 	package.json		left	unsolved.	In	package.json	you	can
set	which	versions	you	want	to	upgrade	to	(patch	or	minor),	using	the	semver	notation,	for
example:

if	you	write	 	~0.13.0	,	you	want	to	only	update	patch	releases:	 	0.13.1		is	ok,	but	 	0.14.0	
is	not.
if	you	write	 	̂ 0.13.0	,	you	want	to	update	patch	and	minor	releases:	 	0.13.1	,	 	0.14.0		and
so	on.
if	you	write	 	0.13.0	,	that	is	the	exact	version	that	will	be	used,	always

You	don't	commit	to	Git	your	node_modules	folder,	which	is	generally	huge,	and	when	you	try
to	replicate	the	project	on	another	machine	by	using	the	 	npm	install		command,	if	you
specified	the	 	~		syntax	and	a	patch	release	of	a	package	has	been	released,	that	one	is	going
to	be	installed.	Same	for	 	̂ 		and	minor	releases.

If	you	specify	exact	versions,	like	 	0.13.0		in	the	example,	you	are	not	affected	by	this
problem.

It	could	be	you,	or	another	person	trying	to	initialize	the	project	on	the	other	side	of	the	world
by	running	 	npm	install	.

So	your	original	project	and	the	newly	initialized	project	are	actually	different.	Even	if	a	patch
or	minor	release	should	not	introduce	breaking	changes,	we	all	know	bugs	can	(and	so,	they
will)	slide	in.

The	 	package-lock.json		sets	your	currently	installed	version	of	each	package	in	stone,	and
	npm		will	use	those	exact	versions	when	running	 	npm	install	.

This	concept	is	not	new,	and	other	programming	languages	package	managers	(like
Composer	in	PHP)	use	a	similar	system	for	years.

The	package-lock.json	file

64

https://flaviocopes.com/npm/
https://flaviocopes.com/package-json/

The	 	package-lock.json		file	needs	to	be	committed	to	your	Git	repository,	so	it	can	be	fetched
by	other	people,	if	the	project	is	public	or	you	have	collaborators,	or	if	you	use	Git	as	a	source
for	deployments.

The	dependencies	versions	will	be	updated	in	the	 	package-lock.json		file	when	you	run	 	npm
update	.

An	example
This	is	an	example	structure	of	a	 	package-lock.json		file	we	get	when	we	run	 	npm	install
cowsay		in	an	empty	folder:

{

		"requires":	true,

		"lockfileVersion":	1,

		"dependencies":	{

				"ansi-regex":	{

						"version":	"3.0.0",

						"resolved":	"https://registry.npmjs.org/ansi-regex/-/ansi-regex-3.

0.0.tgz",

						"integrity":	"sha1-7QMXwyIGT3lGbAKWa922Bas32Zg="

				},

				"cowsay":	{

						"version":	"1.3.1",

						"resolved":	"https://registry.npmjs.org/cowsay/-/cowsay-1.3.1.tgz"

,

						"integrity":	"sha512-3PVFe6FePVtPj1HTeLin9v8WyLl+VmM1l1H/5P+BTTDkM

Ajufp+0F9eLjzRnOHzVAYeIYFF5po5NjRrgefnRMQ==",

						"requires":	{

								"get-stdin":	"^5.0.1",

								"optimist":	"~0.6.1",

								"string-width":	"~2.1.1",

								"strip-eof":	"^1.0.0"

						}

				},

				"get-stdin":	{

						"version":	"5.0.1",

						"resolved":	"https://registry.npmjs.org/get-stdin/-/get-stdin-5.0.

1.tgz",

						"integrity":	"sha1-Ei4WFZHiH/TFJTAwVpPyDmOTo5g="

				},

				"is-fullwidth-code-point":	{

						"version":	"2.0.0",

						"resolved":	"https://registry.npmjs.org/is-fullwidth-code-point/-/

is-fullwidth-code-point-2.0.0.tgz",

						"integrity":	"sha1-o7MKXE8ZkYMWeqq5O+764937ZU8="

				},

				"minimist":	{

						"version":	"0.0.10",

						"resolved":	"https://registry.npmjs.org/minimist/-/minimist-0.0.10

.tgz",

The	package-lock.json	file

65

						"integrity":	"sha1-3j+YVD2/lggr5IrRoMfNqDYwHc8="

				},

				"optimist":	{

						"version":	"0.6.1",

						"resolved":	"https://registry.npmjs.org/optimist/-/optimist-0.6.1.tgz",

						"integrity":	"sha1-2j6nRob6IaGaERwybpDrFaAZZoY=",

						"requires":	{

								"minimist":	"~0.0.1",

								"wordwrap":	"~0.0.2"

						}

				},

				"string-width":	{

						"version":	"2.1.1",

						"resolved":	"https://registry.npmjs.org/string-width/-/string-width-2.1.1.tgz",

						"integrity":	"sha512-nOqH59deCq9SRHlxq1Aw85Jnt4w6KvLKqWVik6oA9ZklXLNIOlqg4F2yrT1MVaT

jAqvVwdfeZ7w7aCvJD7ugkw==",

						"requires":	{

								"is-fullwidth-code-point":	"^2.0.0",

								"strip-ansi":	"^4.0.0"

						}

				},

				"strip-ansi":	{

						"version":	"4.0.0",

						"resolved":	"https://registry.npmjs.org/strip-ansi/-/strip-ansi-4.0.0.tgz",

						"integrity":	"sha1-qEeQIusaw2iocTibY1JixQXuNo8=",

						"requires":	{

								"ansi-regex":	"^3.0.0"

						}

				},

				"strip-eof":	{

						"version":	"1.0.0",

						"resolved":	"https://registry.npmjs.org/strip-eof/-/strip-eof-1.0.0.tgz",

						"integrity":	"sha1-u0P/VZim6wXYm1n80SnJgzE2Br8="

				},

				"wordwrap":	{

						"version":	"0.0.3",

						"resolved":	"https://registry.npmjs.org/wordwrap/-/wordwrap-0.0.3.tgz",

						"integrity":	"sha1-o9XabNXAvAAI03I0u68b7WMFkQc="

				}

		}

}

We	installed	 	cowsay	,	which	depends	on

	get-stdin	

	optimist	

	string-width	

	strip-eof	

In	turn,	those	packages	require	other	packages,	as	we	can	see	from	the	 	requires		property
that	some	have:

The	package-lock.json	file

66

	ansi-regex	

	is-fullwidth-code-point	

	minimist	

	wordwrap	

	strip-eof	

They	are	added	in	alphabetical	order	into	the	file,	and	each	one	has	a	 	version		field,	a
	resolved		field	that	points	to	the	package	location,	and	an	 	integrity		string	that	we	can	use	to
verify	the	package.

The	package-lock.json	file

67

Find	the	installed	version	of	an	npm
package
How	to	find	out	which	version	of	a	particular	package	you	have	installed	in
your	app

To	see	the	latest	version	of	all	the	npm	package	installed,	including	their	dependencies:

npm	list

Example:

❯	npm	list
/Users/flavio/dev/node/cowsay

└─┬	cowsay@1.3.1

		├──	get-stdin@5.0.1

		├─┬	optimist@0.6.1

		│	├──	minimist@0.0.10

		│	└──	wordwrap@0.0.3

		├─┬	string-width@2.1.1

		│	├──	is-fullwidth-code-point@2.0.0

		│	└─┬	strip-ansi@4.0.0

		│			└──	ansi-regex@3.0.0

		└──	strip-eof@1.0.0

You	can	also	just	open	the	 	package-lock.json		file,	but	this	involves	some	visual	scanning.

	npm	list	-g		is	the	same,	but	for	globally	installed	packages.

To	get	only	your	top-level	packages	(basically,	the	ones	you	told	npm	to	install	and	you	listed
in	the	 	package.json),	run	 	npm	list	--depth=0	:

❯	npm	list	--depth=0
/Users/flavio/dev/node/cowsay

└──	cowsay@1.3.1

You	can	get	the	version	of	a	specific	package	by	specifying	the	name:

❯	npm	list	cowsay
/Users/flavio/dev/node/cowsay

└──	cowsay@1.3.1

This	also	works	for	dependencies	of	packages	you	installed:

Find	the	installed	version	of	an	npm	package

68

❯	npm	list	minimist
/Users/flavio/dev/node/cowsay

└─┬	cowsay@1.3.1

		└─┬	optimist@0.6.1

				└──	minimist@0.0.10

If	you	want	to	see	what's	the	latest	available	version	of	the	package	on	the	npm	repository,	run
	npm	view	[package_name]	version	:

❯	npm	view	cowsay	version

1.3.1

Find	the	installed	version	of	an	npm	package

69

How	to	install	an	older	version	of	an	npm
package
Learn	how	to	install	an	older	version	of	an	npm	package,	something	that
might	be	useful	to	solve	a	compatibility	problem

You	can	install	an	old	version	of	an	npm	package	using	the	 	@		syntax:

npm	install	<package>@<version>

Example:

npm	install	cowsay

installs	version	1.3.1	(at	the	time	of	writing).

Install	version	1.2.0	with:

npm	install	cowsay@1.2.0

The	same	can	be	done	with	global	packages:

npm	install	-g	webpack@4.16.4

You	might	also	be	interested	in	listing	all	the	previous	version	of	a	package.	You	can	do	it	with
	npm	view	<package>	versions	:

❯	npm	view	cowsay	versions

['1.0.0',

		'1.0.1',

		'1.0.2',

		'1.0.3',

		'1.1.0',

		'1.1.1',

		'1.1.2',

		'1.1.3',

		'1.1.4',

		'1.1.5',

		'1.1.6',

		'1.1.7',

		'1.1.8',

		'1.1.9',

		'1.2.0',

		'1.2.1',

How	to	install	an	older	version	of	an	npm	package

70

		'1.3.0',

		'1.3.1']

How	to	install	an	older	version	of	an	npm	package

71

How	to	update	all	the	Node	dependencies
to	their	latest	version
How	do	you	update	all	the	npm	dependencies	store	in	the	package.json	file,
to	their	latest	version	available?

When	you	install	a	package	using	 	npm	install	<packagename>	,	the	latest	available	version	of
the	package	is	downloaded	and	put	in	the	 	node_modules		folder,	and	a	corresponding	entry	is
added	to	the	 	package.json		and	 	package-lock.json		files	that	are	present	in	your	current	folder.

npm	calculates	the	dependencies	and	installs	the	latest	available	version	of	those	as	well.

Let's	say	you	install	 	cowsay	,	a	cool	command	line	tool	that	lets	you	make	a	cow	say	things.

When	you	 	npm	install	cowsay	,	this	entry	is	added	to	the	 	package.json		file:

{

		"dependencies":	{

				"cowsay":	"^1.3.1"

		}

}

and	this	is	an	extract	of	 	package-lock.json	,	where	I	removed	the	nested	dependencies	for
clarity:

{

		"requires":	true,

		"lockfileVersion":	1,

		"dependencies":	{

				"cowsay":	{

						"version":	"1.3.1",

						"resolved":	"https://registry.npmjs.org/cowsay/-/cowsay-1.3.1.tgz",

						"integrity":	"sha512-3PVFe6FePVtPj1HTeLin9v8WyLl+VmM1l1H/5P+BTTDkMAjufp+0F9eLjzRnOHz

VAYeIYFF5po5NjRrgefnRMQ==",

						"requires":	{

								"get-stdin":	"^5.0.1",

								"optimist":	"~0.6.1",

								"string-width":	"~2.1.1",

								"strip-eof":	"^1.0.0"

						}

				}

		}

}

How	to	update	all	the	Node	dependencies	to	their	latest	version

72

https://flaviocopes.com/npm/
https://www.npmjs.com/package/cowsay

Now	those	2	files	tell	us	that	we	installed	version	 	1.3.1		of	cowsay,	and	our	rule	for	updates	is
	̂ 1.3.1	,	which	for	the	npm	versioning	rules	means	that	npm	can	update	to	patch	and	minor
releases:	 	0.13.1	,	 	0.14.0		and	so	on.

If	there	is	a	new	minor	or	patch	release	and	we	type	 	npm	update	,	the	installed	version	is
updated,	and	the	 	package-lock.json		file	diligently	filled	with	the	new	version.

	package.json		remains	unchanged.

To	discover	new	releases	of	the	packages,	you	run	 	npm	outdated	.

Here's	the	list	of	a	few	outdated	packages	in	one	repository	I	didn't	update	for	quite	a	while:

Some	of	those	updates	are	major	releases.	Running	 	npm	update		won't	update	the	version	of
those.	Major	releases	are	never	updated	in	this	way	because	they	(by	definition)	introduce
breaking	changes,	and	 	npm		want	to	save	you	trouble.

To	update	to	a	new	major	version	all	the	packages,	install	the	 	npm-check-updates		package
globally:

npm	install	-g	npm-check-updates

then	run	it:

ncu	-u

How	to	update	all	the	Node	dependencies	to	their	latest	version

73

https://flaviocopes.com/npm-semantic-versioning/

this	will	upgrade	all	the	version	hints	in	the	 	package.json		file,	to	 	dependencies		and
	devDependencies	,	so	npm	can	install	the	new	major	version.

You	are	now	ready	to	run	the	update:

npm	update

If	you	just	downloaded	the	project	without	the	 	node_modules		dependencies	and	you	want	to
install	the	shiny	new	versions	first,	just	run

npm	install

How	to	update	all	the	Node	dependencies	to	their	latest	version

74

Semantic	versioning	rules
Semantic	Versioning	is	a	convention	used	to	provide	a	meaning	to	versions

If	there's	one	great	thing	in	Node.js	packages,	is	that	all	agreed	on	using	Semantic	Versioning
for	their	version	numbering.

The	Semantic	Versioning	concept	is	simple:	all	versions	have	3	digits:	 	x.y.z	.

the	first	digit	is	the	major	version
the	second	digit	is	the	minor	version
the	third	digit	is	the	patch	version

When	you	make	a	new	release,	you	don't	just	up	a	number	as	you	please,	but	you	have	rules:

you	up	the	major	version	when	you	make	incompatible	API	changes
you	up	the	minor	version	when	you	add	functionality	in	a	backward-compatible	manner
you	up	the	patch	version	when	you	make	backward-compatible	bug	fixes

The	convention	is	adopted	all	across	programming	languages,	and	it	is	very	important	that
every	 	npm		package	adheres	to	it,	because	the	whole	system	depends	on	that.

Why	is	that	so	important?

Because	 	npm		set	some	rules	we	can	use	in	the	 	package.json		file	to	choose	which	versions	it
can	update	our	packages	to,	when	we	run	 	npm	update	.

The	rules	use	those	symbols:

	̂ 	

	~	

	>	

	>=	

	<	

	<=	

	=	

	-	

	||	

Let's	see	those	rules	in	detail:

	̂ 	:	if	you	write	 	̂ 0.13.0		when	running	 	npm	update		it	can	update	to	patch	and	minor
releases:	 	0.13.1	,	 	0.14.0		and	so	on.
	~	:	if	you	write	 	~0.13.0	,	when	running	 	npm	update		it	can	update	to	patch	releases:
	0.13.1		is	ok,	but	 	0.14.0		is	not.

Semantic	versioning	rules

75

https://flaviocopes.com/package-json/

	>	:	you	accept	any	version	higher	than	the	one	you	specify
	>=	:	you	accept	any	version	equal	to	or	higher	than	the	one	you	specify
	<=	:	you	accept	any	version	equal	or	lower	to	the	one	you	specify
	<	:	you	accept	any	version	lower	to	the	one	you	specify
	=	:	you	accept	that	exact	version
	-	:	you	accept	a	range	of	versions.	Example:	 	2.1.0	-	2.6.2	
	||	:	you	combine	sets.	Example:	 	<	2.1	||	>	2.6	

You	can	combine	some	of	those	notations,	for	example	use	 	1.0.0	||	>=1.1.0	<1.2.0		to	either
use	1.0.0	or	one	release	from	1.1.0	up,	but	lower	than	1.2.0.

There	are	other	rules,	too:

no	symbol:	you	accept	only	that	specific	version	you	specify	(1.2.1)
	latest	:	you	want	to	use	the	latest	version	available

Semantic	versioning	rules

76

Uninstalling	npm	packages
How	to	uninstall	an	npm	Node	package,	locally	or	globally

To	uninstall	a	package	you	have	previously	installed	locally	(using	 	npm	install	<package-
name>		in	the	 	node_modules		folder,	run

npm	uninstall	<package-name>

from	the	project	root	folder	(the	folder	that	contains	the	node_modules	folder).

Using	the	 	-S		flag,	or	 	--save	,	this	operation	will	also	remove	the	reference	in	the
	package.json		file.

If	the	package	was	a	development	dependency,	listed	in	the	devDependencies	of	the
	package.json		file,	you	must	use	the	 	-D		/	 	--save-dev		flag	to	remove	it	from	the	file:

npm	uninstall	-S	<package-name>

npm	uninstall	-D	<package-name>

If	the	package	is	installed	globally,	you	need	to	add	the	 	-g		/	 	--global		flag:

npm	uninstall	-g	<package-name>

for	example:

npm	uninstall	-g	webpack

and	you	can	run	this	command	from	anywhere	you	want	on	your	system	because	the	folder
where	you	currently	are	does	not	matter.

Uninstalling	npm	packages

77

https://flaviocopes.com/package-json/

Global	or	local	packages
When	is	a	package	best	installed	globally?	Why?

The	main	difference	between	local	and	global	packages	is	this:

local	packages	are	installed	in	the	directory	where	you	run	 	npm	install	<package-name>	,
and	they	are	put	in	the	 	node_modules		folder	under	this	directory
global	packages	are	all	put	in	a	single	place	in	your	system	(exactly	where	depends	on
your	setup),	regardless	of	where	you	run	 	npm	install	-g	<package-name>	

In	your	code,	they	are	both	required	in	the	same	way:

require('package-name')

so	when	should	you	install	in	one	way	or	another?

In	general,	all	packages	should	be	installed	locally.

This	makes	sure	you	can	have	dozens	of	applications	in	your	computer,	all	running	a	different
version	of	each	package	if	needed.

Updating	a	global	package	would	make	all	your	projects	use	the	new	release,	and	as	you	can
imagine	this	might	cause	nightmares	in	terms	of	maintenance,	as	some	packages	might	break
compatibility	with	further	dependencies,	and	so	on.

All	projects	have	their	own	local	version	of	a	package,	even	if	this	might	appear	like	a	waste	of
resources,	it's	minimal	compared	to	the	possible	negative	consequences.

A	package	should	be	installed	globally	when	it	provides	an	executable	command	that	you
run	from	the	shell	(CLI),	and	it's	reused	across	projects.

You	can	also	install	executable	commands	locally	and	run	them	using	npx,	but	some
packages	are	just	better	installed	globally.

