

CODEMANSHIP | TDD |2

This edition first published in 2016

Codemanship Limited

www.codemanship.com

All rights reserved

© Jason Gorman, 2016

The right of Jason Gorman to be identified as the author of this work has
been asserted in accordance with Section 77 of the Copyright, Designs
and Patents Act 1988. No part of this publication may be copied,
reproduced, stored in a retrieval system, or transmitted, in any form or
by any means without the prior permission of the publisher, nor be
otherwise circulated in any form of binding or cover other than that in
which it is published and without a similar condition being imposed on
the subsequent purchaser.

Printed in Great Britain

CODEMANSHIP | TDD |3

ABOUT THE AUTHOR

Jason Gorman is a software
developer, trainer and coach based in
London. A TDD practitioner since
before it had a name, he’s helped
thousands of developers to learn this
essential discipline through his
company Codemanship. He’s the
founder of the original international
Software Craftsmanship 20xxx
conference, an activist for software

developer apprenticeships, a patron of the Bletchley Park Trust, a
one-time-only West End producer, a failed physicist, and a keen
amateur musician. His twelve fans know him as Apes With Hobbies.

You can follow him on Twitter (@jasongorman), or email
jason.gorman@codemanship.com

ABOUT CODEMANSHIP

Founded in 2009, Codemanship
provides training, coaching and
consulting in the practical software
disciplines that enable organisations
to sustain the pace of digital
innovation. Based in London,
Codemanship has trained and guided

teams in TDD, refactoring, software design, Continuous Integration
and Continuous Delivery, and Agile Software Development for a
wide range of clients including the BBC, UBS, Waters plc, Ordnance
Survey, salesforce.com, Electronic Arts, John Lewis, Redgate and
Sky.

You can find out more about Codemanship training and coaching at
www.codemanship.com

CODEMANSHIP | TDD |4

REVIEWERS

Will Price

Mark Withall

Phil Proom

Jon Barber

Erik De Bonte

Antony Gorman

Ilya Agoshkov

François Renaud-Philippon

CODEMANSHIP | TDD |5

CONTENTS

1. Before We Begin .. 9

2. Why Do TDD? ..11

Building the Right Thing ...11

Keeping the Design Simple ..12

Producing Code That’s Easy To Change12

Making Sure the Software Always Works13

Sustaining the Pace of Development13

Reliability vs. Productivity ..13

3. What is TDD? ...17

4. How To TDD ..18

5. The Golden Rule ..29

Test-Driven Design vs. Design-Driven Testing31

6. Start With the Question ...33

7. Test Your Tests ..37

Fluent Assertions ...40

8. One Reason To Fail ..43

9. Tests Should Be Self-Explanatory ...46

10. Speaking the Customer’s Language51

11. Triangulating ...55

Triangulation Patterns ...61

Obvious Implementations & TDD “Gears”62

12. Refactoring ...64

13. Design Principles ...81

Simple Design ..81

CODEMANSHIP | TDD |6

Tell, Don’t Ask ... 83

Single Responsibility .. 87

Swappability & Dependency Injection 91

Client-Specific Interfaces ... 93

Polymorphism & Contract Testing 97

14. Test Doubles ... 102

Stubs ... 103

Mock Objects .. 107

Dummies ... 111

Whose Interface Is It Anyway?... 113

Mocks vs. Stubs vs. Dummies .. 114

15. Test-Driving Integration Code .. 117

16. TDD With The Customer .. 125

Specification By Example ... 126

User Stories – Placeholders For Conversations 128

Test Completeness & Test Scope 130

The Tests We Didn’t Think Of .. 131

Definition of “Done” .. 131

Getting To “Done” In Vertical Slices 132

Executable Specifications .. 134

The Customer Cannot Be Replaced 137

17. Driving Design From Customer Tests 140

Start With a Failing Customer Test 141

Identify The Work.. 142

Identify The Knowledge Needed To Do The Work 142

Name The Worker ... 142

CODEMANSHIP | TDD |7

Test-driving Adding A Title To The Library143

Test-driving Adding A Default Loan Copy To The Title147

Test-driving Reward Points ..149

Test-driving Email Alerts ..152

The “London School” of TDD ...160

Making Customer Tests Run Faster162

Are We “Done” yet? ..163

18. The Testing Pyramid ..165

19. TDD & Continuous Integration170

Before We Commit: Update/Merge & Test Locally.............171

After We Commit: Wait For The TestS To Pass On A Build Server
..172

Making Builds Fast ...174

TDD & Continuous Delivery ...176

Feature Branching & Feature Toggles177

20. TDD & Legacy Code ...179

What Makes Code “Legacy”? ...180

Start By Identifying The Change Point(s)181

Next, Identify Inflection Points ..182

Introduce Tests. Any Kind Of Tests.183

Break The External Dependencies184

The “Boy Scout” Rule ...190

21. Beyond Test-Driven Development192

Data-driven & Property-Based Tests192

Critical Code ..195

Mutation Testing ...196

Test-Driving The “Untestable” ...199

CODEMANSHIP | TDD |8

Non-Functional TDD .. 202

Clean Code & Continuous Inspection 205

22. Mastering TDD .. 213

Building Habits .. 214

Make TDD Your Default Behaviour 215

Under The Radar ... 216

Under-promise, Over-deliver ... 216

It’s Easier To Apologise Than Get Permission 217

Practice, Practice, Practice! ... 218

CODEMANSHIP | TDD |9

1. BEFORE WE BEGIN

Summary:

1. To learn TDD, you must do TDD
2. You can tackle the exercises in any OO language
3. You will need:

a. A unit testing tool, based on the xUnit pattern, that
supports parameterized tests

b. Automated refactoring menu in your code editor
c. Mock objects framework
d. Pencil & paper

TDD is a practical discipline, like riding a bicycle or playing the
piano. To learn it, you must do it.

The focus of this book will be on doing TDD, and for that reason you
will only get the best from it if you try the exercises.

I’ve tried as much as possible to keep the technology choices open;
you can tackle the exercises in any object oriented programming
language you like.

But, whether you do them in Java (like I am), or C#, or Ruby, or
Python, or C++, you will need a number of things to get started:

 A unit testing tool for that language

 Ideally, a menu of automated refactorings in your code
editor that will do the donkey work of refactoring for you

 A framework for creating “mock objects” that can be used
in some of your tests

 Pencil and paper

All of these things are freely available for most programming
languages.

CODEMANSHIP | TDD |10

The xUnit unit testing framework design pattern (invented by Kent
Beck and others) has been implemented in pretty much every OO
language – JUnit for Java, NUnit for .NET, RUnit for Ruby, etc.

Pick the one you’re most comfortable with. With one proviso: make
sure you pick one that enables you to write parameterized tests. As
you’ll see, they are used extensively by experienced TDD-ers.

Automated refactorings vary from editor to editor and language to
language. You will find that dynamically typed languages suffer a
disadvantage, as there is usually type information missing about
methods and method calls that a tool would need for some
refactorings. Java, Smalltalk and C# have excellent automated
refactoring support. JavaScript arguably has the worst. If you’re
working in a scripting language like JS, expect to have to do some
refactoring by hand.

Mock object frameworks, again, vary in quality. But, in this book,
we will use them in quite specific ways that pretty much all of them
can handle.

Finally, have a pencil and paper handy. Always. Throughout the
book, we’ll see situations where we might want to note things
down, or make a list of tests, or sketch a simple design. Not all our
thinking gets done in code.

CODEMANSHIP | TDD |11

2. WHY DO TDD?

Summary:

 TDD helps us to build the right software

 TDD helps to avoid building features we don’t need, and
making the design too complicated

 Refactoring is a key part of TDD. It helps us to keep code
easy to change

 The short cycles of TDD, together with fast-running
automated tests, help us to keep our software always
working

 TDD helps us to deliver working software sooner, and for
longer

Popularised in the late 1990s by Kent Beck, Test-Driven
Development (“TDD”) combines practices that the best
programmers have used since the 1950s.

Done well, it helps us to address some key problems in the way we
write software:

 Building the right thing

 Keeping the design simple

 Producing code that’s easy to change

 Making sure the software always works

 Sustaining the pace of development

BUILDING THE RIGHT THING

Imagine we’re designing a new kitchen. We could make a list of all
the things we think the kitchen needs: a cooker, a sink, a
refrigerator, a toaster, a kettle, cupboards, and so on.

CODEMANSHIP | TDD |12

What happens when we approach design as a “shopping list” of
features is that, after it’s built, we discover we left stuff out that we
needed. For example, we might want to make fresh pasta, but
didn’t put a pasta machine on our list.

To avoid finding out too late that our shopping list of features is
wrong, we start instead by considering examples of how the kitchen
will be used, and figure out what features it needs to do that.

TDD works this way. We use tests as specifications for what we
want to do using the software.

KEEPING THE DESIGN SIMPLE

Along with the risk of leaving important features out of our design,
there’s also the risk of including features that aren’t needed at all.

In software (as well as kitchens), unneeded features and
unnecessary complexity add costs, both initial and ongoing.

TDD encourages us to write the simplest code possible to pass our
tests. If the test doesn’t specifically ask for it, you ain’t gonna’ need
it.

PRODUCING CODE THAT’S EASY TO CHANGE

Seven decades of computer programming history has taught that
us that our code will almost certainly need to change.

If code is difficult to understand, complicated, full of duplication,
and too interconnected, then it will be expensive to change.

TDD explicitly includes a discipline called refactoring that helps us
to keep our code as easy to change as possible.

After we write the code to pass each test, we stop to refactor the
code to make it simpler and easier to understand, to eliminate
duplication, and to manage the dependencies in the code to
localise the impact of changes.

CODEMANSHIP | TDD |13

MAKING SURE THE SOFTWARE ALWAYS WORKS

Software that doesn’t work has no value. While we’re editing the
code, the code isn’t working.

TDD breaks development down into small cycles. These micro-
iterations typically last just a few minutes, at the end of which we
have tested, working code that could be shipped if necessary.

We automate the tests so they can be run quickly. This way, after
each small change, we can re-test the software to make sure it still
works.

SUSTAINING THE PACE OF DEVELOPMENT

Keeping the code always working means we can deliver working
software sooner.

And TDD also helps us sustain the pace of development for longer.

Adding new features to new software is easy, and our initial
productivity is high.

But as the code grows, it becomes harder and harder to change it
without breaking it.

The rising cost of change hinders teams trying to respond to the
changing needs of end users. The software becomes a liability
instead of a benefit.

TDD tackles the factors that make code harder to change head-on.

RELIABILITY VS. PRODUCTIVITY

Too many developers have an unrealistic view of the relationship
between the quality of their software and the time and cost of
creating it. The received wisdom is that more reliable software
takes longer to write.

CODEMANSHIP | TDD |14

A mountain of good industry data, however, paints a different
picture. Far from costing more, in the vast majority of cases
improving the reliability of our code would actually end up costing
us less.

The counterintuitive causal mechanism for this strange effect has
been known for several decades. The later we discover them, the
more bugs cost to fix. A bug discovered by users in production can
cost 100x more to fix than if it had been caught as soon as the
programmer made the error.

The difference in cost of fixing bugs at later stages in development
can be so large that, by taking more care to catch them sooner, we
can actually end up going faster.

This is a strategy called defect prevention, and it has been hugely
successful at not only helping teams to improve the reliability of
their code, but also to save time and money delivering working
software. It’s a win-win.

The net result is that better software usually costs less to create.

requirements design coding testing release

cost of bug fix

CODEMANSHIP | TDD |15

TDD can help get us into a “sweet spot” of the most reliable code
at the lowest cost in four ways:

 Agreeing executable tests catches many requirements
misunderstandings before we’ve written any code. These
requirements “bugs” can cost hundreds of times more to
fix in user testing or production

 TDD breaks coding down into “baby steps”, bringing more
focus to every line of code we write and highlighting more
errors that we might have missed taking bigger bites

 TDD encourages us to keep our code simple, and simpler
code is less likely to be wrong

 The automated tests TDD creates enable us to check for
new bugs we might have introduced immediately after
making a change

Studies done of teams adopting TDD have convincingly shown that,
on average, test-driven code is much more reliable, but doesn’t
cost any more – and in many cases, costs less – to deliver working
software.

cost

reliability

most reliable
software at
lowest cost

99% of
teams are
here

CODEMANSHIP | TDD |16

TDD is arguably the first defect prevention technique to have
gained widespread adoption.

