
Advanced Node.js
Optimize, Deploy, and Maintain an

Enterprise-Scale Node.js Application

Introduction:
Charting Your Path to Real-World Success Using Node.js

Less than a decade after its initial release, Node.js has become a pivotal technology for building
enterprise-grade web applications. At the time, Node.js addressed a growing need for a way to
build fast and scalable server-side applications. Today, the explosion of dynamic, responsive,
data-driven online content and applications has turned this need into an absolute necessity.

If you’re reading this introduction, you probably don’t need a detailed walkthrough of what
Node.js can do, how to get started using it, or why it has become a core server-side technology
within some of the world’s biggest corporations. In fact, we’re going to avoid these topics
entirely. There are already many excellent resources available to introduce novice developers
to Node.js and the world of server-side JavaScript coding, so there’s no point in covering the
same ground.

Where we do want to focus our attention — and yours — is on a very different and very important
topic: How to launch and run an enterprise-scale product, service, or brand built on Node.js.

This is a topic that has not, in our opinion, gotten the attention and expert insights it
deserves. In most cases, this post-launch journey is far longer and has a bigger impact than
the development process itself. It is also where a Node.js application will succeed or fail at
translating promises and potential into real-world value, relevance, and business impact. At
different points in this journey, the leader of a development team will call upon an arsenal of
skills and strategies — learning how to maximize project efficiency, scale and manage growth,
anticipate and address security risks, balance cost and complexity, and perform many other
tasks, as well.

Page 2Advanced Node.js

What This eBook Will Provide

In the pages that follow, we’ll give you a practical foundation for success during the critical
first three months or so of a successful enterprise-scale Node.js journey. This time span covers
the period from pre-production planning to continuous deployment and testing — often in an
environment that demands massively scaling your codebase, team, and audience.

In addition to covering the key tools and techniques you’ll need at various points in this journey,
we’ll offer guidance in the form of Node.js best practices and case studies — building your
success upon other teams’ experiences.

This eBook isn’t meant to cover every one of these topics completely or to create an
exhaustive Node.js technical reference. Our goal is to give readers enough context and detail
to understand the issues, gain basic competence in dealing with them in real-world situations,
and to set them up for long-term success in building and deploying Node.js applications.

Before you get started, we recommend reviewing the table of contents to get a “lay of the land”
overview. Good luck, and enjoy the process of mastering the entire Node.js journey.

Page 3Advanced Node.js

14

19

05

Table of Contents

Chapter 1
The Journey Begins: Preparing for Production Launch

06 Optimizing Your Code
06 Linting
08 Best Practices for Error Handling
09 Confirming Your Code Meets Security Requirements
10 Configuring for a Production Environment
12 Deployment Considerations

Chapter 2
Staying the Course: The First 24 Hours of Your Node.js Deployment

15 Two Keys to Surviving Day One — and Beyond
16 Common Day One Application Issues
18 Looking Ahead: Time to Hit the Open Road

Chapter 3
Ongoing Management

20 Memory Leaks
21 Managing Node.js Concurrency
22 Monitoring
22 To Conclude

Page 4Advanced Node.js

Preparing for a release is always a critical point in any application
development journey, and that’s certainly the case for Node.js projects. It’s
your team’s final opportunity to find and fix issues before they impact your
deployment process, your end users, or the business itself. While errors can
and will impact your Node.js production environment just as they will any
other type of software, our goal is to outline a process that minimizes the risk
of avoidable issues while also striking the right balance between efficiency,
cost, and use of team resources.

In this chapter, we’ll walk you through a pre-release process with the following
areas of emphasis:

• Optimizing Your Code

• Best Practices for Error Handling

• Confirming Your Code Meets Security Requirements

• Configuring for a Production Environment

• Deployment Considerations

Along the way, we’ll share our recommendations on tools, summarize key
best practices, alert you to common issues that may impact your codebase or
deployment process, and link out to additional information when appropriate.

