

Table	of	Contents
Introduction

Preface

HTML	Basics

The	document	heading

The	document	body

Tags	that	interact	with	text

Links

Container	tags	and	page	structure	HTML

Forms

Tables

Multimedia	tags:	audio	and	video

iframes

Images

Accessibility

2

Introduction

Welcome!
I	wrote	this	book	to	help	you	quickly	learn	HTML	and	get	familiar	with
the	advanced	HTML	topics.

HTML,	a	shorthand	for	Hyper	Text	Markup	Language,	is	one	of	the
most	fundamental	building	blocks	of	the	Web.

HTML	was	officially	born	in	1993	and	since	then	it	evolved	into	its
current	state,	moving	from	simple	text	documents	to	powering	rich
Web	Applications.

This	handbook	is	aimed	at	a	vast	audience.

First,	the	beginner.	I	explain	HTML	from	zero	in	a	succinct	but
comprehensive	way,	so	you	can	use	this	book	to	learn	HTML	from	the
basics.

Then,	the	professional.	HTML	is	often	considered	like	a	secondary
thing	to	learn.	It	might	be	given	for	granted.

Yet	lots	of	things	are	obscure	to	many	people.	Me	included.	I	wrote
this	handbook	to	help	my	understanding	of	the	topic,	because	when	I
need	to	explain	something,	I	better	make	sure	I	first	know	the	thing
inside	out.

Introduction

3

Even	if	you	don't	write	HTML	in	your	day	to	day	work,	knowing	how
HTML	works	can	help	save	you	some	headaches	when	you	need	to
understand	it	from	time	to	time,	for	example	while	tweaking	a	web
page.

Flavio

You	can	reach	me	via	email	at	flavio@flaviocopes.com,	on	Twitter
@flaviocopes.

My	website	is	flaviocopes.com.

Introduction

4

mailto:flavio@flaviocopes.com
https://twitter.com/flaviocopes
https://flaviocopes.com

Preface

Preface
HTML	is	the	foundation	of	the	marvel	called	the	Web.

There	is	an	incredible	power	underneath	this	rather	simple	and	limited
set	of	rules,	which	lets	us	--	developers,	makers,	designers,	writers,
and	tinkerers	--	craft	documents,	apps,	and	experiences	for	people	all
around	the	globe.

My	first	HTML	book	came	out	in	1997	and	was	called	"HTML
Unleashed".	A	big,	lots-of-pages,	long	tome.

20+	years	have	passed,	and	HTML	is	still	the	foundation	of	the	Web,
with	minimal	changes	from	back	then.

Sure,	we	got	more	semantic	tags,	presentational	HTML	is	no	longer	a
thing,	and	CSS	has	taken	care	of	the	design	of	things.

HTML's	success	is	based	on	one	thing:	simplicity.

It	resisted	being	hijacked	into	an	XML	dialect	via	XHTML,	when
eventually	people	realized	that	thing	was	way,	way	too	complex.

It	did	so	because	of	another	feature	it	provides	us:	forgiveness.	There
are	some	rules,	right,	but	after	you	learn	those,	you	have	a	lot	of
freedom.

Browsers	learned	to	be	resilient	and	to	always	try	to	do	their	best	when
parsing	and	presenting	HTML	to	the	users.

Preface

5

And	the	whole	Web	platform	did	one	thing	right:	it	never	broke
backward	compatibility.	Pretty	incredibly,	we	can	go	back	to	HTML
documents	written	in	1991,	and	they	look	pretty	much	as	they	looked
back	then.

We	even	know	what	the	first	web	page	was.	It's	this:
http://info.cern.ch/hypertext/WWW/TheProject.html

And	you	can	see	the	source	of	the	page,	thanks	to	another	big	feature
of	the	Web	and	HTML:	we	can	inspect	the	HTML	of	any	web	page.

Don't	take	this	for	granted.	I	don't	know	any	other	platform	that	gives
us	this	ability.

The	exceptional	Developer	Tools	built	into	any	browser	let	us	inspect
and	take	inspiration	from	HTML	written	by	anyone	in	the	world.

If	you	are	new	to	HTML	this	book	aims	to	help	you	get	started.	If	you
are	a	seasoned	Web	Developer	this	book	will	improve	your
knowledge.

I	learned	so	much	while	writing	it,	even	though	I've	been	working	with
the	Web	for	20+	years,	and	I'm	sure	you'll	find	something	new,	too.

Or	you'll	re-learn	something	old	you	forgot.

In	any	case,	the	goal	of	the	book	is	to	be	useful	to	you,	and	I	hope	it
succeeds.

Preface

6

http://info.cern.ch/hypertext/WWW/TheProject.html

HTML	Basics

HTML	Basics
HTML	is	a	standard	defined	by	the	WHATWG,	an	acronym	for	Web
Hypertext	Application	Technology	Working	Group,	an	organization
formed	by	people	working	on	the	most	popular	web	browser.	This
means	it's	basically	controlled	by	Google,	Mozilla,	Apple	and	Microsoft.

In	the	past	the	W3C	(World	Wide	Web	Consortium)	was	the
organization	in	charge	of	creating	the	HTML	standard.

The	control	informally	moved	from	W3C	to	WHATWG	when	it	became
clear	that	the	W3C	push	towards	XHTML	was	not	a	good	idea.

If	you've	never	heard	of	XHTML,	here's	a	short	story.	In	the	early
2000s,	we	all	believed	the	future	of	the	Web	was	XML	(seriously).	So
HTML	moved	from	being	an	SGML-based	authoring	language	to	an
XML	markup	language.

It	was	a	big	change.	We	had	to	know,	and	respect,	more	rules.	Stricter
rules.

Eventually	browser	vendors	realized	this	was	not	the	right	path	for	the
Web,	and	they	pushed	back,	creating	what	is	now	known	as	HTML5.

W3C	did	not	really	agree	on	giving	up	control	of	HTML,	and	for	years
we	had	2	competing	standards,	each	one	aiming	to	be	the	official	one.
Eventually	on	28	May	2019	it	was	made	official	by	W3C	that	the	"true"
HTML	version	was	the	one	published	by	WHATWG.

HTML	Basics

7

I	mentioned	HTML5.	Let	me	explain	this	little	story.	I	know,	it's	kind	of
confusing	up	to	now,	as	with	many	things	in	life	when	many	actors	are
involved,	yet	it's	also	fascinating.

We	had	HTML	version	1	in	1993.	Here's	the	original	RFC.

HTML	2	followed	in	1995.

We	got	HTML	3	in	January	1997,	and	HTML	4	in	December	1997.

Busy	times!

20+	years	went	by,	we	had	this	entire	XHTML	thing,	and	eventually	we
got	to	this	HTML5	"thing",	which	is	not	really	just	HTML	any	more.

HTML5	is	a	term	that	now	defines	a	whole	set	of	technologies,	which
includes	HTML	but	adds	a	lot	of	APIs	and	standards	like	WebGL,	SVG
and	more.

The	key	thing	to	understand	here	is	this:	there	is	no	such	thing	(any
more)	as	an	HTML	version	now.	It's	a	living	standard.	Like	CSS,	which
is	called	"3",	but	in	reality	is	a	bunch	of	independent	modules
developed	separately.	Like	JavaScript,	where	we	have	one	new
edition	each	year,	but	nowadays,	the	only	thing	that	matters	is	which
individual	features	are	implemented	by	the	engine.

Yes	we	call	it	HTML5,	but	HTML4	is	from	1997.	That's	a	long	time	for
anything,	let	alone	for	the	web.

This	is	where	the	standard	now	"lives":
https://html.spec.whatwg.org/multipage.

HTML	is	the	markup	language	we	use	to	structure	content	that	we
consume	on	the	Web.

HTML	Basics

8

https://tools.ietf.org/html/rfc1983
https://html.spec.whatwg.org/multipage

HTML	is	served	to	the	browser	in	different	ways.

It	can	be	generated	by	a	server-side	application	that	builds	it
depending	on	the	request	or	the	session	data,	for	example	a	Rails
or	Laravel	or	Django	application.
It	can	be	generated	by	a	JavaScript	client-side	application	that
generates	HTML	on	the	fly.
In	the	simplest	case,	it	can	be	stored	in	a	file	and	served	to	the
browser	by	a	Web	server.

Let's	dive	into	this	last	case.	Although	in	practice	it's	probably	the	least
popular	way	to	generate	HTML,	it's	still	essential	to	know	the	basic
building	blocks.

By	convention,	an	HTML	file	is	saved	with	a	 	.html		or	 	.htm	
extension.

Inside	this	file,	we	organize	the	content	using	tags.

Tags	wrap	the	content,	and	each	tag	gives	a	special	meaning	to	the
text	it	wraps.

Let's	make	a	few	examples.

This	HTML	snippet	creates	a	paragraph	using	the	 	p		tag:

<p>A	paragraph	of	text</p>

This	HTML	snippet	creates	a	list	of	items	using	the	 	ul		tag,	which
means	unordered	list,	and	the	 	li		tags,	which	mean	list	item:

		First	item

		Second	item

HTML	Basics

9

		Third	item

When	an	HTML	page	is	served	by	the	browser,	the	tags	are
interpreted,	and	the	browser	renders	the	elements	according	to	the
rules	that	define	their	visual	appearance.

Some	of	those	rules	are	built-in,	such	as	how	a	list	renders	or	how	a
link	is	underlined	in	blue.

Some	other	rules	are	set	by	you	with	CSS.

HTML	is	not	presentational.	It's	not	concerned	with	how	things	look.
Instead,	it's	concerned	with	what	things	mean.

It's	up	to	the	browser	to	determine	how	things	look,	with	the	directives
defined	by	who	builds	the	page,	with	the	CSS	language.

Now,	those	two	examples	I	made	are	HTML	snippets	taken	outside	of
a	page	context.

HTML	page	structure

Let's	make	an	example	of	a	proper	HTML	page.

Things	start	with	the	Document	Type	Declaration	(aka	doctype),	a	way
to	tell	the	browser	this	is	an	HTML	page,	and	which	version	of	HTML
we	are	using.

