

D3 Tips and Tricks
Interactive Data Visualization in a Web Browser

Malcolm Maclean

This book is for sale at http://leanpub.com/D3-Tips-and-Tricks

This version was published on 2013-08-15

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have the right book and build
traction once you do.

©2013 Malcolm Maclean

http://leanpub.com/D3-Tips-and-Tricks
http://leanpub.com
http://leanpub.com/manifesto

Contents

Acknowledgements . 1
Make sure you get the most up to date copy of D3 Tips and Tricks 1

What is d3.js? . 2

Introduction . 3

What do you need to get started? . 4
HTML . 4
JavaScript . 4
Cascading Style Sheets (CSS) . 5
Web Servers . 6
PHP . 6
Other Useful Stuff . 7

Text Editor . 7
Getting D3 . 8
Where to get information on d3.js . 9

d3js.org . 9
Google Groups . 9
Stack Overflow . 10
Github . 10
bl.ocks.org . 10
Twitter . 11
Books . 11

Starting with a basic graph . 12
HTML . 15
CSS . 16
D3 JavaScript . 18

Setting up the margins and the graph area. 20
Getting the Data . 21
Formatting the Date / Time. 25
Setting Scales Domains and Ranges . 28
Setting up the Axes . 33
Adding data to the line function . 37
Adding the SVG Canvas. 37
Actually Drawing Something! . 39

Wrap Up . 41

CONTENTS

Things you can do with the basic graph . 42
Adding Axis Labels . 42
How to add a title to your graph . 50
Smoothing out graph lines . 52
Adding grid lines to a graph . 60

The grid line CSS . 60
Define the grid line functions . 61
Draw the lines . 63

Make a dashed line . 65
Filling an area under the graph . 67

CSS for an area fill . 67
Define the area function . 68
Draw the area . 69
Filling an area above the line . 70

Adding a drop shadow to allow text to stand out on graphics. 72
CSS for white shadowy background . 73
Drawing the white shadowy background. 73

Adding more than one line to a graph . 75
Multiple axes for a graph . 79
How to rotate the text labels for the x Axis. 83
Format a date / time axis with specified values . 85
Update data dynamically - On Click . 87

Adding a Button . 87
Updating the data . 89
Changes to the d3.js code layout . 89
What’s happening in the code? . 90

Update data dynamically – Automatically . 95

Assorted Tips and Tricks . 97
Change a line chart into a scatter plot . 97
Adding tooltips. 100

Transitions . 101
Events . 101
Get tipping . 102
on.mouseover . 104
on.mouseout . 104

What are the predefined, named colours? . 106
Selecting / filtering a subset of objects . 107
Select items with an IF statement. 109
Applying a colour gradient to a line based on value. 111
Applying a colour gradient to an area fill. 115
Export an image from a d3.js page as a SVG or bitmap 117

Bitmaps . 117
Vector Graphics (Specifically SVG) . 119
Let’s get exporting! . 120

Copying the image off the web page . 121

CONTENTS

Open the SVG Image and Edit . 121
Saving as a bitmap . 122

Add an HTML table to your graph . 125
HTML Tables . 126
First the CSS . 127
Now the d3.js code . 127
A small but cunning change… . 130
Explaining the d3.js code (reloaded). 130
Wrap up . 132

More table madness: sorting, prettifying and adding columns 133
Add another column of information: . 133
Sorting on a column . 135
Prettifying (actually just capitalising the header for each column) 135
Add borders . 136

Understanding JavaScript Object Notation (JSON) . 139
Using Plunker for development and hosting your D3 creations. 143

Sankey Diagrams . 148
What is a Sankey Diagram? . 148
How d3.js Sankey Diagrams want their data formatted 149
Description of the code . 150
Formatting data for Sankey diagrams . 162

From a JSON file with numeric link values . 162
From a JSON file with links as names . 164
From a CSV with ‘source’, ‘target’ and ‘value’ info only. 166
From MySQL as link information only automatically. 169

Sankey diagram case study . 172

Force Layout Diagrams . 175
What is a Force Layout Diagram? . 175
Force directed graph examples. 179

Basic force directed graph showing directionality 180
Directional Force Layout Diagram (Node Highlighting) 191
Directional Force Layout Diagram (varying link opacity) 194

Bullet Charts . 197
Introduction to bullet chart structure . 197
D3.js code for bullet charts . 198
Adapting and changing bullet chart components . 205

Understand your data . 205
Add as many individual charts as you want. 206
Add more ranges and measures . 206
Updating a bullet chart automatically . 208

Mapping with d3.js . 211
Examples . 211
GeoJSON and TopoJSON . 216

CONTENTS

Starting with a simple map . 217
center . 221
scale . 222
rotate . 223

Zooming and panning a map . 225
Displaying points on a map . 226

Crossfilter, dc.js and d3.js for Data Discovery . 230
Introduction to Crossfilter . 230

Map-reduce . 231
What can crossfilter do? . 232

Introduction to dc.js . 234
Bar Chart . 235
Pie Chart . 235
Row Chart . 236
Line Chart . 236
Bubble Chart . 236
Geo Choropleth Chart . 237
Data Table . 237

Bare bones structure for dc.js and crossfilter page . 239
Add a Bar Chart. 248

Position the bar chart . 248
Assign the bar chart type . 249
Dimension and group the bar chart data . 249
Configure the bar chart parameters . 250
Just one more thing… . 254
Just yet another thing… . 254

Position the chart . 255
Assign type . 255
Dimension and Group . 255
Configure chart parameters . 255

Add a Line Chart. 257
Position the line chart . 257
Assign the line chart type . 258
Dimension and group the line chart data . 258
Configure the line chart parameters . 259

Adding tooltips to a line chart . 262
Add a Row Chart. 265

Position the row chart . 266
Assign the row chart type . 267
Dimension and group the row chart data . 267
Configure the row chart parameters . 268

Add a Pie Chart. 272
Position the pie chart . 273
Assign the pie chart type . 274
Dimension and group the pie chart data . 274

CONTENTS

Configure the pie chart parameters . 275
Resetting filters . 278

Making the reset label a little bit better behaved. 279
Reset all the charts . 281

Using Bootstrap with d3.js . 285
What is Bootstrap? . 285

Layout grid . 286
Interface components . 287

Incorporating Bootstrap into your html code. 288
Arranging more than one graph on a web page. 290

First make a page with two graphs . 290
Arrange the graphs with the same anchor . 292
Arrange the graphs with separate anchors . 293

How does Bootstrap’s grid layout work . 295
Arrange more than one d3.js graph with Bootstrap 296
A more complicated Bootstrap layout example 299

MySQL Tips and Tricks for d3.js . 306
Using a MySQL database as a source of data. 306

PHP is our friend . 306
phpMyAdmin . 306
Create your database . 306
Importing your data into MySQL . 310
Querying the Database . 315
Using php to extract json from MySQL . 317
Getting the data into d3.js . 320

Manipulating Date / Time Ranges . 322
What’s a standard format for a Date / Time value 322
Creating a standard Date / Time from separate columns 322

General MySQL titbits . 324
Group parts of queries (and text) together with CONCAT 324
Working round reserved words in queries . 325
Rounding numbers . 325

Working with GitHub, Gist and bl.ocks.org . 327
General stuff about bl.ocks.org . 327
Installing the plug-in for bl.ocks.org for easy block viewing 328
Loading a thumbnail into Gist for bl.ocks.org d3 graphs 329

Setting the scene: . 329
Enough of the scene setting. Let’s git going :-). 331
Wrap up. 334

Appendix: Simple Line Graph . 336

Appendix: Graph with Many Features . 338

Appendix: Graph with Area Gradient . 342

CONTENTS

Appendix: PHP with MySQL Access . 345

Appendix: Simple Sankey Graph . 346

Appendix: Force Layout Diagram . 349

Appendix: Bullet Chart Code . 354

Appendix: Map with zoom / pan and cities . 357

Acknowledgements
First and foremost I would like to express my thanks to Mike Bostock, the driving force behind
d3.js. His efforts are tireless and his altruism in making his work open and available to the masses
is inspiring.

Mike has worked with a crew of like-minded individuals in bringing D3 to the World. Vadim
Ogievetsky and Jeffrey Heer share honours for the work on D3: Data-Driven Documents¹ and
while there has been a cast of over 40 people contributing to the D3 code base, Jason Davies
stands out as the man who has provided a generous portion especially in the area of mapping.

Nick Zhu has created a fantastic resource in dc.js² (which is built on top of d3.js and crossfilter)
and has been kind enough to provide good advice and permission to include some of his work
in the dc.js section.

Advice given by Christophe Viau has been a great help in getting me settled into the on-line
world and his energy in managing and directing the D3 community is amazing.

Mike Dewar (Getting Started with D3), Scott Murray (Interactive Data Visualization for the Web)
and Sebastian Gutierrez (dashingd3js.com³) lead the pack for providing high quality reference
material for learning D3. Many thanks gentlemen.

I am particularly grateful for the assistance given by Filiep Spyckerelle who selflessly donated
his time and expertise in proofreading above and beyond the call of duty (where this document
contains any errors, they are most certainly mine). Big thanks go out to the D3 community.
Whether providing advice on Google Groups or Stack Overflow, contributing examples on
bl.ocks.org or just giving back in the form of time and effort to similar work. Well done all.

Lastly, I want to pay homage to Leanpub⁴ who have made the publishing of this document
possible. They offer an outstanding service for self-publishing and have made the task of
providing and distributing content achievable.

Make sure you get the most up to date copy of D3
Tips and Tricks

If you’ve received a copy of this book from any location other than Leanpub⁵ then it’s possible
that you haven’t got the latest version. Go to https://leanpub.com/D3-Tips-and-Tricks and
download the most recent version. After all, it won’t cost you anything :-). If you find some
value in the work, please consider contributing 99 cents when you download it so that Leanpub
get something for hosting the book (and I’ll think of you fondly while I have a beer :-D).

¹http://vis.stanford.edu/papers/d3
²https://github.com/NickQiZhu/dc.js/wiki
³http://www.dashingd3js.com/
⁴https://leanpub.com/
⁵https://leanpub.com/D3-Tips-and-Tricks

http://vis.stanford.edu/papers/d3
https://github.com/NickQiZhu/dc.js/wiki
http://www.dashingd3js.com/
https://leanpub.com/
https://leanpub.com/D3-Tips-and-Tricks
http://vis.stanford.edu/papers/d3
https://github.com/NickQiZhu/dc.js/wiki
http://www.dashingd3js.com/
https://leanpub.com/
https://leanpub.com/D3-Tips-and-Tricks

What is d3.js?
d3.js⁶ (hereafter abridged as D3) is “a JavaScript library for manipulating documents based on
data”.

But that description doesn’t do it justice.

D3 is all about helping you to take information and make it more accessible to others via a web
browser.

It’s a JavaScript library. That means that it’s a tool that can be used in conjunction with other
tools to get a job done. Those other tools are mainly HTML and CSS (amongst others) but you
don’t need to know too much about either to use D3 (although it will help :-)).

It’s an open framework, which means that there are no hidden mysteries about how it does it’s
magic and it allows others to contribute to a constant cycle of improvement.

It’s built to leverageweb standards whichmeans that modern browsers don’t have to do anything
special to use D3, they just have to support the framework that the Internet has adopted for ease
of use.

The beauty of D3 is that it allows you to associate data and what appears on the screen in a way
that directly links the two. Change the data and you change the object on the screen. D3’s trick
is to let you set what appears on the screen. A circle, a line, a point on a map, a graph, a bouncing
ball, a gradient (and way, way more). Once the data and the object are linked the possibilities
are endless.

It won‘t do everything for you in your quest to create the perfect visualization, but it does give
you the ability to achieve that goal.

It bridges the gap between the static display of data and the desire of people to mess about with
it. That applies equally to the developer who wants to show something cool and to the end user
who wants to be able to explore information interactively.

It was (and still is being) developed by Mike Bostock⁷ who has not just spent time writing
the code, but writing the documentation⁸ for D3 as well. There is an extensive community of
supporters who also contribute to the code, provide technical support⁹ online¹⁰ and generally
have fun creating amazing visualizations¹¹. Their contribution is extrodinary (you only have to
look at the work of Jason Davies to be amazed).

⁶http://d3js.org/
⁷http://bost.ocks.org/mike/
⁸https://github.com/mbostock/d3/wiki
⁹https://groups.google.com/forum/?fromgroups#!forum/d3-js
¹⁰http://stackoverflow.com/questions/tagged/d3.js
¹¹https://github.com/mbostock/d3/wiki/Gallery

http://d3js.org/
http://bost.ocks.org/mike/
https://github.com/mbostock/d3/wiki
https://groups.google.com/forum/?fromgroups#!forum/d3-js
http://stackoverflow.com/questions/tagged/d3.js
https://github.com/mbostock/d3/wiki/Gallery
http://d3js.org/
http://bost.ocks.org/mike/
https://github.com/mbostock/d3/wiki
https://groups.google.com/forum/?fromgroups#!forum/d3-js
http://stackoverflow.com/questions/tagged/d3.js
https://github.com/mbostock/d3/wiki/Gallery

Introduction
OK, weird sensation…

I never set out to write treatise on D3.

I am a simple user of this extraordinary framework and when I say simple, I really mean I
had no idea how to get it to do anything when I started; I needed to do a lot of searching and
learned by trial-and-error (emphasis on the errors which were entirely mine). The one thing that
I did know was that the example graphics shown by Mike Bostock and others were the sort of
graphical goodness that I wanted to play with.

So to get from the point of having no skills whatsoever to the point where I could begin to code
up something to display data in a way I wanted, I had to capture the information as I went. The
really cool thing about this sort of process is that it doesn’t need to occur all at once. You can
start with no knowledge whatsoever (or pretty close) and by standing on the shoulders of others
good work, you can add building blocks to improve what you’re seeing and then change the
blocks to adapt and improve.

For example (and this is pretty much how it started). I wanted to draw a line graph, so I imported
an example and then got it running locally on my computer. Then I worked out how to change
the example data for my data. Then I worked out how to move the Y axis from the right to the
left. Then how to make the axis labels larger, change the tick size, make the lines fatter, change
the colour, add a label, fill the area under the graph, put the graph in the centre of the page, add a
glow to the text to help it stand out, put it in a framework (bootstrap), add buttons to change data
sets, animate the transitions between data sets, update the data automatically when it changed,
add a pan and zoom feature, turn parts of the graph into hyperlinks to move to other graphs…
And then I started on bar graphs :-).

The point to take away from all of this is that any one graph is just a collection of lots of blocks
of code, each block designed to carry out a specific function. Pick the blocks you want and
implement them.

I found it was much simpler to work on one thing (block) at a time, and this helped greatly to
reduce the uncertainty factor when things didn’t work as anticipated. I’m not going to pretend
that everything I’ve done while trying to build graphs employs the most elegant or efficient
mechanism, but in some cases the return on the investment of the training that would require
me to do things in a particular (perhaps best practices) way wasn’t justified. And in the end, if it
all works on the screen, I walk away happy :-). That’s not to say I have deliberately ignored any
best practices – I just never knew what they were. Likewise, wherever possible, I have tried to
make things as extensible as possible.

You will find that I have typically eschewed a simple “Do this approach” for more of a story
telling exercise. This means that some explanations are longer and more flowery than might be
to everyone’s liking, but there you go, try to be brave :-)

What do you need to get started?
Let’s be frank. My grandmother will never put together a graphic using D3.

However, that doesn’t mean that it’s beyond those with a little computer savy and a willingness
to have a play. Remember failure is your friend (I am fairly sure that I am also related by blood).
Just learn from your mistakes and it’ll all work out.

So, here in no particular order is a list of good things to know. None of which are essential, but
any one (or more) of which will make your life slightly easier.

• HyperText Markup Language (HTML)
• JavaScript
• Cascading Style Sheets (CSS)
• Web Servers
• PHP

DON’T FREAK OUT!
First things first. This isn’t rocket science. It’s just teh interwebs. We’ll take it gently,
and I’ll be a little more specific in the following sections.

HTML

This stands for HyperText Markup Language and is the stuff that web pages are made of. Check
out the definition and other information on Wikipedia¹² for a great overview. Just remember
that all you’re going to use HTML for is to hold the code that you will use to present your
information. This will be as a .html (or .htm) file and they can be pretty simple (we’ll look at
some in a moment).

JavaScript

JavaScript¹³ is what’s called a ‘scripting language’. It is the code that will be contained inside the
HTML file that will make D3 do all its fanciness. In fact, D3 is a JavaScript Library, it’s the native
language for using D3.

¹²http://en.wikipedia.org/wiki/HTML
¹³http://en.wikipedia.org/wiki/JavaScript

http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/JavaScript

What do you need to get started? 5

Knowing a little bit about this would be really good, but to be perfectly honest, I didn’t know
anything about it before I started. I read a book along the way (JavaScript: The Missing Manual¹⁴
from O’Reilly) and that helped with context, but the examples that are available for D3 graphics
are understandable, and with a bit of trial and error, you can figure out what’s going on.

In fact, most of what this collection of information’s about is providing examples and explana-
tions for the JavaScript components of D3.

Cascading Style Sheets (CSS)

Cascading Style Sheets¹⁵ (everyone appears to call them ‘Style Sheets’ or ‘CSS’) is a language
used to describe the formatting (or “look and feel”) of a document written in a markup language.
The job of CSS is to make the presentation of the components you will draw with D3 simpler
by assigning specific styles to specific objects. One of the cool things about CSS is that it is
an enormously flexible and efficient method for making everything on the screen look more
consistent and when you want to change the format of something you can just change the CSS
component and the whole look and feel of your graphics will change.

The wonderful World of Cascading Style Sheets

Full disclosure
I know CSS is a ridiculously powerful tool that would make my life easier, but I use
it in a very basic (and probably painful) way. Don’t judge me, just accept that the
way I’ve learnt was what I needed to get the job done (this probably means that
noob’s like myself will find it easier, but where possible try and use examples that
include what look like logical CSS structures)

¹⁴http://shop.oreilly.com/product/9780596515898.do
¹⁵http://en.wikipedia.org/wiki/Css

http://shop.oreilly.com/product/9780596515898.do
http://en.wikipedia.org/wiki/Css
http://shop.oreilly.com/product/9780596515898.do
http://en.wikipedia.org/wiki/Css

What do you need to get started? 6

Web Servers

Ok, this can go one of two ways. If you have access to a web server and know where to put the
files so that you can access them with your browser, you’re on fire. If you’re not quite sure, read
on…

Aweb server will allow you to access your HTML files and will provide the structure that allows
it to be displayed on a web browser. There are some simple instructions on the main D3 wiki
page¹⁶ for setting up a local server. Or you might have access to a remote one and be able to
upload your files. However, for a little more functionality and a whole lot of ease of use, I can
thoroughly recommend WampServer as a free and simple way to set up a local web server that
includes PHP and a MySQL database (more on those later). Go to the WampServer web page
(http://www.wampserver.com/en/) and see if it suits you.

Throughout this document I will be describing the files and how they’re laid out in a way that
has suited my efforts while using WAMP, but they will work equally well on a remote server. I
will explain a little more about how I arrange the files later in the ‘Getting D3’ section.

WAMP = Windows + Apache + MySQL + PHP

There are other options of course. You could host code on GitHub¹⁷ and present the resulting
graphics on bl.ocks.org¹⁸. This is a great way to make sure that your code is available for peer
review and sharing with the wider community.

One such alternative option that I have recently started playing with is Plunker (http://plnkr.co/)
This is a lightweight collaborative online editing tool. It’s so cool I wrote a special section for
it which you can find later in this document. This is definitely worth trying if you want to use
something simple without a great deal of overhead. If you like what you see, perhaps consider
an alternative that provides a greater degree of capability if you go on to greater d3.js things.

PHP

PHP is a scripting language for the web. That is to say that it is a programming language which
is executed when you load web pages and it helps web pages do dynamic things.

You might think that this sounds familiar and that JavaScript does the same thing. But not quite.

¹⁶https://github.com/mbostock/d3/wiki
¹⁷https://github.com/about
¹⁸http://bl.ocks.org/

https://github.com/mbostock/d3/wiki
https://github.com/mbostock/d3/wiki
https://github.com/about
http://bl.ocks.org/
https://github.com/mbostock/d3/wiki
https://github.com/about
http://bl.ocks.org/

What do you need to get started? 7

JavaScript is designed so that it travels with the web page when it is downloaded by a browser
(the client). However, PHP is executed remotely on the server that supplies the web page. This
might sound a bit redundant, but it’s a big deal. This means that the PHP which is executed
doesn’t form part of the web page, but it can form the web page. The implication here is that the
web page you are viewing can be altered by the PHP code that runs on a remote server. This is
the dynamic aspect of it.

In practice, PHP could be analogous to the glue that binds web pages together. Allowing different
portions of the web page to respond to directions from the end user.

It is widely recognised as both a relatively simple language to learn, but also a fairly powerful
one. At the same time it comes into criticism for being somewhat fragmented and sometimes
contradictory or confusing. But in spite of any perceived shortcomings, it is a very widely used
and implemented language and one for which there is no obvious better option.

Other Useful Stuff

Text Editor

A good text editor for writing up your code will be a real boost. Don’t make the fatal mistake
of using an office word processor or similar. THEY WILL DOOM YOU TO A LIFE OF MISERY.
They add in crazy stuff that you can’t even see and never save the files in a way that can be used
properly.

Preferably, you should get an editor that will provide some assistance in the form of syntax
highlighting which is where the editor knows what language you are writing in (JavaScript for
example) and highlights the text in a way that helps you read it. For example, it will change text
that might appear as this;

// Get the data

d3.tsv("data/data.tsv", function(error, data) {

data.forEach(function(d) {

d.date = parseDate(d.date);

d.close = +d.close;

});

Into something like this;

// Get the data

d3.tsv("data/data.tsv", function(error, data) {

data.forEach(function(d) {

d.date = parseDate(d.date);

d.close = +d.close;

});

What do you need to get started? 8

Infinity easier to use. Trust me.

There are plenty of editors that will do the trick. I have a preference for Geany¹⁹, mainly because
it’s what I started with and it grew on me :-).

Getting D3

Luckily this is pretty easy.

Go to the D3 repository on github²⁰ and download the entire repository by clicking on the ‘ZIP’
button.

Download the repository as a zip file

What you do with it from here depends on how you’re hosting your graphs. If you’re working
on them on your local PC, then you will want to have the d3.js file in the path that can be seen by
the browser. Again, I would recommend WAMP (a local web server) to access your files locally.
If you’re using WAMP, then you just have to make sure that it knows to use a directory that will
contain the d3 directory and you will be away.

The following image is intended to provide a very crude overview of how you can set up the
directories.

A potential directory structure for your files

• webserver: Use this as your ‘base’ directory where you put your files that you create. That
way when you open your browser you point to this directory and it allows you to access
the files like a normal web site.

• d3: this would be your unzipped d3 directory. It contains all the examples and more
importantly the d3.v3.js file that you need to get things going. You will notice in the code
examples that follow there is a line like the following;
<script type="text/javascript" src="d3/d3.v3.js"></script>.

¹⁹http://www.geany.org/
²⁰https://github.com/mbostock/d3

http://www.geany.org/
https://github.com/mbostock/d3
http://www.geany.org/
https://github.com/mbostock/d3

What do you need to get started? 9

This tells your browser that from the file it is running (one of the graph html files) if it
goes into the ‘d3’ folder it will find the d3.v3.js file that it can load.

• data: I use this directory to hold any data files that I would use for processing. For example,
you will see the following line in the code examples that follow d3.tsv("data/data.tsv",

function(error, data) {. Again, that’s telling the browser to go into the ‘data’ directory
and to load the ‘data.tsv’ file.

• js: Often you will find that you will want to include other JavaScript libraries to load. This
is a good place to put them.

Where to get information on d3.js

D3 hasmade huge advances in providing an extensible and practical framework for manipulating
data as web objects. At the same time there has been significant increase in information available
for people to use it. The following is a far from exhaustive list of sources, but from my own
experience it represents a useful subset of knowledge.

d3js.org

d3js.org would be the first port of call for people wanting to know something about d3.js.

From the overview on the main page you can access a dizzying array of examples²¹ that have
been provided by the founder of d3 (Mike Bostock) and a host of additional developers, artists,
coders and anyone who has something to add to the sum knowledge of cool things that can be
done with d3.

There is a link to a documentation page²² that serves as a portal to the ever important API
reference, contributed tutorials and other valuable links (some of which I will mention in
paragraphs ahead).

The last major link is to the Github repository²³ where you can download d3.js itself.

It is difficult to overstate the volume of available information that can be accessed from d3js.org.
It stands alone as the one location that anyone interested in D3 should visit.

Google Groups

There is a Google Group dedicated to discussions on d3.js²⁴.

In theory this forum is for discussions on topics including visualization design, API design,
requesting new features, etc. With a specific direction made in the main header that “If you
want help using D3, please use the d3.js tag on Stack Overflow!”.

In practice however, it would appear that a sizeable proportion of the posts there are technical
assistance requests of one type or another. Having said that this means that if you’re having a
problem, there could already be a solution posted there. However, if at all possible the intention

²¹https://github.com/mbostock/d3/wiki/Gallery
²²https://github.com/mbostock/d3/wiki
²³https://github.com/mbostock/d3
²⁴https://groups.google.com/forum/?fromgroups#!forum/d3-js

https://github.com/mbostock/d3/wiki/Gallery
https://github.com/mbostock/d3/wiki
https://github.com/mbostock/d3
https://groups.google.com/forum/?fromgroups#!forum/d3-js
https://github.com/mbostock/d3/wiki/Gallery
https://github.com/mbostock/d3/wiki
https://github.com/mbostock/d3
https://groups.google.com/forum/?fromgroups#!forum/d3-js

What do you need to get started? 10

is certainly that people use Stack Overflow, so this should be the first port of call for those types
of inquiry.

So, by all means add this group as a favourite and this will provide you with the opportunity to
receive emailed summaries of postings or just an opportunity to easily browse recent goings-on.

Stack Overflow

Stack Overflow is a question and answer site whose stated desire is “to build a library of detailed
answers to every question about programming”. Ambitious. So how are they doing? Actually
really well. Stack overflow is a fantastic place to get help and information. It’s also a great place
to help people out if you have some knowledge on a topic.

They have a funny scheme for rewarding users that encourages providing good answers based
on readers voting. It’s a great example of gamification working well. If you want to know a little
more about how it works, check out this page; http://stackoverflow.com/about.

They have a d3.js tag (http://stackoverflow.com/questions/tagged/d3.js) and like Google Groups
there is a running list of different topics that are an excellent source of information.

Github

Github²⁵ is predominantly a code repository and version control site. It is highly regarded for its
technical acumen and provide a fantastic service that is broadly used for many purposes. Not
the least of which is hosting the code (and the wiki) for d3.js.

Whilst not strictly a site that specialises in providing a Q & A function, there is a significant
number of repositories (825 at last count) which mention d3.js. With the help from an astute
search phrase, there is potentially a solution to be found there.

The other associated feature of Github is Gist. Gist is a pastebin service (a place where you can
copy and past code) that can provide a ‘wiki like’ feature for individual repositories and web
pages that can be edited through a Git repository. Gist plays a role in providing the hub for the
bl.ocks.org example hosting service set up by Mike Bostock.

For a new user, Github / Gist can be slightly daunting. It’s an area where you almost need to
know what’s going on to know before you dive in. This is certainly true if you want to make
use of it’s incredible features that are available for hosting code. However, if you want to browse
other peoples code it’s an easier introduction. Have a look through what’s available and if you
feel so inclined, I recommend that you learn enough to use their service. It’s time well spent.

bl.ocks.org

bl.ocks.org²⁶ is a viewer for code examples which are hosted on Gist. You are able to load your
code into Gist, and then from bl.ocks.org you can view them.

²⁵https://github.com/
²⁶http://bl.ocks.org/

https://github.com/
http://bl.ocks.org/
https://github.com/
http://bl.ocks.org/

What do you need to get started? 11

This is a really great way for people to provide examples of their work and there are many
who do. However, it’s slightly tricky to know what is there. There is a current project²⁷
being championed by Christophe Viau and others to provide better access to a range of D3
documentation. The early indications are that it will provide a fantastic method of accessing
examples and information. Watch that space.

I would describe the process of getting your own code hosted and displaying as something that
will be slightly challenging for people who are not familiar with Github / Gist, but again, in
terms of visibility of the code and providing an external hosing solution, it is excellent and well
worth the time to get to grips with.

Twitter

Twitter provides a great alerting service to inform a large disparate group of people about stuff.

It’s certainly a great way to keep in touch on a hour by hour basis with people who are involved
with d3.js and this can be accomplished in a couple of ways. First, find as meany people from the
various D3 sites around the web who you consider to be influential in areas you want to follow
(different aspects such as development, practical output, educational etc) and follow them. Even
better, I found it useful to find a small subset who I considered to be influential people and I
noted who they followed. It’s a bit ‘stalky’ if you’re unfamiliar with it, but the end result should
be a useful collection of people with something useful to say.

Books

There are only a couple of books that have been released so far on d3.js.

There is “Getting Started with D3²⁸” by Mike Dewar (O’Reilly Media, June 2012). This will
take you through a good set of exercises to develop your D3 skills and is accompanied by
downloadable examples.

There is “Interactive Data Visualization for the Web²⁹” by Scott Murray, (O’Reilly Media,
November 2012). Currently this has only been released as an ebook, but is scheduled to
be released in print form in 2013. The book is based on his great set of on-line tutorials
(http://alignedleft.com/tutorials/).

Of course, there is the original paper that launched D3 “D3: Data-Driven Documents” byMichael
Bostock, Vadim Ogievetsky and Jeffrey Heer (IEEE Trans. Visualization & Comp. Graphics (Proc.
InfoVis), 2011)

²⁷https://groups.google.com/forum/?fromgroups=#!topic/d3-js/g7BxBMUZP8o
²⁸http://shop.oreilly.com/product/0636920025429.do
²⁹http://ofps.oreilly.com/titles/9781449339739/

https://groups.google.com/forum/?fromgroups=#!topic/d3-js/g7BxBMUZP8o
http://shop.oreilly.com/product/0636920025429.do
http://ofps.oreilly.com/titles/9781449339739/
https://groups.google.com/forum/?fromgroups=#!topic/d3-js/g7BxBMUZP8o
http://shop.oreilly.com/product/0636920025429.do
http://ofps.oreilly.com/titles/9781449339739/

Starting with a basic graph
I’ll start by providing the full code for a simple graph and then we can go through it piece by
piece (The full code for this example is also in the appendicies as ‘Simple Graph’.).

Here’s what the basic graph looks like;

Basic Graph

And here’s the code that makes it happen;

<!DOCTYPE html>

<meta charset="utf-8">

<style>

body { font: 12px Arial;}

path {

stroke: steelblue;

stroke-width: 2;

fill: none;

}

.axis path,

.axis line {

fill: none;

stroke: grey;

stroke-width: 1;

shape-rendering: crispEdges;

}

Starting with a basic graph 13

</style>

<body>

<script type="text/javascript" src="d3/d3.v3.js"></script>

<script>

var margin = {top: 30, right: 20, bottom: 30, left: 50},

width = 600 - margin.left - margin.right,

height = 270 - margin.top - margin.bottom;

var parseDate = d3.time.format("%d-%b-%y").parse;

var x = d3.time.scale().range([0, width]);

var y = d3.scale.linear().range([height, 0]);

var xAxis = d3.svg.axis().scale(x)

.orient("bottom").ticks(5);

var yAxis = d3.svg.axis().scale(y)

.orient("left").ticks(5);

var valueline = d3.svg.line()

.x(function(d) { return x(d.date); })

.y(function(d) { return y(d.close); });

var svg = d3.select("body")

.append("svg")

.attr("width", width + margin.left + margin.right)

.attr("height", height + margin.top + margin.bottom)

.append("g")

.attr("transform", "translate(" + margin.left + "," + margin.top + ")"\

);

// Get the data

d3.tsv("data/data.tsv", function(error, data) {

data.forEach(function(d) {

d.date = parseDate(d.date);

d.close = +d.close;

});

// Scale the range of the data

x.domain(d3.extent(data, function(d) { return d.date; }));

y.domain([0, d3.max(data, function(d) { return d.close; })]);

svg.append("path") // Add the valueline path.

Starting with a basic graph 14

.attr("d", valueline(data));

svg.append("g") // Add the X Axis

.attr("class", "x axis")

.attr("transform", "translate(0," + height + ")")

.call(xAxis);

svg.append("g") // Add the Y Axis

.attr("class", "y axis")

.call(yAxis);

});

</script>

</body>

Once we’ve finished explaining these parts, we’ll start looking at what we need to add in and
adjust so that we can incorporate other useful functions that are completely reusable in other
diagrams as well.

The end point being something hideous like the following;

Graph with lots of ‘tricks’ incorperated

I say hideous since the graph is not intended to win any beauty prizes, but there are several
components to it which some people may find useful (gridlines, area fill, axis label, drop shadow
for text, title, text formatting).

So, we can break the file down into component parts. I’m going to play kind of fast and loose
here, but never fear, it’ll all make sense.

Starting with a basic graph 15

HTML

Here’s the HTML portions of the code;

<!DOCTYPE html>

<meta charset="utf-8">

<style>

The CSS is in here

</style>

<body>

<script type="text/javascript" src="d3/d3.v3.js"></script>

<script>

The D3 JavaScript code is here

</script>

</body>

Compare it with the full code. It kind of looks like a wrapping for the CSS and JavaScript. You
can see that it really doesn’t boil down to much at all (that doesn’t mean it’s not important).

There are plenty of good options for adding additional HTML stuff into this very basic part for
the file, but for what we’re going to be doing, we really don’t need to bother too much.

One thing probably worth mentioning is the line;

<script type="text/javascript" src="d3/d3.v3.js"></script>

That’s the line that identifies the file that needs to be loaded to get D3 up and running. In this
case the file is stored in a folder called d3 which itself is in the same directory as the main html
file. The D3 file is actually called d3.v3.js which may come as a bit of a surprise. That tells us
that this is version 3 of the d3.js file (the .v3. part) which is an indication that it is separate from
the v2 release, which has recently been superseded.

Later when doing things like implementing integration with bootstrap (a pretty layout frame-
work) we will be doing a great deal more, but for now, that’s the basics done.

The two parts that we left out are the CSS and the D3 JavaScript.

Starting with a basic graph 16

CSS

The CSS is as follows;

body { font: 12px Arial;}

path {

stroke: steelblue;

stroke-width: 2;

fill: none;

}

.axis path,

.axis line {

fill: none;

stroke: grey;

stroke-width: 1;

shape-rendering: crispEdges;

}

So Cascading Style Sheets give you control over the look / feel / presentation of the content. The
idea is to define a set of properties to objects in the web page.

They are made up of ‘rules’. Each rule has a ‘selector’ and a ‘declaration’ and each declaration
has a property and a value (or a group of properties and values).

For instance in the example code for this web page we have the following rule;

body { font: 12px Arial;}

body is the selector. This tells you that on the web page, this rule will apply to the ‘body’ of the
page. This actually applies to all the portions of the web page that are contained in the ‘body’
portion of the HTML code (everything between <body> and </body> in the HTML bit). { font:

12px Arial;} is the selector portion of the rule. It only has the one declaration which is the bit
that is in between the curly braces. So font: 12px Arial; is the declaration. The property is
font: and the value is 12px Arial;. This tells the web page that the font that appears in the
body of the web page will be in 12 px Arial.

Sure enough if we look at the axes of the graph…

x Axis with 12px Arial

We see that the font might actually be 12px Arial!

Let’s try a test. I will change the Rule to the following;

Starting with a basic graph 17

body { font: 16px Arial;}

and the result is…

x Axis with 16px Arial

Ahh…. 16px of goodness!

And now we change it to…

body { font: 16px times;}

and we get…

x Axis with Times font

Hmm… Times font…. I think we can safely say that this has had the desired effect.

So what else is there?

What about the bit that’s like;

path {

stroke: steelblue;

stroke-width: 2;

fill: none;

}

Well, the whole thing is one rule, ‘path’ is the selector. In this case, ‘path’ is referring to a line in
the D3 drawing nomenclature.

For that selector there are three declarations. They give values for the properties of ‘stroke’ (in
this case colour), ‘stroke-width’ (the width of the line) and ‘fill’ (we can fill a path with a block
of colour).

So let’s change things :-)

path {

stroke: red;

stroke-width: 5;

fill: yes;

}

Starting with a basic graph 18

Filling of a path

Wow! The line is now red, it looks about 5 pixels wide and it’s tried to fill the area (roughly
defined by the curve) with a black colour.

It ain’t pretty, but it certainly did change. In fact if we go;

fill: blue;

We’ll get…

Filling of a path with added blue!

So the ‘fill’ property looks pretty flexible. And so does CSS.

D3 JavaScript

The D3 JavaScript part of the code is as follows;

Starting with a basic graph 19

var margin = {top: 30, right: 20, bottom: 30, left: 50},

width = 600 - margin.left - margin.right,

height = 270 - margin.top - margin.bottom;

var parseDate = d3.time.format("%d-%b-%y").parse;

var x = d3.time.scale().range([0, width]);

var y = d3.scale.linear().range([height, 0]);

var xAxis = d3.svg.axis().scale(x)

.orient("bottom").ticks(5);

var yAxis = d3.svg.axis().scale(y)

.orient("left").ticks(5);

var valueline = d3.svg.line()

.x(function(d) { return x(d.date); })

.y(function(d) { return y(d.close); });

var svg = d3.select("body")

.append("svg")

.attr("width", width + margin.left + margin.right)

.attr("height", height + margin.top + margin.bottom)

.append("g")

.attr("transform", "translate(" + margin.left + "," + margin.top + ")"\

);

// Get the data

d3.tsv("data/data.tsv", function(error, data) {

data.forEach(function(d) {

d.date = parseDate(d.date);

d.close = +d.close;

});

// Scale the range of the data

x.domain(d3.extent(data, function(d) { return d.date; }));

y.domain([0, d3.max(data, function(d) { return d.close; })]);

svg.append("path") // Add the valueline path.

.attr("class", "line")

.attr("d", valueline(data));

svg.append("g") // Add the X Axis

.attr("class", "x axis")

.attr("transform", "translate(0," + height + ")")

.call(xAxis);

Starting with a basic graph 20

svg.append("g") // Add the Y Axis

.attr("class", "y axis")

.call(yAxis);

});

Again there’s quite a bit of detail in the code, but it’s not so long that you can’t work out what’s
doing what.

Let’s examine the blocks bit by bit to get a feel for it.

Setting up the margins and the graph area.

The part of the code responsible for defining the canvas (or the area where the graph and
associated bits and pieces is placed) is this part.

var margin = {top: 30, right: 20, bottom: 30, left: 50},

width = 600 - margin.left - margin.right,

height = 270 - margin.top - margin.bottom;

This is really (really) well explained on Mike Bostock’s page on margin conventions here
http://bl.ocks.org/3019563³⁰, but at the risk of confusing you here’s my crude take on it.

The first line defines the four margins which surround the block where the graph (as an object)
is positioned.

var margin = {top: 30, right: 20, bottom: 30, left: 50},

So there will be a border of 30 pixels at the top, 20 at the right and 30 and 50 at the bottom and
left respectively. Now the cool thing about how these are set up is that they use an array to define
everything. That means if you want to do calculations in the JavaScript later, you don’t need to
put the numbers in, you just use the variable that has been set up. In this case margin.right = 20!

So when we go to the next line;

width = 600 - margin.left - margin.right,

the width of the inner block of the canvas where the graph will be drawn is 600 pixels –
margin.left – margin.right or 600-50-20 or 530 pixels wide. Of course now you have another
variable ‘width’ that we can use later in the code.

Obviously the same treatment is given to height.

Another cool thing about all of this is that just because you appear to have defined separate
areas for the graph and the margins, the whole area in there is available for use. It just makes
it really useful to have areas designated for the axis labels and graph labels without having to
juggle them and the graph proper at the same time.

So, let’s have a play and change some values.

³⁰http://bl.ocks.org/3019563

http://bl.ocks.org/3019563
http://bl.ocks.org/3019563

Starting with a basic graph 21

var margin = {top: 80, right: 20, bottom: 80, left: 50},

width = 400 - margin.left - margin.right,

height = 270 - margin.top – margin.bottom;

The effect of changing the margins

Here we’ve made the graph narrower (400 pixels) but retained the left / right margins and
increased the top bottom margins while maintaining the overall height of the canvas. The really
cool thing that you can tell from this is that while we shrank the dimensions of the area that we
had to draw the graph in, it was still able to dynamically adapt the axes and line to fit properly.
That is the really cool part of this whole business. D3 is running in the background looking after
the drawing of the objects, while you get to concentrate on how the data looks without too much
maths!

Getting the Data

We’re going to jump forward a little bit here to the bit of the JavaScript code that loads the data
for the graph.

I’m going to go out of the sequence of the code here, because if you know what the data is that
you’re using, it will make explaining some of the other functions that are coming up much easier.

The section that grabs the data is this bit.

d3.tsv("data/data.tsv", function(error, data) {

data.forEach(function(d) {

d.date = parseDate(d.date);

d.close = +d.close;

});

In fact it’s a combination of a few bits and another piece that isn’t shown!, But let’s take it one
step at a time :-)

There’s lots of different ways that we can get data into our web page to turn into graphics. And
the method that you’ll want to use will probably depend more on the format that the data is in
than the mechanism you want to use for importing.

For instance, if it’s only a few points of data we could include the information directly in the
JavaScript.

That would make it look something like;

Starting with a basic graph 22

var data = [

{date:"1-May-12",close:"58.13"},

{date:"30-Apr-12",close:"53.98"},

{date:"27-Apr-12",close:"67.00"},

{date:"26-Apr-12",close:"89.70"},

{date:"25-Apr-12",close:"99.00"}

];

The format of the data shown above is called JSON (JavaScript Object Notation) and it’s a great
way to include data since it’s easy for humans to read what’s in there and it’s easy for computers
to parse the data out. For a brief overview of JSON there is a separate section in the “Assorted
Tips and Tricks Chapter” that may assist.

But if you’ve got a fair bit of data or if the data you want to include is dynamic and could be
changing from one moment to the next, you’ll want to load it from an external source. That’s
when we call on D3’s ‘Request’ functions.

Request Functions

A ‘Request’ is a function that instructs the browser to reach out and grab some
data from somewhere. It could be stored locally (on the web server) or somewhere
out in the Internet. There are different types of requests depending on the type of
data you want to ingest. Each type of data is formatted with different rules, so the
different requests interpret those rules to make sure that the data is returned to
the D3 processing in a format that it understands. You could therefore think of the
different ‘Requests’ as translators and the different data formats as being foreign
languages.

The different types of data that can be requested by D3 are;

• text: A plain old piece of text that has options to be encoded in a particular way (see the
D3 API³¹).

• json: This is the afore mentioned JavaScript Object Notation.
• xml: Extensible Markup Language is a language that is widely used for encoding docu-
ments in a human readable forrm.

• html: HyperText Markup Language is the language used for displaying web pages.
• csv: Comma Separated Values is a widely used format for storing data where plain text
information is separated by (wait for it) commas.

• tsv: Tab Separated Values is a widely used format for storing data where plain text
information is separated by a tab-stop character.

³¹https://github.com/mbostock/d3/wiki/Requests

https://github.com/mbostock/d3/wiki/Requests
https://github.com/mbostock/d3/wiki/Requests

Starting with a basic graph 23

Details on these ingestion methods and the formats for the requests are well explained on the
D3 Wiki³² page. In this particular script we will look at the tsv request method.

Now, it’s important to note that this is not an exclusive list of what can be ingested.
If you’ve got some funky data in a weird format, you can still get it in, but you will
most likely need to stand up a small amount of code somewhere else in your page
to do the conversion (we will look at this process when describing getting data from
a MySQL database).

Back to our request…

d3.tsv("data/data.tsv", function(error, data) {

data.forEach(function(d) {

d.date = parseDate(d.date);

d.close = +d.close;

});

The first line of that piece of code invokes the d3.tsv request (d3.tsv) and then the function is
pointed to the data file that should be loaded (data/data.tsv). This is referred to as the ‘url’
(unique resource locator) of the file. In this case the file is stored locally, but the url could just as
easily point to a file somewhere on the Internet.

The format of the data in the data.tsv file looks a bit like this;

date close

1-May-12 58.13

30-Apr-12 53.98

27-Apr-12 67.00

26-Apr-12 89.70

25-Apr-12 99.00

(although the file is longer (about 26 data points)). The ‘date’ and the ‘close’ heading labels are
separated by a tab as are each subsequent dates and numbers. Hence the ‘tab separated values’
:-).

The next part is part of the coolness of JavaScript. With the request made and the file requested,
the script is told to carry out a function on the data (which will now be called ‘data’).

function(error, data) {

There are actually more things that get acted on as part of the function call, but the one we will
consider here is contained in the following lines;

³²https://github.com/mbostock/d3/wiki/Requests

https://github.com/mbostock/d3/wiki/Requests
https://github.com/mbostock/d3/wiki/Requests

Starting with a basic graph 24

data.forEach(function(d) {

d.date = parseDate(d.date);

d.close = +d.close;

});

This block of code simply ensures that all the numeric values that are pulled out of the tsv file
are set and formatted correctly. The first line sets the data variable that is being dealt with (called
slightly confusingly ‘data’) and tells the block of code that, for each group within the ‘data’ array
it should carry out a function on it. That function is designated ‘d’.

data.forEach(function(d) {

The information in the array can be considered as being stored in rows. Each row consists of
two values: one value for ‘date’ and another value for ‘close’.

The function is pulling out values of ‘date’ and ‘close’ one row at a time.

Each time it gets a value of ‘data’ and ‘close’ it carries out the following operations;

d.date = parseDate(d.date);

For this specific value of date being looked at (d.date), d3.js changes it into a date format that is
processed via a separate function ‘parseDate’. (The ‘parseDate’ function is defined in a separate
part of the script, and we will examine that later.) For the moment, be satisfied that it takes the
raw date information from the tsv file in a specific row and converts it into a format that D3 can
then process. That value is then re-saved in the same variable space.

The next line then sets the ‘close’ variable to a numeric value (if it isn’t already) using the ‘+’
operator.

d.close = +d.close;

This appears to be good practice when the format of the number being pulled out
of the data may not mean that it is automagically recognised as a number. This line
will ensure that it is.

So, at the end of that section of code, we have gone out and picked up a file with data in it of a
particular type (tab separated values) and ensured that it is formatted in a way that the rest of
the script can use it correctly.

Now, the astute amongst you will have noticed that in the first line of that block of code
(d3.tsv("data/data.tsv", function(error, data) {) we opened a normal bracket (() and
a curly bracket ({), but we never closed them. That’s because they stay open until the very end
of the file. That means that all those blocks that occur after the d3.tsv bit are referenced to the
‘data’ array. Or put another way, it uses ‘data’ to draw stuff!

But anyway, let’s get back to figuring what the code is doing by jumping back to the end of the
margins block.

Starting with a basic graph 25

Formatting the Date / Time.

One of the glorious things about the World is that we all do things a bit differently. One of those
things is how we refer to dates and time³³.

In my neck of the woods, it’s customary to write the date as day - month – year. E.g 23-12-2012.
But in the United States the more common format would be 12-23-2012. Likewise, the data may
be in formats that name the months or weekdays (E.g. January, Tuesday) or combine dates and
time together (E.g. 2012-12-23 15:45:32). So, if we were to attempt to try to load in some data and
to try and get D3 to recognise it as date / time information, we really need to tell it what format
the date / time is in.

Does Time Matter?
You might be asking yourself “What’s the point?” All you want to do is give it a
number and it can sort it out somehow. Well, that is true, but if you want to really
bring out the best in your data and to keep maximum flexibility in representing it
on the screen, you will want to D3 to play to it’s strengths. And one of those is being
able to adjust dynamically with variable time values.

Time for a little demonstration.

We will change our data.tsv file so that it only includes two points. The first one and the last one
with a separation of a month and a bit.

date close

1-May-12 58.13

26-Mar-12 606.98

The graph now looks like this;

Simple line graph

Nothing too surprising here, a very simple graph (note the time scale on the x axis).

Now we will change the later date in the data.tsv file so that it is a lot closer to the starting date;

³³http://en.wikipedia.org/wiki/Date_format_by_country

http://en.wikipedia.org/wiki/Date_format_by_country
http://en.wikipedia.org/wiki/Date_format_by_country

Starting with a basic graph 26

date close

29-Mar-12 58.13

26-Mar-12 606.98

So, just a three day difference. Let’s see what happens.

Simple line graph over three days

Ahh…. Not only did we not have to make any changes to our JavaScript code, but it was able
to recognise the dates were closer and filled in the intervening gaps with appropriate time / day
values. Now, one more time for giggles.

This time we’ll stretch the interval out by a few years.

date close

29-Mar-21 58.13

26-Mar-12 606.98

and the result is…

Simple line graph over several years

Hopefully that’s enough encouragement to impress upon you that formatting the time is a
REALLY good thing to get right. Trust me, it will never fail to impress :-).

Back to formatting.

The line in the JavaScript that parses the time is the following;

Starting with a basic graph 27

var parseDate = d3.time.format("%d-%b-%y").parse;

This line is used when the data.forEach(function(d) portion of the code (that we looked at a
couple of pages back) used d.date = parseDate(d.date) as a way to take a date in a specific
format and to get it recognised by D3. In effect it said “take this value that is supposedly a date
and make it into a value I can work with”.

The function used is the d3.time.format(specifier) function where the specifier in this case
is the mysterious combination of characters %d-%b-%y. The good news is that these are just a
combination of directives specific for the type of date we are presenting.

The % signs are used as prefixes to each separate format type and the ‘-’ (minus) signs are literals
for the actual ‘-’ (minus) signs that appear in the date to be parsed.

The d refers to a zero-padded day of the month as a decimal number [01,31].

The b refers to an abbreviated month name.

And the y refers to the year with century as a decimal number.

If we look at a subset of the data from the data.tsv file we see that indeed, the dates therein are
formatted in this way.

1-May-12 58.13

30-Apr-12 53.98

27-Apr-12 67.00

26-Apr-12 89.70

25-Apr-12 99.00

That’s all well and good, but what if your data isn’t formatted exactly like that?

Good news. There are multiple different formatters for different ways of telling time and you get
to pick and choose which one you want. Check out the Time Formatting page on the D3Wiki for
a the authoritative list and some great detail, but the following is the list of currently available
formatters (from the d3 wiki);

• %a - abbreviated weekday name.
• %A - full weekday name.
• %b - abbreviated month name.
• %B - full month name.
• %c - date and time, as “%a %b %e %H:%M:%S %Y”.
• %d - zero-padded day of the month as a decimal number [01,31].
• %e - space-padded day of the month as a decimal number [1,31].
• %H - hour (24-hour clock) as a decimal number [00,23].
• %I - hour (12-hour clock) as a decimal number [01,12].
• %j - day of the year as a decimal number [001,366].
• %m - month as a decimal number [01,12].
• %M - minute as a decimal number [00,59].

Starting with a basic graph 28

• %p - either AM or PM.
• %S - second as a decimal number [00,61].
• %U - week number of the year (Sunday as the first day of the week) as a decimal number
[00,53].

• %w - weekday as a decimal number [0(Sunday),6].
• %W - week number of the year (Monday as the first day of the week) as a decimal number
[00,53].

• %x - date, as “%m/%d/%y”.
• %X - time, as “%H:%M:%S”.
• %y - year without century as a decimal number [00,99].
• %Y - year with century as a decimal number.
• %Z - time zone offset, such as “-0700”.
• There is also a a literal “%” character that can be presented by using double % signs.

As an example, if you wanted to input date / time formatted as a generic MySQL ‘YYYY-MM-DD
HH:MM:SS’ TIMESTAMP format the D3 parse script would look like;

parseDate = d3.time.format("%Y-%m-%d %H:%M:%S").parse;

Setting Scales Domains and Ranges

This is another example where if you set it up right, D3 will look after you forever.

Scales, Ranges and the Ah Ha!” moment.

The “Ah Ha!” moment for me in understanding ranges and scales was after reading
Jerome Cukier’s great page on ‘d3:scales and color³⁴’. I thoroughly recommend you
read it (and plenty more of the great work by Jerome) as he really does nail the
description in my humble opinion. I will put my own description down here, but if
it doesn’t seem clear, head on over to Jerome’s page.