CODEMANSHIP | TDD |17

3. WHAT IS TDD?

In essence, TDD is an iterative process that involves three steps:

The tests can be at any level of abstraction. They can be system
tests, or component/service tests, or tests for individual classes.

Some developers use a traffic light analogy to remember the steps.

Each new failing test specifies something we want the software to
do that it currently doesn’t. (That’s why it’s failing.)

We flesh out our design one failing test at a time, adding just
enough implementation to pass each new test, and keeping the
code as easy to change as possible by refactoring.

Write a
failing test

Write the
simplest

code to pass
the test

Refactor to
make the
next test

easier

“Red light”

“Green light”

CODEMANSHIP | TDD |18

4. HOW TO TDD

Summary:

 Start with the simplest failing test you can think of

 Write the simplest code you can think of to pass the test
quickly

 If no need to refactor, move on to the next failing test

 Refactor your test code, too!

 Parameterized tests are a useful way to consolidate similar
test methods

 Leave in duplication when it makes tests easier to
understand

 Aim for one test method for each distinct rule. Use the test
name to clearly convey the rule

 Tests should read like a specification

 Localise dependencies on the objects under test

 In TDD, we’re done when we can’t think of any more tests
that should fail

 TDD is a process of design discovery

 Tests make changes safer and easier

The best way to explain how to test-drive a software design is with
a simple example.

We’re going to create some code that will calculate numbers in the
Fibonacci sequence.

The Fibonacci sequence starts with zero and one, and then all
subsequent numbers are the sum of the previous two.

i.e. 0, 1, 0+1=1, 1+1=2, 2+1=3, 5, 8, 13, 21 etc

CODEMANSHIP | TDD |19

FAILING TEST #1

We’ll start by writing a failing test. (I’m doing it in Java, with the
Junit testing framework.)

Try to think of the simplest test you could start with – the one that
would be easiest to pass.

public class FibonacciTests {

 @Test

 public void firstNumberInSequenceIsZero() {

 assertEquals(0, new Fibonacci().getNumber(0));

 }

}

Let’s write the simplest code that will pass the test:

public class Fibonacci {

 public int getNumber(int index) {

 return 0;

 }

}

Next, let’s look at the code and see if we need to refactor it to make
the next test easier.

At this point, it’s hard to see how we could make this code easier
to change.

So let’s move on to the next failing test.

CODEMANSHIP | TDD |20

FAILING TEST #2

public class FibonacciTests {

 @Test

 public void firstNumberInSequenceIsZero() {

 assertEquals(0, new Fibonacci().getNumber(0));

 }

 @Test
 public void secondNumberInSequenceIsOne() {

 assertEquals(1, new Fibonacci().getNumber(1));

 }

}

Again, we write the simplest code that will pass both of these tests.

public class Fibonacci {

 public int getNumber(int index) {

 return index;

 }

}

Now that we’re back on a green light, it’s time to think about
refactoring again.

The implementation code looks okay, but there’s some very
obvious duplication in the test code. (Remember: test code needs
to be easy to change, too!)

The most direct way we could eliminate this duplication would be
to turn these two very similar test methods into a single
parameterized test covering both cases.

The built-in mechanism in JUnit for writing parameterized tests is a
bit clunky, so I’m going to use JUnitParams
(github.com/Pragmatists/JUnitParams) to make life easier.

CODEMANSHIP | TDD |21

@RunWith(JUnitParamsRunner.class)
public class FibonacciTests {

 @Test
 @Parameters({"0,0","1,1"})
 public void firstTwoNumbersAreSameAsIndex(int index,

int expected) {
 assertEquals(expected,

new Fibonacci().getNumber(index));
 }

}

Now, for another failing test.

FAILING TEST #3

@RunWith(JUnitParamsRunner.class)
public class FibonacciTests {

 @Test
 @Parameters({"0,0","1,1"})
 public void firstTwoNumbersAreSameAsIndex(int index,

int expected) {
 assertEquals(expected,

new Fibonacci().getNumber(index));
 }

 @Test
 public void thirdNumberInSequenceIsOne(){
 assertEquals(1, new Fibonacci().getNumber(2));
 }

}

And then the simplest code to pass all three tests:

CODEMANSHIP | TDD |22

public class Fibonacci {

 public int getNumber(int index) {

 if(index < 2)

 return index;

 return 1;

 }

}

Notice the branch in our implementation code. There are two
distinct rules (or patterns) in our solution: one for the first two
numbers, and another for the rest.

If our tests are to serve as specification, it helps enormously if the
rules are obvious from reading the test code.

So, even though there’s some obvious duplication of test code, in
this instance readability is more important.

For this reason, I choose not to add this third test case to the
parameterized test for the first two Fibonacci numbers.

This way, we end up with a test method for each rule, and we can
use the names of those test methods to clearly communicate the
rules.

But there’s another bit of duplication in the test code we should get
rid of.

Both tests know how to instantiate a Fibonacci object and invoke
the getNumber() method. If the interface of Fibonacci changes,
we’ll need to change multiple tests. Let’s refactor the test code to
put that knowledge in one place.

CODEMANSHIP | TDD |23

@RunWith(JUnitParamsRunner.class)

public class FibonacciTests {

 @Test

 @Parameters({"0,0","1,1"})

 public void firstTwoNumbersAreSameAsIndex(int index,

int expected) {

 assertEquals(expected, getFibonacciNumber(index));

 }

 @Test
 public void thirdNumberInSequenceIsOne(){

 assertEquals(1, getFibonacciNumber(2));

 }

 private int getFibonacciNumber(int index) {

 return new Fibonacci().getNumber(index);

 }

}

We find it’s generally a good idea to limit the knowledge our test
code has of the interfaces of the objects being tested.

Let’s move on to another failing test.

FAILING TEST #4

@Test
public void fourthNumberInSequenceIsTwo(){

 assertEquals(2, getFibonacciNumber(3));

}

To pass this test, the simplest solution I could think of is:

public class Fibonacci {

 public int getNumber(int index) {

 if(index < 2)

 return index;

 return index - 1;

 }

}

We discovered one rule for the first two numbers, and a second
rule for the next two.

CODEMANSHIP | TDD |24

Let’s refactor the test code to reflect that, with another
parameterized test.

@Test

@Parameters({"2,1", "3,2"})

public void thirdNumberOnIsIndexMinusOne(int index,

int expected){

 assertEquals(expected, getFibonacciNumber(index));

}

But we’re not done yet. How do we know that? We know because
we can think of more failing test cases.

FAILING TEST #5

The sixth Fibonacci number has an index of 5 and a value of 5.

@Test
public void sixthNumberIsFive() {
 assertEquals(5, getFibonacciNumber(5));
}

To pass this test, the simplest change we can make to the
implementation is:

public class Fibonacci {

 public int getNumber(int index) {

 if(index < 2)

 return index;

 return getNumber(index - 1) + getNumber(index - 2);

 }

}

The fifth number obeys the same rule as the third and fourth, so
that extra test is duplication that doesn’t make the specification
any easier to understand. Let’s merge it into the parameterized test
for third and fourth, and rename the test method to more
accurately describe the rule.

CODEMANSHIP | TDD |25

@RunWith(JUnitParamsRunner.class)
public class FibonacciTests {

 @Test
 @Parameters({"0,0","1,1"})
 public void firstTwoNumbersAreSameAsIndex(

int index,
int expected) {

 assertEquals(expected, getFibonacciNumber(index));
 }

 @Test
 @Parameters({"2,1", "3,2", "5,5"})
 public void thirdNumberOnIsSumOfPreviousTwo(int index,

int expected){
 assertEquals(expected, getFibonacciNumber(index));
 }

 private int getFibonacciNumber(int index) {
 return new Fibonacci().getNumber(index);
 }

}

To finish up, let’s see if we can think of any more failing test cases.

FAILING TEST #6

What would happen if we asked for the -1th Fibonacci number?
We’d expect that to fail, because there is no -1th number.

@Test(expected=IllegalArgumentException.class)

public void indexMustBePositiveInteger() {

 getFibonacciNumber(-1);

}

To pass this test, we just need to check the parameter value
satisfies the rule, and throw the specified exception if it doesn’t.

CODEMANSHIP | TDD |26

public class Fibonacci {

 public int getNumber(int index) {

 if(index < 0)

 throw new IllegalArgumentException();

 if(index < 2)

 return index;

 return getNumber(index - 1) + getNumber(index - 2);

 }

}

Our tests now read like a specification for our Fibonacci calculator.
Just by looking at the names of the test methods, we can see there
are three distinct rules, and the names clearly convey what those
rules are.

We discovered this design by working through a sequence of
examples – failing tests – and doing the simplest things we could
think of to pass them.

The end result is a working Fibonacci calculator, with a suite of fast-
running automated tests that will help us if we need to change the
calculator later.

WHY GO TO ALL THE TROUBLE?

Now, imagine we deliver this code to our end users, who complain
that it’s too slow on higher indexes.

This is because our algorithm is recursive, recalculating the same
numbers many times.

We decide to replace it with an iterative solution that remembers
and reuses numbers once they’ve been calculated.

CODEMANSHIP | TDD |27

public class Fibonacci {

 public int getNumber(int index) {

 if(index < 0)

 throw new IllegalArgumentException();

 int[] sequence = new int[index+1];

 for (int i = 0; i < sequence.length; i++) {

 if(i < 2){

 sequence[i] = i;
 }else{

 sequence[i] = sequence[i - 1] + sequence[i-2];

 }

 }

 return sequence[index];

 }

}

It’s much safer to make this change because we have a good set of
automated tests that will alert us straight away if we break the
software.

This is a very important thing to remember about TDD: it may seem
like overkill to take such baby steps and write so many tests for such
a simple problem. But we’ve learned that by far the greater cost in
software development is the cost of changing code later, and for
the extra up-front investment of TDD, we get a potentially much
larger pay-off.

CODEMANSHIP | TDD |28

EXERCISE #1

a. Test-drive some code that will generate a list of prime
numbers that are less than 1,000

b. Test-drive some code that will convert integers from 1 to
4,000 into Roman Numerals

EXERCISE #2

Test-drive some code that will calculate the total net value of items
in a shopping cart represented as a list of unit price and quantity –
e.g., {{10.0, 5}, {25.5, 2}}, with the following discounts applied:

1. If total gross value > £100, apply a 5% discount
2. If total gross value > £200, apply a 10% discount

CODEMANSHIP | TDD |29

5. THE GOLDEN RULE

Summary:

 Don’t write source code until a test requires it

 Reference new classes, methods, variables etc in your test
first, so the code won’t compile, and then fix it by declaring
them

 Aim to have just one thing broken at a time if possible

As the name implies, Test-Driven Development drives software
design directly from tests.

In practice, what this means is:

We do not write any source code until we have a failing test that
requires it

So, when we’re test-driving a class, we don’t declare the class and
then start writing tests for it. We start by writing a test, and only
declare the class when the test needs us to.

CODEMANSHIP | TDD |30

As I tackle the shopping basket exercise, I start by writing a failing
test that uses the ShoppingBasket class I intend to create.

My editor flags up that there’s no such class, and prompts me to
create one.

Until I do that, the code won’t compile. It’s a broken test. The
Golden Rule gives me permission to fix it so I can move on. In TDD,
a broken test is a failing test.

Next, I write code that passes a variable called items into the – as
yet non-existent - constructor of ShoppingBasket. Again, Eclipse
tells me there’s no such variable, and prompts me to fix it by
declaring one.

CODEMANSHIP | TDD |31

Moving on, we create the constructor. And keep going in this
fashion, only declaring source code when the test requires it.

Of course, we could write the entire test, and then declare
everything it needs. But in TDD, we favour the shortest feedback
cycles, and so prefer to have one thing broken at a time if possible.

TEST-DRIVEN DESIGN VS. DESIGN-DRIVEN TESTING

A classic mistake programmers new to TDD make is to write failing
tests that assert a design they have in mind, rather than a behaviour
or a rule they want the software to handle.

For example, some people will write a test for a class they want to
declare:

 @Test

 public void forecastIsNotNull() {

 WeatherForecast forecast = new WeatherForecast();

 assertNotNull(forecast);

 }

In a literal interpretation of the Golden Rule, this gives them
permission to declare the class WeatherForecast. But, as we’ll see
in their next test, it’s redundant.