Chapter 1
The Journey Begins: Preparing for Production Launch

Page 5Advanced Node.js

Optimizing Your Code
While this eBook is not intended to be a coding guide for Node.js, there are some highly desirable coding practices that can help to optimize
your Node.js deployment.

Node.js is NOT a Web Server
Node.js was never meant to function as a web server, so if you set up your
deployment to listen in on an HTTP port, this is a recipe for trouble.
Node.js will never function as efficiently as NGINX or Apache, for
example, so don’t deploy it this way. Instead, configure your web servers
to proxy connections to your Node.js instances to avoid the risk of turning
your Node.js deployment into a performance bottleneck.

Don’t Use Node.js to Serve Static Assets
Although it’s quite possible to have Node.js serve static content, it is
very inefficient and uses a lot of memory. Have your web servers handle
static content and make use of a CDN so that static content is served by
geolocation.

Don’t Use Synchronous Methods to Serve Requests
Node.js doesn’t work well in synchronous mode, so always use
Asynchronous functions. For example, fs.readFile(err, fileContent) instead of
fs.readFileSync(function(err, fileContent) {});

Use gzip Compression
gzip compression can greatly increase the speed of your web
application. This is an example of how to use the compression
expression to your advantage:

Linting
The best way to carry out a final code optimization is to run an
automated code quality tool through your codebase. This process is
called “linting” and usually covers only very basic quality issues, but
that’s the point: It catches avoidable — and usually very easy-to-fix
errors — before they put a production application at risk.

Besides preventing bugs, linting also ensures adherence to coding
standards, promotes better collaboration, identifies any undeclared
variables, and enables less dependence on other members of the
development team. ESLint and JShint are two popular linting tools for
Node.js code. We cover ESLint in more detail below.

ESLint
ESLint is an open-source JavaScript linting tool. It works by scanning
the codebase and applying rules that define established stylistic
guidelines. ESLint comes with some built-in rules, but the program also
allows you to load your own rules at any time and create custom rules
that align with a specific framework. Developers can configure ESLint to
assign two severity levels to codebase issues: Warning (less severe) and
Error (more severe).

Best Practices for Linting
The linting process can apply many coding standards. The ESLint website
includes a list of key rules, grouped by category. These include rules
dealing with possible errors (JavaScript syntax or logic errors) and with
best practices (better ways of doing things within a codebase). By default,
ESLint does not enable any rules, leaving it up to the developer to choose
an appropriate set of rules for a given project.

Page 6Advanced Node.js

https://nodejs.org/api/fs.html#fs_fs_readfilesync_filename_options
https://nodejs.org/api/fs.html#fs_fs_readfile_filename_options_callback
https://expressjs.com/en/advanced/best-practice-performance.html
http://eslint.org/docs/rules/#best-practices

Flexible ESLint Configuration
There are two ways to configure ESLint:

1. Use JavaScript comments to embed the configuration information directly into the file.

2. Use a JavaScript, JSON, or YAML file to specify the configuration for the directory and
its subdirectories. This can be in the form of an .eslintrc file, or as an eslintConfig field in
the package.json file. ESLint will scan for and read the underlying file, or you can specify
the configuration file on the command line.

The following example code is from a JSON file configured for ESLint from an .eslintrc file.

Page 7Advanced Node.js

https://github.com/mikermcneil/chatkin/blob/817273ed7d39c7a4062ccb931e992d9435c30137/package.json#L26-L36

Best Practices for Error Handling
Good error handling, which maximizes an application’s ability to recover gracefully from unexpected errors, can make a big difference in an application’s
reliability and especially its user experience. Error handling can also make it easier and faster to fix recurring errors in a production application.

The following best practices are taken from an excellent article on
Node.js error handling:

• Given functions should deliver operational errors either synchronously
(using throw) or asynchronously (with a callback or event emitter), but not
both.

