

Table	of	Contents
Preface

Introduction	to	JavaScript

ECMAScript

ES6

ES2016

ES2017

ES2018

Coding	style

Lexical	Structure

Variables

Types

Expressions

Prototypal	inheritance

Classes

Exceptions

Semicolons

Quotes

Template	Literals

Functions

Arrow	Functions

Closures

Arrays

Loops

Events

The	Event	Loop

Asynchronous	programming	and	callbacks

Promises

Async	and	Await

Loops	and	Scope

Timers

2

this

Strict	Mode

Immediately-invoked	Function	Expressions	(IIFE)

Math	operators

The	Math	object

ES	Modules

CommonJS

Glossary

3

Preface

The	JavaScript	Handbook	follows	the	80/20	rule:	learn	in	20%	of	the	time	the	80%	of	a	topic.

I	find	this	approach	gives	a	well-rounded	overview.	This	book	does	not	try	to	cover	everything
under	the	sun	related	to	JavaScript.	If	you	think	some	specific	topic	should	be	included,	tell
me.

You	can	reach	me	on	Twitter	@flaviocopes.

I	hope	the	contents	of	this	book	will	help	you	achieve	what	you	want:	learn	the	basics	of
JavaScript.

This	book	is	written	by	Flavio.	I	publish	web	development	tutorials	every	day	on	my	website
flaviocopes.com.

Enjoy!

Preface

4

https://twitter.com/flaviocopes
https://flaviocopes.com

Introduction	to	JavaScript
JavaScript	is	one	of	the	most	popular	programming	languages	in	the	world,
and	now	widely	used	also	outside	of	the	browser.	The	rise	of	Node.js	in	the
last	few	years	unlocked	backend	development,	once	the	domain	of	Java,
Ruby,	Python,	PHP,	and	more	traditional	server-side	languages.	Learn	all
about	it!

Introduction
JavaScript	is	one	of	the	most	popular	programming	languages	in	the	world.

Created	20	years	ago,	it's	gone	a	very	long	way	since	its	humble	beginnings.

Being	the	first	-	and	the	only	-	scripting	language	that	was	supported	natively	by	web
browsers,	it	simply	stuck.

In	the	beginnings,	it	was	not	nearly	powerful	as	it	is	today,	and	it	was	mainly	used	for	fancy
animations	and	the	marvel	known	at	the	time	as	DHTML.

With	the	growing	needs	that	the	web	platform	demands,	JavaScript	had	the	responsibility	to
grow	as	well,	to	accommodate	the	needs	of	one	of	the	most	widely	used	ecosystems	of	the
world.

Many	things	were	introduced	in	the	platform,	with	browser	APIs,	but	the	language	grew	quite	a
lot	as	well.

JavaScript	is	now	widely	used	also	outside	of	the	browser.	The	rise	of	Node.js	in	the	last	few
years	unlocked	backend	development,	once	the	domain	of	Java,	Ruby,	Python	and	PHP	and
more	traditional	server-side	languages.

JavaScript	is	now	also	the	language	powering	databases	and	many	more	applications,	and	it's
even	possible	to	develop	embedded	applications,	mobile	apps,	TV	sets	apps	and	much	more.
What	started	as	a	tiny	language	inside	the	browser	is	now	the	most	popular	language	in	the
world.

A	basic	definition	of	JavaScript
JavaScript	is	a	programming	language	that	is:

high	level:	it	provides	abstractions	that	allow	you	to	ignore	the	details	of	the	machine
where	it's	running	on.	It	manages	memory	automatically	with	a	garbage	collector,	so	you

Introduction	to	JavaScript

5

https://flaviocopes.com/node/

can	focus	on	the	code	instead	of	managing	memory	locations,	and	provides	many
constructs	which	allow	you	to	deal	with	highly	powerful	variables	and	objects.
dynamic:	opposed	to	static	programming	languages,	a	dynamic	language	executes	at
runtime	many	of	the	things	that	a	static	language	does	at	compile	time.	This	has	pros	and
cons,	and	it	gives	us	powerful	features	like	dynamic	typing,	late	binding,	reflection,
functional	programming,	object	runtime	alteration,	closures	and	much	more.
dynamically	typed:	a	variable	does	not	enforce	a	type.	You	can	reassign	any	type	to	a
variable,	for	example	assigning	an	integer	to	a	variable	that	holds	a	string.
weakly	typed:	as	opposed	to	strong	typing,	weakly	(or	loosely)	typed	languages	do	not
enforce	the	type	of	an	object,	allowing	more	flexibility	but	denying	us	type	safety	and	type
checking	(something	that	TypeScript	and	Flow	aim	to	improve)
interpreted:	it's	commonly	known	as	an	interpreted	language,	which	means	that	it	does
not	need	a	compilation	stage	before	a	program	can	run,	as	opposed	to	C,	Java	or	Go	for
example.	In	practice,	browsers	do	compile	JavaScript	before	executing	it,	for	performance
reasons,	but	this	is	transparent	to	you:	there	is	no	additional	step	involved.
multi-paradigm:	the	language	does	not	enforce	any	particular	programming	paradigm,
unlike	Java	for	example	which	forces	the	use	of	object	oriented	programming,	or	C	that
forces	imperative	programming.	You	can	write	JavaScript	using	an	object-oriented
paradigm,	using	prototypes	and	the	new	(as	of	ES6)	classes	syntax.	You	can	write
JavaScript	in	functional	programming	style,	with	its	first	class	functions,	or	even	in	an
imperative	style	(C-like).

In	case	you're	wondering,	JavaScript	has	nothing	to	do	with	Java,	it's	a	poor	name	choice	but
we	have	to	live	with	it.

JavaScript	versions
Let	me	introduce	the	term	ECMAScript	here.	We	have	a	complete	guide	dedicated	to
ECMAScript	where	you	can	dive	into	it	more,	but	to	start	with,	you	just	need	to	know	that
ECMAScript	(also	called	ES)	is	the	name	of	the	JavaScript	standard.

JavaScript	is	an	implementation	of	that	standard.	That's	why	you'll	hear	about	ES6,	ES2015,
ES2016,	ES2017,	ES2018	and	so	on.

For	a	very	long	time,	the	version	of	JavaScript	that	all	browser	ran	was	ECMAScript	3.	Version
4	was	canceled	due	to	feature	creep	(they	were	trying	to	add	too	many	things	at	once),	while
ES5	was	a	huge	version	for	JS.

ES2015,	also	called	ES6,	was	huge	as	well.

Since	then,	the	ones	in	charge	decided	to	release	one	version	per	year,	to	avoid	having	too
much	time	idle	between	releases,	and	have	a	faster	feedback	loop.

Introduction	to	JavaScript

6

https://flaviocopes.com/javascript-closures/
https://flaviocopes.com/ecmascript
https://flaviocopes.com/ecmascript/#es2015-aka-es6
https://flaviocopes.com/ecmascript/#es2016-aka-es7
https://flaviocopes.com/ecmascript/#es2017-aka-es8
https://flaviocopes.com/ecmascript/#es2015-aka-es6

Currently,	the	latest	approved	JavaScript	version	is	ES2017.

Introduction	to	JavaScript

7

https://flaviocopes.com/ecmascript/#es2017-aka-es8

ECMAScript
ECMAScript	is	the	standard	upon	which	JavaScript	is	based,	and	it's	often
abbreviated	to	ES.	Discover	everything	about	ECMAScript,	and	the	last
features	added	in	ES6,	7,	8

Whenever	you	read	about	JavaScript	you'll	inevitably	see	one	of	these	terms:

ES3
ES5
ES6
ES7
ES8
ES2015
ES2016
ES2017
ECMAScript	2017
ECMAScript	2016

ECMAScript

8

ECMAScript	2015

What	do	they	mean?

They	are	all	referring	to	a	standard,	called	ECMAScript.

ECMAScript	is	the	standard	upon	which	JavaScript	is	based,	and	it's	often	abbreviated	to
ES.

Beside	JavaScript,	other	languages	implement(ed)	ECMAScript,	including:

ActionScript	(the	Flash	scripting	language),	which	is	losing	popularity	since	Flash	will	be
officially	discontinued	in	2020
JScript	(the	Microsoft	scripting	dialect),	since	at	the	time	JavaScript	was	supported	only
by	Netscape	and	the	browser	wars	were	at	their	peak,	Microsoft	had	to	build	its	own
version	for	Internet	Explorer

but	of	course	JavaScript	is	the	most	popular	and	widely	used	implementation	of	ES.

Why	this	weird	name?	 	Ecma	International		is	a	Swiss	standards	association	who	is	in	charge
of	defining	international	standards.

When	JavaScript	was	created,	it	was	presented	by	Netscape	and	Sun	Microsystems	to	Ecma
and	they	gave	it	the	name	ECMA-262	alias	ECMAScript.

This	press	release	by	Netscape	and	Sun	Microsystems	(the	maker	of	Java)	might	help	figure
out	the	name	choice,	which	might	include	legal	and	branding	issues	by	Microsoft	which	was	in
the	committee,	according	to	Wikipedia.

After	IE9,	Microsoft	stopped	stopped	branding	its	ES	support	in	browsers	as	JScript	and
started	calling	it	JavaScript	(at	least,	I	could	not	find	references	to	it	any	more)

So	as	of	201x,	the	only	popular	language	supporting	the	ECMAScript	spec	is	JavaScript.

Current	ECMAScript	version
The	current	ECMAScript	version	is	ES2018.

It	was	released	in	June	2018.

When	is	the	next	version	coming	out?
Historically	JavaScript	editions	have	been	standardized	during	the	summer,	so	we	can	expect
ECMAScript	2019	to	be	released	in	summer	2019,	but	this	is	just	speculation.

ECMAScript

9

https://web.archive.org/web/20070916144913/http://wp.netscape.com/newsref/pr/newsrelease67.html
https://en.wikipedia.org/wiki/ECMAScript

What	is	TC39
TC39	is	the	committee	that	evolves	JavaScript.

The	members	of	TC39	are	companies	involved	in	JavaScript	and	browser	vendors,	including
Mozilla,	Google,	Facebook,	Apple,	Microsoft,	Intel,	PayPal,	SalesForce	and	others.

Every	standard	version	proposal	must	go	through	various	stages,	which	are	explained	here.

ES	Versions
I	found	it	puzzling	why	sometimes	an	ES	version	is	referenced	by	edition	number	and
sometimes	by	year,	and	I	am	confused	by	the	year	by	chance	being	-1	on	the	number,	which
adds	to	the	general	confusion	around	JS/ES	ھ

Before	ES2015,	ECMAScript	specifications	were	commonly	called	by	their	edition.	So	ES5	is
the	official	name	for	the	ECMAScript	specification	update	published	in	2009.

Why	does	this	happen?	During	the	process	that	led	to	ES2015,	the	name	was	changed	from
ES6	to	ES2015,	but	since	this	was	done	late,	people	still	referenced	it	as	ES6,	and	the
community	has	not	left	the	edition	naming	behind	-	the	world	is	still	calling	ES	releases	by
edition	number.

This	table	should	clear	things	a	bit:

Edition Official	name Date	published

ES9 ES2018 June	2018

ES8 ES2017 June	2017

ES7 ES2016 June	2016

ES6 ES2015 June	2015

ES5.1 ES5.1 June	2011

ES5 ES5 December	2009

ES4 ES4 Abandoned

ES3 ES3 December	1999

ES2 ES2 June	1998

ES1 ES1 June	1997

ES	Next

ECMAScript

10

https://tc39.github.io/process-document/

ES.Next	is	a	name	that	always	indicates	the	next	version	of	JavaScript.

So	at	the	time	of	writing,	ES9	has	been	released,	and	ES.Next	is	ES10

ECMAScript

11

ES6
ECMAScript	is	the	standard	upon	which	JavaScript	is	based,	and	it's	often
abbreviated	to	ES.	Discover	everything	about	ECMAScript,	and	the	last
features	added	in	ES6,	aka	ES2015

ECMAScript	2015,	also	known	as	ES6,	is	a	fundamental	version	of	the	ECMAScript	standard.

Published	4	years	after	the	latest	standard	revision,	ECMAScript	5.1,	it	also	marked	the
switch	from	edition	number	to	year	number.

So	it	should	not	be	named	as	ES6	(although	everyone	calls	it	as	such)	but	ES2015	instead.

ES5	was	10	years	in	the	making,	from	1999	to	2009,	and	as	such	it	was	also	a
fundamental	and	very	important	revision	of	the	language,	but	now	much	time	has	passed
that	it's	not	worth	discussing	how	pre-ES5	code	worked.

Since	this	long	time	passed	between	ES5.1	and	ES6,	the	release	is	full	of	important	new
features	and	major	changes	in	suggested	best	practices	in	developing	JavaScript	programs.
To	understand	how	fundamental	ES2015	is,	just	keep	in	mind	that	with	this	version,	the
specification	document	went	from	250	pages	to	~600.

The	most	important	changes	in	ES2015	include

Arrow	functions
Promises
Generators
	let		and	 	const	
Classes
Modules
Multiline	strings
Template	literals
Default	parameters
The	spread	operator|
Destructuring	assignments
Enhanced	object	literals
The	for..of	loop
Map	and	Set

Each	of	them	has	a	dedicated	section	in	this	article.

Arrow	Functions

ES6

12

https://flaviocopes.com/javascript-promises/

Arrow	functions	since	their	introduction	changed	how	most	JavaScript	code	looks	(and	works).

Visually,	it's	a	simple	and	welcome	change,	from:

const	foo	=	function	foo()	{

		//...

}

to

const	foo	=	()	=>	{

		//...

}

And	if	the	function	body	is	a	one-liner,	just:

const	foo	=	()	=>	doSomething()

Also,	if	you	have	a	single	parameter,	you	could	write:

const	foo	=	param	=>	doSomething(param)

This	is	not	a	breaking	change,	regular	 	function	s	will	continue	to	work	just	as	before.

A	new	 	this		scope
The	 	this		scope	with	arrow	functions	is	inherited	from	the	context.

With	regular	 	function	s	 	this		always	refers	to	the	nearest	function,	while	with	arrow	functions
this	problem	is	removed,	and	you	won't	need	to	write	 	var	that	=	this		ever	again.

Promises
Promises	(check	the	full	guide	to	promises)	allow	us	to	eliminate	the	famous	"callback	hell",
although	they	introduce	a	bit	more	complexity	(which	has	been	solved	in	ES2017	with	 	async	,
a	higher	level	construct).

Promises	have	been	used	by	JavaScript	developers	well	before	ES2015,	with	many	different
libraries	implementations	(e.g.	jQuery,	q,	deferred.js,	vow...),	and	the	standard	put	a	common
ground	across	differences.

By	using	promises	you	can	rewrite	this	code

ES6

13

https://flaviocopes.com/javascript-promises/

setTimeout(function()	{

		console.log('I	promised	to	run	after	1s')

		setTimeout(function()	{

				console.log('I	promised	to	run	after	2s')

		},	1000)

},	1000)

as

const	wait	=	()	=>	new	Promise((resolve,	reject)	=>	{

		setTimeout(resolve,	1000)

})

wait().then(()	=>	{

		console.log('I	promised	to	run	after	1s')

		return	wait()

})

.then(()	=>	console.log('I	promised	to	run	after	2s'))

Generators
Generators	are	a	special	kind	of	function	with	the	ability	to	pause	itself,	and	resume	later,
allowing	other	code	to	run	in	the	meantime.

The	code	decides	that	it	has	to	wait,	so	it	lets	other	code	"in	the	queue"	to	run,	and	keeps	the
right	to	resume	its	operations	"when	the	thing	it's	waiting	for"	is	done.

All	this	is	done	with	a	single,	simple	keyword:	 	yield	.	When	a	generator	contains	that
keyword,	the	execution	is	halted.

A	generator	can	contain	many	 	yield		keywords,	thus	halting	itself	multiple	times,	and	it's
identified	by	the	 	*function		keyword,	which	is	not	to	be	confused	with	the	pointer	dereference
operator	used	in	lower	level	programming	languages	such	as	C,	C++	or	Go.

Generators	enable	whole	new	paradigms	of	programming	in	JavaScript,	allowing:

2-way	communication	while	a	generator	is	running
long-lived	while	loops	which	do	not	freeze	your	program

Here	is	an	example	of	a	generator	which	explains	how	it	all	works.

function	*calculator(input)	{

				var	doubleThat	=	2	*	(yield	(input	/	2))

				var	another	=	yield	(doubleThat)

				return	(input	*	doubleThat	*	another)

}

ES6

14

https://flaviocopes.com/javascript-loops/

We	initialize	it	with

const	calc	=	calculator(10)

Then	we	start	the	iterator	on	our	generator:

calc.next()

This	first	iteration	starts	the	iterator.	The	code	returns	this	object:

{

		done:	false

		value:	5

}

What	happens	is:	the	code	runs	the	function,	with	 	input	=	10		as	it	was	passed	in	the
generator	constructor.	It	runs	until	it	reaches	the	 	yield	,	and	returns	the	content	of	 	yield	:
	input	/	2	=	5	.	So	we	got	a	value	of	5,	and	the	indication	that	the	iteration	is	not	done	(the
function	is	just	paused).

In	the	second	iteration	we	pass	the	value	 	7	:

calc.next(7)

and	what	we	got	back	is:

{

		done:	false

		value:	14

}

	7		was	placed	as	the	value	of	 	doubleThat	.	Important:	you	might	read	like	 	input	/	2		was	the
argument,	but	that's	just	the	return	value	of	the	first	iteration.	We	now	skip	that,	and	use	the
new	input	value,	 	7	,	and	multiply	it	by	2.

We	then	reach	the	second	yield,	and	that	returns	 	doubleThat	,	so	the	returned	value	is	 	14	.

In	the	next,	and	last,	iteration,	we	pass	in	100

calc.next(100)

and	in	return	we	got

ES6

15

{

		done:	true

		value:	14000

}

As	the	iteration	is	done	(no	more	yield	keywords	found)	and	we	just	return	 	(input	*	doubleThat
*	another)		which	amounts	to	 	10	*	14	*	100	.

	let		and	 	const	
	var		is	traditionally	function	scoped.

	let		is	a	new	variable	declaration	which	is	block	scoped.

This	means	that	declaring	 	let		variables	in	a	for	loop,	inside	an	if	or	in	a	plain	block	is	not
going	to	let	that	variable	"escape"	the	block,	while	 	var	s	are	hoisted	up	to	the	function
definition.

	const		is	just	like	 	let	,	but	immutable.

In	JavaScript	moving	forward,	you'll	see	little	to	no	 	var		declarations	any	more,	just	 	let		and
	const	.

	const		in	particular,	maybe	surprisingly,	is	very	widely	used	nowadays	with	immutability
being	very	popular.

Classes
Traditionally	JavaScript	is	the	only	mainstream	language	with	prototype-based	inheritance.
Programmers	switching	to	JS	from	class-based	language	found	it	puzzling,	but	ES2015
introduced	classes,	which	are	just	syntactic	sugar	over	the	inner	working,	but	changed	a	lot
how	we	build	JavaScript	programs.

Now	inheritance	is	very	easy	and	resembles	other	object-oriented	programming	languages:

class	Person	{

		constructor(name)	{

				this.name	=	name

		}

		hello()	{

				return	'Hello,	I	am	'	+	this.name	+	'.'

		}

}

ES6

16

class	Actor	extends	Person	{

		hello()	{

				return	super.hello()	+	'	I	am	an	actor.'

		}

}

var	tomCruise	=	new	Actor('Tom	Cruise')

tomCruise.hello()

(the	above	program	prints	"Hello,	I	am	Tom	Cruise.	I	am	an	actor.")

Classes	do	not	have	explicit	class	variable	declarations,	but	you	must	initialize	any	variable	in
the	constructor.

Constructor

Classes	have	a	special	method	called	 	constructor		which	is	called	when	a	class	is	initialized
via	 	new	.

Super

The	parent	class	can	be	referenced	using	 	super()	.

Getters	and	setters

A	getter	for	a	property	can	be	declared	as

class	Person	{

		get	fullName()	{

				return	`${this.firstName}	${this.lastName}`

		}

}

Setters	are	written	in	the	same	way:

class	Person	{

		set	age(years)	{

				this.theAge	=	years

		}

}

Modules

ES6

17

Before	ES2015,	there	were	at	least	3	major	modules	competing	standards,	which	fragmented
the	community:

AMD
RequireJS
CommonJS

ES2015	standardized	these	into	a	common	format.

Importing	modules

Importing	is	done	via	the	 	import	...	from	...		construct:

import	*	from	'mymodule'

import	React	from	'react'

import	{	React,	Component	}	from	'react'

import	React	as	MyLibrary	from	'react'

Exporting	modules

You	can	write	modules	and	export	anything	to	other	modules	using	the	 	export		keyword:

export	var	foo	=	2

export	function	bar()	{	/*	...	*/	}

Template	Literals
Template	literals	are	a	new	syntax	to	create	strings:

const	aString	=	`A	string`

They	provide	a	way	to	embed	expressions	into	strings,	effectively	interpolating	the	values,	by
using	the	 	${a_variable}		syntax:

const	var	=	'test'

const	string	=	`something	${var}`	//something	test

You	can	perform	more	complex	expressions	as	well:

const	string	=	`something	${1	+	2	+	3}`

const	string2	=	`something	${foo()	?	'x'	:	'y'	}`

ES6

18

and	strings	can	span	over	multiple	lines:

const	string3	=	`Hey

this

string

is	awesome!`

Compare	how	we	used	to	do	multiline	strings	pre-ES2015:

var	str	=	'One\n'	+

'Two\n'	+

'Three'

See	this	post	for	an	in-depth	guide	on	template	literals

Default	parameters
Functions	now	support	default	parameters:

const	foo	=	function(index	=	0,	testing	=	true)	{	/*	...	*/	}

foo()

The	spread	operator
You	can	expand	an	array,	an	object	or	a	string	using	the	spread	operator	

Let's	start	with	an	array	example.	Given

const	a	=	[1,	2,	3]

you	can	create	a	new	array	using

const	b	=	[...a,	4,	5,	6]

You	can	also	create	a	copy	of	an	array	using

const	c	=	[...a]

This	works	for	objects	as	well.	Clone	an	object	with:

ES6

19

https://flaviocopes.com/javascript-template-literals/

const	newObj	=	{	...oldObj	}

Using	strings,	the	spread	operator	creates	an	array	with	each	char	in	the	string:

const	hey	=	'hey'

const	arrayized	=	[...hey]	//	['h',	'e',	'y']

This	operator	has	some	pretty	useful	applications.	The	most	important	one	is	the	ability	to	use
an	array	as	function	argument	in	a	very	simple	way:

const	f	=	(foo,	bar)	=>	{}

const	a	=	[1,	2]

f(...a)

(in	the	past	you	could	do	this	using	 	f.apply(null,	a)		but	that's	not	as	nice	and	readable)

Destructuring	assignments
Given	an	object,	you	can	extract	just	some	values	and	put	them	into	named	variables:

const	person	=	{

		firstName:	'Tom',

		lastName:	'Cruise',

		actor:	true,

		age:	54,	//made	up

}

const	{firstName:	name,	age}	=	person

	name		and	 	age		contain	the	desired	values.