From our basic web page we have now moved to the section that includes the following lines;

var x = d3.time.scale().range([0, width]);

var y = d3.scale.linear().range([height, 0]);

The purpose of these portions of the script is to ensure that the data we ingest fits onto our
graph correctly. Since we have two different types of data (date/time and numeric values) they
need to be treated separately (but they do essentially the same job). To examine this whole
concept of scales, domains and ranges properly, we will also move slightly out of sequence and
(in conjunction with the earlier scale statements) take a look at the lines of script that occur later
and set the domain. They are as follows;

³⁴http://www.jeromecukier.net/blog/2011/08/11/d3-scales-and-color/

http://www.jeromecukier.net/blog/2011/08/11/d3-scales-and-color/
http://www.jeromecukier.net/blog/2011/08/11/d3-scales-and-color/

Starting with a basic graph 29

x.domain(d3.extent(data, function(d) { return d.date; }));

y.domain([0, d3.max(data, function(d) { return d.close; })]);

The idea of scaling is to take the values of data that we have and to fit them into the space we
have available.

If we have data that goes from 53.98 to 636.23 (as the data we have for ‘close’ in our tsv file does),
but we have a graph that is 210 pixels high (height = 270 - margin.top – margin.bottom;) we
clearly need to make an adjustment.

Not only that. Even though our data goes from 53.98 to 636.23, that would look slightlymisleading
on the graph and it should really go from 0 to a bit over 636.23. It sound’s really complicated,
but let’s simple it up a bit.

First we make sure that any quantity we specify on the x axis fits onto our graph.

var x = d3.time.scale().range([0, width]);

Here we set our variable that will tell D3 where to draw something on the x axis. By using the
d3.time.scale() function we make sure that D3 knows to treat the values as date / time entities
(with all their ingrained peculiarities). Then we specify the range that those values will cover
(.range) and we specify the range as being from 0 to the width of our graphing area (See! Setting
those variables for margins and widths are starting to pay off now!).

Then we do the same for the Y axis.

var y = d3.scale.linear().range([height, 0]);

There’s a different function call (d3.scale.linear()) but the .range setting is still there. In the
interests of drawing a (semi) pretty picture to try and explain, hopefully this will assist;

Scaling the data to the graph size

Starting with a basic graph 30

I know, I know, it’s a little misleading because nowhere have we atually said to D3 this is our
data from 53.98 to 636.23. All we’ve said is when we get the data, we’ll be scaling it into this
space.

Now hang on, what’s going on with the [height, 0] part in y axis scale statement? The astute
amongst you will note that for the time scale we set the range as [0, width] but for this one
([height, 0]) the values look backwards.

Well spotted.

This is all to do with how the screen is laid out and referenced. Take a look at the following
diagram showing how the coordinates for drawing on your screen work;

Coordinates that the browser expects

The top left hand of the screen is the origin or 0,0 point and as we go left or down the
corresponding x and y values increase to the full values defined by height and width.

That’s good enough for the time values on the x axis that will start at lower values and increase,
but for the values on the y axis we’re trying to go against the flow. We want the low values to
be at the bottom and the high values to be at the top.

No problem. We just tell D3 via the statement y = d3.scale.linear().range([height, 0]);

that the larger values (height) are at the low end of the screen (at the top) and the low values
are at the bottom (as you most probably will have guessed by this stage, the .range statement
uses the format .range([closer_to_the_origin, further_from_the_origin]). So when we
put the height variable first, that is now associated at the top of the screen.

Coordinates with adjusted ranges

We’ve scaled our data to the graph size and ensured that the range of values is set appropriately.
What’s with the domain part that was in this section’s title?

Starting with a basic graph 31

Come on, you remember this little piece of script don’t you?

x.domain(d3.extent(data, function(d) { return d.date; }));

y.domain([0, d3.max(data, function(d) { return d.close; })]);

While it exists in a separate part of the file from the scale / range part, it is certainly linked.

That’s because there’s something missing from what we have been describing so far with the set
up of the data ranges for the graphs. We haven’t actually told D3 what the range of the data is.
That’s also the reason this part of the script occurs where it does. It is within the portion where
the data.tsv file has been loaded as ‘data’ and it’s therefore ready to use it.

So, the .domain function is designed to let D3 know what the scope of the data will be this is
what is then passed to the scale function.

Looking at the first part that is setting up the x axis values, it is saying that the domain for the x
axis values will be determined by the d3.extent function which in turn is acting on a separate
function which looks through all the ‘date’ values that occur in the ‘data’ array. In this case the
.extent function returns the minimum and maximum value in the given array.

• function(d) { return d.date; } returns all the ‘date’ values in ‘data’. This is then passed
to…

• The .extent function that finds the maximum and minimum values in the array and
then…

• The .domain function which returns those maximum and minimum values to D3 as the
range for the x axis.

Pretty neat really. At first you might think it was overly complex, but breaking the function
down into these components, allows additional functionality with differing scales, values and
quantities. In short, don’t sweat it. It’s a good thing.

The x axis values are dates; so the domain for them is basically from the 26th of March 2012 till
1st of May 2012. The y axis is done slightly differently

y.domain([0, d3.max(data, function(d) { return d.close; })]);

Because the range of values desired on the y axis goes from 0 to the maximum in the data range,
that’s exactly what we tell D3. The ‘0’ in the .domain function is the starting point and the
finishing point is found by employing a separate function that sorts through all the ‘close’ values
in the ‘data’ array and returns the largest one. Therefore the domain is from 0 to 636.23.

Let’s try a small experiment. Let’s change the y axis domain to use the .extent function (the same
way the x axis does) to see what it produces.

The JavaScript for the y domain will be;

Starting with a basic graph 32

y.domain(d3.extent(data, function(d) { return d.close; }));

You can see apart from a quick copy paste of the internals, all I had to change was the reference
to ‘close’ rather than ‘date’.

And the result is…

Graph using .extent for data values

Look at that! The starting point for the y axis looks like it’s pretty much on the 53.98 mark and
the graph itself certainly touches the x axis where the data would indicate it should.

Now, I’m not really advocating making a graph like this since I think it looks a bit nasty (and a
casual observer might be fooled into thinking that the x axis was at 0). However, this would be a
useful thing to do if the data was concentrated in a narrow range of values that are quite distant
from zero.

For instance, if I change the data.tsv file so that the values are represented like the following;

Concentrated data range graph

Then it kind of looses the ability to distinguish between values around the median of the data.

But, if I put in our magic .extent function for the y axis and redraw the graph…

Starting with a basic graph 33

Expanded concentrated data range using .extent

How about that?

The same data as the previous graph, but with one simple piece of the script changed and D3
takes care of the details.

Setting up the Axes

Now we come to our next piece of code;

var xAxis = d3.svg.axis().scale(x)

.orient("bottom").ticks(5);

var yAxis = d3.svg.axis().scale(y)

.orient("left").ticks(5);

I’ve included both the x and y axes because they carry out the formatting in very similar ways.
It’s worth noting that this is not the point where the axes get drawn. That occurs later in the
piece where the data.tsv file has been loaded as ‘data’.

D3 has it’s own axis component that aims to take the fuss out of setting up and displaying the
axes. So it includes a number of configurable options.

Looking first at the x axis;

var xAxis = d3.svg.axis().scale(x)

.orient("bottom").ticks(5);

The axis function is called with d3.svg.axis(). Then the scale is set using the x values that we
setup in the scales, ranges and domains section using .scale(x). Then a curious thing happens,
we tell the graph to orientate itself to the bottom of the graph .orient("bottom"). If I tell you
that “bottom” is the default setting, then you could be forgiven for thinking that technically, we
don’t need to specify this since it will go there anyway, but it does give us an opportunity to
change it to "top" to see what happens;

Starting with a basic graph 34

x axis orientated to top

Well, I hope you didn’t see that coming, because I didn’t. It transpires that what we’re talking
about there is the orientation of the values and ticks about the axis line itself. Ahh… Ok. Useful
if your x axis is at the top of your graph, but for this one? Not so useful.

The next part (.ticks(5)) sets the number of ticks on the axis. Hopefully you just did a quick
count across the bottom of the previous graph and went “Yep, five ticks. Spot on”. Well done if
you did, but there’s a little bit of a sneaky trick up D3’s sleeve with the number of ticks on a
graph axis.

For instance, here’s what the graph looks like when the .ticks(5) value is changed to .ticks(4).

Five ticks on the x axis

Eh? Hang on. Isn’t that some kind of mistake? There are still five ticks. Yep, sure is! But wait…
we can keep dropping the ticks value till we get to two and it will still be the same. At .ticks(2)
though, we finally see a change.

Two ticks on the x axis

Starting with a basic graph 35

How about that? At first glance that just doesn’t seem right, then you have a bit of a think about
it and you go “Hmm… When there were 5 ticks, they were separated by a week each, and that
stayed that way till we got to a point where it could show a separation of a month.”.

D3 is making a command decision for you as to how your ticks should be best displayed. This is
great for simple graphs and indeed for the vast majority of graphs. Like all things related to D3,
if you really need to do something bespoke, it will let you if you understand enough code.

The following is the list³⁵ of time intervals that D3 will consider when setting automatic ticks on
a time based axis;

• 1-, 5-, 15and 30-second.
• 1-, 5-, 15and 30-minute.
• 1-, 3-, 6and 12-hour.
• 1 and 2-day.
• 1-week.
• 1 and 3-month.
• 1-year.

Just for giggles have a think about what value of ticks you will need to increase to until you get
D3 to show more than five ticks.

Hopefully you won’t sneak a glance at the following graph before you come up with the right
answer.

Ten ticks on the x axis

Yikes! The answer is 10! And then when it does, the number of ticks is so great that they jumble
all over each other. Not looking to good there. However, you could rotate the text (or perhaps
slant it) and it could still fit in (that must be the topic of a future how-to). You could also make the
graph longer if you wanted, but of course that is probably going to create other layout problems.
Try to think about your data and presentation as a single entity.

The code that formats the y axis is pretty similar;

³⁵https://github.com/mbostock/d3/wiki/Time-Scales

https://github.com/mbostock/d3/wiki/Time-Scales
https://github.com/mbostock/d3/wiki/Time-Scales

Starting with a basic graph 36

var yAxis = d3.svg.axis().scale(y)

.orient("left").ticks(5);

We can change the orientation to "right" if we want, but it won’t be winning any beauty prizes.

y axis right orientated

Nope. Not a pretty sight.

What about the number of ticks? Well this scale is quite different to the x axis. Formatting the
dates using logical separators (weeks, months) was tricky, but with standard numbers, it should
be a little easier. In fact, there’s a fair chance that you’ve already had a look at the y axis and
seen that there are 6 ticks there when the script is asking for 5 :-)

We can lower the tick number to 4 and we get a logical result.

Three ticks on the y axis

We need to raise the count to 10 before we get more than 6.

Starting with a basic graph 37

Ten ticks on the y axis

Adding data to the line function

We’re getting towards the end of our journey through the script now. The next step is to get
the information from the array ‘data’ and to place it in a new array that consists of a set of
coordinates that we are going to plot.

var valueline = d3.svg.line()

.x(function(d) { return x(d.date); })

.y(function(d) { return y(d.close); });

I’m aware that the statement above may be somewhat ambiguous. You would be justified in
thinking that we already had the data stored and ready to go. But that’s not strictly correct.

What we have is data in a raw format, we have added pieces of code that will allow the data to
be adjusted for scale and range to fit in the area that we want to draw, but we haven’t actually
taken our raw data and adjusted it for our desired coordinates. That’s what the code above does.

The main function that gets used here is the d3.svg.line() function³⁶. This function uses
assessor functions to store the appropriate information in the right area and in the case above
they use the x and y assessors (that would be the bits that are .x and .y). The d3.svg.line()

function is called a ‘path generator’ and this is an indication that it can carry our some pretty
clever things on its own accord. But in essence its job is to assign a set of coordinates in a form
that can be used to draw a line.

Each time this line function is called on, it will go through the data will assign coordinates to
‘date’ and ‘close’ pairs using the ‘x’ and ‘y’ functions that we set up earlier (which of course are
responsible for scaling and setting the correct range / domain).

Of course, it doesn’t get the data all by itself, we still need to actually call the valueline function
with ‘data’ as the source to act on. But never fear, that’s coming up soon.

Adding the SVG Canvas.

As the title states, the next piece of script forms and adds the canvas that D3 will then use to
draw on.

³⁶https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-line

https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-line
https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-line

Starting with a basic graph 38

var svg = d3.select("body")

.append("svg")

.attr("width", width + margin.left + margin.right)

.attr("height", height + margin.top + margin.bottom)

.append("g")

.attr("transform", "translate(" + margin.left + "," + margin.top + ")"\

);

So what exactly does that all mean?

Well D3 need to be able to have a space defined for it to draw things. And when you define the
space it’s going to use, you can also give the space you’re going to use a name, attributes and
positions within that space a designation.

In the example we’re using here, we are ‘appending’ an SVG element (a canvas that we are going
to draw things on) to the <body> element of the HTML page.

In human talk that means that on the web page and bounded by the <body> tag that
we saw in the HTML part, we will have an area to draw on. That area will be ‘width’
plus the left and right margins wide and ‘height’ plus the top and bottom margins
wide.

We also add an element ‘g’ that is referenced to the top left corner of the actual graph area on
the canvas. ‘g’ is actually a grouping element in the sense that it is normally used for grouping
together several related elements. So in this case those grouped elements will have a common
reference.

Canvas and margins

(the image above is definitely not to scale, but I hope you get the general idea)

Interesting things to note about the code. The .attr(“stuff in here”) parts are attributes of
the appended elements they are part of.

For instance;

Starting with a basic graph 39

.append("svg")

.attr("width", width + margin.left + margin.right)

.attr("height", height + margin.top + margin.bottom)

tells us that the ‘svg’ element has a “width” of width +margin.left +margin.right and the “height”
of height + margin.top + margin.bottom.

Likewise…

.append("g")

.attr("transform", "translate(" + margin.left + "," + margin.top + ")"\

);

tells us that the element “g” has been transformed bymoving(translating) to the point margin.left,
margin.top. Or to the top left of the graph space proper. This way when we tell something to be
drawn on our canvas, we can use the reference point “g” to make sure everything is in the right
place.

Actually Drawing Something!

Up until now we have spent a lot of time defining, loading and setting up. Good news! We’re
about to finally draw something!

We jump lightly over some of the code that we have already explained and land on the part that
draws the line.

svg.append("path") // Add the valueline path.

.attr("d", valueline(data));

This area occurs in the part of the code that has the data loaded and ready for action.

The svg.append("path") portion adds a new path element . A path element represents a shape
that can bemanipulated in lots of differentways (seemore here: http://www.w3.org/TR/SVG/paths.html³⁷).
In this case it inherits the ‘path’ styles from the CSS section and on the following line (.attr("d",
valueline(data));) we add the attribute “d”.

This is an attributer that stands for ‘path data’ and sure enough the valueline(data) portion of
the script passes the ‘valueline’ array (with its x and y coordinates) to the path element. This then
creates a svg element which is a path going from one set of ‘valueline’ coordinates to another.

Then we get to draw in the axes;

³⁷http://www.w3.org/TR/SVG/paths.html

http://www.w3.org/TR/SVG/paths.html
http://www.w3.org/TR/SVG/paths.html

Starting with a basic graph 40

svg.append("g") // Add the X Axis

.attr("class", "x axis")

.attr("transform", "translate(0," + height + ")")

.call(xAxis);

svg.append("g") // Add the Y Axis

.attr("class", "y axis")

.call(yAxis);

We have covered the formatting of the axis components earlier. So this part is actually just about
getting those components drawn onto our canvas.

So both axes start by being appended to the “g” group. Then each has its own classes applied for
styling via CSS. If you recall from earlier, they look a little like this;

.axis path,

.axis line {

fill: none;

stroke: grey;

stroke-width: 1;

shape-rendering: crispEdges;

}

Feel free to mess about with these to change the appearance of your axes.

On the x axis, we have a transform statement (.attr("transform", "translate(0," + height

+ ")")). If you recall, our point of origin for drawing is in the top left hand corner. Therefore
if we want our x axis to be on the bottom of the graph, we need to move (transform) it to the
bottom by a set amount. The set amount in this case is the height of the graph proper (height).
So, for the point of demonstration we will remove the transform line and see what happens;

x axis transformed to the top of the graph

Yep, pretty much as anticipated.

The last part of the two sections of script (.call(xAxis); and .call(yAxis);)call the x and y
axis functions and initiate the drawing action.

Starting with a basic graph 41

Wrap Up

Well that’s it. In theory, you should now be a complete D3 ninja.

OK, perhaps a slight exaggeration. In fact there is a strong possibility that the information I
have laid out here is at best borderline useful and at worst laden with evil practices and gross
inaccuracies.

But look on the bright side. Irrespective of the nastiness of the way that any of it was
accomplished or the inelegance of the code, if the picture drawn on the screen is pretty, you
can walk away with a smile. :-)

This section concludes a very basic description of one type of a graphic that can be built with
D3. We will look as adding value to it in subsequent chapters.

I’ve said it before and I’ll say it again. This is not a how-to for learning D3. This is how I have
managed to muddle through in a bumbling way to try and achieve what I wanted to do. If
some small part of it helps you. All good. Those with a smattering of knowledge of any of the
topics I have butchered above (or below) are fully justified in feeling a large degree of righteous
indignation. To those I say, please feel free to amend where practical and possible, but please
bear in mind this was written from the point of view of someone with no experience in the topic
and therefore try to keep any instructions at a level where a new entrant can step in.

Things you can do with the basic
graph
The following headings in this section are intended to be a list of relatively simple ‘block’ type
improvements that you can do to your graph to add functionality. The idea is to be able to use
the simple graph that was used for the explanation of how D3 worked and just slot in code to
add functionality (let’s hope it works for you :-)).

I have included the full code for a graph that includes rotated axis label, title, grid lines and filled
area as an appendix (Graph with Many Features) for those who would prefer to see the code as
a block.

Adding Axis Labels

What’s the first thing you get told at school when drawing a graph?

“Always label your axes!”

So, time to add a couple of labels!

First things first (because they’re done slightly differently), the x axis. If we begin by describing
what we want to achieve, it may make the process of implementing a solution a little more
logical.

What we want to do is to add a simple piece of text under the x axis and in the centre of the total
span. Wow, that does sound easy.

And it is, but there are different ways of accomplishing it, and I think I should take an opportunity
to demonstrate them. Especially since one of those ways is a BAD idea. Lets start with the bad
idea first :-).

This is the code we’re going to add to the simple line graph script;

svg.append("text") // text label for the x axis

.attr("x", 265)

.attr("y", 240)

.style("text-anchor", "middle")

.text("Date");

We will put it in between the blocks of script that add the x axis and the y axis.

Things you can do with the basic graph 43

svg.append("g") // Add the X Axis

.attr("class", "x axis")

.attr("transform", "translate(0," + height + ")")

.call(xAxis);

// PUT THE NEW CODE HERE!

svg.append("g") // Add the Y Axis

.attr("class", "y axis")

.call(yAxis);

Before we describe what’s happening, let’s take a look at the result;

Date label on x axis

Well, it certainly did what it was asked to do. There’s a ‘Date’ label as advertised! (Yes, I know
it’s not pretty.) Let’s describe the code and then work out why there’s a better way to do it.

svg.append("text") // text label for the x axis

.attr("x", 265)

.attr("y", 240)

.style("text-anchor", "middle")

.text("Date");

The first line appends a “text” element to our canvas. There is a lot more to learn about “text”
elements at the home of the World Wide Web Consortium (W3C)³⁸. The next two lines (
.attr("x", 265) and .attr("y", 240)) set the attributes for the x and y coordinates
to position the text on the canvas.

The second last line (.style("text-anchor", "middle")) ensures that the text ‘style’ is such
that the text is centre aligned and therefore remains nicely centred on the x,y coordinates that
we send it to.

The final line (.text("Date");) adds the actual text that we are going to place.

That seems really simple and effective and it is. However, the bad part about it is that we have
hard coded the location for the date into the code. This means if we change any of the physical

³⁸http://www.w3.org/TR/SVG/text.html#TextElement

http://www.w3.org/TR/SVG/text.html#TextElement
http://www.w3.org/TR/SVG/text.html#TextElement

Things you can do with the basic graph 44

aspects of the graph, we will end up having to re-calculate and edit our code. And we don’t want
to do that.

Here’s an example. If I decide that I would prefer to increase the height of the graph by editing
the line here;

height = 270 - margin.top - margin.bottom;

and making the height 350 pixels;

height = 350 - margin.top - margin.bottom;

The result is as follows;

Hard coded Date label

EVERYTHING about the graph has adjusted itself, except our nasty, hard coded ‘Date’ label. This
is far from ideal and can be easily fixed by using the variables that we set up ever so carefully
earlier.

So, instead of;

.attr("x", 265)

.attr("y", 240)

lets let our variables do the walking and use;

.attr("x", width / 2)

.attr("y", height + margin.bottom)

So with this code we tell the script that the ‘Date’ label will always be halfway across the width of
the graph (no matter howwide it is) and at the bottom of the graph with respect to it’s height and
the bottom margin (remember it uses a coordinates system that increases from the top down).

The end result of using variables is that if I go to an extreme of changing the height and width
of my graph to;

Things you can do with the basic graph 45

width = 400 - margin.left - margin.right,

height = 200 - margin.top - margin.bottom;

We still finish up with an acceptable result;

Auto adjusting Date label

Well, for the label position at least :-).

So the changes to using variables is just a useful lesson that variables rock and mean that you
don’t have to worry about your graph staying in relative shape while you change the dimensions.
The astute readers amongst you will have learned this lesson very early on in your programming
careers, but it’s never a bad idea to make sure that users that are unfamiliar with the concept
have an indicator of why it’s a good idea.

Now the third method that I mentioned at the start of our x axis odyssey. This is not mentioned
because it’s any better or worse way to implement your script (The reason that I say this is
because I’m not sure if it’s better or worse.) but because it’s sufficiently different to make it look
confusing if you didn’t think of it in the first place.

So, we’ll take our marvellous coordinates code;

.attr("x", width / 2)

.attr("y", height + margin.bottom)

And replace it with a single (longer) line;

.attr("transform", "translate(" + (width / 2) + " ," + (height + margin.bo\

ttom) + ")")

This uses the "transform" attribute to move (translate) the point to place the ‘Date’ label to
exactly the same spot that we’ve been using for the other two examples (using variables of
course).

Things you can do with the basic graph 46

Why does that line look odd?

The "translate” function is done in a ‘translate(x,y)’ style but it is put on the page
in such a way that the verbatim pieces that get passed back are in speech marks and
the variables are in the clear (in a manner of speaking). That’s why the comma is in
speech marks. Additionally, the variables are contained within plus signs. I make the
assumption that this is a designator for ‘areas where there is variable action going
on’. The end result is that if you try to do some maths in that area with a plus sign,
it does not appear to work (or at least it didn’t for me). That’s why I put the variable
for (+ (height + margin.bottom) +) in parenthesis (then I thought I should make
the + (width / 2) + part look the same, but actually you can get away without
them there).

So, that’s the x axis label. Time to do the y axis. The code we’re going to use looks like this;

svg.append("text")

.attr("transform", "rotate(-90)")

.attr("y", 0 – margin.left)

.attr("x",0 - (height / 2))

.attr("dy", "1em")

.style("text-anchor", "middle")

.text("Value");

For the sake of neatness we will put the piece of code in a nice logical spot and this would be
following the block of code that added the y axis (but before the closing curly bracket)

svg.append("g") // Add the Y Axis

.attr("class", "y axis")

.call(yAxis);

// PUT THE NEW CODE HERE!

});

And the result looks like this;

Things you can do with the basic graph 47

y axis label with rotation!

There we go, a label for the y axis that is nicely centred and (gasp!) rotated by 90 degrees! Woah,
does the leetness never end! (No. No it does not.)

So, how do we get to this incredible result?

The first thing we do is the same as for the x axis and append a test element to our canvas
(svg.append("text")).

Then things get interesting.

.attr("transform", "rotate(-90)")

Because that line rotates everything by -90 degrees. While it’s obvious that the text label ‘Value’
has been rotated by -90 degrees (from the picture), the following lines of code show that we also
rotated our reference point (which can be a little confusing).

.attr("y", 0 – margin.left)

.attr("x",0 - (height / 2))

Let’s get graphical to illustrate how this works;

Reference point pre-rotation

Things you can do with the basic graph 48

Here’s our starting position, with x,y in the 0,0 coordinate of the graph drawing area surrounded
by the margins.

When we apply a -90 degrees transform we get the equivalent of this;

Reference point after rotation

Here the 0,0 coordinate has been shifted by -90 degrees and the x,y designations are flipped so
that we now need to tell the script that we’re moving a ‘y’ coordinate when we would have
otherwise been moving ‘x’.

Hence, when the script runs…

.attr("y", 0 – margin.left)

… we can see that this is moving the x position to the left from the new 0 coordinate by the
margin.left value.

Likewise when the script runs…

.attr("x",0 - (height / 2))

… this is actually moving the y position from the new 0 coordinate halfway up the height of the
graph area.

I will be the first to admit that this does seem a little confusing. But here’s the good
part. You really don’t need to understand it completely. Simply do what I did when
I saw the code. Play with is a bit till you get the result you were looking for. If that
means putting in some hard coded numbers and incrementing them to see which
way is the new ‘up’. Good! Once you work it out, then work out how to get the right
variable expression in there and you’re set.

In the worst case scenario, simply use the code blocks as shown here and leave well
enough alone :-).

Right, we’re not quite done yet. The following line has the effect of shifting the text slightly to
the right.

Things you can do with the basic graph 49

.attr("dy", "1em")

Firstly the reason we do this is that our previous translation of coordinates means that when we
place our text label it sits exactly on the line of 0 – margin.left. But in this case that takes the text
to the other side of the line, so it actually sits just outside the boundary of the overall canvas.

The "dy" attribute is another coordinate adjustment move, but this time a relative adjustment
and the “1em” is a unit of measure that equals exactly one unit of the currently specified text
point size³⁹. So what ends up happening is that the ‘Value’ label gets shifted to the right by exactly
the height of the text, which neatly places it exactly on the edge of the canvas.

The two final lines of this part of the script are the same as for the x axis and they make sure
reference point is aligned to the centre of the text (.style("text-anchor", "middle")) and then
it prints the text (.text("Value");). There, that wasn’t too painful.

³⁹http://en.wikipedia.org/wiki/Em_(typography)

http://en.wikipedia.org/wiki/Em_(typography)
http://en.wikipedia.org/wiki/Em_(typography)
http://en.wikipedia.org/wiki/Em_(typography)

Things you can do with the basic graph 50

How to add a title to your graph

If you’ve read through the adding the axis labels section most of this will come as no surprise.

What we want to do to add a title to the graph is to add a text element (just a few words) that
will appear above the graph and centred left to right.

The code block we will use will looks like this;

svg.append("text")

.attr("x", (width / 2))

.attr("y", 0 - (margin.top / 2))

.attr("text-anchor", "middle")

.style("font-size", "16px")

.style("text-decoration", "underline")

.text("Value vs Date Graph");

And the end result will look like this;

Basic graph with title

A nice logical place to put the block of code would be towards the end of the JavaScript. In fact
I would put it as the last element we add. So here;

svg.append("g") // Add the Y Axis

.attr("class", "y axis")

.call(yAxis);

// PUT THE NEW CODE HERE!

});

Now since the vast majority of the code for this block is a regurgitation of the axis labels code, I
don’t want to revisit that and bloat up this document even more, so I will direct you back to that
section if you need to refresh yourself on any particular line. But….. There are a couple of new
ones in there which could benefit from a little explanation.

Both of them are style descriptors and as such their job is to apply a very specific style to this
element.

Things you can do with the basic graph 51

.style("font-size", "16px")

.style("text-decoration", "underline")

What they do is pretty self explanatory. Make the text a specific size and underline it. But what
is perhaps slightly more interesting is that we have this declaration in the JavaScript code and
not in the CSS portion of the file.

Strictly speaking, this is the sort of thing that would be placed in the <style> section
of the HTML code, but in this case, since it is only going to be used once, we shouldn’t
feel too bad putting it here.

Things you can do with the basic graph 52

Smoothing out graph lines

When you draw a line graph, what you’re doing is taking two (or more) sets of coordinates and
connecting them with a line (or lines). I know that sounds simplistic, but bear with me. When
you connect these points, you’re telling the viewer of the graph that in between the individual
points, you expect the value to vary in keeping with the points that the line passes through. So
in a way, you’re trying to interpret the change in values that are not shown.

Now this is not strictly true for all graph types, but it does hold for a lot of line graphs.

So… when connecting these known coordinated together, you want to make the best estimate of
how the values would be represented. In this respect, sometimes a straight line between points
is not the best representation.

For instance. Earlier, when demonstrating the extent function for graphing we showed a graph
of the varying values with the y axis showing a narrow range.

Expanded values for a narrow range

The resulting variation of the graph shows a fair amount of extremes and you could be forgiven
for thinking that if this represented a smoothly flowing analog system of some kind then some
of those sharp peaks and troughs would not be a true representation of how the system or figures
varied.

So how should it look? Ahh… The $64,000 question. I don’t know :-). You will have a better idea
since you are the person who will know your data best. However, what I do know is that D3 has
some tricks up its sleeve to help.

We can easily change what we see above into;

Things you can do with the basic graph 53

Smoothing using “basis”

How about that? And the massive amount of code required to carry out what must be a
ridiculously difficult set of calculations?

.interpolate("basis")

Now, that is slightly unfair because that’s the code that YOU need to put in your
script, but Mike Bostock probably had to do the mental equivalent of walking across
hot coals to get it to work so nicely.

So where does this neat piece of code go? Here;

var valueline = d3.svg.line()

.interpolate("basis") // <=== THERE IT IS!

.x(function(d) { return x(d.date); })

.y(function(d) { return y(d.close); });

So is that it? Nooooo…….. There’s more! This is one form of interpolation effect that can be
applied to your data, but there is a range and depending on your data you can select the one that
is appropriate.

Here’s the list of available options and for more about them head on over to the D3 wiki⁴⁰ and
look for ‘line.interpolate’.

• linear – Normal line (jagged).
• step-before – a stepping graph alternating between vertical and horizontal segments.
• step-after - a stepping graph alternating between horizontal and vertical segments.
• basis - a B-spline, with control point duplication on the ends (that’s the one above).
• basis-open - an open B-spline; may not intersect the start or end.
• basis-closed - a closed B-spline, with the start and the end closed in a loop.

⁴⁰https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-line_interpolate

https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-line_interpolate
https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-line_interpolate

Things you can do with the basic graph 54

• bundle - equivalent to basis, except a separate tension parameter is used to straighten the
spline. This could be really cool with varying tension.

• cardinal - a Cardinal spline, with control point duplication on the ends. It looks slightly
more ‘jagged’ than basis.

• cardinal-open - an open Cardinal spline; may not intersect the start or end, but will
intersect other control points. So kind of shorter than ‘cardinal’.

• cardinal-closed - a closed Cardinal spline, looped back on itself.
• monotone - cubic interpolation that makes the graph only slightly smoother.

Because in the course of writing this I took an opportunity to play with each of them, I was
pleasantly surprised to see some of the effects and it seems like a shame to deprive the reader
of the same joy :-). So at the risk of deforesting the planet (so I hope you are reading this in
electronic format) here is each of the above interpolation types applied to the same data.

This is also an opportunity to add some reader feedback awesomeness. Many thanks to ‘enjalot’
for the great suggestion to plot the points of the data as separate circles on the graphs. Since the
process of interpolation has the effect of ‘interpreting’ the trends of the data to the extent that
in some cases, the lines don’t intersect the actual data much at all.

Each of the following shows the smoothing curve and the data that is used to plot the graph.

Smoothing using “linear”

Smoothing using “step-before”

Things you can do with the basic graph 55

Smoothing using “step-after”

Smoothing using “basis”

Smoothing using “basis-open”

Things you can do with the basic graph 56

Smoothing using “basis-closed”

Smoothing using “bundle”

Smoothing using “cardinal”

Things you can do with the basic graph 57

Smoothing using “cardinal-open”

Smoothing using “cardinal-closed”

Smoothing using “monotone”

Just in case you’re in the mood for another example, here are voronoi tessellations drawn with
various d3 line interpolators (the original interactive version by ‘shawnbot’ cane be found here⁴¹).

⁴¹http://bl.ocks.org/shawnbot/5970227

http://bl.ocks.org/shawnbot/5970227
http://bl.ocks.org/shawnbot/5970227

Things you can do with the basic graph 58

First a version using the linear interpolation when each of the points is joined faithfully with a
straight line.

Polygon Smoothing using “linear”

Now a version where the polygons are formed with the ‘basis-closed’ interpolator (note how the
lines don’t go through the points that describe the bounds of the polygons/blobs).

Polygon Smoothing using “basis-closed”

Things you can do with the basic graph 59

And lastly, using the ‘cardinal-closed’ interpolator, while the line travels through each point in
the polygon, they overshoot in an effort to maintain a nice curve and the resulting polygon/blobs
overlap.

Polygon Smoothing using “cardinal-closed”

So, over to you to decide which format of interpolation is going to suit your data best:-).

Things you can do with the basic graph 60

Adding grid lines to a graph

Grid lines are an important feature for some graphs as they allow the eye to associate three
analogue scales (the x and y axis and the displayed line).

There is currently a tendency to use graphs without grid lines online as it gives the appearance
of a ‘cleaner’ interface, but they are still widely used and a necessary component for graphing.

This is what we’re going to draw;

Basic graph with gridlines

Like pretty much everything in this document, the clever parts of this are not my
work. I’ve simply used other peoples cleverness to solve my problems. In this case
I think the source of this solution came from the good work of Justin Palmer in
his excellent description of the design of a line graph here⁴². However, in retrospect
when I’ve looked back, I’m not sure if I got this right (as I did this quite a while
ago when I was less fastidious about noting my sources). In any case, Justin’s work
is excellent and I heartily recommend it, and here is my implementation of what I
think is his work :-)

How to build grid lines?

We’re going to use the axis function to generate two more axis elements (one for x and one for
y) but for these ones instead of drawing the main lines and the labels, we’re just going to draw
the tick lines. Really long ticklines (I’m considering calling them long cat⁴³ lines).

To create them we have to add in 3 separate blocks of code.

1. One in the CSS section to define what style the grid lines will have.
2. One to define the functions that generate the grid lines. And…
3. One to draw the lines.

The grid line CSS

This is the total styling that we need to add for the tick lines;

⁴²http://dealloc.me/2011/06/24/d3-is-not-a-graphing-library.html
⁴³http://knowyourmeme.com/memes/longcat

http://dealloc.me/2011/06/24/d3-is-not-a-graphing-library.html
http://knowyourmeme.com/memes/longcat
http://dealloc.me/2011/06/24/d3-is-not-a-graphing-library.html
http://knowyourmeme.com/memes/longcat

Things you can do with the basic graph 61

.grid .tick {

stroke: lightgrey;

opacity: 0.7;

}

.grid path {

stroke-width: 0;

}

Just add this block of code at the end of the current CSS that is in the simple graph template (just
before the </style> tag).

The CSS here is done in two parts.

The first portion sets the line colour (stroke) and the opacity (transparency) of the lines.

stroke: lightgrey;

opacity: 0.7;

The colour is pretty standard, but in using the opacity style we give ourselves the opportunity
to use a good shade of colour (if grey actually is a colour) and to juggle the degree to which it
stands out a little better.

The second part is the stroke width.

stroke-width: 0;

Now it might seem a little weird to be setting the stroke width to zero, but if you don’t (and we
remove the style) this is what happens;

Axis lines made too thick

If you look closely (compare with the previous picture if necessary) the main lines for the axis
have turned thicker. The stroke width style is obviously adding in new (thicker) axis lines and
we’re not interested in them at the moment. Therefore, if we set the stroke width to zero, we get
rid of the problem.

Define the grid line functions

We will need to define two functions to generate the grid lines and they look a little like this;

Things you can do with the basic graph 62

function make_x_axis() {

return d3.svg.axis()

.scale(x)

.orient("bottom")

.ticks(5)

}

function make_y_axis() {

return d3.svg.axis()

.scale(y)

.orient("left")

.ticks(5)

}

Each function will carry out it’s configuration when called from the later part of the script (the
drawing part).

A good spot to place the code is just before we load the data with the d3.tsv

// <== Put the functions here!

// Get the data

d3.tsv("data/data.tsv", function(error, data) {

data.forEach(function(d) {

d.date = parseDate(d.date);

d.close = +d.close;

});ticks(5)

}

Both functions are almost identical. They give the function a name (make_x_axis and make_y_-
axis) which will be used later when the piece of code that draws the lines calls out to them.

Both functions also show which parameters each will be fed back to the drawing process when
called. Both make sure that is uses the d3.svg.axis function and then they set individual attributes
which make sense.

The make sure they’ve got the right axis (.scale(x) and .scale(y)). They set the orientation of
the axes to match the incumbent axes (.orient("bottom") and .orient("left")). And they set
the number of ticks to match the number of ticks in the main axis (.ticks(5) and .ticks(5)).
You have the opportunity here to do something slightly different if you want. For instance, if we
think back to when we were setting up the axis for the basic graph and we mess about, seeing
how many we could get to appear. If we increase the number of ticks that appear in the grid (lets
say to .ticks(30) and .ticks(10))) we get the following;

Things you can do with the basic graph 63

Grid lines with greater divisions

So the grid lines can now show divisions of 50 on the y axis and per day on the x axis :-)

Draw the lines

The final block of code we need is the bit that draws the lines.

svg.append("g")

.attr("class", "grid")

.attr("transform", "translate(0," + height + ")")

.call(make_x_axis()

.tickSize(-height, 0, 0)

.tickFormat("")

)

svg.append("g")

.attr("class", "grid")

.call(make_y_axis()

.tickSize(-width, 0, 0)

.tickFormat("")

)

The first two lines of both the x and y axis grid lines code above should be pretty familiar by now.
The first one appends the element to be drawn to the group “g”. the second line (.attr("class",
"grid")) makes sure that the style information set out in the CSS is applied.

The x axis grid lines portion makes a slight deviation from conformity here to adjust its
positioning to take into account the coordinates system .attr("transform", "translate(0,"

+ height + ")").

Then both portions call their respectivemake axis functions (.call(make_x_axis() and .call(make_-
y_axis()).

Now comes the really interesting bit.

What you will see if you go to the D3 API wiki⁴⁴ is that for the .tickSize function, the following
is the format.

⁴⁴https://github.com/mbostock/d3/wiki/SVG-Axes#wiki-tickSize

https://github.com/mbostock/d3/wiki/SVG-Axes#wiki-tickSize
https://github.com/mbostock/d3/wiki/SVG-Axes#wiki-tickSize

Things you can do with the basic graph 64

axis.tickSize([major[�[, minor], end]])

That tells us that you get to specify the size of the ticks on the axes, by the major ticks, the minor
ticks and the end ticks (that is to say the lines on the very end of the graph which in the case of
the example we are looking at aren’t there!).

So in our example we are setting our major ticks to a length that corresponds to the full height
or width of the graph. Which of course means that they extend across the graph and have the
appearance of grid lines! What a neat trick.

Something I haven’t done before is to see what would happen if I included the tick lines for the
minor and end ticks. So here we go :-)

Disappointment! Where did I go wrong?

Darn! Disappointment. We can see a minor tick line for the y axis, but nothing for the x axis and
nothing on the ends. Clearly I will have to run some experiments to see what’s going on there
(later).

The last thing that is included in the code to draw the grid lines is the instruction to suppress
printing any label for the ticks;

.tickFormat("")

After all, that would become a bit confusing to have two sets of labels. Even if one was on top
of the other. They do tend to become obvious if that occurs (they kind of bulk out a bit like bold
text).

And that’s it. Grid lines!

Things you can do with the basic graph 65

Make a dashed line

Dashed lines totally rock!

OK, there may be an element of exaggeration there, but I certainly found it
interesting that there didn’t seem to be a lot of explanation for a simple bloke like
myself to make a dashed line in D3. So for me they rocked :-)

One of the best parts about it is that they’re so simple to do!

Literally one line!!!!

So lets imagine that we want to make the line on our simple graph dashed. All we have to do is
insert the following line in our JavaScript code here;

svg.append("path")

.attr("class", "line")

.style("stroke-dasharray", ("3, 3")) // <== This line here!!

.attr("d", valueline(data));

And our graph ends up like this;

Dashed line for the basic graph

Hey! It’s dashtastic!

So how does it work?

Well, obviously "stroke-dasharray" is a style for the path element, but the magic is in the
numbers.

Essentially they describe the on length and off length of the line. So "3, 3" translates to 3 pixels
(or whatever they are) on and 3 pixels off. Then it repeats. Simple eh?

So, experiment time :-)

What would the following represent?

“5, 5, 5, 5, 5, 5, 10, 5, 10, 5, 10, 5”

Things you can do with the basic graph 66

Try not to cheat…

Dashed lines for fun

Ahh yes, Mr Morse would be proud.

And you can put them anywhere. Here’s our axes perverted with dashes;

svg.append("g")

.attr("class", "x axis")

.attr("transform", "translate(0," + height + ")")

.style("stroke-dasharray", ("3, 3"))

.call(xAxis);

svg.append("g")

.attr("class", "y axis")

.style("stroke-dasharray", ("3, 3"))

.call(yAxis);

When dashed lines go bad

Well… I suppose you can have too much of a good thing. With great power comes great
responsibility. Use your dash skills wisely and only for good.

Things you can do with the basic graph 67

Filling an area under the graph

Lines are all very well and good, but that’s not the whole story for graphs. Some times you’ve
just got to go with a fill.

Filling an area with a solid colour isn’t too hard. I mean we did it by mistake back a few pages
when we were trying to draw a line.

But to do it in a nice coherent way is fairly straight forward.

It takes three sections of code in much the same way that we drew our grid lines earlier it is done
in three sections;

1. One in the CSS section to define what style the area will have.
2. One to define the functions that generate the area. And…
3. One to draw the area.

The end result will looks a bit like this;

Basic graph with an area fill

CSS for an area fill

This is pretty straight forward and only consists of two rules;

.area {

fill: lightsteelblue;

stroke-width: 0;

}

Put them at the bottom of your <style> section.

The first one (fill: lightsteelblue;) sets the colour of our fill (and in this case we have chosen
a lighter shade of the same colour as our line to match it) and the second one (stroke-width: 0;)
sets the width of the line that surrounds the area to zero. This last rule is kind of important in
making a filled area work well. The whole idea is that the graph is made up of separate elements
that will compliment each other. There’s the axes, the line and the fill. If we don’t tell the code

Things you can do with the basic graph 68

that there is no line surrounding the filled area, it will assume that there is one and add it in like
this.

Line surrounding filled area

So what has happened here is that the area element has inherited the line property from the path
element and surrounding the area is a 2px wide steelblue line. Not too pretty. Let’s not go there.

Define the area function

Weneed a function that will tell the area what space to fill. This is accessed from the d3.svg.area
function⁴⁵

The code that we will use is as follows;

var area = d3.svg.area()

.x(function(d) { return x(d.date); })

.y0(height)

.y1(function(d) { return y(d.close); });

I have placed it in between the axis variable definitions and the line definitions here;

var yAxis = d3.svg.axis().scale(y)

.orient("left").ticks(5);

<==== Put the new code here!

var valueline = d3.svg.line()

.x(function(d) { return x(d.date); })

.y(function(d) { return y(d.close); });

You will notice it looks INCREDIBLY similar to the valueline function definition.
That’s because; while the line definition describes drawing a line that connects a
set of coordinates, I imagine the area definition describes drawing two lines that
share the same x coordinates, but simultaneously draws two y coordinates, y0 and
y1. Then when it’s finished drawing the resultant shape, it fills it with the colour of
your choosing.

⁴⁵https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-area

https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-area
https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-area
https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-area

Things you can do with the basic graph 69

So the only changes to the code are the addition of the y0 line and the renaming of the y line y1.

Here’s a picture that might help explain;

How the area is defined

As should be apparent, the top line (y1) follows the valueline line and the bottom line is at the
constant ‘height’ value. Everything in between these lines is what gets filled. The function in
this section describes the area.

Draw the area

Now to the money maker.

The final section of code in the area filling odyssey is as follows;

svg.append("path")

.datum(data)

.attr("class", "area")

.attr("d", area);

We should place this block directly after the domain functions but before the drawing of the
valueline path;

x.domain(d3.extent(data, function(d) { return d.date; }));

y.domain([0, d3.max(data, function(d) { return d.close; })]);

// <== Area drawing code here!

svg.append("path")

.attr("class", "line")

.attr("d", valueline(data));

This is actually a pretty good idea to put it there since the various bits and pieces that are drawn
in the graph are done so one after the other. This means that the filled area comes first, then the
valueline is layered on top and then the axes come last. This is a pretty good sequence since if
there are areas where two or more elements overlap, it might cause the graph to look ‘wrong’.

For instance, here is the graph drawn with the area added last.

Things you can do with the basic graph 70

Area overlaps and obscures

You should be able to notice that part of the valueline line has been obscured and the line for the
y axis where it coincides with the area is obscured also.

Looking at the codewe are adding here, the first line appends a path element (svg.append("path"))
much like the script that draws the line.

The second line (.datum(data)) declares the data we will be utilising for describing the area and
the third line (.attr("class", "area")) makes sure that the style we apply to it is as defined
in the CSS section (under ‘area’).

The final line (.attr("d", area);) declares “d” as the attributer for path data and calls the ‘area’
function to do the drawing.

And that’s it!

Filling an area above the line

Pop Quiz:

How would you go about filling the area ABOVE the graph?

Now it might sound a little trite, but believe it or not, this could come in handy. For
instance, what if you want to highlight an area that was too high and an area that
was too low for a line of data on a graph with an area in the centre where a projected
‘normal’ set of values should be present?

In this instance, you could fill the lower area as has been demonstrated here, and with a small
change you can fill another area with a solid colour above another line.

How is this incredible feat achieved?

Well, remember the code that defined the area?

Things you can do with the basic graph 71

var area = d3.svg.area()

.x(function(d) { return x(d.date); })

.y0(height)

.y1(function(d) { return y(d.close); });

All we have to do is tell it that instead of setting the y0 constant value to the height of the graph
(remember, this is the bottom of the graph) we will set it to the constant value that is at the top
of the graph. In other words zero (0).

.y0(0)

That’s it.

Fill an area above a line

Now, I’m not going to go over the process of drawing two lines and filling each in different
directions to demonstrate the example I described, but this provides a germ of an idea that you
might be able to flesh out :-)

Things you can do with the basic graph 72

Adding a drop shadow to allow text to stand out on
graphics.

I’ve deliberately positioned this particular tip to follow the ‘filling an area’ description because
it provides an opportunity to demonstrate the principle to slightly better effect.

There have been several opportunities where I have wanted to place text overlaid on graphs for
convenience sake only to have it look overly messy as the text interferes with the graph.

Is this evil?
Now, I’ll be the first to say that the principle of overlaying text on a graph is probably
not best practice, but sometimes you’ve got to do what you’ve got to do. Besides.
Sometimes it’s a valid idea. If I remember rightly, the first time I came across this
idea, it was being used to highlight text when positioned on bars of a bar graph. So
it’s not always an evil practice :-).

Anyway, what we’ll do is leave the fill in place and place the title back on the graph, but position
the title so that it lays on top of the fill like so;

Title lost in the area fill

The additional code for the title is the following and appears just after the drawing of the axes.

svg.append("text")

.attr("x", (width / 2))

.attr("y", 25)

.attr("text-anchor", "middle")

.style("font-size", "16px")

.style("text-decoration", "underline")

.text("Value vs Date Graph");

(the only change from the previous title example is the ‘y’ attribute which has been hard coded
to 25 to place it inconveniently on the filled area.)

Things you can do with the basic graph 73

So, what we want to end up with is something like the following…

A nice white drop shadow effect

In my humble opinion, it’s just enough to make the text acceptable :-).

The method that I’ll describe to carry this out is designed so that the drop shadow effect can be
applied to any text elements in the graph, not the isolated example that we will use here. In order
to implement this marvel of utility we will need to make changes in two areas. One in the CSS
where we will define a style for white shadowy backgrounds and the second to draw it.

CSS for white shadowy background

The code to add to the CSS section is as follows;

text.shadow {

stroke: white;

stroke-width: 2.5px;

opacity: 0.9;

}

The first line designates that the style applies to text with a ‘shadow’ label. The stroke is set to
white. the width of the line is set to 2.5px and it is made to be slightly see-through. So by setting
the line that surrounds the text to be thick, white and see-through gives it a slightly ‘cloudy’
effect. If we remove the black text from over the top we get a slightly better look;

A closer look at just the drop shadow

Of course if you want to have a play with any of these settings, you should have a go and see
what works best for your graph.

Drawing the white shadowy background.

Now that we’ve set the style for our background, we need to draw it in.

The code for this should be extremely familiar;

Things you can do with the basic graph 74

svg.append("text")

.attr("x", (width / 2))

.attr("y", 25)

.attr("text-anchor", "middle")

.style("font-size", "16px")

.style("text-decoration", "underline")

.attr("class", "shadow") // <=== Here's the different line

.text("Value vs Date Graph");

That’s because it’s identical to the piece of code that was used to draw the title except for the one
line that is indicated above. The reason that it’s identical is that what we are doing is placing a
white shadow on the graph and then the text on top of it, if it deviated by a significant amount
it will just look silly. Of course a slight amount could look effective, in which case adjust the ‘x’
or ‘y’ attributes.

One of the things I pointed out in the previous paragraph was extremely important. That’s the
bit that tells you that we needed to place the shadow before we placed the black text. For the
same reason that we placed the area fill on first in the area fill example, If black text goes on
before the shadow, it will look pretty silly. So place this block of code just before the block that
draws the title.

So the line that has been added in is the one that tells D3 that the text that is being drawn
will have the white cloudy effect. And at the risk of repeating myself, if you have several text
elements that could benefit from this effect, once you have the CSS code in place, all you need
to do is duplicate the block that adds the text and add in that single line and voila!

Things you can do with the basic graph 75

Adding more than one line to a graph

All right, we’re starting to get serious now. Two lines on a graph is a bit of a step into a different
world in one respect. I mean that in the sense that there’s more than one way to carry out the
task, and I tend to do it one way and not the other mainly because I don’t fully understand the
other way :-(.

I should stress that that’s not because it’s more complex, or that it’s a bad way, it’s
just that once I started doing things one way, I haven’t come across a need to do
things another way. There’s a good chance I will have to revisit this decision in the
future, but for now I’ll keep moving.

So, how are we going to do this? I think that the best way will be to make the executive decision
that we have suddenly come across more data and that it is also in our data.tsv file. In fact it
looks a little like this (apologies in advance for the big ugly block of data);

date close open

1-May-12 58.13 34.12

30-Apr-12 53.98 45.56

27-Apr-12 67.00 67.89

26-Apr-12 89.70 78.54

25-Apr-12 99.00 89.23

24-Apr-12 130.28 99.23

23-Apr-12 166.70 101.34

20-Apr-12 234.98 122.34

19-Apr-12 345.44 134.56

18-Apr-12 443.34 160.45

17-Apr-12 543.70 180.34

16-Apr-12 580.13 210.23

13-Apr-12 605.23 223.45

12-Apr-12 622.77 201.56

11-Apr-12 626.20 212.67

10-Apr-12 628.44 310.45

9-Apr-12 636.23 350.45

5-Apr-12 633.68 410.23

4-Apr-12 624.31 430.56

3-Apr-12 629.32 460.34

2-Apr-12 618.63 510.34

30-Mar-12 599.55 534.23

29-Mar-12 609.86 578.23

28-Mar-12 617.62 590.12

27-Mar-12 614.48 560.34

26-Mar-12 606.98 580.12

Things you can do with the basic graph 76

Three columns, date open and close. The first two are exactly what we have been dealing with
all along and the last (open) is our new made up data. Each column is separated by a tab (hence
.tsv (Tab Separated Values)), which is the format we’re currently using to import data.

We should save this as a new file so we don’t mess up our previous data, so let’s call it data2.tsv.

We will be using our simple graph template to start with, so the immediate consequence of this
is that we need to edit the line that was looking for ‘data.tsv’ to reflect the new name.

d3.tsv("data/data2.tsv", function(error, data) {

So when you browse to our new graph’s html file, we don’t see any changes. It still happily loads
the new data, but because it hasn’t been told to do anything with it, nothing new happens.

What we need to do now it to essentially duplicate the code blocks that drew the first line for
the second line.

The good news is that in the simplest way possible that’s just two code blocks. The first sets up
the function that defines the new line;

var valueline2 = d3.svg.line()

.x(function(d) { return x(d.date); })

.y(function(d) { return y(d.open); });

You should notice that this block is identical to the block that sets up the function for the first
line, except this one is called (imaginatively) valueline2. We should put it directly after the block
that sets up the function for valueline.

