

	

	

	

	

	

	

Thank You For Downloading This Book

Thank you for downloading the sample chapters of jQuery: Novice to Ninja, by Earle

Castledine and Craig Sharkie, published by SitePoint.

If you’re ready to fast-track your jQuery skills, this book is the perfect solution. All

jQuery basics are covered, so you’ll quickly learn how to unleash the power of this

popular JavaScript framework.

After you’ve mastered the basics, you’ll move progressively through to more ad

vanced tips, tricks, and techniques that will wow even the most seasoned web de

signer or developer.

This sample includes:

■	 a summary of contents

■	 information about the author, editors, and SitePoint
■	 the Table of Contents

■	 the Preface

■	 Chapters 1 (“Falling in Love with jQuery”), 2 (“Selecting, Decorating, and Enhan

cing”), and 7 (“Forms, Controls, and Dialogs”) from the book

■	 the book’s Index

We can't wait to share all the valuable knowledge contained in the book, so enjoy

these free chapters, and when you're ready to become a true jQuery Ninja, grab

yourself a copy of the whole book.1

For more information, visit http://www.sitepoint.com/launch/25534b.

1 https://sitepoint.com/bookstore/go/170/25534b

https://sitepoint.com/bookstore/go/170/25534b
https://sitepoint.com/bookstore/go/170/25534b
https://sitepoint.com/bookstore/go/170/25534b
http://www.sitepoint.com/launch/25534b

What’s In This Excerpt?
Preface

Chapter 1: Falling in Love with jQuery

A brief overview of the advantages of using jQuery, and how to get it ready for

use on your site

Chapter 2: Selecting, Decorating, and Enhancing

An introduction to jQuery’s DOM selection and CSS capabilities

Chapter 7: Forms, Controls, and Dialogs

Learn how to manipulate and validate HTML forms with jQuery, as well as in

tegrate more advanced interface controls and dialogs

Index

What’s In the Rest of the Book?
Chapter 3: Animating, Scrolling, and Resizing

Learn the secrets of getting the most out of jQuery’s advanced animation API

Chapter 4: Images, Slideshows, and Cross-Faders

All about building image galleries, lightboxes, and slideshows

Chapter 5: Menus, Tabs, Tooltips, and Panels

Make your web site into a desktop-like with UI widgets like dropdown menus,

tabbed interfaces, and tooltips

Chapter 6: Construction, Ajax, and Interactivity

Harness the power of Ajax with ease thanks to jQuery

Chapter 8: Lists, Trees, and Tables

Enhance your site’s lists and tables with some jQuery goodness

Chapter 9: Plugins, Themes, and Advanced Topics

Move on from the basics to some of jQuery’s more advanced secrets, and learn

to package your code into a plugin

iv

jQuery: Novice to Ninja
by Earle Castledine and Craig Sharkie

Copyright © 2010 SitePoint Pty. Ltd.

Program Director: Andrew Tetlaw Indexer: Fred Brown

Technical Editor: Louis Simoneau Editor: Kelly Steele

Chief Technical Officer: Kevin Yank Cover Design: Alex Walker

Printing History:

First Edition: February 2010

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors, will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9805768-5-6

Printed and bound in the United States of America

mailto:business@sitepoint.com
http:www.sitepoint.com

v

About Earle Castledine

Sporting a Masters in Information Technology and a lifetime of experience on the Web of

Hard Knocks, Earle Castledine (aka Mr Speaker) holds an interest in everything computery.

Raised in the wild by various 8-bit home computers, he settled in the Internet during the

mid-nineties and has been living and working there ever since.

A Senior Systems Analyst and JavaScript flâneur, he is equally happy in the muddy pits of

.NET code, the dense foliage of mobile apps and games, and the fluffy clouds of client-side

interaction development.

As co-creator of the client-side opus TurnTubelist,1 as well as countless web-based experi

ments, Earle recognizes the Internet not as a lubricant for social change but as a vehicle for

unleashing frivolous ECMAScript gadgets and interesting time-wasting technologies.

About Craig Sharkie

A degree in Fine Art is a strange entrance to a career with a passion for programming, but

that’s where Craig started. A right-brain approach to code and problem solving has seen him

plying his craft for many of the big names of the Web—AOL, Microsoft, Yahoo!, Ziff-Davis,

and now Atlassian.

That passion, and a fondness for serial commas and the like, have led him on a path from

journalism, through development, on to conferences, and now into print. Taking up JavaScript

in 1995, he was an evangelist for the “good parts” before Crockford coined the term, and now

has brought that keenness to jQuery.

About the Technical Editor

Louis Simoneau joined SitePoint in 2009, after traveling from his native Montréal to Calgary,

Taipei, and finally Melbourne. He now gets to spend his days learning about cool web tech

nologies, an activity that had previously been relegated to nights and weekends. He enjoys

hip-hop, spicy food, and all things geeky.

About the Chief Technical Officer

As Chief Technical Officer for SitePoint, Kevin Yank keeps abreast of all that is new and

exciting in web technology. Best known for his book, Build Your Own Database Driven Web

Site Using PHP & MySQL, he also co-authored Simply JavaScript with Cameron Adams and

1 http://www.turntubelist.com/

http://www.turntubelist.com/
http:http://www.turntubelist.com

vi

Everything You Know About CSS Is Wrong! with Rachel Andrew. In addition, Kevin hosts

the SitePoint Podcast and co-writes the SitePoint Tech Times, a free email newsletter that

goes out to over 240,000 subscribers worldwide.

Kevin lives in Melbourne, Australia and enjoys speaking at conferences, as well as visiting

friends and family in Canada. He’s also passionate about performing improvised comedy

theater with Impro Melbourne (http://www.impromelbourne.com.au/) and flying light aircraft.

Kevin’s personal blog is Yes, I’m Canadian (http://yesimcanadian.com/).

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for Web

professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters, articles,

and community forums.

http://www.sitepoint.com/
http:http://yesimcanadian.com
http://www.impromelbourne.com.au

Table of Contents

Preface . xvii

Where to Find Help . xx

The SitePoint Forums . xxi

The Book’s Web Site . xxi

The SitePoint Newsletters . xxi

The SitePoint Podcast . xxii

Your Feedback . xxii

Acknowledgments . xxii

Earle Castledine . xxii

Craig Sharkie . xxii

Conventions Used in This Book . xxiii

Code Samples . xxiii

Tips, Notes, and Warnings . xxiv

Who Should Read This Book . xviii

What’s in This Book . xviii

Chapter 1 Falling in Love with jQuery 1

What’s so good about jQuery? . 2

Cross-browser Compatibility . 2

CSS3 Selectors . 3

Helpful Utilities . 3

jQuery UI . 3

Plugins . 5

Keeping Markup Clean . 5

Widespread Adoption . 6

What’s the downside? . 7

Downloading and Including jQuery . 7

x

Downloading jQuery . 8

The Google CDN . 9

Nightlies and Subversion . 10

Uncompressed or compressed? . 11

Anatomy of a jQuery Script . 11

The jQuery Alias . 11

Dissecting a jQuery Statement . 12

Bits of HTML—aka “The DOM” . 13

If You Choose to Accept It … . 15

Chapter 2 Selecting, Decorating, and
Enhancing . 17

Making Sure the Page Is Ready . 18

Selecting: The Core of jQuery . 19

Simple Selecting . 20

Narrowing Down Our Selection . 22

Testing Our Selection . 22

Filters . 23

Selecting Multiple Elements . 24

Becoming a Good Selector . 24

Decorating: CSS with jQuery . 25

Reading CSS Properties . 25

Setting CSS Properties . 26

Classes . 29

Enhancing: Adding Effects with jQuery . 31

Hiding and Revealing Elements . 32

Progressive Enhancement . 36

Adding New Elements . 37

Removing Existing Elements . 40

Modifying Content . 41

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

xi

Basic Animation: Hiding and Revealing with Flair 42

Callback Functions . 44

A Few Tricks . 45

Highlighting When Hovering . 45

Spoiler Revealer . 47

Before We Move On . 49

Chapter 3 Animating, Scrolling, and
Resizing . 51

Animating . 51

Animating CSS Properties . 52

Color Animation . 53

Easing . 54

Advanced Easing . 56

Bouncy Content Panes . 58

The Animation Queue . 61

Chaining Actions . 62

Pausing the Chain . 63

Animated Navigation . 64

Animated Navigation, Take 2 . 67

The jQuery User Interface Library . 69

Get Animated! . 72

Scrolling . 72

The scroll Event . 72

Floating Navigation . 73

Scrolling the Document . 75

Custom Scroll Bars . 77

Resizing . 79

The resize Event . 79

Resizable Elements . 82

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b

xii

That’s How We Scroll. And Animate. 90

Chapter 4 Images and Slideshows 91

Lightboxes . 92

Custom Lightbox . 92

Troubleshooting with console.log . 96

ColorBox: A Lightbox Plugin . 98

Cropping Images with Jcrop . 101

Slideshows . 104

Cross-fading Slideshows . 104

Scrolling Slideshows . 119

iPhoto-like Slideshow widget . 126

Image-ine That! . 134

Chapter 5 Menus, Tabs, Tooltips, and
Panels . 135

Menus . 136

Expandable/Collapsible Menus . 136

Open/Closed Indicators . 141

Menu Expand on Hover . 143

Drop-down Menus . 144

Accordion Menus . 148

A Simple Accordion . 149

Multiple-level Accordions . 153

jQuery UI Accordion . 154

Tabs . 156

Basic Tabs . 156

jQuery UI Tabs . 158

Panels and Panes . 162

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

xiii

Slide-down Login Form . 162

Sliding Overlay . 164

Tooltips . 168

Simple Tooltips . 168

Advanced Tooltips . 172

Order off the Menu . 180

Chapter 6 Construction, Ajax, and
Interactivity . 181

Construction and Best Practices . 182

Cleaner jQuery . 182

Client-side Templating . 188

Browser Sniffing (… Is Bad!) . 191

Ajax Crash Course . 193

What Is Ajax? . 193

Loading Remote HTML . 194

Enhancing Hyperlinks with Hijax . 194

Picking HTML with Selectors . 196

Advanced loading . 198

Prepare for the Future: live and die . 198

Fetching Data with $.getJSON . 200

A Client-side Twitter Searcher . 201

The jQuery Ajax Workhorse . 202

Common Ajax Settings . 203

Loading External Scripts with $.getScript 204

GET and POST Requests . 205

jQuery Ajax Events . 206

Interactivity: Using Ajax . 207

Ajax Image Gallery . 207

Image Tagging . 223

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b

xiv

Ajax Ninjas? Check! . 229

Chapter 7 Forms, Controls, and Dialogs 231

Forms . 232

Simple Form Validation . 232

Form Validation with the Validation Plugin 236

Maximum Length Indicator . 239

Form Hints . 240

Check All Checkboxes . 242

Inline Editing . 244

Autocomplete . 248

Star Rating Control . 250

Controls . 257

Date Picker . 257

Sliders . 260

Drag and Drop . 264

jQuery UI sortable . 271

Progress Bar . 274

Dialogs and Notifications . 276

Simple Modal Dialog . 277

jQuery UI Dialog . 280

Growl-style Notifications . 284

1-up Notification . 287

We’re in Good Form . 290

Chapter 8 Lists, Trees, and Tables 291

Lists . 292

jQuery UI Selectables . 292

Sorting Lists . 298

Manipulating Select Box Lists . 301

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

xv

Trees . 305

Expandable Tree . 306

Event Delegation . 309

Tables . 312

Fixed Table Headers . 312

Repeating Header . 316

Data Grids . 319

Selecting Rows with Checkboxes . 329

We’ve Made the A-list! . 332

Chapter 9 Plugins, Themes, and Advanced
Topics . 333

Plugins . 333

Creating a Plugin . 334

Advanced Topics . 343

Extending jQuery . 343

Events . 349

A jQuery Ninja’s Miscellany . 362

Avoiding Conflicts . 362

Queuing and Dequeuing Animations . 363

Treating JavaScript Objects as jQuery Objects 366

Theme Rolling . 367

Using Gallery Themes . 368

Rolling Your Own . 368

Making Your Components Themeable . 369

StarTrackr!: Epilogue . 372

Appendix A Reference Material . 373

$.ajax Options . 373

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b

xvi

Flags . 373

Settings . 374

Callbacks and Functions . 376

$.support Options . 376

Events . 379

Event Properties . 379

Event Methods . 380

DIY Event Objects . 380

Appendix B JavaScript Tidbits . 381

Type Coercion . 381

Equality Operators . 382

Truthiness and Falsiness . 383

Appendix C Plugin Helpers . 387

Selector and Context . 387

The jQuery Stack . 388

Minification . 389

Index . 393

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

Preface

No matter what kind of ninja you are—a cooking ninja, a corporate lawyer ninja, or

an actual ninja ninja—virtuosity lies in first mastering the basic tools of the trade.

Once conquered, it’s then up to the full-fledged ninja to apply that knowledge in

creative and inventive ways.

In recent times, jQuery has proven itself to be a simple but powerful tool for taming

and transforming web pages, bending even the most stubborn and aging browsers

to our will. jQuery is a library with two principal purposes: manipulating elements

on a web page, and helping out with Ajax requests. Sure, there are quite a few

commands available to do this—but they’re all consistent and easy to learn. Once

you’ve chained together your first few actions, you’ll be addicted to the jQuery

building blocks, and your friends and family will wish you’d never discovered it!

On top of the core jQuery library is jQuery UI: a set of fine-looking controls and

widgets (such as accordions, tabs, and dialogs), combined with a collection of full-

featured behaviors for implementing controls of your own. jQuery UI lets you quickly

throw together awesome interfaces with little effort, and serves as a great example

of what you can achieve with a little jQuery know-how.

At its core, jQuery is a tool to help us improve the usability of our sites and create

a better user experience. Usability refers to the study of the principles behind an

object’s perceived efficiency or elegance. Far from being merely flashy, trendy design,

jQuery lets us speedily and enjoyably sculpt our pages in ways both subtle and ex

treme: from finessing a simple sliding panel to implementing a brand-new user in

teraction you invented in your sleep.

Becoming a ninja isn’t about learning an API inside out and back to front—that’s

just called having a good memory. The real skill and value comes when you can

apply your knowledge to making something exceptional: something that builds on

the combined insights of the past to be even slightly better than anything anyone

has done before. This is certainly not easy—but thanks to jQuery, it’s fun just trying.

xviii

Who Should Read This Book
If you’re a front-end web designer looking to add a dash of cool interactivity to your

sites, and you’ve heard all the buzz about jQuery and want to find out what the fuss

is about, this book will put you on the right track. If you’ve dabbled with JavaScript,

but been frustrated by the complexity of many seemingly simple tasks, we’ll show

you how jQuery can help you. Even if you’re familiar with the basics of jQuery, but

you want to take your skills to the next level, you’ll find a wealth of good coding

advice and in-depth knowledge.

You should already have intermediate to advanced HTML and CSS skills, as jQuery

uses CSS-style selectors to zero in on page elements. Some rudimentary programming

knowledge will be helpful to have, as jQuery—despite its clever abstractions—is

still based on JavaScript. That said, we’ve tried to explain any JavaScript concepts

as we use them, so with a little willingness to learn you’ll do fine.

What’s in This Book
By the end of this book, you’ll be able to take your static HTML and CSS web pages

and bring them to life with a bit of jQuery magic. You’ll learn how to select elements

on the page, move them around, remove them entirely, add new ones with Ajax,

animate them … in short, you’ll be able to bend HTML and CSS to your will! We

also cover the powerful functionality of the jQuery UI library.

This book comprises the following nine chapters. Read them in order from beginning

to end to gain a complete understanding of the subject, or skip around if you only

need a refresher on a particular topic.

Chapter 1: Falling in Love with jQuery

Before we dive into learning all the ins and outs of jQuery, we’ll have a quick

look at why you’d want to use it in the first place: why it’s better than writing

your own JavaScript, and why it’s better than the other JavaScript libraries out

there. We’ll brush up on some CSS concepts that are key to understanding

jQuery, and briefly touch on the basic syntax required to call jQuery into action.

Chapter 2: Selecting, Decorating, and Enhancing

Ostensibly, jQuery’s most significant advantage over plain JavaScript is the ease

with which it lets you select elements on the page to play with. We’ll start off

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

xix

this chapter by teaching you how to use jQuery’s selectors to zero in on your

target elements, and then we’ll look at how you can use jQuery to alter those

elements’ CSS properties.

Chapter 3: Animating, Scrolling, and Resizing

jQuery excels at animation: whether you’d like to gently slide open a menu, or

send a dialog whizzing across the screen, jQuery can help you out. In this

chapter, we’ll explore jQuery’s wide range of animation helpers, and put them

into practice by enhancing a few simple user interface components. We’ll also

have a quick look at some animation-like helpers for scrolling the page and

making elements resizable.

Chapter 4: Images, Slideshows, and Cross-fading

With the basics well and truly under our belts, we’ll turn to building some of

the most common jQuery widgets out there: image galleries and slideshows.

We’ll learn how to build lightbox displays, scrolling thumbnail galleries, cross-

fading galleries, and even take a stab at an iPhoto-style flip-book.

Chapter 5: Menus, Tabs, Tooltips, and Panels

Now that we’re comfortable with building cool UI widgets with jQuery, we’ll

dive into some slightly more sophisticated controls: drop-down and accordion-

style menus, tabbed interfaces, tooltips, and various types of content panels.

We’re really on a roll now: our sites are looking less and less like the brochure-

style pages of the nineties, and more and more like the Rich Internet Applications

of the twenty-first century!

Chapter 6: Construction, Ajax, and Interactivity

This is the one you’ve all been waiting for: Ajax! In order to make truly desktop-

style applications on the Web, you need to be able to pass data back and forth

to and from the server, without any of those pesky refreshes clearing your inter

face from the screen—and that’s what Ajax is all about. jQuery includes a raft

of convenient methods for handling Ajax requests in a simple, cross-browser

manner, letting you leave work with a smile on your face. But before we get too

carried away—our code is growing more complex, so we’d better take a look at

some best practices for organizing it. All this and more, in Chapter 6.

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b

xx

Chapter 7: Forms, Controls, and Dialogs

The bane of every designer, forms are nonetheless a pivotal cornerstone of any

web application. In this chapter, we’ll learn what jQuery has to offer us in terms

of simplifying our form-related scripting. We’ll learn how to validate forms on

the fly, offer assistance to our users, and manipulate checkboxes, radio buttons,

and select lists with ease. Then we’ll have a look at some less conventional

ways of allowing a site’s users to interact with it: a variety of advanced controls

like date pickers, sliders, and drag and drop. We’ll round it off with a look at

modal dialogs in the post-popup world, as well as a few original nonmodal

notification styles. What a chapter!

Chapter 8: Lists, Trees, and Tables

No matter how “Web 2.0” your application may be, chances are you’ll still need

to fall back on the everyday list, the humdrum tree, or even the oft-derided table

to present information to your users. This chapter shows how jQuery can make

even the boring stuff fun, as we’ll learn how to turn lists into dynamic, sortable

data, and transform tables into data grids with sophisticated functionality.

Chapter 9: Plugins, Themes, and Advanced Topics

jQuery is more than just cool DOM manipulation, easy Ajax requests, and funky

UI components. It has a wealth of functionality aimed at the more ninja-level

developer: a fantastic plugin architecture, a highly extensible and flexible core,

customizable events, and a whole lot more. In this chapter, we’ll also cover the

jQuery UI theme system, which lets you easily tailor the appearance of jQuery

UI widgets to suit your site, and even make your own plugins skinnable with

themes.

Where to Find Help
jQuery is under active development, so chances are good that, by the time you read

this, some minor detail or other of these technologies will have changed from what’s

described in this book. Thankfully, SitePoint has a thriving community of JavaScript

and jQuery developers ready and waiting to help you out if you run into trouble.

We also maintain a list of known errata for this book, which you can consult for the

latest updates; the details are below.

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

xxi

The SitePoint Forums
The SitePoint Forums1 are discussion forums where you can ask questions about

anything related to web development. You may, of course, answer questions too.

That’s how a discussion forum site works—some people ask, some people answer,

and most people do a bit of both. Sharing your knowledge benefits others and

strengthens the community. A lot of interesting and experienced web designers and

developers hang out there. It’s a good way to learn new stuff, have questions

answered in a hurry, and have a blast.

The JavaScript Forum2 is where you’ll want to head to ask any questions about

jQuery.

The Book’s Web Site
Located at http://www.sitepoint.com/books/jquery1/, the web site that supports

this book will give you access to the following facilities:

The Code Archive
As you progress through this book, you’ll note a number of references to the code

archive. This is a downloadable ZIP archive that contains each and every line of

example source code that’s printed in this book. If you want to cheat (or save

yourself from carpal tunnel syndrome), go ahead and download the archive.3

Updates and Errata
No book is perfect, and we expect that watchful readers will be able to spot at least

one or two mistakes before the end of this one. The Errata page4 on the book’s web

site will always have the latest information about known typographical and code

errors.

The SitePoint Newsletters
In addition to books like this one, SitePoint publishes free email newsletters, such

as the SitePoint Tech Times, SitePoint Tribune, and SitePoint Design View, to name

1 http://www.sitepoint.com/forums/
2 http://www.sitepoint.com/forums/forumdisplay.php?f=15
3 http://www.sitepoint.com/books/jquery1/code.php
4 http://www.sitepoint.com/books/jquery1/errata.php

Unleash your inner jQuery ninja today!

http://www.sitepoint.com/forums/
http://www.sitepoint.com/forums/forumdisplay.php?f=15
http://www.sitepoint.com/books/jquery1/code.php
http://www.sitepoint.com/books/jquery1/errata.php
https://sitepoint.com/bookstore/go/170/25534b
http://www.sitepoint.com/books/jquery1/errata.php
http://www.sitepoint.com/books/jquery1/code.php
http://www.sitepoint.com/forums/forumdisplay.php?f=15
http://www.sitepoint.com/forums
http://www.sitepoint.com/books/jquery1

xxii

a few. In them, you’ll read about the latest news, product releases, trends, tips, and

techniques for all aspects of web development. Sign up to one or more SitePoint

newsletters at http://www.sitepoint.com/newsletter/.

The SitePoint Podcast
Join the SitePoint Podcast team for news, interviews, opinion, and fresh thinking

for web developers and designers. We discuss the latest web industry topics, present

guest speakers, and interview some of the best minds in the industry. You can catch

up on the latest and previous podcasts at http://www.sitepoint.com/podcast/, or

subscribe via iTunes.

Your Feedback
If you’re unable to find an answer through the forums, or if you wish to contact us

for any other reason, the best place to write is books@sitepoint.com. We have a

well-staffed email support system set up to track your inquiries, and if our support

team members are unable to answer your question, they’ll send it straight to us.

Suggestions for improvements, as well as notices of any mistakes you may find, are

especially welcome.

Acknowledgments
Earle Castledine
I’d like to thank the good folks at Agency Rainford for running Jelly (and getting me

out of the house), Stuart Horton-Stephens for teaching me how to do Bézier Curves

(and puppet shows), Andrew Tetlaw, Louis Simoneau, and Kelly Steele from Site-

Point for turning pages of rambling nonsense into English, the Sydney web com

munity (who do truly rock), the jQuery team (and related fellows) for being a

JavaScript-fueled inspiration to us all, and finally, my awesome Mum and Dad for

getting me a Spectravideo 318 instead of a Commodore 64—thus forcing me to read

the manuals instead of playing games, all those years ago.

Craig Sharkie
Firstly, I’d like to thank Earle for bringing me onto the project and introducing me

to the real SitePoint. I’d met some great SitePointers at Web Directions, but dealing

jQuery: Novice to Ninja (www.sitepoint.com)

http://www.sitepoint.com/podcast/
https://sitepoint.com/bookstore/go/170/25534b
mailto:books@sitepoint.com
http://www.sitepoint.com/newsletter

xxiii

with them professionally has been a real eye-opener. I’d also like to thank my

wonderful wife Jennifer for understanding when I typed into the wee small hours,

and my parents for letting me read into the wee small hours when I was only wee

small. Lastly, I’d like to thank the web community that have inspired me—some

have inspired me to reach their standard, some have inspired me to help them reach

a higher standard.

Conventions Used in This Book
You’ll notice that we’ve used certain typographic and layout styles throughout the

book to signify different types of information. Look out for the following items.

Code Samples
Code in this book will be displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>

<p>It was a lovely day for a walk in the park. The birds

were singing and the kids were all back at school.</p>

If the code is to be found in the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer {

 background-color: #CCC;

 border-top: 1px solid #333;

}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b

xxiv

function animate() {

new_variable = "Hello";

}

Also, where existing code is required for context, rather than repeat all the code, a

vertical ellipsis will be displayed:

function animate() {

⋮
return new_variable;

}

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and should be ignored:

URL.open("http://www.sitepoint.com/blogs/2007/05/28/user-style-she

➥ets-come-of-age/");

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

Chapter1
Falling in Love with jQuery
So you have the coding chops to write lean, semantic HTML—and you can back it

up with masterful CSS to transform your design ideas into gorgeous web sites that

enthrall your visitors. But these days, you realize, inspiring designs and impeccable

HTML alone fall short when you’re trying to create the next Facebook or Twitter.

So, what’s the missing piece of the front-end puzzle?

