

Table	of	Contents
Preface

Introduction	to	CSS

A	brief	history	of	CSS

Adding	CSS	to	an	HTML	page

Selectors

Cascade

Specificity

Inheritance

Import

Attribute	selectors

Pseudo-classes

Pseudo-elements

Colors

Units

url

calc

Backgrounds

Comments

Custom	Properties

Fonts

Typography

Box	Model

Border

Padding

Margin

Box	Sizing

Display

Positioning

Floating	and	clearing

z-index

2

CSS	Grid

Flexbox

Tables

Centering

Lists

Media	queries	and	responsive	design

Feature	Queries

Filters

Transforms

Transitions

Animations

Normalizing	CSS

Error	handling

Vendor	prefixes

CSS	for	print

3

Preface

Welcome!
I	wrote	this	book	to	help	you	quickly	learn	CSS	and	get	familiar	with	the	advanced	CSS	topics.

CSS,	a	shorthand	for	Cascading	Style	Sheets,	is	one	of	the	main	building	blocks	of	the	Web.
Its	history	goes	back	to	the	90's	and	along	with	HTML	it	has	changed	a	lot	since	its	humble
beginnings.

Having	created	websites	since	before	CSS	existed,	I	have	seen	its	evolution.

CSS	is	an	amazing	tool,	and	in	the	last	few	years	it	has	grown	a	lot,	introducing	many	fantastic
features	like	CSS	Grid,	Flexbox	and	CSS	Custom	Properties.

This	handbook	is	aimed	at	a	vast	audience.

First,	the	beginner.	I	explain	CSS	from	zero	in	a	succinct	but	comprehensive	way,	so	you	can
use	this	book	to	learn	CSS	from	the	basics.

Then,	the	professional.	CSS	is	often	considered	like	a	secondary	thing	to	learn,	especially	by
JavaScript	developers.	They	know	CSS	is	not	a	real	programming	language,	they	are
programmers	and	therefore	they	should	not	bother	learning	CSS	the	right	way.	I	wrote	this
book	for	you,	too.

Next,	the	person	that	knows	CSS	from	a	few	years	but	hasn't	had	the	opportunity	to	learn	the
new	things	in	it.	We'll	talk	extensively	about	the	new	features	of	CSS,	the	ones	that	are	going
to	build	the	web	of	the	next	decade.

CSS	has	improved	a	lot	in	the	past	few	years	and	it's	evolving	fast.

Even	if	you	don't	write	CSS	for	a	living,	knowing	how	CSS	works	can	help	save	you	some
headaches	when	you	need	to	understand	it	from	time	to	time,	for	example	while	tweaking	a
web	page.

Thank	you	for	getting	this	ebook.	My	goal	with	it	is	to	give	you	a	quick	yet	comprehensive
overview	of	CSS.

Flavio

You	can	reach	me	via	email	at	flavio@flaviocopes.com,	on	Twitter	@flaviocopes.

My	website	is	flaviocopes.com.

Preface

4

mailto:flavio@flaviocopes.com
https://twitter.com/flaviocopes
https://flaviocopes.com

Preface

5

Introduction	to	CSS
CSS	(an	abbreviation	of	Cascading	Style	Sheets)	is	the	language	that	we	use	to	style	an
HTML	file,	and	tell	the	browser	how	should	it	render	the	elements	on	the	page.

In	this	book	I	talk	exclusively	about	styling	HTML	documents,	although	CSS	can	be	used
to	style	other	things	too.

A	CSS	file	contains	several	CSS	rules.

Each	rule	is	composed	by	2	parts:

the	selector
the	declaration	block

The	selector	is	a	string	that	identifies	one	or	more	elements	on	the	page,	following	a	special
syntax	that	we'll	soon	talk	about	extensively.

The	declaration	block	contains	one	or	more	declarations,	in	turn	composed	by	a	property
and	value	pair.

Those	are	all	the	things	we	have	in	CSS.

Carefully	organising	properties,	associating	them	values,	and	attaching	those	to	specific
elements	of	the	page	using	a	selector	is	the	whole	argument	of	this	ebook.

How	does	CSS	look	like
A	CSS	rule	set	has	one	part	called	selector,	and	the	other	part	called	declaration.	The
declaration	contains	various	rules,	each	composed	by	a	property,	and	a	value.

In	this	example,	 	p		is	the	selector,	and	applies	one	rule	which	sets	the	value	 	20px		to	the
	font-size		property:

p	{

		font-size:	20px;

}

Multiple	rules	are	stacked	one	after	the	other:

p	{

		font-size:	20px;

}

a	{

Introduction	to	CSS

6

		color:	blue;

}

A	selector	can	target	one	or	more	items:

p,	a	{

		font-size:	20px;

}

and	it	can	target	HTML	tags,	like	above,	or	HTML	elements	that	contain	a	certain	class
attribute	with	 	.my-class	,	or	HTML	elements	that	have	a	specific	 	id		attribute	with	 	#my-id	.

More	advanced	selectors	allow	you	to	choose	items	whose	attribute	matches	a	specific	value,
or	also	items	which	respond	to	pseudo-classes	(more	on	that	later)

Semicolons
Every	CSS	rule	terminates	with	a	semicolon.	Semicolons	are	not	optional,	except	after	the	last
rule,	but	I	suggest	to	always	use	them	for	consistency	and	to	avoid	errors	if	you	add	another
property	and	forget	to	add	the	semicolon	on	the	previous	line.

Formatting	and	indentation
There	is	no	fixed	rule	for	formatting.	This	CSS	is	valid:

						p

						{

		font-size:											20px			;

																						}

a{color:blue;}

but	a	pain	to	see.	Stick	to	some	conventions,	like	the	ones	you	see	in	the	examples	above:
stick	selectors	and	the	closing	brackets	to	the	left,	indent	2	spaces	for	each	rule,	have	the
opening	bracket	on	the	same	line	of	the	selector,	separated	by	one	space.

Correct	and	consistent	use	of	spacing	and	indentation	is	a	visual	aid	in	understanding	your
code.

Introduction	to	CSS

7

Introduction	to	CSS

8

A	brief	history	of	CSS
Before	moving	on,	I	want	to	give	you	a	brief	recap	of	the	history	of	CSS.

CSS	was	grown	out	of	the	necessity	of	styling	web	pages.	Before	CSS	was	introduced,	people
wanted	a	way	to	style	their	web	pages,	which	looked	all	very	similar	and	"academic"	back	in
the	day.	You	couldn't	do	much	in	terms	of	personalisation.

HTML	3.2	introduced	the	option	of	defining	colors	inline	as	HTML	element	attributes,	and
presentational	tags	like	 	center		and	 	font	,	but	that	escalated	quickly	into	a	far	from	ideal
situation.

CSS	let	us	move	everything	presentation-related	from	the	HTML	to	the	CSS,	so	that	HTML
could	get	back	being	the	format	that	defines	the	structure	of	the	document,	rather	than	how
things	should	look	in	the	browser.

CSS	is	continuously	evolving,	and	CSS	you	used	5	years	ago	might	just	be	outdated,	as	new
idiomatic	CSS	techniques	emerged	and	browsers	changed.

It's	hard	to	imagine	the	times	when	CSS	was	born	and	how	different	the	web	was.

At	the	time,	we	had	several	competing	browsers,	the	main	ones	being	Internet	Explorer	or
Netscape	Navigator.

Pages	were	styled	by	using	HTML,	with	special	presentational	tags	like	 	bold		and	special
attributes,	most	of	which	are	now	deprecated.

This	meant	you	had	a	limited	amount	of	customisation	opportunities.

The	bulk	of	the	styling	decisions	were	left	to	the	browser.

Also,	you	built	a	site	specifically	for	one	of	them,	because	each	one	introduced	different	non-
standard	tags	to	give	more	power	and	opportunities.

Soon	people	realised	the	need	for	a	way	to	style	pages,	in	a	way	that	would	work	across	all
browsers.

After	the	initial	idea	proposed	in	1994,	CSS	got	its	first	release	in	1996,	when	the	CSS	Level	1
("CSS	1")	recommendation	was	published.

CSS	Level	2	("CSS	2")	got	published	in	1998.

Since	then,	work	began	on	CSS	Level	3.	The	CSS	Working	Group	decided	to	split	every
feature	and	work	on	it	separately,	in	modules.

A	brief	history	of	CSS

9

Browsers	weren't	especially	fast	at	implementing	CSS.	We	had	to	wait	until	2002	to	have	the
first	browser	implement	the	full	CSS	specification:	IE	for	Mac,	as	nicely	described	in	this	CSS
Tricks	post:	https://css-tricks.com/look-back-history-css/

Internet	Explorer	implemented	the	box	model	incorrectly	right	from	the	start,	which	led	to	years
of	pain	trying	to	have	the	same	style	applied	consistently	across	browsers.	We	had	to	use
various	tricks	and	hacks	to	make	browsers	render	things	as	we	wanted.

Today	things	are	much,	much	better.	We	can	just	use	the	CSS	standards	without	thinking
about	quirks,	most	of	the	time,	and	CSS	has	never	been	more	powerful.

We	don't	have	official	release	numbers	for	CSS	any	more	now,	but	the	CSS	Working	Group
releases	a	"snapshot"	of	the	modules	that	are	currently	considered	stable	and	ready	to	be
included	in	browsers.	This	is	the	latest	snapshot,	from	2018:	https://www.w3.org/TR/css-2018/

CSS	Level	2	is	still	the	base	for	the	CSS	we	write	today,	and	we	have	many	more	features
built	on	top	of	it.

A	brief	history	of	CSS

10

https://css-tricks.com/look-back-history-css/
https://www.w3.org/TR/css-2018/

Adding	CSS	to	an	HTML	page
CSS	is	attached	to	an	HTML	page	in	different	ways.

1:	Using	the	 	link		tag
The	 	link		tag	is	the	way	to	include	a	CSS	file.	This	is	the	preferred	way	to	use	CSS	as	it's
intended	to	be	used:	one	CSS	file	is	included	by	all	the	pages	of	your	site,	and	changing	one
line	on	that	file	affects	the	presentation	of	all	the	pages	in	the	site.

To	use	this	method,	you	add	a	 	link		tag	with	the	 	href		attribute	pointing	to	the	CSS	file	you
want	to	include.	You	add	it	inside	the	 	head		tag	of	the	site	(not	inside	the	 	body		tag):

<link	rel="stylesheet"	type="text/css"	href="myfile.css">

The	 	rel		and	 	type		attributes	are	required	too,	as	they	tell	the	browser	which	kind	of	file	we
are	linking	to.

2:	using	the	 	style		tag
Instead	of	using	the	 	link		tag	to	point	to	separate	stylesheet	containing	our	CSS,	we	can	add
the	CSS	directly	inside	a	 	style		tag.	This	is	the	syntax:

<style>

...our	CSS...

</style>

Using	this	method	we	can	avoid	creating	a	separate	CSS	file.	I	find	this	is	a	good	way	to
experiment	before	"formalising"	CSS	to	a	separate	file,	or	to	add	a	special	line	of	CSS	just	to	a
file.

3:	inline	styles
Inline	styles	are	the	third	way	to	add	CSS	to	a	page.	We	can	add	a	 	style		attribute	to	any
HTML	tag,	and	add	CSS	into	it.

<div	style="">...</div>

Adding	CSS	to	an	HTML	page

11

Example:

<div	style="background-color:	yellow">...</div>

Adding	CSS	to	an	HTML	page

12

Selectors
A	selector	allows	us	to	associate	one	or	more	declarations	to	one	or	more	elements	on	the
page.

Basic	selectors
Suppose	we	have	a	 	p		element	on	the	page,	and	we	want	to	display	the	words	into	it	using
the	yellow	color.

We	can	target	that	element	using	this	selector	 	p	,	which	targets	all	the	element	using	the	 	p	
tag	in	the	page.	A	simple	CSS	rule	to	achieve	what	we	want	is:

p	{

		color:	yellow;

}

Every	HTML	tag	has	a	corresponding	selector,	for	example:	 	div	,	 	span	,	 	img	.

If	a	selector	matches	multiple	elements,	all	the	elements	in	the	page	will	be	affected	by	the
change.

HTML	elements	have	2	attributes	which	are	very	commonly	used	within	CSS	to	associate
styling	to	a	specific	element	on	the	page:	 	class		and	 	id	.

There	is	one	big	difference	between	those	two:	inside	an	HTML	document	you	can	repeat	the
same	 	class		value	across	multiple	elements,	but	you	can	only	use	an	 	id		once.	As	a
corollary,	using	classes	you	can	select	an	element	with	2	or	more	specific	class	names,
something	not	possible	using	ids.

Classes	are	identified	using	the	 	.		symbol,	while	ids	using	the	 	#		symbol.

Example	using	a	class:

<p	class="dog-name">

		Roger

</p>

.dog-name	{

		color:	yellow;

}

Selectors

13

Example	using	an	id:

<p	id="dog-name">

		Roger

</p>

#dog-name	{

		color:	yellow;

}

Combining	selectors
So	far	we've	seen	how	to	target	an	element,	a	class	or	an	id.	Let's	introduce	more	powerful
selectors.

Targeting	an	element	with	a	class	or	id

You	can	target	a	specific	element	that	has	a	class,	or	id,	attached.

Example	using	a	class:

<p	class="dog-name">

		Roger

</p>

p.dog-name	{

		color:	yellow;

}

Example	using	an	id:

<p	id="dog-name">

		Roger

</p>

p#dog-name	{

		color:	yellow;

}

Why	would	you	want	to	do	that,	if	the	class	or	id	already	provides	a	way	to	target	that
element?	You	might	have	to	do	that	to	have	more	specificity.	We'll	see	what	that	means	later.

Selectors

14

Targeting	multiple	classes

You	can	target	an	element	with	a	specific	class	using	 	.class-name	,	as	you	saw	previously.
You	can	target	an	element	with	2	(or	more)	classes	by	combining	the	class	names	separated
with	a	dot,	without	spaces.

Example:

<p	class="dog-name	roger">

		Roger

</p>

.dog-name.roger	{

		color:	yellow;

}

Combining	classes	and	ids

In	the	same	way,	you	can	combine	a	class	and	an	id.

Example:

<p	class="dog-name"	id="roger">

		Roger

</p>

.dog-name#roger	{

		color:	yellow;

}

Grouping	selectors
You	can	combine	selectors	to	apply	the	same	declarations	to	multiple	selectors.	To	do	so,	you
separate	them	with	a	comma.

Example:

<p>

		My	dog	name	is:

</p>

		Roger

Selectors

15

p,	.dog-name	{

		color:	yellow;

}

You	can	add	spaces	in	those	declarations	to	make	them	more	clear:

p,

.dog-name	{

		color:	yellow;

}

Follow	the	document	tree	with	selectors
We've	seen	how	to	target	an	element	in	the	page	by	using	a	tag	name,	a	class	or	an	id.

You	can	create	a	more	specific	selector	by	combining	multiple	items	to	follow	the	document
tree	structure.	For	example,	if	you	have	a	 	span		tag	nested	inside	a	 	p		tag,	you	can	target
that	one	without	applying	the	style	to	a	 	span		tag	not	included	in	a	 	p		tag:

		Hello!

<p>

		My	dog	name	is:

		

				Roger

		

</p>

p	span	{

		color:	yellow;

}

See	how	we	used	a	space	between	the	two	tokens	 	p		and	 	span	.

This	works	even	if	the	element	on	the	right	is	multiple	levels	deep.

To	make	the	dependency	strict	on	the	first	level,	you	can	use	the	 	>		symbol	between	the	two
tokens:

p	>	span	{

		color:	yellow;

}

Selectors

16

In	this	case,	if	a	 	span		is	not	a	first	children	of	the	 	p		element,	it's	not	going	to	have	the	new
color	applied.

Direct	children	will	have	the	style	applied:

<p>

		

				This	is	yellow

		

		

				

						This	is	not	yellow

				

		

</p>

Adjacent	sibling	selectors	let	us	style	an	element	only	if	preceded	by	a	specific	element.	We
do	so	using	the	 	+		operator:

Example:

p	+	span	{

		color:	yellow;

}

This	will	assign	the	color	yellow	to	all	span	elements	preceded	by	a	 	p		element:

<p>This	is	a	paragraph</p>

This	is	a	yellow	span

We	have	a	lot	more	selectors	we	can	use:

attribute	selectors
pseudo	class	selectors
pseudo	element	selectors

We'll	find	all	about	them	in	the	next	sections.

Selectors

17

Cascade
Cascade	is	a	fundamental	concept	of	CSS.	After	all,	it's	in	the	name	itself,	the	first	C	of	CSS	-
Cascading	Style	Sheets	-	it	must	be	an	important	thing.

What	does	it	mean?

Cascade	is	the	process,	or	algorithm,	that	determines	the	properties	applied	to	each	element
on	the	page.	Trying	to	converge	from	a	list	of	CSS	rules	that	are	defined	in	various	places.

It	does	so	taking	in	consideration:

specificity
importance
inheritance
order	in	the	file

It	also	takes	care	of	resolving	conflicts.

Two	or	more	competing	CSS	rules	for	the	same	property	applied	to	the	same	element	need	to
be	elaborated	according	to	the	CSS	spec,	to	determine	which	one	needs	to	be	applied.

Even	if	you	just	have	one	CSS	file	loaded	by	your	page,	there	is	other	CSS	that	is	going	to	be
part	of	the	process.	We	have	the	browser	(user	agent)	CSS.	Browsers	come	with	a	default	set
of	rules,	all	different	between	browsers.

Then	your	CSS	come	into	play.

Then	the	browser	applies	any	user	stylesheet,	which	might	also	be	applied	by	browser
extensions.

All	those	rules	come	into	play	while	rendering	the	page.

We'll	now	see	the	concepts	of	specificity	and	inheritance.

Cascade

18

Specificity
What	happens	when	an	element	is	targeted	by	multiple	rules,	with	different	selectors,	that
affect	the	same	property?

For	example,	let's	talk	about	this	element:

<p	class="dog-name">

		Roger

</p>

We	can	have

.dog-name	{

		color:	yellow;

}

and	another	rule	that	targets	 	p	,	which	sets	the	color	to	another	value:

p	{

		color:	red;

}

And	another	rule	that	targets	 	p.dog-name	.	Which	rule	is	going	to	take	precedence	over	the
others,	and	why?

Enter	specificity.	The	more	specific	rule	will	win.	If	two	or	more	rules	have	the	same
specificity,	the	one	that	appears	last	wins.

Sometimes	what	is	more	specific	in	practice	is	a	bit	confusing	to	beginners.	I	would	say	it's
also	confusing	to	experts	that	do	not	look	at	those	rules	that	frequently,	or	simply	overlook
them.

How	to	calculate	specificity
Specificity	is	calculated	using	a	convention.

We	have	4	slots,	and	each	one	of	them	starts	at	0:	 	0	0	0	0	0	.	The	slot	at	the	left	is	the	most
important,	and	the	rightmost	one	is	the	least	important.

Like	it	works	for	numbers	in	the	decimal	system:	 	1	0	0	0		is	higher	than	 	0	1	0	0	.

Specificity

19

Slot	1

The	first	slot,	the	rightmost	one,	is	the	least	important.

We	increase	this	value	when	we	have	an	element	selector.	An	element	is	a	tag	name.	If	you
have	more	than	one	element	selector	in	the	rule,	you	increment	accordingly	the	value	stored	in
this	slot.

Examples:

p	{}																					/*	0	0	0	1	*/

span	{}																	/*	0	0	0	1	*/

p	span	{}													/*	0	0	0	2	*/

p	>	span	{}													/*	0	0	0	2	*/

div	p	>	span	{}									/*	0	0	0	3	*/

Slot	2

The	second	slot	is	incremented	by	3	things:

class	selectors
pseudo-class	selectors
attribute	selectors

Every	time	a	rule	meets	one	of	those,	we	increment	the	value	of	the	second	column	from	the
right.