The	syntax	also	works	on	arrays:

const	a	=	[1,2,3,4,5]

[first,	second,	,	,	fifth]	=	a

Enhanced	Object	Literals
In	ES2015	Object	Literals	gained	superpowers.

Simpler	syntax	to	include	variables

ES6

20

Instead	of	doing

const	something	=	'y'

const	x	=	{

		something:	something

}

you	can	do

const	something	=	'y'

const	x	=	{

		something

}

Prototype

A	prototype	can	be	specified	with

const	anObject	=	{	y:	'y'	}

const	x	=	{

		__proto__:	anObject

}

super()

const	anObject	=	{	y:	'y',	test:	()	=>	'zoo'	}

const	x	=	{

		__proto__:	anObject,

		test()	{

				return	super.test()	+	'x'

		}

}

x.test()	//zoox

Dynamic	properties

const	x	=	{

		['a'	+	'_'	+	'b']:	'z'

}

x.a_b	//z

For-of	loop

ES6

21

ES5	back	in	2009	introduced	 	forEach()		loops.	While	nice,	they	offered	no	way	to	break,	like
	for		loops	always	did.

ES2015	introduced	the	 	for-of		loop,	which	combines	the	conciseness	of	 	forEach		with	the
ability	to	break:

//iterate	over	the	value

for	(const	v	of	['a',	'b',	'c'])	{

		console.log(v);

}

//get	the	index	as	well,	using	`entries()`

for	(const	[i,	v]	of	['a',	'b',	'c'].entries())	{

		console.log(i,	v);

}

Map	and	Set
Map	and	Set	(and	their	respective	garbage	collected	WeakMap	and	WeakSet)	are	the	official
implementations	of	two	very	popular	data	structures.

ES6

22

https://flaviocopes.com/javascript-data-structures-map/
https://flaviocopes.com/javascript-data-structures-set/

ES2016
ECMAScript	is	the	standard	upon	which	JavaScript	is	based,	and	it's	often
abbreviated	to	ES.	Discover	everything	about	ECMAScript,	and	the	last
features	added	in	ES2016,	aka	ES7

ES7,	officially	known	as	ECMAScript	2016,	was	finalized	in	June	2016.

Compared	to	ES6,	ES7	is	a	tiny	release	for	JavaScript,	containing	just	two	features:

Array.prototype.includes
Exponentiation	Operator

Array.prototype.includes()
This	feature	introduces	a	more	readable	syntax	for	checking	if	an	array	contains	an	element.

With	ES6	and	lower,	to	check	if	an	array	contained	an	element	you	had	to	use	 	indexOf	,	which
checks	the	index	in	the	array,	and	returns	 	-1		if	the	element	is	not	there.

Since	 	-1		is	evaluated	as	a	true	value,	you	could	not	do	for	example

if	(![1,2].indexOf(3))	{

		console.log('Not	found')

}

With	this	feature	introduced	in	ES7	we	can	do

if	(![1,2].includes(3))	{

		console.log('Not	found')

}

Exponentiation	Operator
The	exponentiation	operator	 	**		is	the	equivalent	of	 	Math.pow()	,	but	brought	into	the
language	instead	of	being	a	library	function.

Math.pow(4,	2)	==	4	**	2

This	feature	is	a	nice	addition	for	math	intensive	JS	applications.

ES2016

23

The	 	**		operator	is	standardized	across	many	languages	including	Python,	Ruby,	MATLAB,
Lua,	Perl	and	many	others.

ES2016

24

ES2017
ECMAScript	is	the	standard	upon	which	JavaScript	is	based,	and	it's	often
abbreviated	to	ES.	Discover	everything	about	ECMAScript,	and	the	last
features	added	in	ES2017,	aka	ES8

ECMAScript	2017,	edition	8	of	the	ECMA-262	Standard	(also	commonly	called	ES2017	or
ES8),	was	finalized	in	June	2017.

Compared	to	ES6,	ES8	is	a	tiny	release	for	JavaScript,	but	still	it	introduces	very	useful
features:

String	padding
Object.values
Object.entries
Object.getOwnPropertyDescriptors()
Trailing	commas	in	function	parameter	lists	and	calls
Async	functions
Shared	memory	and	atomics

String	padding
The	purpose	of	string	padding	is	to	add	characters	to	a	string,	so	it	reaches	a	specific
length.

ES2017	introduces	two	 	String		methods:	 	padStart()		and	 	padEnd()	.

padStart(targetLength	[,	padString])

padEnd(targetLength	[,	padString])

Sample	usage:

padStart()

'test'.padStart(4) 	'test'	

'test'.padStart(5) 	'_test'	

'test'.padStart(8) 	'____test'	

'test'.padStart(8,	'abcd') 	'abcdtest'	

padEnd()

'test'.padEnd(4) 	'test'	

ES2017

25

'test'.padEnd(5) 	'test_'	

'test'.padEnd(8) 	'test____'	

'test'.padEnd(8,	'abcd') 	'testabcd'	

(in	the	table,	_	=	space)

Object.values()
This	method	returns	an	array	containing	all	the	object	own	property	values.

Usage:

const	person	=	{	name:	'Fred',	age:	87	}

Object.values(person)	//	['Fred',	87]

	Object.values()		also	works	with	arrays:

const	people	=	['Fred',	'Tony']

Object.values(people)	//	['Fred',	'Tony']

Object.entries()
This	method	returns	an	array	containing	all	the	object	own	properties,	as	an	array	of	 	[key,
value]		pairs.

Usage:

const	person	=	{	name:	'Fred',	age:	87	}

Object.entries(person)	//	[['name',	'Fred'],	['age',	87]]

	Object.entries()		also	works	with	arrays:

const	people	=	['Fred',	'Tony']

Object.entries(people)	//	[['0',	'Fred'],	['1',	'Tony']]

getOwnPropertyDescriptors()
This	method	returns	all	own	(non-inherited)	properties	descriptors	of	an	object.

Any	object	in	JavaScript	has	a	set	of	properties,	and	each	of	these	properties	has	a	descriptor.

ES2017

26

A	descriptor	is	a	set	of	attributes	of	a	property,	and	it's	composed	by	a	subset	of	the	following:

value:	the	value	of	the	property
writable:	true	the	property	can	be	changed
get:	a	getter	function	for	the	property,	called	when	the	property	is	read
set:	a	setter	function	for	the	property,	called	when	the	property	is	set	to	a	value
configurable:	if	false,	the	property	cannot	be	removed	nor	any	attribute	can	be	changed,
except	its	value
enumerable:	true	if	the	property	is	enumerable

	Object.getOwnPropertyDescriptors(obj)		accepts	an	object,	and	returns	an	object	with	the	set	of
descriptors.

In	what	way	is	this	useful?

ES2015	gave	us	 	Object.assign()	,	which	copies	all	enumerable	own	properties	from	one	or
more	objects,	and	return	a	new	object.

However	there	is	a	problem	with	that,	because	it	does	not	correctly	copies	properties	with	non-
default	attributes.

If	an	object	for	example	has	just	a	setter,	it's	not	correctly	copied	to	a	new	object,	using
	Object.assign()	.

For	example	with

const	person1	=	{

		set	name(newName)	{

				console.log(newName)

		}

}

This	won't	work:

const	person2	=	{}

Object.assign(person2,	person1)

But	this	will	work:

const	person3	=	{}

Object.defineProperties(person3,	Object.getOwnPropertyDescriptors(person1))

As	you	can	see	with	a	simple	console	test:

person1.name	=	'x'

ES2017

27

;('x')

person2.name	=	'x'

person3.name	=	'x'

;('x')

	person2		misses	the	setter,	it	was	not	copied	over.

The	same	limitation	goes	for	shallow	cloning	objects	with	Object.create().

Trailing	commas
This	feature	allows	to	have	trailing	commas	in	function	declarations,	and	in	functions	calls:

const	doSomething	=	(var1,	var2)	=>	{

		//...

}

doSomething('test2',	'test2')

This	change	will	encourage	developers	to	stop	the	ugly	"comma	at	the	start	of	the	line"	habit.

Async	functions
Check	the	dedicated	post	about	async/await

ES2017	introduced	the	concept	of	async	functions,	and	it's	the	most	important	change
introduced	in	this	ECMAScript	edition.

Async	functions	are	a	combination	of	promises	and	generators	to	reduce	the	boilerplate
around	promises,	and	the	"don't	break	the	chain"	limitation	of	chaining	promises.

Why	they	are	useful

It's	a	higher	level	abstraction	over	promises.

When	Promises	were	introduced	in	ES2015,	they	were	meant	to	solve	a	problem	with
asynchronous	code,	and	they	did,	but	over	the	2	years	that	separated	ES2015	and	ES2017,	it
was	clear	that	promises	could	not	be	the	final	solution.	Promises	were	introduced	to	solve	the
famous	callback	hell	problem,	but	they	introduced	complexity	on	their	own,	and	syntax
complexity.	They	were	good	primitives	around	which	a	better	syntax	could	be	exposed	to	the
developers:	enter	async	functions.

ES2017

28

https://flaviocopes.com/javascript-async-await/

A	quick	example

Code	making	use	of	asynchronous	functions	can	be	written	as

function	doSomethingAsync()	{

		return	new	Promise(resolve	=>	{

				setTimeout(()	=>	resolve('I	did	something'),	3000)

		})

}

async	function	doSomething()	{

		console.log(await	doSomethingAsync())

}

console.log('Before')

doSomething()

console.log('After')

The	above	code	will	print	the	following	to	the	browser	console:

Before

After

I	did	something	//after	3s

Multiple	async	functions	in	series

Async	functions	can	be	chained	very	easily,	and	the	syntax	is	much	more	readable	than	with
plain	promises:

function	promiseToDoSomething()	{

		return	new	Promise(resolve	=>	{

				setTimeout(()	=>	resolve('I	did	something'),	10000)

		})

}

async	function	watchOverSomeoneDoingSomething()	{

		const	something	=	await	promiseToDoSomething()

		return	something	+	'	and	I	watched'

}

async	function	watchOverSomeoneWatchingSomeoneDoingSomething()	{

		const	something	=	await	watchOverSomeoneDoingSomething()

		return	something	+	'	and	I	watched	as	well'

}

watchOverSomeoneWatchingSomeoneDoingSomething().then(res	=>	{

		console.log(res)

})

ES2017

29

Shared	Memory	and	Atomics
WebWorkers	are	used	to	create	multithreaded	programs	in	the	browser.

They	offer	a	messaging	protocol	via	events.	Since	ES2017,	you	can	create	a	shared	memory
array	between	web	workers	and	their	creator,	using	a	 	SharedArrayBuffer	.

Since	it's	unknown	how	much	time	writing	to	a	shared	memory	portion	takes	to	propagate,
Atomics	are	a	way	to	enforce	that	when	reading	a	value,	any	kind	of	writing	operation	is
completed.

Any	more	detail	on	this	can	be	found	in	the	spec	proposal,	which	has	since	been	implemented.

ES2017

30

https://flaviocopes.com/web-workers/
https://github.com/tc39/ecmascript_sharedmem/blob/master/TUTORIAL.md

ES2018
ECMAScript	is	the	standard	upon	which	JavaScript	is	based,	and	it's	often
abbreviated	to	ES.	Discover	everything	about	ECMAScript,	and	the	last
features	added	in	ES2018,	aka	ES9

ES2018	is	the	latest	version	of	the	ECMAScript	standard.

What	are	the	new	things	introduced	in	it?

Rest/Spread	Properties
ES6	introduced	the	concept	of	a	rest	element	when	working	with	array	destructuring:

const	numbers	=	[1,	2,	3,	4,	5]

[first,	second,	...others]	=	numbers

and	spread	elements:

const	numbers	=	[1,	2,	3,	4,	5]

const	sum	=	(a,	b,	c,	d,	e)	=>	a	+	b	+	c	+	d	+	e

const	sum	=	sum(...numbers)

ES2018	introduces	the	same	but	for	objects.

Rest	properties:

const	{	first,	second,	...others	}	=	{	first:	1,	second:	2,	third:	3,	fourth:	4,	fifth:	5	

}

first	//	1

second	//	2

others	//	{	third:	3,	fourth:	4,	fifth:	5	}

Spread	properties	allow	to	create	a	new	object	by	combining	the	properties	of	the	object
passed	after	the	spread	operator:

const	items	=	{	first,	second,	...others	}

items	//{	first:	1,	second:	2,	third:	3,	fourth:	4,	fifth:	5	}

Asynchronous	iteration

ES2018

31

https://flaviocopes.com/ecmascript/
https://flaviocopes.com/es6/

The	new	construct	 	for-await-of		allows	you	to	use	an	async	iterable	object	as	the	loop
iteration:

for	await	(const	line	of	readLines(filePath))	{

		console.log(line)

}

Since	this	uses	 	await	,	you	can	use	it	only	inside	 	async		functions,	like	a	normal	 	await		(see
async/await)

Promise.prototype.finally()
When	a	promise	is	fulfilled,	successfully	it	calls	the	 	then()		methods,	one	after	another.

If	something	fails	during	this,	the	 	then()		methods	are	jumped	and	the	 	catch()		method	is
executed.

	finally()		allow	you	to	run	some	code	regardless	of	the	successful	or	not	successful
execution	of	the	promise:

fetch('file.json')

		.then(data	=>	data.json())

		.catch(error	=>	console.error(error))

		.finally(()	=>	console.log('finished'))

Regular	Expression	improvements

RegExp	lookbehind	assertions:	match	a	string	depending	on
what	precedes	it

This	is	a	lookahead:	you	use	 	?=		to	match	a	string	that's	followed	by	a	specific	substring:

/Roger(?=Waters)/

/Roger(?=	Waters)/.test('Roger	is	my	dog')	//false

/Roger(?=	Waters)/.test('Roger	is	my	dog	and	Roger	Waters	is	a	famous	musician')	//true

	?!		performs	the	inverse	operation,	matching	if	a	string	is	not	followed	by	a	specific	substring:

/Roger(?!Waters)/

/Roger(?!	Waters)/.test('Roger	is	my	dog')	//true

/Roger(?!	Waters)/.test('Roger	Waters	is	a	famous	musician')	//false

ES2018

32

https://flaviocopes.com/async-await/

Lookaheads	use	the	 	?=		symbol.	They	were	already	available.

Lookbehinds,	a	new	feature,	uses	 	?<=	.

/(?<=Roger)	Waters/

/(?<=Roger)	Waters/.test('Pink	Waters	is	my	dog')	//false

/(?<=Roger)	Waters/.test('Roger	is	my	dog	and	Roger	Waters	is	a	famous	musician')	//true

A	lookbehind	is	negated	using	 	?<!	:

/(?<!Roger)	Waters/

/(?<!Roger)	Waters/.test('Pink	Waters	is	my	dog')	//true

/(?<!Roger)	Waters/.test('Roger	is	my	dog	and	Roger	Waters	is	a	famous	musician')	//false

Unicode	property	escapes	 	\p{…}		and	 	\P{…}	

In	a	regular	expression	pattern	you	can	use	 	\d		to	match	any	digit,	 	\s		to	match	any
character	that's	not	a	white	space,	 	\w		to	match	any	alphanumeric	character,	and	so	on.

This	new	feature	extends	this	concept	to	all	Unicode	characters	introducing	 	\p{}		and	is
negation	 	\P{}	.

Any	unicode	character	has	a	set	of	properties.	For	example	 	Script		determines	the	language
family,	 	ASCII		is	a	boolean	that's	true	for	ASCII	characters,	and	so	on.	You	can	put	this
property	in	the	graph	parentheses,	and	the	regex	will	check	for	that	to	be	true:

/^\p{ASCII}+$/u.test('abc')			//✅

/^\p{ASCII}+$/u.test('ABC@')		//✅

/^\p{ASCII}+$/u.test('ABC۽ ')	//❌

	ASCII_Hex_Digit		is	another	boolean	property,	that	checks	if	the	string	only	contains	valid
hexadecimal	digits:

/^\p{ASCII_Hex_Digit}+$/u.test('0123456789ABCDEF')	//✅

/^\p{ASCII_Hex_Digit}+$/u.test('h')																//❌

There	are	many	other	boolean	properties,	which	you	just	check	by	adding	their	name	in	the
graph	parentheses,	including	 	Uppercase	,	 	Lowercase	,	 	White_Space	,	 	Alphabetic	,	 	Emoji		and
more:

/^\p{Lowercase}$/u.test('h')	//✅

/^\p{Uppercase}$/u.test('H')	//✅

ES2018

33

https://flaviocopes.com/unicode/

/^\p{Emoji}+$/u.test('H')			//❌

/^\p{Emoji}+$/u.test('۽ ۽ ')	//✅

In	addition	to	those	binary	properties,	you	can	check	any	of	the	unicode	character	properties	to
match	a	specific	value.	In	this	example,	I	check	if	the	string	is	written	in	the	greek	or	latin
alphabet:

/^\p{Script=Greek}+$/u.test('ελληνικά')	//✅

/^\p{Script=Latin}+$/u.test('hey')	//✅

Read	more	about	all	the	properties	you	can	use	directly	on	the	proposal.

Named	capturing	groups

In	ES2018	a	capturing	group	can	be	assigned	to	a	name,	rather	than	just	being	assigned	a
slot	in	the	result	array:

const	re	=	/(?<year>\d{4})-(?<month>\d{2})-(?<day>\d{2})/

const	result	=	re.exec('2015-01-02')

//	result.groups.year	===	'2015';

//	result.groups.month	===	'01';

//	result.groups.day	===	'02';

The	 	s		flag	for	regular	expressions

The	 	s		flag,	short	for	single	line,	causes	the	 	.		to	match	new	line	characters	as	well.	Without
it,	the	dot	matches	regular	characters	but	not	the	new	line:

/hi.welcome/.test('hi\nwelcome')	//	false

/hi.welcome/s.test('hi\nwelcome')	//	true

ES2018

34

https://github.com/tc39/proposal-regexp-unicode-property-escapes
https://flaviocopes.com/javascript-regular-expressions/#capturing-groups

Coding	style
This	JavaScript	Coding	Style	is	the	set	of	conventions	I	use	every	day	when
using	JavaScript.	It's	a	live	document,	with	the	main	set	of	rules	I	follow

A	coding	style	is	an	agreement	with	yourself	and	your	team,	to	keep	consistency	on	a
project.

An	if	you	don't	have	a	team,	it's	an	agreement	with	you,	to	always	keep	your	code	up	to	your
standards.

Having	fixed	rules	on	your	code	writing	format	helps	a	lot	in	order	to	have	a	more	readable
and	managed	code.

Popular	Style	Guides
There	are	a	quite	a	few	of	them	around,	here	are	the	2	most	common	ones	in	the	JavaScript
world:

The	Google	JavaScript	Style	Guide
The	AirBnb	JavaScript	Style	Guide

It's	up	to	you	to	follow	one	of	those,	or	create	your	own	style	guide.

Be	consistent	with	the	project	you	work	on
Even	if	you	prefer	a	set	of	styles,	when	working	on	a	project	you	should	use	that	project	style.

An	Open	Source	project	on	GitHub	might	follow	a	set	of	rules,	another	project	you	work	on
with	a	team	might	follow	an	entirely	different	one.

Prettier	is	an	awesome	tool	that	enforces	code	formatting,	use	it.

My	own	preferences
My	own	take	on	JavaScript	style	is:

Always	use	the	latest	ES	version.	Use	Babel	if	old	browser	support	is	necessary.

Indentation:	use	spaces	instead	of	tabs,	indent	using	2	spaces.

Semicolons:	don't	use	semicolons.

Coding	style

35

https://flaviocopes.com/javascript/
https://google.github.io/styleguide/jsguide.html
https://github.com/airbnb/javascript
https://flaviocopes.com/prettier/

Line	length:	try	to	cut	lines	at	80	chars,	if	possible.

Inline	Comments:	use	inline	comments	in	your	code.	Use	block	comments	only	to	document.

No	dead	code:	Don't	leave	old	code	commented,	"just	in	case"	it	will	be	useful	later.	Keep
only	the	code	you	need	now,	version	control/your	notes	app	is	meant	for	this.

Only	comment	when	useful:	Don't	add	comments	that	don't	help	understand	what	the	code
is	doing.	If	the	code	is	self-explaining	through	the	use	of	good	variable	and	function	naming,
and	JSDoc	function	comments,	don't	add	a	comment.

Variable	declarations:	always	declare	variables	to	avoid	polluting	the	global	object.	Never
use	 	var	.	Default	to	 	const	,	only	use	 	let		if	you	reassign	the	variable.

Constants:	declare	all	constants	in	CAPS.	Use	 	_		to	separate	words	in	a	 	VARIABLE_NAME	.

Functions:	use	arrow	functions	unless	you	have	a	specific	reason	to	use	regular	functions,
like	in	object	methods	or	constructors,	due	to	how	 	this		works.	Declare	them	as	const,	and
use	implicit	returns	if	possible.

const	test	=	(a,	b)	=>	a	+	b

const	another	=	a	=>	a	+	2

Feel	free	to	use	nested	functions	to	hide	helper	functions	to	the	rest	of	the	code.

Names:	function	names,	variable	names	and	method	names	always	start	with	a	lowercase
letter	(unless	you	identify	them	as	private,	read	below),	and	are	camelCased.	Only	constructor
functions	and	class	names	should	start	capitalized.	If	you	use	a	framework	that	requires
specific	conventions,	change	your	habits	accordingly.	File	names	should	all	be	lowercase,	with
words	separated	by	 	-	.

Statement-specific	formats	and	rules:

if

if	(condition)	{

		statements

}

if	(condition)	{

		statements

}	else	{

		statements

}

if	(condition)	{

		statements

}	else	if	(condition)	{

Coding	style

36

		statements

}	else	{

		statements

}

for

Always	initialize	the	length	in	the	initialization	to	cache	it,	don't	insert	it	in	the	condition.

Avoid	using	 	for	in		except	with	used	in	conjunction	with	 	.hasOwnProperty()	.	Prefer	 	for	of	
(see	JavaScript	Loops)

for	(initialization;	condition;	update)	{

		statements

}

while

while	(condition)	{

		statements

}

do

do	{

		statements

}	while	(condition);

switch

switch	(expression)	{

		case	expression:

				statements

		default:

				statements

}

try

try	{

		statements

}	catch	(variable)	{

		statements

}

try	{

		statements

}	catch	(variable)	{

Coding	style

37

		statements

}	finally	{

		statements

}

Whitespace:	use	whitespace	wisely	to	improve	readability:	put	a	whitespace	after	a	keyword
followed	by	a	 	(;	before	&	after	a	binary	operation	(+	,	 	-	,	 	/	,	 	*	,	 	&&	..);	inside	the	for
statement,	after	each	 	;		to	separate	each	part	of	the	statement;	after	each	 	,	.

New	lines:	use	new	lines	to	separate	blocks	of	code	that	perform	logically	related	operations.

Quotes	favor	single	quotes	 	'		instead	of	double	quotes	 	"	.	Double	quotes	are	a	standard	in
HTML	attributes,	so	using	single	quotes	helps	remove	problems	when	dealing	with	HTML
strings.	Use	template	literals	when	appropriate	instead	of	variable	interpolation.