Modern	HTML	uses	this	doctype:

<!DOCTYPE	html>

HTML	Basics

10

Then	we	have	the	 	html		element,	which	has	an	opening	and	closing
tag:

<!DOCTYPE	html>

<html>

...

</html>

Most	tags	come	in	pairs	with	an	opening	tag	and	a	closing	tag.	The
closing	tag	is	written	the	same	as	the	opening	tag,	but	with	a	 	/	:

<sometag>some	content</sometag>

There	are	a	few	self-closing	tags,	which	means	they	don't	need	a
separate	closing	tag	as	they	don't	contain	anything	in	them.

The	 	html		starting	tag	is	used	at	the	beginning	of	the	document,	right
after	the	document	type	declaration.

The	 	html		ending	tag	is	the	last	thing	present	in	an	HTML	document.

Inside	the	 	html		element	we	have	2	elements:	 	head		and	 	body	:

<!DOCTYPE	html>

<html>

				<head>

				...

				</head>

				<body>

				...

				</body>

</html>

HTML	Basics

11

Inside	 	head		we	will	have	tags	that	are	essential	to	creating	a	web
page,	like	the	title,	the	metadata,	and	internal	or	external	CSS	and
JavaScript.	Mostly	things	that	do	not	directly	appear	on	the	page,	but
only	help	the	browser	(or	bots	like	the	Google	search	bot)	display	it
properly.

Inside	 	body		we	will	have	the	content	of	the	page.	The	visible	stuff.

Tags	vs	elements

I	mentioned	tags	and	elements.	What's	the	difference?

Elements	have	a	starting	tag	and	a	closing	tag.	In	this	example,	we
use	the	 	p		starting	and	closing	tags	to	create	a	 	p		element:

<p>A	paragraph	of	text</p>

So,	an	element	constitutes	the	whole	package:

starting	tag
text	content	(and	possibly	other	elements)
closing	tag

If	an	element	has	doesn't	have	a	closing	tag,	it	is	only	written	with	the
starting	tag,	and	it	cannot	contain	any	text	content.

That	said,	I	might	use	the	tag	or	element	term	in	the	book	meaning	the
same	thing,	except	if	I	explicitly	mention	starting	tag	or	ending	tag.

Attributes

The	starting	tag	of	an	element	can	have	special	snippets	of	information
we	can	attach,	called	attributes.

HTML	Basics

12

Attributes	have	the	 	key="value"		syntax:

<p	class="a-class">A	paragraph	of	text</p>

You	can	also	use	single	quotes,	but	using	double	quotes	in	HTML
is	a	nice	convention.

We	can	have	many	of	them:

<p	class="a-class"	id="an-id">A	paragraph	of	text</p>

and	some	attributes	are	boolean,	meaning	you	only	need	the	key:

<script	defer	src="file.js"></script>

The	 	class		and	 	id		attributes	are	two	of	the	most	common	you	will
find	used.

They	have	a	special	meaning,	and	they	are	useful	both	in	CSS	and
JavaScript.

The	difference	between	the	two	is	that	an	 	id		is	unique	in	the	context
of	a	web	page;	it	cannot	be	duplicated.

Classes,	on	the	other	hand,	can	appear	multiple	times	on	multiple
elements.

Plus,	an	 	id		is	just	one	value.	 	class		can	hold	multiple	values,
separated	by	a	space:

<p	class="a-class	another-class">A	paragraph	of	text</p>

HTML	Basics

13

It's	common	to	use	the	dash	 	-		to	separate	words	in	a	class	value,
but	it's	just	a	convention.

Those	are	just	two	of	the	possible	attributes	you	can	have.	Some
attributes	are	only	used	for	one	tag.	They	are	highly	specialized.

Other	attributes	can	be	used	in	a	more	general	way.	You	just	saw	 	id	
and	 	class	,	but	we	have	other	ones	too,	like	 	style		which	can	be
used	to	insert	inline	CSS	rules	on	an	element.

Case	insensitive

HTML	is	case	insensitive.	Tags	can	be	written	in	all	caps,	or
lowercase.	In	the	early	days,	caps	were	the	norm.	Today	lowercase	is
the	norm.	It	is	a	convention.

You	usually	write	like	this:

<p>A	paragraph	of	text</p>

not	like	this:

<P>A	paragraph	of	text</P>

White	space

Pretty	important.	In	HTML,	even	if	you	add	multiple	white	spaces	into	a
line,	it's	collapsed	by	the	browser's	CSS	engine.

For	example	the	rendering	of	this	paragraph

<p>A	paragraph	of	text</p>

HTML	Basics

14

is	the	same	as	this:

<p>								A	paragraph	of	text</p>

and	the	same	as	this:

<p>A	paragraph

of

											text										</p>

Using	the	 	white-space		CSS	property	you	can	change	how	things
behave.	You	can	find	more	information	on	how	CSS	processes
white	space	in	the	CSS	Spec

I'd	say	use	the	syntax	that	makes	things	visually	more	organized	and
easier	to	read,	but	you	can	use	any	syntax	you	like.

I	typically	favor

<p>A	paragraph	of	text</p>

or

<p>

				A	paragraph	of	text

</p>

Nested	tags	should	be	indented	with	2	or	4	characters,	depending	on
your	preference:

<body>

HTML	Basics

15

https://developer.mozilla.org/en-US/docs/Web/CSS/white-space
https://www.w3.org/TR/CSS2/text.html#white-space-model

				<p>

								A	paragraph	of	text

				</p>

				

								A	list	item

				

</body>

Note:	this	"white	space	is	not	relevant"	feature	means	that	if	you
want	to	add	additional	space,	it	can	make	you	pretty	mad.	I
suggest	you	use	CSS	to	make	more	space	when	needed.

Note:	in	special	cases,	you	can	use	the	 	 		HTML	entity	(an
acronym	that	means	non-breaking	space)	-	more	on	HTML	entities
later	on.	I	think	this	should	not	be	abused.	CSS	is	always	preferred
to	alter	the	visual	presentation.

HTML	Basics

16

The	document	heading

The	document	heading
The	 	head		tag	contains	special	tags	that	define	the	document
properties.

It's	always	written	before	the	 	body		tag,	right	after	the	opening	 	html	
tag:

<!DOCTYPE	html>

<html>

				<head>

								...

				</head>

				...

</html>

We	never	use	attributes	on	this	tag.	And	we	don't	write	content	in	it.

It's	just	a	container	for	other	tags.	Inside	it	we	can	have	a	wide	variety
of	tags,	depending	on	what	you	need	to	do:

	title	

	script	

	noscript	

	link	

	style	

	base	

	meta	

The	document	heading

17

The		title		tag

The	 	title		tag	determines	the	page	title.	The	title	is	displayed	in	the
browser,	and	it's	especially	important	as	it's	one	of	the	key	factors	for
Search	Engine	Optimization	(SEO).

The		script		tag

This	tag	is	used	to	add	JavaScript	into	the	page.

You	can	include	it	inline,	using	an	opening	tag,	the	JavaScript	code
and	then	the	closing	tag:

<script>

..some	JS

</script>

Or	you	can	load	an	external	JavaScript	file	by	using	the	 	src		attribute:

<script	src="file.js"></script>

The	 	type		attribute	by	default	is	set	to	 	text/javascript	,	so	it's
completely	optional.

There	is	something	pretty	important	to	know	about	this	tag.

Sometimes	this	tag	is	used	at	the	bottom	of	the	page,	just	before	the
closing	 	</body>		tag.	Why?	For	performance	reasons.

Loading	scripts	by	default	blocks	the	rendering	of	the	page	until	the
script	is	parsed	and	loaded.

The	document	heading

18

By	putting	it	at	the	bottom	of	the	page,	the	script	is	loaded	and
executed	after	the	whole	page	is	already	parsed	and	loaded,	giving	a
better	experience	to	the	user	over	keeping	it	in	the	 	head		tag.

My	opinion	is	that	this	is	now	bad	practice.	Let	 	script		live	in	the
	head		tag.

In	modern	JavaScript	we	have	an	alternative	this	is	more	performant
than	keeping	the	script	at	the	bottom	of	the	page	--	the	 	defer	
attribute.	This	is	an	example	that	loads	a	 	file.js		file,	relative	to	the
current	URL:

<script	defer	src="file.js"></script>

This	is	the	scenario	that	triggers	the	faster	path	to	a	fast-loading	page,
and	fast-loading	JavaScript.

Note:	the	 	async		attribute	is	similar,	but	in	my	opinion	a	worse
option	than	 	defer	.	I	describe	why,	in	more	detail,	on	page
https://flaviocopes.com/javascript-async-defer/

The		noscript		tag

This	tag	is	used	to	detect	when	scripts	are	disabled	in	the	browser.

Note:	users	can	choose	to	disable	JavaScript	scripts	in	the
browser	settings.	Or	the	browser	might	not	support	them	by
default.

It	is	used	differently	depending	on	whether	it's	put	in	the	document
head	or	in	the	document	body.

The	document	heading

19

https://flaviocopes.com/javascript-async-defer/

We're	talking	about	the	document	head	now,	so	let's	first	introduce	this
usage.

In	this	case,	the	 	noscript		tag	can	only	contain	other	tags:

	link		tags
	style		tags
	meta		tags

to	alter	the	resources	served	by	the	page,	or	the	 	meta		information,	if
scripts	are	disabled.

In	this	example	I	set	an	element	with	the	 	no-script-alert		class	to
display	if	scripts	are	disabled,	as	it	was	 	display:	none		by	default:

<!DOCTYPE	html>

<html>

				<head>

								...

								<noscript>

												<style>

																.no-script-alert	{

																				display:	block;

																}

												</style>

								</noscript>

								...

				</head>

				...

</html>

Let's	solve	the	other	case:	if	put	in	the	body,	it	can	contain	content,
like	paragraphs	and	other	tags,	which	are	rendered	in	the	UI.