Great	examples	of	popular	global	packages	which	you	might	know	are

	npm	

	create-react-app	

	vue-cli	

	grunt-cli	

	mocha	

	react-native-cli	

	gatsby-cli	

Global	or	local	packages

78

https://flaviocopes.com/npx/

	forever	

	nodemon	

You	probably	have	some	packages	installed	globally	already	on	your	system.	You	can	see
them	by	running

npm	list	-g	--depth	0

on	your	command	line.

Global	or	local	packages

79

npm	dependencies	and	devDependencies
When	is	a	package	a	dependency,	and	when	is	it	a	dev	dependency?

When	you	install	an	npm	package	using	 	npm	install	<package-name>	,	you	are	installing	it	as	a
dependency.

The	package	is	automatically	listed	in	the	package.json	file,	under	the	 	dependencies		list	(as	of
npm	5:	before	you	had	to	manually	specify	 	--save).

When	you	add	the	 	-D		flag,	or	 	--save-dev	,	you	are	installing	it	as	a	development
dependency,	which	adds	it	to	the	 	devDependencies		list.

Development	dependencies	are	intended	as	development-only	packages,	that	are	unneeded
in	production.	For	example	testing	packages,	webpack	or	Babel.

When	you	go	in	production,	if	you	type	 	npm	install		and	the	folder	contains	a	 	package.json	
file,	they	are	installed,	as	npm	assumes	this	is	a	development	deploy.

You	need	to	set	the	 	--production		flag	(npm	install	--production)	to	avoid	installing	those
development	dependencies.

npm	dependencies	and	devDependencies

80

https://flaviocopes.com/package-json/
https://flaviocopes.com/webpack/
https://flaviocopes.com/babel/

npx
npx	is	a	very	cool	way	to	run	Node	code,	and	provides	many	useful	features

In	this	post,	I	want	to	introduce	a	very	powerful	command	that's	been	available	in	npm	starting
version	5.2,	released	in	July	2017:	npx.

If	you	don't	want	to	install	npm,	you	can	install	npx	as	a	standalone	package

	npx		lets	you	run	code	built	with	Node	and	published	through	the	npm	registry.

Easily	run	local	commands
Node	developers	used	to	publish	most	of	the	executable	commands	as	global	packages,	in
order	for	them	to	be	in	the	path	and	executable	immediately.

This	was	a	pain	because	you	could	not	really	install	different	versions	of	the	same	command.

Running	 	npx	commandname		automatically	finds	the	correct	reference	of	the	command	inside	the
	node_modules		folder	of	a	project,	without	needing	to	know	the	exact	path,	and	without	requiring
the	package	to	be	installed	globally	and	in	the	user's	path.

Installation-less	command	execution
There	is	another	great	feature	of	 	npm	,	which	is	allowing	to	run	commands	without	first
installing	them.

This	is	pretty	useful,	mostly	because:

1)	you	don't	need	to	install	anything	2)	you	can	run	different	versions	of	the	same	command,
using	the	syntax	@version

A	typical	demonstration	of	using	 	npx		is	through	the	 	cowsay		command.	 	cowsay		will	print	a
cow	saying	what	you	wrote	in	the	command.	For	example:

	cowsay	"Hello"		will	print

<	Hello	>

								\			^__^

									\		(oo)_______

												(__)\)\/\

																||----w	|

npx

81

https://flaviocopes.com/npm/
https://www.npmjs.com/package/npx

																||					||

Now,	this	if	you	have	the	 	cowsay		command	globally	installed	from	npm	previously,	otherwise
you'll	get	an	error	when	you	try	to	run	the	command.

	npx		allows	you	to	run	that	npm	command	without	having	it	installed	locally:

npx	cowsay	"Hello"

will	do	the	job.

Now,	this	is	a	funny	useless	command.	Other	scenarios	include:

running	the	 	vue		CLI	tool	to	create	new	applications	and	run	them:	 	npx	vue	create	my-
vue-app	

creating	a	new	React	app	using	 	create-react-app	:	 	npx	create-react-app	my-react-app	

and	many	more.

Once	downloaded,	the	downloaded	code	will	be	wiped.

Run	some	code	using	a	different	Node	version
Use	the	 	@		to	specify	the	version,	and	combine	that	with	the	 	node		npm	package:

npx	node@6	-v	#v6.14.3

npx	node@8	-v	#v8.11.3

This	helps	to	avoid	tools	like	 	nvm		or	the	other	Node	version	management	tools.

Run	arbitrary	code	snippets	directly	from	a	URL
	npx		does	not	limit	you	to	the	packages	published	on	the	npm	registry.

You	can	run	code	that	sits	in	a	GitHub	gist,	for	example:

npx	https://gist.github.com/zkat/4bc19503fe9e9309e2bfaa2c58074d32

Of	course,	you	need	to	be	careful	when	running	code	that	you	do	not	control,	as	with	great
power	comes	great	responsibility.

npx

82

https://www.npmjs.com/package/node
https://flaviocopes.com/github/

npx

83

The	event	loop
The	Event	Loop	is	one	of	the	most	important	aspects	to	understand	about
JavaScript.	This	post	explains	it	in	simple	terms

Introduction
Blocking	the	event	loop
The	call	stack
A	simple	event	loop	explanation
Queuing	function	execution
The	Message	Queue
ES6	Job	Queue

Introduction
The	Event	Loop	is	one	of	the	most	important	aspects	to	understand	about	JavaScript.

I've	programmed	for	years	with	JavaScript,	yet	I've	never	fully	understood	how	things
work	under	the	hoods.	It's	completely	fine	to	not	know	this	concept	in	detail,	but	as	usual,
it's	helpful	to	know	how	it	works,	and	also	you	might	just	be	a	little	curious	at	this	point.

This	post	aims	to	explain	the	inner	details	of	how	JavaScript	works	with	a	single	thread,	and
how	it	handles	asynchronous	functions.

Your	JavaScript	code	runs	single	threaded.	There	is	just	one	thing	happening	at	a	time.

This	is	a	limitation	that's	actually	very	helpful,	as	it	simplifies	a	lot	how	you	program	without
worrying	about	concurrency	issues.

You	just	need	to	pay	attention	to	how	you	write	your	code	and	avoid	anything	that	could	block
the	thread,	like	synchronous	network	calls	or	infinite	loops.

In	general,	in	most	browsers	there	is	an	event	loop	for	every	browser	tab,	to	make	every
process	isolated	and	avoid	a	web	page	with	infinite	loops	or	heavy	processing	to	block	your
entire	browser.

The	environment	manages	multiple	concurrent	event	loops,	to	handle	API	calls	for	example.
Web	Workers	run	in	their	own	event	loop	as	well.

You	mainly	need	to	be	concerned	that	your	code	will	run	on	a	single	event	loop,	and	write
code	with	this	thing	in	mind	to	avoid	blocking	it.

The	event	loop

84

https://flaviocopes.com/javascript-loops/
https://flaviocopes.com/web-workers/

Blocking	the	event	loop
Any	JavaScript	code	that	takes	too	long	to	return	back	control	to	the	event	loop	will	block	the
execution	of	any	JavaScript	code	in	the	page,	even	block	the	UI	thread,	and	the	user	cannot
click	around,	scroll	the	page,	and	so	on.

Almost	all	the	I/O	primitives	in	JavaScript	are	non-blocking.	Network	requests,	Node.js
filesystem	operations,	and	so	on.	Being	blocking	is	the	exception,	and	this	is	why	JavaScript	is
based	so	much	on	callbacks,	and	more	recently	on	promises	and	async/await.

The	call	stack
The	call	stack	is	a	LIFO	queue	(Last	In,	First	Out).

The	event	loop	continuously	checks	the	call	stack	to	see	if	there's	any	function	that	needs	to
run.

While	doing	so,	it	adds	any	function	call	it	finds	to	the	call	stack	and	executes	each	one	in
order.

You	know	the	error	stack	trace	you	might	be	familiar	with,	in	the	debugger	or	in	the	browser
console?	The	browser	looks	up	the	function	names	in	the	call	stack	to	inform	you	which
function	originates	the	current	call:

The	event	loop

85

https://flaviocopes.com/node/
https://flaviocopes.com/javascript-promises/
https://flaviocopes.com/javascript-async-await/

A	simple	event	loop	explanation
Let's	pick	an	example:

const	bar	=	()	=>	console.log('bar')

const	baz	=	()	=>	console.log('baz')

const	foo	=	()	=>	{

		console.log('foo')

		bar()

		baz()

}

foo()

The	event	loop

86

This	code	prints

foo

bar

baz

as	expected.

When	this	code	runs,	first	 	foo()		is	called.	Inside	 	foo()		we	first	call	 	bar()	,	then	we	call
	baz()	.

At	this	point	the	call	stack	looks	like	this:

The	event	loop	on	every	iteration	looks	if	there's	something	in	the	call	stack,	and	executes	it:

The	event	loop

87

until	the	call	stack	is	empty.

Queuing	function	execution
The	above	example	looks	normal,	there's	nothing	special	about	it:	JavaScript	finds	things	to
execute,	runs	them	in	order.

The	event	loop

88

Let's	see	how	to	defer	a	function	until	the	stack	is	clear.

The	use	case	of	 	setTimeout(()	=>	{}),	0)		is	to	call	a	function,	but	execute	it	once	every	other
function	in	the	code	has	executed.

Take	this	example:

const	bar	=	()	=>	console.log('bar')

const	baz	=	()	=>	console.log('baz')

const	foo	=	()	=>	{

		console.log('foo')

		setTimeout(bar,	0)

		baz()

}

foo()

This	code	prints,	maybe	surprisingly:

foo

baz

bar

When	this	code	runs,	first	foo()	is	called.	Inside	foo()	we	first	call	setTimeout,	passing	 	bar		as
an	argument,	and	we	instruct	it	to	run	immediately	as	fast	as	it	can,	passing	0	as	the	timer.
Then	we	call	baz().

At	this	point	the	call	stack	looks	like	this:

The	event	loop

89

Here	is	the	execution	order	for	all	the	functions	in	our	program:

The	event	loop

90

Why	is	this	happening?

The	Message	Queue
When	setTimeout()	is	called,	the	Browser	or	Node.js	start	the	timer.	Once	the	timer	expires,	in
this	case	immediately	as	we	put	0	as	the	timeout,	the	callback	function	is	put	in	the	Message
Queue.

The	event	loop

91

https://flaviocopes.com/timer-api/

The	Message	Queue	is	also	where	user-initiated	events	like	click	or	keyboard	events,	or	fetch
responses	are	queued	before	your	code	has	the	opportunity	to	react	to	them.	Or	also	DOM
events	like	 	onLoad	.

The	loop	gives	priority	to	the	call	stack,	and	it	first	processes	everything	it	finds	in	the
call	stack,	and	once	there's	nothing	in	there,	it	goes	to	pick	up	things	in	the	event
queue.

We	don't	have	to	wait	for	functions	like	 	setTimeout	,	fetch	or	other	things	to	do	their	own	work,
because	they	are	provided	by	the	browser,	and	they	live	on	their	own	threads.	For	example,	if
you	set	the	 	setTimeout		timeout	to	2	seconds,	you	don't	have	to	wait	2	seconds	-	the	wait
happens	elsewhere.

ES6	Job	Queue
ECMAScript	2015	introduced	the	concept	of	the	Job	Queue,	which	is	used	by	Promises	(also
introduced	in	ES6/ES2015).	It's	a	way	to	execute	the	result	of	an	async	function	as	soon	as
possible,	rather	than	being	put	at	the	end	of	the	call	stack.

Promises	that	resolve	before	the	current	function	ends	will	be	executed	right	after	the	current
function.

I	find	nice	the	analogy	of	a	rollercoaster	ride	at	an	amusement	park:	the	message	queue	puts
you	back	in	queue	with	after	all	the	other	people	in	the	queue,	while	the	job	queue	is	the
fastpass	ticket	that	lets	you	take	another	ride	right	after	you	finished	the	previous	one.

Example:

const	bar	=	()	=>	console.log('bar')

const	baz	=	()	=>	console.log('baz')

const	foo	=	()	=>	{

		console.log('foo')

		setTimeout(bar,	0)

		new	Promise((resolve,	reject)	=>

				resolve('should	be	right	after	baz,	before	bar')

).then(resolve	=>	console.log(resolve))

		baz()

}

foo()

This	prints

foo

The	event	loop

92

https://flaviocopes.com/fetch-api/
https://flaviocopes.com/dom/
https://flaviocopes.com/ecmascript/

baz

should	be	right	after	baz,	before	bar

bar

That's	a	big	difference	between	Promises	(and	Async/await,	which	is	built	on	promises)	and
plain	old	asynchronous	functions	through	 	setTimeout()		or	other	platform	APIs.

The	event	loop

93

nextTick
The	Node.js	process.nextTick	function	interacts	with	the	event	loop	in	a
special	way

As	you	try	to	understand	the	Node.js	event	loop,	one	important	part	of	it	is
	process.nextTick()	.

Every	time	the	event	loop	takes	a	full	trip,	we	call	it	a	tick.

When	we	pass	a	function	to	 	process.nextTick()	,	we	instruct	the	engine	to	invoke	this	function
at	the	end	of	the	current	operation,	before	the	next	event	loop	tick	starts:

process.nextTick(()	=>	{

		//do	something

})

The	event	loop	is	busy	processing	the	current	function	code.

When	this	operation	ends,	the	JS	engine	runs	all	the	functions	passed	to	 	nextTick		calls
during	that	operation.

It's	the	way	we	can	tell	the	JS	engine	to	process	a	function	asynchronously	(after	the	current
function),	but	as	soon	as	possible,	not	queue	it.

Calling	 	setTimeout(()	=>	{},	0)		will	execute	the	function	in	the	next	tick,	much	later	than
when	using	 	nextTick()	.

Use	 	nextTick()		when	you	want	to	make	sure	that	in	the	next	event	loop	iteration	that	code	is
already	executed.

nextTick

94

https://flaviocopes.com/node-event-loop/

setImmediate
The	Node.js	setImmediate	function	interacts	with	the	event	loop	in	a	special
way

When	you	want	to	execute	some	piece	of	code	asynchronously,	but	as	soon	as	possible,	one
option	is	to	use	the	 	setImmediate()		function	provided	by	Node.js:

setImmediate(()	=>	{

		//run	something

})

Any	function	passed	as	the	setImmediate()	argument	is	a	callback	that's	executed	in	the	next
iteration	of	the	event	loop.

How	is	 	setImmediate()		different	from	 	setTimeout(()	=>	{},	0)		(passing	a	0ms	timeout),	and
from	 	process.nextTick()	?

A	function	passed	to	 	process.nextTick()		is	going	to	be	executed	on	the	current	iteration	of	the
event	loop,	after	the	current	operation	ends.	This	means	it	will	always	execute	before
	setTimeout		and	 	setImmediate	.

A	 	setTimeout()		callback	with	a	0ms	delay	is	very	similar	to	 	setImmediate()	.	The	execution
order	will	depend	on	various	factors,	but	they	will	be	both	run	in	the	next	iteration	of	the	event
loop.

setImmediate

95

Timers
When	writing	JavaScript	code,	you	might	want	to	delay	the	execution	of	a
function.	Learn	how	to	use	setTimeout	and	setInterval	to	schedule	functions
in	the	future

	setTimeout()	

Zero	delay
	setInterval()	

Recursive	setTimeout

	setTimeout()	

When	writing	JavaScript	code,	you	might	want	to	delay	the	execution	of	a	function.

This	is	the	job	of	 	setTimeout	.	You	specify	a	callback	function	to	execute	later,	and	a	value
expressing	how	later	you	want	it	to	run,	in	milliseconds:

setTimeout(()	=>	{

		//	runs	after	2	seconds

},	2000)

setTimeout(()	=>	{

		//	runs	after	50	milliseconds

},	50)

This	syntax	defines	a	new	function.	You	can	call	whatever	other	function	you	want	in	there,	or
you	can	pass	an	existing	function	name,	and	a	set	of	parameters:

const	myFunction	=	(firstParam,	secondParam)	=>	{

		//	do	something

}

Timers

96

https://flaviocopes.com/javascript/

//	runs	after	2	seconds

setTimeout(myFunction,	2000,	firstParam,	secondParam)

	setTimeout		returns	the	timer	id.	This	is	generally	not	used,	but	you	can	store	this	id,	and	clear
it	if	you	want	to	delete	this	scheduled	function	execution:

const	id	=	setTimeout(()	=>	{

		//	should	run	after	2	seconds

},	2000)

//	I	changed	my	mind

clearTimeout(id)

Zero	delay

If	you	specify	the	timeout	delay	to	 	0	,	the	callback	function	will	be	executed	as	soon	as
possible,	but	after	the	current	function	execution:

setTimeout(()	=>	{

		console.log('after	')

},	0)

console.log('	before	')

will	print	 	before	after	.

This	is	especially	useful	to	avoid	blocking	the	CPU	on	intensive	tasks	and	let	other	functions
be	executed	while	performing	a	heavy	calculation,	by	queuing	functions	in	the	scheduler.

Some	browsers	(IE	and	Edge)	implement	a	 	setImmediate()		method	that	does	this	same
exact	functionality,	but	it's	not	standard	and	unavailable	on	other	browsers.	But	it's	a
standard	function	in	Node.js.

	setInterval()	

	setInterval		is	a	function	similar	to	 	setTimeout	,	with	a	difference:	instead	of	running	the
callback	function	once,	it	will	run	it	forever,	at	the	specific	time	interval	you	specify	(in
milliseconds):

setInterval(()	=>	{

		//	runs	every	2	seconds

},	2000)

Timers

97

https://caniuse.com/#feat=setimmediate

The	function	above	runs	every	2	seconds	unless	you	tell	it	to	stop,	using	 	clearInterval	,
passing	it	the	interval	id	that	 	setInterval		returned:

const	id	=	setInterval(()	=>	{

		//	runs	every	2	seconds

},	2000)

clearInterval(id)

It's	common	to	call	 	clearInterval		inside	the	setInterval	callback	function,	to	let	it	auto-
determine	if	it	should	run	again	or	stop.	For	example	this	code	runs	something	unless
App.somethingIWait	has	the	value	 	arrived	:

const	interval	=	setInterval(()	=>	{

		if	(App.somethingIWait	===	'arrived')	{

				clearInterval(interval)

				return

		}

		//	otherwise	do	things

},	100)

Recursive	setTimeout
	setInterval		starts	a	function	every	n	milliseconds,	without	any	consideration	about	when	a
function	finished	its	execution.

If	a	function	takes	always	the	same	amount	of	time,	it's	all	fine:

Maybe	the	function	takes	different	execution	times,	depending	on	network	conditions	for
example:

And	maybe	one	long	execution	overlaps	the	next	one:

Timers

98

To	avoid	this,	you	can	schedule	a	recursive	setTimeout	to	be	called	when	the	callback	function
finishes:

const	myFunction	=	()	=>	{

		//	do	something

		setTimeout(myFunction,	1000)

}

setTimeout(

		myFunction()

},	1000)

to	achieve	this	scenario:

	setTimeout		and	 	setInterval		are	available	in	Node.js,	through	the	Timers	module.