It’s JavaScript. That rascally scripting language, cast as the black sheep of the web

development family for so many years. JavaScript is how you add complex behaviors,

sophisticated interactions, and extra pizazz to your site. To conquer the sleeping

giant that is JavaScript, you just need to buckle down and spend the next few years

learning about programming languages: functions, classes, design patterns, proto

types, closures ...

Or there’s a secret that some of the biggest names on the Web—like Google, Digg,

WordPress, and Amazon—will probably be okay about us sharing with you: “Just

use jQuery!” Designers and developers the world over are using the jQuery library

to elegantly and rapidly implement their interaction ideas, completing the web de

velopment puzzle.

2 jQuery: Novice to Ninja

In the following chapter we’ll have a look at what makes jQuery so good, and how

it complements HTML and CSS in a more natural way than our old friend and bitter

enemy: plain old JavaScript. We’ll also look at what’s required to get jQuery up and

running, and working with our current sites.

What’s so good about jQuery?
You’ve read that jQuery makes it easy to play with the DOM, add effects, and execute

Ajax requests, but what makes it better than, say, writing your own library, or using

one of the other (also excellent) JavaScript libraries out there?

First off, did we mention that jQuery makes it easy to play with the DOM, add effects,

and execute Ajax requests? In fact, it makes it so easy that it’s downright good, nerdy

fun—and you’ll often need to pull back from some craziness you just invented, put

on your web designer hat, and exercise a little bit of restraint (ah, the cool things

we could create if good taste were not a barrier!). But there are a multitude of notable

factors you should consider if you’re going to invest your valuable time in learning

a JavaScript library.

Cross-browser Compatibility
Aside from being a joy to use, one of the biggest benefits of jQuery is that it handles

a lot of infuriating cross-browser issues for you. Anyone who has written serious

JavaScript in the past can attest that cross-browser inconsistencies will drive you

mad. For example, a design that renders perfectly in Mozilla Firefox and Internet

Explorer 8 just falls apart in Internet Explorer 7, or an interface component you’ve

spent days handcrafting works beautifully in all major browsers except Opera on

Linux. And the client just happens to use Opera on Linux. These types of issues

are never easy to track down, and even harder to completely eradicate.

Even when cross-browser problems are relatively simple to handle, you always

need to maintain a mental knowledge bank of them. When it’s 11:00 p.m. the night

before a major project launch, you can only hope you recall why there’s a weird

padding bug on a browser you forgot to test!

The jQuery team is keenly aware of cross-browser issues, and more importantly

they understand why these issues occur. They have written this knowledge into the

library—so jQuery works around the caveats for you. Most of the code you write

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

3 Falling in Love with jQuery

will run exactly the same on all the major browsers, including everybody’s favorite

little troublemaker: Internet Explorer 6.

This feature alone will save the average developer a lifetime of headaches. Of course,

you should always aim to keep up to date with the latest developments and best

practices in our industry—but leaving the task of hunting down obscure browser

bugs to the jQuery Team (and they fix more and more with each new version) allows

you more time to implement your ideas.

CSS3 Selectors
Making today’s technologies cross-browser compliant is all well and good, but

jQuery also fully supports the upcoming CSS3 selector specification. Yes, even in

Internet Explorer 6.0! You can gain a head start on the future by learning and using

CSS3 selectors right now in your production code. Selecting elements you want to

change lies at the heart of jQuery’s power, and CSS3 selectors give you even more

tools to work with.

Helpful Utilities
Also included is an assortment of utility functions that implement common functions

useful for writing jQuery (or are missing from JavaScript!): string trimming, the

ability to easily extend objects, and more. These functions by themselves are partic

ularly handy, but they help promote a seamless integration between jQuery and

JavaScript which results in code that’s easier to write and maintain.

One noteworthy utility is the supports function, which tests to find certain features

are available on the current user’s browser. Traditionally, developers have resorted

to browser sniffing—determining which web browser the end user is using, based

on information provided by the browser itself—to work around known issues. This

has always been an unsatisfying and error-prone practice. Using the jQuery supports

utility function, you can test to see if a certain feature is available to the user, and

easily build applications that degrade gracefully on older browsers, or those not

standards-compliant.

jQuery UI
jQuery has already been used to make some impressive widgets and effects, some

of which were useful enough to justify inclusion in the core jQuery library itself.

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b

4 jQuery: Novice to Ninja

However, the jQuery team wisely decided that in order to keep the core library fo

cused, they’d separate out higher-level constructs and package them into a neat

library that sits on top of jQuery.

That library is called jQuery User Interface (generally abbreviated to just jQuery

UI), and it comprises a menagerie of useful effects and advanced widgets that are

accessible and highly customizable through the use of themes. Some of these features

are illustrated in Figure 1.1.

Figure 1.1. A few jQuery UI widgets

Accordions, sliders, dialog boxes, date pickers, and more—all ready to be used right

now! You could spend a bunch of time creating them yourself in jQuery (as these

have been) but the jQuery UI controls are configurable and sophisticated enough

that your time would be better spent elsewhere—namely implementing your unique

project requirements rather than ensuring your custom date picker appears correctly

across different browsers!

We’ll certainly be using a bunch of jQuery UI functionality as we progress through

the book. We’ll even integrate some of the funky themes available, and learn how

to create our own themes using the jQuery UI ThemeRoller tool.

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

5 Falling in Love with jQuery

Plugins
The jQuery team has taken great care in making the jQuery library extensible. By

including only a core set of features while providing a framework for extending the

library, they’ve made it easy to create plugins that you can reuse in all your jQuery

projects, as well as share with other developers. A lot of fairly common functionality

has been omitted from the jQuery core library, and relegated to the realm of the

plugin. Don’t worry, this is a feature, not a flaw. Any additional required function

ality can be included easily on a page-by-page basis to keep bandwidth and code

bloat to a minimum.

Thankfully, a lot of people have taken advantage of jQuery’s extensibility, so there

are already hundreds of excellent, downloadable plugins available from the jQuery

plugin repository, with new ones added all the time. A portion of this can be seen

in Figure 1.2.

Figure 1.2. The jQuery plugin repository

Whenever you’re presented with a task or problem, it’s worth checking first to see

if there’s a plugin that might suit your needs. That’s because almost any functionality

you might require has likely already been turned into a plugin, and is available and

ready for you to start using. Even if it turns out that you need to do some work

yourself, the plugin repository is often the best place to steer you in the right direc

tion.

Keeping Markup Clean
Separating script behavior from page presentation is best practice in the web devel

opment game—though it does present its share of challenges. jQuery makes it a

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b

6 jQuery: Novice to Ninja

cinch to completely rid your markup of inline scripting, thanks to its ability to

easily hook elements on the page and attach code to them in a natural, CSS-like

manner. jQuery lacks a mechanism for adding inline code, so this separation of

concerns leads to leaner, cleaner, and more maintainable code. Hence, it’s easy to

do things the right way, and almost impossible to do them the wrong way!

And jQuery isn’t limited to meddling with a page’s existing HTML—it can also add

new page elements and document fragments via a collection of handy functions.

There are functions to insert, append, and prepend new chunks of HTML anywhere

on the page. You can even replace, remove, or clone existing elements—all functions

that help you to progressively enhance your sites, thus providing a fully featured

experience to users whose browsers allow it, and an acceptable experience to

everyone else.

Widespread Adoption
If you care to put every JavaScript library you can think of into Google Trends,1

you’ll witness jQuery’s exponential rise to superstardom. It’s good to be in the in

crowd when it comes to libraries, as popularity equates to more active code devel

opment and plenty of interesting third-party goodies.

Countless big players on the Web are jumping on the jQuery bandwagon: IBM,

Netflix, Google (which both uses and hosts the jQuery library), and even Microsoft,

which now includes jQuery with its MVC framework. With such a vast range of

large companies on side, it’s a safe bet that jQuery will be around for some time to

come—so the time and effort you invest in learning it will be well worth your while!

jQuery’s popularity has also spawned a large and generous community that’s sur

prisingly helpful. No matter what your level of skill, you’ll find other developers

patient enough to help you out and work through any issues you have. This caring

and sharing spirit has also spread out to the wider Internet, blossoming into an en

cyclopedia of high quality tutorials, blog posts, and documentation.

1 http://www.google.com/trends/

jQuery: Novice to Ninja (www.sitepoint.com)

http://www.google.com/trends/
https://sitepoint.com/bookstore/go/170/25534b
http://www.google.com/trends

7 Falling in Love with jQuery

What’s the downside?

There barely is a downside! The main arguments against using any JavaScript library

have always been speed and size: some say that using a library adds too much

download bloat to pages, while others claim that libraries perform poorly compared

with leaner custom code. Though these arguments are worth considering, their

relevance is quickly fading.

First, as far as size is concerned, jQuery is lightweight. The core jQuery library has

always had a fairly small footprint—about 19KB for the basics, less than your average

JPG image. Any extras your project needs (such as plugins or components from the

jQuery UI library) can be added in a modular fashion—so you can easily count your

bandwidth calories.

Speed (like size) is becoming a decreasing concern as computer hardware specific

ations rise and browsers’ JavaScript engines grow faster and faster. Of course, this

is far from implying that jQuery is slow—the jQuery team seem to be obsessed with

speed! Every new release is faster than the last, so any benefit you might derive

from rolling your own JavaScript is shrinking every day.

When it comes to competing JavaScript libraries (and there are more than a handful

out there), jQuery is the best at doing what jQuery does: manipulating the DOM,

adding effects, and making Ajax requests. Still, many of the libraries out there are

of excellent quality and excel in other areas, such as complex class-based program

ming. It’s always worth looking at the alternatives, but if the reasons we’ve outlined

appeal to you, jQuery is probably the way to go.

But enough talk: time for jQuery to put its money where its mouth is!

Downloading and Including jQuery
Before you can fall in love with jQuery (or at least, judge it for yourself) you need

to obtain the latest version of the code and add it to your web pages. There are a

few ways to do this, each with a couple of options available. Whatever you choose,

you’ll need to include jQuery in your HTML page, just as you would any other

JavaScript source file.

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b

8 jQuery: Novice to Ninja

It’s Just JavaScript!

Never forget that jQuery is just JavaScript! It may look and act superficially differ-

ent—but underneath it’s written in JavaScript, and consequently it’s unable to do

anything that plain old JavaScript can’t. This means we’ll include it in our pages

the same way we would any other JavaScript file.

Downloading jQuery
This is the most common method of acquiring the jQuery library—just download

it! The latest version is always available from the jQuery web site.2 The big shiny

download button will lead us to the Google code repository, where we can grab the

latest “production compression level” version.

Click the download link and save the JavaScript file to a new working folder, ready

for playing with. You’ll need to put it where our HTML files can see it: commonly

in a scripts or javascript directory beneath your site’s document root. For the following

example, we’ll keep it very simple and put the library in the same directory as the

HTML file.

To make it all work, we need to tell our HTML file to include the jQuery library.

This is done by using a script tag inside the head section of the HTML document.

The head element of a very basic HTML file including jQuery would look a little

like this:

<head>

 <title>Hello jQuery world!</title>

 <script type='text/javascript' src='jquery-1.4-min.js'></script>

 <script type='text/javascript' src='script.js'></script>

</head>

The first script tag on the page loads the jQuery library, and the second script tag

points to a script.js file, which is where we’ll run our own jQuery code. And that’s

it: you’re ready to start using jQuery.

We said earlier that downloading the jQuery file is the most common approach—but

there are a few other options available to you, so let’s have a quick look at them

2 http://jquery.com/

jQuery: Novice to Ninja (www.sitepoint.com)

http://jquery.com/
https://sitepoint.com/bookstore/go/170/25534b
http:http://jquery.com
http:script.js

9 Falling in Love with jQuery

before we move on. If you just want to start playing with jQuery, you can safely

skip the rest of this section.

The Google CDN
An alternative method for including the jQuery library that’s worth considering is

via the Google Content Delivery Network (CDN). A CDN is a network of computers

that are specifically designed to serve content to users in a fast and scalable manner.

These servers are often distributed geographically, with each request being served

by the nearest server in the network.

Google hosts several popular, open-source libraries on their CDN, including jQuery

(and jQuery UI—which we’ll visit shortly). So, instead of hosting the jQuery files

on your own web server as we did above, you have the option of letting Google pick

up part of your bandwidth bill. You benefit from the speed and reliability of Google’s

vast infrastructure, with the added bonus of the option to always use the latest

version of jQuery.

Another benefit of using the Google CDN is that many users will already have

downloaded jQuery from Google when visiting another site. As a result, it will be

loaded from cache when they visit your site (since the URL to the JavaScript file

will be the same), leading to significantly faster load times. You can also include

the more hefty jQuery UI library via the same method, which makes the Google

CDN well worth thinking about for your projects: it’s going to save you money and

increase performance when your latest work goes viral!

There are a few different ways of including jQuery from the Google CDN. We’re

going to use the simpler (though slightly less flexible) path-based method:

<head>

 <title>Hello jQuery world!</title>

 <script type="text/javascript" src="http://ajax.googleapis.com/

➥ajax/libs/jquery/1.4.0/jquery.min.js"></script>
 <script type='text/javascript' src='script.js'></script>

</head>

It looks suspiciously like our original example—but instead of pointing the script

tag to a local copy of jQuery, it points to one of Google’s servers.

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b
http:src="http://ajax.googleapis.com

10 jQuery: Novice to Ninja

Obtaining the Latest Version with Google CDN

If you look closely at the URL pointing to Google’s servers, you’ll see that the

version of jQuery is specified by one of the path elements (the 1.4.0 in our ex

ample). If you like using the latest and greatest, however, you can remove a

number from the end of the version string (for example, 1.4) and it will return the

latest release available in the 1.4 series (1.4.1, 1.4.2, and so on). You can even take

it up to the whole number (1), in which case Google will give you the latest version

even when jQuery 1.5 and beyond are released!

Be careful though: there’ll be no need to update your HTML files when a new

version of jQuery is released, but it will be necessary to look out for any library

changes that might affect your existing functionality.

If you’d like to examine the slightly more complex “Google loader” method of in

cluding libraries, there’s plenty to read about the Google CDN on its web site.3

Nightlies and Subversion
Still more advanced options for obtaining jQuery are listed on the official Down

loading jQuery documentation page.4 The first of these options is the nightly builds.

Nightlies are automated builds of the jQuery library that include all new code added

or modified during the course of the day. Every night the very latest development

versions are made available for download, and can be included in the same manner

as the regular, stable library.

And if every single night is still too infrequent for you, you can use the Subversion

repository to retrieve the latest up-to-the-minute source code. Subversion is an

open-source version control system that the jQuery team uses. Every time a developer

submits a change to jQuery, you can download it instantly.

Beware, however: both the nightly and Subversion jQuery libraries are often untested.

They can (and will) contain bugs, and are subject to frequent changes. Unless you’re

looking to work on the jQuery library itself, it’s probably best to skip these options.

3 http://code.google.com/apis/ajaxlibs/documentation/
4 http://docs.jquery.com/Downloading_jQuery

jQuery: Novice to Ninja (www.sitepoint.com)

http://code.google.com/apis/ajaxlibs/documentation/
http://docs.jquery.com/Downloading_jQuery
http://docs.jquery.com/Downloading_jQuery
https://sitepoint.com/bookstore/go/170/25534b
http://docs.jquery.com/Downloading_jQuery
http://code.google.com/apis/ajaxlibs/documentation

Falling in Love with jQuery 11

Uncompressed or compressed?
If you had a poke around on the jQuery download page, you might have also spied

a couple of different download format options: compressed (also called minified),

and uncompressed (also called “development”).

Typically, you’ll want to use the minified version for your production code, where

the jQuery source code is compressed: spaces and line breaks have been removed

and variable names are shortened. The result is exactly the same jQuery library, but

contained in a JavaScript file that’s much smaller than the original. This is great for

reducing bandwidth costs for you, and speeding up page requests for the end user.

The downside of the compressed file is readability. If you examine the minified

jQuery file in your text editor (go on!), you’ll see that it’s practically illegible: a

single line of garbled-looking JavaScript. The readability of the library is incon

sequential most of the time, but if you’re interested in how jQuery is actually

working, the uncompressed development version is a commented, readable, and

quite beautiful example of JavaScript.

Anatomy of a jQuery Script
Now that we’ve included jQuery in our web page, let’s have a look at what this baby

can do. The jQuery syntax may look a little bit odd the first time you see it, but it’s

really quite straightforward, and best of all, it’s highly consistent. After writing your

first few commands, the style and syntax will be stuck in your head and will leave

you wanting to write more.

The jQuery Alias
Including jQuery in your page gives you access to a single magical function called

(strangely enough) jQuery. Just one function? It’s through this one function that

jQuery exposes hundreds of powerful tools to help add another dimension to your

web pages.

Because a single function acts as a gateway to the entire jQuery library, there’s little

chance of the library function names conflicting with other libraries, or with your

own JavaScript code. Otherwise, a situation like this could occur: let’s say jQuery

defined a function called hide (which it has) and you also had a function called

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b

12 jQuery: Novice to Ninja

hide in your own code, one of the functions would be overwritten, leading to

unanticipated events and errors.

We say that the jQuery library is contained in the jQuery namespace. Namespacing

is an excellent approach for playing nicely with other code on a page, but if we’re

going to use a lot of jQuery (and we are), it will quickly become annoying to have

to type the full jQuery function name for every command we use. To combat this

issue, jQuery provides a shorter alias for accessing the library. Simply, it’s $.

The dollar sign is a short, valid, and cool-looking JavaScript variable name. It might

seem a bit lazy (after all, you’re only saving five keystrokes by using the alias), but

a full page of jQuery will contain scores of library calls, and using the alias will

make the code much more readable and maintainable.

Using Multiple Libraries

The main reason you might want to use the full jQuery call rather than the alias

is when you have multiple JavaScript libraries on the same page, all fighting for

control of the dollar sign function name. The dollar sign is a common function

name in several libraries, often used for selecting elements. If you’re having issues

with multiple libraries, check out Appendix A: Dealing with Conflicts.

Dissecting a jQuery Statement
We know that jQuery commands begin with a call to the jQuery function, or its

alias. Let’s now take out our scalpels and examine the remaining component parts

of a jQuery statement. Figure 1.3 shows both variants of the same jQuery statement

(using the full function name or the $ alias).

Figure 1.3. A typical jQuery statement

Each command is made up of four parts: the jQuery function (or its alias), selectors,

actions, and parameters. We already know about the jQuery function, so let’s look

at each of the other elements in turn. First, we use a selector to select one or more

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

Falling in Love with jQuery 13

elements on the web page. Next, we choose an action to be applied to each element

we’ve selected. We’ll see more and more actions as we implement effects throughout

the book. And finally, we specify some parameters to tell jQuery how exactly we

want to apply the chosen action. Whenever you see jQuery code, try to break it up

into these component parts. It will make it a lot easier to comprehend when you’re

just starting out.

In our example above, we’ve asked the selector to select all the paragraph tags (the

HTML <p> tags) on the page. Next, we’ve chosen jQuery’s css action, which is used

to modify a CSS property of the paragraph elements that were initially selected.

Finally, we’ve passed in some parameters to set the CSS color property to the value

blue. The end result? All our paragraphs are now blue! We’ll delve deeper into se

lectors and the css action in Chapter 2.

Our example passed two parameters (color and blue) to the css action, but the

number of parameters passed to an action can vary. Some require zero parameters,

some accept multiple sets of parameters (for changing a whole bunch of properties

at once), and some require that we specify another JavaScript function for running

code when an event (like an element being clicked) happens. But all commands

follow this basic anatomy.

Bits of HTML—aka “The DOM”
jQuery has been designed to integrate seamlessly with HTML and CSS. If you’re

well-versed in CSS selectors and know, for example, that div#heading would refer

to a div element with an id of heading, you might want to skip this section. Other

wise, a short crash course in CSS selectors and the Document Object Model (DOM)

is in order.

The DOM doesn’t pertain specifically to jQuery; it’s a standard way of representing

objects in HTML that all browser makers agreed to follow. A good working knowledge

of the DOM will ensure a smooth transition to jQuery ninja-hood.

The DOM is what you call bits of rendered HTML when you’re talking to the cool

kids around the water cooler. It’s a hierarchal representation of your HTML

markup—where each element (such as a div or a p) has a parent (its “container”),

and can also have one or more nested child elements. Each element can have an id

and/or it can have one or more class attributes—which generally you assign in

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b

14 jQuery: Novice to Ninja

your HTML source file. When the browser reads an HTML page and constructs the

DOM, it displays it as a web page comprising objects that can either sit there looking

pretty (as a static page) or, more interestingly, be manipulated by our code.

A sample DOM fragment is illustrated in Figure 1.4. As you can see, body has two

child elements: an h1 and a p. These two elements, by virtue of being contained in

the same parent element, are referred to as siblings.

Figure 1.4. An example of a DOM fragment

An element’s id uniquely identifies the element on the page:

<div id="footer">Come back and visit us soon!</div>

The div has been assigned an id of footer. It uses an id because it’s unique: there

should be one, and only one, on the page. The DOM also lets us assign the same

name to multiple page elements via the class attribute. This is usually done on

elements that share a characteristic:

<p class="warning">Sorry, this field must be filled in!</p>

Please try again

In this example, multiple elements on the same page are classified as a “warning.”

Any CSS applied to the warning class will apply to both elements. Multiple class

attributes on the same element (when they’re required) are separated by spaces.

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

Falling in Love with jQuery 15

When you write your CSS, you can hook elements by id with a hash symbol, or by

class with a period:

#footer { border: 2px solid black }

.warning { color: red }

These CSS rules will give a black border to the element with an id of footer, and

ensure that all elements with a class of warning will be displayed in red text.

When it comes time to write some jQuery, you will find that knowing about CSS

selectors and the DOM is important: jQuery uses the same syntax as CSS for selecting

elements on the page to manipulate. And once you’ve mastered selecting, the rest

is easy—thanks to jQuery!

If You Choose to Accept It …
jQuery is a stable and mature product that’s ready for use on web sites of any size,

demonstrated by its adoption by some of the veritable giants of the Internet. Despite

this, it’s still a dynamic project under constant development and improvement,

with each new version offering up performance boosts and clever additional func

tionality. There’s no better time than now to start learning and using jQuery!

As we work through the book you’ll see that there’s a lot of truth in the jQuery

motto, “write less, do more.” It’s an easy and fun library with a gentle learning curve

that lets you do a lot of cool stuff with very little code. And as you progress down

the path to jQuery ninja-hood, we hope you’ll also acquire a bit of respect for and

understanding of JavaScript itself.

In the Chapter 2, we’ll dive into jQuery and start using it to add some shine to our

client’s web site. Speaking of our client, it’s time we met him …

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b

 jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

Chapter2
Selecting, Decorating, and Enhancing
“In phase two, we are going to want to harness the social and enable Web 2.0 com

munity-based, crowd-sourced, Ajax, um, interactions,” says our new client. “But

for now we just need some basic stuff changed on our site.”

Our client is launching a startup called StarTrackr! It uses GPS and RFID technology

to track popular celebrities’ exact physical location—then sells that information to

fans. It’s been going great guns operating out of a friend’s local store, but now they’re

taking the venture online.

“Can you do it? Here’s a list that needs to be live by Friday, close of business.”

You survey the list. By amazing coincidence you notice that all of the requests can

be implemented using jQuery. You look at your calendar. It’s Friday morning. Let’s

get started!

The first task on the list is to add a simple JavaScript alert when the existing site

loads. This is to let visitors know that StarTrackr! is not currently being sued for

invasion of privacy (which was recently implied in a local newspaper).

18 jQuery: Novice to Ninja

Sure, we could use plain old JavaScript to do it, but we know that using jQuery will

make our lives a lot easier—plus we can learn a new technology as we go along!

We already saw the anatomy of a jQuery statement in Chapter 1; now let’s look at

the steps required to put jQuery into action: we wait until the page is ready, select

our target, and then change it.

You may have probably guessed that jQuery can be more complicated than this—but

only a little! Even advanced effects will rely on this basic formula, with multiple

iterations of the last two steps, and perhaps a bit of JavaScript know-how. For now,

let’s start nice and easy.

Making Sure the Page Is Ready
Before we can interact with HTML elements on a page, those elements need to have

been loaded: we can only change them once they’re already there. In the old days

of JavaScript, the only reliable way to do this was to wait for the entire page (includ

ing images) to finish loading before we ran any scripts.

Fortunately for us, jQuery has a very cool built-in event that executes our magic as

soon as possible. Because of this, our pages and applications appear to load much

faster to the end user:

chapter_02/01_document_ready/script.js

$(document).ready(function() {

 alert('Welcome to StarTrackr! Now no longer under police …');

});

The important bits here (highlighted in bold) say, “When our document is ready,

run our function.” This is one of the most common snippets of jQuery you’re likely

to see. It’s usually a good idea to do a simple alert test like this to ensure you’ve

properly included the jQuery library—and that nothing funny is going on.

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_02/01_document_ready/script.js

Selecting, Decorating, and Enhancing 19

You’ll Be Seeing $(document).ready() a Lot!

Almost everything you do in jQuery will need to be done after the document is

ready—so we’ll be using this action a lot. It will be referred to as the document-

ready event from now on. Every example that follows in this book, unless otherwise

stated, needs to be run from inside the document-ready event. You should only

need to declare it once per page though.

The document-ready idiom is so common, in fact, that there’s a shortcut version of

it:

$(function() { alert('Ready to do your bidding!'); });

If you’d like to use the shortcut method, go ahead! The expanded version is arguably

a better example of self-documenting code; it’s much easier to see at a glance exactly

what’s going on—especially if it’s buried in a page of another developer’s JavaScript!