@Test
public void forecastForTodayIsAverageOfPreviousTwo(){
 double[] previousDays = new double[]{17, 18};
 assertEquals(17.5,
 new WeatherForecast(previousDays).forecast());
}

If WeatherForecast doesn’t exist, this second test won’t even
compile. Most importantly, we only need to declare the class so
that we can test the result of forecast().

Be wary of writing tests like this, or that test getters, or other
aspects of the implementation’s structure. Chances are, you’re
doing what some of us call “design-driven testing”, and not “test-
driven design”.

CODEMANSHIP | TDD |32

Focus your failing tests on the results of desired behaviour, and
details like this will fall out naturally as we work our way to a
solution.

EXERCISE #3

Repeat exercises #1 and #2, applying the Golden Rule

CODEMANSHIP | TDD |33

6. START WITH THE QUESTION

Summary:

 Write the test assertion first and work backwards to the
set-up

 Tests have 3 components – set-up, action & assertions

 Starting with the assertion helps us to discover what set-up
we need

Functional tests have three components:

 The set-up: arranges objects and test data for the test

 The action: invokes the method or function being tested

 The assertion(s): asks the questions that will tell us if the
action worked

Intuitively, we tend to write test code in that order. But that can
lead us into difficulties.

How do we know what set-up we need for the test? It’s not
uncommon, when we write tests in the Arrange->Act->Assert
order, to get to the assertion and realise we’ve written the wrong
set-up for the question we want to ask.

The test is all about the question, so in TDD we recommend you
start there and work backwards to the set-up you need to ask it.

This may take some getting used to, but – with practice – you’ll start
to feel comfortable doing it this way.

Let’s look at an example to illustrate how to work backwards from
assertions.

In this example, we’re test-driving some code to combine 2 1-
dimensional arrays into a single 2D array.

We start by writing the assertion:

CODEMANSHIP | TDD |34

Notice that our assertion references three local variables that
haven’t been declared yet. By writing the assertion first, we’ve
discovered what set-up our test will need.

Now, let’s work backwards to create the set-up.

My editor prompts me to create a local variable called combiner,
which I declare as type ArrayCombiner.

I’m then prompted to create that class.

CODEMANSHIP | TDD |35

In a similar fashion, I work my way backwards to declaring local
variables called array1 and array2.

Then I’m prompted to declare the combine() method, which is the
action we’re testing.

Next, I’m asked to instantiate the variables in our test set-up.

Once combiner, array1 and array2 have been initialised in the
correct state for our test, we have the complete set-up.

CODEMANSHIP | TDD |36

public class ArrayCombinerTests {

 @Test
 public void twoEmptyArraysCombineToAnEmpty2DArray(){
 ArrayCombiner combiner = new ArrayCombiner();
 int[] array1 = new int[]{};
 int[] array2 = new int[]{};
 assertArrayEquals(new int[][]{},
 combiner.combine(array1, array2));
 }
}

EXERCISE #4

Writing the assertions first and working backwards to the set-up,
test-drive some code to calculate how much water will be needed
to fill the following:

1. A cube
2. A cylinder
3. A pyramid

CODEMANSHIP | TDD |37

7. TEST YOUR TESTS

Summary:

 See the test assertion fail, so you know that if the result is
wrong, the test will catch that

 Implement just enough to see the assertion fail

 Test names should clearly convey what’s supposed to
happen, to help developers fix it when a test fails

 How we write assertions can make a difference to how
helpful test failure messages are in identifying the cause

 Expected exceptions and mock object expectations are
kinds of assertions

In order for our automated tests to give us good assurance that the
code’s working, they need to be good tests.

It’s important to check that, if the result we get is wrong, the test
will fail.

For this reason, it’s highly recommended that – before you write
the code to pass the test – you see the test fail for the right reason.

public class VideoLibraryTests {

 @Test
 public void donatedTitleIsAddedToTheLibrary() {

 VideoTitle title = new VideoTitle();

 VideoLibrary library = new VideoLibrary();

 library.donate(title);

 assertTrue(library.getTitles().contains(title));

 }

}

When I run this test for donating a video title to a community
library, I get the result:

CODEMANSHIP | TDD |38

This is because, at the moment, VideoLibrary.getTitles() returns null
(because I haven’t written that code yet).

The test assertion hasn’t been evaluated. It didn’t get that far
because of the unhandled NullPointerException.

To have confidence in this test, what I need to know is if the
assertion will fail when the donated title isn’t added to that
collection. So I must add just enough implementation to see that
happen.

CODEMANSHIP | TDD |39

public class VideoLibrary {

 public List<VideoTitle> getTitles() {

 return new ArrayList<VideoTitle>();

 }

 public void donate(VideoTitle title) {

 }

}

Now we can see that the test does indeed fail if the donated title
isn’t in added to the library.

SIDENOTE

Assertions don’t just come in the assert…() variety. Expected exceptions, and mock
object expectations (which we’ll cover later), are also kinds of assertions. Make
sure you see them fail, too.

CODEMANSHIP | TDD |40

When tests fail, this is our opportunity to send a message to some
developer in the future who might be asked to change our code
(and that could be us!)

The most important piece of information is “What should have
happened?” And the best place to convey this is in the name of the
test.

FLUENT ASSERTIONS

Although we now have confidence that if the donated title wasn’t
added to the library, this test would catch that, we have to read the
test method name to know what wasn’t true. In this example, it
may be obvious, but often we need more information than a test
name can give us.

It’s becoming more popular for developers to write what are called
“fluent assertions” – assertions that can provide extra information
about exactly which part of the assertion failed.

For example, using Hamcrest (www.hamcrest.org), I could rewrite
my assertion:

 @Test

 public void donatedTitleIsAddedToTheLibrary() {

 VideoTitle title = new VideoTitle();

 VideoLibrary library = new VideoLibrary();

 library.donate(title);

 assertThat(library.getTitles(), contains(title));

 }

When this test fails, we get more information in the failure trace.

CODEMANSHIP | TDD |41

CODEMANSHIP | TDD |42

EXERCISE #5

Test-drive code to leave reviews for movies, with:

 A rating from 1-5

 The name of the reviewer (defaulted to “Anonymous” if
not supplied)

 The text of the review

It should calculate an average rating for a movie, and also report
the number of reviews for each rating. E.g.,

The Abyss

Rating No. of Reviews

5 13

4 11

3 4

2 5

1 2

Make sure you apply all the ideas we’ve seen up to this point,
including seeing the test assertions fail for the right reasons.

CODEMANSHIP | TDD |43

8. ONE REASON TO FAIL

Summary:

 Tests should ask a single question, so that:
o We can bring more focus to each design decision
o Get more feedback with each decision
o More easily debug when tests fail
o Test code is easier to understand

When we test-drive the design of our code, we strive to take baby
steps, making one decision at a time and getting feedback with
each step.

For this and other reasons, it works best when each test asks only
one question.

public class LibraryTests {

 @Test

 public void donatedTitlesAddedToLibrary() {

 Library library = new Library();

 VideoTitle title = new VideoTitle();

 Member donor = new Member();

 library.donate(title, donor);

 assertTrue(library.contains(title));

 assertEquals(1, title.getRentalCopyCount());

 assertEquals(10, donor.getPriorityPoints());

 }

}

In this example, our test asks three questions. We’ve made three
design decisions in a single step, and will have to do more to get it
the test to pass.

Think, too, about what will happen if this test fails. Which part of
the implementation is broken? Tests that ask too many questions
are harder to debug when things break.

CODEMANSHIP | TDD |44

Tests that ask too many questions bring less focus on each design
decision and less feedback as we go - with the inevitable impact on
code quality that we observe as feedback cycles get longer.

It’s better to tackle this example in three tests, each one asking a
specific question.

public class LibraryTests {

 private Library library;
 private VideoTitle title;
 private Member donor;

 @Before
 public void donateTitle() {
 library = new Library();
 title = new VideoTitle();
 donor = new Member();
 library.donate(title, donor);
 }

 @Test
 public void donatedTitlesAddedToLibrary(){
 assertTrue(library.contains(title));
 }

 @Test
 public void donatedTitlesHaveOneDefaultRentalCopy(){
 assertEquals(1, title.getRentalCopyCount());
 }

 @Test
 public void donorsGetTenPriorityPoints(){
 assertEquals(10, donor.getPriorityPoints());
 }
}

Notice how giving each question its own test enables us to
document each rule with the method names, making the tests
easier to understand.

Some people naively interpret the need for tests to ask only
question as meaning literally “every test should only have one
assertion”. It’s not that simple, though.

CODEMANSHIP | TDD |45

 @Test
 public void fibonacciSequenceIsGenerated() {

 Fibonacci fibonacci = new Fibonacci();

 assertEquals("0,1,1,2,3,5,8,13",

fibonacci.generateSequence(8));

 }

How many reasons does this test have to fail? I can see nine: each
individual number in the sequence has to be calculated correctly,
and they have to be separated by commas.

This approach means taking big leaps instead of baby steps, making
multiple design decisions before getting any feedback.

Better to break it down, like:

 @Test
 public void firstNumberInSequenceIsZero() {
 Fibonacci fibonacci = new Fibonacci();
 assertEquals("0",

fibonacci.generateSequence(8).split(",")[0]);
 }

In TDD, the ability to break problems down into the smallest
questions is key.

Finally, be careful about alternative kinds of test assertions. How
many reasons does this test have to fail?

 @Test
 public void donatedTitlesAddedToLibrary() {

 Library library = new Library();

 VideoTitle title = new VideoTitle();

 Member donor = mock(Member.class);

 library.donate(title, donor);

 assertTrue(library.contains(title));

 verify(donor).awardPoints(10);

 }

CODEMANSHIP | TDD |46

9. TESTS SHOULD BE SELF-
EXPLANATORY

Summary:

 Choose names of test methods to clearly convey what the
test is

 Use names for helper methods, objects, fields, constants
and variables that clearly convey their role in the tests

 Use test fixture names that make it easy to find tests

 Pick test data that highlights boundaries in the logic

 Name literal values – using constants or variables – if it
makes their significance clearer

 Some duplication in test code is fine when it makes the test
easier to understand

CODEMANSHIP | TDD |47

public class Tests1 {

 private BankAccount a1;

 private BankAccount a2;

 @Before
 public void init() {

 a1 = new BankAccount();

 a2 = new BankAccount();

 a1.credit(100);

 }

 @Test
 public void transferTest1() {

 doAction();

 assertEquals(50, a1.getBalance(), 0);

 }

 @Test
 public void transferTest2() {

 doAction();

 assertEquals(50, a2.getBalance(), 0);

 }

 private void doAction() {

 a1.transfer(a2, 50);

 }

}

At first glance, it’s not immediately obvious what these tests are
about. Poor choices of names for the test fixture, test methods,
fields and helper methods make it harder to see that we’re testing
a funds transfer between a payer bank account and a payee.

If we refactor this code, we can make the intent clearer. Let’s start
with the test method names.

CODEMANSHIP | TDD |48

 @Test

 public void transferDebitsAmountFromPayer() {

 doAction();

 assertEquals(50, a1.getBalance(), 0);

 }

 @Test
 public void transferCreditsAmountToPayee() {

 doAction();

 assertEquals(50, a2.getBalance(), 0);

 }

Test method names should clearly convey what the test is. Not how
the test works, or what method or class is being test: what is the
test?

Don’t worry if you have to write a long, verbose test method name.
We’re not designing an API, and we’ll probably never need to write
code that calls our test methods. Think like a newspaper headline
writer.

Now, how about those fields, a1 and a2?

 private BankAccount payer;

 private BankAccount payee;

Try to name test objects and test data (fields, variables, constants)
so they convey the role that object plays in the test. Ask “What does
the customer/user call this?”

Now, how about that unhelpfully general helper method,
doAction()?

 @Test

 public void transferCreditsAmountToPayee() {

 transferFunds(payer, payee, 50);

 assertEquals(50, payee.getBalance(), 0);

 }

 private void transferFunds(BankAccount payer,

BankAccount payee,

int amount) {

 payer.transfer(payee, amount);

 }

Renaming it to transferFunds() makes it much clearer what it does.

CODEMANSHIP | TDD |49

I’ve also introduced parameters for payer, payee and amount, so
we can better interpret what happens just by looking at the call to
that method in the test.

The init() method sets up our accounts before each test method is
run. We could make it a bit more obvious by renaming it.

