

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

The Complete Beginner’s Guide to

React

By Kristen Dyrr

Software Engineer and Web Developer

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

Table of Contents

Chapter 1: Beginner’s Guide to React.js, With Examples

Download the source code

Learn React online

Tutorial requirements

Downloading React and getting started

Why React is better with JSX

Understanding React components

React component states

How to use props

Organizing your interface

Chapter 2: Form Validation Tutorial with React.JS

Download the source code

Tutorial requirements

Getting started with the tutorial

Setting up for form submission

Creating abstract form elements

Creating input fields

Chapter 3: How to Submit Forms and Save Data with React.js and Node.js

Download the tutorial files

Tutorial requirements

Making revisions to a React user interface

Displaying new data from everyone

Submitting form data

Emptying fields on form submission

Saving data to the server

Chapter 4 Creating a Crossword Puzzle game with React.JS

Download the source code

Tutorial requirements

Intro to JSFiddle

Downloading React

Defining Components

Rendering Components

Populating Props

Populating Properties in the Game

Composing Components

Events

Forms

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

Chapter 1: Beginner’s Guide to React.js, With

Examples

React.js is a JavaScript library that was created by Facebook. It is often thought of as the “view”

in a model-view-controller (MVC) user interface. This makes sense when you consider the fact

that the only function that must be implemented in React is the “render” function. The render

function provides the output that the user sees (the “view”).

Let’s take a look at why you may want to use React and how to set up a basic interface.

Download the source code

You can download all of the files associated with this tutorial from here.

Learn React online

If you are keen to learn React from the ground-up feel free to check Learn and Understand

React JS on Zenva Academy which covers all the basics + lots of bonus topics like React

Router and Flux.

Tutorial requirements

● This tutorial assumes that you have at least a beginner’s grasp of HTML and JavaScript.

● You will need to download the React library if you want to go beyond the testing phase.

We show you how to get around this during testing.

● You will need a text editor of some sort. Notepad++ is popular for those on Windows

machines, and TextMate is popular on a Mac. Editors that highlight code are preferable.

● Normally, you would incorporate React into a larger application. If you want to test the

basic code with external data files at the end of the tutorial, you will need to use a local

or remote web server to get the page to work. MAMP is popular on Mac, and WAMP is

most common on Windows machines. You can also use a lightweight Mongoose web

server, or Python’s HTTP server. Many people use React with Node.js, so you can also

use a Node.js server. The React library download page (above) also includes a server

and other options.

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook
https://html5hive.org/react-tutorial/
https://academy.zenva.com/product/learn-and-understand-react-js/?zva_src=html5hive-kristen-react
https://academy.zenva.com/product/learn-and-understand-react-js/?zva_src=html5hive-kristen-react
https://facebook.github.io/react/downloads.html
https://notepad-plus-plus.org/download/
https://macromates.com/download
https://www.mamp.info/downloads/
http://www.wampserver.com/
https://code.google.com/p/mongoose/
https://code.google.com/p/mongoose/
https://docs.python.org/2/library/simplehttpserver.html
https://html5hive.org/complete-beginners-guide-to-node-js/

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

Downloading React and getting started

There are many options for downloading and installing React and its various add-ons, but the

fastest way to get started and begin playing around with React is to simply serve the JavaScript

files directly from the CDN (as described on the React GitHub page… the most common CDN

options are listed there):

Both the download pages go into detail on the various ways to download, install, and serve

React in various formats, but we’re going to stick with this most basic option so we can focus on

learning how to code with the React library itself. It’s a good idea to have the React API open

while you work for reference.

From there, we create an index.html file, and a main.js file. I’ve also included a css file for basic

styling:

In order to get around using a server while testing, I’m calling the React.js, react-dom.js, and the

browser.min.js babel-core files from the CDN. You wouldn’t want to do this in production. The

babel-core file allows us to use JSX, and the script type must be “text/babel” in order for it to

work properly. Our main JavaScript code goes in main.js, and that’s where it all starts.

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook
https://github.com/facebook/react
https://facebook.github.io/react/docs/top-level-api.html

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

Why React is better with JSX

Most React implementations make use of JSX, which allows you to put XML-like syntax right

within JavaScript. Since React displays output as it’s main function, we will be using HTML in

just about every component. JSX simplifies the code that would normally have to be written in

JavaScript, which makes your code much more readable and simplified.

JSX is not required, but consider the difference between two very simple statements. The

following statement is created without JSX:

The following is with JSX:

As you can see, the JSX code is much easier to read. Now that we have a basic understanding

of what our output syntax will look like, let’s dig in and learn the building blocks of React.

Understanding React components

React is based on components and states. This is what makes React such a popular library.

When you want to create an application, you usually break it into simpler parts. When

programming with React, you will want to break your interface into its most basic parts, and

those will be your React components.

Components are wonderful because they are modular and reusable. You can take a basic

component used in one area of an application and reuse it in others without having to duplicate

code. This helps to speed up development.

