

 The Art & Science of JavaScript The Art & Science of JavaScript

The Art & Science of JavaScript (Sample Chapters)

Thank you for downloading these sample chapters of The Art & Science of JavaScript,

published by SitePoint.

This excerpt includes the Summary of Contents, Information about the Author, Editors and

SitePoint, Table of Contents, Preface, two chapters from the book, and the index.

We hope you find this information useful in evaluating this book.

For more information or to order, visit sitepoint.com

http://www.sitepoint.com/launch/75abda

The Art & Science of JavaScript

Chapter 1

 The Art & Science of JavaScript

Summary of Contents of this Excerpt

Preface .xiii

Chapter 1 Fun With Tables . 1

Chapter 6 Building a 3D Maze with CSS and JavaScript 189

Index . 251

Summary of Additional Book Contents
Chapter 2 Creating Client-side Badges . 45

Chapter 3 Vector Graphics with canvas . 75

Chapter 4 Debugging and Profiling with Firebug 121

Chapter 5 Metaprogramming with JavaScript . 149

Chapter 7 Flickr and Google Maps Mashups . 217

iv

The Art & Science Of JavaScript
by Cameron Adams, James Edwards, Christian Heilmann, Michael Mahemoff, Ara Pehlivanian, Dan

Webb, and Simon Willison

Copyright © 2007 SitePoint Pty. Ltd.

Expert Reviewer: Robert Otani Editor: Georgina Laidlaw

Managing Editor: Simon Mackie Index Editor: Fred Brown

Technical Editor: Matthew Magain Cover Design: Alex Walker

Technical Director: Kevin Yank

Printing History:

First Edition: January 2008

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted in any form or by

any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical

articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein. However, the information

contained in this book is sold without warranty, either express or implied. Neither the authors and SitePoint Pty. Ltd., nor

its dealers or distributors will be held liable for any damages to be caused either directly or indirectly by the instructions

contained in this book, or by the software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only in an editorial

fashion and to the benefit of the trademark owner with no intention of infringement of the trademark.

Reprint Permissions
To license parts of this book for photocopying, email distribution, intranet or extranet posting, or for inclusion in a course

pack, visit http://www.copyright.com, and enter this book’s title or ISBN to purchase a reproduction license.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066.

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9802858-4-0

Printed and bound in Canada

v

About the Authors

Cameron Adams—The Man in Blue1—melds a background in computer science with over eight years’ experience

in graphic design to create a unique approach to interface design. Using the latest technologies, he likes to

play in the intersection between design and code to produce innovative but usable sites and applications. In

addition to the projects he’s currently tinkering with, Cameron has taught numerous workshops and spoken

at conferences worldwide, including @media, Web Directions, and South by South West. Every now and then

he likes to sneak into bookshops and take pictures of his own books, which have been written on topics ranging

from JavaScript to CSS and design. His latest publication, Simply JavaScript, takes a bottom-up, quirky-down

approach to the basics of JavaScript coding.

James Edwards says of himself:

In spring, writes, and builds

Standards and access matters

Hopes for sun, and rain

Chris Heilmann has been a web developer for ten years, after dabbling in radio journalism. He works for Yahoo

in the UK as trainer and lead developer, and oversees the code quality on the front end for Europe and Asia.

He blogs at http://wait-till-i.com and is available on many a social network as “codepo8.”2

Michael Mahemoff3 is a hands-on software architect with 23 years of programming experience, 12 years com­

mercially. Building on psychology and software engineering degrees, he completed a PhD in design patterns

for usability at the University of Melbourne.4 He documented 70 Ajax patterns—spanning technical design,

usability, and debugging techniques—in the aptly-named Ajax Design Patterns (published by O’Reilly) and is

the founder of the popular AjaxPatterns.org wiki. Michael is a recovering Java developer, with his programming

efforts these days based mostly on Ruby/Rails, PHP and, of course, JavaScript. Lots of JavaScript. You can look

up his blog and podcast, where he covers Ajax, software development, and usability, at http://softwareas.com/.

Ara Pehlivanian has been working on the Web since 1997. He’s been a freelancer, a webmaster, and most re­

cently, a front-end architect and team lead for Nurun, a global interactive communications agency. Ara’s ex­

perience comes from having worked on every aspect of web development throughout his career, but he’s now

following his passion for web standards-based front-end development. When he isn’t teaching about best

practices or writing code professionally, he’s maintaining his personal site at http://arapehlivanian.com/.

Dan Webb is a freelance web application developer whose recent work includes developing Event Wax, a web-

based event management system, and Fridaycities, a thriving community site for Londoners. He maintains

several open source projects including Low Pro and its predecessor, the Unobtrusive JavaScript Plugin for

Rails, and is also a member of the Prototype core team. He’s been a JavaScript programmer for seven years and

has spoken at previous @media conferences, RailsConf, and The Ajax Experience. He’s also written for A List

Apart, HTML Dog, SitePoint and .NET Magazine. He blogs regularly about Ruby, Rails and JavaScript at his

site, danwebb.net, and wastes all his cash on hip hop records and rare sneakers.

1 http://www.themaninblue.com

2 Christian Heilmann photo credit: Philip Tellis [http://www.flickr.com/photos/bluesmoon/1545636474/]

3 http://mahemoff.com/

4 http://mahemoff.com/paper/patternLanguages.shtml

http://www.themaninblue.com
http://mahemoff.com/
http://mahemoff.com/paper/patternLanguages.shtml
http://mahemoff.com/paper/patternLanguages.shtml
http://www.flickr.com/photos/bluesmoon/1545636474/

vi

Simon Willison is a seasoned web developer from the UK. He is the co-creator of the Django web framework5

and a long-time proponent of unobtrusive scripting.

About the Expert Reviewer

Robert Otani enjoys working with brilliant people who make products that enhance the way people think, see,

and communicate. While pursuing a graduate degree in physics, Robert caught onto web development as a

career, starting with game developer Psygnosis, and has held software design and engineering positions at

Vitria, AvantGo, and Sybase. He is currently working with the very talented crew at IMVU,6 where people can

express their creativity and socialize by building their own virtual worlds in 3D, and on the Web. He enjoys

his time away from the keyboard with his wife Alicia and their two dogs, Zeus and Stella. His personal web

site can be found at http://www.otanistudio.com.

About the Technical Editor

Before joining the SitePoint team as a technical editor, Matthew Magain worked as a software developer for

IBM and also spent several years teaching English in Japan. He is the organizer for Melbourne’s Web Standards

Group,7 and enjoys candlelit dinners and long walks on the beach. He also enjoys writing bios that sound like

they belong in the personals column. Matthew lives with his wife Kimberley and daughter Sophia.

About the Technical Director

As Technical Director for SitePoint, Kevin Yank oversees all of its technical publications—books, articles,

newsletters, and blogs. He has written over 50 articles for SitePoint, but is best known for his book, Build Your

Own Database Driven Website Using PHP & MySQL. Kevin lives in Melbourne, Australia, and enjoys performing

improvised comedy theater and flying light aircraft.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web professionals. Visit

http://www.sitepoint.com/ to access our books, newsletters, articles, and community forums.

5 http://www.djangoproject.com/
6 http://www.imvu.com
7 http://webstandardsgroup.org/

http://www.djangoproject.com/
http://www.imvu.com
http://webstandardsgroup.org/
http://webstandardsgroup.org/

Table of Contents

Preface . xiii

Who Should Read This Book? . xiii

What’s Covered in This Book? . xiv

The Book’s Web Site . xv

The Code Archive . xv

Updates and Errata . xv

The SitePoint Forums . xv

The SitePoint Newsletters . xv

Your Feedback . xvi

Conventions Used in This Book . xvi

Code Samples . xvi

Tips, Notes, and Warnings . xvii

Chapter 1 Fun with Tables . 1

Anatomy of a Table . 1

Accessing Table Elements with getElementById . 4

Accessing Table Elements with getElementsByTagName . 6

Sortable Columns . 7

Making Our Tables Sortable . 7

Performing the Sort . 12

Creating Draggable Columns . 24

Making the Table’s Columns Draggable . 25

Dragging Columns without a Mouse . 37

Summary . 44

Chapter 2 Creating Client-side Badges . 45

Badges—an Introduction . 46

Too Many Badges Spoil the Broth . 46

Out-of-the-box Badges . 48

Server-side Badges . 50

viii

Custom Client-side Badges . 51

Client-side Badge Options: Ajax and JSON . 53

The Problem with Ajax . 53

JSON: the Lightweight Native Data Format . 54

Providing a Fallback for Failed Connections . 58

Planning the Badge Script . 59

The Complete Badge Script . 61

Defining Configuration Variables . 63

Defining Public Methods . 64

Defining Private Methods . 67

Calling for Server Backup . 72

Summary . 73

Chapter 3 Vector Graphics with canvas . 75

Working with canvas . 76

The canvas API . 77

Thinking About Vector Graphics . 78

Creating Shapes . 79

Creating a Pie Chart . 98

Drawing the Chart . 98

Casting a Shadow . 104

Updating the Chart Dynamically . 109

canvas in Internet Explorer . 115

Summary . 119

Chapter 4 Debugging and Profiling with Firebug 121

Installing and Running Firebug . 122

Installing Firefox and Firebug . 122

First Steps with Firebug . 123

Opening, Closing, and Resizing Firebug . 124

Enabling and Disabling Firebug . 127

The Many Faces of Firebug . 127

Common Components . 127

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

ix

The Firebug Views . 128

Switching Views . 132

Using Firebug . 133

Performing Rapid Application Development . 133

Monitoring, Logging, and Executing with the Console . 134

Viewing and Editing On the Fly . 138

Debugging Your Application . 140

Performance Tuning Your Application . 143

Related Tools . 145

Firebug Lite . 145

YSlow . 146

Microsoft Tools . 146

Other Firefox Extensions . 147

Summary . 147

Chapter 5 Metaprogramming with JavaScript 149

The Building Blocks . 150

(Nearly) Everything Is a Hash . 150

Finding and Iterating through Properties in an Object . 151

Detecting Types . 152

There Are No Classes in JavaScript . 153

Detecting whether a Function Was Called with new . 154

Functions Are Objects . 155

Understanding the arguments Array . 157

Comprehending Closures . 159

Metaprogramming Techniques . 164

Creating Functions with Default Arguments . 164

Working with Built-ins . 165

Creating Self-optimizing Functions . 168

Aspect-oriented Programming on a Shoestring . 171

Better APIs through Dynamic Functions . 172

Creating Dynamic Constructors . 176

Simulating Traditional Object Orientation . 178

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

x

Summary . 187

Chapter 6 Building a 3D Maze with CSS and
JavaScript . 189

Basic Principles . 190

Making Triangles . 191

Defining the Floor Plan . 193

Creating Perspective . 196

Making a Dynamic View . 198

Core Methods . 198

Applying the Finishing Touches . 208

Limitations of This Approach . 209

Creating the Map View . 209

Adding Captions . 212

Designing a Floor Plan . 213

Further Developments . 214

Using the Callback . 214

Blue-sky Possibilities . 215

Summary . 216

Chapter 7 Flickr and Google Maps Mashups 217

APIs, Mashups, and Widgets! Oh, My! . 218

Flickr and Google Maps . 218

Drawing a Map . 219

Geotagging Photos . 221

Getting at the Data . 222

JSON . 223

The Same-origin Restriction . 224

Pulling it All Together . 233

Enhancing Our Widget . 238

Putting it All Together . 245

Taking Things Further . 249

Summary . 250

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

xi

Index . 251

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

Preface

Once upon a time, JavaScript was a dirty word.

It got its bad name from being misused and abused—in the early days of the Web, developers only

ever used JavaScript to create annoying animations or unnecessary, flashy distractions.

Thankfully, those days are well behind us, and this book will show you just how far we’ve come.

It reflects something of a turning point in JavaScript development—many of the effects and techniques

described in these pages were thought impossible only a few years ago.

Because it has matured as a language, JavaScript has become enormously trendy, and a plethora of

frameworks have evolved around many of the best practice techniques that have emerged with re­

newed interest in the language. As long-time JavaScript enthusiasts, we’ve always known that the

language had huge potential, and nowadays, much of the polish that makes a modern web application

really stand out is usually implemented with JavaScript. If CSS was the darling of the early 2000s,

JavaScript has since well and truly taken over the throne.

In this book, we’ve assembled a team of experts in their field—a veritable who’s who of JavaScript

developers—to help you take your JavaScript skills to the next level. From creating impressive

mashups and stunning, dynamic graphics to more subtle user-experience enhancements, you’re

about to open Pandora’s box. At a bare minimum, once you’ve seen what’s possible with the new

JavaScript, you’ll likely use the code in this book to create amazing user experiences for your users.

Of course, if you have the inclination, you may well use your new-found knowledge to change the

world.

We look forward to buying a round of drinks at your site’s launch party!

Who Should Read This Book?
This book is targeted at intermediate JavaScript developers who want to take their JavaScript skills

to the next level without sacrificing web accessibility or best practice. If you’ve never written a line

of JavaScript before, this probably isn’t the right book for you—some of the logic in the later chapters

can get a little hairy.

If you have only a small amount of experience with JavaScript, but are comfortable enough program­

ming in another language such as PHP or Java, you’ll be just fine—we’ll hold your hand along the

way, and all of the code is available for you to download and experiment with on your own. And

if you’re an experienced JavaScript developer, we would be very, very surprised if you didn’t learn

a thing or two. In fact, if you only learn a thing or two, you should contact us here at SitePoint—we

may have a book project for you to tackle!

xiv

What’s Covered in This Book?

Chapter 1: Fun with Tables

HTML tables get a bad rap among web developers, either because of their years of misuse in

page layouts, or because they can be just plain boring. In this chapter, Ara Pehlivanian sets out

to prove that not only are properly used tables not boring, but they can, in fact, be a lot of

fun—especially when they’re combined with some JavaScript. He introduces you to the DOM,

then shows how to make table columns sortable and draggable with either the mouse or the

keyboard.

Chapter 2: Creating Client-side Badges

Badges are snippets of third-party data (image thumbnails, links, and so on) that you can add

to your blog to give it some extra personality. Christian Heilmann walks us through the task of

creating one for your own site from scratch, using JSON and allowing for a plan B if the connec­

tion to the third-party server dies.

Chapter 3: Creating Vector Graphics with canvas

In this chapter, Cameron Adams introduces the canvas element, and shows how you can use

it to create vector graphics—from static illustrations, to database driven graphs and pie

charts—that work across all modern browsers. After you’ve read this chapter, you’ll never look

at graphics on the Web the same way again!

Chapter 4: Debugging and Profiling with Firebug

Firebug is a plugin for the Firefox browser, but calling it a plugin doesn’t do it justice—Firebug

is a full-blown editing, debugging, and profiling tool. It takes the traditionally awkward task of

JavaScript debugging and optimization, and makes it intuitive and fun. Here, Michael Mahemoff

reveals tons of pro-level tips and hidden treasures to give you new insight into this indispensable

development tool.

Chapter 5: Metaprogramming with JavaScript

Here, Dan Webb takes us on a journey into the mechanics of the JavaScript language. By under­

standing a little about the theory of metaprogramming, he shows how we can use JavaScript to

extend the language itself, improving its object oriented capabilities, improving support for

older browsers, and adding methods and operators that make JavaScript development more

convenient.

Chapter 6: Building a 3D Maze with CSS and JavaScript

Just when you thought you’d seen everything, James Edwards shows you how to push the

technologies of CSS and JavaScript to their limits, as he creates a real game in which the player

must navigate around a 3D maze! Complete with a floor-plan generator and accessibility features

like keyboard navigation and captions, this chapter highlights the fact that JavaScript’s potential

is limited only by one’s imagination.

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

xv

Chapter 7: Flickr and Google Maps Mashups

Ever wished you could combine the Web’s best photo-management site, Flickr, with the Web’s

best mapping service, Google Maps, to create your own über-application? Well, you can! Simon

Willison shows that, by utilizing the power of JavaScript APIs, creating a mashup from two

third-party web sites is easier than you might have thought.

The Book’s Web Site
Located at http://www.sitepoint.com/books/jsdesign1/, the web site that supports this book will

give you access to the following facilities.

The Code Archive
As you progress through this book, you’ll note file names above many of the code listings. These

refer to files in the code archive—a downloadable ZIP file that contains all of the finished examples

presented in this book. Simply click the Code Archive link on the book’s web site to download it.

Updates and Errata
No book is error-free, and attentive readers will no doubt spot at least one or two mistakes in this

one. The Corrections and Typos page on the book’s web site will provide the latest information

about known typographical and code errors, and will offer necessary updates for new releases of

browsers and related standards.1

The SitePoint Forums
If you’d like to communicate with other web developers about this book, you should join SitePoint’s

online community.2 The JavaScript forum,3 in particular, offers an abundance of information above

and beyond the solutions in this book, and a lot of fun and experienced JavaScript developers hang

out there. It’s a good way to learn new tricks, get questions answered in a hurry, and just have a

good time.

