

Functional Programming
in JavaScript

By Luis Atencio

 » Hello FP!

 » Why Javascript?

 » Functional Programming

 » Functional Techniques

 » Functional Data Types

 » Interacting with the DOM,
 and more...

HELLO FP!
Functional programming is a software paradigm that will
radically change the way in which you approach any
programming endeavor. This is evident in this simple example:

document.getElementById('message').innerHTML =
'<h1>Hello FP!</h1>';

While this program is very trivial, without any effort, it can
quickly become problematic. What if you wanted to change
the formatting from an <h1> to an <h2>? Or change the target
element? Inevitably, you would have to rewrite this
statement again.

Consider wrapping it all inside a function and making these
data points function parameters. Let’s explore this further,
but instead of using one big function, we’ll create smaller
functions and combine them all with a function called compose:

compose(addToDom, h1, echo('Hello FP!'));

Combining simple functions to create more meaningful
programs is the central theme of functional programming.
It also creates very extensible code as I can easily swap any
function (like h1 for an h2) without running the risk of breaking
other parts of the program. What is compose? There’s a lot
more to cover to understand this, so let’s dive in!

If you’re feeling adventurous, you can play with this
program here: http://jsbin.com/guwiji/edit?html,js,output

WHY JAVA SCRIPT ?
The answer is simple: omnipresence. JavaScript is a
dynamically typed, object-oriented, functional, general-
purpose language that contains an immensely expressive
syntax. It’s one of the most ubiquitous languages ever
created and can be seen in the development of mobile
applications, websites, web servers, desktop and embedded
applications, and even databases.

From its ancestors Lisp and Scheme, JavaScript inherits
high-order functions, closures, array literals, and other
features that make JavaScript a superb platform for applying
functional programming techniques. In fact, functions are
the primary “unit of work” in JavaScript.

This Refcard assumes a good understanding of JavaScript,
but here are some points to consider:

LAMBDA EXPRESSIONS
Known as fat arrow functions in the JavaScript world, lambda
expressions encode simple one-line anonymous functions

with shorter notation compared to traditional function
declaration. You could have lambda functions of multiple
lines, but one-liners are the more common use case. Here’s
a simple example of a function used to add 2 numbers:

 var add = (a, b) => a + b;
 add(2, 3); //-> 5

HIGH-ORDER FUNCTIONS
In JavaScript, functions are first-class objects, which means
they can be used in a first-class manner just like any other
object. Hence, you can intuitively expect that functions
can be assigned to variables, passed in as parameters, and
returned from other functions. This versatility is what gives
JavaScript functions the title of high-order functions.

// assign function to variable
var multiplier = (a,b) => a * b;

// pass function as argument
var applyOperation = (a, b, opt) => opt(a,b);
applyOperation (2, 3, multiplier); //-> 6

// return functions from other functions
function add(a) {
 return function (b) {
 return a + b;
 }
}
add(3)(3); //-> 6

Learn proper caching
strategies for improved
application performance.

DOWNLOAD NOW

DZONE REFCARD #216

Java Caching:
Strategies and the JCache API

217

C
O

N
T

E
N

T
S

G
et

 M
or

e
Re

fc
ar

dz
! V

is
it

 D
Zo

ne
.c

om
/r

ef
ca

rd
z

F
U

N
C

T
IO

N
A

L
 P

R
O

G
R

A
M

M
IN

G
 I

N
 J

A
V

A
S

C
R

IP
T

© DZONE, INC. | DZONE.COM

http://jsbin.com/guwiji/edit?html,js,output
https://dzone.com/refcardz/java-caching
http://dzone.com/refcardz
http://dzone.com/refcardz
http://dzone.com

You can try out high-order functions here: http://jsbin.com/
kiruba/edit?js,console

CLOSURES
A closure is a data structure that binds a function to its environment
at the moment it’s declared. It is based on the textual location
of the function declaration; therefore, a closure is also called
a static or lexical scope surrounding the function definition.
Because closures give functions access to its surrounding state,
you can solve many problems in a terse and concise way.