Components can be nested, so that the most basic components can be grouped into a parent

component. For example, if you were to create a home listing interface with React, the top level

component would be the home list itself. Within the list, you would have a description of a single

home. Within the home component, you would have the address of the home, as well as other

small components such as a photo, perhaps a favorite or save button, and a link to view details

and a map.

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

Now let’s see how this information can be updated when it changes.

React component states

Component states are what give React its name. Any time a component’s state changes, its

“render” function is called, updating the output. In essence, each component “reacts” to

changes, which is handy for any user interface. Data stored in a state should be information that

will be updated by the component’s event handlers (changes that should update in real time as

the interface is being used).

If we were to have a home listing, any number of things may change in the database. New

photos could be added, and a home can be bought and sold. You wouldn’t necessarily want any

of these things to update in real time in the interface.

One thing that may change very quickly, however, would be the number of times a home is

saved (or favorited or liked) by a user. The little component that displays the number of saves

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

could update as soon as the person clicks the Save button by updating the state the moment

the button is clicked. Let’s build the Saves component to show what this would look like:

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

This won’t actually do anything yet, because we don’t have any statement to call on Saves. Still,

this component describes what we do with components and states. You also won’t find this

code anywhere in the files, because we will have to move things around a bit to make it work

the way we want, but this is fine for now.

You may notice a naming convention right away. Most element names start with a lowercase

letter, followed by capitalization. The names of React classes, however, begin with an

uppercase letter. We then have the React.createClass() function, which creates our component.

The render method is that most-important method that produces the actual output, and is

normally placed last in the component. As you can see, the output depends on the value of two

states: saved and numSaves. Here’s what the output will look like when the user has saved the

home:

And when they have not saved the home:

Just don’t include computed data in a state. What that means in this case is that, while you want

to update the number of saves in the state when the Save button is clicked, you don’t want to

save the following in the state:

Save the addition of the string for the render function. All we want to save in the state is the data

that gets updated by the component’s event handler, and that is simply the number of favorites.

You can also see JSX at work in the render method. The return value (just don’t forget the

parentheses around the return output!) appears to be just regular HTML right within your

JavaScript code! Well, not exactly. JSX is JavaScript, so the “class” attribute is discouraged.

Instead, use “className.” In addition, JavaScript expressions used as attribute values must be

enclosed in curly braces rather than quotes.

Because we are dealing with states, we need to set an initial state so that the state variables will

always be available in the render method without errors. This is why we use the getInitialState()

method at the top of the component.

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

The handleSubmit function is where we handle the pressing of the Save (or Remove) button.

We first have to call preventDefault() in order to prevent the form from being submitted the

normal way. We then process the data, so that the user will save the home if it’s not already

saved, or remove it from their saves if it is saved. As soon as we save the new state at the end

of the function, the render method will be called automatically, which will update the display.

Now, let’s look at the rest of the example in more detail.

How to use props

Components pass properties to their children components through the use of props. One thing

to keep in mind is that props should never be used to determine the state of a component. A

property would be something such as the address of a home, passed from the listing

component to the individual home component. The state, on the other hand, should depend on

data that may be updated, such as the number of times people have saved the home.

Let’s look at the rest of this basic example. Taking into account the proper use of props and

states, you may notice that there are some problems with this code:

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

For this basic example, we are just going to hard-code a home listing. It all starts at the bottom,

where we have the ReactDOM.render() call. Version 0.14 of React separated React into two

modules: React and ReactDOM. ReactDOM exposes DOM-specific methods, and React

includes the core tools shared by React on different platforms. <HomeListing /> is basically a

call to a component, in XML-style code. The naming convention states that regular HTML code

is lowercase, while component names are capitalized. Everything will be placed in the “content”

tag, which is included in the index.html file.

Normally, the HomeListing tag would include attributes that tell the component where to grab

data, such as the location of a file URL. These attributes would be called using props. For now,

we will focus on other props within our nested components. The HomeListing component in this

example consists only of a render function, which calls on a nested component called “Home.”

The call to Home contains all the attributes needed to describe the home listing, with JavaScript

attribute values (including raw numbers, as well as true and false values) in curly braces.

The Home component is where we see our first use of props. Basically, any custom attribute

sent through when calling a child component may be accessed through this.props. The most

unique of these is this.props.children. The “children” property accesses whatever was included

within the opening and closing tags of the call to the component (not including the attributes).

Notice in the call to the Home component that we include a “key” attribute, as well as an “id”

attribute with the same value. The key is used internally by React, and is not available as a

prop. It allows React to keep track of components that may be shuffled or removed. Since we

also need some sort of id for our application, we pass in a second “id” attribute with the same

value, which may be used as a prop.