The	document	heading

20

The		link		tag

The	 	link		tag	is	used	to	set	relationships	between	a	document	and
other	resources.

It's	mainly	used	to	link	an	external	CSS	file	to	be	loaded.

This	element	has	no	closing	tag.

Usage:

<!DOCTYPE	html>

<html>

				<head>

								...

								<link	href="file.css"	rel="stylesheet">

								...

				</head>

				...

</html>

The	 	media		attribute	allows	the	loading	of	different	stylesheets
depending	on	the	device	capabilities:

<link	href="file.css"	media="screen"	rel="stylesheet">

<link	href="print.css"	media="print"	rel="stylesheet">

We	can	also	link	to	resources	other	than	stylesheets.

For	example	we	can	associate	an	RSS	feed	using

<link	rel="alternate"	type="application/rss+xml"	href="/index.xml"

>

The	document	heading

21

Or	we	can	associate	a	favicon	using:

<link	rel="apple-touch-icon"	sizes="180x180"	href="/assets/apple-

touch-icon.png">

<link	rel="icon"	type="image/png"	sizes="32x32"	href="/assets/fav

icon-32x32.png">

<link	rel="icon"	type="image/png"	sizes="16x16"	href="/assets/fav

icon-16x16.png">

This	tag	was	also	used	for	multi-page	content,	to	indicate	the	previous
and	next	page	using	 	rel="prev"		and	 	rel="next"	.	Mostly	for	Google.
As	of	2019,	Google	announced	it	does	not	use	this	tag	any	more
because	it	can	find	the	correct	page	structure	without	it.

The		style		tag

This	tag	can	be	used	to	add	styles	into	the	document,	rather	than
loading	an	external	stylesheet.

Usage:

<style>

.some-css	{}

</style>

As	with	the	 	link		tag,	you	can	use	the	 	media		attribute	to	use	that
CSS	only	on	the	specified	medium:

<style	media="print">

.some-css	{}

</style>

The	document	heading

22

https://twitter.com/googlewmc/status/1108726443251519489

The		base		tag

This	tag	is	used	to	set	a	base	URL	for	all	relative	URLs	contained	in
the	page.

<!DOCTYPE	html>

<html>

				<head>

								...

								<base	href="https://flaviocopes.com/">

								...

				</head>

				...

</html>

The		meta		tag

Meta	tags	perform	a	variety	of	tasks	and	they	are	very,	very	important.

Especially	for	SEO.

	meta		elements	only	have	the	starting	tag.

The	most	basic	one	is	the	 	description		meta	tag:

<meta	name="description"	content="A	nice	page">

This	might	be	used	by	Google	to	generate	the	page	description	in	its
result	pages,	if	it	finds	it	better	describes	the	page	than	the	on-page
content	(don't	ask	me	how).

The	 	charset		meta	tag	is	used	to	set	the	page	character	encoding.
	utf-8		in	most	cases:

The	document	heading

23

<meta	charset="utf-8">

The	 	robots		meta	tag	instructs	the	Search	Engine	bots	whether	to
index	a	page	or	not:

<meta	name="robots"	content="noindex">

Or	if	they	should	follow	links	or	not:

<meta	name="robots"	content="nofollow">

You	can	set	nofollow	on	individual	links,	too.	This	is	how	you	can
set	 	nofollow		globally.

You	can	combine	them:

<meta	name="robots"	content="noindex,	nofollow">

The	default	behavior	is	 	index,	follow	.

You	can	use	other	properties,	including	 	nosnippet	,	 	noarchive	,
	noimageindex		and	more.

You	can	also	just	tell	Google	instead	of	targeting	all	search	engines:

<meta	name="googlebot"	content="noindex,	nofollow">

And	other	search	engines	might	have	their	own	meta	tag,	too.

Speaking	of	which,	we	can	tell	Google	to	disable	some	features.	This
prevents	the	translate	functionality	in	the	search	engine	results:

The	document	heading

24

<meta	name="google"	content="notranslate">

The	 	viewport		meta	tag	is	used	to	tell	the	browser	to	set	the	page
width	based	on	the	device	width.

<meta	name="viewport"	content="width=device-width,	initial-scale=

1">

See	more	on	this	tag.

Another	rather	popular	meta	tag	is	the	 	http-equiv="refresh"		one.
This	line	tells	the	browser	to	wait	3	seconds,	then	redirect	to	that	other
page:

<meta	http-equiv="refresh"	content="3;url=http://flaviocopes.com/

another-page">

Using	0	instead	of	3	will	redirect	as	soon	as	possible.

This	is	not	a	full	reference;	Other	less-used	meta	tags	exist.

After	this	document	heading	introduction,	we	can	start	diving	into	the
document	body.

The	document	heading

25

https://developer.mozilla.org/en-US/docs/Mozilla/Mobile/Viewport_meta_tag

The	document	body

The	document	body
After	the	closing	head	tag,	we	can	only	have	one	thing	in	an	HTML
document:	the	 	body		element.

<!DOCTYPE	html>

<html>

				<head>

								...

				</head>

				<body>

								...

				</body>

</html>

Just	like	the	 	head		and	 	html		tags,	we	can	only	have	one	 	body		tag	in
one	page.

Inside	the	 	body		tag	we	have	all	the	tags	that	define	the	content	of	the
page.

Technically,	the	start	and	ending	tags	are	optional.	But	I	consider	it	a
good	practice	to	add	them.	Just	for	clarity.

In	the	next	chapters	we'll	define	the	variety	of	tags	you	can	use	inside
the	page	body.

But	before,	we	must	introduce	a	difference	between	block	elements
and	inline	elements.

The	document	body

26

Block	elements	vs	inline	elements
Visual	elements,	the	ones	defined	in	the	page	body,	can	be	generally
classified	in	2	categories:

block	elements	(p	,	 	div	,	heading	elements,	lists	and	list	items,
...)
inline	elements	(a	,	 	span	,	 	img	,	...)

What	is	the	difference?

Block	elements,	when	positioned	in	the	page,	do	not	allow	other
elements	next	to	them.	To	the	left,	or	to	the	right.

Inline	elements	instead	can	sit	next	to	other	inline	elements.

The	difference	also	lies	in	the	visual	properties	we	can	edit	using	CSS.
We	can	alter	the	width/height,	margin,	padding	and	border	of	block
elements.	We	can't	do	that	for	inline	elements.

Note	that	using	CSS	we	can	change	the	default	for	each	element,
setting	a	 	p		tag	to	be	inline,	for	example,	or	a	 	span		to	be	a	block
element.

Another	difference	is	that	inline	elements	can	be	contained	in	block
elements.	The	reverse	is	not	true.

Some	block	elements	can	contain	other	block	elements,	but	it
depends.	The	 	p		tag	for	example	does	not	allow	such	option.

The	document	body

27

Tags	that	interact	with	text

Tags	that	interact	with	text

The		p		tag
This	tag	defines	a	paragraph	of	text.

<p>Some	text</p>

It's	a	block	element.

Inside	it,	we	can	add	any	inline	element	we	like,	like	 	span		or	 	a	.

We	cannot	add	block	elements.

We	cannot	nest	a	 	p		element	into	another	one.

By	default	browsers	style	a	paragraph	with	a	margin	on	top	and	at	the
bottom.	 	16px		in	Chrome,	but	the	exact	value	might	vary	between
browsers.

This	causes	two	consecutive	paragraphs	to	be	spaced,	replicating
what	we	think	of	a	"paragraph"	in	printed	text.

The		span		tag

Tags	that	interact	with	text

28

This	is	an	inline	tag	that	can	be	used	to	create	a	section	in	a
paragraph	that	can	be	targeted	using	CSS:

<p>A	part	of	the	text	and	here	another	part</p>

The		br		tag
This	tag	represents	a	line	break.	It's	an	inline	element,	and	does	not
need	a	closing	tag.

We	use	it	to	create	a	new	line	inside	a	 	p		tag,	without	creating	a	new
paragraph.

And	compared	to	creating	a	new	paragraph,	it	does	not	add	additional
spacing.

<p>Some	text
A	new	line</p>

The	heading	tags
HTML	provides	us	6	heading	tags.	From	most	important	to	least
important,	we	have	 	h1	,	 	h2	,	 	h3	,	 	h4	,	 	h5	,	 	h6	.

Typically	a	page	will	have	one	 	h1		element,	which	is	the	page	title.
Then	you	might	have	one	or	more	 	h2		elements	depending	on	the
page	content.

Headings,	especially	the	heading	organization,	are	also	essential	for
SEO,	and	search	engines	use	them	in	various	ways.

Tags	that	interact	with	text

29

The	browser	by	default	will	render	the	 	h1		tag	bigger,	and	will	make
the	elements	size	smaller	as	the	number	near	 	h		increases:

All	headings	are	block	elements.	They	cannot	contain	other	elements,
just	text.

The		strong		tag
This	tag	is	used	to	mark	the	text	inside	it	as	strong.	This	is	pretty
important,	it's	not	a	visual	hint,	but	a	semantic	hint.	Depending	on	the
medium	used,	its	interpretation	will	vary.

Tags	that	interact	with	text

30

Browsers	by	default	make	the	text	in	this	tag	bold.

The		em		tag
This	tag	is	used	to	mark	the	text	inside	it	as	emphasized.	Like	with
	strong	,	it's	not	a	visual	hint	but	a	semantic	hint.

Browsers	by	default	make	the	text	in	this	italic.

Quotes
The	 	blockquote		HTML	tag	is	useful	to	insert	citations	in	the	text.

Browsers	by	default	apply	a	margin	to	the	 	blockquote		element.
Chrome	applies	a	40px	left	and	right	margin,	and	a	10px	top	and
bottom	margin.

The	 	q		HTML	tag	is	used	for	inline	quotes.

Horizontal	line
Not	really	based	on	text,	but	the	 	hr		tag	is	often	used	inside	a	page.	It
means	 	horizontal	rule	,	and	it	adds	a	horizontal	line	in	the	page.

Useful	to	separate	sections	in	the	page.