For a thorough exploration of JavaScript, try reading Secrets of a
JavaScript Ninja 2nd Edition (Manning 2016).

DOES FUNCTIONAL PROGRAMMING REPLACE
OBJECT-ORIENTED?
It’s important to know that JavaScript is as functional as it is
object-oriented—and both of these are useful for implementing
mid-to-large size applications. The good news is that functional
programming and object-oriented programming are not
mutually exclusive and can be used simultaneously. In fact,
platforms like Scala and F# have blended both paradigms
successfully into a single language, making them very
pragmatic and geared towards productivity. JavaScript is
another hybrid language that provides the freedom to use
these orthogonal paradigms in the same code base.

FUNCTION A L PROGR A M ING
Functional programming is a software development style that
emphasizes the use functions. Its main purpose is to abstract
control flow and operations on data with functions in order to
avoid side effects and reduce mutation of state in your code.

There is a small set of very important concepts—borrowed
from mathematics—that form the backbone of all functional
programming.

PURE FUNCTIONS
In order to understand functional programming, you must first
understand functions in the mathematical sense as being a
mapping of types. The set of a function’s input values is called
the domain and the set of possible values returned is the range.
Visually:

Simply, the function isEmpty—used to validate whether a
string has length zero—is a mapping from String to Boolean.
This is written as:

isEmpty :: String -> Boolean

Functional programming is based on the premise that you will
build immutable programs solely based on pure functions. A
pure function has the following qualities:

• It depends only on the input provided—and not on any
hidden or external state that may change as a function’s
evaluation proceeds or between function calls.

• It does not inflict changes beyond its scope (like modifying
a global object or a parameter reference).

Both points refer to the presence of side effects in your code;
behavior that is to be avoided at all costs:

The concept of pure functions leads into another concept in
functional programming: referential transparency.

REFERENTIAL TRANSPARENCY
Referential transparency (RT) is a more formal way of defining
a pure function. Purity in this sense refers to the existence of a
pure mapping between a function’s arguments and its return
value. Hence, if a function consistently yields the same result
on the same input, it is said to be referentially transparent. The
multiplier and adder functions shown earlier were RT. Here’s
an example of a non-RT program:

var nums = [80, null, 90, 100];
var total = 0;
var validNums = 0;
function average() {
 // Depends on the external variable nums,
 // total, validNums
 for(let i = 0; i < nums.length; i++) {
if(nums[i] !== null || nums[i] !== undefined) {
 total+= nums[i];
 validNums++;
 }
 }
 var newAverage = total / validNums;
 return Math.round(newAverage);
}

The problems with this program are due to its exposure to side
effects by relying on external variables: nums, total, and
validNums. If any of these variables change in-between calls to
average, it yields different results.

RT exercise: http://jsbin.com/lipewu/edit?js,console

FUNCTION A L TECHNIQUES

Functional programming contains a set of very compelling
techniques that drive your application’s control and data flow.
Pure functional programs have many of these techniques built

2

© DZONE, INC. | DZONE.COM

FUNCTIONAL PROGRAMMING
IN JAVASCRIPT

http://jsbin.com/kiruba/edit?js,console
http://jsbin.com/kiruba/edit?js,console
http://jsbin.com/lipewu/edit?js,console
http://dzone.com/refcardz
http://dzone.com

into them, such as automatic currying (which we’ll see in a
bit). Unfortunately, JavaScript doesn’t. Now, this doesn’t mean
you can’t use JS functionally. In fact, because JavaScript has
support for closures and high-order functions, you can very
easily extend the platform via functional libraries to support all
of the most important functional techniques you’ll need.

AWAY WITH LOOPS!
A noticeable quality of functional programs is the absence of
the standard looping mechanisms: for, while, and do-while.
The reason here is that pure functional programs don’t mutate
variables (like a loop counter) after they’ve been initialized.
Instead, we will take advantage of high-order functions—like:
forEach, map, reduce, and filter—to abstract iteration schemes,
which also help us remove a few if-else conditionals while
we’re at it. JavaScript has native implementations of these
functions, but it’s worth considering the implementations
provided in the library Lodash.js, as they are more extensible.