The second block draws our new line;

svg.append("path") // Add the valueline2 path.

.attr("class", "line")

.attr("d", valueline2(data));

Again, this is identical to the block that draws the first line, except this one is called valueline2.
We should put it directly after the block that draws valueline.

After those three small changes, check out your new graph;

Two lines, but the same colour

Things you can do with the basic graph 77

Hey! Two lines! Hmm…. Both being the same colour is a bit confusing. Good news. We can
change the colour of the second line by inserting a line that adjusts it’s stroke (colour) very
simply.

So here’s what our new drawing block looks like;

svg.append("path") // Add the valueline2 path.

.attr("class", "line")

.style("stroke", "red")

.attr("d", valueline2(data));

And as if by magic, here’s our new graph;

Two lines with two colours

Wow. Right about now, we’re thinking ourselves pretty clever. But there’s two places where we’re
not doing things right. We took a simple way, but we took some short cuts that might bite us in
the posterior.

The first mistake we made was not ensuring that our variable "d.open" is being treated as a
number or a string. We’re fortunate in this case that it is, but this can’t always be assumed. So,
this is an easy fix and we just need to put the following (indicated line) in our code;

// Get the data

d3.tsv("data/data.tsv", function(error, data) {

data.forEach(function(d) {

d.date = parseDate(d.date);

d.close = +d.close;

d.open = +d.open; // <=== Add this line in!

});

The second and potentially more fatal flaw is that nowhere in our code do we make allowance
for our second set of data (the second line’s values) exceeding our first lines values.

That might not sound too normal straight away, but consider this. What if when we made up
our data earlier, some of the new data exceeded our maximum value in our original data? As a
means of demonstration, here’s what happens when our second line of data has values higher
than the first lines;

Things you can do with the basic graph 78

Two lines but the domain’s not right

Ahh…. We’re not too clever now.

Good news though, we can fix it!

The problem comes about because when we set the domain for the y axis this is what we put in
the code;

y.domain([0,d3.max(data, function(d) {return d.close;})]);

So that only considers d.close when establishing the domain.With d.open exceeding our domain,
it just keeps drawing off the graph!

The good news is that ‘Bill’ has provided a solution for just this problem here⁴⁶;

All you need to replace the y.domain line with is this;

y.domain([0, d3.max(data, function(d) { return Math.max(d.close, d.open); })]);

It does much the same thing, but this time it returns the maximum of d.close and d.open

(whichever is largest). Good work Bill.

If we put that code into the graphwith the higher values for our second line we are now presented
with this;

Two lines with everything fitting onto the canvas

And it doesn’t matter which of the two sets of data is largest, the graph will always adjust :-)

You will also have noticed that our y axis has auto adjusted again to cope. Clever eh?

⁴⁶http://stackoverflow.com/questions/12732487/d3-js-dataset-array-w-multiple-y-axis-values

http://stackoverflow.com/questions/12732487/d3-js-dataset-array-w-multiple-y-axis-values
http://stackoverflow.com/questions/12732487/d3-js-dataset-array-w-multiple-y-axis-values

Things you can do with the basic graph 79

Multiple axes for a graph

Alrighty… Let’s imagine that we want to show our wonderful graph with two lines, much like we
already have, but that the data that the lines is made from is significantly different in magnitude
from the original data (in the example below, the data for the second line has been reduced by
approximately a factor of 10 from our original data).

date close open

1-May-12 58.13 3.41

30-Apr-12 53.98 4.55

27-Apr-12 67.00 6.78

26-Apr-12 89.70 7.85

25-Apr-12 99.00 8.92

24-Apr-12 130.28 9.92

23-Apr-12 166.70 10.13

20-Apr-12 234.98 12.23

19-Apr-12 345.44 13.45

18-Apr-12 443.34 16.04

17-Apr-12 543.70 18.03

16-Apr-12 580.13 21.02

13-Apr-12 605.23 22.34

12-Apr-12 622.77 20.15

11-Apr-12 626.20 21.26

10-Apr-12 628.44 31.04

9-Apr-12 636.23 35.04

5-Apr-12 633.68 41.02

4-Apr-12 624.31 43.05

3-Apr-12 629.32 46.03

2-Apr-12 618.63 51.03

30-Mar-12 599.55 53.42

29-Mar-12 609.86 57.82

28-Mar-12 617.62 59.01

27-Mar-12 614.48 56.03

26-Mar-12 606.98 58.01

Now this isn’t a problem in itself. D3 will still make a reasonable graph of the data, but because
of the difference in range, the detail of the second line will be lost.

Things you can do with the basic graph 80

One line is dominating the other

What I’m proposing is that we have a second y axis on the right hand side of the graph that
relates to the red line.

The mechanism used is based on the great examples put forward by Ben Christensen here⁴⁷.

Now… You’ll need to concentrate a bit since there are quite a few different bits to
change and adapt, but don’t despair, they’re all quite logical and make sense.

First things first, there won’t be space on the right hand side of our graph to show the extra axis,
so we should make our right hand margin a little larger.

var margin = {top: 30, right: 40, bottom: 30, left: 50},

I went for 40 and it seems to fit pretty well.

Then (and here’s where the main point of difference for this graph comes in) you want to amend
the code to separate out the two scales for the two lines in the graph. This is actually a lot easier
than it sounds, since it consists mainly of finding anywhere that mentions y and replacing it
with y0 and then adding in a reciprocal piece of code for y1.

The idea here is that we will be creating two references for the y axis. One for each
column of data. Then when we draw the lines the scales will automatically scale the
data correctly (and separately) to our canvas and we will draw two different y axes
with the different scales. Believe it or not, it’s sounds a lot harder than it is.

Let’s get started.

Firstly, change the variable declaration for y to y0 and add in y1.

⁴⁷http://benjchristensen.com/2012/05/02/line-graphs-using-d3-js/

http://benjchristensen.com/2012/05/02/line-graphs-using-d3-js/
http://benjchristensen.com/2012/05/02/line-graphs-using-d3-js/

Things you can do with the basic graph 81

var x = d3.time.scale().range([0, width]);

var y0 = d3.scale.linear().range([height, 0]);

var y1 = d3.scale.linear().range([height, 0]);

Then change our yAxis declaration to be specific for y0 and specifically left. And add in a
declaration for the right hand axis;

var yAxisLeft = d3.svg.axis().scale(y0) // <== Add in 'Left' and 'y0'

.orient("left").ticks(5);

var yAxisRight = d3.svg.axis().scale(y1) // This is the new declaration for \

the 'Right', 'y1'

.orient("right").ticks(5); // and includes orientation of the axis \

to the right.

Note the orientation change for the right hand axis.

Now change our valueline declarations so that they refer to the y0 and y1 scales.

var valueline = d3.svg.line()

.x(function(d) { return x(d.date); })

.y(function(d) { return y0(d.close); }); // <== y0

var valueline2 = d3.svg.line()

.x(function(d) { return x(d.date); })

.y(function(d) { return y1(d.open); }); // <== y1

There are a few different ways for the scaling to work, but we’ll stick with the fancy max method
we used in the dual line example (although technically it’s not required).

y0.domain([0, d3.max(data, function(d) { return Math.max(d.close); })]);

y1.domain([0, d3.max(data, function(d) { return Math.max(d.open); })]);

Again, here’s the y0 and y1 changed and added and the maximums for d.close and d.open are
separated out). The final piece of the puzzle is to draw the new axis, but we also want to make
a slight change to the original y axis. Since we have two lines and two axes, we need to know
which belongs to which, so we can colour code the text in the axes to match the lines;

Things you can do with the basic graph 82

svg.append("g")

.attr("class", "y axis")

.style("fill", "steelblue")

.call(yAxisLeft);

svg.append("g")

.attr("class", "y axis")

.attr("transform", "translate(" + width + " ,0)")

.style("fill", "red")

.call(yAxisRight);

In the above code you can see where we have added in a ‘style’ change for the yAxisLeft to make
it ‘steelblue’ and a complementary change in the new section for yAxisRight to make that text
red.

The yAxisRight section obviously needs to be added in, but the only significant difference is the
transform / translate attribute that moves the axis to the right hand side of the graph.

And after all that, here’s the result…

Two lines with full range of the domain and two axes

Now, let’s not kid ourselves that it’s a thing of beauty, but we should console our aesthetic
concerns with the warm glow of understanding how the function works :-).

Things you can do with the basic graph 83

How to rotate the text labels for the x Axis.

The observant reader will recall the problem we had observed earlier when increasing the
number of ticks on our x axis to 10. The effect had been to produce a large number of x axis
ticks (actually 19) but they had run together and become unreadable.

x axis labels crammed together

We postulated at the time that an answer to the problem might be to rotate the text to provide
more space. Well, it’s about time we solved that problem.

The answer I found most usable was provided by Aaron Ward on Google Groups⁴⁸.

There might be a better way

Now, I’ll put a bit of a caveat on this solution to the rotating axis label problem. It
looks like it’s worked well, but I’ve only carried out this investigation to the point
where I’ve got something that looks like it’s a solution. There may be better or more
elegant ways of carrying out the same task, so let Google be your friend if it doesn’t
appear to be working out for you.

Starting out with our simple graph example, we should increase the number of ticks on the x
axis to 10 to highlight the problem in the previous image.

The first substantive change would be a little housekeeping. Because we are going to be rotating
the text at the bottom of the graph, we are going to need some extra space to fit in our labels. So
we should change our bottom margin appropriately.

var margin = {top: 30, right: 40, bottom: 50, left: 50},

I found that 50 pixels was sufficient.

The remainder of our changes occur in the block that draws the x axis.

⁴⁸https://groups.google.com/forum/#!msg/d3-js/CRlW0ISbOy4/1sgrE5uS5ysJ

https://groups.google.com/forum/#!msg/d3-js/CRlW0ISbOy4/1sgrE5uS5ysJ
https://groups.google.com/forum/#!msg/d3-js/CRlW0ISbOy4/1sgrE5uS5ysJ

Things you can do with the basic graph 84

svg.append("g")

.attr("class", "x axis")

.attr("transform", "translate(0," + height + ")")

.call(xAxis)

.selectAll("text")

.style("text-anchor", "end")

.attr("dx", "-.8em")

.attr("dy", ".15em")

.attr("transform", function(d) {

return "rotate(-65)"

});

It’s pretty standard until the .call(xAxis) portion of the code. Here we remove the semicolon
that was there so that the block continues with its function.

Then we select all the text elements that comprise the x avis with the .selectAll("text"). From
this point onwards, we are operating on the text elements associated with the x axis. In effect;
the following 4 ‘actions’ are applied to the text labels.

The .style("text-anchor", "end") line ensures that the text label has the end of the label
‘attached’ to the axis tick. This has the effect of making sure that the text rotates about the end
of the date. This makes sure that the text all ends up at a uniform distance from the axis ticks.

The dx and dy attribute lines move the end of the text just far enough away from the axis tick so
that they don’t crowd it and not too far away so that it appears disassociated. This took a little bit
of fiddling to ‘look’ right and you will notice that I’ve used the ‘em’ units to get an adjustment
if the size of the font differs.

The final action is kind of the money shot.

The transform attribute applies itself to each text label and rotates each line by -65 degrees. I
selected -65 degrees just because it looked OK. There was no deeper reason.

The end result then looks like the following;

Rotated x axis labels

This was a surprisingly difficult problem to find a solution to that I could easily understand (well
done Aaron). That makes me think that there are some far deeper mysteries to it that I don’t fully
appreciate that could trip this solution up. But in lieu of that, enjoy!

Things you can do with the basic graph 85

Format a date / time axis with specified values

OK then. We’ve been very clever in rotating our text, but you will notice that D3 has used it’s
own good judgement as to what format the days / date will be represented as.

Not that there’s anything wrong with it, but what if we want to put a specific format of date /
time nomenclature as axis labels?

No problem. D3 has your back.

This is actually a pretty easy thing to do, but there are plenty of options for the formatting, so
the only really tricky part is deciding what to put where.

But, before we start doing anything we are going to have to expand our bottom margin even
more than we did with the rotate the axis labels feature.

var margin = {top: 30, right: 40, bottom: 70, left: 50},

That should see us right.

Right, now the simple part :-). Changing the format of the label is as simple as inserting the
tickFormat command into the xAxis declaration a little like this;

var xAxis = d3.svg.axis().scale(x)

.orient("bottom").ticks(10)

.tickFormat(d3.time.format("%Y-%m-%d")); // insert the tickFormat function

What the tickFormat allows is the setting of formatting for the tick labels. The d3.time.format
portion of the code is specifying the exact format of those ticks. This formatting is described
using the same arguments that were explained in the earlier section on [formatting date time
values](https://github.com/mbostock/d3/wiki/Time-Formatting. That means that the examples
we see here (%Y-%m-%d) should display the year as a four digit number then a hyphen then the
month as a two digit number, then another hyphen, then a two digit number corresponding to
the day.

Let’s take a look at the result;

Format change for the x axis labels

Things you can do with the basic graph 86

There we go! You should be able to see this file in the downloads section on d3noob.org with the
general examples as formatted-date-time-axis-labels.html.

So how about we try something a little out of the ordinary (extreme)?

How about the full weekday name (%A), the day (%d), the full month name (%B) and the year (%Y)
as a four digit number?

.tickFormat(d3.time.format("%A %d %B %Y"));

We will also need some extra space for the bottom margin, so how about 140?

var margin = {top: 30, right: 40, bottom: 140, left: 50},

and….

Extreme format change for the x axis labels

Oh yeah… When axis ticks go bad…

But seriously, that does work as a pretty good example of the flexibility available.

Things you can do with the basic graph 87

Update data dynamically - On Click

OK, you’re going to enjoy this section. Mainly because it takes the traditional graph that we
know, love and have been familiar with since childhood and adds in an aspect that that has been
missing for most of your life.

Animation!

Graphs are cool. Seeing information represented in a graphical way allows leaps of understand-
ing that are difficult or impossible to achieve from raw data. But in this crazy ever-changing
world, a static image is only as effective as the last update. The ability to being able to have the
most recent data represented in your graph and to have it occur automatically provides a new
dimension to traditional visualizations.

Interestingly enough, part of the reason for moving fromD3’s predecessor Protovis⁴⁹
was the ability to provide greater control and scope to animating data.

So what are we going to do?

First we’ll spend a bit of time setting the scene. We’ll add a button to our basic graph file so that
we can control when our animation occurs, we’ll generate a new data set so that we can see how
the data changes easily, then we’ll shuffle the code about a bit to make it do it’s magic. While
we’re shuffling the code we’ll take a little bit of time to explain what’s going on with various
parts of it that are different to what we might have seen thus far. Then we’ll change the graph
to update automatically (on a schedule) when the data changes.

One of the problems with writing a manual about a moving object is that it’s difficult
to represent that movement on a written page, so where there is something animated
occurring, I will provide all the code that I’m using so that you can try it at home
and have an online version as well.

Adding a Button

It’s all well and good animating your data, but if you don’t know when it’s supposed to happen
or what should happen, it’s a little difficult to evaluate how successful you’ve been.

To make life easy, we’re going to take some of the mystery out of the equation (don’t worry, we’ll
put it back later) and add a button to our graph that will give you control over when your graph
should update it’s data. When complete it should look like this;

⁴⁹http://mbostock.github.com/d3/tutorial/protovis.html

http://mbostock.github.com/d3/tutorial/protovis.html
http://mbostock.github.com/d3/tutorial/protovis.html

Things you can do with the basic graph 88

A graph with a button!

To add a button, we will take our simple-graph.html example and just after the <body> tag we
add the following code;

<div id="option">

<input name="updateButton"

type="button"

value="Update"

onclick="updateData()"

/>

</div>

The HTML <div> element (or HTML Document Division Element) is used to assign a division
or section in an HTML document. We use it here as it’s good practice to keep sections of your
HTML document distinct so that it’s easier to perform operations them at a later date.

In this case we have given the div the identifier “option” so that we can refer to it later if we
need to (embarrassingly, we won’t be referring to it at all, but it’s good practice none the less).

The following line adds our button using the HTML <input> tag. The <input> tag has a wide
range of attribute (options) for allowing user input. Check out the links to w3schools⁵⁰ and
Mozilla⁵¹ for a whole lot of reading.

In our <input> line we have four different attributes;

• name
• type
• value
• onclick

⁵⁰http://www.w3schools.com/tags/tag_input.asp
⁵¹https://developer.mozilla.org/en-US/docs/HTML/Element/Input

http://www.w3schools.com/tags/tag_input.asp
https://developer.mozilla.org/en-US/docs/HTML/Element/Input
http://www.w3schools.com/tags/tag_input.asp
https://developer.mozilla.org/en-US/docs/HTML/Element/Input

Things you can do with the basic graph 89

Each of these attributes modifies the <input> function in some way so that our button does what
we want it to do.

name:
This is the name of the control (in this case a button) so that we can reference it in other parts
of our HTML script.

type:
Probably the most important attribute for a button, this declares that our type of input will be
a button! There are heaps of other options for type which would form a significant section in
itself.

value:
For a button input type, this is the starting value for our button and forms the label that our
button will have.

onclick:
This is not an attribute that is specific to the <input> function, but it allows the browser to
capture a mouse clicking event when it occurs and in our case we tell it to run the updateData()
function (which we’ll be seeing more of soon).

Updating the data

To make our first start at demonstrating changing the data, we’ll add another data file to our
collection.We’ll name it data-alt.tsv (you should be able to find it in the example file collection
in the downloads page on d3noob.org). This file changes our normal data (only the values, not
the structure) just enough to see a movement of the time period of the graph and the range of
values on the y axis (this will become really oblivious in the transition).

Temporary measure only

We’ll only use this file while we want to demonstrate that dynamic updating really
does work. Ultimately we will just use the one file and rely on an external process
updating that file to provide the changing data.

Changes to the d3.js code layout

While going through the process of working out how to do this, the iterations of my code were
mostly horrifying to behold. However, I think my understanding has improved sufficiently to
allow only a slight amendment to our simple-graph.html JavaScript code to get this going.

What we should do is add the following block of code to our script towards the end of the file
just before the </style> tag;

Things you can do with the basic graph 90

function updateData() {

// Get the data again

d3.tsv("data/data-alt.tsv", function(error, data) {

data.forEach(function(d) {

d.date = parseDate(d.date);

d.close = +d.close;

});

// Scale the range of the data again

x.domain(d3.extent(data, function(d) { return d.date; }));

y.domain([0, d3.max(data, function(d) { return d.close; })]);

// Select the section we want to apply our changes to

var svg = d3.select("body").transition();

// Make the changes

svg.select(".line") // change the line

.duration(750)

.attr("d", valueline(data));

svg.select(".x.axis") // change the x axis

.duration(750)

.call(xAxis);

svg.select(".y.axis") // change the y axis

.duration(750)

.call(yAxis);

});

}

What’s happening in the code?

There are several new concepts and techniques in this block of code for us to go through but
we’ll start with the overall wrapper for the block which is a function call.

The entirety of our JavaScript code that we’re adding is a function called updateData. This is the
subject of the first line in the code above (and the last closing curly bracket). It is called from
the only other piece of code we’ve added to the file which is the button in the HTML section. So
when that button is clicked, the updateData function is carried out.

Things you can do with the basic graph 91

Repeatability

It’s worth noting that while our updateData function only appears to work the
once when you first click the button, in fact every time the button is pushed the
updateData function is carried out. It’s just that since the data doesn’t change after
the first click, you never see any change.

Then we get our new data with the block that starts with d3.tsv("data/data-alt.tsv". This is
a replica of the block in the main part of the code with one glaring exception. It is getting the data
from our new file called data-alt.tsv. However, one thing it’s doing that bears explanation is
that it’s loading data into an array that we’ve already used to generate our line. At a point not
to far from here (probably the next page) we’re going to replace the data that made up our line
on the page with the new data that’s just been loaded.

We then set the scale and the range again using the x.domain and y.domain lines. We do this
because it’s more than possible that our data has exceeded or shrunk with respect to our original
domains so we recalculate them using our new data. The consequence of not doing this would
be a graph that could exceed it’s available space or be cramped up.

Then we assign the variable svg to be our selection of the "body" div (which means the following
actions will only be carried out on objects within the "body" div.

Selection Study.

Selections are a very important topic and if reading Google Groups and Stack
Overflow are anything to go by they are also a much misunderstood feature of D3. I
won’t claim to be in any better position to describe them, but I would direct readers to
a description of nested selections by Mike Bostock (http://bost.ocks.org/mike/nest/)
and a video tutorial by Ian Johnson (http://blog.visual.ly/using-selections-in-d3-to-
make-data-driven-visualizations/).

The other part of that line is the transition command (.transition()). This command goes to
the heart of animation dynamic data and visualizations and is a real treasure.

Things you can do with the basic graph 92

Transition Training

I will just be brushing the surface of the subject of transitions in d3.js, and
I will certainly not do the topic the justice it deserves for in depth ani-
mations. I heartily recommend that you take an opportunity to read Mike
Bostock’s “Path Transitions” (http://bost.ocks.org/mike/path/), bar chart tutorial
(http://mbostock.github.com/d3/tutorial/bar-2.html) and Jerome Cukier’s “Creating
Animations and Transitions with D3” (http://blog.visual.ly/creating-animations-
and-transitions-with-d3-js/). Of course, one of themain resources for information on
transitions is also the D3 wiki (https://github.com/mbostock/d3/wiki/Transitions).

As the name suggests, a transition is a method for moving from one state to another. In it’s
simplest form for a d3.js visualisation, it could mean moving an object from one place to another,
or changing an objects properties such as opacity or colour. In our case, we will take our data
which is in the form of a line, and change some of that data. And when we change the data we
will get d3 to manage the change via a transition. At the same time (because we’re immensely
clever) we will also make sure we change the axes if they need it.

So in short, we’re going to change this…

The initial set of data

… into this…

Things you can do with the basic graph 93

‘Updated’ data

Obviously the line values have changed, and both axes have changed as well. And using a
properly managed transition, it will all occur in a smooth ballet :-).

So, looking at the short block that manages the line transition;

svg.select(".line") // change the line

.duration(750)

.attr("d", valueline(data));

We select the ".line" object and since we’ve already told the script that svg is all about the
transition (var svg = d3.select("body").transition();) the attributes that follow specify
how the transition for the line will proceed. In this case, the code describes the length of
time that the transition will take as 750 milliseconds (.duration(750)) and uses the new data
as transcribed by the valueline variable from the original part of the script (.attr("d",
valueline(data));).

The same is true for both of the subsequent portions of the code that change the x and y axes.
We’ve set both to a transition time of 750 milliseconds, although feel free to change those values
(make each one different for an interesting effect).

Other attributes for the transition that we could have introduced would be a delay (.delay(500),
perhaps to stagger the movements) and more interestingly an easing attribute (.ease(type[,
arguments…])) which will have the effect of changing how the movement of a transition appears
(kind of like a fast-slow-fast vs linear, but with lots of variations).

But for us we’ll survive with the defaults.

In theory, you’ve added in your new data file (data-alt.tsv) and made the two changes to the
simple graph file (the HTML block for the button and the JavaScript one for the updateData

function). The result has been a new beginning in your wonderful d3 journey!

I have loaded the file for this into the d3noob downloads page with the general example files as
data-load-button.html.

Things you can do with the basic graph 94

Revert the data
If you fancy a quick test, consider what you would need to do to add another
button that was labelled ‘Revert’ which, when pressed changed the graph back to
the original data (so that you could merrily press ‘Update’ and ‘Revert’ all day if you
wanted).
I have loaded a simplistic version of the graph that will do this into the d3noob
downloads page with the general example files as data-load-revert-button.html.
There are more elegant ways to code this, but the example I give is pretty easy to
follow.

Things you can do with the basic graph 95

Update data dynamically – Automatically

I have no doubt that the excitement of updating your data and graph with the magic of buttons
is quite a thrill. But believe it or not, there’s more to come.

In the example we’re going to demonstrate now, there are no buttons to click, the graph will
simply update itself when the data changes.

I know, I know. It’s like magic!

So the sort of usage scenario that you would be putting this to is when you had a dashboard
type display or a separate window just for the purposes of showing a changing value like a stock
ticker or number of widgets sold (where the number was changing frequently).

So, how to create the magic?

Starting with the data-load-button.html file, firstly we should remove the button, so go ahead
and delete the button block that we had in the HTML section (the bit that looked like this…).

<div id="option">

<input name="updateButton"

type="button"

value="Update"

onclick="updateData()" />

</div>

Now, we have two references in our JavaScript where we load our data. One loads data.tsv
initially, then when the button was pushed, we loaded data-alt.tsv. We’re going to retain that
arrangement for the moment, because we want to make sure we can see something happening,
but ultimately, we would just have them referencing a single file.

So, the magic piece of script that will do your updating is as follows;

var inter = setInterval(function() {

updateData();

}, 5000);

And we should put that just above the function updateData() { line in our code.

The key to this piece of code is the setInterval function which will execute specified code (in
this case it’s updateData();which will go and read in our new information) over and over again
in a set interval (in this case 5000 milliseconds (}, 5000);).

I honestly wish it was harder, but sadly it’s that simple. You now have in your possession the
ability to make your visualizations do stuff on a regular basis, all by themselves!

How to test?

Well, just load up your new file (I’ve called the one that’s in the d3noob downloads page with
the general example files data-load-automatic.html). After an interval of 5 seconds, you should
see the graph change all by itself. How cool is that?

Things you can do with the basic graph 96

You know it gets better though…

If you open your data.alt.tsv file and change a value (increase one of the close values by a factor
of 10 or something equally noticeable). Then save the file. Keep an eye on your graph. Before 5
seconds is up it should have changed to reflect your new data.

There is a possibility that your browser may have decided to cache the data from
the data-alt.tsv file, in which case you can tell it to stop that nonsense by going into
the settings and clearing the cache.

Assorted Tips and Tricks
Change a line chart into a scatter plot

Confession time.

I didn’t actually intend to add in a section with a scatter plot in it for its own sake because I
thought it would be;

1. tricky
2. not useful
3. all of the above

I was wrong on all counts.

I did want to have a scatter plot, because I wanted to display tool tips, but this is
too neat to ignore. It was literally a 5 minute job, 3 minutes of which was taken
up by going to the d3 gallery on the wiki⁵² and ogling at the cool stuff there before
snapping out of it and going to the scatter plot example⁵³.

All you need to do is take the simple graph example file and slot the following block in between
the ‘Add the valueline path’ and the ‘add the x axis’ blocks.

svg.selectAll("dot")

.data(data)

.enter().append("circle")

.attr("r", 3.5)

.attr("cx", function(d) { return x(d.date); })

.attr("cy", function(d) { return y(d.close); });

And you will get…

⁵²https://github.com/mbostock/d3/wiki/Gallery
⁵³http://bl.ocks.org/3887118

https://github.com/mbostock/d3/wiki/Gallery
http://bl.ocks.org/3887118
https://github.com/mbostock/d3/wiki/Gallery
http://bl.ocks.org/3887118

Assorted Tips and Tricks 98

A scatter plot! (with a line)

I deliberately put the dots after the line in the drawing section, because I thought they would
look better, but you could put the block of code before the line drawing block to get the following
effect;

A scatter plot with the line in front of the dots

(just trying to reinforce the concept that ‘order’ matters when drawing objects :-)).

You could of course just remove the line block all together…

A scatter plot without the line this time

But in my humble opinion it looses something.

So what do the individual lines in the scatter plot block of JavaScript do?

The first line (svg.selectAll("dot")) essentially provides a suitable grouping label for the svg
circle elements that will be added. The next line associates the range of data that we have to the
group of elements we are about to add in.

Assorted Tips and Tricks 99

Then we add a circle for each data point (.enter().append("circle")) with a radius of 3.5
pixels (.attr("r", 3.5)) and appropriate x (.attr("cx", function(d) { return x(d.date);

})) and y (.attr("cy", function(d) { return y(d.close); });) coordinates.

There is lots more that we could be doing with this piece of code (check out the scatter plot
example⁵⁴) including varying the colour or size or opacity of the circles depending on the data
and all sorts of really neat things, but for the mean time, there we go. Scatter plot!

I’ve placed a copy of the file for drawing the scatter plot into the downloads section on d3noob.org
with the general examples as simple-scatterplot.html.

⁵⁴http://bl.ocks.org/3887118

http://bl.ocks.org/3887118
http://bl.ocks.org/3887118
http://bl.ocks.org/3887118

Assorted Tips and Tricks 100

Adding tooltips.

Tooltips have a marvellous duality. They are on one hand a pretty darned useful thing that aids
in giving context and information where required and on the other hand, if done with a bit of
care, they can look very stylish :-).

Technically, they represent a slight move from what we have been playing with so far into a
mildly more complex arena of ‘transitions’ and ‘events’. You can take this one of two ways.
Either accept that it just works and implement it as shown, or you will know what s going on
and feel free to deride my efforts as those of a rank amateur :-).

The source for the implementation was taken from Mike Bostock’s example on
bl.ocks.org⁵⁵. This was combined with a few other bit’s and pieces (the trickiest being
working out how to format the displayed date correctly and inserting a line break in
the tooltip (which I found on Google Groups⁵⁶; (well done to all those participating
in that discussion)). I make the assumption that any or all errors that occur in the
implementation will be mine, whereas, any successes will be down to the original
contributors.

Just in case there is some confusion, a tooltip (one word or two?) is a discrete piece of information
that will pop into view when the mouse is hovered over somewhere specific. Most of us have
seen and used them, but I suppose we all tend to call them different things such as ‘infotip’, ‘hint’
or ‘hover box’ I don’t know if there’s a right name for them, but here’s an example of what we’re
trying to achieve;

A tooltip magically appears over a dot

You can see the mouse has hovered over one of the scatter plot circles and a tip has appeared
that provides the user with the exact date and value for that point.

Now, youmay also notice that there’s a certain degree of ‘fancy’ here as the information is bound
by a rectangular shape with rounded corners and a slight opacity. The other piece of ‘fancy’
which you don’t see in a PDF (or whatever format this distinguished tome will be published in

⁵⁵http://bl.ocks.org/1087001
⁵⁶https://groups.google.com/forum/?fromgroups=#!topic/d3-js/GgFTf24ltjc

http://bl.ocks.org/1087001
https://groups.google.com/forum/?fromgroups=#!topic/d3-js/GgFTf24ltjc
http://bl.ocks.org/1087001
https://groups.google.com/forum/?fromgroups=#!topic/d3-js/GgFTf24ltjc

Assorted Tips and Tricks 101

on it’s 33rd reprint in the year 2034), is that when these tool tips appear and disappear, they do
so in an elegant fade-in, fade-out way. Purty.

Now, before we get started describing how the code goes together, let’s take a quick look at the
two technique specifics that I mentioned earlier, ‘transitions’ and ‘events’.

Transitions

From themain d3.js web page (d3js.org) transitions are described as gradually interpolating styles
and attributes over time. So what I take that to mean is that if you want to change an object, you
can do so be simply specifying the attribute / style end point that you want it to end up with and
the time you want it to take and go!

Of course, it’s not quite that simple, but luckily, smarter people than I have done some fantastic
work describing different aspects of transitions so please see the following for a more complete
description of the topic;

• Mike Bostock’s Bar chart tutorial⁵⁷
• Christophe Viau’s ‘Try D3 Now!’ tutorial⁵⁸

Hopefully observing the mouseover and mouseout transitions in the tooltips example will whet
your appetite for more!

Events

The other technique is related to mouse ‘events’. This describes the browser watching for when
‘something’ happens with the mouse on the screen and when it does, it takes a specified action.
A (probably non-comprehensive) list of the types of events are the following;

• mousedown: Triggered by an element when a mouse button is pressed down over it
• mouseup: Triggered by an element when a mouse button is released over it
• mouseover: Triggered by an element when the mouse comes over it
• mouseout: Triggered by an element when the mouse goes out of it
• mousemove: Triggered by an element on every mouse move over it.
• click: Triggered by a mouse click: mousedown and then mouseup over an element
• contextmenu: Triggered by a right-button mouse click over an element.
• dblclick: Triggered by two clicks within a short time over an element

How many of these are valid to use within d3 I’m not sure, but I’m willing to bet that there are
probably more than those here as well. Please go to http://javascript.info/tutorial/mouse-events⁵⁹
for a far better description of the topic if required.

⁵⁷http://mbostock.github.com/d3/tutorial/bar-2.html
⁵⁸http://christopheviau.com/d3_tutorial/
⁵⁹http://javascript.info/tutorial/mouse-events

http://mbostock.github.com/d3/tutorial/bar-2.html
http://christopheviau.com/d3_tutorial/
http://javascript.info/tutorial/mouse-events
http://mbostock.github.com/d3/tutorial/bar-2.html
http://christopheviau.com/d3_tutorial/
http://javascript.info/tutorial/mouse-events

Assorted Tips and Tricks 102

Get tipping

So, bolstered with a couple of new concepts to consider, let’s see how they are enacted in practice.

If we start with our simple-scatter plot graph there are 4 areas in it that we will want to modify
(it may be easier to check the tooltips.html file in the example files in the downloads section on
d3noob.org).

The first area is the CSS. The following code should be added just before the </style> tag;

div.tooltip {

position: absolute;

text-align: center;

width: 60px;

height: 28px;

padding: 2px;

font: 12px sans-serif;

background: lightsteelblue;

border: 0px;

border-radius: 8px;

pointer-events: none;

}

These styles are defining how our tooltip will appear . Most of them are fairly straight forward.
The position of the tooltip is done in absolute measurements, not relative. The text is centre
aligned, the height, width and colour of the rectangle is 28px, 60px and lightsteelblue respectively.
The ‘padding’ is an interesting feature that provides a neat way to grow a shape by a fixed amount
from a specified size.

We set the boarder to 0px so that it doesn’t show up and a neat style (attribute?) called border-
radius provides the nice rounded corners on the rectangle.

Lastly, but by no means least, the ‘pointer-events: none’ line is in place to instruct the mouse
event to go “through” the element and target whatever is “underneath” that element instead
(Read more here⁶⁰). That means that even if the tooltip partly obscures the circle, the code will
stll act as if the mouse is over only the circle.

The second addition is a simple one-liner that should (for forms sake) be placed under the
‘parseData’ variable declaration;

var formatTime = d3.time.format("%e %B");

This line formats the date when it appears in our tooltip. Without it, the time would default to
a disturbingly long combination of temporal details. In the case here we have declared that we
want to see the day of the month (%e) and the full month name(%B).

The third block of code is the function declaration for ‘div’.

⁶⁰https://developer.mozilla.org/en-US/docs/CSS/pointer-events

https://developer.mozilla.org/en-US/docs/CSS/pointer-events
https://developer.mozilla.org/en-US/docs/CSS/pointer-events

Assorted Tips and Tricks 103

var div = d3.select("body").append("div")

.attr("class", "tooltip")

.style("opacity", 0);

We can place that just after the ‘valueline’ definition in the JavaScript. Again there’s not too
much here that’s surprising. We tell it to attach ‘div’ to the body element, we set the class to the
tooltip class (from the CSS) and we set the opacity to zero. It might sound strange to have the
opacity set to zero, but remember, that’s the natural state of a tooltip. It will live unseen until it’s
moment of revelation arrives and it pops up!

The final block of code is slightly more complex and could be described as a mutant version of
the neat little bit of code that we used to do the drawing of the dots for the scatter plot. That’s
because the tooltips are all about the scatter plot circles. Without a circle to ‘mouseover’, the
tooltip never appears :-).

So here’s the code that includes the scatter plot drawing (it’s included since it’s pretty much
integral);

svg.selectAll("dot")

.data(data)

.enter().append("circle")

.attr("r", 5)

.attr("cx", function(d) { return x(d.date); })

.attr("cy", function(d) { return y(d.close); })

.on("mouseover", function(d) {

div.transition()

.duration(200)

.style("opacity", .9);

div .html(formatTime(d.date) + "
" + d.close)

.style("left", (d3.event.pageX) + "px")

.style("top", (d3.event.pageY - 28) + "px");

})

.on("mouseout", function(d) {

div.transition()

.duration(500)

.style("opacity", 0);

});

Before we start going through the code, the example file for tooltips that is on
d3noob.org includes a brief series of comments for the lines that are added or
changed from the scatter plot, so if you want to compare what is going on in context,
that is an option.

The first six lines of the code are a repeat of the scatter plot drawing script. The only changes are
that we’ve increased the radius of the circle from 3.5 to 5 (just to make it easier to mouse over

Assorted Tips and Tricks 104

the object) and we’ve removed the semicolon from the cy attribute line since the code now has
to carry on.

So the additions are broken into to areas that correspond to the two events. mouseover and
mouseout. When the mouse moves over any of the circles in the scatter plot, the mouseover
code is executed on the div element. When the mouse is moved off the circle a different set of
instructions are executed.

There is only one!

It would be a mistake to think of tooltips in the plural because there aren’t a whole
series of individual tooltips just waiting to appear for their specific circle. There is
only one tooltip that will appear when themousemoves over a circle. And depending
on what circle it’s over, the properties of the tooltip will alter slightly (in terms of its
position and contents).

on.mouseover

The .on("mouseover" line initiates the introduction of the tooltip. Then we declare the element
we will be introducing (‘div’) and that we will be applying a transition to it’s introduction
(.transition()). The next two lines describe the transition. It will take 200 milliseconds
(.duration(200)) and will result in changing the elements opacity to .9 (.style("opacity",
.9);). Given that the natural state of our tooltip is an opacity of 0, this make sense for something
appearing, but it doesn’t go all the way to a solid object and it retains a slight transparency just
to make it look less permanent.

The following three lines format our tooltip. The first one adds an html element that contains
our x and y information (the date and the d.close value). Now this is done in a slightly strange
way. Other tooltips that I have seen have used a ‘.text’ element instead of a ‘.html’ one, but I
have used ‘.html’ in this case because I wanted to include the line break tag
 to separate
the date and value. I’m sure there are other ways to do it, but this worked for me. The other
interesting part of this line is that this is where we call our time formatting function that we
described earlier. The next two lines position the tooltip on the screen and to do this they grab
the x and y coordinates of the mouse when the event takes place (with the d3.event.pageX and
d3.event.pageY snippets) and apply a correction in the case of the y coordinate to raise the
tooltip up by the same amount as its height (28 pixels).

on.mouseout

The .on("mouseout" section is slightly simpler in that it doesn’t have to do any fancy text / html
/ coordinate stuff. All it has to do is to fade out the ‘div’ element. And that is done by simply
reversing the opacity back to 0 and setting the duration for the transition to 500 milliseconds
(being slightly longer than the fade-in makes it look slightly cooler IMHO).

Assorted Tips and Tricks 105

Right, there you go. As a description it’s ended up being a bit of a wall of text I’m afraid. But
hopefully between the explanation and the example code you will get the idea. Please take the
time to fiddle with the settings described here to find the ones that work for you and in the
process you will reinforce some of the principles that help D3 do it’s thing. I’ve placed a copy
of the file for drawing the tooltips into the downloads section on d3noob.org with the general
examples as tooltips.html.

Assorted Tips and Tricks 106

What are the predefined, named colours?

Throughout this document I have been using colours defined by name. This is mainly because I
can, and not for any other reason. In fact there several different ways to define colours used in
D3 / JavaScript / CSS and HTML. I have no idea what the limitations for use are and / or how
their use in different browsers impacts on correct representation. But I do know that they’re used
widely.

I was really interested in what the names were for the colours. After a cursory search I was able
to find a great list on about.com at http://webdesign.about.com/od/colorcharts/l/bl_namedcol-
ors.htm⁶¹.

The overriding point of all this is that there’s more than one way to define colours in your graphs.

It means that
.style("fill", "steelblue")

and…
.style("fill", "#4682b4")

and…
.style("fill", "rgb(70,130,180)")

All three alternatives result in the same colour being applied.

⁶¹http://webdesign.about.com/od/colorcharts/l/bl_namedcolors.htm

http://webdesign.about.com/od/colorcharts/l/bl_namedcolors.htm
http://webdesign.about.com/od/colorcharts/l/bl_namedcolors.htm
http://webdesign.about.com/od/colorcharts/l/bl_namedcolors.htm

Assorted Tips and Tricks 107

Selecting / filtering a subset of objects

OK, Imagine a scenario where you want to select (or should we say filter) a particular range of
objects from a larger set.

For example, what if we wanted to use our scatter plot example to show the line as normal,
but we are particularly interested in the points where the values of the points fall below 400.
And when it does we want them highlighted with a circle as we have done with all the points
previously.

So that we end up with something that looks a little like this…

Only the points below 400 are selected

Err… Yes, for those among you who are of the observant persuasion, I have deliberately coloured
them red as well (red for DANGER!).

This is a fairly simple example, but serves to illustrate the principle adequately. From our simple
scatter plot example we only need to add in two lines to the block of code that draws the circles
as follows;

svg.selectAll("dot")

.data(data)

.enter().append("circle")

.filter(function(d) { return d.close < 400 }) // <== This line

.style("fill", "red") // <== and this one

.attr("r", 3.5)

.attr("cx", function(d) { return x(d.date); })

.attr("cy", function(d) { return y(d.close); });

The first added line uses the .filter function to act on the data points and according to the
arguments passed to it in this case, only return those where the value of d.close is less than 400
(return d.close < 400).

The second added line is our line that simply colours the circles red (.style("fill", "red")).

That’s all there is to it. Pretty simple, but the filter function can be very powerful when used
wisely.

Assorted Tips and Tricks 108

I’ve placed a copy of the file for selecting / filtering into the downloads section on d3noob.org
with the general examples as filter-selection.html.

Assorted Tips and Tricks 109

Select items with an IF statement.

The filtering – selection section above is a good way to adapt what you see on a graph, but so is
a more familiar friend… The ‘if’ statement.

An if statement will act to carry out a task in a particular way dependant on a condition that
you specify.

Here’s an example, what if we wanted to show our scatter plot as normal, but all
those with a ‘close’ value less than 400 should be coloured red. Sound familiar? Yes,
I know it’s similar to the example above, with the subtle difference that it is leaving
the circles above 400 in place (more on that to follow).

Starting with the simple scatter plot example all we have to do is include the if statement in the
block of code that draws the circles. Here’s the entire block with the additions highlighted;

svg.selectAll("dot")

.data(data)

.enter().append("circle")

.attr("r", 3.5)

.style("fill", function(d) { // <== Add these

if (d.close <= 400) {return "red"} // <== Add these

else { return "black" } // <== Add these

;}) // <== Add these

.attr("cx", function(d) { return x(d.date); })

.attr("cy", function(d) { return y(d.close); });

Our first added line introduces the style modifier and the rest of the code acts to provide a return
for the ‘fill’ attribute.

The second line introduces our if statement. There’s very little difference using if statements
between languages. Just look out for maintaining the correct syntax and you should be fine. In
this case we’re asking if the value of d.close is less than or equal to 400 and if it is it will return
the "red" statement for our fill.

The third line covers our rear and make sure that if the colour isn’t going to be red, it’s going to
be black. The last line just closes the style and function statements.

The result?

Assorted Tips and Tricks 110

Points above 400 black and points below 400 red

Aww….. nice.

I’ve placed a copy of the file that uses the if statement into the downloads section on d3noob.org
with the general examples as if-statement.html.

Could it be any cooler? I’m glad you asked.

What if we wanted to have all the points where close was less than 400 red and all those where
close was greater than 620 green? Oh yeah! Now we’re talking.

So with one small change to the if statement;

.style("fill", function(d) {

if (d.close <= 400) {return "red"}

else if (d.close >= 620) {return "lawngreen"} // <== Right here

else { return "black" }

;})

Check it out…

Points coloured differently depending on their value

Nice.

Assorted Tips and Tricks 111

Applying a colour gradient to a line based on value.

I just know that you were impressed with the changing dots in a scatter plot based on the value.
But could we go one better?

How about we try to reproduce the same effect but by varying the colour of the plotted line.
This is a neat feature and a useful example of the flexibility of d3.js and SVG in general. I used
the appropriate bits of code from Mike Bostock’s Threshold Encoding example⁶². And I should
take the opportunity to heartily recommend browsing through his collection of examples on
bl.ocks.org⁶³. For thosewho prefer to see the code in it’s fullest, there is an example as an appendix
(Graph with Area Gradient) that can assist (although it is for a later example that uses a gradient
in a similar way (don’t worry we’ll get to it in a few pages)).

Here then is a plotted line that is red below 400, green above 620 and black in between.

Line colour varied with gradient

How cool is that?

Enough beating around the bush, how is the magic line produced?

Starting with our simple line graph, there are only two blocks of code to go in. One is CSS in the
<style> area and the second is a tricky little piece of code that deals with gradients.

So, first the CSS.

.line {

fill: none;

stroke: url(#line-gradient);

stroke-width: 2px;

}

This block can go in the <style> area towards the end.

There’s the fairly standard fill of none and a stroke width of 2 pixels, but the stroke:

url(#line-gradient); is something different.

⁶²http://bl.ocks.org/3970883
⁶³http://bl.ocks.org/mbostock

http://bl.ocks.org/3970883
http://bl.ocks.org/mbostock
http://bl.ocks.org/3970883
http://bl.ocks.org/mbostock

Assorted Tips and Tricks 112

In this case the stroke (the colour of the line) is being determined at a link within the page which
is set by the anchor #line-gradient. We will see shortly that this is in our second block of code,
so the colour is being defined in a separate portion of the script.

And now the JavaScript gradient code;

svg.append("linearGradient")

.attr("id", "line-gradient")

.attr("gradientUnits", "userSpaceOnUse")

.attr("x1", 0).attr("y1", y(0))

.attr("x2", 0).attr("y2", y(1000))

.selectAll("stop")

.data([

{offset: "0%", color: "red"},

{offset: "40%", color: "red"},

{offset: "40%", color: "black"},

{offset: "62%", color: "black"},

{offset: "62%", color: "lawngreen"},

{offset: "100%", color: "lawngreen"}

])

.enter().append("stop")

.attr("offset", function(d) { return d.offset; })

.attr("stop-color", function(d) { return d.color; });

There’s our anchor on the second line!

But let’s not get ahead of ourselves. This block should be placed after the x and y domains are
set, but before the line is drawn.

Seems a bit strange doesn’t it? This block is all about defining the actions of an
element, but the element in this case is a gradient and the gradient acts on the line.

So, our first line adds our linear gradient. Gradients consist of continuously smooth colour
transitions along a vector from one colour to anotherWe can have a linear one or a radial one and
depending onwhich you select, there are a few options to define. There is some great information
on gradients at http://www.w3.org/TR/SVG/pservers.html⁶⁴ (more than I ever thought existed).

The second line (.attr("id", "line-gradient")) sets our anchor for the CSS that we saw
earlier.

The third fourth and fifth lines define the bounds of the area over which the gradient will
act. Since the coordinates x1, y1, x2, y2 will describe an area. The values for y1 (0) and y2

(1000) are used more for convenience to align with our data (which has a maximum value
around 630 or so). For more information on the gradientUnits attribute I found this page useful

⁶⁴http://www.w3.org/TR/SVG/pservers.html

http://www.w3.org/TR/SVG/pservers.html
http://www.w3.org/TR/SVG/pservers.html

Assorted Tips and Tricks 113

https://developer.mozilla.org/en-US/docs/SVG/Attribute/gradientUnits⁶⁵. We’ll come back to the
coordinates in a moment.

The next block selects all the ‘stop’ elements for the gradients. These stop elements define where
on the range covered by our coordinates the colours start and stop. These have to be defined as
either percentages or numbers (where the numbers are really just percentages in disguise (i.e.
45% =0.43)).

The best way to consider the stop elements is in conjunction with the gradientUnits. The image
following may help.

Varying colours for varying values make a gradient

In this case our coordinated describe a vertical line from 0 to 1000. Our colours transition from
red (0) to red (400) at which point they change to black (400) and this will continue until it gets to
black (620). Then this changes to green (620) and from there, any value above that will be green.

Now, it might seem a little convoluted to be doubling up on the colours and values,
but the reason is that the gradient functions are have a lot more to them than we’re
using and we’ll have a look at the possibilities once the explanation of the code is
done.

So after defining the stop elements, we enter and append the elements to the gradient (.enter().append("stop"))
with attributes for offset and color that we defined in the stop elements area.

Now, that IS cool, but by now, I hope that you have picked that a gradient function really does
mean a gradient, and not just a straight change from one colour to another.

So, let’s try changing the stop element offsets to the following (and making the stroke-width
slightly larger to see more clearly what’s going on);

⁶⁵https://developer.mozilla.org/en-US/docs/SVG/Attribute/gradientUnits

https://developer.mozilla.org/en-US/docs/SVG/Attribute/gradientUnits
https://developer.mozilla.org/en-US/docs/SVG/Attribute/gradientUnits

Assorted Tips and Tricks 114

.data([

{offset: "0%", color: "red"},

{offset: "30%", color: "red"},

{offset: "45%", color: "black"},

{offset: "55%", color: "black"},

{offset: "60%", color: "lawngreen"},

{offset: "100%", color: "lawngreen"}

])

And here we go…

Line with a gradually changing gradient

Ahh… A real gradient.

I have tended to find that I need to have a good think about how I set the offsets and bounds
when doing this sort of thing since it can get quite complicated quite quickly :-)

Assorted Tips and Tricks 115

Applying a colour gradient to an area fill.

The previous example of a varying gradient on a line is neat, but hopefully you’re already
thinking “Hang on, can’t that same thing be applied to an area fill?”.

Damn! You’re catching on.

To do this there’s only a few things we need to change;

First of all the CSS for the line needs to be amended to refer to the area. So this…

.line {

fill: none;

stroke: url(#line-gradient);

stroke-width: 2px;

}

…gets changed to this…

.area {

fill: url(#area-gradient);

stroke-width: 0px;

}

We’ve defined the styles for the area this time, but instead of the stroke being defined by the
separate script, now it’s the area. While we’ve changed the url name, it’s actually the same piece
of code, with a different id (because it seemed wrong to be talking about an area when the label
said line). We’ve also set the stroke width to zero, because we don’t want any lines around our
filled area.

Now we want to take the block of code that defined our line…

var valueline = d3.svg.line()

.x(function(d) { return x(d.date); })

.y(function(d) { return y(d.close); });

… and we need to replace it with the standard block that defined an area fill.

var area = d3.svg.area()

.x(function(d) { return x(d.date); })

.y0(height)

.y1(function(d) { return y(d.close); });

So we’re not going to be drawing a line at all. Just the area fill.

Next as Imentioned earlier, we change the id for the linearGradient block from "line-gradient"

to "area-gradient"

Assorted Tips and Tricks 116

.attr("id", "area-gradient")

And lastly, we remove the block of code that drew the line and replace it with a block that draws
an area. So change this….

svg.append("path")

.attr("class", "line")

.attr("d", valueline(data));

… for this;

svg.append("path")

.datum(data)

.attr("class", "area")

.attr("d", area);

And then sit back and marvel at your creation;

Area fill with a gradually changing gradient

For a slightly ‘nicer’ looking example, you could check out a variation of one of Mike Bostocks
originals here; http://bl.ocks.org/4433087⁶⁶.

⁶⁶http://bl.ocks.org/4433087

http://bl.ocks.org/4433087
http://bl.ocks.org/4433087

Assorted Tips and Tricks 117

Export an image from a d3.js page as a SVG or bitmap

At some point you will want to take your lovingly crafted D3 graphical masterpiece and put it
in a (close your eyes if you’re squeamish) Power Point presentation or Word document or export
it for sharing in some other way.

There could be many reasons for wanting to do this and some may be more complicated than I
will be willing to explore, but for the occasional conversion of images I have found what I regard
as a fairly easy process.

Before we begin our exporting odyssey, let’s cover a little bit of housekeeping and describe the
difference between a vector graphic (in this case specifically Scalable Vector Graphics) and a
bitmap. Please skip ahead if you’re comfortable with the terms.

Bitmaps

A bitmap (or raster) image is one that is composed of lots of discrete individual dots (let’s call
them pixels) which, when joined together (and zoomed out a bit) give the impression of an image.
If we use the example of the force layout example we developed, and look at a screen shot (and
it’s important to remember that this is a screen shot) of the image we see a picture that looks
fairly benign.

A bitmap at a normal zoom level

However, as we enlarge the image by doubling it’s size (x 2) we begin to see some rough edges
appear.

A bitmap at 200%

And if we enlarge it by doubling again (x 4) , it starts to look decidedly rough.

Assorted Tips and Tricks 118

A bitmap at 400%

Doubling again (x 8), starts to show the pixels pretty clearly.

A bitmap at 800%

Doubling again for the last time (x 16) and the pixels are plainly evident.