Examples:

.name	{}																/*	0	0	1	0	*/

.users	.name	{}								/*	0	0	2	0	*/

[href$='.pdf']	{}				/*	0	0	1	0	*/

:hover	{}																/*	0	0	1	0	*/

Of	course	slot	2	selectors	can	be	combined	with	slot	1	selectors:

div	.name	{}																/*	0	0	1	1	*/

a[href$='.pdf']	{}								/*	0	0	1	1	*/

.pictures	img:hover	{}		/*	0	0	2	1	*/

One	nice	trick	with	classes	is	that	you	can	repeat	the	same	class	and	increase	the	specificity.
For	example:

.name	{}																/*	0	0	1	0	*/

.name.name	{}								/*	0	0	2	0	*/

.name.name.name	{}				/*	0	0	3	0	*/

Specificity

20

Slot	3

Slot	3	holds	the	most	important	thing	that	can	affect	your	CSS	specificity	in	a	CSS	file:	the
	id	.

Every	element	can	have	an	 	id		attribute	assigned,	and	we	can	use	that	in	our	stylesheet	to
target	the	element.

Examples:

#name	{}																				/*	0	1	0	0	*/

.user	#name	{}												/*	0	1	1	0	*/

#name	span	{}												/*	0	1	0	1	*/

Slot	4

Slot	4	is	affected	by	inline	styles.	Any	inline	style	will	have	precedence	over	any	rule	defined	in
an	external	CSS	file,	or	inside	the	 	style		tag	in	the	page	header.

Example:

<p	style="color:	red">Test</p>	/*	1	0	0	0	*/

Even	if	any	other	rule	in	the	CSS	defines	the	color,	this	inline	style	rule	is	going	to	be	applied.
Except	for	one	case	-	if	 	!important		is	used,	which	fills	the	slot	5.

Importance
Specificity	does	not	matter	if	a	rule	ends	with	 	!important	:

p	{

		font-size:	20px!important;

}

That	rule	will	take	precedence	over	any	rule	with	more	specificity

Adding	 	!important		in	a	CSS	rule	is	going	to	make	that	rule	be	more	important	than	any	other
rule,	according	to	the	specificity	rules.	The	only	way	another	rule	can	take	precedence	is	to
have	 	!important		as	well,	and	have	higher	specificity	in	the	other	less	important	slots.

Tips

Specificity

21

In	general	you	should	use	the	amount	of	specificity	you	need,	but	not	more.	In	this	way,	you
can	craft	other	selectors	to	overwrite	the	rules	set	by	preceding	rules	without	going	mad.

	!important		is	a	highly	debated	tool	that	CSS	offers	us.	Many	CSS	experts	advocate	against
using	it.	I	find	myself	using	it	especially	when	trying	out	some	style	and	a	CSS	rule	has	so
much	specificity	that	I	need	to	use	 	!important		to	make	the	browser	apply	my	new	CSS.

But	generally,	 	!important		should	have	no	place	in	your	CSS	files.

Using	the	 	id		attribute	to	style	CSS	is	also	debated	a	lot,	since	it	has	a	very	high	specificity.	A
good	alternative	is	to	use	classes	instead,	which	have	less	specificity,	and	so	they	are	easier
to	work	with,	and	they	are	more	powerful	(you	can	have	multiple	classes	for	an	element,	and	a
class	can	be	reused	multiple	times).

Tools	to	calculate	the	specificity
You	can	use	the	site	https://specificity.keegan.st/	to	perform	the	specificity	calculation	for	you
automatically.

It's	useful	especially	if	you	are	trying	to	figure	things	out,	as	it	can	be	a	nice	feedback	tool.

Specificity

22

https://specificity.keegan.st/

Inheritance
When	you	set	some	properties	on	a	selector	in	CSS,	they	are	inherited	by	all	the	children	of
that	selector.

I	said	some,	because	not	all	properties	show	this	behaviour.

This	happens	because	some	properties	make	sense	to	be	inherited.	This	helps	us	write	CSS
much	more	concisely,	since	we	don't	have	to	explicitly	set	that	property	again	on	every	single
children.

Some	other	properties	make	more	sense	to	not	be	inherited.

Think	about	fonts:	you	don't	need	to	apply	the	 	font-family		to	every	single	tag	of	your	page.
You	set	the	 	body		tag	font,	and	every	children	inherits	it,	along	with	other	properties.

The	 	background-color		property,	on	the	other	hand,	makes	little	sense	to	be	inherited.

Properties	that	inherit
Here	is	a	list	of	the	properties	that	do	inherit.	The	list	is	non-comprehensive,	but	those	rules
are	just	the	most	popular	ones	you'll	likely	use:

border-collapse
border-spacing
caption-side
color
cursor
direction
empty-cells
font-family
font-size
font-style
font-variant
font-weight
font-size-adjust
font-stretch
font
letter-spacing
line-height
list-style-image

Inheritance

23

list-style-position
list-style-type
list-style
orphans
quotes
tab-size
text-align
text-align-last
text-decoration-color
text-indent
text-justify
text-shadow
text-transform
visibility
white-space
widows
word-break
word-spacing

I	got	it	from	this	nice	Sitepoint	article	on	CSS	inheritance.

Forcing	properties	to	inherit
What	if	you	have	a	property	that's	not	inherited	by	default,	and	you	want	it	to,	in	a	children?

In	the	children,	you	set	the	property	value	to	the	special	keyword	 	inherit	.

Example:

body	{

				background-color:	yellow;

}

p	{

		background-color:	inherit;

}

Forcing	properties	to	NOT	inherit
On	the	contrary,	you	might	have	a	property	inherited	and	you	want	to	avoid	so.

Inheritance

24

https://www.sitepoint.com/css-inheritance-introduction/

You	can	use	the	 	revert		keyword	to	revert	it.	In	this	case,	the	value	is	reverted	to	the	original
value	the	browser	gave	it	in	its	default	stylesheet.

In	practice	this	is	rarely	used,	and	most	of	the	times	you'll	just	set	another	value	for	the
property	to	overwrite	that	inherited	value.

Other	special	values
In	addition	to	the	 	inherit		and	 	revert		special	keywords	we	just	saw,	you	can	also	set	any
property	to:

	initial	:	use	the	default	browser	stylesheet	if	available.	If	not,	and	if	the	property	inherits
by	default,	inherit	the	value.	Otherwise	do	nothing.
	unset	:	if	the	property	inherits	by	default,	inherit.	Otherwise	do	nothing.

Inheritance

25

Import
From	any	CSS	file	you	can	import	another	CSS	file	using	the	 	@import		directive.

Here	is	how	you	use	it:

@import	url(myfile.css)

url()	can	manage	absolute	or	relative	URLs.

One	important	thing	you	need	to	know	is	that	 	@import		directives	must	be	put	before	any	other
CSS	in	the	file,	or	they	will	be	ignored.

You	can	use	media	descriptors	to	only	load	a	CSS	file	on	the	specific	media:

@import	url(myfile.css)	all;

@import	url(myfile-screen.css)	screen;

@import	url(myfile-print.css)	print;

Import

26

Attribute	selectors
We	already	introduced	several	of	the	basic	CSS	selectors:	using	element	selectors,	class,	id,
how	to	combine	them,	how	to	target	multiple	classes,	how	to	style	several	selectors	in	the
same	rule,	how	to	follow	the	page	hierarchy	with	child	and	direct	child	selectors,	and	adjacent
siblings.

In	this	section	we'll	analyze	attribute	selectors,	and	we'll	talk	about	pseudo	class	and	pseudo
element	selectors	in	the	next	2	sections.

Attribute	presence	selectors
The	first	selector	type	is	the	attribute	presence	selector.

We	can	check	if	an	element	has	an	attribute	using	the	 	[]		syntax.	 	p[id]		will	select	all	 	p	
tags	in	the	page	that	have	an	 	id		attribute,	regardless	of	its	value:

p[id]	{

		/*	...	*/

}

Exact	attribute	value	selectors
Inside	the	brackets	you	can	check	the	attribute	value	using	 	=	,	and	the	CSS	will	be	applied
only	if	the	attribute	matches	the	exact	value	specified:

p[id="my-id"]	{

		/*	...	*/

}

Match	an	attribute	value	portion
While	 	=		let	us	check	for	exact	value,	we	have	other	operators:

	*=		checks	if	the	attribute	contains	the	partial
	̂ =		checks	if	the	attribute	starts	with	the	partial
	$=		checks	if	the	attribute	ends	with	the	partial
	|=		checks	if	the	attribute	starts	with	the	partial	and	it's	followed	by	a	dash	(common	in
classes,	for	example),	or	just	contains	the	partial

Attribute	selectors

27

	~=		checks	if	the	partial	is	contained	in	the	attribute,	but	separated	by	spaces	from	the
rest

All	the	checks	we	mentioned	are	case	sensitive.

If	you	add	an	 	i		just	before	the	closing	bracket,	the	check	will	be	case	insensitive.	It's
supported	in	many	browsers	but	not	in	all,	check	https://caniuse.com/#feat=css-case-
insensitive.

Attribute	selectors

28

https://caniuse.com/#feat=css-case-insensitive

Pseudo-classes
Pseudo	classes	are	predefined	keywords	that	are	used	to	select	an	element	based	on	its
state,	or	to	target	a	specific	child.

They	start	with	a	single	colon	 	:	.

They	can	be	used	as	part	of	a	selector,	and	they	are	very	useful	to	style	active	or	visited	links
for	example,	change	the	style	on	hover,	focus,	or	target	the	first	child,	or	odd	rows.	Very	handy
in	many	cases.

These	are	the	most	popular	pseudo	classes	you	will	likely	use:

Pseudo
class Targets

	:active	
an	element	being	activated	by	the	user	(e.g.	clicked).	Mostly	used	on
links	or	buttons

	:checked	 a	checkbox,	option	or	radio	input	types	that	are	enabled

	:default	 the	default	in	a	set	of	choices	(like,	option	in	a	select	or	radio	buttons)

	:disabled	 an	element	disabled

	:empty	 an	element	with	no	children

	:enabled	 an	element	that's	enabled	(opposite	to	 	:disabled)

	:first-

child	 the	first	child	of	a	group	of	siblings

	:focus	 the	element	with	focus

	:hover	 an	element	hovered	with	the	mouse

	:last-child	 the	last	child	of	a	group	of	siblings

	:link	 a	link	that's	not	been	visited

	:not()	 any	element	not	matching	the	selector	passed.	E.g.	 	:not(span)	

	:nth-

child()	 an	element	matching	the	specified	position

	:nth-last-

child()	 an	element	matching	the	specific	position,	starting	from	the	end

	:only-child	 an	element	without	any	siblings

	:required	 a	form	element	with	the	 	required		attribute	set

	:root	

represents	the	 	html		element.	It's	like	targeting	 	html	,	but	it's	more
specific.	Useful	in	CSS	Variables.

	:target	
the	element	matching	the	current	URL	fragment	(for	inner	navigation	in
the	page)

Pseudo-classes

29

https://flaviocopes.com/css-variables/

	:valid	 form	elements	that	validated	client-side	successfully

	:visited	 a	link	that's	been	visited

Let's	do	an	example.	A	common	one,	actually.	You	want	to	style	a	link,	so	you	create	a	CSS
rule	to	target	the	 	a		element:

a	{

		color:	yellow;

}

Things	seem	to	work	fine,	until	you	click	one	link.	The	link	goes	back	to	the	predefined	color
(blue)	when	you	click	it.	Then	when	you	open	the	link	and	go	back	to	the	page,	now	the	link	is
blue.

Why	does	that	happen?

Because	the	link	when	clicked	changes	state,	and	goes	in	the	 	:active		state.	And	when	it's
been	visited,	it	is	in	the	 	:visited		state.	Forever,	until	the	user	clears	the	browsing	history.

So,	to	correctly	make	the	link	yellow	across	all	states,	you	need	to	write

a,

a:visited,

a:active	{

		color:	yellow;

}

	:nth-child()		deserves	a	special	mention.	It	can	be	used	to	target	odd	or	even	children	with
	:nth-child(odd)		and	 	:nth-child(even)	.

It	is	commonly	used	in	lists	to	color	odd	lines	differently	from	even	lines:

ul:nth-child(odd)	{

		color:	white;

				background-color:	black;

}

You	can	also	use	it	to	target	the	first	3	children	of	an	element	with	 	:nth-child(-n+3)	.	Or	you
can	style	1	in	every	5	elements	with	 	:nth-child(5n)	.

Some	pseudo	classes	are	just	used	for	printing,	like	 	:first	,	 	:left	,	 	:right	,	so	you	can
target	the	first	page,	all	the	left	pages,	and	all	the	right	pages,	which	are	usually	styled	slightly
differently.

Pseudo-classes

30

Pseudo-classes

31

Pseudo-elements
Pseudo-elements	are	used	to	style	a	specific	part	of	an	element.

They	start	with	a	double	colon	 	::	.

Sometimes	you	will	spot	them	in	the	wild	with	a	single	colon,	but	this	is	only	a	syntax
supported	for	backwards	compatibility	reasons.	You	should	use	2	colons	to	distinguish
them	from	pseudo-classes.

	::before		and	 	::after		are	probably	the	most	used	pseudo-elements.	They	are	used	to	add
content	before	or	after	an	element,	like	icons	for	example.

Here's	the	list	of	the	pseudo-elements:

Pseudo-element Targets

	::after	 creates	a	pseudo-element	after	the	element

	::before	 creates	a	pseudo-element	before	the	element

	::first-letter	 can	be	used	to	style	the	first	letter	of	a	block	of	text

	::first-line	 can	be	used	to	style	the	first	line	of	a	block	of	text

	::selection	 targets	the	text	selected	by	the	user

Let's	do	an	example.	Say	you	want	to	make	the	first	line	of	a	paragraph	slightly	bigger	in	font
size,	a	common	thing	in	typography:

p::first-line	{

		font-size:	2rem;

}

Or	maybe	you	want	the	first	letter	to	be	bolder:

p::first-letter	{

		font-weight:	bolder;

}

	::after		and	 	::before		are	a	bit	less	intuitive.	I	remember	using	them	when	I	had	to	add
icons	using	CSS.

You	specify	the	 	content		property	to	insert	any	kind	of	content	after	or	before	an	element:

p::before	{

		content:	url(/myimage.png);

}

Pseudo-elements

32

.myElement::before	{

				content:	"Hey	Hey!";

}

Pseudo-elements

33

Colors
By	default	an	HTML	page	is	rendered	by	web	browsers	quite	sadly	in	terms	of	the	colors	used.

We	have	a	white	background,	black	color,	and	blue	links.	That's	it.

Luckily	CSS	gives	us	the	ability	to	add	colors	to	our	designs.

We	have	these	properties:

	color	

	background-color	

	border-color	

All	of	them	accept	a	color	value,	which	can	be	in	different	forms.

Named	colors
First,	we	have	CSS	keywords	that	define	colors.	CSS	started	with	16,	but	today	there	is	a
huge	number	of	colors	names:

	aliceblue	

	antiquewhite	

	aqua	

	aquamarine	

	azure	

	beige	

	bisque	

	black	

	blanchedalmond	

	blue	

	blueviolet	

	brown	

	burlywood	

	cadetblue	

	chartreuse	

	chocolate	

	coral	

	cornflowerblue	

	cornsilk	

	crimson	

Colors

34

	cyan	

	darkblue	

	darkcyan	

	darkgoldenrod	

	darkgray	

	darkgreen	

	darkgrey	

	darkkhaki	

	darkmagenta	

	darkolivegreen	

	darkorange	

	darkorchid	

	darkred	

	darksalmon	

	darkseagreen	

	darkslateblue	

	darkslategray	

	darkslategrey	

	darkturquoise	

	darkviolet	

	deeppink	

	deepskyblue	

	dimgray	

	dimgrey	

	dodgerblue	

	firebrick	

	floralwhite	

	forestgreen	

	fuchsia	

	gainsboro	

	ghostwhite	

	gold	

	goldenrod	

	gray	

	green	

	greenyellow	

	grey	

	honeydew	

	hotpink	

	indianred	

Colors

35

	indigo	

	ivory	

	khaki	

	lavender	

	lavenderblush	

	lawngreen	

	lemonchiffon	

	lightblue	

	lightcoral	

	lightcyan	

	lightgoldenrodyellow	

	lightgray	

	lightgreen	

	lightgrey	

	lightpink	

	lightsalmon	

	lightseagreen	

	lightskyblue	

	lightslategray	

	lightslategrey	

	lightsteelblue	

	lightyellow	

	lime	

	limegreen	

	linen	

	magenta	

	maroon	

	mediumaquamarine	

	mediumblue	

	mediumorchid	

	mediumpurple	

	mediumseagreen	

	mediumslateblue	

	mediumspringgreen	

	mediumturquoise	

	mediumvioletred	

	midnightblue	

	mintcream	

	mistyrose	

	moccasin	

Colors

36

	navajowhite	

	navy	

	oldlace	

	olive	

	olivedrab	

	orange	

	orangered	

	orchid	

	palegoldenrod	

	palegreen	

	paleturquoise	

	palevioletred	

	papayawhip	

	peachpuff	

	peru	

	pink	

	plum	

	powderblue	

	purple	

	rebeccapurple	

	red	

	rosybrown	

	royalblue	

	saddlebrown	

	salmon	

	sandybrown	

	seagreen	

	seashell	

	sienna	

	silver	

	skyblue	

	slateblue	

	slategray	

	slategrey	

	snow	

	springgreen	

	steelblue	

	tan	

	teal	

	thistle	

Colors

37

	tomato	

	turquoise	

	violet	

	wheat	

	white	

	whitesmoke	

	yellow	

	yellowgreen	

plus	 	tranparent	,	and	 	currentColor		which	points	to	the	 	color		property,	for	example	useful	to
make	the	 	border-color		inherit	it.

They	are	defined	in	the	CSS	Color	Module,	Level	4.	They	are	case	insensitive.

Wikipedia	has	a	nice	table	which	lets	you	pick	the	perfect	color	by	its	name.

Named	colors	are	not	the	only	option.

RGB	and	RGBa
You	can	use	the	 	rgb()		function	to	calculate	a	color	from	its	RGB	notation,	which	sets	the
color	based	on	its	red-green-blue	parts.	From	0	to	255:

p	{

		color:	rgb(255,	255,	255);	/*	white	*/

				background-color:	rgb(0,	0,	0);	/*	black	*/

}

	rgba()		lets	you	add	the	alpha	channel	to	enter	a	transparent	part.	That	can	be	a	number	from
0	to	1:

p	{

				background-color:	rgb(0,	0,	0,	0.5);

}

Hexadecimal	notation
Another	option	is	to	express	the	RGB	parts	of	the	colors	in	the	hexadecimal	notation,	which	is
composed	by	3	blocks.

Black,	which	is	 	rgb(0,0,0)		is	expressed	as	 	#000000		or	 	#000		(we	can	shortcut	the	2
numbers	to	1	if	they	are	equal).

Colors

38

https://www.w3.org/TR/css-color-4/
https://en.wikipedia.org/wiki/Web_colors

White,	 	rgb(255,255,255)		can	be	expressed	as	 	#ffffff		or	 	#fff	.

The	hexadecimal	notation	lets	express	a	number	from	0	to	255	in	just	2	digits,	since	they	can
go	from	0	to	"15"	(f).

We	can	add	the	alpha	channel	by	adding	1	or	2	more	digits	at	the	end,	for	example
	#00000033	.	Not	all	browsers	support	the	shortened	notation,	so	use	all	6	digits	to	express	the
RGB	part.

HSL	and	HSLa
This	is	a	more	recent	addition	to	CSS.

HSL	=	Hue	Saturation	Lightness.

In	this	notation,	black	is	 	hsl(0,	0%,	0%)		and	white	is	 	hsl(0,	0%,	100%)	.

If	you	are	more	familiar	with	HSL	than	RGB	because	of	your	past	knowledge,	you	can
definitely	use	that.