Coding	style

38

Lexical	Structure
A	deep	dive	into	the	building	blocks	of	JavaScript:	unicode,	semicolons,
white	space,	case	sensitivity,	comments,	literals,	identifiers	and	reserved
words

Unicode
JavaScript	is	written	in	Unicode.	This	means	you	can	use	Emojis	as	variable	names,	but	more
importantly,	you	can	write	identifiers	in	any	language,	for	example	Japanese	or	Chinese,	with
some	rules.

Semicolons
JavaScript	has	a	very	C-like	syntax,	and	you	might	see	lots	of	code	samples	that	feature
semicolons	at	the	end	of	each	line.

Semicolons	aren't	mandatory,	and	JavaScript	does	not	have	any	problem	in	code	that	does
not	use	them,	and	lately	many	developers,	especially	those	coming	from	languages	that	do	not
have	semicolons,	started	avoiding	using	them.

You	just	need	to	avoid	doing	strange	things	like	typing	statements	on	multiple	lines

return

variable

or	starting	a	line	with	parentheses	([or	 	()	and	you'll	be	safe	99.9%	of	the	times	(and	your
linter	will	warn	you).

It	goes	to	personal	preference,	and	lately	I	have	decided	to	never	add	useless	semicolons,
so	on	this	site	you'll	never	see	them.

White	space
JavaScript	does	not	consider	white	space	meaningful.	Spaces	and	line	breaks	can	be	added
in	any	fashion	you	might	like,	even	though	this	is	in	theory.

In	practice,	you	will	most	likely	keep	a	well	defined	style	and	adhere	to	what	people	commonly
use,	and	enforce	this	using	a	linter	or	a	style	tool	such	as	Prettier.

Lexical	Structure

39

https://flaviocopes.com/javascript/
https://flaviocopes.com/unicode/
https://mathiasbynens.be/notes/javascript-identifiers

For	example	I	like	to	always	2	characters	to	indent.

Case	sensitive
JavaScript	is	case	sensitive.	A	variable	named	 	something		is	different	from	 	Something	.

The	same	goes	for	any	identifier.

Comments
You	can	use	two	kind	of	comments	in	JavaScript:

/*	*/

//

The	first	can	span	over	multiple	lines	and	needs	to	be	closed.

The	second	comments	everything	that's	on	its	right,	on	the	current	line.

Literals	and	Identifiers
We	define	as	literal	a	value	that	is	written	in	the	source	code,	for	example	a	number,	a	string,
a	boolean	or	also	more	advanced	constructs,	like	Object	Literals	or	Array	Literals:

5

'Test'

true

['a',	'b']

{color:	'red',	shape:	'Rectangle'}

An	identifier	is	a	sequence	of	characters	that	can	be	used	to	identify	a	variable,	a	function,	an
object.	It	can	start	with	a	letter,	the	dollar	sign	 	$		or	an	underscore	 	_	,	and	it	can	contain
digits.	Using	Unicode,	a	letter	can	be	any	allowed	char,	for	example	an	emoji	ھ .

Test

test

TEST

_test

Test1

$test

Lexical	Structure

40

The	dollar	sign	is	commonly	used	to	reference	DOM	elements.

Reserved	words
You	can't	use	as	identifiers	any	of	the	following	words:

break

do

instanceof

typeof

case

else

new

var

catch

finally

return

void

continue

for

switch

while

debugger

function

this

with

default

if

throw

delete

in

try

class

enum

extends

super

const

export

import

implements

let

private

public

interface

package

protected

static

yield

because	they	are	reserved	by	the	language.

Lexical	Structure

41

https://flaviocopes.com/dom/

Lexical	Structure

42

Variables
A	variable	is	a	literal	assigned	to	an	identifier,	so	you	can	reference	and	use
it	later	in	the	program.	Learn	how	to	declare	one	with	JavaScript

Introduction	to	JavaScript	Variables
A	variable	is	a	literal	assigned	to	an	identifier,	so	you	can	reference	and	use	it	later	in	the
program.

Variables	in	JavaScript	do	not	have	any	type	attached.	Once	you	assign	a	specific	literal	type
to	a	variable,	you	can	later	reassign	the	variable	to	host	any	other	type,	without	type	errors	or
any	issue.

This	is	why	JavaScript	is	sometimes	referenced	as	"untyped".

A	variable	must	be	declared	before	you	can	use	it.	There	are	3	ways	to	do	it,	using	 	var	,	 	let	
or	 	const	,	and	those	3	ways	differ	in	how	you	can	interact	with	the	variable	later	on.

Using	 	var	
Until	ES2015,	 	var		was	the	only	construct	available	for	defining	variables.

var	a	=	0

If	you	forget	to	add	 	var		you	will	be	assigning	a	value	to	an	undeclared	variable,	and	the
results	might	vary.

In	modern	environments,	with	strict	mode	enabled,	you	will	get	an	error.	In	older	environments
(or	with	strict	mode	disabled)	this	will	simply	initialize	the	variable	and	assign	it	to	the	global
object.

If	you	don't	initialize	the	variable	when	you	declare	it,	it	will	have	the	 	undefined		value	until	you
assign	a	value	to	it.

var	a	//typeof	a	===	'undefined'

You	can	redeclare	the	variable	many	times,	overriding	it:

var	a	=	1

Variables

43

https://flaviocopes.com/javascript/

var	a	=	2

You	can	also	declare	multiple	variables	at	once	in	the	same	statement:

var	a	=	1,	b	=	2

The	scope	is	the	portion	of	code	where	the	variable	is	visible.

A	variable	initialized	with	 	var		outside	of	any	function	is	assigned	to	the	global	object,	has	a
global	scope	and	is	visible	everywhere.	A	variable	initialized	with	 	var		inside	a	function	is
assigned	to	that	function,	it's	local	and	is	visible	only	inside	it,	just	like	a	function	parameter.

Any	variable	defined	into	a	function	with	the	same	name	of	a	global	variable	takes	precedence
over	the	global	variable,	shadowing	it.

It's	important	to	understand	that	a	block	(identified	by	a	pair	of	curly	braces)	does	not	define	a
new	scope.	A	new	scope	is	only	created	when	a	function	is	created,	because	 	var		has	not
block	scope,	but	function	scope.

Inside	a	function,	any	variable	defined	in	it	is	visible	throughout	all	the	function	code,	even	if
the	variable	is	declared	at	the	end	of	the	function	it	can	still	be	referenced	in	the	beginning,
because	JavaScript	before	executing	the	code	actually	moves	all	variables	on	top	(something
that	is	called	hoisting).	To	avoid	confusion,	always	declare	variables	at	the	beginning	of	a
function.

Using	 	let	
	let		is	a	new	feature	introduced	in	ES2015	and	it's	essentially	a	block	scoped	version	of
	var	.	Its	scope	is	limited	to	the	block,	statement	or	expression	where	it's	defined,	and	all	the
contained	inner	blocks.

Modern	JavaScript	developers	might	choose	to	only	use	 	let		and	completely	discard	the	use
of	 	var	.

If	 	let		seems	an	obscure	term,	just	read	 	let	color	=	'red'		as	let	the	color	be	red	and
all	has	much	more	sense

Defining	 	let		outside	of	any	function	-	contrary	to	 	var		-	does	not	create	a	global	variable.

Using	 	const	

Variables

44

Variables	declared	with	 	var		or	 	let		can	be	changed	later	on	in	the	program,	and
reassigned.	A	once	a	 	const		is	initialized,	its	value	can	never	be	changed	again,	and	it	can't
be	reassigned	to	a	different	value.

const	a	=	'test'

We	can't	assign	a	different	literal	to	the	 	a		const.	We	can	however	mutate	 	a		if	it's	an	object
that	provides	methods	that	mutate	its	contents.

	const		does	not	provide	immutability,	just	makes	sure	that	the	reference	can't	be	changed.

	const		has	block	scope,	same	as	 	let	.

Modern	JavaScript	developers	might	choose	to	always	use	 	const		for	variables	that	don't
need	to	be	reassigned	later	in	the	program.

Why?	Because	we	should	always	use	the	simplest	construct	available	to	avoid	making
errors	down	the	road.

Variables

45

Types
You	might	sometimes	read	that	JS	is	untyped,	but	that's	incorrect.	It's	true
that	you	can	assign	all	sorts	of	different	types	to	a	variable,	but	JavaScript
has	types.	In	particular,	it	provides	primitive	types,	and	object	types.

Primitive	types
Primitive	types	are

Numbers
Strings
Booleans

And	two	special	types:

null
undefined

Let's	see	them	in	detail	in	the	next	sections.

Numbers
Internally,	JavaScript	has	just	one	type	for	numbers:	every	number	is	a	float.

A	numeric	literal	is	a	number	represented	in	the	source	code,	amd	depending	on	how	it's
written,	it	can	be	an	integer	literal	or	a	floating	point	literal.

Integers:

10

5354576767321

0xCC	//hex

Floats:

3.14

.1234

5.2e4	//5.2	*	10^4

Strings

Types

46

https://flaviocopes.com/javascript/

A	string	type	is	a	sequence	of	characters.	It's	defined	in	the	source	code	as	a	string	literal,
which	is	enclosed	in	quotes	or	double	quotes

'A	string'

"Another	string"

Strings	can	span	across	multiple	lines	by	using	the	backslash

"A	\

string"

A	string	can	contain	escape	sequences	that	can	be	interpreted	when	the	string	is	printed,	like
\n	to	create	a	new	line.	The	backslash	is	also	useful	when	you	need	to	enter	for	example	a
quote	in	a	string	enclosed	in	quotes,	to	prevent	the	char	to	be	interpreted	as	a	closing	quote:

'I\'m	a	developer'

Strings	can	be	joined	using	the	+	operator:

"A	"	+	"string"

Template	strings

Introduced	in	ES2015,	template	strings	are	string	literals	that	allow	a	more	powerful	way	to
define	strings.

`a	string`

You	can	perform	string	substitution,	embedding	the	result	of	any	JS	expression:

`a	string	with	${something}`

`a	string	with	${something+somethingElse}`

`a	string	with	${obj.something()}`

You	can	have	multiline	strings	easily:

`a	string

with

${something}`

Booleans

Types

47

JavaScript	defines	two	reserved	words	for	booleans:	true	and	false.	Many	comparision
operations	 	==		 	===		 	<		 	>		(and	so	on)	return	either	one	or	the	other.

	if	,	 	while		statements	and	other	control	structures	use	booleans	to	determine	the	flow	of	the
program.

They	don't	just	accept	true	or	false,	but	also	accept	truthy	and	falsy	values.

Falsy	values,	values	interpreted	as	false,	are

0

-0

NaN

undefined

null

''	//empty	string

All	the	rest	is	considered	a	truthy	value.

null
	null		is	a	special	value	that	indicates	the	absence	of	a	value.

It's	a	common	concept	in	other	languages	as	well,	can	be	known	as	 	nil		or	 	None		in	Python
for	example.

undefined
	undefined		indicates	that	a	variable	has	not	been	initialized	and	the	value	is	absent.

It's	commonly	returned	by	functions	with	no	 	return		value.	When	a	function	accepts	a
parameter	but	that's	not	set	by	the	caller,	it's	undefined.

To	detect	if	a	value	is	 	undefined	,	you	use	the	construct:

typeof	variable	===	'undefined'

Object	types
Anything	that's	not	a	primitive	type	is	an	object	type.

Types

48

Functions,	arrays	and	what	we	call	objects	are	object	types.	They	are	special	on	their	own,	but
they	inherit	many	properties	of	objects,	like	having	properties	and	also	having	methods	that
can	act	on	those	properties.

Types

49

Expressions
Expressions	are	units	of	code	that	can	be	evaluated	and	resolve	to	a	value.
Expressions	in	JS	can	be	divided	in	categories.

Arithmetic	expressions
Under	this	category	go	all	expressions	that	evaluate	to	a	number:

1	/	2

i++

i	-=	2

i	*	2

String	expressions
Expressions	that	evaluate	to	a	string:

'A	'	+	'string'

'A	'	+=	'string'

Primary	expressions
Under	this	category	go	variable	references,	literals	and	constants:

2

0.02

'something'

true

false

this	//the	current	object

undefined

i	//where	i	is	a	variable	or	a	constant

but	also	some	language	keywords:

function

class

function*	//the	generator	function

yield	//the	generator	pauser/resumer

yield*	//delegate	to	another	generator	or	iterator

Expressions

50

async	function*	//async	function	expression

await	//async	function	pause/resume/wait	for	completion

/pattern/i	//regex

()	//	grouping

Array	and	object	initializers	expressions

[]	//array	literal

{}	//object	literal

[1,2,3]

{a:	1,	b:	2}

{a:	{b:	1}}

Logical	expressions
Logical	expressions	make	use	of	logical	operators	and	resolve	to	a	boolean	value:

a	&&	b

a	||	b

!a

Left-hand-side	expressions

new	//create	an	instance	of	a	constructor

super	//calls	the	parent	constructor

...obj	//expression	using	the	spread	operator

Property	access	expressions

object.property	//reference	a	property	(or	method)	of	an	object

object[property]

object['property']

Object	creation	expressions

new	object()

new	a(1)

new	MyRectangle('name',	2,	{a:	4})

Expressions

51

Function	definition	expressions

function()	{}

function(a,	b)	{	return	a	*	b	}

(a,	b)	=>	a	*	b

a	=>	a	*	2

()	=>	{	return	2	}

Invocation	expressions
The	syntax	for	calling	a	function	or	method

a.x(2)

window.resize()

Expressions

52

Prototypal	inheritance
JavaScript	is	quite	unique	in	the	popular	programming	languages	landscape
because	of	its	usage	of	prototypal	inheritance.	Let's	find	out	what	that	means

JavaScript	is	quite	unique	in	the	popular	programming	languages	landscape	because	of	its
usage	of	prototypal	inheritance.

While	most	object-oriented	languages	use	a	class-based	inheritance	model,	JavaScript	is
based	on	the	prototype	inheritance	model.

What	does	this	mean?

Every	single	JavaScript	object	has	a	property,	called	 	prototype	,	which	points	to	a	different
object.

This	different	object	is	the	object	prototype.

Our	object	uses	that	object	prototype	to	inherit	properties	and	methods.

Say	you	have	an	object	created	using	the	object	literal	syntax:

const	car	=	{}

or	one	created	with	the	 	new	Object		syntax:

const	car	=	new	Object()

in	any	case,	the	prototype	of	 	car		is	 	Object	:

If	you	initialize	an	array,	which	is	an	object:

const	list	=	[]

//or

const	list	=	new	Array()

the	prototype	is	 	Array	.

You	can	verify	this	by	checking	the	 	__proto__		getter:

car.__proto__	==	Object.prototype	//true

car.__proto__	==	new	Object().__proto__	//true

list.__proto__	==	Object.prototype	//false

list.__proto__	==	Array.prototype	//true

list.__proto__	==	new	Array().__proto__	//true

Prototypal	inheritance

53

I	use	the	 	__proto__		property	here,	which	is	non-standard	but	widely	implemented	in
browsers.	A	more	reliable	way	to	get	a	prototype	is	to	use	 	Object.getPrototypeOf(new
Object())	

All	the	properties	and	methods	of	the	prototype	are	available	to	the	object	that	has	that
prototype:

	Object.prototype		is	the	base	prototype	of	all	the	objects:

Array.prototype.__proto__	==	Object.prototype

If	you	wonder	what's	the	prototype	of	the	Object.prototype,	there	is	no	prototype.	It's	a	special
snowflake	❄ .

The	above	example	you	saw	is	an	example	of	the	prototype	chain	at	work.

I	can	make	an	object	that	extends	Array	and	any	object	I	instantiate	using	it,	will	have	Array
and	Object	in	its	prototype	chain	and	inherit	properties	and	methods	from	all	the	ancestors.

In	addition	to	using	the	 	new		operator	to	create	an	object,	or	using	the	literals	syntax	for
objects	and	arrays,	you	can	instantiate	an	object	using	 	Object.create()	.

The	first	argument	passed	is	the	object	used	as	prototype:

Prototypal	inheritance

54

const	car	=	Object.create({})

const	list	=	Object.create(Array)

You	can	check	the	prototype	of	an	object	using	the	 	isPrototypeOf()		method:

Array.isPrototypeOf(list)	//true

Pay	attention	because	you	can	instantiate	an	array	using

const	list	=	Object.create(Array.prototype)

and	in	this	case	 	Array.isPrototypeOf(list)		is	false,	while
	Array.prototype.isPrototypeOf(list)		is	true.

Prototypal	inheritance

55

Classes
In	2015	the	ECMAScript	6	(ES6)	standard	introduced	classes.	Learn	all	about
them

In	2015	the	ECMAScript	6	(ES6)	standard	introduced	classes.

Before	that,	JavaScript	only	had	a	quite	unique	way	to	implement	inheritance.	Its	prototypal
inheritance,	while	in	my	opinion	great,	was	different	from	any	other	popular	programming
language.

People	coming	from	Java	or	Python	or	other	languages	had	a	hard	time	understanding	the
intricacies	of	prototypal	inheritance,	so	the	ECMAScript	committee	decided	to	introduce	a
syntactic	sugar	on	top	of	them,	and	resemble	how	classes-based	inheritance	works	in	other
popular	implementations.

This	is	important:	JavaScript	under	the	hoods	is	still	the	same,	and	you	can	access	an	object
prototype	in	the	usual	way.

A	class	definition
This	is	how	a	class	looks.

class	Person	{

		constructor(name)	{

				this.name	=	name

		}

		hello()	{

				return	'Hello,	I	am	'	+	this.name	+	'.'

		}

}

A	class	has	an	identifier,	which	we	can	use	to	create	new	objects	using	 	new
ClassIdentifier()	.

When	the	object	is	initialized,	the	 	constructor		method	is	called,	with	any	parameters	passed.

A	class	also	has	as	many	methods	as	it	needs.	In	this	case	 	hello		is	a	method	and	can	be
called	on	all	objects	derived	from	this	class:

const	flavio	=	new	Person('Flavio')

flavio.hello()

Classes

56

https://flaviocopes.com/javascript-prototypal-inheritance/

Classes	inheritance
A	class	can	extend	another	class,	and	objects	initialized	using	that	class	inherit	all	the
methods	of	both	classes.

If	the	inherited	class	has	a	method	with	the	same	name	as	one	of	the	classes	higher	in	the
hierarchy,	the	closest	method	takes	precedence:

class	Programmer	extends	Person	{

		hello()	{

				return	super.hello()	+	'	I	am	a	programmer.'

		}

}

const	flavio	=	new	Programmer('Flavio')

flavio.hello()

(the	above	program	prints	"Hello,	I	am	Flavio.	I	am	a	programmer.")

Classes	do	not	have	explicit	class	variable	declarations,	but	you	must	initialize	any	variable	in
the	constructor.

Inside	a	class,	you	can	reference	the	parent	class	calling	 	super()	.

Static	methods
Normally	methods	are	defined	on	the	instance,	not	on	the	class.

Static	methods	are	executed	on	the	class	instead:

class	Person	{

		static	genericHello()	{

				return	'Hello'

		}

}

Person.genericHello()	//Hello

Private	methods
JavaScript	does	not	have	a	built-in	way	to	define	private	or	protected	methods.

There	are	workarounds,	but	I	won't	describe	them	here.

Classes

57

Getters	and	setters
You	can	add	methods	prefixed	with	 	get		or	 	set		to	create	a	getter	and	setter,	which	are	two
different	pieces	of	code	that	are	execute	based	on	what	you	are	doing:	accessing	the	variable,
or	modifying	its	value.

class	Person	{

		constructor(name)	{

				this.name	=	name

		}

		set	name(value)	{

				this.name	=	value

		}

		get	name()	{

				return	this.name

		}

}

If	you	only	have	a	getter,	the	property	cannot	be	set,	and	any	attempt	at	doing	so	will	be
ignored:

class	Person	{

		constructor(name)	{

				this.name	=	name

		}

		get	name()	{

				return	this.name

		}

}

If	you	only	have	a	setter,	you	can	change	the	value	but	not	access	it	from	the	outside:

class	Person	{

		constructor(name)	{

				this.name	=	name

		}

		set	name(value)	{

				this.name	=	value

		}

}

Classes

58

Classes

59

Exceptions
When	the	code	runs	into	an	unexpected	problem,	the	JavaScript	idiomatic
way	to	handle	this	situation	is	through	exceptions

When	the	code	runs	into	an	unexpected	problem,	the	JavaScript	idiomatic	way	to	handle	this
situation	is	through	exceptions.

Creating	exceptions
An	exception	is	created	using	the	 	throw		keyword:

throw	value

where	 	value		can	be	any	JavaScript	value	including	a	string,	a	number	or	an	object.

As	soon	as	JavaScript	executes	this	line,	the	normal	program	flow	is	halted	and	the	control	is
held	back	to	the	nearest	exception	handler.

Handling	exceptions
An	exception	handler	is	a	 	try	/ 	catch		statement.

Any	exception	raised	in	the	lines	of	code	included	in	the	 	try		block	is	handled	in	the
corresponding	 	catch		block:

try	{

		//lines	of	code

}	catch	(e)	{

}

	e		in	this	example	is	the	exception	value.

You	can	add	multiple	handlers,	that	can	catch	different	kinds	of	errors.

	finally	

Exceptions

60

To	complete	this	statement	JavaScript	has	another	statement	called	 	finally	,	which	contains
code	that	is	executed	regardless	of	the	program	flow,	if	the	exception	was	handled	or	not,	if
there	was	an	exception	or	if	there	wasn't:

try	{

		//lines	of	code

}	catch	(e)	{

}	finally	{

}

You	can	use	 	finally		without	a	 	catch		block,	to	serve	as	a	way	to	clean	up	any	resource	you
might	have	opened	in	the	 	try		block,	like	files	or	network	requests:

try	{

		//lines	of	code

}	finally	{

}

Nested	 	try		blocks
	try		blocks	can	be	nested,	and	an	exception	is	always	handled	in	the	nearest	catch	block:

try	{

		//lines	of	code

		try	{

				//other	lines	of	code

		}	finally	{

				//other	lines	of	code

		}

}	catch	(e)	{

}

If	an	exception	is	raised	in	the	inner	 	try	,	it's	handled	in	the	outer	 	catch		block.

Exceptions

61

Semicolons
JavaScript	semicolons	are	optional.	I	personally	like	avoiding	using
semicolons	in	my	code,	but	many	people	prefer	them.

Semicolons	in	JavaScript	divide	the	community.	Some	prefer	to	use	them	always,	no	matter
what.	Others	like	to	avoid	them.

After	using	semicolons	for	years,	in	the	fall	of	2017	I	decided	to	try	avoiding	them	as	needed,
and	I	did	set	up	Prettier	to	automatically	remove	semicolons	from	my	code,	unless	there	is	a
particular	code	construct	that	requires	them.

Now	I	find	it	natural	to	avoid	semicolons,	I	think	the	code	looks	better	and	it's	cleaner	to	read.