At a cursory glance, the document-ready event looks much removed from the

structure we encountered back in our jQuery anatomy class, but on closer inspection

we can see that the requisite parts are all accounted for: the selector is document;

the action is ready; and the parameter is a function that runs some code (our alert).

Selecting: The Core of jQuery
Time is ticking, and deadlines wait for no one. The client has noted that people

have been having quoting incorrect celebrity IDs from the web site. This is because

the celebrities’ names are all laid out in one big table and it’s difficult for users to

line up a celebrity with the correct reference ID. Our client tells us that he wants

every other row to be a light gray color so the users can easily find their favorite

celebrity.

We have jQuery ready to do our bidding—it just needs us to choose a target for it.

Selecting the elements you want to modify on the page is really the art of jQuery.

One of the biggest differences between being a novice and ninja is the amount of

time it takes you to grab the elements you want to play with!

You might remember from our jQuery anatomy class that all of our selectors are

wrapped in the jQuery function:

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b

20 jQuery: Novice to Ninja

jQuery(<selectors go here>)

Or the alias:

$(<selectors go here>)

We’ll be using the shortcut alias for the remainder of the book—it’s much more

convenient. As we mentioned earlier, there’s no real reason to use the full jQuery

name unless you’re having conflict issues with other libraries (see the section called

“Avoiding Conflicts” in Chapter 9).

Simple Selecting
Our task is to select alternate table rows on the celebrity table. How do we do this?

When selecting with jQuery, your goal should be to be only as specific as required:

you want to find out the most concise selector that returns exactly what you want

to change. Let’s start by taking a look at the markup of the Celebrities table, shown

in Figure 2.1.

Figure 2.1. class and id attributes in the HTML page

We could start by selecting every table row element on the entire page. To select

by element type, you simply pass the element’s HTML name as a string parameter

to the $ function. To select all table row elements (which are marked up with the

<tr> tag), you would simply write:

$('tr')

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

Selecting, Decorating, and Enhancing 21

Nothing Happens!

If you run this command, nothing will happen on the page. This is expected—after

all, we’re just selecting elements. But there’s no need to worry; soon enough we’ll

be modifying our selections in all sorts of weird and wonderful ways.

Similarly, if we wanted to select every paragraph, div element, h1 heading, or input

box on the page, we would use these selectors accordingly:

$('p')

$('div')

$('h1')

$('input')

But we don’t want to change every table row on the celebrity page: just the rows in

the table that have the celebrity data. We need to be a bit more specific, and select

first the containing element that holds the list of celebrities. If you have a look at

the HTML and at Figure 2.1, you can see that the div that contains our celebrity

table has an id of celebs, while the table itself has a class of data. We could use

either of these to select the table.

jQuery borrows the conventions from CSS for referring to id and class names. To

select by id, use the hash symbol (#) followed by the element’s id, and pass this as

a string to the jQuery function:

$('#celebs')

You should note that the string we pass to the jQuery function is exactly the same

format as a CSS id selector. Because ids should be unique, we expect this to only

return one element. jQuery now holds a reference to this element.

Similarly, we can use a CSS class selector to select by class. We pass a string

consisting of a period (.) followed by the element’s class name to the jQuery

function:

$('.data')

Both of these statements will select the table but, as mentioned earlier when we

talked about the DOM, a class can be shared by multiple elements—and jQuery

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b

22 jQuery: Novice to Ninja

will happily select as many elements as we point it to. If there were multiple tables

(or any other elements for that matter) that also had the class data, they’d all be

selected. For that reason, we’ll stick to using the id for this one!

Can You Be More Specific?

Just like with CSS, we can select either $('.data') or the more specific

$('table.data'). By specifying an element type in addition to the class, the

selector will only return table elements with the class data—rather than all

elements with the class data. Also, like CSS, you can add parent container select

ors to narrow your selection even further.

Narrowing Down Our Selection
We’ve selected the table successfully, though the table itself is of no interest to

us—we want every other row inside it. We’ve selected the containing element, and

from that containing element we want to pick out all the descendants that are table

rows: that is, we want to specify all table rows inside the containing table. To do

this, we put a space between the ancestor and the descendant:

$('#celebs tr')

You can use this construct to drill down to the elements that you’re looking for, but

for clarity’s sake try to keep your selectors as succinct as possible.

Let’s take this idea a step further. Say we wanted to select all span elements inside

of p elements, which are themselves inside div elements—but only if those divs

happen to have a class of fancy. We would use the selector:

$('div.fancy p span')

If you can follow this, you’re ready to select just about anything!

Testing Our Selection
Right, back to our task at hand. It feels like we’re getting closer, but so far we’ve just

been selecting blindly with no way of knowing if we’re on the right path. We need

a way of confirming that we’re selecting the correct elements. A simple way to

achieve this is to take advantage of the length property. length returns the number

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

Selecting, Decorating, and Enhancing 23

of elements currently matched by the selector. We can combine this with the good

ol’ trusty alert statement to ensure that our elements have been selected:

chapter_02/02_selecting/script.js

$(document).ready(function() {

 alert($('#celebs tr').length + ' elements!');

});

This will alert the length of the selection—7 elements—for the celebrity table. This

result might be different from what you’d expect, as there are only six celebrities

in the table! If you have a look at the HTML, you’ll see where our problem lies: the

table header is also a tr, so there are seven rows in total. A quick fix involves

narrowing down our selector to find only table rows that lie inside the tbody element:

chapter_02/03_narrowing_selection/script.js

$(document).ready(function() {

 alert($('#celebs tbody tr').length + ' elements!');

});

This will alert the correct length of 6 elements—the jQuery object is now holding

our six celebrity table row elements.

If the alert shows 0, you’ll know there’s a mistake in your selector. A good way to

troubleshoot this sort of issue is to reduce your selector to the smallest, simplest

one possible.

In our example, we could simply write $('#celebs'), which would select just the

table element and alert a length of 1. From here you can make your selectors more

specific, and check that you’re selecting the correct number of elements as you go.

Filters
With the knowledge that we’ve successfully selected all of the table rows, narrowing

our selection down to every other row is simple—because jQuery has a filter to do

it. A filter removes certain items, and keeps only the ones we want. You’ll acquire

a feel for what can be filtered as we work through some more examples, but for now

we’ll just jump straight to the filter we need for our zebra stripes:

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_02/03_narrowing_selection/script.js
http:chapter_02/02_selecting/script.js

24 jQuery: Novice to Ninja

chapter_02/04_filters/script.js

$(document).ready(function() {

 alert($('#celebs tbody tr:even').length + ' elements!');

});

Filters are attached to the item you want to filter (in this case, the table rows) and

are defined by a colon, followed by the filter name. The :even filter used here keeps

every even-indexed element in the selection and removes the rest, which is what

we want. When we alert the selection length now, we see 3, as expected. All of our

odd-numbered rows have been filtered out of the selection. There is a wide array

of jQuery selector filters available to us: :odd (as you might expect), :first, :last,

:eq() (for selecting, for example, the third element), and more. We’ll look at each

of these in more detail as we need them throughout the book.

Selecting Multiple Elements
One last trick for basic selecting is the ability to select multiple elements in a single

statement. This is very useful, as we’ll often want to apply the same action to several

elements in unrelated parts of the page. Separating the selector strings with commas

allows you to do this. For example, if we wanted to select every paragraph, div

element, h1 heading, and input box on the page, we’d use this selector:

$('p,div,h1,input')

Learning how to use all these different selectors together to access exactly the page

elements you want is a big part of mastering jQuery. It’s also one of the most satis

fying parts of using jQuery, since you can pack some fairly complex selection logic

into a single short line of code!

Becoming a Good Selector
Selecting may seem quite easy and, up to a point, it is. But what we’ve covered so

far has only just scratched the surface of selecting. In most cases the basics are all

you’ll need: if you’re simply trying to target an element or a bunch of related ele

ments, the element name, id, and class are the most efficient and easiest ways to

achieve this.

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_02/04_filters/script.js

Selecting, Decorating, and Enhancing 25

When moving around the DOM from a given element, the situation becomes a little

trickier. jQuery provides a myriad of selectors and actions for traversing the DOM.

Traversing means traveling up and down the page hierarchy, through parent and

child elements. You can add and remove elements as you go, applying different

actions at each step—which lets you perform some mind-bogglingly complex actions

in a single jQuery statement!

If you’re a wiz at CSS, you’ll already be familiar with a lot of the statements; they’re

mostly borrowed directly from the CSS specification. But there are probably a few

that you’re unfamiliar with, especially if you’ve yet to spend much time learning

CSS3 selectors. Of course, we’ll be covering and learning advanced selection tech

niques as we implement them in our examples and demos. For this reason, any time

you want to find out more about all the jQuery selectors available, you can just head

over to the online documentation1 and browse away!

Decorating: CSS with jQuery
Selecting elements in jQuery is the hard part. Everything else is both easy and fun.

After we have selected our targets, we are able to manipulate them to build effects

or interfaces. In this section we will cover a series of jQuery actions relating to CSS:

adding and removing styles, classes, and more. The actions we execute will be ap

plied individually to every element we’ve selected, letting us bend the page to our

will!

Reading CSS Properties
Before we try changing CSS properties, let’s look first into how we can simply access

them. jQuery lets us do this with the css function. Try this:

chapter_02/05_reading_css_properties/script.js

$(document).ready(function() {

 var fontSize = $('#celebs tbody tr:first').css('font-size');

 alert(fontSize);

});

1 http://api.jquery.com/category/selectors/

Unleash your inner jQuery ninja today!

http://api.jquery.com/category/selectors/
https://sitepoint.com/bookstore/go/170/25534b
http://api.jquery.com/category/selectors
http:chapter_02/05_reading_css_properties/script.js

26 jQuery: Novice to Ninja

This code will alert the font size of the first element matched by the selector (as

you’ve likely guessed, the :first filter will return the first element among those

matched by the selector).

CSS Properties of Multiple Elements

You can ask for a CSS property after selecting multiple elements, but this is almost

always a bad idea: a function can only return a single result, so you’ll still only

obtain the property for the first matched element.

The nifty aspect about retrieving CSS properties with this method is that jQuery

gives you the element’s calculated style. This means that you’ll receive the value

that’s been rendered in the user’s browser, rather than the value entered in the CSS

definition. So, if you gave a div a height of, say, 200 pixels in the CSS file, but the

content inside it pushed the height over 200 pixels, jQuery would provide you with

the actual height of the element, rather than the 200 pixels you’d specified.

We’ll see why that’s really important when we come to implement some funky

tricks a bit later.

Setting CSS Properties
So far we’ve yet to see jQuery actually do anything, and it’s high time to remedy

that. We know the page is ready (since we popped up an alert), and we’re fairly sure

we’ve selected the elements we’re interested in. Let’s check that we really have:

chapter_02/06_zebra_striping/script.js

$(document).ready(function() {

 $('#celebs tbody tr:even').css('background-color','#dddddd');

});

You probably saw that coming! This is the same css function we used to read a CSS

property, but now it’s being passed an extra parameter: the value we wish to set for

that property. We’ve used the action to set the background-color to the value

#dddddd (a light gray). Open the file from the code archive in your browser and test

that it’s working correctly. You can see the result in Figure 2.2.

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_02/06_zebra_striping/script.js

Selecting, Decorating, and Enhancing 27

Figure 2.2. Zebra striping implemented with jQuery

Were You Ready?

As mentioned previously, this command must be issued from within our document-

ready function. If we run the command before the DOM is ready, the selector will

go looking for the #celebs element, but will find nothing that matches. At this

point it will give up; it won’t even look for the tr elements, let alone change the

background style.

This is true for all of the examples that follow, so remember to wrap your code in

the document-ready function.

It’s looking good! But perhaps we should add a little extra to it—after all, more is

more! What about a shade lighter font color to really define our stripes? There are

a few ways we could add a second CSS property. The simplest way is to repeat the

entire jQuery statement with our new values:

chapter_02/07_multiple_properties_1/script.js (excerpt)

$('#celebs tbody tr:even').css('background-color','#dddddd');

$('#celebs tbody tr:even').css('color', '#666666');

These lines are executed one after the other. Though the end result is correct, it will

become quite messy and inefficient if we have to change a whole slew of properties.

Thankfully, jQuery provides us with a nice way to set multiple properties at the

same time, using an object literal. Object literals are a JavaScript concept beyond

the scope of this book, but for our purposes, all you need to know is that they provide

an easy way of grouping together key/value pairs. For CSS, object literals allow us

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_02/07_multiple_properties_1/script.js

28 jQuery: Novice to Ninja

to match up our CSS properties (the keys) with the matching CSS values (the values)

in a neat package:

chapter_02/08_multiple_properties_2/script.js (excerpt)

$('#celebs tbody tr:even').css(

{'background-color': '#dddddd', 'color': '#666666'}

);

The object literal is wrapped in curly braces, with each key separated from its cor

responding value by a colon, and each key/value pair separated by a comma. It’s

passed as a single parameter to the css function. Using this method you can specify

as many key/value pairs as you like—just separate them with commas. It’s a good

idea to lay out your key/value pairs in a readable manner so you can easily see

what’s going on when you come back to your code later. This is especially helpful

if you need to set a larger number of properties. As an example:

chapter_02/09_multiple_properties_3/script.js (excerpt)

$('#celebs tbody tr:even').css({

 'background-color': '#dddddd',

'color': '#666666',

 'font-size': '11pt',

 'line-height': '2.5em'

});

To Quote or Not to Quote

In general, when dealing with JavaScript objects, it’s unnecessary for the keys to

be in quotes. However, for jQuery to work properly, any key that contains a hyphen

(as our background-color and font-size examples do) must be placed in

quotes, or written in camel case (like backgroundColor).

Additionally, any key that’s already a keyword in the JavaScript language (such

as float and class) must also be written in quotes.

It can be confusing trying to remember which keys need to be quoted and which

don’t, so it’s to be recommended that you just put all object keys in quotes each

time.

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_02/09_multiple_properties_3/script.js
http:chapter_02/08_multiple_properties_2/script.js

Selecting, Decorating, and Enhancing 29

Classes
Excellent! We’ve already struck two tasks off the client’s list, and we have some

funky jQuery happening. But if you stop and have a look at our last solution, you

might notice something a little fishy. If you were to inspect the zebra-striped rows

in a development tool such as Firebug, you’d notice that the CSS properties have

been added to the paragraphs inline, as illustrated in Figure 2.3.

Figure 2.3. Inline styles viewed with Firebug

Firebug

Firebug is a particularly useful tool for examining the DOM in your browser, as

well as monitoring and editing CSS, HTML, and JavaScript (including jQuery). A

debugger’s Swiss Army knife for the Web, it will save you hours by helping you

see exactly what your browser thinks is going on. It’s available as a Mozilla Firefox

extension, or as a stand-alone JavaScript file that you can include in your projects

if you develop using another browser.

Inline styles are a big no-no in HTML/CSS best practice, right? That’s quite true,

and this also applies in jQuery: to keep your code clear and maintainable, it makes

more sense for all the styling information to be in the same place, in your CSS files.

Then, as we’ll soon see, you can simply toggle those styles by attaching or removing

class attributes to your HTML tags.

There are times when it is a good idea to use the css jQuery method in the way

we’ve just seen. The most common application is when quickly debugging code: if

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b

30 jQuery: Novice to Ninja

you just want to outline an element in red to make sure you’ve selected it correctly,

switching to your CSS file to add a new rule seems like a waste of time.

Adding and Removing Classes
If we need to remove the CSS from inline style rules, where should we put it? In a

separate style sheet, of course! We can put the styles we want in a rule in our CSS

that’s targeted to a given class, and use jQuery to add or remove that class from

targeted elements in the HTML. Perhaps unsurprisingly, jQuery provides some

handy methods for manipulating the class attributes of DOM elements. We’ll use

the most common of these, addClass, to move our zebra stripe styles into the CSS

file where they belong.

The addClass function accepts a string containing a class name as a parameter.

You can also add multiple classes at the same time by separating the class names

with a space, just as you do when writing HTML:

$('div').addClass('class_name');

$('div').addClass('class_name1 class_name2 class_name3');

We only want to add one class name, though, which we’ll call zebra. First, we’ll

add the rule to a new CSS file (including it with a link tag in our HTML page):

chapter_02/10_adding_classes/zebra.css

.zebra {

background-color: #dddddd;

 color: #666666;

}

Then, back in our JavaScript file, we’ll modify the selector to use jQuery’s addClass

method rather than css:

chapter_02/10_adding_classes/script.js

$('#celebs tr:even').addClass('zebra');

The result is exactly the same, but now when we inspect the table in Firebug, we’ll

see that the inline styles are gone—replaced by our new class definition. This is

shown in Figure 2.4.

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_02/10_adding_classes/script.js

Selecting, Decorating, and Enhancing 31

Figure 2.4. Adding classes to table rows

That’s much better. Now, if we want to change the appearance of the zebra stripes

in the future, we can simply modify the CSS file; this will save us hunting through

our jQuery code (potentially in multiple locations) to change the values.

There’ll also be times when we want to remove class names from elements (we’ll

see an example of when this is necessary very soon). The action to remove a class

is conveniently known as removeClass. This function is used in exactly the same

way as addClass; we just pass the (un)desired class name as a parameter:

$('#celebs tr.zebra').removeClass('zebra');

It’s also possible to manipulate the id attribute, or any other attribute for that matter,

using jQuery’s attr method. We’ll cover this method in more detail later in the

book.

Enhancing: Adding Effects with jQuery
Now you’ve reached an important milestone. You’ve learned the component parts

of a jQuery statement: the selector, the action, and the parameters. And you’ve

learned the steps to use the statement: make sure the document is ready, select

elements, and change them.

In the following section, we’ll apply these lessons to implement some cool and

useful effects—and with any luck reinforce your understanding of the jQuery basics.

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b

32 jQuery: Novice to Ninja

Hiding and Revealing Elements
The client dislikes the disclaimer on the site—he feels it reflects badly on the

product—but his lawyer insists that it’s necessary. So the client has requested that

you add a button that will remove the text after the user has had a chance to read

it:

chapter_02/11_hiding/index.html (excerpt)

<input type="button" id="hideButton" value="hide" />

We’ve added an HTML button on the page with an ID of hideButton. When a user

clicks on this button we want the disclaimer element, which has an ID of disclaimer,

to be hidden:

chapter_02/11_hiding/script.js (excerpt)

$('#hideButton').click(function() {

 $('#disclaimer').hide();

});

Run this code and make sure the disclaimer element disappears when you click the

hide button.

The part in this example that makes the element actually disappear is the hide action.

So, you might ask, what’s all the other code that surrounds that line? It’s what’s

called an event handler—an understanding of which is crucial to becoming a jQuery

ninja. There are many event handlers we can use (we’ve used the click event

handler here) and we’ll be using a lot of them as we move on.

Event Handlers
Event handlers are named for their function of handling events. Events are actions

and user interactions that occur on the web page. When an event happens, we say

that it has fired. And when we write some code to handle the event, we say we

caught the event.

There are thousands of events fired on a web page all the time: when a user moves

the mouse, or clicks a button, or when a browser window is resized, or the scroll

bar moved. We can catch, and act on, any of these events.

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_02/11_hiding/script.js

Selecting, Decorating, and Enhancing 33

The first event that you were introduced to in this book was the document-ready

event. Yes, that was an event handler: when the document said, “I’m ready” it fired

an event, which our jQuery statement caught.

We used the click event handler to tell jQuery to hide the disclaimer when the

button is clicked:

$('#hideButton').click(function() {

 $('#disclaimer').hide();

});

this

When an event fires, we will often want to refer to the element that fired it. For ex

ample, we might want to modify the button that the user has just clicked on in some

way. Such a reference is available inside our event handler code via the JavaScript

keyword this. To convert the JavaScript object to a jQuery object, we wrap it in the

jQuery selector:

chapter_02/12_this/script.js (excerpt)

$('#hideButton').click(function() {

$(this).hide(); // a curious disappearing button.

});

$(this) provides a nicer way to talk about the element that fired the event, rather

than having to re-select it.

Where’s the Action?

This might be a bit confusing when you’re starting out, as the “action” component

of a jQuery statement seems to have several purposes: we’ve seen it used to run

animations, retrieve values and now, handle events! It’s true—it gets around!

Usually the action’s name gives you a good clue to its purpose, but if you become

lost, it’s best to consult the index. After a while, you’ll sort out the handlers from

the animations from the utilities.

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_02/12_this/script.js

34 jQuery: Novice to Ninja

Revealing Hidden Elements
On with our task! The client has also specified that the user needs to be able to re

trieve the disclaimer in case they close it by mistake. So let’s add another button to

the HTML, this time with an id of showButton:

chapter_02/13_revealing/index.html (excerpt)

<input type="button" id="showButton" value="show" />

We’ll also add another jQuery statement to our script file, to handle showing the

disclaimer when the show button is clicked:

chapter_02/13_revealing/script.js (excerpt)

$('#showButton').click(function() {

 $('#disclaimer').show();

});

Toggling Elements
Having separate buttons for hiding and showing the disclaimer seems like a waste

of valuable screen real estate. It would be better to have one button that performed

both tasks—hiding the disclaimer when it’s visible, and showing it when it’s hidden.

One way we could do this is by checking if the element is visible or not, and then

showing or hiding accordingly. We’ll remove the old buttons and add this nice new

one:

chapter_02/14_toggle_1/index.html (excerpt)

<input type="button" id="toggleButton" value="toggle" />

When it’s clicked, we check to find out if we should show or hide the disclaimer:

chapter_02/14_toggle_1/script.js (excerpt)

$('#toggleButton').click(function() {

 if ($('#disclaimer').is(':visible')) {

 $('#disclaimer').hide();

 } else {

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_02/14_toggle_1/script.js
http:chapter_02/13_revealing/script.js

Selecting, Decorating, and Enhancing 35

$('#disclaimer').show();

 }

});

This introduces the is action. is takes any of the same selectors we normally pass

to the jQuery function, and checks to see if they match the elements it was called

on. In this case, we’re checking to see if our selected #disclaimer is also selected

by the pseudo-selector :visible. It can also be used to check for other attributes:

if a selection is a form or div, or is enabled.

The if Statement

If you’re entirely new to programming (that is, if you’ve only ever worked with

HTML and CSS), that whole block of code is probably quite confusing! Don’t

worry, it’s actually quite straightforward:

if (condition) {

 // this part happens if the condition is true

} else {

 // this part happens if the condition is false

}

The condition can be anything that JavaScript will evaluate to true or false.

This sort of structure is extremely common in any type of programming, and we’ll

be using it a lot for the rest of the book. If you’re uncomfortable with it, the best

way to learn is to play around: try writing different if / else blocks using jQuery’s

is action like the one we wrote above. You’ll get the hang of it in no time!

iswill return true or false depending on whether the elements match the selector.

For our purposes we’ll show the element if it’s hidden, and hide it if it’s visible.

This type of logic—where we flip between two states—is called a toggle and is a

very useful construct.

Toggling elements between two states is so common that many jQuery functions

have a version that allows for toggling. The toggle version of show/hide is simply

called toggle, and works like this:

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b

36 jQuery: Novice to Ninja

chapter_02/15_toggle_2/script.js (excerpt)

$('#toggleButton').click(function() {

 $('#disclaimer').toggle();

});

Every time you click the button, the element toggles between visible and hidden.

It would be nice, however, if the button was labeled with a more useful word than

“toggle,” which might be confusing to our users. What if you want to toggle the text

of the button as well? As is often the case when working with jQuery, there are a

few ways we could approach this problem. Here’s one:

chapter_02/16_toggle_text/script.js (excerpt)

$('#toggleButton').click(function() {

 $('#disclaimer').toggle();

 if ($('#disclaimer').is(':visible')) {

 $(this).val('Hide');

 } else {

 $(this).val('Show');

 }

});

There’s a lot in this code that will be new to you. We’ll save most of the details for

later, but have a look at it and see if you can figure it out yourself. (Hint: remember

that the selector $(this) refers to the element that caused the event to fire—in this

case, the button.)

Progressive Enhancement
Our disclaimer functionality is working perfectly—and our client will doubtlessly

be impressed with it. However, there’s one subtle aspect of our solution that we

should be aware of: if a user came to our site using a browser lacking support for

JavaScript, they’d see a button on the page that would do nothing when they clicked

it. This would lead to a very confused user, who might even abandon our site.

“No support for JavaScript?” you might snort. “What kind of browser is unable to

run JavaScript?!”

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_02/16_toggle_text/script.js
http:chapter_02/15_toggle_2/script.js

Selecting, Decorating, and Enhancing 37

There might be more people than you think browsing the Web without JavaScript:

users on very old computers or limited devices (like mobile phones); people with

visual impairments who require screen readers to use the Web; and those who worry

that JavaScript is an unnecessary security risk and so choose to disable it.

Depending on your site’s demographic, anywhere between 5% and 10% of your

users might be browsing without JavaScript capabilities, and nobody wants to ali

enate 10% of their customers! The solution is to provide an acceptable experience

to these users—and beef it up for everyone else. This practice is known as progressive

enhancement.

For our disclaimer functionality, we might settle on this compromise: we want the

disclaimer to be visible to all users, so we place it in our HTML. Then, we add the

ability to hide it for users with JavaScript. That said, we’d prefer to avoid displaying

the show/hide button to users who’ll be unable to make use of it.