You	also	have	 	hsla()		which	adds	the	alpha	channel	to	the	mix,	again	a	number	from	0	to	1:
	hsl(0,	0%,	0%,	0.5)	

Colors

39

Units
One	of	the	things	you'll	use	every	day	in	CSS	are	units.	They	are	used	to	set	lengths,
paddings,	margins,	align	elements	and	so	on.

Things	like	 	px	,	 	em	,	 	rem	,	or	percentages.

They	are	everywhere.	There	are	some	obscure	ones,	too.	We'll	go	through	each	of	them	in
this	section.

Pixels
The	most	widely	used	measurement	unit.	A	pixel	does	not	actually	correlate	to	a	physical	pixel
on	your	screen,	as	that	varies,	a	lot,	by	device	(think	high-DPI	devices	vs	non-retina	devices).

There	is	a	convention	that	make	this	unit	work	consistently	across	devices.

Percentages
Another	very	useful	measure,	percentages	let	you	specify	values	in	percentages	of	that	parent
element's	corresponding	property.

Example:

.parent	{

		width:	400px;

}

.child	{

		width:	50%;	/*	=	200px	*/

}

Real-world	measurement	units
We	have	those	measurement	units	which	are	translated	from	the	outside	world.	Mostly
useless	on	screen,	they	can	be	useful	for	print	stylesheets.	They	are:

	cm		a	centimeter	(maps	to	37.8	pixels)
	mm		a	millimeter	(0.1cm)
	q		a	quarter	of	a	millimeter
	in		an	inch	(maps	to	96	pixels)

Units

40

	pt		a	point	(1	inch	=	72	points)
	pc		a	pica	(1	pica	=	12	points)

Relative	units
	em		is	the	value	assigned	to	that	element's	 	font-size	,	therefore	its	exact	value	changes
between	elements.	It	does	not	change	depending	on	the	font	used,	just	on	the	font	size.	In
typography	this	measures	the	width	of	the	 	m		letter.
	rem		is	similar	to	 	em	,	but	instead	of	varying	on	the	current	element	font	size,	it	uses	the
root	element	(html)	font	size.	You	set	that	font	size	once,	and	 	rem		will	be	a	consistent
measure	across	all	the	page.
	ex		is	like	 	em	,	but	inserted	of	measuring	the	width	of	 	m	,	it	measures	the	height	of	the
	x		letter.	It	can	change	depending	on	the	font	used,	and	on	the	font	size.
	ch		is	like	 	ex		but	instead	of	measuring	the	height	of	 	x		it	measures	the	width	of	 	0	
(zero).

Viewport	units
	vw		the	viewport	width	unit	represents	a	percentage	of	the	viewport	width.	 	50vw		means
50%	of	the	viewport	width.
	vh		the	viewport	height	unit	represents	a	percentage	of	the	viewport	height.	 	50vh	
means	50%	of	the	viewport	height.
	vmin		the	viewport	minimum	unit	represents	the	minimum	between	the	height	or	width
in	terms	of	percentage.	 	30vmin		is	the	30%	of	the	current	width	or	height,	depending
which	one	is	smaller
	vmax		the	viewport	maximum	unit	represents	the	maximum	between	the	height	or	width
in	terms	of	percentage.	 	30vmax		is	the	30%	of	the	current	width	or	height,	depending
which	one	is	bigger

Fraction	units
	fr		are	fraction	units,	and	they	are	used	in	CSS	Grid	to	divide	space	into	fractions.

We'll	talk	about	them	in	the	context	of	CSS	Grid	later	on.

Units

41

url
When	we	talk	about	background	images,	 	@import	,	and	more,	we	use	the	 	url()		function	to
load	a	resource:

div	{

		background-image:	url(test.png);

}

In	this	case	I	used	a	relative	URL,	which	searches	the	file	in	the	folder	where	the	CSS	file	is
defined.

I	could	go	one	level	back

div	{

		background-image:	url(../test.png);

}

or	go	into	a	folder

div	{

		background-image:	url(subfolder/test.png);

}

Or	I	could	load	a	file	starting	from	the	root	of	the	domain	where	the	CSS	is	hosted:

div	{

		background-image:	url(/test.png);

}

Or	I	could	use	an	absolute	URL	to	load	an	external	resource:

div	{

		background-image:	url(https://mysite.com/test.png);

}

url

42

calc
The	 	calc()		function	lets	you	perform	basic	math	operations	on	values,	and	it's	especially
useful	when	you	need	to	add	or	subtract	a	length	value	from	a	percentage.

This	is	how	it	works:

div	{

				max-width:	calc(80%	-	100px)

}

It	returns	a	length	value,	so	it	can	be	used	anywhere	you	expect	a	pixel	value.

You	can	perform

additions	using	 	+	
subtractions	using	 	-	
multiplication	using	 	*	
division	using	 	/	

One	caveat:	with	addition	and	subtraction,	the	space	around	the	operator	is	mandatory,
otherwise	it	does	not	work	as	expected.

Examples:

div	{

				max-width:	calc(50%	/	3)

}

div	{

				max-width:	calc(50%	+	3px)

}

calc

43

Backgrounds
The	background	of	an	element	can	be	changed	using	several	CSS	properties:

	background-color	

	background-image	

	background-clip	

	background-position	

	background-origin	

	background-repeat	

	background-attachment	

	background-size	

and	the	shorthand	property	 	background	,	which	allows	to	shorten	definitions	and	group	them
on	a	single	line.

	background-color		accepts	a	color	value,	which	can	be	one	of	the	color	keywords,	or	an	 	rgb	
or	 	hsl		value:

p	{

		background-color:	yellow;

}

div	{

		background-color:	#333;

}

Instead	of	using	a	color,	you	can	use	an	image	as	background	to	an	element,	by	specifying	the
image	location	URL:

div	{

		background-image:	url(image.png);

}

	background-clip		lets	you	determine	the	area	used	by	the	background	image,	or	color.	The
default	value	is	 	border-box	,	which	extends	up	to	the	border	outer	edge.

Other	values	are

	padding-box		to	extend	the	background	up	to	the	padding	edge,	without	the	border
	content-box		to	extend	the	background	up	to	the	content	edge,	without	the	padding
	inherit		to	apply	the	value	of	the	parent

Backgrounds

44

When	using	an	image	as	background	you	will	want	to	set	the	position	of	the	image	placement
using	the	 	background-position		property:	 	left	,	 	right	,	 	center		are	all	valid	values	for	the	X
axis,	and	 	top	,	 	bottom		for	the	Y	axis:

div	{

		background-position:	top	right;

}

If	the	image	is	smaller	than	the	background,	you	need	to	set	the	behavior	using	 	background-
repeat	.	Should	it	 	repeat-x	,	 	repeat-y		or	 	repeat		on	all	the	axis?	This	last	one	is	the	default
value.	Another	value	is	 	no-repeat	.

	background-origin		lets	you	choose	where	the	background	should	be	applied:	to	the	entire
element	including	padding	(default)	using	 	padding-box	,	to	the	entire	element	including	the
border	using	 	border-box	,	to	the	element	without	the	padding	using	 	content-box	.

With	 	background-attachment		we	can	attach	the	background	to	the	viewport,	so	that	scrolling
will	not	affect	the	background:

div	{

		background-attachment:	fixed;

}

By	default	the	value	is	 	scroll	.	There	is	another	value,	 	local	.	The	best	way	to	visualize	their
behavior	is	this	Codepen.

The	last	background	property	is	 	background-size	.	We	can	use	3	keywords:	 	auto	,	 	cover		and
	contain	.	 	auto		is	the	default.

	cover		expands	the	image	until	the	entire	element	is	covered	by	the	background.

	contain		stops	expanding	the	background	image	when	one	dimension	(x	or	y)	covers	the
whole	smallest	edge	of	the	image,	so	it's	fully	contained	into	the	element.

You	can	also	specify	a	length	value,	and	if	so	it	sets	the	width	of	the	background	image	(and
the	height	is	automatically	defined):

div	{

		background-size:	100%;

}

If	you	specify	2	values,	one	is	the	width	and	the	second	is	the	height:

div	{

		background-size:	800px	600px;

Backgrounds

45

https://codepen.io/BernLeech/pen/mMNKJV

}

The	shorthand	property	 	background		allows	to	shorten	definitions	and	group	them	on	a	single
line.

This	is	an	example:

div	{

		background:	url(bg.png)	top	left	no-repeat;

}

If	you	use	an	image,	and	the	image	could	not	be	loaded,	you	can	set	a	fallback	color:

div	{

		background:	url(image.png)	yellow;

}

You	can	also	set	a	gradient	as	background:

div	{

		background:	linear-gradient(#fff,	#333);

}

Backgrounds

46

Comments
CSS	gives	you	the	ability	to	write	comments	in	a	CSS	file,	or	in	the	 	style		tag	in	the	page
header

The	format	is	the	 	/*	this	is	a	comment	*/		C-style	(or	JavaScript-style,	if	you	prefer)
comments.

This	is	a	multiline	comment.	Until	you	add	the	closing	 	*/		token,	the	all	the	lines	found	after
the	opening	one	are	commented.

Example:

#name	{	display:	block;	}	/*	Nice	rule!	*/

/*	#name	{	display:	block;	}	*/

#name	{

				display:	block;	/*

				color:	red;

				*/

}

CSS	does	not	have	inline	comments,	like	 	//		in	C	or	JavaScript.

Pay	attention	though	-	if	you	add	 	//		before	a	rule,	the	rule	will	not	be	applied,	looking	like	the
comment	worked.	In	reality,	CSS	detected	a	syntax	error	and	due	to	how	it	works	it	ignored
the	line	with	the	error,	and	went	straight	to	the	next	line.

Knowing	this	approach	lets	you	purposefully	write	inline	comments,	although	you	have	to	be
careful	because	you	can't	add	random	text	like	you	can	in	a	block	comment.

For	example:

//	Nice	rule!

#name	{	display:	block;	}

In	this	case,	due	to	how	CSS	works,	the	 	#name		rule	is	actually	commented	out.	You	can	find
more	details	here	if	you	find	this	interesting.	To	avoid	shooting	yourself	in	the	foot,	just	avoid
using	inline	comments	and	rely	on	block	comments.

Comments

47

https://www.xanthir.com/b4U10

Custom	Properties
In	the	last	few	years	CSS	preprocessors	had	a	lot	of	success.	It	was	very	common	for
greenfield	projects	to	start	with	Less	or	Sass.	And	it's	still	a	very	popular	technology.

The	main	benefits	of	those	technologies	are,	in	my	opinion:

They	allow	to	nest	selectors
The	provide	an	easy	imports	functionality
They	give	you	variables

Modern	CSS	has	a	new	powerful	feature	called	CSS	Custom	Properties,	also	commonly
known	as	CSS	Variables.

CSS	is	not	a	programming	language	like	JavaScript,	Python,	PHP,	Ruby	or	Go	where
variables	are	key	to	do	something	useful.	CSS	is	very	limited	in	what	it	can	do,	and	it's	mainly
a	declarative	syntax	to	tell	browsers	how	they	should	display	an	HTML	page.

But	a	variable	is	a	variable:	a	name	that	refers	to	a	value,	and	variables	in	CSS	helps	reduce
repetition	and	inconsistencies	in	your	CSS,	by	centralizing	the	values	definition.

And	it	introduces	a	unique	feature	that	CSS	preprocessors	won't	never	have:	you	can	access
and	change	the	value	of	a	CSS	Variable	programmatically	using	JavaScript.

The	basics	of	using	variables
A	CSS	Variable	is	defined	with	a	special	syntax,	prepending	two	dashes	to	a	name	(--
variable-name),	then	a	colon	and	a	value.	Like	this:

:root	{

		--primary-color:	yellow;

}

(more	on	 	:root		later)

You	can	access	the	variable	value	using	 	var()	:

p	{

		color:	var(--primary-color)

}

The	variable	value	can	be	any	valid	CSS	value,	for	example:

Custom	Properties

48

https://flaviocopes.com/javascript/

:root	{

		--default-padding:	30px	30px	20px	20px;

		--default-color:	red;

		--default-background:	#fff;

}

Create	variables	inside	any	element
CSS	Variables	can	be	defined	inside	any	element.	Some	examples:

:root	{

		--default-color:	red;

}

body	{

		--default-color:	red;

}

main	{

		--default-color:	red;

}

p	{

		--default-color:	red;

}

span	{

		--default-color:	red;

}

a:hover	{

		--default-color:	red;

}

What	changes	in	those	different	examples	is	the	scope.

Variables	scope
Adding	variables	to	a	selector	makes	them	available	to	all	the	children	of	it.

In	the	example	above	you	saw	the	use	of	 	:root		when	defining	a	CSS	variable:

:root	{

		--primary-color:	yellow;

}

	:root		is	a	CSS	pseudo-class	that	identifies	the	root	element	of	a	tree.

Custom	Properties

49

In	the	context	of	an	HTML	document,	using	the	 	:root		selector	points	to	the	 	html		element,
except	that	 	:root		has	higher	specificity	(takes	priority).

In	the	context	of	an	SVG	image,	 	:root		points	to	the	 	svg		tag.

Adding	a	CSS	custom	property	to	 	:root		makes	it	available	to	all	the	elements	in	the	page.

If	you	add	a	variable	inside	a	 	.container		selector,	it's	only	going	to	be	available	to	children	of
	.container	:

.container	{

		--secondary-color:	yellow;

}

and	using	it	outside	of	this	element	is	not	going	to	work.

Variables	can	be	reassigned:

:root	{

		--primary-color:	yellow;

}

.container	{

		--primary-color:	blue;

}

Outside	 	.container	,	 	--primary-color		will	be	yellow,	but	inside	it	will	be	blue.

You	can	also	assign	or	overwrite	a	variable	inside	the	HTML	using	inline	styles:

<main	style="--primary-color:	orange;">

		<!--	...	-->

</main>

CSS	Variables	follow	the	normal	CSS	cascading	rules,	with	precedence	set	according	to
specificity

Interacting	with	a	CSS	Variable	value	using
JavaScript
The	coolest	thing	with	CSS	Variables	is	the	ability	to	access	and	edit	them	using	JavaScript.

Here's	how	you	set	a	variable	value	using	plain	JavaScript:

const	element	=	document.getElementById('my-element')

Custom	Properties

50

element.style.setProperty('--variable-name',	'a-value')

This	code	below	can	be	used	to	access	a	variable	value	instead,	in	case	the	variable	is
defined	on	 	:root	:

const	styles	=	getComputedStyle(document.documentElement)

const	value	=	String(styles.getPropertyValue('--variable-name')).trim()

Or,	to	get	the	style	applied	to	a	specific	element,	in	case	of	variables	set	with	a	different	scope:

const	element	=	document.getElementById('my-element')

const	styles	=	getComputedStyle(element)

const	value	=	String(styles.getPropertyValue('--variable-name')).trim()

Handling	invalid	values
If	a	variable	is	assigned	to	a	property	which	does	not	accept	the	variable	value,	it's	considered
invalid.

For	example	you	might	pass	a	pixel	value	to	a	 	position		property,	or	a	rem	value	to	a	color
property.

In	this	case	the	line	is	considered	invalid	and	ignored.

Browser	support
Browser	support	for	CSS	Variables	is	very	good,	according	to	Can	I	Use.

CSS	Variables	are	here	to	stay,	and	you	can	use	them	today	if	you	don't	need	to	support
Internet	Explorer	and	old	versions	of	the	other	browsers.

If	you	need	to	support	older	browsers	you	can	use	libraries	like	PostCSS	or	Myth,	but	you'll
lose	the	ability	to	interact	with	variables	via	JavaScript	or	the	Browser	Developer	Tools,	as
they	are	transpiled	to	good	old	variable-less	CSS	(and	as	such,	you	lose	most	of	the	power	of
CSS	Variables).

CSS	Variables	are	case	sensitive
This	variable:

--width:	100px;

Custom	Properties

51

https://www.caniuse.com/#feat=css-variables
https://flaviocopes.com/postcss/
http://www.myth.io/

is	different	than:

--Width:	100px;

Math	in	CSS	Variables
To	do	math	in	CSS	Variables,	you	need	to	use	 	calc()	,	for	example:

:root	{

		--default-left-padding:	calc(10px	*	2);

}

Media	queries	with	CSS	Variables
Nothing	special	here.	CSS	Variables	normally	apply	to	media	queries:

body	{

		--width:	500px;

}

@media	screen	and	(max-width:	1000px)	and	(min-width:	700px)	{

		--width:	800px;

}

.container	{

		width:	var(--width);

}

Setting	a	fallback	value	for	var()
	var()		accepts	a	second	parameter,	which	is	the	default	fallback	value	when	the	variable
value	is	not	set:

.container	{

		margin:	var(--default-margin,	30px);

}

Custom	Properties

52

Custom	Properties

53

Fonts
At	the	dawn	of	the	web	you	only	had	a	handful	of	fonts	you	could	choose	from.

Thankfully	today	you	can	load	any	kind	of	font	on	your	pages.

CSS	has	gained	many	nice	capabilities	over	the	years	in	regards	to	fonts.

The	 	font		property	is	the	shorthand	for	a	number	of	properties:

	font-family	

	font-weight	

	font-stretch	

	font-style	

	font-size	

Let's	see	each	one	of	them	and	then	we'll	cover	 	font	.

Then	we'll	talk	about	how	to	load	custom	fonts,	using	 	@import		or	 	@font-face	,	or	by	loading	a
font	stylesheet.

	font-family	

Sets	the	font	family	that	the	element	will	use.

Why	"family"?	Because	what	we	know	as	a	font	is	actually	composed	of	several	sub-fonts.
which	provide	all	the	style	(bold,	italic,	light..)	we	need.

Here's	an	example	from	my	Mac's	Font	Book	app	-	the	Fira	Code	font	family	hosts	several
dedicated	fonts	underneath:

Fonts

54

This	property	lets	you	select	a	specific	font,	for	example:

body	{

		font-family:	Helvetica;

}

You	can	set	multiple	values,	so	the	second	option	will	be	used	if	the	first	cannot	be	used	for
some	reason	(if	it's	not	found	on	the	machine,	or	the	network	connection	to	download	the	font
failed,	for	example):

body	{

		font-family:	Helvetica,	Arial;

}

I	used	some	specific	fonts	up	to	now,	ones	we	call	Web	Safe	Fonts,	as	they	are	pre-installed
on	different	operating	systems.

We	divide	them	in	Serif,	Sans-Serif,	and	Monospace	fonts.	Here's	a	list	of	some	of	the	most
popular	ones:

Serif

Georgia
Palatino
Times	New	Roman
Times

Sans-Serif

Fonts

55

Arial
Helvetica
Verdana
Geneva
Tahoma
Lucida	Grande
Impact
Trebuchet	MS
Arial	Black

Monospace

Courier	New
Courier
Lucida	Console
Monaco

You	can	use	all	of	those	as	 	font-family		properties,	but	they	are	not	guaranteed	to	be	there
for	every	system.	Others	exist,	too,	with	a	varying	level	of	support.

You	can	also	use	generic	names:

	sans-serif		a	font	without	ligatures
	serif		a	font	with	ligatures
	monospace		a	font	especially	good	for	code
	cursive		used	to	simulate	handwritten	pieces
	fantasy		the	name	says	it	all

Those	are	typically	used	at	the	end	of	a	 	font-family		definition,	to	provide	a	fallback	value	in
case	nothing	else	can	be	applied:

body	{

		font-family:	Helvetica,	Arial,	sans-serif;

}

	font-weight	

This	property	sets	the	width	of	a	font.	You	can	use	those	predefined	values:

normal
bold
bolder	(relative	to	the	parent	element)
lighter	(relative	to	the	parent	element)

Fonts

56

Or	using	the	numeric	keywords

100
200
300
400,	mapped	to	 	normal	
500
600
700	mapped	to	 	bold	
800
900

where	100	is	the	lightest	font,	and	900	is	the	boldest.