The SitePoint Newsletters
In addition to books like this one, SitePoint publishes free email newsletters including The SitePoint

Tribune, The SitePoint Tech Times, and The SitePoint Design View. Reading them will keep you

up to date on the latest news, product releases, trends, tips, and techniques for all aspects of web

development. Sign up to one or more SitePoint newsletters at http://www.sitepoint.com/newsletter/.

1 http://www.sitepoint.com/books/jsdesign1/errata.php
2 http://www.sitepoint.com/forums/
3 http://www.sitepoint.com/launch/jsforum/

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/books/jsdesign1/errata.php
http://www.sitepoint.com/books/jsdesign1/errata.php
http://www.sitepoint.com/forums/
http://www.sitepoint.com/forums/
http://www.sitepoint.com/launch/jsforum/
http://www.sitepoint.com/launch/75abda

xvi

Your Feedback
If you can’t find an answer through the forums, or if you wish to contact us for any other reason,

the best place to write is books@sitepoint.com. We have an email support system set up to track

your inquiries, and friendly support staff members who can answer your questions. Suggestions

for improvements as well as notices of any mistakes you may find are especially welcome.

Conventions Used in This Book
You’ll notice that we’ve used certain typographic and layout styles throughout this book to signify

different types of information. Look out for the following items.

Code Samples
Code in this book will be displayed using a fixed-width font, like so:

<h1>A perfect summer's day</h1> <p>It

 was a lovely day for a walk in the park. The birds were

singing and the kids were all back at school.</p>

If the code may be found in the book’s code archive, the name of the file will appear at the top of

the program listing, like this:

example.css

.footer { background-color: #CCC; border-top: 1px
 solid #333; }

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

Some lines of code are intended to be entered on one line, but we’ve had to wrap them because of

page constraints. A ➥ indicates a page-break that exists for formatting purposes only, and should

be ignored. A vertical ellipsis (⋮) refers to code that has been omitted from the example listing to

conserve space.

if (a == b) {

⋮

}

URL.open.("http://www.sitepoint.com/blogs/2007/11/01/the-php-anthology-101-essent

➥ial-tips-tricks-hacks-2nd-edition");

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

xvii

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand. Think of them as

extra tidbits of information.

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

Chapter1
Fun with Tables
For the longest time, tables were the tool of choice for web designers who needed a non-linear way

to lay out a web page’s contents. While they were never intended to be used for this purpose, the

row-and-column structure of tables provided a natural grid system that was too tempting for designers

to ignore. This misuse of tables has shifted many designers’ attention away from the original purpose

for which they were intended: the marking up of tabular data.

Though the life of a table begins in HTML, it doesn’t have to end there. JavaScript allows us to add

interactivity to an otherwise static HTML table. The aim of this chapter is to give you a solid under­

standing of how to work with tables in JavaScript, so that once you’ve got a grip on the fundamentals,

you’ll be comfortable enough to go well beyond the examples provided here, to do some wild and

crazy things of your own.

If you’re new to working with the DOM, you’ll also find that this chapter doubles as a good intro­

duction to DOM manipulation techniques, which I’ll explain in as much detail as possible.

Anatomy of a Table
Before we can have fun with tables, it’s important to cover some of the basics. Once we have a good

understanding of a table’s structure in HTML, we’ll be able to manipulate it more easily and effect­

ively with JavaScript.

In the introduction I mentioned a table’s row-and-column structure. In fact, there’s no such thing

as columns in a table—at least, not in an HTML table. The columns are an illusion. Structurally, a

table is a collection of rows, which in turn are collections of cells. There is no tangible HTML element

The Art & Science Of JavaScript2

that represents a column of cells—the only elements that come close are colgroup and col, but

they serve only as aids in styling the table. In terms of actual structure, there are no columns.

Let’s take a closer look at the simple table shown in Figure 1.1.

Figure 1.1. A simple table

I’ve styled the table with some CSS in order to make it a little easier on the eyes. The markup looks

like this:

simple.html (excerpt)

<table id="sales" summary="Quarterly sales figures for competing
companies. The figures are stated in millions of dollars.">
 <caption>Quarterly Sales*</caption>
 <thead>
 <tr>
 <th scope="col">Companies</th>
 <th scope="col">Q1</th>
 <th scope="col">Q2</th>
 <th scope="col">Q3</th>
 <th scope="col">Q4</th>

 </tr>
 </thead>
 <tbody>
 <tr>
 <th scope="row">Company A</th>
 <td>$621</td>

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

3Fun with Tables

<td>$942</td>

 <td>$224</td>

 <td>$486</td>

 </tr>

 <tr>

 <th scope="row">Company B</th>

 <td>$147</td>

 <td>$1,325</td>

 <td>$683</td>

 <td>$524</td>

 </tr>

 <tr>

 <th scope="row">Company C</th>

 <td>$135</td>

 <td>$2,342</td>

 <td>$33</td>

 <td>$464</td>

 </tr>

 <tr>

 <th scope="row">Company D</th>

 <td>$164</td>

 <td>$332</td>

 <td>$331</td>

 <td>$438</td>

 </tr>

 <tr>

 <th scope="row">Company E</th>

 <td>$199</td>

 <td>$902</td>

 <td>$336</td>

 <td>$1,427</td>

 </tr>

 </tbody>

</table>

<p class="footnote">*Stated in millions of dollars</p>

Each set of <tr></tr> tags tells the browser to begin a new row in our table. The <th> and <td>

tags inside them represent header and data cells, respectively. Though the cells are arranged vertically

in HTML, and almost look like columns of data, they’re actually rendered horizontally as part of a

row.

Notice also that the rows are grouped within either <thead> or a <tbody> tags. This not only provides

a clearer semantic structure, but it makes life easier when we’re working with the table using

JavaScript, as we’ll see in a moment.

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript4

Accessing Table Elements with getElementById
When our browser renders a page, it constructs a DOM tree of that page. Once this DOM tree has

been created, we’re able to access elements of our table using a range of native DOM methods.

The getElementById method is one that you’ll see in most of the chapters of this book. Here’s an

example of how we’d use it to access a table’s rows:

var sales = document.getElementById("sales");

var rows = sales.rows;

In the above code, we first obtain a reference to our table using the DOM method getElementById,

and place it into a variable named sales. We then use this variable to obtain a reference to the

collection of table rows. We place this reference into a variable named, quite aptly, rows.

The example above is all very well, but what if we only wanted the row inside the thead element?

Or maybe just the ones located inside the tbody? Well, those different groups of rows are also re­

flected in the DOM tree, and we can access them with the following code:

var sales = document.getElementById("sales");

var headRow = sales.tHead.rows;

var bodyRows = sales.tBodies[0].rows;

As the above code demonstrates, accessing the row inside the thead is fairly straightforward. You’ll

notice that getting at the tbody rows is a little different, however, because a table can have more

than one tbody. What we’re doing here is specifying that we want the collection of rows for the

first tbody in the tBodies collection. As collections begin counting at zero, just like arrays, the first

item in the collection is actually item 0, and can be accessed using tBodies[0].

Who’s This DOM Guy, Anyway?

The Document Object Model (DOM) is a standardized API for programmatically working with

markup languages such as HTML and XML.

The DOM is basically an object oriented representation of our document. Every element in our

HTML document is represented by an object in that document’s DOM tree. These objects—referred

to as nodes—are organized in a structure that mirrors the nested HTML elements that they represent,

much like a tree.

The DOM tree also contains objects whose job is to help make working with our document easier;

one example is the following code’s rows object, which doesn’t exist in our source HTML document.

And each object in the DOM tree contains supplementary information regarding, among other

things, its position, contents, and physical dimensions.

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

5Fun with Tables

We follow the same principle to access a particular row. Let’s get our hands on the first row inside

the first tbody:

var sales = document.getElementById("sales");

var bodyRows = sales.tBodies[0].rows;

var row = bodyRows[0];

Of course, JavaScript offers us many ways to achieve the same goal. Take a look at this example:

var sales = document.getElementById("sales");

var tBody = sales.tBodies[0];

var rows = tBody.rows;

var row = rows[0];

The result of that code could also be represented by just one line:

var row = document.getElementById("sales").tBodies[0].rows[0];

In the end, the approach you choose should strike the right balance between efficiency and legibility.

Four lines of code may be considered too verbose for accessing a row, but a one-line execution may

be difficult to read. The single line above is also more error prone than the four-row example, as

that code doesn’t allow us to check for the existence of a collection before accessing its children.

Of course, you could go to the other extreme:

var sales = document.getElementById("sales");

if (sales) {

 var tBody = sales.tBodies[0];

 if (tBody) {

 var rows = tBody.rows;

 if (rows) {

 var row = rows[0];

 }

 }

}

This code checks your results every step of the way before it proceeds, making it the most robust

of the above three code snippets. After all, it’s possible that the table you’re accessing doesn’t contain

a tbody element—or any rows at all! In general, I favor robustness over terseness—racing towards

the first row without checking for the existence of a tbody , as we’ve done in our one-line example,

is likely to result in an uncaught error for at least some users. We’ll discuss some guidelines for

deciding on an appropriate coding strategy in the coming sections.

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript6

We follow the same principles to access the cells in a table: each row contains a cells collection

which, as you might have guessed, contains references to all of the cells in that row. So, to access

the first cell in the first row of a table, we can write something like this:

var sales = document.getElementById("sales");

var cell = sales.rows[0].cells[0];

Here, we’ve ignored the fact that there may be a tHead or a tBodies collection, so the row whose

cells we’re accessing is the first row in the table—which, as it turns out, is the row in the thead.

Accessing Table Elements with getElementsByTagName
We have at our disposal a number of ways to access table information—we aren’t restricted to using

collections. For example, you might use the general-purpose DOM method getElementsByTagName,

which returns the children of a given element. Using it, we can grab all of the tds in a table, like

this:

var sales = document.getElementById("sales");

var tds = sales.getElementsByTagName("td");

Those two lines of code make a convenient alternative to this much slower and bulkier option:

var sales = document.getElementById("sales");

var tds = [];

for (var i=0; i<sales.rows.length; i++) {

 for (var j=0; j<sales.rows[i].cells.length; j++) {

 if (sales.rows[i].cells[j].nodeName == "TD") {

 tds.push(sales.rows[i].cells[j]);

 }

 }

}

Of course, choosing which technique you’ll use is a question of using the right tool for the job. One

factor you’ll need to consider is performance; another is how maintainable and legible your code

needs to be. Sometimes, though, the choice isn’t obvious. Take a look at the following examples.

Here’s the first:

var sales = document.getElementById("sales");

var cells = sales.rows[1].cells;

And here’s the second:

var sales = document.getElementById("sales");

var cells = sales.rows[1].getElementsByTagName("*");

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

7Fun with Tables

Both of these code snippets produce the same results. Neither uses any for loops; they’re both two

lines long; and they both reach the cells collection through sales.rows[1]. But one references

the cells collection directly, while the other uses getElementsByTagName.

Now if speed was our main concern, the first technique would be the right choice. Why? Well, be­

cause getElementsByTagName is a generic function that needs to crawl the DOM to fetch our cells.

The cells collection, on the other hand, is specifically tailored for the task.

However, if flexibility was our main concern (for example, if you only wanted to access the td

elements, not the surrounding elements that form part of the table’s hierarchy),

getElementsByTagName would be much more convenient. Otherwise, we’d need to loop over the

cells collection to filter out all of the th elements it returned along with the td elements.

Sortable Columns
Now that we know how to work with our table through the DOM, let’s add to it some column sorting

functionality that’s similar to what you might find in a spreadsheet application. We’ll implement

this feature so that clicking on a column’s heading will cause its contents to be sorted in either as­

cending or descending order. We’ll also make this behavior as accessible as possible by ensuring

that it works with and without a mouse. Additionally, instead of limiting the functionality to one

specific table, we’ll implement it so that it works with as many of a page’s tables as we like. Finally,

we’ll make our code as easy to add to a page as possible—we’ll be able to apply the sorting function­

ality to any table on the page by including a single line of code.

Making Our Tables Sortable
First, in order to apply our sort code to as many tables as we want, we need to write a function that

we can instantiate for each table that we want to make sortable:

tablesort.js (excerpt)

function TableSort(id) {
 this.tbl = document.getElementById(id);
if (this.tbl && this.tbl.nodeName == "TABLE") {
this.makeSortable();

}
}

In the code above, we’ve created a function named TableSort. When it’s called, TableSort takes

the value in the id parameter, and fetches a reference to an element on the page using the

getElementById DOM method. We store this reference in the variable this.tbl. If we find a valid

element with that id, and that element is a table, we can make it sortable by calling the makeSortable

function.

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript8

Making the Sort Functionality Accessible
I mentioned that we’d make our sorting functionality accessible to both mouse and keyboard users.

Here’s the code that will help us achieve this:

tablesort.js (excerpt)

TableSort.prototype.makeSortable = function () {
 var headings = this.tbl.tHead.rows[0].cells;
 for (var i=0; headings[i]; i++) {
 headings[i].cIdx = i;
 var a = document.createElement("a");
 a.href = "#";
 a.innerHTML = headings[i].innerHTML;
 a.onclick = function (that) {
 return function () {
 that.sortCol(this);
 return false;

 }
 }(this);
 headings[i].innerHTML = "";
 headings[i].appendChild(a);

 }
}

We wrap anchors (a elements) around the contents of each of the th elements. This enables our

users to tab to an anchor, and to trigger an onclick event by pressing the Enter key—thereby allowing

the sort to be activated without a mouse. And, since we’re adding these anchors dynamically, we

don’t need to worry about them cluttering up our markup.

Here are the details:

We’re assigning our function to the object’s prototype object. The prototype object simplifies

the process of adding custom properties or methods to all instances of an object. It’s a powerful

feature of JavaScript that’s used heavily throughout the rest of this book, particularly in the

field of metaprogramming (see Chapter 5).

We iterate over the cells in the headings collection with a for loop. This loop is slightly dif­

ferent from those we’ve seen in previous examples in that the condition that’s checked on each

pass is headings[i], rather than the traditional i<headings.length. This is an optimization

technique: the for loop checks to see if there’s an item in the headings collection at position

i, and avoids having to calculate the length of the array on each pass.

Avoiding length can save valuable milliseconds if you’re dealing with large datasets, though

in our case—with only five items in our array—this approach is just shorter (and quicker to

write).

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

9Fun with Tables

Because of a bug in Safari 2.0.4 that causes the browser to always return a value of 0 for

cellIndex, we need to emulate the cellIndex value for each heading. We do so by assigning

the value of i to a new property that we’ve created, called cIdx.

Inside the loop, we create a new anchor, and copy the contents of the th into it.

We also add an onclick event to the anchor, the reason for which I’ll explain in a moment.

Finally, we clear the original contents of the th and insert the new anchor in place of the ori­

ginal contents.

Using innerHTML

I’m using the innerHTML property here; even though it isn’t part of the W3C recommendation, it’s

widely supported and operates faster (as well as being much simpler to use) than the myriad DOM

methods I’d have to use to achieve the same outcome.

Making Assumptions is Okay … Sometimes

You’ll note that we’re grabbing the th cells in the table’s thead with only one line of code, taking

for granted that a thead exists, and that it contains at least one row. I’ve done so for brevity—in

this example, we can be certain of the contents of the table that we’re working with. If we didn’t

have the same control over the table on which we were operating, we’d have to use more verbose

code to check each step along the way, as demonstrated earlier.

Handling Events and Scope Issues
You’ll notice that we assigned an onclick event to the anchor just before we added it to the page.

The reason why we’ve used nested functions here is to fix a scope problem with the this keyword.

In a function that’s called by an event such as onclick, the this keyword refers to the calling element.

However, in this case, we need this to point to our instance of TableSort—not the anchor that

was just clicked—so that our onclick code can access the this.tbl property.

Normally, we’d assign an anonymous function directly to our anchor’s onclick event handler like

this:

 a.onclick = function () {

 alert(this);

 }

But if we were to take this approach, the this keyword would return a reference to the anchor ele­

ment that was just clicked. Instead, we replace it with a self-executing function that returns another

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript10

anonymous function to the onclick handler. The outer function forms a closure, a concept that’s

discussed in more detail in Chapter 5. Here’s the revised code:

 a.onclick = function (that) {

 return function () {

 }

 }(this);

The brackets at the end of the main function cause it to be executed as soon as it is loaded by the

browser (rather than when the click event is triggered); the parameter passed to the function is the

current this keyword, which refers to our TableSort instance.

Inside the function, we receive the TableSort reference in a variable named that. Then, in the

scope of the actual onclick event, all we have to do is call our sortCol function and pass it the

reference to the anchor element, like so:

 a.onclick = function (that) {

 return function () {

 that.sortCol(this);

 return false;

 }

 }(this);

Here, return false; ensures that the anchor doesn’t try to follow its href value—the default beha­

vior for an anchor element. The use of return false; is important here, because if our href value

was #, it would add the click to our browser’s history, and return users to the top of the page if they

weren’t there already.