Node.js	also	provides	 	setImmediate()	,	which	is	equivalent	to	using	 	setTimeout(()	=>	{},	0)	,
mostly	used	to	work	with	the	Node.js	Event	Loop.

Timers

99

https://flaviocopes.com/node/
https://nodejs.org/api/timers.html

Callbacks
JavaScript	is	synchronous	by	default,	and	is	single	threaded.	This	means
that	code	cannot	create	new	threads	and	run	in	parallel.	Find	out	what
asynchronous	code	means	and	how	it	looks	like

Asynchronicity	in	Programming	Languages
JavaScript
Callbacks
Handling	errors	in	callbacks
The	problem	with	callbacks
Alternatives	to	callbacks

Asynchronicity	in	Programming	Languages
Computers	are	asynchronous	by	design.

Asynchronous	means	that	things	can	happen	independently	of	the	main	program	flow.

Callbacks

100

In	the	current	consumer	computers,	every	program	runs	for	a	specific	time	slot,	and	then	it
stops	its	execution	to	let	another	program	continue	its	execution.	This	thing	runs	in	a	cycle	so
fast	that's	impossible	to	notice,	and	we	think	our	computers	run	many	programs
simultaneously,	but	this	is	an	illusion	(except	on	multiprocessor	machines).

Programs	internally	use	interrupts,	a	signal	that's	emitted	to	the	processor	to	gain	the	attention
of	the	system.

I	won't	go	into	the	internals	of	this,	but	just	keep	in	mind	that	it's	normal	for	programs	to	be
asynchronous,	and	halt	their	execution	until	they	need	attention,	and	the	computer	can
execute	other	things	in	the	meantime.	When	a	program	is	waiting	for	a	response	from	the
network,	it	cannot	halt	the	processor	until	the	request	finishes.

Normally,	programming	languages	are	synchronous,	and	some	provide	a	way	to	manage
asynchronicity,	in	the	language	or	through	libraries.	C,	Java,	C#,	PHP,	Go,	Ruby,	Swift,
Python,	they	are	all	synchronous	by	default.	Some	of	them	handle	async	by	using	threads,
spawning	a	new	process.

JavaScript
JavaScript	is	synchronous	by	default	and	is	single	threaded.	This	means	that	code	cannot
create	new	threads	and	run	in	parallel.

Lines	of	code	are	executed	in	series,	one	after	another,	for	example:

const	a	=	1

const	b	=	2

const	c	=	a	*	b

console.log(c)

doSomething()

But	JavaScript	was	born	inside	the	browser,	its	main	job,	in	the	beginning,	was	to	respond	to
user	actions,	like	 	onClick	,	 	onMouseOver	,	 	onChange	,	 	onSubmit		and	so	on.	How	could	it	do	this
with	a	synchronous	programming	model?

The	answer	was	in	its	environment.	The	browser	provides	a	way	to	do	it	by	providing	a	set	of
APIs	that	can	handle	this	kind	of	functionality.

More	recently,	Node.js	introduced	a	non-blocking	I/O	environment	to	extend	this	concept	to	file
access,	network	calls	and	so	on.

Callbacks

Callbacks

101

You	can't	know	when	a	user	is	going	to	click	a	button,	so	what	you	do	is,	you	define	an	event
handler	for	the	click	event.	This	event	handler	accepts	a	function,	which	will	be	called	when
the	event	is	triggered:

document.getElementById('button').addEventListener('click',	()	=>	{

		//item	clicked

})

This	is	the	so-called	callback.

A	callback	is	a	simple	function	that's	passed	as	a	value	to	another	function,	and	will	only	be
executed	when	the	event	happens.	We	can	do	this	because	JavaScript	has	first-class
functions,	which	can	be	assigned	to	variables	and	passed	around	to	other	functions	(called
higher-order	functions)

It's	common	to	wrap	all	your	client	code	in	a	 	load		event	listener	on	the	 	window		object,	which
runs	the	callback	function	only	when	the	page	is	ready:

window.addEventListener('load',	()	=>	{

		//window	loaded

		//do	what	you	want

})

Callbacks	are	used	everywhere,	not	just	in	DOM	events.

One	common	example	is	by	using	timers:

setTimeout(()	=>	{

		//	runs	after	2	seconds

},	2000)

XHR	requests	also	accept	a	callback,	in	this	example	by	assigning	a	function	to	a	property	that
will	be	called	when	a	particular	event	occurs	(in	this	case,	the	state	of	the	request	changes):

const	xhr	=	new	XMLHttpRequest()

xhr.onreadystatechange	=	()	=>	{

		if	(xhr.readyState	===	4)	{

				xhr.status	===	200	?	console.log(xhr.responseText)	:	console.error('error')

		}

}

xhr.open('GET',	'https://yoursite.com')

xhr.send()

Handling	errors	in	callbacks

Callbacks

102

How	do	you	handle	errors	with	callbacks?	One	very	common	strategy	is	to	use	what	Node.js
adopted:	the	first	parameter	in	any	callback	function	is	the	error	object:	error-first	callbacks

If	there	is	no	error,	the	object	is	 	null	.	If	there	is	an	error,	it	contains	some	description	of	the
error	and	other	information.

fs.readFile('/file.json',	(err,	data)	=>	{

		if	(err	!==	null)	{

				//handle	error

				console.log(err)

				return

		}

		//no	errors,	process	data

		console.log(data)

})

The	problem	with	callbacks
Callbacks	are	great	for	simple	cases!

However	every	callback	adds	a	level	of	nesting,	and	when	you	have	lots	of	callbacks,	the	code
starts	to	be	complicated	very	quickly:

window.addEventListener('load',	()	=>	{

		document.getElementById('button').addEventListener('click',	()	=>	{

				setTimeout(()	=>	{

						items.forEach(item	=>	{

								//your	code	here

						})

				},	2000)

		})

})

This	is	just	a	simple	4-levels	code,	but	I've	seen	much	more	levels	of	nesting	and	it's	not	fun.

How	do	we	solve	this?

Alternatives	to	callbacks
Starting	with	ES6,	JavaScript	introduced	several	features	that	help	us	with	asynchronous	code
that	do	not	involve	using	callbacks:

Promises	(ES6)
Async/Await	(ES8)

Callbacks

103

Callbacks

104

Promises
Promises	are	one	way	to	deal	with	asynchronous	code	in	JavaScript,	without
writing	too	many	callbacks	in	your	code.

Introduction	to	promises
How	promises	work,	in	brief
Which	JS	API	use	promises?

Creating	a	promise
Consuming	a	promise
Chaining	promises

Example	of	chaining	promises
Handling	errors

Cascading	errors
Orchestrating	promises

	Promise.all()	

	Promise.race()	

Common	errors
Uncaught	TypeError:	undefined	is	not	a	promise

Introduction	to	promises
A	promise	is	commonly	defined	as	a	proxy	for	a	value	that	will	eventually	become
available.

Promises	are	one	way	to	deal	with	asynchronous	code,	without	writing	too	many	callbacks	in
your	code.

Although	being	around	since	years,	they	have	been	standardized	and	introduced	in	ES2015,
and	now	they	have	been	superseded	in	ES2017	by	async	functions.

Async	functions	use	the	promises	API	as	their	building	block,	so	understanding	them	is
fundamental	even	if	in	newer	code	you'll	likely	use	async	functions	instead	of	promises.

How	promises	work,	in	brief

Once	a	promise	has	been	called,	it	will	start	in	pending	state.	This	means	that	the	caller
function	continues	the	execution,	while	it	waits	for	the	promise	to	do	its	own	processing,	and
give	the	caller	function	some	feedback.

Promises

105

https://flaviocopes.com/ecmascript/#es2015-aka-es6
https://flaviocopes.com/ecmascript/#es2017-aka-es8
https://flaviocopes.com/javascript-async-await

At	this	point,	the	caller	function	waits	for	it	to	either	return	the	promise	in	a	resolved	state,	or
in	a	rejected	state,	but	as	you	know	JavaScript	is	asynchronous,	so	the	function	continues	its
execution	while	the	promise	does	it	work.

Which	JS	API	use	promises?

In	addition	to	your	own	code	and	libraries	code,	promises	are	used	by	standard	modern	Web
APIs	such	as:

the	Battery	API
the	Fetch	API
Service	Workers

It's	unlikely	that	in	modern	JavaScript	you'll	find	yourself	not	using	promises,	so	let's	start
diving	right	into	them.

Creating	a	promise
The	Promise	API	exposes	a	Promise	constructor,	which	you	initialize	using	 	new	Promise()	:

let	done	=	true

const	isItDoneYet	=	new	Promise(

		(resolve,	reject)	=>	{

				if	(done)	{

						const	workDone	=	'Here	is	the	thing	I	built'

						resolve(workDone)

				}	else	{

						const	why	=	'Still	working	on	something	else'

						reject(why)

				}

		}

)

As	you	can	see	the	promise	checks	the	 	done		global	constant,	and	if	that's	true,	we	return	a
resolved	promise,	otherwise	a	rejected	promise.

Using	 	resolve		and	 	reject		we	can	communicate	back	a	value,	in	the	above	case	we	just
return	a	string,	but	it	could	be	an	object	as	well.

Consuming	a	promise

Promises

106

https://flaviocopes.com/javascript/
https://flaviocopes.com/fetch-api/
https://flaviocopes.com/service-workers/

In	the	last	section,	we	introduced	how	a	promise	is	created.

Now	let's	see	how	the	promise	can	be	consumed	or	used.

const	isItDoneYet	=	new	Promise(

		//...

)

const	checkIfItsDone	=	()	=>	{

		isItDoneYet

				.then((ok)	=>	{

						console.log(ok)

				})

				.catch((err)	=>	{

						console.error(err)

				})

}

Running	 	checkIfItsDone()		will	execute	the	 	isItDoneYet()		promise	and	will	wait	for	it	to
resolve,	using	the	 	then		callback,	and	if	there	is	an	error,	it	will	handle	it	in	the	 	catch	
callback.

Chaining	promises
A	promise	can	be	returned	to	another	promise,	creating	a	chain	of	promises.

A	great	example	of	chaining	promises	is	given	by	the	Fetch	API,	a	layer	on	top	of	the
XMLHttpRequest	API,	which	we	can	use	to	get	a	resource	and	queue	a	chain	of	promises	to
execute	when	the	resource	is	fetched.

The	Fetch	API	is	a	promise-based	mechanism,	and	calling	 	fetch()		is	equivalent	to	defining
our	own	promise	using	 	new	Promise()	.

Example	of	chaining	promises

const	status	=	(response)	=>	{

		if	(response.status	>=	200	&&	response.status	<	300)	{

				return	Promise.resolve(response)

		}

		return	Promise.reject(new	Error(response.statusText))

}

const	json	=	(response)	=>	response.json()

fetch('/todos.json')

		.then(status)

Promises

107

https://flaviocopes.com/fetch-api

		.then(json)

		.then((data)	=>	{	console.log('Request	succeeded	with	JSON	response',	data)	})

		.catch((error)	=>	{	console.log('Request	failed',	error)	})

In	this	example,	we	call	 	fetch()		to	get	a	list	of	TODO	items	from	the	 	todos.json		file	found	in
the	domain	root,	and	we	create	a	chain	of	promises.

Running	 	fetch()		returns	a	response,	which	has	many	properties,	and	within	those	we
reference:

	status	,	a	numeric	value	representing	the	HTTP	status	code
	statusText	,	a	status	message,	which	is	 	OK		if	the	request	succeeded

	response		also	has	a	 	json()		method,	which	returns	a	promise	that	will	resolve	with	the
content	of	the	body	processed	and	transformed	into	JSON.

So	given	those	premises,	this	is	what	happens:	the	first	promise	in	the	chain	is	a	function	that
we	defined,	called	 	status()	,	that	checks	the	response	status	and	if	it's	not	a	success
response	(between	200	and	299),	it	rejects	the	promise.

This	operation	will	cause	the	promise	chain	to	skip	all	the	chained	promises	listed	and	will	skip
directly	to	the	 	catch()		statement	at	the	bottom,	logging	the	 	Request	failed		text	along	with
the	error	message.

If	that	succeeds	instead,	it	calls	the	json()	function	we	defined.	Since	the	previous	promise,
when	successful,	returned	the	 	response		object,	we	get	it	as	an	input	to	the	second	promise.

In	this	case,	we	return	the	data	JSON	processed,	so	the	third	promise	receives	the	JSON
directly:

.then((data)	=>	{

		console.log('Request	succeeded	with	JSON	response',	data)

})

and	we	simply	log	it	to	the	console.

Handling	errors
In	the	example,	in	the	previous	section,	we	had	a	 	catch		that	was	appended	to	the	chain	of
promises.

When	anything	in	the	chain	of	promises	fails	and	raises	an	error	or	rejects	the	promise,	the
control	goes	to	the	nearest	 	catch()		statement	down	the	chain.

Promises

108

https://fetch.spec.whatwg.org/#concept-response

new	Promise((resolve,	reject)	=>	{

		throw	new	Error('Error')

})

		.catch((err)	=>	{	console.error(err)	})

//	or

new	Promise((resolve,	reject)	=>	{

		reject('Error')

})

		.catch((err)	=>	{	console.error(err)	})

Cascading	errors

If	inside	the	 	catch()		you	raise	an	error,	you	can	append	a	second	 	catch()		to	handle	it,	and
so	on.

new	Promise((resolve,	reject)	=>	{

		throw	new	Error('Error')

})

		.catch((err)	=>	{	throw	new	Error('Error')	})

		.catch((err)	=>	{	console.error(err)	})

Orchestrating	promises

	Promise.all()	

If	you	need	to	synchronize	different	promises,	 	Promise.all()		helps	you	define	a	list	of
promises,	and	execute	something	when	they	are	all	resolved.

Example:

const	f1	=	fetch('/something.json')

const	f2	=	fetch('/something2.json')

Promise.all([f1,	f2]).then((res)	=>	{

				console.log('Array	of	results',	res)

})

.catch((err)	=>	{

		console.error(err)

})

The	ES2015	destructuring	assignment	syntax	allows	you	to	also	do

Promise.all([f1,	f2]).then(([res1,	res2])	=>	{

Promises

109

https://flaviocopes.com/ecmascript/#destructuring-assignments

				console.log('Results',	res1,	res2)

})

You	are	not	limited	to	using	 	fetch		of	course,	any	promise	is	good	to	go.

	Promise.race()	

	Promise.race()		runs	when	the	first	of	the	promises	you	pass	to	it	resolves,	and	it	runs	the
attached	callback	just	once,	with	the	result	of	the	first	promise	resolved.

Example:

const	first	=	new	Promise((resolve,	reject)	=>	{

				setTimeout(resolve,	500,	'first')

})

const	second	=	new	Promise((resolve,	reject)	=>	{

				setTimeout(resolve,	100,	'second')

})

Promise.race([first,	second]).then((result)	=>	{

		console.log(result)	//	second

})

Common	errors

Uncaught	TypeError:	undefined	is	not	a	promise

If	you	get	the	 	Uncaught	TypeError:	undefined	is	not	a	promise		error	in	the	console,	make	sure
you	use	 	new	Promise()		instead	of	just	 	Promise()	

Promises

110

async/await
Discover	the	modern	approach	to	asynchronous	functions	in	JavaScript.
JavaScript	evolved	in	a	very	short	time	from	callbacks	to	Promises,	and
since	ES2017	asynchronous	JavaScript	is	even	simpler	with	the	async/await
syntax

Introduction
Why	were	async/await	introduced?
How	it	works
A	quick	example
Promise	all	the	things
The	code	is	much	simpler	to	read
Multiple	async	functions	in	series
Easier	debugging

Introduction
JavaScript	evolved	in	a	very	short	time	from	callbacks	to	promises	(ES2015),	and	since
ES2017	asynchronous	JavaScript	is	even	simpler	with	the	async/await	syntax.

Async	functions	are	a	combination	of	promises	and	generators,	and	basically,	they	are	a
higher	level	abstraction	over	promises.	Let	me	repeat:	async/await	is	built	on	promises.

Why	were	async/await	introduced?
They	reduce	the	boilerplate	around	promises,	and	the	"don't	break	the	chain"	limitation	of
chaining	promises.

When	Promises	were	introduced	in	ES2015,	they	were	meant	to	solve	a	problem	with
asynchronous	code,	and	they	did,	but	over	the	2	years	that	separated	ES2015	and	ES2017,	it
was	clear	that	promises	could	not	be	the	final	solution.

Promises	were	introduced	to	solve	the	famous	callback	hell	problem,	but	they	introduced
complexity	on	their	own,	and	syntax	complexity.

They	were	good	primitives	around	which	a	better	syntax	could	be	exposed	to	the	developers,
so	when	the	time	was	right	we	got	async	functions.

They	make	the	code	look	like	it's	synchronous,	but	it's	asynchronous	and	non-blocking	behind
the	scenes.

async/await

111

https://flaviocopes.com/javascript/
https://flaviocopes.com/javascript-promises/
https://flaviocopes.com/ecmascript/#es2017-aka-es8
https://flaviocopes.com/ecmascript/#generators

How	it	works
An	async	function	returns	a	promise,	like	in	this	example:

const	doSomethingAsync	=	()	=>	{

				return	new	Promise((resolve)	=>	{

								setTimeout(()	=>	resolve('I	did	something'),	3000)

				})

}

When	you	want	to	call	this	function	you	prepend	 	await	,	and	the	calling	code	will	stop	until
the	promise	is	resolved	or	rejected.	One	caveat:	the	client	function	must	be	defined	as
	async	.	Here's	an	example:

const	doSomething	=	async	()	=>	{

				console.log(await	doSomethingAsync())

}

A	quick	example
This	is	a	simple	example	of	async/await	used	to	run	a	function	asynchronously:

const	doSomethingAsync	=	()	=>	{

				return	new	Promise((resolve)	=>	{

								setTimeout(()	=>	resolve('I	did	something'),	3000)

				})

}

const	doSomething	=	async	()	=>	{

				console.log(await	doSomethingAsync())

}

console.log('Before')

doSomething()

console.log('After')

The	above	code	will	print	the	following	to	the	browser	console:

Before

After

I	did	something	//after	3s

Promise	all	the	things

async/await

112

Prepending	the	 	async		keyword	to	any	function	means	that	the	function	will	return	a	promise.

Even	if	it's	not	doing	so	explicitly,	it	will	internally	make	it	return	a	promise.