A bitmap at 1600%

Bitmaps can be saved in a wide range of formats depending on users requirements including
compression, colour depth, transparency and a host of other attributes. Typically they can be
identified by the file suffix .jpg, .png or .bmp (and there are an equally large number of other
suffixes).

Assorted Tips and Tricks 119

This will be the type of format thatmost peoplewill be familiar with for images and their ubiquity
with the advent of digital cameras almost makes it redundant to describe them.

However, there is another type of image and it is even more important to d3.js users.

Vector Graphics (Specifically SVG)

Scalable Vector Graphics (SVG) use a technique of drawing an image that relies more on a
description of an image than the final representation that a user sees. Instead of arranging
individual pixels on an image is created by describing the way the image is created.

For instance, drawing a line would be accomplished by defining two sets of coordinates and
specifying a line of a particular width and colour be drawn between the points.

This might sound a little long winded, and it does create a sense of abstraction, but it is a far more
powerful mechanism for drawing as there is no loss of detail with increasing scale. Changes to
the image can be simply carried out by adjusting the coordinates, colour description, line width
or curve diameter. If this all sounds a little familiar, you have definitely been paying attention,
because this is the heart of the way that d3.js draws images in a browser. It uses a combination
of coordinates, shapes and attributes to create vector images in a web page.

As a demonstration of the difference, here is the same original picture which I have saved as a
SVG image.

A SVG image at a normal zoom level

Enlarged by doubling it’s size (x 2) everything looks smooth.

A SVG at 200%

If we enlarge it by doubling again (x 4) , it still looks good.

Assorted Tips and Tricks 120

A SVG at 400%

Doubling again (x 8) and we can see that the text ‘James’ is actually composed of a fill colour
and a border.

A SVG at 800%

Doubling again for the last time (x 16) everything still retains it’s clear sharp edges.

A SVG at 1600%

Let’s get exporting!

We’ll use a three stage process for exporting our image (assuming the desired end result is a
bitmap) and usefully, the first stage will result in us having a vector image as well!

The sequence will go as follows:

1. Copy the image from the web page and save it as a SVG file

Assorted Tips and Tricks 121

2. Open the SVG image in a program designed to use vector images and edit it if required.
3. Export that image as a bitmap

Copying the image off the web page

Getting the image out of a web page is made easy by using ‘SVGCrowbar⁶⁷’. This is a “AChrome-
specific bookmarklet that extracts SVG nodes and accompanying styles from an HTML document
and downloads them as an SVG file”. What that means is that once you drag the bookmarklet
from the web page to your bookmarks (You need to be using Google Chrome, and I’m told that
about 60% of the people who visit d3noob.org do) you’re ready to go.

Drag the ‘SVG Crowbar’ Object from the web page to your bookmarks bar

Now when you have a web page open that’s displaying a D3 creation, all you need to do is click
on the SVG Crowbar bookmark and you will be prompted for a location to save a svg image.

Really. It’s that simple.

Open the SVG Image and Edit

Obviously now that you have a SVG image, you need to be able to do something with it. My
preferred software for this is Inkscape⁶⁸.

Inkscape is “An Open Source vector graphics editor, with capabilities similar to Illustrator,
CorelDraw, or Xara X, using the W3C standard Scalable Vector Graphics (SVG) file format”.

It really is an extremely capable drawing program and it is capable of a lot more than the job
we’re going to use it for, so you may find it has other uses that may be valuable.

Once installed, you can open the saved file directly into Inkscape.

⁶⁷http://nytimes.github.io/svg-crowbar/
⁶⁸http://inkscape.org/

http://nytimes.github.io/svg-crowbar/
http://inkscape.org/
http://nytimes.github.io/svg-crowbar/
http://inkscape.org/

Assorted Tips and Tricks 122

Inkscape with our force diagram

While here you can edit the drawing to your hearts delight. I particularly recommend ungrouping
the diagram and removing or adjusting individual elements if required.

Once you have finished editing, you are ready for the final step.

Saving as a bitmap

While still in Inkscape, go to the ‘File’, ‘Export Bitmap…’ menu.

Assorted Tips and Tricks 123

Inkscape Export Bitmap menu

This will open a dialog box where you can select an appropriate resolution and location for your
bitmap and then press the export button.

Inkscape Export Bitmap dialog

There you go.

Assorted Tips and Tricks 124

It is worth knowing that the default settings here will export the diagram with a transparent
background (using *.png) which will fit in nicely with a wide range of graphical end uses.

Assorted Tips and Tricks 125

Add an HTML table to your graph

So graphs and graphics are D3’s bread and butter you’d think. Hmm…

Well yes and no.

Yes D3 has extraordinary powers for presenting and manipulating images in a web page. But if
you’ve read through the entirety of the d3.js main site (haven’t we all) you will recall that D3
actually stands for Data Driven Documents. It’s not necessarily about the pretty pictures and the
swirling cascade of colour. It’s about generating something in a web browser based on data.

This transitions nicely into consideration of adding a table of information that can accompany
your graph (it could just as easily (or easier) stand alone, but for the sake of continuity, we’ll use
the graph).

What we’ll do is add the data that we’ve used to make our graph under the graph itself. To make
sure that it’s all nicely aligned, we’ll place it in a table.

It should end up looking a little like this (and this has been cropped slightly at the bottom to
avoid expanding the page with rows of numbers / dates).

Basic graph with a table of data

The code was drawn from an example provided by Shawn Allen⁶⁹ on Google Groups⁷⁰. In fact,
the post itself is an excellent one if you are considering creating a table straight from a csv file.

⁶⁹http://jsfiddle.net/7WQjr/
⁷⁰http://stackoverflow.com/questions/9268645/d3-creating-a-table-linked-to-a-csv-file

http://jsfiddle.net/7WQjr/
http://stackoverflow.com/questions/9268645/d3-creating-a-table-linked-to-a-csv-file
http://jsfiddle.net/7WQjr/
http://stackoverflow.com/questions/9268645/d3-creating-a-table-linked-to-a-csv-file

Assorted Tips and Tricks 126

HTML Tables

I’m walking a fine line here since I have a remarkably small amount of knowledge
on HTML tables. So I’ll try to provide a brief overview as I understand it and as I
see it represented in the code below, but for a far fuller explanation, take a look at
some great work by Peter Cook here⁷¹ or let Google be your friend.

Tables are made up of rows, columns and data (that goes in each cell). All you need to do to
successfully place a table on a web page is to lay out the rows and columns in a logical sequence
using the appropriate HTML tags and you’re away.

For example here’s the total HTML code for a web page to display a simple table;

<!DOCTYPE html>

<body>

<table border="1">

<tr>

<th>Header 1</th>

<th>Header 2</th>

</tr>

<tr>

<td>row 1, cell 1</td>

<td>row 1, cell 2</td>

</tr>

<tr>

<td>row 2, cell 1</td>

<td>row 2, cell 2</td>

</tr>

</table>

</body>

This will result in a table that looks a little like this in a web browser;

Header 1 Header 2

row 1, cell 1 row 1, cell 2
row 2, cell 1 row 2, cell 2

The entire table itself is enclosed in <table> tags. Each row is enclosed in <tr> tags. Each row
has two items which equates to the two columns. Each piece of data for each cell is enclosed
in a <td> tag except for the first row, which is a header and therefore has a special tag <th>

that denotes it as a header making it bold and centred. For the sake of ease of viewing we have

⁷¹http://prcweb.co.uk/lab/selection/

http://prcweb.co.uk/lab/selection/
http://prcweb.co.uk/lab/selection/

Assorted Tips and Tricks 127

told the table to place a border around each cell and we do this in the first <table> tag with the
border="1" statement (although in this book view it may be absent).

The good news is that you don’t need to fully understand all this, but it will help
with the explanation of what we’re doing in the code below.

There are three main things you need to do to the basic line graph to get your table to display.

1. Add some CSS
2. Add some table building d3.js code
3. Make a small but cunning change…

First the CSS

This just helps the table with formatting and making sure the individual cells are spaced
appropriately;

td, th {

padding: 1px 4px;

}

This sets a padding of 1 px around each cell and 4 px between each column.

Feel free to play with the figures to suit your application, I’ve just set them there
because I thought they looked appropriate.

I’ve placed this portion of CSS at the end of our <style> section.

Now the d3.js code

Oki doki… Hopefully you have a loose understanding of the html layout of a table as explained
above, but if not you can always go with the ‘it just works’ approach.

Here’s what we should add into our simple graph example;

Assorted Tips and Tricks 128

function tabulate(data, columns) {

var table = d3.select("body").append("table")

.attr("style", "margin-left: 250px"),

thead = table.append("thead"),

tbody = table.append("tbody");

// append the header row

thead.append("tr")

.selectAll("th")

.data(columns)

.enter()

.append("th")

.text(function(column) { return column; });

// create a row for each object in the data

var rows = tbody.selectAll("tr")

.data(data)

.enter()

.append("tr");

// create a cell in each row for each column

var cells = rows.selectAll("td")

.data(function(row) {

return columns.map(function(column) {

return {column: column, value: row[column]};

});

})

.enter()

.append("td")

.attr("style", "font-family: Courier")

.html(function(d) { return d.value; });

return table;

}

// render the table

var peopleTable = tabulate(data, ["date", "close"]);

And we should take care to add it into the code at the end of the portion where we’ve finished
drawing the graph, but before the enclosing curly and regular brackets that complete the portion
of the graph that has loaded our data.tsv file. This is because we want our new piece of code
to have access to that data and if we place it after those brackets it won’t know what data to
display.

So, right about here;

Assorted Tips and Tricks 129

// Add the Y Axis

svg.append("g")

.attr("class", "y axis")

.call(yAxis);

// <= Add the code right here!

});

Now, we’re going to break with tradition a bit here and examine what our current state of code
produces. Then we’re going to explain something different. THEN we’re going to come back and
explain the code…

Check it out…

Woah! What happened to the date?

Not quite as we has originally envisaged?

Indeed, the date has taken it upon itself to expand from a relatively modest format of day-
abbreviatedmonth-two digit year (30-Apr-12) to a behemoth of a thing (MonApr 30 2012 00:00:00
GMT+1200 (New Zealand Standard Time)) that we certainly didn’t intend, let alone have in our
data.tsv file.

What’s going on here?

Well, To be perfectly frank, I’m not entirely sure. But this is what I’m going to propose. The
JavaScript code recognises and deals with the ‘date’ variable as being a date/time. So that when
we proceed to display the variable on the screen, the browser says, “this is a date / time formatted
piece of data, therefore it must be formatted in the followingway”. I had a playwith a few ideas to
correct it via an HTML formatting instruction, but drew a blank and then I stumbled on another
way to solve the problem. Hence the third small but cunning change to our original code.

Assorted Tips and Tricks 130

A small but cunning change…

So… Our table has decided to develop a mind of it’s own and format the date time as it sees fit.
Well fair enough (I for one welcome our web time formatting overlords). So how do we convince
it to display the values in their natural form?

Well, one solution that we could employ is to not tell the JavaScript that our date value in the
data is actually time. In that condition, the code should treat the values as an ordinary string and
print it directly as it appears.

The good news is that this is pretty easy to do. Where originally we had a block of data that
consisted of date and close, all at different times, we will now add a new variable called date1

which will be the variable that we convert to a time and draw the graph with. Leaving date to
be the text string that will be printed in our table.

How to do it?

It’s actually remarkably easy. Just change the following lines in the basic line graph code to
amend date to date1 and you’re good to go.

.x(function(d) { return x(d.date1); })

d.date1 = parseDate(d.date);

x.domain(d3.extent(data, function(d) { return d.date1; }));

The middle line is probably the most significant, since this is the point where we declare date1,
assign a time format and bring a new column of data into being. The others simply refer to the
data.

So we’ll make those small changes and now we can return to explain the d3.js code…

Explaining the d3.js code (reloaded).

So back we come to explain what is going on in the d3.js code that we presented a page or two
back. Obviously it’s a fairly large chunk, and we can first break it down into two chunks. The
first chunk we’ll look at is in fact the last part of the code that look like this;

// render the table

var peopleTable = tabulate(data, ["date", "close"]);

This portion simply calls the tabulate function using the date and close columns of our data
array. Simply add or remove whichever columns you want to appear in your table (so long as
they are in your data.tsv file) and they will be in your table. The tabulate function makes up all
of the other part of the added code. So we come to the first block of the tabulate function;

Assorted Tips and Tricks 131

function tabulate(data, columns) {

var table = d3.select("body").append("table")

.attr("style", "margin-left: 250px"),

thead = table.append("thead"),

tbody = table.append("tbody");

Here the tabulate function is declared (function tabulate) and the variables that the function
will be using are specified((data, columns)). In or case data is of course our data array and
columns refers to ["date", "close"].

The next line appends the table to the body of the web page (so it will occur just under the graph
in this case). The I do something just slightly sneaky. The line .attr("style", "margin-left:

250px"), is actually not the code that was used to produce the table with the huge date/ time
formatted info on. I deliberately used .attr("style", "margin-left: 0px"), for the huge date
/ time table since it’s job is to indent the table by a specified amount from the left hand side of
the page. And since the huge date time values would have pushed the table severely to the right,
I cheated and used 0 instead of 250. For the purposes of the final example where the date / time
values are formatted as expected, 250 is a good value.

The next two lines declare the functions we will use to add in the header cells (since they use
the <th> tags for content) and the cells for the main body of the table (they use <td>).

The next block of code adds in the header row;

thead.append("tr")

.selectAll("th")

.data(columns)

.enter()

.append("th")

.text(function(column) { return column; });

Herewe first append a row tag (<tr>), thenwe gather all the columns that we have in our function
(remember they were ["date", "close"] and add them to our row using header tags (<th>).

The next block of code assigns the row variable to return (append) a row tag (<tr>) whenever
it’s called …

var rows = tbody.selectAll("tr")

.data(data)

.enter()

.append("tr");

… and it is in the following block of code…

Assorted Tips and Tricks 132

var cells = rows.selectAll("td")

.data(function(row) {

return columns.map(function(column) {

return {column: column, value: row[column]};

});

})

.enter()

.append("td")

.attr("style", "font-family: Courier")

.html(function(d) { return d.value; });

… where we select each row that we’ve added (var cells = rows.selectAll("td")). Then the
following five lines works out from the intersection of the row and column which piece of data
we’re looking at for each cell.

Then the last four lines take that piece of data (d.value) and wrap it in table data tags (<td>)
and place it in the correct cell as HTML.

It’s a very neat piece of code and I struggle to get my head around it, but that doesn’t mean that
I can appreciate the cleverness of it :-).

Wrap up

So there we have it. Hopefully enough to explain what is going on and perhaps also enough to
convince ourselves that D3 is indeed more than just pretty pictures. It’s all about the Data Driven
Documents.

This file has been saved as table-plus-graph.html and has been added into the downloads section
on d3noob.org with the general examples files.

Assorted Tips and Tricks 133

More table madness: sorting, prettifying and adding
columns

When we last left our tables they were happily producing a faithful list of the data points that
we had in our graph.

But what if we wanted more?

From the original contributors that bought you tables (Shawn Allen⁷² on Google Groups⁷³) and
some neat additions from Christophe Viau⁷⁴ comes extra coolness that I didn’t include in the
previous example :-).

Add another column of information:

Firstly, lets add another column of data to our table. To do this we want to have something extra
in our tsv file to use, so let’s resurrect our old friend data2.tsv that we used for the graph with
two lines previously. All we have to do to make this a reality is change the reference that loads
data.tsv to data2.tsv here;

d3.tsv("data/data2.tsv", function(error, data) {

This makes the assumption that you still have the data2.tsv file in place. If not, rush
away and get it from d3noob.org’s downloads page.

From here (and as promised in the previous chapter), it’s just a matter of adding in the extra
column you want (in this case it’s the open column) like so;

var peopleTable = tabulate(data, ["date", "close", "open"]);

Table with extra column

⁷²http://jsfiddle.net/7WQjr/
⁷³http://stackoverflow.com/questions/9268645/d3-creating-a-table-linked-to-a-csv-file
⁷⁴http://christopheviau.com/d3_tutorial/

http://jsfiddle.net/7WQjr/
http://stackoverflow.com/questions/9268645/d3-creating-a-table-linked-to-a-csv-file
http://christopheviau.com/d3_tutorial/
http://jsfiddle.net/7WQjr/
http://stackoverflow.com/questions/9268645/d3-creating-a-table-linked-to-a-csv-file
http://christopheviau.com/d3_tutorial/

Assorted Tips and Tricks 134

Yes, if you’re wondering, I have cheated slightly and changed the table indent to
make it look slightly prettier.

So can we go further?

You know we can…

In the section where we get our data and format it, lets add another column to our array in the
form of a difference between the close value and the open value (and we’ll call it diff).

d3.tsv("data/data2.tsv", function(error, data) {

data.forEach(function(d) {

d.date1 = parseDate(d.date);

d.close = +d.close;

d.open = +d.open; // <= added this for tidy house keeping

d.diff = Math.round((d.close - d.open) * 100) / 100;

});

(the Math.round function is to make sure we get a reasonable figure to display, otherwise it tends
to get carried away with decimal places)

So now we add in our new column (diff) to be tabulated;

var peopleTable = tabulate(data, ["date", "close", "open", "diff"]);

Table with extra extra column

And yes, I changed the table indent again. I am a serial offender and will continue
to change it to suit.

Assorted Tips and Tricks 135

Sorting on a column

So now with our four columns of awesome data, it turns out that we’re really interested in the
ones that have the highest close values. So we can sort on the close column by adding the
following lines directly after the line where we declare the peopleTable function (which I will
include in the code snipped below for reference).

var peopleTable = tabulate(data, ["date", "close", "open", "diff"]);

peopleTable.selectAll("tbody tr")

.sort(function(a, b) {

return d3.descending(a.close, b.close);

});

Which works magnificently;

Table sorted descending on ‘close’

Prettifying (actually just capitalising the header for each
column)

Just a little snippet that capitalises the headers for each row to make them look slightly more
authoritative.

Add the following lines of code directly below the block that you just added for sorting the table;

peopleTable.selectAll("thead th")

.text(function(column) {

return column.charAt(0).toUpperCase() + column.substr(1);

});

This is quite a tidy little piece of script. You can see it selecting the headers (selectAll("thead
th")), then the first character in each header (column.charAt(0)), changing it to upper-case
(.toUpperCase()) and adding it back to the rest of the string (+ column.substr(1)).

Assorted Tips and Tricks 136

With the ultimate result…

Table with capitilised first characters in headers

Add borders

Sure our table looks nice and neatly arranged, but would a border look better?

Well, here’s one way to do it;

All we need to do is add a border style to our table by adding in this line here;

function tabulate(data, columns) {

var table = d3.select("body").append("table")

.attr("style", "margin-left: 200px") // <= Remove the comma

.style("border", "2px black solid"), // <= Add this line in

thead = table.append("thead"),

tbody = table.append("tbody");

(don’t forget to move the comma from the end of the margin-left line)

And the result is a tidy black border.

Table with a border

OK, so what about the individual cells?

No problem.

If we remember back to our CSS that we added in, we’ll just tell each cell that we want a 1 pixel
border buy amending the CSS for our table to this;

Assorted Tips and Tricks 137

td, th {

padding: 1px 4px;

border: 1px black solid;

}

So now each cell has a slightly more subtle border like this;

Table with cells with individual borders

Yikes! Not quite as subtle as I would have expected. I suppose it’s another example of the code
actually doing what you asked it to do. No problem, border-collapse to the rescue. Add the
following line into here;

function tabulate(data, columns) {

var table = d3.select("body").append("table")

.attr("style", "margin-left: 200px")

.style("border-collapse", "collapse") // <= Add this line in.

.style("border", "2px black solid"),

thead = table.append("thead"),

tbody = table.append("tbody");

How does that look?

Table with cells with collapsed borders

Ahh…. Much more refined.

Assorted Tips and Tricks 138

The border-collapse style tells the table to overlap each cells borders, rather than
treat them as discrete entities. So in this case it looks a bit better.

This file has been saved as table-plus-addins.html and has been added into the downloads section
on d3noob.org with the general examples files.

Assorted Tips and Tricks 139

Understanding JavaScript Object Notation (JSON)

One of the most useful things you might want to learn when understanding how to present your
data with D3 is how to structure your data so that it is easy to use.

As explained earlier in the book, there are several different types of data that can be requested
by D3 including text, Extensible Markup Language, (xml), HyperText Markup Language (html),
Comma Separated Values (csv), Tab Separated Values (tsv) and JavaScript Object Notation (json).

Comma separated variables and tab separated variables are a fairly well understood form of data.
It is expressed as rows and columns of information that is separated using a known character.
While this form of data is simple to understand, it is not easy to incorporate a hierarchy structure
to the data, and when you try, it isn’t natural and makes managing the data difficult.

JavaScript Object Notation (JSON) presents a different mechanism for storing data. A light
weight description could read “JSON is a text-based open standard designed to present human-
readable data. It is derived from the JavaScript scripting language, but it is language and platform
independent.”

Unfortunately, when I first started using JSON, I struggled with the concept of how it was
structured, in spite of some fine descriptions on the web (start with http://www.json.org/⁷⁵ in
my humble opinion). So the following is how I came to think of and understand JSON.

Fair Warning: This advice is no substitute for the correct explanation of the topic
of data structures that I’m sure you could receive from a reputable educational site
or institution. It’s just the way I like to think of it :-). It’s also just the way that I
started to understand JSON. There is plenty to learn and understand once you grasp
the basics. So this isn’t a complete guide. Just the beginnings.

In the following steps we’ll go through a process that (hopefully) demonstrates that we can
transform identifiers that would represent the closing price for a stock of 58.3 on 2013-03-14 into
more traditional x,y coordinates.

I think of data as having an identifier and a value.

identifier: value

If a point on a graph is located at the x,y coordinates 150,25 then the identifier ‘x’ has a value
150.

"x": 150

If the x axis was a time-line, the true value for ‘x’ could be “2013-03-14”.

⁷⁵http://www.json.org/

http://www.json.org/
http://www.json.org/

Assorted Tips and Tricks 140

"x": "2013-03-14"

This example might look similar to those seen by users of d3.js, since if we’re using date / time
format we can let D3 sort out the messy parts like what coordinates to provide for the screen.

And there’s no reason why we couldn’t give the ‘x’ identifier a more human readable label such
as “date”. So our data would look like;

"date": "2013-03-14"

This is only one part of our original x,y = 150,25 data set. The same way that the x value
represented a position on the x axis that was really a date, the y value represents a position
on the y axis that is really another number. It only gets converted to 25 when we need to plot
a position on a graph at 150,25. If the ‘y’ component represents the closing price of a stock we
could take the same principles used to transform…

"x": 150

… into …

"date": "2013-03-14"

… to change ….

"y": 25

… into …

"close": 58.3

This might sound slightly confusing, so try to think of it this way. We want to plot a point on a
graph at 150,25, but the data that this position is derived from is really “2013-03-14”, 58.3. D3 can
look after all the scaling and determination of the range so that the point gets plotted at 150,25
and our originating data can now be represented as;

"date": "2013-03-14", "close": 58.3

This represents two separate pieces of data. Each of which has an identifier (“date” or “close”)
and a value (“2013-03-14” and 58.3)

If we wanted to have a series of these data points that represented several days of closing prices,
we would store them as an array of identifiers and values similar to this;

Assorted Tips and Tricks 141

{ "date": "2013-03-14", close: 58.13 },

{ "date": "2013-03-15", close: 53.98 },

{ "date": "2013-03-16", close: 67.00 },

{ "date": "2013-03-17", close: 89.70 },

{ "date": "2013-03-18", close: 99.00 }

Each of the individual elements of the array is enclosed in curly brackets and separated by
commas.

I ammaking the assumption that you are familiar with the concept of what an ‘array’
is. If this is an unfamiliar word, in the context of data, then I strongly recommend
that you do some Goggling to build up some familiarity with the principle.

Now that we have an array, we can apply the same rules to it as we did the the item that had a
single value. We can give it an identifier all of its own. In this case we will call it “data”. Now we
can use our identifier: value analogy to use “data” as the identifier and the array as the value.

{ "data": [

{ "date": "2013-03-14", close: 58.13 },

{ "date": "2013-03-15", close: 53.98 },

{ "date": "2013-03-16", close: 67.00 },

{ "date": "2013-03-17", close: 89.70 },

{ "date": "2013-03-18", close: 99.00 }

] }

The array has been enclosed in square brackets to designate it an an array and the entire
identifier: value sequence has been encapsulated with curly braces (much the same way that
the subset “date”, “close” values were enclosed with curly braces.

If we try to convey the same principle in a more graphical format, we could show our initial
identifier and value for the x component like so;

Single identifier and value

The we can add our additional component for the y value;

Single identifier and value

We can then add several of these combinations together in an array;

Assorted Tips and Tricks 142

Single identifier and value

Then the array becomes a value for another identifier “data”;

Single identifier and value

More complex JSON files will have multiple levels of identifiers and values arranged in complex
hierarchies which can be difficult to interpret. However, laying out the data in a logical way in
a text file is an excellent way to start to make sense of the data.

Assorted Tips and Tricks 143

Using Plunker for development and hosting your D3
creations.

Recently Mike Bostock recommended ‘Plunker’ (http://plnkr.co/⁷⁶) as a tool for saving work
online for collaboration and sharing. Although I had a quick look, I didn’t quite ‘get it’ and
although it looked like something that I should be interested in, I (foolishly) moved on to other
things.

Quite frankly I should have persevered.

Plunker is awesome.

So what can it do for you?

Well, in short, this gives you a place to put your graphs on the web without the hassle of needing
a web server as well as allowing others to view and collaborate! There are some limitations to
hosting graphs in this environment, but there’s no denying that for ease of use and visibility to
the outside world, it’s outstanding!

Time for an example. I’ll try to go through the process of implementing the simple graph example
on Plunker.

So it’s as simple as going to http://plnkr.co/edit/⁷⁷

Plunker editing page

What you’re seeing here is an area where you can place your entire HTML code. So let’s replace
the 11 lines of the place holder code with the simple graph example (just copy and paste it in
there over the top of the current 11 lines);

Now, there are two important things we have to do before it will work.

1. We need to tell he script where to find d3.js
2. We need to make our data accessible

Helping the script find d3.js is nice and easy. Just replace this line in your plunk;

⁷⁶http://plnkr.co/
⁷⁷http://plnkr.co/edit/

http://plnkr.co/
http://plnkr.co/edit/
http://plnkr.co/
http://plnkr.co/edit/

Assorted Tips and Tricks 144

<script type="text/javascript" src="d3/d3.v3.js"></script>

…with this line…

<script src="http://d3js.org/d3.v3.min.js"></script>

That will allow your plunk to use the version of d3.js that is hosted on d3js.org (it uses the
minimised version (which is why it has the ‘min’ in it), but never fear, it’s still d3, just distilled
to enhance the flavour :-)).

Making our data available is only slightly more difficult.

In experimenting with Plunker, I found that there appears to be something ‘odd’ about accessing
the tab separated values that we have been using thus far (in the data.tsv file), however, D3 to
the rescue! We can simply use Comma Separated Values (csv) instead.

So in preparation for this exercise, please edit your data.tsv file to have the tabs separating the
values replaced by commas and rename it data.csv.

We will host our data.csv file on plunker as well and there is built in functionality to let us do it.

Create a new file

In the top left hand corner, beside the ‘FILES’ note, there is a ‘+NEW…’ section. Clicking on this
will allow you to create another file that will exist with your plunk for its use, so let’s do that.

This will open a dialogue box that will ask you to name your new file.

Name your file

Enter the name data.csv.

Now another file has appeared under the ‘Files’ heading called data.csv. Click on it.

Assorted Tips and Tricks 145

The empty data.csv file

This now shows us a blank file called data.csv, so now open up your data.csv file in whatever
editor you’re using (I don’t think a spreadsheet program is going to be a good idea since I doubt
that it will maintain the information in a textual form as we’re wanting it to do. So it’s Geany
for me). Copy the contents of your local data.csv file and past it into the new plunker data.csv
file.

So now we have our data in there we need to tell our JavaScript where it is. So go back to the
‘index.html’ file (which is our simple graph code) and edit the line which finds the data.tsv file
from this

d3.tsv("data/data.tsv", function(error, data) {

… to this …

d3.csv("data.csv", function(error, data) {

Because we’re using relative addressing, and plunker stores the files for the graphing script and
the data side by side, we just removed the portion of the address that told our original code to
look in the ‘data’ directory and told it to look in the current directory. And that should be that!

Now if you look on the right hand side of the screen, there is a little eye icon. If you click on it,
it opens up a preview window of your file in action and viola!

Preview your graph

If the graph doesn’t appear, go through the steps outlined above and just check that the edits
are made correctly. Unfortunately I haven’t found a nice mechanism for troubleshooting inside
Plunker yet (not like using F12 on Chrome).

But wait! There’s more!

Assorted Tips and Tricks 146

If you now click on the ‘Save’ button at the top of the screen, you will get some new button
options.

One of them is the orange one for showing off your work.

Show off your work

If you click on this, it will present you with several different options.

Preview your graph

The first one is a link that will give others the option to collaborate on the script.

The second is a link thatwill allow others to preview thework; http://embed.plnkr.co/QSCkG8Rf2qFgrCqq7Vfn⁷⁸

The last will allow you to embed your graph in a separate web page somewhere. Which I’ve
tested with blogger and seems to work really well! (see image below).

⁷⁸http://embed.plnkr.co/QSCkG8Rf2qFgrCqq7Vfn

http://embed.plnkr.co/QSCkG8Rf2qFgrCqq7Vfn
http://embed.plnkr.co/QSCkG8Rf2qFgrCqq7Vfn

Assorted Tips and Tricks 147

Plunker iframe inserted in a blog post

So, I’m impressed, Nice work by Plunker and it’s creator Geoff Goodman.

Sankey Diagrams
What is a Sankey Diagram?

A Sankey diagram is a type of flow diagramwhere the ‘flow’ is represented by arrows of varying
thickness depending on the quantity of flow.

They are often used to visualize energy, material or cost transfers and are especially useful in
demonstrating proportionality to a flow where different parts of the diagram represent different
quantities in a system.

Probably the most famous example of a Sankey diagram is Charles Minard’s Map of Napoleon’s
Russian Campaign of 1812.

Napoleon’s Russian March

From Wikipedia;

“Étienne-Jules Marey first called notice to this dramatic depiction of the fate of Napoleon’s army
in the Russian campaign, saying it defies the pen of the historian in its brutal eloquence. Edward
Tufte says it “may well be the best statistical graphic ever drawn” and uses it as a prime example
in The Visual Display of Quantitative Information.”

Wikipedia has a great explanation of the diagram type⁷⁹ and there is a wealth of information
dedicated it on the inter-web. I heartily recommend http://www.sankey-diagrams.com/ for all
things Sankey!

So it would come as little surprise that Mike Bostock has developed a plugin for Sankey diagrams
(http://bost.ocks.org/mike/sankey/) so that we can all enjoy Sankey goodness with lashings of D3.

⁷⁹http://en.wikipedia.org/wiki/Sankey_diagram

http://en.wikipedia.org/wiki/Sankey_diagram
http://en.wikipedia.org/wiki/Sankey_diagram

Sankey Diagrams 149

How d3.js Sankey Diagrams want their data
formatted

If we think of Sankey diagrams consisting of ‘nodes’ and ‘links’…

A simple Sankey diagram

… the data that generates them must be formatted as nodes and links as well.

For instance a JSON file with appropriate data to build the diagram above could look like the
following;

{

"nodes":[

{"node":0,"name":"node0"},

{"node":1,"name":"node1"},

{"node":2,"name":"node2"},

{"node":3,"name":"node3"},

{"node":4,"name":"node4"}

],

"links":[

{"source":0,"target":2,"value":2},

{"source":1,"target":2,"value":2},

{"source":1,"target":3,"value":2},

{"source":0,"target":4,"value":2},

{"source":2,"target":3,"value":2},

{"source":2,"target":4,"value":2},

{"source":3,"target":4,"value":4}

]}

In the file above we have 6 nodes (0-5) sequentially numbered and with names appropriate to
their position in the list.

The sequential numbering is only for the purpose of highlighting the structure of the data, since
when we get D3 running, it will automatically index each of the nodes according to its position.

Sankey Diagrams 150

In other words, we could have omitted the “node”:n parts since D3 will know where each node
is anyway. The big deal is that WE need to know what each node is as well especially if we’re
going to be building the data by hand (doing it dynamically would be cool, but let’s not get ahead
of ourselves just yet).

The links part of the data can be broken down into individual source to target ‘links’ that have
an associated value (could be a quantity or strength, but at least a numeric value).

The ‘source’ and target numbers are references to the list of nodes. So, “source”:1, “target”:2
means that this link is whatever node appears at position 1 going to whatever node appears at
position 2. The important point to make here is that D3 will not be interested in the numerical
value of the node, just it’s position in the list (starting at zero).

Description of the code

The code for the Sankey diagram is significantly different to that for a line graph although it
shares the same core language and programming methodology.

The code we’ll go through is an adaptation of the version first demonstrated by Mike Bostock⁸⁰
so it’s got a pretty good pedigree. I will begin with a version that uses data that is formatted
so that it can be used directly with no manipulation, then in subsequent sections I will describe
different techniques for getting data from different formats to work.

I found that getting data in the correct format was the biggest hurdle for getting a Sankey diagram
to work. I make the assumption that this may be a similar story for others as well. We will start
off assuming that the data is perfectly formatted, then where only the link data is available then
where there is just names to work with (no numeric node values) and lastly, one that can be used
for people with changeable data from a MySQL database.

I won’t try to go over every inch of the code as I did with the previous simple graph example
(I’ll skip things like the HTML header) and will focus on the style sheet (CSS) portion and the
JavaScript.

The complete code for this will also be available as an appendix and in the downloads section at
d3noob.org.

On to the code…

<style>

⁸⁰http://bost.ocks.org/mike/sankey/

http://bost.ocks.org/mike/sankey/
http://bost.ocks.org/mike/sankey/

Sankey Diagrams 151

.node rect {

cursor: move;

fill-opacity: .9;

shape-rendering: crispEdges;

}

.node text {

pointer-events: none;

text-shadow: 0 1px 0 #fff;

}

.link {

fill: none;

stroke: #000;

stroke-opacity: .2;

}

.link:hover {

stroke-opacity: .5;

}

</style>

<body>

<p id="chart">

<script type="text/javascript" src="d3/d3.v3.js"></script>

<script src="js/sankey.js"></script>

<script>

var units = "Widgets";

var margin = {top: 10, right: 10, bottom: 10, left: 10},

width = 700 - margin.left – margin.right,

height = 300 - margin.top – margin.bottom;

var formatNumber = d3.format(",.0f"), // zero decimal places

format = function(d) { return formatNumber(d) + " " + units; },

color = d3.scale.category20();

// append the svg canvas to the page

var svg = d3.select("#chart").append("svg")

.attr("width", width + margin.left + margin.right)

.attr("height", height + margin.top + margin.bottom)

.append("g")

.attr("transform",

"translate(" + margin.left + "," + margin.top + ")");

// Set the sankey diagram properties

Sankey Diagrams 152

var sankey = d3.sankey()

.nodeWidth(36)

.nodePadding(40)

.size([width, height]);

var path = sankey.link();

// load the data

d3.json("data/sankey-formatted.json", function(error, graph) {

sankey

.nodes(graph.nodes)

.links(graph.links)

.layout(32);

// add in the links

var link = svg.append("g").selectAll(".link")

.data(graph.links)

.enter().append("path")

.attr("class", "link")

.attr("d", path)

.style("stroke-width", function(d) { return Math.max(1, d.dy); })

.sort(function(a, b) { return b.dy - a.dy; });

// add the link titles

link.append("title")

.text(function(d) {

return d.source.name + " � " +

d.target.name + "\n" + format(d.value); });

// add in the nodes

var node = svg.append("g").selectAll(".node")

.data(graph.nodes)

.enter().append("g")

.attr("class", "node")

.attr("transform", function(d) {

return "translate(" + d.x + "," + d.y + ")"; })

.call(d3.behavior.drag()

.origin(function(d) { return d; })

.on("dragstart", function() {

this.parentNode.appendChild(this); })

.on("drag", dragmove));

// add the rectangles for the nodes

node.append("rect")

.attr("height", function(d) { return d.dy; })

Sankey Diagrams 153

.attr("width", sankey.nodeWidth())

.style("fill", function(d) {

return d.color = color(d.name.replace(/ .*/, "")); })

.style("stroke", function(d) {

return d3.rgb(d.color).darker(2); })

.append("title")

.text(function(d) {

return d.name + "\n" + format(d.value); });

// add in the title for the nodes

node.append("text")

.attr("x", -6)

.attr("y", function(d) { return d.dy / 2; })

.attr("dy", ".35em")

.attr("text-anchor", "end")

.attr("transform", null)

.text(function(d) { return d.name; })

.filter(function(d) { return d.x < width / 2; })

.attr("x", 6 + sankey.nodeWidth())

.attr("text-anchor", "start");

// the function for moving the nodes

function dragmove(d) {

d3.select(this).attr("transform",

"translate(" + (

d.x = Math.max(0, Math.min(width - d.dx, d3.event.x))

)

+ "," + (

d.y = Math.max(0, Math.min(height - d.dy, d3.event.y))

) + ")");

sankey.relayout();

link.attr("d", path);

}

});

So, going straight to the style sheet bounded by the <style> tags;

Sankey Diagrams 154

.node rect {

cursor: move;

fill-opacity: .9;

shape-rendering: crispEdges;

}

.node text {

pointer-events: none;

text-shadow: 0 1px 0 #fff;

}

.link {

fill: none;

stroke: #000;

stroke-opacity: .2;

}

.link:hover {

stroke-opacity: .5;

}

The CSS in this example is mainly concerned with formatting of the mouse cursor as it moves
around the diagram.

The first part…

.node rect {

cursor: move;

fill-opacity: .9;

shape-rendering: crispEdges;

}

… provides the properties for the node rectangles. It changes the icon for the cursor when it
moves over the rectangle to one that looks like it will move the rectangle (there is a range of
different icons that can be defined here http://www.echoecho.com/csscursors.htm), sets the fill
colour to mostly opaque and keeps the edges sharp.

The next block…

.node text {

pointer-events: none;

text-shadow: 0 1px 0 #fff;

}

… sets the properties for the text at each node. The mouse is told to essentially ignore the text in
favour of anything that’s under it (in the case of moving or highlighting something else) and a
slight shadow is applied for readability).

The following block…

Sankey Diagrams 155

.link {

fill: none;

stroke: #000;

stroke-opacity: .2;

}

…makes sure that the link has no fill (it actually appears to be a bendy rectangle with very thick
edges that make the element appear to be a solid block), colours the edges black (#000) and gives
makes the edges almost transparent.

The last block….

.link:hover {

stroke-opacity: .5;

}

… simply changes the opacity of the link when the mouse goes over it so that it’s more visible.
If so desired, we could change the colour of the highlighted link by adding in a line to this block
changing the colour like this stroke: red;.

Just before we get into the JavaScript, we do something a little different for d3.js. We tells it to
use a plug-in with the followig line;

<script src="js/sankey.js"></script>

The concept of a plug-in is that it is a separate piece of code that will allow additional
functionality to a core block (which in this case is d3.js). There are a range of plug-ins available⁸¹
and we will need to source the sankey.js file from the repository and place that somewhere
where our HTML code can access it. In this case I have put it in the js directory that resides in
the root directory of the web page.

The start of our JavaScript begins by defining a range of variables that we’ll be using.

Our units are set as ‘Widgets’ (var units = "Widgets";), which is just a convenient generic
(nonsense) term to provide the impression that the flow of items in this case is widgets being
passed from one person to another.

We then set our canvas size and margins…

var margin = {top: 10, right: 10, bottom: 10, left: 10},

width = 700 - margin.left – margin.right,

height = 300 - margin.top – margin.bottom;

… before setting some formatting.

⁸¹https://github.com/d3/d3-plugins

https://github.com/d3/d3-plugins
https://github.com/d3/d3-plugins

Sankey Diagrams 156

var formatNumber = d3.format(",.0f"), // decimal places

format = function(d) { return formatNumber(d) + " " + units; },

color = d3.scale.category20();

The formatNumber function acts on a number to set it to zero decimal places in this case. In the
original Mike Bostock example it was to three places, but for ‘widgets’ I’m presuming we don’t
divide :-).

format is a function that returns a given number formatted with formatNumber as well as a space
and our units of choice (‘Widgets’). This is used to display the values for the links and nodes later
in the script.

The color = d3.scale.category20(); line is really interesting and provides access to a colour
scale that is pre-defined for your convenience⁸²!. Later in the code we will see it in action.

Our next block of code positions our canvas onto our page in relation to the size and margins
we have already defined;

var svg = d3.select("#chart").append("svg")

.attr("width", width + margin.left + margin.right)

.attr("height", height + margin.top + margin.bottom)

.append("g")

.attr("transform",

"translate(" + margin.left + "," + margin.top + ")");

Then we set the variables for our sankey diagram;

var sankey = d3.sankey()

.nodeWidth(36)

.nodePadding(40)

.size([width, height]);

Without trying to state the obvious, this sets the width of the nodes (.nodeWidth(36)), the
padding between the nodes (.nodePadding(40)) and the size of the diagram(.size([width,
height]);).

The following line defines the path variable as a pointer to the sankey function that make the
links between the nodes to their clever thing of bending into the right places.;

var path = sankey.link();

I make the presumption that this is a defined function within sankey.js. Then we load the data
for our sankey diagram with the following line;

⁸²https://github.com/mbostock/d3/wiki/Ordinal-Scales#wiki-category10

https://github.com/mbostock/d3/wiki/Ordinal-Scales#wiki-category10
https://github.com/mbostock/d3/wiki/Ordinal-Scales#wiki-category10

Sankey Diagrams 157

d3.json("data/sankey-formatted.json", function(error, graph) {

As we have seen in previous usage of the d3.json, d3.csv and d3.tsv functions this is a wrapper
that acts on all the code within it bringing the data in the form of graph to the remaining code.

I think it’s a good time to take a slightly closer look at the data that we’ll be using;

{

"nodes":[

{"node":0,"name":"node0"},

{"node":1,"name":"node1"},

{"node":2,"name":"node2"},

{"node":3,"name":"node3"},

{"node":4,"name":"node4"}

],

"links":[

{"source":0,"target":2,"value":2},

{"source":1,"target":2,"value":2},

{"source":1,"target":3,"value":2},

{"source":0,"target":4,"value":2},

{"source":2,"target":3,"value":2},

{"source":2,"target":4,"value":2},

{"source":3,"target":4,"value":4}

]}

I want to look at the data now, because it highlights how it is accessed throughout this portion of
the code. It is split into two different blocks, ‘nodes’ and ‘links’. The subset of variables available
under ‘nodes’ is ‘node’ and ‘name’. Likewise under ‘links’ we have ‘source’, ‘target’ and ‘value’.
This means that when we want to act on a subset of our data we define which piece by defining
the hierarchy that leads to it. For instance, if we want to define an action for all the links, we
would use graph.links (they’re kind of chained together).

Let me take this opportunity to apologise to all those programmers who actually
know exactly what is going on here. It’s a mystery to me, but this is how I like to
tell myself it works to help me get by :-).

Now that we have our data loaded, we can assign the data to the sankey function so that it knows
how to deal with it behind the scenes;

Sankey Diagrams 158

sankey

.nodes(graph.nodes)

.links(graph.links)

.layout(32);

In keeping with our previous description of what’s going on with the data, we have told the
sankey function that the nodes it will be dealing with are in graph.nodes of our data structure.

I’m not sure what the .layout(32); portion of the code does, but I’d be interested to hear
from any more knowledgeable readers. I’ve tried changing the values to no apparent affect and
googling has drawn a blank. Internally to the sankey.js file it seems to indicate ‘iterations’ while
it establishes computeNodeLinks, computeNodeValues, computeNodeBreadths, computeNod-
eDepths(iterations) and computeLinkDepths.

Then we add our links to the diagram with the following block of code;

var link = svg.append("g").selectAll(".link")

.data(graph.links)

.enter().append("path")

.attr("class", "link")

.attr("d", path)

.style("stroke-width", function(d) { return Math.max(1, d.dy); })

.sort(function(a, b) { return b.dy - a.dy; });

This is an analogue of the block of code we examined way back in the section that we covered
in explaining the code of our first simple graph.

We append svg elements for our links based on the data in graph.links, then add in the paths
(using the appropriate CSS). We set the stroke width to the width of the value associated with
each link or ‘1’. Whichever is the larger (by virtue of the Math.max function). As an interesting
sideline, if we force this value to ‘10’ thusly…

.style("stroke-width", 10)

… the graph looks quite interesting.

Sankey Diagrams 159

stroke-width 10 for Sankey links

I have to admit that I don’t know what the sort line (.sort(function(a, b) { return b.dy -

a.dy; });) is supposed to achieve. Again, I’d be interested to hear from anymore knowledgeable
readers. I’ve tried changing the values to no apparent affect.

The next block adds the titles to the links;

link.append("title")

.text(function(d) {

return d.source.name + " � " +

d.target.name + "\n" + format(d.value); });

This code appends a text element to each link when moused over that contains the source and
target name (with a neat little arrow in between and the value) which, when applied with the
format function adds the units.

The next block appends the node objects (but not the rectangles or text) and contains the
instructions to allow them to be arranged with the mouse.

var node = svg.append("g").selectAll(".node")

.data(graph.nodes)

.enter().append("g")

.attr("class", "node")

.attr("transform", function(d) {

return "translate(" + d.x + "," + d.y + ")"; })

.call(d3.behavior.drag()

.origin(function(d) { return d; })

.on("dragstart", function() {

this.parentNode.appendChild(this); })

.on("drag", dragmove));

While it starts off in familiar territory with appending the node objects using the graph.nodes
data and putting them in the appropriate place with the transform attribute, I can only assume

Sankey Diagrams 160

that there is some trickery going on behind the scenes to make sure the mouse can do what it
needs to do with the d3.behaviour,drag function. There is some excellent documentation on
the wiki (https://github.com/mbostock/d3/wiki/Drag-behavior), but I can only presume that it
knows what it’s doing :-). The dragmove function is laid out at the end of the code, and we will
explain how that operates later.

I really enjoyed the next block;

node.append("rect")

.attr("height", function(d) { return d.dy; })

.attr("width", sankey.nodeWidth())

.style("fill", function(d) {

return d.color = color(d.name.replace(/ .*/, "")); })

.style("stroke", function(d) {

return d3.rgb(d.color).darker(2); })

.append("title")

.text(function(d) {

return d.name + "\n" + format(d.value); });

It starts off with a fairly standard appending of a rectangle with a height generated by its value ‘
{ return d.dy; }and a width dictated by the sankey.jsfile to fit the canvas (.attr(“width”,
sankey.nodeWidth())‘).

Then it gets interesting.

The colours are assigned in accordance with our earlier colour declaration and the individual
colours are added to the nodes by finding the first part of the name for each node and assigning
it a colour from the palate (the script looks for the first space in the name using a regular
expression). For instance: ‘Widget X’, ‘Widget Y’ and ‘Widget’ will all be coloured the same
even if the ‘Widget X’ and ‘Widget Y’ are inputs on the left and ‘Widget’ is a node in the middle.

The stroke around the outside of the rectangle is then drawn in the same shade, but darker. Then
we return to the basics where we add the title of the node in a tool tip type effect along with the
value for the node.

From here we add the titles for the nodes;

node.append("text")

.attr("x", -6)

.attr("y", function(d) { return d.dy / 2; })

.attr("dy", ".35em")

.attr("text-anchor", "end")

.attr("transform", null)

.text(function(d) { return d.name; })

.filter(function(d) { return d.x < width / 2; })

.attr("x", 6 + sankey.nodeWidth())

.attr("text-anchor", "start");

Sankey Diagrams 161

Again, this looks pretty familiar. We position the text titles carefully to the left of the nodes. All
except for those affected by the filter function (return d.x < width / 2;). Where if the position
of the node on the x axis is less than half the width, the title is placed on the right of the node
and anchored at the start of the text. Very neat.

The last block is also pretty neat, and contains a little surprise for those who are so inclined.

function dragmove(d) {

d3.select(this).attr("transform",

"translate(" + d.x + "," + (

d.y = Math.max(0, Math.min(height - d.dy, d3.event.y))

) + ")");

sankey.relayout();

link.attr("d", path);

This declares the function that controls the movement of the nodes with the mouse. It selects the
item that it’s operating over (d3.select(this)) and then allows translation in the y axis while
maintaining the link connection (sankey.relayout(); link.attr("d", path);).

But that’s not the cool part. A quick look at the code should reveal that if you can move a node
in the y axis, there should be no reason why you can’t move it in the x axis as well!

Sure enough, if you replace the code above with this…

function dragmove(d) {

d3.select(this).attr("transform",

"translate(" + (

d.x = Math.max(0, Math.min(width - d.dx, d3.event.x))

)

+ "," + (

d.y = Math.max(0, Math.min(height - d.dy, d3.event.y))

) + ")");

sankey.relayout();

link.attr("d", path);

… you can move your nodes anywhere on the canvas.

Sankey Diagrams 162

Move your nodes in x and y!

I know it doesn’t seem to add anything to the diagram (in fact, it could be argued that there is
a certain aspect of detraction) however, it doesn’t mean that one day the idea doesn’t come in
handy :-). You can see a live version on github⁸³.

Formatting data for Sankey diagrams

From a JSON file with numeric link values

As explained in the previous section, data to form a Sankey diagram needs to be a combination
of nodes and links.

{

"nodes":[

{"node":0,"name":"node0"},

{"node":1,"name":"node1"},

{"node":2,"name":"node2"},

{"node":3,"name":"node3"},

{"node":4,"name":"node4"}

],

"links":[

{"source":0,"target":2,"value":2},

{"source":1,"target":2,"value":2},

{"source":1,"target":3,"value":2},

{"source":0,"target":4,"value":2},

{"source":2,"target":3,"value":2},

{"source":2,"target":4,"value":2},

{"source":3,"target":4,"value":4}

]}

⁸³http://bl.ocks.org/d3noob/5028304

http://bl.ocks.org/d3noob/5028304
http://bl.ocks.org/d3noob/5028304

Sankey Diagrams 163

As we also noted earlier, the “node” entries in the ”nodes” section of the json file are superfluous
and are really only there for our benefit since D3 will automatically index the nodes starting at
zero. As a test to check this out we can change our data to the following;

{

"nodes":[

{"name":"Barry"},

{"name":"Frodo"},

{"name":"Elvis"},

{"name":"Sarah"},

{"name":"Alice"}

],

"links":[

{"source":0,"target":2,"value":2},

{"source":1,"target":2,"value":2},

{"source":1,"target":3,"value":2},

{"source":0,"target":4,"value":2},

{"source":2,"target":3,"value":2},

{"source":2,"target":4,"value":2},

{"source":3,"target":4,"value":4}

]}

(for reference this file is saved as sankey-formatted-names-and-numbers.json and the html file
is Sankey-formatted-names-and-numbers.html)

This will produce the following graph;

Sankey graph with names

As you can see, essentially the same, but with easier to understand names.

As you can imagine, while the end result is great, the creation of the JSON file manually would
be painful at best. Doing something similar but with a greater number of nodes / links would be
a nightmare.

Let’s see if we can make the process a bit easier and more flexible.

Sankey Diagrams 164

From a JSON file with links as names

It would make thing much easier, if you are building the data from hand, to have nodes with
names, and the ‘source’ and ‘target’ links have those same name values as identifiers.

In other words a list of unique names for the nodes (and perhaps some details) and a list of the
links between those nodes using the names for the nodes.

So, something like this;

{

"nodes":[

{"name":"Barry"},

{"name":"Frodo"},

{"name":"Elvis"},

{"name":"Sarah"},

{"name":"Alice"}

],

"links":[

{"source":"Barry","target":"Elvis","value":2},

{"source":"Frodo","target":"Elvis","value":2},

{"source":"Frodo","target":"Sarah","value":2},

{"source":"Barry","target":"Alice","value":2},

{"source":"Elvis","target":"Sarah","value":2},

{"source":"Elvis","target":"Alice","value":2},

{"source":"Sarah","target":"Alice","value":4}

]}

Once again, D3 to the rescue!

The little piece of code that can do this for us is here;

var nodeMap = {};

graph.nodes.forEach(function(x) { nodeMap[x.name] = x; });

graph.links = graph.links.map(function(x) {

return {

source: nodeMap[x.source],

target: nodeMap[x.target],

value: x.value

};

});

This elegant solution comes from Stack Overflow⁸⁴ and was provided by Chris Pettitt (nice job).