Code	blocks

Tags	that	interact	with	text

31

The	 	code		tag	is	especially	useful	to	show	code,	because	browsers
give	it	a	monospaced	font.

That's	typically	the	only	thing	that	browsers	do.	This	is	the	CSS	applied
by	Chrome:

code	{

				font-family:	monospace;

}

This	tag	is	typically	wrapped	in	a	 	pre		tag,	because	the	 	code	
element	ignores	whitespace	and	line	breaks.	Like	the	 	p		tag.

Chrome	gives	 	pre		this	default	styling:

pre	{

				display:	block;

				font-family:	monospace;

				white-space:	pre;

				margin:	1em	0px;

}

which	prevents	white	space	collapsing	and	makes	it	a	block	element.

Lists
We	have	3	types	of	lists:

unordered	lists
ordered	lists
definition	lists

Tags	that	interact	with	text

32

Unordered	lists	are	created	using	the	 	ul		tag.	Each	item	in	the	list	is
created	with	the	 	li		tag:

				First

				Second

Ordered	lists	are	similar,	just	made	with	the	 	ol		tag:

				First

				Second

The	difference	between	the	two	is	that	ordered	lists	have	a	number
before	each	item:

Definition	lists	are	a	bit	different.	You	have	a	term,	and	its	definition:

Tags	that	interact	with	text

33

<dl>

				<dt>Flavio</dt>

				<dd>The	name</dd>

				<dt>Copes</dt>

				<dd>The	surname</dd>

</dl>

This	is	how	browsers	typically	render	them:

I	must	say	you	rarely	see	them	in	the	wild,	for	sure	not	much	as	 	ul	
and	 	ol	,	but	sometimes	they	might	be	useful.

Other	text	tags
There	is	a	number	of	tags	with	presentational	purposes:

the	 	mark		tag
the	 	ins		tag
the	 	del		tag
the	 	sup		tag
the	 	sub		tag
the	 	small		tag
the	 	i		tag

Tags	that	interact	with	text

34

the	 	b		tag

This	is	an	example	of	the	visual	rendering	of	them	which	is	applied	by
default	by	browsers:

You	might	wonder,	how	is	 	b		different	than	 	strong	?	And	how	 	i		is
different	than	 	em	?

The	difference	lies	in	the	semantic	meaning.	While	 	b		and	 	i		are	a
direct	hint	at	the	browser	to	make	a	piece	of	text	bold	or	italic,	 	strong	
and	 	em		give	the	text	a	special	meaning,	and	it's	up	to	the	browser	to
give	the	styling.	Which	happens	to	be	exactly	the	same	as	 	b		and	 	i	,
by	default.	Although	you	can	change	that	using	CSS.

There	are	a	number	of	other,	less	used	tags	related	to	text.	I	just
mentioned	the	ones	that	I	see	used	the	most.

Tags	that	interact	with	text

35

Links

Links
Links	are	defined	using	the	 	a		tag.	The	link	destination	is	set	via	its
	href		attribute.

Example:

click	here

Between	the	starting	and	closing	tag	we	have	the	link	text.

The	above	example	is	an	absolute	URL.	Links	also	work	with	relative
URLs:

click	here

In	this	case,	when	clicking	the	link	the	user	is	moved	to	the	 	/test	
URL	on	the	current	origin.

Be	careful	with	the	 	/		character.	If	omitted,	instead	of	starting	from	the
origin,	the	browser	will	just	add	the	 	test		string	to	the	current	URL.

Example,	I'm	on	the	page	 	https://flaviocopes.com/axios/		and	I	have
these	links:

	/test		once	clicked	brings	me	to	 	https://flaviocopes.com/test	
	test		once	clicked	brings	me	to

Links

36

	https://flaviocopes.com/axios/test	

Link	tags	can	include	other	things	inside	them,	not	just	text.	For
example,	images:

				

or	any	other	elements,	except	other	 	<a>		tags.

If	you	want	to	open	the	link	in	a	new	tab,	you	can	use	the	 	target	
attribute:

open	in	new	tab

Links

37

Container	tags	and	page
structure	HTML

Container	tags	and	page
structure	HTML

Container	tags
HTML	provides	a	set	of	container	tags.	Those	tags	can	contain	an
unspecified	set	of	other	tags.

We	have:

	article	

	section	

	div	

and	it	can	be	confusing	to	understand	the	difference	between	them.

Let's	see	when	to	use	each	one	of	them.

	article	

The	article	tag	identifies	a	thing	that	can	be	independent	from	other
things	in	a	page.

For	example	a	list	of	blog	posts	in	the	homepage.

Container	tags	and	page	structure	HTML

38

Or	a	list	of	links.

<div>

				<article>

								<h2>A	blog	post</h2>

								<a	...>Read	more

				</article>

				<article>

								<h2>Another	blog	post</h2>

								<a	...>Read	more

				</article>

</div>

We're	not	limited	to	lists:	an	article	can	be	the	main	element	in	a	page.

<article>

				<h2>A	blog	post</h2>

				<p>Here	is	the	content...</p>

</article>

Inside	an	 	article		tag	we	should	have	a	title	(h1	- 	h6)	and

	section	

Represents	a	section	of	a	document.	Each	section	has	a	heading	tag
(h1	- 	h6),	then	the	section	body.

Example:

<section>

				<h2>A	section	of	the	page</h2>

				<p>...</p>

				

</section>

Container	tags	and	page	structure	HTML

39

It's	useful	to	break	a	long	article	into	different	sections.

Shouldn't	be	used	as	a	generic	container	element.	 	div		is	made	for
this.

	div	

	div		is	the	generic	container	element:

<div>

				...

</div>

You	often	add	a	 	class		or	 	id		attribute	to	this	element,	to	allow	it	to
be	styled	using	CSS.

We	use	 	div		in	any	place	where	we	need	a	container	but	the	existing
tags	are	not	suited.

Tags	related	to	page

	nav	

This	tag	is	used	to	create	the	markup	that	defines	the	page	navigation.
Into	this	we	typically	add	an	 	ul		or	 	ol		list:

<nav>

				

								Home

								Blog

				

</nav>

Container	tags	and	page	structure	HTML

40

	aside	

The	 	aside		tag	is	used	to	add	a	piece	of	content	that	is	related	to	the
main	content.

A	box	where	to	add	a	quote,	for	example.	Or	a	sidebar.

Example:

<div>

		<p>some	text..</p>

		<aside>

				<p>A	quote..</p>

		</aside>

		<p>other	text...</p>

</div>

Using	 	aside		is	a	signal	that	the	things	it	contains	are	not	part	of	the
regular	flow	of	the	section	it	lives	into.

	header	

The	 	header		tag	represents	a	part	of	the	page	that	is	the	introduction.
It	can	for	example	contain	one	or	more	heading	tag	(h1	- 	h6),	the
tagline	for	the	article,	an	image.

<article>

		<header>

						<h1>Article	title</h1>

		</header>

		...

</div>

Container	tags	and	page	structure	HTML

41

	main	

The	 	main		tag	represents	the	main	part	of	a	page:

<body>

	

		<main>

				<p>....</p>

		</main>

</body>

	footer	

The	 	footer		tag	is	used	to	determine	the	footer	of	an	article,	or	the
footer	of	the	page:

<article>

		<footer>

				<p>Footer	notes..</p>

		</footer>

</div>

Container	tags	and	page	structure	HTML

42

Forms

Forms
Forms	are	the	way	you	can	interact	with	a	page,	or	an	app,	built	with
Web	technologies.

You	have	a	set	of	controls,	and	when	you	submit	the	form,	either	with
a	click	to	a	"submit"	button	or	programmatically,	the	browser	will	send
the	data	to	the	server.

By	default	this	data	sending	causes	the	page	to	reload	after	the	data	is
sent,	but	using	JavaScript	you	can	alter	this	behavior	(not	going	to
explain	how	in	this	book).

A	form	is	created	using	the	 	form		tag:

<form>

				...

</form>

By	default	forms	are	submitted	using	the	GET	HTTP	method.	Which
has	its	drawbacks,	and	usually	you	want	to	use	POST.

You	can	set	the	form	to	use	POST	when	submitted	by	using	the
	method		attribute:

<form	method="POST">

				...

</form>

Forms

43

The	form	is	submitted,	either	using	GET	or	POST,	to	the	same	URL
where	it	resides.

So	if	the	form	is	in	the	 	https://flaviocopes.com/contacts		page,
pressing	the	"submit"	button	will	make	a	request	to	that	same	URL.

Which	might	result	in	nothing	happening.

You	need	something	server-side	to	handle	the	request,	and	typically
you	"listen"	for	those	form	submit	events	on	a	dedicated	URL.

You	can	specify	the	URL	via	the	 	action		parameter:

<form	action="/new-contact"	method="POST">

				...

</form>

This	will	cause	the	browser	to	submit	the	form	data	using	POST	to	the
	/new-contact		URL	on	the	same	origin.

If	the	origin	(protocol	+	domain	+	port)	is	 	https://flaviocopes.com	
(port	80	is	the	default),	this	means	the	form	data	will	be	sent	to
	https://flaviocopes.com/new-contact	.

I	talked	about	data.	Which	data?

Data	is	provided	by	users	via	the	set	of	controls	that	are	available	on
the	Web	platform:

input	boxes	(single	line	text)
text	areas	(multiline	text)
select	boxes	(choose	one	option	from	a	drop-down	menu)
radio	buttons	(choose	one	option	from	a	list	always	visible)

Forms

44

checkboxes	(choose	zero,	one	or	more	option)
file	uploads
and	more!

Let's	introduce	each	one	of	them	in	the	following	form	fields	overview.

The		input		tag
The	 	input		field	is	one	of	the	most	widely	used	form	elements.	It's
also	a	very	versatile	element,	and	it	can	completely	change	behavior
based	on	the	 	type		attribute.