• When writing new functions, clearly document the arguments for it,
the types, and any constraints (e.g., “Must be a valid IP address”). This
documentation should also include any operational errors that may occur,
and how those errors are delivered.

• Missing or invalid arguments are programmer errors, and you should
always use throw when that occurs.

• Use the standard Error class and its related properties when delivering
errors. Add as much useful information in separate properties.

Node.js Specific Error Handling Use Cases
Reporting Async Errors
Errors on asynchronous APIs can be reported in multiple ways:

• Most methods that accept a callback function will accept an Error
object passed as the first argument on a function.

• Errors can be routed to an EventEmitter object’s error event when an
asynchronous event is called.

• There are some asynchronous methods in the Node.js API that may
still use the throw method that must be handled using try/catch.

Handling Errors From Node.js Callbacks
One of the critical errors in Node.js is from callbacks. Here is a sample of
how the code should look in the Rules section of the .eslintrc file:

Handling Errors From Promises/Catch
The catch method assists error handling during the composition of the
promise. An example is provided below:

Node.js Instance Management
Finally, remember that Node.js errors will often take down the whole
service instance, so you need to deal effectively with this level of failure.

• Use a process supervisor like forever or supervisor to watch your
Node.js application. If an instance of the app is in an error state, they’ll
restart it instantly, resulting in minimal downtime.

• Use Node.js’ built-in cluster module to “spawn” multiple versions of
the same app that listen in on the same socket. The “cluster master”
creates new instances and will also restart failed instances.

Page 8Advanced Node.js

https://www.joyent.com/node-js/production/design/errors
https://www.joyent.com/node-js/production/design/errors
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/catch
https://github.com/foreverjs/forever
https://github.com/isaacs/node-supervisor
https://nodejs.org/api/cluster.html

Confirming Your Code Meets Security Requirements
Security is obviously a very important, and potentially very complex topic. We won’t attempt to cover every possible angle here, so we encourage you to seek
additional security references.

As a rule, however, every Node.js application should address the
following security considerations and threat categories before it enters
production:

• Clickjacking: Refers to a category of attacks that tricks users into
launching unintended events in the user interface

• Content Security Policy: Instructs the client browser which location
and related resources are allowed to be loaded in the browser

• CORS: Cross-Origin Resource Sharing

• CSRF: Cross-Site Request Forgery

• DOS: Denial of Service attacks

• P3P: Platform for Privacy Preferences

• Socket Hijacking

• Strict Transport Security

• XSS: Cross-Site scripting

TLS/SSL
You should ensure that any cookies sent in your application are secure in
this layer. The secure attribute of cookies instructs the browser to only
send that cookie if it is being sent by HTTPS.

TrustProxy Setting
If you are running your application on a proxy server, you will need to
use the TrustProxy setting if you need to obtain the IP address of the
requesting client browser. You can set the TrustProxy setting to one of the
following types:

• Boolean

• IP addresses

• Number

• Function

Enabling TrustProxy also turns on reverse proxy support to assist in
redirecting traffic to HTTPS instead of using HTTP protocol. The req.
secure variable can also help you in sending traffic via the HTTPS
protocol as well. The following is an example of how you can use the req.
secure variable to accomplish this:

Page 9Advanced Node.js

http://sailsjs.com/documentation/concepts/security/clickjacking
http://sailsjs.com/documentation/concepts/security/content-security-policy
http://sailsjs.com/documentation/concepts/security/cors
http://sailsjs.com/documentation/concepts/security/csrf
http://sailsjs.com/documentation/concepts/security/ddos
http://sailsjs.com/documentation/concepts/security/p-3-p
http://sailsjs.com/documentation/concepts/security/xss
https://blog.risingstack.com/node-js-security-checklist/
https://expressjs.com/en/guide/behind-proxies.html

Configuring for a Production Environment
It’s important that your application environment is correctly configured for production release. This is often very different to the configuration used for testing
and staging environments and is typically controlled through the use of environment variables.