So if we sneak this piece of code into here…

⁸⁴http://stackoverflow.com/questions/14629853/json-representation-for-d3-networks

http://stackoverflow.com/questions/14629853/json-representation-for-d3-networks
http://stackoverflow.com/questions/14629853/json-representation-for-d3-networks

Sankey Diagrams 165

d3.json("data/sankey-formatted.json", function(error, graph) {

// <= Put the code here.

sankey

.nodes(graph.nodes)

.links(graph.links)

.layout(32);

… and this time we use our JSON file with just names (sankey-formatted-names.json) and our
new html file (sankey-formatted-names.html) we find our Sankey diagram working perfectly!

Sankey graph with names again

Looking at our new piece of code…

var nodeMap = {};

graph.nodes.forEach(function(x) { nodeMap[x.name] = x; });

… the first thing it does is create an object called nodeMap (The difference between an array and
an object in JavaScript is one that is still a little blurry to me and judging from online comments,
I am not alone).

Then for each of the graph.node instances (where x is a range of numbers from 0 to the last
node), we assign each node name to a number.

Then in the next piece of code…

Sankey Diagrams 166

graph.links = graph.links.map(function(x) {

return {

source: nodeMap[x.source],

target: nodeMap[x.target],

value: x.value

};

… we go through all the links we have and for each link, we map the appropriate number to the
correct name.

Very clever.

From a CSV with ‘source’, ‘target’ and ‘value’ info only.

In the first iteration of this section I had no solution to creating a Sankey diagram using a csv
file as the source of the data.

But cometh the hour, cometh the man. Enter @timelyportfolio who, while claiming no expertise
in D3 or JavaScript was able to demonstrate a solution⁸⁵ to exactly the problem I was facing!
Well done Sir! I salute you and name the technique the timelyportfolio csv method!

So here’s the cleverness that @timelyportfolio demonstrated;

Using a csv file (in this case called sankey.csv) that looks like this;

source,target,value

Barry,Elvis,2

Frodo,Elvis,2

Frodo,Sarah,2

Barry,Alice,2

Elvis,Sarah,2

Elvis,Alice,2

Sarah,Alice,4

We take this single line from our original Sankey diagram code;

d3.json("data/sankey-formatted.json", function(error, graph) {

And replace it with the following block;

⁸⁵http://bl.ocks.org/timelyportfolio/5052095

http://bl.ocks.org/timelyportfolio/5052095
http://bl.ocks.org/timelyportfolio/5052095

Sankey Diagrams 167

d3.csv("data/sankey.csv", function(error, data) {

//set up graph in same style as original example but empty

graph = {"nodes" : [], "links" : []};

data.forEach(function (d) {

graph.nodes.push({ "name": d.source });

graph.nodes.push({ "name": d.target });

graph.links.push({ "source": d.source,

"target": d.target,

"value": +d.value });

});

// return only the distinct / unique nodes

graph.nodes = d3.keys(d3.nest()

.key(function (d) { return d.name; })

.map(graph.nodes));

// loop through each link replacing the text with its index from node

graph.links.forEach(function (d, i) {

graph.links[i].source = graph.nodes.indexOf(graph.links[i].source);

graph.links[i].target = graph.nodes.indexOf(graph.links[i].target);

});

//now loop through each nodes to make nodes an array of objects

// rather than an array of strings

graph.nodes.forEach(function (d, i) {

graph.nodes[i] = { "name": d };

});

The comments in the code (and they are fuller in @timelyportfolio’s original gist solution⁸⁶)
explain the operation;

d3.csv("data/sankey.csv", function(error, data) {

… Loads the csv file from the data directory.

graph = {"nodes" : [], "links" : []};

… Declares graph to consist of two empty arrays called nodes and links.

⁸⁶http://bl.ocks.org/timelyportfolio/5052095

http://bl.ocks.org/timelyportfolio/5052095
http://bl.ocks.org/timelyportfolio/5052095

Sankey Diagrams 168

data.forEach(function (d) {

graph.nodes.push({ "name": d.source });

graph.nodes.push({ "name": d.target });

graph.links.push({ "source": d.source,

"target": d.target,

"value": +d.value });

});

… Takes the data loaded with the csv file and for each row loads variables for the source and
target into the nodes array then for each row loads variables for the source target and value

into the links array.

graph.nodes = d3.keys(d3.nest()

.key(function (d) { return d.name; })

.map(graph.nodes));

… Is a routine that Mike Bostock described on Google Groups⁸⁷ that (as I understand it) nests
each node name as a key so that it returns with only unique nodes.

graph.links.forEach(function (d, i) {

graph.links[i].source = graph.nodes.indexOf(graph.links[i].source);

graph.links[i].target = graph.nodes.indexOf(graph.links[i].target);

});

… Goes through each link entry and for each source and target, it finds the unique index
number of that name in the nodes array and assigns the link source and target an appropriate
number.

And finally…

graph.nodes.forEach(function (d, i) {

graph.nodes[i] = { "name": d };

});

… Goes through each node and (in the words of @timelyportfolio) “make nodes an array of
objects rather than an array of strings” (I don’t really know what that means :-(. I just know it
works :-).)

There you have it. A Sankey diagram from a csv file. Well played @timelyportfolio!

Both the html file for the diagram (Sankey.formatted-csv.html) and the data file (sankey.csv)
can be found in the downloads section of d3noob.org.

⁸⁷https://groups.google.com/forum/#!msg/d3-js/pl297cFtIQk/Eso4q_eBu1IJ

https://groups.google.com/forum/#!msg/d3-js/pl297cFtIQk/Eso4q_eBu1IJ
https://groups.google.com/forum/#!msg/d3-js/pl297cFtIQk/Eso4q_eBu1IJ

Sankey Diagrams 169

From MySQL as link information only automatically.

So, here we are. Faced with a dilemma of trying to get my csv formatted links into a Sankey
diagram. In theory we need to go through our file, identify all the unique nodes and format the
entire blob into JSON for use.

There must be a better way!

Well, I’m not going to claim that this is any better since it’s a little like cracking a walnut with
a sledgehammer. But to a man with just a sledgehammer, everything’s a walnut.

So, let’s use our newly developed MySQL and PHP skills to solve our problem. In fact, let’s make
it slightly harder for ourselves. Let’s imaginge that we don’t even have a value associated with
our data, just a big line of source and target links. Something like this;

source,target

Barry,Elvis

Barry,Elvis

Frodo,Elvis

Frodo,Elvis

Frodo,Sarah

Frodo,Sarah

Barry,Alice

Barry,Alice

Elvis,Sarah

Elvis,Sarah

Elvis,Alice

Elvis,Alice

Sarah,Alice

Sarah,Alice

Sarah,Alice

Sarah,Alice

First thing first, just as we did in the example on usingMySQL, import your csv file into aMySQL
table which we’ll call sankey1 in database homedb.

Now we want to write a query that pulls out all the DISTINCT names that appear it the ‘source’
and ‘target’ columns. This will form our ‘nodes’ portion of the JSON data.

SELECT DISTINCT(`source`) AS name FROM `sankey1`

UNION

SELECT DISTINCT(`target`) AS name FROM `sankey1`

GROUP BY name

This query actually mashes two separate queries together where each returns DISTINCT
instances of each source and target from the source and target columns. By default, the UNION
operator eliminates duplicate rows from the result which means we have a list of each node in
the table.

Sankey Diagrams 170

Sankey nodes from MySQL

Exxxeellennt……. (channelling Mr Burns)

Now we run a separate query that pulls out each distinct ‘source’ and ‘target’ combination and
the number of times (COUNT(*)) that it occurs.

SELECT `source` AS source, `target` as target, COUNT(*) as value

FROM `sankey1`

GROUP BY source, target

This query gets all the sources plus all the targets and groups them by first the source and then
the target. Each line is therefore unique and the COUNT(*) sums up the number of times that each
unique combination occurs.

Sankey links from MySQL

That was surprisingly easy wasn’t it?

MySQL is good for simple jobs, but we are of course a long way from finished since at this stage
all we have is what looks like two tables in a spreadsheet.

So now we turn to PHP.

Remember from our previous exposure, we described PHP as the glue that could connect parts
of web pages together. In this case we will use it to glue our MySQL database to our JavaScript.

We need to carry out our queries and return the information in a format that d3.js can understand.
In this instance we will select JSON as it’s probably the most ubiquitous, and it suits the format
of our original manual data.

Let’s cut to the chase and look at the code:

Sankey Diagrams 171

<?php

$username = "homedbuser";

$password = "homedbuser";

$host = "localhost";

$database="homedb";

$server = mysql_connect($host, $username, $password);

$connection = mysql_select_db($database, $server);

$myquery = "

SELECT DISTINCT(`source`) AS name FROM `sankey1`

UNION

SELECT DISTINCT(`target`) AS name FROM `sankey1`

GROUP BY name

";

$query = mysql_query($myquery);

if (! $myquery) {

echo mysql_error();

die;

}

$nodes = array();

for ($x = 0; $x < mysql_num_rows($query); $x++) {

$nodes[] = mysql_fetch_assoc($query);

}

$myquery = "

SELECT `source` AS source, `target` as target, COUNT(*) as value

FROM `sankey1`

GROUP BY source, target

";

$query = mysql_query($myquery);

if (! $myquery) {

echo mysql_error();

die;

}

$links = array();

for ($x = 0; $x < mysql_num_rows($query); $x++) {

$links[] = mysql_fetch_assoc($query);

}

Sankey Diagrams 172

echo "{";

echo '"links": ', json_encode($links), "\n";

echo ',"nodes": ', json_encode($nodes), "\n";

echo "}";

mysql_close($server);

?>

Astute readers will recognise that this is very similar to the script that we used to extract data
from the MySQL database for generating a simple line graph. If you haven’t checked it out, and
you’re unfamiliar with PHP, you will want to read that section first.

We declare all the appropriate variables which we will use to connect to the database. We then
connect to the database and run our query.

After that we store the nodes data in an array called $nodes.

Then we run our second query (we don’t close the connection to the database since we’re not
finished with it yet).

The second query returns the link results into a second array called $links (pretty imaginative).

Now we come to a part that’s a bit different. We still need to echo out the data in the same way
we did in our line graph, but in this case we need to add the data together with the associated
links and nodes identifiers.

echo "{";

echo '"links": ', json_encode($links), "\n";

echo ',"nodes": ', json_encode($nodes), "\n";

echo "}";

(if you look closely, the syntax will produce our JSON formatted output).

At last, we need to call this PHP script from our html file in the same way that we did for the
line graph. So amend the html file to change the loading of the JSON data to be from our PHP
file thusly;

d3.json("php/sankey.php", function(error, graph) {

And there you have it! So many ways to get the data.

Both the PHP file (sankey.php) and the html file (sankey-mysql-import.html) are available in the
downloads section on d3noob.org.

Sankey diagram case study

Armed with all this new found knowledge on building Sankey diagrams, what can you do?

Sankey Diagrams 173

Well, I suppose it all depends on your data set, but remember, Sankey diagrams are good at flows,
but they won’t do loops / cycles easily (although there has been some good work done in this
direction here http://bl.ocks.org/cfergus/3956043⁸⁸ and here http://bl.ocks.org/kunalb/4658510⁸⁹).

So let’s choose a flow.

In this case we’ll selected the flow of data that represents a view of global, anthropogenic green-
house gas (GHG) emissions. The image is an alternative to the excellent diagram on the World
Resources Institute (http://www.wri.org/chart/world-greenhouse-gas-emissions-2005) and as
such my version pales in comparison to theirs.

However, the aim is to play with the technique, not to emulate :-).

So starting with the data presented in the original diagram, we have to capture the links into
a csv file. I did this the hard way (since there didn’t appear to be an electronic version of the
data) by reading the graph and entering the figures into a csv file. From here we import it into
our MySQL database and then convert it into sankey formatted JSON by using our PHP script
that we played with in the example of extracting information from a MySQL database. In this
case instead of needing to perform a COUNT(*) on the data, it’s slightly easier since the value is
already present.

Because we want this diagram to be hosted on Gist and accessible on bl.ocks.org, we run
the PHP file directly into the browser so that it just shows the JSON data on the screen.
We save this file with the suffix .json and we have our data (in this case the file is named
sankeygreenhouse.json).

We amend our html file to look at our new .json file and voila!

⁸⁸http://bl.ocks.org/cfergus/3956043
⁸⁹http://bl.ocks.org/kunalb/4658510

http://bl.ocks.org/cfergus/3956043
http://bl.ocks.org/kunalb/4658510
http://bl.ocks.org/cfergus/3956043
http://bl.ocks.org/kunalb/4658510

Sankey Diagrams 174

Sankey diagram of greenhouse gas emissions in 2005

Sankeytastic!

You can find this as a live example and with all the code and data on bl.ocks.org⁹⁰.

⁹⁰http://bl.ocks.org/d3noob/5015397

http://bl.ocks.org/d3noob/5015397
http://bl.ocks.org/d3noob/5015397

Force Layout Diagrams
What is a Force Layout Diagram?

This is not a distinct type of diagram per se. Instead, it’s a way of representing data so that it
individual data points share relationships to other data points via forces. Those forces can then
act in different ways to provide a natural structure to the data. The end result can be a wide
variety of representations of connectedness and groupings.

Mike Bostock gave a great talk which focussed on force layout techniques in 2011 at Trulia for the
Data Visualizationmeetup group. Check video of the presentation here: http://vimeo.com/29458354⁹¹
and the slides here: http://mbostock.github.com/d3/talk/20110921/#0⁹². The most memorable
quote I recall from the talk describes force layout diagrams as an “Implicit way to do position
encoding”.

Here’s some examples for those who need a reason to view the talk.

Multi-Foci Force Layout

Multi-Foci Force Layout

Simultaneous forces of repulsion and multiple gravitational focus points creates a natural
clustering of data points (Source: Mike Bostock http://bl.ocks.org/mbostock/1249681⁹³). The
graph is animated, so the artefacts such as overlapping circles and the purple circle that is located
beside the red area are transitory.

Force Directed Graph with Pan / Zoom

⁹¹http://vimeo.com/29458354
⁹²http://mbostock.github.com/d3/talk/20110921/#0
⁹³http://bl.ocks.org/mbostock/1249681

http://vimeo.com/29458354
http://mbostock.github.com/d3/talk/20110921/#0
http://bl.ocks.org/mbostock/1249681
http://vimeo.com/29458354
http://mbostock.github.com/d3/talk/20110921/#0
http://bl.ocks.org/mbostock/1249681

Force Layout Diagrams 176

Force Directed Graph with Pan / Zoom

Multiple linked nodes show connections between related entities where those entities are
labelled and encoded with relevant information. Created by David Graus and presented here:
http://graus.nu/blog/force-directed-graphs-playing-around-with-d3-js/⁹⁴.

Collapsible Force Layout

Collapsible Force Layout

This force directed graph can have individual nodes expanded or collapsed by clicking on them
to reveal or hide greater detail (Source: Mike Bostock http://bl.ocks.org/mbostock/1062288⁹⁵).

⁹⁴http://graus.nu/blog/force-directed-graphs-playing-around-with-d3-js/
⁹⁵http://bl.ocks.org/mbostock/1062288

http://graus.nu/blog/force-directed-graphs-playing-around-with-d3-js/
http://bl.ocks.org/mbostock/1062288
http://graus.nu/blog/force-directed-graphs-playing-around-with-d3-js/
http://bl.ocks.org/mbostock/1062288

Force Layout Diagrams 177

Force Directed Graph showing Directionality

Force Directed Graph showing Directionality

This example showing mobile patent lawsuits between companies presents the direction as-
sociated with the links and encodes the links to show different types (Source: Mike Bostock
http://bl.ocks.org/mbostock/1153292⁹⁶).

Collision Detection

Collision Detection

In this example themouse exerts a repulsive force on the objects as it moves on the screen (Source:
Mike Bostock http://bl.ocks.org/mbostock/3231298⁹⁷).

⁹⁶http://bl.ocks.org/mbostock/1153292
⁹⁷http://bl.ocks.org/mbostock/3231298

http://bl.ocks.org/mbostock/1153292
http://bl.ocks.org/mbostock/3231298
http://bl.ocks.org/mbostock/1153292
http://bl.ocks.org/mbostock/3231298

Force Layout Diagrams 178

Molecule Diagram

Molecule Diagram

Just for fun, here is a diagram the Mike Bostock made to demonstrate drawing two parallel lines
between nodes. He’s the first to admit that increasing the number of lines becomes awkward,
but it serves as another example of the flexibility of force diagrams in D3 (Source: Mike Bostock
http://bl.ocks.org/mbostock/3037015⁹⁸).

The main forces in play in these diagrams are charge, gravity and friction. More detailed
information on these forces and the other parameters associated with the force layout code can
be found in the D3 Wiki⁹⁹.

Charge

Charge is a force that a node can exhibit where it can either attract (positive values) or repel
(negative values) . Varying this value in conjunction with other forces (such as gravity) or a link
(on a node by node basis) is generally necessary to maintain stability.

Gravity

The gravity force isn’t actually a true representation of gravitational attraction (this can be more
closely approximated using positive values of charge). Instead it approximates the action of a
spring connected to a node. This has a more pleasant visual effect when the affected node is
closer to it’s ‘great attractor’ and avoids what would otherwise be a small black hole type effect.

Friction

The frictional force is one designed to act on the movement of a node to reduce it’s speed over
time. It isn’t implemented as true friction (in the physical sense) and should be thought of as a
‘velocity decay’ in the truer sense.

Mike makes the point in the 2011 talk at Trulia that when using gravity in a force layout diagram,
it is useful to include a degree of charge repulsion to provide stability. This can be demonstrated
by experimenting with varying values of the charges in a diagram and observing the effects.

⁹⁸http://bl.ocks.org/mbostock/3037015
⁹⁹https://github.com/mbostock/d3/wiki/Force-Layout

http://bl.ocks.org/mbostock/3037015
https://github.com/mbostock/d3/wiki/Force-Layout
http://bl.ocks.org/mbostock/3037015
https://github.com/mbostock/d3/wiki/Force-Layout

Force Layout Diagrams 179

Force directed graph examples.

There are a large number of possible examples to use to demonstrate force directed graphs. I
chose to combine two examples that Mike Bostock has demonstrated in the past. Both use the
data for the ‘who’s suing who’ graph because I wanted especially to include the directionality
aspect of the links. The two graphs I based the final graph on were the Mobile Patent Suits¹⁰⁰
graph….

Mobile Patent Suits

… for the directionality and link encoding and the Force-Directed Graph with Mouseover¹⁰¹
graph…

Force-Directed Graph with Mouseover

… for the mouseover effects (note the enlarged ‘Microsoft’ circle).

In spite of the similarities to each other in terms of data and network linkages, the final example
code was quite different, so the end result is a distinct hybrid of the two and will look something
like this;

¹⁰⁰http://bl.ocks.org/mbostock/1153292
¹⁰¹http://bl.ocks.org/mbostock/2706022

http://bl.ocks.org/mbostock/1153292
http://bl.ocks.org/mbostock/2706022
http://bl.ocks.org/mbostock/1153292
http://bl.ocks.org/mbostock/2706022

Force Layout Diagrams 180

Force-Directed Graph with Node Highlighting and Link Value Gradients

In this example the nodes can be clicked on once to enlarge the associated circle and text and then
double clicked on to return them to normal. The links vary in opacity depending on an associated
value loaded with the data. The example code for this graph can be found on bl.ocks.org¹⁰².

Basic force directed graph showing directionality

The data for this graph has been altered from the data that was comprised of litigants in the
mobile patent war to fictitious peoples names and associated values (to represent the strength of
the links between the two). In the original examples the data was contained in the graph code.
In the following example it is loaded from a csv file. The values loaded are as follows;

source,target,value

Harry,Sally,1.2

Harry,Mario,1.3

Sarah,Alice,0.2

Eveie,Alice,0.5

Peter,Alice,1.6

Mario,Alice,0.4

James,Alice,0.6

Harry,Carol,0.7

Harry,Nicky,0.8

Bobby,Frank,0.8

Alice,Mario,0.7

Harry,Lynne,0.5

Sarah,James,1.9

Roger,James,1.1

Maddy,James,0.3

Sonny,Roger,0.5

James,Roger,1.5

Alice,Peter,1.1

Johan,Peter,1.6

Alice,Eveie,0.5

Harry,Eveie,0.1

¹⁰²http://bl.ocks.org/d3noob/5155181

http://bl.ocks.org/d3noob/5155181
http://bl.ocks.org/d3noob/5155181

Force Layout Diagrams 181

Eveie,Harry,2.0

Henry,Mikey,0.4

Elric,Mikey,0.6

James,Sarah,1.5

Alice,Sarah,0.6

James,Maddy,0.5

Peter,Johan,0.7

The code is as follows;

<!DOCTYPE html>

<meta charset="utf-8">

<script type="text/javascript" src="d3/d3.v3.js"></script>

<style>

path.link {

fill: none;

stroke: #666;

stroke-width: 1.5px;

}

circle {

fill: #ccc;

stroke: #fff;

stroke-width: 1.5px;

}

text {

fill: #000;

font: 10px sans-serif;

pointer-events: none;

}

</style>

<body>

<script>

Force Layout Diagrams 182

// get the data

d3.csv("data/force.csv", function(error, links) {

var nodes = {};

// Compute the distinct nodes from the links.

links.forEach(function(link) {

link.source = nodes[link.source] ||

(nodes[link.source] = {name: link.source});

link.target = nodes[link.target] ||

(nodes[link.target] = {name: link.target});

link.value = +link.value;

});

var width = 960,

height = 500;

var force = d3.layout.force()

.nodes(d3.values(nodes))

.links(links)

.size([width, height])

.linkDistance(60)

.charge(-300)

.on("tick", tick)

.start();

var svg = d3.select("body").append("svg")

.attr("width", width)

.attr("height", height);

// build the arrow.

svg.append("svg:defs").selectAll("marker")

.data(["end"]) // Different link/path types can be defined here

.enter().append("svg:marker") // This section adds in the arrows

.attr("id", String)

.attr("viewBox", "0 -5 10 10")

.attr("refX", 15)

.attr("refY", -1.5)

.attr("markerWidth", 6)

.attr("markerHeight", 6)

.attr("orient", "auto")

.append("svg:path")

.attr("d", "M0,-5L10,0L0,5");

// add the links and the arrows

var path = svg.append("svg:g").selectAll("path")

Force Layout Diagrams 183

.data(force.links())

.enter().append("svg:path")

.attr("class", "link")

.attr("marker-end", "url(#end)");

// define the nodes

var node = svg.selectAll(".node")

.data(force.nodes())

.enter().append("g")

.attr("class", "node")

.call(force.drag);

// add the nodes

node.append("circle")

.attr("r", 5);

// add the text

node.append("text")

.attr("x", 12)

.attr("dy", ".35em")

.text(function(d) { return d.name; });

// add the curvy lines

function tick() {

path.attr("d", function(d) {

var dx = d.target.x – d.source.x,

dy = d.target.y – d.source.y,

dr = Math.sqrt(dx * dx + dy * dy);

return "M" +

d.source.x + "," +

d.source.y + "A" +

dr + "," + dr + " 0 0,1 " +

d.target.x + "," +

d.target.y;

});

node

.attr("transform", function(d) {

return "translate(" + d.x + "," + d.y + ")"; });

}

});

Force Layout Diagrams 184

</script>

</body>

</html>

In a similar process to the one we went through when highlighting the function of the Sankey
diagram, where there are areas that we have covered before, I will gloss over some details on the
understanding that you will have already seen them explained in an earlier section (most likely
the basic line graph example).

The first block we come across is the initial html section;

<!DOCTYPE html>

<meta charset="utf-8">

<script type="text/javascript" src="d3/d3.v3.js"></script>

<style>

The only thing slightly different with this example is that we load the d3.v3.js script earlier. This
has no effect on running the code.

The next section loads the Cascading Style Sheets;

path.link {

fill: none;

stroke: #666;

stroke-width: 1.5px;

}

circle {

fill: #ccc;

stroke: #fff;

stroke-width: 1.5px;

}

text {

fill: #000;

font: 10px sans-serif;

pointer-events: none;

}

We set styles for three elements and all the settings laid out are familiar to us from previous
work.

Then we move into the JavaScript. Our first line loads our csv data file (force.csv) from our
data directory.

Force Layout Diagrams 185

d3.csv("data/force.csv", function(error, links) {

Then we declare an empty object (I still tend to think of these as arrays even though they’re
strictly not).

var nodes = {};

This will contain our data for our nodes. We don’t have any separate node information in our
data file, it’s just link information, so we will be populating this in the next section…

links.forEach(function(link) {

link.source = nodes[link.source] ||

(nodes[link.source] = {name: link.source});

link.target = nodes[link.target] ||

(nodes[link.target] = {name: link.target});

link.value = +link.value;

});

This block of code looks through all of out data from our csv file and for each link adds it as
a node if it hasn’t seen it before. It’s quite clever how it works as it employs a neat JavaScript
shorthand method using the double pipe (||) identifier.

So the line (expanded)…

link.source=nodes[link.source] || (nodes[link.source]={name: link.source});

… can be thought of as saying “If link.source does not equal any of the nodes values then create
a new element in the nodes object with the name of the link.source value being considered.”. It
could conceivably be written as follows (this is untested);

if (link.source != nodes[link.source]) {

nodes[link.source] = {name: link.source}

};

Then the block of code goes on to test the link.target value in the same way. Then the value
variable is converted to a number from a string if necessary (link.value = +link.value;).

The next block sets the size of our svg area that we’ll be using;

var width = 960,

height = 500;

The next section introduces the force function.

Force Layout Diagrams 186

var force = d3.layout.force()

.nodes(d3.values(nodes))

.links(links)

.size([width, height])

.linkDistance(60)

.charge(-300)

.on("tick", tick)

.start();

Full details for this function are found on the D3Wiki¹⁰³, but the following is a rough description
of the individual settings.

var force = d3.layout.force() makes sure we’re using the force function.

.nodes(d3.values(nodes)) sets our layout to the array of nodes as returned by the function
d3.values (https://github.com/mbostock/d3/wiki/Arrays#wiki-d3_values¹⁰⁴). Put simply, it sets
the nodes to the nodes we have previously set in our object.

.links(links) does for links what .nodes did for nodes.

.size([width, height]) sets the available layout size to our predefined values. If we were using
gravity as a force in the graph this would also set the gravitational centre. It also sets the initial
random position for the elements of our graph.

.linkDistance(60) sets the target distance between linked nodes. As the graph begins and
moves towards a steady state, the distance between each pair of linked nodes is computed and
compared to the target distance; the links are then moved towards or away from each other, so
as to converge on the set distance.

Setting this value (and other force values) can be something of a balancing act. For instance, here
is the result of setting the .linkDistance to 160.

¹⁰³https://github.com/mbostock/d3/wiki/Force-Layout
¹⁰⁴https://github.com/mbostock/d3/wiki/Arrays#wiki-d3_values

https://github.com/mbostock/d3/wiki/Force-Layout
https://github.com/mbostock/d3/wiki/Arrays#wiki-d3_values
https://github.com/mbostock/d3/wiki/Force-Layout
https://github.com/mbostock/d3/wiki/Arrays#wiki-d3_values

Force Layout Diagrams 187

Link distance set to 160

Here the charged nodes are trying to arrange themselves at an appropriate distance, but the
length of the links means that their arrangement is not very pretty. Likewise if we change the
value to 30 we get the following;

Link distance set to 30

Here the link distance allows for a symmetrical layout, but the distance is too short to be practical.

.charge(-300) sets the force between nodes. Negative values of charge results in node repulsion,
while a positive value results in node attraction. In our example, if we vary the value to 150 we
get this result;

Force Layout Diagrams 188

Charge set to 150

It’s not exactly easy to spot, but the graph feels a little ‘lazy’. The nodes don’t find their
equilibrium easily or at all. Setting the value higher than 300 (for our example) keeps all the
nodes nice and spread out, but where there are other separate discrete linked nodes (as there are
in our example) they tend to get forced away from the centre of the defined area.

.on("tick", tick) runs the animation of the force layout one ‘step’. It’s these progression of
steps that give the force layout diagram it’s fluid movement.

.start(); Starts the simulation; this method must be called when the layout is first created.

The next block of our code is the standard section that sets up our svg container.

var svg = d3.select("body").append("svg")

.attr("width", width)

.attr("height", height);

The next block of our code is used to create our arrowhead marker. I will be the first to admit that
it has entered a realm of svg expertise that I do not have and the amount of extra memory power I
would need to accumulate to understand it sufficiently to explain won’t be occurring in the near
future. Please accept my apologies and as a small token of my regret, accept the following links
as an invitation to learn more: http://www.w3.org/TR/SVG/coords.html#ViewBoxAttribute¹⁰⁵
and http://www.w3schools.com/svg/svg_reference.asp?¹⁰⁶. What is useful to note here is that
we define the label for our marker as end. We will use this in the next section to reference the
marker as an object. This particular section of the code caused me some small amount of angst.
The problem being when I attempted to adjust the width of the link lines in conjunction with the
value set in the data for the link, it would also adjust the stroke-width of the arrowhead marker.
Then when I attempted to adjust for the positioning of the arrow on the path, I could never get
the maths right. Eventually I decided to stop struggling against it and the encode the value as
line in a couple of different ways. One as opacity using discrete boundaries and the other using
variable line width, but with the arrowheads a common size. We will cover both those solutions
in the coming sections.

¹⁰⁵http://www.w3.org/TR/SVG/coords.html#ViewBoxAttribute
¹⁰⁶http://www.w3schools.com/svg/svg_reference.asp?

http://www.w3.org/TR/SVG/coords.html#ViewBoxAttribute
http://www.w3schools.com/svg/svg_reference.asp?
http://www.w3.org/TR/SVG/coords.html#ViewBoxAttribute
http://www.w3schools.com/svg/svg_reference.asp?

Force Layout Diagrams 189

svg.append("svg:defs").selectAll("marker")

.data(["end"])

.enter().append("svg:marker")

.attr("id", String)

.attr("viewBox", "0 -5 10 10")

.attr("refX", 15)

.attr("refY", -1.5)

.attr("markerWidth", 6)

.attr("markerHeight", 6)

.attr("orient", "auto")

.append("svg:path")

.attr("d", "M0,-5L10,0L0,5");

The .data(["end"]) line sets our tag for a future part of the script to find this block and draw
the marker.

.attr("refX", 15) sets the offset of the arrow from the centre of the circle.While it is designated
as the X offset, because the object is rotating, it doesn’t correspond to the x (left and right) axis
of the screen. The same is true of the .attr("refY", -1.5) line.

The .attr("markerWidth", 6) and .attr("markerHeight", 6) lines set the bounding box for
the marker. So varying these will vary the space available for the marker.

The next block of code adds in our links as paths and uses the #endmarker to draw the arrowhead
on the end of it.

var path = svg.append("svg:g").selectAll("path")

.data(force.links())

.enter().append("svg:path")

.attr("class", "link")

.attr("marker-end", "url(#end)");

Then we define what our nodes are going to be.

var node = svg.selectAll(".node")

.data(force.nodes())

.enter().append("g")

.attr("class", "node")

.call(force.drag);

This uses the nodes data and adds the .call(force.drag); function which allows the node to
be dragged by the mouse.

The next block adds the nodes as an svg circle.

Force Layout Diagrams 190

node.append("circle")

.attr("r", 5);

And then we add the name of the node with a suitable offset.

node.append("text")

.attr("x", 12)

.attr("dy", ".35em")

.text(function(d) { return d.name; });

The last block of JavaScript is the ticks function. This block is responsible for updating the graph
and most interestingly drawing the curvy lines between nodes.

function tick() {

path.attr("d", function(d) {

var dx = d.target.x – d.source.x,

dy = d.target.y – d.source.y,

dr = Math.sqrt(dx * dx + dy * dy);

return "M" +

d.source.x + "," +

d.source.y + "A" +

dr + "," + dr + " 0 0,1 " +

d.target.x + "," +

d.target.y;

});

node

.attr("transform", function(d) {

return "translate(" + d.x + "," + d.y + ")"; });

}

This is another example where there are some easily recognisable parts of the code that set the
x and y points for the ends of each link (d.source.x, d.source.y for the start of the curve and
d.target.x, d.target.y for the end of the curve) and a transformation for the node points, but
the cleverness is in the combination of the math for the radius of the curve (dr = Math.sqrt(dx

* dx + dy * dy);) and the formatting of the svg associated with it. This is sadly beyond the
scope of what I can comfortable explain, so we will have to be content with “the magic happens
here”.

The end result should be a tidy graph that demonstrates nodes and directional links between
them.

Force Layout Diagrams 191

Basic Directional Force Layout Diagram

The code and data for this example can be found as ‘Basic Directional Force Layout Diagram¹⁰⁷’
on bl.ocks.org.

Directional Force Layout Diagram (Node Highlighting)

Following on from the Basic Force Layout Diagram, our next goal is to highlight our nodes so
that we can get a better view of what ones they are (the view can get a little crowded as the
nodes begin to increase in number).

To do this we are going to use a couple more of the mouse events that we first introduced in the
tooltips section.

For this example we are going to use the click event (Triggered by a mouse click (mousedown
and then mouseup over an element)) and the dblclick event (Triggered by two clicks within a
short time over an element).

The single click will enlarge the node and the associated text and the double click will return the
node and test to its original size.

The way to implement this is to first set a hook to capture when the event occurs, which calls a
function which is laid out later in the script.

The hook is going to be part of the JavaScript where we define our nodes;

¹⁰⁷http://bl.ocks.org/d3noob/5141278

http://bl.ocks.org/d3noob/5141278
http://bl.ocks.org/d3noob/5141278

Force Layout Diagrams 192

var node = svg.selectAll(".node")

.data(force.nodes())

.enter().append("g")

.attr("class", "node")

.on("click", click) // Add in this line

.on("dblclick", dblclick) // Add in this line too

.call(force.drag);

The two additional lines above tell the script that when it sees a click or a double-click on the
node (since it’s part of the node set-up) to run either the click or dblclick functions.

The following two function blocks should be placed after the tick function but before the closing
curly bracket and bracket as indicated;

function tick() {

path.attr("d", function(d) {

var dx = d.target.x – d.source.x,

dy = d.target.y – d.source.y,

dr = Math.sqrt(dx * dx + dy * dy);

return "M" +

d.source.x + "," +

d.source.y + "A" +

dr + "," + dr + " 0 0,1 " +

d.target.x + "," +

d.target.y;

});

node

.attr("transform", function(d) {

return "translate(" + d.x + "," + d.y + ")"; });

}

// <= Put the functions in here!

});

The click function is as follows;

Force Layout Diagrams 193

function click() {

d3.select(this).select("text").transition()

.duration(750)

.attr("x", 22)

.style("fill", "steelblue")

.style("stroke", "lightsteelblue")

.style("stroke-width", ".5px")

.style("font", "20px sans-serif");

d3.select(this).select("circle").transition()

.duration(750)

.attr("r", 16)

.style("fill", "lightsteelblue");

}

The first line declares the function name (click). Then we select the node that we’ve clicked on
and then the associated text beforewe begin the declaration for our transition (d3.select(this).select("text").transition()).

Then we define the new properties that will be in place after the transition. We move the text’s x
position (.attr("x", 22)), make the text fill steel blue (.style("fill", "steelblue")), set the
stroke around the edge of the text light steel blue (.style("stroke", "lightsteelblue")), set
that stroke to half a pixel wide (.style("stroke-width", ".5px")) and increase the font size to
20 pixels (.style("font", "20px sans-serif");).

Then we do much the same for the circle component of the node. Select it, declare the transition,
increase the radius and change the fill colour.

The dblclick function does exactly the same as the click function, but reverses the action to
return the text and circle to the original settings.

function dblclick() {

d3.select(this).select("circle").transition()

.duration(750)

.attr("r", 6)

.style("fill", "#ccc");

d3.select(this).select("text").transition()

.duration(750)

.attr("x", 12)

.style("stroke", "none")

.style("fill", "black")

.style("stroke", "none")

.style("font", "10px sans-serif");

}

The end result is a force layout diagramwhere you can click on nodes to increase their size (circle
and text) and then double click to reset them if desired.

Force Layout Diagrams 194

Directional Force Layout Diagram (Node Highlighting)

The code and data for this example can be found as Directional Force Layout Diagramwith Node
Highlighting¹⁰⁸ on bl.ocks.org.

Directional Force Layout Diagram (varying link opacity)

The next variation to our force layout diagram is the addition of variation in the link to represent
different values (think of the number of packets passed or the amount of money transferred).

There are a few different ways to do this, but by virtue of the inherent close linkages between
the arrowhead marker and the link line, altering both in synchronicity proved to be beyond my
meagre talents. However, I did find a couple of suitable alternatives and I will go through one
here.

In this example we will take the value associated in the loaded data with the link and we will
adjust the opacity of the link line in a staged way according to the range of values.

For example, in a range of link strengths from 0 to 100, the bottom 25% will be at opacity 0.25,
from 25 to 50 will be 0.25, 50 to 75 will be 0.75 and above 75 will have an opacity of 1. So the
final result looks a little like this;

¹⁰⁸http://bl.ocks.org/d3noob/5141528

http://bl.ocks.org/d3noob/5141528
http://bl.ocks.org/d3noob/5141528
http://bl.ocks.org/d3noob/5141528

Force Layout Diagrams 195

Directional Force Layout Diagram (varying link opacity)

The changes to the code to create this effect are focussed on creating an appropriate range for
the values associated with the links and then applying the opacity according to that range in
discrete steps.

The first change to the node highlighting code that we make is to the style section. The following
elements are added;

path.link.twofive {

opacity: 0.25;

}

path.link.fivezero {

opacity: 0.50;

}

path.link.sevenfive {

opacity: 0.75;

}

path.link.onezerozero {

opacity: 1.0;

}

This provides our four different ‘classes’ of opacity.

Then in a block of code that comes just after the declaration of the force properties we have the
following;

Force Layout Diagrams 196

var v = d3.scale.linear().range([0, 100]);

v.domain([0, d3.max(links, function(d) { return d.value; })]);

links.forEach(function(link) {

if (v(link.value) <= 25) {

link.type = "twofive";

} else if (v(link.value) <= 50 && v(link.value) > 25) {

link.type = "fivezero";

} else if (v(link.value) <= 75 && v(link.value) > 50) {

link.type = "sevenfive";

} else if (v(link.value) <= 100 && v(link.value) > 75) {

link.type = "onezerozero";

}

});

Here we set the scale and the range for the variable v (var v = d3.scale.linear().range([0,

100]);). We then set the domain for v to go from 0 to the maximum value that we have in our
link data.

The final block above uses a cascading set of if statements to assign a label to the type parameter
of each link. This label is the linkage back to the styles we defined previously.

The final change is to take the line where we assigned a class of link to each link previously…

.attr("class", "link")

…to add in our type parameter as well;

.attr("class", function(d) { return "link " + d.type; })

Obviously if we wanted a greater number of opacity levels we would add in further style blocks
(with the appropriate values) and modify our cascading if statements. I’m not convinced that
this solution is very elegant for what I’m trying to do (it was a much better fit for the application
that Mike Bostock applied it to originally where he designated different types of law suits) but
I’ll take the result as a suitable way of demonstrating variation of value.

The code and data for this example can be found as Directional Force Layout Diagram with
varying link opacity¹⁰⁹ on bl.ocks.org.

The full code for the Directional Force Layout Diagram with varying link opacity is also in the
Appendix: Force Layout Diagram at the rear of the book.

¹⁰⁹http://bl.ocks.org/d3noob/5155181

http://bl.ocks.org/d3noob/5155181
http://bl.ocks.org/d3noob/5155181
http://bl.ocks.org/d3noob/5155181

Bullet Charts
Introduction to bullet chart structure

One of the first D3.js examples I ever came across (back when Protovis was the thing to use) was
one with bullet charts (or bullet graphs).

It struck me straight away as an elegant way to represent data by providing direct information
and context.

Bullet Chart

The Bullet Graph Design Specification¹¹⁰ was laid down by Stephen Frew as part of his work
with Perceptual Edge¹¹¹.

Using his specification we can break down the components of the chart as follows.

Bullet Chart Specification

Text label: Identifies the performance measure being represented.

Quantitative scale: A scale that is an analogue of the scale on the x axis of a two dimensional
xy graph.

Performancemeasure:The primary data being displayed. In this case the frequency of operation
of a CPU.

¹¹⁰http://www.perceptualedge.com/articles/misc/Bullet_Graph_Design_Spec.pdf
¹¹¹http://www.perceptualedge.com/

http://www.perceptualedge.com/articles/misc/Bullet_Graph_Design_Spec.pdf
http://www.perceptualedge.com/
http://www.perceptualedge.com/articles/misc/Bullet_Graph_Design_Spec.pdf
http://www.perceptualedge.com/

Bullet Charts 198

Comparativemarker:A reference symbol designating ameasurement such as the previous day’s
high value (or similar).

Qualitative ranges: These represent ranges such as low medium and high or bad, satisfactory
and good. Ideally there would be no fewer than two and nomore than 5 of these (for the purposes
of readability).

Understanding the specification for the chart is useful, because it’s also reflected in the way that
the data for the chart is structured.

For instance, If we take the current example, the data can be presented (in JSON) as follows;

[

{

"title":"CPU 1 Load",

"subtitle":"GHz",

"ranges":[1500,2250,3000],

"measures":[2200],

"markers":[2500]

}

]

Here we an see all the components for the chart laid out and it’s these values that we will load
into our D3 script to display.

D3.js code for bullet charts

We’ll move through the explanation of the code in a similar process to the other examples in the
book. Where there are areas that we have covered before, I will gloss over some details on the
understanding that you will have already seen them explained in an earlier section (most likely
the basic line graph example).

Here is the full code;

<!DOCTYPE html>

<meta charset="utf-8">

<style>

Bullet Charts 199

body {

font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;

margin: auto;

padding-top: 40px;

position: relative;

width: 800px;

}

button {

position: absolute;

right: 40px;

top: 10px;

}

.bullet { font: 10px sans-serif; }

.bullet .marker { stroke: #000; stroke-width: 2px; }

.bullet .tick line { stroke: #666; stroke-width: .5px; }

.bullet .range.s0 { fill: #eee; }

.bullet .range.s1 { fill: #ddd; }

.bullet .range.s2 { fill: #ccc; }

.bullet .measure.s0 { fill: steelblue; }

.bullet .title { font-size: 14px; font-weight: bold; }

.bullet .subtitle { fill: #999; }

</style>

<button>Update</button>

<script type="text/javascript" src="d3/d3.v3.js"></script>

<script src="js/bullet.js"></script>

<script>

var margin = {top: 5, right: 40, bottom: 20, left: 120},

width = 800 - margin.left - margin.right,

height = 50 - margin.top - margin.bottom;

var chart = d3.bullet()

.width(width)

.height(height);

d3.json("data/cpu1.json", function(error, data) {

var svg = d3.select("body").selectAll("svg")

.data(data)

.enter().append("svg")

.attr("class", "bullet")

.attr("width", width + margin.left + margin.right)

Bullet Charts 200

.attr("height", height + margin.top + margin.bottom)

.append("g")

.attr("transform", "translate(" + margin.left + "," + margin.top + ")")

.call(chart);

var title = svg.append("g")

.style("text-anchor", "end")

.attr("transform", "translate(-6," + height / 2 + ")");

title.append("text")

.attr("class", "title")

.text(function(d) { return d.title; });

title.append("text")

.attr("class", "subtitle")

.attr("dy", "1em")

.text(function(d) { return d.subtitle; });

d3.selectAll("button").on("click", function() {

svg.datum(randomize).call(chart.duration(1000));

});

});

function randomize(d) {

if (!d.randomizer) d.randomizer = randomizer(d);

d.markers = d.markers.map(d.randomizer);

d.measures = d.measures.map(d.randomizer);

return d;

}

function randomizer(d) {

var k = d3.max(d.ranges) * .2;

return function(d) {

return Math.max(0, d + k * (Math.random() - .5));

};

}

</script>

</body>

This code is a derivative of one of Mike Bostock’s blocks here¹¹². You can download it (and a
data set with two bullet chart groups in it) from https://gist.github.com/d3noob/5886992. You
can view an online version here¹¹³.

¹¹²http://bl.ocks.org/mbostock/4061961
¹¹³http://bl.ocks.org/d3noob/5886992

http://bl.ocks.org/mbostock/4061961
http://bl.ocks.org/d3noob/5886992
http://bl.ocks.org/mbostock/4061961
http://bl.ocks.org/d3noob/5886992

Bullet Charts 201

It will become clearer in the process of going through the code below, but as a teaser,
it is worth noting that while the code that we will modify is as presented above, we
are employing a separate script bullet.js to enable the charts.

The first block of our code is the start of the file and sets up our HTML.

<!DOCTYPE html>

<meta charset="utf-8">

<style>

This leads into our style declarations.

body {

font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;

margin: auto;

padding-top: 40px;

position: relative;

width: 800px;

}

button {

position: absolute;

right: 40px;

top: 10px;

}

.bullet { font: 10px sans-serif; }

.bullet .marker { stroke: #000; stroke-width: 2px; }

.bullet .tick line { stroke: #666; stroke-width: .5px; }

.bullet .range.s0 { fill: #eee; }

.bullet .range.s1 { fill: #ddd; }

.bullet .range.s2 { fill: #ccc; }

.bullet .measure.s0 { fill: steelblue; }

.bullet .title { font-size: 14px; font-weight: bold; }

.bullet .subtitle { fill: #999; }

We declare the (general) styling for the chart page in the first instance and then the button. Then
we move on to the more interesting styling for the bullet charts.

The first line .bullet { font: 10px sans-serif; } sets the font size.

The second line sets the colour and width of the symbol marker. So if we were to change it to…

Bullet Charts 202

.bullet .marker { stroke: red; stroke-width: 10px; }

… the result is…

Symbol Marker

The next three lines set the colours for the fill of the qualitative ranges.

.bullet .range.s0 { fill: #eee; }

.bullet .range.s1 { fill: #ddd; }

.bullet .range.s2 { fill: #ccc; }

You can have more or less ranges set here, but to use them you also need the appropriate values
in your data file. We will explore how to change this later.

The next line designates the colour for the value being measured.

.bullet .measure.s0 { fill: steelblue; }

Like the qualitative ranges, we can have more of them, but in my personal opinion, it starts to
get a bit confusing.

The final two lines lay out the styling for the label.

The next block of code loads the JavaScript files.

</style>

<button>Update</button>

<script type="text/javascript" src="d3/d3.v3.js"></script>

<script src="js/bullet.js"></script>

<script>

In this case it’s d3 and bullet.js. We need to load bullet.js as a separate file since it exists
outside the code base of the d3,js ‘kernel’.

Then we get into the JavaScript. The first thing we do is define the size of the area that we’ll be
working in.

var margin = {top: 5, right: 40, bottom: 20, left: 120},

width = 800 - margin.left - margin.right,

height = 50 - margin.top - margin.bottom;

Then we define the chart size using the variables that we have just set up.

Bullet Charts 203

var chart = d3.bullet()

.width(width)

.height(height);

The other important thing that occurs while setting up the chart is that we use the d3.bullet
function call to do it. The d3.bullet function is the part that resides in the bullet.js file that
we loaded earlier. The internal workings of bullet.js are a window into just how developers
are able to craft extra code to allow additional functionality to d3.js.

Then we load our JSON data with our values that we want to display.

d3.json("data/cpu1.json", function(error, data) {

The next block of code is the most important IMHO, since this is where the chart is drawn.

var svg = d3.select("body").selectAll("svg")

.data(data)

.enter().append("svg")

.attr("class", "bullet")

.attr("width", width + margin.left + margin.right)

.attr("height", height + margin.top + margin.bottom)

.append("g")

.attr("transform", "translate(" + margin.left + "," + margin.top + ")")

.call(chart);

However, to look at it you can be forgiven for wondering if it’s doing anything at all.

We use our .select and .selectAll statements to designatewhere the chart will go (d3.select("body").selectAll("svg"))
and then load the data as data (.data(data)).

We add in a svg element (.enter().append("svg")) and assign the styling from our css section
(.attr("class", "bullet")).

Then we set the size of the svg container for an individual bullet chart using .attr("width",

width + margin.left + margin.right) and .attr("height", height + margin.top +

margin.bottom).

We then group all the elements that make up each individual bullet chart with .append("g") be-
fore placing the group in the right placewith .attr("transform", "translate(" + margin.left

+ "," + margin.top + ")").

The we wave the magic wand and call the chart function with .call(chart); which will take
all the information from our data file (like the ranges, measures and markers values) and use
the bullet.js script to create a chart.

The reason I made the comment about the process looking like magic is that the vast majority of
the heavy lifting is done by the bullet.js file. Because it’s abstracted away from the immediate
code that we’re writing, it looks simplistic, but like all good things, there needs to be a lot of
complexity to make a process look simple.

We then add the titles.

Bullet Charts 204

var title = svg.append("g")

.style("text-anchor", "end")

.attr("transform", "translate(-6," + height / 2 + ")");

title.append("text")

.attr("class", "title")

.text(function(d) { return d.title; });

title.append("text")

.attr("class", "subtitle")

.attr("dy", "1em")

.text(function(d) { return d.subtitle; });

We do this in stages. First we create a variable titlewhich will append objects to the grouped el-
ement created above (var title = svg.append("g")).We apply a style (.style("text-anchor",
"end")) and transform to the objects (.attr("transform", "translate(-6," + height / 2 +

")");).

Then we append the title and subtitle data (from our JSON file) to our chart with a modicum
of styling and placement.

Then we add a button and functions which do the job of applying random data to our variables
every time it’s pressed.

d3.selectAll("button").on("click", function() {

svg.datum(randomize).call(chart.duration(1000));

});

});

function randomize(d) {

if (!d.randomizer) d.randomizer = randomizer(d);

d.markers = d.markers.map(d.randomizer);

d.measures = d.measures.map(d.randomizer);

return d;

}

function randomizer(d) {

var k = d3.max(d.ranges) * .2;

return function(d) {

return Math.max(0, d + k * (Math.random() - .5));

};

}

I’m not going to delve into the working of the randomize function, because it exists simply to
demonstrate the dynamic nature of the chart and not really how the chart is drawn.

However, I will be going through a process later to ensure that we can update the data and the
chart automatically which will hopefully be more orientated to practical applications.

Bullet Charts 205

That’s it! Now we’ll go through how you can use the data to change aspects of the chart and
what part’s of the code need to be adjusted to work with those changes.

Adapting and changing bullet chart components

This section explores some of the simple changes that can be made to bullet charts that may not
necessarily be obvious.

Understand your data

The first point to note is that understanding the data loaded from the JSON file is a key to
knowing what your chart is going to do.

We’ll start by looking at our data in a way that hopefully makes the most sense.

You may be faced with data for a bullet chart that’s in a format as follows;

[

{"title":"CPU Load","subtitle":"GHz","ranges":[1500,2250,3000],"measures":[220\

0],"markers":[2500]},

{"title":"Memory Used","subtitle":"MBytes","ranges":[256,512,1024],"measures":\

[768],"markers":[900]}

]

This is perfectly valid data, but we’ll find it slightly easier to understand if we show it like this…

[

{

"title":"CPU Load",

"subtitle":"GHz",

"ranges":[1500,2250,3000],

"measures":[2200],

"markers":[2500]

},

{

"title":"Memory Used",

"subtitle":"MBytes",

"ranges":[256,512,1024],

"measures":[768],

"markers":[900]

}

]

The data is exactly the same (in terms of content) but I find it a lot easier to comprehend what’s
going on with the second example.

Bullet Charts 206

I have a section in the book called ‘Understanding JavaScript Object Notation
(JSON)’ in the ‘Assorted Tips and Tricks’ chapter. I have found life a lot easier once
I started to understand how data was structured in JSON, and if you take a bit of
time to understand it, I think you’ll find life easier too.

Add as many individual charts as you want.

The example data in the file is an array of two groups. Each group represents the information
required to generate one bullet chart. Therefore the example data above will create the following
charts;

Two Bullet Charts

You don’t need to make any changes to your code in order to add more individual charts. You
just need to add more data groups to your JSON file. The following example uses exactly the
same code, but with several extra groups of data.

Lots of Bullet Charts

Add more ranges and measures

Returning to our single chart example, you can see from the JSON data that there are three
specified ranges and one measure.