This	is	why	this	code	is	valid:

const	aFunction	=	async	()	=>	{

		return	'test'

}

aFunction().then(alert)	//	This	will	alert	'test'

and	it's	the	same	as:

const	aFunction	=	async	()	=>	{

		return	Promise.resolve('test')

}

aFunction().then(alert)	//	This	will	alert	'test'

The	code	is	much	simpler	to	read
As	you	can	see	in	the	example	above,	our	code	looks	very	simple.	Compare	it	to	code	using
plain	promises,	with	chaining	and	callback	functions.

And	this	is	a	very	simple	example,	the	major	benefits	will	arise	when	the	code	is	much	more
complex.

For	example	here's	how	you	would	get	a	JSON	resource,	and	parse	it,	using	promises:

const	getFirstUserData	=	()	=>	{

		return	fetch('/users.json')	//	get	users	list

				.then(response	=>	response.json())	//	parse	JSON

				.then(users	=>	users[0])	//	pick	first	user

				.then(user	=>	fetch(`/users/${user.name}`))	//	get	user	data

				.then(userResponse	=>	response.json())	//	parse	JSON

}

getFirstUserData()

And	here	is	the	same	functionality	provided	using	await/async:

const	getFirstUserData	=	async	()	=>	{

		const	response	=	await	fetch('/users.json')	//	get	users	list

		const	users	=	await	response.json()	//	parse	JSON

		const	user	=	users[0]	//	pick	first	user

		const	userResponse	=	await	fetch(`/users/${user.name}`)	//	get	user	data

async/await

113

		const	userData	=	await	user.json()	//	parse	JSON

		return	userData

}

getFirstUserData()

Multiple	async	functions	in	series
Async	functions	can	be	chained	very	easily,	and	the	syntax	is	much	more	readable	than	with
plain	promises:

const	promiseToDoSomething	=	()	=>	{

				return	new	Promise(resolve	=>	{

								setTimeout(()	=>	resolve('I	did	something'),	10000)

				})

}

const	watchOverSomeoneDoingSomething	=	async	()	=>	{

				const	something	=	await	promiseToDoSomething()

				return	something	+	'	and	I	watched'

}

const	watchOverSomeoneWatchingSomeoneDoingSomething	=	async	()	=>	{

				const	something	=	await	watchOverSomeoneDoingSomething()

				return	something	+	'	and	I	watched	as	well'

}

watchOverSomeoneWatchingSomeoneDoingSomething().then((res)	=>	{

				console.log(res)

})

Will	print:

I	did	something	and	I	watched	and	I	watched	as	well

Easier	debugging
Debugging	promises	is	hard	because	the	debugger	will	not	step	over	asynchronous	code.

Async/await	makes	this	very	easy	because	to	the	compiler	it's	just	like	synchronous	code.

async/await

114

The	Node	Event	Emitter
How	to	work	with	custom	events	in	Node

If	you	worked	with	JavaScript	in	the	browser,	you	know	how	much	of	the	interaction	of	the	user
is	handled	through	events:	mouse	clicks,	keyboard	button	presses,	reacting	to	mouse
movements,	and	so	on.

On	the	backend	side,	Node	offers	us	the	option	to	build	a	similar	system	using	the	 	events	
module.

This	module,	in	particular,	offers	the	 	EventEmitter		class,	which	we'll	use	to	handle	our	events.

You	initialize	that	using

const	eventEmitter	=	require('events').EventEmitter()

This	object	exposes,	among	many	others,	the	 	on		and	 	emit		methods.

	emit		is	used	to	trigger	an	event
	on		is	used	to	add	a	callback	function	that's	going	to	be	executed	when	the	event	is
triggered

For	example,	let's	create	a	 	start		event,	and	as	a	matter	of	providing	a	sample,	we	react	to
that	by	just	logging	to	the	console:

eventEmitter.on('start',	()	=>	{

		console.log('started')

})

When	we	run

eventEmitter.emit('start')

the	event	handler	function	is	triggered,	and	we	get	the	console	log.

You	can	pass	arguments	to	the	event	handler	by	passing	them	as	additional	arguments	to
	emit()	:

eventEmitter.on('start',	(number)	=>	{

		console.log(`started	${number}`)

})

eventEmitter.emit('start',	23)

The	Node	Event	Emitter

115

https://nodejs.org/api/events.html

Multiple	arguments:

eventEmitter.on('start',	(start,	end)	=>	{

		console.log(`started	from	${start}	to	${end}`)

})

eventEmitter.emit('start',	1,	100)

The	EventEmitter	object	also	exposes	several	other	methods	to	interact	with	events,	like

	once()	:	add	a	one-time	listener
	removeListener()		/	 	off()	:	remove	an	event	listener	from	an	event
	removeAllListeners()	:	remove	all	listeners	for	an	event

You	can	read	all	their	details	on	the	events	module	page	at	https://nodejs.org/api/events.html

The	Node	Event	Emitter

116

https://nodejs.org/api/events.html

HTTP
A	detailed	description	of	how	the	HTTP	protocol,	and	the	Web,	work

HTTP	(Hyper	Text	Transfer	Protocol)	is	one	of	the	application	protocols	of	TCP/IP,	the	suite	of
protocols	that	powers	the	Internet.

Let	me	fix	that:	it's	not	one	of	the	protocols,	it's	the	most	successful	and	popular	one,	by	all
means.

HTTP	is	what	makes	the	World	Wide	Web	work,	giving	browsers	a	language	to	communicate
to	remote	servers	that	host	web	pages.

HTTP	was	first	standardized	in	1991,	as	a	result	of	the	work	that	Tim	Berners-Lee	did	at
CERN,	the	European	Center	of	Nuclear	Research,	since	1989.

The	goal	was	to	allow	researchers	to	easily	exchange	and	interlink	their	papers.	It	was	meant
as	a	way	for	the	scientific	community	to	work	better.

Back	then	the	internet	main	applications	basically	consisted	in	FTP	(the	File	Transfer
Protocol),	Email	and	Usenet	(newsgroups,	today	almost	abandoned).

In	1993	Mosaic,	the	first	graphical	web	browser,	was	released,	and	things	skyrocketed	from
there.

The	Web	became	the	killer	app	of	the	Internet.

Over	time	the	Web	and	the	ecosystem	around	it	have	dramatically	evolved,	but	the	basics	still
remain.	One	example	of	evolution:	HTTP	now	powers,	in	addition	to	web	pages,	REST	APIs,
one	common	way	to	programmatically	access	a	service	over	the	Internet.

HTTP	got	a	minor	revision	in	1997	with	HTTP/1.1,	and	in	2015	its	successor,	HTTP/2,	was
standardized	and	it's	now	being	implemented	by	the	major	Web	Servers	used	across	the
globe.

The	HTTP	protocol	is	considered	insecure,	just	like	any	other	protocol	(SMTP,	FTP..)	not
served	over	an	encrypted	connection.	This	is	why	there	is	a	big	push	nowadays	towards	using
HTTPS,	which	is	HTTP	served	over	TLS.

That	said,	the	building	blocks	of	HTTP/2	and	HTTPS	have	their	roots	in	HTTP,	and	in	this
article	I'll	introduce	how	HTTP	works.

HTML	documents

HTTP

117

HTTP	is	the	way	web	browsers	like	Chrome,	Firefox,	Edge	and	many	others	(also	called
clients	from	here	on)	communicate	with	web	servers.

The	name	Hyper	Text	Transfer	Protocol	derives	from	the	need	of	transferring	not	just	files,	like
in	FTP	-	the	"File	Transfer	Protocol",	but	hypertexts,	which	would	be	written	using	HTML,	and
then	represented	graphically	by	the	browser	with	a	nice	presentation	and	interactive	links.

Links	were	the	driving	force	that	drove	adoption,	along	with	the	ease	of	creation	of	new	web
pages.

HTTP	is	what	transfer	those	hypertext	files	(and	as	we'll	see	also	images	and	other	file	types)
over	the	network.

Hyperlinks
Inside	a	web	browser,	a	document	can	point	to	another	document	using	links.

A	link	is	composed	by	a	first	part	that	determines	the	protocol	and	the	server	address,	either
through	a	domain	name	or	an	IP.

This	part	is	not	unique	to	HTTP,	of	course.

Then	there's	the	document	part.	Anything	appended	to	the	address	part	represents	the
document	path.

For	example,	this	document	address	is	 	https://flaviocopes.com/http/	:

	https		is	the	protocol.
	flaviocopes.com		is	the	domain	name	that	points	to	my	server
	/http/		is	the	document	URL	relative	to	the	server	root	path.

The	path	can	be	nested:	 	https://flaviocopes.com/page/privacy/		and	in	this	case	the	document
URL	is	 	/page/privacy	.

The	web	server	is	responsible	for	interpreting	the	request	and,	once	analyzed,	serving	the
correct	response.

A	request
What's	in	a	request?

The	first	thing	is	the	URL,	which	we've	already	seen	before.

When	we	enter	an	address	and	press	enter	in	our	browser,	under	the	hoods	the	server	sends
to	the	correct	IP	address	a	request	like	this:

HTTP

118

GET	/a-page

where	/a-page	is	the	URL	you	requested.

The	second	thing	is	the	HTTP	method	(also	called	verb).

HTTP	in	the	early	days	defined	3	of	them:

	GET	

	POST	

	HEAD	

and	HTTP/1.1	introduced

	PUT	

	DELETE	

	OPTIONS	

	TRACE	

We'll	see	them	in	detail	in	a	minute.

The	third	thing	that	composes	a	request	is	a	set	of	HTTP	headers.

Headers	are	a	set	of	 	key:	value		pairs	that	are	used	to	communicate	to	the	server-specific
information	that	is	predefined,	so	the	server	can	know	what	we	mean.

I	described	them	in	detail	in	the	HTTP	request	headers	list.

Give	that	list	a	quick	look.	All	of	those	headers	are	optional,	except	 	Host	.

HTTP	methods

	GET	

GET	is	the	most	used	method	here.	It's	the	one	that's	used	when	you	type	an	URL	in	the
browser	address	bar,	or	when	you	click	a	link.

It	asks	the	server	to	send	the	requested	resource	as	a	response.

	HEAD	

HEAD	is	just	like	GET,	but	tells	the	server	to	not	send	the	response	body	back.	Just	the
headers.

HTTP

119

	POST	

The	client	uses	the	POST	method	to	send	data	to	the	server.	It's	typically	used	in	forms,	for
example,	but	also	when	interacting	with	a	REST	API.

	PUT	

The	PUT	method	is	intended	to	create	a	resource	at	that	specific	URL,	with	the	parameters
passed	in	the	request	body.	Mainly	used	in	REST	APIs

	DELETE	

The	DELETE	method	is	called	against	an	URL	to	request	deletion	of	that	resource.	Mainly
used	in	REST	APIs

	OPTIONS	

When	a	server	receives	an	OPTIONS	request	it	should	send	back	the	list	of	HTTP	methods
allowed	for	that	specific	URL.

	TRACE	

Returns	back	to	the	client	the	request	that	has	been	received.	Used	for	debugging	or
diagnostic	purposes.

HTTP	Client/Server	communication
HTTP,	as	most	of	the	protocols	that	belong	to	the	TCP/IP	suite,	is	a	stateless	protocol.

Servers	have	no	idea	what's	the	current	state	of	the	client.	All	they	care	about	is	that	they	get
request	and	they	need	to	fulfill	them.

Any	prior	request	is	meaningless	in	this	context,	and	this	makes	it	possible	for	a	web	server	to
be	very	fast,	as	there's	less	to	process,	and	also	it	gives	it	bandwidth	to	handle	a	lot	of
concurrent	requests.

HTTP	is	also	very	lean,	and	communication	is	very	fast	in	terms	of	overhead.	This	contrasts
with	the	protocols	that	were	the	most	used	at	the	time	HTTP	was	introduced:	TCP	and
POP/SMTP,	the	mail	protocols,	which	involve	lots	of	handshaking	and	confirmations	on	the
receiving	ends.

HTTP

120

Graphical	browsers	abstract	all	this	communication,	but	we'll	illustrate	it	here	for	learning
purposes.

A	message	is	composed	by	a	first	line,	which	starts	with	the	HTTP	method,	then	contains	the
resource	relative	path,	and	the	protocol	version:

GET	/a-page	HTTP/1.1

After	that,	we	need	to	add	the	HTTP	request	headers.	As	mentioned	above,	there	are	many
headers,	but	the	only	mandatory	one	is	 	Host	:

GET	/a-page	HTTP/1.1

Host:	flaviocopes.com

How	can	you	test	this?	Using	telnet.	This	is	a	command-line	tool	that	lets	us	connect	to	any
server	and	send	it	commands.

Open	your	terminal,	and	type	 	telnet	flaviocopes.com	80	

This	will	open	a	terminal,	that	tells	you

Trying	178.128.202.129...

Connected	to	flaviocopes.com.

Escape	character	is	'^]'.

You	are	connected	to	the	Netlify	web	server	that	powers	my	blog.	You	can	now	type:

GET	/axios/	HTTP/1.1

Host:	flaviocopes.com

and	press	enter	on	an	empty	line	to	fire	the	request.

The	response	will	be:

HTTP/1.1	301	Moved	Permanently

Cache-Control:	public,	max-age=0,	must-revalidate

Content-Length:	46

Content-Type:	text/plain

Date:	Sun,	29	Jul	2018	14:07:07	GMT

Location:	https://flaviocopes.com/axios/

Age:	0

Connection:	keep-alive

Server:	Netlify

Redirecting	to	https://flaviocopes.com/axios/

HTTP

121

See,	this	is	an	HTTP	response	we	got	back	from	the	server.	It's	a	301	Moved	Permanently
request.	See	the	HTTP	status	codes	list	to	know	more	about	the	status	codes.

It	basically	tells	us	the	resource	has	permanently	moved	to	another	location.

Why?	Because	we	connected	to	port	80,	which	is	the	default	for	HTTP,	but	on	my	server	I	set
up	an	automatic	redirection	to	HTTPS.

The	new	location	is	specified	in	the	 	Location		HTTP	response	header.

There	are	other	headers,	all	described	in	the	HTTP	response	headers	list.

In	both	the	request	and	the	response,	an	empty	line	separates	the	request	header	from	the
request	body.	The	request	body	in	this	case	contains	the	string

Redirecting	to	https://flaviocopes.com/axios/

which	is	46	bytes	long,	as	specified	in	the	 	Content-Length		header.	It	is	shown	in	the	browser
when	you	open	the	page,	while	it	automatically	redirects	you	to	the	correct	location.

In	this	case	we're	using	telnet,	the	low-level	tool	that	we	can	use	to	connect	to	any	server,	so
we	can't	have	any	kind	of	automatic	redirect.

Let's	do	this	process	again,	now	connecting	to	port	443,	which	is	the	default	port	of	the	HTTPS
protocol.	We	can't	use	telnet	because	of	the	SSL	handshake	that	must	happen.

Let's	keep	things	simple	and	use	 	curl	,	another	command-line	tool.	We	cannot	directly	type
the	HTTP	request,	but	we'll	see	the	response:

curl	-i	https://flaviocopes.com/axios/

this	is	what	we'll	get	in	return:

HTTP/1.1	200	OK

Cache-Control:	public,	max-age=0,	must-revalidate

Content-Type:	text/html;	charset=UTF-8

Date:	Sun,	29	Jul	2018	14:20:45	GMT

Etag:	"de3153d6eacef2299964de09db154b32-ssl"

Strict-Transport-Security:	max-age=31536000

Age:	152

Content-Length:	9797

Connection:	keep-alive

Server:	Netlify

<!DOCTYPE	html>

<html	prefix="og:	http://ogp.me/ns#"	lang="en">

<head>

<meta	charset="utf-8">

HTTP

122

<meta	http-equiv="X-UA-Compatible"	content="IE=edge">

<title>HTTP	requests	using	Axios</title>

....

I	cut	the	response,	but	you	can	see	that	the	HTML	of	the	page	is	being	returned	now.

Other	resources
An	HTTP	server	will	not	just	transfer	HTML	files,	but	typically	it	will	also	serve	other	files:	CSS,
JS,	SVG,	PNG,	JPG,	lots	of	different	file	types.

This	depends	on	the	configuration.

HTTP	is	perfectly	capable	of	transferring	those	files	as	well,	and	the	client	will	know	about	the
file	type,	thus	interpret	them	in	the	right	way.

This	is	how	the	web	works:	when	an	HTML	page	is	retrieved	by	the	browser,	it's	interpreted
and	any	other	resource	it	needs	to	display	property	(CSS,	JavaScript,	images..)	is	retrieved
through	additional	HTTP	requests	to	the	same	server.

HTTP

123

How	HTTP	Requests	work
What	happens	when	you	type	an	URL	in	the	browser,	from	start	to	finish

The	HTTP	protocol
I	analyze	URL	requests	only
Things	relate	to	macOS	/	Linux
DNS	Lookup	phase

gethostbyname
TCP	request	handshaking
Sending	the	request

The	request	line
The	request	header
The	request	body

The	response
Parse	the	HTML

This	article	describes	how	browsers	perform	page	requests	using	the	HTTP/1.1	protocol

If	you	ever	did	an	interview,	you	might	have	been	asked:	"what	happens	when	you	type
something	into	the	Google	search	box	and	press	enter".

It's	one	of	the	most	popular	questions	you	get	asked.	People	just	want	to	see	if	you	can
explain	some	rather	basic	concepts	and	if	you	have	any	clue	how	the	internet	actually	works.

In	this	post,	I'll	analyze	what	happens	when	you	type	an	URL	in	the	address	bar	of	your
browser	and	press	enter.

It's	a	very	interesting	topic	to	dissect	in	a	blog	post,	as	it	touches	many	technologies	I	can	dive
into	in	separate	posts.

This	is	tech	that	is	very	rarely	changed,	and	powers	one	the	most	complex	and	wide
ecosystems	ever	built	by	humans.

The	HTTP	protocol
First,	I	mention	HTTPS	in	particular	because	things	are	different	from	an	HTTPS	connection.

I	analyze	URL	requests	only

How	HTTP	Requests	work

124

Modern	browsers	have	the	capability	of	knowing	if	the	thing	you	wrote	in	the	address	bar	is	an
actual	URL	or	a	search	term,	and	they	will	use	the	default	search	engine	if	it's	not	a	valid	URL.

I	assume	you	type	an	actual	URL.

When	you	enter	the	URL	and	press	enter,	the	browser	first	builds	the	full	URL.

If	you	just	entered	a	domain,	like	 	flaviocopes.com	,	the	browser	by	default	will	prepend
	HTTP://		to	it,	defaulting	to	the	HTTP	protocol.

Things	relate	to	macOS	/	Linux
Just	FYI.	Windows	might	do	some	things	slightly	differently.

DNS	Lookup	phase
The	browser	starts	the	DNS	lookup	to	get	the	server	IP	address.