One way of accomplishing this might be to hide our button with CSS, and only

show it via a jQuery css statement. The problem with this trick is that it will fail if

the user’s browser also lacks support for CSS. What we’d really like to do is add

the button to the page via jQuery; that way, only users with JavaScript will see the

button at all. Perfect!

Adding New Elements
So far we’ve seen the jQuery function used for selecting, but it does have another

function of equal importance: creating new elements. In fact, any valid HTML string

you put inside the jQuery function will be created and made ready for you to stick

on the page. Here’s how we might create a simple paragraph element:

$('<p>A new paragraph!</p>')

jQuery performs several useful actions when you write this code: it parses the HTML

into a DOM fragment and selects it—just as an ordinary jQuery selector does. That

means it’s instantly ready for further jQuery processing. For example, to add a class

to our newly created element, we can simply write:

$('<p>A new paragraph!</p>').addClass('new');

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b

38 jQuery: Novice to Ninja

The new paragraph will now be given the class new. Using this method you can

create any new elements you need via jQuery itself, rather than defining them in

your HTML markup. This way, we can complete our goal of progressively enhancing

our page.

innerHTML

Internally, the HTML string is parsed by creating a simple element (such as a div)

and setting the innerHTML property of that div to the markup you provide. Some

content you pass in is unable to convert quite as easily—so it’s best to keep the

HTML fragments as simple as possible.

Once we’ve created our new elements, we need a way to insert in the page where

we’d like them to go. There are several jQuery functions available for this purpose.

The first one we’ll look at is the insertAfter function. insertAfter will take our

current jQuery selection (in this case, our newly created elements) and insert it after

another selected element, which we pass as a parameter to the function.

An example is the easiest way to show how this works. This is how we’d create the

toggle button using jQuery:

chapter_02/17_insert_after/script.js (excerpt)

$('<input type="button" value="toggle" id="toggleButton">')

 .insertAfter('#disclaimer');

$('#toggleButton').click(function() {

 $('#disclaimer').toggle();

});

As shown in Figure 2.5, the button is inserted into our page after the disclaimer,

just as if we’d put it there in our HTML file.

Figure 2.5. A button created and inserted with jQuery

The insertAfter function adds the new element as a sibling directly after the dis

claimer element. If you want the button to appear before the disclaimer element,

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_02/17_insert_after/script.js

Selecting, Decorating, and Enhancing 39

you could either target the element before the disclaimer and use insertAfter, or,

more logically, use the insertBefore method. insertBefore will also place the

new element as a sibling to the existing element, but it will appear immediately

before it:

chapter_02/18_insert_before/script.js (excerpt)

$('<input type="button" value="toggle" id="toggleButton">')

 .insertBefore('#disclaimer');

A quick refresher: when we talk about the DOM, siblings refer to elements on the

same level in the DOM hierarchy. If you have a div that contains two span elements,

the span elements are siblings.

If you want to add your new element as a child of an existing element (that is, if

you want the new element to appear inside the existing element) then you can use

the prependTo or appendTo functions:

chapter_02/19_prepend_append/script.js (excerpt)

$('START!').prependTo('#disclaimer');

$('END!').appendTo('#disclaimer');

As you can see in Figure 2.6, our new elements have been added to the start and

the end of the actual disclaimer div, rather than before or after it. There are more

actions for inserting and removing elements, but as they’re unneeded in this round

of changes, we’ll address them later on.

Figure 2.6. prependTo and appendTo in action

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_02/19_prepend_append/script.js
http:chapter_02/18_insert_before/script.js

40 jQuery: Novice to Ninja

Inserting Multiple Elements

A new item is inserted once for each element that’s matched with the selector. If

your selector matches every paragraph tag, for example, the insertAfter action

will add a new element after every paragraph tag. Which makes it a fairly powerful

function!

Removing Existing Elements
We informed the client that up to 10% of his users might lack JavaScript capabilities

and would therefore miss out on some of the advanced features we’re building. He

asked if we could add a message explaining that JavaScript was recommended for

those people. Obviously the message should be hidden from those who do have

JavaScript.

This seems like a perfect opportunity to learn how to remove HTML elements from

a page using jQuery. We’ll put the message in our HTML and remove it with jQuery;

that way, only those visitors without JavaScript will see it.

Let’s go ahead and add the new warning to our HTML page:

chapter_02/20_removing_elements/index.html (excerpt)

<p id="no-script">

 We recommend that you have JavaScript enabled!

</p>

Now we need to run our code to remove the element from the page. If a user has

JavaScript disabled, our jQuery statements will fail to run and the message will re

main on the screen. To remove elements in jQuery, you first select them (as usual)

with a selector, and then call the remove method:

chapter_02/20_removing_elements/script.js (excerpt)

$('#no-script').remove();

The remove action will remove all of the selected elements from the DOM, and will

also remove any event handlers or data attached to those elements. The remove action

does not require any parameters, though you can also specify an expression to refine

the selection further. Try this example:

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_02/20_removing_elements/script.js

Selecting, Decorating, and Enhancing 41

chapter_02/21_removing_with_selector/script.js (excerpt)

$('#celebs tr').remove(':contains("Singer")');

Rather than removing every tr in the #celebs div, this code will remove only those

rows which contain the text “Singer.” This will come in handy when we look at

some advanced effects in the next chapter.

Thanks to these changes, our page will work nicely for the 10% of our users without

JavaScript, and even better for the remaining 90%! This is a very simple example

of progressive enhancement, but it gives you a good understanding of the funda

mental idea: rather than using jQuery as the underpinnings of your UI, use it to add

some sugar to an already functioning experience. That way, you know no one’s left

behind.

In the interests of keeping our sample code small and focused, we’ll stop short of

delving much further into the topic. But go off and research it for yourself—it’s the

kind of best practice that makes you a better web developer.

Modifying Content
We can do just about anything we want to our elements now: show them, hide them,

add new ones, remove old ones, style them however we like … but what if we want

to change the actual content of an element? Again, jQuery provides a couple of

methods for just this purpose: text and html.

The text and html actions are quite similar, as both set the content for the elements

we’ve selected. We simply pass a string to either function:

chapter_02/22_modifying_content/script.js (excerpt)

$('p').html('good bye, cruel paragraphs!');

$('h2').text('All your titles are belong to us');

In both these examples the matched elements’ contents will change to the string

we’ve provided: every paragraph and h2 tag on the page will be overwritten with

our new content. The difference between text and html can be seen if we try adding

some HTML to the content string:

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_02/22_modifying_content/script.js
http:chapter_02/21_removing_with_selector/script.js

42 jQuery: Novice to Ninja

chapter_02/23_text_vs_html/script.js (excerpt)

$('p').html('Warning! Text has been replaced … ');

$('h2').text('Warning! Title elements can be …');

In this case, our paragraphs will contain bold-faced text, but our h2 tags will contain

the entire content string exactly as defined, including the tags. The action

you use to modify content will depend on your requirements: text for plain text

or html for HTML.

You might wonder, “Can these new actions only set content?” At this stage it should

be no surprise to you that we can also fetch content from our jQuery selections using

the same actions:

chapter_02/24_get_content/script.js (excerpt)

alert($('h2:first').text());

We use the text action supplying no parameters, which returns the text content of

the first h2 tag on the page (“Welcome!”). Like other actions that retrieve values,

this can be particularly useful for conditional statements, and it can also be great

for adding essential information to our user interactions.

Basic Animation: Hiding and Revealing with Flair
All this showing and hiding and changing is useful, though visually it’s somewhat

unimpressive. It’s time to move on to some jQuery techniques that are a bit more,

shall we say, animated.

The core jQuery library includes a handful of basic effects that we can use to spice

up our pages. And once you’ve had enough of these, mosey on over to the jQuery

plugin repository, where you’ll find hundreds more crazy effects.

Keep It Sensible

When dealing with effects and animation on the Web, it’s probably a wise idea

to proceed with your good taste sensors engaged. Remember, at one time the

<blink> tag was considered perfectly sensible!

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_02/24_get_content/script.js
http:chapter_02/23_text_vs_html/script.js

Selecting, Decorating, and Enhancing 43

Fading In and Out
One of the most common (and timeless) effects in jQuery is the built-in fade effect.

To use fading in its simplest form, just replace show with fadeIn or hide with

fadeOut:

chapter_02/25_fade_in_out/script.js (excerpt)

$('#hideButton').click(function() {

 $('#disclaimer').fadeOut();

});

There are also a few optional parameters we can use to modify the effect, the first

of which is used to control the time it takes for the fade to complete. Many jQuery

effects and animations accept the time parameter—which can be passed either as

a string or an integer.

We can specify the time span as a string using one of the following predefined

words: slow, fast, or normal. For example: fadeIn('fast'). If you’d rather have

more fine-grained control over the duration of the animation, you can also specify

the time in milliseconds, as in: fadeIn(1000).

Toggling Effects and Animations
Although jQuery has no specific action for toggling using fades, here’s a little secret:

our original toggle action has a few more tricks up its sleeve than we first thought.

If we pass it a time span parameter, we’ll see that toggle has the ability to animate:

chapter_02/26_toggle_fade/script.js (excerpt)

$('#toggleButton').click(function() {

 $('#disclaimer').toggle('slow');

});

You can see that the width, height, and opacity of the entire element are animated.

If this is a bit much for you, there’s another core jQuery animation effect that does

include built-in toggle actions: sliding.

Sliding eases an element into and out of view, as if it were sliding out from a hidden

compartment. It’s implemented in the same manner as our fade, but with the

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_02/26_toggle_fade/script.js
http:chapter_02/25_fade_in_out/script.js

44 jQuery: Novice to Ninja

slideDown, slideUp, and slideToggle actions. As with the fade effect, we can also

specify a time span:

chapter_02/27_slide_toggle/script.js (excerpt)

$('#toggleButton').click(function() {

 $('#disclaimer').slideToggle('slow');

});

Callback Functions
Many effects (including our slide and fade effects) accept a special parameter known

as a callback function. Callbacks specify code that needs to run after the effect has

finished doing whatever it needs to do. In our case, when the slide has finished

sliding it will run our callback code:

chapter_02/28_callback_functions/script.js (excerpt)

$('#disclaimer').slideToggle('slow', function() {

 alert('The slide has finished sliding!')

});

The callback function is simply passed in as a second parameter to the effect action,

as an anonymous function, much in the same way we provide functions as paramet

ers to event handlers.

Anonymous Functions

In JavaScript, functions that are defined inline (such as our callbacks and event

handlers) are called anonymous functions. They are referred to as “anonymous”

simply because they don’t have a name! You use anonymous functions when you

only require the function to be run from one particular location.

In any situation where we’re using anonymous functions, it’s also possible to pass

a function name yet define the function elsewhere. This is best done when the

same function needs to be called in several different places. In simple cases like

our examples, this can make the code a bit harder to follow, so we’ll stick with

anonymous functions for the moment.

Let’s put our callback functions to practical use. If we want to hide our button after

the disclaimer has finished sliding out of view:

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_02/28_callback_functions/script.js
http:chapter_02/27_slide_toggle/script.js

Selecting, Decorating, and Enhancing 45

chapter_02/29_callback_functions_2/script.js (excerpt)

$('#disclaimer').slideUp('slow', function() {

 $('#hideButton').fadeOut();

});

The disclaimer will slide up, and only once that animation is complete will the

button fade from view.

A Few Tricks
Now that we’ve struck a few high priority requests off the client’s to-do list, let’s be

a bit more showy and add some extra sizzle to the site. We’ll add a few effects and

visual highlights by building on what we’ve learned so far. There’ll be some new

constructs and actions introduced, so it’s worth working through them if this is

your first venture into the world of jQuery.

Highlighting When Hovering
The client is really keen about the zebra-striping usability issue. He’s requested

that, as well as changing the row colors, there should be an additional highlight

that occurs when the user runs the mouse over the table.

We could implement this effect by adding event handlers to the table that deal

with both the mouseover and mouseout events. Then we could add or remove a CSS

class containing a background color specific to elements over which the mouse is

hovering. This is much the same way we’d do it in plain old JavaScript too:

chapter_02/30_hover_highlight/script.css (excerpt)

$('#celebs tr').mouseover(function() {

 $(this).addClass('zebraHover');

});

$('#celebs tr').mouseout(function() {

 $(this).removeClass('zebraHover');

});

Remember that $(this) refers to the selected object—so we’re adding and removing

the zebraHover class to each row as the user hovers the mouse over it. Now we

simply need to add a style rule to our CSS file:

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_02/29_callback_functions_2/script.js

46 jQuery: Novice to Ninja

chapter_02/30_hover_highlight/zebra.css (excerpt)

tr.zebraHover {

 background-color: #FFFACD;

}

Try this out in your browser and you’ll see how great it works. However, it turns

out there’s an even simpler way of achieving the same result: jQuery includes a

hover action, which combines mouseover and mouseout into a single handler:

chapter_02/31_hover_action/script.js(excerpt)

$('#celebs tbody tr').hover(function() {

 $(this).addClass('zebraHover');

}, function() {

 $(this).removeClass('zebraHover');

});

Notice something odd about the hover event handler? Instead of one, it requires

two functions as parameters: one to handle the mouseover event, and one to handle

the mouseout event.

How Many Callbacks?

Some event handlers require a different number of functions. For example, the

toggle event handler can accept any number of functions; it will simply cycle

through each callback one by one each time it fires.

We’re becoming handy at adding and removing class attributes, so it’s probably a

good time to point out another helpful class-related action: toggleClass. You can

guess what it does. It’s an incredibly useful action that adds a class if the element

doesn’t already have it, and removes it if it does.

For example, say we wanted users to be able to select multiple rows from our table.

Clicking once on a table row should highlight it, and clicking again should remove

the highlight. This is easy to implement with our new jQuery skills:

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

Selecting, Decorating, and Enhancing 47

chapter_02/32_toggle_class/script.js (excerpt)

$('#celebs tbody tr').click(function() {

 $(this).toggleClass('zebraHover');

});

Try clicking on the table rows. Cool, huh?

Spoiler Revealer
The latest news section of the StarTrackr! site provides up-to-the-minute juicy

gossip about a range of popular celebrities. The news is a real drawcard on the

site—most users return every day to catch the latest update. The client would like

to build on the hype it’s generating and add to the excitement, so he’s asked for our

help. We’ve suggested a spoiler revealer: the user can try to guess which celebrity

the news is about, before clicking to find the answer.

This kind of functionality would also make a great addition to a site containing

movie reviews, for example. You could hide any parts of the review that give away

details of the movie’s story, but allow users to reveal them if they’ve already seen

the film.

To set up our spoiler revealer, we need to add a new element to the news section

of the site. Any “secrets” that should be hidden by default will be wrapped in a

span element with the class spoiler attached to it:

chapter_02/33_spoiler_revealer/index.html (excerpt)

Who lost their recording contract today?

The Zaxntines!

Let’s break down what our script needs to do: first, we need to hide the answers

and add a new element that enables them to be revealed if the user desires. When

that element is clicked, we need to disclose the answer. Hiding? Adding? Handling

clicks? We know how to do all of that:

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_02/32_toggle_class/script.js

48 jQuery: Novice to Ninja

chapter_02/33_spoiler_revealer/script.js (excerpt)

$('.spoiler').hide();

$('Tell me!')

 .insertBefore('.spoiler');

$('.revealer').click(function() {

 $(this).hide();

 $(this).next().fadeIn();

});

There’s a lot going on here, some of it new, but if you read through the lines one at

a time, you’ll make sense of it. First, we instantly hide all the spoiler elements, and

use the insertBefore action to add a new button before each of them. At this point

the page will display the new “Tell Me!” buttons, and the original spoiler spans

will be hidden.

Next, we select the new buttons we just added and attach click event handlers to

them. When one of the buttons is clicked, we remove the new revealer element

(which we find with $(this)), and fade in the spoiler element that’s next to it. next

is an action we’ve yet to cover. It’s used for traversing the DOM, and unsurprisingly

gives us access to an element’s next sibling (that is, the next element inside the

same container).

If we look at our modified DOM shown in Figure 2.7, we can see that the spoiler

span is the next element after the revealer button. The next action simply moves

our selection to that element. jQuery also gives us access to a previous action that

moves the selection to the element before the one that’s currently selected.

Figure 2.7. The modified DOM

In fact, jQuery has about a dozen different actions you can use to move around the

DOM; previous and next are just two particularly useful ones. We’ll discover more

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_02/33_spoiler_revealer/script.js

Selecting, Decorating, and Enhancing 49

of them as we proceed through the book, or you can consult the jQuery API docu

mentation2 to see them all.

With the hidden spoiler element now under jQuery’s control, we can simply call

fadeIn to reveal the spoiler with a smooth transition.

Before We Move On
We’ve covered so much in the initial chapters that you should now be gaining a

sense of jQuery’s structure and power. With any luck, you’ve already hatched plans

for using it in your current projects. Please do! Whether you’re using it to solve a

pernicious problem or just to add a bell here and a whistle there, dirtying your

hands is by far the best way to cement your knowledge.

One small word of warning—remember the old saying: “When the only tool you

have is a hammer, everything looks like a nail.” jQuery is a great tool, but may be

inappropriate in some instances. If a problem is better solved with simple changes

to your CSS or HTML, that’s what should be done. Of course, while you’re learning,

feel free to do everything with jQuery; just remember that when the time comes to

put your skills into practice, you should always use the best tool for the job.

In the pages that follow, we’ll take the simple jQuery building blocks we’ve learned

here and use them to construct some very cool widgets, effects, and user interaction

that you can start using immediately.

2 http://docs.jquery.com/Traversing

Unleash your inner jQuery ninja today!

http://docs.jquery.com/Traversing
http://docs.jquery.com/Traversing
https://sitepoint.com/bookstore/go/170/25534b
http://docs.jquery.com/Traversing

 jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

Chapter7
Forms, Controls, and Dialogs
In its infancy, the Web was a read-only medium. Discontent with a nearly infinite

collection of linked documents, early web developers wanted more; specifically,

they didn’t just want people to read their web pages about their cats—they wanted

them to sign their guest books and tell them how great their cats were. HTML forms

gave us a feedback mechanism that would eventually give rise to the enormous and

complex web-based applications that we have today.

JavaScript stepped in to help simple HTML form elements emulate many of the

more sophisticated and interactive input controls found in desktop applications,

but the code has often been unwieldy and bloated. jQuery allows us to simplify

control creation and lets us concentrate on turning our ideas into functioning controls

quickly and elegantly.

And it’s lucky for us that it’s quick! Our client is keen to build on the fancy Ajax

controls we’ve built for him. Now that he has his buzzword-compliant features, he

concedes that he probably should have first fixed up some of the forms on the site,

which now look painfully 1999 in comparison. He wants “some inline editing, fancy

form validation messages, cool dialog boxes, and everything—everything—should

232 jQuery: Novice to Ninja

be drag and droppable, like it’s a web site from the future!” Fortunately for us,

jQuery lets us build web sites from the future.

Forms
HTML forms are old. And a bit clunky. And browsers vary wildly in how they deal

with them. Yet, thanks to JavaScript, these forms have become the basis for some

amazingly cool web applications. As always, if JavaScript can do it, jQuery can

make it fun!

We know the drill by now: form elements are DOM elements, so jQuery is great at

manipulating them. But form elements aren’t your typical DOM elements, so there

are a handful of special jQuery tricks for dealing with them more specifically. We’ve

seen quite a few of them throughout the book so far—but now it’s time to focus on

them a little more closely.

Simple Form Validation
Form validation is essential, even if it often seems boring. However, proper, well-

designed and implemented forms can make or break how your users perceive your

site. Who hasn’t had the experience of giving up on a web site because of a particu

larly frustrating form?

Server-side Form Validation

Client-side form validation with jQuery should only be used to assist your users

in filling out a form, and should never be relied upon to prevent certain types of

data being sent to the server. Users with JavaScript disabled will be unhindered

by your jQuery validation, so they can submit any values they want. Because of

this, if there’s any security risk from users submitting malicious data through your

forms, that data needs to be thoroughly validated on the server side.

Although jQuery avoids dealing with the nitty-gritty of form validation, it does

provide some convenient methods for accessing and setting form values—and that’s

half the battle! You can select form fields like any other element, but there are some

extra filters to make your code more efficient and readable.

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

Forms, Controls, and Dialogs 233

The :input filter, for example, selects all elements that are inputs, select boxes,

textareas, or buttons. You’d use it as you would any filter. Here’s how we’d give all

of our form elements a lovely lemon chiffon background:

$('#myForm:input').css('background-color', 'lemonchiffon')

If you want to be more choosy about which elements you’re selecting, there are a

number of more specific form element filters: :text, :password, :radio, :checkbox,

:submit, :button, :image (for image buttons), and :file. And remember, you’re

free to apply multiple filters in a single selection.

Furthermore, there are some additional filters that let you select form elements

based on their state and value. The :enabled and :disabled filters will fetch ele

ments based on their disabled attribute, and :checked and :selected help you

find radio buttons, select box items, and checkboxes that are checked or selected.

:checked and :selected in Conditional Logic

These filters are particularly helpful when you need to perform different actions

depending on the checked or selected state of a checkbox or radio button. For

example, you can check to see if a box is checked with

if($(this).is(':checked')).

After you’ve selected your elements, it’s time to find their values so you can validate

them against your requirements. We’ve already used the val function enough to

know what it does: it returns the value of a form field. We can now perform some

simple validation—let’s test to see if any text boxes in a form are empty:

chapter_07/01_simple_validation/script.js (excerpt)

$(':submit').click(function(e) {

 $(':text').each(function() {

 if ($(this).val().length == 0) {

 $(this).css('border', '2px solid red');

 }

 });

 e.preventDefault();

});

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_07/01_simple_validation/script.js

234 jQuery: Novice to Ninja

Fill out one or two of the text inputs, and try submitting the form; any input you

leave blank will be highlighted in red.

The val action works for select boxes and radio buttons too. As an example, let’s

alert the radio button value when the user changes the selection:

chapter_07/02_radio_buttons/script.js (excerpt)

$(':radio[name=sex]').change(function() {

 alert($(this).val());

});

This change event is fired whenever a value in a form has changed. For checkboxes,

select boxes, and radio buttons, this occurs whenever the value changes from its

current value. For a text input or textarea, it fires whenever a user changes the

element’s value—but only when the focus is moved away from the element. This

is a great way to implement some simple inline validation.

Let’s revisit our simple validation example, except that this time we’ll test for empty

fields whenever the user moves to the next field. For this, we’ll need to capture the

blur event, which fires whenever a form field loses focus. This is perfect for inline

validation:

chapter_07/03_simple_inline_validation/script.js (excerpt)

$(':input').blur(function() {

 if ($(this).val().length == 0) {

 $(this)

 .addClass('error')

 .after('This field must … ');

 }

});

$(':input').focus(function() {

 $(this)

 .removeClass('error')

 .next('span')

 .remove();

});

We’re just checking that the fields are filled in, but any type of validation can be

implemented in this way. You can check for a minimum or maximum number of

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_07/03_simple_inline_validation/script.js
http:chapter_07/02_radio_buttons/script.js

Forms, Controls, and Dialogs 235

characters, or a specific format using regular expressions, or check that a password

confirmation field matches the original password field.

Avoid Over-validating!

One important point to consider when designing form validation: keep it simple!

The more rules you add, the more likely you’ll have forgotten an edge case, and

wind up frustrating some of your users. Offer hints, sample inputs, and guidance,

instead of rules that will prevent users from submitting the form if their postal

code is formatted differently to what you expected!

The submit Event
We also can hook into the submit event, which is fired when the form’s submitted.

This is a better technique than listening for a click event on the submit button, as

it will also fire if the user submits the form by pressing the Enter key. If you return

false from the submit event handler, the form will not be submitted. In our example

below, we’ll check all of the text boxes in the form. If any are left empty, we’ll pop

up a message, and focus on the offending element:

chapter_07/04_submit_event/script.js (excerpt)

$("form").submit(function() {

 var error = false;

 $(this).find(":text").each(function() {

 if ($(this).val().length == 0) {

 alert("Textboxes must have a value!");

 $(this).focus();

 error = true;

 return false; // Only exits the “each” loop

 }

 });

 if (error) {

 return false;

 }

 return true;

});

With all of these raw, form-based tools at your disposal you can easily add validation

to your forms on a page-by-page basis. If you plan your forms carefully and develop

a consistent naming standard, you can use jQuery to generalize your validation so

that it can apply to many forms.

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_07/04_submit_event/script.js

236 jQuery: Novice to Ninja

But—as we’ve already seen—there are an enormous number of edge cases to consider

when designing form validation. If you need really bulletproof validation and would

rather spend your time designing the user interaction, perhaps you should consider

the Validation Plugin.

Form Validation with the Validation Plugin
Building your own inline validation system can be a daunting endeavor; you need

to know regular expressions to be able to verify that an email address or phone

number is valid, for example. The Validation plugin solves a lot of these problems

for you, and lets you add sophisticated and customizable inline validation to most

forms with minimal effort.

We’ll stop short of going over every option available for use with this plugin here

(that would fill a whole chapter!), but we’ll look at the most common ones.