Heroku is a good tool to create and manage environment variables for Node.js applications. You will need to configure the Node Package Manager (npm) within
Heroku before setting these variables. npm can read any configured environment variables, so long as these variables begin with NPM_CONFIG.

Node.js Environment Variables
Production API Keys and Credentials
The use of environment variables will allow you to store API keys and
related credentials, rather than having to assign a global variable for
them. In Node.js, you can access the environment variables through the
process.env property.

Setting the Production Node
To ensure that the application knows it is running in a production
environment, you must set NODE_ENV=production. This ensures that
the application pulls the production configuration when running in your
production environment.

Process Clustering
You may want to take advantage of the cluster module to launch multiple
threads to handle the load of several Node.js processes. To set up process
clustering, be sure to include the cluster variable as follows:
var cluster = require(‘cluster);.

Review Hosting Requirements
Before deciding on a hosting provider for your application, be sure to
review your config/env/production.js file to account for any idiosyncrasies
related to the provider.

Here are a few providers available to host your Node.js application:

• Heroku

• Microsoft Azure

• Google Cloud platform

• Digital Ocean

• Amazon Web Services

Review Load Balancing Options
The Node.js cluster module can be used to enable application load
balancing. There is also a “sticky session” module in Node.js that takes
incoming connections to the application and routes them based on the
originating IP address.

Page 10Advanced Node.js

http://heroku.com
http://next.sailsjs.com/documentation/concepts/deployment/hosting

Database Configuration
Production Session Store
Session stores are used for multiple databases in Node.js. This allows
your application to keep a user session intact if the application has to
connect to multiple databases during that same session. Redis is an
open-source,
in-memory store used as a database that can handle session stores.

This following example demonstrates how Node.js can connect to Redis:

Best Practices with Redis
There are occasions where Redis may timeout if there are lengthy periods
of inactivity. In order to avoid that, we recommend writing a PING
command through a timer command. The following example can help to
avoid this issue:

Queues and Durability
For queues, we recommend Redis Simple Message Queue, as it’s a
lightweight message queue for Node.js applications. It requires no
dedicated server, just a Redis server.

Page 11Advanced Node.js

NodeChef
NodeChef provides a platform to manage and scale Node.js with a
number of popular SQL / NoSQL databases including Redis, MongoDB,
PostgreSQL, and MySQL. It’s worth considering to manage the
datastore for your Node.js applications.

Infrastructure Checklist
Finally, remember to have the following items appropriately configured
for your production application deployment:

1. Load balancer

2. Database

3. File system for file uploads

4. Session store (if applicable)

5. A PubSub queue for scaling WebSockets

6. A job runner if you are scheduling jobs for your application

It’s important to note that if you need to scale up different endpoints
in your application, you can still have all of the same servers hitting the
same codebase. If necessary, you can configure different installations
of your codebase and disable or enable the routes based on that
configuration.

https://www.npmjs.com/package/sessionstore
https://gist.github.com/JonCole/925630df72be1351b21440625ff2671f
https://github.com/smrchy/rsmq
https://www.nodechef.com/nodejs-postgresql-hosting

Deployment Considerations
It’s important to not overlook a number of issues associated with moving your Node.js application successfully across a staging environment and into production.
This includes some operational considerations that are specific to Node.js applications.

Dealing successfully with these issues can ensure a much faster and more efficient deployment process — as well as much better relationships with other team
members involved in the process.

Deployment Options
There are several options for deploying your Node.js application into
production. The following recommendations (courtesy of StrongLoop)
should help you decide which one is most suitable for your production
environment:

• Package dependencies and deploy using Git branches or npm

• Deploy and run using Node.js supervisors or managers

Package Dependencies and Deploy Using Git Branches or npm
If using npm, you should be aware that there are operating system-level
dependencies for some npm packages. Some native compilation may
also be required for these packages.

For private npm packages, you will need an npm credential on the
server(s) where the npm install command will need to run. This
credential will give permission for private packages to be installed.