The	domain	name	is	a	handy	shortcut	for	us	humans,	but	the	internet	is	organized	in	such	a
way	that	computers	can	look	up	the	exact	location	of	a	server	through	its	IP	address,	which	is
a	set	of	numbers	like	 	222.324.3.1		(IPv4).

First,	it	checks	the	DNS	local	cache,	to	see	if	the	domain	has	already	been	resolved	recently.

Chrome	has	a	handy	DNS	cache	visualizer	you	can	see	at	chrome://net-internals/#dns

If	nothing	is	found	there,	the	browser	uses	the	DNS	resolver,	using	the	 	gethostbyname		POSIX
system	call	to	retrieve	the	host	information.

gethostbyname

	gethostbyname		first	looks	in	the	local	hosts	file,	which	on	macOS	or	Linux	is	located	in
	/etc/hosts	,	to	see	if	the	system	provides	the	information	locally.

If	this	does	not	give	any	information	about	the	domain,	the	system	makes	a	request	to	the
DNS	server.

The	address	of	the	DNS	server	is	stored	in	the	system	preferences.

Those	are	2	popular	DNS	servers:

	8.8.8.8	:	the	Google	public	DNS	server
	1.1.1.1	:	the	CloudFlare	DNS	server

Most	people	use	the	DNS	server	provided	by	their	internet	provider.

How	HTTP	Requests	work

125

chrome://net-internals/#dns

The	browser	performs	the	DNS	request	using	the	UDP	protocol.

TCP	and	UDP	are	two	of	the	foundational	protocols	of	computer	networking.	They	sit	at	the
same	conceptual	level,	but	TCP	is	connection-oriented,	while	UDP	is	a	connectionless
protocol,	more	lightweight,	used	to	send	messages	with	little	overhead.

How	the	UDP	request	is	performed	is	not	in	the	scope	of	this	tutorial

The	DNS	server	might	have	the	domain	IP	in	the	cache.	It	not,	it	will	ask	the	root	DNS	server.
That's	a	system	(composed	of	13	actual	servers,	distributed	across	the	planet)	that	drives	the
entire	internet.

The	DNS	server	does	not	know	the	address	of	each	and	every	domain	name	on	the	planet.

What	it	knows	is	where	the	top-level	DNS	resolvers	are.

A	top-level	domain	is	the	domain	extension:	 	.com	,	 	.it	,	 	.pizza		and	so	on.

Once	the	root	DNS	server	receives	the	request,	it	forwards	the	request	to	that	top-level
domain	(TLD)	DNS	server.

Say	you	are	looking	for	 	flaviocopes.com	.	The	root	domain	DNS	server	returns	the	IP	of	the
.com	TLD	server.

Now	our	DNS	resolver	will	cache	the	IP	of	that	TLD	server,	so	it	does	not	have	to	ask	the	root
DNS	server	again	for	it.

The	TLD	DNS	server	will	have	the	IP	addresses	of	the	authoritative	Name	Servers	for	the
domain	we	are	looking	for.

How?	When	you	buy	a	domain,	the	domain	registrar	sends	the	appropriate	TDL	the
name	servers.	When	you	update	the	name	servers	(for	example,	when	you	change	the
hosting	provider),	this	information	will	be	automatically	updated	by	your	domain	registrar.

Those	are	the	DNS	servers	of	the	hosting	provider.	They	are	usually	more	than	1,	to	serve	as
backup.

For	example:

	ns1.dreamhost.com	

	ns2.dreamhost.com	

	ns3.dreamhost.com	

The	DNS	resolver	starts	with	the	first,	and	tries	to	ask	the	IP	of	the	domain	(with	the
subdomain,	too)	you	are	looking	for.

That	is	the	ultimate	source	of	truth	for	the	IP	address.

How	HTTP	Requests	work

126

Now	that	we	have	the	IP	address,	we	can	go	on	in	our	journey.

TCP	request	handshaking
With	the	server	IP	address	available,	now	the	browser	can	initiate	a	TCP	connection	to	that.

A	TCP	connection	requires	a	bit	of	handshaking	before	it	can	be	fully	initialized	and	you	can
start	sending	data.

Once	the	connection	is	established,	we	can	send	the	request

Sending	the	request
The	request	is	a	plain	text	document	structured	in	a	precise	way	determined	by	the
communication	protocol.

It's	composed	of	3	parts:

the	request	line
the	request	header
the	request	body

The	request	line

The	request	line	sets,	on	a	single	line:

the	HTTP	method
the	resource	location
the	protocol	version

Example:

GET	/	HTTP/1.1

The	request	header

The	request	header	is	a	set	of	 	field:	value		pairs	that	set	certain	values.

There	are	2	mandatory	fields,	one	of	which	is	 	Host	,	and	the	other	is	 	Connection	,	while	all	the
other	fields	are	optional:

Host:	flaviocopes.com

Connection:	close

How	HTTP	Requests	work

127

	Host		indicates	the	domain	name	which	we	want	to	target,	while	 	Connection		is	always	set	to
	close		unless	the	connection	must	be	kept	open.

Some	of	the	most	used	header	fields	are:

	Origin	

	Accept	

	Accept-Encoding	

	Cookie	

	Cache-Control	

	Dnt	

but	many	more	exist.

The	header	part	is	terminated	by	a	blank	line.

The	request	body

The	request	body	is	optional,	not	used	in	GET	requests	but	very	much	used	in	POST	requests
and	sometimes	in	other	verbs	too,	and	it	can	contain	data	in	JSON	format.

Since	we're	now	analyzing	a	GET	request,	the	body	is	blank	and	we'll	not	look	more	into	it.

The	response
Once	the	request	is	sent,	the	server	processes	it	and	sends	back	a	response.

The	response	starts	with	the	status	code	and	the	status	message.	If	the	request	is	successful
and	returns	a	200,	it	will	start	with:

200	OK

The	request	might	return	a	different	status	code	and	message,	like	one	of	these:

404	Not	Found

403	Forbidden

301	Moved	Permanently

500	Internal	Server	Error

304	Not	Modified

401	Unauthorized

The	response	then	contains	a	list	of	HTTP	headers	and	the	response	body	(which,	since	we're
making	the	request	in	the	browser,	is	going	to	be	HTML)

How	HTTP	Requests	work

128

Parse	the	HTML
The	browser	now	has	received	the	HTML	and	starts	to	parse	it,	and	will	repeat	the	exact	same
process	we	did	not	for	all	the	resources	required	by	the	page:

CSS	files
images
the	favicon
JavaScript	files
...

How	browsers	render	the	page	then	is	out	of	the	scope,	but	it's	important	to	understand	that
the	process	I	described	is	not	just	for	the	HTML	pages,	but	for	any	item	that's	served	over
HTTP.

How	HTTP	Requests	work

129

Build	an	HTTP	server
How	to	build	an	HTTP	server	with	Node.js

Here	is	the	HTTP	web	server	we	used	as	the	Node	Hello	World	application	in	the	Node.js
introduction

const	http	=	require('http')

const	port	=	3000

const	server	=	http.createServer((req,	res)	=>	{

		res.statusCode	=	200

		res.setHeader('Content-Type',	'text/plain')

		res.end('Hello	World\n')

})

server.listen(port,	()	=>	{

		console.log(`Server	running	at	http://${hostname}:${port}/`)

})

Let's	analyze	it	briefly.	We	include	the	 	http		module.

We	use	the	module	to	create	an	HTTP	server.

The	server	is	set	to	listen	on	the	specified	port,	 	3000	.	When	the	server	is	ready,	the	 	listen	
callback	function	is	called.

The	callback	function	we	pass	is	the	one	that's	going	to	be	executed	upon	every	request	that
comes	in.	Whenever	a	new	request	is	received,	the	 	request		event	is	called,	providing	two
objects:	a	request	(an	 	http.IncomingMessage		object)	and	a	response	(an	 	http.ServerResponse	
object).

	request		provides	the	request	details.	Through	it,	we	access	the	request	headers	and	request
data.

	response		is	used	to	populate	the	data	we're	going	to	return	to	the	client.

In	this	case	with

res.statusCode	=	200

we	set	the	statusCode	property	to	200,	to	indicate	a	successful	response.

We	also	set	the	Content-Type	header:

Build	an	HTTP	server

130

https://flaviocopes.com/node/
https://nodejs.org/api/http.html
https://nodejs.org/api/http.html#http_event_request
https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nodejs.org/api/http.html#http_class_http_serverresponse

res.setHeader('Content-Type',	'text/plain')

and	we	end	close	the	response,	adding	the	content	as	an	argument	to	 	end()	:

res.end('Hello	World\n')

Build	an	HTTP	server

131

Making	HTTP	requests
How	to	perform	HTTP	requests	with	Node.js	using	GET,	POST,	PUT	and
DELETE

I	use	the	term	HTTP,	but	HTTPS	is	what	should	be	used	everywhere,	therefore	these
examples	use	HTTPS	instead	of	HTTP.

Perform	a	GET	Request

const	https	=	require('https')

const	options	=	{

		hostname:	'flaviocopes.com',

		port:	443,

		path:	'/todos',

		method:	'GET'

}

const	req	=	https.request(options,	(res)	=>	{

		console.log(`statusCode:	${res.statusCode}`)

		res.on('data',	(d)	=>	{

				process.stdout.write(d)

		})

})

req.on('error',	(error)	=>	{

		console.error(error)

})

req.end()

Perform	a	POST	Request

const	https	=	require('https')

const	data	=	JSON.stringify({

		todo:	'Buy	the	milk'

})

const	options	=	{

		hostname:	'flaviocopes.com',

		port:	443,

		path:	'/todos',

		method:	'POST',

		headers:	{

Making	HTTP	requests

132

				'Content-Type':	'application/json',

				'Content-Length':	data.length

		}

}

const	req	=	https.request(options,	(res)	=>	{

		console.log(`statusCode:	${res.statusCode}`)

		res.on('data',	(d)	=>	{

				process.stdout.write(d)

		})

})

req.on('error',	(error)	=>	{

		console.error(error)

})

req.write(data)

req.end()

PUT	and	DELETE
PUT	and	DELETE	requests	use	the	same	POST	request	format,	and	just	change	the
	options.method		value.

Making	HTTP	requests

133

Axios
Axios	is	a	very	convenient	JavaScript	library	to	perform	HTTP	requests	in
Node.js

Introduction
Installation
The	Axios	API
GET	requests
Add	parameters	to	GET	requests
POST	Requests

Introduction
Axios	is	a	very	popular	JavaScript	library	you	can	use	to	perform	HTTP	requests,	that	works	in
both	Browser	and	Node.js	platforms.

It	supports	all	modern	browsers,	including	support	for	IE8	and	higher.

It	is	promise-based,	and	this	lets	us	write	async/await	code	to	perform	XHR	requests	very
easily.

Using	Axios	has	quite	a	few	advantages	over	the	native	Fetch	API:

Axios

134

https://flaviocopes.com/node/
https://flaviocopes.com/xhr/
https://flaviocopes.com/fetch-api/

supports	older	browsers	(Fetch	needs	a	polyfill)
has	a	way	to	abort	a	request
has	a	way	to	set	a	response	timeout
has	built-in	CSRF	protection
supports	upload	progress
performs	automatic	JSON	data	transformation
works	in	Node.js

Installation
Axios	can	be	installed	using	npm:

npm	install	axios

or	yarn:

yarn	add	axios

or	simply	include	it	in	your	page	using	unpkg.com:

<script	src="https://unpkg.com/axios/dist/axios.min.js"></script>

The	Axios	API
You	can	start	an	HTTP	request	from	the	 	axios		object:

axios({

		url:	'https://dog.ceo/api/breeds/list/all',

		method:	'get',

		data:	{

				foo:	'bar'

		}

})

but	for	convenience,	you	will	generally	use

	axios.get()	

	axios.post()	

(like	in	jQuery	you	would	use	 	$.get()		and	 	$.post()		instead	of	 	$.ajax())

Axios	offers	methods	for	all	the	HTTP	verbs,	which	are	less	popular	but	still	used:

Axios

135

https://flaviocopes.com/npm/
https://flaviocopes.com/yarn/

	axios.delete()	

	axios.put()	

	axios.patch()	

	axios.options()	

and	a	method	to	get	the	HTTP	headers	of	a	request,	discarding	the	body:

	axios.head()	

GET	requests
One	convenient	way	to	use	Axios	is	to	use	the	modern	(ES2017)	async/await	syntax.

This	Node.js	example	queries	the	Dog	API	to	retrieve	a	list	of	all	the	dogs	breeds,	using
	axios.get()	,	and	it	counts	them:

const	axios	=	require('axios')

const	getBreeds	=	async	()	=>	{

		try	{

				return	await	axios.get('https://dog.ceo/api/breeds/list/all')

		}	catch	(error)	{

				console.error(error)

		}

}

const	countBreeds	=	async	()	=>	{

		const	breeds	=	await	getBreeds()

		if	(breeds.data.message)	{

				console.log(`Got	${Object.entries(breeds.data.message).length}	breeds`)

		}

}

countBreeds()

If	you	don't	want	to	use	async/await	you	can	use	the	Promises	syntax:

const	axios	=	require('axios')

const	getBreeds	=	()	=>	{

		try	{

				return	axios.get('https://dog.ceo/api/breeds/list/all')

		}	catch	(error)	{

				console.error(error)

		}

}

const	countBreeds	=	async	()	=>	{

		const	breeds	=	getBreeds()

Axios

136

https://dog.ceo
https://flaviocopes.com/javascript-promises/

				.then(response	=>	{

						if	(response.data.message)	{

								console.log(

										`Got	${Object.entries(response.data.message).length}	breeds`

)

						}

				})

				.catch(error	=>	{

						console.log(error)

				})

}

countBreeds()

Add	parameters	to	GET	requests
A	GET	response	can	contain	parameters	in	the	URL,	like	this:	 	https://site.com/?foo=bar	.

With	Axios	you	can	perform	this	by	simply	using	that	URL:

axios.get('https://site.com/?foo=bar')

or	you	can	use	a	 	params		property	in	the	options:

axios.get('https://site.com/',	{

		params:	{

				foo:	'bar'

		}

})

POST	Requests
Performing	a	POST	request	is	just	like	doing	a	GET	request,	but	instead	of	 	axios.get	,	you
use	 	axios.post	:

axios.post('https://site.com/')

An	object	containing	the	POST	parameters	is	the	second	argument:

axios.post('https://site.com/',	{

		foo:	'bar'

})

Axios

137

Axios

138

Websockets
WebSockets	are	an	alternative	to	HTTP	communication	in	Web	Applications.
They	offer	a	long	lived,	bidirectional	communication	channel	between	client
and	server.

WebSockets	are	an	alternative	to	HTTP	communication	in	Web	Applications.

They	offer	a	long	lived,	bidirectional	communication	channel	between	client	and	server.

Once	established,	the	channel	is	kept	open,	offering	a	very	fast	connection	with	low	latency
and	overhead.

Browser	support	for	WebSockets
WebSockets	are	supported	by	all	modern	browsers.

Websockets

139

How	WebSockets	differ	from	HTTP
HTTP	is	a	very	different	protocol,	and	also	a	different	way	of	communicate.

HTTP	is	a	request/response	protocol:	the	server	returns	some	data	when	the	client	requests	it.

With	WebSockets:

the	server	can	send	a	message	to	the	client	without	the	client	explicitly	requesting
something
the	client	and	the	server	can	talk	to	each	other	simultaneously
very	little	data	overhead	needs	to	be	exchanged	to	send	messages.	This	means	a	low
latency	communication.

WebSockets	are	great	for	real-time	and	long-lived	communications.

HTTP	is	great	for	occasional	data	exchange	and	interactions	initiated	by	the	client.

HTTP	is	much	simpler	to	implement,	while	WebSockets	require	a	bit	more	overhead.

Secured	WebSockets
Always	use	the	secure,	encrypted	protocol	for	WebSockets,	 	wss://	.

	ws://		refers	to	the	unsafe	WebSockets	version	(the	 	http://		of	WebSockets),	and	should	be
avoided	for	obvious	reasons.

Create	a	new	WebSockets	connection

const	url	=	'wss://myserver.com/something'

const	connection	=	new	WebSocket(url)

	connection		is	a	WebSocket	object.

When	the	connection	is	successfully	established,	the	 	open		event	is	fired.

Listen	for	it	by	assigning	a	callback	function	to	the	 	onopen		property	of	the	 	connection		object:

connection.onopen	=	()	=>	{

		//...

}

If	there's	any	error,	the	 	onerror		function	callback	is	fired:

Websockets

140

https://developer.mozilla.org/en-US/docs/Web/API/WebSocket

connection.onerror	=	error	=>	{

		console.log(`WebSocket	error:	${error}`)

}

Sending	data	to	the	server	using	WebSockets
Once	the	connection	is	open,	you	can	send	data	to	the	server.

You	can	do	so	conveniently	inside	the	 	onopen		callback	function:

connection.onopen	=	()	=>	{

		connection.send('hey')

}

Receiving	data	from	the	server	using
WebSockets
Listen	with	a	callback	function	on	 	onmessage	,	which	is	called	when	the	 	message		event	is
received:

connection.onmessage	=	e	=>	{

		console.log(e.data)

}

Implement	a	WebSockets	server	in	Node.js
ws	is	a	popular	WebSockets	library	for	Node.js.

We'll	use	it	to	build	a	WebSockets	server.	It	can	also	be	used	to	implement	a	client,	and	use
WebSockets	to	communicate	between	two	backend	services.

Easily	install	it	using

yarn	init

yarn	add	ws

The	code	you	need	to	write	is	very	little:

const	WebSocket	=	require('ws')

const	wss	=	new	WebSocket.Server({	port:	8080	})

Websockets

141

https://github.com/websockets/ws

wss.on('connection',	ws	=>	{

		ws.on('message',	message	=>	{

				console.log(`Received	message	=>	${message}`)

		})

		ws.send('ho!')

})

This	code	creates	a	new	server	on	port	8080	(the	default	port	for	WebSockets),	and	adds	a
callback	function	when	a	connection	is	established,	sending	 	ho!		to	the	client,	and	logging	the
messages	it	receives.

See	a	live	example	on	Glitch
Here	is	a	live	example	of	a	WebSockets	server:	https://glitch.com/edit/#!/flavio-websockets-
server-example

Here	is	a	WebSockets	client	that	interacts	with	the	server:	https://glitch.com/edit/#!/flavio-
websockets-client-example

Websockets

142

https://glitch.com/edit/#!/flavio-websockets-server-example
https://glitch.com/edit/#!/flavio-websockets-client-example

HTTPS,	secure	connections
The	HTTPS	protocol	is	an	extension	of	HTTP,	the	Hyper	Text	Transfer
Protocol,	that	provide	secure	communication

HTTP	in	insecure	by	design.

When	you	open	your	browser	and	ask	a	web	server	to	send	you	a	webpage,	your	data
performs	2	trips:	1	from	the	browser	to	the	web	server,	and	1	from	the	web	server	to	the
browser.