You can download Lodash.js here: https://lodash.com

Lodash.js defines a global object wrapper _ (an underscore),
which can be used to unlock all of its functionality, starting
with _.forEach:

_.FOREACH
This function iterates over the elements of a collection, invoking
the provided iteratee function on each one. The callback
function is supplied 3 arguments: value, index, and array.

_.forEach([80, 90, 100], function(value) {

 setTimeout(function() {
 console.log(value);
 }, 100);

}).value();

Aside from not having to keep track of loop counters and array
length, _.forEach also makes your code more declarative and
easier to understand. Also, because the body of the loop is
encapsulated inside a function, it properly binds each loop
value into the callback’s parameter, avoiding some of those
nasty scoping JavaScript bugs.

_.MAP
Mapping functions onto containers is an important part of
functional programming. For arrays, I can use a mapping
function to transform its contents into an array of similar
length as the original, while keeping the original intact. The
_.map function also has the built-in feature of skipping nulls,
so it saves us from having to manually do if-else null checks.

The function supplied to _.map is invoked with the same
arguments as _.forEach. Given a function:

 var toLetter = function (grade) {
 if(grade >= 90) return 'A';
 if(grade >= 80) return 'B';
 if(grade >= 70) return 'C';
 if(grade >= 60) return 'D';
 return 'F';
 };

We can transform a list of numerical grades into letter grades:

 _.map([20, 98, 100, 73, 85, 50], toLetter);

 //-> [F, A, A, C, B, F]

_.FILTER
Filter transforms an array by mapping a predicate function
(function with a boolean return value) onto each element. The
resulting array is made up of, potentially, a subset of elements
for which the predicate returns true.

_.filter(['Spain', 'USA', 'Serbia', 'Uganda']
 ,(name) => name.substring(0,1) === 'S');

//-> [Spain, Serbia]

The function supplied to _.filter has the same arguments as
_.map. As you can see from the code above, _.filter abstracts
the task of performing an if-else check to remove elements
from the array, where the condition clause is encoded as the
predicate function.

_.REDUCE
Typically used as a terminal operation originating from _.map,
_.reduce can be used to fold or gather the contents of an
array by compressing it into a single value. Each successive
invocation is supplied the return value of the previous. _.reduce
is typically seen as combined with _.map and _.filter:

_([1, 2, 3, 4, 5, 6, 7, 8, 9])
 .map((x) => x * x)
 .filter((x) => x % 2 !== 0)
 .reduce((total, x) => total + x); //-> 165

The accumulator function is supplied the current running total
(or accumulated value), the current value, index, and the array.

Map, reduce, filter exercise: http://jsbin.com/cihuyo/edit?js,console

FUNCTION CHAINING
Functions like map, filter, and reduce are just a few of an entire
library of functions in Lodash. In fact, all functions in Lodash are
designed to be chainable, starting with _.chain():

var users = [
 { 'user': 'Haskell', 'birth': 1900 },
 { 'user': 'Turing', 'birth': 1903 },
 { 'user': 'Rosser', 'birth': 1907 }
];

var youngest =
 _.chain(users)
 .sortBy('birth')
 .last()
 .value(); //-> Rosser

Chaining functions this way leads to very declarative code,
which describes what the program should do rather than how it
does it. Function chains allow you to describe the parts of your
application without actually running it. Only when the last
function _.value() is invoked does evaluation actually occur.

RECURSION
Recursion has many uses in software, especially when solving
self-similar types of problems such as traversing trees or
mathematical progressions like Fibonacci. It turns out recursion

3

© DZONE, INC. | DZONE.COM

FUNCTIONAL PROGRAMMING
IN JAVASCRIPT

https://lodash.com
http://jsbin.com/cihuyo/edit?js,console
http://dzone.com/refcardz
http://dzone.com

can also be extremely effective at traversing any type of sequential
data structures such as arrays, which is why it’s become the de
facto iteration mechanism in functional languages.