Deploy and Run Using Node.js Supervisors or Managers
As discussed in the section on error handling, use Node.js supervisors
and managers to automatically detect and handle failures.

Deployment Failures
No matter how carefully you and your team prepare to deploy a Node.js
application, experienced developers know that a deployment failure can
sometimes still happen.

Some potential failures are outliers — events that are unlikely to occur
in a real-world production environment. Others are fairly commonplace.
Either way, it’s still useful and important to simulate these failures and
assess how your application responds to them.

Some examples of these types of failures and the resulting Node.js
responses include:

• Processes crashing due to unhandled exception errors.

• RAM overflow: This typically occurs when processes run out of RAM.
However, this can also occur if a Node.js process gets overwhelmed.

• Memory leaks, with or without an overflow.

• Runaway recursive function: A message will state “Maximum call
stack size exceeded.”

• CPU lockups: A process is locked up because the CPU is overwhelmed
or caught in an unending blocking loop. The culprit of this loop can
usually be found in a ‘while(true) {}’ statement in the code.

• No server responses: This occurs if you forget to call ‘res.send()’ in the
code. The default TCP timeout in Node.js applications is 120 seconds.

Page 12Advanced Node.js

https://strongloop.com/strongblog/node-js-deploy-production-best-practice/

All of these scenarios can be tested using the sails-hook-dev tool. It provides
diagnostic and debugging information during development. You can use this tool to
check the following:

• Memory usage or environment variables of the currently running Node.js process

• Configuration

• Installed versions of dependencies

• Fetch session data for the current user

• Force Node.js’ garbage collector to run

Now that we’ve covered the fundamentals of an effective pre-production workflow,
we’ll assume that you’ve pushed your Node.js application successfully into production.
In the next chapter, we’ll look at what to expect and how to respond during the critical
first 24 hours after deployment.

Page 13Advanced Node.js

https://github.com/balderdashy/sails-hook-dev

Chapter 2
Staying the Course: The First 24 Hours
of Your Node.js Deployment

No matter how you see it, deploying an enterprise application can
be harrowing. According to one recent survey, 30% of all application
deployments fail. Another survey reported that 77% of organizations have
software production release problems. Clearly, anyone tasked with deploying
an application should be ready for things to go wrong — perhaps badly wrong.

We’d like to tell you that the Node.js deployment process will be less
challenging than these industry norms. And certainly, a robust pre-production
process can help to minimize the impact of bugs, configuration failures, and
other avoidable problems.

Even the best preparation, however, can’t keep Murphy’s Law from governing
your Node.js deployments: Anything that can go wrong with a production
release will go wrong. Many of those problems — avoidable or not — will
surface during the first 24 hours after an application enters production use.

In this chapter, we’ll discuss some of the most common examples of these
“Day One” deployment problems — particularly those that result in crashes or
other high-impact issues. We’ll also touch on the use of application monitoring
to help you detect and manage problems more effectively.

As this chapter’s title suggests, it’s important to have patience and stay the
course during this time, work through problems as they appear, and pay
special attention to our advice (Rule One) about sticking to a process for
pushing out fixes.

Page 14Advanced Node.js

https://www.wired.com/insights/2013/04/why-30-of-app-deployments-fail/
https://techbeacon.com/survey-paints-discouraging-scenario-enterprise-it-software-delivery-development

Two Keys to Surviving Day One — and Beyond
Before we dive into specifics, we want to spotlight two very important pieces of advice. They’ll make the difference, in many cases, between a challenging but
successful deployment process, and a nightmare scenario where routine problems spiral into crises.

1. Rule One for Production Emergencies: Stick to Your Process Guns
Application crashes and other visible, potentially high-impact failures can
trigger a panic response. Fixing the problem is the only thing that matters.

This is a recipe for disaster. The solution is always — always — to follow
your established protocol for pushing changes to production.