Then,	depending	on	the	content	of	the	web	page,	you	might	have	more	connections	required
to	get	the	CSS	files,	the	JavaScript	files,	images,	and	so	on.

During	any	of	those	connections,	any	network	your	data	is	going	to	cross	can	be	inspected
and	manipulated.

The	consequences	can	be	serious:	you	might	have	all	your	network	activity	monitored	and
logged,	by	a	3rd	part	you	are	not	even	aware	it	exist,	some	networks	might	inject	ads,	and	you
might	be	subject	to	a	man-in-the-middle	attack,	a	security	threat	where	the	attacker	can
manipulate	your	data	and	even	impersonate	your	computer	over	the	network.	It's	very	easy	for
someone	to	just	listen	to	HTTP	packets	being	transmitted	over	a	public	and	unencrypted	Wi-Fi
network.

HTTPS	aims	to	solve	the	problem	at	the	root:	the	entire	communication	between	your	browser
and	the	web	server	is	encrypted.

Privacy	and	security	are	a	major	concern	in	today's	internet.	A	few	years	ago,	you	could	get
away	with	just	using	an	encrypted	connection	in	login-protected	pages,	or	during	an	e-
commerce	checkout.	Also	because	of	SSL	certificates	pricing	and	complications,	most
websites	just	used	HTTP.

Today	HTTPS	is	a	requirement	on	any	site.	More	than	50%	of	the	whole	Web	uses	it	now.
Google	Chrome	recently	started	marking	HTTP	sites	as	insecure,	just	to	give	you	a	valid
reason	to	have	HTTPS	mandatory	(and	forced)	on	all	your	websites.

When	using	HTTP	the	default	server	port	is	80,	and	on	HTTPS	it's	443.	It	does	not	need	to	be
explicitly	added	if	the	server	uses	the	default	port,	of	course.

HTTPS	is	also	sometimes	called	HTTP	over	SSL,	or	HTTP	over	TLS.

The	difference	between	the	two	is	simple:	TLS	is	the	successor	of	SSL.

When	using	HTTPS,	the	only	thing	that	is	not	encrypted	is	the	web	server	domain,	and	the
server	port.

HTTPS,	secure	connections

143

https://justinsomnia.org/2012/04/hotel-wifi-javascript-injection/

Every	other	information,	including	the	resource	path,	headers,	cookies	and	query	parameters
are	all	encrypted.

I	won't	go	in	the	details	of	analyzing	how	the	TLS	protocol	works	under	the	hoods,	but	you
might	think	it's	adding	a	good	amount	of	overhead,	and	you	would	be	right.

Any	computation	that's	added	to	the	processing	of	network	resources	causes	overhead	both
on	the	client,	the	server,	and	to	the	transmitted	packets	size.

However	HTTPS	enables	the	use	of	the	newest	protocol	HTTP/2,	which	has	a	huge
advantage	over	HTTP/1.1:	it	way	faster.

Why?	There	are	many	reasons,	one	is	header	compression,	one	is	resource	multiplexing.	One
is	server	push:	the	server	can	push	more	resources	when	one	resource	is	requested.	So,	if	the
browser	requests	a	page,	it	will	also	receive	all	the	resources	needed	(images,	CSS,	JS).

Details	aside,	HTTP/2	is	a	huge	improvement	over	HTTP/1.1	and	it	requires	HTTPS.	This
means	that	HTTPS,	despite	having	the	encryption	overhead,	happens	to	be	way	faster	than
HTTP,	if	things	are	properly	configured	with	a	modern	setup.

HTTPS,	secure	connections

144

File	descriptors
How	to	interact	with	file	descriptors	using	Node

Before	you're	able	to	interact	with	a	file	that	sits	in	your	filesystem,	you	must	get	a	file
descriptor.

A	file	descriptor	is	what's	returned	by	opening	the	file	using	the	 	open()		method	offered	by	the
	fs		module:

const	fs	=	require('fs')

fs.open('/Users/flavio/test.txt',	'r',	(err,	fd)	=>	{

		//fd	is	our	file	descriptor

})

Notice	the	 	r		we	used	as	the	second	parameter	to	the	 	fs.open()		call.

That	flag	means	we	open	the	file	for	reading.

Other	flags	you'll	commonly	use	are

	r+		open	the	file	for	reading	and	writing
	w+		open	the	file	for	reading	and	writing,	positioning	the	stream	at	the	beginning	of	the
file.	The	file	is	created	if	not	existing
	a		open	the	file	for	writing,	positioning	the	stream	at	the	end	of	the	file.	The	file	is	created
if	not	existing
	a+		open	the	file	for	reading	and	writing,	positioning	the	stream	at	the	end	of	the	file.	The
file	is	created	if	not	existing

You	can	also	open	the	file	by	using	the	 	fs.openSync		method,	which	instead	of	providing	the
file	descriptor	object	in	a	callback,	it	returns	it:

const	fs	=	require('fs')

try	{

		const	fd	=	fs.openSync('/Users/flavio/test.txt',	'r')

}	catch	(err)	{

		console.error(err)

}

Once	you	get	the	file	descriptor,	in	whatever	way	you	choose,	you	can	perform	all	the
operations	that	require	it,	like	calling	 	fs.open()		and	many	other	operations	that	interact	with
the	filesystem.

File	descriptors

145

File	descriptors

146

File	stats
How	to	get	the	details	of	a	file	using	Node

Every	file	comes	with	a	set	of	details	that	we	can	inspect	using	Node.

In	particular,	using	the	 	stat()		method	provided	by	the	 	fs		module.

You	call	it	passing	a	file	path,	and	once	Node	gets	the	file	details	it	will	call	the	callback
function	you	pass,	with	2	parameters:	an	error	message,	and	the	file	stats:

const	fs	=	require('fs')

fs.stat('/Users/flavio/test.txt',	(err,	stats)	=>	{

		if	(err)	{

				console.error(err)

				return

		}

		//we	have	access	to	the	file	stats	in	`stats`

})

Node	provides	also	a	sync	method,	which	blocks	the	thread	until	the	file	stats	are	ready:

const	fs	=	require('fs')

try	{

		const	stats	=	fs.stat('/Users/flavio/test.txt')

}	catch	(err)	{

		console.error(err)

}

The	file	information	is	included	in	the	stats	variable.	What	kind	of	information	can	we	extract
using	the	stats?

A	lot,	including:

if	the	file	is	a	directory	or	a	file,	using	 	stats.isFile()		and	 	stats.isDirectory()	
if	the	file	is	a	symbolic	link	using	 	stats.isSymbolicLink()	
the	file	size	in	bytes	using	 	stats.size	.

There	are	other	advanced	methods,	but	the	bulk	of	what	you'll	use	in	your	day-to-day
programming	is	this.

const	fs	=	require('fs')

fs.stat('/Users/flavio/test.txt',	(err,	stats)	=>	{

		if	(err)	{

				console.error(err)

				return

		}

File	stats

147

		stats.isFile()	//true

		stats.isDirectory()	//false

		stats.isSymbolicLink()	//false

		stats.size	//1024000	//=	1MB

})

File	stats

148

File	paths
How	to	interact	with	file	paths	and	manipulate	them	in	Node

Getting	information	out	of	a	path
Working	with	paths

Every	file	in	the	system	has	a	path.

On	Linux	and	macOS,	a	path	might	look	like:

	/users/flavio/file.txt	

while	Windows	computers	are	different,	and	have	a	structure	such	as:

	C:\users\flavio\file.txt	

You	need	to	pay	attention	when	using	paths	in	your	applications,	as	this	difference	must	be
taken	into	account.

You	include	this	module	in	your	files	using

const	path	=	require('path')

and	you	can	start	using	its	methods.

Getting	information	out	of	a	path
Given	a	path,	you	can	extract	information	out	of	it	using	those	methods:

	dirname	:	get	the	parent	folder	of	a	file
	basename	:	get	the	filename	part
	extname	:	get	the	file	extension

Example:

const	notes	=	'/users/flavio/notes.txt'

path.dirname(notes)	//	/users/flavio

path.basename(notes)	//	notes.txt

path.extname(notes)	//	.txt

You	can	get	the	file	name	without	the	extension	by	specifying	a	second	argument	to
	basename	:

File	paths

149

path.basename(notes,	path.extname(notes))	//notes

Working	with	paths
You	can	join	two	or	more	parts	of	a	path	by	using	 	path.join()	:

const	name	=	'flavio'

path.join('/',	'users',	name,	'notes.txt')	//'/users/flavio/notes.txt'

You	can	get	the	absolute	path	calculation	of	a	relative	path	using	 	path.resolve()	:

path.resolve('flavio.txt')	//'/Users/flavio/flavio.txt'	if	run	from	my	home	folder

In	this	case	Node	will	simply	append	 	/flavio.txt		to	the	current	working	directory.	If	you
specify	a	second	parameter	folder,	 	resolve		will	use	the	first	as	a	base	for	the	second:

path.resolve('tmp',	'flavio.txt')//'/Users/flavio/tmp/flavio.txt'	if	run	from	my	home	fold

er

If	the	first	parameter	starts	with	a	slash,	that	means	it's	an	absolute	path:

path.resolve('/etc',	'flavio.txt')//'/etc/flavio.txt'

	path.normalize()		is	another	useful	function,	that	will	try	and	calculate	the	actual	path,	when	it
contains	relative	specifiers	like	 	.		or	 	..	,	or	double	slashes:

path.normalize('/users/flavio/..//test.txt')	///users/test.txt

Both	resolve	and	normalize	will	not	check	if	the	path	exists.	They	just	calculate	a	path
based	on	the	information	they	got.

File	paths

150

Reading	files
How	to	read	files	using	Node

The	simplest	way	to	read	a	file	in	Node	is	to	use	the	 	fs.readFile()		method,	passing	it	the	file
path	and	a	callback	function	that	will	be	called	with	the	file	data	(and	the	error):

const	fs	=	require('fs')

fs.readFile('/Users/flavio/test.txt',	(err,	data)	=>	{

		if	(err)	{

				console.error(err)

				return

		}

		console.log(data)

})

Alternatively,	you	can	use	the	synchronous	version	 	fs.readFileSync()	:

const	fs	=	require('fs')

try	{

		const	data	=	fs.readFileSync('/Users/flavio/test.txt',	'utf8')

		console.log(data)

}	catch	(err)	{

		console.error(err)

}

The	default	encoding	is	utf8,	but	you	can	specify	a	custom	encoding	using	a	a	second
parameter.

Both	 	fs.readFile()		and	 	fs.readFileSync()		read	the	full	content	of	the	file	in	memory	before
returning	the	data.

This	means	that	big	files	are	going	to	have	a	major	impact	on	your	memory	consumption	and
speed	of	execution	of	the	program.

In	this	case,	a	better	option	is	to	read	the	file	content	using	streams.

Reading	files

151

Writing	files
How	to	write	files	using	Node

The	easiest	way	to	write	to	files	in	Node.js	is	to	use	the	 	fs.writeFile()		API.

Example:

const	fs	=	require('fs')

const	content	=	'Some	content!'

fs.writeFile('/Users/flavio/test.txt',	content,	(err)	=>	{

		if	(err)	{

				console.error(err)

				return

		}

		//file	written	successfully

})

Alternatively,	you	can	use	the	synchronous	version	 	fs.writeFileSync()	:

const	fs	=	require('fs')

const	content	=	'Some	content!'

try	{

		const	data	=	fs.writeFileSync('/Users/flavio/test.txt',	content)

		//file	written	successfully

}	catch	(err)	{

		console.error(err)

}

By	default,	this	API	will	replace	the	contents	of	the	file	if	it	does	already	exist.

You	can	modify	the	default	by	specifying	a	flag:

fs.writeFile('/Users/flavio/test.txt',	content,	{	flag:	'a+'	},	(err)	=>	{})

The	flags	you'll	likely	use	are

	r+		open	the	file	for	reading	and	writing
	w+		open	the	file	for	reading	and	writing,	positioning	the	stream	at	the	beginning	of	the
file.	The	file	is	created	if	not	existing
	a		open	the	file	for	writing,	positioning	the	stream	at	the	end	of	the	file.	The	file	is	created
if	not	existing

Writing	files

152

	a+		open	the	file	for	reading	and	writing,	positioning	the	stream	at	the	end	of	the	file.	The
file	is	created	if	not	existing

(you	can	find	more	flags	at	https://nodejs.org/api/fs.html#fs_file_system_flags)

Append	to	a	file
A	handy	method	to	append	content	to	the	end	of	a	file	is	 	fs.appendFile()		(and	its
	fs.appendFileSync()		counterpart):

const	content	=	'Some	content!'

fs.appendFile('file.log',	content,	(err)	=>	{

		if	(err)	{

				console.error(err)

				return

		}

		//done!

})

Using	streams
All	those	methods	write	the	full	content	to	the	file	before	returning	the	control	back	to	your
program	(in	the	async	version,	this	means	executing	the	callback)

In	this	case,	a	better	option	is	to	write	the	file	content	using	streams.

Writing	files

153

https://nodejs.org/api/fs.html#fs_file_system_flags

Working	with	folders
How	to	interact	with	folders	using	Node

The	Node.js	 	fs		core	module	provides	many	handy	methods	you	can	use	to	work	with
folders.

Check	if	a	folder	exists
Use	 	fs.access()		to	check	if	the	folder	exists	and	Node	can	access	it	with	its	permissions.

Create	a	new	folder
Use	 	fs.mkdir()		or	 	fs.mkdirSync()		to	create	a	new	folder.

const	fs	=	require('fs')

const	folderName	=	'/Users/flavio/test'

try	{

		if	(!fs.existsSync(dir)){

				fs.mkdirSync(dir)

		}

}	catch	(err)	{

		console.error(err)

}

Read	the	content	of	a	directory
Use	 	fs.readdir()		or	 	fs.readdirSync		to	read	the	contents	of	a	directory.

This	piece	of	code	reads	the	content	of	a	folder,	both	files	and	subfolders,	and	returns	their
relative	path:

const	fs	=	require('fs')

const	path	=	require('path')

const	folderPath	=	'/Users/flavio'

fs.readdirSync(folderPath)

You	can	get	the	full	path:

Working	with	folders

154

fs.readdirSync(folderPath).map(fileName	=>	{

		return	path.join(folderPath,	fileName)

}

You	can	also	filter	the	results	to	only	return	the	files,	and	exclude	the	folders:

const	isFile	=	fileName	=>	{

		return	fs.lstatSync(fileName).isFile()

}

fs.readdirSync(folderPath).map(fileName	=>	{

		return	path.join(folderPath,	fileName)).filter(isFile)

}

Rename	a	folder
Use	 	fs.rename()		or	 	fs.renameSync()		to	rename	folder.	The	first	parameter	is	the	current	path,
the	second	the	new	path:

const	fs	=	require('fs')

fs.rename('/Users/flavio',	'/Users/roger',	(err)	=>	{

		if	(err)	{

				console.error(err)

				return

		}

		//done

})

	fs.renameSync()		is	the	synchronous	version:

const	fs	=	require('fs')

try	{

		fs.renameSync('/Users/flavio',	'/Users/roger')

}	catch	(err)	{

		console.error(err)

}

Remove	a	folder
Use	 	fs.rmdir()		or	 	fs.rmdirSync()		to	remove	a	folder.

Removing	a	folder	that	has	content	can	be	more	complicated	than	you	need.

Working	with	folders

155

In	this	case	I	recommend	installing	the	 	fs-extra		module,	which	is	very	popular	and	well
maintained,	and	it's	a	drop-in	replacement	of	the	 	fs		module,	providing	more	features	on	top
of	it.

In	this	case	the	 	remove()		method	is	what	you	want.

Install	it	using

	npm	install	fs-extra	

and	use	it	like	this:

const	fs	=	require('fs-extra')

const	folder	=	'/Users/flavio'

fs.remove(folder,	err	=>	{

		console.error(err)

})

It	can	also	be	used	with	promises:

fs.remove(folder).then(()	=>	{

		//done

}).catch(err	=>	{

		console.error(err)

})

or	with	async/await:

async	function	removeFolder(folder)	{

		try	{

				await	fs.remove(folder)

				//done

		}	catch	(err)	{

				console.error(err)

		}

}

const	folder	=	'/Users/flavio'

removeFolder(folder)

Working	with	folders

156

The	fs	module
The	fs	module	of	Node.js	provides	useful	functions	to	interact	with	the	file
system

The	 	fs		module	provides	a	lot	of	very	useful	functionality	to	access	and	interact	with	the	file
system.

There	is	no	need	to	install	it.	Being	part	of	the	Node	core,	it	can	be	used	by	simply	requiring	it:

const	fs	=	require('fs')

Once	you	do	so,	you	have	access	to	all	its	methods,	which	include:

	fs.access()	:	check	if	the	file	exists	and	Node	can	access	it	with	its	permissions
	fs.appendFile()	:	append	data	to	a	file.	If	the	file	does	not	exist,	it's	created
	fs.chmod()	:	change	the	permissions	of	a	file	specified	by	the	filename	passed.	Related:
	fs.lchmod()	,	 	fs.fchmod()	
	fs.chown()	:	change	the	owner	and	group	of	a	file	specified	by	the	filename	passed.
Related:	 	fs.fchown()	,	 	fs.lchown()	
	fs.close()	:	close	a	file	descriptor
	fs.copyFile()	:	copies	a	file
	fs.createReadStream()	:	create	a	readable	file	stream
	fs.createWriteStream()	:	create	a	writable	file	stream
	fs.link()	:	create	a	new	hard	link	to	a	file
	fs.mkdir()	:	create	a	new	folder
	fs.mkdtemp()	:	create	a	temporary	directory
	fs.open()	:	set	the	file	mode
	fs.readdir()	:	read	the	contents	of	a	directory
	fs.readFile()	:	read	the	content	of	a	file.	Related:	 	fs.read()	
	fs.readlink()	:	read	the	value	of	a	symbolic	link
	fs.realpath()	:	resolve	relative	file	path	pointers	(.	,	 	..)	to	the	full	path
	fs.rename()	:	rename	a	file	or	folder
	fs.rmdir()	:	remove	a	folder
	fs.stat()	:	returns	the	status	of	the	file	identified	by	the	filename	passed.	Related:
	fs.fstat()	,	 	fs.lstat()	
	fs.symlink()	:	create	a	new	symbolic	link	to	a	file
	fs.truncate()	:	truncate	to	the	specified	length	the	file	identified	by	the	filename	passed.
Related:	 	fs.ftruncate()	
	fs.unlink()	:	remove	a	file	or	a	symbolic	link

The	fs	module

157

	fs.unwatchFile()	:	stop	watching	for	changes	on	a	file
	fs.utimes()	:	change	the	timestamp	of	the	file	identified	by	the	filename	passed.	Related:
	fs.futimes()	

	fs.watchFile()	:	start	watching	for	changes	on	a	file.	Related:	 	fs.watch()	
	fs.writeFile()	:	write	data	to	a	file.	Related:	 	fs.write()	

One	peculiar	thing	about	the	 	fs		module	is	that	all	the	methods	are	asynchronous	by	default,
but	they	can	also	work	synchronously	by	appending	 	Sync	.