Some	of	those	numeric	values	might	not	map	to	a	font,	because	that	must	be	provided	in	the
font	family.	When	one	is	missing,	CSS	makes	that	number	be	at	least	as	bold	as	the	preceding
one,	so	you	might	have	numbers	that	point	to	the	same	font.

	font-stretch	

Allows	to	choose	a	narrow	or	wide	face	of	the	font,	if	available.

This	is	important:	the	font	must	be	equipped	with	different	faces.

Values	allowed	are,	from	narrower	to	wider:

	ultra-condensed	

	extra-condensed	

	condensed	

	semi-condensed	

	normal	

	semi-expanded	

	expanded	

	extra-expanded	

	ultra-expanded	

	font-style	

Allows	you	to	apply	an	italic	style	to	a	font:

p	{

		font-style:	italic;

}

Fonts

57

This	property	also	allows	the	values	 	oblique		and	 	normal	.	There	is	very	little,	if	any,
difference	between	using	 	italic		and	 	oblique	.	The	first	is	easier	to	me,	as	HTML	already
offers	an	 	i		element	which	means	italic.

	font-size	

This	property	is	used	to	determine	the	size	of	fonts.

You	can	pass	2	kinds	of	values:

1.	 a	length	value,	like	 	px	,	 	em	,	 	rem		etc,	or	a	percentage
2.	 a	predefined	value	keyword

In	the	second	case,	the	values	you	can	use	are:

xx-small
x-small
small
medium
large
x-large
xx-large
smaller	(relative	to	the	parent	element)
larger	(relative	to	the	parent	element)

Usage:

p	{

		font-size:	20px;

}

li	{

		font-size:	medium;

}

	font-variant	

This	property	was	originally	used	to	change	the	text	to	small	caps,	and	it	had	just	3	valid
values:

	normal	

	inherit	

	small-caps	

Fonts

58

Small	caps	means	the	text	is	rendered	in	"smaller	caps"	beside	its	uppercase	letters.

	font	

The	 	font		property	lets	you	apply	different	font	properties	in	a	single	one,	reducing	the	clutter.

We	must	at	least	set	2	properties,	 	font-size		and	 	font-family	,	the	others	are	optional:

body	{

		font:	20px	Helvetica;

}

If	we	add	other	properties,	they	need	to	be	put	in	the	correct	order.

This	is	the	order:

font:	<font-stretch>	<font-style>	<font-variant>	<font-weight>	<font-size>	<line-height>	<

font-family>;

Example:

body	{

		font:	italic	bold	20px	Helvetica;

}

section	{

		font:	small-caps	bold	20px	Helvetica;

}

Loading	custom	fonts	using	 	@font-face	
	@font-face		lets	you	add	a	new	font	family	name,	and	map	it	to	a	file	that	holds	a	font.

This	font	will	be	downloaded	by	the	browser	and	used	in	the	page,	and	it's	been	such	a
fundamental	change	to	typography	on	the	web	-	we	can	now	use	any	font	we	want.

We	can	add	 	@font-face		declarations	directly	into	our	CSS,	or	link	to	a	CSS	dedicated	to
importing	the	font.

In	our	CSS	file	we	can	also	use	 	@import		to	load	that	CSS	file.

A	 	@font-face		declaration	contains	several	properties	we	use	to	define	the	font,	including
	src	,	the	URI	(one	or	more	URIs)	to	the	font.	This	follows	the	same-origin	policy,	which
means	fonts	can	only	be	downloaded	form	the	current	origin	(domain	+	port	+	protocol).

Fonts

59

Fonts	are	usually	in	the	formats

	woff		(Web	Open	Font	Format)
	woff2		(Web	Open	Font	Format	2.0)
	eot		(Embedded	Open	Type)
	otf		(OpenType	Font)
	ttf		(TrueType	Font)

The	following	properties	allow	us	to	define	the	properties	to	the	font	we	are	going	to	load,	as
we	saw	above:

	font-family	

	font-weight	

	font-style	

	font-stretch	

A	note	on	performance
Of	course	loading	a	font	has	performance	implications	which	you	must	consider	when	creating
the	design	of	your	page.

Fonts

60

Typography
We	already	talked	about	fonts,	but	there's	more	to	styling	text.

In	this	section	we'll	talk	about	the	following	properties:

	text-transform	

	text-decoration	

	text-align	

	vertical-align	

	line-height	

	text-indent	

	text-align-last	

	word-spacing	

	letter-spacing	

	text-shadow	

	white-space	

	tab-size	

	writing-mode	

	hyphens	

	text-orientation	

	direction	

	line-break	

	word-break	

	overflow-wrap	

	text-transform	

This	property	can	transform	the	case	of	an	element.

There	are	4	valid	values:

	capitalize		to	uppercase	the	first	letter	of	each	word
	uppercase		to	uppercase	all	the	text
	lowercase		to	lowercase	all	the	text
	none		to	disable	transforming	the	text,	used	to	avoid	inheriting	the	property

Example:

p	{

		text-transform:	uppercase;

}

Typography

61

	text-decoration	

This	property	is	sed	to	add	decorations	to	the	text,	including

	underline	

	overline	

	line-through	

	blink	

	none	

Example:

p	{

		text-decoration:	underline;

}

You	can	also	set	the	style	of	the	decoration,	and	the	color.

Example:

p	{

		text-decoration:	underline	dashed	yellow;

}

Valid	style	values	are	 	solid	,	 	double	,	 	dotted	,	 	dashed	,	 	wavy	.

You	can	do	all	in	one	line,	or	use	the	specific	properties:

	text-decoration-line	

	text-decoration-color	

	text-decoration-style	

Example:

p	{

		text-decoration-line:	underline;

		text-decoration-color:	yellow;

		text-decoration-style:	dashed;

}

	text-align	

Typography

62

By	default	text	align	has	the	 	start		value,	meaning	the	text	starts	at	the	"start",	origin	0,	0	of
the	box	that	contains	it.	This	means	top	left	in	left-to-right	languages,	and	top	right	in	right-to-
left	languages.

Possible	values	are	 	start	,	 	end	,	 	left	,	 	right	,	 	center	,	 	justify		(nice	to	have	a	consistent
spacing	at	the	line	ends):

p	{

		text-align:	right;

}

	vertical-align	

Determines	how	inline	elements	are	vertically	aligned.

We	have	several	values	for	this	property.	First	we	can	assign	a	length	or	percentage	value.
Those	are	used	to	align	the	text	in	a	position	higher	or	lower	(using	negative	values)	than	the
baseline	of	the	parent	element.

Then	we	have	the	keywords:

	baseline		(the	default),	aligns	the	baseline	to	the	baseline	of	the	parent	element
	sub		makes	an	element	subscripted,	simulating	the	 	sub		HTML	element	result
	super		makes	an	element	superscripted,	simulating	the	 	sup		HTML	element	result
	top		align	the	top	of	the	element	to	the	top	of	the	line
	text-top		align	the	top	of	the	element	to	the	top	of	the	parent	element	font
	middle		align	the	middle	of	the	element	to	the	middle	of	the	line	of	the	parent
	bottom		align	the	bottom	of	the	element	to	the	bottom	of	the	line
	text-bottom		align	the	bottom	of	the	element	to	the	bottom	of	the	parent	element	font

	line-height	

This	allows	you	to	change	the	height	of	a	line.	Each	line	of	text	has	a	certain	font	height,	but
then	there	is	additional	spacing	vertically	between	the	lines.	That's	the	line	height:

p	{

		line-height:	0.9rem;

}

	text-indent	

Indent	the	first	line	of	a	paragraph	by	a	set	length,	or	a	percentage	of	the	paragraph	width:

Typography

63

p	{

		text-indent:	-10px;

}

	text-align-last	

By	default	the	last	line	of	a	paragraph	is	aligned	following	the	 	text-align		value.	Use	this
property	to	change	that	behavior:

p	{

		text-align-last:	right;

}

	word-spacing	

Modifies	the	spacing	between	each	word.

You	can	use	the	 	normal		keyword,	to	reset	inherited	values,	or	use	a	length	value:

p	{

		word-spacing:	2px;

}

span	{

		word-spacing:	-0.2em;

}

	letter-spacing	

Modifies	the	spacing	between	each	letter.

You	can	use	the	 	normal		keyword,	to	reset	inherited	values,	or	use	a	length	value:

p	{

		letter-spacing:	0.2px;

}

span	{

		letter-spacing:	-0.2em;

}

	text-shadow	

Typography

64

Apply	a	shadow	to	the	text.	By	default	the	text	has	now	shadow.

This	property	accepts	an	optional	color,	and	a	set	of	values	that	set

the	X	offset	of	the	shadow	from	the	text
the	Y	offset	of	the	shadow	from	the	text
the	blur	radius

If	the	color	is	not	specified,	the	shadow	will	use	the	text	color.

Examples:

p	{

		text-shadow:	0.2px	2px;

}

span	{

		text-shadow:	yellow	0.2px	2px	3px;

}

	white-space	

Sets	how	CSS	handles	the	white	space,	new	lines	and	tabs	inside	an	element.

Valid	values	that	collapse	white	space	are:

	normal		collapses	white	space.	Adds	new	lines	when	necessary	as	the	text	reaches	the
container	end
	nowrap		collapses	white	space.	Does	not	add	a	new	line	when	the	text	reaches	the	end	of
the	container,	and	suppresses	any	line	break	added	to	the	text
	pre-line		collapses	white	space.	Adds	new	lines	when	necessary	as	the	text	reaches	the
container	end

Valid	values	that	preserve	white	space	are:

	pre		preserves	white	space.	Does	not	add	a	new	line	when	the	text	reaches	the	end	of
the	container,	but	preserves	line	break	added	to	the	text
	pre-wrap		preserves	white	space.	Adds	new	lines	when	necessary	as	the	text	reaches	the
container	end

	tab-size	

Sets	the	width	of	the	tab	character.	By	default	it's	8,	and	you	can	set	an	integer	value	that	sets
the	character	spaces	it	takes,	or	a	length	value:

Typography

65

p	{

		tab-size:	2;

}

span	{

		tab-size:	4px;

}

	writing-mode	

Defines	whether	lines	of	text	are	laid	out	horizontally	or	vertically,	and	the	direction	in	which
blocks	progress.

The	values	you	can	use	are

	horizontal-tb		(default)
	vertical-rl		content	is	laid	out	vertically.	New	lines	are	put	on	the	left	of	the	previous
	vertical-lr		content	is	laid	out	vertically.	New	lines	are	put	on	the	right	of	the	previous

	hyphens	

Determines	if	hyphens	should	be	automatically	added	when	going	to	a	new	line.

Valid	values	are

	none		(default)
	manual		only	add	an	hyphen	when	there	is	already	a	visible	hyphen	or	a	hidden	hyphen	(a
special	character)
	auto		add	hyphens	when	determined	the	text	can	have	a	hyphen.

	text-orientation	

When	 	writing-mode		is	in	a	vertical	mode,	determines	the	orientation	of	the	text.

Valid	values	are

	mixed		is	the	default,	and	if	a	language	is	vertical	(like	Japanese)	it	preserves	that
orientation,	while	rotating	text	written	in	western	languages
	upright		makes	all	text	be	vertically	oriented
	sideways		makes	all	text	horizontally	oriented

	direction	

Typography

66

Sets	the	direction	of	the	text.	Valid	values	are	 	ltr		and	 	rtl	:

p	{

		direction:	rtl;

}

	word-break	

This	property	specifies	how	to	break	lines	within	words.

	normal		(default)	means	the	text	is	only	broken	between	words,	not	inside	a	word
	break-all		the	browser	can	break	a	word	(but	no	hyphens	are	added)
	keep-all		suppress	soft	wrapping.	Mostly	used	for	CJK	(Chinese/Japanese/Korean)	text.

Speaking	of	CJK	text,	the	property	 	line-break		is	used	to	determine	how	text	lines	break.	I'm
not	an	expert	with	those	languages,	so	I	will	avoid	covering	it.

	overflow-wrap	

If	a	word	is	too	long	to	fit	a	line,	it	can	overflow	outside	of	the	container.

This	property	is	also	known	as	 	word-wrap	,	although	that	is	non-standard	(but	still	works
as	an	alias)

This	is	the	default	behavior	(overflow-wrap:	normal;).

We	can	use:

p	{

		overflow-wrap:	break-word;

}

to	break	it	at	the	exact	length	of	the	line,	or

p	{

		overflow-wrap:	anywhere;

}

if	the	browser	sees	there's	a	soft	wrap	opportunity	somewhere	earlier.	No	hyphens	are	added,
in	any	case.

This	property	is	very	similar	to	 	word-break	.	We	might	want	to	choose	this	one	on	western
languages,	while	 	word-break		has	special	treatment	for	non-western	languages.

Typography

67

Typography

68

Box	Model
Every	CSS	element	is	essentially	a	box.	Every	element	is	a	generic	box.

The	box	model	explains	the	sizing	of	the	elements	based	on	a	few	CSS	properties.

From	the	inside	to	the	outside,	we	have:

the	content	area
padding
border
margin

The	best	way	to	visualize	the	box	model	is	to	open	the	browser	DevTools	and	check	how	it	is
displayed:

Here	you	can	see	how	Firefox	tells	me	the	properties	of	a	 	span		element	I	highlighted.	I	right-
clicked	on	it,	pressed	Inspect	Element,	and	went	to	the	Layout	panel	of	the	DevTools.

See,	the	light	blue	space	is	the	content	area.	Surrounding	it	there	is	the	padding,	then	the
border	and	finally	the	margin.

By	default,	if	you	set	a	width	(or	height)	on	the	element,	that	is	going	to	be	applied	to	the
content	area.	All	the	padding,	border,	and	margin	calculations	are	done	outside	of	the	value,
so	you	have	to	take	this	in	mind	when	you	do	your	calculation.

You	can	change	this	behavior	using	Box	Sizing.

Box	Model

69

Box	Model

70

Border
The	border	is	a	thin	layer	between	padding	and	margin.	Editing	the	border	you	can	make
elements	draw	their	perimeter	on	screen.

You	can	work	on	borders	by	using	those	properties:

	border-style	

	border-color	

	border-width	

The	property	 	border		can	be	used	as	a	shorthand	for	all	those	properties.

	border-radius		is	used	to	create	rounded	corners.

You	also	have	the	ability	to	use	images	as	borders,	an	ability	given	to	you	by	 	border-image	
and	its	specific	separate	properties:

	border-image-source	

	border-image-slice	

	border-image-width	

	border-image-outset	

	border-image-repeat	

Let's	start	with	 	border-style	.

The	border	style
The	 	border-style		property	lets	you	choose	the	style	of	the	border.	The	options	you	can	use
are:

	dotted	

	dashed	

	solid	

	double	

	groove	

	ridge	

	inset	

	outset	

	none	

	hidden	

Border

71

Check	this	Codepen	for	a	live	example

The	default	for	the	style	is	 	none	,	so	to	make	the	border	appear	at	all	you	need	to	change	it	to
something	else.	 	solid		is	a	good	choice	most	of	the	times.

You	can	set	a	different	style	for	each	edge	using	the	properties

	border-top-style	

	border-right-style	

	border-bottom-style	

	border-left-style	

or	you	can	use	 	border-style		with	multiple	values	to	define	them,	using	the	usual	Top-Right-
Bottom-Left	order:

p	{

		border-style:	solid	dotted	solid	dotted;

}

The	border	width
	border-width		is	used	to	set	the	width	of	the	border.

Border

72

https://codepen.io/flaviocopes/pen/yraaxq

You	can	use	one	of	the	pre-defined	values:

	thin	

	medium		(the	default	value)
	thick	

or	express	a	value	in	pixels,	em	or	rem	or	any	other	valid	length	value.

Example:

p	{

		border-width:	2px;

}

You	can	set	the	width	of	each	edge	(Top-Right-Bottom-Left)	separately	by	using	4	values:

p	{

		border-width:	2px	1px	2px	1px;

}

or	you	can	use	the	specific	edge	properties	 	border-top-width	,	 	border-right-width	,	 	border-
bottom-width	,	 	border-left-width	.

The	border	color
	border-color		is	used	to	set	the	color	of	the	border.

If	you	don't	set	a	color,	the	border	by	default	is	colored	using	the	color	of	the	text	in	the
element.

You	can	pass	any	valid	color	value	to	 	border-color	.

Example:

p	{

		border-color:	yellow;

}

You	can	set	the	color	of	each	edge	(Top-Right-Bottom-Left)	separately	by	using	4	values:

p	{

		border-color:	black	red	yellow	blue;

}

Border

73

or	you	can	use	the	specific	edge	properties	 	border-top-color	,	 	border-right-color	,	 	border-
bottom-color	,	 	border-left-color	.

The	border	shorthand	property
Those	3	properties	mentioned,	 	border-width	,	 	border-style		and	 	border-color		can	be	set
using	the	shorthand	property	 	border	.

Example:

p	{

		border:	2px	black	solid;

}

You	can	also	use	the	edge-specific	properties	 	border-top	,	 	border-right	,	 	border-bottom	,
	border-left	.

Example:

p	{

		border-left:	2px	black	solid;

		border-right:	3px	red	dashed;

}

The	border	radius
	border-radius		is	used	to	set	rounded	corners	to	the	border.	You	need	to	pass	a	value	that	will
be	used	as	the	radius	of	the	circle	that	will	be	used	to	round	the	border.

Usage:

p	{

		border-radius:	3px;

}

You	can	also	use	the	edge-specific	properties	 	border-top-left-radius	,	 	border-top-right-
radius	,	 	border-bottom-left-radius	,	 	border-bottom-right-radius	.

Using	images	as	borders

Border

74

One	very	cool	thing	with	borders	is	the	ability	to	use	images	to	style	them.	This	lets	you	go
very	creative	with	borders.

We	have	5	properties:

	border-image-source	

	border-image-slice	

	border-image-width	

	border-image-outset	

	border-image-repeat	

and	the	shorthand	 	border-image	.	I	won't	go	in	much	details	here	as	images	as	borders	would
need	a	more	in-depth	coverage	as	the	one	I	can	do	in	this	little	chapter.	I	recommend	reading
the	CSS	Tricks	almanac	entry	on	border-image	for	more	information.

Border

75

https://css-tricks.com/almanac/properties/b/border-image/

Padding
The	 	padding		CSS	property	is	commonly	used	in	CSS	to	add	space	in	the	inner	side	of	an
element.

Remember:

	margin		adds	space	outside	an	element	border
	padding		adds	space	inside	an	element	border

Specific	padding	properties
	padding		has	4	related	properties	that	alter	the	padding	of	a	single	edge	at	once:

	padding-top	

	padding-right	

	padding-bottom	

	padding-left	

The	usage	of	those	is	very	simple	and	cannot	be	confused,	for	example:

padding-left:	30px;

padding-right:	3em;

Using	the	 	padding		shorthand
	padding		is	a	shorthand	to	specify	multiple	padding	values	at	the	same	time,	and	depending
on	the	number	of	values	entered,	it	behaves	differently.

1	value

Using	a	single	value	applies	that	to	all	the	paddings:	top,	right,	bottom,	left.

padding:	20px;

2	values

Using	2	values	applies	the	first	to	bottom	&	top,	and	the	second	to	left	&	right.

padding:	20px	10px;

Padding

76

3	values

Using	3	values	applies	the	first	to	top,	the	second	to	left	&	right,	the	third	to	bottom.

padding:	20px	10px	30px;

4	values

Using	4	values	applies	the	first	to	top,	the	second	to	right,	the	third	to	bottom,	the	fourth	to
left.

padding:	20px	10px	5px	0px;

So,	the	order	is	top-right-bottom-left.

Values	accepted
	padding		accepts	values	expressed	in	any	kind	of	length	unit,	the	most	common	ones	are	px,
em,	rem,	but	many	others	exist.

Padding

77

https://developer.mozilla.org/en-US/docs/Web/CSS/length

Margin
The	 	margin		CSS	property	is	commonly	used	in	CSS	to	add	space	around	an	element.