@Before
 public void setupAccounts() {

 payer = new BankAccount();

 payee = new BankAccount();

 payer.credit(100);

 }

And finally, Tests1 isn’t a very illuminating name for a test fixture.
When someone asks “Where are the tests for bank accounts?”, it
won’t be of much help in finding them. Let’s rename it to make it
obvious what these are the tests for.

public class BankAccountTests {

As well as naming, our choice of test data can also help to make
tests clearer.

 @Test(expected=InsufficientFundsException.class)

 public void cannotWithdrawMoreThanBalance() {

 BankAccount account = new BankAccount();

 account.credit(100);

 account.debit(100.01);

 }

In this example, we could have chosen any amount to debit great
than 100, but by choosing 100.01, we more clearly communicate
where the boundary is. Debiting 100 will work just fine. Debiting a
penny more will cause an exception to be thrown.

If we wanted to make it even more obvious, we could name the
opening balance.

CODEMANSHIP | TDD |50

 private static final int BALANCE = 100;

 @Test(expected=InsufficientFundsException.class)

 public void cannotWithdrawMoreThanBalance() {

 BankAccount account = new BankAccount();

 account.credit(BALANCE);

 account.debit(BALANCE + 0.01);

 }

Naming literal values like this can sometimes help to clarify its
significance in the test.

Lastly, don’t forget that – although we should seek to remove
duplication from our test code - if it makes it easier to understand,
leave it in. Readability trumps reuse.

EXERCISE #6

Revisit the code you write for exercises 1-5, and see if you can make
the tests easier to understand by refactoring them.

If you can find someone to help, ask them to read your tests and
comment on anything that isn’t totally clear.

A great way to practice choosing test method names when you’re
pair programming is for one person to declare the test, and then let
the other person write the test code based only on the name.

CODEMANSHIP | TDD |51

10. SPEAKING THE CUSTOMER’S
LANGUAGE

Summary:

 The key to communicating on a software project is to
establish a shared language

 Use the customer’s language when choosing names in your
code

 Requirements documents and acceptance tests are a good
source of inspiration

 A tag cloud generator is a cheap way of building a visual
glossary of customer terms

The names we choose for classes, methods, variables and other
items can have a profound effect on the way we understand code.

public class PlaceRepositoryTests {

 @Test
 public void allocateFlagsPlaceForUser() {
 PlaceRepository placeRepository =

new PlaceRepository();
 User user = new User();
 Place place =

placeRepository.allocate("A", 1, user);
 assertEquals(user, place.flaggedFor());
 }

}

If I asked you what business domain this code comes from, could
you tell by looking at the code?

How about if we change some of the names?

CODEMANSHIP | TDD |52

public class FlightSeatingTests {

 @Test
 public void seatIsReservedForPassenger() {
 FlightSeating seating = new FlightSeating();
 Passenger passenger = new Passenger();
 SeatReservation reservation

= seating.reserve("A", 1, passenger);
 assertEquals(passenger,

reservation.getPassenger());
 }

}

The key to communication is ensuring every stakeholder’s internal
mental model is roughly the same. That means we all need to be
speaking the same language.

If software design is all about solving the customer’s problem, it
stands to reason that the language we should all be speaking is the
customer’s language.

Here’s their description of how reserving seats should work:

The passenger selects the flight they want to reserve a seat

on. They choose the seat by row and seat number (e.g., row

A, seat 1) and reserve it. We create a reservation for that

passenger in that seat.

When you’re searching for a name for a new class, a new method,
or a new variable, look to the customer’s description for
inspiration. What do they call it?

Some teams take establishing a common language so seriously that
they create and maintain glossaries of terms. A cheaper way of
achieving something similar might be to run requirements
documents – including acceptance tests - through a tag cloud
generator.

Here’s one I made from some user stories for an airline’s seat
reservation system.

CODEMANSHIP | TDD |53

CODEMANSHIP | TDD |54

EXERCISE #7

Test-drive some code to automatically play a game based on the
following problem. Run the description below through a tag cloud
generator, and use it for inspiration when choosing names in your
code.

Rock-Paper-Scissors is a game for two players.

Each player simultaneously reveals whether

they have randomly selected Rock, Paper, or

Scissors. The winner of each round is

determined as follows:

Rock blunts Scissors – Rock wins

Scissors cuts Paper – Scissors wins

Paper wraps Stone – Paper wins

If both players select the same, then that

round is a draw.

The game consists of three rounds, but if

there’s no clear winner after three, they

continue playing until one of them wins.

CODEMANSHIP | TDD |55

11. TRIANGULATING

Summary:

 Triangulation allows us to discover the simplest design one
test case at a time

 Like triangulating a position on a map, it works by choosing
2 or more data points and finding the simplest solution that
satisfies them

 Taking baby steps brings more focus on each design
decision and leads to better test assurance

 Starting with the simplest failing test we can think of, we
gradually generalise the design just enough with each new
test

 It requires at least 2 tests to generalise to a pattern or rule

 Use test names to document the patterns/rules as they
emerge

 As we triangulate our design, we may notice patterns to the
way code generalises that can help guide us

 Sometimes, the implementation to pass a test is obvious
and trivial, and we don’t need to triangulate

Creating designs that are as simple as possible, and that work
reliably, requires us to apply more focus to every design decision.

In TDD, instead of leaping for a general solution, we triangulate.

Triangulation is the term we use for the process of pinpointing a
solution using multiple examples. It comes from trigonometry,
where we use triangles to determine the distance and location of a
point (e.g., on a map).

CODEMANSHIP | TDD |56

We take multiple bearings to an object we wish to know the
location of, and that object is where the lines meet – the location
that exists on all those bearings.

Triangulating in TDD is similar. We pick a failing test case, and come
up with the simplest solution just to pass that test. And then we
pick another failing test, and generalise to the simplest solution
that passes both tests. And we keep going until we can’t think of
any more failing tests, looking for the simplest solution that passes
all of our tests.

We’ve already seen an example of triangulation, when we test-
drove code to calculate Fibonacci numbers in the chapter How to
TDD?

We could have started by writing a single test.

public class FibonacciTests {

 @Test

 public void fibonacciIsSumOfPreviousTwoNumbers() {

 assertEquals(21, new Fibonacci().getNumber(8));

 }

}

And then implemented a general algorithm to pass it.

a b

D

L

D = L * ((sin(a) * sin(b)) / sin(a+b))

CODEMANSHIP | TDD |57

public class Fibonacci {

 public int getNumber(int index) {

 if(index < 0) throw new IllegalArgumentException();

 if(index < 2)

 return index;

 return getNumber(index-1) + getNumber(index-2);

 }

}

But this is something of a leap. Already, we have things in our
solution that no test requires (namely, the guard condition about
negative indexes).

How did we know this is the right solution? How did we know this
is the simplest solution? And how confident are we that if someone
breaks this code later, our single test will catch it? How easy would
it be to debug it?

Instead, what we did was take baby steps, starting with the
simplest failing test we could think of (the one that would be easiest
to pass).

public class FibonacciTests {

 @Test
 public void firstNumberIsZero() {

 assertEquals(0, new Fibonacci().getNumber(0));

 }

}

And then did the simplest thing possible to pass just that test.

public class Fibonacci {

 public int getNumber(int index) {

 return 0;

 }

}

Then we picked the next simplest failing test we could think of.

CODEMANSHIP | TDD |58

 @Test
 public void secondNumberIsOne() {

 assertEquals(1, new Fibonacci().getNumber(1));

 }

And then we generalised our solution just enough to pass both of
these tests.

 public int getNumber(int index) {

 return index;

 }

What we’re looking for is patterns (or rules). It’s not possible to
spot a pattern or generalise to a rule from just one example. With
two or more examples, we can begin to generalise.

The simplest pattern that fits the first two tests is that the Fibonacci
number is the same as its index.

Notice how we documented the pattern using a parameterized test
that consolidated those two examples.

@Test
@Parameters({"0,0", "1,1"})
public void firstTwoNumbersAreSameAsIndex(int expected,

int index) {
 assertEquals(expected,

new Fibonacci().getNumber(index));
}

The third Fibonacci number follows a different pattern to the first
two, implying a branch in the logic.

 @Test
 public void thirdNumberIsOne() {

 assertEquals(1, new Fibonacci().getNumber(2));

 }

Many developers would, at this point, leap straight for:

CODEMANSHIP | TDD |59

 public int getNumber(int index) {

 if(index < 2)

 return index;

 return getNumber(index-1) + getNumber(index-2);

 }

But this would be premature. It’s impossible to infer a much simpler
general solution from just from “third number is 1”.

Instead, let’s triangulate this new pattern, starting with the
simplest possible solution to pass the third test.

 public int getNumber(int index) {

 if(index < 2)

 return index;

 return 1;

 }

Notice that, for indexes of 2 or higher, we’re returning a literal
value. That’s all we need to do to pass this third test. It’s a new
pattern, and we can’t generalise with just one example of it.

After a spot of refactoring to localise the knowledge of how to get
Fibonacci numbers in the test code, it’s time to think about our next
failing test. How about the fourth Fibonacci number?

 @Test
 public void fourthNumberIsTwo() {

 assertEquals(2, getFibonacciNumber(3));

 }

Surely, at this point, it’s time to implement the general algorithm?

Actually, no. There’s a simpler generalisation.

 public int getNumber(int index) {

 if(index < 2)

 return index;

 return index - 1;

 }

And now it’s time to refactor our test code again to consolidate
these two examples of this new rule.

CODEMANSHIP | TDD |60

@Test
@Parameters({"1,2", "2,3"})
public void thirdNumberOnIsIndexMinusOne(int expected,

int index) {
 assertEquals(expected, getFibonacciNumber(index));
}

What’s our next failing test? Well, the fifth Fibonacci number has
an index of 4 and a value of 3, so our current code would actually
pass that test. But the sixth has an index and value both of 5, so
that would fail.

@Test
@Parameters({"1,2", "2,3", "5,5"})
public void thirdNumberOnIsIndexMinusOne(int expected,

int index) {
 assertEquals(expected, getFibonacciNumber(index));
}

The simplest solution that will pass all these tests is, in fact:

We discovered this algorithm by taking baby steps and doing the
simplest thing with each step, generalising with each new test.

It took us two tests to discover the rule about the first two Fibonacci
number being the same as their index. It took us three tests to
discover the rule about the third and above numbers being the sum
of the previous two.

As a final step, we add an “edge case” test to require a guard
condition for negative indexes.

@Test(expected=IllegalArgumentException.class)

public void indexMustBePositiveInteger() {

 getFibonacciNumber(-1);

}

The resulting tests read like a specification for these three rules,
and provide good test assurance that the rules have been correctly

 public int getNumber(int index) {

 if(index < 2)

 return index;

 return getNumber(index-1) + getNumber(index-2);

 }

CODEMANSHIP | TDD |61

implemented. If we broke the code so that it breaks one of the
rules, there’s a very good chance at least one test will fail, giving us
a vital early warning and making it easier to pinpoint exactly what’s
gone wrong.

Of course, we “know” the general solution, because we thought
about it in advance. Thinking about designs in advance is a good
thing. I highly recommend it!

But, even though it’s a good idea to think ahead, it’s not such a good
idea to code ahead. A trivial example like the Fibonacci calculator
tests our discipline in not leaping ahead for general solutions and
speculating about what the best design will be.

With programming, the devil is in the detail. Triangulating brings
more focus to getting those details right. Start simple, take baby
steps, and generalise only when you see a pattern.

TRIANGULATION PATTERNS

Observant readers may have noticed that there are loose patterns
to the way we generalise our solutions as we triangulate.

 To pass a single test, we might need to do nothing more
than return the result the tests expects as a literal value.

 To pass two tests that expect two different results, we
might generalise that literal value to a variable (or a
parameter).

 When that value is accessed by more than one method (so
our implementation has to remember it), a variable might
become a field.

 When a variable can have multiple values at the same time,
it can become a collection.

 When that collection is a sequence that follows a rule, it
can become a loop – or a lambda expression - that
generates the collection, applying the rule to every
element.

CODEMANSHIP | TDD |62

As you get more experience with TDD, you’ll develop an instinctive
feel for these patterns of generalisation, learning to let the tests
guide your designs.

OBVIOUS IMPLEMENTATIONS & TDD “GEARS”

Sometimes, though, triangulating is overkill. Imagine test-driving a
simple function to add two numbers together, for example.