This	is	all	possible	because	JavaScript	does	not	strictly	require	semicolons.	When	there	is	a
place	where	a	semicolon	was	needed,	it	adds	it	behind	the	scenes.

The	process	that	does	this	is	called	Automatic	Semicolon	Insertion.

It's	important	to	know	the	rules	that	power	semicolons,	to	avoid	writing	code	that	will	generate
bugs	because	does	not	behave	like	you	expect.

The	rules	of	JavaScript	Automatic	Semicolon
Insertion
The	JavaScript	parser	will	automatically	add	a	semicolon	when,	during	the	parsing	of	the
source	code,	it	finds	these	particular	situations:

1.	 when	the	next	line	starts	with	code	that	breaks	the	current	one	(code	can	spawn	on
multiple	lines)

2.	 when	the	next	line	starts	with	a	 	}	,	closing	the	current	block
3.	 when	the	end	of	the	source	code	file	is	reached
4.	 when	there	is	a	 	return		statement	on	its	own	line
5.	 when	there	is	a	 	break		statement	on	its	own	line
6.	 when	there	is	a	 	throw		statement	on	its	own	line
7.	 when	there	is	a	 	continue		statement	on	its	own	line

Examples	of	code	that	does	not	do	what	you
think
Based	on	those	rules,	here	are	some	examples.

Semicolons

62

Take	this:

const	hey	=	'hey'

const	you	=	'hey'

const	heyYou	=	hey	+	'	'	+	you

['h',	'e',	'y'].forEach((letter)	=>	console.log(letter))

You'll	get	the	error	 	Uncaught	TypeError:	Cannot	read	property	'forEach'	of	undefined		because
based	on	rule	 	1		JavaScript	tries	to	interpret	the	code	as

const	hey	=	'hey';

const	you	=	'hey';

const	heyYou	=	hey	+	'	'	+	you['h',	'e',	'y'].forEach((letter)	=>	console.log(letter))

Such	piece	of	code:

(1	+	2).toString()

prints	 	"3"	.

const	a	=	1

const	b	=	2

const	c	=	a	+	b

(a	+	b).toString()

instead	raises	a	 	TypeError:	b	is	not	a	function		exception,	because	JavaScript	tries	to
interpret	it	as

const	a	=	1

const	b	=	2

const	c	=	a	+	b(a	+	b).toString()

Another	example	based	on	rule	4:

(()	=>	{

		return

		{

				color:	'white'

		}

})()

Semicolons

63

You'd	expect	the	return	value	of	this	immediately-invoked	function	to	be	an	object	that
contains	the	 	color		property,	but	it's	not.	Instead,	it's	 	undefined	,	because	JavaScript	inserts	a
semicolon	after	 	return	.

Instead	you	should	put	the	opening	bracket	right	after	 	return	:

(()	=>	{

		return	{

				color:	'white'

		}

})()

You'd	think	this	code	shows	'0'	in	an	alert:

1	+	1

-1	+	1	===	0	?	alert(0)	:	alert(2)

but	it	shows	2	instead,	because	JavaScript	per	rule	1	interprets	it	as:

1	+	1	-1	+	1	===	0	?	alert(0)	:	alert(2)

Conclusion
Be	careful.	Some	people	are	very	opinionated	on	semicolons.	I	don't	care	honestly,	the	tool
gives	us	the	option	not	to	use	it,	so	we	can	avoid	semicolons.

I'm	not	suggesting	anything,	other	than	picking	your	own	decision.

We	just	need	to	pay	a	bit	of	attention,	even	if	most	of	the	times	those	basic	scenarios	never
show	up	in	your	code.

Pick	some	rules:

be	careful	with	 	return		statements.	If	you	return	something,	add	it	on	the	same	line	as	the
return	(same	for	 	break	,	 	throw	,	 	continue)
never	start	a	line	with	parentheses,	those	might	be	concatenated	with	the	previous	line	to
form	a	function	call,	or	array	element	reference

And	ultimately,	always	test	your	code	to	make	sure	it	does	what	you	want

Semicolons

64

Semicolons

65

Quotes
An	overview	of	the	quotes	allowed	in	JavaScript	and	their	unique	features

JavaScript	allows	you	to	use	3	types	of	quotes:

single	quotes
double	quotes
backticks

The	first	2	are	essentially	the	same:

const	test	=	'test'

const	bike	=	"bike"

There's	little	to	no	difference	in	using	one	or	the	other.	The	only	difference	lies	in	having	to
escape	the	quote	character	you	use	to	delimit	the	string:

const	test	=	'test'

const	test	=	'te\'st'

const	test	=	'te"st'

const	test	=	"te\"st"

const	test	=	"te'st"

There	are	various	style	guides	that	recommend	always	using	one	style	vs	the	other.

I	personally	prefer	single	quotes	all	the	time,	and	use	double	quotes	only	in	HTML.

Backticks	are	a	recent	addition	to	JavaScript,	since	they	were	introduced	with	ES6	in	2015.

They	have	a	unique	feature:	they	allow	multiline	strings.

Multiline	strings	are	also	possible	using	regular	strings,	using	escape	characters:

const	multilineString	=	'A	string\non	multiple	lines'

Using	backticks,	you	can	avoid	using	an	escape	character:

const	multilineString	=	`A	string

on	multiple	lines`

Not	just	that.	You	can	interpolate	variables	using	the	 	${}		syntax:

const	multilineString	=	`A	string

Quotes

66

on	${1+1}	lines`

Those	are	called	Template	Literals.

Quotes

67

Template	Literals
Introduced	in	ES2015,	aka	ES6,	Template	Literals	offer	a	new	way	to	declare
strings,	but	also	some	new	interesting	constructs	which	are	already	widely
popular.

Introduction	to	Template	Literals
Template	Literals	are	a	new	ES2015	/	ES6	feature	that	allow	you	to	work	with	strings	in	a
novel	way	compared	to	ES5	and	below.

The	syntax	at	a	first	glance	is	very	simple,	just	use	backticks	instead	of	single	or	double
quotes:

const	a_string	=	`something`

They	are	unique	because	they	provide	a	lot	of	features	that	normal	strings	built	with	quotes,	in
particular:

they	offer	a	great	syntax	to	define	multiline	strings
they	provide	an	easy	way	to	interpolate	variables	and	expressions	in	strings
they	allow	to	create	DSLs	with	template	tags

Let's	dive	into	each	of	these	in	detail.

Multiline	strings
Pre-ES6,	to	create	a	string	spanned	over	two	lines	you	had	to	use	the	 	\		character	at	the	end
of	a	line:

const	string	=	'first	part	\

second	part'

This	allows	to	create	a	string	on	2	lines,	but	it's	rendered	on	just	one	line:

	first	part	second	part	

To	render	the	string	on	multiple	lines	as	well,	you	explicitly	need	to	add	 	\n		at	the	end	of	each
line,	like	this:

const	string	=	'first	line\n	\

Template	Literals

68

second	line'

or

const	string	=	'first	line\n'	+

															'second	line'

Template	literals	make	multiline	strings	much	simpler.

Once	a	template	literal	is	opened	with	the	backtick,	you	just	press	enter	to	create	a	new	line,
with	no	special	characters,	and	it's	rendered	as-is:

const	string	=	`Hey

this

string

is	awesome!`

Keep	in	mind	that	space	is	meaningful,	so	doing	this:

const	string	=	`First

																Second`

is	going	to	create	a	string	like	this:

First

																Second

an	easy	way	to	fix	this	problem	is	by	having	an	empty	first	line,	and	appending	the	trim()
method	right	after	the	closing	backtick,	which	will	eliminate	any	space	before	the	first
character:

const	string	=	`

First

Second`.trim()

Interpolation
Template	literals	provide	an	easy	way	to	interpolate	variables	and	expressions	into	strings.

You	do	so	by	using	the	 	${...}		syntax:

const	var	=	'test'

Template	Literals

69

const	string	=	`something	${var}`	//something	test

inside	the	 	${}		you	can	add	anything,	even	expressions:

const	string	=	`something	${1	+	2	+	3}`

const	string2	=	`something	${foo()	?	'x'	:	'y'	}`

Template	tags
Tagged	templates	is	one	features	that	might	sound	less	useful	at	first	for	you,	but	it's	actually
used	by	lots	of	popular	libraries	around,	like	Styled	Components	or	Apollo,	the	GraphQL
client/server	lib,	so	it's	essential	to	understand	how	it	works.

In	Styled	Components	template	tags	are	used	to	define	CSS	strings:

const	Button	=	styled.button`

		font-size:	1.5em;

		background-color:	black;

		color:	white;

`;

In	Apollo	template	tags	are	used	to	define	a	GraphQL	query	schema:

const	query	=	gql`

		query	{

				...

		}

`

The	 	styled.button		and	 	gql		template	tags	highlighted	in	those	examples	are	just	functions:

function	gql(literals,	...expressions)	{

}

this	function	returns	a	string,	which	can	be	the	result	of	any	kind	of	computation.

	literals		is	an	array	containing	the	template	literal	content	tokenized	by	the	expressions
interpolations.

	expressions		contains	all	the	interpolations.

If	we	take	an	example	above:

Template	Literals

70

https://flaviocopes.com/styled-components/
https://flaviocopes.com/apollo/
https://flaviocopes.com/graphql/

const	string	=	`something	${1	+	2	+	3}`

	literals		is	an	array	with	two	items.	The	first	is	 	something	,	the	string	until	the	first
interpolation,	and	the	second	is	an	empty	string,	the	space	betwene	the	end	of	the	first
interpolation	(we	only	have	one)	and	the	end	of	the	string.

	expressions		in	this	case	is	an	array	with	a	single	item,	 	6	.

A	more	complex	example	is:

const	string	=	`something

another	${'x'}

new	line	${1	+	2	+	3}

test`

in	this	case	 	literals		is	an	array	where	the	first	item	is:

`something

another	`

the	second	is:

`

new	line	`

and	the	third	is:

`

test`

	expressions		in	this	case	is	an	array	with	two	items,	 	x		and	 	6	.

The	function	that	is	passed	those	values	can	do	anything	with	them,	and	this	is	the	power	of
this	kind	feature.

The	most	simple	example	is	replicating	what	the	string	interpolation	does,	by	simply	joining
	literals		and	 	expressions	:

const	interpolated	=	interpolate`I	paid	${10}€`

and	this	is	how	 	interpolate		works:

function	interpolate(literals,	...expressions)	{

		let	string	=	``

Template	Literals

71

		for	(const	[i,	val]	of	expressions)	{

				string	+=	literals[i]	+	val

		}

		string	+=	literals[literals.length	-	1]

		return	string

}

Template	Literals

72

Functions
Learn	all	about	functions,	from	the	general	overview	to	the	tiny	details	that
will	improve	how	you	use	them

Introduction
Everything	in	JavaScript	happens	in	functions.

A	function	is	a	block	of	code,	self	contained,	that	can	be	defined	once	and	run	any	times	you
want.

A	function	can	optionally	accept	parameters,	and	returns	one	value.

Functions	in	JavaScript	are	objects,	a	special	kind	of	objects:	function	objects.	Their
superpower	lies	in	the	fact	that	they	can	be	invoked.

In	addition,	functions	are	said	to	be	first	class	functions	because	they	can	be	assigned	to	a
value,	and	they	can	be	passed	as	arguments	and	used	as	a	return	value.

Syntax

Functions

73

Let's	start	with	the	"old",	pre-ES6/ES2015	syntax.	Here's	a	function	declaration:

function	dosomething(foo)	{

		//	do	something

}

(now,	in	post	ES6/ES2015	world,	referred	as	a	regular	function)

Functions	can	be	assigned	to	variables	(this	is	called	a	function	expression):

const	dosomething	=	function(foo)	{

		//	do	something

}

Named	function	expressions	are	similar,	but	play	nicer	with	the	stack	call	trace,	which	is
useful	when	an	error	occurs	-	it	holds	the	name	of	the	function:

const	dosomething	=	function	dosomething(foo)	{

		//	do	something

}

ES6/ES2015	introduced	arrow	functions,	which	are	especially	nice	to	use	when	working	with
inline	functions,	as	parameters	or	callbacks:

const	dosomething	=	foo	=>	{

		//do	something

}

Arrow	functions	have	an	important	difference	from	the	other	function	definitions	above,	we'll
see	which	one	later	as	it's	an	advanced	topic.

Parameters
A	function	can	have	one	or	more	parameters.

const	dosomething	=	()	=>	{

		//do	something

}

const	dosomethingElse	=	foo	=>	{

		//do	something

}

const	dosomethingElseAgain	=	(foo,	bar)	=>	{

		//do	something

Functions

74

}

Starting	with	ES6/ES2015,	functions	can	have	default	values	for	the	parameters:

const	dosomething	=	(foo	=	1,	bar	=	'hey')	=>	{

		//do	something

}

This	allows	you	to	call	a	function	without	filling	all	the	parameters:

dosomething(3)

dosomething()

ES2018	introduced	trailing	commas	for	parameters,	a	feature	that	helps	reducing	bugs	due	to
missing	commas	when	moving	around	parameters	(e.g.	moving	the	last	in	the	middle):

const	dosomething	=	(foo	=	1,	bar	=	'hey')	=>	{

		//do	something

}

dosomething(2,	'ho!')

You	can	wrap	all	your	arguments	in	an	array,	and	use	the	spread	operator	when	calling	the
function:

const	dosomething	=	(foo	=	1,	bar	=	'hey')	=>	{

		//do	something

}

const	args	=	[2,	'ho!']

dosomething(...args)

With	many	parameters,	remembering	the	order	can	be	difficult.	Using	objects,	destructuring
allows	to	keep	the	parameter	names:

const	dosomething	=	({	foo	=	1,	bar	=	'hey'	})	=>	{

		//do	something

		console.log(foo)	//	2

		console.log(bar)	//	'ho!'

}

const	args	=	{	foo:	2,	bar:	'ho!'	}

dosomething(args)

Return	values

Functions

75

Every	function	returns	a	value,	which	by	default	is	 	undefined	.

Any	function	is	terminated	when	its	lines	of	code	end,	or	when	the	execution	flow	finds	a
	return		keyword.

When	JavaScript	encounters	this	keyword	it	exits	the	function	execution	and	gives	control
back	to	its	caller.

If	you	pass	a	value,	that	value	is	returned	as	the	result	of	the	function:

const	dosomething	=	()	=>	{

		return	'test'

}

const	result	=	dosomething()	//	result	===	'test'

You	can	only	return	one	value.

To	simulate	returning	multiple	values,	you	can	return	an	object	literal,	or	an	array,	and	use	a
destructuring	assignment	when	calling	the	function.

Using	arrays:

Functions

76

https://flaviocopes.com/ecmascript/#destructuring-assignments

Using	objects:

Nested	functions
Functions	can	be	defined	inside	other	functions:

const	dosomething	=	()	=>	{

		const	dosomethingelse	=	()	=>	{}

		dosomethingelse()

		return	'test'

}

Functions

77

The	nested	function	is	scoped	to	the	outside	function,	and	cannot	be	called	from	the	outside.

Object	Methods
When	used	as	object	properties,	functions	are	called	methods:

const	car	=	{

		brand:	'Ford',

		model:	'Fiesta',

		start:	function()	{

				console.log(`Started`)

		}

}

car.start()

	this		in	Arrow	Functions
There's	an	important	behavior	of	Arrow	Functions	vs	regular	Functions	when	used	as	object
methods.	Consider	this	example:

const	car	=	{

		brand:	'Ford',

		model:	'Fiesta',

		start:	function()	{

				console.log(`Started	${this.brand}	${this.model}`)

		},

		stop:	()	=>	{

				console.log(`Stopped	${this.brand}	${this.model}`)

		}

}

The	 	stop()		method	does	not	work	as	you	would	expect.

Functions

78

This	is	because	the	handling	of	 	this		is	different	in	the	two	functions	declarations	style.	 	this	
in	the	arrow	function	refers	to	the	enclosing	function	context,	which	in	this	case	is	the	 	window	
object:

	this	,	which	refers	to	the	host	object	using	 	function()	

Functions

79

This	implies	that	arrow	functions	are	not	suitable	to	be	used	for	object	methods	and
constructors	(arrow	function	constructors	will	actually	raise	a	 	TypeError		when	called).

IIFE,	Immediately	Invocated	Function
Expressions
An	IIFE	is	a	function	that's	immediately	executed	right	after	its	declaration:

;(function	dosomething()	{

		console.log('executed')

})()

You	can	assign	the	result	to	a	variable:

const	something	=	(function	dosomething()	{

		return	'something'

})()

They	are	very	handy,	as	you	don't	need	to	separately	call	the	function	after	its	definition.

Function	Hoisting
JavaScript	before	executing	your	code	reorders	it	according	to	some	rules.

Functions	in	particular	are	moved	at	the	top	of	their	scope.	This	is	why	it's	legal	to	write

dosomething()

function	dosomething()	{

		console.log('did	something')

}

Internally,	JavaScript	moves	the	function	before	its	call,	along	with	all	the	other	functions	found
in	the	same	scope:

Functions

80

function	dosomething()	{

		console.log('did	something')

}

dosomething()

Now,	if	you	use	named	function	expressions,	since	you're	using	variables	something	different
happens.	The	variable	declaration	is	hoisted,	but	not	the	value,	so	not	the	function.

dosomething()

const	dosomething	=	function	dosomething()	{

		console.log('did	something')

}

Not	going	to	work:

This	is	because	what	happens	internally	is:

const	dosomething

dosomething()

dosomething	=	function	dosomething()	{

		console.log('did	something')

}

The	same	happens	for	 	let		declarations.	 	var		declarations	do	not	work	either,	but	with	a
different	error:

Functions

81

https://flaviocopes.com/javascript-variables/

This	is	because	 	var		declarations	are	hoisted	and	initialized	with	 	undefined		as	a	value,	while
	const		and	 	let		are	hoisted	but	not	initialized.

Functions

82

Arrow	Functions
Arrow	Functions	are	one	of	the	most	impactful	changes	in	ES6/ES2015,	and
they	are	widely	used	nowadays.	They	slightly	differ	from	regular	functions.
Find	out	how

Arrow	functions	were	introduced	in	ES6	/	ECMAScript	2015,	and	since	their	introduction	they
changed	forever	how	JavaScript	code	looks	(and	works).

In	my	opinion	this	change	was	so	welcoming	that	you	now	rarely	see	in	modern	codebases	the
usage	of	the	 	function		keyword.

Visually,	it’s	a	simple	and	welcome	change,	which	allows	you	to	write	functions	with	a	shorter
syntax,	from:

const	myFunction	=	function	foo()	{

		//...

}

to

const	myFunction	=	()	=>	{

		//...

}

If	the	function	body	contains	just	a	single	statement,	you	can	omit	the	parentheses	and	write
all	on	a	single	line:

const	myFunction	=	()	=>	doSomething()

Parameters	are	passed	in	the	parentheses:

const	myFunction	=	(param1,	param2)	=>	doSomething(param1,	param2)

If	you	have	one	(and	just	one)	parameter,	you	could	omit	the	parentheses	completely:

const	myFunction	=	param	=>	doSomething(param)

Thanks	to	this	short	syntax,	arrow	functions	encourage	the	use	of	small	functions.

Implicit	return

Arrow	Functions

83

Arrow	functions	allow	you	to	have	an	implicit	return:	values	are	returned	without	having	to	use
the	 	return		keyword.

It	works	when	there	is	a	on-line	statement	in	the	function	body:

const	myFunction	=	()	=>	'test'

myFunction()	//'test'

Another	example,	returning	an	object	(remember	to	wrap	the	curly	brackets	in	parentheses	to
avoid	it	being	considered	the	wrapping	function	body	brackets):

const	myFunction	=	()	=>	({value:	'test'})

myFunction()	//{value:	'test'}

How	 	this		works	in	arrow	functions
	this		is	a	concept	that	can	be	complicated	to	grasp,	as	it	varies	a	lot	depending	on	the
context	and	also	varies	depending	on	the	mode	of	JavaScript	(strict	mode	or	not).

It's	important	to	clarify	this	concept	because	arrow	functions	behave	very	differently	compared
to	regular	functions.

When	defined	as	a	method	of	an	object,	in	a	regular	function	 	this		refers	to	the	object,	so	you
can	do:

const	car	=	{

		model:	'Fiesta',

		manufacturer:	'Ford',

		fullName:	function()	{

				return	`${this.manufacturer}	${this.model}`

		}

}

calling	 	car.fullName()		will	return	 	"Ford	Fiesta"	.

The	 	this		scope	with	arrow	functions	is	inherited	from	the	execution	context.	An	arrow
function	does	not	bind	 	this		at	all,	so	its	value	will	be	looked	up	in	the	call	stack,	so	in	this
code	 	car.fullName()		will	not	work,	and	will	return	the	string	 	"undefined	undefined"	:

const	car	=	{

		model:	'Fiesta',

		manufacturer:	'Ford',

		fullName:	()	=>	{

Arrow	Functions

84

				return	`${this.manufacturer}	${this.model}`

		}

}

Due	to	this,	arrow	functions	are	not	suited	as	object	methods.

Arrow	functions	cannot	be	used	as	constructors	as	well,	when	instantiating	an	object	will	raise
a	 	TypeError	.

This	is	where	regular	functions	should	be	used	instead,	when	dynamic	context	is	not
needed.

This	is	also	a	problem	when	handling	events.	DOM	Event	listeners	set	 	this		to	be	the	target
element,	and	if	you	rely	on	 	this		in	an	event	handler,	a	regular	function	is	necessary:

const	link	=	document.querySelector('#link')

link.addEventListener('click',	()	=>	{

		//	this	===	window

})

const	link	=	document.querySelector('#link')

link.addEventListener('click',	function()	{

		//	this	===	link

})

Arrow	Functions

85

Closures
A	gentle	introduction	to	the	topic	of	closures,	key	to	understanding	how
JavaScript	functions	work

If	you've	ever	written	a	function	in	JavaScript,	you	already	made	use	of	closures.

It's	a	key	topic	to	understand,	which	has	implications	on	the	things	you	can	do.

When	a	function	is	run,	it's	executed	with	the	scope	that	was	in	place	when	it	was	defined,
and	not	with	the	state	that's	in	place	when	it	is	executed.

The	scope	basically	is	the	set	of	variables	which	are	visible.

A	function	remembers	its	Lexical	Scope,	and	it's	able	to	access	variables	that	were	defined	in
the	parent	scope.

In	short,	a	function	has	an	entire	baggage	of	variables	it	can	access.

Let	me	immediately	give	an	example	to	clarify	this.

const	bark	=	dog	=>	{

		const	say	=	`${dog}	barked!`

		;(()	=>	console.log(say))()

}

bark(`Roger`)

Closures

86

https://flaviocopes.com/javascript-functions/
https://flaviocopes.com/javascript-glossary/#lexical-scoping

This	logs	to	the	console	 	Roger	barked!	,	as	expected.

What	if	you	want	to	return	the	action	instead:

const	prepareBark	=	dog	=>	{

		const	say	=	`${dog}	barked!`

		return	()	=>	console.log(say)

}

const	bark	=	prepareBark(`Roger`)

bark()

This	snippet	also	logs	to	the	console	 	Roger	barked!	.