Let’s start with the form. To illustrate as many of the different validation options,

we’ll go with a sign-up form that includes password and password confirmation

fields:

chapter_07/05_validation_plugin/index.html (excerpt)

<div id="signup">

 <h2>Sign up</h2>

<form action="">

 <div>

 <label for="name">Name:</label>

 <input name="name" id="name" type="text"/>

 </div>

 <div>

 <label for="email">Email:</label>

 <input name="email" id="email" type="text"/>

 </div>

 <div>

 <label for="website">Web site URL:</label>

 <input name="website" id="website" type="text" />

 </div>

<div>

 <label for="password">Password:</label>

 <input name="password" id="password" type="password" />

 </div>

<div>

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

Forms, Controls, and Dialogs 237

<label for="passconf">Confirm Password:</label>

 <input name="passconf" id="passconf" type="password" />

 </div>

<input type="submit" value="Submit!" />

 </form>

</div>

To use the Validation Plugin, we simply need to call validate on a selection of our

form, passing it any options we want to use. The most important option is rules,

which is where you need to define rules used to validate the users’ input:

chapter_07/05_validation_plugin/script.js (excerpt)

$('#signup form').validate({

 rules: {

 name: {

 required: true,

 },

 email: {

 required: true,

 email: true

 },

 website: {

 url: true

 },

 password: {

 minlength: 6,

 required: true

 },

 passconf: {

 equalTo: "#password"

 }

 },

 success: function(label) {

 label.text('OK!').addClass('valid');

 }

});

There are a considerable number of predefined validation rules available, and of

course you can define your own. You’ll need to consult the documentation to learn

about all of them. Here we’ve used required, email, url, minlength, and equalTo.

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_07/05_validation_plugin/script.js

238 jQuery: Novice to Ninja

required marks a field as required, so it will be flagged as an error if it’s empty.

email and url validate the format of the field; emails must contain an @, URLs must

begin with http://, and so on. Inside the rules object, we define an object for each

form field, named after the field’s id. minlength is self-explanatory (and, as you’d

expect, there’s a corresponding maxlength). Finally, equalTo allows us to specify

a jQuery selector pointing at another form field, the contents of which will be

checked against the current field to see if they’re the same.

The Validation plugin will add a new label element after each form field to contain

the error message; by default this will have a class of error, so you’re free to style

it in as stern a fashion as you’d like.

By default, the plugin will only display a message if a field’s value is invalid. User

research has shown, however, that users complete forms more quickly and confid

ently if they’re also provided with feedback for correct entries. That’s why we’re

using the success callback to set the value of the message label, and giving it a

class to style it with a nice green check mark. success is passed the message element

itself, so you can manipulate it in any way you’d like. Our sample form is illustrated

mid-completion in Figure 7.1.

Figure 7.1. Inline validation with the Validation plugin

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

Forms, Controls, and Dialogs 239

It’s also possible to customize the error messages themselves, and it’s worth noting

that there are a number of localized variants in the localization folder of the plugin

directory.

This example is just the beginning of what’s possible with the Validation plugin.

Make sure you consult the documentation and the examples in the plugin’s demo

folder to explore all the available features.

Maximum Length Indicator
Our client wants to limit the feedback form content field to 130 characters. “Like

Twitter?” you ask. “Why would you want to do that?” He rambles off a spiel about

targeted feedback and attention span and … but we know he just wants to copy

Twitter. The “remaining characters” count is another feature making a comeback

these days, though the idea of setting a limit on the length of input is as old as

computers themselves.

By displaying the remaining characters next to the form field, users have clear ex

pectations of how much they can type.

We’ll set a class of maxlength on the textarea we want to target with this effect.

Then, in our script, we append a span after it and add a new kind of event handler:

chapter_07/06_max_length_indicator/script.js (excerpt)

$('.maxlength')

 .after("")

 .next()

 .hide()

 .end()

 .keypress(function(e) {

 // handle key presses;

 });

After we append the span, the textarea is still the selected element. We want to

modify the new span, so we move to it with the next action. Then we hide the span,

but now we need to go back to our form element to add an event handler, so we use

the end action. The end action moves the jQuery selection back to where it was before

the last time you changed it. In our example, hide doesn’t change the selection, but

next does. So when we call end, the selection moves back to the state it was in before

we called next.

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_07/06_max_length_indicator/script.js

240 jQuery: Novice to Ninja

Now that we’re back on the form element, we attach a keypress event handler. As

you might expect, this event fires whenever a key is pressed. Here we can check

whether another character is still allowed—and prevent the user from adding more

characters if it’s not:

chapter_07/06_max_length_indicator/script.js (excerpt)

var current = $(this).val().length;

if (current >= 130) {

 if (e.which != 0 && e.which != 8) {

 e.preventDefault();

 }

}

Now comes the meat of the effect: we grab the value of the element and use the

JavaScript length property to give us its length. If the current number of characters

is greater than the maximum length, we’ll prevent the key press from registering by

using the preventDefault action of the event.

When handling a keypress event, the event has a which property corresponding to

the ASCII code of the key pressed. Note that we’ve allowed the delete (ASCII code

0) and backspace (ASCII code 8) keys to function regardless of the number of

characters. If we didn’t do this, the user could paste in a response that exceeded

the limit—yet be unable to delete any characters to make it fit:

chapter_07/06_max_length_indicator/script.js (excerpt)

$(this).next().show().text(130 - current);

The last task to do is display the number of remaining characters in the span we

created. We move to the next element, make sure it’s visible, and display the results

of our simple calculation to indicate how many more characters are allowed.

Form Hints
A nice trick to decrease the amount of space a form takes up on the page is to move

the label for a form field inside the input itself. When users move their focus to the

field, the label magically vanishes, allowing them to start typing. If they leave the

field empty and move away, the original label text appears back in its place.

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_07/06_max_length_indicator/script.js
http:chapter_07/06_max_length_indicator/script.js

Forms, Controls, and Dialogs 241

This technique is only appropriate for short and simple forms. In larger forms, it’s

too easy for users to lose track of what each particular field is for in the absence of

visible labels. This can be a problem if they need to revisit or change values they’ve

already entered.

That said, for simple forms like login or search forms, where most users are very

familiar with what each field is for, it can be a great way to save space and streamline

your interface. Looking at Figure 7.2, you could probably come up with a good guess

of how to implement the effect yourself. The only tricky part is how to return the

default value to the input when the user moves on without entering anything into

it.

Figure 7.2. Form hints

If you guessed that we’d do it using the data action, you’d be correct. We’ll store

the default value in the data for each clearable item—and if the value is still empty

when the user leaves, we’ll restore it from there:

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b

242 jQuery: Novice to Ninja

chapter_07/07_form_hints/script.js (excerpt)

$('input.clear').each(function() {

 $(this)

 .data('default', $(this).val())

 .addClass('inactive')

 .focus(function() {

 $(this).removeClass('inactive');

 if ($(this).val() == $(this).data('default') || '') {

 $(this).val('');

 }

 })

 .blur(function() {

 var default_val = $(this).data('default');

 if ($(this).val() == '') {

 $(this).addClass('inactive');

 $(this).val($(this).data('default'));

 }

 });

});

We need to go through each element and save the default value when the document

loads. Then we keep track of the focus and blur events that will fire whenever the

user moves into or out of our inputs. On focus, we test if the value of the text box

is the same as our default text; if it is, we clear the box in preparation for the user’s

input.

On the way out, we check to see if the text box is empty, and if it is we put the ori

ginal value back in. We add and remove a class as we go; this allows us to style the

form fields differently when they’re displaying the hint. In our example, we’ve

simply made the text color a little lighter.

Check All Checkboxes
With text inputs firmly under our control, it’s time to move on to other form controls.

We’ll start off with a bugbear of StarTrackr’s users: there’s too much checkbox

ticking required when filling in the various celebrity information forms. This is

resulting in skewed data, bored users, and inaccurate reports on celebrities. Our

client has asked that each category of statistic have a “check all” box, so that the

user can toggle all of the checkboxes off or on at once.

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_07/07_form_hints/script.js

Forms, Controls, and Dialogs 243

Knowing the jQuery form filters makes this task a walk in the park. We just have

to select all checkboxes in the same group, and check or clear them. The way we

group checkboxes together in HTML forms is by giving all of the related items the

same name:

chapter_07/08_check_all/index.html (excerpt)

<div class="stats">

 Reason for Celebrity

 <input name="reason"

type="checkbox" value="net" />Famous on the internet

 <input name="reason"

type="checkbox" value="crim" />Committed a crime

 <input name="reason"

type="checkbox" value="model" />Dates a super model

 <input name="reason"

type="checkbox" value="tv" />Hosts a TV show

 <input name="reason"

type="checkbox" value="japan" />Big in Japan

 <hr />

 <input class="check-all"

name="reason" type="checkbox" />Check all

</div>

We’ve given the last checkbox the special class of check-all. This box will act as

our master checkbox: when it is checked or unchecked, our code springs to life.

First, we construct a selector string that will select all of the checkboxes with the

same name as the master checkbox. This requires gluing a few strings together, to

end up creating a selector that looks like :checkbox[name=reason].

We then set all of the related checkboxes to have the same checked value as our

master checkbox. Because our code is running after the user has changed the value,

the checked property will reflect the new state of the checkbox—causing all of the

related items to be either selected or deselected accordingly:

chapter_07/08_check_all/script.js (excerpt)

$('.check-all:checkbox').change(function() {

 var group = ':checkbox[name=' + $(this).attr('name') + ']';

 $(group).attr('checked', $(this).attr('checked'));

});

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_07/08_check_all/script.js

244 jQuery: Novice to Ninja

Performance Issues

If your page is large, trawling through every DOM node looking for checkboxes

can be slow. If you’re noticing pages becoming unresponsive, you might want to

investigate the context parameter of the jQuery selector, which limits where

jQuery will hunt for your selections. We’ll cover the context parameter in

Chapter 8.

Inline Editing
Inline editing (aka edit in place) was one of the first effects that truly showed Ajax’s

power to create naturally helpful controls. The first time you used an inline edit

box you were amazed; every time after that it was unnoticeable—it just worked like

it should work.

There are a number of ways you can recreate the effect. The easiest way is to disguise

your form fields as labels: remove the borders, give them the same background

color as your page, and add borders back in when the users focuses on it! This is a

great cheat, and means your form acts just like a regular one (because it is). However,

this can be tricky to accomplish, and require a lot of extra markup and styles if you

want many different parts of the page to be editable.

As a result, a more common approach is to allow the editing of non-form elements:

paragraph tags and title tags, for example. When the user clicks on the tag, the

contents are replaced with a text box or textarea that the user can interact with.

When the task is complete, the original tags are replaced with the new content.

We’ll use classes to mark content as being editable. For simple one-liners, we’ll use

input elements (by assigning the class editable), and for longer passages we’ll use

textareas (which we’ll give the class name editable-area). We’ll also be sure to

assign each element a unique id. This is so we can send the data to the server for

updating in the database, and reload the new data on the next pageload:

chapter_07/09_inline_editing/index.html (excerpt)

<h3 id="celeb-143-name" class="editable">Glendatronix</h3>

<p id="celeb-143-intro" class="editable-area">

 Glendatronix floated onto the scene with her incredible debut …

</p>

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

Forms, Controls, and Dialogs 245

To make it work, we need to capture a few events. The first is the hover event, to

add an effect so the user can see that the element is editable (we’ll go with a tried

and tested yellow background color).

We also want to capture the click event—which will fire when the user clicks on

the editable content—and the blur event, which signifies the end of editing:

chapter_07/09_inline_editing/script.js (excerpt)

$(".editable, .editable-area")

 .hover(function() {

 $(this).toggleClass("over-inline");

 })

 .click(function(e) {

 // Start the inline editing

 }).blur(function(e) {

 // End the inline editing

 });

When the user clicks an editable area, our code kicks in. First, we grab a reference

to the element that was clicked and store it in the $editable variable (to prevent

us having to reselect it every time). We’ll also check for the active-inline class

with hasClass. If the element already has the active-inline class, it’s already an

edit box. We’d rather not replace the edit box with another edit box:

chapter_07/09_inline_editing/script.js (excerpt)

// Start the inline editing

var $editable = $(this);

if ($editable.hasClass('active-inline')) {

 return;

}

Next up, we want to grab the contents of the element—and then remove it. To obtain

the contents we’ll just save the html data to a variable … but we’ll also use the

$.trim method to remove whitespace from the start and end of the content string.

This is necessary because, depending on how your HTML is laid out, the string

could have extra carriage returns and line spaces that we want to prevent showing

up in the text box.

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_07/09_inline_editing/script.js
http:chapter_07/09_inline_editing/script.js

246 jQuery: Novice to Ninja

Then we add our active class, which serves the dual purpose of indicating that

editing is in process, and providing a hook for our styles. Finally, we clear out the

current element with the empty action. This command is similar to remove, except

that calling empty on an element will result in all of its children being removed,

rather than the element itself:

chapter_07/09_inline_editing/script.js (excerpt)

var contents = $.trim($editable.html());

$editable

 .addClass("active-inline")

 .empty();

Chaining with empty and remove

It’s important to remember that any jQuery actions you chain after a remove or

empty command will be applied to the removed selection and not the selection

that you had before you removed the elements. The reasoning behind this is that

if you simply threw away the elements, they’d be lost forever. This way you have

the option to keep them around, process them, or store them for future use.

Finally, it’s time to insert our brand-new text box or textarea. We will check for

the editable class to determine which kind of form element we need to append

(remember that we indicated multiline content with editable-area). We set the

new element’s value with the contents of the elements we removed, and append it

to the target element:

chapter_07/09_inline_editing/script.js (excerpt)

// Determine what kind of form element we need

var editElement = $editable.hasClass('editable') ?

'<input type="text" />' : '<textarea></textarea>';

// Replace the target with the form element

$(editElement)

 .val(contents)

 .appendTo($editable)

 .focus()

.blur(function(e) {

 $editable.trigger('blur');

 });

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_07/09_inline_editing/script.js
http:chapter_07/09_inline_editing/script.js

Forms, Controls, and Dialogs 247

You might be curious about the use of the trigger function. It’s simply a different

way to cause an event to fire (so, in this example, we could also have used the

$editable.blur() syntax we’ve already seen). The trigger action is more flexible

than its shorter counterpart—but for now we’ll just stick with the basic usage.

trigger is being used in this example for clarity: to show whoever is reading the

code that we want to manually fire an event. In this case we’re just passing on the

event; the input was blurred, so we tell the original element that it’s time to finish

editing. We could manage all of this inside the input box’s blur event handler, but

by delegating the event like this, we avoid nesting our code another level (which

would make it harder to read). It also makes sense to let the original element deal

with its own logic.

The counterpart to trigger is bind. bind lets us add event handlers to an object.

Sound familiar? So far we’ve been binding events by using shorthand convenience

methods like click, hover, ready, and so on. But if you pop the hood, you’ll see

that internally they all rely on bind.

The bind action takes a string containing the name of the event to bind, and a call

back function to run. You can also bind multiple events to an item in a single call

by wrapping them in an object. For example, our code attached three separate events

to .editable and .editable-area elements: click, hover, and blur. If you wanted

to, you could rewrite that with the bind syntax:

$('.editable, .editable-area').bind({

 hover: function(e) {

 // Hover event handler

 },

 click: function(e) {

 // Click event handler

 },

 blur: function(e) {

 // Blur event handler

 }

});

Let’s return to our example; with the editing over, we can go back to our default

state. We’ll grab the value from the form element, and send it to the server with

$.post, putting a “Saving …” message in place as we do so. When the POST is done,

we eliminate the message and replace it with the updated value. As with the Ajax

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b

248 jQuery: Novice to Ninja

functionality we saw in the previous chapter, we’re faking a server-side response

with an empty save file. In a real world application, you’d want to check that the

changes had actually been saved to the database by checking the response data:

chapter_07/09_inline_editing/script.js (excerpt)

.blur(function(e) {

 // end the inline editing

 var $editable = $(this);

 var contents = $editable.find(':first-child:input').val();

 $editable

 .contents()

 .replaceWith('<em class="ajax">Saving … ');

 // post the new value to the server along with its ID

 $.post('save',

 {id: $editable.attr('id'), value: contents},

 function(data) {

 $editable

 .removeClass('active-inline')

.contents()

 .replaceWith(contents);

 });

});

There are two new jQuery functions in this block of code, but both of them are fairly

self-explanatory. contents() returns the entire contents of a DOM node, which can

include other DOM elements and/or raw text, and replaceWith() swaps whatever

you’ve selected with whatever you pass to it. Be careful when using the latter

method; in our example we know that contents()will only return one element—but

if it returned multiple elements, each of those elements would be replaced with the

same loading message!

Autocomplete
We’ve appeased the client—he’s having a blast playing with the inline edit fields

over in the corner. While we have a few minutes up our sleeves until his next request,

let’s really impress him by having the “last known whereabouts” field of the celebrity

form autocomplete from a list of major cities. The resulting functionality is illustrated

in Figure 7.3.

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_07/09_inline_editing/script.js

Forms, Controls, and Dialogs 249

We’ll use the Autocomplete plugin from the jQuery plugin repository. It’s a full-

featured and stable plugin that provides exactly the functionality we need, with

minimum weight.

Figure 7.3. Autocompleting “last known whereabouts” field

Firstly, we need the plugin. Head over to the repository and grab it,1 have a quick

look at the examples, then include it your page.

We’ll also need to set some CSS styles. There’s an example CSS file included with

the plugin, so you can gain some idea of the classes that are added. We’ve used

several of these styles to give our drop-down suggestion list a standard appearance.

The Autocomplete plugin attaches itself to a select box. We’re applying it to the

location field in our simple form:

chapter_07/10_autocomplete/index.html (excerpt)

<label for="location">Last known whereabouts:</label>

<input type="text" id="location"/>

Now let’s see what the Autocomplete plugin can do for us. By default, it requires a

local collection of data stored in an array; this is perfect for us, as we want to source

our data from an HTML list on the page:

1 http://docs.jquery.com/Plugins/Autocomplete

Unleash your inner jQuery ninja today!

http://docs.jquery.com/Plugins/Autocomplete
https://sitepoint.com/bookstore/go/170/25534b
http://docs.jquery.com/Plugins/Autocomplete

250 jQuery: Novice to Ninja

chapter_07/10_autocomplete/script.js (excerpt)

var cities = ['New York', 'Melbourne', 'Montreal', 'London' …];

$('#location').autocomplete(cities,{

 autoFill: true,

 selectFirst: true,

 width: '240px'

});

We’ve simply passed in a JavaScript array, but Autocomplete also allows us to pass

in a URL, in which case it will retrieve the list of potential values via Ajax. Auto-

complete will expect a plain-text return comprising one value per line, which should

be easy to obtain after a quick chat with your back-end developers!

The above code is enough to get it up and running, but we can also specify a bunch

of options. autoFill gives us a nice type-ahead effect (filling out the text box with

the currently suggested completion), matchContainswill cause it to match substrings

of words, rather than just the first letters, and so on. There’s a lot you can fine-tune,

so it’s worth having a quick study of the options list.

The Autocomplete plugin also fires the result event when the user chooses an

option. It will give us the name of the tag that was selected as the second parameter

passed to our event handler (after the event object). For example, this would alert

the selected option when it’s selected:

$('#location')

 .autocomplete(cities)

 .result(function(event, selection) {

 alert(selection);

 });

Very simple, but very funky. And the client is still playing with the last toy we built

for him! Perhaps we’re a bit too good at playing with form elements, and better return

to the to-do list!

Star Rating Control
Building a large celebrity-stalking community is our client’s primary goal; he’s

starting to realize that the users of his site are becoming his product—a product he

can start to sell to advertisers. Keen to explore this possibility, he wants to increase

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_07/10_autocomplete/script.js

Forms, Controls, and Dialogs 251

user engagement, and help his users feel important. He has to look after his product,

after all. We’ve thought about this a bit, and tossed him a star rating idea—after all,

people love nothing more than to express their feelings through the assignment of

gold stars. Our control will appear as shown in Figure 7.4.

Figure 7.4. Star rating control

The basis for our star rating control is a radio button group; it’s perfect, as the browser

enforces a single selection from the group. You can select the range that you want

the user to choose from, simply by adding the correct number of buttons:

chapter_07/11_star_ratings/index.html (excerpt)

<div class="stars">

 <label><input id="rating-1" name="rating" type="radio" value="1"/>

➥1 Star</label>
 <label><input id="rating-2" name="rating" type="radio" value="2"/>

➥2 Stars</label>
 <label><input id="rating-3" name="rating" type="radio" value="3"/>

➥3 Stars</label>
 <label><input id="rating-4" name="rating" type="radio" value="4"/>

➥2 Stars</label>

</div>

The hard part, of course, is replacing these radio buttons with our star control. You

can try to grapple with styling the HTML controls with only CSS, but it will be

much easier and more flexible if you split the control into two parts: the underlying

model that stores the data, and the shiny view with stars. The model, in this case,

is the original HTML radio button group. Our plan of attack is to hide the radio

buttons, and display a list of links that we’ve added via jQuery, styled to look like

stars. Interacting with the links will switch the selected radio button. Users without

JavaScript will simply see the radio buttons themselves, which is fine by us.

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b

252 jQuery: Novice to Ninja

For the stars themselves, we will again rely on CSS sprites. This way our control

will only be reliant on a single image (shown in Figure 7.5), which saves on HTTP

requests and makes it easier for our graphic designers to edit.

Figure 7.5. Star CSS sprite image

Our CSS will apply the CSS sprite image to the links we create that represent half-

stars. To move between the different image states, we just need to update the

background-position property:

chapter_07/11_star_ratings/stars.css (excerpt)

.stars div a {

 background: transparent url(../../css/images/sprite_rate.png)

➥0 0 no-repeat;

 display: inline-block;

 height: 23px;

 width: 12px;

 text-indent: -999em;

 overflow: hidden;

}

.stars a.rating-right {

 background-position: 0 -23px;

 padding-right: 6px;

}

.stars a.rating-over { background-position: 0 -46px; }

.stars a.rating-over.rating-right { background-position: 0 -69px; }

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

Forms, Controls, and Dialogs 253

.stars a.rating { background-position: 0 -92px; }

.stars a.rating.rating-right { background-position: 0 -115px; }

We’ve decided to make the user select a rating out of four stars, rather than the

usual five. Why? User psychology! Offer a person a middle road and they’ll take it;

by having no middle we make the users think a bit more about their selection. We

achieve better results, and we’ll be better able to present users with the best content

(as chosen by them)!

But four is a limited scale—that’s why we want to allow for half-star ratings. This

is implemented via an optical illusion—you probably noticed that our star images

are chopped in half. Our HTML will contain eight radio buttons, and they’ll each

be worth half a star. There’s two parts to the code for transforming our eight radio

buttons into four stars. First, the createStars function will take a container with

radio buttons and replace it with star links. Each star will then be supplemented

with the proper event handlers (in the addHandlers method) to let the user interact

with the control. Here’s the skeleton of our starRating object:

chapter_07/11_star_ratings/script.js (excerpt)

var starRating = {

 create: function(selector) {

 $(selector).each(function() {

 // Hide radio buttons and add star links

 });

 },

 addHandlers: function(item) {

 $(item).click(function(e) {

 // Handle star click

 })

 .hover(function() {

 // Handle star hover over

 },function() {

 // Handle star hover out

 });

 }

}

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_07/11_star_ratings/script.js

254 jQuery: Novice to Ninja

The create method iterates through each container matching the selector we pass

in, and creates a list of links that act as a proxy for the radio buttons. These links

are what we’ll style to look like stars. It will also hide the original form elements,

so the user only sees our lovely stars:

chapter_07/11_star_ratings/script.js (excerpt)

$(selector).each(function() {

 var $list = $('<div></div>');

 // loop over every radio button in each container

 $(this)

 .find('input:radio')

 .each(function(i) {

 var rating = $(this).parent().text();

 var $item = $('')

 .attr('title', rating)

.addClass(i % 2 == 1 ? 'rating-right' : '')

 .text(rating);

 starRating.addHandlers($item);

 $list.append($item);

 if ($(this).is(':checked')) {

 $item.prevAll().andSelf().addClass('rating');

 }

 });

We start by creating a container for the new links (a div element); we’ll be creating

one new link for each of the radio buttons we’re replacing. After selecting all the

radio buttons with the :radio selector filter, we take each item’s rating and use it

to create a hyperlink element.

Conditional Assignment with Modulus

For the addClass action, we’re specifying the class name conditionally with a

ternary operator (see the section called “Fading Slideshow” in Chapter 4), based

on a bit of math. As we’ve done earlier in the book, we’re using the modulus (%)

operator to determine whether the index is even or odd. If the index is odd, we’ll

add the rating-right class; this makes the link look like the right side of a

star.

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_07/11_star_ratings/script.js

Forms, Controls, and Dialogs 255

Once our link is ready, we pass it to the addHandlers method—this is where we’ll

attach the events it needs to work. Then, we append it to the list container. Once

it’s in the container, we see if the current radio button is selected (we use the

:checked form filter). If it’s checked, we want to add the rating class to this half-

star, and to all of the half-stars before it. Any link with the rating class attached

will be assigned the gold star image (which will allow users to see the current rating).

To select all of the elements we need to turn gold, we’re going to enlist the help of

a couple of new jQuery actions: prevAll and andSelf. The prevAll action selects

every sibling before the current selection (unlike the prev action, which only selects

the immediately previous sibling). For our example, we want to add the class to

the previous siblings and the current selection. To do so, we apply the andSelf

action, which simply includes the original selection in the current selection. Now

we have all of the links that will be gold, so we can add the class.

Other Traversal Methods

You might have guessed that, along with prevAll, jQuery provides us with a

nextAll method, which grabs all of an element’s siblings occurring after it in the

same container. jQuery 1.4 has also introduced two new companion methods:

prevUntil and nextUntil. These are called with a selector, and will scan an

element’s siblings (forwards or backwards, depending on which one you’re using)

until they hit an element that matches the selector.