For	example:

	fs.rename()	

	fs.renameSync()	

	fs.write()	

	fs.writeSync()	

This	makes	a	huge	difference	in	your	application	flow.

Node	10	includes	experimental	support	for	a	promise	based	API

For	example	let's	examine	the	 	fs.rename()		method.	The	asynchronous	API	is	used	with	a
callback:

const	fs	=	require('fs')

fs.rename('before.json',	'after.json',	(err)	=>	{

		if	(err)	{

				return	console.error(err)

		}

		//done

})

A	synchronous	API	can	be	used	like	this,	with	a	try/catch	block	to	handle	errors:

const	fs	=	require('fs')

try	{

		fs.renameSync('before.json',	'after.json')

		//done

}	catch	(err)	{

		console.error(err)

}

The	key	difference	here	is	that	the	execution	of	your	script	will	block	in	the	second	example,
until	the	file	operation	succeeded.

The	fs	module

158

https://nodejs.org/api/fs.html#fs_fs_promises_api
https://flaviocopes.com/javascript-promises/

The	fs	module

159

The	path	module
The	path	module	of	Node.js	provides	useful	functions	to	interact	with	file
paths

The	 	path		module	provides	a	lot	of	very	useful	functionality	to	access	and	interact	with	the	file
system.

There	is	no	need	to	install	it.	Being	part	of	the	Node	core,	it	can	be	used	by	simply	requiring	it:

const	path	=	require('path')

This	module	provides	 	path.sep		which	provides	the	path	segment	separator	(\		on	Windows,
and	 	/		on	Linux	/	macOS),	and	 	path.delimiter		which	provides	the	path	delimiter	(;		on
Windows,	and	 	:		on	Linux	/	macOS).

These	are	the	 	path		methods:

	path.basename()	

	path.dirname()	

	path.extname()	

	path.isAbsolute()	

	path.join()	

	path.normalize()	

	path.parse()	

	path.relative()	

	path.resolve()	

	path.basename()	

Return	the	last	portion	of	a	path.	A	second	parameter	can	filter	out	the	file	extension:

require('path').basename('/test/something')	//something

require('path').basename('/test/something.txt')	//something.txt

require('path').basename('/test/something.txt',	'.txt')	//something

	path.dirname()	

Return	the	directory	part	of	a	path:

require('path').dirname('/test/something')	//	/test

require('path').dirname('/test/something/file.txt')	//	/test/something

The	path	module

160

	path.extname()	

Return	the	extension	part	of	a	path

require('path').dirname('/test/something')	//	''

require('path').dirname('/test/something/file.txt')	//	'.txt'

	path.isAbsolute()	

Returns	true	if	it's	an	absolute	path

require('path').isAbsolute('/test/something')	//	true

require('path').isAbsolute('./test/something')	//	false

	path.join()	

Joins	two	or	more	parts	of	a	path:

const	name	=	'flavio'

require('path').join('/',	'users',	name,	'notes.txt')	//'/users/flavio/notes.txt'

	path.normalize()	

Tries	to	calculate	the	actual	path	when	it	contains	relative	specifiers	like	 	.		or	 	..	,	or	double
slashes:

require('path').normalize('/users/flavio/..//test.txt')	///users/test.txt

	path.parse()	

Parses	a	path	to	an	object	with	the	segments	that	compose	it:

	root	:	the	root
	dir	:	the	folder	path	starting	from	the	root
	base	:	the	file	name	+	extension
	name	:	the	file	name
	ext	:	the	file	extension

Example:

require('path').parse('/users/test.txt')

The	path	module

161

results	in

{

		root:	'/',

		dir:	'/users',

		base:	'test.txt',

		ext:	'.txt',

		name:	'test'

}

	path.relative()	

Accepts	2	paths	as	arguments.	Returns	the	the	relative	path	from	the	first	path	to	the	second,
based	on	the	current	working	directory.

Example:

require('path').relative('/Users/flavio',	'/Users/flavio/test.txt')	//'test.txt'

require('path').relative('/Users/flavio',	'/Users/flavio/something/test.txt')	//'something

/test.txt'

	path.resolve()	

You	can	get	the	absolute	path	calculation	of	a	relative	path	using	 	path.resolve()	:

path.resolve('flavio.txt')	//'/Users/flavio/flavio.txt'	if	run	from	my	home	folder

By	specifying	a	second	parameter,	 	resolve		will	use	the	first	as	a	base	for	the	second:

path.resolve('tmp',	'flavio.txt')//'/Users/flavio/tmp/flavio.txt'	if	run	from	my	home	fold

er

If	the	first	parameter	starts	with	a	slash,	that	means	it's	an	absolute	path:

path.resolve('/etc',	'flavio.txt')//'/etc/flavio.txt'

The	path	module

162

The	os	module
The	os	module	of	Node.js	provides	useful	functions	to	interact	with
underlying	system

This	module	provides	many	functions	that	you	can	use	to	retrieve	information	from	the
underlying	operating	system	and	the	computer	the	program	runs	on,	and	interact	with	it.

const	os	=	require('os')

There	are	a	few	useful	properties	that	tell	us	some	key	things	related	to	handling	files:

	os.EOL		gives	the	line	delimiter	sequence.	It's	 	\n		on	Linux	and	macOS,	and	 	\r\n		on
Windows.

When	I	say	Linux	and	macOS	I	mean	POSIX	platforms.	For	simplicity	I	exclude	other	less
popular	operating	systems	Node	can	run	on.

	os.constants.signals		tells	us	all	the	constants	related	to	handling	process	signals,	like
SIGHUP,	SIGKILL	and	so	on.

	os.constants.errno		sets	the	constants	for	error	reporting,	like	EADDRINUSE,	EOVERFLOW
and	more.

You	can	read	them	all	on	https://nodejs.org/api/os.html#os_signal_constants.

Let's	now	see	the	main	methods	that	 	os		provides:

	os.arch()	

	os.cpus()	

	os.endianness()	

	os.freemem()	

	os.homedir()	

	os.hostname()	

	os.loadavg()	

	os.networkInterfaces()	

	os.platform()	

	os.release()	

	os.tmpdir()	

	os.totalmem()	

	os.type()	

	os.uptime()	

	os.userInfo()	

The	os	module

163

https://nodejs.org/api/os.html#os_signal_constants

	os.arch()	

Return	the	string	that	identifies	the	underlying	architecture,	like	 	arm	,	 	x64	,	 	arm64	.

	os.cpus()	

Return	information	on	the	CPUs	available	on	your	system.

Example:

[{	model:	'Intel(R)	Core(TM)2	Duo	CPU					P8600		@	2.40GHz',

				speed:	2400,

				times:

					{	user:	281685380,

							nice:	0,

							sys:	187986530,

							idle:	685833750,

							irq:	0	}	},

		{	model:	'Intel(R)	Core(TM)2	Duo	CPU					P8600		@	2.40GHz',

				speed:	2400,

				times:

					{	user:	282348700,

							nice:	0,

							sys:	161800480,

							idle:	703509470,

							irq:	0	}	}]

	os.endianness()	

Return	 	BE		or	 	LE		depending	if	Node	was	compiled	with	Big	Endian	or	Little	Endian.

	os.freemem()	

Return	the	number	of	bytes	that	represent	the	free	memory	in	the	system.

	os.homedir()	

Return	the	path	to	the	home	directory	of	the	current	user.

Example:

'/Users/flavio'

The	os	module

164

https://en.wikipedia.org/wiki/Endianness

	os.hostname()	

Return	the	hostname.

	os.loadavg()	

Return	the	calculation	made	by	the	operating	system	on	the	load	average.

It	only	returns	a	meaningful	value	on	Linux	and	macOS.

Example:

[3.68798828125,	4.00244140625,	11.1181640625]

	os.networkInterfaces()	

Returns	the	details	of	the	network	interfaces	available	on	your	system.

Example:

{	lo0:

			[{	address:	'127.0.0.1',

							netmask:	'255.0.0.0',

							family:	'IPv4',

							mac:	'fe:82:00:00:00:00',

							internal:	true	},

					{	address:	'::1',

							netmask:	'ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff',

							family:	'IPv6',

							mac:	'fe:82:00:00:00:00',

							scopeid:	0,

							internal:	true	},

					{	address:	'fe80::1',

							netmask:	'ffff:ffff:ffff:ffff::',

							family:	'IPv6',

							mac:	'fe:82:00:00:00:00',

							scopeid:	1,

							internal:	true	}],

		en1:

			[{	address:	'fe82::9b:8282:d7e6:496e',

							netmask:	'ffff:ffff:ffff:ffff::',

							family:	'IPv6',

							mac:	'06:00:00:02:0e:00',

							scopeid:	5,

							internal:	false	},

					{	address:	'192.168.1.38',

							netmask:	'255.255.255.0',

							family:	'IPv4',

							mac:	'06:00:00:02:0e:00',

The	os	module

165

							internal:	false	}],

		utun0:

			[{	address:	'fe80::2513:72bc:f405:61d0',

							netmask:	'ffff:ffff:ffff:ffff::',

							family:	'IPv6',

							mac:	'fe:80:00:20:00:00',

							scopeid:	8,

							internal:	false	}]	}

	os.platform()	

Return	the	platform	that	Node	was	compiled	for:

	darwin	

	freebsd	

	linux	

	openbsd	

	win32	

...more

	os.release()	

Returns	a	string	that	identifies	the	operating	system	release	number

	os.tmpdir()	

Returns	the	path	to	the	assigned	temp	folder.

	os.totalmem()	

Returns	the	number	of	bytes	that	represent	the	total	memory	available	in	the	system.

	os.type()	

Identifies	the	operating	system:

	Linux	

	Darwin		on	macOS
	Windows_NT		on	Windows

	os.uptime()	

The	os	module

166

Returns	the	number	of	seconds	the	computer	has	been	running	since	it	was	last	rebooted.

	os.userInfo()	

The	os	module

167

The	events	module
The	events	module	of	Node.js	provides	the	EventEmitter	class

The	 	events		module	provides	us	the	EventEmitter	class,	which	is	key	to	working	with	events	in
Node.

I	published	a	full	article	on	that,	so	here	I	will	just	describe	the	API	without	further	examples	on
how	to	use	it.

const	EventEmitter	=	require('events')

const	door	=	new	EventEmitter()

The	event	listener	eats	its	own	dog	food	and	uses	these	events:

	newListener		when	a	listener	is	added
	removeListener		when	a	listener	is	removed

Here's	a	detailed	description	of	the	most	useful	methods:

	emitter.addListener()	

	emitter.emit()	

	emitter.eventNames()	

	emitter.getMaxListeners()	

	emitter.listenerCount()	

	emitter.listeners()	

	emitter.off()	

	emitter.on()	

	emitter.once()	

	emitter.prependListener()	

	emitter.prependOnceListener()	

	emitter.removeAllListeners()	

	emitter.removeListener()	

	emitter.setMaxListeners()	

	emitter.addListener()	

Alias	for	 	emitter.on()	.

	emitter.emit()	

The	events	module

168

Emits	an	event.	It	synchronously	calls	every	event	listener	in	the	order	they	were	registered.

	emitter.eventNames()	

Return	an	array	of	strings	that	represent	the	events	registered	on	the	current	EventListener:

door.eventNames()

	emitter.getMaxListeners()	

Get	the	maximum	amount	of	listeners	one	can	add	to	an	EventListener	object,	which	defaults
to	10	but	can	be	increased	or	lowered	by	using	 	setMaxListeners()	

door.getMaxListeners()

	emitter.listenerCount()	

Get	the	count	of	listeners	of	the	event	passed	as	parameter:

door.listenerCount('open')

	emitter.listeners()	

Gets	an	array	of	listeners	of	the	event	passed	as	parameter:

door.listeners('open')

	emitter.off()	

Alias	for	 	emitter.removeListener()		added	in	Node	10

	emitter.on()	

Adds	a	callback	function	that's	called	when	an	event	is	emitted.

Usage:

door.on('open',	()	=>	{

The	events	module

169

		console.log('Door	was	opened')

})

	emitter.once()	

Adds	a	callback	function	that's	called	when	an	event	is	emitted	for	the	first	time	after
registering	this.	This	callback	is	only	going	to	be	called	once,	never	again.

const	EventEmitter	=	require('events')

const	ee	=	new	EventEmitter()

ee.once('my-event',	()	=>	{

		//call	callback	function	once

})

	emitter.prependListener()	

When	you	add	a	listener	using	 	on		or	 	addListener	,	it's	added	last	in	the	queue	of	listeners,
and	called	last.	Using	 	prependListener		it's	added,	and	called,	before	other	listeners.

	emitter.prependOnceListener()	

When	you	add	a	listener	using	 	once	,	it's	added	last	in	the	queue	of	listeners,	and	called	last.
Using	 	prependOnceListener		it's	added,	and	called,	before	other	listeners.

	emitter.removeAllListeners()	

Removes	all	listeners	of	an	event	emitter	object	listening	to	a	specific	event:

door.removeAllListeners('open')

	emitter.removeListener()	

Remove	a	specific	listener.	You	can	do	this	by	saving	the	callback	function	to	a	variable,	when
added,	so	you	can	reference	it	later:

const	doSomething	=	()	=>	{}

door.on('open',	doSomething)

door.removeListener('open',	doSomething)

The	events	module

170

	emitter.setMaxListeners()	

Sets	the	maximum	amount	of	listeners	one	can	add	to	an	EventListener	object,	which	defaults
to	10	but	can	be	increased	or	lowered.

door.setMaxListeners(50)

The	events	module

171

The	http	module
The	http	module	of	Node.js	provides	useful	functions	and	classes	to	build	an
HTTP	server

The	HTTP	core	module	is	a	key	module	to	Node	networking.

Properties
	http.METHODS	

	http.STATUS_CODES	

	http.globalAgent	

Methods
	http.createServer()	

	http.request()	

	http.get()	

Classes
	http.Agent	

	http.ClientRequest	

	http.Server	

	http.ServerResponse	

	http.IncomingMessage	

It	can	be	included	using

const	http	=	require('http')

The	module	provides	some	properties	and	methods,	and	some	classes.

Properties

	http.METHODS	

This	property	lists	all	the	HTTP	methods	supported:

>	require('http').METHODS

['ACL',

		'BIND',

		'CHECKOUT',

		'CONNECT',

		'COPY',

		'DELETE',

		'GET',

The	http	module

172

		'HEAD',

		'LINK',

		'LOCK',

		'M-SEARCH',

		'MERGE',

		'MKACTIVITY',

		'MKCALENDAR',

		'MKCOL',

		'MOVE',

		'NOTIFY',

		'OPTIONS',

		'PATCH',

		'POST',

		'PROPFIND',

		'PROPPATCH',

		'PURGE',

		'PUT',

		'REBIND',

		'REPORT',

		'SEARCH',

		'SUBSCRIBE',

		'TRACE',

		'UNBIND',

		'UNLINK',

		'UNLOCK',

		'UNSUBSCRIBE']

	http.STATUS_CODES	

This	property	lists	all	the	HTTP	status	codes	and	their	description:

>	require('http').STATUS_CODES

{	'100':	'Continue',

		'101':	'Switching	Protocols',

		'102':	'Processing',

		'200':	'OK',

		'201':	'Created',

		'202':	'Accepted',

		'203':	'Non-Authoritative	Information',

		'204':	'No	Content',

		'205':	'Reset	Content',

		'206':	'Partial	Content',

		'207':	'Multi-Status',

		'208':	'Already	Reported',

		'226':	'IM	Used',

		'300':	'Multiple	Choices',

		'301':	'Moved	Permanently',

		'302':	'Found',

		'303':	'See	Other',

		'304':	'Not	Modified',

		'305':	'Use	Proxy',

		'307':	'Temporary	Redirect',

		'308':	'Permanent	Redirect',

		'400':	'Bad	Request',

The	http	module

173

		'401':	'Unauthorized',

		'402':	'Payment	Required',

		'403':	'Forbidden',

		'404':	'Not	Found',

		'405':	'Method	Not	Allowed',

		'406':	'Not	Acceptable',

		'407':	'Proxy	Authentication	Required',

		'408':	'Request	Timeout',

		'409':	'Conflict',

		'410':	'Gone',

		'411':	'Length	Required',

		'412':	'Precondition	Failed',

		'413':	'Payload	Too	Large',

		'414':	'URI	Too	Long',

		'415':	'Unsupported	Media	Type',

		'416':	'Range	Not	Satisfiable',

		'417':	'Expectation	Failed',

		'418':	'I\'m	a	teapot',

		'421':	'Misdirected	Request',

		'422':	'Unprocessable	Entity',

		'423':	'Locked',

		'424':	'Failed	Dependency',

		'425':	'Unordered	Collection',

		'426':	'Upgrade	Required',

		'428':	'Precondition	Required',

		'429':	'Too	Many	Requests',

		'431':	'Request	Header	Fields	Too	Large',

		'451':	'Unavailable	For	Legal	Reasons',

		'500':	'Internal	Server	Error',

		'501':	'Not	Implemented',

		'502':	'Bad	Gateway',

		'503':	'Service	Unavailable',

		'504':	'Gateway	Timeout',

		'505':	'HTTP	Version	Not	Supported',

		'506':	'Variant	Also	Negotiates',

		'507':	'Insufficient	Storage',

		'508':	'Loop	Detected',

		'509':	'Bandwidth	Limit	Exceeded',

		'510':	'Not	Extended',

		'511':	'Network	Authentication	Required'	}

	http.globalAgent	

Points	to	the	global	instance	of	the	Agent	object,	which	is	an	instance	of	the	 	http.Agent		class.

It's	used	to	manage	connections	persistance	and	reuse	for	HTTP	clients,	and	it's	a	key
component	of	Node	HTTP	networking.

More	in	the	 	http.Agent		class	description	later	on.

Methods

The	http	module

174

	http.createServer()	

Return	a	new	instance	of	the	 	http.Server		class.

Usage:

const	server	=	http.createServer((req,	res)	=>	{

		//handle	every	single	request	with	this	callback

})

	http.request()	

Makes	an	HTTP	request	to	a	server,	creating	an	instance	of	the	 	http.ClientRequest		class.

	http.get()	

Similar	to	 	http.request()	,	but	automatically	sets	the	HTTP	method	to	GET,	and	calls
	req.end()		automatically.

Classes
The	HTTP	module	provides	5	classes:

	http.Agent	

	http.ClientRequest	

	http.Server	

	http.ServerResponse	

	http.IncomingMessage	

	http.Agent	

Node	creates	a	global	instance	of	the	 	http.Agent		class	to	manage	connections	persistance
and	reuse	for	HTTP	clients,	a	key	component	of	Node	HTTP	networking.