Most of our output is displayed directly at the Home level, but we also call on two more children

components: Photo and Saves. Photo doesn’t really need to be a child component in this

instance, but it’s common for photos to have special features, which could be included in the

future. Because it’s so small, it uses special syntax available to stateless components that have

only a render method and nothing else. As you can see, the syntax allows the component to be

extremely small and simple. The most important component in this case, however, is the Saves

component. First, let’s take a look at our output from this code:

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

It pretty much looks like what we want, doesn’t it? Well, not so fast. As you can see from the

Saves component (which we discussed above), all the action is happening right here. The

output shows that 52 people have saved the home before you. The problem is, how does the

application save any new information. How will it “remember” that you saved the home too?

This is where things get just a little more complicated. First of all, you would normally include

React as one piece of a larger app that will do all the processing of the data, where data is

pulled from a database or file, then saved back to the database or file as the interface is being

used. For now, we can hard-code this data as JSON, and show you at what point the data

would be saved at the other end.

Organizing your interface

What we need to do is pull data from the top level component, and save data at the top level as

well. This is because the total number of saves is being shared with all users. If our application

was sharing information that is only relevant to each individual user, we could pull and save

data in a child component, because what other people see wouldn’t matter.

Here is our updated code:

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

The first difference here is that React.render() calls on the HomeListing component using a few

attributes. These attributes are not being used at the moment, because that would require the

use of a server of some sort (see the requirements section above for links). You can easily

move the homes data to a homes.json file, and the saves data to a saves.json file. Another

option is to create some database calls to pull the data, and save the updated data.

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

You’ll now see that the HomeListing component does all the work. The reason we have

separated the saves information from the homes information is that we don’t want to update

changes to the homes in real time. Changes to home information just don’t happen often

enough to make it worth the cost in resources to update every single thing on the page.

Another change you would probably make when pulling “real” data from a database would be to

include whatever key is used to save a home in the database. That key would be used when

referencing the homes, as well as the save data for each home. For now, we’re just counting on

the JavaScript map method to give us array indexes that line up between the two lists of homes

and saves data, simply because the arrays are in the correct order and the same size.

Here is the output of the new JavaScript file:

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

It’s pretty much the same as the old output, except that the interface now works properly! We

still aren’t saving the data, but you’ll see that there is a comment in the toggleSave() function

(which is a custom function), showing where you would save the new data to a database, or to a

json file. We also make use of the React method componentDidMount(). This method is

automatically called once when the component has finished rendering. This is the perfect place

to load our information. It’s also the best place to put any polling function, such as the

setInterval function, for updating any changes to the saves in real time.

You’ll also see that the custom load functions, which include JSON-style data, have a setState()

call at the end. Even though we won’t be updating the home data in real time, setting it in a state

makes it easier to populate the output with the correct data after the component is loaded. The

reason we separate the saves into another state is so that you can comment out the

setInterval() call to update only the save data in real time, and nothing else. The interval time

can be sent through props, as it is in the call to HomeListing.

Another thing that can be confusing to people is that attributes are not automatically passed

down to all the nested children when they are nested more than one level. You’ll see that the

function attribute passed to Home must also be passed down to the Saves component, and it

can have a completely different name! The same goes for all the other props. Here, we pass the

props sent to the Home component down the next level to the Saves component:

Note that the toggleSave() function call could have been passed directly through as another

props value, but we can also do as we did here and call a local function first, which then calls

the parent function through props. That gives you the ability to make any additional changes.

So now that we have all that sorted out, you should know that each component should be

separated out into separate JavaScript files, and organized into a “components” folder. This is

for when you have a more complex design, and have a local or remote server running. Then,

each component opens its children components using require().

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

Chapter 2: Form Validation Tutorial with

React.JS

React.js is a fantastic user interface primarily library because the user’s view updates

automatically when a state changes. This ability to show changes to the user quickly also

makes it a good fit for user-facing form errors. React allows you to easily display errors as the

form is being filled so the user doesn’t have to fill in the entire form, press the submit button,

then try to figure out what they got wrong.

This does not mean React can be used to make a form secure. Hackers can bypass your React

form altogether, passing variables directly to the server. You will still have to provide security

and additional error-handling on the server side. Using React for error-checking is mainly for

making a form easier to use.

We are going to create a simple donation form in our example. The code shows a few places

where additional functionality can be added, but we are only going to focus on error-checking in

this tutorial.

Download the source code

You may download all the files associated with this tutorial from here.

Tutorial requirements

● You must have beginner’s knowledge of React.js, and at least a beginner’s knowledge of

JavaScript. If you need to know the basics, check out the previous chapter.

● You will need to download the React library in order to use React on a server and go

beyond the testing phase. We show you how to get around this during testing.

● You will need to download a text editor of some sort. Notepad++ is popular on Windows,

and TextMate is popular on Mac machines. An editor that highlights code is preferable.

● In order to use React as part of a full website, it will need to be incorporated into a larger

application. When testing the basic code with external data files, you will need to use a

local or remote web server in order to get the page to work. MAMP is a good one for the

Mac, and WAMP is most the most common server used on Windows machines. For a

complete solution, a Node.js server is one of the most popular servers to use with React.