Adding Some Class
Now that we’ve wrapped our th elements with anchors and added a few more lines of CSS, we

have a table that looks like the one in Figure 1.2.

Be Careful when Assigning Events

In this example, I’ve assigned functions directly to our event handlers as a way to minimize the

size of the script. However, this can be a dangerous practice! Our use of code like a.onclick =

function () { … } creates a one-to-one relationship between our event and the function. So if,

previously, a function had been assigned to the event handler, this code would overwrite it. To

make your scripts more robust, consider using one of the many addEvent functions available online.

I’m a big fan of the Yahoo! User Interface Library’s addListener function.1

1 http://developer.yahoo.com/yui/event/

The Art & Science Of JavaScript (www.sitepoint.com)

http://developer.yahoo.com/yui/event/
http://www.sitepoint.com/launch/75abda

11 Fun with Tables

Figure 1.2. A table ready to be sorted

The arrows next to the column headings signify that each column can be used as a basis to sort the

table’s data. The active column’s arrow is darkened; the inactive columns’ arrows are dimmed to

show that, though they’re clickable, they aren’t currently being used to sort the table’s content. The

arrows are inserted as CSS background images on the newly inserted a elements, and are managed

with two class names: asc for ascending and dsc for descending. Heading cells without an asc or

dsc class name receive an inactive arrow.

These class names aren’t included just for decorative purposes. We’ll be using them in our code to

identify the direction in which a column is being sorted, and to toggle the sort direction when a

user clicks on a heading. Here’s how our table begins:

tablesort.html (excerpt)

 <thead>
 <tr>
 <th class="asc" scope="col">Companies</th>
 <th scope="col">Q1</th>
 <th scope="col">Q2</th>
 <th scope="col">Q3</th>
 <th scope="col">Q4</th>

 </tr>
 </thead>

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript12

In this code, we’ve added the class name asc to the first column heading because we know that the

companies are sorted alphabetically in the markup.

Performing the Sort
Once the users click on a heading (technically speaking, they click on the anchor surrounding the

heading), the sortCol function is called, and is passed a reference to the calling (clicked) element.

This process is important, as it identifies to us the column that we need to sort.

Our first order of business is to set up a few important variables:

tablesort.js (excerpt)

TableSort.prototype.sortCol = function (el) {
 var rows = this.tbl.rows;
 var alpha = [], numeric = [];
 var aIdx = 0, nIdx = 0;
 var th = el.parentNode;
 var cellIndex = th.cIdx;
⋮

}

Here’s a description of each of these variables:

rows	 This variable is a shortcut to the table’s rows; it lets us avoid having to type

this.tbl.rows each time we want to refer to them.

alpha, numeric	 These arrays will allow us to store the alphanumeric and numeric contents of

the cells in our column.

aIdx, nIdx	 These two variables are indices to be used with our two arrays. We’ll increment

them individually every time we add an item to one of the arrays.

th	 This is a reference to the clicked anchor’s parent, which is a th. The anchor’s

reference is el, which is passed as a parameter to the sortCol function.

cellIndex	 This variable stores the th element’s index within its parent row. Using the

cellIndex value, we’ll be able to skip to the correct cell in each row, effectively

traversing a column of cells.

Parsing the Content
Now let’s loop over the table’s rows and process each cell that falls beneath the heading that was

clicked. The first thing we’re going to have to do is retrieve the cell’s contents—regardless of

whether that data is found inside nested or tags, for example:

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

13Fun with Tables

tablesort.js (excerpt)

 for (var i=1; rows[i]; i++) {
 var cell = rows[i].cells[cellIndex];
 var content =

cell.textContent ? cell.textContent : cell.innerText;
⋮

We’re after the final data value of the cell, regardless of whether that value is simply $150,

$150, or <p>$150</p>. The simplest way to

achieve this goal is to use either the textContent or innerText properties of the element. Firefox

supports only textContent, and Internet Explorer supports only innerText, while Safari and Opera

support both. So in order to make the code work across the board, we’ll use a ternary operator that

uses one property or the other, depending on what’s available in the browser executing the script.

Now that we’ve grabbed the cell’s contents, we need to determine whether the data we retrieved is

alphanumeric or numeric. We need to do this because we need to sort the two types of data separ­

ately—alphanumeric data should come after numeric data in our output.2

Using the Ternary Operator to Normalize Browser Inconsistencies

Sometimes you’ll encounter situations where browser makers have decided not to follow the W3C

spec, or for whatever reason, have implement proprietary functionality. Either way, the resulting

inconsistencies can be a headache when you’re trying to support multiple browsers.

Using a traditional if/else statement can be a bit bulky when all you want is to assign a value to

your variable from two potentially different sources, depending on which is available. Enter: the

ternary operator, a compressed if/else statement with the syntax condition ? true : false;

Let’s consider its application in terms of this code:

if (cell.textContent) {
 var content = cell.textContent;
} else {
 var content = cell.innerText ;
}

We can use the ternary operator to replace the above with this single line of code (well, it would

be a single line if we could fit it on this page!):

var content = cell.textContent ?
cell.textContent : cell.innerText;

2 If we were to expand our table sort to accommodate other types of data—such as dates—we’d need to separate our data

even further. For this demo, however, we’ll restrict our sort functionality to include only alphabetic and numeric data.

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript14

Here’s the code:

tablesort.js (excerpt)

var num = content.replace(/(\$|\,|\s)/g, "");
if (parseFloat(num) == num) {
 numeric[nIdx++] = {
 value: Number(num),
 row: rows[i]

 }
} else {
 alpha[aIdx++] = {
 value: content,
 row: rows[i]

 }
}

Before we check the data type, we need to strip the cell’s contents of any characters that could

be used in a numerical context—dollar signs, commas, spaces, and so on—but which might

cause numeric data to be interpreted as alphanumeric data. We use a regular expression and

the replace method to achieve this result.

Once we’ve stripped out the characters, we use JavaScript’s parseFloat function to see

whether or not the remaining cell value is a number. If it is, we store the stripped-down version

of it in the numeric array.

If it isn’t a number, we store the untouched cell value in the alpha array.

You’ll note that we’re storing the value in an object literal, which allows us also to store a reference

to the row in which the cell was originally found. This row reference will be crucial later, when

we reorder the table according to our sort outcome.

Implementing a Bubble Sort
Now that our column’s contents are parsed and ready to be sorted, let’s take a look at our sort al­

gorithm. If we wanted to, we could use JavaScript’s built in sort method, which looks like this:

var arr = [19, 2, 77, 111, 33, 8];

var sorted = arr.sort();

This approach would produce the array [111, 19, 2, 33, 77, 8], which isn’t good enough, since

the items have been sorted as if they were strings. Luckily, the sort method allows us to pass it a

comparison function. This function accepts two parameters, and returns either a negative number,

a positive number, or zero. If the returned value is negative, it means that the first parameter is

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

15Fun with Tables

smaller than the second. If the returned value is a positive number, the first parameter is greater

than the second. And if the returned value is zero, they’re both the same.

Here’s how we’d write such a comparison function:

function compare(a, b) {

 return a-b;

}

var sorted = unsorted.sort(compare);

The trouble with sort is that the algorithm itself (that is, the logic it uses to loop over the data) is

hard-coded into the browser—the comparison part of the function is the only part you can tweak.

Also, sort was introduced in JavaScript 1.1—it’s not available in older browsers. Of course, sup­

porting outdated browsers isn’t a major issue, but if you’re a control freak like me, you might want

to write your own sort algorithm from scratch, so that it does support older browsers. Let me walk

you through an example that shows how to do just this.

We don’t need to reinvent the wheel here; we have many different kinds of sort algorithms to choose

from—every possible type seems already to have been worked out.3 Even though it’s not the

quickest algorithm, I’ve chosen to use a bubble sort4 here because it’s simple to understand and

describe.

A bubble sort works by executing two loops—an inner loop and an outer loop. The inner loop goes

over our dataset once and checks the current item against the next item. If the current item is bigger

than the next one, it swaps them; if it isn’t, the loop moves on to the next item. The outer loop keeps

running the inner loop until there are no more items to swap. Figure 1.3 illustrates our table’s Q3

data being bubble sorted.

Each iteration of the outer loop is labeled as a “pass,” and each column of data within a pass rep­

resents one step forward in the inner loop. The black arrow next to the numbers shows the progress

of the inner loop (as does the “i=0” on top of each column). The red, curved arrows represent a

swap that has taken place between the current item and the next one. Note how the outer loop goes

over the entire dataset once more at the end, to make sure that there aren’t any more swaps to perform.

We’d like our function to be able to perform both ascending and descending sorts. Since we don’t

want to write the same function twice—the two sort algorithms would perform the same operations,

only in reverse—we’ll write just one bubbleSort function, and have it accept a direction parameter

as well as the array to be sorted.

3 http://en.wikipedia.org/wiki/Sorting_algorithm
4 http://en.wikipedia.org/wiki/Bubble_sort

Order the print version of this book to get all 250+ pages!

http://en.wikipedia.org/wiki/Sorting_algorithm
http://en.wikipedia.org/wiki/Bubble_sort
http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript16

Figure 1.3. A bubble sort in action

There are a couple of things to note here. First, bubbleSort is a standalone function and doesn’t

need to be added to TableSort with a prototype object—after all, there’s no need to make copies

of the function every time a new TableSort instance is made. Second, since we’ll be using the dir

parameter to make bubbleSort bidirectional, this code may be a little harder to follow than the

code we’ve looked at so far.

Take a deep breath, and let’s dive in:

tablesort.js (excerpt)

function bubbleSort(arr, dir) {
 var start, end;
 if (dir === 1) {
 start = 0;
 end = arr.length;

 } else if (dir === -1) {
 start = arr.length-1;
 end = -1;

 }
 var unsorted = true;
 while (unsorted) {
 unsorted = false;
 for (var i=start; i!=end; i=i+dir) {
 if (arr[i+dir] && arr[i].value > arr[i+dir].value) {
 var a = arr[i];
 var b = arr[i+dir];

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

17Fun with Tables

var c = a;

 arr[i] = b;

 arr[i+dir] = c;

 unsorted = true;

 }

 }

 }

 return arr;

}

Let’s take a look at what’s going on here:

Before we start looping over our data, we need to set up a couple of variables. The dir para­

meter’s only valid values, 1 and -1, represent ascending and descending order respectively.

Checking for the value of dir, we set the start and end points for our inner loop accordingly.

When dir is ascending, we’ll start at zero and end at the array’s length; when it’s descending,

we’ll start at the array’s length minus one, and end at negative one.

I’ve used a while loop for our outer loop, and set it to continue executing until the value for

unsorted is equal to false.

For each iteration, we immediately set unsorted to false, and only set it to true in the inner

loop if a sort needs to be made.

I’ve used a for loop for our inner loop. A for loop has three parts to it: an initialization, a

condition, and an update:

for (initialization; condition; update) {

 // do something

}

Our loop criterion looks like this:

 for (var i=start; i!=end; i=i+dir) {

The initialization is set to our start value. Our condition returns true as long as the counter

i is not equal to our end value, and we updated our counter by adding the value of dir to it.

In the case of an ascending loop, our counter is initialized to zero. The loop continues executing

as long as the counter’s value does not equal the array’s length; the counter is incremented by

one with each iteration.

In a descending loop, the counter is initialized to a value that’s equal to the array’s length

minus one, since the array’s index counts from zero. The counter is decremented by a value

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript18

of one on each iteration, and the loop continues until the counter’s value equals -1. This might

seem confusing, but this criterion works because dir is a negative value, so 1 is subtracted

from our counter on each pass.

Now that we’ve got our loop working in both directions, we need to check whether the next

item in the list is larger than the current one. If it is, we’ll swap them:

 if (arr[i+dir] && arr[i].value > arr[i+dir].value) {

 var a = arr[i];

 var b = arr[i+dir];

 var c = a;

 arr[i] = b;

 arr[i+dir] = c;

 unsorted = true;

 }

Our if statement is made up of two parts. First, to make sure that there is a neighboring item

to check against, we try to access arr[i+dir]. Since dir can be a negative or positive number,

this statement will check the item either before or after the current item in the array. If there’s

an item in that position, our attempt will return true. This will allow us to check whether the

value of the current item is greater than that of its neighbor. If it is, we need to swap the two.

We also set the variable unsorted to true, as we’ve just made a change in the order of our

dataset, and ensure that the item’s new position doesn’t put it in conflict with its new neighbors.

Now we’ve got a sorting algorithm, let’s use it:

tablesort.js (excerpt)

 var col = [], top, bottom;

 if (th.className.match("asc")) {
 top = bubbleSort(alpha, -1);
 bottom = bubbleSort(numeric, -1);
 th.className = th.className.replace(/asc/, "dsc");

 } else {
 top = bubbleSort(numeric, 1);
 bottom = bubbleSort(alpha, 1);
 if (th.className.match("dsc")) {
 th.className = th.className.replace(/dsc/, "asc");
 } else {
 th.className += "asc";

 }
 }

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

19Fun with Tables

First, we check to see the current state of our column. Is it sorted in ascending order? If it is,

we’ll call our bubble sort algorithm, requesting that it sort our array in descending order.

Otherwise, if the column’s data is already sorted in descending order (or is unsorted), we request

that it be sorted in ascending order.

We call bubbleSort twice because we’ve split our column data into two separate arrays, alpha and

numeric. The results of the sort are then placed into two generic arrays, top and bottom. We use

this approach because we can’t be sure in advance whether we’re going to be sorting in ascending

or descending order. If the sort order is ascending, the top array will contain numeric data and the

bottom array will contain alphanumeric data; when we’re sorting in descending order, this assignment

of array to data type is reversed. This approach should be fairly intuitive, given that once they’re

assigned, the contents of top will always appear at the top, and the contents of bottom will always

appear at the bottom of our column.

Managing Heading States
Once the data’s sorted, we set the th element’s class name to either asc or dsc to reflect the column’s

current state. This will allow us to toggle the sort order back and forth if ever the user clicks on the

same heading twice. Figure 1.4 shows the first column of our table in each of its toggle states.

Figure 1.4. Heading states

Before we modify any headings, we need to make sure that the only column to have an asc or dsc

class name is the one that was clicked. Each of the other columns needs to be reverted to its original,

unsorted order—we do so by removing any asc or dsc class names that may previously have been

assigned to those columns. In order to do this, we’ll need a TableSort-level variable that will always

remember the th element that belongs to the column that was last sorted. Let’s go back and add a

variable declaration called this.lastSortedTh to our TableSort function. We’ll also write a small

loop that will seek out any asc or dsc class names present in our HTML, and will store the last oc­

currence in this.lastSortedTh:

tablesort.js (excerpt)

function TableSort(id) {
 this.tbl = document.getElementById(id);
 this.lastSortedTh = null;
 if (this.tbl && this.tbl.nodeName == "TABLE") {

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript20

var headings = this.tbl.tHead.rows[0].cells;

for (var i=0; headings[i]; i++) {

 if (headings[i].className.match(/asc|dsc/)) {

 this.lastSortedTh = headings[i];

 }

 }

 this.makeSortable();

 }

}

The variable this.lastSortedTh will now reflect any columns that are naturally sorted in the

HTML; the for loop above sees to this by simply by reading the class names of the headings in the

thead. In our example, even if the first click to sort a column occurred on a column other than the

“Companies” column, our code would still be able to remove the “Companies” column’s asc value,

because a reference to that column’s th is now held in this.lastSortedTh.

Here’s how we’ll clear the class names for previously sorted th elements:

tablesort.js (excerpt)

 if (this.lastSortedTh && th != this.lastSortedTh) {
 this.lastSortedTh.className =

this.lastSortedTh.className.replace(/dsc|asc/g, "");
 }
 this.lastSortedTh = th;

In the above code, we check to see whether a value is assigned to this.lastSortedTh. Then we

verify that any value it does have is not simply a reference to the current column (we don’t want

to clear the class names for the column we’re in the process of sorting!). Once we’re sure that this

is indeed a valid column heading (and not the current one), we can go ahead and clear it using a

simple regular expression.

Rearranging the Table
At this point in our script, we have two sorted arrays (named top and bottom), and a bunch of

column headings that properly reflect the new sort state. All that’s left to do is to actually reorder

the table’s contents:

tablesort.js (excerpt)

 col = top.concat(bottom);
 var tBody = this.tbl.tBodies[0];
 for (var i=0; col[i]; i++) {
 tBody.appendChild(col[i].row);

 }

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

21 Fun with Tables

The first thing we do is build a single array, col, from the two that contain our sorted data. We do

this by concatenating the contents of bottom to top, and placing the whole thing into the variable

col. Next, we loop over the contents of the col array, taking each item’s parent row and moving it

to the bottom of the table’s tbody. By doing this, we order the column’s cells while keeping their

relationships with the cells in other columns intact. Figure 1.5 demonstrates this process in action.