 @Test

 public void sumOfTwoPlusTwoIsFour() {

 assertEquals(4, Maths.sum(2,2), 0);

 }

Would we go to the trouble of triangulating this, starting by just
returning the literal result 4? Arguably, there’d be little value
gained for something this straightforward, so instead we might just
implement the simplest general solution.

 public static double sum(double i, double j) {

 return i + j;

 }

Beware, though; it takes considerable experience to be able to
effectively judge when a design really is too trivial to take baby
steps. We recommend erring on the side of caution, especially
when you’re relatively new to TDD. With time, you’ll develop better
judgement about how small your baby steps need to be.

Kent Beck, author of Test-Driven Development By Example, likens it
to pulling a bucket of water up from a well using a ratchet and
pulley.

CODEMANSHIP | TDD |63

The teeth on the ratchet gear
lock it in position every time we
raise the bucket by a certain
amount. This means all our
effort up to that point won’t be
wasted if we let go of the rope.

The heavier the bucket of
water, the smaller we’ll want
the teeth to be, so we can pull it
up in shorter bursts of energy.

But if we’re raising only a
teaspoonful of water, we could
raise the bucket much faster
with a ratchet gear that has
larger teeth.

TDD is a bit like this. The tests lock our solution code in place, so we
don’t risk wasting all our effort by breaking the code we already
wrote.

The more complex and “heavy” the problem we’re trying to solve,
the smaller the steps we might want to take. The simpler and more
trivial it is, the bigger the steps we can comfortably take.

Your ability to “switch gears” when doing TDD will grow as you get
more and more practice.

EXERCISE #8

Triangulate some code that sorts a set of playing cards into
ascending order (Aces count as 1). Start with the simplest example
you can think of (e.g., what happens if we sort a single card?), and
discover a design, taking the smallest steps forward possible.

CODEMANSHIP | TDD |64

12. REFACTORING

Summary:

 Refactoring is improving the internal design of software
without changing what it does

 Refactorings are small, atomic code re-writes that preserve
behaviour

 Many refactorings can be automated

 Run the tests after every refactoring to check nothing’s
broken

 Refactorings are well-defined and have names like
Rename, Extract Method, Extract Class and Inline

 Pay special attention to code duplication, as it can reveal
useful abstractions

 In TDD, designs emerge through triangulation and
refactoring

 Keep refactoring until you’re happy leaving the code as it is

So far, we’ve seen several examples of something programmers call
“refactoring”.

Refactoring is improving the internal design of our software without
changing what it does.

We refactor our code to:

 make it easier to understand

 make it simpler

 remove duplication

 localise the impact of making changes

More generally, we refactor the code to make it easier to change.

CODEMANSHIP | TDD |65

The danger in changing code is that we might break the software.
Refactoring minimises this risk in 3 ways:

1. Refactorings are small and atomic

The smaller the change, the less can go wrong. And if it does go
wrong, we want to be able to easily undo it. Refactorings
succeed or fail as a whole.

2. Refactorings preserve behaviour

After each refactoring, we want the code to do exactly what it
did before. We can check that it does using automated tests

3. Often, refactorings can be automated

Automated refactorings, which are supported to some extent
in most editors, help us by automatically updating the code so
that it should still work, and also by offering a single-step Undo
in case anything goes wrong

Think of your source code as a data structure made of “stuff” like
classes, methods, parameters, variables, identifiers, statements,
expressions and so on.

A refactoring rewrites this “stuff” to make it easier to change in one
or more ways.

Very importantly, at the end of each refactoring, the code still
works. We check this by running our tests.

It’s important to become familiar with the most commonly used
refactorings, and get practice at applying them to your code.

Let’s look at some examples in Java using the popular Eclipse IDE
(www.eclipse.org).

RENAME

To make its meaning clearer, we may wish to rename a class, a
method, a variable and other things that have names. When we
change the name of, say, a method, that change breaks all of the

CODEMANSHIP | TDD |66

code that calls that method. So the Rename refactoring has to
update all of the references so that the code still works.

In my editor, I select the thing I want to rename (in this case, a
method ambiguously called get). I launch the context-sensitive
refactoring menu, and select the Rename refactoring.

CODEMANSHIP | TDD |67

I can edit the method name in place in my editor. Notice how, as I
type the new name, calls to get() are automatically updated. After
I hit Enter, the automated refactoring will save my source files.

As soon as the refactoring is done, I run my tests to make sure it
hasn’t broken the code.

CODEMANSHIP | TDD |68

The method name makes more sense now, but I can still see
problems that will make this code harder to change.

Let’s do another refactoring.

EXTRACT METHOD

CODEMANSHIP | TDD |69

The getIndexOf() method does rather a lot, and is difficult to read.
We can simplify things and make the code clearer by breaking the
method down.

I select a block of code that does a specific chunk of the work and
bring up the refactoring menu again.

A dialogue pops up for the Extract Method refactoring, prompting
me to give this new method a name. This is an opportunity to
convey what this block of code does, using the method name.

Notice how it automatically adds a parameter for a variable
fibonacci that’s declared before this block of code. It has to pass
this value in, or the code won’t work.

It knows to return any data value that is referenced after this block
of code, too.

Let’s complete this refactoring.

CODEMANSHIP | TDD |70

Immediately, we run the tests to make sure nothing’s broken.

There are still issues that might need addressing in our code. First
of all, some low-hanging fruit.

INLINE

Inlining replaces a reference to a thing with the thing itself. For
example, we could inline the local variable indexOfFibonacci,
because we don’t really need it anymore.

CODEMANSHIP | TDD |71

Again, we run the tests immediately to check everything still works.
This is a habit you must get into to refactor safely.

There are still more issues to address. Does this code really belong
in a test fixture at all? Probably not. Let’s put it in its own place, so
it can be more easily found and reused.

EXTRACT CLASS

Extract Class moves selected features of an existing class into their
own new class, and replaces them in the old code with an instance
of the new class.

My editor’s refactoring menu doesn’t have a proper automated
Extract Class, so we’re going to go a bit around the houses here to
make it happen. Many refactorings require us to perform a
sequence of smaller refactorings.

CODEMANSHIP | TDD |72

Our goal is to – as much as possible – keeping the code working. So
we’re going to do this in a number of small steps, and run the tests
after each step.

First, let’s use the Extract Superclass refactoring to move
getIndexOf() and searchSequence() in a new class, from which the
test fixture will inherit so that it all still works.

This new superclass will just be a stepping stone. Ultimately we
won’t want it to be a superclass of the test fixture.

A dialog pops up prompting us to give this new superclass a name,
and to select the features we want to move into it.

CODEMANSHIP | TDD |73

In this instance, that’s all we need to specify – though the Extract
Superclass dialog has a lot more options – so we just click Finish.

It warns us that the visibility of getIndexOf() need to be changed for
the subclass to continue using it. This is fine. It’s just to make sure
the code still works.

CODEMANSHIP | TDD |74

Again, we run the tests at this point.

Now that we have a Fibonacci class, we want to change the tests so
they invoke methods on an instance of that class, and not on the
superclass.

We can achieve this using Find/Replace.

CODEMANSHIP | TDD |75

We replace all the calls to getIndexOf() on the superclass with calls
to the same method on a new Fibonacci object.

CODEMANSHIP | TDD |76

And run the tests again.

Finally, there’s no need any longer for FibonacciTests to extend
Fibonacci, so we can remove that stepping stone.

And then… yep, you guessed it… RUN THE TESTS.

THE REFACTORING MENU

The Eclipse editor offers a useful range of automated refactorings.

CODEMANSHIP | TDD |77

CODEMANSHIP | TDD |78

Support for automated refactorings varies from editor to editor and
language to language. It’s typically better in languages that have
compile-time type checking than in dynamic languages, because -
in some refactorings - the tool needs to know what types of objects
are involved.

In scripting languages like JavaScript and Ruby, programmers may
have to learn how to do some refactorings by hand. It’s important
to be especially disciplined in these cases.

DUPLICATION & EMERGENT DESIGN

Although it’s not as important as readability and simplicity, the
duplication in our code – including our test code – offers useful
clues about what might be a good design for our solution. This is
because the opposite of duplication is reuse.

When we see two blocks of code that are almost the same, we can
extract a parameterised method that performs the common logic.
When we see two classes that are very similar, we can extract a
common base class. Or if they do similar things, but in different
ways, we can extract a common interface.

Duplication is often a good thread to pull on, as it can reveal
abstractions that will make our designs better.

For this reason, many people recommend we refactor to remove
duplication as the third step in the TDD cycle.

More generally, a design is revealed to us as we refactor. A method
may be too long or doing too many things, so we break it up into
multiple methods. A class may be getting too big or have too many
responsibilities, so we split it up into new classes.

Starting from the single simplest solution, a complex design can
emerge through the process of triangulation and refactoring. The
aim is to discover the design that will pass the tests and be easy to
change.

CODEMANSHIP | TDD |79

WHEN ARE WE DONE?

In our Fibonacci example, we still have issues we might want to
address left in our code. The getIndexOf() method is pretty long,
and does a lot. We could break it down by extracting the different
pieces of work into their own private helper methods. Also, our test
fixture mixes a single parameterised test with several ordinary tests
for edge cases. The edge case tests are run unnecessarily for every
parameterised test case, leaving potential confusion about how
many tests there really are.

When it comes to the quality of our code, we often have the best
of intentions to go back and code issues that might get in our way
later.

Inspection of hundreds of code bases, however, teaches us that –
nine times out of ten – we never actually get around to it fixing
problems we leave behind.

For that reason, I strongly recommend that you refactor until
you’re happy leaving the code as it is – because you very probably
will leave it like that forever.

That makes the third step in the TDD cycle extremely important. It
reminds us to clean up our code to make it as readable, as simple,
as free of duplication and as modular as we can before moving on
to the next failing test.

EXERCISE #9

Look through the code you wrote for earlier exercises in this book
for anything that you’re not 100% happy with – names you think
could be made clearer, methods that do more than one thing,
nested IF statements, and so on.

Refactor the code until your confident that it will be easy to
understand and easy to change.

CODEMANSHIP | TDD |80

Explore the refactoring menu in your editor and try each
automated refactoring works on a copy of your code.

And DON’T FORGET TO KEEP RUNNING THE TESTS!

CODEMANSHIP | TDD |81

13. DESIGN PRINCIPLES

Summary:

 A Simple Design (in order of priority):
o Works (i.e., passes all the tests)
o Is easy to understand
o Has minimal duplication
o Is as simple as possible

 Design classes that Tell, Don’t Ask, sharing as little internal
detail as possible

 Give methods and classes a single responsibility, so they
offer more possibilities for combinations and reuse

 Compose objects from the outside, using dependency
injection, to offer greater flexibility for design and testing

 Expose client-specific interfaces to hide methods that
client code doesn’t need to use

 Use contract tests to ensure different implementations of
the same abstraction fulfil the contract of their super-type

In previous chapters, we’ve touched on some goals for the design
of our code that will make it easier to change, so we can keep
adding new tests and new features, and sustain the pace of
development for longer.

We’re going to dwell on the principles of good design, as they’re
important enough to warrant a chapter all of their own.

SIMPLE DESIGN

Simple Design, also popularised by Kent Beck, is a set of design
principles that developers can apply to most any kind of software.

CODEMANSHIP | TDD |82

Rather than having to learn a whole encyclopaedia of design rules
and design patterns, Simple Design sets just four goals, in order of
importance.

1. The code works
2. The code is easy to understand
3. The code has minimal duplication
4. The code is as simple as possible

THE CODE WORKS

Most important of all is that the code works. We check that it does
by running our tests. If it doesn’t pass the tests, fixing that is priority
number one.

THE CODE IS EASY TO UNDERSTAND

When we’re happy the code works, we next concern ourselves with
how easy it is to understand. It’s estimated developers spend
between 50-80% of our time just reading code. Time invested in
making the code clearer is almost always profitable later.

THE CODE HAS MINIMAL DUPLICATION

If we’re satisfied that the code works, we turn our attention to
duplication. The mantra to remember here is Don’t Repeat Yourself
(D.R.Y.). When we have to change duplicated code, we have to
make that change multiple times.

One exception to D.R.Y. is when a bit of duplication makes the code
easier to understand. In our test fixtures, for example, I left in some
duplication – separate test methods for cases that could have been
incorporated into an existing parameterised test – to make it easier
to see this was a different rule being tested, and not just a different
example of the same rule.