The React library download page (above) also includes a server and other options.

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook
https://html5hive.org/reactjs-form-validation-tutorial/
https://facebook.github.io/react/downloads.html
https://notepad-plus-plus.org/download/
https://macromates.com/download
https://www.mamp.info/downloads/
http://www.wampserver.com/
https://html5hive.org/complete-beginners-guide-to-node-js/

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

Getting started with the tutorial

There are all sorts of download options for React, but we’re just going to use React from a CDN.

React is available from more than one CDN, but here are the most popular links:

We are going to add a couple more JavaScript files to our index.html file:

The babel-core browser.min.js file allows us to use JSX, which will greatly simplify our code.

Please see the previous chapter for more on why React is better with JSX. Since this is a form,

we are also including jquery, which will make form submission much easier. We don’t actually

make much use of it in the code, other than an example submission function. Lastly, we include

the Classnames library, which is a teeny file that makes combining class names easier.

Finally, we call our example.js script, which is where all the action takes place. Just be sure to

put “text/babel” in your script type so you can make use of JSX in your code.

Now let’s dig into the code:

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

Setting up for form submission

The ReactDOM.render call at the bottom of the code is the first call that starts the app. We use

XML-style JSX to call the DonationBox component. This component doesn’t do much at the

moment, but provides a few examples of some of the additional things you can do with React

besides error-checking. For example, you could show new donations as they are made, polling

the server for new ones. I’ve also included some jquery ajax for an example of how the final

form submission can be handled.

The real action starts in the DonationForm component:

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

Creating abstract form elements

The DonationForm component is our largest component, because this is where all the other

form components are included, and where we do most of our form validation. Let’s take a look:

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

We save one piece of information (the contributor) for passing to the parent and saving on the

server, just as an example. The handleSubmit method shows how you would pass the variable

to the parent element when the form is submitted. What we want to focus on, though, is the

validation functions and component calls. I decided to include form elements in a rather

interesting way to show the power of React. The best examples can be seen in the calls to the

TextInput and Radios components.

As you can see, there are two calls to the TextInput component, but with different variables and

validation functions included in the attributes (available as props in the child components). We

do this because the text input is a reusable component. All you have to do is enter different

attributes depending on the results you would like to see. You could even add an attribute that

gives a different error message depending on whether the field contains a number or dollar

amount (we show an example of this on a different field).

Each TextInput component gets its own validation function, which can be accessed from the

component using this.props.validate(value). The component itself doesn’t care what type of

validation is going on. It simply calls validate, and the parent component takes care of which

validation function is being called.

I’ve also included a commonValidate function as an example of how you could do some basic

validation on all form fields. In this case, we use it with the second TextInput component and

return true, because we need the validate prop function to exist, but we don’t actually want to

validate the second field.

The Radios component is interesting because we are actually passing all of the possible values

through in a simple array. We also have an optional text field for adding user-generated text,

which has its own validation.

The rest of the components are specific to this donation form, but are separated into new

components in order to simplify the DownationForm component code. Let’s take a deeper look

at those now.

Creating input fields

One component that will be reused in every form field component is an error message. If we

want to validate fields as the user enters them, we need to be able to bring up an error message

as they are typing. So, let’s start with that:

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

This component is very small, but powerful. All we have to do when calling this component is

include an error message, and a boolean value that tells the component whether it should be

displayed or not. The css file (included in the download) will do the rest.

Now let’s take a look at all of our form field components:

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

The first one is our InputText component. This component includes some validation based on

the props sent from the parent. In this case, we show an error message when there are not

enough characters, but we show a different message when the field is empty. Both messages

were sent as props. All of this validation occurs while the user is typing. This could be annoying

for some fields, but it’s a great example of what is possible.

In addition to the local validation, we also call the parent validation function when the user

leaves the field (indicating they are finished with it). You could also do all validation in the

parent, or just do local validation. There are many options.

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

Next up is our Radios component. This component actually doesn’t have any validation unless

the optional “addAny” prop is set to true. In that case, an extra radio button is added which will

display an “anyValue” text field when selected. This text field gets its own validation function,

called through the props sent from the parent.

We also have to handle the appearing and disappearing act of the text field. When the “addAny”

radio button is clicked, the text field is displayed. When any other option is selected, it’s hidden.

We do this with an onClick attribute, but we have to use “bind” in order to send a variable to our

handler function. The variable tells the function whether to show or hide the text field.

The validation handler for the text field simply calls the parent validation field, and uses that

result to determine whether to show the InputError component.

You’ll notice that some of the code looks a bit wonky because there are keys for even the

<label> and
 tags. This is to prevent errors, because React requires a key for all fields.

Since we are sending all the values to the Radios component, we have to traverse a for loop of

values. JSX can’t just be placed raw into the for loop, so we push each row of JSX to an array.

When we do it this way, the keys aren’t automatically included, so we have to include them in

every single tag.