The	default	behavior	is	to	be	a	single-line	text	input	control:

<input>

Equivalent	to	using:

<input	type="text">

As	with	all	the	other	fields	that	follow,	you	need	to	give	the	field	a
name	in	order	for	its	content	to	be	sent	to	the	server	when	the	form	is
submitted:

<input	type="text"	name="username">

The	 	placeholder		attribute	is	used	to	have	some	text	showing	up,	in
light	gray,	when	the	field	is	empty.	Useful	to	add	a	hint	to	the	user	for
what	to	type	in:

Forms

45

<input	type="text"	name="username"	placeholder="Your	username">

Email

Using	 	type="email"		will	validate	client-side	(in	the	browser)	an	email
for	correctness	(semantic	correctness,	not	ensuring	the	email	address
is	existing)	before	submitting.

<input	type="email"	name="email"	placeholder="Your	email">

Password

Using	 	type="password"		will	make	every	key	entered	appear	as	an
asterisk	(*)	or	dot,	useful	for	fields	that	host	a	password.

<input	type="password"	name="password"	placeholder="Your	password"

>

Numbers

You	can	have	an	input	element	accept	only	numbers:

<input	type="number"	name="age"	placeholder="Your	age">

You	can	specify	a	minimum	and	maximum	value	accepted:

<input	type="number"	name="age"	placeholder="Your	age"	min="18"	m

ax="110">

Forms

46

The	 	step		attribute	helps	identify	the	steps	between	different	values.
For	example	this	accepts	a	value	between	10	and	50,	at	steps	of	5:

<input	type="number"	name="a-number"		min="10"	max="50"	step="5">

Hidden	field

Fields	can	be	hidden	from	the	user.	They	will	still	be	sent	to	the	server
upon	the	form	submit:

<input	type="hidden"	name="some-hidden-field"	value="some-value">

This	is	commonly	used	to	store	values	like	a	CSRF	token,	used	for
security	and	user	identification,	or	even	to	detect	robots	sending	spam,
using	special	techniques.

It	can	also	just	be	used	to	identify	a	form	and	its	action.

Setting	a	default	value

All	those	fields	accept	a	predefined	value.	If	the	user	does	not	change
it,	this	will	be	the	value	sent	to	the	server:

<input	type="number"	name="age"	value="18">

If	you	set	a	placeholder,	that	value	will	appear	if	the	user	clears	the
input	field	value:

<input	type="number"	name="age"	placeholder="Your	age"	value="18">

Forms

47

Form	submit
The	 	type="submit"		field	is	a	button	that,	once	pressed	by	the	user,
submits	the	form:

<input	type="submit">

The	 	value		attribute	sets	the	text	on	the	button,	which	if	missing
shows	the	"Submit"	text:

<input	type="submit"	value="Click	me">

Form	validation
Browsers	provide	client-side	validation	functionality	to	forms.

You	can	set	fields	as	required,	ensuring	they	are	filled,	and	enforce	a
specific	format	for	the	input	of	each	field.

Let's	see	both	options.

Set	fields	as	required

The	 	required		attribute	helps	you	with	validation.	If	the	field	is	not	set,
client-side	validation	fails	and	the	browser	does	not	submit	the	form:

<input	type="text"	name="username"	required>

Enforce	a	specific	format

Forms

48

I	described	the	 	type="email"		field	above.	It	automatically	validates	the
email	address	according	to	a	format	set	in	the	specification.

In	the	 	type="number"		field,	I	mentioned	the	 	min		and	 	max		attribute	to
limit	values	entered	to	an	interval.

You	can	do	more.

You	can	enforce	a	specific	format	on	any	field.

The	 	pattern		attribute	gives	you	the	ability	to	set	a	regular	expression
to	validate	the	value	against.

I	recommend	reading	my	Regular	Expressions	Guide	at
flaviocopes.com/javascript-regular-expressions/.

pattern="https://.*"

<input	type="text"	name="username"	pattern="[a-zA-Z]{8}">

Other	fields

File	uploads

You	can	load	files	from	your	local	computer	and	send	them	to	the
server	using	a	 	type="file"		input	element:

<input	type="file"	name="secret-documents">

You	can	attach	multiple	files:

<input	type="file"	name="secret-documents"	multiple>

Forms

49

https://flaviocopes.com/javascript-regular-expressions/
https://.*

You	can	specify	one	or	more	file	types	allowed	using	the	 	accept	
attribute.	This	accepts	images:

<input	type="file"	name="secret-documents"	accept="image/*">

You	can	use	a	specific	MIME	type,	like	 	application/json		or	set	a	file
extension	like	 	.pdf	.	Or	set	multiple	file	extensions,	like	this:

<input	type="file"	name="secret-documents"	accept=".jpg,	.jpeg,	.

png">

Buttons

The	 	type="button"		input	fields	can	be	used	to	add	additional	buttons
to	the	form,	that	are	not	submit	buttons:

<input	type="button"	value="Click	me">

They	are	used	to	programmatically	do	something,	using	JavaScript.

There	is	a	special	field	rendered	as	a	button,	whose	special	action	is	to
clear	the	entire	form	and	bring	back	the	state	of	the	fields	to	the	initial
one:

<input	type="reset">

Radio	buttons

Radio	buttons	are	used	to	create	a	set	of	choices,	of	which	one	is
pressed	and	all	the	others	are	disabled.

Forms

50

The	name	comes	from	old	car	radios	that	had	this	kind	of	interface.

You	define	a	set	of	 	type="radio"		inputs,	all	with	the	same	 	name	
attribute,	and	different	 	value		attribute:

<input	type="radio"	name="color"	value="yellow">

<input	type="radio"	name="color"	value="red">

<input	type="radio"	name="color"	value="blue">

Once	the	form	is	submitted,	the	 	color		data	property	will	have	one
single	value.

There's	always	one	element	checked.	The	first	item	is	the	one	checked
by	default.

You	can	set	the	value	that's	pre-selected	using	the	 	checked		attribute.
You	can	use	it	only	once	per	radio	inputs	group.

Checkboxes

Similar	to	radio	boxes,	but	they	allow	multiple	values	to	be	chosen,	or
none	at	all.

You	define	a	set	of	 	type="checkbox"		inputs,	all	with	the	same	 	name	
attribute,	and	different	 	value		attribute:

<input	type="checkbox"	name="color"	value="yellow">

<input	type="checkbox"	name="color"	value="red">

<input	type="checkbox"	name="color"	value="blue">

All	those	checkboxes	will	be	unchecked	by	default.	Use	the	 	checked	
attribute	to	enable	them	on	page	load.

Forms

51

Since	this	input	field	allows	multiple	values,	upon	form	submit	the
value(s)	will	be	sent	to	the	server	as	an	array.

Date	and	time

We	have	a	few	input	types	to	accept	date	values.

The	 	type="date"		input	field	allows	the	user	to	enter	a	date,	and
shows	a	date	picker	if	needed:

<input	type="date"	name="birthday">

The	 	type="time"		input	field	allows	the	user	to	enter	a	time,	and	shows
a	time	picker	if	needed:

<input	type="time"	name="time-to-pickup">

The	 	type="month"		input	field	allows	the	user	to	enter	a	month	and	a
year:

<input	type="month"	name="choose-release-month">

The	 	type="week"		input	field	allows	the	user	to	enter	a	week	and	a
year:

<input	type="week"	name="choose-week">

All	those	fields	allow	to	limit	the	range	and	the	step	between	each
value.	I	recommend	checking	MDN	for	the	little	details	on	their	usage.

The	 	type="datetime-local"		field	lets	you	choose	a	date	and	a	time.

Forms

52

<input	type="datetime-local"	name="date-and-time">

Here	is	a	page	to	test	them	all:
https://codepen.io/flaviocopes/pen/ZdWQPm

Color	picker

You	can	let	users	pick	a	color	using	the	 	type="color"		element:

<input	type="color"	name="car-color">

You	set	a	default	value	using	the	 	value		attribute:

<input	type="color"	name="car-color"	value="#000000">

The	browser	will	take	care	of	showing	a	color	picker	to	the	user.

Range

This	input	element	shows	a	slider	element.	People	can	use	it	to	move
from	a	starting	value	to	an	ending	value:

<input	type="range"	name="age"	min="0"	max="100"	value="30">

You	can	provide	an	optional	step:

<input	type="range"	name="age"	min="0"	max="100"	value="30"	step=

"10">

Forms

53

https://codepen.io/flaviocopes/pen/ZdWQPm

Telephone

The	 	type="tel"		input	field	is	used	to	enter	a	phone	number:

<input	type="tel"	name="telephone-number">

The	main	selling	point	for	using	 	tel		over	 	text		is	on	mobile,	where
the	device	can	choose	to	show	a	numeric	keyboard.

Specify	a	 	pattern		attribute	for	additional	validation:

<input	type="tel"	pattern="[0-9]{3}-[0-9]{8}"	name="telephone-num

ber">

URL

The	 	type="url"		field	is	used	to	enter	a	URL.

<input	type="url"	name="website">

You	can	validate	it	using	the	 	pattern		attribute:

<input	type="url"	name="website"		pattern="https://.*">

The		textarea		tag
The	 	textarea		element	allows	users	to	enter	multi-line	text.	Compared
to	 	input	,	it	requires	an	ending	tag:

<textarea></textarea>

Forms

54

You	can	set	the	dimensions	using	CSS,	but	also	using	the	 	rows		and
	cols		attributes:

<textarea	rows="20"	cols="10"></textarea>

As	with	the	other	form	tags,	the	 	name		attribute	determines	the	name
in	the	data	sent	to	the	server:

<textarea	name="article"></textarea>

The		select		tag
This	tag	is	used	to	create	a	drop-down	menu.

The	user	can	choose	one	of	the	options	available.