Traversing arrays recursively originates from realizing arrays
are self-defined as collections, each having a head and a tail,
both available as Lodash operations. Here’s a quick example of
a sum function to add all of the elements in an array.

 function sum(arr) {
 var list = _(arr);
 return list.isEmpty() ? return 0 :
 list.head() + sum(list.tail());
 }
 sum([]); //-> 0
 sum([1,2,3,4,5,6,7,8,9]); //->45

The main benefit of recursion is that you can loop in an
immutable manner since there’s no explicit loop counter to
update. Hence, the responsibility of moving through the
elements in an array is ceded entirely to the language runtime.

FUNCTION ABSTRACTIONS
Functional programming provides very powerful abstractions
that allow you to create functions from the definition of other
functions or to augment the evaluation of existing functions.
The first abstraction we’ll talk about is _.curry.

CURRYING
Currying is a technique that converts a multivariable function
into a step-wise sequence of unary functions. In other words,
a function with parameters: f(a,b,c) is internally augmented
to one that works on parameters one at a time: f(a) -> f(b) ->
f(c). Consider the case of a function name that returns first
and last name:

// name :: String -> String -> String
var name =
 function (first) {
 return function (last) {
 ...

Instead of writing it like this, we can use Lodash’s automatic
currying functionality:

var name = _.curry(function(last, first) {
 return [last, first].join(',');
});

// When supplied both arguments, it evaluates the
function immediately
name('Curry')('Haskell'); //-> 'Curry, Haskell'

// When supplied one argument, it returns another
function
name('Curry'); //-> Function

As you can see from the example above, name is a function of
two arguments. From this curried version, a family of functions
is born by partially applying only the first argument:

var curry = name('Curry');
curry('Haskell'); //-> 'Curry, Haskell'
curry('Samuel'); //-> 'Curry, Samuel'
curry('Anna'); //-> 'Curry, Anna'

Currying exercise: http://jsbin.com/dubaqa/edit?html,js,console

This idea of partially applying arguments has another modality,
known as partial application.

PARTIAL APPLICATION
Partial application is an operation that binds a subset of a
non-variadic function’s parameters to fixed values, creating
a function of smaller arity. This is especially useful when
implementing presets or default function arguments. Consider
the following log function:

function log (level, target, message)

I can use this function to log a message with different levels
and target either the console or an alert box. Using _.partial, I
can create an infoConsoleLogger, for example:

var infoConsoleLogger = _.partial(log, 'console', 'INFO');

infoConsoleLogger('Users name ' + name('Curry',
'Haskell'));

Partial application can also be used with placeholders (_) to extend
language with native behavior. Consider these two examples:

// Take the first N characters of a String
String.prototype.first =
 _.partial(String.prototype.substring, 0, _);

 'Functional Programming'.first(3); //-> 'Fun'

// Convert any name into a Last, First format
String.prototype.asName =
 _.partial(String.prototype.replace, /(\w+)\s(\w+)/,
'$2, $1');

'Alonzo Church'.asName(); //-> 'Church, Alonzo'

Both currying and partial application are extremely useful
when combined with composition.

COMPOSITION
Composition is the process used to group together the
execution of simpler functions. In essence, composition is a
function derived from other functions.

The composition of 2 functions g and f (read f composed of g) is
given by:

f · g = f(g) = compose :: (B -> C) -> (A -> B) -> (A -> C)

You can visualize the composition of two functions as a
mapping of sets linking their inputs and outputs:

In simple terms, this means the output of g will be passed into
the input of f. Let’s see this in action using Lodash’s _.compose:

4

© DZONE, INC. | DZONE.COM

FUNCTIONAL PROGRAMMING
IN JAVASCRIPT

http://jsbin.com/dubaqa/edit?html,js,console
http://dzone.com/refcardz
http://dzone.com

var str = "We can only see a short distance
 ahead but we can see plenty there
 that needs to be done";

var explode = (str) => str.split(/\s+/);

var count = (arr) => arr.length;

var countWords = _.compose(count, explode); //-> 19

Because functions have single return values, it’s imperative for
the function receiving the input (in this case f) to behave as a
unary function. This is where currying is so useful, as it can be
used to reduce a function’s parameters to one. Let’s expand on
the example shown previously; this time we will determine if a
block of text contains 10 words:

var check = _.curry((len, size) => size >= len);

var check10 = check(10);

var checkText = _.compose(check10, count, explode);

checkText(str); //-> true

Currying and composition exercise: http://jsbin.com/fokixa/
edit?html,js,console

FUNCTION A L DATA TYPES

Currying and composition provide abstractions over functions—
the drivers for behavior in your application. Functional data
types like functors and monads provide abstractions over the
data. Functional data types part from the notion of mapping
functions onto containers. You saw this earlier with the _.map
function on arrays. In a similar manner, we can map functions
over any type.

CONTAINERIZING
The idea behind containerizing is very simple but has far-reaching
applications. The goal is to place values in a container. By
doing this, we hope to create a logical barrier that promotes
transforming values immutably and side-effect free. Let’s
define our simple container type, Wrapper:

var Wrapper = function(val) {
 this.val = val;
};

Wrapper.prototype.map = (f) => f(this.val);

var wrap = (val) => new Wrapper(val);

Once we wrap a value, the rule is that you can only map functions
onto it to transform and retrieve it. Let’s see an example:

var msg = 'Hello FP!';
wrap(msg).map(_.words); //-> ['Hello', 'FP!']

This idea is rather simple: you put the value into a container
and run a function over it. We can make this more powerful if
we could continue mapping functions over the container multiple
times, just like map. Consider this variation of Wrapper.map:

Wrapper.prototype.map = function(f){
 return wrap(f(this.val))
}

As you can see now, aside from mapping the function over the
value, the result is placed back into the container, which allows
for a chainable sequence of operations to take place:

var msg = 'Hello FP!';
wrap(msg).map(_.words).map(_.size); //-> Wrapper(2)

You should realize that the original wrapped object was never
actually touched, and not because it’s a string, but because
mapping functions over the value always returns a new value,
leaving the original unaltered.

FUNCTORS
That’s right, the array map is a functor since you can map a
function onto its elements and the result is again an array.
In essence, a functor is nothing more than a type that
implements a mapping function with the purpose of lifting
values into a container. Hence, a functor F defines a mapping
function as follows:

F.prototype.map = function(f){
 return F.of(f(this.val))
}

The function F.of is nothing more than a way to instantiate the
data type without having to call new. Diagraming the example
code above:

Functors are important because they introduce the idea of
a function “reaching” into the container, modifying it, and
placing the value “back into” it. As is, however, this wrapper
doesn’t provide much more value. For instance, what happens
if I wrap a null object and attempt to map functions over it?

Functor exercise: http://jsbin.com/tetet/20/edit?html,js,console

MONADS
Monads are data types similar to functors, but they also define
the rules by which values are contained within them. The
monad type, as such, is an abstract data type with the following
interface:

INTERFACE DESCRIPTION

Type constructor Used for creating monadic types

Unit function Used for inserting a value into a monadic
structure. Typically called of or fromNullable

Bind function Used for chaining operations on monadic
values, called map

Join operation Used to flatten layers of monadic structures into
one. Important when used in the composition of
functions that return monadic types

5

© DZONE, INC. | DZONE.COM

FUNCTIONAL PROGRAMMING
IN JAVASCRIPT

http://jsbin.com/fokixa/edit?html,js,console
http://jsbin.com/fokixa/edit?html,js,console
http://jsbin.com/tetet/20/edit?html,js,console
http://dzone.com/refcardz
http://dzone.com

Monadic types are concrete implementations of this interface.
In practical programming problems, monadic types are
frequently seen to abstract and consolidate null checks and
error handling. The two most frequently used are the Maybe
and Either types.