Let's	make	one	last	example,	which	reuses	 	prepareBark		for	two	different	dogs:

const	prepareBark	=	dog	=>	{

		const	say	=	`${dog}	barked!`

		return	()	=>	{

				console.log(say)

		}

}

const	rogerBark	=	prepareBark(`Roger`)

const	sydBark	=	prepareBark(`Syd`)

rogerBark()

sydBark()

This	prints

Roger	barked!

Syd	barked!

As	you	can	see,	the	state	of	the	variable	 	say		is	linked	to	the	function	that's	returned	from
	prepareBark()	.

Also	notice	that	we	redefine	a	new	 	say		variable	the	second	time	we	call	 	prepareBark()	,	but
that	does	not	affect	the	state	of	the	first	 	prepareBark()		scope.

This	is	how	a	closure	works:	the	function	that's	returned	keeps	the	original	state	in	its	scope.

Closures

87

Arrays
JavaScript	arrays	over	time	got	more	and	more	features,	sometimes	it's
tricky	to	know	when	to	use	some	construct	vs	another.	This	post	aims	to
explain	what	you	should	use,	as	of	2018

JavaScript	arrays	over	time	got	more	and	more	features,	sometimes	it's	tricky	to	know	when	to
use	some	construct	vs	another.	This	post	aims	to	explain	what	you	should	use	in	2018.

Initialize	array

const	a	=	[]

const	a	=	[1,	2,	3]

const	a	=	Array.of(1,	2,	3)

const	a	=	Array(6).fill(1)	//init	an	array	of	6	items	of	value	1

Don't	use	the	old	syntax	(just	use	it	for	typed	arrays)

const	a	=	new	Array()	//never	use

const	a	=	new	Array(1,	2,	3)	//never	use

Arrays

88

https://flaviocopes.com/javascript/

Get	length	of	the	array

const	l	=	a.length

Iterating	the	array

Every

a.every(f)

Iterates	 	a		until	 	f()		returns	false

Some

a.some(f)

Iterates	 	a		until	 	f()		returns	true

Iterate	the	array	and	return	a	new	one	with	the	returned	result
of	a	function

const	b	=	a.map(f)

Iterates	 	a		and	builds	a	new	array	with	the	result	of	executing	 	f()		on	each	 	a		element

Filter	an	array

const	b	=	a.filter(f)

Iterates	 	a		and	builds	a	new	array	with	elements	of	 	a		that	returned	true	when	executing
	f()		on	each	 	a		element

Reduce

a.reduce((accumulator,	currentValue,	currentIndex,	array)	=>	{

		//...

Arrays

89

},	initialValue)

	reduce()		executes	a	callback	function	on	all	the	items	of	the	array	and	allows	to	progressively
compute	a	result.	If	 	initialValue		is	specified,	 	accumulator		in	the	first	iteration	will	equal	to
that	value.

Example:

;[1,	2,	3,	4].reduce((accumulator,	currentValue,	currentIndex,	array)	=>	{

		return	accumulator	*	currentValue

},	1)

//	iteration	1:	1	*	1	=>	return	1

//	iteration	2:	1	*	2	=>	return	2

//	iteration	3:	2	*	3	=>	return	6

//	iteration	4:	6	*	4	=>	return	24

//	return	value	is	24

forEach

ES6

a.forEach(f)

Iterates	 	f		on	 	a		without	a	way	to	stop

Example:

a.forEach(v	=>	{

		console.log(v)

})

for..of

ES6

for	(let	v	of	a)	{

		console.log(v)

}

for

for	(let	i	=	0;	i	<	a.length;	i	+=	1)	{

		//a[i]

Arrays

90

}

Iterates	 	a	,	can	be	stopped	using	 	return		or	 	break		and	an	iteration	can	be	skipped	using
	continue	

@@iterator

ES6

Getting	the	iterator	from	an	array	returns	an	iterator	of	values

const	a	=	[1,	2,	3]

let	it	=	a[Symbol.iterator]()

console.log(it.next().value)	//1

console.log(it.next().value)	//2

console.log(it.next().value)	//3

	.entries()		returns	an	iterator	of	key/value	pairs

let	it	=	a.entries()

console.log(it.next().value)	//[0,	1]

console.log(it.next().value)	//[1,	2]

console.log(it.next().value)	//[2,	3]

	.keys()		allows	to	iterate	on	the	keys:

let	it	=	a.keys()

console.log(it.next().value)	//0

console.log(it.next().value)	//1

console.log(it.next().value)	//2

	.next()		returns	 	undefined		when	the	array	ends.	You	can	also	detect	if	the	iteration	ended	by
looking	at	 	it.next()		which	returns	a	 	value,	done		pair.	 	done		is	always	false	until	the	last
element,	which	returns	 	true	.

Adding	to	an	array

Add	at	the	end

a.push(4)

Arrays

91

Add	at	the	beginning

a.unshift(0)

a.unshift(-2,	-1)

Removing	an	item	from	an	array

From	the	end

a.pop()

From	the	beginning

a.shift()

At	a	random	position

a.splice(0,	2)	//	get	the	first	2	items

a.splice(3,	2)	//	get	the		2	items	starting	from	index	3

Do	not	use	 	remove()		as	it	leaves	behind	undefined	values.

Remove	and	insert	in	place

a.splice(2,	3,	2,	'a',	'b')	//removes	3	items	starting	from

//index	2,	and	adds	2	items,

//	still	starting	from	index	2

Join	multiple	arrays

const	a	=	[1,	2]

const	b	=	[3,	4]

a.concat(b)	//	1,	2,	3,	4

Lookup	the	array	for	a	specific	element

Arrays

92

ES5

a.indexOf()

Returns	the	index	of	the	first	matching	item	found,	or	-1	if	not	found

a.lastIndexOf()

Returns	the	index	of	the	last	matching	item	found,	or	-1	if	not	found

ES6

a.find((element,	index,	array)	=>	{

		//return	true	or	false

})

Returns	the	first	item	that	returns	true.	Returns	undefined	if	not	found.

A	commonly	used	syntax	is:

a.find(x	=>	x.id	===	my_id)

The	above	line	will	return	the	first	element	in	the	array	that	has	 	id	===	my_id	.

	findIndex		returns	the	index	of	the	first	item	that	returns	true,	and	if	not	found,	it	returns
	undefined	:

a.findIndex((element,	index,	array)	=>	{

		//return	true	or	false

})

ES7

a.includes(value)

Returns	true	if	 	a		contains	 	value	.

a.includes(value,	i)

Returns	true	if	 	a		contains	 	value		after	the	position	 	i	.

Arrays

93

Get	a	portion	of	an	array

a.slice()

Sort	the	array
Sort	alphabetically	(by	ASCII	value	-	 	0-9A-Za-z)

const	a	=	[1,	2,	3,	10,	11]

a.sort()	//1,	10,	11,	2,	3

const	b	=	[1,	'a',	'Z',	3,	2,	11]

b	=	a.sort()	//1,	11,	2,	3,	Z,	a

Sort	by	a	custom	function

const	a	=	[1,	10,	3,	2,	11]

a.sort((a,	b)	=>	a	-	b)	//1,	2,	3,	10,	11

Reverse	the	order	of	an	array

a.reverse()

Get	a	string	representation	of	an	array

a.toString()

Returns	a	string	representation	of	an	array

a.join()

Returns	a	string	concatenation	of	the	array	elements.	Pass	a	parameter	to	add	a	custom
separator:

a.join(',	')

Copy	an	existing	array	by	value

Arrays

94

const	b	=	Array.from(a)

const	b	=	Array.of(...a)

Copy	just	some	values	from	an	existing	array

const	b	=	Array.from(a,	x	=>	x	%	2	==	0)

Copy	portions	of	an	array	into	the	array	itself,	in
other	positions

const	a	=	[1,	2,	3,	4]

a.copyWithin(0,	2)	//	[3,	4,	3,	4]

const	b	=	[1,	2,	3,	4,	5]

b.copyWithin(0,	2)	//	[3,	4,	5,	4,	5]

//0	is	where	to	start	copying	into,

//	2	is	where	to	start	copying	from

const	c	=	[1,	2,	3,	4,	5]

c.copyWithin(0,	2,	4)	//	[3,	4,	3,	4,	5]

//4		is	an	end	index

Arrays

95

Loops
JavaScript	provides	many	way	to	iterate	through	loops.	This	tutorial	explains
all	the	various	loop	possibilities	in	modern	JavaScript

Introduction
JavaScript	provides	many	way	to	iterate	through	loops.	This	tutorial	explains	each	one	with	a
small	example	and	the	main	properties.

	for	

const	list	=	['a',	'b',	'c']

for	(let	i	=	0;	i	<	list.length;	i++)	{

		console.log(list[i])	//value

		console.log(i)	//index

}

You	can	interrupt	a	 	for		loop	using	 	break	
You	can	fast	forward	to	the	next	iteration	of	a	 	for		loop	using	 	continue	

Loops

96

forEach
Introduced	in	ES5.	Given	an	array,	you	can	iterate	over	its	properties	using	 	list.forEach()	:

const	list	=	['a',	'b',	'c']

list.forEach((item,	index)	=>	{

		console.log(item)	//value

		console.log(index)	//index

})

//index	is	optional

list.forEach(item	=>	console.log(item))

unfortunately	you	cannot	break	out	of	this	loop.

	do...while	

const	list	=	['a',	'b',	'c']

let	i	=	0

do	{

		console.log(list[i])	//value

		console.log(i)	//index

		i	=	i	+	1

}	while	(i	<	list.length)

You	can	interrupt	a	 	while		loop	using	 	break	:

do	{

		if	(something)	break

}	while	(true)

and	you	can	jump	to	the	next	iteration	using	 	continue	:

do	{

		if	(something)	continue

		//do	something	else

}	while	(true)

	while	

const	list	=	['a',	'b',	'c']

let	i	=	0

while	(i	<	list.length)	{

Loops

97

		console.log(list[i])	//value

		console.log(i)	//index

		i	=	i	+	1

}

You	can	interrupt	a	 	while		loop	using	 	break	:

while	(true)	{

		if	(something)	break

}

and	you	can	jump	to	the	next	iteration	using	 	continue	:

while	(true)	{

		if	(something)	continue

		//do	something	else

}

The	difference	with	 	do...while		is	that	 	do...while		always	execute	its	cycle	at	least	once.

	for...in	

Iterates	all	the	enumerable	properties	of	an	object,	giving	the	property	names.

for	(let	property	in	object)	{

		console.log(property)	//property	name

		console.log(object[property])	//property	value

}

	for...of	

ES2015	introduced	the	 	for...of		loop,	which	combines	the	conciseness	of	forEach	with	the
ability	to	break:

//iterate	over	the	value

for	(const	value	of	['a',	'b',	'c'])	{

		console.log(value)	//value

}

//get	the	index	as	well,	using	`entries()`

for	(const	[index,	value]	of	['a',	'b',	'c'].entries())	{

		console.log(index)	//index

		console.log(value)	//value

}

Loops

98

https://flaviocopes.com/ecmascript/

Notice	the	use	of	 	const	.	This	loop	creates	a	new	scope	in	every	iteration,	so	we	can	safely
use	that	instead	of	 	let	.

	for...in		vs	 	for...of	
The	difference	with	 	for...in		is:

	for...of		iterates	over	the	property	values
	for...in		iterates	the	property	names

Loops

99

Events
JavaScript	in	the	browser	uses	an	event-driven	programming	model.
Everything	starts	by	following	an	event.	This	is	an	introduction	to	JavaScript
events	and	how	event	handling	works

Introduction
JavaScript	in	the	browser	uses	an	event-driven	programming	model.

Everything	starts	by	following	an	event.

The	event	could	be	the	DOM	is	loaded,	or	an	asynchronous	request	that	finishes	fetching,	or	a
user	clicking	an	element	or	scrolling	the	page,	or	the	user	types	on	the	keyboard.

There	are	a	lot	of	different	kind	of	events.

Event	handlers
You	can	respond	to	any	event	using	an	Event	Handler,	which	is	just	a	function	that's	called
when	an	event	occurs.

Events

100

You	can	register	multiple	handlers	for	the	same	event,	and	they	will	all	be	called	when	that
event	happens.

JavaScript	offer	three	ways	to	register	an	event	handler:

Inline	event	handlers

This	style	of	event	handlers	is	very	rarely	used	today,	due	to	its	constrains,	but	it	was	the	only
way	in	the	JavaScript	early	days:

A	link

DOM	on-event	handlers

This	is	common	when	an	object	has	at	most	one	event	handler,	as	there	is	no	way	to	add
multiple	handlers	in	this	case:

window.onload	=	()	=>	{

		//window	loaded

}

It's	most	commonly	used	when	handling	XHR	requests:

const	xhr	=	new	XMLHttpRequest()

xhr.onreadystatechange	=	()	=>	{

		//..	do	something

}

You	can	check	if	an	handler	is	already	assigned	to	a	property	using	 	if	('onsomething'	in
window)	{}	.

Using	 	addEventListener()	

This	is	the	modern	way.	This	method	allows	to	register	as	many	handlers	as	we	need,	and	it's
the	most	popular	you	will	find:

window.addEventListener('load',	()	=>	{

		//window	loaded

})

This	method	allows	to	register	as	many	handlers	as	we	need,	and	it's	the	most	popular	you	will
find.

Events

101

https://flaviocopes.com/xhr/

Note	that	IE8	and	below	did	not	support	this,	and	instead	used	its	own	 	attachEvent()	
API.	Keep	it	in	mind	if	you	need	to	support	older	browsers.

Listening	on	different	elements
You	can	listen	on	 	window		to	intercept	"global"	events,	like	the	usage	of	the	keyboard,	and	you
can	listen	on	specific	elements	to	check	events	happening	on	them,	like	a	mouse	click	on	a
button.

This	is	why	 	addEventListener		is	sometimes	called	on	 	window	,	sometimes	on	a	DOM	element.

The	Event	object
An	event	handler	gets	an	 	Event		object	as	the	first	parameter:

const	link	=	document.getElementById('my-link')

link.addEventListener('click',	event	=>	{

		//	link	clicked

})

This	object	contains	a	lot	of	useful	properties	and	methods,	like:

	target	,	the	DOM	element	that	originated	the	event
	type	,	the	type	of	event
	stopPropagation()	,	called	to	stop	propagating	the	event	in	the	DOM

(see	the	full	list).

Other	properties	are	provided	by	specific	kind	of	events,	as	 	Event		is	an	interface	for	different
specific	events:

MouseEvent
KeyboardEvent
DragEvent
FetchEvent
...	and	others

Each	of	those	has	a	MDN	page	linked,	so	you	can	inspect	all	their	properties.

For	example	when	a	KeyboardEvent	happens,	you	can	check	which	key	was	pressed,	in	ar
readable	format	(Escape	,	 	Enter		and	so	on)	by	checking	the	 	key		property:

window.addEventListener('keydown',	event	=>	{

		//	key	pressed

Events

102

https://developer.mozilla.org/en-US/docs/Web/API/Event
https://developer.mozilla.org/en-US/docs/Web/API/MouseEvent
https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent
https://developer.mozilla.org/en-US/docs/Web/API/DragEvent
https://developer.mozilla.org/en-US/docs/Web/API/FetchEvent

		console.log(event.key)

})

On	a	mouse	event	we	can	check	which	mouse	button	was	pressed:

const	link	=	document.getElementById('my-link')

link.addEventListener('mousedown',	event	=>	{

		//	mouse	button	pressed

		console.log(event.button)	//0=left,	2=right

})

Event	bubbling	and	event	capturing
Bubbling	and	capturing	are	the	2	models	that	events	use	to	propagate.

Suppose	you	DOM	structure	is

<div	id="container">

		<button>Click	me</button>

</div>

You	want	to	track	when	users	click	on	the	button,	and	you	have	2	event	listeners,	one	on
	button	,	and	one	on	 	#container	.	Remember,	a	click	on	a	child	element	will	always	propagate
to	its	parents,	unless	you	stop	the	propagation	(see	later).

Those	event	listeners	will	be	called	in	order,	and	this	order	is	determined	by	the	event
bubbling/capturing	model	used.

Bubbling	means	that	the	event	propagates	from	the	item	that	was	clicked	(the	child)	up	to	all
its	parent	tree,	starting	from	the	nearest	one.

In	our	example,	the	handler	on	 	button		will	fire	before	the	 	#container		handler.

Capturing	is	the	opposite:	the	outer	event	handlers	are	fired	before	the	more	specific	handler,
the	one	on	 	button	.

By	default	all	events	bubble.

You	can	choose	to	adopt	event	capturing	by	applying	a	third	argument	to	addEventListener,
setting	it	to	 	true	:

document.getElementById('container').addEventListener(

		'click',

		()	=>	{

				//window	loaded

		},

Events

103

		true

)

Note	that	first	all	capturing	event	handlers	are	run.

Then	all	the	bubbling	event	handlers.

The	order	follows	this	principle:	the	DOM	goes	through	all	elements	starting	from	the	Window
object,	and	goes	to	find	the	item	that	was	clicked.	While	doing	so,	it	calls	any	event	handler
associated	to	the	event	(capturing	phase).

Once	it	reaches	the	target,	it	then	repeats	the	journey	up	to	the	parents	tree	until	the	Window
object,	calling	again	the	event	handlers	(bubbling	phase).

Stopping	the	propagation
An	event	on	a	DOM	element	will	be	propagated	to	all	its	parent	elements	tree,	unless	it's
stopped.

<html>

		<body>

				<section>

						

A	click	event	on	 	a		will	propagate	to	 	section		and	then	 	body	.

You	can	stop	the	propagation	by	calling	the	 	stopPropagation()		method	of	an	Event,	usually	at
the	end	of	the	event	handler:

const	link	=	document.getElementById('my-link')

link.addEventListener('mousedown',	event	=>	{

		//	process	the	event

		//	...

		event.stopPropagation()

})

Popular	events
Here's	a	list	of	the	most	common	events	you	will	likely	handle.

Load

	load		is	fired	on	 	window		and	the	 	body		element	when	the	page	has	finished	loading.

Events

104

Mouse	events

	click		fires	when	a	mouse	button	is	clicked.	 	dblclick		when	the	mouse	is	clicked	two	times.
Of	course	in	this	case	 	click		is	fired	just	before	this	event.	 	mousedown	,	 	mousemove		and
	mouseup		can	be	used	in	combination	to	track	drag-and-drop	events.	Be	careful	with
	mousemove	,	as	it	fires	many	times	during	the	mouse	movement	(see	throttling	later)

Keyboard	events

	keydown		fires	when	a	keyboard	button	is	pressed	(and	any	time	the	key	repeats	while	the
button	stays	pressed).	 	keyup		is	fired	when	the	key	is	released.

Scroll

The	 	scroll		event	is	fired	on	 	window		every	time	you	scroll	the	page.	Inside	the	event	handler
you	can	check	the	current	scrolling	position	by	checking	 	window.scrollY	.

Keep	in	mind	that	this	event	is	not	a	one-time	thing.	It	fires	a	lot	of	times	during	scrolling,	not
just	at	the	end	or	beginning	of	the	scrolling,	so	don't	do	any	heavy	computation	or
manipulation	in	the	handler	-	use	throttling	instead.

Throttling
As	we	mentioned	above,	 	mousemove		and	 	scroll		are	two	events	that	are	not	fired	one-time
per	event,	but	rather	they	continuously	call	their	event	handler	function	during	all	the	duration
of	the	action.

This	is	because	they	provide	coordinates	so	you	can	track	what's	happening.

If	you	perform	a	complex	operation	in	the	event	handler,	you	will	affect	the	performance	and
cause	a	sluggish	experience	to	your	site	users.

Libraries	that	provide	throttling	like	Lodash	implement	it	in	100+	lines	of	code,	to	handle	every
possible	use	case.	A	simple	and	easy	to	understand	implementation	is	this,	which	uses
setTimeout	to	cache	the	scroll	event	every	100ms:

let	cached	=	null

window.addEventListener('scroll',	event	=>	{

		if	(!cached)	{

				setTimeout(()	=>	{

						//you	can	access	the	original	event	at	`cached`

						cached	=	null

				},	100)

		}

		cached	=	event

Events

105

https://lodash.com/docs/4.17.10#throttle
https://flaviocopes.com/javascript-timers/

})

Events

106

The	Event	Loop
The	Event	Loop	is	one	of	the	most	important	aspects	to	understand	about
JavaScript.	This	post	explains	it	in	simple	terms

Introduction
The	Event	Loop	is	one	of	the	most	important	aspects	to	understand	about	JavaScript.

I've	programmed	for	years	with	JavaScript,	yet	I've	never	fully	understood	how	things
work	under	the	hoods.	It's	completely	fine	to	not	know	this	concept	in	detail,	but	as	usual,
it's	helpful	to	know	how	it	works,	and	also	you	might	just	be	a	little	curious	at	this	point.

This	post	aims	to	explain	the	inner	details	of	how	JavaScript	works	with	a	single	thread,	and
how	it	handles	asynchronous	functions.

Your	JavaScript	code	runs	single	threaded.	There	is	just	one	thing	happening	at	a	time.

This	is	a	limitation	that's	actually	very	helpful,	as	it	simplifies	a	lot	how	you	program	without
worrying	about	concurrency	issues.

You	just	need	to	pay	attention	to	how	you	write	your	code	and	avoid	anything	that	could	block
the	thread,	like	synchronous	network	calls	or	infinite	loops.

In	general,	in	most	browsers	there	is	an	event	loop	for	every	browser	tab,	to	make	every
process	isolated	and	avoid	a	web	page	with	infinite	loops	or	heavy	processing	to	block	your
entire	browser.

The	environment	manages	multiple	concurrent	event	loops,	to	handle	API	calls	for	example.
Web	Workers	run	in	their	own	event	loop	as	well.

You	mainly	need	to	be	concerned	that	your	code	will	run	on	a	single	event	loop,	and	write
code	with	this	thing	in	mind	to	avoid	blocking	it.

Blocking	the	event	loop
Any	JavaScript	code	that	takes	too	long	to	return	back	control	to	the	event	loop	will	block	the
execution	of	any	JavaScript	code	in	the	page,	even	block	the	UI	thread,	and	the	user	cannot
click	around,	scroll	the	page,	and	so	on.

The	Event	Loop

107

https://flaviocopes.com/javascript-loops/
https://flaviocopes.com/web-workers/

Almost	all	the	I/O	primitives	in	JavaScript	are	non-blocking.	Network	requests,	Node.js
filesystem	operations,	and	so	on.	Being	blocking	is	the	exception,	and	this	is	why	JavaScript	is
based	so	much	on	callbacks,	and	more	recently	on	promises	and	async/await.

The	call	stack
The	call	stack	is	a	LIFO	queue	(Last	In,	First	Out).

The	event	loop	continuously	checks	the	call	stack	to	see	if	there's	any	function	that	needs	to
run.

While	doing	so,	it	adds	any	function	call	it	finds	to	the	call	stack	and	executes	each	one	in
order.