Keep in mind that “simple” changes often become less simple when
you have a chance to think about them. In a clustered environment, for
example, making a direct change will force you to mimic the exact same
change on every server. Even a random missed keystroke can turn into a
situation much worse than the original problem.

There’s no mistake worse than one that’s both self-inflicted and
avoidable. Stick to a process that ends with a solution — not a crisis.

2. Application Monitoring: Your New Best Friend
It’s hard to eliminate unpleasant surprises completely; they come with
the territory when you build business applications. What you can do
is minimize the gap between when a problem occurs —or even when
warning signs of a problem appear — and when you learn about them.

A good application monitoring package gives you this capability,
ensuring that you learn about a problem with an instant notification
instead of messages from upset users (or your boss).

Many monitoring solutions are available that work well with Node.js
applications — noteworthy examples include AppDynamics’ Unified
Monitoring. Include monitoring in your standard deployment process,
and ensure it’s in place during the critical first 24 hours in production.

Page 15Advanced Node.js

https://blog.appdynamics.com/product/unified-monitoring-future-looks-like/
https://blog.appdynamics.com/product/unified-monitoring-future-looks-like/

Common Day One Application Issues
Let’s shift gears now from general advice to some specific issues you’re likely to encounter during a Day One deployment window. As always, we’ll start with a
reminder that the following list isn’t meant to cover every possibility, but it will cover the most common post-deployment problems and a sense of the kinds of issues
you’ll encounter here.

1. Crashing Node Processes
Node.js is architected to run on a single process. This is one of its defining
qualities — enabling applications that are lightweight yet highly scalable.
One of the trade-offs of this approach, however, is that when an issue
crashes the process — uncaught exceptions are the most common reason
why this happens — it essentially crashes the entire application.

While you’re chasing a crashing Node.js process, however, remember
that the problem may also involve the platform being used to host your
application. That’s why we recommend reviewing appropriate, platform-
specific guidelines for troubleshooting Node.js applications — for
example, Microsoft Azure Web Services and the Heroku Platform as a
Service (PaaS) environments.

1A. Fixing Node.js Processes
Once again, the best way to deal with Node.js process crashes is to
use Node.js supervisors and managers to automatically detect and
handle failures.

2. Exceeding API Rate Limits
Rate limiting is a common practice among web developers, since it gives
them a very effective way to restrict a variety of activities within defined
parameters. Rate limiting can be used to restrict the number of user
queries, as an event-throttling tactic, or as a way to limit API requests.

2A. Defining Application Rate Limits
Rate limits are typically defined by user session, rather than as global
limits that apply to the application as a whole. They can take the form of
temporal limits (e.g., the number of requests within a 15-minute window)
or as limits on specific requests (e.g., GET and POST requests).

Deploying an application can be a moment of truth for a developer’s
use of rate limiting in a Node.js application. The actual traffic your
application receives can differ considerably from predicted traffic —
and once an API rate limit has been exceeded, the application will
essentially freeze.

2B. Rate Limit Workarounds
There are a few fairly simple ways to adapt an application to any API
rate limit issues you encounter in a production application:

• Caching: This involves inserting the raw, JSON-encoded data into
the database and provides the following benefits:

• Gives active users higher priority.

• Adapts to related search results, responding wherever possible,
directly from cache and thereby reducing the number of API
calls required.

• Clever design can also enhance the benefits of implementing
caching. For example, If you know that there is a hard limit to
the maximum number of responses from a given search string
and the data footprint is not excessive, why not pre-fetch the
full set of responses? That way you can reduce the number of
API calls even further by having all possible responses already
sitting in cache.

Page 16Advanced Node.js

https://docs.microsoft.com/en-us/azure/app-service-web/app-service-web-nodejs-best-practices-and-troubleshoot-guide
https://devcenter.heroku.com/articles/troubleshooting-node-deploys

Keep in mind that while implementing a caching solution is almost
always beneficial to application performance, there is a trade-off in the
form of increased memory usage. Even if you attempt to avoid this, for
example, by using a cursor/pagination/map-reduce approach to access
pages of data at a time, this just leads to more requests — which means
you’re getting closer to your rate limit.