So, for example, $('h2:first').nextUntil('h2'); will give you all the

elements sitting between the first h2 on the page and the following h2 in the same

container element.

If you pass a second parameter to prevUntil or nextUntil, it will be used as a

selector to filter the returned elements. So, for example, if we had written next-

Until('h2', 'div'), it would only return div elements between our current

selection and the next h2.

After doing all this hard work, we can now add the new list of links to the control,

and get rid of the original buttons. Now the user will only interact with the stars:

chapter_07/11_star_ratings/script.js (excerpt)

// Hide the original radio buttons

$(this).append($list).find('input:radio').hide();

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_07/11_star_ratings/script.js

256 jQuery: Novice to Ninja

The control looks like it’s taking shape now—but it doesn’t do anything yet. We

need to attach some event handlers and add some behavior. We’re interested in

three events. When users hover over a star, we want to update the CSS sprite to

show the hover state; when they move away, we want to revert the CSS sprite to its

original state; and when they click, we want to make the selection gold:

chapter_07/11_star_ratings/script.js (excerpt)

$(item).click(function(e) {

 // React to star click

})

.hover(function() {

 $(this).prevAll().andSelf().addClass('rating-over');

},function() {

 $(this).siblings().andSelf().removeClass('rating-over');

});

The hover function is the easiest: when hovering over, we select all of the half-stars

before—including the current half-star—and give them the rating-over class using

prevAll and andSelf, just like we did in the setup. When hovering out, we cover

our bases and remove the rating-over class from all of the links. That’s hovering

taken care of.

Now for the click:

chapter_07/11_star_ratings/script.js (excerpt)

// Handle Star click

var $star = $(this);

var $allLinks = $(this).parent();

// Set the radio button value

$allLinks

 .parent()

 .find('input:radio[value=' + $star.text() + ']')

 .attr('checked', true);

// Set the ratings

$allLinks.children().removeClass('rating');

$star.prevAll().andSelf().addClass('rating');

// prevent default link click

e.preventDefault();

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_07/11_star_ratings/script.js
http:chapter_07/11_star_ratings/script.js

Forms, Controls, and Dialogs 257

The important part of handling the click event is to update the underlying radio

button model. We do this by selecting the correct radio button with the :radio filter

and an attribute selector, which searches for the radio button whose value matches

the current link’s text.

With the model updated, we can return to messing around with the CSS sprites.

First, we clear the rating class from any links that currently have it, then add it

to all of the links on and before the one the user selected. The last touch is to cancel

the link’s default action, so clicking the star doesn’t cause it to fire a location change.

Controls
That takes care of our client’s primary concern: form usability. Now we can start

doing some of the really fun stuff. jQuery and jQuery UI are the perfect tools for

moving beyond the primitive HTML form controls we all know and accept. Once

we leave the stuffy confines of the Web’s ancient history behind, we find that the

ability to create amazing new controls is limited only by our imagination. After all,

there should be more ways to interact with a web site than entering some text in a

box!

Date Picker
Our client wants to add a “CelebSpotter” section to the site, where his users will

be able to report celebrity spottings. Of course, they’ll need to report the date and

time of the spotting. Early tests of this functionality showed that users were often

confused by the date format they were required to enter. This problem was partially

offset by adding sample data and format hinting, but the client wants to take it further

and add a fancy date picker to the form.

If you’ve ever sat down and created a reasonably functional date picker in JavaScript,

you’d be inclined to avoid ever doing it again. It’s a lot of hard work for a control

that’s, in the end, just a date picker. Mind you, date pickers are crucially important

controls that can be insanely frustrating when done wrong. The problem is that

because they’re so involved, there are a lot of places for them to go wrong. Fortu

nately for our sanity, jQuery UI contains a highly customizable and fully-featured

date picker control that lets us avoid many of the potential pitfalls of building one

ourselves. An example of this control is shown in Figure 7.6.

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b

258 jQuery: Novice to Ninja

Figure 7.6. jQuery UI date picker control

We’ll start with the input field currently being used for the date:

chapter_07/12_date_picker/index.html (excerpt)

<input type="text" id="date" />

If you’re just looking for the basic date picker, the jQuery code can be no more

complicated than a single line:

$("#date").datepicker();

The date picker is triggered when the input box receives focus, and slides into

view with the current month and day selected. When the text box loses focus, or

when a date is selected, it disappears. Sure, it looks very nice, and works with the

jQuery smoothness we expect—but what does it offer us over and beyond competing

date pickers? (Remember, just because you’re using jQuery, it doesn’t mean you

should ignore other suitable JavaScript components.)

The date picker component in jQuery UI is feature-packed. Packed! It is fully local

izable, can handle any date formats, lets you display multiple months at once, has

a nifty date range mechanism, allows configurable buttons, is keyboard navigable

(you can move around with ctrl + arrow keys), and more.

All told, there are over 50 options and events available to you to tweak—almost

every tiny aspect of the date picker! To make the calendar you see in Figure 7.6,

we’ve used just a few of them:

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

Forms, Controls, and Dialogs 259

chapter_07/12_date_picker/script.js (excerpt)

$('#date').datepicker({

 showOn: 'button',

 buttonText: 'Choose a date',

 buttonImage: 'calendar.png',

 buttonImageOnly: true,

 numberOfMonths: 2,

 maxDate: '0d',

 minDate: '-1m -1w',

 showButtonPanel: true

});

The showOn lets us choose when the calendar will pop up. The available options

are 'focus' (when the text box receives focus), 'button' (a button is added next

to the text box, which users can click to open the calendar), or 'both' (which allows

for both options). To use an icon for the button, we’ve specified a buttonImage. We

also set buttonImageOnly to true; this means that only the image will be displayed,

rather than a standard form button.

Next up, we’ve set the numberOfMonths to 2—this means the user will see two

months worth of days at the same time. You can even specify an array instead of

an integer; for example, [3, 3] will show a 3x3 grid of months!

The maxDate and minDate options let you set the range within which the user can

select a date. You can specify a JavaScript date object, or you can use a string to

dictate relative dates. The latter option is usually easier, and that’s what we’ve done

here. We’ve set the maxDate as 0—which means today’s date. The minDate we’ve

set as -1m -1w so the user can only select a date that is up to one month and one

week in the past. You can plus or minus as much time as you need: y for year, m for

month, w for week, and d for day.

Date Validation

You may have set a maximum date for the date picker, but users are still able to

select a date outside of that range—they can enter it into the text box manually.

If you must ensure that dates are within a given range, you need to be performing

validation on the server side! The date ranges you specify in the date picker options

are to assist your users in picking valid options; that way, they avoid submitting

a form that contains frustrating errors.

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_07/12_date_picker/script.js

260 jQuery: Novice to Ninja

Date Picker Utilities
The jQuery UI library also provides a few date picker utilities for globally configuring

the date pickers, as well as making it easy to play with dates.

The $.datepicker.setDefaults method accepts an object made up of date picker

settings. Any settings that you specify will be applied to all date pickers on the page

(unless you manually override the defaults). For example, if you want every date

picker to show two months at a time:

$.datepicker.setDefaults({

 numberOfMonths: 2

});

The remaining utility functions are for manipulating or assisting with dates and

date formats. The $.datepicker.iso8601Week function accepts a date and returns

the week of the year it’s in, from 1 to 53. The $.datepicker.parseDate function

extracts a date from a given string; you need to pass it a string and a date format (for

example, "mm-dd-yy"), and you’ll receive a JavaScript date object back. Finally, the

$.datepicker.formatDate does the opposite. It will format a date object based ac

cording to the format you specify—which is great for displaying dates on screen.

Sliders
Our client wants his visitors to be able to find the celebrities they’re looking for

quickly and easily. He also recognizes that many of his clients will be looking for

celebrities whose location information falls in a particular price range, so he wants

us to add a price range filter to the site. This is a perfect opportunity to introduce

another great jQuery UI component: slider!

We’ll start with a basic form, consisting of two select boxes: one for the maximum

price, and one for the minimum price. Then we’ll call on jQuery UI to add a fancy

slider to control the values of those boxes. The end result is illustrated in Figure 7.7.

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

Forms, Controls, and Dialogs 261

Figure 7.7. A jQuery UI slider

Let’s have a look at the basic markup:

chapter_07/13_sliders/index.html (excerpt)

<div id="price-range">

 <form>

 <label for="min">Minimum Price:</label>

 <select id="min">

 <option value="0">0</option>

 <option value="10">10</option>

 <option value="20">20</option>

⋮

 <option value="80">80</option>

 <option value="90">90</option>

 </select>

 <label for="max">Maximum Price:</label>

 <select id="max">

 <option value="10">10</option>

 <option value="20">20</option>

 <option value="30">30</option>

⋮

 <option value="100">100</option>

 </select>

 </form>

</div>

Now for a look at the code. When the page loads, we first grab the current maximum

and minimum values in the select boxes. Then we initiate our slider by calling

the slider method on a newly created empty div:

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b

262 jQuery: Novice to Ninja

chapter_07/13_sliders/script.js (excerpt)

var max = $('#max').val();

var min = $('#min').val();

var rangeSlider = $('<div></div>')

 .slider({

 min: 0,

 max: 100,

 step: 10,

 values: [min, max],

 range: true,

 animate: true,

 slide: function(e,ui) {

 $('#min')

 .val(ui.values[0]);

 $('#max')

 .val(ui.values[1]);

 showCelebs();

 }

 })

 .before('<h3>Drag the slider to filter by price:</h3>');

$('#price-range').after(rangeSlider).hide();

Whoa! That’s a lot of options. Let’s see if we can break them down: min and max are

the minimum and maximum values of the slider, respectively. step is the amount

by which the slider increments. values is used for specifying the default value of

the slider. Because we’ve specified an array of two values, the slider bar will have

two handles, each with a separate value. Here we’re using the values from the select

lists that we grabbed earlier, so that the slider will always match up with the data

in those boxes.

range and animate are helpful options when creating a slider with more than one

handle, as we’re doing here: range indicates that the area between the handles

should be styled differently, usually with a shadow or a different color. This option

can also be set to min (in which case the area between the minimum and the first

handle will be shaded) or max (which will shade the area between the last handle

and the maximum). animate simply tells jQuery to animate the handle’s position

smoothly if the user clicks elsewhere on the bar, rather than simply jumping there.

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_07/13_sliders/script.js

Forms, Controls, and Dialogs 263

Finally, slide allows you to specify an event handler that will run whenever the

user moves the handles on the slider. The event handler can accept an optional ui

parameter that allows you to access some of the slider’s properties; here we’re using

the values property to adjust the values of our select boxes. We also call showCelebs,

a custom method in which we’ll show or hide celebrities, depending on whether

their prices fall within the chosen range.

It’s also possible to capture the change event, which is very similar to the slide

event, except that it will also fire if the slider’s values are modified programmatically

(slide only fires when the user interacts directly with the slider).

The jQuery UI slider component will create a horizontal slider by default—but if

you want a vertical one you can specify orientation: 'vertical'.

We’ve used before and after to add a title to our slider and affix it to the page,

and we’ve also hidden the original select boxes. Try this now, and you’ll see a

nicely themed slider that you can play with, and which will adjust the values of

the select boxes.

In order to make it filter the celebrities, we simply need to implement the showCelebs

method:

chapter_07/13_sliders/script.js (excerpt)

function showCelebs() {

 var min = $('#min').val();

 var max = $('#max').val();

 $('.data tr').each(function() {

 var price = parseInt($(this).find('td:last').text().

➥substring(1));

 if (price >= min && price <= max) {

 $(this).fadeIn();

 } else {

 $(this).fadeOut();

 }

 });

}

We extract the values of the select boxes, then cycle through each row in the

celebrities table, and hide or show it depending on whether or not the price is

within the selected range. The only tricky part here is a bit of JavaScript string

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_07/13_sliders/script.js

264 jQuery: Novice to Ninja

processing, required to extract the price from the row text; we use substring(1)

to extract everything from the first character on (which will conveniently strip the

prices of their dollar signs). Then we use parseInt to turn the string into a number.

We’ll also call showCelebs on document-ready, so that the list is prefiltered based

on the default values in the form.

This works entirely as expected, and allows users to easily and visually filter

celebrities based on their desired price range. Sliders are a great UI widget precisely

because they’re so intuitive: users will know how to use them without being told.

You can probably come up with a few other controls that could benefit from being

sliderized!

Drag and Drop
Dragging and dropping is coming of age. It’s always been there in the background,

but has felt out of place (and therefore detrimental to a good user experience) next

to the mundane text boxes and radio buttons that make up a typical form. But that

was the olden days, with olden day forms. Today, if done well, drag and drop can

augment forms in a highly usable way, providing a more natural experience that

increases productivity. It also supplies a dash of coolness.

If there’s one task that even beginner computer users know how to do, it’s to drag

an item to the trash. The metaphor is very satisfying—if you don’t want it, throw it

away! On the other hand, the standard web approach—click the checkbox and press

delete—is also well known, but far less satisfying. Our client doesn’t want to click

checkboxes; he wants to drag stuff to their doom, and have them literally disappear

in a puff of smoke to show that it’s truly been destroyed.

Figure 7.8 shows an image thumbnail in mid-destruction. The user has selected a

photo and dragged it out of the grid and into the trash. The grid of photos is nothing

more than a set of img tags. You can choose any type of element to be draggable,

just as long as you can make it look pretty and work well for your users. A nice

touch is to set cursor: move on the draggable elements—that way users will see

the “grabby hand” icon and know they can drag it.

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

Forms, Controls, and Dialogs 265

Figure 7.8. Drag and destroy

As always, we’ll start with the markup:

chapter_07/14_drag_drop/index.html (excerpt)

<div class="trash">

 Drag images here to delete

</div>

<div id="photo-grid">

</div>

Progressive Enhancement

For the sake of illustration, we’re including the .trash div in the markup here.

However, this poses a problem for users with JavaScript disabled: they’ll see a

trash area, but will be unable to do anything with it! In a real-world app, you’d

want to start with a fully functional, HTML form-based interface for deleting images

(or whatever it is you intend to use drag and drop for). Then, you’d use all the

methods we’ve seen throughout the book to remove all those interface elements

from the page, and replace them with the above drag and drop markup.

Drag and drop can be a real pain to make work across browsers. Instead of reinventing

the wheel, we’ll look to our trusted jQuery companion, jQuery UI. It provides a

couple of very handy interaction helpers—draggable and droppable—to handle

smooth cross-browser drag and drop.

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b

266 jQuery: Novice to Ninja

No Theme Required!

You’ll need to include the jQuery UI library in your page as we’ve covered before,

but this time no CSS theme file is required; draggable and droppable are beha

viors, with no preset styling necessary. They do, however, give you some quite

handy class names to apply your own styles to, which we’ll be looking at very

shortly.

Let’s sketch out the basic structure of our interaction code:

chapter_07/14_drag_drop/script.js (excerpt)

$(document).ready(function() {

$('#photo-grid > div').draggable({

 revert: 'invalid'

 });

 $('.trash').droppable({

 activeClass: 'highlight',

 hoverClass: 'highlight-accept',

 drop: function(event, ui) {

 puffRemove($(ui.draggable));

 }

 });

});

function puffRemove(which) {

 // Implement the “puff-of-smoke” effect

}

This is the skeleton of our interaction. There’s still a lot we need to do to achieve

a nice “puff” animation—but, incredibly, that’s everything we need for drag and

drop! Let’s take a closer look at what jQuery UI has given us.

draggable

The draggable interaction helper makes whatever you select draggable with the

mouse. Try this out for size: $('p').draggable(). It can make every <p> tag on the

page draggable! Test it out—it’s a lot of fun. Naturally, there are stacks of options

and events to customize the behavior. Here are some of the more helpful ones:

$('p').draggable({axis: 'y', containment: 'parent'});

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_07/14_drag_drop/script.js

Forms, Controls, and Dialogs 267

The axis option restricts the object to be draggable along either the X or Y axis only,

and the containment option confines the object to a bounding box; acceptable values

are 'parent', 'document', and 'window' (to stay within the respective DOM ele

ments), or an array of values to specify pixel boundaries in the form [x1, y1, x2,

y2]. You can also use the grid option to confine dragging to a grid, by specifying

a two element array (for example, grid:[20,20]).

Let’s look at another example:

$('#dragIt').draggable({

handle: 'p:first',

opacity: 0.5,

helper: 'clone'

});

For this next bunch of options, we’re operating on a div called dragIt, which

contains at least one <p> tag. We use the handle option to designate the first p ele

ment as the “handle” users can use to drag the draggable element around. We also

specify the helper option, which allows you to specify an element to represent the

node being dragged around. In this case we’ve set this option to clone. This causes

the element to be duplicated, so that the original element will stay in place until

you’ve finished dragging. The opacity applies to the helper element.

The other option worth noting is revert. If you set this to invalid (as we did in

our photo dragging example), the element you drag will spring back to its original

position if you drop it outside of a droppable target area.

There are also three events you can catch—start, stop, and drag—that fire when

you start dragging, stop dragging, and are in mid-drag respectively. In our example

we only need to react to drop, but you can easily conceive of situations where the

other two events could be put to good use.

droppable

The Bonnie to draggable’s Clyde is the droppable behavior. Droppable elements

are targets for draggable items. A droppable element has far fewer options than a

draggable element; we’ve used the most important, activeClass and hoverClass,

above. The activeClass is added to the droppable element when a draggable item

is being dragged. Similarly, the hoverClass is added when a draggable item is

hovering over the droppable element.

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b

268 jQuery: Novice to Ninja

You can also specify a selector for the accept option, which restricts the draggables

that can be dropped. This lets you have multiple drop points, where only certain

draggable items can go. This can be great for list manipulation.

The events for a droppable element are similar to draggables. Instead of start, stop,

and drag we have over, out, and drop. In our photo grid example, we’ve used the

drop event to know when to destroy the draggable item.

Both the draggable and droppable behaviors are complex beasts. Once you’re over

the thrill of how easy they are to implement, you should have a further read through

the advanced options in the documentation.

The “Puff” Effect
With dragging and dropping all taken care of, you can walk away knowing you’ve

created a powerful yet cool control with just a few lines of code. But with all that

time we saved by using the existing drag and drop functionality, rather than writing

it ourselves, we might as well make this a little more impressive—and add the “puff

of smoke” as the image is removed.

Instead of using jQuery’s animate function, we’ll need to roll our own animation

solution. This is because we need to cycle through image frames—like creating

cartoons. To do this we’ll use a PNG image that has five same-sized frames of anim

ation all stacked on top of each other, and then offset the image to show the correct

frame. This means we’ll need to change the position of the image in discrete chunks.

If we were to use animate instead, it would change the background position

gradually, resulting in chopped-off images halfway between frames:

chapter_07/14_drag_drop/script.js (excerpt)

// Implement the “puff-of-smoke” effect

var $this = $(which);

var image_width = 128;

var frame_count = 5;

To start off, we’ll store our selection and set up a couple of constants. The

image_width is the width in pixels of the animation image. The frame_count is the

total number of frames in the animation (the total height of the image, therefore,

should be image_width * frame_count). Of course, these will always be the same

in our example, but this way, if you ever want to use a different animation image,

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_07/14_drag_drop/script.js

Forms, Controls, and Dialogs 269

you can find the numbers you need to change right at the top of the script, instead

of hunting through it to change them in multiple places.

We then set up a container to house the image. The container will be exactly the

same size, and in exactly the same place as the element we’re deleting:

chapter_07/14_drag_drop/script.js (excerpt)

// Create container

var $puff = $('<div class="puff"></div>')

 .css({

 height: $this.outerHeight(),

 left: $this.offset().left,

 top: $this.offset().top,

 width: $this.outerWidth(),

 position: 'absolute',

 overflow: 'hidden'

 })

 .appendTo('body');

With the container in place we can now append the animation image to it. Because

the container has its overflow set to hidden, only a single frame of the image will

ever be seen. To make the image fit the container (which is the same size as the

element we’re deleting), we need to scale it to fit. The scale is determined by dividing

the width of the container by the width of the image:

chapter_07/14_drag_drop/script.js (excerpt)

var scale_factor = $this.outerWidth() / image_width;

var $image = $('')

 .css({

 width: image_width * scale_factor,

 height: (frame_count * image_width) * scale_factor

 })

 .data('count', frame_count)

 .appendTo($puff);

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_07/14_drag_drop/script.js
http:chapter_07/14_drag_drop/script.js

270 jQuery: Novice to Ninja

Preloading the Image

If you have a lot of frames in your animation image, it could wind up being a fairly

large file and take a while to load. If your user deletes an element before the image

has loaded, the animation will be unable to display. A trick for preloading the

image is to load it into a jQuery selector in the document-ready function: $('<img

src="puff.png"/>');. This will load the image without displaying it, so it will

be ready for your animation.

We also add a count property to the image via the data action. This contains the

total number of frames left to show. With all of this in place, we can go ahead and

delete the original element that was dropped:

chapter_07/14_drag_drop/script.js (excerpt)

// Remove the original element

$this.animate({

 opacity: 0

}, 'fast').remove();

While that’s fading out, we want to initiate the animation. This is going to require

a small amount of JavaScript-fu; we’re going to set up a self-contained, self-executing

loop that plays the animation through once:

chapter_07/14_drag_drop/script.js (excerpt)

// Animate the puff of smoke

(function animate() {

 var count = $image.data('count');

 if (count) {

 var top = frame_count - count;

 var height = $image.height() / frame_count;

 $image.css({

 "top": - (top * height),

 'position': 'absolute'

 });

 $puff.css({

 'height': height

 })

 $image.data("count", count - 1);

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_07/14_drag_drop/script.js
http:chapter_07/14_drag_drop/script.js

Forms, Controls, and Dialogs 271

setTimeout(animate, 75);

 } else {

 $image.parent().remove();

 }

})();

Inside this function, we’re executing the animation. Here are the highlights:

We’ve wrapped the function in the (function myFunction(){})() construct,

which is a way to create and execute an anonymous function that can nonethe

less refer to itself by name. This is an odd JavaScript construct, and one that

you needn’t worry about understanding completely; in this case it’s handy as

it allows us to create a self-contained piece of functionality that can call itself

(this will be useful when we use the setTimeout method).

We find out which frame we’re up to by checking the count data.

If there are still frames left to display, we calculate the offset of the image and

move the correct frame into view. (We can use if (count) in this way because

in JavaScript, the number 0 is equivalent to false.)

We decrease the frame count so that the next time the loop runs it will display

the next frame in the series.

Finally, we call setTimeout, specifying our anonymous function as the callback.

This way, after 75 milliseconds, the whole process will run again.

When the count reaches zero and the animation concludes, we remove the puff

container from the DOM.

Try it out. Drag an item to the trash, and watch it vanish in a cloud of smoke!

jQuery UI sortable
Another great feature of jQuery UI is the sortable behavior. An element that you

declare as sortable becomes a droppable target to its children—and the children

all become draggable. The result is that you can reorder the children as you see fit.

While sortable allows us to order items within a container, it doesn’t actually sort

anything: the sorting is up to the user.

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b

272 jQuery: Novice to Ninja

This makes it perfect for lists of elements where order needs to be managed. Rather

than using the fiddly move up the list or move down the list buttons that we usually

see next to lists, we can apply the sortable behavior to them and allow our users to

reorder the list in a much more intuitive way.

On the front page of StarTrackr! there are two lists that show the ranking of the

week’s top celebrities. One is for the A-list celebrities, and the other for the B-list.

This is the perfect opportunity to show our client a cool trick: let’s make the lists

reorderable by the users. They can move the celebs up and down the lists, and even

swap them if they challenge their A/B list status. When they’re happy with their

reordering, they can click the Accept button and the changes will be submitted to

the server.

Lists are the primary targets for the sortable behaviour. With a little extra work a

div can also take up the challenge. For this example, we’ll use the following markup:

chapter_07/15_sortables/index.html (excerpt)

<ul id="a-list" class="connected">

 Glendatronix

 Baron von Jovi

⋮

<ul id="b-list" class="connected">

 Mr Speaker

⋮

Like draggable and droppable, establishing an element as sortable is straightforward:

$("#a-list, #b-list").sortable();

There’s a raft of methods, events, and options that are available when an element

becomes sortable, and we can combine them to control the interesting moments

that occur during the course of the sorting:

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

Forms, Controls, and Dialogs 273

chapter_07/15_sortables/script.js (excerpt)

$("#a-list, #b-list").sortable({

 connectWith: '.connected',

 placeholder: 'ui-state-highlight',

 receive: function(event, ui) { adopt(this) },

 remove: function(event, ui) { orphan(this) }

}).disableSelection();

We’ve specified two options and two methods to our sortables, and we’ll build on

those methods to make our actions a little more user-friendly. A nice touch we can

exploit is that accessing this inside the callbacks (as we’ve done above) gives us a

reference to the sortable element.

disableSelection

Chained on the end of our sortable instantiation is a nifty action:

disableSelection. disableSelection, and its reverse, enableSelection,

are two really powerful methods in jQueryUI. Calling disableSelectionmakes

it impossible for users to select text inside the target elements. It can be used to

stop text from being selected when users are dragging—or sorting—the element,

and prevents users from accidentally highlighting text when they just want to

drag an item.