Bullet Charts 207

[

{

"title":"CPU 1 Load",

"subtitle":"GHz",

"ranges":[1500,2250,3000],

"measures":[2200],

"markers":[2500]

}

]

The same was true for the css in the JavaScript code. Three ranges and one measure

.bullet { font: 10px sans-serif; }

.bullet .marker { stroke: #000; stroke-width: 2px; }

.bullet .tick line { stroke: #666; stroke-width: .5px; }

.bullet .range.s0 { fill: #eee; }

.bullet .range.s1 { fill: #ddd; }

.bullet .range.s2 { fill: #ccc; }

.bullet .measure.s0 { fill: steelblue; }

.bullet .title { font-size: 14px; font-weight: bold; }

.bullet .subtitle { fill: #999; }

By matching the css for the .bullet style with the data you can add more or less of both. For
example here’s example data, css and chart with five ranges and two measures.

[

{

"title":"CPU 1 Load",

"subtitle":"GHz",

"ranges":[500,1000,1500,2250,3000],

"measures":[1250, 2200],

"markers":[2650]

}

]

.bullet { font: 10px sans-serif; }

.bullet .marker { stroke: lightgreen; stroke-width: 5px; }

.bullet .tick line { stroke: #666; stroke-width: .5px; }

.bullet .range.s0 { fill: navy; }

.bullet .range.s1 { fill: mediumblue; }

.bullet .range.s2 { fill: dodgerblue; }

.bullet .range.s3 { fill: aqua; }

.bullet .range.s4 { fill: lightblue; }

.bullet .measure.s0 { fill: red; }

Bullet Charts 208

.bullet .measure.s1 { fill: pink; }

.bullet .title { font-size: 14px; font-weight: bold; }

.bullet .subtitle { fill: #999; }

Bullet Chart with Five Ranges and Two Measures

First of all. Yes, I know the colours are gaudy. Hopefully they stand out. Don’t abuse your own
graphs in this hideous way.

More importantly though, you can now get a better idea of how to align the ranges and measures
values in the JSON file with the .range and .measure styles in the css.

Bullet Chart with Five Ranges and Two Measures

The diagram shows that the .range and .measure bars are numbered from the right. (for example
the ‘navy’ colour showing the range up to 3000 GHz is designated .range.s0. At first this
convention of numbering from the right confused me. I imagined that the smallest range should
be .range.s0 and this should be on the left. Then I realised that the numbering related to the
layer of the range. So this would make .range.s0 go from 0 to 3000. Then the second layer
would be .range.s1which would go on top of .range.s0 from 0 to 2250, thereby covering most
of .range.s0 except for the part that exceeded .range.s1. Which is exactly what we see with
successively higher layers having higher numbers. The same is true for the .measure numbers
and layers.

Updating a bullet chart automatically

Displaying static data is a good start for a bullet chart, but if you have data that’s changing
dynamically, you need to be able to re-load the information and display it automatically.

To adapt our code to this purpose we will first remove the parts that added the button.

Remove this portion from the css section;

Bullet Charts 209

button {

position: absolute;

right: 40px;

top: 10px;

}

Then remove this line that added the button in the html section;

<button>Update</button>

All we need to do now is change the section that called the original json file from;

d3.json("data/cpu1.json", function(error, data) {

… to …

d3.json("data/bulletdata2.json", function(error, data) {

So that we’re dealing with a different json file (there’s no need to go messing around with our
original data).

Change the section that used to call the function to randomise the data from the button click
from…

d3.selectAll("button").on("click", function() {

svg.datum(randomize).call(chart.duration(1000));

});

… to …

setInterval(function() {

updateData();

}, 1000);

This new piece of code simply sets up a repeating function that calls another function (updateData)
every 1000ms.

The final change is to replace the original functions that randomised the data…

Bullet Charts 210

function randomize(d) {

if (!d.randomizer) d.randomizer = randomizer(d);

d.markers = d.markers.map(d.randomizer);

d.measures = d.measures.map(d.randomizer);

return d;

}

function randomizer(d) {

var k = d3.max(d.ranges) * .2;

return function(d) {

return Math.max(0, d + k * (Math.random() - .5));

};

}

… with our new function that updates the data …

function updateData() {

d3.json("data/bulletdata2.json", function(error, data) {

d3.select("body").selectAll("svg")

.datum(function (d, i) {

d.ranges = data[i].ranges;

d.measures = data[i].measures;

d.markers = data[i].markers;

return d;

})

.call(chart.duration(1000));

});

}

This new function (updateData) reads in our json file again, selects all the svg elements then
updates all the .ranges, .measures and .markers data with whatever was in the file. Then it
calls the chart function that updates the bullet charts.

All the code components for this script can be downloaded from GitHub¹¹⁴. A live version can
be viewed on bl.ocks.org¹¹⁵ (although it won’t update since the data file can’t be updated online).

¹¹⁴https://gist.github.com/d3noob/5893649
¹¹⁵http://bl.ocks.org/d3noob/5893649

https://gist.github.com/d3noob/5893649
http://bl.ocks.org/d3noob/5893649
https://gist.github.com/d3noob/5893649
http://bl.ocks.org/d3noob/5893649

Mapping with d3.js
Another string to the bow of d3.js is the addition of a set of powerful routines for handling
geographical information.

In the same sense that a line graph is a simple representation of data on a document, a map can
be regarded as a set of points with an underlying coordinate system. When you say it like that it
seems obvious that it should be applied as a document for display. However, I don’t want to give
the impression that this is some sort of trivial matter for either the original developers or for you
the person who wants to display a map. Behind the scenes for this type of work the thought that
must have gone into making the code usable and extensible must have been enormous.

Mike Bostock has lauded the work of Jason Davies in the development of the latest major version
of d3.js (version 3) for his work on improving mapping capability. A visit to his home page¹¹⁶
provides a glimpse into Jason’s expertise and no visit would be complete without marvelling at
his work with geographic projections¹¹⁷.

Examples

I am firmly of the belief that mapping in particular has an enormous potential for adding value to
data sets. The following collection of examples gives a brief taste of what has been accomplished
by combining geographic information and D3 thus far. (the screen shots following have been
sourced from the biovisualize gallery¹¹⁸ and as such provide attribution to the best of my ability.
If I have incorrectly attributed the source or author please let me know and I will correct it
promptly)

Faux D3 3d globe integrated with Mapbox / Open Street Map

Above is an interactive visualization showing the position of the main map on a faux D3 3d
globe with a Mapbox / Open Street Map main window. Source dev.geosprocket.com¹¹⁹ Source
Bill Morris.

¹¹⁶http://www.jasondavies.com/
¹¹⁷http://www.jasondavies.com/maps/
¹¹⁸http://biovisualize.github.com/d3visualization/#visualizationType=map
¹¹⁹http://dev.geosprocket.com/d3/finder/

http://www.jasondavies.com/
http://www.jasondavies.com/maps/
http://biovisualize.github.com/d3visualization/#visualizationType=map
http://dev.geosprocket.com/d3/finder/
http://www.jasondavies.com/
http://www.jasondavies.com/maps/
http://biovisualize.github.com/d3visualization/#visualizationType=map
http://dev.geosprocket.com/d3/finder/

Mapping with d3.js 212

Kentucky Count Population from the 2010 census

This is a breakdown of population in Kentucky Counties from the 2010 census. Source:
ccarpenterg.github.com¹²⁰ by Cristian Carpenter.

Beijing air pollution

This map visualizes air pollution in Beijing. Source: scottcheng.github.com¹²¹ by Scott Cheng.

¹²⁰http://ccarpenterg.github.com/blog/us-census-visualization-with-d3js/
¹²¹http://scottcheng.github.com/bj-air-vis/

http://ccarpenterg.github.com/blog/us-census-visualization-with-d3js/
http://scottcheng.github.com/bj-air-vis/
http://ccarpenterg.github.com/blog/us-census-visualization-with-d3js/
http://scottcheng.github.com/bj-air-vis/

Mapping with d3.js 213

Shuttle Radar Topography Mission tile downloading

This is a section of the globe that is presented on the Shuttle Radar Topography Mission tile
downloading web site. This excellent site uses the interactive globe to make the selection of srtm
tiles easy. Source dwtkns.com¹²² by Derek Watkins.

Animated World tour

This is a static screen-shot of an animated tour of the Worlds countries. Source bl.ocks.org¹²³ by
Mike Bostock.

¹²²http://dwtkns.com/srtm/
¹²³http://bl.ocks.org/mbostock/4183330

http://dwtkns.com/srtm/
http://bl.ocks.org/mbostock/4183330
http://dwtkns.com/srtm/
http://bl.ocks.org/mbostock/4183330

Mapping with d3.js 214

A Chicago Divided by Killings: New Your Times

This is one of the great infographics published by theNewYork Times¹²⁴. Source: www.nytimes.com¹²⁵
by Mike Bostock, Shan Carter and Kevin Quealy.

Concentric circles emanating from glowing red dot

This is an animated graphic showing a series of concentric circles emanating from glowing red
dot which was styled after a news article in The Onion¹²⁶. Source: bl.ocks.org¹²⁷ by Mike Bostock.

¹²⁴http://www.nytimes.com
¹²⁵http://www.nytimes.com/interactive/2013/01/02/us/chicago-killings.html?_r=0
¹²⁶http://www.theonion.com/video/breaking-news-series-of-concentric-circles-emanati,14204/
¹²⁷http://bl.ocks.org/mbostock/4503672

http://www.nytimes.com
http://www.nytimes.com/interactive/2013/01/02/us/chicago-killings.html?_r=0
http://www.theonion.com/video/breaking-news-series-of-concentric-circles-emanati,14204/
http://bl.ocks.org/mbostock/4503672
http://www.nytimes.com
http://www.nytimes.com/interactive/2013/01/02/us/chicago-killings.html?_r=0
http://www.theonion.com/video/breaking-news-series-of-concentric-circles-emanati,14204/
http://bl.ocks.org/mbostock/4503672

Mapping with d3.js 215

Christchurch earthquakes timeline

Here we see earthquakes represented on a selectable timeline where D3 generates a svg overlay
and the map layer is created using Leaflet. Source: bl.ocks.org¹²⁸ by tnightingale.

Earthquakes in the past 24 hours

Carrying on with the earthquake theme, this is a map of all earthquakes in the past 24 hours over
magnitude 2.5. Source: bl.ocks.org¹²⁹ by benelsen.

¹²⁸http://bl.ocks.org/tnightingale/4718717
¹²⁹http://bl.ocks.org/benelsen/4969007

http://bl.ocks.org/tnightingale/4718717
http://bl.ocks.org/benelsen/4969007
http://bl.ocks.org/tnightingale/4718717
http://bl.ocks.org/benelsen/4969007

Mapping with d3.js 216

Satellite projection

An interactive satellite projection. Source dev.geosprocket.com¹³⁰ by Bill Morris.

GeoJSON and TopoJSON

Projecting countries and various geographic features onto a map can be a very data hungry
exercise. By that I mean that the information required to present geographic shapes can result
in data files that are quite large. GeoJSON has been the default geographic data file of choice for
quite some time, and as the name would suggest it encodes the data in a JSON type hierarchy.
Often these GeoJSON files include a significant amount of extraneous detail or incorporate a
level of accuracy that is impractical (too detailed).

Enter TopoJSON. Mike Bostock has designed TopoJSON as an extension to GeoJSON in the sense
that it has a similar structure, but the geometries are not encoded discretely and where they share
features, they are combined. Additionally TopoJSON encodes numeric values more efficiently
and can incorporate a degree of simplification. This simplification can result in savings of file
size of 80% or more depending on the area and use of compression. Although TopoJSON has
only begun to be used, the advantages of it seem clear and so I will anticipate it’s future use by
incorporating it in my example diagrams (not that the use of GeoJSON differs much if at all). A
great description of TopoJSOn can be found on the TopoJSON wiki on github¹³¹.

¹³⁰http://dev.geosprocket.com/d3/sat/
¹³¹https://github.com/mbostock/topojson/wiki

http://dev.geosprocket.com/d3/sat/
https://github.com/mbostock/topojson/wiki
http://dev.geosprocket.com/d3/sat/
https://github.com/mbostock/topojson/wiki

Mapping with d3.js 217

Starting with a simple map

Our starting example will demonstrate the simple display of a World map. Our final result will
looks like this;

The World

The data file for the World map is one produced by Mike Bostock’s as part of his TopoJSON
work.

We’ll move through the explanation of the code in a similar process to the one we went through
when highlighting the function of the Sankey diagram. Where there are areas that we have
covered before, I will gloss over some details on the understanding that you will have already
seen them explained in an earlier section (most likely the basic line graph example).

Here is the full code;

<!DOCTYPE html>

<meta charset="utf-8">

<style>

path {

stroke: white;

stroke-width: 0.25px;

fill: grey;

}

Mapping with d3.js 218

</style>

<body>

<script type="text/javascript" src="d3/d3.v3.js"></script>

<script src="js/topojson.v0.min.js"></script>

<script>

var width = 960,

height = 500;

var projection = d3.geo.mercator()

.center([0, 5])

.scale(900)

.rotate([-180,0]);

var svg = d3.select("body").append("svg")

.attr("width", width)

.attr("height", height);

var path = d3.geo.path()

.projection(projection);

var g = svg.append("g");

// load and display the World

d3.json("json/world-110m2.json", function(error, topology) {

g.selectAll("path")

.data(topojson.object(topology, topology.objects.countries)

.geometries)

.enter()

.append("path")

.attr("d", path)

});

</script>

</body>

</html>

One of the first things that struck me when I first saw the code to draw a map was how small
it was (the amount of code, not the World). It’s a measure of the degree of abstraction that D3
is able to provide to the process of getting data from a raw format to the screen that such a
complicated task can be condensed to such an apparently small amount of code. Of course that
doesn’t tell the whole story. Like a duck on a lake, above the water all is serene and calm while
below the water the feet are paddling like fury. In this case, our code looks serene because D3 is
doing all the hard work :-).

The first block of our code is the start of the file and sets up our HTML.

Mapping with d3.js 219

<!DOCTYPE html>

<meta charset="utf-8">

<style>

This leads into our style declarations.

path {

stroke: white;

stroke-width: 0.25px;

fill: grey;

}

Weonly state the properties of the path components whichwill make up our countries. Obviously
we will fill them with grey and have a thin (0.25px) line around each one.

The next block of code loads the JavaScript files.

</style>

<body>

<script type="text/javascript" src="d3/d3.v3.js"></script>

<script src="js/topojson.v0.min.js"></script>

<script>

In this case it’s d3 and topojson. We load topojson.v0.min.js as a separate file because it’s still
fairly new. In other words it hasn’t been incorporated into the main d3.js code base (that’s an
assumption on my part since it might exist in isolation or perhaps end up as a plug-in). Whatever
the case, for the time being, it exists as a separate file.

Then we get into the JavaScript. The first thing we do is define the size of our map.

var width = 960,

height = 500;

Then we get into one of the simple, but cool parts of making any map. Setting up the view.

var projection = d3.geo.mercator()

.center([0, 5])

.scale(900)

.rotate([-180,0]);

The projection is the way that the geographic coordinate system is adjusted for display on our
flat screen. The screen is after all a two dimensional space and we are trying to present a three
dimensional object. This is a big deal to cartographers in the sense that selecting a geographic
projection for a map is an exercise in compromise. You can make it look pretty, but in doing
so you can grievously distort the land size / shape. On the other hand you might make it more

Mapping with d3.js 220

accurate, in size / shape but people will have trouble recognising it because they’re so used to
the standard Mercator projection. For example, the awesome Waterman Butterfly¹³².

The Waterman Butterfly

There are a lot of alternatives available. Please have a browse on the wiki¹³³ where you will find
a huge range of options (66 at time of writing).

In our case we’ve gone with the conservative Mercator option.

Then we define three aspects of the projection. Center, scale and rotate.

¹³²http://bl.ocks.org/mbostock/4458497
¹³³https://github.com/mbostock/d3/wiki/Geo-Projections

http://bl.ocks.org/mbostock/4458497
https://github.com/mbostock/d3/wiki/Geo-Projections
http://bl.ocks.org/mbostock/4458497
https://github.com/mbostock/d3/wiki/Geo-Projections

Mapping with d3.js 221

center

If center is specified, this sets the projection’s center to the specified location as two-element
array of longitude and latitude in degrees and returns the projection. If center is not specified
the default of (0°,0°) is used.

Our example is using [0, 5] which I have selected as being in the middle (0) for longitude (left
to right) and 5 degrees North of the equator (North is positive values of latitude, South is negative
values). This was purely to make it look aesthetically pleasing. Here’s the result of setting the
center to [100,30].

Center set to [100,30]

The map has been centered on 100 degrees West and 30 degrees North. Of course, it’s also been
pushed to the left without the right hand side of the map scrolling around. We’ll get to that in a
moment.

Mapping with d3.js 222

scale

If scale is specified, this sets the projection’s scale factor to the specified value. If scale is not
specified, returns the current scale factor which defaults to 150. It’s important to note that scale
factors are not consistent across projections.

Our current map uses a scale of 900. Again, this has been set for aesthetics. Keeping our center
of [100,30], if we increase our scale to 2000 this is the result.

Scale set to 2000

Mapping with d3.js 223

rotate

If rotation is specified, this sets the projection’s three-axis rotation to the specified angles for yaw,
pitch and roll (equivalently longitude, latitude and roll) in degrees and returns the projection. If
rotation is not specified, it sets the values to [0, 0, 0]. If the specified rotation has only two values,
rather than three, the roll is assumed to be 0°.

In our map we have specified [-180,0] so we can assume a roll value of zero. Likewise we have
rotated our map by -180 degrees in longitude. This has been done specifically to place the map
with the center on the anti-meridian (The international date line in the middle of the Pacific
ocean). If we return the value to [0,0](with our original values of scale and center this is the
result.

Rotate set to [0,0]

In this case the centre of the map lines up with the meridian.

The next block of code sets our svg window;

var svg = d3.select("body").append("svg")

.attr("width", width)

.attr("height", height);

The follow portion of code creates a new geographic path generator;

var path = d3.geo.path()

.projection(projection);

The path generator (d3.geo.path()) is used to spcify a projection type (.projection) which was
defined earlier as a Mercator projection via the variable projection. (I’m not entirely sure, but it
is possible that I have just set some kind of record for use of the word ‘projection’ in a sentence.)

Mapping with d3.js 224

We then declare g as our appended svg.

var g = svg.append("g");

The last block of JavaScript draws our map.

d3.json("json/world-110m2.json", function(error, topology) {

g.selectAll("path")

.data(topojson.object(topology, topology.objects.countries)

.geometries)

.enter()

.append("path")

.attr("d", path)

});

We load the TopoJSON file with the coordinates for our World map (world-110m2.json). Then
we declare that we are going to act on all the path elements in the graphic (g.selectAll("path")).

Thenwe pull the data that defines the countries from the TopoJSON file (.data(topojson.object(topology,
topology.objects.countries).geometries)). We add it to the data that we’re going to display
(.enter()) and then we append that data as path elements (.append("path")).

The last html block closes off our tags and we have a map!

The World map centered on the Pacific

The code and data for this example can be found as World Map Centered on the Pacific¹³⁴ on
bl.ocks.org.

¹³⁴http://bl.ocks.org/d3noob/5189184

http://bl.ocks.org/d3noob/5189184
http://bl.ocks.org/d3noob/5189184

Mapping with d3.js 225

Zooming and panning a map

With our map displayed nicely we need to be able to move it about to explore it fully . To do this
we can provide the functionality to zoom and pan it using the mouse.

Towards the end of the script, just before the close off of the script at the </script> tag we can
add in the following code;

var zoom = d3.behavior.zoom()

.on("zoom",function() {

g.attr("transform","translate("+

d3.event.translate.join(",")+")scale("+d3.event.scale+")");

g.selectAll("path")

.attr("d", path.projection(projection));

});

svg.call(zoom)

This block of code introduces the behaviors functions. Using the d3.behavior.zoom function
creates event listeners (which are like hidden functions standing by to look out for a specific
type of activity on the computer and in this case mouse actions) to handle zooming and panning
gestures on a container element (in this case our map). More information on the range of zoom
options is available on the D3 Wiki¹³⁵.

We begin by declaring the zoom function as d3.behavior.zoom.

Then we instruct the computer that when it ‘sees’ a ‘zoom’ event to carry out another function
(.on("zoom",function() {).

That function firstly gathers the (correctly formatted) translate and scale attributes in…

g.attr("transform","translate("+

d3.event.translate.join(",")+")scale("+d3.event.scale+")");

… and then applies them to all the path elements (which are the shapes of the countries) via…

g.selectAll("path")

.attr("d", path.projection(projection));

Lastly we call the zoom function.

svg.call(zoom)

¹³⁵https://github.com/mbostock/d3/wiki/Zoom-Behavior

https://github.com/mbostock/d3/wiki/Zoom-Behavior
https://github.com/mbostock/d3/wiki/Zoom-Behavior

Mapping with d3.js 226

Then we relax and explore our map!

The World map with zoom and pan

The code and data for this example can be found as World Map with zoom and pan¹³⁶ on
bl.ocks.org.

Displaying points on a map

Displaying maps and exploring them is pretty entertaining, but as anyone who has participated
in the improvement of our geographic understanding of our world via projects such as Open
Street Map¹³⁷ will tell you, there’s a whole new level of cool to be attained by adding to a map.

With that in mind, our next task is to add some simple detail in the form of points that show the
location of cities.

To do this we will load in a csv file with data that identifies our cities and includes latitude and
longitude details. Our file is called cities.csv and looks like this;

¹³⁶http://bl.ocks.org/d3noob/5189284
¹³⁷http://www.openstreetmap.org/

http://bl.ocks.org/d3noob/5189284
http://www.openstreetmap.org/
http://www.openstreetmap.org/
http://bl.ocks.org/d3noob/5189284
http://www.openstreetmap.org/

Mapping with d3.js 227

code,city,country,lat,lon

ZNZ,ZANZIBAR,TANZANIA,-6.13,39.31

TYO,TOKYO,JAPAN,35.68,139.76

AKL,AUCKLAND,NEW ZEALAND,-36.85,174.78

BKK,BANGKOK,THAILAND,13.75,100.48

DEL,DELHI,INDIA,29.01,77.38

SIN,SINGAPORE,SINGAPOR,1.36,103.75

BSB,BRASILIA,BRAZIL,-15.67,-47.43

RIO,RIO DE JANEIRO,BRAZIL,-22.90,-43.24

YTO,TORONTO,CANADA,43.64,-79.40

IPC,EASTER ISLAND,CHILE,-27.11,-109.36

SEA,SEATTLE,USA,47.61,-122.33

While we’re only going to use the latitude and longitude for our current work, the additional
details could just as easily be used for labeling or tooltips.

We need to place our code carefully in this case because while you might have some flexibility
in getting the right result with a locally hosted version of a map, there is a possibility that with
a version hosted in the outside World (gasp the internet) you could strike trouble.

The code to load the cities should be placed inside the function that is loading the World map as
indicated below;

d3.json("json/world-110m2.json", function(error, topology) {

g.selectAll("path")

.data(topojson.object(topology, topology.objects.countries)

.geometries)

.enter()

.append("path")

.attr("d", path)

// <== Put the new code block here

});

Here’s the new code;

d3.csv("data/cities.csv", function(error, data) {

g.selectAll("circle")

.data(data)

.enter()

.append("circle")

.attr("cx", function(d) {

return projection([d.lon, d.lat])[0];

})

.attr("cy", function(d) {

return projection([d.lon, d.lat])[1];

})

.attr("r", 5)

.style("fill", "red");

Mapping with d3.js 228

We’ll go through the code and then explain the quirky thing about it.

First of all we load the cities.csv file (d3.csv("data/cities.csv", function(error, data)

{). Thenwe select all the circle elements (g.selectAll("circle")), assign our data (.data(data)),
enter our data (.enter()) and then add in circles (.append("circle")).

Then we set the x and y position for the circles based on the longitude (([d.lon, d.lat])[0])
and latitude (([d.lon, d.lat])[1]) information in the csv file.

Finally we assign a radius of 5 pixels and fill the circles with red.

The quirky thing about the new code block is that we have to put it inside the code block that
loads the world data (d3.json("json/world-110m2.json", function(error, topology) {).
We could place the two blocks one after the others (load / draw the world data, then load / draw
the circles). And this will probably work if you run the file from your local computer. But when
you host the files on the internet, it takes too long to load the world data compared to the city
data and the end result is that the city data gets drawn before the world data and this is the
result.

The cities under the World

To avoid the problem we place the loading of the city data into the code that loads the World
data. That way the city data doesn’t get loaded until theWorld data is loaded and then the circles
get drawn on top of the world instead of under it :-).

Mapping with d3.js 229

The cities on top of the World

The code and data for this example can be found as World map with zoom / pan and cities¹³⁸ on
bl.ocks.org.

Additionally the full code can be found in the appendix section at the rear of the book.

¹³⁸http://bl.ocks.org/d3noob/5193723

http://bl.ocks.org/d3noob/5193723
http://bl.ocks.org/d3noob/5193723

Crossfilter, dc.js and d3.js for Data
Discovery
The ability to interact with visual data is the third step on the road to data nirvana in my humble
opinion.

• Step 1: Raw data
• Step 2: Visualize data
• Step 3: Interact with data

But I think that there might be a 4th step where data is a more fluid construct. Where the
influences of interaction have a more profound impact on how information is presented and
perceived. I think that the visualization tools that we’re going to explore in this chapter take that
4th step.

• Step 4: Data immersion

The tools we’re going to use are not the only way that can achieve the effect of immersion, but
they are simple enough for me to use and they incorporate d3.js at their core.

Introduction to Crossfilter

Crossfilter is a JavaScript library for exploring large datasets that include many variables in the
browser. It supports extremely fast interactions with concurrent views and was built to power
analytics for Square Register¹³⁹ so that online merchants can slice and dice their payment history
fluidly. It was developed for Square¹⁴⁰ by (amongst other people) the ever tireless Mike Bostock
and was released under the Apache Licence¹⁴¹.

Crossfilter provides a map-reduce function to data using ‘dimensions’ and ‘groups’. Map-reduce
is an interesting concept itself and it’s useful to understand it in a basic form to understand
crossfilter better.

¹³⁹https://squareup.com/register
¹⁴⁰https://squareup.com/
¹⁴¹http://www.apache.org/licenses/LICENSE-2.0.html

https://squareup.com/register
https://squareup.com/
http://www.apache.org/licenses/LICENSE-2.0.html
https://squareup.com/register
https://squareup.com/
http://www.apache.org/licenses/LICENSE-2.0.html

Crossfilter, dc.js and d3.js for Data Discovery 231

Map-reduce

Wikipedia tells us¹⁴² that “MapReduce is a programmingmodel for processing large data sets with
a parallel, distributed algorithm on a cluster”. Loosely translated into language I can understand,
I think of a large data set having one dimension ‘mapped’ or loaded into memory ready to be
worked on. In practical terms, this could be an individual column of data from a larger group of
information. This column of data has ‘key’ values which we can define as being distinct. In the
case of the data below, this could be earthquake magnitudes.

Mapping a Single Dimension of Data

The reduce function then takes that dimension and ‘reduces’ it by grouping it according to a
specific aspect. For instance in the example above we may want to group each unique value
of magnitude (by counting how many occurrences of each there are) to know how many
earthquakes of a specific magnitude have taken place. Leaving us with a very specific subset
of our data.

Magnitude Count

2.6 63

2.7 134

2.8 292

2.9 299

3.0 378

3.1 351

3.2 403

3.3 455

¹⁴²https://en.wikipedia.org/wiki/MapReduce

https://en.wikipedia.org/wiki/MapReduce
https://en.wikipedia.org/wiki/MapReduce

Crossfilter, dc.js and d3.js for Data Discovery 232

3.4 512

3.5 688

Please don’t think that this is the sum total of information you need to know to
be the master of map-reduce. This is a ridiculously simplistic view which is only
intended to supply enough information to get you familiar with the way that we
will use crossfilter later :-).

What can crossfilter do?

The best way to get a feel for the capabilities of crossfilter is to visit the demo page for crossfilter¹⁴³
and to play with their example.

Crossfilter Demo Page

Here we are presented with five separate views of a data set that represents flight records
demonstrating airline on-time performance. There are 231,083 flight records in the database
being used, so getting that rendered in a web page is no small feat in itself.

The bottom view is a table showing data for individual flights. The top, left view is of the number
of flights that occur at a specific hour of the day.

¹⁴³http://square.github.io/crossfilter/

http://square.github.io/crossfilter/
http://square.github.io/crossfilter/

Crossfilter, dc.js and d3.js for Data Discovery 233

Flights at a Specific Hour of the Day

The top, middle graph shows the amount of delay for flights grouped in 10 minute intervals.

Flights Delay in 10 Minute Intervals

The top, right graph shows the distance covered by each flight grouped in 50 mile chunks.

Flights Delay in 10 Minute Intervals

The wider bar graph in the second row shows the number of flights per day.

Flights per Day

This particular graph is the first to give a hint at how cool this visualization really is, because it
includes a section in the middle of the graph which is selected with ‘handles’ on either side of
the selection. You can move these handles with a mouse and as a result you will find all the data
represented in the other graphs adjusting dynamically to follow your selection.

This same feature is available in all the graphs. So you are able to filter dynamically and have the
results presented virtually instantaneously. This is where you can start to have fun and discover
things that might not be immediately obvious.

Crossfilter, dc.js and d3.js for Data Discovery 234

For instance, if we select only the flights that arrived late, we can see a marked skew in the time
of day. Does this mean that flights that are delayed will typically be in the late evening?

Arrival Delay and Time of Day

So this is why tools like crossfilter are cool. All we need to do now is learn how to make them
ourselves :-).

Introduction to dc.js

Why, if we’ve just explored the benefits of crossfilter are we now introducing a completely
different JavaScript library (dc.js)?

Well, crossfilter isn’t a library that’s designed to draw graphs. It’s designed to manipulate data.
D3.js is a library that’s designed to manipulate graphical objects (and more) on a web page. The
two of them will work really well together, but the barrier to getting data onto a web page can
be slightly daunting because the combination of two non-trivial technologies can be difficult to
achieve.

This is where dc.js¹⁴⁴ comes in. It was developed by Nick Qi Zhu¹⁴⁵ and the first version was
released on the 7th of July 2012.

Dc.js is designed to be an enabler for both libraries. Taking the power of crossfilter’s data
manipulation capabilities and integrating the graphical capabilities of d3.js.

It is designed to provide access to a range of different chart types in a relatively easy to use
fashion. It is more limited in the range of options available for graphical design in this respect
than d3.js, but the simplicity that it provides for creating pages using crossfiltered data is a real
benefit if you’re anything like me and need all the help you can get.

The different (generic) types of chart that dc.js supports are

• Bar Chart
• Pie Chart
• Row Chart

¹⁴⁴http://nickqizhu.github.io/dc.js/
¹⁴⁵https://github.com/NickQiZhu

http://nickqizhu.github.io/dc.js/
https://github.com/NickQiZhu
http://nickqizhu.github.io/dc.js/
https://github.com/NickQiZhu

Crossfilter, dc.js and d3.js for Data Discovery 235

• Line Chart
• Bubble Chart
• Geo Choropleth Chart
• Data Table

All these examples come with a range of options which we will cover in greater depth in later
sections.

My initial sources of information for developing the examples here came primarily from;

• Nick Zhu’s examples¹⁴⁶
• Rusty Klophaus’ blog post on crossfilter¹⁴⁷
• Eamonn O’Loughlin’s blog post on dc.js¹⁴⁸

Bar Chart

This is a standard bar chart.

Bar Chart Example

Pie Chart

This is a standard pie chart. The examples below are from one of Nick Zhu’s dc.js example
pages¹⁴⁹.

Pie Chart Examples

¹⁴⁶http://nickqizhu.github.io/dc.js/
¹⁴⁷http://blog.rusty.io/2012/09/17/crossfilter-tutorial/
¹⁴⁸https://becomingadatascientist.wordpress.com/tag/crossfilter-js/
¹⁴⁹http://nickqizhu.github.io/dc.js/

http://nickqizhu.github.io/dc.js/
http://blog.rusty.io/2012/09/17/crossfilter-tutorial/
https://becomingadatascientist.wordpress.com/tag/crossfilter-js/
http://nickqizhu.github.io/dc.js/
http://nickqizhu.github.io/dc.js/
http://nickqizhu.github.io/dc.js/
http://blog.rusty.io/2012/09/17/crossfilter-tutorial/
https://becomingadatascientist.wordpress.com/tag/crossfilter-js/
http://nickqizhu.github.io/dc.js/

Crossfilter, dc.js and d3.js for Data Discovery 236

Row Chart

The row chart is a horizontal version of a bar chart, but with the ability to represent discrete
values and to be able to select them for filtering by clicking on them.

Row Chart Example

Line Chart

Standard line chart.

Line Chart Example

Bubble Chart

The bubble chart is a derivative of a scatter plot with control over x axis position, y axis position,
bubble radius and colour.

Crossfilter, dc.js and d3.js for Data Discovery 237

Bubble Chart Example

Geo Choropleth Chart

A Choropleth map is one where areas are shaded or patterned in proportion to the measurement
of a variable being displayed on the map, such as population density or per-capita income. The
example below is from one of Nick Zhu’s dc.js example pages¹⁵⁰

Geo Choropleth Chart Example

Data Table

A data table is a simple table made up of data elements derived from the information loaded.

¹⁵⁰http://nickqizhu.github.io/dc.js/vc/

http://nickqizhu.github.io/dc.js/vc/
http://nickqizhu.github.io/dc.js/vc/

Crossfilter, dc.js and d3.js for Data Discovery 238

Data Table Example

Crossfilter, dc.js and d3.js for Data Discovery 239

Bare bones structure for dc.js and crossfilter page

To learn some of the capabilities of dc.js and crossfilter we will start with a rudimentary template
and build chart examples as we go.

The template we’ll start with will load d3.js, crossfilter.js, dc.js jquery.js and bootstrap.js. We will
be including bootstrap as it provides lots of nice capabilities for fine tuning layout and styling as
laid out in the chapter on using bootstrap. Since bootstrap depends on jquery, we have to load
that as well.

We’ll also load cascading style sheets for bootstrap and dc.js.

The template will load a csv file with earthquake data sourced from New Zealand’s Geonet¹⁵¹
site over a date range that covers a period of reasonable activity in July 2013.

In it’s bare bones formwe will present only a data table with some values from the csv file. When
we begin to add charts, we will see this table adjust dynamically.

We’ll move through the explanation of the code in a similar process to the other examples in the
book. Where there are areas that we have covered before, I will gloss over some details on the
understanding that you will have already seen them explained in other sections.

Here is the full code (an expanded version of which can be downloaded from here¹⁵² with all the
associated *.js and *.css files);

<!DOCTYPE html>

<html lang='en'>

<head>

<meta charset='utf-8'>

<title>dc.js Experiment</title>

<script src='js/d3.js' type='text/javascript'></script>

<script src='js/crossfilter.js' type='text/javascript'></script>

<script src='js/dc.js' type='text/javascript'></script>

<script src='js/jquery-1.9.1.min.js' type='text/javascript'></script>

<script src='js/bootstrap.min.js' type='text/javascript'></script>

<link href='css/bootstrap.min.css' rel='stylesheet' type='text/css'>

<link href='css/dc.css' rel='stylesheet' type='text/css'>

<style type="text/css"></style>

</head>

<body>

<div class='container' style='font: 12px sans-serif;'>

¹⁵¹http://geonet.org.nz/
¹⁵²https://gist.github.com/d3noob/6077996

http://geonet.org.nz/
https://gist.github.com/d3noob/6077996
http://geonet.org.nz/
https://gist.github.com/d3noob/6077996

Crossfilter, dc.js and d3.js for Data Discovery 240

<div class='row'>

<div class='span12'>

<table class='table table-hover' id='dc-table-graph'>

<thead>

<tr class='header'>

<th>DTG</th>

<th>Lat</th>

<th>Long</th>

<th>Depth</th>

<th>Magnitude</th>

<th>Google Map</th>

<th>OSM Map</th>

</tr>

</thead>

</table>

</div>

</div>

</div>

<script>

// Create the dc.js chart objects & link to div

var dataTable = dc.dataTable("#dc-table-graph");

// load data from a csv file

d3.csv("data/quakes.csv", function (data) {

// format our data

var dtgFormat = d3.time.format("%Y-%m-%dT%H:%M:%S");

data.forEach(function(d) {

d.dtg = dtgFormat.parse(d.origintime.substr(0,19));

d.lat = +d.latitude;

d.long = +d.longitude;

d.mag = d3.round(+d.magnitude,1);

d.depth = d3.round(+d.depth,0);

});

// Run the data through crossfilter and load our 'facts'

var facts = crossfilter(data);

// Create dataTable dimension

var timeDimension = facts.dimension(function (d) {

return d.dtg;

});

Crossfilter, dc.js and d3.js for Data Discovery 241

// Setup the charts

// Table of earthquake data

dataTable.width(960).height(800)

.dimension(timeDimension)

.group(function(d) { return "Earthquake Table"

})

.size(10)

.columns([

function(d) { return d.dtg; },

function(d) { return d.lat; },

function(d) { return d.long; },

function(d) { return d.depth; },

function(d) { return d.mag; },

function(d) { return '<a href=\"http://maps.google.com/maps?z=12&t=m&q=loc:\

' + d.lat + '+' + d.long +"\" target=\"_blank\">Google Map"},

function(d) { return '<a href=\"http://www.openstreetmap.org/?mlat=' + d.la\

t + '&mlon=' + d.long +'&zoom=12'+ "\" target=\"_blank\"> OSM Map"}

])

.sortBy(function(d){ return d.dtg; })

.order(d3.ascending);

// Render the Charts

dc.renderAll();

});

</script>

</body>

</html>

The first part of the code starts the html file and inside the <head> segment loads our JavaScript
and css files

<!DOCTYPE html>

<html lang='en'>

<head>

<meta charset='utf-8'>

<title>dc.js Experiment</title>

<script src='js/d3.js' type='text/javascript'></script>

<script src='js/crossfilter.js' type='text/javascript'></script>

<script src='js/dc.js' type='text/javascript'></script>

<script src='js/jquery-1.9.1.min.js' type='text/javascript'></script>

Crossfilter, dc.js and d3.js for Data Discovery 242

<script src='js/bootstrap.min.js' type='text/javascript'></script>

<link href='css/bootstrap.min.css' rel='stylesheet' type='text/css'>

<link href='css/dc.css' rel='stylesheet' type='text/css'>

<style type="text/css"></style>

</head>

It’s worth noting that the order of loading the files is important. The
jquery-1.9.1.min.js file must be loaded before the bootstrap.min.js file or it
just won’t work.

From here we move into the section where we set up our page to load our bootstrap grid layout
for the table.

<div class='container' style='font: 12px sans-serif;'>

<div class='row'>

<div class='span12'>

<table class='table table-hover' id='dc-table-graph'>

<thead>

<tr class='header'>

<th>DTG</th>

<th>Lat</th>

<th>Long</th>

<th>Depth</th>

<th>Magnitude</th>

<th>Google Map</th>

<th>OSM Map</th>

</tr>

</thead>

</table>

</div>

</div>

</div>

It might look a little complicated, but if you have a look through the bootstrap chapter (where
we cover using the bootstrap grid layout), you will find it no problem at all.

The important features to note are that we have declared an ID selector for our table id='dc-table-graph'
and we have set a series of headers for the table; DTG, Lat, Long, Depth, Magnitude, Google Map
and OSM Map.

We have also included some bootstrap styling for the table by including the the class='table
table-hover' portion of the code. With that styling included our table looks like this;

Crossfilter, dc.js and d3.js for Data Discovery 243

Data Table with Bootstrap Styling

Without the styling it would look like this;

Data Table without Bootstrap Styling

We will be adding to this grid layout section as we add in charts which will want their own
allocated space on our page.

The next section of the file starts our JavaScript and declares our variables for our charts.

// Create the dc.js chart objects & link to div

var dataTable = dc.dataTable("#dc-table-graph");

The first line assigns the variable dataTable to the dc.js dataTable chart type (var dataTable =

dc.dataTable("#dc-table-graph");) and assigns the chart to the ID selector dc-table-graph.

Then we get into the d3.js.

Crossfilter, dc.js and d3.js for Data Discovery 244

// load data from a csv file

d3.csv("data/quakes.csv", function (data) {

// format our data

var dtgFormat = d3.time.format("%Y-%m-%dT%H:%M:%S");

data.forEach(function(d) {

d.dtg = dtgFormat.parse(d.origintime.substr(0,19));

d.lat = +d.latitude;

d.long = +d.longitude;

d.mag = d3.round(+d.magnitude,1);

d.depth = d3.round(+d.depth,0);

});

We load our csv file with the line d3.csv("data/quakes.csv", function (data) {. I have
deliberately left this file in its raw form as received from Geonet. Its format looks a little like
this;

FID,publicid,origintime,longitude,latitude,depth,magnitude,magnitudetype,statu\

s,phases,type,agency,updatetime,origin_geom

quake.2013p550753,2013p550753,2013-07-23T18:41:11.707,174.4298,-41.5313,7.9883\

,2.2425,M,automatic,27,,WEL(GNS_Primary),2013-07-23T18:43:15.672,POINT (174.42\

978 -41.531299)

quake.2013p550747,2013p550747,2013-07-23T18:38:02.481,174.414,-41.5181,11.6797\

,1.7892,M,automatic,11,,WEL(GNS_Primary),2013-07-23T18:39:25.37,POINT (174.413\

98 -41.518114)

quake.2013p550725,2013p550725,2013-07-23T18:26:30.229,175.5516,-40.0264,8.75,3\

.4562,M,automatic,21,,WEL(GNS_Primary),2013-07-23T18:29:46.305,POINT (175.5515\

5 -40.026412)

We then declare a small function that will format our time correctly (var dtgFormat =

d3.time.format("%Y-%m-%dT%H:%M:%S");). This follows exactly the same procedure we took
when creating our very first simple line graph at the start of the book.

However, there is a slight twist… Observant readers will notice that while we have
a function that resolves a date/time that is formatted with year, month, day, hour,
minute and second values, I don’t include an allowance for the fractions of seconds
that appear in the csv file. Well spotted. The reason for this is that in spite of
initially including this formatting, I found it caused some behaviour that I couldn’t
explain, so I reverted to cheating and you will note that in the next section when
I format the values from the csv file, I truncate the date/time value to the first 19
characters (d.origintime.substr(0,19)). This solved my problem by chopping off
the fractions of a second (admittedly without actually solving the underlying issue)
and I moved on with my life.

Crossfilter, dc.js and d3.js for Data Discovery 245

While we’re on the subject, observant readers will have noticed that the format of the date / time
that appears in the table are (how to put this kindly…….), not what came out of the csv file.

If you want to put this in a different format we can employ the same technique we used when
formatting time figures in the section that dealt with tables. All we need to do is to assign a new
variable for our ‘correctly’ formatted time in the forEach loop. and then call that variable when
displaying the table values.

The following code will create a date / time string in the format yyyy-mm-dd hh:mm:ss with a
variable name dtg1 (put this in the forEach loop).

d.dtg1 = d.origintime.substr(0,10) + " " + d.origintime.substr(11,8);

Then, when your code calls the values for the table, instead of the line that says;

function(d) { return d.dtg; },

You rename dtg to dtg1 like so;

function(d) { return d.dtg1; },

The end result will look like this;

Data Table with Formatted Date / Time

As mentioned. the next section goes through each of the records and formats them correctly.
The date/time gets formatted, the latitude and longitude are declared as numerical values (if
they weren’t already) and the magnitude and depth valued are rounded to make the process of
grouping them simpler.

Crossfilter, dc.js and d3.js for Data Discovery 246

data.forEach(function(d) {

d.dtg = dtgFormat.parse(d.origintime.substr(0,19));

d.lat = +d.latitude;

d.long = +d.longitude;

d.mag = d3.round(+d.magnitude,1);

d.depth = d3.round(+d.depth,0);

});

The next section in our code sets up the dimensions and groupings for the dc.js chart type and
crossfilter functions

// Run the data through crossfilter and load our 'facts'

var facts = crossfilter(data);

// Create dataTable dimension

var timeDimension = facts.dimension(function (d) {

return d.dtg;

});

We load all of our data into crossfilter (var facts = crossfilter(data);) and give it the name
facts.

Then we create a dimension from our data (facts) of the date/time values.

var timeDimension = facts.dimension(function (d) {

return d.dtg;

});

The last major chunk of code is the piece that configures our data table.

dataTable.width(960).height(800)

.dimension(timeDimension)

.group(function(d) { return "Earthquake Table"

})

.size(10)

.columns([

function(d) { return d.dtg; },

function(d) { return d.lat; },

function(d) { return d.long; },

function(d) { return d.depth; },

function(d) { return d.mag; },

function(d) { return '<a href=\"http://maps.google.com/maps?z=12&t=m&q=loc:\

' + d.lat + '+' + d.long +"\" target=\"_blank\">Google Map"},

function(d) { return '<a href=\"http://www.openstreetmap.org/?mlat=' + d.la\

t + '&mlon=' + d.long +'&zoom=12'+ "\" target=\"_blank\"> OSM Map"}

])

.sortBy(function(d){ return d.dtg; })

.order(d3.ascending);

Crossfilter, dc.js and d3.js for Data Discovery 247

Firstly the width and height are declared (dataTable.width(960).height(800)). Then the
dimension of the data that will be used is declared (.dimension(timeDimension)).

Separate sections of the table can have a header applied. In this case the entire
table is given the grouping ‘Earthquake Table’ (.group(function(d) { return

"Earthquake Table"})), but several examples online give the date.

The .size(10) line sets the maximum number of lines of the table to be displayed to 10.

Then we have the block of code that sets what data appears in which columns. It should be noted
that this matches up with the headers that were declared in the earlier section of the code where
the div’s for the table were laid out.

The portion of this block that has a ‘little bit of fancy’ are the two columns that set links that
allow a user to click on the designation ‘Google Map’ or ‘OSM Map’ and have the browser open
a new window containing a Google or Open Street Map (OSM) map with a marker designating
the location of the quake. I won’t mention too much about how the links are made up other than
to say that they are pretty much a combination of the latitude, longitude and zoom level for both.
Please check out the code for more.

Lastly we sort by the date/time value (.sortBy(function(d){ return d.dtg; })) in ascending
order (.order(d3.ascending);).

The final part of our JavaScript renders all our charts (dc.renderAll();) and then closes off the
initial d3.csv call.

// Render the Charts

dc.renderAll();

});

The final part of our code simply closes off the <script>, <body> and <html> tags.

There we have it. The template for starting to play with different crossfiltered dc.js charts.

Crossfilter, dc.js and d3.js for Data Discovery 248

Add a Bar Chart.

The ubiquitous bar chart is a smart choice if your starting out with crossfilter and dc.js. It’s pretty
easy to implement and gives a certain degree of instant satisfaction.

The bar chart that we’ll create will be a representation of the magnitude of the earthquakes that
we have in our dataset. In this respect, what we are expecting to see is the magnitude of the
events along the x axis and the number of each such event on the y axis.

It should end up looking a bit like this.

Bar Chart Example

We’ll work through adding the chart in stages (and this should work for subsequent charts).
Firstly we’ll organise a position for our chart on the page using the bootstrap grid set-up. Then
we’ll name our chart and assign it a chart type. Then we’ll create any required dimension and
grouping and finally we’ll configure the parameters for the chart. Sounds simple right?

1. Position the chart
2. Assign type
3. Dimension and Group
4. Configure chart parameters

Position the bar chart

We are going to position our bar chart above our data table and we’ll actually only make it half
the width of our data table so that we can add in another one along side it later.

Just under the line of code that defined the main container for the layout;

<div class='container' style='font: 12px sans-serif;'>

We add in a new row that has two span6’s in it (remembering our total is a span of 12 (see the
section on bootstrap layout if it’s a bit unfamiliar))

Crossfilter, dc.js and d3.js for Data Discovery 249

<div class='row'>

<div class='span6' id='dc-magnitude-chart'>

<h4>Events by Magnitude</h4>

</div>

<div class='span6' id='blank'>

<h4>Blank</h4>

</div>

</div>

We’ve given the first span6 and ID selector of dc-magnitude-chart. So when we we assign our
chart that selector, it will automatically appear in that position. We’ve also put a simple title in
place (<h4>Events by Magnitude</h4>). The second span6 is set as blank for the time being
(we’ll put another bar chart in it later).

Assign the bar chart type

Here we give our chart it’s name (magnitudeChart), assign it with a dc.js chart type (in this case
barChart) and assign it to the ID selector (dc-magnitude-chart).

Under the line that assigns the dataTable chart type…

var dataTable = dc.dataTable("#dc-table-graph");

… add in the equivalent for our bar chart.

var dataTable = dc.dataTable("#dc-table-graph");

var magnitudeChart = dc.barChart("#dc-magnitude-chart");

All done.

Dimension and group the bar chart data

To set our dimension for magnitude, it’s as simple as following the same format as we had
previously done for the data table but in this case using the .mag variable.

This should go just before the portion of the code that created the data table dimension.

var magValue = facts.dimension(function (d) {

return d.mag;

});

This dimension (magValue) has been set and now has, as its index, each unique magnitude that
is seen in the database. This is essentially defining the values on the x axis for our bar chart.

Then we want to group the data by counting the number of events of each magnitude.

Crossfilter, dc.js and d3.js for Data Discovery 250

var magValueGroupCount = magValue.group()

.reduceCount(function(d) { return d.mag; }) // counts

This piece of code (which should do directly under the magValue dimension portion), groups
(.group()) by counting (.reduceCount) all of the magnitude values (function(d) { return

d.mag; })) and assigns it to the magValueGroupCount variable. This has essentially defined the
values for the y axis of our bar chart (the number of times each magnitude occurs).

Configure the bar chart parameters

There are lots of parameters that can be configured, and if the truth be told, I haven’t explored
all of them or, in some cases, worked out exactly how they work.

However, the best way to learn is by doing, so here is the block of code for configuring the bar
chart. This should go just before the block that configures the dataTable.

magnitudeChart.width(480)

.height(150)

.margins({top: 10, right: 10, bottom: 20, left: 40})

.dimension(magValue)

.group(magValueGroupCount)

.transitionDuration(500)

.centerBar(true)

.gap(65)

.filter([3, 5])

.x(d3.scale.linear().domain([0.5, 7.5]))

.elasticY(true)

.xAxis().tickFormat();

That should be it. With the addition of this portion of the code, you should have a functioning
visualization that can be filtered dynamically. Just check to make sure that everything is working
properly and we’ll go through some of the configuration options to see what they do.

Your web page should look a little like this;

Crossfilter, dc.js and d3.js for Data Discovery 251

Web Page with Bar Chart

The configuration options start by declaring the name of the chart (magnitudeChart) and setting
the height and width of the chart.

magnitudeChart.width(480)

.height(150)

In the case of our example I have selected the width based on the default size for a span6 grid
segment in bootstrap and adjusted the height to make it look suitable.

Then we have our margins set up.

.margins({top: 10, right: 10, bottom: 20, left: 40})

Nothing too surprising there although the left margin is slightly larger to allow for larger values
on the y axis to be represented without them getting clipped.

Then we define which dimension and grouping we will use.

.dimension(magValue)

.group(magValueGroupCount)

I like to think of this section as the .dimension declaration being the x axis and the .group

declaration being the y axis. This just helps me get the graph straight in my head before it’s
plotted.

The .transitionDuration setting defines the length of time that any change takes to be applied
to the chart as it adjusts.

.transitionDuration(500)

Then we ensure that the bar for the bar graph is centred on the ticks on the x axis.

Crossfilter, dc.js and d3.js for Data Discovery 252

.centerBar(true)

Without this (true is not the default), the graph will look like slightly odd.

Bar Chart with Bars Not Centred

The setting of the gap between the bars is accomplished with the following setting;

.gap(65)

I will admit that I still don’t quite understand how this setting works exactly, but I can get it to
do what I want with a little trial and error.

For instance, I would expect that .gap(2) would have the effect of producing a gap of 2 pixels
between the bars. But this would be the result for our graph if I have that set.

Bar Chart with gap Set to 2

If you select a portion of the graph you will see some strange things going on. That appears to
be as a result of the bars being too wide for the graph.

Setting the gap for a bar graph is a pretty tricky thing to do (progromatically), and I can see why
it would throw some strange results. The way around this and the way to find the ideal .gap
setting is to set the .gap value high and then reduce it till it’s right.

For instance, if we set it to 100 (.gap(100)) we will get the following result.

Crossfilter, dc.js and d3.js for Data Discovery 253

Bar Chart with gap Set to 100

Then we just keep backing the values off till we reach an acceptable chart on the screen.

In the case of our example, it’s .gap(65).

Bar Chart Example

I have added in the next setting more because I want you to know it exists, rather than wanting
to use it in this example.

.filter([3, 5])

Bar Chart with Pre-Selection Section

Setting the .filter configuration will load the graph with a portion of it pre-selected. If you
omit this parameter, the entire graph is selected by default. In most cases that I can think of, that
is what I would start with.