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

Now let’s take a look at a couple of custom form field components.

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

Payment validation is beyond the scope of this tutorial, but we’ve included a payment section

since donations need a way to donate money! Our Payment component also shows a common

example of how payments are accepted. There may be some sort of PayPal button, then an

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

option to fill in payment information directly. This is just a simple example of showing a new

section of information when a checkbox is clicked.

One thing that can be annoying about checkbox toggling is that it can get out of sync. In order to

prevent that, we take full control over it. When the credit card fields are toggled off, we ensure

that the checkbox is not checked. When they are on, the checkbox is checked.

In the Department component, we have included select options with sub-options, plus an option

to put any value. This is somewhat similar to what we’ve done in the previous examples of

showing and hiding other fields. The main reason it’s included here is to show how we handle

this action in every type of field that gives multiple options. It’s also a good example of how to do

sub-options.

One other thing to note about the select field is the multiple={false} attribute. That’s not required,

but it’s included here in order to show that it’s possible to have a select field that takes multiple

values. When the attribute is set to true, all of the options will be shown in a box rather than

appearing as a drop-down. The returning value is then an array.

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

Chapter 3: How to Submit Forms and Save Data

with React.js and Node.js

In the previous two chapters, I covered the basics of React.js and form error handling in

React.js. In each case, I used hard-coded data. React is a front-end library, providing no easy

way to save to, or read information from, a database or file. That is the part we will cover in this

chapter.

React is a user interface library, so it is common to use a different library or framework to do all

the back-end work. One of the most common pairings is React.js with Node.js. Lucky for us, we

already have a tutorial on the basics of Node easily accessible on HTML5 Hive!

The main React Facebook tutorial does something similar to what we will be doing with this

tutorial, and they also provide a Node server, as well as many other server examples within their

download files. Although our Node server will be similar, our front-end React interface will have

a few extra complications. In fact, I’ll be using the same files from Chapter 2, with a few updates

that will allow the saving and reading of information from a file or database.

Download the tutorial files

You can download all the files used in this tutorial from here.

Tutorial requirements

● You must have basic knowledge of React.js and JavaScript. For a beginner’s guide to

React, please see Chapter 1. In addition, I will be using many of the same functions from

Chapter 2, so you may want to read that one as well.

● You will need to use the React library, although we will be using CDN links to get around

that during testing.

● You will need to download a text editor of some sort. You can use just a plain text editor,

although Notepad++ is popular on Windows, and TextMate is popular on Mac machines.

An editor with code highlighting capability is preferable.

● You will need to read and follow the directions in most of Chapter 1 in order to create the

server that will be used later in this tutorial.

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook
https://html5hive.org/complete-beginners-guide-to-node-js/
https://facebook.github.io/react/docs/tutorial.html
https://html5hive.org/how-to-submit-forms-and-save-data-with-react-js-and-node-js/
https://facebook.github.io/react/downloads.html
https://notepad-plus-plus.org/download/
https://macromates.com/download

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

Making revisions to a React user interface

I will be using the same files I created for Chapter 2, with some simple revisions that will make it

possible to read and save data. The files with all the revisions are provided above. The index file

from the previous tutorial remains the same, but now we are going to be pulling data from a file,

then posting new form entries to the file.

The original file was set up with some of the code needed to post and read data, but some parts

were commented out, since we had no server to do the work. All we have to do is uncomment

those lines, and we have this:

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

So far, everything we have here is similar to Facebook’s Commenting tutorial. We save all the

data from the file in a DonationBox component state, then set an interval to pull new donations

from the server so the user can see new donations as they come in, in close to real time. On

each form submission, the data is pushed to the database (or in this case, the file). We include

JQuery in the index file in order to make the loading and submitting of data easier.

Let’s continue with the changes I’ve made to the form before discussing the server side.

Displaying new data from everyone

We now have a new listing that will display all new donations coming from all users.

Similar to the Facebook tutorial, we are mapping out all the data from the JSON file into a new

Donation component for each entry. We then display the entire donationNodes list. Let’s take a

look at the new Donation component:

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook
https://facebook.github.io/react/docs/tutorial.html
https://facebook.github.io/react/docs/tutorial.html

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

This is actually simpler than what we see in the Facebook tutorial, because we are expecting

comments by contributors to be in plain text. We are simply displaying the main donation

information, leaving out anything private. In fact, we are only saving the public information for

the purposes of this tutorial, but it’s easy enough to store all of the data in a database, then only

display the information that is public.

So far, our additions are very similar to what you can find in the Facebook tutorial, but our

original Donation app is nothing like that tutorial. This is where the changes become a little more

complicated.

Submitting form data

In the original donation app, we had some fairly complicated calls to other components that

allowed us to serve up multiple fields from a single component. Now that we have to think about

actually saving and displaying that data, we have to add a value attribute to the components

that will allow us to empty all the fields after submission, and we also have to save all the data in

a state.