If caching doesn’t ultimately provide the benefits you were expecting,
then do what’s necessary to keep your application available and as
functional as possible — which means, in this case, temporarily disabling
the feature(s) causing the problem and contacting the provider for help
with a permanent solution.

3. Troubleshooting WebSocket Issues
At this point, most developers working with Node.js will be acquainted
with a WebSocket and with the benefits it offers versus using HTTP. As
of this writing, the most popular WebSocket library for Node.js is Socket.
IO, which also benefits from being relatively easy to implement and use.

Besides Socket.IO, there are many different WebSocket libraries
available for Node.js today. While each has its own API, they’re all built
on top of TCP and do basically the same things.

No matter which WebSocket library you use, any problem that impedes
communication between your server and clients is obviously an urgent
one. The following procedure gives you a quick and easy way to
reproduce a suspected WebSocket issue:

1. Create a WebSocket server in its own Node.js process.

2. Connect to this server using the WebSocket client. This client
should be running a separate process.

3. End the server process created in the first step.

4. Check the status code. If an error code of 1000 (normal) is reported,
then this is incorrect, as the browser would normally report an error
code of 1006 in this circumstance.

Page 17Advanced Node.js

4. Dependency Issues
These issues will typically manifest prior to going live in production, or
when updates are made to your application in subsequent pushes to
production. One typical issue related to dependency errors is when the
message “MODULE_NOT_FOUND” is displayed. This error will occur
when a given path in the application does not exist.

5. File Upload Issues
The server can be overwhelmed by upload requests immediately
after deployment to production. This occurs when the files are being
uploaded to the local file system. This is more of an operational issue
than a bug or other software-related failure, but it’s still a significant
source of unplanned downtime risk.

If an error occurs during file uploads, however, there’s another potential
issue to consider. Typically, a body parser such as Skipper can handle
file uploads without a hiccup. An error message suggests a disconnect
in that process.

6. Denial-of-Service (DoS) Attacks
Denial-of-service attacks pose a complex problem involving multiple
layers of protection across the networking stack. There isn’t much that
can be done at the API layer, but configuring Sails appropriately can
mitigate certain types of DoS attacks:

• Sails sessions can be configured to use a separate session store
(e.g., Redis), so your application can run without relying on the
memory state of any one API server. This allows you to distribute
load by deploying multiple copies of your Sails app across as many
servers as required. You do need to front end your servers with a
load balancer, configured to ensure incoming requests are always
directed to the least busy server. This significantly reduces the risk
of one overloaded server becoming a single point of failure.

• If you are not using the long-polling transport enabled in sails.config.
sockets, then Socket.IO connections can be configured to use a
separate socket store (e.g., Redis). This eliminates the need for
sticky sessions at the load balancer and the possibility of would-be
attackers directing their attacks against a specific server.

https://github.com/websockets/ws/issues/543
https://www.owasp.org/index.php/Application_Denial_of_Service
https://en.wikipedia.org/wiki/Denial-of-service_attack#Handling
https://next.sailsjs.com/documentation/reference/sails.config/sails.config.session.html
http://redis.io/
https://en.wikipedia.org/wiki/Load_balancing_computing
https://next.sailsjs.com/documentation/reference/configuration/sails-config-sockets
https://next.sailsjs.com/documentation/reference/configuration/sails-config-sockets

Page 18Advanced Node.js

Looking Ahead: Time to Hit the Open Road
The good news about Day One surprises (and there will be surprises) is that you’re going to
learn a lot about building better Node.js applications and about launching your applications
with fewer post-deployment issues. While problems can and will continue to happen in the
future, truly serious problems will probably be fewer and farther between.