We can set the range of values presented in our graph by defining the domain (in the same way
as for d3.js).

.x(d3.scale.linear().domain([0.5, 7.5]))

The next parameter sets the y axis to adjust dynamically as the filtered data is returned.

Crossfilter, dc.js and d3.js for Data Discovery 254

.elasticY(true)

The final parameter that we set is to format the values on the x axis.

.xAxis().tickFormat();

And that’s it! A bar graph added to your visualization with full dynamic control.

Just one more thing…

Just another snippet that could be useful. In the section where we set up our group to count the
number of instances of individual magnitudes we had;

var magValueGroupCount = magValue.group()

.reduceCount(function(d) { return d.mag; }) // counts

We could have just as easily summed the magnitude values instead of counting them by using
.reduceSum instead of .reduceCount. This has the effect of increasing the value on the y axis (as
the sum of the magnitudes would have been greater than the count) like so

Bar Chart Counting and Summing

The reason I mention it is that summing the numeric value would be useful in many circum-
stances (file size or packet size or similar).

Just yet another thing…

When we initially set up our grid layout for the web page we left ourselves a blank position for
another graph. If you feel so inclined, try to include another bar graph in this position that will
display the depth of the earthquakes.

The example I came up with looks like this;

Crossfilter, dc.js and d3.js for Data Discovery 255

Earthquake page with Magnitude and Depth Bar Charts

And the sections I added are as follows;

Position the chart

(more of a change than an addition)

<div class='span6' id='dc-depth-chart'>

<h4>Events by Depth (km)</h4>

</div>

Assign type

var depthChart = dc.barChart("#dc-depth-chart");

Dimension and Group

var depthValue = facts.dimension(function (d) {

return d.depth;

});

var depthValueGroup = depthValue.group();

Configure chart parameters

Crossfilter, dc.js and d3.js for Data Discovery 256

depthChart.width(480)

.height(150)

.margins({top: 10, right: 10, bottom: 20, left: 40})

.dimension(depthValue)

.group(depthValueGroup)

.transitionDuration(500)

.centerBar(true)

.gap(1)

.x(d3.scale.linear().domain([0, 100]))

.elasticY(true)

.xAxis().tickFormat(function(v) {return v;});

Crossfilter, dc.js and d3.js for Data Discovery 257

Add a Line Chart.

The line chart is another simple choice for implementation using crossfilter and dc.js.

The line chart that we’ll create will be a representation of the frequency of the occurrence of
the earthquakes that we have in our dataset. In this respect, what we are expecting to see is the
number of events on the y axis and the time-scale on the x axis.

It should end up looking a bit like this.

Line Chart Example

Just as with the bar chart, we’ll work through adding the chart in the following stages.

1. Position the chart
2. Assign type
3. Dimension and Group
4. Configure chart parameters

Position the line chart

We are going to position our line chart above our data table (and below the bar charts)and we’ll
make it the full width of our data table so that it looks like it belongs there.

Just under the line of code that defined the containers for the bar graphs;

<div class='row'>

<div class='span6' id='dc-magnitude-chart'>

<h4>Events by Magnitude Counted</h4>

</div>

<div class='span6' id='dc-depth-chart'>

<h4>Events by Depth (km)</h4>

</div>

</div>

We add in a new row that has a single span12.

Crossfilter, dc.js and d3.js for Data Discovery 258

<div class='row'>

<div class='span12' id='dc-time-chart'>

<h4>Events per hour</h4>

</div>

</div>

We’ve given it an ID selector of dc-time-chart. So when we we assign our chart that selector,
it will automatically appear in that position. We’ve also put another simple title in place
(<h4>Events per hour</h4>).

Assign the line chart type

Here we give our chart it’s name (timeChart), assign it with a dc.js chart type (in this case
lineChart) and assign it to the ID selector (dc-time-chart).

Under the line that assigns the depthChart chart type…

var depthChart = dc.barChart("#dc-depth-chart");

… add in the equivalent for our line chart.

var depthChart = dc.barChart("#dc-depth-chart");

var timeChart = dc.lineChart("#dc-time-chart");

Nice.

Dimension and group the line chart data

We’ll put the code between the dimension and group of the depth chart and the data table
dimension (this is just to try and keep the code in the same order as the graphs on the page).

To set our dimension for our time we do something a little different.

var volumeByHour = facts.dimension(function(d) {

return d3.time.hour(d.dtg);

});

This dimension (volumeByHour) uses the same facts data, but when the key values are returned
(return d3.time.hour(d.dtg);) we are going to return the information by hours. This is
essentially defining the resolution of the values on the x axis for our line chart.

Then we want to group the data by counting the number of events of for each hour.

Crossfilter, dc.js and d3.js for Data Discovery 259

var volumeByHourGroup = volumeByHour.group()

.reduceCount(function(d) { return d.dtg; });

This piece of code (which should do directly under the volumeByHour dimension portion), groups
(.group()) by counting (.reduceCount) all of the magnitude values (function(d) { return

d.dtg; })) and assigns it to the volumeByHourGroup variable. This has defined the values for the
y axis of our line chart (the number of events we see in a given hour).

Configure the line chart parameters

As with the bar chart, there are lots of parameters that can be configured. The best way to learn
what they do is by having a play with them. So here is the block of code for configuring the
line chart. Once you are happy that it works on your system, take some time and go through the
settings in conjunction with the information from the demo page¹⁵³ and the api reference¹⁵⁴.

This should go just before the block that configures the dataTable (again, this is just to try and
keep the code in the same order as the graphs on the page).

// time graph

timeChart.width(960)

.height(150)

.margins({top: 10, right: 10, bottom: 20, left: 40})

.dimension(volumeByHour)

.group(volumeByHourGroup)

.transitionDuration(500)

.elasticY(true)

.x(d3.time.scale().domain([new Date(2013, 6, 18), new Date(2013, 6, 24)]))

.xAxis();

That should be it. With the addition of this portion of the code, you should have a functioning
visualization that can be filtered dynamically. Just check to make sure that everything is working
properly and we’ll go through some of the configuration options to see what they do.

To start with, your page should look something like this;

¹⁵³http://nickqizhu.github.io/dc.js/
¹⁵⁴https://github.com/NickQiZhu/dc.js/wiki/API

http://nickqizhu.github.io/dc.js/
https://github.com/NickQiZhu/dc.js/wiki/API
http://nickqizhu.github.io/dc.js/
https://github.com/NickQiZhu/dc.js/wiki/API

Crossfilter, dc.js and d3.js for Data Discovery 260

Web Page with Line Chart

The configuration options start by declaring the name of the chart (timeChart) and setting the
height and width of the chart.

timeChart.width(960)

.height(150)

In the case of our example I have selected the width based on the default size for a span12 grid
segment in bootstrap and adjusted the height to make it look suitable.

Then we have our margins set up.

.margins({top: 10, right: 10, bottom: 20, left: 40})

Nothing too surprising there although the left margin is slightly larger to allow for larger values
on the y axis to be represented without them getting clipped (not strictly for this example, but
it’s a handy default).

Then we define which dimension and grouping we will use.

.dimension(volumeByHour)

.group(volumeByHourGroup)

Think of the .dimension declaration being the x axis and the .group declaration being the y
axis.

The .transitionDuration setting defines the length of time that any change takes to be applied
to the chart as it adjusts.

Crossfilter, dc.js and d3.js for Data Discovery 261

.transitionDuration(500)

We can set the y axis to dynamically adjust when the number of events are filtered by selections
on any of the other charts.

.elasticY(true)

For instance if we select only earthquakes with a magnitude between 4 and 5, our line chart will
have a maximum value on the y axis of 7 events;

Line Chart y Axis Low

However, if we select all the earthquakes, the y axis will dynamically adjust to over 30.

Line Chart y Axis High

Since the line chart has an x axis which is made of date/time values, we set our scale and domain
using the d3.time.scale declaration.

.x(d3.time.scale().domain([new Date(2013, 6, 18), new Date(2013, 6, 24)]))

This is hard coded for our date range, but a smarter method would be to have the scale adjust to
suit your range of date/time values automatically with the following line;

Crossfilter, dc.js and d3.js for Data Discovery 262

.x(d3.time.scale().domain(d3.extent(data, function(d) { return d.dtg; })))

Using the d3.extent function means that our line graph of time now spans the exact range of
our data values on the x axis (note that the time scale now starts just before the 18th and ends
when our data ends).

Line Chart with Better x Axis

The final parameter that we set is to add the x axis.

.xAxis();

Adding tooltips to a line chart

dc.js has a nice feature for adding tooltips to a line chart.

It utilises the .title function in the configuration of the chart to apply the tooltip, but the
downside is that the ability to select the time range needs to be disabled (there are ways to
compensate for this which I hope to cover in the future).

If we take our example line chart configuration block of code;

// time graph

timeChart.width(960)

.height(150)

.margins({top: 10, right: 10, bottom: 20, left: 40})

.dimension(volumeByHour)

.group(volumeByHourGroup)

.transitionDuration(500)

.elasticY(true)

.x(d3.time.scale().domain([new Date(2013, 6, 18), new Date(2013, 6, 24)]))

.xAxis();

We need to turn off the .brushOn feature (.brushOn(false)) that allows for selection and

add in the .title‘ function as follows;

Crossfilter, dc.js and d3.js for Data Discovery 263

// time graph

timeChart.width(960)

.height(150)

.margins({top: 10, right: 10, bottom: 20, left: 40})

.dimension(volumeByHour)

.group(volumeByHourGroup)

.transitionDuration(500)

.brushOn(false)

.title(function(d){

return d.data.key

+ "\nNumber of Events: " + d.data.value;

})

.elasticY(true)

.x(d3.time.scale().domain([new Date(2013, 6, 18), new Date(2013, 6, 24)]))

.xAxis();

Line Chart with Tooltip

As we can see, the tooltip is using the default time format for the script from our key value
(on the x axis), and as a result, the representation of the date / time is quite long winded. We
can adapt this to a format of our choosing by calling a time formatting function similar to the
following;

var dtgFormat2 = d3.time.format("%a %e %b %H:%M");

This line could ideally go after the other time formatting function (dtgFormat) that occurs earlier
in the script. The formatting it’s introducing can be found in the d3.js wiki¹⁵⁵, but in short it
returns the date / time formatted as abbreviated weekday name, day of the month as a decimal
number, abbreviated month name and 24 hour clock hour:minute.

With our function in place, the .title. call from our line chart configuration code would now
look like this;

¹⁵⁵https://github.com/mbostock/d3/wiki/Time-Formatting#wiki-format

https://github.com/mbostock/d3/wiki/Time-Formatting#wiki-format
https://github.com/mbostock/d3/wiki/Time-Formatting#wiki-format

Crossfilter, dc.js and d3.js for Data Discovery 264

.title(function(d){

return dtgFormat2(d.data.key)

+ "\nNumber of Events: " + d.data.value;

})

And the resulting graph looks like this;

Line Chart with Improved Tooltip

We also add in the number of the events from the y axis (d.data.value), separated with a new
line character (\n) and some appropriate text.

Crossfilter, dc.js and d3.js for Data Discovery 265

Add a Row Chart.

The row chart provides an excellent mechanism for presenting and filtering on discrete values
or identifiers.

The row chart that we’ll create will be a representation of the number of earthquake events that
occur on a particular day of the week. As such it doesn’t represent any logical reason for selecting
a Saturday over a Wednesday, and it is used here solely because the data makes a nice row chart
:-). In this respect, what we are expecting to see is the number of events on the x axis and the
individual days on the x axis.

It should end up looking a bit like this.

Row Chart Example

Now for a super cool feature with row charts…

Click on one of the rows…

Selecting a Row

How about that!

Crossfilter, dc.js and d3.js for Data Discovery 266

You can select an individual row from your chart and all the other rows reflect the selection.
Go ahead and select other combinations of more than one row if you want. Welcome to data
immersion!

Just as with the previous chart examples chart, we’ll work through adding the chart in the
following stages.

1. Position the chart
2. Assign type
3. Dimension and Group
4. Configure chart parameters

Position the row chart

We are going to position our row chart above our data table (and below the line chart)and we’ll
divide the row that it sits in into 3 equaly spaced spans of span3. The additional two spans we’ll
leave blank for future use.

Just under the row of code that defined the containers for the line graph;

<div class='row'>

<div class='span12' id='dc-time-chart'>

<h4>Events per hour</h4>

</div>

</div>

We add in a new row that has our three span4’s.

<div class='row'>

<div class='span4' id='dc-dayweek-chart'>

<h4>Day of the Week</h4>

</div>

<div class='span4' id='blank1'>

<h4>Blank 1</h4>

</div>

<div class='span4' id='blank2'>

<h4>Blank 2</h4>

</div>

</div>

We’ve given it an ID selector of dc-dayweek-chart. So when wewe assign our chart that selector,
it will automatically appear in that position. We’ve also put another simple title in place (<h4>Day
of the Week</h4>).

The additional two span4’s have been left blank.

Crossfilter, dc.js and d3.js for Data Discovery 267

Assign the row chart type

Here we give our chart it’s name (dayOfWeekChart), assign it with a dc.js chart type (in this case
rowChart) and assign it to the ID selector (dc-dayweek-chart).

Under the row that assigns the depthChart chart…

var depthChart = dc.barChart("#dc-depth-chart");

… add in the equivalent for our row chart.

var dayOfWeekChart = dc.rowChart("#dc-dayweek-chart");

Dimension and group the row chart data

We’ll put the code between the dimension and group of the line (time) chart and the data table
dimension (this is just to try and keep the code in the same order as the graphs on the page).

When adding our dimension for our day of the week we want to provide an appropriate label so
our code does something extra.

var dayOfWeek = facts.dimension(function (d) {

var day = d.dtg.getDay();

switch (day) {

case 0:

return "0.Sun";

case 1:

return "1.Mon";

case 2:

return "2.Tue";

case 3:

return "3.Wed";

case 4:

return "4.Thu";

case 5:

return "5.Fri";

case 6:

return "6.Sat";

}

});

This dimension (dayOfWeek) uses the same facts data, but when we return our key values we
are going to return them as a combination of their numerical order (0 = Sunday etc) and their
abbreviation (Sun = Sunday etc). This is essentially defining the categories of the values on the
y axis for our row chart.

Crossfilter, dc.js and d3.js for Data Discovery 268

The code snippet looks a little strange, but think of it as extracting the numerical representation
of the day of the week from our data (var day = d.dtg.getDay();) and then matching each
number with an appropriate label (0 = ‘0.Sun’, 1 = ‘1.Mon’ etc). It’s these labels that are now our
key values in our dimension.

Then we want to group the data by using the default action of the .group() function to count
the number of events of for each day of the week.

var dayOfWeekGroup = dayOfWeek.group();

Configure the row chart parameters

As with the previous charts, there are plenty of parameters that can be configured. The best way
to learn what they do is still to have a play with them. So here is the block of code for configuring
the row chart. Once you are happy that it works on your system, take some time and go through
the settings in conjunction with the information from the demo page¹⁵⁶ and the api reference¹⁵⁷.

This should go just before the block that configures the dataTable (again, this is just to try and
keep the code in the same order as the graphs on the page).

// row chart day of week

dayOfWeekChart.width(300)

.height(220)

.margins({top: 5, left: 10, right: 10, bottom: 20})

.dimension(dayOfWeek)

.group(dayOfWeekGroup)

.colors(d3.scale.category10())

.label(function (d){

return d.key.split(".")[1];

})

.title(function(d){return d.value;})

.elasticX(true)

.xAxis().ticks(4);

That should get you working. With the addition of this portion of the code, you should have a
functioning visualization that can be filtered dynamically by clicking on the appropriate day of
the week in your row chart. Just check to make sure that everything is working properly and
we’ll go through some of the configuration options to see what they do.

To start with, your page should look something like this;

¹⁵⁶http://nickqizhu.github.io/dc.js/
¹⁵⁷https://github.com/NickQiZhu/dc.js/wiki/API

http://nickqizhu.github.io/dc.js/
https://github.com/NickQiZhu/dc.js/wiki/API
http://nickqizhu.github.io/dc.js/
https://github.com/NickQiZhu/dc.js/wiki/API

Crossfilter, dc.js and d3.js for Data Discovery 269

Web Page with Row Chart

The configuration options start by declaring the name of the chart (dayOfWeekChart) and setting
the height and width of the chart.

dayOfWeekChart.width(300)

.height(220)

In the case of our example I have selected the width based on the default size for a span4 grid
segment in bootstrap and adjusted the height to make it look suitable.

Then we have our margins set up.

.margins({top: 5, left: 10, right: 10, bottom: 20})

Nothing too surprising there although I did reduce the top margin is slightly more than I thought
I would need. You can be the judge for your own charts.

Then we define which dimension and grouping we will use.

Crossfilter, dc.js and d3.js for Data Discovery 270

.dimension(dayOfWeek)

.group(dayOfWeekGroup)

For a row chart, think of the .dimension declaration being the y axis and the .group declaration
being the x axis (the opposite to the previous charts).

We can set the range of colours to use one of the standard palettes¹⁵⁸.

.colors(d3.scale.category10())

Then we add the labels to our categories by splitting the key values (remember 0.Sun, 1.Mon etc)
at the decimal point and returning the second part of the split value (which is the Sun, Mon part)
as the label.

.label(function (d){

return d.key.split(".")[1];

})

A cool way to prove this is to change the variable that returns the label to use the 1st part of the
split value buy using a [0] instead of a [1] with code like this;

.label(function (d){

return d.key.split(".")[0];

})

The end result produces…

Row Chart with the First Part of the Key Value

The next line in the configuration adds a tool tip to our row chart using the value when the
mouse hovers over the appropriate bar.

¹⁵⁸http://www.schneidy.com/Tutorials/ColorTutorial.html

http://www.schneidy.com/Tutorials/ColorTutorial.html
http://www.schneidy.com/Tutorials/ColorTutorial.html

Crossfilter, dc.js and d3.js for Data Discovery 271

.title(function(d){return d.value;})

Row Chart Tool Tip

We can set the x axis to dynamically adjust when the number of events are filtered by selections
on any of the other charts using the following configuration line.

.elasticX(true)

For instance if we select a subset of the earthquakes using our time / line chart, our row chart
will have a corresponding selection of the appropriate days and the x axis will alter accordingly.

Selection Effect on Row Chart and Dynamic X Axis

Lastly we set up out x axis with 4 ticks.

.xAxis().ticks(4);

Crossfilter, dc.js and d3.js for Data Discovery 272

Add a Pie Chart.

The pie chart provides an useful way of presenting and filtering on discrete values or identifiers
similar to a row chart.

The pie chart that we’ll create will be a representation of which island the earthquakes occurred
in. For those of you unfamiliar with the stunning landscape of New Zealand, there are two
main islands creatively named North Island and South Island (stunning and practical!). The
determination of what constitutes the North and South Island has been decided in a completely
unscientific way (by me) by designating any area South of latitude -40.555907 and West of
longitude 174.590607 as the South Island and anything else is the North Island.

Determination of North and South

The pie graph should end up looking a bit like this.

Crossfilter, dc.js and d3.js for Data Discovery 273

Pie Chart Example

Good news! The pie chart shares the same cool feature as the row chart…

Click on one of the pie segments…

Selecting a Pie Segment

… and everything dynamically reflect the selection.

Just as with the previous chart examples chart, we’ll work through adding the chart in the
following stages.

1. Position the chart
2. Assign type
3. Dimension and Group
4. Configure chart parameters

Position the pie chart

We are going to position our pie chart above our data table (and below the line chart)in the same
row as the row chart in one of the blank span4’s.

Crossfilter, dc.js and d3.js for Data Discovery 274

The code that sets up that row should now look like this;

<div class='row'>

<div class='span4' id='dc-dayweek-chart'>

<h4>Day of the Week</h4>

</div>

<div class='span4' id='dc-island-chart'>

<h4>North or South Island</h4>

</div>

<div class='span4' id='blank2'>

<h4>Blank 2</h4>

</div>

</div>

We’ve given it an ID selector of dc-island-chart. Sowhenwewe assign our chart that selector, it
will automatically appear in that position.We’ve also put another simple title in place (<h4>North
or South Island</h4>).

The last span4 is still blank.

Assign the pie chart type

Here we give our chart it’s name (dayOfWeekChart), assign it with a dc.js chart type (in this case
pieChart) and assign it to the ID selector (dc-dayweek-chart).

Under the row that assigns the dayOfWeekChart chart…

var dayOfWeekChart = dc.rowChart("#dc-dayweek-chart");

… add in the equivalent for our pie chart.

var islandChart = dc.pieChart("#dc-island-chart");

Dimension and group the pie chart data

We’ll put the code between the dimension and group of the row chart and the data table
dimension (this is just to try and keep the code in the same order as the graphs on the page).

When adding our dimension for our islands we want to provide an appropriate label so our code
does the figuring out based on the latitude and longitude that we had established as the boundary
between North and South.

Crossfilter, dc.js and d3.js for Data Discovery 275

var islands = facts.dimension(function (d) {

if (d.lat <= -40.555907 && d.long <= 174.590607)

return "South";

else

return "North";

});

This dimension (islands) uses the same facts data, but when we return our key values we are
going to return them as either ‘North’ or ‘South’. To do this we employ a simple if statement
with a little logic. These are only the two ‘slices’ for our pie chart.

Then we want to group the data by using the default action of the .group() function to count
the number of events of for each day of the week.

var islandsGroup = islands.group();

Configure the pie chart parameters

There are fewer parameters that can be configured for pie charts, but we’ll still take the time to
go through the options used here.

This code should go just before the block that configures the dataTable (again, this is just to try
and keep everything in the same order as the graphs on the page).

islandChart.width(250)

.height(220)

.radius(100)

.innerRadius(30)

.dimension(islands)

.group(islandsGroup)

.title(function(d){return d.value;});

That should get the chart working. With the addition of this portion of the code, you should
have a functioning visualization that can be filtered dynamically by clicking on the appropriate
island in your pie chart. Just check to make sure that everything is working properly and we’ll
go through some of the configuration options to see what they do.

To start with, your page should look something like this;

Crossfilter, dc.js and d3.js for Data Discovery 276

Web Page with Pie Chart

The configuration options start by declaring the name of the chart (islandChart) and setting the
height and width of the chart.

islandChart.width(250)

.height(220)

In the case of our example I have selected the width based on the default size for a span4 grid
segment in bootstrap and adjusted the height to make it look suitable alongside the row chart.

Then we set up our inner and outer radii for our pie.

.radius(100)

.innerRadius(30)

This is fairly self explanatory, but by all means adjust away to make sure the chart suits your
visualization.

Then we define which dimension and grouping we will use.

Crossfilter, dc.js and d3.js for Data Discovery 277

.dimension(islands)

.group(islandsGroup)

For a pie chart, the .dimension declaration is the discrete values that make up each segment of
the pie and the .group declaration is the size of the pie.

The final line in the configuration adds a tool tip to our pie chart using the value when the mouse
hovers over the appropriate slice.

.title(function(d){return d.value;})

Pie Chart Tool Tip

Crossfilter, dc.js and d3.js for Data Discovery 278

Resetting filters

Once you have made selections on some of your data dimensions, often you will want to reset
those selections to return to a stable state.

For example, when selecting different days to display in the row chart, if you have three days
selected as so…

Selected Elements in Row Chart

… to return to the default setting where all the days are selected can be a bit of a pain.

Instead, we can use a dc.js ‘reset’ feature where a ‘reset’ label is generated to allow us revert to
the starting condition.

There is a simple way to enable this feature, but we’ll take an additional few steps to make it
look slightly better (and to learn some new tricks).

In the simplest method, this feature simply involves adding in the following code to the section
where we add in the rows and spans when setting out our layout.

<a class="reset"

href="javascript:dayOfWeekChart.filterAll();dc.redrawAll();"

style="display: none;">

reset

In the case of our example row chart, that would then look a bit like this;

Crossfilter, dc.js and d3.js for Data Discovery 279

<div class='span4' id='dc-dayweek-chart'>

<h4>Day of the Week</h4>

<a class="reset"

href="javascript:dayOfWeekChart.filterAll();dc.redrawAll();"

style="display: none;">

reset

</div>

The additional code adds in a link (that’s the <a> tags) with a specific class that designates
its function (the class="reset" part (this is what will let dc.js know what to do)). The
link action (href="javascript:dayOfWeekChart.filterAll();dc.redrawAll();") provides the
instructions on what to do when the ‘reset’ link is clicked on (in this case, we remove all the filters
and redraw the dayOfWeekChart chart). Then there’s a nice touch to not display the word reset
when the page first loads (style="display: none;") before finally printing the word ‘reset’ on
the page.

The end result (when a day of the week is selected) looks like this;

Reset Link for the Row Chart

You can now click on the ‘reset’ link and the chart will revert to the default setting of all days
selected.

Making the reset label a little bit better behaved.

While we now have our reset label working well, it’s a bit poorly behaved the way that it creates
a new line to put the label on. We can do better than that.

It would be fair to say that this is as a result of the decision to use the <h4> heading tags to make
our chart headings. There are other options that could be employed to avoid using these, but I
like them, so I’ll describe how I kept them and kept the reset label on the same line.

None of what we’re about to do is remotely d3.js or dc.js related. It’s more HTML and CSS
focussed (which doesn’t mean it’s not worth learning :-)).

Crossfilter, dc.js and d3.js for Data Discovery 280

The first thing we want to do is to get the ‘reset’ label onto the same line as our ‘Day of the
Week’ heading.

This is simply done by ensuring that the <a> section is inside the <h4> section. The code should
therefore look like this;

<div class='span4' id='dc-dayweek-chart'>

<h4>Day of the Week

<a class="reset"

href="javascript:dayOfWeekChart.filterAll();dc.redrawAll();"

style="display: none;">

reset

</h4>

</div>

(Notice how the code layout shows the <a> code nested inside the <h4> section?)

The result on the web page now looks like this when a day is selected;

Reset Link for the Row Chart on the Same Line

That’s a good start and certainly more acceptable, but the styling for the ‘reset’ label still looks
a bit ‘bold’ and ‘BIG’. We can do better than that.

What we’ll do is place our <a> tag information inside a tag (this is the type of tag to use
for in-line elements). Then we’ll set a CSS style in our <stlye> area to make any text that is
inside a which is inside a <h4> appear with formatting that makes it not bold and smaller
in size.

First of all we place the <a> tag into a container like so;

Crossfilter, dc.js and d3.js for Data Discovery 281

<div class='span4' id='dc-dayweek-chart'>

<h4>Day of the Week

<a class="reset"

href="javascript:dayOfWeekChart.filterAll();dc.redrawAll();"

style="display: none;">

reset

</h4>

</div>

Then we create a section at the start of our file (under the <style type="text/css"></style>

line looks like the right place) that declares the styling for our h4 span text. It should look like
this;

<style>

h4 span {

font-size:14px;

font-weight:normal;

}

</style>

That tells our web page that any h4, span labelled text should be 14px in size and not bold (or
normal).

The end result when you now have a day of the week selected looks like this;

Nicer Looking Reset Link for the Row Chart on the Same Line

Reset all the charts

We also have the option to reset all the charts at once. This could also be accomplished by
reloading the page, but that would also incur a time and bandwidth penalty because the

Crossfilter, dc.js and d3.js for Data Discovery 282

associated data would be downloaded again. So just resetting everything in the browser is a
good feature.

Again dc.js has got our back.

This feature is treated like a separate chart in itself, so it has a dimension and group and a section
to draw the chart (not that it’s a chart, but I’m sure you get the idea). It’s executed slightly
differently, but it’s not too tricky.

What we’re going to aim to do is provide our page with a title and add some nice dc.js trickery
alongside that looks like this;

Reset All with Count Beside Page Title

The trickery shows us the number of selected records accompanied with the total number of
records and gives us the option to reset all the selected charts so that all the records are selected.

There are 4 pieces of code that we will add to accomplish this task. We won’t add them from top
to bottom, because it makes slightly more sense to explain them in a different order.

First of all then we will add the block of code that declares the variable that includes all of our
data values (facts).

var all = facts.groupAll();

This piece of code should go soon after the line that initialises the crossfilter process (var facts

= crossfilter(data);).

Then we will include a section of code that dimensions and counts all of out facts. It also anchors
the values to the dc-data-count ID Selector that we will set up in a moment.

// count all the facts

dc.dataCount(".dc-data-count")

.dimension(facts)

.group(all);

This block of code belongs in the section that sets up our charts, although you could be forgiven
for thinking that it kind of straddles more than one section.

The next section we’ll add will be our title along with the count and reset information. It looks
like this;

Crossfilter, dc.js and d3.js for Data Discovery 283

<div class="dc-data-count" style="float: left;">

<h2>New Zealand Earthquakes

selected out of

records |

Reset All

</h2>

</div>

This block needs to go at the top of our area in the file where the layout of the portions of
the web page are being set out. Put it directly under the outermost container div line (<div
class='container' style='font: 12px sans-serif;'>).

It places a <h2> heading with the text ‘New Zealand Earthquakes’ and then places in-line with
this, five additional pieces. The first is a count of the filtered facts via .
Then there is the text ‘ selected out of ‘ followed by a count of the total number of facts via . The somemore text ‘ records | ‘ and then another JavaScript call
(as a link) that allows us to reset all the chart elements <a href="javascript:dc.filterAll();

dc.renderAll();">Reset All.

This is all well and good, but the formatting will look a bit strange (like the following).

Reset All with Count Beside Page Title Poorly Formatted

This tells us that we need to apply some styling to the elements alongside the title. We can do this
with the following CSS elements which can go into the <style> block with the one we added
earlier for the other reset block.

Crossfilter, dc.js and d3.js for Data Discovery 284

h2 {

float: right;

}

h2 span {

font-size:14px;

font-weight:normal;

}

These will allow the <h2> heading to be left justified and will reduce the size of the in-line span
and remove the ‘bold’ formatting.

Et viola!

Nicer Looking Title with Count / Reset Information

Using Bootstrap with d3.js
Visualising data on a web page is a noble pursuit in itself, but often there is a need to be able to
associate the visualization with other content (I know! It came a surprise to me as well).

Developing a web page has become an activity that just about anyone can accomplish for better
of for worse and I’m not going to claim to demonstrate any mastery of design or artistic flair.
However, I have found using Bootstrap is a great way to make structural arrangements to a
web page, it’s simple to use and there is a fantastic range of features that can provide additional
functionality to your pages and sometimes more importantly, a consistent ‘feel’ across many
pages.

What is Bootstrap?

Twitter Bootstrap is a free collection of tools for creating websites and web applications.
It contains HTML and CSS based design templates for typography, forms, buttons, charts,
navigation and other interface components, as well as optional JavaScript extensions.

Bootstrap was developed by Mark Otto and Jacob Thornton at Twitter as a framework to en-
courage consistency across internal tools. The word ‘framework’ is probably the best descriptive
term, since it’s purpose is to provide structure to content. Perhaps in a similar way that d3.js
provides structure to data.

Some of Bootstrap’s most important features include;

• A layout grid
• Interface components

Using Bootstrap with d3.js 286

Layout grid

A default standard 940 pixel width grid layout which allows you to quickly arrange a page
structure. This allows you to plan and implement what you’re going to place on the page with
a minimum of fuss. You can change any of the pre-set options if you wish and you can also
implement a ‘fluid’ row option where bootstrap will dynamically size a column’s width using a
percentage instead of a fixed pixel value.

Bootstrap example page

It’s this feature that first attracted me to using Bootstrap and while I may be using a complex
tool for a simple task, it does that task very well.

Using Bootstrap with d3.js 287

Interface components

A large number of interface components are also provided. These include standard buttons,
labels, pre-formatted warning and system messages, navigation controls, wizard controls,
pagination, and breadcrumbs.

Bootstrap Interface components

There is a dizzying array of options available for web designers and while I encourage you to
use them, I can’t promise to explain the nuances of their use, since I’m a humble journeyman in
this world :-).

Using Bootstrap with d3.js 288

Incorporating Bootstrap into your html code.

Bootstrap is a remarkably flexible product. Looking at the customize page¹⁵⁹ where we can
configure a customized version of Bootstrap, we could be forgiven for thinking that the process
of installing it would be difficult. However, in the spirit of keeping things simple, we’ll make the
process crude, but effective.

You could easily just follow along with the instructions on the ‘getting started¹⁶⁰’ page (and I
recommend you do). But the following are important points.

Make sure you remember that youwill need to download the appropriate scripts from the ‘getting
started¹⁶¹’ page.;

Bootstrap Download

You will need to copy the bootstrap.js file (or the minimised version (bootstrap.min.js)) to
a place where is can be reached and loaded by your script. While you’re there, you will need
to include a line to load the jquery.js file (which is a dependency of Bootstrap (not that it gets
talked about much)) The following two lines, included with the line that loads d3.js, would do
the job nicely (assuming that you’ve copied the bootstrap.min.js file into the js directory);

<script src="http://code.jquery.com/jquery.js"></script>

<script src="js/bootstrap.min.js"></script>

Make sure that the jquery line comes before the bootstrap line, because it won’t work
the other way round.

You will also need to copy the bootstrap.css (or the minimised version (bootstrap.min.css)) to
a place where is can be reached and loaded by your script. The following lines show it being
loaded from the css directory with the line that loads the script in the <head> section.

¹⁵⁹http://twitter.github.io/bootstrap/customize.html
¹⁶⁰http://twitter.github.io/bootstrap/getting-started.html
¹⁶¹http://twitter.github.io/bootstrap/getting-started.html

http://twitter.github.io/bootstrap/customize.html
http://twitter.github.io/bootstrap/getting-started.html
http://twitter.github.io/bootstrap/getting-started.html
http://twitter.github.io/bootstrap/getting-started.html
http://twitter.github.io/bootstrap/customize.html
http://twitter.github.io/bootstrap/getting-started.html
http://twitter.github.io/bootstrap/getting-started.html

Using Bootstrap with d3.js 289

<head>

<link href="css/bootstrap.min.css" rel="stylesheet" media="screen">

</head>

That should be all that’s required! Of course as I mentioned earlier, there are plenty of other
plug-in scripts that could be loaded to do fancy things with your web page, but we’re going to
try and keep things simple.

Using Bootstrap with d3.js 290

Arranging more than one graph on a web page.

We’ll start with the presumption that we want to be able to display two separate graphs on the
same web page. The example we will use is clearly contrived, but we should remember that it’s
the process we’re interested in in this case, not the content.

First make a page with two graphs

This is surprisingly easy. If you start with the simple graph that we initially used as our learning
example at the start of the book, and duplicate the section that looks like the following, you are
99% of the way there.

// Adds the svg canvas

var chart2 = d3.select("body")

.append("svg")

.attr("width", width + margin.left + margin.right)

.attr("height", height + margin.top + margin.bottom)

.append("g")

.attr("transform", "translate(" + margin.left + "," + margin.top + ")");

// Get the data

d3.csv("data2.csv", function(error, data) {

data.forEach(function(d) {

d.date = parseDate(d.date);

d.close = +d.close;

});

// Scale the range of the data

x.domain(d3.extent(data, function(d) { return d.date; }));

y.domain([0, d3.max(data, function(d) { return d.close; })]);

// Add the valueline path.

chart2.append("path")

.attr("class", "line")

.attr("d", valueline(data));

// Add the X Axis

chart2.append("g")

.attr("class", "x axis")

.attr("transform", "translate(0," + height + ")")

.call(xAxis);

// Add the Y Axis

chart2.append("g")

.attr("class", "y axis")

Using Bootstrap with d3.js 291

.call(yAxis);

});

For simplicity, I have generated an example you can use as a starting point on bl.ocks.org here¹⁶².

The differences from the original simple graph example are;

• The graphs are slightly smaller (to make it easier to display the graphs as theymove about).
• I have used *.csv files for the data and there are two different data files so that they look
different and we can differentiate between the graphs.

• Most importantly, I have declared the two charts with different variable names (one as
chart1 and the other as chart2).

The different variable names are important, because if you leave them with the same identifier,
the web page decides that what you’re trying to do is to put all your drawing data into the same
space. The end result is two graphs trying to occupy the same space and looks a bit like this…

Two Simple Graphs Mashed

The example with the correct (different) variable labels should look a little like this…

Two Simple Graphs

¹⁶²http://bl.ocks.org/d3noob/raw/5987480/

http://bl.ocks.org/d3noob/raw/5987480/
http://bl.ocks.org/d3noob/raw/5987480/

Using Bootstrap with d3.js 292

Arrange the graphs with the same anchor

The first thing I want to point out about how the graphs are presented is that they are both
‘attached’ to the same point on our web page. Both of the graphs select the body of the web page
and then append a svg element to it;

var chart2 = d3.select("body")

.append("svg")

This has the effect of appending the graphs to the same anchor point. Interestingly, if we narrow
the window of our web browser to less that the width of both of our graphs side by side, the
browser will automatically move one of the graphs to a position below the first in much the
same way that text will wrap on a page.

Two Simple Graphs Wrapping

For a very simple mechanism of putting two graphs (or any two d3.js generated images) on a
single page, this will work, but we don’t have a lot of control over the positioning.

Using Bootstrap with d3.js 293

Arrange the graphs with separate anchors

To gain a little more control over where the graphs are placed we will employ ID selectors.

An ID selector is a way of naming an anchor point on an HTML page. They can be defined as “a
unique identifier to an element”. This means that we can name a position on our web page and
then we can assign our graphs to those positions.

This can be done simply by placing div tags in our html file in an appropriate place (here I’ve
put them in between the <style> section and the <body>).

</style>

<div id="area1"></div>

<div id="area2"></div>

<body>

Remembering that the <div> tag defines a division or a section in an HTML
document. Therefore we are labelling specific sections in our web page .

Now all we need to do is to tell each graph to append itself to either of these ID selectors. We do
this by replacing the selected section in our JavaScript code with the appropriate ID selector as
follows;

var chart1 = d3.select("#area1")

.append("svg")

… and …

var chart2 = d3.select("#area2")

.append("svg")

A couple of points to note:

When we reference our ID selectors in the code (other than when we we set them
with id="area1") we need to put a hash (#) in front of the selector for the HTML to
recognise it.

We can only use a single ID selector in a single place. This might sound like
common sense, but whatever the temptation, don’t go trying to assign the same
ID selector to more than one place (You can certainly assign more than one item
to an ID selector (for instance, you could append chart2 to area1 (var chart2 =

d3.select("#area1")) but an ID selector is a unique identifier of a position.).

Using Bootstrap with d3.js 294

With these divs added, when you browse to the file, you will find that it looks like this;

Two Simple Graphs with divs

This looks the same as when the two graphs were wrapping when the browser was narrowed.
However, this time the browser is wide enough to support the two side by side, but they won’t
position themselves that way. This is because each div divides the web page. The top graph is in
the div with the ID selector area1 and the bottom graph is in the div with the ID selector area2.
These divs effectively extend for the width of the web page.

The situation that we now find ourselves in is that we have control over where the graphs will
be anchored, but we don’t have much flexibility for arranging those anchors. This is where
Bootstrap comes in.

Using Bootstrap with d3.js 295

How does Bootstrap’s grid layout work

Bootstrap’s grid layout subdivides the page by using rows and spans. A row will extend
horizontally and web page can be thought of as being 12 spans wide. Each span is a place to
put content.

As an example, the picture below shows a single row divided into twelve individual spans.

Simple Bootstrap Layout with 12 spans

The spans can be combined to create larger spaces for larger content. The example below has a
single span6 and two span3’s.

Simple Bootstrap Layout with one span 6 and two span3’s

The span’s will change height dynamically to fit their contents. So if there was a larger item in
the span6 example given above (perhaps a graph), it would expand like so;

Simple Bootstrap Layout with Content

The way to set these rows and spans up is by dividing the screen using divs and assigning them
class types that match the grid layout.

For example, to create our example of a single row with a span6 and two span3’s we would use
the following html code as our baseline.

Using Bootstrap with d3.js 296

<div class="row">

<div class="span6"></div>

<div class="span3"></div>

<div class="span3"></div>

</div>

In this example code we can see the row div is enclosing the three spans. We can extend the
comparison by putting the code into our graphic example.

Simple Bootstrap Layout with Content and Code

To add content to the structure, all that is needed is to put our web page components between
the <div class="span#"> and </div> tags.

Later we will look (briefly) at more complex configurations that might be useful.

Arrange more than one d3.js graph with Bootstrap

In the previous sections we have seen how to assign ID selectors so that we anchor our d3.js
graphs to a particular section of our web page. We have also seen how to utilise Bootstrap to
divide up our web page into different sections. Now we will bring the two examples together
and assign ID selectors to sections set up with Bootstrap.

We will start with our simple two graph example (as seen on bl.ocks.org here¹⁶³).

We will need to make sure we have our bootstrap.min.js and bootstrap.min.css files in the
appropriate place.

Then insert the code to use bootstrap.min.css at the start of the file (just before the <style>
tag would be good);

¹⁶³http://bl.ocks.org/d3noob/raw/5987480/

http://bl.ocks.org/d3noob/raw/5987480/
http://bl.ocks.org/d3noob/raw/5987480/

Using Bootstrap with d3.js 297

<head>

<link href="css/bootstrap.min.css" rel="stylesheet" media="screen">

</head>

Then include the lines to load the jquery.js and bootstrap.min.js files just after the line that
loads the d3.js file.

<script src="http://code.jquery.com/jquery.js"></script>

<script src="js/bootstrap.min.js"></script>

What we’ll do to make things simple is to create a Bootstrap layout that is made up of a single
row with just two span6 elements in it. The following code will do this nicely and should go
after the </style> tag and before the <body> tag.

<div class="row">

<div class="span6"></div>

<div class="span6"></div>

</div>

Nowwe add in our ID selectors in a clever way by incorporating them into the divs that we have
just entered. So remembering the code for our original two selectors…

<div id="area1"></div>

<div id="area2"></div>

… we can incorporate these into our row and spans as follows;

<div class="row">

<div class="span6" id="area1"></div>

<div class="span6" id="area2"></div>

</div>

The last thing we need to do is to change the d3.select from selecting the body of the web page
to selecting our two new ID selectors area1 and area2.

var chart1 = d3.select("#area1")

.append("svg")

… and …

Using Bootstrap with d3.js 298

var chart2 = d3.select("#area2")

.append("svg")

Et viola! Our new web page has two graphs which are settled into their own specific section.

Simple Bootstrap Layout Example with Graphs

To provide another example of the flexibility of the layout schema, we can take our row / span
layout section and adapt it so that our graphs are in two separate sections with a third, smaller,
section in the middle describing the graphs.

If we start with our previously entered spans with their ID selectors;

<div class="row">

<div class="span6" id="area1"></div>

<div class="span6" id="area2"></div>

</div>

We can change the spans to span5 and add an additional span2 in between with some text
(remember, the total number of spans has to add up to 12).

<div class="row">

<div class="span6" id="area1"></div>

<div class="span2">

To the left is a graph showing the anticipated profits

of the 'Widget Incorporated' company.

On the right is the anticipated cost of production as

the number of Widgets is increased.

Clearly we will be RICH!

</div>

<div class="span6" id="area2"></div>

</div>

Using Bootstrap with d3.js 299

And the end result is…

Simple Bootstrap Layout with Graphs and Text

Neither of these examples is particularly elegant in terms of it’s layout.I am relying on you to
bring the prettiness!

A more complicated Bootstrap layout example

As promised earlier, it’s worth looking at a more complex example for a layout with Bootstrap,
just to get a feel for how it works or the potential it might have for you.

The example code layout we will design will look a bit like this;

More Complicated Bootstrap Layout

Using Bootstrap with d3.js 300

It looks slightly complex with a nesting of spans and rows, and the end result is only 5 separate
sections, but it’s really not too hard to put together if you start in the right place and build it up
piece by piece.

We’ll start in the middle and work our way out. The first piece to consider is the two side-by-side
span4’s.

Two span4’s

The code for these is just…

<div class="row">

<div class="span4"></div>

<div class="span4"></div>

</div>

Directly under that row is another with a single span8.

A Single span8

The code for this section is…

<div class="row">

<div class="span8"></div>

</div>

Using Bootstrap with d3.js 301

Both of these rows together look like this;

Two Stacked row’s

And the code is just one piece after the other.

<div class="row">

<div class="span4"></div>

<div class="span4"></div>

</div>

<div class="row">

<div class="span8"></div>

</div>

Using Bootstrap with d3.js 302

Because this entire block forms part of another (larger) row, we need to enclose it in its own
span8 (since this is part is only span8 wide).

Encolsed Stacked row’s

And for the code the new span8 div wraps all the current code we have.

<div class="span8">

<div class="row">

<div class="span4"></div>

<div class="span4"></div>

</div>

<div class="row">

<div class="span8"></div>

</div>

</div>

Using Bootstrap with d3.js 303

The span8 is alongside a large span4 that sits to the left.

Span4 plus Complex span8

This requires another span4 div to be placed before the span8.

<div class="span4"></div>

<div class="span8">

<div class="row">

<div class="span4"></div>

<div class="span4"></div>

</div>

<div class="row">

<div class="span8"></div>

</div>

</div>

Using Bootstrap with d3.js 304

The span4 and the complex span8 need to be in their own row…

span4 plus Complex span8 in a row

So a row div encloses all the code we have so far.

<div class="row">

<div class="span4"></div>

<div class="span8">

<div class="row">

<div class="span4"></div>

<div class="span4"></div>

</div>

<div class="row">

<div class="span8"></div>

</div>

</div>

</div>

Using Bootstrap with d3.js 305

Finally we need to place another row with a span12 in it above our current work.

More Complicated Bootstrap Layout

Again, we need to place the row and span before our current code so that it appears above the
current code on the page.

<div class="row">

<div class="span12"></div>

</div>

<div class="row">

<div class="span4"></div>

<div class="span8">

<div class="row">

<div class="span4"></div>

<div class="span4"></div>

</div>

<div class="row">

<div class="span8"></div>

</div>

</div>

</div>

There we have it!

Slightly more complex, but if you needed a heading, a sidebar, a couple of graphs and some
explanatory text, that might be exactly what you were looking for :-).

MySQL Tips and Tricks for d3.js
Using a MySQL database as a source of data.

PHP is our friend

As outlined at the start of the book, PHP is commonly used to make web content dynamic. We
are going to use it to do exactly that by getting it to glue together our d3,js JavaScript and a
MySQL Database. The end result should be a web page that will leverage the significant storage
capability of a MySQL database and the ability to vary different aspects of returned data.

If you’re wondering what level we’re going to approach this at, let me reassure (or
horrify) you that it will be in the same vein as the rest of this book. I am no expert in
MySQL databases, but through a bit of trial and error I have been able to achieve a
small measure of success. Hopefully the explanation is sufficient for beginners like
myself and doesn’t offend any best practices :-).

phpMyAdmin

I’m not one to dwell on the command line for too long if it can be avoided (sorry). So in this
section you’ll see me delving into a really neat program for managing your MySQL database
called phpMyAdmin (http://www.phpmyadmin.net/home_page/index.php).

As the name would suggest, it’s been written in PHP and as we know, that’s a sign that we’re
talking about a web based application. In this case phpMyAdmin is intended to allow a wide
range of administrative operations with MySQL databases via a web browser. You can find a
huge amount of information about it on the web as it is a freely available robust platform that
has been around for well over a decade.

If you have followedmy suggestion earlier in the book to installWAMP (http://www.wampserver.com/en/)
or you have phpMyAdmin installed already you’re in luck. If not, I’m afraid that I won’t be able
to provide any guidance on its installation. I just don’t have the experience to provide that level
of support.

Create your database

Assuming that you do have WAMP installed, you will be able to access a subset of its functions
from the icon on your system tray in the lower right hand corner of your screen.

MySQL Tips and Tricks for d3.js 307

The WAMP server icon

Clicking on this icon will provide you with a range of options, including opening phpMyAdmin.

Opening phpMyAdmin

Go ahead and do this and the phpMyAdmin page will open in your browser.

The page you’re presented with has a range of tabs, and we want to select the ‘Databases’ tab.

MySQL Tips and Tricks for d3.js 308

The Databases tab

From here we can create ourselves a new database simply by giving it a name and selecting
‘Create’. I will create one called ‘homedb’.

Give our new database a name

That was simple!

On the panel on the left hand side of the screen is our new database. Go on and click on it.

Open the homedb database

Cool, now we get to create a table. What’s a table? Didn’t we create our database already?

MySQL Tips and Tricks for d3.js 309

Databases and Tables
Ahh yes… Think of databases as large collections of data (yes, I can smell the
irony). Databases can have a wide range of different information stored in them,
but sometimes the data isn’t strictly connected. For instance, a business might want
to store its inventory and personnel records in a database. Trying to mash all that
together would be a bit of a nightmare to manage. Instead, we can create two
different tables of information. Think of a table as a spreadsheet with rows of data
for specific columns. If we want to connect the data at some point we can do that
via the process of querying the database.

So, lets create a table called data2 with three columns.

Create a table

I’ve chosen data2 as a name since we will put the same data as we have in the data2.tsv file in
there. That’s why there are three columns for the date, close and open columns that we have in
the data2.tsv file.

So, after clicking on the ‘Go’ button, I get the following screenwhere I get to enter all the pertinent
details about what I will have in my table.

Format the table’s columns

I’m keeping it really simple by setting the ‘data’ column to be plain text (I make the presumption
that it could be a date format, but as it gets parsed into a date/time value when it’s ingested
into D3, I’m fairly comfortable that we can get away with formatting it as ‘TEXT’), and the two
numeric columns to be decimals with 8 digits overall and 2 of those places for the digits to the
right of the decimal point.

MySQL Tips and Tricks for d3.js 310

The selection of the most efficient data type to maximise space or speed is something
of an obsession (as it sometimes needs to be) where databases are large and need to
have fast access times, but in this case we’re more concerned with getting a result
than perfection.

Once entered, you can scroll down to the bottom of that window and select the ‘Save’ button.

Cool, now you are presented with your table (click on the table name in the left hand panel) and
the details of it in the main panel.

The details of the ‘data2’ table

Sure it looks snazzy, but there’s something missing….. Hmm…..

Ah Ha! Data!

Importing your data into MySQL

So, you’ve got a perfectly good database and an impeccably set up table looking for some data.

It’s time we did something about that.

In the vein of “Here’s one I prepared earlier”, what we will do is import a csv (Comma Separated
Value) file into our database. To do this I prepared our data2.tsv file by replacing all the tabs with
commas and removing the header line (with date, close and open on it), so it looks like this;

MySQL Tips and Tricks for d3.js 311

1-May-12,58.13,34.12

30-Apr-12,53.98,45.56

27-Apr-12,67.00,67.89

26-Apr-12,89.70,78.54

25-Apr-12,99.00,89.23

24-Apr-12,130.28,99.23

23-Apr-12,166.70,101.34

20-Apr-12,234.98,122.34

19-Apr-12,345.44,134.56

18-Apr-12,443.34,160.45

17-Apr-12,543.70,180.34

16-Apr-12,580.13,210.23

13-Apr-12,605.23,223.45

12-Apr-12,622.77,201.56

11-Apr-12,626.20,212.67

10-Apr-12,628.44,310.45

9-Apr-12,636.23,350.45

5-Apr-12,633.68,410.23

4-Apr-12,624.31,430.56

3-Apr-12,629.32,460.34

2-Apr-12,618.63,510.34

30-Mar-12,599.55,534.23

29-Mar-12,609.86,578.23

28-Mar-12,617.62,590.12

27-Mar-12,614.48,560.34

26-Mar-12,606.98,580.12

I know it doesn’t look quite as pretty, but csv files are pretty ubiquitous which is why so many
different programs support them as an input and output file type. (To save everyone some time
and trouble I have saved the data.csv file into the D3 Tips and Tricks example files folder (under
data)).

So armed with this file, click on the ‘Import’ tab in our phpMyAdmin window and choose your
file.

MySQL Tips and Tricks for d3.js 312

Importing csv data into your table

The format should be automatically recognised and the format specific options at the bottom of
the window should provide sensible defaults for the input. Let’s click on the ‘Go’ button and give
it a try.

Successful import!

Woo Hoo!

Now if you click on the browse tab, there’s your data in your table!

MySQL Tips and Tricks for d3.js 313

All the data successfully imported

Sweet!

The last thing that we should do is add a user to our database so that we don’t end up accessing
it as the root user (not too much of a good look).

So select the ‘homedb’ reference at the top of the window (between ‘localhost’ and ‘data2’).

Select the ‘homedb’ database

Then click on the ‘Privileges’ tab to show all the users who have access to ‘homedb’ and select
‘Add a new user’

MySQL Tips and Tricks for d3.js 314

The ‘Privileges’ tab

Then on the new user create a user, use the ‘Local’ host and put in an appropriate password.