Figure 1.5. Rearranging the table

And with that final step, our script is complete! All that’s left for us to do is to call TableSort. We

do this by adding the following code to our document’s head:

tablesort.html (excerpt)

<script type="text/javascript" src="tablesort.js"></script>
<script type="text/javascript">
window.onload = function () {
 var sales = new TableSort("sales");
} </script>

Though there are more optimal ways of doing it, for the sake of brevity I’ve used window.onload to

call TableSort when the page loads. Remember that to make multiple tables sortable, all you need

to do is create another instance of TableSort using a different table’s ID. Here’s our final script, in

all its glory:

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript22

tablesort.js (excerpt)

function TableSort(id) {
 this.tbl = document.getElementById(id);
 this.lastSortedTh = null;
 if (this.tbl && this.tbl.nodeName == "TABLE") {
 var headings = this.tbl.tHead.rows[0].cells;
 for (var i=0; headings[i]; i++) {
 if (headings[i].className.match(/asc|dsc/)) {
 this.lastSortedTh = headings[i];

 }
 }
 this.makeSortable();

 }
}

TableSort.prototype.makeSortable = function () {
 var headings = this.tbl.tHead.rows[0].cells;
 for (var i=0; headings[i]; i++) {
 headings[i].cIdx = i;
 var a = document.createElement("a");
 a.href = "#";
 a.innerHTML = headings[i].innerHTML;
 a.onclick = function (that) {
 return function () {
 that.sortCol(this);
 return false;

 }
 }(this);
 headings[i].innerHTML = "";
 headings[i].appendChild(a);

 }
}

TableSort.prototype.sortCol = function (el) {
 /*
 * Get cell data for column that is to be sorted from HTML table
 */
 var rows = this.tbl.rows;
 var alpha = [], numeric = [];
 var aIdx = 0, nIdx = 0;
 var th = el.parentNode;
 var cellIndex = th.cIdx;
 for (var i=1; rows[i]; i++) {
 var cell = rows[i].cells[cellIndex];
 var content =

cell.textContent ? cell.textContent : cell.innerText;
 /*
 * Split data into two separate arrays, one for numeric content
 * and one for everything else (alphabetical). Store both the

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

23Fun with Tables

* actual data that will be used for comparison by the sort

 * algorithm (thus the need to parseFloat() the numeric data)

* as well as a reference to the element's parent row. The row

 * reference will be used after the new order of content is

 * determined in order to actually reorder the HTML

* table's rows.

 */

 var num = content.replace(/(\$|\,|\s)/g, "");

 if (parseFloat(num) == num) {

numeric[nIdx++] = {

 value: Number(num),

 row: rows[i]

 }

 } else {

 alpha[aIdx++] = {

 value: content,

 row: rows[i]

 }

 }

 }

 /*

 * Sort according to direction (ascending or descending)

 */

 var col = [], top, bottom;

 if (th.className.match("asc")) {

 top = bubbleSort(alpha, -1);

 bottom = bubbleSort(numeric, -1);

 th.className = th.className.replace(/asc/, "dsc");

 } else {

 top = bubbleSort(numeric, 1);

 bottom = bubbleSort(alpha, 1);

 if (th.className.match("dsc")) {

 th.className = th.className.replace(/dsc/, "asc");

 } else {

 th.className += "asc";

 }

 }

 /*

 * Clear asc/dsc class names from the last sorted column's th if

 * it isn't the same as the one that was just clicked

 */

 if (this.lastSortedTh && th != this.lastSortedTh) {

 this.lastSortedTh.className =

this.lastSortedTh.className.replace(/dsc|asc/g, "");

 }

 this.lastSortedTh = th;

 /*

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript24

* Reorder HTML table based on new order of data found in the

* col array

 */

 col = top.concat(bottom);

 var tBody = this.tbl.tBodies[0];

 for (var i=0; col[i]; i++) {

 tBody.appendChild(col[i].row);

 }

}

function bubbleSort(arr, dir) {

 // Pre-calculate directional information

 var start, end;

 if (dir === 1) {

 start = 0;

 end = arr.length;

 } else if (dir === -1) {

 start = arr.length-1;

 end = -1;

 }

 // Bubble sort: http://en.wikipedia.org/wiki/Bubble_sort

 var unsorted = true;

 while (unsorted) {

 unsorted = false;

 for (var i=start; i!=end; i=i+dir) {

 if (arr[i+dir] && arr[i].value > arr[i+dir].value) {

 var a = arr[i];

 var b = arr[i+dir];

 var c = a;

 arr[i] = b;

 arr[i+dir] = c;

 unsorted = true;

 }

 }

 }

 return arr;

}

Creating Draggable Columns
A feature that’s often desired by those working with tabular data in desktop applications is the

ability to move a table’s columns around in order to get a better look at its data. For example, you

may want to compare the values in the first and last columns of a table. Being able to move those

columns next to each other makes the task much easier.

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

25Fun with Tables

But why should desktop applications have all the fun? We can create draggable columns on the

Web too—Figure 1.6 shows an example of a simple HTML table that we’ll add this functionality

to.

As with our sorting script, let’s make this functionality as accessible as possible by:

■ ensuring it works with and without a mouse

■ ensuring it works with multiple tables on the one page

■ making it super-easy to implement

Figure 1.6. Want to move a column?

Let’s address the third point in that list. All that will be required to implement the draggable column

functionality is the addition of a single line of code to the page, as in our sorting example in the

previous section:

window.onload = function () {

 var sales = new ColumnDrag("sales");

}

Making the Table’s Columns Draggable
Taking the lead from our table sort example, we first need to create a JavaScript function that we

can instantiate. We’ll call this function ColumnDrag:

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript26

columndrag.js (excerpt)

function ColumnDrag(id) {
 this.tbl = document.getElementById(id);
 if (this.tbl && this.tbl.nodeName == "TABLE") {
 this.state = null;
 this.prevX = null;
 this.cols = this.tbl.getElementsByTagName("col");
 this.makeDraggable();

 }
}

In the code above, the first thing that we do is try to access the table whose columns are to be made

draggable. If a table element with the id we’ve specified exists, we know that we’re in business.

Next, we set a few variables that we’ll be using later on. Note that unlike the tBodies, rows, and

cells elements, there isn’t a DOM reference for the col element. So instead of spending precious

CPU cycles calling getElementsByTagName every time we want to access one of the newly added

col elements below, we’ve used it here once, and stored the references that it returned for later use.

Here’s where the col elements fit into our markup:

columndrag.html (excerpt)

<table id="sales" summary="Quarterly sales figures for competing
companies. The figures are stated in millions of dollars.">
 <caption>Quarterly Sales*</caption>
 <col />
 <col />
 <col />
 <col />
 <col />
 <thead>
⋮

The col element is used as a convenient way to apply styles to columns of data in a table—you can

add a class to a col instead of adding classes to each individual td in a column. We’ll use the col

element to highlight the column that’s being dragged.

The Phantom Column
The approach we’ll use to move our columns around is very similar to the one we used to reorganize

our table in the table sort example. However, in this case we’re not moving rows, but cells. We’ll

also be inserting them into their new positions, rather than always appending our cells to the end

of the collection. To achieve this aim, we’ll use the insertBefore method, which takes two para­

meters: the node that’s to be inserted, and the node before which it will be inserted.

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

27Fun with Tables

Now, normally this method is used to insert a newly created node, like so:

var para = document.getElementById("foo");

var newPara = document.createElement("p");

para.parentNode.insertBefore(newPara, para);

However, the insertBefore method isn’t limited to just inserting new elements into the DOM—we

can also use it to shuffle existing elements around within the DOM. For this example, we’ll be doing

something like this:

row.insertBefore(row.cells[a], row.cells[b]);

Suppose, for example, that we wanted to move the third cell in our row to the end of our collection

of cells. How should we specify where the node is to be inserted? Some browsers, such as Firefox,

allow us to refer to “the last cell plus one.” Others (in particular, Internet Explorer) won’t allow

this, instead telling us that “the last cell plus one” doesn’t exist.

To work around this problem, we’ll insert a phantom column of cells at the end of the table. These

cells will be hidden, and will serve only as a valid reference before which we can always insert

cells:

columndrag.js (excerpt)

ColumnDrag.prototype.makeDraggable = function () {
 for (var i=0; this.tbl.rows[i]; i++) {
 var td = document.createElement("td");
 td.style.display = "none";
 this.tbl.rows[i].appendChild(td);

 }
⋮

Accessible Dragging
As before, we want to make this functionality as accessible as possible—and that means making it

work without a mouse. So, once again, we’ll introduce anchors in order to allow the user to tab

from one th to the other:

columndrag.js (excerpt)

 var headings = this.tbl.tHead.rows[0].cells;
 for (var i=0; headings[i]; i++) {
 headings[i].cIdx = i;
 var a = document.createElement("a");
 a.href = "#";
 a.innerHTML = "← "+headings[i].innerHTML+" →";

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript28

a.onclick = function () {

 return false;

 }

 headings[i].className += " draggable";

⋮

This time, however, the anchor’s onclick event handler does nothing but return false. This ensures

that clicking an anchor won’t cause a new entry to be added to our browser’s history—an action

that would scroll the browser window to the top of the page. In this particular example, we don’t

need to worry about this issue—we’re only using a small table at the top of the page. However, if

your table was located in the middle or at the bottom of a very long page, this behavior could be

disastrous.

You’ll notice that I’ve added a property named cIdx to our <th> tags. As with our table sort example,

this property just numbers the cells—a task that we’d normally leave to the built-in property

cellIndex. However, because Safari 2.0.4 always returns 0 for cellIndex, we’ll emulate this beha­

vior with our own cIdx property.

I’ve taken the liberty of adding left and right arrow characters (the ← and → entities, re­

spectively) to either side of the th element’s existing content. These characters act as a visual cue

to the user that the arrow keys can be used to drag columns within the table.

I’ve also added a small graphic to the upper right-hand corner of each th cell—a “grip” that indicates

to mouse users that the column is draggable. I’ve implemented this graphic as a background image

via the draggable class name in the style sheet. Some may consider using both of these cues together

to be overkill, but I think they work quite well—we’ll let the usability experts argue over that one!

Figure 1.7 shows our table with both of these visual flourishes in place.

Alternatives to the Arrow Keys

Under certain circumstances, you may find that the arrow keys behave unreliably in certain browsers.

If you run into this problem, consider using keys other than the arrow keys—for example, n and p

could be used for Next and Previous. If you follow such an approach, be sure to point out these

keyboard shortcuts to your users, or your hard work may go unused!

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

29Fun with Tables

Figure 1.7. Providing visual cues for dragging

Event Handling
Our next step is to wire up the mousedown, mousemove, mouseup, and mouseout events. This is a rel­

atively straightforward process—once again, we’re using the scope correction technique that we

employed in the table sort example, whereby we point the this keyword to our instance of

ColumnDrag, rather than the element that triggered the event. We also pass the event object e to the

functions that will be handling our events:

columndrag.js (excerpt)

 headings[i].onmousedown = function (that) {
 return function (e) {
 that.mousedown(e);
 return false;

 }
 }(this);
 document.onmousemove = function (that) {
 return function (e) {
 that.mousemove(e);
 return false;

 }
 }(this);
 document.onmouseup = function (that) {
 return function () {
 var e = that.clearAllHeadings();
 if (e) that.mouseup(e);

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript30

}

 }(this);

 document.onmouseout = function (that) {

 return function (e) {

 e = e ? e : window.event;

 related = e.relatedTarget ? e.relatedTarget : e.toElement;

 if (related == null) {

 var e = that.clearAllHeadings();

 if (e) that.mouseup(e);

 }

 }

 }(this);

 a.onkeyup = function (that) {

 return function (e) {

 that.keyup(e);

 return false;

 }

 }(this);

The onmousemove, onmouseup, and onmouseout event handlers are set up to trap the event no matter

where it occurs in the document. We’ve taken this approach to ensure that the drag functionality

isn’t limited to the area that the th elements occupy. One drawback to this approach, however, is

that neither the onmouseup or the onmouseout event handlers know which th is currently being

dragged, so these event handlers can’t reset the event if the user should drag the mouse out of the

browser window or release it somewhere other than on a <th>. In order to fix that, we’ll use a

function that we’ve called clearAllHeadings. This function will cycle through all the headings,

clear them of the down class name, and return a reference to the th so that we can pass it to the

mouseup function. We’ll flesh out the clearAllHeadings function in just a minute.

Earlier, we set our anchor’s onclick event to do nothing but return false. Here, we’re giving the

anchor an onkeyup event handler—this will allow us to trap the left and right arrow key events for

accessibility purposes.

We also add a hover class to, or remove it from, our th elements whenever a mouseover or a mouseout

event is triggered on them, respectively. We do this because anchors are the only elements for which

Internet Explorer 6 supports the CSS :hover pseudo-class:

columndrag.js (excerpt)

headings[i].onmouseover = addHover;
 headings[i].onmouseout = removeHover;
 headings[i].innerHTML = "";
 headings[i].appendChild(a);

 }
 }

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

31 Fun with Tables

Here’s that clearAllHeadings function that I promised you earlier. After a heading has begun to

be dragged, this function will be called if the mouse leaves the browser window, or if the mouse

button is released:

ColumnDrag.prototype.clearAllHeadings = function (){

 var e = false;

 for (var i=0; this.cols[i]; i++) {

 var th = this.tbl.tHead.rows[0].cells[i];

 if (th.className.match(/down/)) {

 e = {target: th};

 }

 }

 return e;

}

Here are the addHover and removeHover functions:

columndrag.js (excerpt)

addHover = function () {
 this.className += " hover";
}
removeHover = function () {
 this.className = this.className.replace(/ hover/g, "");
}

The addHover function simply adds a hover class name, preceded by a space (to prevent a conflict

with any existing class names). The removeHover function removes all occurrences of the hover

class name from an element.

In both functions, we leave the this keyword alone and avoid trying to correct the scope. In this

example, this behaves exactly the way we need it to: it refers to the element whose class name we

want to modify. Also note that we don’t need a reference to our instance of ColumnDrag, which is

why we haven’t bothered adding these functions to ColumnDrag via the prototype object.

The onmousedown Event Handler
Our onmousedown event handler reads as follows:

columndrag.js (excerpt)

ColumnDrag.prototype.mousedown = function (e) {
 e = e ? e : window.event;
 var elm = e.target? e.target : e.srcElement;
 elm = elm.nodeName == "A" ? elm.parentNode : elm;

 this.state = "drag";

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript32

elm.className += " down";

 this.cols[elm.cIdx].className = "drag";

 this.from = elm;

 operaRefresh();

}

The event object that I mentioned earlier is an object created by the browser when an event is

triggered. It contains information that’s pertinent to the event, such as the element that triggered

it, the mouse’s x and y coordinates at the moment it was triggered, and so on. Unfortunately, while

some browsers pass the event object as a parameter to the event handler, others provide access to

this object differently. For example, in the code above, we anticipate receiving the event object as

the argument e that’s passed to the event handler. However, we also prepare a fallback approach

whereby if the code finds that e has not been set, we set it via the global window.event object, which

is how Internet Explorer delivers this event information. Once again, the ternary operator comes

in handy—we use it here to set the object into our e variable regardless of where it comes from.

The cross-browser inconsistencies don’t end there, though. Passed along inside the event object is

a reference to the object that triggered it. Some browsers use the target property name to store this

reference, while others (I’m looking at you, Internet Explorer!) call it srcElement. We normalize

this behavior as well, using another ternary operator, and store the result in the elm variable.

If the user clicks on one of our wrapper anchors, the event for this mouse click will bubble up and

trigger the parent th element’s onmousedown event. When that occurs, elm will refer to an anchor,

rather than the th we require. We need to correct this; otherwise, we risk having an incorrect reference

passed to the mousedown function. So, if elm’s nodeName value is A (meaning that it’s an anchor

element), we know that we need its parent. So we introduce yet another ternary operator to choose

between elm and its parent node.

You’ll also notice a call to the operaRefresh function in our code. This is an unfortunate but neces­

sary evil, because the latest version of Opera (9.23 at the time of writing) doesn’t refresh the affected

cells of a table when a class name is added to or changed on a col element. All this function does

is change the body element’s position from the browser’s default of static to relative and back

again, forcing a refresh. Here’s what the operaRefresh function looks like:

columndrag.js (excerpt)

operaRefresh = function () {
 document.body.style.position = "relative";
 document.body.style.position = "static";
}

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

33Fun with Tables

Depending on the final value that you require for your style sheet, you may need to use different

values here—it might seem odd, but the important thing is that the body’s position changes between

two different values in order for Opera to play ball.