Remember:

	margin		adds	space	outside	an	element	border
	padding		adds	space	inside	an	element	border

Specific	margin	properties
	margin		has	4	related	properties	that	alter	the	margin	of	a	single	edge	at	once:

	margin-top	

	margin-right	

	margin-bottom	

	margin-left	

The	usage	of	those	is	very	simple	and	cannot	be	confused,	for	example:

margin-left:	30px;

margin-right:	3em;

Using	the	 	margin		shorthand
	margin		is	a	shorthand	to	specify	multiple	margins	at	the	same	time,	and	depending	on	the
number	of	values	entered,	it	behaves	differently.

1	value

Using	a	single	value	applies	that	to	all	the	margins:	top,	right,	bottom,	left.

margin:	20px;

2	values

Using	2	values	applies	the	first	to	bottom	&	top,	and	the	second	to	left	&	right.

margin:	20px	10px;

Margin

78

3	values

Using	3	values	applies	the	first	to	top,	the	second	to	left	&	right,	the	third	to	bottom.

margin:	20px	10px	30px;

4	values

Using	4	values	applies	the	first	to	top,	the	second	to	right,	the	third	to	bottom,	the	fourth	to
left.

margin:	20px	10px	5px	0px;

So,	the	order	is	top-right-bottom-left.

Values	accepted
	margin		accepts	values	expressed	in	any	kind	of	length	unit,	the	most	common	ones	are	px,
em,	rem,	but	many	others	exist.

It	also	accepts	percentage	values,	and	the	special	value	 	auto	.

Using	 	auto		to	center	elements
	auto		can	be	used	to	tell	the	browser	to	select	automatically	a	margin,	and	it's	most	commonly
used	to	center	an	element	in	this	way:

margin:	0	auto;

As	said	above,	using	2	values	applies	the	first	to	bottom	&	top,	and	the	second	to	left	&
right.

The	modern	way	to	center	elements	is	to	use	Flexbox,	and	its	 	justify-content:	center;	
directive.

Older	browsers	of	course	do	not	implement	Flexbox,	and	if	you	need	to	support	them	 	margin:
0	auto;		is	still	a	good	choice.

Using	a	negative	margin

Margin

79

https://developer.mozilla.org/en-US/docs/Web/CSS/length
https://flaviocopes.com/flexbox/

	margin		is	the	only	property	related	to	sizing	that	can	have	a	negative	value.	It's	extremely
useful,	too.	Setting	a	negative	top	margin	makes	an	element	move	over	elements	before	it,
and	given	enough	negative	value	it	will	move	out	of	the	page.

A	negative	bottom	margin	moves	up	the	elements	after	it.

A	negative	right	margin	makes	the	content	of	the	element	expand	beyond	its	allowed	content
size.

A	negative	left	margin	moves	the	element	left	over	the	elements	that	precede	it,	and	given
enough	negative	value	it	will	move	out	of	the	page.

Margin

80

Box	Sizing
The	default	behavior	of	browsers	when	calculating	the	width	of	an	element	is	to	apply	the
calculated	width	and	height	to	the	content	area,	without	taking	any	of	the	padding,	border	and
margin	in	consideration.

This	approach	has	proven	to	be	quite	complicated	to	work	with.

You	can	change	this	behavior	by	setting	the	 	box-sizing		property.

The	 	box-sizing		property	is	a	great	help.	It	has	2	values:

	border-box	

	content-box	

	content-box		is	the	default,	the	one	we	had	for	ages	before	 	box-sizing		became	a	thing.

	border-box		is	the	new	and	great	thing	we	are	looking	for.	If	you	set	that	on	an	element:

.my-div	{

		box-sizing:	border-box;

}

width	and	height	calculation	include	the	padding	and	the	border.	Only	the	margin	is	left	out,
which	is	reasonable	since	in	our	mind	we	also	typically	see	that	as	a	separate	thing:	margin	is
outside	of	the	box.

This	property	is	a	small	change	but	has	a	big	impact.	CSS	Tricks	even	declared	an
international	box-sizing	awareness	day,	just	saying,	and	it's	recommended	to	apply	it	to	every
element	on	the	page,	out	of	the	box,	with	this:

*,	*:before,	*:after	{

		box-sizing:	border-box;

}

Box	Sizing

81

https://css-tricks.com/international-box-sizing-awareness-day/

Display
The	 	display		property	of	an	object	determines	how	it	is	rendered	by	the	browser.

It's	a	very	important	property,	and	probably	the	one	with	the	highest	number	of	values	you	can
use.

Those	values	include:

	block	

	inline	

	none	

	contents	

	flow	

	flow-root	

	table		(and	all	the	 	table-*		ones)
	flex	

	grid	

	list-item	

	inline-block	

	inline-table	

	inline-flex	

	inline-grid	

	inline-list-item	

plus	others	you	will	not	likely	use,	like	 	ruby	.

Choosing	any	of	those	will	considerably	alter	the	behavior	of	the	browser	with	the	element	and
its	children.

In	this	section	we'll	analyze	the	most	important	ones	not	covered	elsewhere:

	block	

	inline	

	inline-block	

	none	

We'll	see	some	of	the	others	in	later	chapters,	including	coverage	of	 	table	,	 	flex		and	 	grid	.

	inline	

Inline	is	the	default	display	value	for	every	element	in	CSS.

Display

82

All	the	HTML	tags	are	displayed	inline	out	of	the	box	except	some	elements	like	 	div	,	 	p		and
	section	,	which	are	set	as	 	block		by	the	user	agent	(the	browser).

Inline	elements	don't	have	any	margin	or	padding	applied.

Same	for	height	and	width.

You	can	add	them,	but	the	appearance	in	the	page	won't	change	-	they	are	calculated	and
applied	automatically	by	the	browser.

	inline-block	

Similar	to	 	inline	,	but	with	 	inline-block		 	width		and	 	height		are	applied	as	you	specified.

	block	

As	mentioned,	normally	elements	are	displayed	inline,	with	the	exception	of	some	elements,
including

	div	

	p	

	section	

	ul	

which	are	set	as	 	block		by	the	browser.

With	 	display:	block	,	elements	are	stacked	one	after	each	other,	vertically,	and	every	element
takes	up	100%	of	the	page.

The	values	assigned	to	the	 	width		and	 	height		properties	are	respected,	if	you	set	them,
along	with	 	margin		and	 	padding	.

	none	

Using	 	display:	none		makes	an	element	disappear.	It's	still	there	in	the	HTML,	but	just	not
visible	in	the	browser.

Display

83

Positioning
Positioning	is	what	makes	us	determine	where	elements	appear	on	the	screen,	and	how	they
appear.

You	can	move	elements	around,	and	position	them	exactly	where	you	want.

In	this	section	we'll	also	see	how	things	change	on	a	page	based	on	how	elements	with
different	 	position		interact	with	each	other.

We	have	one	main	CSS	property:	 	position	.

It	can	have	those	5	values:

	static	

	relative	

	absolute	

	fixed	

	sticky	

Static	positioning
This	is	the	default	value	for	an	element.	Static	positioned	elements	are	displayed	in	the	normal
page	flow.

Relative	positioning
If	you	set	 	position:	relative		on	an	element,	you	are	now	able	to	position	it	with	an	offset,
using	the	properties

top
right
bottom
left

which	are	called	offset	properties.	They	accept	a	length	value	or	a	percentage.

Take	this	example	I	made	on	Codepen.	I	create	a	parent	container,	a	child	container,	and	an
inner	box	with	some	text:

<div	class="parent">

		<div	class="child">

Positioning

84

https://codepen.io/flaviocopes/pen/WWGgrR

				<div	class="box">

						<p>Test</p>

				</div>

		</div>

</div>

with	some	CSS	to	give	some	colors	and	padding,	but	does	not	affect	positioning:

.parent	{

		background-color:	#af47ff;

		padding:	30px;

		width:	300px;

}

.child	{

		background-color:	#ff4797;

		padding:	30px;

}

.box	{

		background-color:	#f3ff47;

		padding:	30px;

		border:	2px	solid	#333;

		border-style:	dotted;

		font-family:	courier;

		text-align:	center;

		font-size:	2rem;

}

here's	the	result:

You	can	try	and	add	any	of	the	properties	I	mentioned	before	(top	,	 	right	,	 	bottom	,	 	left)
to	 	.box	,	and	nothing	will	happen.	The	position	is	 	static	.

Positioning

85

Now	if	we	set	 	position:	relative		to	the	box,	at	first	apparently	nothing	changes.	But	the
element	is	now	able	to	move	using	the	 	top	,	 	right	,	 	bottom	,	 	left		properties,	and	now	you
can	alter	the	position	of	it	relatively	to	the	element	containing	it.

For	example:

.box	{

		/*	...	*/

		position:	relative;

		top:	-60px;

}

A	negative	value	for	 	top		will	make	the	box	move	up	relatively	to	its	container.

Or

.box	{

		/*	...	*/

		position:	relative;

		top:	-60px;

		left:	180px;

}

Positioning

86

Notice	how	the	space	that	is	occupied	by	the	box	remains	preserved	in	the	container,	like	it
was	still	in	its	place.

Another	property	that	will	now	work	is	 	z-index		to	alter	the	z-axis	placement.	We'll	talk	about	it
later	on.

Absolute	positioning
Setting	 	position:	absolute		on	an	element	will	remove	it	from	the	document's	flow,	and	it	will
not	longer	.

Remember	in	relative	positioning	that	we	noticed	the	space	originally	occupied	by	an	element
was	preserved	even	if	it	was	moved	around?

With	absolute	positioning,	as	soon	as	we	set	 	position:	absolute		on	 	.box	,	its	original	space
is	now	collapsed,	and	only	the	origin	(x,	y	coordinates)	remain	the	same.

.box	{

		/*	...	*/

		position:	absolute;

}

Positioning

87

We	can	now	move	the	box	around	as	we	please,	using	the	 	top	,	 	right	,	 	bottom	,	 	left	
properties:

.box	{

		/*	...	*/

		position:	absolute;

		top:	0px;

		left:	0px;

}

or

.box	{

		/*	...	*/

		position:	absolute;

		top:	140px;

		left:	50px;

}

Positioning

88

The	coordinates	are	relative	to	the	closest	container	that	is	not	 	static	.

This	means	that	if	we	add	 	position:	relative		to	the	 	.child		element,	and	we	set	 	top		and
	left		to	0,	the	box	will	not	be	positioned	at	the	top	left	margin	of	the	window,	but	rather	it	will
be	positioned	at	the	0,	0	coordinates	of	 	.child	:

.child	{

		/*	...	*/

		position:	relative;

}

.box	{

		/*	...	*/

		position:	absolute;

		top:	0px;

		left:	0px;

}

Here's	(how	we	already	saw)	of	 	.child		is	static	(the	default):

Positioning

89

.child	{

		/*	...	*/

		position:	static;

}

.box	{

		/*	...	*/

		position:	absolute;

		top:	0px;

		left:	0px;

}

Like	for	relative	positioning,	you	can	use	 	z-index		to	alter	the	z-axis	placement.

Fixed	positioning
Like	with	absolute	positioning,	when	an	element	is	assigned	 	position:	fixed		it's	removed
from	the	flow	of	the	page.

The	difference	with	absolute	positioning	is	this:	elements	are	now	always	positioned	relative	to
the	window,	instead	of	the	first	non-static	container.

.box	{

		/*	...	*/

		position:	fixed;

}

Positioning

90

.box	{

		/*	...	*/

		position:	fixed;

		top:	0;

		left:	0;

}

Another	big	difference	is	that	elements	are	not	affected	by	scrolling.	Once	you	put	a	sticky
element	somewhere,	scrolling	the	page	does	not	remove	it	from	the	visible	part	of	the	page.

Sticky	positioning
While	the	above	values	have	been	around	for	a	very	long	time,	this	one	was	introduced
recently	and	it's	still	relatively	unsupported	(see	caniuse.com)

The	UITableView	iOS	component	is	the	thing	that	comes	to	mind	when	I	think	about	 	position:
sticky	.	You	know	when	you	scroll	in	the	contacts	list	and	the	first	letter	is	sticked	to	the	top,	to
let	you	know	you	are	viewing	that	particular	letter's	contacts?

We	used	JavaScript	to	emulate	that,	but	this	is	the	approach	taken	by	CSS	to	allow	it	natively.

Positioning

91

https://caniuse.com/#feat=css-sticky

Positioning

92

Floating	and	clearing
Floating	has	been	a	very	important	topic	in	the	past.

It	was	used	in	lots	of	hacks	and	creative	usages	because	it	was	one	of	the	few	ways,	along
with	tables,	we	could	really	implement	some	layouts.	In	the	past	we	used	to	float	the	sidebar	to
the	left,	for	example,	to	show	it	on	the	left	side	of	the	screen	and	added	some	margin	to	the
main	content.

Luckily	times	have	changed	and	today	we	have	Flexbox	and	Grid	to	help	us	with	layout,	and
float	has	gone	back	to	its	original	scope:	placing	content	on	one	side	of	the	container	element,
and	make	its	siblings	show	up	around	it.

The	 	float		property	supports	3	values:

	left	

	right	

	none		(the	default)

Say	we	have	a	box	which	contains	a	paragraph	with	some	text,	and	the	paragraph	also
contains	an	image.

Here's	some	code:

<div	class="parent">

		<div	class="child">

				<div	class="box">

						<p>This	is	some	random	paragraph	and	an	image.	<img	src="https://via.placeholder.com

/100x100"	/>	The	image	is	in	the	middle	of	the	text.	The	image	is	in	the	middle	of	the	tex

t.	The	image	is	in	the	middle	of	the	text.	The	image	is	in	the	middle	of	the	text.	The	ima

ge	is	in	the	middle	of	the	text.	The	image	is	in	the	middle	of	the	text.	The	image	is	in	t

he	middle	of	the	text.	The	image	is	in	the	middle	of	the	text.	The	image	is	in	the	middle	

of	the	text.

						</p>

				</div>

		</div>

</div>

.parent	{

		background-color:	#af47ff;

		padding:	30px;

		width:	500px;

}

.child	{

		background-color:	#ff4797;

		padding:	30px;

}

Floating	and	clearing

93

.box	{

		background-color:	#f3ff47;

		padding:	30px;

		border:	2px	solid	#333;

		border-style:	dotted;

		font-family:	courier;

		text-align:	justify;

		font-size:	1rem;

}

and	the	visual	appearance:

As	you	can	see,	the	normal	flow	by	default	considers	the	image	inline,	and	makes	space	for	it
in	the	line	itself.

If	we	add	 	float:	left		to	the	image,	and	some	padding:

img	{

		float:	left;

		padding:	20px	20px	0px	0px;

}

Floating	and	clearing

94

this	is	the	result:

and	this	is	what	we	get	by	applying	a	float:	right,	adjusting	the	padding	accordingly:

img	{

		float:	right;

		padding:	20px	0px	20px	20px;

}

Floating	and	clearing

95

A	floated	element	is	removed	from	the	normal	flow	of	the	page,	and	the	other	content	flows
around	it.

See	the	example	on	Codepen

You	are	not	limited	to	floating	images,	too.	Here	we	switch	the	image	with	a	 	span		element:

<div	class="parent">

		<div	class="child">

				<div	class="box">

						<p>This	is	some	random	paragraph	and	an	image.	Some	text	to	float	The	i

mage	is	in	the	middle	of	the	text.	The	image	is	in	the	middle	of	the	text.	The	image	is	in

	the	middle	of	the	text.	The	image	is	in	the	middle	of	the	text.	The	image	is	in	the	middl

e	of	the	text.	The	image	is	in	the	middle	of	the	text.	The	image	is	in	the	middle	of	the	t

ext.	The	image	is	in	the	middle	of	the	text.	The	image	is	in	the	middle	of	the	text.

						</p>

				</div>

		</div>

</div>

span	{

		float:	right;

		margin:	20px	0px	20px	20px;

		padding:	10px;

		border:	1px	solid	black

Floating	and	clearing

96

https://codepen.io/flaviocopes/pen/WWGqPr?editors=1100

}

and	this	is	the	result:

Clearing
What	happens	when	you	float	more	than	one	element?

If	when	floated	they	find	another	floated	image,	by	default	they	are	stacked	up	one	next	to	the
other,	horizontally.	Until	there	is	no	room,	and	they	will	start	being	stacked	on	a	new	line.

Say	we	had	3	inline	images	inside	a	 	p		tag:

Floating	and	clearing

97

If	we	add	 	float:	left		to	those	images:

img	{

		float:	left;

		padding:	20px	20px	0px	0px;

}

this	is	what	we'll	have:

Floating	and	clearing

98

if	you	add	 	clear:	left		to	images,	those	are	going	to	be	stacked	vertically	rather	than
horizontally:

Floating	and	clearing

99

I	used	the	 	left		value	for	 	clear	.	It	allows

	left		to	clear	left	floats
	right		to	clear	right	floats
	both		to	clear	both	left	and	right	floats
	none		(default)	disables	clearing

Floating	and	clearing

100

z-index
When	we	talked	about	positioning,	I	mentioned	that	you	can	use	the	 	z-index		property	to
control	the	Z	axis	positioning	of	elements.

It's	very	useful	when	you	have	multiple	elements	that	overlap	each	other,	and	you	need	to
decide	which	one	is	visible,	as	nearer	to	the	user,	and	which	one(s)	should	be	hidden	behind
it.

This	property	takes	a	number	(without	decimals)	and	uses	that	number	to	calculate	which
elements	appear	nearer	to	the	user,	in	the	Z	axis.

The	higher	the	z-index	value,	the	more	an	element	is	positioned	nearer	to	the	user.

When	deciding	which	element	should	be	visible	and	which	one	should	be	positioned	behind	it,
the	browser	does	a	calculation	on	the	z-index	value.

The	default	value	is	 	auto	,	a	special	keyword.	Using	 	auto	,	the	Z	axis	order	is	determined	by
the	position	of	the	HTML	element	in	the	page	-	the	last	sibling	appears	first,	as	it's	defined	last.

By	default	elements	have	the	 	static		value	for	the	 	position		property.	In	this	case,	the	 	z-
index		property	does	not	make	any	difference	-	it	must	be	set	to	 	absolute	,	 	relative		or
	fixed		to	work.

Example:

.my-first-div	{

				position:	absolute;

				top:	0;

				left:	0;

				width:	600px;

				height:	600px;

				z-index:	10;

}

.my-second-div	{

				position:	absolute;

				top:	0;

				left:	0;

				width:	500px;

				height:	500px;

				z-index:	20;

}

The	element	with	class	 	.my-second-div		will	be	displayed,	and	behind	it	 	.my-first-div	.

z-index

101

Here	we	used	10	and	20,	but	you	can	use	any	number.	Negative	numbers	too.	It's	common	to
pick	non-consecutive	numbers,	so	you	can	position	elements	in	the	middle.	If	you	use
consecutive	numbers	instead,	you	would	need	to	re-calculate	the	z-index	of	each	element
involved	in	the	positioning.

z-index

102

CSS	Grid
CSS	Grid	is	the	new	kid	in	the	CSS	town,	and	while	not	yet	fully	supported	by	all	browsers,	it's
going	to	be	the	future	system	for	layouts.

CSS	Grid	is	a	fundamentally	new	approach	to	building	layouts	using	CSS.

Keep	an	eye	on	the	CSS	Grid	Layout	page	on	caniuse.com	(https://caniuse.com/#feat=css-
grid)	to	find	out	which	browsers	currently	support	it.	At	the	time	of	writing,	April	2019,	all	major
browsers	(except	IE,	which	will	never	have	support	for	it)	are	already	supporting	this
technology,	covering	92%	of	all	users.

CSS	Grid	is	not	a	competitor	to	Flexbox.	They	interoperate	and	collaborate	on	complex
layouts,	because	CSS	Grid	works	on	2	dimensions	(rows	AND	columns)	while	Flexbox	works
on	a	single	dimension	(rows	OR	columns).

Building	layouts	for	the	web	has	traditionally	been	a	complicated	topic.