THE CODE IS AS SIMPLE AS POSSIBLE

Simpler designs are quicker to get working, easier to understand,
and less likely to go wrong. For all these reasons, TDD recommends
we do the simplest thing possible that will pass our tests.

CODEMANSHIP | TDD |83

Again, the exception is when simplicity conflicts with our higher-
priority design goals. Sometimes the simplest solution isn’t
necessarily the easiest to understand, for example. On occasion, it
may be better to solve a problem a longer way, if that longer way
can be understood faster.

TELL, DON’T ASK

The four principles of Simple Design take us a long way towards a
good design, when they’re applied rigorously to the code as it
grows.

But Simple Design doesn’t directly address one potential obstacle
to changing our code that’s actually pretty important:
dependencies.

Consider a class that calculates insurance premiums for motorists.
To decide what premiums to apply it needs to know the age of the
motorist, their gender (men tend to have more accidents), how
long they’ve been driving legally, and how many points they have
on their driver’s license.

CODEMANSHIP | TDD |84

public class InsuranceCalculator {

 private Motorist motorist;

 public InsuranceCalculator(Motorist motorist) {
 this.motorist = motorist;
 }

 public double calculatePremium(double carValue) {
 License license = motorist.getLicense();

 double premiumPercent = 0;

 premiumPercent +=

calculateAgePremium(

calculateAge(motorist.getDateOfBirth()));
 premiumPercent +=

calculateGenderPremium(motorist.getGender());
 int yearsOfExperience =

calculateExperience(license.getDateIssued());
 premiumPercent +=

calculateExperiencePremium(yearsOfExperience);
 premiumPercent +=

calculatePointsPremium(license.getPoints());

 return carValue * premiumPercent;
 }

To get these pieces of information, it has to ask Motorist and
License for them. Let’s visualise the interactions between our
objects using a UML sequence diagram:

CODEMANSHIP | TDD |85

Because InsuranceQuote is doing all the work, but Motorist and
License have all the data, this design creates a lot of low-level
coupling between our objects.

The more objects know about each other, the more likely it is that
a change to one object will affect others. Changing License might
break InsuranceQuote, which might in turn break any code that
depends on InsuranceQuote.

Another goal of good design is to localise the impact of change. We
can achieve this by, as much as possible, internalising dependencies
within classes, which reduces the coupling between them.

Code that needs to know a motorist’s date of birth should be
packaged where that data is. Code that needs to know how many
points there are on a motorist’s license should be packaged where
that points data is.

More generally, put the work where the data is.

Let’s refactor our code to reduce the coupling between the classes,
by putting our calculations in the same classes as the data they use.

: InsuranceQuote : Motorist : License

calculatePremium(carValue)

getLicense()

getDateOfBirth()

getGender()

getDateIssued()

getPoints()

CODEMANSHIP | TDD |86

public class InsuranceCalculator {

 private Motorist motorist;

 public InsuranceCalculator(Motorist motorist) {

 this.motorist = motorist;

 }

 public double calculatePremium(double carValue) {

 return motorist.calculatePremium(carValue);

 }

}

Instead of asking for the data, InsuranceQuote now delegates the
work to Motorist.

public class Motorist {

 private final String dateOfBirth;
 private final Gender gender;
 private final License license;

 public Motorist(String dateOfBirth,
Gender gender,

License license) {
 this.dateOfBirth = dateOfBirth;
 this.gender = gender;
 this.license = license;
 }

 public double calculatePremium(double carValue) {
 return calculateMotoristPremium(carValue) +

license.calculatePremium(carValue);
 }

 private double calculateMotoristPremium(double carValue) {
 double premiumPercent = calculateAgePremium()
 + calculateGenderPremium ();
 return premiumPercent * carValue;
 }

Motorist does the work relating to what it knows: dateOfBirth and
gender. It delegates the rest of the work to License, because that
class has the rest of the data.

CODEMANSHIP | TDD |87

public class License {

 private int points;
 private final String dateIssued;

 public License(String dateIssued){
 this.dateIssued = dateIssued;
 }

 double calculatePremium(double carValue) {
 return calculateExperiencePremium(carValue) +

calculatePointsPremium(carValue);
 }

Instead of asking Motorist and License for their data,
InsuranceQuote tells them to do the work themselves. That’s why
this style of design is sometimes referred to as “Tell, Don’t Ask”.

When we visualise the interactions between the different objects
after this refactoring, it looks like this:

Just at a glance, we can see there are far fewer object couplings.
Note that, because we’re sharing less data, there’s no need for all
those getter methods any more.

This design principle goes by several names, including data hiding
and encapsulation. All you need to remember is that the less
objects know about each other, the better.

SINGLE RESPONSIBILITY

Consider a method that credits a bank account:

: InsuranceQuote : Motorist : License

calculatePremium(carValue)

calculatePremium(carValue)

calculatePremium(carValue)

CODEMANSHIP | TDD |88

 public void credit(double amount){
 this.balance += amount;
 SimpleDateFormat sdfDate =
 new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
 Date now = new Date();
 String dateTime = sdfDate.format(now);
 String creditXml = "<credit>"+
 " <account>"+ accountNumber + "</account>" +
 " <amount>" + amount + "</amount>" +
 " <datetime>" + dateTime + "</dateTime>" +
 "</credit>";
 AccountLogger.log(creditXml);
 rewardPoints += Math.floor(amount/100);
 }

This method does a whole bunch of stuff.

 Adds the amount to the balance

 Formats the current date & time

 Creates an XML string that represents this transaction for
logging

 Calculates and adds reward points at 1% of the credit
amount

Not only does it make this method harder to understand, but what
happens if we want to format the current date and time for some
other purpose? What happens if we want to calculate reward
points for other kinds of transactions?

As it stands, credit() is an all-or-nothing affair. We don’t get the
option to reuse any of its logic by itself, and this can present a
barrier to change.

To better explain, here’s a thought experiment: how many different
ways can we combine the string “ABCD”? Only one. It’s always
“ABCD”.

How many different ways can we combine “AB” and “CD”? Four.
We can make “AB”, “CD”, “ABCD” and “CDAB”.

How many different ways can we combine “A”, “B”, “C” and “D”?
Sixty four.

CODEMANSHIP | TDD |89

By breaking “ABCD” into “A”, “B”, “C” and “D” we give ourselves
sixty four times as many possible combinations of letters.

Likewise, by breaking credit() down into four separate methods,
each with one distinct job, we create many more opportunities to
create new logic by combining one or all of those methods.

 public void credit(double amount){

 updateBalance(amount);

 String dateTime = formatCurrentDateTime();

 AccountLogger.log(serialize(amount, dateTime));

 rewardPoints += calculateRewardPoints(amount);

 }

credit() is now what we call a composed method; that is, a method
composed of calls to other methods. The method names tell the
story of what work is being done, but the actual work is delegated
to these new methods.

This makes credit() easier to understand, and it also means that we
can write new code reusing methods like
formatCurrentDateTime(), serialize() and calculateRewardPoints().

We could also extend our account class, and override those
individual methods without having to change the code in credit().
This refactored design opens up many new possibilities.

The same principle applies at the class level; should we have to use
an account every time we want to format the current date and
time? That smacks a little of buying a Mercedes just to use the
cigarette lighter.

And if we wanted to change the format of the current date and
time, should we have to edit – and risk breaking – the account
class? There will be other classes depending on it. It might break
them, too. Better, surely, for that formatting code to go in its own
class, where we can change it by itself.

CODEMANSHIP | TDD |90

 public void credit(double amount){
 updateBalance(amount);
 String dateTime =

new DateTimeFormatter().formatCurrentDateTime();
 AccountLogger.log(serialize(amount, dateTime));
 rewardPoints += calculateRewardPoints(amount);
 }

While we’re about it, should the account class be responsible for
creating the XML string? Again, it’s foreseeable wanting to change
the XML format independently of how the account works. So, that,
too, belongs in its own class.

 public void credit(double amount){
 updateBalance(amount);
 String dateTime =
 new DateTimeFormatter().formatCurrentDateTime();
 AccountLogger.log(
 new XmlSerializer().serialize(this,

amount,

dateTime));
 rewardPoints += calculateRewardPoints(amount);
 }

I can also see us needing to change how reward points are
calculated independently of how a bank account works. Let’s
extract a class for that, too.

 public void credit(double amount){
 updateBalance(amount);
 String dateTime =
 new DateTimeFormatter().formatCurrentDateTime();
 AccountLogger.log(
 new XmlSerializer().serialize(this,

amount,

dateTime));
 rewardPoints +=

new RewardPointsCalculator().calculate(amount);
 }

Extracting these separate responsibilities into their own classes
gives us more options for reusing and extending our code. For
example, if we wanted to, we could package DateTimeFormatter in
its own library and reuse it on other projects.

CODEMANSHIP | TDD |91

SWAPPABILITY & DEPENDENCY INJECTION

Splitting credit() into separate methods, and then moving some of
those methods into new classes – each with a distinct job – has
bought us considerably more flexibility to keep evolving our design.

But we need to go further to buy us the kind of flexibility we’re
going to need later, as we’ll discover in upcoming chapters.

What happens when we want to use different date-time formats
for different kinds of output? What happens when we want to
represent our credit transaction in different report formats, like
CSV or HTML? What happens when we want to calculate reward
points differently in different countries?

There’s no easy way to get BankAccount to use a different
implementation of DateTimeFormatter, XmlSerializer or
RewardPointsCalculator.

Imagine we have two different implementations of a
DateTimeFormatter interface, one for US date formats and one for
the UK.

public interface DateTimeFormatter {

 public abstract String formatCurrentDateTime();

}

Similarly, imagine we have a US reward points calculator and a UK
calculator that both implement a RewardPointsCalculator
interface.

public interface RewardPointsCalculator {

 public abstract double calculate(double amount);

}

Finally, imagine we have two ways of representing a credit
transaction: as XML and as HTML, both of which implement a
Serializer interface.

CODEMANSHIP | TDD |92

public interface Serializer {

 public abstract String serialize(

BankAccount acccount,
double amount,
String dateTime);

}

How about, instead of instantiating these objects inside
BankAccount, we pass them into the constructor?

public class BankAccount {

 private double balance;
 private final String accountNumber;
 private int rewardPoints;
 private final DateTimeFormatter dateTimeFormatter;
 private final Serializer serializer;
 private final RewardPointsCalculator rewardPointsCalculator;

 public BankAccount(String accountNumber,
 DateTimeFormatter dateTimeFormatter,
 Serializer serializer,
 RewardPointsCalculator rewardPointsCalculator){
 this.accountNumber = accountNumber;
 this.dateTimeFormatter = dateTimeFormatter;
 this.serializer = serializer;
 this.rewardPointsCalculator = rewardPointsCalculator;
 }

 public void credit(double amount){
 updateBalance(amount);
 String dateTime =
 dateTimeFormatter.formatCurrentDateTime();
 AccountLogger.log(
 serializer.serialize(this, amount, dateTime));
 rewardPoints += rewardPointsCalculator.calculate(amount);
 }

BankAccount is now composed from the outside by whichever code
calls the constructor. If we abstract the classes it collaborates with,
binding BankAccount to our pure interfaces, it becomes possible to
vary BankAccount’s composition dynamically by plugging in
different implementations.

CODEMANSHIP | TDD |93

BankAccount accountUS = new BankAccount("12345678",

 new USDateTimeFormatter(),

 new HtmlSerializer(),

 new USRewardPointsCalculator());

BankAccount accountUK = new BankAccount("23456789",

 new UKDateTimeFormatter(),

 new XmlSerializer(),

 new UKRewardPointsCalculator());

When we compose objects from the outside, by passing their
collaborators in to the constructor or as method parameters, we
call that dependency injection.

We now have the ability to swap collaborators easily, and this gives
us even greater flexibility for future changes.

As we’ll see in the chapter on Test Doubles, it also comes in very
useful for writing fast-running automated tests by allowing us to
test our code against pretend versions of things like database
connections and web service calls.

FAKE IT ‘TIL YOU MAKE IT

It also allows us to defer thinking about the design of other parts of
our software while we focus on the logic of the part we’re working
on. E.g., Perhaps we don’t want to think about how reward points
are calculated. We can inject a placeholder for a calculator and
carry on testing credit()

CLIENT-SPECIFIC INTERFACES

The less objects in our software know about each other, the better.
As well as hiding internal features by applying Tell, Don’t Ask, we
also need to hide external features that our classes don’t need to
use.