All this function does is change the body element’s position from the browser’s default of static

to relative, and back again, which forces a refresh. Depending on the position values that you’ve

used in your style sheet, you may want the final value to be something else.

Figure 1.8 shows what our column looks like once the user has clicked on the “Q2” heading cell.

Figure 1.8. mousedown in action

The onmousemove Event Handler
As I mentioned earlier, the basic principle behind the column drag functionality is to take the cur­

rently selected column of cells and reinsert them elsewhere in the table. As we’re using the

insertBefore function, we don’t need to worry about shifting the surrounding cells into their new

positions.

The mousemove function is called every time the cursor moves over a th cell in the table’s thead.

Here’s the first part of the code for this function:

columndrag.js (excerpt)

ColumnDrag.prototype.mousemove = function (e) {
 e = e ? e : window.event;
 var x = e.clientX ? e.clientX : e.pageX;

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript34

var elm = e.target? e.target : e.srcElement;

 if (this.state == "drag" && elm != this.from) {

⋮

First, we normalize the event object, the mouse’s current x coordinate, and the element that triggered

the onmousemove event. Then we make sure that we’re currently in drag mode—if the value of

this.state isn’t set to drag, then the user hasn’t kept the mouse button pressed down and is simply

hovering over the th elements. If that’s the case, we don’t need to do anything. But if the value of

this.state is set to drag, we proceed with dragging the column:

columndrag.js (excerpt)

 var from = this.from.cIdx;
 var to = elm.cIdx;

 if ((from > to && x < this.prevX)
|| (from < to && x > this.prevX)) {

In order to know where we’re dragging from, we first grab the cell index value (cIdx) of the th

element that we stored in the this.from variable back in our onmousedown function.

In order to know where we’re dragging to, we grab the cIdx value of the th we’re currently

hovering over.

Now, because the columns in our table can have wildly different widths, we need to make sure

that the direction in which we’re moving the column and the direction in which the mouse is

moving are synchronized. If we don’t perform this check, the moment a wider th takes the

place of the one we’re dragging, it will become the cell we’re dragging, as it will end up under

the cursor, and will therefore replace the object stored in elm. Our code will then try and swap

the original cell back, causing an unsightly flickering effect.

We therefore check the relationship between the from and to values and the cursor’s current

and previous x coordinates. If from is greater than to, and the mouse’s current x coordinate is

less than it was the previous time we called mousemove, we proceed with the drag. Likewise,

if from is less than to, and the x coordinate is greater than the previous value, then again we

have the green light to proceed.

Before we actually move the cells, we must alter the class names of the col elements representing

the positions that we’re dragging cells from and to. To achieve this, we use the from and to variables

that we created a few lines earlier. Since we’re not using the col elements for anything other than

to signify whether a column is being dragged or not, we can safely clear the existing drag value

from the from column by assigning it a value of "". We can then assign the drag class name to the

to column:

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

35Fun with Tables

columndrag.js (excerpt)

 this.cols[from].className = "";
 this.cols[to].className = "drag";

Highlighting the column in the style sheet as it moves, as pictured in Figure 1.8, helps users follow

what’s happening while they’re dragging the column.

Since we’re using insertBefore to move our cells around, we might need to make a slight adjustment

to our to value. If we’re moving forward (that is, from left to right) we need to increment the value

of to by one, like so:

columndrag.js (excerpt)

 if (from < to) to++;

This alteration is necessary because we need to insert our from cell before the cell that comes after

the to cell, as Figure 1.9 reveals.

Figure 1.9. Increasing to by one

Now that we’ve worked out our references, all that’s left to do is cycle through all of our cells and

move them:

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript36

columndrag.js (excerpt)

 var rows = this.tbl.rows;
 for (var i=0; rows[i]; i++) {
 rows[i].insertBefore(rows[i].cells[from], rows[i].cells[to]);

Next, we update our cIdx values, as they’ll be out of sync now that we’ve reordered our cells:

 var headings = this.tbl.tHead.rows[0].cells;

 for (var i=0; headings[i]; i++) {

 headings[i].cIdx = i;

 }

 }

 }

 }

 this.prevX = x;

The last thing that we do before exiting mousemove is to register the current x coordinate as the

previous one in this.prevX. That way, the next time we enter mousemove, we’ll know in which

direction the mouse is moving.

The onmouseup Event Handler
Once the users are happy with the position of the dragged column, they’ll let go of the mouse button.

That’s when the onmouseup event will be triggered. Here’s the mouseup function that’s called by

this event:

columndrag.js (excerpt)

ColumnDrag.prototype.mouseup = function (e) {
 e = e ? e : window.event;
 var elm = e.target? e.target : e.srcElement;
 elm = elm.nodeName == "A" ? elm.parentNode : elm;
 this.state = null;
 var col = this.cols[elm.cellIndex];
 col.className = "dropped";
 operaRefresh();
 window.setTimeout(function (cols, el) {
 return function () {
 el.className = el.className.replace(/ down/g, "");
 for (var i=0; cols[i]; i++) {
 cols[i].className = "";

 }
 operaRefresh();

 }
 }(this.cols, this.from), 1000);
}

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

37Fun with Tables

onmouseup’s purpose is to reset all of the variables that have to do with the drag.

We set this.state to null right away. This tells any future call to mousemove functions not

to drag anything (that is, of course, until the mouse button is pressed again).

We then write the value dropped to the col element that represents the final resting place of

our dragged column. This allows us to change the column’s color, which indicates visually to

the user that its state has changed.

We set up a one-second delay, using window.setTimeout to reset both the col’s and the th’s

class names. This delay allows us to linger a little on the column that was dropped, making

for a better user experience.

You’ll notice our operaRefresh function pops up again in two places throughout this code. It ensures

that the newly modified class names on the table’s col elements are applied properly in the Opera

browser.

Dragging Columns without a Mouse
Earlier, I wrapped the contents of our th elements with anchors for accessibility purposes. I also

gave them an onkeyup event handler. Normally, we’d write code specifically to handle key releases,

but in the spirit of reuse, let’s write code that will convert left and right arrow button presses into

left and right mouse drags. That way, we can reuse the column drag code that we just finished

writing for the mouse. In short, we’ll be using the keyboard to impersonate the mouse and the events

that a mouse would trigger.

The only parameter that’s ever passed to mousedown, mousemove, and mouseup is the event object.

We can retrieve everything we need from it and a few variables that are set in our instance of

ColumnDrag.

onkeyup versus onkeydown

The reason I capture the onkeyup event, and not onkeydown or onkeypress, is because onkeyup

only fires once, whereas the other events continue firing so long as the key is kept down. This can

make it really difficulty to accurately move a column to the right position if the user presses the

key for too long. Using onkeyup ensures that one action equals one move.

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript38

All we have to do now, in order to pretend we’re the mouse when we’re calling those functions, is

to set those variables manually, and pass our own fake event object, like so:

columndrag.js (excerpt)

ColumnDrag.prototype.keyup = function (e) {
 e = e ? e : window.event;
 var elm = e.target ? e.target : e.srcElement;
 var a = elm;
 elm = elm.parentNode;
 var headings = this.tbl.tHead.rows[0].cells;

As always, our first step is to normalize our event object and the clicked element into e and elm,

respectively. We then make a backup of elm in a and change elm to point to its parent node. This

will change our elm variable from an anchor into a th element.

Next, we capture the events for the left and right key releases:

columndrag.js (excerpt)

switch (e.keyCode){
 case 37:
 this.mousedown({target:elm});
 var prevCellIdx = elm.cIdx==0 ? 0 : elm.cellIndex-1;
 this.prevX = 2;
 this.mousemove(
 {
 target: headings[prevCellIdx],
 clientX: 1

 }
);
 this.mouseup({target: elm});
 a.focus();
 break;

 case 39:
 this.mousedown({target:elm});
 var nextCellIdx = elm.cellIndex==headings.length-2 ?

headings.length-2 : elm.cellIndex+1;
 this.prevX = 0;
 this.mousemove(
 {
 target: headings[nextCellIdx],
 clientX: 1

 }
);
 this.mouseup({target: elm});
 a.focus();

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

39Fun with Tables

break;

 }

}

Let’s look at what’s going on in the above code:

We create a switch block to compare the value of the event object’s keyCode property with the

key codes 37 and 39, which represent the left and right arrow keys respectively. In both cases,

we call mousedown and pass it elm as the value for target.

Note that because we’re passing our own fake event object, we need to assign a value for target

only—not for srcElement—regardless of which browser’s being used. The same advice applies

when we set clientX in the object that we pass mousemove.

We need to set a few extra values when calling mousemove. Specifically, we need to set

this.prevX and clientX so that one value is greater than the other, depending on which way

we want to pretend the mouse is moving. If clientX is greater than this.prevX, for example,

the mouse is moving to the right.

When we pass our event handler a value for target, we need to make sure we aren’t out of bounds.

This task is fairly simple when the column’s moving left: all we need to do is make sure that our

cellIndex value doesn’t fall below zero. Moving the column right, however, means checking against

the number of cells in the row minus two—one for the fact that length returns a one-based result

(while the collection of cells is zero-based just like an array) and one extra, to account for the

phantom cells we inserted earlier.

Object Literal Notation

We’ve just seen an example in which an object was created using object literal notation. A simple

example of this is: var myObj = {};

Here’s a slightly more complex example:

var groceryList = {
 bananas: 0.49,
 apples: 1.39,
 milk: 5.99
};

In the above example, the three variables that are declared are effectively public properties of the

groceryList object. More details about the syntax that’s available to those using an object oriented

approach in JavaScript can be found in Chapter 5.

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript40

Lastly, we call mouseup and pass it our th, which is now in its new position. We finish off by setting

focus on its anchor, which sets us up for the next key release.

Now, we add our instantiation of ColumnDrag to our document’s head, and we’re done:

columndrag.html (excerpt)

<script type="text/javascript" src="columndrag.js"></script>
<script type="text/javascript">
window.onload = function () {
 var sales = new ColumnDrag("sales");
}
</script>

Here’s our final code in full:

columndrag.js

function ColumnDrag(id) {
 this.tbl = document.getElementById(id);
 if (this.tbl && this.tbl.nodeName == "TABLE") {
 this.state = null;
 this.prevX = null;
 this.cols = this.tbl.getElementsByTagName("col");
 this.makeDraggable();

 }
}

ColumnDrag.prototype.makeDraggable = function () {
 // Add trailing text node for IE
 for (var i=0; this.tbl.rows[i]; i++) {
 var td = document.createElement("td");
 td.style.display = "none";
 this.tbl.rows[i].appendChild(td);

 }

 // Wire up headings
 var headings = this.tbl.tHead.rows[0].cells;
 for (var i=0; headings[i]; i++) {
 headings[i].cIdx = i; // Safari 2.0.4 "cellIndex always equals 0" workaround

 var a = document.createElement("a");
 a.href = "#";
 a.innerHTML = "← " + headings[i].innerHTML + " →";
 a.onclick = function () {
 return false;

 }

 headings[i].className += " draggable";

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

41 Fun with Tables

headings[i].onmousedown = function (that) {

 return function (e) {

 that.mousedown(e);

 return false;

 }

 }(this);

 document.onmousemove = function (that) {

 return function (e) {

 that.mousemove(e);

 return false;

 }

 }(this);

 document.onmouseup = function (that) {

 return function () {

 var e = that.clearAllHeadings();

 if (e) that.mouseup(e);

 }

 }(this);

 document.onmouseout = function (that) {

 return function (e) {

 e = e ? e : window.event;

 related = e.relatedTarget ? e.relatedTarget : e.toElement;

 if (related == null) {

 var e = that.clearAllHeadings();

 if (e) that.mouseup(e);

 }

 }

 }(this);

 a.onkeyup = function (that) {

 return function (e) {

 that.keyup(e);

 return false;

 }

 }(this);

 headings[i].onmouseover = addHover;

 headings[i].onmouseout = removeHover;

 headings[i].innerHTML = "";

 headings[i].appendChild(a);

 }

 }

 ColumnDrag.prototype.clearAllHeadings = function (){

 var e = false;

 for (var i=0; this.cols[i]; i++) {

 var th = this.tbl.tHead.rows[0].cells[i];

 if (th.className.match(/down/)) {

 e = {target: th};

 }

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript42

}

 return e;

}

ColumnDrag.prototype.mousedown = function (e) {

 e = e ? e : window.event;

 var elm = e.target? e.target : e.srcElement;

 elm = elm.nodeName == "A" ? elm.parentNode : elm;

 // set state and clicked "from" element

 this.state = "drag";

 elm.className += " down";

 this.cols[elm.cIdx].className = "drag";

 this.from = elm;

 operaRefresh();

}

ColumnDrag.prototype.mousemove = function (e) {

 e = e ? e : window.event;

 var x = e.clientX ? e.clientX : e.pageX;

 var elm = e.target? e.target : e.srcElement;

 if (this.state == "drag" && elm != this.from) {

 var from = this.from.cIdx;

 var to = elm.cIdx;

 // make sure that mouse is moving in same dir as swap (to avoid

// swap flickering)

 if ((from > to && x < this.prevX) || (from < to && x > this.prevX)) {

 // highlight column

 this.cols[from].className = "";

 this.cols[to].className = "drag";

 // increase 'to' by one if direction is positive because we're inserting

 // 'before' and so we have to refer to the target columns neighbor

 if (from < to) to++;

 // shift all cells belonging to head

 var rows = this.tbl.rows;

 for (var i=0; rows[i]; i++) {

 rows[i].insertBefore(rows[i].cells[from], rows[i].cells[to]);

 }

 // update cIdx value (fix for Safari 2.0.4 "cellIndex always equals 0" bug)

 var headings = this.tbl.tHead.rows[0].cells;

 for (var i=0; headings[i]; i++) {

 headings[i].cIdx = i;

 }

 }

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

43Fun with Tables

}

 this.prevX = x;

}

ColumnDrag.prototype.mouseup = function (e) {

 e = e ? e : window.event;

 var elm = e.target? e.target : e.srcElement;

 elm = elm.nodeName == "A" ? elm.parentNode : elm;

 this.state = null;

 var col = this.cols[elm.cIdx];

 col.className = "dropped";

 operaRefresh();

 window.setTimeout(function (that) {

 return function () {

 that.from.className = that.from.className.replace(/ down/g, "");

 for (var i=0; that.cols[i]; i++) {

 that.cols[i].className = ""; // loop over all cols to avoid odd sized

 } // column conflicts

 operaRefresh();

 }

 }(this), 1000);

}

ColumnDrag.prototype.keyup = function (e) {

 e = e ? e : window.event;

 var elm = e.target ? e.target : e.srcElement;

 var a = elm;

 elm = elm.parentNode;

 var headings = this.tbl.tHead.rows[0].cells;

 switch (e.keyCode){

 case 37: // left

 this.mousedown({target:elm});

 var prevCellIdx = elm.cIdx == 0 ? 0 : elm.cIdx - 1;

 this.prevX = 2;

 this.mousemove(

 {

 target: headings[prevCellIdx],

 clientX: 1

 }

);

 this.mouseup({target: elm});

 a.focus();

 break;

 case 39: // right

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript44

this.mousedown({target:elm});

 // -2 for IE fix phantom TDs

 var nextCellIdx =

elm.cIdx == headings.length-2 ? headings.length-2 : elm.cIdx + 1;

 this.prevX = 0;

 this.mousemove(

 {

 target: headings[nextCellIdx],

 clientX: 1

 }

);

 this.mouseup({target: elm});

 a.focus();

 break;

 }

}

addHover = function () {

 this.className += " hover";

}

removeHover = function () {

 this.className = this.className.replace(/ hover/, "");

}

operaRefresh = function () {

 document.body.style.position = "relative";

 document.body.style.position = "static";

}

Summary
I hope you’ve enjoyed reading this chapter as much as I’ve enjoyed writing it. In putting together

these examples I’ve tried not only to show you how to manipulate tables through JavaScript, but

also how to write efficient, optimized, and reusable JavaScript code.

In this chapter, we’ve learned how to access a table, its rows, cells, and various groups thereof.

We’ve covered techniques for managing columns of data, even though sorting cells and dragging

columns is not a native functionality of either HTML or JavaScript. And we’ve taken functionality

that’s traditionally considered to be “mouse only” and made it work with the keyboard as well.

I hope that at least some of the concepts I’ve shared here, such as regular expressions, sorting al­

gorithms, event handlers, objects, and of course tables, will inspire you to dig deeper and build

your own wild and crazy JavaScript apps!

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

Chapter6
Building a 3D Maze with CSS and JavaScript
In this chapter we’ll look at a technique for using CSS and JavaScript to build a first-person-per­

spective maze, in homage to old-school adventure games like Dungeon Master1 and Doom.2

In truth, the scripting involved is fairly complex, and it won’t be possible for me to spell out every

nuance of the code in this single chapter. In fact, I won’t even list every method used in the script,

as some of them are quite long. What I can do, though, is introduce you to the principles of creating

shapes and perspective with CSS, and the task of using JavaScript to generate those shapes on demand

to create a dynamic, three-dimensional perspective from a static, two-dimensional map.