You	know	the	error	stack	trace	you	might	be	familiar	with,	in	the	debugger	or	in	the	browser
console?	The	browser	looks	up	the	function	names	in	the	call	stack	to	inform	you	which
function	originates	the	current	call:

The	Event	Loop

108

https://flaviocopes.com/node/
https://flaviocopes.com/javascript-promises/
https://flaviocopes.com/javascript-async-await/

A	simple	event	loop	explanation
Let's	pick	an	example:

const	bar	=	()	=>	console.log('bar')

const	baz	=	()	=>	console.log('baz')

const	foo	=	()	=>	{

		console.log('foo')

		bar()

		baz()

}

foo()

The	Event	Loop

109

This	code	prints

foo

bar

baz

as	expected.

When	this	code	runs,	first	 	foo()		is	called.	Inside	 	foo()		we	first	call	 	bar()	,	then	we	call
	baz()	.

At	this	point	the	call	stack	looks	like	this:

The	event	loop	on	every	iteration	looks	if	there's	something	in	the	call	stack,	and	executes	it:

The	Event	Loop

110

until	the	call	stack	is	empty.

Queuing	function	execution
The	above	example	looks	normal,	there's	nothing	special	about	it:	JavaScript	finds	things	to
execute,	runs	them	in	order.

The	Event	Loop

111

Let's	see	how	to	defer	a	function	until	the	stack	is	clear.

The	use	case	of	 	setTimeout(()	=>	{}),	0)		is	to	call	a	function,	but	execute	it	once	every	other
function	in	the	code	has	executed.

Take	this	example:

const	bar	=	()	=>	console.log('bar')

const	baz	=	()	=>	console.log('baz')

const	foo	=	()	=>	{

		console.log('foo')

		setTimeout(bar,	0)

		baz()

}

foo()

This	code	prints,	maybe	surprisingly:

foo

baz

bar

When	this	code	runs,	first	foo()	is	called.	Inside	foo()	we	first	call	setTimeout,	passing	 	bar		as
an	argument,	and	we	instruct	it	to	run	immediately	as	fast	as	it	can,	passing	0	as	the	timer.
Then	we	call	baz().

At	this	point	the	call	stack	looks	like	this:

The	Event	Loop

112

Here	is	the	execution	order	for	all	the	functions	in	our	program:

The	Event	Loop

113

Why	is	this	happening?

The	Message	Queue

The	Event	Loop

114

When	setTimeout()	is	called,	the	Browser	or	Node.js	start	the	timer.	Once	the	timer	expires,	in
this	case	immediately	as	we	put	0	as	the	timeout,	the	callback	function	is	put	in	the	Message
Queue.

The	Message	Queue	is	also	where	user-initiated	events	like	click	or	keyboard	events,	or	fetch
responses	are	queued	before	your	code	has	the	opportunity	to	react	to	them.	Or	also	DOM
events	like	 	onLoad	.

The	loop	gives	priority	to	the	call	stack,	and	it	first	processes	everything	it	finds	in	the
call	stack,	and	once	there's	nothing	in	there,	it	goes	to	pick	up	things	in	the	event
queue.

We	don't	have	to	wait	for	functions	like	 	setTimeout	,	fetch	or	other	things	to	do	their	own	work,
because	they	are	provided	by	the	browser,	and	they	live	on	their	own	threads.	For	example,	if
you	set	the	 	setTimeout		timeout	to	2	seconds,	you	don't	have	to	wait	2	seconds	-	the	wait
happens	elsewhere.

ES6	Job	Queue
ECMAScript	2015	introduced	the	concept	of	the	Job	Queue,	which	is	used	by	Promises	(also
introduced	in	ES6/ES2015).	It's	a	way	to	execute	the	result	of	an	async	function	as	soon	as
possible,	rather	than	being	put	at	the	end	of	the	call	stack.

Promises	that	resolve	before	the	current	function	ends	will	be	executed	right	after	the	current
function.

I	find	nice	the	analogy	of	a	rollercoaster	ride	at	an	amusement	park:	the	message	queue	puts
you	back	in	queue	with	after	all	the	other	people	in	the	queue,	while	the	job	queue	is	the
fastpass	ticket	that	lets	you	take	another	ride	right	after	you	finished	the	previous	one.

Example:

const	bar	=	()	=>	console.log('bar')

const	baz	=	()	=>	console.log('baz')

const	foo	=	()	=>	{

		console.log('foo')

		setTimeout(bar,	0)

		new	Promise((resolve,	reject)	=>

				resolve('should	be	right	after	baz,	before	bar')

).then(resolve	=>	console.log(resolve))

		baz()

}

foo()

The	Event	Loop

115

https://flaviocopes.com/timer-api/
https://flaviocopes.com/fetch-api/
https://flaviocopes.com/dom/
https://flaviocopes.com/ecmascript/

This	prints

foo

baz

should	be	right	after	baz,	before	bar

bar

That's	a	big	difference	between	Promises	(and	Async/await,	which	is	built	on	promises)	and
plain	old	asynchronous	functions	through	 	setTimeout()		or	other	platform	APIs.

The	Event	Loop

116

Asynchronous	programming	and	callbacks
JavaScript	is	synchronous	by	default,	and	is	single	threaded.	This	means
that	code	cannot	create	new	threads	and	run	in	parallel.	Find	out	what
asynchronous	code	means	and	how	it	looks	like

Asynchronicity	in	Programming	Languages
Computers	are	asynchronous	by	design.

Asynchronous	means	that	things	can	happen	independently	of	the	main	program	flow.

In	the	current	consumer	computers,	every	program	runs	for	a	specific	time	slot,	and	then	it
stops	its	execution	to	let	another	program	continue	its	execution.	This	thing	runs	in	a	cycle	so
fast	that's	impossible	to	notice,	and	we	think	our	computers	run	many	programs
simultaneously,	but	this	is	an	illusion	(except	on	multiprocessor	machines).

Programs	internally	use	interrupts,	a	signal	that's	emitted	to	the	processor	to	gain	the	attention
of	the	system.

Asynchronous	programming	and	callbacks

117

I	won't	go	into	the	internals	of	this,	but	just	keep	in	mind	that	it's	normal	for	programs	to	be
asynchronous,	and	halt	their	execution	until	they	need	attention,	and	the	computer	can
execute	other	things	in	the	meantime.	When	a	program	is	waiting	for	a	response	from	the
network,	it	cannot	halt	the	processor	until	the	request	finishes.

Normally,	programming	languages	are	synchronous,	and	some	provide	a	way	to	manage
asynchronicity,	in	the	language	or	through	libraries.	C,	Java,	C#,	PHP,	Go,	Ruby,	Swift,
Python,	they	are	all	synchronous	by	default.	Some	of	them	handle	async	by	using	threads,
spawning	a	new	process.

JavaScript
JavaScript	is	synchronous	by	default	and	is	single	threaded.	This	means	that	code	cannot
create	new	threads	and	run	in	parallel.

Lines	of	code	are	executed	in	series,	one	after	another,	for	example:

const	a	=	1

const	b	=	2

const	c	=	a	*	b

console.log(c)

doSomething()

But	JavaScript	was	born	inside	the	browser,	its	main	job,	in	the	beginning,	was	to	respond	to
user	actions,	like	 	onClick	,	 	onMouseOver	,	 	onChange	,	 	onSubmit		and	so	on.	How	could	it	do	this
with	a	synchronous	programming	model?

The	answer	was	in	its	environment.	The	browser	provides	a	way	to	do	it	by	providing	a	set	of
APIs	that	can	handle	this	kind	of	functionality.

More	recently,	Node.js	introduced	a	non-blocking	I/O	environment	to	extend	this	concept	to	file
access,	network	calls	and	so	on.

Callbacks
You	can't	know	when	a	user	is	going	to	click	a	button,	so	what	you	do	is,	you	define	an	event
handler	for	the	click	event.	This	event	handler	accepts	a	function,	which	will	be	called	when
the	event	is	triggered:

document.getElementById('button').addEventListener('click',	()	=>	{

		//item	clicked

})

Asynchronous	programming	and	callbacks

118

This	is	the	so-called	callback.

A	callback	is	a	simple	function	that's	passed	as	a	value	to	another	function,	and	will	only	be
executed	when	the	event	happens.	We	can	do	this	because	JavaScript	has	first-class
functions,	which	can	be	assigned	to	variables	and	passed	around	to	other	functions	(called
higher-order	functions)

It's	common	to	wrap	all	your	client	code	in	a	 	load		event	listener	on	the	 	window		object,	which
runs	the	callback	function	only	when	the	page	is	ready:

window.addEventListener('load',	()	=>	{

		//window	loaded

		//do	what	you	want

})

Callbacks	are	used	everywhere,	not	just	in	DOM	events.

One	common	example	is	by	using	timers:

setTimeout(()	=>	{

		//	runs	after	2	seconds

},	2000)

XHR	requests	also	accept	a	callback,	in	this	example	by	assigning	a	function	to	a	property	that
will	be	called	when	a	particular	event	occurs	(in	this	case,	the	state	of	the	request	changes):

const	xhr	=	new	XMLHttpRequest()

xhr.onreadystatechange	=	()	=>	{

		if	(xhr.readyState	===	4)	{

				xhr.status	===	200	?	console.log(xhr.responseText)	:	console.error('error')

		}

}

xhr.open('GET',	'https://yoursite.com')

xhr.send()

Handling	errors	in	callbacks
How	do	you	handle	errors	with	callbacks?	One	very	common	strategy	is	to	use	what	Node.js
adopted:	the	first	parameter	in	any	callback	function	is	the	error	object:	error-first	callbacks

If	there	is	no	error,	the	object	is	 	null	.	If	there	is	an	error,	it	contains	some	description	of	the
error	and	other	information.

fs.readFile('/file.json',	(err,	data)	=>	{

		if	(err	!==	null)	{

Asynchronous	programming	and	callbacks

119

				//handle	error

				console.log(err)

				return

		}

		//no	errors,	process	data

		console.log(data)

})

The	problem	with	callbacks
Callbacks	are	great	for	simple	cases!

However	every	callback	adds	a	level	of	nesting,	and	when	you	have	lots	of	callbacks,	the	code
starts	to	be	complicated	very	quickly:

window.addEventListener('load',	()	=>	{

		document.getElementById('button').addEventListener('click',	()	=>	{

				setTimeout(()	=>	{

						items.forEach(item	=>	{

								//your	code	here

						})

				},	2000)

		})

})

This	is	just	a	simple	4-levels	code,	but	I've	seen	much	more	levels	of	nesting	and	it's	not	fun.

How	do	we	solve	this?

Alternatives	to	callbacks
Starting	with	ES6,	JavaScript	introduced	several	features	that	help	us	with	asynchronous	code
that	do	not	involve	using	callbacks:

Promises	(ES6)
Async/Await	(ES8)

Asynchronous	programming	and	callbacks

120

https://flaviocopes.com/javascript-promises/
https://flaviocopes.com/javascript-async-await/

Promises
Promises	are	one	way	to	deal	with	asynchronous	code	in	JavaScript,	without
writing	too	many	callbacks	in	your	code.

Introduction	to	promises
A	promise	is	commonly	defined	as	a	proxy	for	a	value	that	will	eventually	become
available.

Promises	are	one	way	to	deal	with	asynchronous	code,	without	writing	too	many	callbacks	in
your	code.

Although	being	around	since	years,	they	have	been	standardized	and	introduced	in	ES2015,
and	now	they	have	been	superseded	in	ES2017	by	async	functions.

Async	functions	use	the	promises	API	as	their	building	block,	so	understanding	them	is
fundamental	even	if	in	newer	code	you'll	likely	use	async	functions	instead	of	promises.

How	promises	work,	in	brief

Once	a	promise	has	been	called,	it	will	start	in	pending	state.	This	means	that	the	caller
function	continues	the	execution,	while	it	waits	for	the	promise	to	do	its	own	processing,	and
give	the	caller	function	some	feedback.

At	this	point,	the	caller	function	waits	for	it	to	either	return	the	promise	in	a	resolved	state,	or
in	a	rejected	state,	but	as	you	know	JavaScript	is	asynchronous,	so	the	function	continues	its
execution	while	the	promise	does	it	work.

Which	JS	API	use	promises?

In	addition	to	your	own	code	and	libraries	code,	promises	are	used	by	standard	modern	Web
APIs	such	as:

the	Battery	API
the	Fetch	API
Service	Workers

It's	unlikely	that	in	modern	JavaScript	you'll	find	yourself	not	using	promises,	so	let's	start
diving	right	into	them.

Promises

121

https://flaviocopes.com/ecmascript/#es2015-aka-es6
https://flaviocopes.com/ecmascript/#es2017-aka-es8
https://flaviocopes.com/javascript-async-await
https://flaviocopes.com/javascript/
https://flaviocopes.com/fetch-api/
https://flaviocopes.com/service-workers/

Creating	a	promise
The	Promise	API	exposes	a	Promise	constructor,	which	you	initialize	using	 	new	Promise()	:

let	done	=	true

const	isItDoneYet	=	new	Promise(

		(resolve,	reject)	=>	{

				if	(done)	{

						const	workDone	=	'Here	is	the	thing	I	built'

						resolve(workDone)

				}	else	{

						const	why	=	'Still	working	on	something	else'

						reject(why)

				}

		}

)

As	you	can	see	the	promise	checks	the	 	done		global	constant,	and	if	that's	true,	we	return	a
resolved	promise,	otherwise	a	rejected	promise.

Using	 	resolve		and	 	reject		we	can	communicate	back	a	value,	in	the	above	case	we	just
return	a	string,	but	it	could	be	an	object	as	well.

Consuming	a	promise
In	the	last	section,	we	introduced	how	a	promise	is	created.

Now	let's	see	how	the	promise	can	be	consumed	or	used.

const	isItDoneYet	=	new	Promise(

		//...

)

const	checkIfItsDone	=	()	=>	{

		isItDoneYet

				.then((ok)	=>	{

						console.log(ok)

				})

				.catch((err)	=>	{

						console.error(err)

				})

}

Promises

122

Running	 	checkIfItsDone()		will	execute	the	 	isItDoneYet()		promise	and	will	wait	for	it	to
resolve,	using	the	 	then		callback,	and	if	there	is	an	error,	it	will	handle	it	in	the	 	catch	
callback.

Chaining	promises
A	promise	can	be	returned	to	another	promise,	creating	a	chain	of	promises.

A	great	example	of	chaining	promises	is	given	by	the	Fetch	API,	a	layer	on	top	of	the
XMLHttpRequest	API,	which	we	can	use	to	get	a	resource	and	queue	a	chain	of	promises	to
execute	when	the	resource	is	fetched.

The	Fetch	API	is	a	promise-based	mechanism,	and	calling	 	fetch()		is	equivalent	to	defining
our	own	promise	using	 	new	Promise()	.

Example	of	chaining	promises

const	status	=	(response)	=>	{

		if	(response.status	>=	200	&&	response.status	<	300)	{

				return	Promise.resolve(response)

		}

		return	Promise.reject(new	Error(response.statusText))

}

const	json	=	(response)	=>	response.json()

fetch('/todos.json')

		.then(status)

		.then(json)

		.then((data)	=>	{	console.log('Request	succeeded	with	JSON	response',	data)	})

		.catch((error)	=>	{	console.log('Request	failed',	error)	})

In	this	example,	we	call	 	fetch()		to	get	a	list	of	TODO	items	from	the	 	todos.json		file	found	in
the	domain	root,	and	we	create	a	chain	of	promises.

Running	 	fetch()		returns	a	response,	which	has	many	properties,	and	within	those	we
reference:

	status	,	a	numeric	value	representing	the	HTTP	status	code
	statusText	,	a	status	message,	which	is	 	OK		if	the	request	succeeded

	response		also	has	a	 	json()		method,	which	returns	a	promise	that	will	resolve	with	the
content	of	the	body	processed	and	transformed	into	JSON.

Promises

123

https://flaviocopes.com/fetch-api
https://fetch.spec.whatwg.org/#concept-response

So	given	those	premises,	this	is	what	happens:	the	first	promise	in	the	chain	is	a	function	that
we	defined,	called	 	status()	,	that	checks	the	response	status	and	if	it's	not	a	success
response	(between	200	and	299),	it	rejects	the	promise.

This	operation	will	cause	the	promise	chain	to	skip	all	the	chained	promises	listed	and	will	skip
directly	to	the	 	catch()		statement	at	the	bottom,	logging	the	 	Request	failed		text	along	with
the	error	message.

If	that	succeeds	instead,	it	calls	the	json()	function	we	defined.	Since	the	previous	promise,
when	successful,	returned	the	 	response		object,	we	get	it	as	an	input	to	the	second	promise.

In	this	case,	we	return	the	data	JSON	processed,	so	the	third	promise	receives	the	JSON
directly:

.then((data)	=>	{

		console.log('Request	succeeded	with	JSON	response',	data)

})

and	we	simply	log	it	to	the	console.

Handling	errors
In	the	example,	in	the	previous	section,	we	had	a	 	catch		that	was	appended	to	the	chain	of
promises.

When	anything	in	the	chain	of	promises	fails	and	raises	an	error	or	rejects	the	promise,	the
control	goes	to	the	nearest	 	catch()		statement	down	the	chain.

new	Promise((resolve,	reject)	=>	{

		throw	new	Error('Error')

})

		.catch((err)	=>	{	console.error(err)	})

//	or

new	Promise((resolve,	reject)	=>	{

		reject('Error')

})

		.catch((err)	=>	{	console.error(err)	})

Cascading	errors

If	inside	the	 	catch()		you	raise	an	error,	you	can	append	a	second	 	catch()		to	handle	it,	and
so	on.

Promises

124

new	Promise((resolve,	reject)	=>	{

		throw	new	Error('Error')

})

		.catch((err)	=>	{	throw	new	Error('Error')	})

		.catch((err)	=>	{	console.error(err)	})

Orchestrating	promises

	Promise.all()	

If	you	need	to	synchronize	different	promises,	 	Promise.all()		helps	you	define	a	list	of
promises,	and	execute	something	when	they	are	all	resolved.

Example:

const	f1	=	fetch('/something.json')

const	f2	=	fetch('/something2.json')

Promise.all([f1,	f2]).then((res)	=>	{

				console.log('Array	of	results',	res)

})

.catch((err)	=>	{

		console.error(err)

})

The	ES2015	destructuring	assignment	syntax	allows	you	to	also	do

Promise.all([f1,	f2]).then(([res1,	res2])	=>	{

				console.log('Results',	res1,	res2)

})

You	are	not	limited	to	using	 	fetch		of	course,	any	promise	is	good	to	go.

	Promise.race()	

	Promise.race()		runs	when	the	first	of	the	promises	you	pass	to	it	resolves,	and	it	runs	the
attached	callback	just	once,	with	the	result	of	the	first	promise	resolved.

Example:

const	first	=	new	Promise((resolve,	reject)	=>	{

				setTimeout(resolve,	500,	'first')

})

const	second	=	new	Promise((resolve,	reject)	=>	{

Promises

125

https://flaviocopes.com/ecmascript/#destructuring-assignments

				setTimeout(resolve,	100,	'second')

})

Promise.race([first,	second]).then((result)	=>	{

		console.log(result)	//	second

})

Common	errors

Uncaught	TypeError:	undefined	is	not	a	promise

If	you	get	the	 	Uncaught	TypeError:	undefined	is	not	a	promise		error	in	the	console,	make	sure
you	use	 	new	Promise()		instead	of	just	 	Promise()	

Promises

126

Async	and	Await
Discover	the	modern	approach	to	asynchronous	functions	in	JavaScript.
JavaScript	evolved	in	a	very	short	time	from	callbacks	to	Promises,	and
since	ES2017	asynchronous	JavaScript	is	even	simpler	with	the	async/await
syntax

Introduction
JavaScript	evolved	in	a	very	short	time	from	callbacks	to	promises	(ES2015),	and	since
ES2017	asynchronous	JavaScript	is	even	simpler	with	the	async/await	syntax.

Async	functions	are	a	combination	of	promises	and	generators,	and	basically,	they	are	a
higher	level	abstraction	over	promises.	Let	me	repeat:	async/await	is	built	on	promises.

Why	were	async/await	introduced?
They	reduce	the	boilerplate	around	promises,	and	the	"don't	break	the	chain"	limitation	of
chaining	promises.

When	Promises	were	introduced	in	ES2015,	they	were	meant	to	solve	a	problem	with
asynchronous	code,	and	they	did,	but	over	the	2	years	that	separated	ES2015	and	ES2017,	it
was	clear	that	promises	could	not	be	the	final	solution.

Promises	were	introduced	to	solve	the	famous	callback	hell	problem,	but	they	introduced
complexity	on	their	own,	and	syntax	complexity.

They	were	good	primitives	around	which	a	better	syntax	could	be	exposed	to	the	developers,
so	when	the	time	was	right	we	got	async	functions.

They	make	the	code	look	like	it's	synchronous,	but	it's	asynchronous	and	non-blocking	behind
the	scenes.

How	it	works
An	async	function	returns	a	promise,	like	in	this	example:

const	doSomethingAsync	=	()	=>	{

				return	new	Promise((resolve)	=>	{

								setTimeout(()	=>	resolve('I	did	something'),	3000)

				})

Async	and	Await

127

https://flaviocopes.com/javascript/
https://flaviocopes.com/javascript-promises/
https://flaviocopes.com/ecmascript/#es2017-aka-es8
https://flaviocopes.com/ecmascript/#generators

}

When	you	want	to	call	this	function	you	prepend	 	await	,	and	the	calling	code	will	stop	until
the	promise	is	resolved	or	rejected.	One	caveat:	the	client	function	must	be	defined	as
	async	.	Here's	an	example:

const	doSomething	=	async	()	=>	{

				console.log(await	doSomethingAsync())

}

A	quick	example
This	is	a	simple	example	of	async/await	used	to	run	a	function	asynchronously:

const	doSomethingAsync	=	()	=>	{

				return	new	Promise((resolve)	=>	{

								setTimeout(()	=>	resolve('I	did	something'),	3000)

				})

}

const	doSomething	=	async	()	=>	{

				console.log(await	doSomethingAsync())

}

console.log('Before')

doSomething()

console.log('After')

The	above	code	will	print	the	following	to	the	browser	console:

Before

After

I	did	something	//after	3s

Promise	all	the	things
Prepending	the	 	async		keyword	to	any	function	means	that	the	function	will	return	a	promise.

Even	if	it's	not	doing	so	explicitly,	it	will	internally	make	it	return	a	promise.

This	is	why	this	code	is	valid:

const	aFunction	=	async	()	=>	{

		return	'test'

}

Async	and	Await

128

aFunction().then(alert)	//	This	will	alert	'test'

and	it's	the	same	as:

const	aFunction	=	async	()	=>	{

		return	Promise.resolve('test')

}

aFunction().then(alert)	//	This	will	alert	'test'

The	code	is	much	simpler	to	read
As	you	can	see	in	the	example	above,	our	code	looks	very	simple.	Compare	it	to	code	using
plain	promises,	with	chaining	and	callback	functions.

And	this	is	a	very	simple	example,	the	major	benefits	will	arise	when	the	code	is	much	more
complex.