To illustrate, look at this code from a community video library.

CODEMANSHIP | TDD |94

public class Library {

 private final List<VideoTitle> titles;

 public Library(){
 titles = new ArrayList<>();
 }

 public boolean hasTitle(String name){
 for (VideoTitle title : titles) {
 if(title.getName().equals(name)){
 return true;
 }
 }
 return false;
 }

 public void add(VideoTitle title){
 titles.add(title);
 }
}

public class VideoStats {

 private final VideoTitle title;

 public VideoStats(VideoTitle title){
 this.title = title;
 }

 public double averageRating(){
 List<Rating> ratings = title.getRatings();
 double totalRating = 0;
 for (Rating rating : ratings) {
 totalRating += rating.getValue();
 }
 return totalRating/ratings.size();
 }
}

Both Library and VideoStats use VideoTitle, but they use different
methods of it. Library just needs to know the name of the title,
while VideoStats just needs to access its ratings.

If we decide to change the details of either of these methods of
VideoTitle, then both clients will be affected.

CODEMANSHIP | TDD |95

We can hide methods that clients don’t need to see by splitting up
the interface, creating client-specific interfaces for Library and
VideoStats that only expose the methods they need.

public class VideoTitle implements Named, Rated {

 private final String name;

 private final List<Rating> ratings;

 public VideoTitle(String name){

 this.name = name;

 this.ratings = new ArrayList<>();

 }

 @Override

 public String getName() {

 return name;

 }

 @Override

 public List<Rating> getRatings() {

 return ratings;

 }

 public void rate(int value){

 ratings.add(new Rating(value));

 }

}

Note that the names of these new interfaces reflect the role the
objects play with respect to each client. These are not the names
of “things”, like Library and VideoTitle.

Now we can refactor Library and VideoStats so they depend only
on the interfaces they require.

CODEMANSHIP | TDD |96

public class Library {

 private final List<Named> titles;

 public Library(){

 titles = new ArrayList<>();

 }

 public boolean hasTitle(String name){

 for (Named title : titles) {

 if(title.getName().equals(name)){

 return true;

 }

 }

 return false;

 }

 public void add(Named title){

 titles.add(title);

 }

}

public class VideoStats {

 private final Rated title;

 public VideoStats(Rated title){

 this.rated = rated;

 }

 public double averageRating(){

 List<Rating> ratings = title.getRatings();

 double totalRating = 0;

 for (Rating rating : ratings) {

 totalRating += rating.getValue();

 }
 return totalRating/ratings.size();

 }

}

Notice that we didn’t include the method rate() on the Rated
interface. Although you might think it makes sense to include it,
based on the name, in fact there’s no reason for VideoStats to be
exposed to it. Some other client uses that method, and if rate() is
the only method it uses, we could again create a client-specific
interface called, say, Rateable.

CODEMANSHIP | TDD |97

POLYMORPHISM & CONTRACT TESTING

When our objects implement abstractions, like pure interfaces, or
extend existing classes and override their methods, there’s one
thing we need to be mindful of – that they fulfil the original
contracts of their super-types.

For example, there are many different ways we could sort an array
of numbers, ranging from the brute force method of looping
through the array until we find what we’re looking for, to faster
sorting algorithms like Bubble Sort and Insertion Sort.

But, however we do it, the end result must be the same.

public abstract class Sort {

 public abstract int[] sortAsc(int[] input);

 void swap(int[] input, int index1, int index2) {

 int first = input[index1];

 int second = input[index2];

 input[index1] = second;

 input[index2] = first;

 }

}

In this design, we have an abstract base class for sorting arrays of
integers. Imagine we started by test-driving an implementation of
Bubble Sort, and then moved on to an implementation of Insertion
Sort, and extracted a common superclass with the shared swap()
method and an abstract sortAsc() method they each override.

CODEMANSHIP | TDD |98

public class BubbleSort extends Sort {

 @Override
 public int[] sortAsc(int[] input) {

 boolean sorted = false;

 while(!sorted){

 sorted = true;

 for (int i = 0; i < input.length - 1; i++) {

 if(input[i] > input[i+1]){

 swap(input, i, i+1);

 sorted = false;

 }

 }

 }
 return input;

 }

}

public class InsertionSort extends Sort {

 @Override
 public int[] sortAsc(int[] input) {

 for (int i = 0; i < input.length - 1; i++) {

 for(int j = i+1;j > 0;j--){

 if(input[j] < input[j-1]){

 swap(input, j, j-1);

 }

 }

 }

 return input;

 }

}

After refactoring the duplication between these two classes, we
should also refactor duplication between their test fixtures. So we
end up extracting a common test base class.

CODEMANSHIP | TDD |99

@RunWith(JUnitParamsRunner.class)
public abstract class SortTests {

 private Object data(){
 return new Object[][]{
 {new int[]{1}},
 {new int[]{2,1}},
 {new int[]{3,2,1}},
 {new int[]{2,3,1}},
 {new int[]{5,2,3,4,1}},
 {new int[]{2,1,2,3}},
 {new int[]{12,2,6,1,7,6,13,0}}
 };
 }

 @Test
 @Parameters(method="data")
 public void arrayIsSortedInAscendingOrder(int[] input) {
 int[] output = createSort().sortAsc(input);
 assertThat(Arrays.asList(output),

containsInAnyOrder(input));
 for (int i = 0; i < output.length - 1; i++) {
 assertThat(output[i],

is(lessThanOrEqualTo(output[i + 1])));
 }
 }

 abstract Sort createSort();

}

Note the abstract method createSort(); this is a factory method for
instantiating sorting implementations that we override in the test
fixtures that extend SortTests.

CODEMANSHIP | TDD |100

public class BubbleSortTests extends SortTests {

 @Override
 protected Sort createSort() {
 return new BubbleSort();
 }
}

public class InsertionSortTests extends SortTests {

 @Override
 protected Sort createSort() {
 return new InsertionSort();
 }
}

The tests in SortTests effectively define an abstract contract that all
sorting implementations must satisfy, no matter how they work
internally. This test design technique is therefore sometimes
referred to as contract testing.

CODEMANSHIP | TDD |101

EXERCISE #10

Test-drive some code that manages the stock and orders of a CD
warehouse. Customers can buy CDs, searching on the title and the
artist. Record labels send batches of CDs to the warehouse. Keep a
stock count of how many copies of each title are in the warehouse.
Customers can only order titles that are in stock. Use dependency
injection to fake credit card payment processing, so we can get on
with our CD warehouse design without worrying about how that
will be done.

Customers can leave reviews for CDs they’ve bought through the
warehouse, which gives each title an integer rating from 1- 10 and
the text of their review if they want to say more.

As well as applying all of the ideas we’ve covered about TDD so far,
make sure your code is:

 Working

 Easy to understand

 Has minimal duplication

 Is as simple as possible

…and is made from classes that:

 Tell, don’t ask

 Have one distinct responsibility

 Can be composed from the outside

 Expose client-specific interfaces

 Use contract tests for shared abstractions

CODEMANSHIP | TDD |102

14. TEST DOUBLES

Summary:

 Test doubles are objects used in tests that aren’t the real
thing

 They can help us write fast-running tests by decoupling
from external dependencies like databases and web
services

 They can help us defer implementation details by “faking it
‘til we make it”

 They can help make tests that depend on changing or
random data repeatable

 Stubs are test doubles that provide test data

 Mocks are test doubles that allow us to test object
interactions, and help us to design objects that Tell, Don’t
Ask

 Over-reliance on mock object frameworks can “bake in” a
tightly-coupled design

 Dummies are test doubles that allow the test to compile
and run, but aren’t used

 Test doubles should implement interfaces that we control,
to protect our application code from external
dependencies

 Whether a test double is a stub, a mock or a dummy
depends on how it’s used, not how it’s implemented

There are often times, when we’re writing automated tests, that
we need to use an object that – for a number of possible reasons –
is not the real thing.

It could be:

CODEMANSHIP | TDD |103

 For performance reasons (e.g., connecting to an external
service would not be desirable in a suite of fast-running
unit tests.)

 For cost reasons (e.g., requiring Oracle licenses to use a
database in a test.)

 Because the type of object we want to use doesn’t even
exist yet (“Fake it ‘til you make it”).

 Because we know it won’t be used in our test.

 Because the object in question can only exist running inside
a container process, like the HTTP context of a web server.

 To make tests repeatable when object behaviour might
vary (e.g., getting today’s date)

Test doubles come in several flavours:

 Stubs – objects that supply test data

 Mocks – objects that require interactions to happen

 Fakes – objects that exhibit all the behaviour of the real
thing (e.g., an in-memory relational database)

 Dummies – objects that aren’t used, but need to be there
to compile and run the test

 Spies – objects that remember when their methods are
called, so we can query that in our tests

In TDD, stubs, mocks and dummies come up most often. We’ll
explore their use in this chapter.

STUBS

A stub is a test double that presents an expected interface to our
class under test, and has a test-specific implementation that
returns data that will be used in our test. More simply, a stub’s job
is to provide test data. In that sense, a stub’s implementation is part
of the set-up for a test.

CODEMANSHIP | TDD |104

public class TradeQuoteTests {

 @Test
 public void tradePriceIsStockPriceTimesQuantity() {

 StockPricer pricer = new StockPricerStub(10);

 TradeQuote trade = new TradeQuote(pricer);

 assertEquals(1000, trade.quote(“X” , 100), 0);

 }

}

In this test, we want to check that a quote for a stock market trade
is calculated correctly. Our TradeQuote object will get a price from
a StockPricer. When the software is in production, an
implementation of the StockPricer interface would connect to an
external web service. For the purposes of our test, though, we write
our own test-specific implementation that returns a price of 10.

Note the use of dependency injection here to plug the StockPricer
stub into the TradeQuote object (this is a great illustration of the
kind of flexibility we get by composing objects from the outside).

Internally, TradeQuote depends only on the interface, and knows
nothing about the stub.

public class TradeQuote {

 private final StockPricer pricer;

 public TradeQuote(StockPricer pricer) {
 this.pricer = pricer;
 }

 public double quote(String stock, int quantity) {
 return pricer.getPrice(stock) * quantity;
 }
}

Notice also how I passed the test data value into the constructor of
my stub, rather than hardcoding it into the stub’s implementation.
I’ve done this for two reasons; firstly, it means I can specify the
value in the actual test code, making it easier to understand.
Secondly, I can reuse this stub implementation with different
values, meaning less code duplication.

CODEMANSHIP | TDD |105

The stub’s implementation is simply:

public class StockPricerStub implements StockPricer {

 private final double price;

 public StockPricerStub(double price) {

 this.price = price;

 }

 @Override
 public double getPrice(String stock) {

 return price;

 }

}

Sometimes, instead of returning test data, we might want a stub to
throw an exception to test how our object handles it.

 @Test(expected=InvalidTradeException.class)
 public void tradeNotValidIfStockNotFound()

throws InvalidTradeException {
 StockPricer pricer = new StockNotFoundStockPricerStub();
 TradeQuote trade = new TradeQuote(pricer);
 assertEquals(1000, trade.quote(“X” , 100), 0);
 }

When the stub throws a StockNotFoundException, TradeQuote
should catch that and throw an InvalidTradeException.

public class StockNotFoundStockPricerStub implements
StockPricer {

 @Override
 public double getPrice(String stock)

throws StockNotFoundException {
 throw new StockNotFoundException(stock);
 }
}

In both tests, I used a stock symbol “X”. It doesn’t matter what stock
symbol we use, as our stubs will return the data we want them to
regardless.

Two important things to remember when using stubs:

1. Do not test the stub! Our goals here is to test the object
that uses the data the stub provides

CODEMANSHIP | TDD |106

2. Stubs are test code

Stubs can also be used to fix test data that would usually change
when using the real object - like a person’s age – making the test
repeatable.