The script, and all of its components, are included in the book’s code archive. All the code is robustly

commented, so you should find it easy to follow. I recommend that you have it available to view

as you read, so that you can refer to it as we go along.

Before we dive into a discussion of how it’s built, let’s take a look at the final result—it’s shown in

Figure 6.1.

1 http://en.wikipedia.org/wiki/Dungeon_Master_(computer_game)
2 http://en.wikipedia.org/wiki/Doom

http://en.wikipedia.org/wiki/Dungeon_Master_(computer_game)
http://en.wikipedia.org/wiki/Doom

The Art & Science Of JavaScript190

Figure 6.1. A view inside the finished maze

That screenshot was taken with Opera, in which this script was originally developed, and it also

works as intended in Firefox, Safari, and Internet Explorer 7. IE 6, however, is not fully supported:

the game works, but it looks poor because IE 6 doesn’t have all the CSS support we need (most

notably, it lacks support for transparent borders).

I should also point out, in case it crosses your mind, that what we’re doing here has no practical

use. In fact, it could be argued that we’re not really using the right technology for the job. I made

this maze because I wanted to see if it was possible—to push the envelope a little in terms of what

can be done with JavaScript and CSS. But we’re right at the edge of what’s reasonable, and maybe

Flash or SVG would be better suited to building a game like this.

But hey—why climb a mountain? Because it’s there!

Basic Principles
In 2001, Tantek Çelik published a technique for creating shapes using the interactions between CSS

borders.3 We’re going to use that technique to make a bunch of right-angle triangles.

Why triangles, I hear you ask? Well, because once you can render a triangle, you can render any

polygon that you like. By combining triangles with the rectangles that we’ve always been able to

render (using a good old div and the background-color property), we can create the walls of our

maze and contribute to the sense of perspective. As you’ll see, we’ll draw these walls by slicing the

player’s view up into a number of columns.

3 http://tantek.com/CSS/Examples/polygons.html

The Art & Science Of JavaScript (www.sitepoint.com)

http://tantek.com/CSS/Examples/polygons.html
http://tantek.com/CSS/Examples/polygons.html
http://www.sitepoint.com/launch/75abda

191 Building a 3D Maze with CSS and JavaScript

We’ll also need a floor plan for our maze, and a handful of methods for dynamically converting

that floor plan into the polygons that represent the walls of our maze.

Making Triangles
If an element has a very thick border (say 50px), and adjacent borders have different colors, the in­

tersection of those borders creates a diagonal line, as Figure 6.2 illustrates.

Figure 6.2. Making diagonal lines from CSS borders

That example is simply a div element to which the following CSS rules are applied:

width: 200px;

height: 200px;

border: 50px solid #900;

border-color: #009 #900;

To render a triangle, we don’t actually need the contents of that div—we only need its borders. So

let’s remove the text, and reduce the width and height values to zero. What we’re left with is the

image shown in Figure 6.3.

Figure 6.3. Making triangles from CSS borders

Here’s the CSS that achieves that effect:

width: 0;

border: 50px solid #900;

border-color: #009 #900;

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript192

If we were to vary the relative border widths (applying, say, 50px on the left border and 25px on

the top), we could create triangles with various angles. By setting the color of one of the borders to

transparent, the diagonal line from the solid border stands alone, as Figure 6.4 reveals.

Figure 6.4. Creating diagonal lines using transparent adjacent borders

Now, if we wrap a second div element around the first, we’ll be able to extract a single, discreet

triangle. We can achieve this by:

1. applying position: relative to the outer container

2. applying position: absolute to the inner element

3. clipping the inner element

Clipped elements are required to have absolute positioning,4 so the relative positioning on the

container provides a positioning context for the inner element, as Figure 6.5 shows.

Figure 6.5. Extracting a single triangle using CSS clip

The code that produces Figure 6.5 is still very simple. Here’s the HTML:

<div id="triangle">

<div></div>

</div>

And here’s the CSS:

#triangle

{

 border: 2px solid #999;

 position: relative;

 width: 50px;

 height: 25px;

}

#triangle > div

{

 border-style: solid;

 border-color: transparent #900;

 border-width: 25px 50px;

 position: absolute;

 left: 0;

4 http://www.w3.org/TR/CSS21/visufx.html#propdef-clip

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.w3.org/TR/CSS21/visufx.html#propdef-clip
http://www.sitepoint.com/launch/75abda

193Building a 3D Maze with CSS and JavaScript

top: 0;

 clip: rect(0, 50px, 25px 0);

}

Clipping and positioning is the crux of our ability to create discreet shapes using CSS. If we removed

the clip, we’d get the result shown in Figure 6.6.

Figure 6.6. The unclipped element hangs outside its parent

You can see that by varying the clip and position properties on the inner element, we control

which part of it is shown, and hence which of the triangles will be visible. If we wanted the bottom-

right triangle, we would apply these values:

left: -50px;

top: -25px;

clip: rect(25px, 100px, 50px, 50px);

And we’d get the result depicted in Figure 6.7.

Figure 6.7. Extracting a different triangle

Defining the Floor Plan
The essence of our maze script lies in our ability to create a three-dimensional perspective from a

two-dimensional map. But before we can make sense of how the perspective works, we must look

at the map—or, as I’ll refer to it from now on, the floor plan.

The floor plan is a matrix that defines a grid with rows and columns. Each square in the floor plan

contains a four-digit value that describes the space around that square—whether it has a wall or

floor on each of its four sides. As we’ll see in a moment, we’ll use a 1 or a 0 for each of the four digits.

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript194

Understanding clip

clip totally confuses me—every time I use it, I have to think about how it works all over again. To

help jog your memory, Figure 6.8 illustrates what the values in that clipping rectangle mean.

Figure 6.8. How CSS clip works

The main element in this example (indicated by the dotted line) is 100px wide and 50px high. The

four values in the clipping rectangle are (in order): top offset, right offset, bottom offset, and left

offset. Each of these values defines the offset of that edge from the main element’s origin (its top-

left corner).

These values are specified in the same order (top, right, bottom, left) as they are for other CSS

properties, such as border, padding, and margin. Thinking of the word trouble (TRBL) should

help you remember the correct order.

Figure 6.9 shows how each of these squares is constructed.

Figure 6.9. A single square describes the space around that square

Figure 6.10 shows a simple floor plan that uses four of these squares.

Figure 6.10. A simple floor plan example

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

195Building a 3D Maze with CSS and JavaScript

In Figure 6.10:

■	 A dark gray block represents a square of solid wall.

■	 The borders at the edge of the diagram also represent solid wall.

■	 A light gray block represents a square of open floor.

For each square in the diagram:

■	 The digit 0 means “there’s solid wall in this direction.” Think of the number 0 as being shaped

like a big brick, which means “Nope, you can’t walk here.”

■	 The digit 1 means “there’s open floor space in this direction.” Think of the number 1, being a

positive value, as “Yes, you may walk on this square.”

■	 Each of the four digits in a square represents a direction when the floor plan is viewed from

above. The numbers should be read left-to-right, top-to-bottom, and they should appear in the

same clockwise order as CSS values: top, right, bottom, left (or, when considered from the point

of view of someone within the maze: forward, right, backwards, left).

A square like the one in the top-right of Figure 6.10 therefore represents the following information:

■	 The four-digit number represented is 0010.

■	 There are solid walls above, to the right, and to the left of the square.

■	 There is open floor space below the square.

As you can see, the concept is rather similar to the classic Windows game, Minesweeper!

The floor plan in Figure 6.10 would be represented in JavaScript by the following matrix:

this.floorplan = [['0110','0010'], ['0100','1001']];

Note that these values are strings, not numbers; with numbers, leading zeros are not preserved, but

in this case those leading zeros are an important part of the data.

So far, we’ve only seen very small examples of floor plan data. To make our maze really useful,

we’ll want something much larger—the floor plan included in the code archive is 20 by 40 squares,

and even that is comparatively small.

Just for kicks, Figure 6.11 shows what that floor plan looks like—you can refer to this plan if you

get lost wandering around! As before, the light squares represent floor space and the dark squares

depict solid wall, while the red cross-marks show positions where the person navigating our maze

(from here on referred to as the player) can stand.

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript196

Figure 6.11. A complete maze floor plan

I don’t expect you to be able to read those numbers! But later on, when we talk about the floor plan

designer that goes with the game, you can look at this plan in its original context. The floor plan

designer is also included in the code archive.

There are Many Ways to Skin a Cat!

There are, of course, numerous ways to approach a problem like this, each with its own pros and

cons. For example, instead of binary digits, we could have used letters like WFFW to indicate wall

and floor space. We could have made use of nested arrays, like [[[0,1,1,0],[0,0,1,0]]]. We

could even have represented each square using only a single digit, which would certainly have

made creating and modifying a floor plan easier.

The reason I chose to use four digits is because, this way, each square is able to represent what’s

around it, rather than what the square itself is. If we had a floor plan that used single digits, and

we wanted to represent the view from the middle square, we’d need not only that square’s data,

but also the data from the four squares that surrounded it.

With the approach I’ve taken, we only need the data from the middle square to know what those

surrounding squares are. Granted, we end up with some duplicate data in our floor plan. However,

in terms of pure computational efficiency, the two are equivalent, and using four digits makes more

sense to me as each square is much more self-contained.

Creating Perspective
Now that we understand how the floor plan works, and we’ve seen how to make triangles, we have

all the data—and the building blocks—we need to create a 3D view.

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

197Building a 3D Maze with CSS and JavaScript

Take a look at Figure 6.12. What this diagram shows is a breakdown of all of the elements that create

the illusion of perspective in our maze. The walls on each side of the long hallway are composed

of 16 columns. Each of the columns contains four inner elements which, for the rest of this chapter,

we’ll refer to as bricks. I’ve labeled the bricks, and highlighted them in a different color so that

they’re easier to distinguish. In each column, the top brick is highlighted as a gray rectangle; the

upper brick is a rectangle comprising a red and blue triangle, as is the lower brick; and the middle

brick is a green rectangle.

Figure 6.12. Combining the building blocks to create perspective

The upper and lower bricks are implementations of the triangles we saw earlier, clipped differently

for each of the four orientations we need, thus creating diagonal lines in four directions. The red

parts of these bricks will always be visible, whereas the blue parts are only blue for demonstration

purposes—in practice, they’ll be transparent. The top bricks will also be transparent, to expose a

sky-patterned background.5 The middle bricks will be shaded the same dark red color as the triangles

in the upper and lower bricks, so that the bricks merge together and create the appearance of part

of a wall.

5 It isn’t strictly necessary to use top bricks—we could have applied a top margin to the upper bricks—however, it was

easier for me to visualize this way.

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript198

This Is Not a True Perspective!

What we’re dealing with here is not actually a true perspective—it’s skewed slightly so that the

vanishing point is a short vertical line, rather than a point.

I originally created this maze using a true perspective with a single vanishing point, but it just

didn’t look right. The ceiling appeared too low relative to the distance between the walls (or the

walls were too far apart, depending on how you looked at it). Changing the aspect ratio (that is,

making the viewport square instead of the widescreen ratio that it has) would have made a difference,

but I didn’t want to do that—I wanted the game to look more cinematic!

The view is also limited as the columns get smaller, rather than stretching all the way to the vanishing

point, because the resolution that we can achieve at such a distance is limited. The view ends at

the point where we no longer have enough pixels to draw effectively, which restricts the maximum

length of corridor we can represent. We’ll talk about this issue again, along with the other limitations

of this approach, towards the end of the chapter.

If you look carefully, you’ll see in Figure 6.12 that each of the triangles has the same angle—it’s just

the size of the brick itself that’s progressively reducing. This makes the illusion of perspective nice

and easy to create, as we don’t have any complex math to worry about. Still, it’s not something that

we’d want to code by hand. Let’s use JavaScript to calculate the size of each brick, so that it can be

generated on the fly …

Making a Dynamic View
One of the beautiful things about using a programming language to generate complex visual patterns

is that it’s not necessary for us to work out every line and angle manually—we only need to worry

about the math that represents the pattern.

There are times when I really wish I’d paid more attention in school math classes. But computer

games were in their infancy then, and none of my teachers knew much, if anything, about them.

So when I asked in class, “What use is any of this?”, they didn’t have a good answer!

It’s just as well, then, that the math involved here is not complicated—we don’t even need trigono­

metry, because the angles have already been determined for us. All we need to calculate is the size

of the bricks and the clipping regions that are used to create our triangles; the browser’s rendering

engine will do the rest.

Core Methods
Let’s take a look at the scripting now. We’ll start with the main script, underground.js, which is

located in the scripts folder of the code archive. The entire script would be too large to list in its

entirety in this book; instead I’ve just listed the signature of each method to give you a high-level

appreciation for what’s going on:

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

199Building a 3D Maze with CSS and JavaScript

underground.js (excerpt)

// DungeonView object constructor
function DungeonView(floorplan, start, lang, viewcallback)
{ … };

// Create the dungeon view.
DungeonView.prototype.createDungeonView = function()
{ … };

// Reset the dungeon view by applying all of the necessary
// default style properties.
DungeonView.prototype.resetDungeonView = function()
{ … };

// Apply a floorplan view to the dungeon
// from a given x,y coordinate and view direction.
DungeonView.prototype.applyDungeonView = function(x, y, dir)
{ … };

// Create the map view.
DungeonView.prototype.createMapView = function()
{ … };

// Reset the map view.
DungeonView.prototype.resetMapView = function()
{ … };

// Apply a position to the map view.
DungeonView.prototype.applyMapView = function()
{ … };

// Clear the view caption.
DungeonView.prototype.clearViewCaption = function()
{ … };

// Generate the caption for a view.
DungeonView.prototype.generateViewCaption = function(end)
{ … };

// Shift the characters in a string by n characters to the left,
// carrying over residual characters to the end,
// so shiftCharacters('test', 2) becomes 'stte'
DungeonView.prototype.shiftCharacters = function(str, shift)
{ … };

// Bind events to the controller form.
DungeonView.prototype.bindControllerEvents = function()
{ … };

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript200

Rather than examine every method here, I’ll explain the three core methods that do most of the

work for our script, and leave you to fill in the gaps by following the code from the code archive

yourself. Throughout this section I’ll use the word view to mean “a 3D representation of a position

on the floor plan” (that is, the player’s point of view, looking north, east, south, or west).

The createDungeonView Method
The createDungeonView method takes an empty container, populates it with all the elements we

need (the columns are divs, and the bricks are nested spans), and saves a matrix of references to

those elements for later use:

underground.js (excerpt)

// Create the dungeon view.
DungeonView.prototype.createDungeonView = function()
{
 var strip = this.tools.createElement('div',

{ 'class' : 'column C' }
);

 this.grid['C'] = this.dungeon.appendChild(strip);

 for(var k=0; k<2; k++)
 {
 // the column classid direction token is "L" or "R"
 var classid = k == 0 ? 'L' : 'R';
 for(var i=0; i<this.config.gridsize[0]; i++)
 {
 var div = this.tools.createElement('div',

{ 'class' : 'column ' + classid + ' ' + classid + i }
);
 this.grid[classid + i] = {

'column' : this.dungeon.appendChild(div)
};
 for(var j=0; j<this.config.gridsize[1]; j++)
 {
 // create the main span
 var span = this.tools.createElement('span',

{ 'class' : 'brick ' + this.bricknames[j] }
);
 if (j == 1 || j == 3)
 {
 var innerspan =

span.appendChild(this.tools.createElement('span'));
 }
 this.grid[classid + i][this.bricknames[j]] =

div.appendChild(span);
 }

 }

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

201 Building a 3D Maze with CSS and JavaScript

}

 this.resetDungeonView();

};

As you can see if you scroll through the code, there isn’t much more to this method: its sole respons­

ibility is to create a group of elements, and assign class names to each of them so that they can be

distinguished from one another. The values I’ve used are reasonably intuitive—upper identifies an

upper brick, for example.

I’ve made use of CSS floats in order to line the columns up (left floats for a column on the left

wall, and right floats for one on the right). To create the columns, we iterate on each side from the

edge inwards (in other words, the left-most column is the first of the columns that comprise the

left wall, and the right-most column is the first for the right wall).

The resetDungeonView Method
The resetDungeonView method applies style properties (size, position, clip, background, and

border-color) to the elements that form the most basic view—that shown when our user is looking

straight down a corridor that stretches the maximum distance that our script can support, as depicted

in Figure 6.13.

Figure 6.13. The resetDungeonView method rendering a basic view, without floor plan data

This method can be called whenever we need to reset the view, which we’ll do at initialization,

and again before applying each new view. It works by iterating through the matrix of element refer­

ences we created in createDungeonView; it calculates the width of each column and the height of

each of the bricks inside it.