Even better news is that you’re also over the hump with your current Node.js deployment.
From here, you’ll be dealing with a more stable and reliable application — and that, in turn,
frees you to focus on ways to improve your application’s performance and to upgrade your
own process for building, testing, and deploying Node.js applications.

For the first time since beginning this process, you’ll probably feel a real sense of
momentum and progress — getting your Node.js project out of traffic and onto the open
road. Let’s see what this means in terms of your next-step projects and priorities — our
topic for Chapter Three.

Having successfully deployed, this final chapter looks at the ongoing
management of your Node.js application. This isn’t too different from any
other application rollout, but there are a couple of specifics you should
watch out for:

Chapter 3
Ongoing Management

Page 19Advanced Node.js

• Check the application-level code in an effort to isolate the memory leak to a
single endpoint.

• A common memory leak in Node.js applications is when you are using promises in the
code but forget to include a catch() statement.

• If the increasing memory usage cannot be pinpointed to a specific endpoint or
anything else within the application code, then try to reproduce the leak in a separate
new application.

• This new application should run in streamlined mode without any add-ons and with
recommended production settings. If an issue is found, create an example repository
that recreates the memory leak.

Tuning the Garbage Collector
Node.js sets a limit of 1.5 GB for long-lived objects by default. If this exceeds the memory
available, Node.js could allow your application to start paging memory to disk.

To gain more control over your application’s garbage collector, you can provide flags to the
underlying JavaScript engine in your profile:

 web: node --optimize_for_size --max_old_space_size=920 server.js

If you’d like to tailor Node.js to a 512 MB container, try:

 web: node --optimize_for_size --max_old_space_size=460 server.js

Memory Leaks
Memory leaks are a common problem area for all Java-based application servers. If you
suspect a memory leak in your application, first check that you’re using recommended
production settings, then check the following:

Page 20Advanced Node.js

https://github.com/balderdashy/sails/issues/2779#issuecomment-209735285
http://sailsjs.com/documentation/concepts/deployment/scaling

Managing Node.js Concurrency
Remember that Node.js has a limited ability to scale to different container sizes. It’s single-
threaded, so it can’t automatically take advantage of additional CPU cores. Furthermore, it’s
based on V8, which has a memory limit of approximately 1.5 GB, so it cannot automatically
take advantage of additional memory.

Node.js apps must fork multiple processes to maximize their available resources, which is
referred to as “clustering.” This is supported by the Node.js Cluster API which you can invoke
directly in your app. With the Cluster API, you can optimize your app’s performance and the
Heroku Node.js buildpack provides environment variables to help.

Tuning the Concurrency Level
Each app has unique memory, CPU, and I/O requirements. The Heroku buildpack provides
reasonable defaults through two environment variables: WEB_MEMORY and WEB_
CONCURRENCY. You can override both to fit your application.

• WEB_MEMORY specifies, in MB, the expected memory requirements of your
application’s processes. It defaults to 512.

• WEB_CONCURRENCY specifies the recommended number of processes to cluster for
your application. It’s essentially MEMORY_AVAILABLE / WEB_MEMORY.

If you need more information, then check out the Heroku Dev Center, which is a great
source of articles on tuning and managing your Node.js app, including how to manage
Node.js concurrency.

Page 21Advanced Node.js

https://github.com/v8/v8
http://nodejs.org/api/cluster.html
https://devcenter.heroku.com/

Monitoring
As a final thought, don’t ignore monitoring, which is vital to
maintain the stability of your application deployment and to detect
subtle regressions that may result in application slow-down or
outright failure if left unchecked.

An APM solution like AppDynamics provides end-to-end insight
into application behavior and provides specific monitoring
capabilities for the Node.js stack.

To Conclude
Hopefully, this short eBook has provided helpful insight into
a best practice approach to deploying and managing your
Node.js applications. Like containers and microservices,
Node.js best practices continue to evolve, but you’re already
off to a great start and well-placed for success in the rest of
your Node.js journey.