Each	option	is	created	using	the	 	option		tag.	You	add	a	name	to	the
select,	and	a	value	to	each	option:

<select	name="color">

				<option	value="red">Red</option>

				<option	value="yellow">Yellow</option>

</select>

You	can	set	an	option	disabled:

<select	name="color">

				<option	value="red"	disabled>Red</option>

				<option	value="yellow">Yellow</option>

</select>

Forms

55

You	can	have	one	empty	option:

<select	name="color">

				<option	value="">None</option>

				<option	value="red">Red</option>

				<option	value="yellow">Yellow</option>

</select>

Options	can	be	grouped	using	the	 	optgroup		tag.	Each	option	group
has	a	 	label		attribute:

<select	name="color">

				<optgroup	label="Primary">

								<option	value="red">Red</option>

								<option	value="yellow">Yellow</option>

								<option	value="blue">Blue</option>

				</optgroup>

				<optgroup	label="Others">

								<option	value="green">Green</option>

								<option	value="pink">Pink</option>

				</optgroup>

</select>

Forms

56

Tables

Tables
In	the	early	days	of	the	web	tables	were	a	very	important	part	of
building	layouts.

Later	on	they	were	replaced	by	CSS	and	its	layout	capabilities,	and
today	we	have	powerful	tools	like	CSS	Flexbox	and	CSS	Grid	to	build
layouts.	Tables	are	now	used	just	for,	guess	what,	building	tables!

The		table		tag

You	define	a	table	using	the	 	table		tag:

<table>

</table>

Inside	the	table	we'll	define	the	data.	We	reason	in	terms	of	rows,
which	means	we	add	rows	into	a	table	(not	columns).	We'll	define
columns	inside	a	row.

Rows

A	row	is	added	using	the	 	tr		tag,	and	that's	the	only	thing	we	can	add
into	a	 	table		element:

Tables

57

<table>

		<tr></tr>

		<tr></tr>

		<tr></tr>

</table>

This	is	a	table	with	3	rows.

The	first	row	can	take	the	role	of	the	header.

Column	headers

The	table	header	contains	the	name	of	a	column,	typically	in	a	bold
font.

Think	about	an	Excel	/	Google	Sheets	document.	The	top	 	A-B-C-D...	
header.

We	define	the	header	using	the	 	th		tag:

<table>

		<tr>

				<th>Column	1</th>

				<th>Column	2</th>

				<th>Column	3</th>

		</tr>

Tables

58

		<tr></tr>

		<tr></tr>

</table>

The	table	content

The	content	of	the	table	is	defined	using	 	td		tags,	inside	the	other
	tr		elements:

<table>

		<tr>

				<th>Column	1</th>

				<th>Column	2</th>

				<th>Column	3</th>

		</tr>

		<tr>

				<td>Row	1	Column	1</td>

				<td>Row	1	Column	2</td>

				<td>Row	1	Column	3</td>

		</tr>

		<tr>

				<td>Row	2	Column	1</td>

				<td>Row	2	Column	2</td>

				<td>Row	2	Column	3</td>

		</tr>

</table>

This	is	how	browsers	render	it,	if	you	don't	add	any	CSS	styling:

Tables

59

Adding	this	CSS:

th,	td	{

		padding:	10px;

		border:	1px	solid	#333;

}

makes	the	table	look	more	like	a	proper	table:

Span	columns	and	rows

Tables

60

A	row	can	decide	to	span	over	2	or	more	columns,	using	the	 	colspan	
attribute:

<table>

		<tr>

				<th>Column	1</th>

				<th>Column	2</th>

				<th>Column	3</th>

		</tr>

		<tr>

				<td	colspan="2">Row	1	Columns	1-2</td>

				<td>Row	1	Column	3</td>

		</tr>

		<tr>

				<td	colspan="3">Row	2	Columns	1-3</td>

		</tr>

</table>

Or	it	can	span	over	2	or	more	rows,	using	the	 	rowspan		attribute:

<table>

		<tr>

				<th>Column	1</th>

				<th>Column	2</th>

				<th>Column	3</th>

		</tr>

		<tr>

				<td	colspan="2"	rowspan="2">Rows	1-2	Columns	1-2</td>

				<td>Row	1	Column	3</td>

Tables

61

		</tr>

		<tr>

				<td>Row	2	Column	3</td>

		</tr>

</table>

Row	headings

Before	I	explained	how	you	can	have	column	headings,	using	the	 	th	
tag	inside	the	first	 	tr		tag	of	the	table.

You	can	add	a	 	th		tag	as	the	first	element	inside	a	 	tr		that's	not	the
first	 	tr		of	the	table,	to	have	row	headings:

<table>

		<tr>

				<th></th>

				<th>Column	2</th>

				<th>Column	3</th>

		</tr>

		<tr>

				<th>Row	1</th>

				<td>Col	2</td>

				<td>Col	3</td>

		</tr>

		<tr>

				<th>Row	2</th>

				<td>Col	2</td>

				<td>Col	3</td>

Tables

62

		</tr>

</table>

More	tags	to	organize	the	table

You	can	add	3	more	tags	into	a	table,	to	have	it	more	organized.

This	is	best	when	using	big	tables.	And	to	properly	define	a	header
and	a	footer,	too.

Those	tags	are

	thead	

	tbody	

	tfoot	

They	wrap	the	 	tr		tags	to	clearly	define	the	different	sections	of	the
table.	Here's	an	example:

<table>

		<thead>

				<tr>

						<th></th>

						<th>Column	2</th>

						<th>Column	3</th>

				</tr>

		</thead>

		<tbody>

				<tr>

Tables

63

						<th>Row	1</th>

						<td>Col	2</td>

						<td>Col	3</td>

				</tr>

				<tr>

						<th>Row	2</th>

						<td>Col	2</td>

						<td>Col	3</td>

				</tr>

		</tbody>

		<tfoot>

				<tr>

						<td></td>

						<td>Footer	of	Col	1</td>

						<td>Footer	of	Col	2</td>

				</tr>

		</tfoot>

</table>

Table	caption
A	table	should	have	a	 	caption		tag	that	describes	its	content.	That	tag
should	be	put	immediately	after	the	opening	 	table		tag:

<table>

		<caption>Dogs	age</caption>

Tables

64

		<tr>

				<th>Dog</th>

				<th>Age</th>

		</tr>

		<tr>

				<td>Roger</td>

				<td>7</td>

		</tr>

</table>

Tables

65

Multimedia	tags:	audio	and
video

Multimedia	tags:	 	audio		and
	video	

In	this	section	I	want	to	show	you	the	 	audio		and	 	video		tags.

The		audio		tag
This	tag	allows	you	to	embed	audio	content	in	your	HTML	pages.

This	element	can	stream	audio,	maybe	using	a	microphone	via
	getUserMedia()	,	or	it	can	play	an	audio	source	which	you	reference
using	the	 	src		attribute:

<audio	src="file.mp3">

By	default	the	browser	does	not	show	any	controls	for	this	element.
Which	means	the	audio	will	play	only	if	set	to	autoplay	(more	on	this
later)	and	the	user	can't	see	how	to	stop	it	or	control	the	volume	or
move	through	the	track.

To	show	the	built-in	controls,	you	can	add	the	 	controls		attribute:

<audio	src="file.mp3"	controls>

Multimedia	tags:	audio	and	video

66

Controls	can	have	a	custom	skin.

You	can	specify	the	MIME	type	of	the	audio	file	using	the	 	type	
attribute.	If	not	set,	the	browser	will	try	to	automatically	determine	it:

<audio	src="file.mp3"	controls	type="audio/mpeg">

An	audio	file	by	default	does	not	play	automatically.	Add	the	 	autoplay	
attribute	to	play	the	audio	automatically:

<audio	src="file.mp3"	controls	autoplay>

Note:	mobile	browsers	don't	allow	autoplay

The	 	loop		attribute	restarts	the	audio	playing	at	0:00	if	set;	otherwise,
if	not	present,	the	audio	stops	at	the	end	of	the	file:

<audio	src="file.mp3"	controls	autoplay	loop>

You	can	also	play	an	audio	file	muted	using	the	 	muted		attribute	(not
really	sure	what's	the	usefulness	of	this):

<audio	src="file.mp3"	controls	autoplay	loop	muted>

Using	JavaScript	you	can	listen	for	various	events	happening	on	an
	audio		element,	the	most	basic	of	which	are:

	play		when	the	file	starts	playing
	pause		when	the	audio	playing	was	paused
	playing		when	the	audio	is	resumed	from	a	pause
	ended		when	the	end	of	the	audio	file	was	reached

Multimedia	tags:	audio	and	video

67

The		video		tag
This	tag	allows	you	to	embed	video	content	in	your	HTML	pages.

This	element	can	stream	video,	using	a	webcam	via	 	getUserMedia()	
or	WebRTC,	or	it	can	play	a	video	source	which	you	reference	using
the	 	src		attribute:

<video	src="file.mp4">

By	default	the	browser	does	not	show	any	controls	for	this	element,
just	the	video.

Which	means	the	video	will	play	only	if	set	to	autoplay	(more	on	this
later)	and	the	user	can't	see	how	to	stop	it,	pause	it,	control	the	volume
or	skip	to	a	specific	position	in	the	video.

To	show	the	built-in	controls,	you	can	add	the	 	controls		attribute:

<video	src="file.mp4"	controls>

Controls	can	have	a	custom	skin.

You	can	specify	the	MIME	type	of	the	video	file	using	the	 	type	
attribute.	If	not	set,	the	browser	will	try	to	automatically	determine	it:

<video	src="file.mp4"	controls	type="video/mp4">

A	video	file	by	default	does	not	play	automatically.	Add	the	 	autoplay	
attribute	to	play	the	video	automatically:

<video	src="file.mp4"	controls	autoplay>

Multimedia	tags:	audio	and	video

68

Some	browsers	also	require	the	 	muted		attribute	to	autoplay.	The
video	autoplays	only	if	muted:

<audio	src="file.mp3"	controls	autoplay	muted>

The	 	loop		attribute	restarts	the	video	playing	at	0:00	if	set;	otherwise,
if	not	present,	the	video	stops	at	the	end	of	the	file:

<video	src="file.mp4"	controls	autoplay	loop>

You	can	set	an	image	to	be	the	poster	image:

<video	src="file.mp4"	poster="picture.png">

If	not	present,	the	browser	will	display	the	first	frame	of	the	video	as
soon	as	it's	available.