MAYBE
The Maybe monad can be used to model the presence or
absence of a value (null or undefined) in a centralized and
secure manner.

Implementation details can be found at: https://github.com/
folktale/data.maybe

This data type is an abstract type with 2 concrete
implementations:

TYPE DESCRIPTION
Just(val) Always contains a valid value

Nothing() Represents a container that has no value,
or the case of a failure with no additional
information

Let’s see this in action:

var user = {name: 'Haskell Curry', age: 14};
Maybe.fromNullable(user)
 .map(_.property('age'))
 .map(add(1)); //-> Maybe(15)

Maybe receives an object, and sets out to perform a couple of
transformations: extracting the age property and then adding 1
to it. But what would happen in the case of null?

Maybe.fromNullable(null)
 .map(_.property('age'))
 .map(add(1)); //-> Nothing()

This is the remarkable thing: Nothing happens. Maybe has
provided specific logic in its unit function that abstracts null
checks from your code. This monad can also be used to abstract
out nested if-else statements present in imperative code.
Consider this example:

function getCountry(student) {
 var school = student.getSchool();
 if(school !== null) {
 var addr = school.getAddress();
 if(addr !== null) {
 return addr.getCountry();
 }
 }
 return 'Country does not exist!';
}

Watch how this code becomes much more streamlined using Maybe:

var getCountry = (student) =>
 return Maybe.fromNullable(student)
 .map(_.property('school'))
 .map(_.property('address'))
 .map(_.property('country'))
 .getOrElse('Country does not exist!');

EITHER
Either represents a logical disjunction (OR) between two values

a and b, but never at the same time. Unlike Maybe, Either can
be used to signal a failure in your code and provide a possible
recovery route. It also has two concrete implementations:

TYPE DESCRIPTION
Left(a) Can contain a possible error message or an

exception to throw

Right(b) Always contains the successful value
(known as biased on the right)

Implementation details of Either can be found here:
https://github.com/folktale/data.either

Consider this example to look up strings by some key:

var messages = {
 'welcome': 'Hello FP!'
};
var lookUp = function (obj, key) {
 var str = obj[key];
 if(str) {
 return Either.fromNullable(str);
 }
 return Either.Left('String not found!');
};

Here’s the work of the monad in the event of valid and invalid
cases:

// valid
lookUp(messages, 'welcome').map(_.words);// Right(['Hello',
'FP!'])

// invalid
lookUp(messages, 'badKey').map(_.words);// Left('String
not found!');

With both Maybe and Either, even if the function fails to look up
a value, I can still map functions onto them, safely propagating
and securing the error until reaching the end of the expression.

Now try it for yourself:
http://jsbin.com/juluka/edit?html,js,console

INTER ACTING WITH THE DOM

Since functional programming must be pure and side-effect
free, how do you interact with the DOM? Reading from or
writing to the DOM are severe causes of side effects in your
code since your functions are accessing and modifying a
globally shared resource. While we can’t avoid side effects
from occurring, we can at least write code that behaves in a
referentially transparent way in the face of HTML reads and
writes. Let’s begin there. I will define two simple operations:
read and write:

var read = function (id) {
 return function () {
 return document.getElementById(id).innerHTML;
 };
};

var write = function(id) {
 return function(value) {
 document.getElementById(id).innerHTML = value;
 };
};

6

© DZONE, INC. | DZONE.COM

FUNCTIONAL PROGRAMMING
IN JAVASCRIPT

https://github.com/folktale/data.maybe
https://github.com/folktale/data.maybe
https://github.com/folktale/data.either
http://jsbin.com/juluka/edit?html,js,console
http://dzone.com/refcardz
http://dzone.com

Luis Atencio is a Staff Software Engineer for Citrix Systems in Ft.
Lauderdale, FL. He develops and architects applications leveraging
Java, PHP, and JavaScript platforms. Luis is very involved in the
community and has presented at local meet-ups. He blogs about
software engineering at luisatencio.net and writes articles for PHP
magazines and DZone. Follow Luis on twitter at @luijar.