Let’s look at the two methods we’ve assigned as event handlers:

chapter_07/15_sortables/script.js (excerpt)

function adopt(which) {

 if ($(which).hasClass('empty')) {

 $(which).removeClass('empty').find('.empty').remove();

 }

}

function orphan(which) {

 console.log(which);

 if ($(which).children().length == 0) {

 $(which)

 .append($('<li class="empty">empty'))

 .addClass('empty');

 }

}

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_07/15_sortables/script.js
http:chapter_07/15_sortables/script.js

274 jQuery: Novice to Ninja

These methods allow us to add the text “empty” to a list when its last item is re

moved, and remove the text as soon as a new item is added. The receive event is

fired when a sortable list receives an item from a connected list. We use it to call

our custom adopt method, wherein we remove the “empty” text if it’s found.

Removing a child from a sortable fires the remove event, which we use to call our

orphan function. This method checks to see if the parent sortable has no children.

Should it be empty, we give it a child and assign it the empty class.

Progress Bar
Our client wants to implement a new feature he calls StarChirp, which will enable

his users to communicate via short status messages (presumably about celebrities).

We have no idea where he could have come up with this idea, but we’re happy to

have a go at it. He specifies that he wants to differentiate his product from other

status update sites by displaying the remaining character count in the form of a

progress bar. This makes sense: it’ll display the percentage of how much room is

left to type, so users can easily see if they’re approaching their word limit.

A progress bar is one of the most recognizable messages a user can see. Thanks to

countless bad movies, even the layperson understands that the progress bar is the

ultimate technological ticking clock. A progress bar effectively shows how far

through a long-running process or set of processes we are—and more importantly,

how far we have to go.

The simplest way to simulate a progress bar is to include a block-level element inside

another block-level element. The outside element’s width is set to the length of the

progress bar, and the inside element’s width is set to the correct ratio in relation to

the outer element. Give the inside element a bit of color and that’s it!

As we’ve been using the jQuery UI library for our recent tasks, we might as well

explore the whole gamut and see what the jQuery UI progress bar widget has to offer.

We’ve coded up a small form to hold the relevant elements, but for the progress bar

all that’s required is an empty div:

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

Forms, Controls, and Dialogs 275

chapter_07/16_progress_bar/index.html (excerpt)

<form>

 <fieldset>

 <legend>StarChirp</legend>

 <textarea id="chirper" rows=""></textarea>

 <div id="console">

 <div id="bar"></div>

 <div id="count">0</div>

 </div>

 <input type="submit" value="Chirp!" />

 </fieldset>

</form>

Now we simply need to tell jQuery UI which element we’d like to transform:

chapter_07/16_progress_bar/script.js (excerpt)

$('#bar').progressbar();

That’s it. The progress bar is ready! There’s not much tweaking you can do. If you

want the bar to default at a value other than 0%, you can specify it like this:

$('#bar').progressbar({value: 50}).

For our StarChirp box, we’ll monitor the user’s key presses in much the same

manner as we did for the maximum length indicator earlier in this chapter. This

time, however, we need to update the progress bar as the user types:

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_07/16_progress_bar/script.js

276 jQuery: Novice to Ninja

chapter_07/16_progress_bar/script.js (excerpt)

$('#chirper')

 .val('')

 .keyup(function(e) {

 var characters = 140;

 var chirp = $('#chirper').val();

 var count = chirp.length;

 if (count <= characters) {

 $('#bar').progressbar('value', (count / characters) * 100);

 $('#count').text(count);

 } else {

 $('#chirper').val(chirp.substring(0,characters));

 }

 });

The important point to remember about the jQuery UI progress bar is that its range

is from 0 to 100. It’s a percentage, so you’ll need to figure out the percentage to pass

in. We’ll divide the current number of characters by the total allowed, and multiply

the result by 100. Now we have a valid value to pass to the progress bar via the

value option.

If there are already more characters in the box than what’s allowed, we’ll use the

JavaScript substring function to chop off the excess.

The effect is that every character we add will move the progress bar to the right,

and every character we remove will move the progress bar to the left.

Dialogs and Notifications
In the olden days, there was little requirement for user messages on our brochure

sites; perhaps just a “thanks for submitting the form,” or a JavaScript popup dialog

telling us we forgot to fill out an email field.

These days, as our Ajax-enabled web applications become more complex, the breadth

of information that needs to be conveyed is growing: validation messages, status

updates, error handling messages, and so on. Doing it in a way that avoids over

whelming or annoying the user can be quite an art form.

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_07/16_progress_bar/script.js

Forms, Controls, and Dialogs 277

Simple Modal Dialog
Modal dialogs are notifications that pop up in the user’s face and must be acted on

if the user want to continue. It’s quite an intrusion—people tend to dislike popups,

so they should only be used if the interaction is essential. Our client informs us it’s

essential that users agree to an End User License Agreement (EULA) to use the

StarTrackr! application. Not all modal dialogs are as disagreeable as our StarTrackr!

EULA, however, so they’re a useful control to learn to build.

What you might notice from the figure is that a modal dialog looks strikingly like

a lightbox. It’s a lightbox with some buttons! To supply the contents of a dialog,

we’ll embed the HTML in a hidden div. When we want to show it, we’ll copy the

contents into the dialog structure and fade it in. That way we can have multiple

dialogs that use the same lightbox elements:

chapter_07/17_simple_modal_dialog/index.html (excerpt)

<div id="overlay">

 <div id="blanket"></div>

</div>

<!-- the dialog contents -->

<div id="eula" class="dialog">

 <h4>End User License Agreement</h4>

⋮

 <div class="buttons">

 Agree

 Disagree

 </div>

</div>

You’ll see that we’ve included a couple of button links in the bottom of the dialog.

These are where we can hook in our events to process the user interaction. It’s a

fairly simple HTML base so, as you can imagine, CSS plays a big part in how effective

the dialogs look. We want to stretch our structure and lightbox “blanket” over the

entire screen. The modal dialog will appear to sit on top of it:

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b

278 jQuery: Novice to Ninja

chapter_07/17_simple_modal_dialog/dialog.css (excerpt)

#overlay {

 display:none;

 top: 0;

right: 0;

bottom: 0;

left: 0;

 margin-right: auto;

 margin-left: auto;

 position: fixed;

 width: 100%;

 z-index: 100;

}

#blanket {

 background-color: #000000;

 top: 0;

 bottom: 0;

 left: 0;

 display: block;

 opacity: 0.8;

 position: absolute;

 width: 100%;

}

.dialog {

 display: none;

 margin: 100px auto;

 position: relative;

 width: 500px;

 padding: 40px;

 background: white;

 -moz-border-radius: 10px;

}

Now to bring the dialog onscreen. We’ll create an openDialog function that will be

responsible for taking the dialog HTML, transporting it to the overlay structure and

displaying it. The “transporting” part is achieved via the clone action, which creates

a copy of the current jQuery selection, leaving the original in place. When we close

the dialog we’re going to remove the contents, so unless we cloned it each time,

we’d only be able to open it once:

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

Forms, Controls, and Dialogs 279

chapter_07/17_simple_modal_dialog/script.js (excerpt)

function openDialog(selector) {

 $(selector)

 .clone()

 .show()

 .appendTo('#overlay')

 .parent()

 .fadeIn('fast');

}

Because we’ve added the behavior to a function, we can call it whenever we need

to open a dialog, and pass it the selector of the element we want to show:

chapter_07/17_simple_modal_dialog/script.js (excerpt)

$("#eulaOpen").click(function() {

 openDialog("#eula");

});

The second part is returning everything back to its initial state when the dialog is

closed. This is achieved by finding the overlay, fading it out, and then removing

the cloned dialog contents:

chapter_07/17_simple_modal_dialog/script.js (excerpt)

function closeDialog(selector) {

 $(selector)

 .parents("#overlay")

 .fadeOut('fast', function() {

 $(this)

 .find(".dialog")

 .remove();

 });

}

We need to call the closeDialog function from within the current dialog. But as

well as closing it, the buttons in a dialog should have other effects. By adding extra

buttons in the dialog’s HTML, and hooking on to them in the document-ready part

of your code, you can run any arbitrary number of event handlers and process them

as you need:

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_07/17_simple_modal_dialog/script.js
http:chapter_07/17_simple_modal_dialog/script.js
http:chapter_07/17_simple_modal_dialog/script.js

280 jQuery: Novice to Ninja

chapter_07/17_simple_modal_dialog/script.js (excerpt)

$('#eula')

 .find('.ok, .cancel')

 .live('click', function() {

 closeDialog(this);

 })

 .end()

 .find('.ok')

 .live('click', function() {

 // Clicked Agree!

 })

 .end()

 .find('.cancel')

 .live('click', function() {

 // Clicked disagree!

});

The important part of this code is that we’re using the live action. When we use

clone to duplicate a DOM node, its event handlers get lost in the process—but live

keeps everything in place no matter how often we clone and delete nodes!

This is a simple, but fairly crude way to handle the button events. In Chapter 9,

we’ll look at how we can set up a custom event handling system. The advantage of

the method used here is that it’s extremely lightweight and targeted to our particular

needs. But manually creating buttons and handling the related events would become

tiring fairly quickly if you have many complicated dialogs to look after, so you’ll

probably be interested in the jQuery UI Dialog widget.

jQuery UI Dialog
As you’d expect by now, the jQuery UI Dialog component is the complete bells and

whistles version of a dialog box. Out of the box it is draggable and resizable, can be

modal or non-modal, allows for various transition effects, and lets you specify the

dialog buttons programmatically. A sample dialog, styled with the UI lightness

theme, is shown in Figure 7.9.

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_07/17_simple_modal_dialog/script.js

Forms, Controls, and Dialogs 281

Figure 7.9. A jQuery UI dialog

Just like with our custom dialog box, the main contents are specified in the HTML

itself, then hidden and displayed as necessary by the library. This way you can put

whatever you like inside the dialog—including images, links, or forms:

chapter_07/18_jquery_ui_dialog/index.html (excerpt)

<div id="dialog" title="Are you sure?">

 <p>You've assigned the current celebrity a rating of 0…</p>

 <p>Perhaps you are just judging them on the terrible …</p>

</div>

We’re using the UI lightness theme for CSS, as it matches up well with the

StarTrackr! site—but the dialogs are fully skinnable, and as always you can make

a custom theme with the ThemeRoller tool (more on this in the section called

“Theme Rolling” in Chapter 9). As you can see from the HTML snippet, the title

attribute specifies the text to be displayed in the title bar of the dialog. Other than

that, there’s little going on in our HTML … so where do those buttons come from?

Let’s have a look at the script:

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b

282 jQuery: Novice to Ninja

chapter_07/18_jquery_ui_dialog/script.js (excerpt)

$('#dialog').dialog({

 autoOpen: false,

 height: 280,

 modal: true,

 resizable: false,

 buttons: {

 Continue: function() {

 $(this).dialog('close');

 // Submit Rating

 },

 'Change Rating': function() {

 $(this).dialog('close');

 // Update Rating

 }

 }

});

Aha, interesting! The buttons, including their text, are specified via the options

passed to the dialog function.

The buttons are grouped together in an object and assigned to the buttons property

of the dialog. To define a button, you need to create a named function inside the

buttons object. The function code will execute whenever the user clicks the but-

ton—and the name of the function is the text that will be displayed on the button.

If you want your button text to contain a space, you’ll need to wrap the function

name in quotes. The buttons are added to the dialog from right to left, so make sure

you add them in the order you want them displayed. This is quite a neat way to

package together the button functions with the dialog—unlike our custom dialog

where the functionality was specified independently of the dialog code.

Quotes

In the above example, the second button’s name is in quotes, while the first one

isn’t. This is simply to illustrate the necessity of enclosing multiple-word buttons

in quotes; in your code it might be preferable to put quotes around everything for

consistency and simplicity.

By default, the dialog will pop up as soon as you define it. This makes it easy to

create small and simple dialogs as you need them. For our example, though, we

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_07/18_jquery_ui_dialog/script.js

Forms, Controls, and Dialogs 283

want to set up the dialog first, and only have it pop up on a certain trigger (when

the user gives the poor celebrity a zero rating). To prevent the dialog popping up

immediately, we set the autoOpen property to false. Now, when the page is loaded,

the dialog sits and waits for further instructions.

When the user clicks the rating-0 link, we tell the dialog to display itself by passing

the string 'open' to the dialog method. This is a good way to communicate with

the dialog after the initialization phase:

chapter_07/18_jquery_ui_dialog/script.js (excerpt)

$('#rating-0').click(function() {

 $('#dialog').dialog('open');

});

That’s a nice looking dialog we have there! We can now execute any required code

inside the dialog button functions. As part of the code we’ll also have to tell the

dialog when we want it to close. If you look back at the button definitions above,

you can see we have the line $(this).dialog('close'). As you might suspect, the

close command is the opposite of the open command. You can open and close the

dialogs as many times as you need.

What else can the plugin do? Well, we’ve specified the option modal to be true;

that’s why we have the nice stripey background—but by default, modal will be

false, which allows the user to continue working with the rest of the page while

the dialog is open. Also, we’ve set resizable to false (and left the draggable option

on default—which is true). These options make use of the jQuery UI resizable

and draggable behaviors to add some desktop flavor to the dialog.

We specified the dialog’s title text in HTML, but you can also do it in jQuery via

the title property, just as you can set its width and height. One less obvious, but

extremely useful alternative is the bgiframe option. If this option is set to true, the

bgiframe plugin will be used to nfix an issue in Internet Explorer 6 where select

boxes show on top of other elements.

In terms of events, you can utilize the dialog’s open, close, and focus events if you

need to do some processing unrelated to buttons. But there’s also an extremely

useful beforeClose event that occurs when a dialog is asked to close—before it

actually does! This is a great place to handle any processes you’d have to do regard-

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_07/18_jquery_ui_dialog/script.js

284 jQuery: Novice to Ninja

less of which button was clicked. It’s also useful if you need to stop the dialog from

closing unless certain conditions are satisfied.

By now, you’re starting to appreciate the depth of the jQuery UI library. All of the

controls are well thought out and feature-rich. As always, you need to weight the

leaner custom option against the more bandwidth-intensive (but quick to implement

and more fully featured) jQuery UI alternative. Which one you choose should depend

on your project requirements.

Growl-style Notifications
Our client is worried that StarTrackr! is lagging behind competitors in the real-time

web space. He wants to be able to communicate with users and keep them abreast

of up-to-the-second information: new Twitter posts, news from the RSS feed …

anything to show that StarTrackr! is buzzing with life.

The data is no problem—the back-end team can handle it … but how can we notify

the user in a way that’s both cool and helpful? Once again we’ll look to the desktop

for inspiration, and implement Growl-style notification bubbles (Growl is a popular

notification system for the Mac OS X desktop).

When we have a message to share with the users, we’ll add a bubble to the page.

The bubble will be located at the bottom right-hand side of the screen. If we have

more messages to share, they’ll appear underneath the previous ones, in a kind of

upside-down stack. Each bubble will have a close button, enabling users to close

them after they’ve been read. The overall effect is shown in Figure 7.10.

Figure 7.10. Growl-style notifications

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

Forms, Controls, and Dialogs 285

The real trick to the bubbles is CSS. It takes care of all the tough stuff involved in

positioning the dialogs and making them look really cool. In terms of HTML, all we

need is a simple container:

chapter_07/19_growl_style_notifications/index.html (excerpt)

<div id="growl"></div>

It needs to be able to be positioned in the bottom corner to achieve the effect we’re

attempting. Placing it in the footer or outside of your page’s main container element

is common. Let’s apply some basic CSS to handle the positioning:

chapter_07/19_growl_style_notifications/style.css (excerpt)

#growl {

 position: absolute;

 bottom: 0;

 right: 0;

 width: 320px;

 z-index: 10;

}

Now that the container is in place, we can start adding our message bubbles to it.

We’ll create a simple function that takes a message, wraps it in some structure, and

appends it to our positioned bubble holder:

chapter_07/19_growl_style_notifications/script.js (excerpt)

function addNotice(notice) {

 $('<div class="notice"></div>')

 .append('<div class="skin"></div>')

 .append('close')

 .append($('<div class="content"></div>').html($(notice)))

 .hide()

 .appendTo('#growl')

 .fadeIn(1000);

}

The structure we’ve added consists of a containing element with an extra div

available for styling (we’re using it to lay the visible message over a semi-opaque

background), a close button, and a container for the message contents.

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_07/19_growl_style_notifications/script.js

286 jQuery: Novice to Ninja

One other point to note about this function is that any HTML we pass to it is wrapped

in the jQuery dollar selector. This means we can pass in either plain text, HTML,

or jQuery objects, and they’ll be displayed in the box. Again, you can style it all

however suits your site—though you’ll need to give the bubble container position:

relative:

chapter_07/19_growl_style_notifications/style.css (excerpt)

.notice {

 position: relative;

}

.skin {

 position: absolute;

 background-color: #000000;

 bottom: 0;

 left: 0;

 opacity: 0.6;

 right: 0;

 top: 0;

 z-index: -1;

 -moz-border-radius: 5px; -webkit-border-radius: 5px;

}

.close {

 background: transparent url('button-close.png') 0 0 no-repeat;

}

This will position our bubbles correctly and give them some basic styles. Inside the

document-ready function, just call the addNotice function with a message, and it

will fade in at the bottom of the screen:

chapter_07/19_growl_style_notifications/script.js (excerpt)

addNotice("<p>Welcome to StarTrackr!</p>");

addNotice("<p>Stay awhile!</p><p>Stay FOREVER!</p>");

You can also pass in images, or indeed any HTML you like. Of course, most of the

time you’ll want to display the result of a user interaction, or an Ajax call—you just

need to call addNotice whenever you want to display a message to the user. The

only problem is … once the bubbles are there, they’re unable to be removed—they

just keep stacking up! Let’s fix this:

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_07/19_growl_style_notifications/script.js

Forms, Controls, and Dialogs 287

chapter_07/19_growl_style_notifications/script.js (excerpt)

$('#growl')

 .find('.close')

 .live('click', function() {

 // Remove the bubble

 });

Instead of adding the click handler directly to the close button, we’re using the

live function to keep an eye on any new .close elements that are added. This

helps us separate out the closing code and keep everything nice and readable. All

that’s left to do now is handle the actual removing:

chapter_07/19_growl_style_notifications/script.js (excerpt)

// Remove the bubble

$(this)

 .closest('.notice')

 .animate({

 border: 'none',

 height: 0,

 marginBottom: 0,

 marginTop: '-6px',

 opacity: 0,

 paddingBottom: 0,

 paddingTop: 0,

 queue: false

 }, 1000, function() {

 $(this).remove();

 });

The removal code goes looking for the nearest parent container via the closest ac

tion, and animates it to invisibility in an appealing way. Once it’s invisible, the

container is no longer needed, so we remove it from the DOM. The closest method

is another one of jQuery’s DOM traversing actions, and has the cool ability to locate

the closest parent element that matches the selector you give it—including itself.

1-up Notification
It’s Friday afternoon again, and the boss is out of the office. There’s nothing left to

do in this week’s blitz, and there’s still an hour left until office drinks. This seems

like the perfect time to sneak a cool little feature onto the site. Throughout the book

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_07/19_growl_style_notifications/script.js
http:chapter_07/19_growl_style_notifications/script.js

288 jQuery: Novice to Ninja

we’ve concentrated on enlivening tried-and-true controls and recreating desktop

effects, but jQuery’s best asset is that it lets you try out new effects extremely quickly.

We’ll embrace the creative spirit and make a notification mechanism that comes

straight out of 8-bit video gaming history: the 1-up notification.

The brainchild of web developer Jeremy Keith, 1-up notifications provide a non-

modal feedback mechanism to show your user that an action happened. A small

message (generally a single word) will appear at the point the action has taken place,

then fade upwards and quickly away—exactly like the point scoring notifications

in classic platform video games! Perhaps you’d think that this effect is only useful

for novelty value—but it turns out to be a very satisfying and surprisingly subtle

way to message your users.

As this is jQuery, there are many ways to put this together. Our approach will be

to insert a new element that’s initially hidden, positioned such that it sits directly

centered and slightly above the element that triggers the action. For our triggers,

we have some simple anchor tags that act as “Add to wishlist” links. When they’re

clicked, a notice saying “Adding” will appear above the link and rapidly fade out

while moving upwards. Once the animation finishes, the button will change to

“Added” and the interaction is complete:

chapter_07/20_1_up_notifications/index.html (excerpt)

Add to wishlist

The message elements we’ll insert will have the class adding—so let’s make sure

that when we append them, they’ll be invisible and properly located:

chapter_07/20_1_up_notifications/style.css (excerpt)

.adding{

 position:relative;

 left:-35px;

 top:-4px;

 display:none;

}

When the document is ready, we can then find all our targets and add the new

message element to each of them. When a target (an element that has the wishlist

class) is clicked, we call a custom function that sets our notification in motion.

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

Forms, Controls, and Dialogs 289

The custom function takes a reference to the current object and a callback function

to run when the interaction is complete. This function will move the selection to

the link (via the prev action) and set its text to “Added”:

chapter_07/20_1_up_notifications/script.js (excerpt)

$('Adding')

 .addClass('adding')

 .insertAfter('.wishlist');

$('.wishlist')

 .click(function(e) {

 doOneUp(this, function() {

 $(this).prev().text('Added');

 });

 e.preventDefault();

 })

Our custom function features nothing new to us at this point: it simply moves to

the hidden span element and displays it. Now the message is visible to the end user.

We then kick off an animation that adjusts the span’s top and opacity properties—to

move it upwards and fade it out simultaneously:

chapter_07/20_1_up_notifications/script.js (excerpt)

function doOneUp(which, callback) {

 $(which)

 .next()

 .show()

 .animate({

top:"-=50px",

opacity:"toggle"

},

1000,

function() {

 $(this)

 .css({top: ""})

 .hide(callback)

 .remove();

 });

}

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b
http:chapter_07/20_1_up_notifications/script.js
http:chapter_07/20_1_up_notifications/script.js

290 jQuery: Novice to Ninja

Passing Callbacks

Notice the callback variable that’s being passed around in the example? We

supply a function as a parameter to our doOneUp code, but we don’t do anything

with it ourselves; we just pass it along as the callback to jQuery’s hide action.

When hide completes, it will run whatever code we gave it. In this case, it’s the

code to change the link text from “Add to wishlist” to “Added.”

This effect is impressive, but it would be more useful if it were customizable, espe

cially with respect to the positioning of the text message; at the moment it’s hard-

coded into the CSS. It would be good to make this an option in the code, and also

provide options to select the distance the message travels and its speed. In short,

this effect would be perfect as a plugin! You’ll have to wait until (or skip over to)

Chapter 9 to learn how to do that.

We’re in Good Form
Building usable, accessible, and impressive forms and interface controls is hard

work, and to tackle the task we have to use all of the tools we have at our disposal:

HTML, CSS, JavaScript, and jQuery. It’s a team effort, and as developers, we need

to be aware which tool is the right one for the job. Once we’ve figured this out

though, it’s all bets off. Forms and controls are the core of application development

on the Web—so it’s an exciting area to be experimenting in. Striking a balance

between impressive, novel, and usable interactions can be tricky, but if you get it

right, you can have a significant impact on the way people use and perceive your

site.

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

 jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

What’s Next?

jQuery is rapidly becoming the norm in web design. Website visitors now expect a

certain level of interactivity and animation in their web experience. Once you’ve

read jQuery: Novice to Ninja, you’ll have the ninja skills to create powerful UI

widgets, impressing even the fussiest of clients.

With jQuery: Novice to Ninja, you have the best of both worlds. Not only are the

fundamentals of jQuery covered in detail, you’ll also be equipped with a big bunch

of out-of-the-box solutions ready to use straight away.

If you’re ready to create modern, effective websites that are feature-packed and

dressed to impress, grab yourself a copy of jQuery: Novice to Ninja today.1

100% Satisfaction Guarantee
We want you to feel as confident as we do that this book will

deliver the goods, so you have a full 30 days to play with it.

If in that time you feel the book falls short, simply send it

back and we’ll give you a prompt refund of the full purchase

price, minus shipping and handling.

So, for the cost of a new T-shirt, start your journey into jQuery

today!

To find out more or to order your copy, visit

http://www.sitepoint.com/launch/25534b.