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript202

To perform this calculation, we need to define some structural constants. These constants can be

found in the configuration script, config.js, which is also in the code archive’s scripts directory:

config.js (excerpt)

this.viewsize = [600, 400];
this.gridsize = [16, 4];
this.bricksize = [50, 31];
this.multiplier = 0.84;

These constants represent the following values:

The viewsize represents the total width and height of the view container.

The gridsize represents the number of columns from the edge of the viewsize to the center,

and the number of bricks from top to bottom.

The bricksize is the size of the upper and lower (triangle-creating) bricks.

Finally, the multiplier controls the factor by which the brick size is reduced for each column

as we move towards the center of the view.

Figure 6.14 shows the same perspective diagram that we saw in Figure 6.13, this time with captions

indicating how each of these structural constants applies.

Working Out the Values

I’d love to say I had a clever mathematical algorithm for calculating the values I’ve used here (and

there probably is one), but I can’t. I just used trial and error until I arrived at something that looked

about right. Note, however, that the values are very closely interrelated, so be extremely careful

when adjusting them!

The choice of correct values is also dependent upon the overall performance of the script—it would

be possible to create a higher resolution maze with a larger number of smaller bricks. However, that

would mean we had more objects to render, which would result in lower overall performance. Even

with the default values that I’ve set above, you need a fairly decent computer to render this maze

effectively.

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

203Building a 3D Maze with CSS and JavaScript

Figure 6.14. Structural constants defining the maze’s perspective

If you have a look at Figure 6.14 again, you’ll notice that the bricks line up perfectly—in each

column, the upper brick is exactly below and to the side of the upper brick in the previous column;

likewise, each lower brick lines up below and to the side of its neighbor. The clip and position

values of the inner elements of those bricks decrease proportionally as the brick size decreases,

while the height of the top and middle bricks changes as necessary to complete the wall.

Finally, in order to improve the appearance of perspective, we want each column to be slightly

darker than the previous one. To achieve that goal, I’ve introduced constants that define the base

color of our bricks and the darkening proportion that’s applied to them. We’ll define the wallcolor

using RGB values—they’re easier to work with, as the values are decimal rather than hexadecimal.

We’ll name the constant that controls the darkness of each column the darkener. Both of these

constants are defined in the config.js file:

this.wallcolor = [127, 0, 0];

this.darkener = 0.95;

On each iteration of our code, we render a single column on each side, moving towards the center

of the view; the base color is darkened by the amount specified in the darkener constant. I chose

a dark red for the main demo (dark colors generally work best), but as Figure 6.15 shows, you can

use any color you like—even pink!

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript204

Figure 6.15. Rendering the walls of the maze with different base colors

The applyDungeonView Method
The applyDungeonView method applies style variations to the basic view, creating passageways off

to either side of our main passage. To do this, it first compiles a matrix, stored in the variable

this.squares, which is a subset of the complete floor plan. This matrix consists of only those floor

plan squares that are necessary for us to render the player’s view from the current location in the

maze.

Figure 6.16 shows an excerpt of a floor plan. The green square highlights the spot where the player

is currently standing, while the blue border surrounds what the player can see. It’s the region inside

this blue border that defines the part of the plan required to draw the view for the player.

In this example we’re looking north, and each of the floor squares provides us with information

about the surrounding squares. However, for any direction of movement, the player is always

looking “forwards,” and it’s the player’s view that we render. So the first thing we must do is

translate the data contained within each square into data that’s accurate for the direction in which

the player is facing. Let me explain this with an example …

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

205Building a 3D Maze with CSS and JavaScript

Figure 6.16. An extract from a floor plan showing the data for a single view

Remember that the digits in a square indicate the presence of wall or floor surrounding that square,

in clockwise order, starting from the top. Well, we want those four digits always to indicate that

information clockwise from the top, regardless of the direction in which the player is actually facing.

Should we have the value 1110 when facing north, then, when the player was facing east, that same

square would be represented by the value 1101. When the player faced south, the value would be

1011, as shown in Figure 6.17.

Figure 6.17. The floor plan data varying when the player looks in different directions

So, as we compile the this.squares matrix, we need to translate each square’s value to the direction

in which the player is facing. A small utility method named shiftCharacters performs this trans­

lation: str is the four-digit string, and shift is the number of times the square must be rotated in

a counterclockwise manner when the player turns in a clockwise direction. Each turn corresponds

to each of the four digits that represent that square moving to the left by one position (with the left-

most digit jumping to the end of the string).

To continue with the example in Figure 6.17, if the player’s view was to change from north (with

floor plan data of 1110) to west (0111), the shift value would be 3.

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript206

The shiftCharacters method looks like this:

underground.js (excerpt)

DungeonView.prototype.shiftCharacters = function(str, shift)
{
 var saved = str.substr(0, shift);
 str = str.substring(shift);
 str += saved;
 return str;
};

Once we have the data we need, we can iterate through it and create the actual view. This is where

things get rather tricky.

First of all, we need to iterate forwards through the squares, starting from the player’s current location.

With each iteration, we test the first digit of each square (which tells us what’s in front of it) until

we find the end wall. The end wall marks the limit of what the player can see—every column from

that point onwards should be assigned the same height and color. These columns will create the

illusion of a facing wall, as shown in Figure 6.18.

Figure 6.18. Columns combining to form a facing wall

Once we know the limit of the player’s view, we iterate from that point backwards through the floor

plan data towards the player’s location, looking for adjoining passageways. We need to iterate

backwards because the height of a passageway’s facing wall is the height of the furthest column

that defines it.

To illustrate, Figure 6.19 shows another excerpt from the perspective diagram, this time with lines

and shading overlaid to show a corridor with a passageway off to the left.

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

207 Building a 3D Maze with CSS and JavaScript

Figure 6.19. Constructing perspective to create a passageway off to the left

If we want those second and third columns to create that passage to the left, we need to remove the

upper and lower bricks from those columns, leaving only the middle bricks, which then must be

resized as necessary. But our passage is two columns across, and it’s the furthest column (or what

we might call the corner column) that determines the height of the wall—not the nearest. So we

need to modify that corner column first, so that we know how tall to make the adjacent columns.

Iterating forwards would require us to jump two steps ahead to find the corner, then move one

square back to make a further adjustment. And that’s why we iterate backwards, rather than forwards.

(I told you it was tricky!)

When we create those passageways, we also lighten the facing walls slightly, to improve the visual

appearance and make the wall look more realistic. As we did when we darkened the walls, we use

a single constant value (I’ve called it the lightener) to determine the amount of lightening required:

this.lightener = 1.25;

As with the height value, the lightening is applied to the corner column first, then copied onto the

nearer column (for the same reasons). And once again, as with all of the constants used in this

script, I have no magic formula to share for how these values were obtained—they're just what

looked right after trial and error.

Figure 6.20 shows the same view excerpt again—this time without the exposed construction—looking

as it does in the final game.

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript208

Figure 6.20. A passageway off to the left

Applying the Finishing Touches
Now, I hope, you should have a fairly concrete sense of how the script generates perspective views,

with walls and passages created as necessary. From the diagrams we’ve seen so far, you can under­

stand that any given view is simply a combination of rectangles and triangles.

One final touch we’ll need to make is to shift the entire view up inside the container in order to

raise the horizon slightly. This is just another visual tweak that I included because I think it produces

a better-looking and more realistic result, as Figure 6.21 shows.

Figure 6.21. Adding a slight horizon shift to the overall view

You’ll notice I’ve used images for the sky and floor patterns. These images provide some texture to

add to the realism of my maze; they also contain a slight gradient, growing darker as they approach

the horizon, which again reinforces the sense of perspective.

The end result is not perfect, though: unavoidable rounding errors occur in the final output figures,

and these errors give rise to an occasional discrepancy of one or two pixels between adjacent

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

209Building a 3D Maze with CSS and JavaScript

columns. The shading computation is not exact either—sometimes, on close walls, you can see a

slight color difference between two columns that should be exactly the same.

All things considered, however, what we’ve created here is a reasonably convincing 3D maze.

Limitations of This Approach
The approach we’ve taken to build this maze imposes some limitations on the design of a maze

floor plan, thus restricting the kind of layout we can draw:

■	 Corridors must always be two squares wide—we can’t create wider spaces because we don’t

have the pieces with which to draw them.

■	 No single corridor can be longer than 16 squares, as this is the maximum number of pairs of

columns that we can draw.

■	 Walls must also consist of an even number of squares—every block must comprise a block of at

least two squares by two squares.

It may help to think of four squares on the floor plan as one single square; those smaller squares

only exist so that we have more elements to apply progressive shading to, and hence achieve a

better-looking and more realistic 3D view.

Creating the Map View
To the right of the maze view, we’ll add a map that shows the floor plan in the player’s immediate

location. I originally added this feature to display a top-down view of the same view that the player

can actually see ... but then I realized—what’s the point of such a map, if it provides no extra ad­

vantage?

Instead, we’ll add a map that shows a little more of the surrounding area, as an aid to orientation.

In the view shown in Figure 6.22, you can see that the player can only move a short distance forwards

before reaching a wall, but the map to the right shows further corridors beyond that wall.

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript210

Figure 6.22. Showing extra information in the player’s map

The construction of the map itself is very simple—it’s just a bunch of spans floated in a container.

I’ve applied a solid background where there’s wall, and transparency where there’s floor. This allows

the green background of the container to show through, as Figure 6.23 reveals.

Figure 6.23. How the player’s map is constructed

Generating the map is equally simple, since it’s just a two-dimensional representation of data that

is itself a 2D matrix.

Remember that when we generated the maze view, we created a matrix called this.squares. This

matrix contained as much of the floor plan as was required to generate the current view, with the

data transposed so that it represented a forwards view for the player. Well, we can use that same

data matrix to generate this 2D map.

To create the map, we begin by coloring every square (using the base wallcolor property). Then

we iterate through the matrix of squares, and apply transparency to every square in the map that

represents open floor space—including the space directly beneath the spot where the player is

standing. The applyMapView method in the file underground.js takes care of this for us:

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

211 Building a 3D Maze with CSS and JavaScript

underground.js (excerpt)

DungeonView.prototype.applyMapView = function()
{
 this.resetMapView();
 for(var i=0; i<this.squares.L.length; i++)
 {
 var n = this.mapsquares.length - 2 - i;
 if(this.mapsquares[n])
 {
 if(this.squares.L[i].charAt(3) == '1')
 {
 this.mapsquares[n][0].style.background = 'transparent';
 this.mapsquares[n][1].style.background = 'transparent';
 if(i == 0)
 {
 this.mapsquares[n+1][0].style.background = 'transparent';
 this.mapsquares[n+1][1].style.background = 'transparent';

 }
 }

 if(this.squares.R[i].charAt(1) == '1')
 {
 this.mapsquares[n][4].style.background = 'transparent';
 this.mapsquares[n][5].style.background = 'transparent';
 if(i == 0)
 {
 this.mapsquares[n+1][4].style.background = 'transparent';
 this.mapsquares[n+1][5].style.background = 'transparent';

 }
 }

 if(this.squares.L[i].charAt(1) == '1')
 {
 this.mapsquares[n][2].style.background = 'transparent';
 this.mapsquares[n][3].style.background = 'transparent';
 if(i == 0)
 {
 this.mapsquares[n+1][2].style.background = 'transparent';
 this.mapsquares[n+1][3].style.background = 'transparent';

 }
 }

 }
 }
};

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript212

Adding Captions

One of the things that excites me most about web programming is its potential for improving access­

ibility. Although we’re making a visual game here, we have data in a format that can easily be

translated into other kinds of output, such as plain text. We can use the same information that we

used for making the map to generate a live text description of each maze view, of the kind shown

in Figure 6.24.

Figure 6.24. A generated caption that describes a maze view

Not only does captioning potentially aid comprehension for players who have a cognitive or visual

disability, it also extends the basic game play to people who are completely blind—suddenly we

can navigate around the maze without any visuals at all! Admittedly, and unfortunately, the game

will be much harder to play like this—not just because you have to hold orientation information

in your head, but because you don’t have the map to refer to in order to gain clues about what’s

behind the next wall.

Still, it’s a start. Try viewing the game with CSS disabled, and you’ll get a basic sense of the exper­

ience of what it would be like to play the game if you were blind. I’ve also confirmed that the game

is playable in the JAWS 8 screen reader.

Generating the core data for the captions is straightforward—we simply need to know how many

passageways there are to the left and right, and how far away they are. We can work this out by:

■ iterating once again through the this.squares matrix

■ building arrays to store the index of each opening

These openings will be converted to a perceived distance. As we navigate our maze, one square

looks to be roughly two meters in length, so we’ll adopt this as the scale for our map. We can stop

iterating once we reach the end of the player’s view—we’ve created an end variable in the

applyDungeonView method, which is the index of this.squares at the point that the view ends.

Therefore, we can simply pass this value to the generateViewCaption method when we call it.

In the code, I’ve used len to represent the total length of the corridor in front, and arrays called

passages.left and passages.right to store the distance of each passage from the player. The

result of our iterations might produce data like this:

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

213 Building a 3D Maze with CSS and JavaScript

var len = 16;

var passages = {

 'left' : [8, 16],

 'right' : [4]

};

This looks simple enough to interpret, right? Well, yes … however, turning this data structure into

coherent English is still a little tricky. The basic conversion is easy. Using the data we have, we can

describe the view in coarse terms:

“The corridor stretches 16 meters in front of you. To the left there are passages after 8 meters and

16 meters. To the right there are passages after 4 meters.”

However, this language is fairly obtuse. For one thing, we wouldn’t want to say “there are passages”

if there was only one. Instead, we’d want to say “there’s a passage.” Additionally, the last passage

to the left is at the far end, so it would be nicer to describe that by saying “The corridor stretches

16 meters in front of you, then turns left.”

We also need to deal with exceptions. For example, if the player is standing directly in front of a

wall, we don’t want to say “… stretches 0 meters in front …” Likewise, if the player has just turned

right into a passage, we don’t want to say “to the right there’s a passage after 0 meters.”

To cater for all these exceptions, the script accepts a dictionary of sentence fragments with replace­

ment tokens, which are then compiled and parsed as necessary, in order to obtain a result that ap­

proaches decent prose. If you have a look in init.js, you’ll notice that the DungeonView object is in­

stantiated with this data as an argument. Each of the language properties is a sentence fragment

with replacement tokens; for example, %dir is a direction token that will be replaced with the word

for “left” or “right,” as applicable.

I’d encourage you now to scroll through the generateViewCaption method in underground.js, and

read the comments there that explain each situation. As it is, there’s still room for improvement,

but this is one of those things that you could refine to the nth degree, and it would still never be

perfect.6 That said, I believe that the end result is fairly good—the captions are verbose enough to

get the information across, they’re succinct enough not to be arduous to read, and they flow well

enough that they don’t sound too much like they were generated by a machine (even though they

were!).

Designing a Floor Plan
In the code archive for this book, you’ll find a floor plan designer, which is a separate JavaScript

application that generates the floorplan matrix used by this game. It’s a table of squares, and you

6 Read more about the problems associated with constructing natural-sounding sentences in English in the Wikipedia entry

on natural language processing at http://en.wikipedia.org/wiki/Natural_language_processing/.

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript214

can click a square to toggle it between floor and wall. The script will work out the numbers for each

square that relate to that view, using the TRBL syntax I introduced earlier in the chapter to denote

whether a square has wall or floor on each of its four sides.

Hovering over a square in the floor plan designer will also display a tooltip containing the x,y po­

sition of that square in the grid. This information is useful for defining a start position (the first two

values of the start array in init.js).

To use the floor plan designer, first create your plan by clicking on the squares. When you’re happy

with your maze, click the Generate output matrix button and a floorplan matrix will be generated

for you. You can then copy and paste this data directly into your init.js file—the next time you run

the maze application, your new floor plan data will be passed to the script.

Alternatively, you can begin your floor plan editing session by pasting existing floor plan data into

the textarea field. Click Display input matrix, and the floor plan designer will display the map rep­

resentation of the data that you pasted into the field, which you can then edit further as required.

Try pasting in the original floorplan matrix from init.js, and you’ll see the plan that I showed you

near the start of this chapter, in all its glory!

Simple as it is, without this tool, making the maze floor plan would be a very painful process! In

fact, I created this tool before I wrote the main script.

Further Developments
Before we close this chapter, I’d like to take a couple of moments to discuss some general possibil­

ities for further development of the maze. More specifically, we’ll look at the callback facility that’s

available for hooking additional code into each view change.

Using the Callback
Have a look in init.js and you’ll notice that, in addition to the floor plan, start position, and language

parameters, there’s an optional fourth argument specifying a viewchange callback function. This

function will be called every time a new view is drawn, and can be used to add logic to the game.