I	won't	dig	into	the	reasons	for	this	complexity,	which	is	a	complex	topic	on	its	own,	but	you
can	think	yourself	as	a	very	lucky	human	because	nowadays	you	have	2	very	powerful	and
well	supported	tools	at	your	disposal:

CSS	Flexbox
CSS	Grid

These	2	are	the	tools	to	build	the	Web	layouts	of	the	future.

Unless	you	need	to	support	old	browsers	like	IE8	and	IE9,	there	is	no	reason	to	be	messing
with	things	like:

Table	layouts
Floats
clearfix	hacks
	display:	table		hacks

In	this	guide	there's	all	you	need	to	know	about	going	from	a	zero	knowledge	of	CSS	Grid	to
being	a	proficient	user.

The	basics
The	CSS	Grid	layout	is	activated	on	a	container	element	(which	can	be	a	 	div		or	any	other
tag)	by	setting	 	display:	grid	.

CSS	Grid

103

https://caniuse.com/#feat=css-grid

As	with	flexbox,	you	can	define	some	properties	on	the	container,	and	some	properties	on
each	individual	item	in	the	grid.

These	properties	combined	will	determine	the	final	look	of	the	grid.

The	most	basic	container	properties	are	 	grid-template-columns		and	 	grid-template-rows	.

grid-template-columns	and	grid-template-rows

Those	properties	define	the	number	of	columns	and	rows	in	the	grid,	and	they	also	set	the
width	of	each	column/row.

The	following	snippet	defines	a	grid	with	4	columns	each	200px	wide,	and	2	rows	with	a	300px
height	each.

.container	{

		display:	grid;

		grid-template-columns:	200px	200px	200px	200px;

		grid-template-rows:	300px	300px;

}

CSS	Grid

104

Here's	another	example	of	a	grid	with	2	columns	and	2	rows:

.container	{

		display:	grid;

		grid-template-columns:	200px	200px;

		grid-template-rows:	100px	100px;

}

CSS	Grid

105

Automatic	dimensions

Many	times	you	might	have	a	fixed	header	size,	a	fixed	footer	size,	and	the	main	content	that
is	flexible	in	height,	depending	on	its	length.	In	this	case	you	can	use	the	 	auto		keyword:

.container	{

		display:	grid;

		grid-template-rows:	100px	auto	100px;

}

Different	columns	and	rows	dimensions

In	the	above	examples	we	made	regular	grids	by	using	the	same	values	for	rows	and	the
same	values	for	columns.

You	can	specify	any	value	for	each	row/column,	to	create	a	lot	of	different	designs:

.container	{

		display:	grid;

		grid-template-columns:	100px	200px;

		grid-template-rows:	100px	50px;

}

CSS	Grid

106

Another	example:

.container	{

		display:	grid;

		grid-template-columns:	10px	100px;

		grid-template-rows:	100px	10px;

}

CSS	Grid

107

Adding	space	between	the	cells

Unless	specified,	there	is	no	space	between	the	cells.

You	can	add	spacing	by	using	those	properties:

	grid-column-gap	

	grid-row-gap	

or	the	shorthand	syntax	 	grid-gap	.

Example:

.container	{

		display:	grid;

		grid-template-columns:	100px	200px;

		grid-template-rows:	100px	50px;

CSS	Grid

108

		grid-column-gap:	25px;

		grid-row-gap:	25px;

}

The	same	layout	using	the	shorthand:

.container	{

		display:	grid;

		grid-template-columns:	100px	200px;

		grid-template-rows:	100px	50px;

		grid-gap:	25px;

}

Spawning	items	on	multiple	columns	and/or	rows

Every	cell	item	has	the	option	to	occupy	more	than	just	one	box	in	the	row,	and	expand
horizontally	or	vertically	to	get	more	space,	while	respecting	the	grid	proportions	set	in	the
container.

Those	are	the	properties	we'll	use	for	that:

	grid-column-start	

	grid-column-end	

	grid-row-start	

	grid-row-end	

CSS	Grid

109

Example:

.container	{

		display:	grid;

		grid-template-columns:	200px	200px	200px	200px;

		grid-template-rows:	300px	300px;

}

.item1	{

		grid-column-start:	2;

		grid-column-end:	4;

}

.item6	{

		grid-column-start:	3;

		grid-column-end:	5;

}

The	numbers	correspond	to	the	vertical	line	that	separates	each	column,	starting	from	1:

CSS	Grid

110

The	same	principle	applies	to	 	grid-row-start		and	 	grid-row-end	,	except	this	time	instead	of
taking	more	columns,	a	cell	takes	more	rows.

Shorthand	syntax

Those	properties	have	a	shorthand	syntax	provided	by:

	grid-column	

	grid-row	

The	usage	is	simple,	here's	how	to	replicate	the	above	layout:

.container	{

		display:	grid;

		grid-template-columns:	200px	200px	200px	200px;

		grid-template-rows:	300px	300px;

}

.item1	{

CSS	Grid

111

		grid-column:	2	/	4;

}

.item6	{

		grid-column:	3	/	5;

}

Another	approach	is	to	set	the	starting	column/row,	and	set	how	many	it	should	occupy	using
	span	:

.container	{

		display:	grid;

		grid-template-columns:	200px	200px	200px	200px;

		grid-template-rows:	300px	300px;

}

.item1	{

		grid-column:	2	/	span	2;

}

.item6	{

		grid-column:	3	/	span	2;

}

More	grid	configuration

Using	fractions

Specifying	the	exact	width	of	each	column	or	row	is	not	ideal	in	every	case.

A	fraction	is	a	unit	of	space.

The	following	example	divides	a	grid	into	3	columns	with	the	same	width,	1/3	of	the	available
space	each.

.container	{

		grid-template-columns:	1fr	1fr	1fr;

}

Using	percentages	and	rem

You	can	also	use	percentages,	and	mix	and	match	fractions,	pixels,	rem	and	percentages:

.container	{

		grid-template-columns:	3rem	15%	1fr	2fr

}

Using	 	repeat()	

CSS	Grid

112

	repeat()		is	a	special	function	that	takes	a	number	that	indicates	the	number	of	times	a
row/column	will	be	repeated,	and	the	length	of	each	one.

If	every	column	has	the	same	width	you	can	specify	the	layout	using	this	syntax:

.container	{

		grid-template-columns:	repeat(4,	100px);

}

This	creates	4	columns	with	the	same	width.

Or	using	fractions:

.container	{

		grid-template-columns:	repeat(4,	1fr);

}

Specify	a	minimum	width	for	a	row

Common	use	case:	Have	a	sidebar	that	never	collapses	more	than	a	certain	amount	of	pixels
when	you	resize	the	window.

Here's	an	example	where	the	sidebar	takes	1/4	of	the	screen	and	never	takes	less	than
200px:

.container	{

		grid-template-columns:	minmax(200px,	3fr)	9fr;

}

You	can	also	set	just	a	maximum	value	using	the	 	auto		keyword:

.container	{

		grid-template-columns:	minmax(auto,	50%)	9fr;

}

or	just	a	minimum	value:

.container	{

		grid-template-columns:	minmax(100px,	auto)	9fr;

}

Positioning	elements	using	 	grid-template-areas	

By	default	elements	are	positioned	in	the	grid	using	their	order	in	the	HTML	structure.

CSS	Grid

113

Using	 	grid-template-areas		You	can	define	template	areas	to	move	them	around	in	the	grid,
and	also	to	spawn	an	item	on	multiple	rows	/	columns	instead	of	using	 	grid-column	.

Here's	an	example:

<div	class="container">

		<main>

				...

		</main>

		<aside>

				...

		</aside>

		<header>

				...

		</header>

		<footer>

				...

		</footer>

</div>

.container	{

		display:	grid;

		grid-template-columns:	200px	200px	200px	200px;

		grid-template-rows:	300px	300px;

		grid-template-areas:

				"header	header	header	header"

				"sidebar	main	main	main"

				"footer	footer	footer	footer";

}

main	{

		grid-area:	main;

}

aside	{

		grid-area:	sidebar;

}

header	{

		grid-area:	header;

}

footer	{

		grid-area:	footer;

}

Despite	their	original	order,	items	are	placed	where	 	grid-template-areas		define,	depending	on
the	 	grid-area		property	associated	to	them.

Adding	empty	cells	in	template	areas

You	can	set	an	empty	cell	using	the	dot	 	.		instead	of	an	area	name	in	 	grid-template-areas	:

.container	{

CSS	Grid

114

		display:	grid;

		grid-template-columns:	200px	200px	200px	200px;

		grid-template-rows:	300px	300px;

		grid-template-areas:

				".	header	header	."

				"sidebar	.	main	main"

				".	footer	footer	.";

}

Fill	a	page	with	a	grid
You	can	make	a	grid	extend	to	fill	the	page	using	 	fr	:

.container	{

		display:	grid;

		height:	100vh;

		grid-template-columns:	1fr	1fr	1fr	1fr;

		grid-template-rows:	1fr	1fr;

}

An	example:	header,	sidebar,	content	and	footer
Here	is	a	simple	example	of	using	CSS	Grid	to	create	a	site	layout	that	provides	a	header	op
top,	a	main	part	with	sidebar	on	the	left	and	content	on	the	right,	and	a	footer	afterwards.

Here's	the	markup:

<div	class="wrapper">

		<header>Header</header>

		<article>

				<h1>Welcome</h1>

				<p>Hi!</p>

		</article>

CSS	Grid

115

		<aside>Sidebar</aside>

		<footer>Footer</footer>

</div>

and	here's	the	CSS:

header	{

		grid-area:	header;

		background-color:	#fed330;

		padding:	20px;

}

article	{

		grid-area:	content;

		background-color:	#20bf6b;

		padding:	20px;

}

aside	{

		grid-area:	sidebar;

		background-color:	#45aaf2;

}

footer	{

		padding:	20px;

		grid-area:	footer;

		background-color:	#fd9644;

}

.wrapper	{

		display:	grid;

		grid-gap:	20px;

		grid-template-columns:	1fr	3fr;

		grid-template-areas:

				"header		header"

				"sidebar	content"

				"footer		footer";

}

I	added	some	colors	to	make	it	prettier,	but	basically	it	assigns	to	every	different	tag	a	 	grid-
area		name,	which	is	used	in	the	 	grid-template-areas		property	in	 	.wrapper	.

When	the	layout	is	smaller	we	can	put	the	sidebar	below	the	content	using	a	media	query:

@media	(max-width:	500px)	{

		.wrapper	{

				grid-template-columns:	4fr;

				grid-template-areas:

						"header"

						"content"

						"sidebar"

						"footer";

		}

}

See	on	CodePen

CSS	Grid

116

https://codepen.io/flaviocopes/pen/JZWOEK

Wrapping	up
These	are	the	basics	of	CSS	Grid.	There	are	many	things	I	didn't	include	in	this	introduction
but	I	wanted	to	make	it	very	simple,	to	start	using	this	new	layout	system	without	making	it	feel
overwhelming.

CSS	Grid

117

Flexbox
Flexbox,	also	called	Flexible	Box	Module,	is	one	of	the	two	modern	layouts	systems,	along
with	CSS	Grid.

Compared	to	CSS	Grid	(which	is	bi-dimensional),	flexbox	is	a	one-dimensional	layout
model.	It	will	control	the	layout	based	on	a	row	or	on	a	column,	but	not	together	at	the	same
time.

The	main	goal	of	flexbox	is	to	allow	items	to	fill	the	whole	space	offered	by	their	container,
depending	on	some	rules	you	set.

Unless	you	need	to	support	old	browsers	like	IE8	and	IE9,	Flexbox	is	the	tool	that	lets	you
forget	about	using

Table	layouts
Floats
clearfix	hacks
	display:	table		hacks

Let's	dive	into	flexbox	and	become	a	master	of	it	in	a	very	short	time.

Browser	support
At	the	time	of	writing	(Feb	2018),	it's	supported	by	97.66%	of	the	users,	all	the	most	important
browsers	implement	it	since	years,	so	even	older	browsers	(including	IE10+)	are	covered:

Flexbox

118

While	we	must	wait	a	few	years	for	users	to	catch	up	on	CSS	Grid,	Flexbox	is	an	older
technology	and	can	be	used	right	now.

Enable	Flexbox
A	flexbox	layout	is	applied	to	a	container,	by	setting

display:	flex;

or

display:	inline-flex;

the	content	inside	the	container	will	be	aligned	using	flexbox.

Container	properties

Flexbox

119

Some	flexbox	properties	apply	to	the	container,	which	sets	the	general	rules	for	its	items.	They
are

	flex-direction	

	justify-content	

	align-items	

	flex-wrap	

	flex-flow	

Align	rows	or	columns

The	first	property	we	see,	 	flex-direction	,	determines	if	the	container	should	align	its	items	as
rows,	or	as	columns:

	flex-direction:	row		places	items	as	a	row,	in	the	text	direction	(left-to-right	for	western
countries)
	flex-direction:	row-reverse		places	items	just	like	 	row		but	in	the	opposite	direction
	flex-direction:	column		places	items	in	a	column,	ordering	top	to	bottom
	flex-direction:	column-reverse		places	items	in	a	column,	just	like	 	column		but	in	the
opposite	direction	-	

Vertical	and	horizontal	alignment

By	default	items	start	from	the	left	is	 	flex-direction		is	row,	and	from	the	top	if	 	flex-
direction		is	column.

Flexbox

120

You	can	change	this	behavior	using	 	justify-content		to	change	the	horizontal	alignment,	and
	align-items		to	change	the	vertical	alignment.

Change	the	horizontal	alignment

	justify-content		has	5	possible	values:

Flexbox

121

	flex-start	:	align	to	the	left	side	of	the	container.
	flex-end	:	align	to	the	right	side	of	the	container.
	center	:	align	at	the	center	of	the	container.
	space-between	:	display	with	equal	spacing	between	them.
	space-around	:	display	with	equal	spacing	around	them

Change	the	vertical	alignment

	align-items		has	5	possible	values:

Flexbox

122

	flex-start	:	align	to	the	top	of	the	container.
	flex-end	:	align	to	the	bottom	of	the	container.
	center	:	align	at	the	vertical	center	of	the	container.
	baseline	:	display	at	the	baseline	of	the	container.
	stretch	:	items	are	stretched	to	fit	the	container.

Flexbox

123

Flexbox

124

A	note	on	 	baseline	

	baseline		looks	similar	to	 	flex-start		in	this	example,	due	to	my	boxes	being	too	simple.
Check	out	this	Codepen	to	have	a	more	useful	example,	which	I	forked	from	a	Pen	originally
created	by	Martin	Michálek.	As	you	can	see	there,	items	dimensions	are	aligned.

Wrap

By	default	items	in	a	flexbox	container	are	kept	on	a	single	line,	shrinking	them	to	fit	in	the
container.

To	force	the	items	to	spread	across	multiple	lines,	use	 	flex-wrap:	wrap	.	This	will	distribute	the
items	according	to	the	order	set	in	 	flex-direction	.	Use	 	flex-wrap:	wrap-reverse		to	reverse
this	order.

A	shorthand	property	called	 	flex-flow		allows	you	to	specify	 	flex-direction		and	 	flex-wrap	
in	a	single	line,	by	adding	the	 	flex-direction		value	first,	followed	by	 	flex-wrap		value,	for
example:	 	flex-flow:	row	wrap	.

Properties	that	apply	to	each	single	item
Since	now,	we've	seen	the	properties	you	can	apply	to	the	container.

Single	items	can	have	a	certain	amount	of	independence	and	flexibility,	and	you	can	alter	their
appearance	using	those	properties:

	order	

	align-self	

	flex-grow	

	flex-shrink	

	flex-basis	

	flex	

Let's	see	them	in	detail.

Moving	items	before	/	after	another	one	using	order

Items	are	ordered	based	on	a	order	they	are	assigned.	By	default	every	item	has	order	 	0		and
the	appearance	in	the	HTML	determines	the	final	order.

Flexbox

125

https://codepen.io/flaviocopes/pen/oExoJR
https://twitter.com/machal

You	can	override	this	property	using	 	order		on	each	separate	item.	This	is	a	property	you	set
on	the	item,	not	the	container.	You	can	make	an	item	appear	before	all	the	others	by	setting	a
negative	value.

Vertical	alignment	using	align-self

An	item	can	choose	to	override	the	container	 	align-items		setting,	using	 	align-self	,	which
has	the	same	5	possible	values	of	 	align-items	:

	flex-start	:	align	to	the	top	of	the	container.
	flex-end	:	align	to	the	bottom	of	the	container.
	center	:	align	at	the	vertical	center	of	the	container.
	baseline	:	display	at	the	baseline	of	the	container.
	stretch	:	items	are	stretched	to	fit	the	container.

Flexbox

126

Grow	or	shrink	an	item	if	necessary

flex-grow

The	defaut	for	any	item	is	0.

If	all	items	are	defined	as	1	and	one	is	defined	as	2,	the	bigger	element	will	take	the	space	of
two	"1"	items.

flex-shrink

The	defaut	for	any	item	is	1.

If	all	items	are	defined	as	1	and	one	is	defined	as	3,	the	bigger	element	will	shrink	3x	the	other
ones.	When	less	space	is	available,	it	will	take	3x	less	space.

flex-basis

If	set	to	 	auto	,	it	sizes	an	item	according	to	its	width	or	height,	and	adds	extra	space	based	on
the	 	flex-grow		property.

If	set	to	0,	it	does	not	add	any	extra	space	for	the	item	when	calculating	the	layout.

If	you	specify	a	pixel	number	value,	it	will	use	that	as	the	length	value	(width	or	height	depends
if	it's	a	row	or	a	column	item)

flex

Flexbox

127

This	property	combines	the	above	3	properties:

	flex-grow	

	flex-shrink	

	flex-basis	

and	provides	a	shorthand	syntax:	 	flex:	0	1	auto	

Flexbox

128

Tables
Tables	in	the	past	were	greatly	overused	in	CSS,	as	they	were	one	of	the	only	ways	we	could
create	a	fancy	page	layout.

Today	with	Grid	and	Flexbox	we	can	move	tables	back	to	the	job	they	were	intended	to	do:
styling	tables.

Let's	start	from	the	HTML.	This	is	a	basic	table:

<table>

		<thead>

				<tr>

						<th	scope="col">Name</th>

						<th	scope="col">Age</th>

				</tr>

		</thead>

		<tbody>

				<tr>

						<th	scope="row">Flavio</th>

						<td>36</td>

				</tr>

				<tr>

						<th	scope="row">Roger</th>

						<td>7</td>

				</tr>

		</tbody>

</table>

By	default	it's	not	very	attractive.	The	browser	provides	some	standard	styles,	and	that's	it:

We	can	use	CSS	to	style	all	the	elements	of	the	table,	of	course.

Let's	start	with	the	border.	A	nice	border	can	go	a	long	way.

Tables

129

We	can	apply	it	on	the	 	table		element,	and	on	the	inner	elements	too,	like	 	th		and	 	td	:

table,	th,	td	{

		border:	1px	solid	#333;

}

If	we	pair	it	with	some	margin,	we	get	a	nice	result:

One	common	thing	with	tables	is	the	ability	to	add	a	color	to	one	row,	and	a	different	color	to
another	row.	This	is	possible	using	the	 	:nth-child(odd)		or	 	:nth-child(even)		selector:

tbody	tr:nth-child(odd)	{

		background-color:	#af47ff;

}

This	gives	us:

Tables

130

If	you	add	 	border-collapse:	collapse;		to	the	table	element,	all	borders	are	collapsed	into	one:

Tables

131

Tables

132

Centering
Centering	things	in	CSS	is	a	task	that	is	very	different	if	you	need	to	center	horizontally	or
vertically.

In	this	post	I	explain	the	most	common	scenarios	and	how	to	solve	them.	If	a	new	solution	is
provided	by	Flexbox	I	ignore	the	old	techniques	because	we	need	to	move	forward,	and
Flexbox	is	supported	by	browsers	since	years,	IE10	included.