You	can	set	the	 	width		and	 	height		attributes	to	set	the	space	that
the	element	will	take	so	that	the	browser	can	account	for	it	and	it	does
not	change	the	layout	when	it's	finally	loaded.	It	takes	a	numeric	value,
expressed	in	pixels.

Using	JavaScript	you	can	listen	for	various	events	happening	on	an
	video		element,	the	most	basic	of	which	are:

	play		when	the	file	starts	playing
	pause		when	the	video	was	paused
	playing		when	the	video	is	resumed	from	a	pause
	ended		when	the	end	of	the	video	file	was	reached

Multimedia	tags:	audio	and	video

69

Multimedia	tags:	audio	and	video

70

iframes

iframes
The	 	iframe		tag	allows	us	to	embed	content	coming	from	other	origins
(other	sites)	into	our	web	page.

Technically,	an	iframe	creates	a	new	nested	browsing	context.	This
means	that	anything	in	the	iframe	does	not	interfere	with	the	parent
page,	and	vice	versa.	JavaScript	and	CSS	do	not	"leak"	to/from
iframes.

Many	sites	use	iframes	to	perform	various	things.	You	might	be
familiar	with	Codepen,	Glitch	or	other	sites	that	allow	you	to	code	in
one	part	of	the	page,	and	you	see	the	result	in	a	box.	That's	an	iframe.

You	create	one	this	way:

<iframe	src="page.html"></iframe>

You	can	load	an	absolute	URL,	too:

<iframe	src="https://site.com/page.html"></iframe>

You	can	set	a	set	of	width	and	height	parameters	(or	set	them	using
CSS)	otherwise	the	iframe	will	use	the	defaults,	a	300x150	pixels	box:

<iframe	src="page.html"	width="800"	height="400"></iframe>

iframes

71

Srcdoc
The	 	srcdoc		attribute	lets	you	specify	some	inline	HTML	to	show.	It's
an	alternative	to	 	src	,	but	recent	and	not	supported	in	Edge	18	and
lower,	and	in	IE:

<iframe	srcdoc="<p>My	dog	is	a	good	dog</p>"></iframe>

Sandbox
The	 	sandbox		attribute	allows	us	to	limit	the	operations	allowed	in	the
iframes.

If	we	omit	it,	everything	is	allowed:

<iframe	src="page.html"></iframe>

If	we	set	it	to	"",	nothing	is	allowed:

<iframe	src="page.html"	sandbox=""></iframe>

We	can	select	what	to	allow	by	adding	options	in	the	 	sandbox	
attribute.	You	can	allow	multiple	ones	by	adding	a	space	in	between.
Here's	an	incomplete	list	of	the	options	you	can	use:

	allow-forms	:	allow	to	submit	forms
	allow-modals		allow	to	open	modals	windows,	including	calling
	alert()		in	JavaScript
	allow-orientation-lock		allow	to	lock	the	screen	orientation

iframes

72

	allow-popups		allow	popups,	using	 	window.open()		and
	target="_blank"		links
	allow-same-origin		treat	the	resource	being	loaded	as	same
origin
	allow-scripts		lets	the	loaded	iframe	run	scripts	(but	not	create
popups).
	allow-top-navigation		gives	access	to	the	iframe	to	the	top	level
browsing	context

Allow
Currently	experimental	and	only	supported	by	Chromium-based
browsers,	this	is	the	future	of	resource	sharing	between	the	parent
window	and	the	iframe.

It's	similar	to	the	 	sandbox		attribute,	but	lets	us	allow	specific	features,
including:

	accelerometer		gives	access	to	the	Sensors	API	Accelerometer
interface
	ambient-light-sensor		gives	access	to	the	Sensors	API
AmbientLightSensor	interface
	autoplay		allows	to	autoplay	video	and	audio	files
	camera		allows	to	access	the	camera	from	the	getUserMedia	API
	display-capture		allows	to	access	the	screen	content	using	the
getDisplayMedia	API
	fullscreen		allows	to	access	fullscreen	mode
	geolocation		allows	to	access	the	Geolocation	API
	gyroscope		gives	access	to	the	Sensors	API	Gyroscope	interface
	magnetometer		gives	access	to	the	Sensors	API	Magnetometer

iframes

73

interface
	microphone		gives	access	to	the	device	microphone	using	the
getUserMedia	API
	midi		allows	access	to	the	Web	MIDI	API
	payment		gives	access	to	the	Payment	Request	API
	speaker		allows	access	to	playing	audio	through	the	device
speakers
	usb		gives	access	to	the	WebUSB	API.
	vibrate		gives	access	to	the	Vibration	API
	vr		gives	access	to	the	WebVR	API

Referrer
When	loading	an	iframe,	the	browser	sends	it	important	information
about	who	is	loading	it	in	the	 	Referer		header	(notice	the	single	 	r	,	a
typo	we	must	live	with).

The	misspelling	of	referrer	originated	in	the	original	proposal	by
computer	scientist	Phillip	Hallam-Baker	to	incorporate	the	field	into
the	HTTP	specification.	The	misspelling	was	set	in	stone	by	the
time	of	its	incorporation	into	the	Request	for	Comments	standards
document	RFC	1945

The	 	referrerpolicy		attribute	lets	us	set	the	referrer	to	send	to	the
iframe	when	loading	it.	The	referrer	is	an	HTTP	header	that	lets	the
page	know	who	is	loading	it.	These	are	the	allowed	values:

	no-referrer-when-downgrade		it's	the	default,	and	does	not	send
the	referrer	when	the	current	page	is	loaded	over	HTTPS	and	the
iframe	loads	on	the	HTTP	protocol
	no-referrer		does	not	send	the	referrer	header

iframes

74

	origin		the	referrer	is	sent,	and	only	contains	the	origin	(port,
protocol,	domain),	not	the	origin	+	path	which	is	the	default
	origin-when-cross-origin		when	loading	from	the	same	origin
(port,	protocol,	domain)	in	the	iframe,	the	referrer	is	sent	in	its
complete	form	(origin	+	path).	Otherwise	only	the	origin	is	sent
	same-origin		the	referrer	is	sent	only	when	loading	from	the	same
origin	(port,	protocol,	domain)	in	the	iframe
	strict-origin		sends	the	origin	as	the	referrer	if	the	current	page
is	loaded	over	HTTPS	and	the	iframe	also	loads	on	the	HTTPS
protocol.	Sends	nothing	if	the	iframe	is	loaded	over	HTTP
	strict-origin-when-cross-origin		sends	the	origin	+	path	as	the
referrer	when	working	on	the	same	origin.	Sends	the	origin	as	the
referrer	if	the	current	page	is	loaded	over	HTTPS	and	the	iframe
also	loads	on	the	HTTPS	protocol.	Sends	nothing	if	the	iframe	is
loaded	over	HTTP
	unsafe-url	:	sends	the	origin	+	path	as	the	referrer	even	when
loading	resources	from	HTTP	and	the	current	page	is	loaded	over
HTTPS

iframes

75

Images

Images
Images	can	be	displayed	using	the	 	img		tag.

This	tag	accepts	a	 	src		attribute,	which	we	use	to	set	the	image
source:

We	can	use	a	wide	set	of	images.	The	most	common	ones	are	PNG,
JPEG,	GIF,	SVG	and	more	recently	WebP.

The	HTML	standard	requires	an	 	alt		attribute	to	be	present,	to
describe	the	image.	This	is	used	by	screen	readers	and	also	by	search
engine	bots:

You	can	set	the	 	width		and	 	height		attributes	to	set	the	space	that
the	element	will	take,	so	that	the	browser	can	account	for	it	and	it	does
not	change	the	layout	when	it's	fully	loaded.	It	takes	a	numeric	value,
expressed	in	pixels.

<img	src="dog.png"	alt="A	picture	of	a	dog"	width="300"	height="2

00">

Images

76

The		figure		tag
The	 	figure		tag	is	often	used	along	with	the	 	img		tag.

	figure		is	a	semantic	tag	often	used	when	you	want	to	display	an
image	with	a	caption.	You	use	it	like	this:

<figure>

				<img	src="dog.png"

									alt="A	nice	dog">

				<figcaption>A	nice	dog</figcaption>

</figure>

The	 	figcaption		tag	wraps	the	caption	text.

Responsive	images	using		srcset	
The	 	srcset		attribute	allows	you	to	set	responsive	images	that	the
browser	can	use	depending	on	the	pixel	density	or	window	width,
according	to	your	preferences.	This	way,	it	can	only	download	the
resources	it	needs	to	render	the	page,	without	downloading	a	bigger
image	if	it's	on	a	mobile	device,	for	example.

Here's	an	example,	where	we	give	4	additional	images	for	4	different
screen	sizes:

<img	src="dog.png"

				alt="A	picture	of	a	dog"

				srcset="dog-500.png	500w,

															dog-800.png	800w,

													dog-1000.png	1000w,

													dog-1400.png	1400w">

Images

77

In	the	 	srcset		we	use	the	 	w		measure	to	indicate	the	window	width.

Since	we	do	so,	we	also	need	to	use	the	 	sizes		attribute:

<img	src="dog.png"

				alt="A	picture	of	a	dog"

				sizes="(max-width:	500px)	100vw,	(max-width:	900px)	50vw,	800

px"

				srcset="dog-500.png	500w,

															dog-800.png	800w,

													dog-1000.png	1000w,

													dog-1400.png	1400w">

In	this	example	the	 	(max-width:	500px)	100vw,	(max-width:	900px)
50vw,	800px		string	in	the	 	sizes		attribute	describes	the	size	of	the
image	in	relation	to	the	viewport,	with	multiple	conditions	separated	by
a	semicolon.

The	media	condition	 	max-width:	500px		sets	the	size	of	the	image	in
correlation	to	the	viewport	width.	In	short,	if	the	window	size	is	<
500px,	it	renders	the	image	at	100%	of	the	window	size.

If	the	window	size	is	bigger	but	<	 	900px	,	it	renders	the	image	at	50%
of	the	window	size.

And	if	even	bigger,	it	renders	the	image	at	800px.