This	object	makes	sure	that	every	request	made	to	a	server	is	queued	and	a	single	socket	is
reused.

It	also	maintains	a	pool	of	sockets.	This	is	key	for	performance	reasons.

	http.ClientRequest	

An	 	http.ClientRequest		object	is	created	when	 	http.request()		or	 	http.get()		is	called.

The	http	module

175

When	a	response	is	received,	the	 	response		event	is	called	with	the	response,	with	an
	http.IncomingMessage		instance	as	argument.

The	returned	data	of	a	response	can	be	read	in	2	ways:

you	can	call	the	 	response.read()		method
in	the	 	response		event	handler	you	can	setup	an	event	listener	for	the	 	data		event,	so	you
can	listen	for	the	data	streamed	into.

	http.Server	

This	class	is	commonly	instantiated	and	returned	when	creating	a	new	server	using
	http.createServer()	.

Once	you	have	a	server	object,	you	have	access	to	its	methods:

	close()		stops	the	server	from	accepting	new	connections
	listen()		starts	the	HTTP	server	and	listens	for	connections

	http.ServerResponse	

Created	by	an	 	http.Server		and	passed	as	the	second	parameter	to	the	 	request		event	it
fires.

Commonly	known	and	used	in	code	as	 	res	:

const	server	=	http.createServer((req,	res)	=>	{

		//res	is	an	http.ServerResponse	object

})

The	method	you'll	always	call	in	the	handler	is	 	end()	,	which	closes	the	response,	the
message	is	complete	and	the	server	can	send	it	to	the	client.	It	must	be	called	on	each
response.

These	methods	are	used	to	interact	with	HTTP	headers:

	getHeaderNames()		get	the	list	of	the	names	of	the	HTTP	headers	already	set
	getHeaders()		get	a	copy	of	the	HTTP	headers	already	set
	setHeader('headername',	value)		sets	an	HTTP	header	value
	getHeader('headername')		gets	an	HTTP	header	already	set
	removeHeader('headername')		removes	an	HTTP	header	already	set
	hasHeader('headername')		return	true	if	the	response	has	that	header	set
	headersSent()		return	true	if	the	headers	have	already	been	sent	to	the	client

The	http	module

176

After	processing	the	headers	you	can	send	them	to	the	client	by	calling	 	response.writeHead()	,
which	accepts	the	statusCode	as	the	first	parameter,	the	optional	status	message,	and	the
headers	object.

To	send	data	to	the	client	in	the	response	body,	you	use	 	write()	.	It	will	send	buffered	data	to
the	HTTP	response	stream.

If	the	headers	were	not	sent	yet	using	 	response.writeHead()	,	it	will	send	the	headers	first,	with
the	status	code	and	message	that's	set	in	the	request,	which	you	can	edit	by	setting	the
	statusCode		and	 	statusMessage		properties	values:

response.statusCode	=	500

response.statusMessage	=	'Internal	Server	Error'

	http.IncomingMessage	

An	 	http.IncomingMessage		object	is	created	by:

	http.Server		when	listening	to	the	 	request		event
	http.ClientRequest		when	listening	to	the	 	response		event

It	can	be	used	to	access	the	response:

status	using	its	 	statusCode		and	 	statusMessage		methods
headers	using	its	 	headers		method	or	 	rawHeaders	
HTTP	method	using	its	 	method		method
HTTP	version	using	the	 	httpVersion		method
URL	using	the	 	url		method
underlying	socket	using	the	 	socket		method

The	data	is	accessed	using	streams,	since	 	http.IncomingMessage		implements	the	Readable
Stream	interface.

The	http	module

177

Streams
Learn	what	streams	are	for,	why	are	they	so	important,	and	how	to	use	them.

What	are	streams
Why	streams
An	example	of	a	stream
pipe()
Streams-powered	Node	APIs
Different	types	of	streams
How	to	create	a	readable	stream
How	to	create	a	writable	stream
How	to	get	data	from	a	readable	stream
How	to	send	data	to	a	writable	stream
Signaling	a	writable	stream	that	you	ended	writing
Conclusion

What	are	streams
Streams	are	one	of	the	fundamental	concepts	that	power	Node.js	applications.

They	are	a	way	to	handle	reading/writing	files,	network	communications,	or	any	kind	of	end-to-
end	information	exchange	in	an	efficient	way.

Streams	are	not	a	concept	unique	to	Node.js.	They	were	introduced	in	the	Unix	operating
system	decades	ago,	and	programs	can	interact	with	each	other	passing	streams	through	the
pipe	operator	(|).

For	example,	in	the	traditional	way,	when	you	tell	the	program	to	read	a	file,	the	file	is	read	into
memory,	from	start	to	finish,	and	then	you	process	it.

Using	streams	you	read	it	piece	by	piece,	processing	its	content	without	keeping	it	all	in
memory.

The	Node.js	 	stream		module	provides	the	foundation	upon	which	all	streaming	APIs	are	build.

Why	streams
Streams	basically	provide	two	major	advantages	using	other	data	handling	methods:

Memory	efficiency:	you	don't	need	to	load	large	amounts	of	data	in	memory	before	you

Streams

178

https://nodejs.org/api/stream.html

are	able	to	process	it
Time	efficiency:	it	takes	way	less	time	to	start	processing	data	as	soon	as	you	have	it,
rather	than	waiting	till	the	whole	data	payload	is	available	to	start

An	example	of	a	stream
A	typical	example	is	the	one	of	reading	files	from	a	disk.

Using	the	Node	 	fs		module	you	can	read	a	file,	and	serve	it	over	HTTP	when	a	new
connection	is	established	to	your	http	server:

const	http	=	require('http')

const	fs	=	require('fs')

const	server	=	http.createServer(function	(req,	res)	{

		fs.readFile(__dirname	+	'/data.txt',	(err,	data)	=>	{

				res.end(data)

		})

})

server.listen(3000)

	readFile()		reads	the	full	contents	of	the	file,	and	invokes	the	callback	function	when	it's	done.

	res.end(data)		in	the	callback	will	return	the	file	contents	to	the	HTTP	client.

If	the	file	is	big,	the	operation	will	take	quite	a	bit	of	time.	Here	is	the	same	thing	written	using
streams:

const	http	=	require('http')

const	fs	=	require('fs')

const	server	=	http.createServer((req,	res)	=>	{

		const	stream	=	fs.createReadStream(__dirname	+	'/data.txt')

		stream.pipe(res)

})

server.listen(3000)

Instead	of	waiting	until	the	file	is	fully	read,	we	start	streaming	it	to	the	HTTP	client	as	soon	as
we	have	a	chunk	of	data	ready	to	be	sent.

pipe()
The	above	example	uses	the	line	 	stream.pipe(res)	:	the	 	pipe()		method	is	called	on	the	file
stream.

Streams

179

What	does	this	code	do?	It	takes	the	source,	and	pipes	it	into	a	destination.

You	call	it	on	the	source	stream,	so	in	this	case,	the	file	stream	is	piped	to	the	HTTP	response.

The	return	value	of	the	 	pipe()		method	is	the	destination	stream,	which	is	a	very	convenient
thing	that	lets	us	chain	multiple	 	pipe()		calls,	like	this:

src.pipe(dest1).pipe(dest2)

This	construct	is	the	same	as	doing

src.pipe(dest1)

dest1.pipe(dest2)

Streams-powered	Node	APIs
Due	to	their	advantages,	many	Node.js	core	modules	provide	native	stream	handling
capabilities,	most	notably:

	process.stdin		returns	a	stream	connected	to	stdin
	process.stdout		returns	a	stream	connected	to	stdout
	process.stderr		returns	a	stream	connected	to	stderr
	fs.createReadStream()		creates	a	readable	stream	to	a	file
	fs.createWriteStream()		creates	a	writable	stream	to	a	file
	net.connect()		initiates	a	stream-based	connection
	http.request()		returns	an	instance	of	the	http.ClientRequest	class,	which	is	a	writable
stream
	zlib.createGzip()		compress	data	using	gzip	(a	compression	algorithm)	into	a	stream
	zlib.createGunzip()		decompress	a	gzip	stream.
	zlib.createDeflate()		compress	data	using	deflate	(a	compression	algorithm)	into	a
stream
	zlib.createInflate()		decompress	a	deflate	stream

Different	types	of	streams
There	are	four	classes	of	streams:

	Readable	:	a	stream	you	can	pipe	from,	but	not	pipe	into	(you	can	receive	data,	but	not
send	data	to	it).	When	you	push	data	into	a	readable	stream,	it	is	buffered,	until	a
consumer	starts	to	read	the	data.
	Writable	:	a	stream	you	can	pipe	into,	but	not	pipe	from	(you	can	send	data,	but	not

Streams

180

receive	from	it)
	Duplex	:	a	stream	you	can	both	pipe	into	and	pipe	from,	basically	a	combination	of	a
Readable	and	Writable	stream
	Transform	:	a	Transform	stream	is	similar	to	a	Duplex,	but	the	output	is	a	transform	of	its
input

How	to	create	a	readable	stream
We	get	the	Readable	stream	from	the	 	stream		module,	and	we	initialize	it

const	Stream	=	require('stream')

const	readableStream	=	new	Stream.Readable()

Now	that	the	stream	is	initialized,	we	can	send	data	to	it:

readableStream.push('hi!')

readableStream.push('ho!')

How	to	create	a	writable	stream
To	create	a	writable	stream	we	extend	the	base	 	Writable		object,	and	we	implement	its
_write()	method.

First	create	a	stream	object:

const	Stream	=	require('stream')

const	writableStream	=	new	Stream.Writable()

then	implement	 	_write	:

writableStream._write	=	(chunk,	encoding,	next)	=>	{

				console.log(chunk.toString())

				next()

}

You	can	now	pipe	a	readable	stream	in:

process.stdin.pipe(writableStream)

How	to	get	data	from	a	readable	stream

Streams

181

https://nodejs.org/api/stream.html

How	do	we	read	data	from	a	readable	stream?	Using	a	writable	stream:

const	Stream	=	require('stream')

const	readableStream	=	new	Stream.Readable()

const	writableStream	=	new	Stream.Writable()

writableStream._write	=	(chunk,	encoding,	next)	=>	{

				console.log(chunk.toString())

				next()

}

readableStream.pipe(writableStream)

readableStream.push('hi!')

readableStream.push('ho!')

You	can	also	consume	a	readable	stream	directly,	using	the	 	readable		event:

readableStream.on('readable',	()	=>	{

		console.log(readableStream.read())

})

How	to	send	data	to	a	writable	stream
Using	the	stream	 	write()		method:

writableStream.write('hey!\n')

Signaling	a	writable	stream	that	you	ended
writing
Use	the	 	end()		method:

const	Stream	=	require('stream')

const	readableStream	=	new	Stream.Readable()

const	writableStream	=	new	Stream.Writable()

writableStream._write	=	(chunk,	encoding,	next)	=>	{

				console.log(chunk.toString())

				next()

}

readableStream.pipe(writableStream)

Streams

182

readableStream.push('hi!')

readableStream.push('ho!')

writableStream.end()

Conclusion
This	is	an	introduction	to	streams.	There	are	much	more	complicated	aspects	to	analyze,	and	I
hope	to	cover	them	soon.

Streams

183

Working	with	MySQL
MySQL	is	one	of	the	most	popular	relational	databases	in	the	world.	Find	out
how	to	make	it	work	with	Node.js

MySQL	is	one	of	the	most	popular	relational	databases	in	the	world.

The	Node	ecosystem	of	course	has	several	different	packages	that	allow	you	to	interface	with
MySQL,	store	data,	retrieve	data,	and	so	on.

We'll	use	 	mysqljs/mysql	,	a	package	that	has	over	12.000	GitHub	stars	and	has	been	around
for	years.

Installing	the	Node	mysql	package
You	install	it	using

npm	install	mysql

Initializing	the	connection	to	the	database
You	first	include	the	package:

const	mysql	=	require('mysql')

and	you	create	a	connection:

const	options	=	{

		user:	'the_mysql_user_name',

		password:	'the_mysql_user_password',

		database:	'the_mysql_database_name'

}

const	connection	=	mysql.createConnection(options)

You	initiate	a	new	connection	by	calling:

connection.connect(err	=>	{

		if	(err)	{

				console.error('An	error	occurred	while	connecting	to	the	DB')

				throw	err

		}

})

Working	with	MySQL

184

https://github.com/mysqljs/mysql

The	connection	options
In	the	above	example,	the	 	options		object	contained	3	options:

const	options	=	{

		user:	'the_mysql_user_name',

		password:	'the_mysql_user_password',

		database:	'the_mysql_database_name'

}

There	are	many	more	you	can	use,	including:

	host	,	the	database	hostname,	defaults	to	 	localhost	
	port	,	the	MySQL	server	port	number,	defaults	to	3306
	socketPath	,	used	to	specify	a	unix	socket	instead	of	host	and	port
	debug	,	by	default	disabled,	can	be	used	for	debugging
	trace	,	by	default	enabled,	prints	stack	traces	when	errors	occur
	ssl	,	used	to	setup	an	SSL	connection	to	the	server	(out	of	the	scope	of	this	tutorial)

Perform	a	SELECT	query
Now	you	are	ready	to	perform	an	SQL	query	on	the	database.	The	query	once	executed	will
invoke	a	callback	function	which	contains	an	eventual	error,	the	results	and	the	fields.

connection.query('SELECT	*	FROM	todos',	(error,	todos,	fields)	=>	{

		if	(error)	{

				console.error('An	error	occurred	while	executing	the	query')

				throw	error

		}

		console.log(todos)

})

You	can	pass	in	values	which	will	be	automatically	escaped:

const	id	=	223

connection.query('SELECT	*	FROM	todos	WHERE	id	=	?',	[id],	(error,	todos,	fields)	=>	{

		if	(error)	{

				console.error('An	error	occurred	while	executing	the	query')

				throw	error

		}

		console.log(todos)

})

Working	with	MySQL

185

To	pass	multiple	values,	just	put	more	elements	in	the	array	you	pass	as	the	second
parameter:

const	id	=	223

const	author	=	'Flavio'

connection.query('SELECT	*	FROM	todos	WHERE	id	=	?	AND	author	=	?',	[id,	author],	(error,	

todos,	fields)	=>	{

		if	(error)	{

				console.error('An	error	occurred	while	executing	the	query')

				throw	error

		}

		console.log(todos)

})

Perform	an	INSERT	query
You	can	pass	an	object

const	todo	=	{

		thing:	'Buy	the	milk'

		author:	'Flavio'

}

connection.query('INSERT	INTO	todos	SET	?',	todo,	(error,	results,	fields)	=>	{

		if	(error)	{

				console.error('An	error	occurred	while	executing	the	query')

				throw	error

		}

})

If	the	table	has	a	primary	key	with	 	auto_increment	,	the	value	of	that	will	be	returned	in	the
	results.insertId		value:

const	todo	=	{

		thing:	'Buy	the	milk'

		author:	'Flavio'

}

connection.query('INSERT	INTO	todos	SET	?',	todo,	(error,	results,	fields)	=>	{

		if	(error)	{

				console.error('An	error	occurred	while	executing	the	query')

				throw	error

		}}

		const	id	=	results.resultId

		console.log(id)

)

Close	the	connection

Working	with	MySQL

186

When	you	need	to	terminate	the	connection	to	the	database	you	can	call	the	 	end()		method:

connection.end()

This	makes	sure	any	pending	query	gets	sent,	and	the	connection	is	gracefully	terminated.

Working	with	MySQL

187

Difference	between	development	and
production
Learn	how	to	set	up	different	configurations	for	production	and	development
environments

You	can	have	different	configurations	for	production	and	development	environments.

Node	assumes	it's	always	running	in	a	development	environment.	You	can	signal	Node.js	that
you	are	running	in	production	by	setting	the	 	NODE_ENV=production		environment	variable.

This	is	usually	done	by	executing	the	command

export	NODE_ENV=production

in	the	shell,	but	it's	better	to	put	it	in	your	shell	configuration	file	(e.g.	 	.bash_profile		with	the
Bash	shell)	because	otherwise	the	setting	does	not	persist	in	case	of	a	system	restart.

You	can	also	apply	the	environment	variable	by	prepending	it	to	your	application	initialization
command:

NODE_ENV=production	node	app.js

This	environment	variable	is	a	convention	that	is	widely	used	in	external	libraries	as	well.

Setting	the	environment	to	 	production		generally	ensures	that

logging	is	kept	to	a	minimum,	essential	level
more	caching	levels	take	place	to	optimize	performance

For	example	Pug,	the	templating	library	used	by	Express,	compiles	in	debug	mode	if
	NODE_ENV		is	not	set	to	 	production	.	Express	views	are	compiled	in	every	request	in
development	mode,	while	in	production	they	are	cached.	There	are	many	more	examples.

Express	provides	configuration	hooks	specific	to	the	environment,	which	are	automatically
called	based	on	the	NODE_ENV	variable	value:

app.configure('development',	()	=>	{

		//...

})

app.configure('production',	()	=>	{

		//...

})

app.configure('production',	'staging',	()	=>	{

		//...

Difference	between	development	and	production

188

})

For	example	you	can	use	this	to	set	different	error	handlers	for	different	mode:

app.configure('development',	()	=>	{

		app.use(express.errorHandler({	dumpExceptions:	true,	showStack:	true	}));

})

app.configure('production',	()	=>	{

		app.use(express.errorHandler())

})

Difference	between	development	and	production

189

	The Node.js Handbook
	Introduction to Node
	A brief history of Node
	How to install Node
	How much JavaScript do you need to know to use Node?
	Differences between Node and the Browser
	v8
	Run Node.js scripts from the command line
	How to exit from a Node.js program
	How to read environment variables
	Node hosting options
	Use the Node REPL
	Pass arguments from the command line
	Output to the command line
	Accept input from the command line
	Expose functionality from a Node file using exports
	npm
	Where does npm install the packages
	How to use or execute a package installed using npm
	The package.json file
	The package-lock.json file
	Find the installed version of an npm package
	How to install an older version of an npm package
	How to update all the Node dependencies to their latest version
	Semantic versioning rules
	Uninstalling npm packages
	Global or local packages
	npm dependencies and devDependencies
	npx
	The event loop
	nextTick
	setImmediate
	Timers
	Callbacks
	Promises
	async/await
	The Node Event Emitter
	HTTP
	How HTTP Requests work
	Build an HTTP server
	Making HTTP requests
	Axios
	Websockets
	HTTPS, secure connections
	File descriptors
	File stats
	File paths
	Reading files
	Writing files
	Working with folders
	The fs module
	The path module
	The os module
	The events module
	The http module
	Streams
	Working with MySQL
	Difference between development and production