Center	horizontally

Text

Text	is	very	simple	to	center	horizontally	using	the	 	text-align		property	set	to	 	center	:

p	{

		text-align:	center;

}

Blocks

The	modern	way	to	center	anything	that	is	not	text	is	to	use	Flexbox:

#mysection	{

		display:	flex;

		justify-content:	center;

}

any	element	inside	 	#mysection		will	be	horizontally	centered.

Centering

133

https://flaviocopes.com/flexbox/

Here	is	the	alternative	approach	if	you	don't	want	to	use	Flexbox.

Anything	that	is	not	text	can	be	centered	by	applying	an	automatic	margin	to	left	and	right,	and
setting	the	width	of	the	element:

section	{

		margin:	0	auto;

		width:	50%;

}

the	above	 	margin:	0	auto;		is	a	shorthand	for:

section	{

		margin-top:	0;

		margin-bottom:	0;

		margin-left:	auto;

		margin-right:	auto;

}

Remember	to	set	the	item	to	 	display:	block		if	it's	an	inline	element.

Center	vertically
Traditionally	this	has	always	been	a	difficult	task.	Flexbox	now	provides	us	a	great	way	to	do
this	in	the	simplest	possible	way:

#mysection	{

		display:	flex;

		align-items:	center;

}

any	element	inside	 	#mysection		will	be	vertically	centered.

Centering

134

Center	both	vertically	and	horizontally
Flexbox	techniques	to	center	vertically	and	horizontally	can	be	combined	to	completely	center
an	element	in	the	page.

#mysection	{

		display:	flex;

		align-items:	center;

		justify-content:	center;

}

The	same	can	be	done	using	CSS	Grid:

body	{

		display:	grid;

Centering

135

https://flaviocopes.com/css-grid/

		place-items:	center;

		height:	100vh;

}

Centering

136

Lists
Lists	are	a	very	important	part	of	many	web	pages.

CSS	can	style	them	using	several	properties.

	list-style-type		is	used	to	set	a	predefined	marker	to	be	used	by	the	list:

li	{

		list-style-type:	square;

}

We	have	lots	of	possible	values,	which	you	can	see	here	https://developer.mozilla.org/en-
US/docs/Web/CSS/list-style-type	with	examples	of	their	appearance.	Some	of	the	most
popular	ones	are	 	disc	,	 	circle	,	 	square		and	 	none	.

	list-style-image		is	used	to	use	a	custom	marker	when	a	predefined	marker	is	not
appropriate:

li	{

		list-style-image:	url(list-image.png);

}

	list-style-position		lets	you	add	the	marker	 	outside		(the	default)	or	 	inside		of	the	list
content,	in	the	flow	of	the	page	rather	than	outside	of	it

li	{

		list-style-position:	inside;

}

The	 	list-style		shorthand	property	lets	us	specify	all	those	properties	in	the	same	line:

li	{

		list-style:	url(list-image.png)	inside;

}

Lists

137

https://developer.mozilla.org/en-US/docs/Web/CSS/list-style-type

Media	queries	and	responsive	design
In	this	section	we're	going	to	first	introduce	media	types	and	media	feature	descriptors,	then
we'll	explain	media	queries.

Media	types
Used	in	media	queries	and	@import	declarations,	media	types	allow	us	to	determine	on	which
media	a	CSS	file,	or	a	piece	of	CSS,	is	loaded.

We	have	the	following	media	types

	all		means	all	the	media
	print		used	when	printing
	screen		used	when	the	page	is	presented	on	a	screen
	speech		used	for	screen	readers

	screen		is	the	default.

In	the	past	we	had	more	of	them,	but	most	are	deprecated	as	they	proven	to	not	be	an
effective	way	of	determining	device	needs.

We	can	use	them	in	@import	statements	like	this:

@import	url(myfile.css)	screen;

@import	url(myfile-print.css)	print;

We	can	load	a	CSS	file	on	multiple	media	types	separating	each	with	a	comma:

@import	url(myfile.css)	screen,	print;

The	same	works	for	the	 	link		tag	in	HTML:

<link	rel="stylesheet"	type="text/css"	href="myfile.css"	media="screen"	/>

<link	rel="stylesheet"	type="text/css"	href="another.css"	media="screen,	print"	/>

We're	not	limited	to	just	using	media	types	in	the	 	media		attribute	and	in	the	 	@import	
declaration.	There's	more

Media	feature	descriptors

Media	queries	and	responsive	design

138

First,	let's	introduce	media	feature	descriptors.	They	are	additional	keywords	that	we	can
add	to	the	 	media		attribute	of	 	link		or	the	the	 	@import		declaration,	to	express	more
conditionals	over	the	loading	of	the	CSS.

Here's	the	list	of	them:

	width	

	height	

	device-width	

	device-height	

	aspect-ratio	

	device-aspect-ratio	

	color	

	color-index	

	monochrome	

	resolution	

	orientation	

	scan	

	grid	

Each	of	them	have	a	corresponding	min-	and	max-,	for	example:

	min-width	,	 	max-width	
	min-device-width	,	 	max-device-width	

and	so	on.

Some	of	those	accept	a	length	value	which	can	be	expressed	in	 	px		or	 	rem		or	any	length
value.	It's	the	case	of	 	width	,	 	height	,	 	device-width	,	 	device-height	.

For	example:

@import	url(myfile.css)	screen	and	(max-width:	800px);

Notice	that	we	wrap	each	block	using	media	feature	descriptors	in	parentheses.

Some	accept	a	fixed	value.	 	orientation	,	used	to	detect	the	device	orientation,	accepts
	portrait		or	 	landscape	.

Example:

<link	rel="stylesheet"	type="text/css"	href="myfile.css"	media="screen	and	(orientation:	p

ortrait)"	/>

Media	queries	and	responsive	design

139

	scan	,	used	to	determine	the	type	of	screen,	accepts	 	progressive		(for	modern	displays)	or
	interlace		(for	older	CRT	devices)

Some	others	want	an	integer.

Like	 	color		which	inspects	the	number	of	bits	per	color	component	used	by	the	device.	Very
low-level,	but	you	just	need	to	know	it's	there	for	your	usage	(like	 	grid	,	 	color-index	,
	monochrome).

	aspect-ratio		and	 	device-aspect-ratio		accept	a	ratio	value	representing	the	width	to	height
viewport	ratio,	which	is	expressed	as	a	fraction.

Example:

@import	url(myfile.css)	screen	and	(aspect-ratio:	4/3);

	resolution		represents	the	pixel	density	of	the	device,	expressed	in	a	resolution	data	type	like
	dpi	.

Example:

@import	url(myfile.css)	screen	and	(min-resolution:	100dpi);

Logic	operators
We	can	combine	rules	using	 	and	:

<link	rel="stylesheet"	type="text/css"	href="myfile.css"	media="screen	and	(max-width:	800

px)"	/>

We	can	perform	an	"or"	type	of	logic	operation	using	commas,	which	combines	multiple	media
queries:

@import	url(myfile.css)	screen,	print;

We	can	use	 	not		to	negate	a	media	query:

@import	url(myfile.css)	not	screen;

Important:	 	not		can	only	be	used	to	negate	an	entire	media	query,	so	it	must	be	placed
at	the	beginning	of	it	(or	after	a	comma)

Media	queries	and	responsive	design

140

https://developer.mozilla.org/en-US/docs/Web/CSS/resolution

Media	queries
All	those	above	rules	we	saw	applied	to	@import	or	the	the	 	link		HTML	tag	can	be	applied
inside	the	CSS,	too.

You	need	to	wrap	them	in	a	 	@media	()	{}		structure.

Example:

@media	screen	and	(max-width:	800px)	{

		/*	enter	some	CSS	*/

}

and	this	is	the	foundation	for	responsive	design.

Media	queries	can	be	quite	complex.	This	example	applies	the	CSS	only	if	it's	a	screen
device,	the	width	is	between	600	and	800	pixels,	and	the	orientation	is	landscape:

@media	screen	and	(max-width:	800px)	and	(min-width:	600px)	and	(orientation:	landscape)	{

		/*	enter	some	CSS	*/

}

Media	queries	and	responsive	design

141

Feature	Queries
Feature	queries	are	a	recent	and	relatively	unknown	ability	of	CSS,	but	a	well	supported	one.

We	can	use	it	to	check	if	a	feature	is	supported	by	the	browser	using	the	 	@supports		keyword.

For	example	I	think	this	is	especially	useful,	at	the	time	of	writing,	for	checking	if	a	browser
supports	CSS	grid,	for	example,	which	can	be	done	using:

@supports	(display:	grid)	{

		/*	apply	this	CSS	*/

}

We	check	if	the	browser	supports	the	 	grid		value	for	the	 	display		property.

We	can	use	 	@supports		for	any	CSS	property,	to	check	any	value.

We	can	also	use	the	logical	operators	 	and	,	 	or		and	 	not		to	build	complex	feature	queries:

@supports	(display:	grid)	and	(display:	flex)	{

		/*	apply	this	CSS	*/

}

Feature	Queries

142

https://caniuse.com/#feat=css-featurequeries

Filters
Filters	allow	us	to	perform	operations	on	elements.

Things	you	normally	do	with	Photoshop	or	other	photo	editing	software,	like	changing	the
opacity	or	the	brightness,	and	more.

You	use	the	 	filter		property.	Here's	an	example	of	it	applied	on	an	image,	but	this	property
can	be	used	on	any	element:

img	{

		filter:	<something>;

}

You	can	use	various	values	here:

	blur()	

	brightness()	

	contrast()	

	drop-shadow()	

	grayscale()	

	hue-rotate()	

	invert()	

	opacity()	

	sepia()	

	saturate()	

	url()	

Notice	the	parentheses	after	each	option,	because	they	all	require	a	parameter.

For	example:

img	{

		filter:	opacity(0.5);

}

means	the	image	will	be	50%	transparent,	because	 	opacity()		takes	one	value	from	0	to	1,	or
a	percentage.

You	can	also	apply	multiple	filters	at	once:

img	{

		filter:	opacity(0.5)	blur(2px);

}

Filters

143

Let's	now	talk	about	each	filter	in	details.

	blur()	

Blurs	an	element	content.	You	pass	it	a	value,	expressed	in	 	px		or	 	em		or	 	rem		that	will	be
used	to	determine	the	blur	radius.

Example:

img	{

		filter:	blur(4px);

}

	opacity()	

	opacity()		takes	one	value	from	0	to	1,	or	a	percentage,	and	determines	the	image
transparency	based	on	it.

	0	,	or	 	0%	,	means	totally	transparent.	 	1	,	or	 	100%	,	or	higher,	means	totally	visible.

Example:

img	{

		filter:	opacity(0.5);

}

CSS	also	has	an	 	opacity		property.	 	filter		however	can	be	hardware	accelerated,
depending	on	the	implementation,	so	this	should	be	the	preferred	method.

	drop-shadow()	

	drop-shadow()		shows	a	shadow	behind	the	element,	which	follows	the	alpha	channel.	This
means	that	if	you	have	a	transparent	image,	you	get	a	shadow	applied	to	the	image	shape,	not
the	image	box.	If	the	image	does	not	have	an	alpha	channel,	the	shadow	will	be	applied	to	the
entire	image	box.

It	accepts	a	minimum	of	2	parameters,	up	to	5:

offset-x	sets	the	horizontal	offset.	Can	be	negative.
offset-y	sets	the	vertical	offset.	Can	be	negative.
blur-radius,	optional,	sets	the	blur	radius	for	the	shadow.	It	defaults	to	0,	no	blur.
spread-radius,	optional,	sets	the	spread	radius.	Expressed	in	 	px	,	 	rem		or	 	em	
color,	optional,	sets	the	color	of	the	shadow.

Filters

144

You	can	set	the	color	without	setting	the	spread	radius	or	blur	radius.	CSS	understands	the
value	is	a	color	and	not	a	length	value.

Example:

img	{

		filter:	drop-shadow(10px	10px	5px	orange);

}

img	{

		filter:	drop-shadow(10px	10px	orange);

}

img	{

		filter:	drop-shadow(10px	10px	5px	5px	#333);

}

	grayscale()	

Make	the	element	have	a	gray	color.

You	pass	one	value	from	0	to	1,	or	from	0%	to	100%,	where	1	and	100%	mean	completely
gray,	and	0	or	0%	mean	the	image	is	not	touched,	and	the	original	colors	remain.

Example:

img	{

		filter:	grayscale(50%);

}

	sepia()	

Make	the	element	have	a	sepia	color.

You	pass	one	value	from	0	to	1,	or	from	0%	to	100%,	where	1	and	100%	mean	completely
sepia,	and	0	or	0%	mean	the	image	is	not	touched,	and	the	original	colors	remain.

Example:

img	{

		filter:	sepia(50%);

}

	invert()	

Filters

145

Invert	the	colors	of	an	element.	Inverting	a	color	means	looking	up	the	opposite	of	a	color	in
the	HSL	color	wheel.	Just	search	"color	wheel"	in	Google	if	you	have	no	idea	what	does	that
means.	For	example,	the	opposite	of	yellow	is	blue,	the	opposite	of	red	is	cyan.	Every	single
color	has	an	opposite.

You	pass	a	number,	from	0	to	1	or	from	0%	to	100%,	that	determines	the	amount	of	inversion.
1	or	100%	means	full	inversion,	0	or	0%	means	no	inversion.

0.5	or	50%	will	always	render	a	50%	gray	color,	because	you	always	end	up	in	the	middle	of
the	wheel.

Example:

img	{

		filter:	invert(50%);

}

	hue-rotate()	

The	HSL	color	wheel	is	represented	in	degrees.	Using	 	hue-rotate()		you	can	rotate	the	color
using	a	positive	or	negative	rotation.

The	function	accepts	a	 	deg		value.

Example:

img	{

		filter:	hue-rotate(90deg);

}

	brightness()	

Alters	the	brightness	of	an	element.

0	or	0%	gives	a	total	black	element.	1	or	100%	gives	an	unchanged	image

Values	higher	than	1	or	100%	make	the	image	brighter	up	to	reaching	a	total	white	element.

Example:

img	{

		filter:	brightness(50%);

}

	contrast()	

Filters

146

Alters	the	contrast	of	an	element.

0	or	0%	gives	a	total	gray	element.	1	or	100%	gives	an	unchanged	image

Values	higher	than	1	or	100%	give	more	contrast.

Example:

img	{

		filter:	contrast(150%);

}

	saturate()	

Alters	the	saturation	of	an	element.

0	or	0%	gives	a	total	grayscale	element	(with	less	saturation).	1	or	100%	gives	an	unchanged
image

Values	higher	than	1	or	100%	give	more	saturation.

Example:

img	{

		filter:	saturate();

}

	url()	

This	filter	allows	to	apply	a	filter	defined	in	an	SVG	file.	You	point	to	the	SVG	file	location.

Example:

img	{

		filter:	url(filter.svg);

}

SVG	filters	are	out	of	the	scope	of	this	book,	but	you	can	read	more	on	this	Smashing
Magazine	post:	https://www.smashingmagazine.com/2015/05/why-the-svg-filter-is-awesome/

Filters

147

https://www.smashingmagazine.com/2015/05/why-the-svg-filter-is-awesome/

Transforms
Transforms	allow	you	to	translate,	rotate,	scale,	and	skew	elements,	in	the	2D	or	3D	space.
They	are	a	very	cool	CSS	feature,	especially	when	combined	with	animations.

2D	transforms
The	 	transform		property	accepts	those	functions:

	translate()		to	move	elements	around
	rotate()		to	rotate	elements
	scale()		to	scale	elements	in	size
	skew()		to	twist	or	slant	an	element
	matrix()		a	way	to	perform	any	of	the	above	operations	using	a	matrix	of	6	elements,	a
less	user	friendly	syntax	but	less	verbose

We	also	have	axis-specific	functions:

	translateX()		to	move	elements	around	on	the	X	axis
	translateY()		to	move	elements	around	on	the	Y	axis
	scaleX()		to	scale	elements	in	size	on	the	X	axis
	scaleY()		to	scale	elements	in	size	on	the	Y	axis
	skewX()		to	twist	or	slant	an	element	on	the	X	axis
	skewY()		to	twist	or	slant	an	element	on	the	Y	axis

Here	is	an	example	of	a	transform	which	changes	the	 	.box		element	width	by	2	(duplicating	it)
and	the	height	by	0.5	(reducing	it	to	half):

.box	{

				transform:	scale(2,	0.5);

}

	transform-origin		lets	us	set	the	origin	(the	 	(0,	0)		coordinates)	for	the	transformation,	letting
us	change	the	rotation	center.

Combining	multiple	transforms
You	can	combine	multiple	transforms	by	separating	each	function	with	a	space.

For	example:

Transforms

148

https://developer.mozilla.org/en-US/docs/Web/CSS/transform-origin

transform:	rotateY(20deg)	scaleX(3)	translateY(100px);

3D	transforms
We	can	go	one	step	further	and	move	our	elements	in	a	3D	space	instead	than	on	a	2D
space.	With	3D,	we	are	adding	another	axis,	Z,	which	adds	depth	to	out	visuals.

Using	the	 	perspective		property	you	can	specify	how	far	the	3D	object	is	from	the	viewer.

Example:

.3Delement	{

		perspective:	100px;

}

	perspective-origin		determines	the	appearance	of	the	position	of	the	viewer,	how	are	we
looking	at	it	in	the	X	and	Y	axis.

Now	we	can	use	additional	functions	that	control	the	Z	axis,	that	adds	up	to	the	other	X	and	Y
axis	transforms:

	translateZ()	

	rotateZ()	

	scaleZ()	

and	the	corresponding	shorthands	 	translate3d()	,	 	rotate3d()		and	 	scale3d()		as	shorthands
for	using	the	 	translateX()	,	 	translateY()		and	 	translateZ()		functions	and	so	on.

3D	transforms	are	a	bit	too	advanced	for	this	handbook,	but	a	great	topic	to	explore	on	your
own.

Transforms

149

Transitions
CSS	Transitions	are	the	most	simple	way	to	create	an	animation	in	CSS.

In	a	transition,	you	change	the	value	of	a	property,	and	you	tell	CSS	to	slowly	change	it
according	to	some	parameters,	towards	a	final	state.

CSS	Transitions	are	defined	by	these	properties:

Property Description
	transition-

property	 the	CSS	property	that	should	transition

	transition-

duration	 the	duration	of	the	transition

	transition-timing-

function	

the	timing	function	used	by	the	animation	(common	values:	linear,
ease).	Default:	ease

	transition-delay	 optional	number	of	seconds	to	wait	before	starting	the	animation

The	 	transition		property	is	a	handy	shorthand:

.container	{

		transition:	property

														duration

														timing-function

														delay;

}

Example	of	a	CSS	Transition
This	code	implements	a	CSS	Transition:

.one,

.three	{

		background:	rgba(142,	92,	205,	.75);

		transition:	background	1s	ease-in;

}

.two,

.four	{

		background:	rgba(236,	252,	100,	.75);

}

.circle:hover	{

		background:	rgba(142,	92,	205,	.25);	/*	lighter	*/

}

Transitions

150

See	the	example	on	Glitch	https://flavio-css-transitions-example.glitch.me

When	hovering	the	 	.one		and	 	.three		elements,	the	purple	circles,	there	is	a	transition
animation	that	ease	the	change	of	background,	while	the	yellow	circles	do	not,	because	they
do	not	have	the	 	transition		property	defined.

Transition	timing	function	values
	transition-timing-function		allows	to	specify	the	acceleration	curve	of	the	transition.

There	are	some	simple	values	you	can	use:

	linear	

	ease	

	ease-in	

	ease-out	

	ease-in-out	

This	Glitch	shows	how	those	work	in	practice.

You	can	create	a	completely	custom	timing	function	using	cubic	bezier	curves.	This	is	rather
advanced,	but	basically	any	of	those	functions	above	is	built	using	bezier	curves.	We	have
handy	names	as	they	are	common	ones.

CSS	Transitions	in	Browser	DevTools
The	Browser	DevTools	offer	a	great	way	to	visualize	transitions.