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook
https://facebook.github.io/react/docs/tutorial.html

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

As you can see, we’ve added new states for each piece of data we plan on saving. The other

bits of data can always be added later, but we are just going to focus on the data that we want

to display. On submit, we send all the data to the parent component to do the actual saving to

the server. We then reset all the fields so they will appear empty after submission.

We also have a new method called setValue. Because we do not have form fields directly within

this component, we have to have a way to set the state as we go (using the onChange attribute

in each component call). Rather than create a new function for every form field, we use this

single function by taking the field as a variable, and using it to create a new object that can be

used to set the state for that field. The field name is included in the call to the component.

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

Each component call also has a new value attribute. This is what allows us to empty all the

fields when the form is submitted. I’ve have also added a new text field, with an option for

producing a textarea rather than a single line text field. This allows us to add a new comment

field for contributors who want to say something about why they’re donating. Now let’s take a

look at the few changes made to the form element components.

Emptying fields on form submission

There are no changes to the InputError component, but we do have a few small changes to the

other components which will allow us to empty all the fields after submission.

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

The TextInput component has the simplest change because all we have to do is set the value to

the props value sent to the component. We were already calling this.props.onChange from the

handleChange function for real-time error processing, and simply rearranged the error

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

processing a bit in the parent component so we can save the data. We still call the parent

validation method when the user leaves the field.

We do add one additional input field to handle the textarea option. When the text field is a

textarea, we have to use the textarea field. Otherwise, it’s a normal text field. There are no other

changes.

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

The only changes made to the Radios component have to do with the addition of the value

attribute. You may have noticed that the default and reset values sent to the Radios and

Department components are “undefined.” That’s because there’s always a possibility that one of

the radio or select options could be 0 or an empty string, but both components also contain an

“any value” text field. The only way to truly unset these radio and select fields, therefore, is to

set the value to undefined.

Properly setting the regular radio buttons is easy. We just select the radio button using the

selected attribute if it matches the value, as we iterate through each radio button:

Just because we are using the value property to empty the fields doesn’t mean that we don’t

have to set the current value. Remember that we are saving the state as the user makes

changes, but that state change causes the display to update, which means that we have to set

the value correctly even when the field is not empty. Otherwise, the fields would be set to empty

as soon as a user makes a change!

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

We then put the “undefined” setting to use when deciding whether to select the “other” option:

If the value is undefined, then we know not to select anything, because we are emptying all the

fields. If it’s not undefined, however, and the value does not match any of the other radio

buttons, then we know we have a custom value.

For the optional text field, we just need to set the value if it exists:

There are no changes to the Payment component, but we do have a small change to the

Department component (even though we aren’t actually saving the value):

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

Since this is a select field with an “any value” text field, we have to check for “undefined” again:

The Department component is a little bit different from the others, in that the options are simply

hard-coded. The only reason it’s a separate component is to simplify the code in the

DonationForm component. As such, the easiest way to set the correct value is to simply check

against the hard-coded values. This is similar to what we did in the Radios component, but with

hard-coded values. We then set the text field based on whether they’ve selected “other.”

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

Saving data to the server

Now we get to save the data and watch the changes happen! Our example hinges on the

installation of Node.js. Most of what needs to be done is covered in the beginner’s Node.js

tutorial. If you follow all the directions in that tutorial, within the folder for your project, you’ll wind

up with a package.json file. The only addition to that tutorial is to install body-parser along with

express. After installing express, you will need to run the same command, but with body-parser:

This will give you a package.json file similar to the one included with the files for this tutorial:

We use server.js for our example, since we are creating a server, although the file in the

Node.js tutorial is called script.js. You can use either name as long as the name in your package

file matches the name of your Node file.

From there, you would create your Node server in whatever way you see fit. The server can do

additional processing and error checking, and should include security measures as well. It can

also save information to a database, and read from a database. In our example file, we simply

save to, and read from, a file called donations.json. In fact, our server is so simple that it’s very

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook
https://html5hive.org/complete-beginners-guide-to-node-js/
https://html5hive.org/complete-beginners-guide-to-node-js/

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

similar to Facebook’s server.js file, included within their tutorial files. You can’t really make it

more simple than that!

If using the files with this tutorial, all you have to do is install Node.js (which includes npm), then

go to the same folder as the package.json file and run the following command on the command

line:

Once it’s installed, just run the following command:

But look at the following line in package.json:

This means that you can also start the server by running the following command:

The server will then start, and tell you right where you need to go in your browser:

http://localhost:3000/

Once you open that URL, you should see a list of donations, with the ability to add new

donations. In addition, if you add a field directly to the donations.json file, it will display on the

screen almost immediately!

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook
https://facebook.github.io/react/docs/tutorial.html
https://nodejs.org/en/download/
https://www.npmjs.com/

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

Chapter 4 Creating a Crossword Puzzle game

with React.JS

In this tutorial, I will show you how to create a crossword puzzle app, using React.js.