The	 	vw		unit	of	measure	can	be	new	to	you,	and	in	short	we	can	say
that	1	 	vw		is	1%	of	the	window	width,	so	 	100vw		is	100%	of	the
window	width.

A	useful	website	to	generate	the	 	srcset		and	progressively	smaller
images	is	https://responsivebreakpoints.com/.

Images

78

https://responsivebreakpoints.com/

The		picture		tag
HTML	also	gives	us	the	 	picture		tag,	which	does	a	very	similar	job	to
	srcset	,	and	the	differences	are	very	subtle.

You	use	 	picture		when	instead	of	just	serving	a	smaller	version	of	a
file,	you	completely	want	to	change	it.	Or	serve	a	different	image
format.

The	best	use	case	I	found	is	when	serving	a	WebP	image,	which	is	a
format	still	not	widely	supported.	In	the	 	picture		tag	you	specify	a	list
of	images,	and	they	will	be	used	in	order,	so	in	the	next	example,
browsers	that	support	WebP	will	use	the	first	image,	and	fallback	to
JPG	if	not:

<picture>

		<source	type="image/webp"	srcset="image.webp">

		

</picture>

The	 	source		tag	defines	one	(or	more)	formats	for	the	images.	The
	img		tag	is	the	fallback	in	case	the	browser	is	very	old	and	does
not	support	the	 	picture		tag.

In	the	 	source		tag	inside	 	picture		you	can	add	a	 	media		attribute	to
set	media	queries.

The	example	that	follows	kind	of	works	like	the	above	example	with
	srcset	:

<picture>

		<source	media="(min-width:	500w)"	srcset="dog-500.png"	sizes="1

00vw">

Images

79

		<source	media="(min-width:	800w)"	srcset="dog-800.png"	sizes="1

00vw">

		<source	media="(min-width:	1000w)"	srcset="dog-1000.png"				siz

es="800px">

		<source	media="(min-width:	1400w)"	srcset="dog-1400.png"				siz

es="800px">

		

</picture>

But	that's	not	its	use	case,	because	as	you	can	see	it's	much	more
verbose.

The	 	picture		tag	is	recent	but	is	now	supported	by	all	the	major
browsers	except	Opera	Mini	and	IE	(all	versions).

Images

80

https://caniuse.com/#search=picture

Accessibility

Accessibility
It's	important	we	design	our	HTML	with	accessibility	in	mind.

Having	accessible	HTML	means	that	people	with	disabilities	can	use
the	Web.	There	are	totally	blind	or	visually	impaired	users,	people	with
hearing	loss	issues	and	a	multitude	of	other	different	disabilities.

Unfortunately	this	topic	does	not	take	the	importance	it	needs,	and	it
doesn't	seem	as	cool	as	others.

What	if	a	person	can't	see	your	page,	but	still	wants	to	consume	its
content?	First,	how	do	they	do	that?	They	can't	use	the	mouse,	they
use	something	called	a	screen	reader.	You	don't	have	to	imagine	that.
You	can	try	one	now:	Google	provides	the	free	ChromeVox	Chrome
Extension.	Accessibility	must	also	take	care	of	allowing	tools	to	easily
select	elements	or	navigate	through	the	pages.

Web	pages	and	Web	apps	are	not	always	built	with	accessibility	as
one	of	their	first	goals,	and	maybe	version	1	is	released	not	accessible
but	it's	possible	to	make	a	web	page	accessible	after	the	fact.	Sooner
is	better,	but	it's	never	too	late.

It's	important	and	in	my	country,	websites	built	by	the	government	or
other	public	organizations	must	be	accessible.

What	does	this	mean	to	make	an	HTML	accessible?	Let	me	illustrate
the	main	things	you	need	to	think	about.

Accessibility

81

https://chrome.google.com/webstore/detail/chromevox/kgejglhpjiefppelpmljglcjbhoiplfn/

Note:	there	are	several	other	things	to	take	care	about,	which
might	go	in	the	CSS	topic,	like	colors,	contrast	and	fonts.	Or	how	to
make	SVG	images	accessible.	I	don't	talk	about	them	here.

Use	semantic	HTML
Semantic	HTML	is	very	important	and	it's	one	of	the	main	things	you
need	to	take	care	of.	Let	me	illustrate	a	few	common	scenarios.

It's	important	to	use	the	correct	structure	for	heading	tags.	The	most
important	is	 	h1	,	and	you	use	higher	numbers	for	less	important	ones,
but	all	the	same-level	headings	should	have	the	same	meaning	(think
about	it	like	a	tree	structure)

h1

				h2

								h3

				h2

				h2

								h3

												h4

Use	 	strong		and	 	em		instead	of	 	b		and	 	i	.	Visually	they	look	the
same,	but	the	first	2	have	more	meaning	associated	with	them.	 	b		and
	i		are	more	visual	elements.

Lists	are	important.	A	screen	reader	can	detect	a	list	and	provide	an
overview,	then	let	the	user	choose	to	get	into	the	list	or	not.

A	table	should	have	a	 	caption		tag	that	describes	its	content:

<table>

		<caption>Dogs	age</caption>

Accessibility

82

https://css-tricks.com/accessible-svgs/

		<tr>

				<th>Dog</th>

				<th>Age</th>

		</tr>

		<tr>

				<td>Roger</td>

				<td>7</td>

		</tr>

</table>

Use		alt		attributes	for	images
All	images	must	have	an	 	alt		tag	describing	the	image	content.	It's
not	just	a	good	practice,	it's	required	by	the	HTML	standard	and	your
HTML	without	it	is	not	validated.

It's	also	good	for	search	engines,	if	that's	an	incentive	for	you	to	add	it.

Use	the		role		attribute
The	 	role		attribute	lets	you	assign	specific	roles	to	the	various
elements	in	your	page.

You	can	assign	lots	of	different	roles:	complementary,	list,	listitem,
main,	navigation,	region,	tab,	alert,	application,	article,	banner,	button,
cell,	checkbox,	contentinfo,	dialog,	document,	feed,	figure,	form,	grid,
gridcell,	heading,	img,	listbox,	row,	rowgroup,	search,	switch,	table,
tabpanel,	textbox,	timer.

Accessibility

83

It's	a	lot	and	for	the	full	reference	of	each	of	them	I	give	you	this	MDN
link.	But	you	don't	need	to	assign	a	role	to	every	element	in	the	page.
Screen	readers	can	infer	from	the	HTML	tag	in	most	cases.	For
example	you	don't	need	to	add	a	role	tag	to	semantic	tags	like	 	nav	,
	button	,	 	form	.

Let's	take	the	 	nav		tag	example.	You	can	use	it	to	define	the	page
navigation	like	this:

<nav>

		

				Home

				Blog

		

</nav>

If	you	were	forced	to	use	a	 	div		tag	instead	of	 	nav	,	you'd	use	the
	navigation		role:

<div	role="navigation">

		

				Home

				Blog

		

</div>

So	here	you	got	a	practical	example:	 	role		is	used	to	assign	a
meaningful	value	when	the	tag	does	not	convey	the	meaning	already.

Use	the		tabindex		attribute

Accessibility

84

https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Roles

The	 	tabindex		attribute	allows	you	to	change	the	order	of	how
pressing	the	Tab	key	selects	"selectable"	elements.	By	defaults	only
links	and	form	elements	are	"selectable"	by	navigation	using	the	Tab
key	(and	you	don't	need	to	set	 	tabindex		on	them).

Adding	 	tabindex="0"		makes	an	element	selectable:

<div	tabindex="0">

...

</div>

Using	 	tabindex="-1"		instead	removes	an	element	from	this	tab-based
navigation,	and	it	can	be	pretty	useful.

Use	the		aria		attributes
ARIA	is	an	acronym	that	means	Accessible	Rich	Internet	Applications
and	defines	semantics	that	can	be	applied	to	elements.

	aria-label	

This	attribute	is	used	to	add	a	string	to	describe	an	element.

Example:

<p	aria-label="The	description	of	the	product">...</p>

I	use	this	attribute	on	my	blog	sidebar,	where	I	have	an	input	box	for
search	without	an	explicit	label,	as	it	has	a	placeholder	attribute.

	aria-labelledby	

Accessibility

85

This	attribute	sets	a	correlation	between	the	current	element	and	the
one	that	labels	it.

If	you	know	how	an	 	input		element	can	be	associated	to	a	 	label	
element,	that's	similar.

We	pass	the	item	id	that	describes	the	current	element.

Example:

<h3	id="description">The	description	of	the	product</h3>

<p	aria-labelledby="description">

...

</p>

	aria-describedby	

This	attribute	lets	us	associate	an	element	with	another	element	that
serves	as	description.

Example:

<button	aria-describedby="payNowDescription"	>Pay	now</button>

<div	id="payNowDescription">Clicking	the	button	will	send	you	to	

our	Stripe	form!</div>

Use	aria-hidden	to	hide	content

I	like	a	minimalistic	design	in	my	sites.	My	blog	for	example	is	mostly
just	content,	with	some	links	in	the	sidebar.	But	some	things	in	the
sidebar	are	just	visual	elements	that	don't	add	up	to	the	experience	of

Accessibility

86

a	person	that	can't	see	the	page.	Like	my	logo	picture,	or	the
dark/bright	theme	selector.

Adding	the	 	aria-hidden="true"		attribute	will	tell	screen	readers	to
ignore	that	element.

Where	to	learn	more
This	is	just	an	introduction	to	the	topic.	To	learn	more,	I	recommend
these	resources:

https://www.w3.org/TR/WCAG20/
https://webaim.org
https://developers.google.com/web/fundamentals/accessibility/

Accessibility

87

https://www.w3.org/TR/WCAG20/
https://webaim.org/
https://developers.google.com/web/fundamentals/accessibility/

	Introduction
	Preface
	HTML Basics
	The document heading
	The document body
	Tags that interact with text
	Links
	Container tags and page structure HTML
	Forms
	Tables
	Multimedia tags: audio and video
	iframes
	Images
	Accessibility