Enter the user information

In this case, the user name is ‘homedbuser’ and the password is ‘homedbuser’ (don’t tell).

The other thing to do is restrict what this untrusted user can do with the database. In this case
we can fairly comfortably restrict them to ‘SELECT’ only;

Restrict privileges to ‘SELECT’

Click on ‘Go’ and you have yourself a new user.

New user added!

MySQL Tips and Tricks for d3.js 315

Yay!

Believe it or not, that’s pretty much it. There were a few steps involved, but they’re hopefully
fairly explanatory and I don’t imagine there’s anything too confusing that a quick Googling can’t
fix.

Querying the Database

OK, are you starting to get excited yet? We’re just about at the point where we can actually use
our MySQL database for something useful!

To do that we have to ask the database for some information and have it return that information
in a format we can work with.

The process of getting information from a database is called ‘querying’ the database, or
performing a ‘query’.

Now this is something of an art form in itself and believe me, you can dig some pretty deep holes
performing queries. However, we’re going to keep it simple. All we’re going to do is query our
database so that it returns the ‘date’ and the ‘close’ values.

We’ll start by selecting our ‘data2’ table and going to the ‘Browse’ tab.

To the ‘Browse’ tab

We actually already have a query operating on our table. It’s the bit in the middle that looks like;

MySQL Tips and Tricks for d3.js 316

SELECT *

FROM `data2`

LIMIT 0, 30

This particular query is telling the database homedb (since that’s where the query was run from)
to SELECT everything (*) FROM the table data2 and when we return the data, to LIMIT the returned
information so those starting at record 0 and to only show 30 at a time.

You should also be able to see the data in the main body of the window.

So, let’s write our own query. We can ask our query in a couple of different ways. Either click on
the ‘SQL’ tab and you can enter it there, or click on the menu link that says ‘Edit’ in the current
window. I prefer the ‘Edit’ link since it opens a separate little window which let’s you look at
the returned data and your query at the same time.

Enter your query

So here’s our window and in it I’ve written the query we want to run.

SELECT `date`, `close` FROM `data2`

You will of course note that I neglected to put anything about the LIMIT information in there.
That’s because it gets added automatically to your query anyway using phpMyAdmin unless
you specify values in your query.

So in this case, our query is going to SELECT all our values of date and close FROM our table
data2.

MySQL Tips and Tricks for d3.js 317

Click on the ‘Go’ button and let’s see what we get.

‘date’ and ‘close’ returned successfully

There we go!

If you’re running the query as ‘root’ you may see lots of other editing and copying and deleting
type options. Don’t fiddle with them and they won’t bite.

Righto… That’s the query we’re going to use. If you look at the returned information with a bit
of a squint, you can imagine that it’s in the same type of format as the *.tsv or *.csv files. (header
at the top and ordered data underneath).

All that we need to do now is get out MySQL query to output data into d3.js.

Enter php!

Using php to extract json from MySQL

Now’s the moment we’ve been waiting for to use php!

What we’re going to do is use a PHP script that performs the query that we’ve just identified
to extract data out of the database and to format it in a way that we can input it into D3 really
easily. The data format that we’re going to use for presenting to D3 is json (JavaScript Object
Notation). Youmight remember it from the earlier chapter on types of data that could be ingested
into D3.

Our PHP script is going to exist as a separate file which we will name data2.php and we will put
it in a folder called php which will be in our webs root directory (alongside the data directory).

Here’s the contents of our data.php file (This is reproduced in the appendices for those who prefer
a stand alone version);

MySQL Tips and Tricks for d3.js 318

<?php

$username = "homedbuser";

$password = "homedbuser";

$host = "localhost";

$database="homedb";

$server = mysql_connect($host, $username, $password);

$connection = mysql_select_db($database, $server);

$myquery = "

SELECT `date`, `close` FROM `data2`

";

$query = mysql_query($myquery);

if (! $myquery) {

echo mysql_error();

die;

}

$data = array();

for ($x = 0; $x < mysql_num_rows($query); $x++) {

$data[] = mysql_fetch_assoc($query);

}

echo json_encode($data);

mysql_close($server);

?>

It’s pretty short, but it packs a punch. Let’s go through it and see what it does.

The <?php line at the start and the ?> line at the end form the wrappers that allow the requesting
page to recognise the contents as php and to execute the code rather than downloading it for
display.

The following lines set up a range of important variables;

$username = "homedbuser";

$password = "homedbuser";

$host = "localhost";

$database="homedb";

Hopefully you will recognise that these are the configuration details for the MySQL database
that we set up. There’s the user and his password (don’t worry, because the script isn’t returned
to the browser, the browser doesn’t get to see the password and in this case our user has a very
limited set of privileges remember). There’s the host location of our database (in this case it’s

MySQL Tips and Tricks for d3.js 319

local, but if it was on a remote server, we would just include its address) and there’s the database
we’re going to access.

Then we use those variables to connect to the server…

$server = mysql_connect($host, $username, $password);

… and then we connect to the specific database;

$connection = mysql_select_db($database, $server);

Then we have our query in a form that we can paste into the right spot and it’s easy to use.

$myquery = "

SELECT `date`, `close` FROM `data2`

";

I have it like this so all I need to do to change the query I use is paste it into the middle line there
between the speech-marks and I’m done. It’s just a convenience thing.

The query is then run against the database with the following command;

$query = mysql_query($myquery);

… and then we check to see if it was successful. If it wasn’t, we output the MySQL error code;

if (! $myquery) {

echo mysql_error();

die;

}

Then we declare the $data variable as an array ($data = array();) and feed the returned
information from our query into $data array;

for ($x = 0; $x < mysql_num_rows($query); $x++) {

$data[] = mysql_fetch_assoc($query);

}

(that’s a fancy little piece of code that gets the information row by row and puts it into the array)

We then return (echo) the $data array in json format (echo json_encode($data);) into whatever
ran the data2.php script (we’ll come back to this in a minute).

Then finally we close the connection to the server;

MySQL Tips and Tricks for d3.js 320

mysql_close($server);

Whew!

That was a little fast and furious, but I want to revisit the point that we covered in the part about
echoing the data back to whatever had requested it. This is because we are going to use it directly
in our d3.js script, but we can actually run the script directly but opening the file in our browser.

So if you can navigate using your browser to this file and run it (WAMP should be your friend
here again) this is what you should see printed out on your screen;

[{"date":"1-May-12","close":"58.13"},

{"date":"30-Apr-12","close":"53.98"},

{"date":"27-Apr-12","close":"67.00"},

{"date":"26-Apr-12","close":"89.70"},

{"date":"25-Apr-12","close":"99.00"},

{"date":"24-Apr-12","close":"130.28"},

{"date":"23-Apr-12","close":"166.70"},

{"date":"20-Apr-12","close":"234.98"},

{"date":"19-Apr-12","close":"345.44"},

{"date":"18-Apr-12","close":"443.34"},

{"date":"17-Apr-12","close":"543.70"},

{"date":"16-Apr-12","close":"580.13"},

{"date":"13-Apr-12","close":"605.23"},

{"date":"12-Apr-12","close":"622.77"},

{"date":"11-Apr-12","close":"626.20"},

{"date":"10-Apr-12","close":"628.44"},

{"date":"9-Apr-12","close":"636.23"},

{"date":"5-Apr-12","close":"633.68"},

{"date":"4-Apr-12","close":"624.31"},

{"date":"3-Apr-12","close":"629.32"},

{"date":"2-Apr-12","close":"618.63"},

{"date":"30-Mar-12","close":"599.55"},

{"date":"29-Mar-12","close":"609.86"},

{"date":"28-Mar-12","close":"617.62"},

{"date":"27-Mar-12","close":"614.48"},

{"date":"26-Mar-12","close":"606.98"}]

There it is! The data we want formatted as json!

It looks a bit messy on the printed page, but it’s bread and butter for JavaScript.

I have included the data2.php file in the examples zip file that can be downloaded from
d3noob.org.

Getting the data into d3.js

Let’s recap momentarily.

MySQL Tips and Tricks for d3.js 321

We have created a database, populated it with information, worked out how ro extract a subset
of that information and how to do it in a format that d3.js understands. Now for the final act!
And you will find it slightly deflating how simple it is.

All we have to do is take our simple-graph.html file and make the following change;

d3.json("php/data2.php", function(error, data) {

data.forEach(function(d) {

d.date = parseDate(d.date);

d.close = +d.close;

});

Here we have replaced the part of the code that read in the data file as data.tsv with the
equivalent that reads the php/data2.php file in as json (d3,json).

That’s it.

What it does is we tell d3.js to go and get a json file and when it strikes the data2.php file, it
executes the script in the file and returns the encoded json information directly to d3.js. How
cool is that?

And here is the result.

Our faithful simple line graph

Sure, it looks kind of familiar, but it represents a significant ability for you to return data from a
database and present it on a web page.

MySQL Tips and Tricks for d3.js 322

Manipulating Date / Time Ranges

What’s a standard format for a Date / Time value

The DATETIME and TIMESTAMP types are used for values that contain both date and time parts.
MySQL retrieves and displays DATETIME and TIMESTAMP values in YYYY-MM-DD HH:MM:SS format.

The supported range for DATETIME is 1000-01-01 00:00:00 to 9999-12-31 23:59:59. TIMESTAMP
has a range of 1970-01-01 00:00:01 UTC to 2038-01-19 03:14:07 UTC.

Coordinated Universal Time (UTC (which is a compromise between the French and
English acronyms)) is the primary time standard bywhich the world regulates clocks
and time. It took over from Greenwich Mean Time (GMT) as the standard reference
since GMT is no longer precisely defined by the scientific community.

Creating a standard Date / Time from separate columns

The original data format had separate columns for the year (ORI_YEAR), month (ORI_MONTH), day
(ORI_DAY), hour (ORI_HOUR), minute (ORI_MINUTE) and second (ORI_SECOND).

+--------+---------+-------+--------+----------+----------+

|ORI_YEAR|ORI_MONTH|ORI_DAY|ORI_HOUR|ORI_MINUTE|ORI_SECOND|

+--------+---------+-------+--------+----------+----------+

| 2010| 7| 12| 0| 15| 9.57643|

| 2010| 7| 12| 0| 23| 45.93486|

| 2010| 7| 12| 1| 3| 12.54922|

...

+--------+---------+-------+--------+----------+----------+

If we want to generate a standard date / time unit from MySQL we can do it by grouping the
separate parts together using the CONCAT command like so;

SELECT CONCAT(`ORI_YEAR`,'-',`ORI_MONTH`,'-',`ORI_DAY`,',`ORI_HOUR`,

':',`ORI_MINUTE`,':',`ORI_SECOND`)

FROM `nzeq1012`

Notice that as well as grouping the columns we also put in appropriate separators to follow a
good practice. The output looks like so.

MySQL Tips and Tricks for d3.js 323

2010-7-12 0:15:9.57643

2010-7-12 0:23:45.93486

2010-7-12 0:3:12.54922

This is pretty scruffy looking and certainly doesn’t conform to the standard format that we’re
looking for (YYYY-MM-DD HH:MM:SS). So we can do something a little tricky and tell MySQL that
the value that gets returned is a date / time value and it will automatically format it correctly.
This is as simple as declaring the entire selection as a TIMESTAMP like so;

SELECT TIMESTAMP(CONCAT(`ORI_YEAR`,'-',`ORI_MONTH`,'-',`ORI_DAY`,

' ',`ORI_HOUR`,':',`ORI_MINUTE`,':',`ORI_SECOND`))

FROM `nzeq1012`

The output is now…

2010-7-12 00:15:09.57643

2010-7-12 00:23:45.93486

2010-7-12 00:03:12.54922

This is certainly much better, but we have a seconds value that includes a decimal component.
To eliminate the decimal portion we use the ROUND function as follows;

SELECT TIMESTAMP(CONCAT(`ORI_YEAR`,'-',`ORI_MONTH`,'-',`ORI_DAY`,

' ',`ORI_HOUR`,':',`ORI_MINUTE`,':',ROUND(`ORI_SECOND`)))

FROM `nzeq1012`

Which results in the following output;

2010-7-12 00:15:10

2010-7-12 00:23:46

2010-7-12 00:03:13

Neat.

MySQL Tips and Tricks for d3.js 324

General MySQL titbits

Group parts of queries (and text) together with CONCAT

Sometimes when returning data from a query, you will want to group parts of it together. This
can be achieved with the CONCAT function (CONCAT is an abbreviation of the word ‘concatenate’).

This is as simple as using it in the form CONCAT(foo, bar, 'text here', var) where foo, bar
and var are variables or values returned from the query process and 'text here' is text that
will be returned verbatim.

For example…

The table below represents data formatted in separate columns for the year (ORI_YEAR), month
(ORI_MONTH) and day (ORI_DAY).

+--------+---------+-------+

|ORI_YEAR|ORI_MONTH|ORI_DAY|

+--------+---------+-------+

| 2010| 7| 2|

| 2010| 10| 12|

| 2011| 3| 26|

+--------+---------+-------+

If we want to generate a date (year-month-day) from MySQL we can do it by grouping the
separate parts together using the CONCAT command like so;

SELECT CONCAT(`ORI_YEAR`, '-', `ORI_MONTH`, '-', `ORI_DAY`)

FROM `nzeq1012`

Notice that as well as grouping the year, month and day columns we also put in appropriate
separators (dashes(-)) to make it look nice. The output looks like so.

2010-7-2

2010-10-12

2010-3-26

MySQL Tips and Tricks for d3.js 325

To go one step further you could enclose the entire concatenated grouping in a DATE
command which would format the result in the standard date format YYYY-MM-
DD.

SELECT DATE(CONCAT(`ORI_YEAR`, '-', `ORI_MONTH`, '-', `ORI_DAY`))

FROM `nzeq1012`

Which produces…

2010-07-02

2010-10-12

2010-03-26

Working round reserved words in queries

When you name a column with a query using the AS operator, if you want to use a reserved
word, place it in back ticks or single quote marks.

For example, when wanting to return a value of longitude with a column name long, the
following query will cause an error;

SELECT `LAT` AS lat, `LONG` AS long

FROM `nzeq1012`

This is because ‘long’ is a word reserved for other uses in MySQL, so using it as a variable is
difficult. However, enclose the long in quotes (as follows) and it will work fine.

SELECT `LAT` AS lat, `LONG` AS 'long'

FROM `nzeq1012`

Rounding numbers

Rounding numbers with a fractional component is a common requirement. The ROUND function
can be used in a couple of ways to round numbers.

Firstly, by stating ROUND(x) (where x is the argument) the function will round a number to only
the integer component. However you can also use ROUND(x,d), where d is the number of decimal
places to round to.

For example, using the following data for earthquakes where ‘mag’ is the magnitude and ‘depth
is the depth of the quake, we could reasonably want to massage the data so that the magnitude
was represented by a number with a single decimal place and the depth was only the integer.

MySQL Tips and Tricks for d3.js 326

+------+--------+

| mag| depth|

+------+--------+

| 2.555| 56.2691|

| 2.226| 6.2300|

| 2.055| 33.1684|

| 1.411| 12.0000|

| 1.976| 6.3498|

+------+--------+

We can use the query…

SELECT ROUND(`MAG`, 1) AS mag, ROUND(`DEPTH`) AS depth

FROM `nzeq1012`

…to get our desired result.

+----+------+

| mag| depth|

+----+------+

| 2.6| 56|

| 2.2| 6|

| 2.1| 33|

| 1.4| 12|

| 2.0| 6|

+-----------+

Working with GitHub, Gist and
bl.ocks.org
General stuff about bl.ocks.org

In the words of Mike Bostock on the bl.ocks.org¹⁶⁴ main page;

“This is a simple viewer for code examples hosted on GitHub Gist. Code up an
example using Gist, and then point people here to view the example and the source
code, live!”

The whole idea is to take the information that you have in a gist (the pastebin area in Github)
and to give it a viewer that will allow it to display in your browser.

The reason this works is that the files that make up a web page that can be displayed in
your browser conform to a pretty well defined standard. If you can name your main web file
index.html and put it in a gist, bl.ocks.org will not just render it to a browser, but since you can
store your data files in the same gists, your visualization can use those as data sources as well
since they shouldn’t violate any cross domain security restrictions.

Mike’s clever code allows a gallery type preview page to be generated (including a thumbnails
if you follow the instructions in another part of this section).

Thumbnails of examples for d3noob’s blocks

And if you include a readme file formatted usingmarkdown you can have a nice little explanation
of how your visualization works.

The front rendering page includes any markdown notes and the code (not the full screen) is
optimised to accept visualizations of 960x500 pixels (although you can make them other sizes,
it’s just that this is an ‘optimum’ size). Of course there is always the full screen mode to render
your creation in its full glory if necessary.

If I was to pass on any advice when using bl.ocks.org, please consider others who will no doubt
view your work and wonder how you achieved your magic. Help them along where possible
with a few comments in the readme.md file because sharing is caring :-).

¹⁶⁴http://bl.ocks.org/

http://bl.ocks.org/
http://bl.ocks.org/

Working with GitHub, Gist and bl.ocks.org 328

Installing the plug-in for bl.ocks.org for easy block
viewing

This might sound slightly odd at first if you’re not familiar with using Gist or bl.ocks.org, but
trust me, a) you should use them, b) if you get to the point where you are using these fantastic
services, there’s a good chance that you will want to be able to quickly check out what your
block looks like when you update or add in a Gist.

Here’s the scenario. You’re slaving away getting all your data and files into Gist, and then you’re
switching - in some tiresome manner - to get to the block that bl.ocks.org generates.

Well, throw away that tiresome technique! It’s time to move into the 21st century with some
plug-in goodness. Clever Mike Bostock has put together some handy dandy browser extensions
that will add a button to your Chrome, Safari or Firefox browser to take you straight from your
Gist to your block!

It will turn your Gist page from this…

Gist page without bl.ocks.org button

… to this …

Working with GitHub, Gist and bl.ocks.org 329

Gist page with bl.ocks.org button!

Check out the button!

It’s really handy and works like a charm. You can download it directly from the bl.ocks.org home
page¹⁶⁵ or from theGithub page¹⁶⁶ where the code is hosted (this also includes a quick couple of
lines of instructions for installation if you’re unsure).

Loading a thumbnail into Gist for bl.ocks.org d3
graphs

This description will start on the assumption that the user already has a GitHub / Gist account
set up and running. It’s purpose is to demonstrate how to upload an image as a file named
thumbnail.png to a Gist so that when viewing the users home page on bl.ocks.org you see a
nice little preview of what a visitor can anticipate, when they go to look at your work :-). This
description is a fleshed out version of the one provided by Christophe Viau on Google Groups¹⁶⁷.

Setting the scene:

There you are: a fresh faced d3.js user keen to share his/her work with the world. You set yourself
up a GitHub / Gist account and put your code into a gist.

¹⁶⁵http://bl.ocks.org/
¹⁶⁶https://github.com/mbostock/bl.ocks.org
¹⁶⁷https://groups.google.com/forum/?fromgroups=#!topic/d3-js/FBosXiTB9Pc

http://bl.ocks.org/
http://bl.ocks.org/
https://github.com/mbostock/bl.ocks.org
https://groups.google.com/forum/?fromgroups=#!topic/d3-js/FBosXiTB9Pc
http://bl.ocks.org/
https://github.com/mbostock/bl.ocks.org
https://groups.google.com/forum/?fromgroups=#!topic/d3-js/FBosXiTB9Pc

Working with GitHub, Gist and bl.ocks.org 330

The gist web page

Your graph is a thing of rare beauty and the community needs to marvel at your brilliance. Of
course this is a breeze with bl.ocks.org. Once you have all the code sorted out, and all data files
made accessible, bl.ocks.org can display the graph with the code and can even open the graph in
its own window. The person responsible for bl.ocks.org? Mike Bostock of course (wherever does
he get the time?).

Clicking on the bl.ocks.org button on the gist page (load the extension available from the main
page of bl.ocks.org) takes you to see your graph.

Your awesome graph ready to go

Wow! Impressive.

So you think that will make a fine addition to your collection of awesome graphs and if you click
on your GitHub user name that is in the top left of the screen you go to a page that lays out all
your graphs with a thumbnail giving a sneak preview of what the user can expect.

Working with GitHub, Gist and bl.ocks.org 331

d3noob’s blocks, but no thumbnail!

Aww… Rats! There’s a nice place holder, but no pretty picture.

Hang on, what had Mike said on the bl.ocks.org main page?

“The main source code for your example should be named index.html. You can also include a
README.md using Markdown, and a thumbnail.png for preview.”

Ahh.. you need to include a thumbnail.png file in your Gist!

So how to get it there? Well Gist is a repository, so what you need to do is to put the code in
there somehow. Now from the Gist web page this doesn’t appear to be a nice (gui) way to do
this. So from here you will need to suspend your noob status and hit the command line.

The good news (if you’re a windows user (and sorry, I haven’t done this in Linux or on a Mac)) is
that, as part of the GitHub for windows installation, a command line tool was installed as well!
Prepare yourself, you’re going to use the Git Shell.

The Windows GitHub and Git Shell icons

Enough of the scene setting. Let’s git going :-).

I’m going to describe the steps in a pretty verbose fashion with pretty pictures and everything
else, but at the end I will put a simple set of steps in the form that Christophe Viau outlined on
Google Groups¹⁶⁸.

First you will want to have your image ready. It needs to be a png with dimensions of 230 x 120
pixels. It should also be less than 50kB in size.

Go to your public Gist that you have already set up and copy the link in the “Clone this gist”
box.

¹⁶⁸https://groups.google.com/forum/?fromgroups=#!topic/d3-js/FBosXiTB9Pc

https://groups.google.com/forum/?fromgroups=#!topic/d3-js/FBosXiTB9Pc
https://groups.google.com/forum/?fromgroups=#!topic/d3-js/FBosXiTB9Pc

Working with GitHub, Gist and bl.ocks.org 332

Copy the ‘Clone this gist’ link

(this should look something like https://gist.github.com/441443¹⁶⁹)

Now you’re going to clone this gist to a local repository using the Git Shell. Open it up from the
desktop icon and you should see something like the following;

The Git Shell is open for business

You can clone the gist to a local folder with the command;

git clone https://gist.github.com/4414436.git

Or if you’re using OSX, the following command has been passed on by Alex
Hornbake as an alternative (thanks Alex).

git clone git@gist.github.com:4414436.git

(The url is the one copied from the ‘Clone this gist’ box.)

Running the command

This will create a folder with the id (the number) of the gist in your local GitHub working
directory.

¹⁶⁹https://gist.github.com/441443

https://gist.github.com/441443
https://gist.github.com/441443

Working with GitHub, Gist and bl.ocks.org 333

A folder is created for your gist

And there it is (Ooo… Look almost New Years!).

Copy your thumbnail.png file into this directory.

Back to the Git Shell and change into the directory (4414436) .We can now add the thumbnail.png
file to the gist with the command;

git add thumbnail.png

Running the git add command

And now commit it to your gist with the following command in the Git Shell;

git commit -m "Thumbnail image added"

Running the git commit command

Now we need to push the commit to the remote gist (you may be asked for your GitHub user
name and password if you haven’t done this before) with the following command;

git push

Push! Push!

OK, now you can go back to the web page for your gist and refresh it and scroll on down…

Working with GitHub, Gist and bl.ocks.org 334

A thumbnail is born

Woo Hoo!

(I know it doesn’t look like much, but this is a VERY simple graph :-)).

Now for the real test. Go back to your home page for your blocks on bl.ocks.org and refresh the
page.

d3noob’s blocks complete with thumbnail

Oh yes. You may now bask in the sweet glow of victory. And as a little bit of extra fancy, if you
move your mouse over the image it translates up slightly!

Wrap up.

The steps to get your thumbnail into the gist aren’t exactly point and click, but the steps you
need to take are fairly easy to follow. As promised, here is the abridged list of steps that will
avoid you going through the several previous pages.

1. Create your public gist on https://gist.github.com/¹⁷⁰
2. Get an image ready (230 x 120 pixels, named thumbnail.png)
3. Under “Clone this gist”, copy the link (i.e., https://gist.github.com/4414436.git)
4. If you have the command line git tools (Git Shell), clone this gist to a local folder: git clone

https://gist.github.com/4414436.git (or git clone git@gist.github.com:4414436.git

for OSX) It will add a folder with the gist id as a name (i.e., 4414436) under the current
working directory.

5. Navigate to this folder via the command line in Git Shell: cd 4414436 (dir 4414436 on
windows)

¹⁷⁰https://gist.github.com/

https://gist.github.com/
https://gist.github.com/

Working with GitHub, Gist and bl.ocks.org 335

6. Navigate to this folder in file explorer and add your image (i.e., thumbnail.png)
7. Add it to git from the command line:git add test.png

8. Commit it to git: git commit -m "Thumbnail added"

9. Push this commit to your remote gist (you may need your Github user name and
password): git push

10. Go back and refresh your Gist on https://gist.github.com/ to confirm that it worked
11. Check your blocks home page and see if it’s there too. http://bl.ocks.org/<yourusername>

Just to finish off. A big thanks to Christophe Viau for the hard work on finding out how it all
goes together and if there are any errors in the above description I have no doubt they will be
mine.

Appendix: Simple Line Graph
<!DOCTYPE html>

<meta charset="utf-8">

<style>

body { font: 12px Arial;}

path {

stroke: steelblue;

stroke-width: 2;

fill: none;

}

.axis path,

.axis line {

fill: none;

stroke: grey;

stroke-width: 1;

shape-rendering: crispEdges;

}

</style>

<body>

<script type="text/javascript" src="d3/d3.v3.js"></script>

<script>

var margin = {top: 30, right: 20, bottom: 30, left: 50},

width = 600 - margin.left - margin.right,

height = 270 - margin.top - margin.bottom;

var parseDate = d3.time.format("%d-%b-%y").parse;

var x = d3.time.scale().range([0, width]);

var y = d3.scale.linear().range([height, 0]);

var xAxis = d3.svg.axis().scale(x)

.orient("bottom").ticks(5);

var yAxis = d3.svg.axis().scale(y)

.orient("left").ticks(5);

var valueline = d3.svg.line()

.x(function(d) { return x(d.date); })

.y(function(d) { return y(d.close); });

Appendix: Simple Line Graph 337

var svg = d3.select("body")

.append("svg")

.attr("width", width + margin.left + margin.right)

.attr("height", height + margin.top + margin.bottom)

.append("g")

.attr("transform",

"translate(" + margin.left + "," + margin.top + ")"

);

// Get the data

d3.tsv("data/data.tsv", function(error, data) {

data.forEach(function(d) {

d.date = parseDate(d.date);

d.close = +d.close;

});

// Scale the range of the data

x.domain(d3.extent(data, function(d) { return d.date; }));

y.domain([0, d3.max(data, function(d) { return d.close; })]);

svg.append("path") // Add the valueline path.

.attr("d", valueline(data));

svg.append("g") // Add the X Axis

.attr("class", "x axis")

.attr("transform", "translate(0," + height + ")")

.call(xAxis);

svg.append("g") // Add the Y Axis

.attr("class", "y axis")

.call(yAxis);

});

</script>

</body>

Appendix: Graph with Many
Features
<!DOCTYPE html>

<meta charset="utf-8">

<style>

body {

font: 12px Arial;

}

text.shadow {

stroke: #fff;

stroke-width: 2.5px;

opacity: 0.9;

}

path {

stroke: steelblue;

stroke-width: 2;

fill: none;

}

line {

stroke: grey;

}

.axis path,

.axis line {

fill: none;

stroke: grey;

stroke-width: 1;

shape-rendering: crispEdges;

}

.grid .tick {

stroke: lightgrey;

opacity: 0.7;

}

.grid path {

stroke-width: 0;

}

.area {

fill: lightsteelblue;

stroke-width: 0;

}

Appendix: Graph with Many Features 339

</style>

<body>

<script type="text/javascript" src="d3/d3.v3.js"></script>

<script>

var margin = {top: 30, right: 20, bottom: 30, left: 50},

width = 600 - margin.left - margin.right,

height = 270 - margin.top - margin.bottom;

var parseDate = d3.time.format("%d-%b-%y").parse;

var x = d3.time.scale().range([0, width]);

var y = d3.scale.linear().range([height, 0]);

var xAxis = d3.svg.axis()

.scale(x)

.orient("bottom")

.ticks(5);

var yAxis = d3.svg.axis()

.scale(y)

.orient("left")

.ticks(5);

var area = d3.svg.area()

.x(function(d) { return x(d.date); })

.y0(height)

.y1(function(d) { return y(d.close); });

var valueline = d3.svg.line()

.x(function(d) { return x(d.date); })

.y(function(d) { return y(d.close); });

var svg = d3.select("body")

.append("svg")

.attr("width", width + margin.left + margin.right)

.attr("height", height + margin.top + margin.bottom)

.append("g")

.attr("transform",

"translate(" + margin.left + "," + margin.top + ")"

);

// function for the x grid lines

function make_x_axis() {

return d3.svg.axis()

.scale(x)

.orient("bottom")

.ticks(5)

}

// function for the y grid lines

function make_y_axis() {

return d3.svg.axis()

.scale(y)

Appendix: Graph with Many Features 340

.orient("left")

.ticks(5)

}

// Get the data

d3.tsv("data/data.tsv", function(error, data) {

data.forEach(function(d) {

d.date = parseDate(d.date);

d.close = +d.close;

});

// Scale the range of the data

x.domain(d3.extent(data, function(d) { return d.date; }));

y.domain([0, d3.max(data, function(d) { return d.close; })]);

// Add the filled area

svg.append("path")

.datum(data)

.attr("class", "area")

.attr("d", area);

// Draw the x Grid lines

svg.append("g")

.attr("class", "grid")

.attr("transform", "translate(0," + height + ")")

.call(make_x_axis()

.tickSize(-height, 0, 0)

.tickFormat("")

)

// Draw the y Grid lines

svg.append("g")

.attr("class", "grid")

.call(make_y_axis()

.tickSize(-width, 0, 0)

.tickFormat("")

)

// Add the valueline path.

svg.append("path")

.attr("class", "line")

.attr("d", valueline(data));

// Add the X Axis

svg.append("g")

.attr("class", "x axis")

.attr("transform", "translate(0," + height + ")")

.call(xAxis);

// Add the Y Axis

svg.append("g")

.attr("class", "y axis")

.call(yAxis);

// Add a the text label white background for legibility

Appendix: Graph with Many Features 341

svg.append("text")

.attr("transform", "rotate(-90)")

.attr("y", 6)

.attr("x", margin.top - (height / 2))

.attr("dy", ".71em")

.style("text-anchor", "end")

.attr("class", "shadow")

.text("Price ($)");

// Add the text label for the Y axis

svg.append("text")

.attr("transform", "rotate(-90)")

.attr("y", 6)

.attr("x", margin.top - (height / 2))

.attr("dy", ".71em")

.style("text-anchor", "end")

.text("Price ($)");

// Add the title

svg.append("text")

.attr("x", (width / 2))

.attr("y", 0 - (margin.top / 2))

.attr("text-anchor", "middle")

.style("font-size", "16px")

.style("text-decoration", "underline")

.text("Price vs Date Graph");

});

</script>

</body>

Appendix: Graph with Area Gradient
<!DOCTYPE html>

<meta charset="utf-8">

<style>

body { font: 12px Arial;}

.axis path,

.axis line {

fill: none;

stroke: grey;

stroke-width: 1;

shape-rendering: crispEdges;

}

.area { /* changed from line to area */

fill: url(#area-gradient); /* url reference fill instead of stroke */

stroke-width: 0px; /* removed stroke reference and any line*/

}

</style>

<body>

<script type="text/javascript" src="d3/d3.v3.js"></script>

<script>

// Set the dimensions of the canvas / graph

var margin = {top: 30, right: 20, bottom: 30, left: 50},

width = 600 - margin.left - margin.right,

height = 270 - margin.top - margin.bottom;

// Parse the date / time

var parseDate = d3.time.format("%d-%b-%y").parse;

// Set the ranges

var x = d3.time.scale().range([0, width]);

var y = d3.scale.linear().range([height, 0]);

// Define the axes

var xAxis = d3.svg.axis().scale(x)

.orient("bottom").ticks(5);

var yAxis = d3.svg.axis().scale(y)

.orient("left").ticks(5);

// Define the area (remove the line definition)

Appendix: Graph with Area Gradient 343

var area = d3.svg.area()

.x(function(d) { return x(d.date); })

.y0(height)

.y1(function(d) { return y(d.close); });

// Adds the svg canvas

var svg = d3.select("body")

.append("svg")

.attr("width", width + margin.left + margin.right)

.attr("height", height + margin.top + margin.bottom)

.append("g")

.attr("transform",

"translate(" + margin.left + "," + margin.top + ")"

);

// Get the data

d3.tsv("data/data.tsv", function(error, data) {

data.forEach(function(d) {

d.date = parseDate(d.date);

d.close = +d.close;

});

// Scale the range of the data

x.domain(d3.extent(data, function(d) { return d.date; }));

y.domain([0, d3.max(data, function(d) { return d.close; })]);

// Set the threshold

svg.append("linearGradient")

.attr("id", "area-gradient") // change from line to area

.attr("gradientUnits", "userSpaceOnUse")

.attr("x1", 0).attr("y1", y(0))

.attr("x2", 0).attr("y2", y(1000))

.selectAll("stop")

.data([

{offset: "0%", color: "red"},

{offset: "30%", color: "red"},

{offset: "45%", color: "black"},

{offset: "55%", color: "black"},

{offset: "60%", color: "lawngreen"},

{offset: "100%", color: "lawngreen"}

])

.enter().append("stop")

.attr("offset", function(d) { return d.offset; })

.attr("stop-color", function(d) { return d.color; });

// Add the filled area and remove the value line block

svg.append("path")

.datum(data)

.attr("class", "area")

.attr("d", area);

// Add the X Axis

Appendix: Graph with Area Gradient 344

svg.append("g")

.attr("class", "x axis")

.attr("transform", "translate(0," + height + ")")

.call(xAxis);

// Add the Y Axis

svg.append("g")

.attr("class", "y axis")

.call(yAxis);

});

</script>

</body>

Appendix: PHP with MySQL Access
<?php

$username = "homedbuser";

$password = "homedbuser";

$host = "localhost";

$database="homedb";

$server = mysql_connect($host, $username, $password);

$connection = mysql_select_db($database, $server);

$myquery = "

SELECT `date`, `close` FROM `data2`

";

$query = mysql_query($myquery);

if (! $myquery) {

echo mysql_error();

die;

}

$data = array();

for ($x = 0; $x < mysql_num_rows($query); $x++) {

$data[] = mysql_fetch_assoc($query);

}

echo json_encode($data);

mysql_close($server);

?>

Appendix: Simple Sankey Graph
<!DOCTYPE html>

<meta charset="utf-8">

<title>SANKEY Experiment</title>

<style>

.node rect {

cursor: move;

fill-opacity: .9;

shape-rendering: crispEdges;

}

.node text {

pointer-events: none;

text-shadow: 0 1px 0 #fff;

}

.link {

fill: none;

stroke: #000;

stroke-opacity: .2;

}

.link:hover {

stroke-opacity: .5;

}

</style>

<body>

<p id="chart">

<script type="text/javascript" src="d3/d3.v3.js"></script>

<script src="js/sankey.js"></script>

<script>

Appendix: Simple Sankey Graph 347

var units = "Widgets";

var margin = {top: 10, right: 10, bottom: 10, left: 10},

width = 700 - margin.left – margin.right,

height = 300 - margin.top – margin.bottom;

var formatNumber = d3.format(",.0f"), // zero decimal places

format = function(d) { return formatNumber(d) + " " + units; },

color = d3.scale.category20();

// append the svg canvas to the page

var svg = d3.select("#chart").append("svg")

.attr("width", width + margin.left + margin.right)

.attr("height", height + margin.top + margin.bottom)

.append("g")

.attr("transform",

"translate(" + margin.left + "," + margin.top + ")");

// Set the sankey diagram properties

var sankey = d3.sankey()

.nodeWidth(36)

.nodePadding(40)

.size([width, height]);

var path = sankey.link();

// load the data

d3.json("data/sankey-formatted.json", function(error, graph) {

sankey

.nodes(graph.nodes)

.links(graph.links)

.layout(32);

// add in the links

var link = svg.append("g").selectAll(".link")

.data(graph.links)

.enter().append("path")

.attr("class", "link")

.attr("d", path)

.style("stroke-width", function(d) { return Math.max(1, d.dy); })

.sort(function(a, b) { return b.dy - a.dy; });

// add the link titles

link.append("title")

.text(function(d) {

return d.source.name + " � " +

d.target.name + "\n" + format(d.value); });

// add in the nodes

var node = svg.append("g").selectAll(".node")

.data(graph.nodes)

.enter().append("g")

.attr("class", "node")

.attr("transform", function(d) {

return "translate(" + d.x + "," + d.y + ")"; })

Appendix: Simple Sankey Graph 348

.call(d3.behavior.drag()

.origin(function(d) { return d; })

.on("dragstart", function() {

this.parentNode.appendChild(this); })

.on("drag", dragmove));

// add the rectangles for the nodes

node.append("rect")

.attr("height", function(d) { return d.dy; })

.attr("width", sankey.nodeWidth())

.style("fill", function(d) {

return d.color = color(d.name.replace(/ .*/, "")); })

.style("stroke", function(d) {

return d3.rgb(d.color).darker(2); })

.append("title")

.text(function(d) {

return d.name + "\n" + format(d.value); });

// add in the title for the nodes

node.append("text")

.attr("x", -6)

.attr("y", function(d) { return d.dy / 2; })

.attr("dy", ".35em")

.attr("text-anchor", "end")

.attr("transform", null)

.text(function(d) { return d.name; })

.filter(function(d) { return d.x < width / 2; })

.attr("x", 6 + sankey.nodeWidth())

.attr("text-anchor", "start");

// the function for moving the nodes

function dragmove(d) {

d3.select(this).attr("transform",

"translate(" + (

d.x = Math.max(0, Math.min(width - d.dx, d3.event.x))

)

+ "," + (

d.y = Math.max(0, Math.min(height - d.dy, d3.event.y))

) + ")");

sankey.relayout();

link.attr("d", path);

}

});

</script>

</body>

</html>

Appendix: Force Layout Diagram
<!DOCTYPE html>

<meta charset="utf-8">

<script type="text/javascript" src="d3/d3.v3.js"></script>

<style>

path.link {

fill: none;

stroke: #666;

stroke-width: 1.5px;

}

path.link.twofive {

opacity: 0.25;

}

path.link.fivezero {

opacity: 0.50;

}

path.link.sevenfive {

opacity: 0.75;

}

path.link.onezerozero {

opacity: 1.0;

}

circle {

fill: #ccc;

stroke: #fff;

stroke-width: 1.5px;

}

text {

fill: #000;

font: 10px sans-serif;

pointer-events: none;

}

Appendix: Force Layout Diagram 350

</style>

<body>

<script>

// get the data

d3.csv("data/force.csv", function(error, links) {

var nodes = {};

// Compute the distinct nodes from the links.

links.forEach(function(link) {

link.source = nodes[link.source] ||

(nodes[link.source] = {name: link.source});

link.target = nodes[link.target] ||

(nodes[link.target] = {name: link.target});

link.value = +link.value;

});

var width = 960,

height = 500;

var force = d3.layout.force()

.nodes(d3.values(nodes))

.links(links)

.size([width, height])

.linkDistance(60)

.charge(-300)

.on("tick", tick)

.start();

// Set the range

var v = d3.scale.linear().range([0, 100]);

// Scale the range of the data

v.domain([0, d3.max(links, function(d) { return d.value; })]);

// asign a type per value to encode opacity

links.forEach(function(link) {

if (v(link.value) <= 25) {

link.type = "twofive";

} else if (v(link.value) <= 50 && v(link.value) > 25) {

link.type = "fivezero";

} else if (v(link.value) <= 75 && v(link.value) > 50) {

link.type = "sevenfive";

} else if (v(link.value) <= 100 && v(link.value) > 75) {

Appendix: Force Layout Diagram 351

link.type = "onezerozero";

}

});

var svg = d3.select("body").append("svg")

.attr("width", width)

.attr("height", height);

// build the arrow.

svg.append("svg:defs").selectAll("marker")

.data(["end"])

.enter().append("svg:marker")

.attr("id", String)

.attr("viewBox", "0 -5 10 10")

.attr("refX", 15)

.attr("refY", -1.5)

.attr("markerWidth", 6)

.attr("markerHeight", 6)

.attr("orient", "auto")

.append("svg:path")

.attr("d", "M0,-5L10,0L0,5");

// add the links and the arrows

var path = svg.append("svg:g").selectAll("path")

.data(force.links())

.enter().append("svg:path")

.attr("class", function(d) { return "link " + d.type; })

.attr("marker-end", "url(#end)");

// define the nodes

var node = svg.selectAll(".node")

.data(force.nodes())

.enter().append("g")

.attr("class", "node")

.on("click", click)

.on("dblclick", dblclick)

.call(force.drag);

// add the nodes

node.append("circle")

.attr("r", 5);

// add the text

node.append("text")

.attr("x", 12)

.attr("dy", ".35em")

Appendix: Force Layout Diagram 352

.text(function(d) { return d.name; });

// add the curvy lines

function tick() {

path.attr("d", function(d) {

var dx = d.target.x - d.source.x,

dy = d.target.y - d.source.y,

dr = Math.sqrt(dx * dx + dy * dy);

return "M" +

d.source.x + "," +

d.source.y + "A" +

dr + "," + dr + " 0 0,1 " +

d.target.x + "," +

d.target.y;

});

node

.attr("transform", function(d) {

return "translate(" + d.x + "," + d.y + ")"; });

}

// action to take on mouse click

function click() {

d3.select(this).select("text").transition()

.duration(750)

.attr("x", 22)

.style("fill", "steelblue")

.style("stroke", "lightsteelblue")

.style("stroke-width", ".5px")

.style("font", "20px sans-serif");

d3.select(this).select("circle").transition()

.duration(750)

.attr("r", 16)

.style("fill", "lightsteelblue");

}

// action to take on mouse double click

function dblclick() {

d3.select(this).select("circle").transition()

.duration(750)

.attr("r", 6)

.style("fill", "#ccc");

d3.select(this).select("text").transition()

.duration(750)

.attr("x", 12)

.style("stroke", "none")

Appendix: Force Layout Diagram 353

.style("fill", "black")

.style("stroke", "none")

.style("font", "10px sans-serif");

}

});

</script>

</body>

</html>

Appendix: Bullet Chart Code
<!DOCTYPE html>

<meta charset="utf-8">

<style>

body {

font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;

margin: auto;

padding-top: 40px;

position: relative;

width: 800px;

}

button {

position: absolute;

right: 40px;

top: 10px;

}

.bullet { font: 10px sans-serif; }

.bullet .marker { stroke: #000; stroke-width: 2px; }

.bullet .tick line { stroke: #666; stroke-width: .5px; }

.bullet .range.s0 { fill: #eee; }

.bullet .range.s1 { fill: #ddd; }

.bullet .range.s2 { fill: #ccc; }

.bullet .measure.s0 { fill: steelblue; }

.bullet .title { font-size: 14px; font-weight: bold; }

.bullet .subtitle { fill: #999; }

</style>

<button>Update</button>

<script type="text/javascript" src="d3/d3.v3.js"></script>

<script src="js/bullet.js"></script>

<script>

Appendix: Bullet Chart Code 355

var margin = {top: 5, right: 40, bottom: 20, left: 120},

width = 800 - margin.left - margin.right,

height = 50 - margin.top - margin.bottom;

var chart = d3.bullet()

.width(width)

.height(height);

d3.json("data/cpu1.json", function(error, data) {

var svg = d3.select("body").selectAll("svg")

.data(data)

.enter().append("svg")

.attr("class", "bullet")

.attr("width", width + margin.left + margin.right)

.attr("height", height + margin.top + margin.bottom)

.append("g")

.attr("transform", "translate(" + margin.left + "," + margin.top + ")")

.call(chart);

var title = svg.append("g")

.style("text-anchor", "end")

.attr("transform", "translate(-6," + height / 2 + ")");

title.append("text")

.attr("class", "title")

.text(function(d) { return d.title; });

title.append("text")

.attr("class", "subtitle")

.attr("dy", "1em")

.text(function(d) { return d.subtitle; });

d3.selectAll("button").on("click", function() {

svg.datum(randomize).call(chart.duration(1000));

});

});

function randomize(d) {

if (!d.randomizer) d.randomizer = randomizer(d);

d.markers = d.markers.map(d.randomizer);

d.measures = d.measures.map(d.randomizer);

return d;

}

function randomizer(d) {

var k = d3.max(d.ranges) * .2;

Appendix: Bullet Chart Code 356

return function(d) {

return Math.max(0, d + k * (Math.random() - .5));

};

}

</script>

</body>

Appendix: Map with zoom / pan and
cities
<!DOCTYPE html>

<meta charset="utf-8">

<style>

path {

stroke: white;

stroke-width: 0.25px;

fill: grey;

}

</style>

<body>

<script type="text/javascript" src="d3/d3.v3.js"></script>

<script src="js/topojson.v0.min.js"></script>

<script>

var width = 960,

height = 500;

var projection = d3.geo.mercator()

.center([0, 5])

.scale(900)

.rotate([-180,0]);

var svg = d3.select("body").append("svg")

.attr("width", width)

.attr("height", height);

var path = d3.geo.path()

.projection(projection);

var g = svg.append("g");

// load and display the World

d3.json("json/world-110m2.json", function(error, topology) {

Appendix: Map with zoom / pan and cities 358

g.selectAll("path")

.data(topojson.object(topology, topology.objects.countries)

.geometries)

.enter()

.append("path")

.attr("d", path)

// load and display the cities

d3.csv("data/cities.csv", function(error, data) {

g.selectAll("circle")

.data(data)

.enter()

.append("circle")

.attr("cx", function(d) {

return projection([d.lon, d.lat])[0];

})

.attr("cy", function(d) {

return projection([d.lon, d.lat])[1];

})

.attr("r", 5)

.style("fill", "red");

});

});

// zoom and pan

var zoom = d3.behavior.zoom()

.on("zoom",function() {

g.attr("transform","translate("+

d3.event.translate.join(",")+")scale("+d3.event.scale+")");

g.selectAll("path")

.attr("d", path.projection(projection));

g.selectAll("circle")

.attr("d", path.projection(projection));

});

svg.call(zoom)

</script>

</body>

</html>

	Table of Contents
	Acknowledgements
	Make sure you get the most up to date copy of D3 Tips and Tricks

	What is d3.js?
	Introduction
	What do you need to get started?
	HTML
	JavaScript
	Cascading Style Sheets (CSS)
	Web Servers
	PHP
	Other Useful Stuff
	Text Editor
	Getting D3
	Where to get information on d3.js
	d3js.org
	Google Groups
	Stack Overflow
	Github
	bl.ocks.org
	Twitter
	Books

	Starting with a basic graph
	HTML
	CSS
	D3 JavaScript
	Setting up the margins and the graph area.
	Getting the Data
	Formatting the Date / Time.
	Setting Scales Domains and Ranges
	Setting up the Axes
	Adding data to the line function
	Adding the SVG Canvas.
	Actually Drawing Something!

	Wrap Up

	Things you can do with the basic graph
	Adding Axis Labels
	How to add a title to your graph
	Smoothing out graph lines
	Adding grid lines to a graph
	The grid line CSS
	Define the grid line functions
	Draw the lines

	Make a dashed line
	Filling an area under the graph
	CSS for an area fill
	Define the area function
	Draw the area
	Filling an area above the line

	Adding a drop shadow to allow text to stand out on graphics.
	CSS for white shadowy background
	Drawing the white shadowy background.

	Adding more than one line to a graph
	Multiple axes for a graph
	How to rotate the text labels for the x Axis.
	Format a date / time axis with specified values
	Update data dynamically - On Click
	Adding a Button
	Updating the data
	Changes to the d3.js code layout
	What's happening in the code?

	Update data dynamically – Automatically

	Assorted Tips and Tricks
	Change a line chart into a scatter plot
	Adding tooltips.
	Transitions
	Events
	Get tipping
	on.mouseover
	on.mouseout

	What are the predefined, named colours?
	Selecting / filtering a subset of objects
	Select items with an IF statement.
	Applying a colour gradient to a line based on value.
	Applying a colour gradient to an area fill.
	Export an image from a d3.js page as a SVG or bitmap
	Bitmaps
	Vector Graphics (Specifically SVG)
	Let's get exporting!
	Copying the image off the web page
	Open the SVG Image and Edit
	Saving as a bitmap

	Add an HTML table to your graph
	HTML Tables
	First the CSS
	Now the d3.js code
	A small but cunning change…
	Explaining the d3.js code (reloaded).
	Wrap up

	More table madness: sorting, prettifying and adding columns
	Add another column of information:
	Sorting on a column
	Prettifying (actually just capitalising the header for each column)
	Add borders

	Understanding JavaScript Object Notation (JSON)
	Using Plunker for development and hosting your D3 creations.

	Sankey Diagrams
	What is a Sankey Diagram?
	How d3.js Sankey Diagrams want their data formatted
	Description of the code
	Formatting data for Sankey diagrams
	From a JSON file with numeric link values
	From a JSON file with links as names
	From a CSV with `source', `target' and `value' info only.
	From MySQL as link information only automatically.

	Sankey diagram case study

	Force Layout Diagrams
	What is a Force Layout Diagram?
	Force directed graph examples.
	Basic force directed graph showing directionality
	Directional Force Layout Diagram (Node Highlighting)
	Directional Force Layout Diagram (varying link opacity)

	Bullet Charts
	Introduction to bullet chart structure
	D3.js code for bullet charts
	Adapting and changing bullet chart components
	Understand your data
	Add as many individual charts as you want.
	Add more ranges and measures
	Updating a bullet chart automatically

	Mapping with d3.js
	Examples
	GeoJSON and TopoJSON
	Starting with a simple map
	center
	scale
	rotate

	Zooming and panning a map
	Displaying points on a map

	Crossfilter, dc.js and d3.js for Data Discovery
	Introduction to Crossfilter
	Map-reduce
	What can crossfilter do?

	Introduction to dc.js
	Bar Chart
	Pie Chart
	Row Chart
	Line Chart
	Bubble Chart
	Geo Choropleth Chart
	Data Table

	Bare bones structure for dc.js and crossfilter page
	Add a Bar Chart.
	Position the bar chart
	Assign the bar chart type
	Dimension and group the bar chart data
	Configure the bar chart parameters
	Just one more thing…
	Just yet another thing…
	Position the chart
	Assign type
	Dimension and Group
	Configure chart parameters

	Add a Line Chart.
	Position the line chart
	Assign the line chart type
	Dimension and group the line chart data
	Configure the line chart parameters

	Adding tooltips to a line chart
	Add a Row Chart.
	Position the row chart
	Assign the row chart type
	Dimension and group the row chart data
	Configure the row chart parameters

	Add a Pie Chart.
	Position the pie chart
	Assign the pie chart type
	Dimension and group the pie chart data
	Configure the pie chart parameters

	Resetting filters
	Making the reset label a little bit better behaved.

	Reset all the charts

	Using Bootstrap with d3.js
	What is Bootstrap?
	Layout grid
	Interface components

	Incorporating Bootstrap into your html code.
	Arranging more than one graph on a web page.
	First make a page with two graphs
	Arrange the graphs with the same anchor
	Arrange the graphs with separate anchors

	How does Bootstrap's grid layout work
	Arrange more than one d3.js graph with Bootstrap
	A more complicated Bootstrap layout example

	MySQL Tips and Tricks for d3.js
	Using a MySQL database as a source of data.
	PHP is our friend
	phpMyAdmin
	Create your database
	Importing your data into MySQL
	Querying the Database
	Using php to extract json from MySQL
	Getting the data into d3.js

	Manipulating Date / Time Ranges
	What's a standard format for a Date / Time value
	Creating a standard Date / Time from separate columns

	General MySQL titbits
	Group parts of queries (and text) together with CONCAT
	Working round reserved words in queries
	Rounding numbers

	Working with GitHub, Gist and bl.ocks.org
	General stuff about bl.ocks.org
	Installing the plug-in for bl.ocks.org for easy block viewing
	Loading a thumbnail into Gist for bl.ocks.org d3 graphs
	Setting the scene:
	Enough of the scene setting. Let's git going :-).
	Wrap up.

	Appendix: Simple Line Graph
	Appendix: Graph with Many Features
	Appendix: Graph with Area Gradient
	Appendix: PHP with MySQL Access
	Appendix: Simple Sankey Graph
	Appendix: Force Layout Diagram
	Appendix: Bullet Chart Code
	Appendix: Map with zoom / pan and cities