For	example	here's	how	you	would	get	a	JSON	resource,	and	parse	it,	using	promises:

const	getFirstUserData	=	()	=>	{

		return	fetch('/users.json')	//	get	users	list

				.then(response	=>	response.json())	//	parse	JSON

				.then(users	=>	users[0])	//	pick	first	user

				.then(user	=>	fetch(`/users/${user.name}`))	//	get	user	data

				.then(userResponse	=>	response.json())	//	parse	JSON

}

getFirstUserData()

And	here	is	the	same	functionality	provided	using	await/async:

const	getFirstUserData	=	async	()	=>	{

		const	response	=	await	fetch('/users.json')	//	get	users	list

		const	users	=	await	response.json()	//	parse	JSON

		const	user	=	users[0]	//	pick	first	user

		const	userResponse	=	await	fetch(`/users/${user.name}`)	//	get	user	data

		const	userData	=	await	user.json()	//	parse	JSON

		return	userData

}

getFirstUserData()

Multiple	async	functions	in	series

Async	and	Await

129

Async	functions	can	be	chained	very	easily,	and	the	syntax	is	much	more	readable	than	with
plain	promises:

const	promiseToDoSomething	=	()	=>	{

				return	new	Promise(resolve	=>	{

								setTimeout(()	=>	resolve('I	did	something'),	10000)

				})

}

const	watchOverSomeoneDoingSomething	=	async	()	=>	{

				const	something	=	await	promiseToDoSomething()

				return	something	+	'	and	I	watched'

}

const	watchOverSomeoneWatchingSomeoneDoingSomething	=	async	()	=>	{

				const	something	=	await	watchOverSomeoneDoingSomething()

				return	something	+	'	and	I	watched	as	well'

}

watchOverSomeoneWatchingSomeoneDoingSomething().then((res)	=>	{

				console.log(res)

})

Will	print:

I	did	something	and	I	watched	and	I	watched	as	well

Easier	debugging
Debugging	promises	is	hard	because	the	debugger	will	not	step	over	asynchronous	code.

Async/await	makes	this	very	easy	because	to	the	compiler	it's	just	like	synchronous	code.

Async	and	Await

130

Loops	and	Scope
There	is	one	feature	of	JavaScript	that	might	cause	a	few	headaches	to
developers,	related	to	loops	and	scoping.	Learn	some	tricks	about	loops	and
scoping	with	var	and	let

There	is	one	feature	of	JavaScript	that	might	cause	a	few	headaches	to	developers,	related	to
loops	and	scoping.

Take	this	example:

const	operations	=	[]

for	(var	i	=	0;	i	<	5;	i++)	{

		operations.push(()	=>	{

				console.log(i)

		})

}

for	(const	operation	of	operations)	{

		operation()

}

It	basically	iterates	and	for	5	times	it	adds	a	function	to	an	array	called	operations.	This
function	simply	console	logs	the	loop	index	variable	 	i	.

Later	it	runs	these	functions.

The	expected	result	here	should	be:

0

1

2

3

4

but	actually	what	happens	is	this:

5

5

5

5

5

Why	is	this	the	case?	Because	of	the	use	of	 	var	.

Since	 	var		declarations	are	hoisted,	the	above	code	equals	to

Loops	and	Scope

131

https://flaviocopes.com/javascript/

var	i;

const	operations	=	[]

for	(i	=	0;	i	<	5;	i++)	{

		operations.push(()	=>	{

				console.log(i)

		})

}

for	(const	operation	of	operations)	{

		operation()

}

so,	in	the	for-of	loop,	 	i		is	still	visible,	it's	equal	to	5	and	every	reference	to	 	i		in	the	function
is	going	to	use	this	value.

So	how	should	we	do	to	make	things	work	as	we	want?

The	simplest	solution	is	to	use	 	let		declarations.	Introduced	in	ES2015,	they	are	a	great	help
in	avoiding	some	of	the	weird	things	about	 	var		declarations.

Simply	changing	 	var		to	 	let		in	the	loop	variable	is	going	to	work	fine:

const	operations	=	[]

for	(let	i	=	0;	i	<	5;	i++)	{

		operations.push(()	=>	{

				console.log(i)

		})

}

for	(const	operation	of	operations)	{

		operation()

}

Here's	the	output:

0

1

2

3

4

How	is	this	possible?	This	works	because	on	every	loop	iteration	 	i		is	created	as	a	new
variable	each	time,	and	every	function	added	to	the	 	operations		array	gets	its	own	copy	of	 	i	.

Keep	in	mind	you	cannot	use	 	const		in	this	case,	because	there	would	be	an	error	as	 	for	
tries	to	assign	a	new	value	in	the	second	iteration.

Loops	and	Scope

132

Another	way	to	solve	this	problem	was	very	common	in	pre-ES6	code,	and	it	is	called
Immediately	Invoked	Function	Expression	(IIFE).

In	this	case	you	can	wrap	the	entire	function	and	bind	 	i		to	it.	Since	in	this	way	you're
creating	a	function	that	immediately	executes,	you	return	a	new	function	from	it,	so	we	can
execute	it	later:

const	operations	=	[]

for	(var	i	=	0;	i	<	5;	i++)	{

		operations.push(((j)	=>	{

				return	()	=>	console.log(j)

		})(i))

}

for	(const	operation	of	operations)	{

		operation()

}

Loops	and	Scope

133

Timers
When	writing	JavaScript	code,	you	might	want	to	delay	the	execution	of	a
function.	Learn	how	to	use	setTimeout	and	setInterval	to	schedule	functions
in	the	future

	setTimeout()	

When	writing	JavaScript	code,	you	might	want	to	delay	the	execution	of	a	function.

This	is	the	job	of	 	setTimeout	.	You	specify	a	callback	function	to	execute	later,	and	a	value
expressing	how	later	you	want	it	to	run,	in	milliseconds:

setTimeout(()	=>	{

		//	runs	after	2	seconds

},	2000)

setTimeout(()	=>	{

		//	runs	after	50	milliseconds

},	50)

This	syntax	defines	a	new	function.	You	can	call	whatever	other	function	you	want	in	there,	or
you	can	pass	an	existing	function	name,	and	a	set	of	parameters:

const	myFunction	=	(firstParam,	secondParam)	=>	{

		//	do	something

}

//	runs	after	2	seconds

setTimeout(myFunction,	2000,	firstParam,	secondParam)

Timers

134

https://flaviocopes.com/javascript/

	setTimeout		returns	the	timer	id.	This	is	generally	not	used,	but	you	can	store	this	id,	and	clear
it	if	you	want	to	delete	this	scheduled	function	execution:

const	id	=	setTimeout(()	=>	{

		//	should	run	after	2	seconds

},	2000)

//	I	changed	my	mind

clearTimeout(id)

Zero	delay

If	you	specify	the	timeout	delay	to	 	0	,	the	callback	function	will	be	executed	as	soon	as
possible,	but	after	the	current	function	execution:

setTimeout(()	=>	{

		console.log('after	')

},	0)

console.log('	before	')

will	print	 	before	after	.

This	is	especially	useful	to	avoid	blocking	the	CPU	on	intensive	tasks	and	let	other	functions
be	executed	while	performing	a	heavy	calculation,	by	queuing	functions	in	the	scheduler.

Some	browsers	(IE	and	Edge)	implement	a	 	setImmediate()		method	that	does	this	same
exact	functionality,	but	it's	not	standard	and	unavailable	on	other	browsers.	But	it's	a
standard	function	in	Node.js.

	setInterval()	

	setInterval		is	a	function	similar	to	 	setTimeout	,	with	a	difference:	instead	of	running	the
callback	function	once,	it	will	run	it	forever,	at	the	specific	time	interval	you	specify	(in
milliseconds):

setInterval(()	=>	{

		//	runs	every	2	seconds

},	2000)

The	function	above	runs	every	2	seconds	unless	you	tell	it	to	stop,	using	 	clearInterval	,
passing	it	the	interval	id	that	 	setInterval		returned:

const	id	=	setInterval(()	=>	{

Timers

135

https://caniuse.com/#feat=setimmediate

		//	runs	every	2	seconds

},	2000)

clearInterval(id)

It's	common	to	call	 	clearInterval		inside	the	setInterval	callback	function,	to	let	it	auto-
determine	if	it	should	run	again	or	stop.	For	example	this	code	runs	something	unless
App.somethingIWait	has	the	value	 	arrived	:

const	interval	=	setInterval(()	=>	{

		if	(App.somethingIWait	===	'arrived')	{

				clearInterval(interval)

				return

		}

		//	otherwise	do	things

},	100)

Recursive	setTimeout
	setInterval		starts	a	function	every	n	milliseconds,	without	any	consideration	about	when	a
function	finished	its	execution.

If	a	function	takes	always	the	same	amount	of	time,	it's	all	fine:

Maybe	the	function	takes	different	execution	times,	depending	on	network	conditions	for
example:

And	maybe	one	long	execution	overlaps	the	next	one:

To	avoid	this,	you	can	schedule	a	recursive	setTimeout	to	be	called	when	the	callback	function
finishes:

Timers

136

const	myFunction	=	()	=>	{

		//	do	something

		setTimeout(myFunction,	1000)

}

setTimeout(

		myFunction()

},	1000)

to	achieve	this	scenario:

	setTimeout		and	 	setInterval		are	available	in	Node.js,	through	the	Timers	module.

Node.js	also	provides	 	setImmediate()	,	which	is	equivalent	to	using	 	setTimeout(()	=>	{},	0)	,
mostly	used	to	work	with	the	Node.js	Event	Loop.

Timers

137

https://flaviocopes.com/node/
https://nodejs.org/api/timers.html

this
`this`	is	a	value	that	has	different	values	depending	on	where	it's	used.	Not
knowing	this	tiny	detail	of	JavaScript	can	cause	a	lot	of	headaches,	so	it's
worth	taking	5	minutes	to	learn	all	the	tricks

	this		is	a	value	that	has	different	values	depending	on	where	it's	used.

Not	knowing	this	tiny	detail	of	JavaScript	can	cause	a	lot	of	headaches,	so	it's	worth	taking	5
minutes	to	learn	all	the	tricks.

	this		in	strict	mode
Outside	any	object,	 	this		in	strict	mode	is	always	 	undefined	.

Notice	I	mentioned	strict	mode.	If	strict	mode	is	disabled	(the	default	state	if	you	don't	explicitly
add	 	'use	strict'		on	top	of	your	file),	you	are	in	the	so-called	sloppy	mode,	and	 	this		-
unless	some	specific	cases	mentioned	here	below	-	has	the	value	of	the	global	object.

Which	means	 	window		in	a	browser	context.

	this		in	methods
A	method	is	a	function	attached	to	an	object.

You	can	see	it	in	various	forms.

this

138

Here's	one:

const	car	=	{

		maker:	'Ford',

		model:	'Fiesta',

		drive()	{

				console.log(`Driving	a	${this.maker}	${this.model}	car!`)

		}

}

car.drive()

//Driving	a	Ford	Fiesta	car!

In	this	case,	using	a	regular	function,	 	this		is	automatically	bound	to	the	object.

Note:	the	above	method	declaration	is	the	same	as	 	drive:	function()	{	...,	but	shorter:

const	car	=	{

		maker:	'Ford',

		model:	'Fiesta',

		drive:	function()	{

				console.log(`Driving	a	${this.maker}	${this.model}	car!`)

		}

}

The	same	works	in	this	example:

const	car	=	{

		maker:	'Ford',

		model:	'Fiesta'

}

car.drive	=	function()	{

		console.log(`Driving	a	${this.maker}	${this.model}	car!`)

}

car.drive()

//Driving	a	Ford	Fiesta	car!

An	arrow	function	does	not	work	in	the	same	way,	as	it's	lexically	bound:

const	car	=	{

		maker:	'Ford',

		model:	'Fiesta',

		drive:	()	=>	{

				console.log(`Driving	a	${this.maker}	${this.model}	car!`)

		}

}

this

139

car.drive()

//Driving	a	undefined	undefined	car!

Binding	arrow	functions
You	cannot	bind	a	value	to	an	arrow	function,	like	you	do	with	normal	functions.

It's	simply	not	possible	due	to	the	way	they	work.	 	this		is	lexically	bound,	which	means	its
value	is	derived	from	the	context	where	they	are	defined.

Explicitly	pass	an	object	to	be	used	as	 	this	
JavaScript	offers	a	few	ways	to	map	 	this		to	any	object	you	want.

Using	 	bind()	,	at	the	function	declaration	step:

const	car	=	{

		maker:	'Ford',

		model:	'Fiesta'

}

const	drive	=	function()	{

		console.log(`Driving	a	${this.maker}	${this.model}	car!`)

}.bind(car)

drive()

//Driving	a	Ford	Fiesta	car!

You	could	also	bind	an	existing	object	method	to	remap	its	 	this		value:

const	car	=	{

		maker:	'Ford',

		model:	'Fiesta',

		drive()	{

				console.log(`Driving	a	${this.maker}	${this.model}	car!`)

		}

}

const	anotherCar	=	{

		maker:	'Audi',

		model:	'A4'

}

car.drive.bind(anotherCar)()

//Driving	a	Audi	A4	car!

this

140

Using	 	call()		or	 	apply()	,	at	the	function	invocation	step:

const	car	=	{

		maker:	'Ford',

		model:	'Fiesta'

}

const	drive	=	function(kmh)	{

		console.log(`Driving	a	${this.maker}	${this.model}	car	at	${kmh}	km/h!`)

}

drive.call(car,	100)

//Driving	a	Ford	Fiesta	car	at	100	km/h!

drive.apply(car,	[100])

//Driving	a	Ford	Fiesta	car	at	100	km/h!

The	first	parameter	you	pass	to	 	call()		or	 	apply()		is	always	bound	to	 	this	.	The	difference
between	call()	and	apply()	is	just	that	the	second	one	wants	an	array	as	the	arguments	list,
while	the	first	accepts	a	variable	number	of	parameters,	which	passes	as	function	arguments.

The	special	case	of	browser	event	handlers
In	event	handlers	callbacks,	 	this		refers	to	the	HTML	element	that	received	the	event:

document.querySelector('#button').addEventListener('click',	function(e)	{

		console.log(this)	//HTMLElement

}

You	can	bind	it	using

document.querySelector('#button').addEventListener(

		'click',

		function(e)	{

				console.log(this)	//Window	if	global,	or	your	context

		}.bind(this)

)

this

141

Strict	Mode
Strict	Mode	is	an	ES5	feature,	and	it's	a	way	to	make	JavaScript	behave	in	a
better	way.	And	in	a	different	way,	as	enabling	Strict	Mode	changes	the
semantics	of	the	JavaScript	language.	It's	really	important	to	know	the	main
differences	between	JavaScript	code	in	strict	mode,	and	normal	JavaScript,
which	is	often	referred	as	sloppy	mode

Strict	Mode	is	an	ES5	feature,	and	it's	a	way	to	make	JavaScript	behave	in	a	better	way.

And	in	a	different	way,	as	enabling	Strict	Mode	changes	the	semantics	of	the	JavaScript
language.

It's	really	important	to	know	the	main	differences	between	JavaScript	code	in	strict	mode,	and
"normal"	JavaScript,	which	is	often	referred	as	sloppy	mode.

Strict	Mode	mostly	removes	functionality	that	was	possible	in	ES3,	and	deprecated	since	ES5
(but	not	removed	because	of	backwards	compatibility	requirements)

How	to	enable	Strict	Mode

Strict	Mode

142

https://flaviocopes.com/ecmascript/

Strict	mode	is	optional.	As	with	every	breaking	change	in	JavaScript,	we	can't	simply	change
how	the	language	behaves	by	default,	because	that	would	break	gazillions	of	JavaScript
around,	and	JavaScript	puts	a	lot	of	effort	into	making	sure	1996	JavaScript	code	still	works
today.	It's	a	key	of	its	success.

So	we	have	the	 	'use	strict'		directive	we	need	to	use	to	enable	Strict	Mode.

You	can	put	it	at	the	beginning	of	a	file,	to	apply	it	to	all	the	code	contained	in	the	file:

'use	strict'

const	name	=	'Flavio'

const	hello	=	()	=>	'hey'

//...

You	can	also	enable	Strict	Mode	for	an	individual	function,	by	putting	 	'use	strict'		at	the
beginning	of	the	function	body:

function	hello()	{

		'use	strict'

		return	'hey'

}

This	is	useful	when	operating	on	legacy	code,	where	you	don't	have	the	time	to	test	or	the
confidence	to	enable	strict	mode	on	the	whole	file.

What	changes	in	Strict	Mode

Accidental	global	variables

If	you	assign	a	value	to	an	undeclared	variable,	JavaScript	by	default	creates	that	variable	on
the	global	object:

;(function()	{

		variable	=	'hey'

})()(()	=>	{

		name	=	'Flavio'

})()

variable	//'hey'

name	//'Flavio'

Turning	on	Strict	Mode,	an	error	is	raised	if	you	try	to	do	what	we	did	above:

Strict	Mode

143

;(function()	{

		'use	strict'

		variable	=	'hey'

})()(()	=>	{

		'use	strict'

		myname	=	'Flavio'

})()

Assignment	errors

JavaScript	silently	fails	some	conversion	errors.

In	Strict	Mode,	those	silent	errors	now	raise	issues:

const	undefined	=	1(()	=>	{

		'use	strict'

		undefined	=	1

})()

Strict	Mode

144

The	same	applies	to	Infinity,	NaN,	 	eval	,	 	arguments		and	more.

In	JavaScript	you	can	define	a	property	of	an	object	to	be	not	writable,	by	using

const	car	=	{}

Object.defineProperty(car,	'color',	{	value:	'blue',	writable:	false	})

In	strict	mode,	you	can't	override	this	value,	while	in	sloppy	mode	that's	possible:

The	same	works	for	getters:

const	car	=	{

		get	color()	{

				return	'blue'

		}

}

car.color	=	'red'(

		//ok

		()	=>	{

				'use	strict'

Strict	Mode

145

				car.color	=	'yellow'	//TypeError:	Cannot	set	property	color	of	#<Object>	which	has	onl

y	a	getter

		}

)()

Sloppy	mode	allows	to	extend	a	non-extensible	object:

const	car	=	{	color:	'blue'	}

Object.preventExtensions(car)

car.model	=	'Fiesta'(

		//ok

		()	=>	{

				'use	strict'

				car.owner	=	'Flavio'	//TypeError:	Cannot	add	property	owner,	object	is	not	extensible

		}

)()

Also,	sloppy	mode	allows	to	set	properties	on	primitive	values,	without	failing,	but	also	without
doing	nothing	at	all:

true.false	=	''(

		//''

		1

).name	=

		'xxx'	//'xxx'

var	test	=	'test'	//undefined

test.testing	=	true	//true

test.testing	//undefined

Strict	mode	fails	in	all	those	cases:

;(()	=>	{

		'use	strict'

		true.false	=	''(

				//TypeError:	Cannot	create	property	'false'	on	boolean	'true'

				1

).name	=

				'xxx'	//TypeError:	Cannot	create	property	'name'	on	number	'1'

		'test'.testing	=	true	//TypeError:	Cannot	create	property	'testing'	on	string	'test'

})()

Deletion	errors

In	sloppy	mode,	if	you	try	to	delete	a	property	that	you	cannot	delete,	JavaScript	simply	returns
false,	while	in	Strict	Mode,	it	raises	a	TypeError:

delete	Object.prototype(

Strict	Mode

146

		//false

		()	=>	{

				'use	strict'

				delete	Object.prototype	//TypeError:	Cannot	delete	property	'prototype'	of	function	Ob

ject()	{	[native	code]	}

		}

)()

Function	arguments	with	the	same	name

In	normal	functions,	you	can	have	duplicate	parameter	names:

(function(a,	a,	b)	{

		console.log(a,	b)

})(1,	2,	3)

//2	3

(function(a,	a,	b)	{

		'use	strict'

		console.log(a,	b)

})(1,	2,	3)

//Uncaught	SyntaxError:	Duplicate	parameter	name	not	allowed	in	this	context

Note	that	arrow	functions	always	raise	a	 	SyntaxError		in	this	case:

((a,	a,	b)	=>	{

		console.log(a,	b)

})(1,	2,	3)

//Uncaught	SyntaxError:	Duplicate	parameter	name	not	allowed	in	this	context

Octal	syntax

Octal	syntax	in	Strict	Mode	is	disabled.	By	default,	prepending	a	 	0		to	a	number	compatible
with	the	octal	numeric	format	makes	it	(sometimes	confusingly)	interpreted	as	an	octal
number:

(()	=>	{

		console.log(010)

})()

//8

(()	=>	{

		'use	strict'

		console.log(010)

})()

//Uncaught	SyntaxError:	Octal	literals	are	not	allowed	in	strict	mode.

Strict	Mode

147

You	can	still	enable	octal	numbers	in	Strict	Mode	using	the	 	0oXX		syntax:

;(()	=>	{

		'use	strict'

		console.log(0o10)

})()

//8

Removed	 	with	

Strict	Mode	disables	the	 	with		keyword,	to	remove	some	edge	cases	and	allow	more
optimization	at	the	compiler	level.

Strict	Mode

148

Immediately-invoked	Function	Expressions
(IIFE)
An	Immediately-invoked	Function	Expression	is	a	way	to	execute	functions
immediately,	as	soon	as	they	are	created.	IIFEs	are	very	useful	because	they
don't	pollute	the	global	object,	and	they	are	a	simple	way	to	isolate	variables
declarations

An	Immediately-invoked	Function	Expression	(IIFE	for	friends)	is	a	way	to	execute
functions	immediately,	as	soon	as	they	are	created.

IIFEs	are	very	useful	because	they	don't	pollute	the	global	object,	and	they	are	a	simple
way	to	isolate	variables	declarations.

This	is	the	syntax	that	defines	an	IIFE:

;(function()	{

		/*	*/

})()

IIFEs	can	be	defined	with	arrow	functions	as	well:

Immediately-invoked	Function	Expressions	(IIFE)

149

;(()	=>	{

		/*	*/

})()

We	basically	have	a	function	defined	inside	parentheses,	and	then	we	append	 	()		to	execute
that	function:	 	(https://flaviocopes.com/*	function	*/)()	.

Those	wrapping	parentheses	are	actually	what	make	our	function,	internally,	be	considered	an
expression.	Otherwise,	the	function	declaration	would	be	invalid,	because	we	didn't	specify
any	name:

Function	declarations	want	a	name,	while	function	expressions	do	not	require	it.

You	could	also	put	the	invoking	parentheses	inside	the	expression	parentheses,	there	is	no
difference,	just	a	styling	preference:

(function()	{

		/*	*/

}())

(()	=>	{

		/*	*/

}())

Alternative	syntax	using	unary	operators
There	is	some	weirder	syntax	that	you	can	use	to	create	an	IIFE,	but	it's	very	rarely	used	in
the	real	world,	and	it	relies	on	using	any	unary	operator:

;-(function()	{

		/*	*/

})()	+

		(function()	{

				/*	*/

		})()

Immediately-invoked	Function	Expressions	(IIFE)

150

~(function()	{

		/*	*/

})()

!(function()	{

		/*	*/

})()

(does	not	work	with	arrow	functions)

Named	IIFE
An	IIFE	can	also	be	named	regular	functions	(not	arrow	functions).	This	does	not	change	the
fact	that	the	function	does	not	"leak"	to	the	global	scope,	and	it	cannot	be	invoked	again	after
its	execution:

;(function	doSomething()	{

		/*	*/

})()

IIFEs	starting	with	a	semicolon
You	might	see	this	in	the	wild:

;(function()	{

		/*	*/

})()

This	prevents	issues	when	blindly	concatenating	two	JavaScript	files.	Since	JavaScript	does
not	require	semicolons,	you	might	concatenate	with	a	file	with	some	statements	in	its	last	line
that	causes	a	syntax	error.