React is a high-performance, open-source, reactive Javascript UI library for client-side web

applications. At first, you may find working with React confusing, but I will try to make this

tutorial as simple as possible by taking it step by step.

Download the source code

You can download all the files associated with this tutorial here and here.

Tutorial requirements

● A good understanding of HTML, CSS and most importantly JavaScript.

● Download the React library or you can use the CDN.

● A text editor, Notepad++ or Sublime.

Intro to JSFiddle

JSFiddle allows us to test our code right inside the browser. Start by going to

facebook.github.io/react/ and click on the “Get Started” link, then click on “React JSFiddle” link

there. Click here to take you to the Hello World example done with React.

Looking at this simple Hello World example, you will notice two major pieces of the React

library. The first being the React.createClass function that is used to define components.

The component being defined here, is “Hello World” and is assigned a variable called Hello. To

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook
https://html5hive.org/creating-a-crossword-puzzle-game-with-react-js-part-1/
https://html5hive.org/creating-a-crossword-puzzle-game-with-react-js-part-2/
http://facebook.github.io/react/downloads.html
https://jsfiddle.net/reactjs/69z2wepo/

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

define the Hello World component, we provide a function called render, and within this render

function we return something that looks like HTML code with some kind of variable interpolation.

Further down, we see a call to another React function, ReactDOM.render, and within this call,

there is also HTML looking snippet with an element name that refers to the component that is

defined in the above React.createClass function, along with an attribute that matches the

interpolation within the render function.

The second argument of the ReactDOM.render function, document.body, tells React where

to render the Hello component.

Downloading React

Back on the React website, this time click on “Download React version number”, then the

“Download Starter Kit” link. This download link includes the React and some simple example

apps. The current version I am using is React 0.14.5.

In your text editor, we will create a skeleton of our Crossword Puzzle game, by starting with an

empty HTML page with some boilerplate. We also reference the React script, the first one is the

React library itself, including the ReactDOM and the second is the Babel CDN. You will notice

there is a div with an id of game, this is to be the container for our application. We also add the

Bootstrap CDN. Should you wish to download Bootstrap for yourself, have a look at my tutorial

on Bootstrap.

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook
https://html5hive.org/create-a-fully-functional-mobile-website-with-bootstrap/
https://html5hive.org/create-a-fully-functional-mobile-website-with-bootstrap/

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

We have just added the non-interactive part of the game.

Within the game div, we will define our very first React application. We’ll start with a new

ScriptBlock, with the type of text/babel named puzzle.js. This is where all our React

code for the crossword puzzle will reside.

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

Why Babel? Babel replaced JSX Transformer with the release of React 0.14.0. As the

JavaScript language evolved, the React creators believed that it was time to deprecate JSX and

start implementing the new features of Babel. So, what is Babel? It is a next generation

JavaScript compiler.

Defining Components

The top-level namespace for React is React with the uppercase R. New components are

defined by calling the createClass function. createClass function has one argument, which

is an object, and defines the new components and the minimum requirement for that object is

to define a render function. Within that render function, we return a single React component.

Here, we return some HTML, this is the JSX. In this case, we returning a div with some text.

Currently this div is where we will fill it with more content. To transform this JSX to JavaScript,

we use the Babel compiler to transform the HTML syntax into plain JavaScript.

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

Rendering Components

The above is the definition of the React component, now to render that component. The

rendering process is triggered to link the top-level component to an existing DOM node, and

populate that DOM node. Rendering is triggered via the ReactDOM.render function. Render

requires two arguments, the first being the JSX expression that defines the react component to

render, and the second argument is the existing DOM element to bond the component to.

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

So far, we have created and rendered our Puzzle component. The “Code to go in here” should

appear in your browser along with the Jumbotron header and credits.

Populating Props

Props, or properties, are the constant immutable model values that React component uses to

render. They are supplied as XML attributes within the JSX syntax.

Looking at that Hello World program in JSFiddle, let’s change it to the following:

Here, we have passed a string representing the current date to the Hello component as a

property called today. The today attribute is a JavaScript expression, therefore it is enclosed in

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

curly braces. The value assigned to num attribute is a string literal, so it is enclosed in double

quotes.

this.props.today and this.props.num are used to access the today and the num value

as a property on the props object.

When you click on Update on JSFiddle to save the changes you made, then click Run to run the

code you edited, the output should be something like this:

One more thing to remember, JSX (prior to version 0.14.0) did not own a white space, so to get

a space between the today prop and the num prop, another JSX expression containing a string

literal with a space was added, like this.

Because <h1> is a block-level element, you would not have noticed the white space. The

example in Figure 9 shows the num attribute moved inside the <h1> element to demonstrate

the purpose of the empty string literal.

However, since we are using Babel and not JSX Transformer, this white space is not a problem.

You can easily implement that line of code like so:

So far, we have understood how to define components, render the components to be viewed on

the browser, and populating properties.

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

Before we continue, let’s add some data as JSON. I’ll create a JavaScript object called data and

this is to be an array.