The viewchange function referred to in this example can be found in the script called demogame.js,

which is located in the addons directory of the code archive. This script and its associated style

sheet are both included in underground.html, at the very end of the head section (after the core style

sheets and scripts).

As you’ll see, the callback accepts the following arguments:

x
 the current x position of the player

y the current y position of the player

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

215 Building a 3D Maze with CSS and JavaScript

dir the direction that the player is currently facing

inst a reference to this instance of the DungeonView object

By defining conditions based on the first three arguments, you could add logic that applies only at

specific locations in the maze. And because the callback function will always be called when the

player begins navigating the maze at the start position, you could also use the callback function for

initialization code. For example, a flag could be set to indicate that a location-specific action has

occurred, so that it occurs only once.

The fourth argument, inst, is a reference to this instance of DungeonView, and can be used for

tasks like adding a new element to the view (such as objects for the player to find), or modifying

the configuration properties (in order to change the wall color in certain areas of the maze).

In the demo game example, I’ve made use of the callback function at one specific position in the

floor plan—at this point in the maze you can see a simple object in front of you, and at another

position you’re standing directly above that object (that is, picking it up). That’s all there is to the

demo game—there’s nothing ground-breaking—but at least it adds an end purpose to an otherwise

aimless meander through the maze! It should also serve to illustrate the principle of extending the

maze, and will hopefully inspire you to try something more ambitious and creative.

At sitepoint.com, you can find a more sophisticated example in which a hidden surprise is located

within a larger maze, and your mission is to find it.7

Blue-sky Possibilities
It would be quite simple to use Ajax to relay a player’s position to a server—other players could

read that data, thus facilitating the creation of an online multiplayer environment. It should also

be possible to implement a server-side program that generates floor plan data and sends it back to

the game, effectively creating multiple “levels” in the maze. Taking this idea one step further,

players could potentially receive and transmit floor plan data between themselves, thereby allowing

individuals to host maze levels.

However, it would be quite tricky to represent other players in the view—we would need a graphic

for every additional player, as well as versions of that graphic at each of eight different distances,

facing in four directions. Short of generating the players as simple shapes, there’s no pure-CSS way

to create these graphics. They would have to be a collection of specially drawn images, and I don’t

have the artistry to design those characters!

But if you do, be my guest. If you had those images, adding them to the game would be most simply

achieved with absolutely positioned overlays—placing the image so that its center is in the center

of the maze. Then, for each view, it would be a case of working out which was the correct image to

7 Visit http://maze.sitepoint.com/ to play this game.

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript216

show, based on the locations of that player relative to the main player. This might also be quite

tricky, especially when you had three or more players sharing the same corridor, but I have no

doubt that it’s doable.

Who knows—maybe you could add combat too!

Summary
In this chapter, we took the languages of CSS and JavaScript well beyond the tasks for which they

were intended—the presentation and basic behavior of HTML documents—and used them to create

an interactive 3D maze.

First, we looked at the basic principles by which triangles can be displayed using only CSS. We

then extended that concept to render a perspective view, creating the illusion of three dimensions.

Next, we established a convention for specifying floor plan data, and for dynamically translating

that data into a perspective view. By adding listeners for user events, we successfully created an

interactive maze that can be completely customized and extended. To top things off, we added

some usability aids, such as a top-down map, and accessibility aids including keyboard navigation

and captions.

While I haven’t delved into the details of every method that comprises the game script (there are

plenty of comments, so I’ll leave that for you to pursue in your own time), I hope this chapter has

convinced you to look at JavaScript in a new light. The possibilities really are only limited by your

imagination!

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

 The Art & Science of JavaScript

The Art & Science of JavaScript

What’s Next?

If you’ve enjoyed these chapters from The Art & Science of JavaScript, why not order yourself

a copy?

You’ve only seen two of the projects covered in this ground-breaking book -- if you enjoyed the

sample, then the rest of the book will blow your mind!

The Art & Science of JavaScript will teach you how to:

•	 Create	a	slick	Google	Maps	and	Flickr	mashup.	

•	 Give	your	site	some	extra	personality	with	client-side	badges.

•	 Write	better	code	faster	using	metaprogramming	techniques.

•	 Create	stunning	vector	graphics	with	the	canvas	element.

•	 Become	a	debugging	expert	using	pro-level	Firebug	tricks.

The	complete	JavaScript,	HTML	and	CSS	code	used	to	create	each	of	the	projects	is	available	

for download, and is guaranteed to be best practice and ready to use.

If	you’re	looking	for	a	JavaScript	book	that	will	inspire	you	to	build	the	next	BIG	web	

application, then this is the book for you. With plenty of screenshots and in-depth

explanations, The Art & Science of JavaScript will change the way you approach JavaScript

forever!

Take your JavaScript to the next level now. Have The Art & Science of JavaScript ordered

direct to your door from us, the publisher.

Order the full version now!

http://www.sitepoint.com/launch/75abda

Index

A
aIdx variable, 12

Ajax

client-side badges, 53

alpha variable, 12

anchors

sorting tables, 8

anonymous functions, 157

Application Programming Interfaces (API)

(see also Flickr API; Google Maps API)

canvas element, 77

defined, 218

del.icio.us, 51

using dynamic functions, 172

arcs

drawing with canvas element, 91

pie chart segments, 102

arguments

default, 164

arguments array

about, 157

arrow keys

alternatives to, 28

aspect-oriented programming, 171

assertions

Firebug, 136

auto-completion

Firebug, 137

avatar images

(see also thumbnails)

badges, 47

B
backup

servers, 72

badges

(see also client-side badges; server-side

badges)

about, 46–53

defined, 45

behavior classes

defining, 176

Bézier curves

drawing with canvas element, 93

blacklisting

Firebug, 127

blogs

badges, 51

bookmarklets

Firebug, 137

branching

functions, 168

breakpoints (see conditional breakpoints)

browsers

onmousedown event handler, 32

ternary operators, 13

XPath support, 169

bubble sort

tables, 14

built-in functions

using, 165

built-in objects

adding methods to, 166

C
callbacks

creating mazes with CSS and JavaScript, 214

callee property

storing values between function calls, 159

canvas element, 75–119

about, 76

creating pie charts, 98–115

creating vector graphics, 76–97

252

Internet Explore browser, 115–118

captions

adding to maze view, 212–213

cellIndex variable, 12

centering

maps, 244

charts (see pie charts)

circles

drawing with canvas element, 91

class names

tables, 11

classes

(see also behavior classes)

in JavaScript, 153

Prototype 1.6, 180

clearRect method

Opera browser, 113

client-side badges, 45–73

about badges, 46–53

Ajax and JSON, 53–59

scripting, 59–72

sever backup, 72

client-side scripting

badges, 48, 51

clip code, 194

closures

about, 159

clickable thumbnails, 239

partial function application, 161

tables, 10

color

creating in canvas element, 100

columns

in HTML tables, 1

sorting, 7–24

conditional breakpoints

Firebug, 141

configuration variables

badges, 63–64

connections

fallbacks, 58–59

Console

Firefox, 134

Console view

Firebug, 128

constructor functions

(see also dynamic constructors)

about, 153

new operator, 154

controls (see map controls)

cross-domain JSON

on demand, 230

same-origin restriction, 225

cross-linking

within Firebug, 133

cross-site scripting (XSS) attacks

cross-domain JSON, 226

eval function, 164

CSS

building mazes, 189–216

info windows, 244

stretching dimensions of canvas objects, 81

CSS styles

out-of-the-box badges, 50

CSS view

Firebug, 130

cubic curves

drawing using canvas element, 95

curves

drawing with canvas element, 91

D
data (see profile data)

default arguments

creating functions, 164

del.icio.us social bookmarking site

badge example, 51

dimensions

canvas elements, 81

pie chart segments, 102

Document Object Model (DOM)

about, 4

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

253

DOM Builder, 173

DOM methods

info windows, 242

DOM subview

Firebug, 140

DOM tree

accessing table elements, 4

DOM view

Firebug, 131

domain-specific languages (DSL), 183

dragging

columns, 24–44

dynamic class creation

JavaScript equivalent, 176

dynamic constructors

creating, 176

dynamic functions

APIs, 172

dynamic view

creating mazes with CSS and JavaScript, 198–

209

E
elements

inspecting with Firebug, 133

error console

Firefox and Firebug, 129

errors

Firebug, 138

eval function

cross-site scripting (XSS), 164

security, 224

event objects

badges, 67

events

assigning, 10

handling, 9, 29

excanvas.js file, 115

exceptions

creating mazes with CSS and JavaScript, 213

executing

with Console, 134

ExplorerCanvas, 115

extensions

canvas element and HTML, 77

Firefox, 147

F
fallbacks

badges, 58–59

feeds (see Flickr feeds)

Firebug, 121–147

components of, 127–133

enabling and disabling, 127

getting started, 123

installing, 122

using, 133–144

Firebug Lite

about, 145

Firefox browser

extensions, 147

Firebug addon, 150

rendering canvas element, 104

Firefox error console, 129

Flash

animation, 75

Flickr API

data ownership policy, 222

geotagging photos, 221

origin of, 218

web resources for, 249

Flickr feeds

RSS and Atom, 223

floor plans

creating mazes with CSS and JavaScript, 193–

196, 213–214

for-in loop, 152

function calls

storing between function calls, 159

function factories

clickable thumbnails, 239

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

254

functions

(see also anonymous functions; built-in func­

tions; constructor functions; dynamic

functions; eval function; global func­

tions; lazy function evaluation; partial

function application; self-executing

function patterns; self-optimizing func­

tions; wrapper functions)

creating, 155

default arguments, 164–165

as objects, 155

G
geotagging

photos, 221

getElementById

accessing table elements, 4

global functions

closure, 160

global variables, 236

globalCompositeOperation property

Opera browser, 113

values, 106

Google maps

creating from Fickr photos, 233–249

Google Maps API

info windows, 241

origin of, 218

web resources for, 249

GPS

geotagging photos, 221

graphics

(see also avatar images; Flickr API; photos;

thumbnails; vector graphics)

badges, 47

graphics context

canvas API, 77

H
handlebars

Bézier curves, 94

hCalendar microformat, 184

hCard specification

implied n optimization, 184

heading states

tables, 19

HTML extensions

canvas element, 77

HTML view

Firebug, 129

HTTP requests

badges, 47

I
ice cream cone

drawing with canvas element, 93

implied n optimization

hCard specification, 184

info windows

displaying, 241

Google Maps API, 220

inheritance

property chain, 154

initializing

pages in canvas element, 103

innerHTML property, 9

inspect command

Firebug, 133

installing

Firebug, 122

instanceof

operator, 153

Internet Explorer browser

canvas element, 115–118

onmousedown event handler, 32

introspection

objects, 152

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

255

techniques, 164–187J
JavaScript Object Notation (JSON)

badge example, 51

badges, 54, 67

creating Google maps, 233–249

handling photos, 223–233

JSON-P (JSON with Padding) (see cross-domain

JSON)

K
keys (see arrow keys)

L
Layout subview

Firebug, 139

lazy function evaluation, 169

libraries

(see also Prototype library)

self-executing function patterns, 163

log messages

retaining type in, 135

logging

with Console, 134

M
map controls

adding, 238

map view

of mazes, 209–211

maps

recentering, 244

mashups

(see also Flickr API; Google Maps API)

defined, 218

origin of, 219

mazes

building with CSS and JavaScript, 189–216

metaprogramming, 149–188

defined, 149

overview, 150–164

methods

(see also private methods; public methods)

adding to built-in objects, 166

mixing in, 178

stealing for other objects, 158

microformats, 184

Microsoft debugging tools, 146

mixing in

methods, 178

module pattern

about, 163

scripting, 61

monitoring

with Console, 134

mouse

dragging columns without, 37

N
names

classes, 11

Net view

Firebug, 132

new operator

constructor functions, 154

nIdx variable, 12

nodes

in DOM tree, 4

numeric variable, 12

O
object literal notation, 39

object orientation

simulating traditional, 178

objects

(see also built-in objects)

functions as, 155

properties, 151

stealing methods from, 158

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

256

offsets

in canvas element, 108

onkeydown event

versus onkeyup event, 37

onkeyup event

versus onkeydown event, 37

onmousedown event handler, 31

onmousemove event handler, 33

onmouseup event handler, 36

Opera browser

clearRect and globalCompositeOperation, 113

optimization (see implied n optimization; per­

formance)

out-of-the-box badges, 48

P
pages

initializing in canvas element, 103

parsing

tables, 12

partial function application

closures, 161

paths

shapes, 87

patterns (see module pattern; self-executing

function patterns)

performance

(see also implied n optimization)

badges, 47

rendering mazes, 202

tuning with Firebug, 143

perspective

in floor plans, 196–198

photos

(see also avatar images; Flickr API; thumb­

nails)

geotagging, 221

in Google Maps, 233

pie charts

creating with canvas, 98–115

private methods

badges, 67–72

profile data

using, 144

progressive enhancement

badges, 59

properties

assigning functions to, 156

objects, 151

storing between function calls, 159

prototype chains

inheritance, 154

Prototype library, 178

prototype property

constructor functions, 154

using, 8

public methods

badges, 64–67

Q
quadratic Bézier curves

drawing with canvas element, 94

R
rapid application development

Firebug, 133

recentering

maps, 244

rectangles

creating with canvas element, 80

rendering

canvas elements in FireFox browser, 104

performance, 202

rows

accessing with tables, 4

rows variable, 12

S
same-origin restriction, 224

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

257

scope

handling, 9

Script view

Firebug, 131

search engine optimization (SEO)

badges, 50

searching

in Firebug, 134

security

cross-domain JSON, 226

eval function, 164, 224

same-origin restriction, 225

self-executing function patterns

about, 161

self-optimizing functions

creating, 168

server backup

badges, 72

server-side badges

about, 50

shadows

creating in canvas element, 104–109

shapes

creating with canvas element, 79

states (see heading states)

storing

properties between function calls, 159

stroke operations

paths, 91

rectangles, 86

strokes

re-stroking lines, 103

Style subview

Firebug, 138

T
table elements

accessing with getElementById, 4

accessing with getElementsByTagName, 6

tables, 1–44

dragging columns, 24–44

sorting columns, 7–24

structure of, 1–7

tbody element, 4

ternary operators

browsers, 13

th variable, 12

theads

tables, 9

thumbnails

badges, 47

clickable, 239

displaying, 226

highlighting current, 240

trackbacks

blogs and badges, 51

triangles

creating with CSS and JavaScript, 190

typeof operator, 152

types

detecting, 152

U
updating

charts dynamically, 109

user experience

badges, 48

V

validity

canvas element, 77

variables

(see also global variables)

configuration, 63

vector graphics, 75–119

canvas element, 76–97

pie charts, 98–115

Vector Markup Language (VML)

and canvas element, 115

views

(see also dynamic view; map view)

Order the print version of this book to get all 250+ pages!

http://www.sitepoint.com/launch/75abda

258

Firebug, 128

switching, 132

W
Watch subview

Firebug, 142

whitelisting

Firebug, 127

widgets

(see also Flickr API; Google Maps API)

defined, 218

wrapper functions, 171

X

XMLHttpRequest objects

Ajax requests, 53

fallbacks, 58

same-origin restriction, 224

XPath support

browsers, 169

Y
Yahoo! User Interface (YUI) library

self-executing function patterns, 163

YSlow

about, 146

The Art & Science Of JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/75abda

	The Art & Science of JavaScript
	Table of Contents
	Preface
	Who Should Read This Book?
	What’s Covered in This Book?
	The Book’s Web Site
	The Code Archive
	Updates and Errata

	The SitePoint Forums
	The SitePoint Newsletters
	Your Feedback
	Conventions Used in This Book
	Code Samples
	Tips, Notes, and Warnings

	Fun with Tables
	Anatomy of a Table
	Accessing Table Elements with getElementById
	Accessing Table Elements with getElementsByTagName

	Sortable Columns
	Making Our Tables Sortable
	Making the Sort Functionality Accessible
	Handling Events and Scope Issues
	Adding Some Class

	Performing the Sort
	Parsing the Content
	Implementing a Bubble Sort
	Managing Heading States
	Rearranging the Table

	Creating Draggable Columns
	Making the Table’s Columns Draggable
	The Phantom Column
	Accessible Dragging
	Event Handling
	The onmousedown Event Handler
	The onmousemove Event Handler
	The onmouseup Event Handler

	Dragging Columns without a Mouse

	Summary

	Building a 3D Maze with CSS and JavaScript
	Basic Principles
	Making Triangles
	Defining the Floor Plan
	Creating Perspective

	Making a Dynamic View
	Core Methods
	The createDungeonView Method
	The resetDungeonView Method
	The applyDungeonView Method

	Applying the Finishing Touches
	Limitations of This Approach

	Creating the Map View
	Adding Captions
	Designing a Floor Plan
	Further Developments
	Using the Callback
	Blue-sky Possibilities

	Summary

	What's Next?
	Index