1 https://sitepoint.com/bookstore/go/170/25534b

http://www.sitepoint.com/launch/25534b
https://sitepoint.com/bookstore/go/170/25534b

Index

Symbols
!== (strict inequality) operator, 383

(hash symbol) id name, 21

$ (dollar sign)

JavaScript variable name, 12

uniqueness of, 362

$(document).ready() function, 18, 27

$. prefixed functions, 345

$.active property (Ajax), 215

$.ajax method

about, 202

callbacks and functions, 376

flags, 373

options, 373–376

settings, 374

$.ajaxSetup action, 203

$.browser function, 191

$.browser.version function, 191

$.datepicker.setDefaults method, 260

$.each function, 202, 210

$.extend function, 338

$.fn.extend() method, 343

$.get request, 205

$.getJSON function, 200, 226

$.getScript function, 204

$.inArray, 296

$.map, 296

$.post method, 228

$.post request, 205

$.support method, 376

$.trim method, 347

% (percent symbol) modulus, 114

&& and operator, 177

' (quotes), 28, 282

+ arithmetic operator, 158

++ increment operator, 115, 222

. (dot) notation, 130

. (period), namespaces, 356

1-up notifications, 287–290

:checked filter, 233

:eq filter, 125

:eq selector attribute, 106

:even filter, 24

:hover pseudo selector, 144

:not selector, 151

:selected filter, 233

= (assignment) operator, 382

== (equality) operator, 382

=== (strict quality) operator, 383

A
“above the fold”, defined, 348

accessibility, semi-transparent controls,

167

action

attr, 95

actions

$.ajaxSetup action, 203

about, 12, 33

attr action, 304

bind, 247

chaining actions, 62

closest action, 287

data action, 125, 126, 366

default event actions, 140

delay, 63

disableSelection action, 273

394

enableSelection action, 273

filter action, 304

hide action, 32

html action, 41

is action, 35

live action, 280

one action, 336

parent actions, 121

pushStack action, 388

remove action, 40

text action, 41, 305

add method, 151

addClass function, 30

adding

callbacks to plugins, 339–342

classes, 30

elements, 37–40

options to plugins, 337

Ajax (Asynchronous JavaScript and

XML), 193–207

$.ajax method, 202

about, 193

client-side Twitter searcher, 201

events, 206

fetching data with $.getJSON, 200

GET and POST requests, 205

Hijax, 194

image gallery, 207–223

image tagging, 223–229

live function and die events, 198

loading, 198

loading content, 159

loading external scripts, 204

loading remote HTML, 194

picking HTML with selectors, 196

requests, 215

settings, 203

ajaxComplete global events, 207

ajaxError global events, 206

ajaxSend global events, 207

ajaxStart global events, 207

ajaxStart method, 215

ajaxStop global events, 207

ajaxStop method, 215

ajaxSuccess global events, 207

aliases

event parameters, 133

using, 11

and (&&) operator, 177

animated navigation, 64–69

animating, 51–72

animated navigation, 64–69

animation queue, 61

chaining actions, 62

color, 53

content panes, 58

CSS properties, 52

easing, 54–58

effects, 42

jQuery UI library, 69

“puff” effect example, 268

queuing and dequeuing, 363

animation queue, 61

anonymous functions, 44

API (Application Programming Inter

face), fetching data, 200

appending lists, 315

arithmetic (+) operator, 158

assignment (=) operator, 382

async Ajax option, 373

Asynchronous JavaScript and XML (see

Ajax)

attr action, 95, 304

attribute selectors, 75

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

395

attributes

:eq selector attribute, 106

title attribute (links), 169

autocomplete, forms, 248

axis option (draggable interaction help

er), 267

B
beforeClose events, 283

beforeSend local events, 207, 212

bgiframe plugin, 283

bind action, 247

bind method, 360

binding multiple events, 247

binding, iPhones, 357

Boolean type, JavaScript, 383

boxModel property ($.support method),

377

browser sniffing, 191

browsers

compatibility, 2

drag and drop, 265

bubbles, events, 139

C
cache Ajax option, 373

calculated style, 26

call method (JavaScript), 341

callback functions

$.ajax method, 376

adding to plugins, 339–342

effects, 44

number of, 46

passing, 290

running, 340

success callback, 209

Cascading Style Sheets (see CSS)

CDN (Content Delivery Network), 9

chaining

actions, 62

empty or remove commands, 246

changeBubbles property ($.support

method), 377

checkboxes

forms, 242

selecting columns of, 329

selecting rows with, 329–331

shift-selecting checkboxes, 330

child elements, defined, 13

child selectors, styling top-level links,

138

classes

decorating, 29

toggleClass method, 309

clearInterval command, 109

clearTimeout command, 109

click event handler, 33, 310

click method, 355

client-side form validation versus server-

side form validation, 232

client-side templating, 188–191

client-side Twitter searcher, 201

clone method, 190

closest action, 287

coding practices, 182–187

comments, 182

error handling, 223

JavaScript, 182–192

map objects, 183

namespaces, 184

scope, 186

color animation, 53

ColorBox plugin, 98

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b

396

columns, selecting columns of check-

boxes, 329

commands

(see also actions; callback functions;

functions; methods; statements;

utilities)

clearInterval command, 109

construction of, 12

empty command, 246

filter command, 151

remove command, 246

comments, in code, 182

compatibility, browsers, 2

complete callback handler, 340

complete local events, 207

components, making themeable, 369

compressed versus uncompressed jQuery

downloads, 11

conditional assignment, modulus, 254

conflicts, avoiding, 362

console.log, troubleshooting lightboxes,

96

content

loading via Ajax, 159

modifying, 41

updating, 188

Content Delivery Network (CDN), 9

content panes, animating, 58

contents() function, 248

contentType Ajax setting, 374

context Ajax setting, 218–219, 374

context, plugins and selectors, 387

controls

(see also dialogs; forms; notifications)

accessibility and semi-transparent

controls, 167

checkboxes, 242

date picker, 257–260

drag and drop, 264–271

navigation, 136

navigation controls in plugins, 321

progress bar, 274

sliders, 260–264

sortable behavior, 271

tabs, 161

create method, 254

creating (see adding)

cropping images with Jcrop, 101–104

cross-fading JavaScript timers, 111–115

cross-fading multiple images, 109

cross-fading slideshows, 104–119

JavaScript timers, 106–115

rollover fader, 105

with plugins, 115–119

CSS (Cascading Style Sheets)

animating CSS properties, 52

child selectors, 138

CSS3 selectors, 3

IE6, 179

layout switcher, 80

properties, 25–28

tabs, 157

z-index property, 112

cssFloat property ($.support method),

377

Cycle plugin, 117

D
data

accessing with selectables, 297

fetching with $.getJSON, 200

sending form data, 227–229

data action, 125, 126, 366

data Ajax setting, 374

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

397

data grids, 319–329

DataTables plugin, 328

editing rows, 324–328

pagination, 319–324

data interchange, JSON and XML, 223

data parameter (bind method), 360

data sources, templating, 188

DataTables plugin, 328

dataType Ajax setting, 375

date picker, 257–260

dates, validation, 259

debugging (see troubleshooting)

decorating, 25–31

classes, 29

CSS properties, 25–28

decrement (--)operator, 115

defaults, event actions, 140

delay action, 63

delegation, event delegation, 309–311

deleting (see removing)

dequeuing animations, 363

development verses minified jQuery

downloads, 11

dialogs, 277–284

die events, 198

disableSelection action, 273

disabling mousedown and mouseup

events on iPhones, 358

display function, 225

DIY event objects, 380

documents, scrolling, 75

dollar sign ($)

JavaScript variable name, 12

uniqueness of, 362

DOM (Document Object Model)

about, 13, 39

Firebug, 29

dot (.) notation, 130

downloading

jQuery, 8–11

jQuery UI library, 69

drag and drop, 264–271, 293

draggable interaction helper, 266

drop-down menus, 144–148

droppable elements, 267

duplicate tags, finding, 292

E
e parameter, 133

e.stopPropagation(), 138

each function, 314

easing, animation, 54–58

editing rows, 324–328

effects, 31–45

adding elements, 37–40

animation, 42

callback functions, 44

hiding and revealing elements, 32–36

highlighting when hovering, 45

modifying content, 41

progressing enhancement, 36

removing elements, 40

spoiler revealer, 47

element types, in selectors, 22

elements

adding, 37–40

DOM, 13

droppable elements, 267

inserting, 40

properties, 26

removing, 40

resizable, 82–89

selecting, 24

swapping in select box lists, 301

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b

398

toggling, 34

empty command, 246

enableSelection action, 273

endless scrolling, Ajax image gallery, 215

:eq filter, 125

:eq selector attribute, 106

equality (==) operator, 382

equality operators, JavaScript, 382

error handling, Ajax, 219

error local event, 206

:even filter, 24

event handlers

hiding and revealing elements, 32

parameters, 133

events, 349–361, 379–380

Ajax, 206

beforeClose events, 283

beforeSend local events, 207, 212

binding iPhones, 357

custom, 351–354

default actions, 140

delegation, 309–311

die events, 198

DIY event objects, 380

droppable elements, 268

keypress events, 133, 240

load events, 95

methods, 380

mousedown events, 358

mouseover events, 147

mouseup events, 358

onChange events, 103

onSelect events, 103

propagation, 139

properties, 349, 379

resize events, 79

scroll events, 72

special events, 358–361

submit events, 235

unbinding and namespacing, 354–357

expandable trees, 306–309

expandable/collapsible menus, 136–141

expanding menus on hover, 143

exponential backoff, 222

extending jQuery, 343–349

$. prefixed functions, 345

methods, 343

overwriting existing functionality, 347

selectors, 348

extensibility, plugins, 5

F
fading, animation

(see also cross-fading slideshows)

falsiness, JavaScript, 383–385

fetching data with $.getJSON, 200

filter action, 304

filter command, 151

filters

:checked and :selected filters, 233

:eq filter, 125

selecting, 23

Firebug, 29

fixed table headers, 312–316

flags, $.ajax method, 373

floating navigation, 73

fold, defined, 348

forms, 232–257

autocomplete, 248

checkboxes, 242

hints, 240

inline editing, 244–248

maximum length indicator, 239

sending data, 227–229

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

399

slide-down login forms, 162

star rating control, 250–257

validation, 232–239

functions

(see also actions; callback functions;

commands; methods; utilities)

$(document).ready(), 18

$.ajax method, 376

$.browser function, 191

$.browser.version function, 191

$.each function, 202, 210

$.extend function, 338

$.getJSON function, 200, 226

$.getScript function, 204

about, 3

addClass function, 30

animate function, 52

anonymous functions, 44

contents() function, 248

display function, 225

each function, 314

hover function, 256

insertAfter function, 38

jQuery alias, 11

live function, 198

load function, 202

nested, 324

removeClass function, 31

replaceWith() function, 248

selector-based functions, 314

setTimeout function, 212, 221

sort function, 300

supports function, 3

template function, 190

trigger function, 247

val function, 233

G
galleries, themes

(see also slideshows)

GET requests, 205

global Ajax option, 374

global events, Ajax, 206

global progress indicators, Ajax image

gallery, 214

Google CDN, 9

Growl-style notifications, 284–287

H
handlers

complete callback handler, 340

event handlers, 32

setup handler, 340

hash symbol (#) id name, 21

headers

fixed table headers, 312–316

repeating table headers, 316

hidden menus, 162

hide action, 32

hiding elements, 32–36

highlighting, when hovering, 45

Hijax, 194

hints, forms, 240

hover function, 256

Hover Intent plugin, 147

:hover pseudo selector, 144

hovering

expanding menus on, 143

highlighting when, 45

hrefNormalized property ($.support

method), 377

HTML

(see also DOM)

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b

400

loading, 18, 194

picking with selectors, 196

html action, 41

htmlSerialize property ($.support meth

od), 378

hyperlinks, Hijax, 194

I

icons, IE6, 369

IE6 (Internet Explorer 6)

CSS, 179

select boxes issue, 283

ThemeRoller, PNGs and icons, 369

if statement, 35

ifModified Ajax option, 374

images

(see also slideshows)

Ajax image gallery, 207–223

cropping with Jcrop, 101–104

image tagging, 223–229

importance of to web browsing, 91

preloading, 270

including jQuery, 8–10

increment (++) operator, 115

index method, 298

indexOf method (JavaScript), 305

indicators, open/closed indicators, 141

inline editing, forms, 244–248

inline scripting, need for, 5

InnerFade plugin, 116

insertAfter function, 38

insertBefore method, 39

inserting elements, 40

interactivity, Ajax image gallery, 207–

223

Internet Explorer 6 (see IE6)

inverting selections in select box lists,

303

iPhones, binding, 357

iPhoto-like slideshow widget, 126–134

is action, 35

J
JavaScript, 381–385

call method, 341

coding practices, 182–192

equality operators, 382

indexOf method, 305

JavaScript objects as jQuery objects,

366

and jQuery, 8

scrollHeight property, 217

timer methods, 107

truthiness and falsiness, 383–385

type coercion, 381

variables, 89

JavaScript Object Notation (JSON), data

interchange, 200, 223

JavaScript objects, quotes ('), 28

JavaScript timers, 106–115

about, 106

cross-fading, 111–115

fading slideshows, 109–111

setting up, 107

stopping, 109

Jcrop plugin, 101–104

jQuery function

and jQuery alias, 11, 19

passing strings to, 21

jQuery stack, plugins, 388

jQuery UI (jQuery User Interface), 3

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

401

jQuery UI library

accordion menus, 154

animating, 69

plugins, 56

tabs, 158–162

jQuery.fn.extend() method, 343

jScrollPane plugin, 78

JSMin, 390

JSON (JavaScript Object Notation), data

interchange, 200, 223

jsonp Ajax setting, 375

K
keypress events, 133, 240

keywords, quotes ('), 28

L
latency, sever latency, 214

layout switcher, CSS, 80

leadingWhitespace property ($.support

method), 378

length property, 22

libraries, $ (dollar sign) function name

(see also jQuery UI library)

lightboxes, 92–100

ColorBox plugin, 98

custom, 92–96

modal dialogs, 277

troubleshooting with console.log, 96

linear easing, 54

lists, 292–305

select box lists, 301–305

selectables, 292–298

sorting, 298

live action, 280

live function, 198

load events, 95

load function, 202

loading

content via Ajax, 159

errors in operation, 221

external scripts, 204

HTML, 18

jQuery, 8–10

remote HTML, 194

using Ajax, 198

local events

Ajax, 206

beforeSend local events, 212

logical operators, 177

login forms, slide-down login forms, 162

M
map objects, 183

mashups, fetching data, 200

Math.random method (ScrollTo plugin),

125

maximum length indicator, forms, 239

menus, 136–156

accordion menus, 148–156

drop-down menus, 144–148

expandable/collapsible menus, 136–

141

expanding on hover, 143

hidden menus, 162

open/closed indicators, 141

methods

$.ajax method, 202, 373–376

$.datepicker.setDefaults method, 260

$.fn.extend() method, 343

$.post method, 228

$.support method, 376

$.trim method, 347

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b

402

add method, 151

ajaxStart method, 215

bind, 247

bind method, 360

call method (JavaScript), 341

click method, 355

clone method, 190

create method, 254

events, 380

extending jQuery, 343

index method, 298

indexOf method (JavaScript), 305

insertBefore method, 39

jQuery.fn.extend() method, 343

Math.random method (ScrollTo plu

gin), 125

mouseover method, 355

nextAll method, 255

nextUntil method, 255

prevUntil method, 255

serialize method, 227

setTimeout method (JavaScript), 108

stopImmediatePropagation method,

380

stopPropagation method, 140, 380

tab control, 161

tellSelect method (Jcrop plugin), 104

timer methods (JavaScript), 107

toggleClass method, 309

minification, plugins, 389

minified verses development jQuery

downloads, 11

minSize property (Jcrop plugin), 103

modal dialogs, 277–280

modulus

conditional assignment, 254

cross-fading, 114

mousedown events, 358

mouseover events, 147

mouseover method, 355

mouseup events, 358

N
namespacing

about, 12

coding practices, 184

events, 354–357

naming event parameters, 133

navigation

animated navigation, 64–69

controls in plugins, 321

floating navigation, 73

submenu system, 136

nested functions, 324

nextAll method, 255

nextUntil method, 255

Nightlies, 10

noCloneEvent property ($.support

method), 378

:not selector, 151

notifications, 284–290

1-up notifications, 287–290

Growl-style notifications, 284–287

nth-child selector, 317

O
object literals, 27

objects

DIY event objects, 380

JavaScript objects and quotes ('), 28

JavaScript objects as jQuery objects,

366

map objects, 183

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

403

onChange event, 103

one action, 336

onSelect events, 103

opacity property ($.support method), 378

open/closed indicators, 141

operators

and (&&) operator, 177

arithmetic (+) operator, 158

equality operators in JavaScript, 382

increment (++) and decrement (--) op

erators, 115, 222

logical operators, 177

ternary operator, 111

options, adding to plugins, 337

P
Packer, 390

pagination, data grids, 319–324

pane splitter, 85–89

panels, 162–168

slide-down login forms, 162

sliding overlays, 164–168

panes, 162–168

animating content panes, 58

slide-down login forms, 162

sliding overlays, 164–168

parameters

about, 12

data parameter (bind method), 360

e parameter, 133

params parameter, 342

params parameter, 342

parent actions, 121

parent container selectors, 22

parent elements, defined, 13

passing callbacks, 290

password Ajax setting, 375

pausing a jQuery chain, 63

pausing animation, 63

percent symbol (%) modulus, 114

performance

checkboxes, 244

click event handler, 310

jQuery, 7

period (.), namespaces, 356

plugins, 387–391

about, 5

Autocomplete plugin, 249

bgiframe plugin, 283

Color Animations plugin, 53

ColorBox plugin, 98

creating, 333–342

Cycle plugin, 117

DataTables plugin, 328

easing plugin, 56

fading with, 115–119

Hover Intent plugin, 147

InnerFade plugin, 116

Jcrop plugin, 101–104

jQuery stack, 388

jQuery UI library, 56

jScrollPane plugin, 78

minification, 389

namespacing, 357

navigation controls, 321

Resizable plugin, 82

ScrollTo plugin, 76, 123–125

selectors and context, 387

ThickBox plugin, 98

Validation plugin, 236–239

warning about, 115

PNGs, IE6, 369

POST requests, 205

preloading images, 270

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b

404

prevUntil method, 255

processData Ajax option, 374

progress bar, 274

progress indicators, 215

propagation, events, 139

properties

$.active property (Ajax), 215

CSS properties, 25–28

elements, 26

events, 349, 379

Jcrop plugin, 103

length property, 22

scrollHeight property (JavaScript), 217

selector and context properties, 387

z-index property (CSS), 112

prototypes, plugins, 334

puff effect, 268–271

pushStack action, 388

Q
queuing animations, 61, 363

quick element construction, 95

quotes ('), 28, 282

R
random numbers, Math.random method

(ScrollTo plugin), 125

randomizing images, 211

reading CSS properties, 25

remote HTML, loading, 194

remove action, 40

remove command, 246

removeClass function, 31

removing

classes, 30

elements, 40

replaceWith() function, 248

requests

Ajax, 215

GET and POST requests, 205

resizing, 79–89

elements, 82–89

resize events, 79

revealing elements, 32–36

revert option (draggable interaction

helper), 267

rows

editing, 324–328

header rows, 312, 316

selecting, 20, 46, 329–331

rules option (Validation Plugin), 237

S
scope, coding practices, 186

scriptCharset Ajax setting, 375

scriptEval property ($.support method),

378

scripts

about, 11

loading external scripts, 204

separating from page presentation, 5

scrollHeight property (JavaScript), 217

scrolling, 72–79

Ajax image gallery, 215

custom scroll bars, 77

documents, 75

floating navigation, 73

scroll events, 72

slideshows, 119–126

ScrollTo plugin, 76, 123–125

searching

client-side Twitter searcher, 201

select box lists, 304

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

405

select box lists, 301–305

inverting selections, 303

searching, 304

swapping list elements, 301

selectables, 292–298

$.map and $.inArray, 296

about, 292–298

accessing data, 297

selecting, 19–25

about, 19–22

checkboxes, 330

columns of checkboxes, 329

elements, 24

filters, 23

narrowing down, 22

rows, 20, 46, 329–331

testing, 22

selections, inverting in select box lists,

303

selectors

:hover pseudo selector, 144

:not selector, 151

about, 12

attribute selectors, 75

child selectors, 138

CSS3, 3

extending jQuery, 348

nth-child selector, 317

picking HTML with, 196

plugins and context, 387

semi-transparent controls, accessibility,

167

sending form data, 227–229

serialize method, 227

server-side form validation versus client-

side form validation, 232

setInterval method (JavaScript), 107

setSelect property (Jcrop plugin), 103

setTimeout function, 212, 221

setTimeout method (JavaScript), 107, 108

setup handler, 340

sever latency, simulating, 214

shift-selecting checkboxes, 330

siblings elements, defined, 14

simulating sever latency, 214

size of jQuery, 7

slide-down login forms, 162

sliders, 260–264

slideshows, 91–134

cropping images, 101–104

cross-fading, 104–119

iPhoto-like widget, 126–134

lightboxes, 92–100

scrolling, 119–126

sliding overlays: panels and panes, 164–

168

sortable behavior, 271

sorting lists, 298

special events, 358–361

speed (see performance)

spinners, Ajax image gallery, 213

splitters, 85

spoiler revealer, effects, 47

stack, jQuery stack and plugins, 388

star rating control, forms, 250–257

statements

(see also actions; callback functions;

commands; functions; methods;

utilities)

if statement, 35

stopImmediatePropagation method, 380

stopping JavaScript timers, 109

stopPropagation method, 140, 380

strict inequality (!==) operator, 383

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b

406

strict quality (===) operator, 383

strings, passing to jQuery function, 21

style property ($.support method), 378

style, calculated style, 26

submenu system, vertical site navigation,

136

submit events, 235

submitBubbles property ($.support

method), 378

Subversion, obtaining jQuery, 10

success callback, 209

success local events, 207

Suckerfish Drop-down technique, 144

Suckerfish menus, 145

supports function, 3

swapping elements in select box lists,

301

swing easing, 54

T
table paging widget example, 320

tables, 312–331

data grids, 319–329

fixed table headers, 312–316

highlighting, 45

repeating headers, 316

selecting rows, 20, 46, 329–331

tabs, 156–162

about, 156–158

jQuery UI, 158–162

tags

finding duplicates, 292

image tagging, 223–229

tbody property ($.support method), 379

tellSelect method (Jcrop plugin), 104

templating, client-side, 188–191

ternary operator, 111

testing selections, 22

text action, 41, 305

textarea, resizable, 83

ThemeRoller

about, 367–372

creating custom themes, 368

making components themeable, 369

ThickBox plugin, 98

this, hiding and revealing elements, 33

thumbnails, scroller, 120–123

timeout Ajax setting, 375

timeout setting (Cycle plugin), 119

timeouts, handling, 220

timers (see JavaScript timers)

title attribute (links), 169

toggleClass method, 309

toggling

about, 35

animation, 43

elements, 34

tooltips, 168–179

translucent sliding overlays, 164

trash, dragging stuff to their doom, 264

traversing, defined, 25

trees, 305–311

event delegation, 309–311

expandable trees, 306–309

trigger function, 247

troubleshooting lightboxes with con-

sole.log, 96

truthiness, JavaScript, 383–385

Twitter, client-side Twitter searcher, 201

type Ajax setting, 375

type coercion, JavaScript, 381

jQuery: Novice to Ninja (www.sitepoint.com)

https://sitepoint.com/bookstore/go/170/25534b

407

U
UI (user interface) (see jQuery UI)

unbinding events, 354–357

uncompressed versus compressed jQuery

downloads, 11

url Ajax setting, 375

username Ajax setting, 375

utilities, 260, 341

V
val function, 233

validation

dates, 259

forms, 232–239

variables, JavaScript, 89

W
Web 2.0, Ajax, 181

X
XML

data interchange, 223

image tagging, 223–226

Z
z-index property (CSS), 112

Unleash your inner jQuery ninja today!

https://sitepoint.com/bookstore/go/170/25534b

	Thank You For Downloading This Book
	What’s In This Excerpt?
	What’s In the Rest of the Book?
	jQuery: Novice to Ninja
	Table of Contents
	Preface
	Who Should Read This Book
	What’s in This Book
	Where to Find Help
	The SitePoint Forums
	The Book’s Web Site
	The Code Archive
	Updates and Errata

	The SitePoint Newsletters
	The SitePoint Podcast
	Your Feedback
	Acknowledgments
	Earle Castledine
	Craig Sharkie

	Conventions Used in This Book
	Code Samples
	Tips, Notes, and Warnings

	Falling in Love with jQuery
	What’s so good about jQuery?
	Cross-browser Compatibility
	CSS3 Selectors
	Helpful Utilities
	jQuery UI
	Plugins
	Keeping Markup Clean
	Widespread Adoption

	What’s the downside?
	Downloading and Including jQuery
	Downloading jQuery
	The Google CDN
	Nightlies and Subversion
	Uncompressed or compressed?

	Anatomy of a jQuery Script
	The jQuery Alias
	Dissecting a jQuery Statement

	Bits of HTML—aka “The DOM”
	If You Choose to Accept It …

	Selecting, Decorating, and Enhancing
	Making Sure the Page Is Ready
	Selecting: The Core of jQuery
	Simple Selecting
	Narrowing Down Our Selection
	Testing Our Selection
	Filters
	Selecting Multiple Elements
	Becoming a Good Selector

	Decorating: CSS with jQuery
	Reading CSS Properties
	Setting CSS Properties
	Classes
	Adding and Removing Classes

	Enhancing: Adding Effects with jQuery
	Hiding and Revealing Elements
	Event Handlers
	this
	Revealing Hidden Elements
	Toggling Elements

	Progressive Enhancement
	Adding New Elements
	Removing Existing Elements
	Modifying Content
	Basic Animation: Hiding and Revealing with Flair
	Fading In and Out
	Toggling Effects and Animations

	Callback Functions

	A Few Tricks
	Highlighting When Hovering
	Spoiler Revealer

	Before We Move On

	Forms, Controls, and Dialogs
	Forms
	Simple Form Validation
	The submit Event

	Form Validation with the Validation Plugin
	Maximum Length Indicator
	Form Hints
	Check All Checkboxes
	Inline Editing
	Autocomplete
	Star Rating Control

	Controls
	Date Picker
	Date Picker Utilities

	Sliders
	Drag and Drop
	draggable
	droppable
	The “Puff” Effect

	jQuery UI sortable
	Progress Bar

	Dialogs and Notifications
	Simple Modal Dialog
	jQuery UI Dialog
	Growl-style Notifications
	1-up Notification

	We’re in Good Form

	What’s Next?
	Index