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

Populating Properties in the Game

We will change our code to make Game the top-level component. This component will also

render the JSON data. Also, added Bootstrap for mobile view.

You will notice there is what looks like an HTML element named Clues, but it is just a React

component we will be creating next.

In the statements variable, you will notice map, which takes each item from the data array,

performs transformation and returns a new array containing the transformed elements. Here, we

rendered the statements dynamically and returned it. Here, we finally render the population of

the props.

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

Once we have this props, we are ready to complete the layout of the crossword. This is a very

basic layout in table form.

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

I used input boxes for the letters. These input boxes has a maximum length of 1, to allow only

one letter. For the other cells, I added a style to change the background color black.

Finally, those input textboxes will not work unless you handle those changes. You will notice

that in each input box, there is a ref attribute. Refs provide a way to get reference to owned

components. In the above Puzzle class, we added refs to each input element, so we can access

that component instantly via this.refs in the following code.

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

The findDOMNode is an escape hatch used to access the underlying DOM node from the

React component instance. Here, each input component is accessed via its ref and then the

findDOMNode method is used to get the underlying DOM node, which is a text input. This

allows us to type in the textbox, causing a change in its value.

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

So, we have added components, populated props, add refs to our input components, and

accessed those refs with findDOMNode method. We have completed a visual of the crossword

puzzle.

Composing Components

The ability to nest components within other components is a very important feature of React.

Because components should be completely self-contained, any component can be nested

inside any other component.

In our game, we have composed quite a few components. In Game class, we composed the

Clues component and in Clues class, we composed the Output component.

We used map, which takes each item of an array, performs some transformation on it, and

returns a new array containing the transformed elements. Testing on JSFiddle, we see that we

can get a particular value from an array using the props command.

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

While this works for single array value, we are hard-coding the Game component. To handle

more than just a set number of clues, we need to change that by mapping each clue to a new

Clues component with its content attribute correctly set to the clue value.

So, our code can be one component shorter.

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

Events

React has a simple, consistent, normalized event system. Just as React has its own DOM

abstract, it also has its own event abstraction. This is used to normalize the event behavior, as

React makes events behave the same across all supported browsers. React also creates a

uniform event system for DOM event objects, replacing them with a wrapper called

SyntheticEvent.

DOM events are the events generated by the browser, things like button click events, changing

of text inputs, and form submission events. DOM events are the events that receive a React

SyntheticEvent object, which is a normalized event object across all browsers.

Let’s try to handle an input change event in JSFiddle. This example, has an input text box and

what the user types will be echoed into a label. Much like the behavior in AngularJS.

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

We initialized the variable value to an empty string. We included an input textbox which has an

onChange attribute as well as a label component that outputs what you typed in the textbox as

you type it in. The onChange event handler, named handleChange, merely sets the state of the

value object.

In the puzzle game, I’ve removed the handleChange event handler I’ve had in the input in the

first part of this tutorial, and instead, added a Button which has a clickHandler event.

In the clickHandler function, I created some variables to extract the letters from the answer in

data.

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

Forms

React has some very basic form support built-in, which includes binding values to the form,

binding values back out of the form and accessing individual form elements. In this Puzzle

game, each white box has an input element within them. The input boxes are there for the input

of a character for the crossword.

You will notice there is no value attribute for each <input>. If the <input> element has value,

then it would have been a controlled component. We are not required to have a controlled

component, in this instance.

Let’s take a simple forms input example to test on JSFiddle.

As you type a character, anywhere in the input box, you will notice that the changed value is

being written to the console. To view the changes in the console, open your Developer Tools in

Chrome or Web Console in Firefox.

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

However, this immediately triggers a re-render for the component which resets the value. From

the user’s point of view, they are typing, but nothing is happening. The secret to making this

work is to populate the input boxes value from the owning component’s state. This is consistent

with the React component design guidance because the value of the input box can change,

therefore, it is state.

To allow the user to change the content of the input box we need to update the onChange

handle to modify the state. We also initialize the value in a getInitialState function.

Since we will be rendering our components without a value, this is referred to as uncontrolled

components. Using uncontrolled components tells React to exempt the value of the control

from the usual rendering process. We can still handle the onChange event to detect changes to

the input, however. If you still want to initialize the component with a non-empty value, you can

supply a defaultValue prop, which gives the input box a starting value.

Now to complete the onClick event handler.

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

Finally, we check that the letter the user types in is the correct answer to the clues.

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

This book is brought to you by Zenva - Enroll in our Full-Stack Web Development Mini-Degree to go from

zero to Full-Stack engineer.

© Zenva Pty Ltd 2018. All rights reserved

I just demonstrated a basic way of creating a crossword puzzle with React. There is more that

can be done here, like adding dynamic styles if a word is wrong. What else can you do to

improve on this crossword puzzle game?

https://academy.zenva.com/product/full-stack-web-development-mini-degree/?zva_src=html5hive-react-ebook