© DZONE, INC. | DZONE.COM

The purpose of creating these curried functions is two-fold:

• To isolate the IO operations into singular functions as
much as possible.

• To control their side effects when used with the IO monad.

IO MONAD
As the name suggests, we have a monad that allows us to do
pseudo-side-effect free IO. This monad is mainly in charge of
separating the IO operations from the main logic of your code.
Let’s look at a quick example, given the following HTML div:

<div id='message'>Hello FP!</div>

var performUnsafeIO = IO.from(read('message'))
 .map(_.snakeCase)
 .map(write('message'));

As is, this expression doesn’t effect any change. This is because
the IO monad is nothing more than a referentially transparent
program description. All of the side effects are executed in one
shot with a call to IO.run:

performUnsafeIO.run();

// HTML output
<div id='message'>hello_fp</div>

Try out the IO monad:
http://jsbin.com/butame/edit?html,js,output

CONCLUSION
To sum up, functional programming is a paradigm with a
radically different philosophy from traditional object-
oriented development. The main distinctions are apparent
when considering functional programming’s declarative
mode of expressing code, as well as its focus on preserving
immutability through functions that execute in a side-effect
free environment.

At the core of functional programming lies functional
composition and monads. Composition provides function
abstractions used to create complex functions from simple
ones. While composition abstracts control flow, monads
abstract data. Monadic types provide a secure layer where
invalid data is guarded from causing your code to fail.

The biggest challenge of large JavaScript application
development is dealing with the complexity inherent in the
level of flexibility and dynamicity that the language provides.
The principles behind functional programming can be used
to remedy this and prevent your code from being impacted by
other scripts loaded onto the same page, leading to code that is
much easier to read, test, and reason about.

With the aim of being terse and expressive, functional
programming is a paradigm that can boost your development
productivity and create more robust applications.

© DZONE, INC. | DZONE.COM© DZONE, INC. | DZONE.COM

ABOUT THE AUTHOR RECOMMENDED BOOK

DZONE, INC.
150 PRESTON EXECUTIVE DR.
CARY, NC 27513

888.678.0399
919.678.0300

REFCARDZ FEEDBACK WELCOME
refcardz@dzone.com

SPONSORSHIP OPPORTUNITIES
sales@dzone.com

Copyright © 2015 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. VERSION 1.0 $7.95

DZone communities deliver over 6 million pages each month to more than 3.3 million software
developers, architects and decision makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, research guides, feature articles, source code and more.

"DZone is a developer's dream," says PC Magazine.

BROWSE OUR COLLECTION OF 250+ FREE RESOURCES, INCLUDING:
RESEARCH GUIDES: Unbiased insight from leading tech experts

REFCARDZ: Library of 200+ reference cards covering the latest tech topics

COMMUNITIES: Share links, author articles, and engage with other tech experts

JOIN NOW

7

CREDITS:
Editor: G. Ryan Spain | Designer: Yassee Mohebbi | Production: Chris Smith | Sponsor Relations: Chris Brumfield | Marketing: Chelsea Bosworth

Functional Programming in JavaScript teaches JavaScript developers
functional techniques that will improve extensibility, modularity,
reusability, testability, and performance. Through concrete examples
and jargon-free explanations, this book teaches you how to apply
functional programming to real-life development tasks. By the end of
the book, you'll think about application design in a fresh new way.

FUNCTIONAL PROGRAMMING
IN JAVASCRIPT

BUY NOW

http://luisatencio.net
http://twitter.com/luijar
http://jsbin.com/butame/edit?html,js,output
mailto:refcardz%40dzone.com?subject=
mailto:sales%40dzone.com?subject=
http://dzone.com
http://dzone.com
http://dzone.com/refcardz
http://manning.com/atencio/%3Fa_aid%3Dlatenciofpjs%26a_bid%3D09ffe2cc
http://manning.com/atencio/?a_aid=latenciofpjs&a_bid=09ffe2cc