This	problem	is	essentially	solved	with	"smart"	code	bundlers	like	webpack.

Immediately-invoked	Function	Expressions	(IIFE)

151

https://flaviocopes.com/webpack/

Math	operators
Performing	math	operations	and	calculus	is	a	very	common	thing	to	do	with
any	programming	language.	JavaScript	offers	several	operators	to	help	us
work	with	numbers

Performing	math	operations	and	calculus	is	a	very	common	thing	to	do	with	any	programming
language.

JavaScript	offers	several	operators	to	help	us	work	with	numbers.

Operators

Arithmetic	operators

Addition	(+)

const	three	=	1	+	2

const	four	=	three	+	1

The	 	+		operator	also	serves	as	string	concatenation	if	you	use	strings,	so	pay	attention:

const	three	=	1	+	2

three	+	1	//	4

'three'	+	1	//	three1

Subtraction	(-)

const	two	=	4	-	2

Division	(https://flaviocopes.com/)

Returns	the	quotient	of	the	first	operator	and	the	second:

const	result	=	20	/	5	//result	===	4

const	result	=	20	/	7	//result	===	2.857142857142857

If	you	divide	by	zero,	JavaScript	does	not	raise	any	error	but	returns	the	 	Infinity		value	(or	 	-
Infinity		if	the	value	is	negative).

Math	operators

152

https://flaviocopes.com/

1	/	0	//Infinity

-1	/	0	//-Infinity

Remainder	(%)

The	remainder	is	a	very	useful	calculation	in	many	use	cases:

const	result	=	20	%	5	//result	===	0

const	result	=	20	%	7	//result	===	6

A	reminder	by	zero	is	always	 	NaN	,	a	special	value	that	means	"Not	a	Number":

1	%	0	//NaN

-1	%	0	//NaN

Multiplication	(*)

1	*	2	//2

-1	*	2	//-2

Exponentiation	(**)

Raise	the	first	operand	to	the	power	second	operand

1	**	2	//1

2	**	1	//2

2	**	2	//4

2	**	8	//256

8	**	2	//64

Unary	operators

Increment	(++)

Increment	a	number.	This	is	a	unary	operator,	and	if	put	before	the	number,	it	returns	the
value	incremented.

If	put	after	the	number,	it	returns	the	original	value,	then	increments	it.

let	x	=	0

x++	//0

x	//1

++x	//2

Math	operators

153

Decrement	(--)

Works	like	the	increment	operator,	except	it	decrements	the	value.

let	x	=	0

x--	//0

x	//-1

--x	//-2

Unary	negation	(-)

Return	the	negation	of	the	operand

let	x	=	2

-x	//-2

x	//2

Unary	plus	(+)

If	the	operand	is	not	a	number,	it	tries	to	convert	it.	Otherwise	if	the	operand	is	already	a
number,	it	does	nothing.

let	x	=	2

+x	//2

x	=	'2'

+x	//2

x	=	'2a'

+x	//NaN

Assignment	shortcuts
The	regular	assignment	operator,	 	=	,	has	several	shortcuts	for	all	the	arithmetic	operators
which	let	you	combine	assignment,	assigning	to	the	first	operand	the	result	of	the	operations
with	the	second	operand.

They	are:

	+=	:	addition	assignment
	-=	:	subtraction	assignment
	*=	:	multiplication	assignment

Math	operators

154

	/=	:	division	assignment
	%=	:	remainder	assignment
	**=	:	exponentiation	assignment

Examples:

const	a	=	0

a	+=	5	//a	===	5

a	-=	2	//a	===	3

a	*=	2	//a	===	6

a	/=	2	//a	===	3

a	%=	2	//a	===	1

Precedence	rules
Every	complex	statement	will	introduce	precedence	problems.

Take	this:

const	a	=	1	*	2	+	5	/	2	%	2

The	result	is	2.5,	but	why?	What	operations	are	executed	first,	and	which	need	to	wait?

Some	operations	have	more	precedence	than	the	others.	The	precedence	rules	are	listed	in
this	table:

Operator Description

	-		 	+		 	++		 	--	 unary	operators,	increment	and	decrement

	*		 	/		 	%	 multiply/divide

	+		 	-	 addition/subtraction

	=		 	+=		 	-=		 	*=		 	/=		 	%=		 	**=	 assignments

Operations	on	the	same	level	(like	 	+		and	 	-)	are	executed	in	the	order	they	are	found

Following	this	table,	we	can	solve	this	calculation:

const	a	=	1	*	2	+	5	/	2	%	2

const	a	=	1	*	2	+	5	/	2	%	2

const	a	=	2	+	2.5	%	2

const	a	=	2	+	0.5

const	a	=	2.5

Math	operators

155

Math	operators

156

The	Math	object
The	Math	object	contains	lots	of	utilities	math-related.	This	tutorial	describes
them	all

The	Math	object	contains	lots	of	utilities	math-related.

It	contains	constants	and	functions.

Constants

Item Description

	Math.E	 The	constant	e,	base	of	the	natural	logarithm	(means	~2.71828)

	Math.LN10	 The	constant	that	represents	the	base	e	(natural)	logarithm	of	10

	Math.LN2	 The	constant	that	represents	the	base	e	(natural)	logarithm	of	2

	Math.LOG10E	 The	constant	that	represents	the	base	10	logarithm	of	e

	Math.LOG2E	 The	constant	that	represents	the	base	2	logarithm	of	e

	Math.PI	 The	π	constant	(~3.14159)

	Math.SQRT1_2	 The	constant	that	represents	the	reciprocal	of	the	square	root	of	2

	Math.SQRT2	 The	constant	that	represents	the	square	root	of	2

Functions
All	those	functions	are	static.	Math	cannot	be	instantiated.

Math.abs()

Returns	the	absolute	value	of	a	number

Math.abs(2.5)	//2.5

Math.abs(-2.5)	//2.5

Math.acos()

Returns	the	arccosine	of	the	operand

The	operand	must	be	between	-1	and	1

The	Math	object

157

Math.acos(0.8)	//0.6435011087932843

Math.asin()

Returns	the	arcsine	of	the	operand

The	operand	must	be	between	-1	and	1

Math.asin(0.8)	//0.9272952180016123

Math.atan()

Returns	the	arctangent	of	the	operand

Math.atan(30)	//1.5374753309166493

Math.atan2()

Returns	the	arctangent	of	the	quotient	of	its	arguments.

Math.atan2(30,	20)	//0.982793723247329

Math.ceil()

Rounds	a	number	up

Math.ceil(2.5)	//3

Math.ceil(2)	//2

Math.ceil(2.1)	//3

Math.ceil(2.99999)	//3

Math.cos()

Return	the	cosine	of	an	angle	expressed	in	radiants

Math.cos(0)	//1

Math.cos(Math.PI)	//-1

Math.exp()

Return	the	value	of	Math.E	multiplied	per	the	exponent	that's	passed	as	argument

The	Math	object

158

Math.exp(1)	//2.718281828459045

Math.exp(2)	//7.38905609893065

Math.exp(5)	//148.4131591025766

Math.floor()

Rounds	a	number	down

Math.ceil(2.5)	//2

Math.ceil(2)	//2

Math.ceil(2.1)	//2

Math.ceil(2.99999)	//2

Math.log()

Return	the	base	e	(natural)	logarithm	of	a	number

Math.log(10)	//2.302585092994046

Math.log(Math.E)	//1

Math.max()

Return	the	highest	number	in	the	set	of	numbers	passed

Math.max(1,2,3,4,5)	//5

Math.max(1)	//1

Math.min()

Return	the	smallest	number	in	the	set	of	numbers	passed

Math.max(1,2,3,4,5)	//1

Math.max(1)	//1

Math.pow()

Return	the	first	argument	raised	to	the	second	argument

Math.pow(1,	2)	//1

Math.pow(2,	1)	//2

Math.pow(2,	2)	//4

Math.pow(2,	4)	//16

The	Math	object

159

Math.random()

Returns	a	pseudorandom	number	between	0.0	and	1.0

Math.random()	//0.9318168241227056

Math.random()	//0.35268950194094395

Math.round()

Rounds	a	number	to	the	nearest	integer

Math.round(1.2)	//1

Math.round(1.6)	//2

Math.sin()

Calculates	the	sin	of	an	angle	expressed	in	radiants

Math.sin(0)	//0

Math.sin(Math.PI)	//1.2246467991473532e-16)

Math.sqrt()

Return	the	square	root	of	the	argument

Math.sqrt(4)	//2

Math.sqrt(16)	//4

Math.sqrt(5)	//2.23606797749979

Math.tan()

Calculates	the	tangent	of	an	angle	expressed	in	radiants

Math.tan(0)	//0

Math.tan(Math.PI)	//-1.2246467991473532e-16

The	Math	object

160

ES	Modules
ES	Modules	is	the	ECMAScript	standard	for	working	with	modules.	While
Node.js	has	been	using	the	CommonJS	standard	since	years,	the	browser
never	had	a	module	system,	as	every	major	decision	such	as	a	module
system	must	be	first	standardized	by	ECMAScript	and	then	implemented

Introduction	to	ES	Modules
ES	Modules	is	the	ECMAScript	standard	for	working	with	modules.

While	Node.js	has	been	using	the	CommonJS	standard	since	years,	the	browser	never	had	a
module	system,	as	every	major	decision	such	as	a	module	system	must	be	first	standardized
by	ECMAScript	and	then	implemented	by	the	browser.

This	standardization	process	completed	with	ES6	and	browsers	started	implementing	this
standard	trying	to	keep	everything	well	aligned,	working	all	in	the	same	way,	and	now	ES
Modules	are	supported	in	Chrome,	Safari,	Edge	and	Firefox	(since	version	60).

ES	Modules

161

https://flaviocopes.com/node/
https://flaviocopes.com/ecmascript/

Modules	are	very	cool,	because	they	let	you	encapsulate	all	sorts	of	functionality,	and	expose
this	functionality	to	other	JavaScript	files,	as	libraries.

The	ES	Modules	Syntax
The	syntax	to	import	a	module	is:

import	package	from	'module-name'

while	CommonJS	uses

const	package	=	require('module-name')

A	module	is	a	JavaScript	file	that	exports	one	or	more	value	(objects,	functions	or	variables),
using	the	 	export		keyword.	For	example,	this	module	exports	a	function	that	returns	a	string
uppercase:

uppercase.js

export	default	str	=>	str.toUpperCase()

ES	Modules

162

In	this	example,	the	module	defines	a	single,	default	export,	so	it	can	be	an	anonymous
function.	Otherwise	it	would	need	a	name	to	distinguish	it	from	other	exports.

Now,	any	other	JavaScript	module	can	import	the	functionality	offered	by	uppercase.js	by
importing	it.

An	HTML	page	can	add	a	module	by	using	a	 	<script>		tag	with	the	special	 	type="module"	
attribute:

<script	type="module"	src="index.js"></script>

Note:	this	module	import	behaves	like	a	 	defer		script	load.	See	efficiently	load
JavaScript	with	defer	and	async

It's	important	to	note	that	any	script	loaded	with	 	type="module"		is	loaded	in	strict	mode.

In	this	example,	the	 	uppercase.js		module	defines	a	default	export,	so	when	we	import	it,	we
can	assign	it	a	name	we	prefer:

import	toUpperCase	from	'./uppercase.js'

and	we	can	use	it:

toUpperCase('test')	//'TEST'

You	can	also	use	an	absolute	path	for	the	module	import,	to	reference	modules	defined	on
another	domain:

import	toUpperCase	from	'https://flavio-es-modules-example.glitch.me/uppercase.js'

This	is	also	valid	import	syntax:

import	{	foo	}	from	'/uppercase.js'

import	{	foo	}	from	'../uppercase.js'

This	is	not:

import	{	foo	}	from	'uppercase.js'

import	{	foo	}	from	'utils/uppercase.js'

It's	either	absolute,	or	has	a	 	./		or	 	/		before	the	name.

ES	Modules

163

https://flaviocopes.com/javascript-async-defer/
https://flaviocopes.com/javascript-strict-mode/

Other	import/export	options
We	saw	this	example	above:

export	default	str	=>	str.toUpperCase()

This	creates	one	default	export.	In	a	file	however	you	can	export	more	than	one	thing,	by	using
this	syntax:

const	a	=	1

const	b	=	2

const	c	=	3

export	{	a,	b,	c	}

Another	module	can	import	all	those	exports	using

import	*	from	'module'

You	can	import	just	a	few	of	those	exports,	using	the	destructuring	assignment:

import	{	a	}	from	'module'

import	{	a,	b	}	from	'module'

You	can	rename	any	import,	for	convenience,	using	 	as	:

import	{	a,	b	as	two	}	from	'module'

You	can	import	the	default	export,	and	any	non-default	export	by	name,	like	in	this	common
React	import:

import	React,	{	Component	}	from	'react'

You	can	check	an	ES	Modules	example	on	https://glitch.com/edit/#!/flavio-es-modules-
example?path=index.html

CORS

ES	Modules

164

https://flaviocopes.com/ecmascript/#destructuring-assignments
https://glitch.com/edit/#!/flavio-es-modules-example?path=index.html

Modules	are	fetched	using	CORS.	This	means	that	if	you	reference	scripts	from	other
domains,	they	must	have	a	valid	CORS	header	that	allows	cross-site	loading	(like	 	Access-
Control-Allow-Origin:	*)

What	about	browsers	that	do	not	support
modules?
Use	a	combination	of	 	type="module"		and	 	nomodule	:

<script	type="module"	src="module.js"></script>

<script	nomodule	src="fallback.js"></script>

Conclusion
ES	Modules	are	one	of	the	biggest	features	introduced	in	modern	browsers.	They	are	part	of
ES6	but	the	road	to	implement	them	has	been	long.

We	can	now	use	them!	But	we	must	also	remember	that	having	more	than	a	few	modules	is
going	to	have	a	performance	hit	on	our	pages,	as	it's	one	more	step	that	the	browser	must
perform	at	runtime.

Webpack	is	probably	going	to	still	be	a	huge	player	even	if	ES	Modules	land	in	the	browser,
but	having	such	a	feature	directly	built	in	the	language	is	huge	for	a	unification	of	how	modules
work	in	the	client-side	and	on	Node.js	as	well.

ES	Modules

165

https://flaviocopes.com/cors/
https://flaviocopes.com/webpack/

CommonJS
The	CommonJS	module	specification	is	the	standard	used	in	Node.js	for
working	with	modules.	Modules	are	very	cool,	because	they	let	you
encapsulate	all	sorts	of	functionality,	and	expose	this	functionality	to	other
JavaScript	files,	as	libraries

The	CommonJS	module	specification	is	the	standard	used	in	Node.js	for	working	with
modules.

Client-side	JavaScript	that	runs	in	the	browser	uses	another	standard,	called	ES
Modules

Modules	are	very	cool,	because	they	let	you	encapsulate	all	sorts	of	functionality,	and	expose
this	functionality	to	other	JavaScript	files,	as	libraries.	They	let	you	create	clearly	separate	and
reusable	snippets	of	functionality,	each	testable	on	its	own.

The	huge	npm	ecosystem	is	built	upon	this	CommonJS	format.

The	syntax	to	import	a	module	is:

const	package	=	require('module-name')

CommonJS

166

https://flaviocopes.com/node/
https://flaviocopes.com/npm/

In	CommonJS,	modules	are	loaded	synchronously,	and	processed	in	the	order	the	JavaScript
runtime	finds	them.	This	system	was	born	with	server-side	JavaScript	in	mind,	and	is	not
suitable	for	the	client-side	(this	is	why	ES	Modules	were	introduced).

A	JavaScript	file	is	a	module	when	it	exports	one	or	more	of	the	symbols	it	defines,	being	them
variables,	functions,	objects:

uppercase.js

exports.uppercase	=	str	=>	str.toUpperCase()

Any	JavaScript	file	can	import	and	use	this	module:

const	uppercaseModule	=	require('uppercase.js')

uppercaseModule.uppercase('test')

A	simple	example	can	be	found	in	this	Glitch.

You	can	export	more	than	one	value:

exports.a	=	1

exports.b	=	2

exports.c	=	3

and	import	them	individually	using	the	destructuring	assignment:

const	{	a,	b,	c	}	=	require('./uppercase.js')

or	just	export	one	value	using:

//file.js

module.exports	=	value

and	import	it	using

const	value	=	require('./file.js')

CommonJS

167

https://glitch.com/edit/#!/flavio-commonjs-example?path=server.js
https://flaviocopes.com/ecmascript/#destructuring-assignments

Glossary
A	guide	to	a	few	terms	used	in	frontend	development	that	might	be	alien	to
you

Asynchronous
Code	is	asynchronous	when	you	initiate	something,	forget	about	it,	and	when	the	result	is
ready	you	get	it	back	without	having	to	wait	for	it.	The	typical	example	is	an	AJAX	call,	which
might	take	even	seconds	and	in	the	meantime	you	complete	other	stuff,	and	when	the
response	is	ready,	the	callback	function	gets	called.	Promises	and	async/await	are	the	modern
way	to	handle	async.

Block
In	JavaScript	a	block	is	delimited	curly	braces	({}).	An	 	if		statement	contains	a	block,	a
	for		loop	contains	a	block.

Block	Scoping
With	Function	Scoping,	any	variable	defined	in	a	block	is	visible	and	accessible	from	inside	the
whole	block,	but	not	outside	of	it.

Callback
A	callback	is	a	function	that's	invoked	when	something	happens.	A	click	event	associated	to
an	element	has	a	callback	function	that's	invoked	when	the	user	clicks	the	element.	A	fetch
request	has	a	callback	that's	called	when	the	resource	is	downloaded.

Declarative
A	declarative	approach	is	when	you	tell	the	machine	what	you	need	to	do,	and	you	let	it	figure
out	the	details.	React	is	considered	declarative,	as	you	reason	about	abstractions	rather	than
editing	the	DOM	directly.	Every	high	level	programming	language	is	more	declarative	than	a

Glossary

168

low	level	programming	language	like	Assembler.	JavaScript	is	more	declarative	than	C.	HTML
is	declarative.

Fallback
A	fallback	is	used	to	provide	a	good	experience	when	a	user	hasn't	access	to	a	particular
functionality.	For	example	a	user	that	browses	with	JavaScript	disabled	should	be	able	to	have
a	fallback	to	a	plain	HTML	version	of	the	page.	Or	for	a	browser	that	has	not	implemented	an
API,	you	should	have	a	fallback	to	avoid	completely	breaking	the	experience	of	the	user.

Function	Scoping
With	Function	Scoping,	any	variable	defined	in	a	function	is	visible	and	accessible	from	inside
the	whole	function.

Immutability
A	variable	is	immutable	when	its	value	cannot	change	after	it's	created.	A	mutable	variable
can	be	changed.	The	same	applies	to	objects	and	arrays.

Lexical	Scoping
Lexical	Scoping	is	a	particular	kind	of	scoping	where	variables	of	a	parent	function	are	made
available	to	inner	functions	as	well.	The	scope	of	an	inner	function	also	includes	the	scope	of	a
parent	function.

Polyfill
A	polyfill	is	a	way	to	provide	new	functionality	available	in	modern	JavaScript	or	a	modern
browser	API	to	older	browsers.	A	polyfill	is	a	particular	kind	of	shim.

Pure	function
A	function	that	has	no	side	effects	(does	not	modify	external	resources),	and	its	output	is	only
determined	by	the	arguments.	You	could	call	this	function	1M	times,	and	given	the	same	set	of
arguments,	the	output	will	always	be	the	same.

Glossary

169

Reassignment
JavaScript	with	 	var		and	 	let		declaration	allows	you	to	reassign	a	variable	indefinitely.	With
	const		declarations	you	effectively	declare	an	immutable	value	for	strings,	integers,	booleans,
and	an	object	that	cannot	be	reassigned	(but	you	can	still	modify	it	through	its	methods).

Scope
Scope	is	the	set	of	variables	that's	visible	to	a	part	of	the	program.

Scoping
Scoping	is	the	set	of	rules	that's	defined	in	a	programming	language	to	determine	the	value	of
a	variable.

Shim
A	shim	is	a	little	wrapper	around	a	functionality,	or	API.	It's	generally	used	to	abstract
something,	pre-fill	parameters	or	add	a	polyfill	for	browsers	that	do	not	support	some
functionality.	You	can	consider	it	like	a	compatibility	layer.

Side	effect
A	side	effect	is	when	a	function	interacts	with	some	other	function	or	object	outside	it.
Interaction	with	the	network	or	the	file	system,	or	with	the	UI,	are	all	side	effects.

State
State	usually	comes	into	play	when	talking	about	Components.	A	component	can	be	stateful	if
it	manages	its	own	data,	or	stateless	if	it	doesn't.

Stateful
A	stateful	component,	function	or	class	manages	its	own	state	(data).	It	could	store	an	array,	a
counter	or	anything	else.

Glossary

170

Stateless
A	stateless	component,	function	or	class	is	also	called	dumb	because	it's	incapable	of	having
its	own	data	to	make	decisions,	so	its	output	or	presentation	is	entirely	based	on	its
arguments.	This	implies	that	pure	functions	are	stateless.

Strict	mode
Strict	mode	is	an	ECMAScript	5.1	new	feature,	which	causes	the	JavaScript	runtime	to	catch
more	errors,	but	it	helps	you	improve	the	JavaScript	code	by	denying	undeclared	variables
and	other	things	that	might	cause	overlooked	issues	like	duplicated	object	properties	and	other
subtle	things.	Hint:	use	it.	The	alternative	is	"sloppy	mode"	which	is	not	a	good	thing	even
looking	at	the	name	we	gave	it.

Tree	Shaking
Tree	shaking	means	removing	"dead	code"	from	the	bundle	you	ship	to	your	users.	If	you	add
some	code	that	you	never	use	in	your	import	statements,	that's	not	going	to	be	sent	to	the
users	of	your	app,	to	reduce	file	size	and	loading	time.

Glossary

171

	Preface
	Introduction to JavaScript
	ECMAScript
	ES6
	ES2016
	ES2017
	ES2018
	Coding style
	Lexical Structure
	Variables
	Types
	Expressions
	Prototypal inheritance
	Classes
	Exceptions
	Semicolons
	Quotes
	Template Literals
	Functions
	Arrow Functions
	Closures
	Arrays
	Loops
	Events
	The Event Loop
	Asynchronous programming and callbacks
	Promises
	Async and Await
	Loops and Scope
	Timers
	this
	Strict Mode
	Immediately-invoked Function Expressions (IIFE)
	Math operators
	The Math object
	ES Modules
	CommonJS
	Glossary