This	is	Chrome:

Transitions

151

https://flavio-css-transitions-example.glitch.me
https://flavio-css-transitions-easings.glitch.me
https://developer.mozilla.org/en-US/docs/Web/CSS/single-transition-timing-function
https://flaviocopes.com/browser-devtools/

This	is	Firefox:

Transitions

152

From	those	panels	you	can	live	edit	the	transition	and	experiment	in	the	page	directly	without
reloading	your	code.

Which	Properties	you	can	Animate	using	CSS
Animations
A	lot!	They	are	the	same	you	can	animate	using	CSS	Transitions,	too.

Here's	the	full	list:

	background	

	background-color	

	background-position	

	background-size	

	border	

	border-color	

	border-width	

	border-bottom	

	border-bottom-color	

	border-bottom-left-radius	

Transitions

153

	border-bottom-right-radius	

	border-bottom-width	

	border-left	

	border-left-color	

	border-left-width	

	border-radius	

	border-right	

	border-right-color	

	border-right-width	

	border-spacing	

	border-top	

	border-top-color	

	border-top-left-radius	

	border-top-right-radius	

	border-top-width	

	bottom	

	box-shadow	

	caret-color	

	clip	

	color	

	column-count	

	column-gap	

	column-rule	

	column-rule-color	

	column-rule-width	

	column-width	

	columns	

	content	

	filter	

	flex	

	flex-basis	

	flex-grow	

	flex-shrink	

	font	

	font-size	

	font-size-adjust	

	font-stretch	

	font-weight	

	grid-area	

	grid-auto-columns	

Transitions

154

	grid-auto-flow	

	grid-auto-rows	

	grid-column-end	

	grid-column-gap	

	grid-column-start	

	grid-column	

	grid-gap	

	grid-row-end	

	grid-row-gap	

	grid-row-start	

	grid-row	

	grid-template-areas	

	grid-template-columns	

	grid-template-rows	

	grid-template	

	grid	

	height	

	left	

	letter-spacing	

	line-height	

	margin	

	margin-bottom	

	margin-left	

	margin-right	

	margin-top	

	max-height	

	max-width	

	min-height	

	min-width	

	opacity	

	order	

	outline	

	outline-color	

	outline-offset	

	outline-width	

	padding	

	padding-bottom	

	padding-left	

	padding-right	

	padding-top	

Transitions

155

	perspective	

	perspective-origin	

	quotes	

	right	

	tab-size	

	text-decoration	

	text-decoration-color	

	text-indent	

	text-shadow	

	top	

	transform.	

	vertical-align	

	visibility	

	width	

	word-spacing	

	z-index	

Transitions

156

Animations
CSS	Animations	are	a	great	way	to	create	visual	animations,	not	limited	to	a	single	movement
like	CSS	Transitions,	but	much	more	articulated.

An	animation	is	applied	to	an	element	using	the	 	animation		property.

.container	{

		animation:	spin	10s	linear	infinite;

}

	spin		is	the	name	of	the	animation,	which	we	need	to	define	separately.	We	also	tell	CSS	to
make	the	animation	last	10	seconds,	perform	it	in	a	linear	way	(no	acceleration	or	any
difference	in	its	speed)	and	to	repeat	it	infinitely.

You	must	define	how	your	animation	works	using	keyframes.	Example	of	an	animation	that
rotates	an	item:

@keyframes	spin	{

		0%	{

				transform:	rotateZ(0);

		}

		100%	{

				transform:	rotateZ(360deg);

		}

}

Inside	the	 	@keyframes		definition	you	can	have	as	many	intermediate	waypoints	as	you	want.

In	this	case	we	instruct	CSS	to	make	the	transform	property	to	rotate	the	Z	axis	from	0	to	360
grades,	completing	the	full	loop.

You	can	use	any	CSS	transform	here.

Notice	how	this	does	not	dictate	anything	about	the	temporal	interval	the	animation	should
take.	This	is	defined	when	you	use	it	via	 	animation	.

A	CSS	Animations	Example
I	want	to	draw	four	circles,	all	with	a	starting	point	in	common,	all	90	degrees	distant	from	each
other.

<div	class="container">

		<div	class="circle	one"></div>

Animations

157

		<div	class="circle	two"></div>

		<div	class="circle	three"></div>

		<div	class="circle	four"></div>

</div>

body	{

		display:	grid;

		place-items:	center;

		height:	100vh;

}

.circle	{

		border-radius:	50%;

		left:	calc(50%	-	6.25em);

		top:	calc(50%	-	12.5em);

		transform-origin:	50%	12.5em;

		width:	12.5em;

		height:	12.5em;

		position:	absolute;

		box-shadow:	0	1em	2em	rgba(0,	0,	0,	.5);

}

.one,

.three	{

		background:	rgba(142,	92,	205,	.75);

}

.two,

.four	{

		background:	rgba(236,	252,	100,	.75);

}

.one	{

		transform:	rotateZ(0);

}

.two	{

		transform:	rotateZ(90deg);

}

.three	{

		transform:	rotateZ(180deg);

}

.four	{

		transform:	rotateZ(-90deg);

}

You	can	see	them	in	this	Glitch:	https://flavio-css-circles.glitch.me

Let's	make	this	structure	(all	the	circles	together)	rotate.	To	do	this,	we	apply	an	animation	on
the	container,	and	we	define	that	animation	as	a	360	degrees	rotation:

Animations

158

https://flavio-css-circles.glitch.me

@keyframes	spin	{

		0%	{

				transform:	rotateZ(0);

		}

		100%	{

				transform:	rotateZ(360deg);

		}

}

.container	{

		animation:	spin	10s	linear	infinite;

}

See	it	on	https://flavio-css-animations-tutorial.glitch.me

You	can	add	more	keyframes	to	have	funnier	animations:

@keyframes	spin	{

		0%	{

				transform:	rotateZ(0);

		}

		25%	{

				transform:	rotateZ(30deg);

		}

		50%	{

				transform:	rotateZ(270deg);

		}

		75%	{

				transform:	rotateZ(180deg);

		}

		100%	{

				transform:	rotateZ(360deg);

		}

}

See	the	example	on	https://flavio-css-animations-four-steps.glitch.me

The	CSS	animation	properties
CSS	animations	offers	a	lot	of	different	parameters	you	can	tweak:

Property Description

	animation-

name	
the	name	of	the	animation,	it	references	an	animation	created	using
	@keyframes	

	animation-

duration	 how	long	the	animation	should	last,	in	seconds

	animation-

timing-

function	

the	timing	function	used	by	the	animation	(common	values:	 	linear	,
	ease).	Default:	 	ease	

Animations

159

https://flavio-css-animations-tutorial.glitch.me
https://flavio-css-animations-four-steps.glitch.me

	animation-

delay	
optional	number	of	seconds	to	wait	before	starting	the	animation

	animation-

iteration-

count	

how	many	times	the	animation	should	be	performed.	Expects	a	number,	or
	infinite	.	Default:	1

	animation-

direction	

the	direction	of	the	animation.	Can	be	 	normal	,	 	reverse	,	 	alternate		or
	alternate-reverse	.	In	the	last	2,	it	alternates	going	forward	and	then
backwards

	animation-

fill-mode	

defines	how	to	style	the	element	when	the	animation	ends,	after	it	finishes
its	iteration	count	number.	 	none		or	 	backwards		go	back	to	the	first
keyframe	styles.	 	forwards		and	 	both		use	the	style	that's	set	in	the	last
keyframe

	animation-

play-state	 if	set	to	 	paused	,	it	pauses	the	animation.	Default	is	 	running	

The	 	animation		property	is	a	shorthand	for	all	these	properties,	in	this	order:

.container	{

		animation:	name

													duration

													timing-function

													delay

													iteration-count

													direction

													fill-mode

													play-state;

}

This	is	the	example	we	used	above:

.container	{

		animation:	spin	10s	linear	infinite;

}

JavaScript	events	for	CSS	Animations
Using	JavaScript	you	can	listen	for	the	following	events:

	animationstart	

	animationend	

	animationiteration	

Be	careful	with	 	animationstart	,	because	if	the	animation	starts	on	page	load,	your	JavaScript
code	is	always	executed	after	the	CSS	has	been	processed,	so	the	animation	is	already
started	and	you	cannot	intercept	the	event.

const	container	=	document.querySelector('.container')

Animations

160

container.addEventListener('animationstart',	(e)	=>	{

		//do	something

},	false)

container.addEventListener('animationend',	(e)	=>	{

		//do	something

},	false)

container.addEventListener('animationiteration',	(e)	=>	{

		//do	something

},	false)

Which	Properties	You	Can	Animate	using	CSS
Animations
A	lot!	They	are	the	same	you	can	animate	using	CSS	Transitions,	too.

Here's	the	full	list:

	background	

	background-color	

	background-position	

	background-size	

	border	

	border-color	

	border-width	

	border-bottom	

	border-bottom-color	

	border-bottom-left-radius	

	border-bottom-right-radius	

	border-bottom-width	

	border-left	

	border-left-color	

	border-left-width	

	border-radius	

	border-right	

	border-right-color	

	border-right-width	

	border-spacing	

	border-top	

	border-top-color	

	border-top-left-radius	

Animations

161

	border-top-right-radius	

	border-top-width	

	bottom	

	box-shadow	

	caret-color	

	clip	

	color	

	column-count	

	column-gap	

	column-rule	

	column-rule-color	

	column-rule-width	

	column-width	

	columns	

	content	

	filter	

	flex	

	flex-basis	

	flex-grow	

	flex-shrink	

	font	

	font-size	

	font-size-adjust	

	font-stretch	

	font-weight	

	grid-area	

	grid-auto-columns	

	grid-auto-flow	

	grid-auto-rows	

	grid-column-end	

	grid-column-gap	

	grid-column-start	

	grid-column	

	grid-gap	

	grid-row-end	

	grid-row-gap	

	grid-row-start	

	grid-row	

	grid-template-areas	

	grid-template-columns	

Animations

162

	grid-template-rows	

	grid-template	

	grid	

	height	

	left	

	letter-spacing	

	line-height	

	margin	

	margin-bottom	

	margin-left	

	margin-right	

	margin-top	

	max-height	

	max-width	

	min-height	

	min-width	

	opacity	

	order	

	outline	

	outline-color	

	outline-offset	

	outline-width	

	padding	

	padding-bottom	

	padding-left	

	padding-right	

	padding-top	

	perspective	

	perspective-origin	

	quotes	

	right	

	tab-size	

	text-decoration	

	text-decoration-color	

	text-indent	

	text-shadow	

	top	

	transform.	

	vertical-align	

	visibility	

Animations

163

	width	

	word-spacing	

	z-index	

Animations

164

Normalizing	CSS
The	default	browser	stylesheet	is	the	set	of	rules	that	browser	have	to	apply	some	minimum
style	to	elements.

Most	of	the	times	those	styles	are	very	useful.

Since	every	browser	has	its	own	set,	it's	common	finding	a	common	ground.

Rather	than	removing	all	defaults,	like	one	of	the	CSS	reset	approaches	do,	the	normalizing
process	removes	browser	inconsistencies,	while	keeping	a	basic	set	of	rules	you	can	rely	on.

Normalize.css	http://necolas.github.io/normalize.css	is	the	most	commonly	used	solution	for
this	problem.

You	must	load	the	normalizing	CSS	file	before	any	other	CSS.

Normalizing	CSS

165

http://necolas.github.io/normalize.css

Error	handling
CSS	is	resilient.	When	it	finds	an	error,	it	does	not	act	like	JavaScript	which	packs	up	all	its
things	and	goes	away	altogether,	terminating	all	the	script	execution	after	the	error	is	found.

CSS	tries	very	hard	to	do	what	you	want.

If	a	line	has	an	error,	it	skips	it	and	jumps	to	the	next	line	without	any	error.

If	you	forget	the	semicolon	on	one	line:

p	{

		font-size:	20px

		color:	black;

		border:	1px	solid	black;

}

the	line	with	the	error	AND	the	next	one	will	not	be	applied,	but	the	third	rule	will	be
successfully	applied	on	the	page.	Basically,	it	scans	all	until	it	finds	a	semicolon,	but	when	it
reaches	it,	the	rule	is	now	 	font-size:	20px	color:	black;	,	which	is	invalid,	so	it	skips	it.

Sometimes	it's	tricky	to	realize	there	is	an	error	somewhere,	and	where	that	error	is,	because
the	browser	won't	tell	us.

This	is	why	tools	like	CSS	Lint	exist.

Error	handling

166

http://csslint.net/

Vendor	prefixes
Vendor	prefixes	are	one	way	browsers	use	to	give	us	CSS	developers	access	to	newer
features	not	yet	considered	stable.

Before	going	on	keep	in	mind	this	approach	is	declining	in	popularity	though,	in	favour	of	using
experimental	flags,	which	must	be	enabled	explicitly	in	the	user's	browser.

Why?	Because	developers	instead	of	considering	vendor	prefixes	as	a	way	to	preview
features,	they	shipped	them	in	production	-	something	considered	harmful	by	the	CSS
Working	Group.

Mostly	because	once	you	add	a	flag	and	developers	start	using	it	in	production,	browsers	are
in	a	bad	position	if	they	realise	something	must	change.	With	flags,	you	can't	ship	a	feature
unless	you	can	push	all	your	visitors	to	enable	that	flag	in	their	browser	(just	joking,	don't	try).

That	said,	let's	see	what	vendor	prefixes	are.

I	specifically	remember	them	for	working	with	CSS	Transitions	in	the	past.	Instead	of	just	using
the	 	transition		property,	you	had	to	do	this:

.myClass	{

				-webkit-transition:	all	1s	linear;

				-moz-transition:	all	1s	linear;

				-ms-transition:	all	1s	linear;

				-o-transition:	all	1s	linear;

				transition:	all	1s	linear;

}

Now	you	just	use

.myClass	{

				transition:	all	1s	linear;

}

since	the	property	is	now	well	supported	by	all	modern	browsers.

The	prefixes	used	are:

	-webkit-		(Chrome,	Safari,	iOS	Safari	/	iOS	WebView,	Android)
	-moz-		(Safari)
	-ms-		(Edge,	Internet	Explorer)
	-o-		(Opera,	Opera	Mini)

Vendor	prefixes

167

Since	Opera	is	Chromium-based	and	Edge	will	soon	be	too,	 	-o-		and	 	-ms-		will	probably	go
soon	out	of	fashion.	But	as	we	said,	vendor	prefixes	as	a	whole	are	going	out	of	fashion,	too.

Writing	prefixes	is	hard,	mostly	because	of	uncertainty.	Do	you	actually	need	a	prefix	for	one
property?	Several	online	resources	are	outdated,	too,	which	makes	it	even	harder	to	do	right.
Projects	like	Autoprefixer	can	automate	the	process	in	its	entirety	without	us	needing	to	find
out	if	a	prefix	is	needed	any	more,	or	the	feature	is	now	stable	and	the	prefix	should	be
dropped.	It	uses	data	from	caniuse.com,	a	very	good	reference	site	for	all	things	related	to
browser	support.

If	you	use	React	or	Vue,	projects	like	 	create-react-app		and	Vue	CLI,	two	common	ways	to
start	building	an	application,	use	 	autoprefixer		out	of	the	box,	so	you	don't	even	have	to	worry
about	it.

Vendor	prefixes

168

https://github.com/postcss/autoprefixer

CSS	for	print
Even	though	we	increasingly	stare	at	our	screens,	printing	is	still	a	thing.

Even	with	blog	posts.	I	remember	one	time	back	in	2009	I	met	a	person	that	told	me	he	made
his	personal	assistant	print	every	blog	post	I	published	(yes,	I	stared	blankly	for	a	little	bit).
Definitely	unexpected.

My	main	use	case	for	looking	into	printing	usually	is	printing	to	a	PDF.	I	might	create
something	inside	the	browser,	and	I	want	to	make	it	available	as	PDF.

Browsers	make	this	very	easy,	with	Chrome	defaulting	to	"Save"	when	trying	to	print	a
document	and	a	printer	is	not	available,	and	Safari	has	a	dedicated	button	in	the	menu	bar:

Print	CSS
Some	common	things	you	might	want	to	do	when	printing	is	to	hide	some	parts	of	the
document,	maybe	the	footer,	something	in	the	header,	the	sidebar.

Maybe	you	want	to	use	a	different	font	for	printing,	which	is	totally	legit.

If	you	have	a	large	CSS	for	print,	you'd	better	use	a	separate	file	for	it.	Browsers	will	only
download	it	when	printing:

<link	rel="stylesheet"

CSS	for	print

169

						src="print.css"

						type="text/css"

						media="print"	/>

CSS	@media	print
An	alternative	to	the	previous	approach	is	media	queries.	Anything	you	add	inside	this	block:

@media	print	{

		/*	...	*/

}

is	going	to	be	applied	only	to	printed	documents.

Links
HTML	is	great	because	of	links.	It's	called	HyperText	for	a	good	reason.	When	printing	we
might	lose	a	lot	of	information,	depending	on	the	content.

CSS	offers	a	great	way	to	solve	this	problem	by	editing	the	content,	appending	the	link	after
the	 	<a>		tag	text,	using:

@media	print	{

				a[href*='//']:after	{

								content:"	("	attr(href)	")	";

								color:	$primary;

				}

}

I	target	 	a[href*='//']		to	only	do	this	for	external	links.	I	might	have	internal	links	for
navigation	and	internal	indexing	purposes,	which	would	be	useless	in	most	of	my	use	cases.	If
you	also	want	internal	links	to	be	printed,	just	do:

@media	print	{

				a:after	{

								content:"	("	attr(href)	")	";

								color:	$primary;

				}

}

Page	margins

CSS	for	print

170

You	can	add	margins	to	every	single	page.	 	cm		or	 	in		is	a	good	unit	for	paper	printing.

@page	{

				margin-top:	2cm;

				margin-bottom:	2cm;

				margin-left:	2cm;

				margin-right:	2cm;

}

	@page		can	also	be	used	to	only	target	the	first	page,	using	 	@page	:first	,	or	only	the	left	and
right	pages	using	 	@page	:left		and	 	@page:	right	.

Page	breaks
You	might	want	to	add	a	page	break	after	some	elements,	or	before	them.	Use	 	page-break-
after		and	 	page-break-before	:

.book-date	{

				page-break-after:	always;

}

.post-content	{

				page-break-before:	always;

}

Those	properties	accept	a	wide	variety	of	values.

Avoid	breaking	images	in	the	middle
I	experienced	this	with	Firefox:	images	by	default	are	cut	in	the	middle,	and	continue	on	the
next	page.	It	might	also	happen	to	text.

Use

p	{

		page-break-inside:	avoid;

}

and	wrap	your	images	in	a	 	p		tag.	Targeting	 	img		directly	didn't	work	in	my	tests.

This	applies	to	other	content	as	well,	not	just	images.	If	you	notice	something	is	cut	when	you
don't	want,	use	this	property.

CSS	for	print

171

https://developer.mozilla.org/en-US/docs/Web/CSS/page-break-after

Debug	the	printing	presentation
The	Chrome	DevTools	offer	ways	to	emulate	the	print	layout:

Once	the	panel	opens,	change	the	rendering	emulation	to	 	print	:

CSS	for	print

172

CSS	for	print

173

	Preface
	Introduction to CSS
	A brief history of CSS
	Adding CSS to an HTML page
	Selectors
	Cascade
	Specificity
	Inheritance
	Import
	Attribute selectors
	Pseudo-classes
	Pseudo-elements
	Colors
	Units
	url
	calc
	Backgrounds
	Comments
	Custom Properties
	Fonts
	Typography
	Box Model
	Border
	Padding
	Margin
	Box Sizing
	Display
	Positioning
	Floating and clearing
	z-index
	CSS Grid
	Flexbox
	Tables
	Centering
	Lists
	Media queries and responsive design
	Feature Queries
	Filters
	Transforms
	Transitions
	Animations
	Normalizing CSS
	Error handling
	Vendor prefixes
	CSS for print