@Test
public void driverUnder25PaysFivePercentPremium() {
 Motorist motorist = new Motorist("01/01/1900",

Gender.MALE,
null,
new AgeCalculatorStub(24));

 assertEquals(0.05, motorist.calculateAgePremium(), 0);
}

CODEMANSHIP | TDD |107

public class Motorist {

 private final String dateOfBirth;
 private final Gender gender;
 private final DriversLicense license;
 private final AgeCalculator ageCalculator;

 public Motorist(String dateOfBirth,
 Gender gender,
 DriversLicense license,
 AgeCalculator ageCalculator) {
 this.dateOfBirth = dateOfBirth;
 this.gender = gender;
 this.license = license;
 this.ageCalculator = ageCalculator;
 }

 private double calculateAgePremium() {
 int age = ageCalculator.calculateAge(dateOfBirth);
 double agePremium;
 if(age < 25){
 agePremium = 0.05;
 } else
 if (age > 70){
 agePremium = 0.04;
 } else {
 agePremium = 0.03;
 }
 return agePremium;
 }

In our test, it makes no difference what we specify the motorist’s
date of birth to be. His age will always be “calculated” as 24.

MOCK OBJECTS

Mocks often get mixed up with stubs (and it doesn’t help that many
developers use mock object frameworks to create stubs). The
terms are routinely used interchangeably, even by renowned
experts in TDD.

But, strictly speaking, a mock isn’t a stub. The purpose of a stub is
to provide test data. The purpose of a mock is to allow us to write
tests that will fail when an interaction between our object under

CODEMANSHIP | TDD |108

test and one of its collaborators doesn’t happen in the way we say
it should.

 @Test
 public void tellsAuditToLogQuote() throws Exception {
 int quantity = 100;
 String stock = "X";
 StockPricer pricer = new StockPricerStub(10);
 Audit audit = mock(Audit.class);
 double quotedPrice =

new TradeQuote(pricer, audit)

.quote(stock, quantity);
 verify(audit).log(stock , quantity , quotedPrice);
 }

Suppose we get a new requirement for our TradeQuote to log each
quote generated for audit purposes.

We don’t want to have to inspect the audit log to find out if
TradeQuote called the log() method. And if logs are written to a file
or a database, we definitely don’t want TradeQuote to talk to the
real thing in our fast-running unit test.

We can mock Audit – in this example using Mockito
(www.mockito.org) – and then verify that the interaction took
place. Before we write the code to pass this interaction test, we run
the test to see that our mock assertion (i.e., verify) fails.

CODEMANSHIP | TDD |109

To pass the test, TradeQuote needs to call log() with the right
parameter values.

 public double quote(String stock, int quantity)
throws InvalidTradeException {

 try {
 double quotedPrice =

pricer.getPrice(stock) * quantity;
 audit.log(stock, quantity, quotedPrice);
 return quotedPrice;
 } catch (StockNotFoundException e) {
 throw new InvalidTradeException(e);
 }
 }

Note that, although we used the StockPricer stub, this test isn’t
about the calculation of the quote. It’s about whether or not
TradeQuote tells Audit to log the quote.

Think back to the chapter on design principles, and Tell, Don’t Ask.
Using traditional test assertions, we would have needed to provide
a way for our test to query the internal state of Audit to check if the
log had been written. This breaks encapsulation unnecessarily.

CODEMANSHIP | TDD |110

Logging quotes isn’t TradeQuote’s job. Telling Audit to log the
quote is.

This is why mock objects were invented: to allow us to more easily
test-drive designs made up of objects that Tell, Don’t Ask. In this
sense, mocks are not really a testing tool. They’re a design tool,
helping us to test-driven designs that are more loosely coupled.

ABUSING MOCK OBJECT FRAMEWORKS

Originally intended as a design tool for TDD, mock object
frameworks can help us to test-drive objects that are loosely
coupled and that Tell, Don’t Ask. But they can be easily abused,
ending up with code that is more difficult to change.

Many developers rely on mocks as a crutch for writing tests for
poorly designed code. When your designs look like this:

Then things can get a bit sticky in our test code. The problem is that
mocking frameworks expose internal details about which methods
should get called. Just as surely as lots of getters break object
encapsulation, so too does lots of mocking code.

If we wanted to refactor this design to make it more loosely
coupled:

: InsuranceQuote : Motorist : License

calculatePremium(carValue)

getLicense()

getDateOfBirth()

getGender()

getDateIssued()

getPoints()

CODEMANSHIP | TDD |111

It would break a whole bunch of tests that explicitly rely on there
being getters instead.

The whole purpose of mocks is to help us come to a Tell, Don’t Ask
design in the first place. Abuse and over-reliance on mock objects
can effectively bake in a bad design.

DUMMIES

Blink and you might have missed the fact that we already used
dummy objects in some of the tests in this chapter.

A dummy is an object that won’t be used in our test – of, if it is used,
we don’t care about it – but that has to be included so that we can
compile and run the test.

@Test
public void driverUnder25PaysFivePercentPremium() {
 Motorist motorist = new Motorist("01/01/1900",

Gender.MALE,
null,
new AgeCalculatorStub(24));

 assertEquals(0.05,
motorist.calculateAgePremium(), 0);

}

In this test, notice how we pass in a null value for license to the
Motorist constructor. We have to pass in something, or the test
code won’t compile. But this test doesn’t involve a DriversLicense,
so null is the simplest thing we can use.

It might be that the code we’re testing calls methods on a dummy
– but those methods don’t return any data (so we don’t need to

: InsuranceQuote : Motorist : License

calculatePremium(carValue)

calculatePremium(carValue)

calculatePremium(carValue)

CODEMANSHIP | TDD |112

use a stub) – in which case we can use the Null Object design
pattern.

A Null Object is an empty implementation of an interface that we
can call methods on, but those methods don’t do anything.

A Null Object implementation for DriversLicense would require a
pure interface, with a dummy implementation that looks like this:

public interface License {

 public abstract void addPoints(int points);

}

public class LicenseDummy implements License {

 @Override

 public void addPoints(int points) {

 }

}

When our code under test invokes addPoints() on our dummy
license, nothing happens. But if the license parameter value was
actually null, we’d get an unhandled exception.

Another way of creating Null Objects is using a mock objects
framework.

@Test
public void tradePriceIsStockPriceTimesQuantity(){
 String stock = "INTEL";
 StockPricer pricer = new StockPricerStub(10);
 TradeQuote trade =

new TradeQuote(pricer, mock(Audit.class));
 assertEquals(1000, trade.quote(stock , 100), 0);
}

In this example, we use a mock Audit object as a dummy. The test
isn’t about the interaction with the mock. It’s about the calculation
of the quote. But we know that Audit.log() will be invoked, so
passing in a mock object takes care of that. Mockito will generate

CODEMANSHIP | TDD |113

an implementation of the Audit interface that’s effectively a Null
Object.

WHOSE INTERFACE IS IT ANYWAY?

Imagine, in our example, that our external stock price provider has
created a convenient Java API for using their service.

public interface AcmeStocks {

 public double price(String stockSymbol);

}

Why not use implementations of this to create our test doubles?

If we did, this could cause problems later on. First of all, the design
of this interface is beyond our control. We’ll need to keep our Acme
Stocks API up-to-date, because it connects to a live web service. So
every time Acme Stocks change our API, we’ll have to change our
code that depends on it.

Also, what happens if Acme Stocks go bust? Or if we find a provider
who offer better terms and want to switch? If our TradeQuote logic
depends directly on their interface, we may have to rewrite all that
code.

It’s best to protect our code from direct external dependencies like
this, by declaring our own interfaces, that we control, that will
allow us to swap implementations without rewriting big chunks of
our application logic.

True that, somewhere in our code, we’ll have to live with the direct
dependency. But aim to isolate that dependency, keeping it as
small as possible, and in one easily-swapped placed. We’ll discuss
test-driving integration code in the next chapter.

CODEMANSHIP | TDD |114

MOCKS VS. STUBS VS. DUMMIES

What distinguishes a mock from a stub from a dummy is not how
these test doubles are implemented, but how they are used in our
tests.

We can create stubs and dummies using mock object frameworks.
E.g.

@Test
public void tradePriceIsStockPriceTimesQuantity(){
 String stock = "INTEL";
 StockPricer pricer = mock(StockPricer.class);
 when(pricer.getPrice(stock)).thenReturn(10.0);
 TradeQuote trade =

new TradeQuote(pricer, mock(Audit.class));
 assertEquals(1000, trade.quote(stock , 100), 0);
}

We created pricer using the mock() method, but set it up to return
test data. This test isn’t about the interaction with the StockPricer,
it’s about the calculation of the quote. Therefore pricer is a stub,
not a mock.

And, in the same test, we use mock() to create a dummy
implementation of Audit. Again, it’s not a mock if our intention isn’t
to test that methods on the Audit object are invoked.

Finally, we can create mock objects without using mocking
frameworks. At their essence, mock objects are just
implementations of interfaces that remember when their methods
are invoked (and with what parameter values), allowing us to test
the interactions between objects in our designs.

There are many ways this could be achieved in code. A simple way
in Java might be to use anonymous classes to implement interfaces,
with method implementations that record interactions.

(Indeed, according to a pioneer of mock objects, Steve Freeman,
this is how they started.)

CODEMANSHIP | TDD |115

public class LibraryTests {

 private boolean awardPriorityPointsInvoked;
 private boolean registerCopyInvoked;

 @Test
 public void tellsTitleToRegisterCopy() {
 registerCopyInvoked = false;
 Member member = new Member(){

public void awardPriorityPoints(int points){}
 };
 Title title = new Title(){
 public void registerCopy(){
 registerCopyInvoked = true;
 }
 };
 new Library().donate(title, member);
 assertTrue("title.registerCopy() was not invoked",

registerCopyInvoked);
 }

 @Test
 public void tellsMemberToAwardTenPriorityPoints() {
 awardPriorityPointsInvoked = false;
 Member member = new Member(){
 public void awardPriorityPoints(int points){
 awardPriorityPointsInvoked = (points == 10);
 }
 };
 Title title = new Title(){ public void registerCopy(){}};
 new Library().donate(title, member);
 assertTrue(

"member.awardPriorityPoints(10) was not invoked",
awardPriorityPointsInvoked);

 }

}

So, a dummy isn’t a mock just because it was created using a
mocking framework. And you don’t need to use a mocking
framework to create mock objects.

Remember:

1. If it’s there to provide test data, it’s a stub.
2. If it’s not important, but has to be there for the test to

compile and run, it’s a dummy.
3. If we’re using it to test object interactions, it’s a mock.

CODEMANSHIP | TDD |116

EXERCISE #11

Test-drive some code that compares prices on TVs from three
different sources:

1. Screen Bargains – an online TV retailer with a web API
2. Acme TV – a retail chain with an old-fashioned TCP/IP

Electronic Data Interchange interface
3. Televizion – a mail order company who provide a monthly

price list in an Excel spreadsheet

By specifying a make and model of television, your code will find
the best price and recommend that retailer. If more than one
retailer is offering the same best price, your code will list them all.

Searches also trigger a message to be sent to your ad targeting
engine, detailing the make and model of TV the user is interested
in.

Apply all of the TDD principles and practices we’ve looked at so far,
and use test doubles appropriately to provide the test data that
would normally come from these 3 external sources, and to test-
drive sending a message to the ad targeting engine. For any objects
in your test that need to be there so it will run, but won’t be used,
use a dummy.

CODEMANSHIP | TDD |117

15. TEST-DRIVING INTEGRATION
CODE

Summary:

 Minimise code that needs to be integration tested, so you
have to live with as few slow-running tests as possible

 Aim for < 5% integration code (and <5% integration tests)

 Isolate and minimise duplication of code that has external
dependencies

 Use dependency injection to make integration code easily
swappable

 Group fast-running and slow-running tests separately, so
we can easily choose which kind to run

 For ultimate flexibility, package integration code separately

Imagine we needed to test-drive some code that calculates average
ratings of video titles supplied by an external website called Rotten
Potatoes.

We could stub the service that fetches the reviews for a title, so we
can test the calculation of the average.

CODEMANSHIP | TDD |118

@Test
public void averageVideoRatingIsTotalDividedByCount() {
 String name = "Jaws 3D";
 Title title = new Title(name);
 Review[] reviews = new Review[2];
 reviews[0] = new Review(name, 3, "");
 reviews[1] = new Review(name, 2, "");
 ReviewsService reviewsService =

new ReviewsServiceStub(reviews);
 VideoStats videoRating =

new VideoStats(title, reviewsService);
 assertEquals(2.5, videoRating.average(), 0);
}

This gives us a fast-running test for the calculation. But at some
point, surely, we’re going to have to write some code that actually
connects to Rotten Potatoes’ API, right?

Let’s write a test for a production implementation of
ReviewsService.

public class JSONReviewsServiceTests {

 @Test
 public void reviewsTestServiceHasTwoReviewsOfJaws3D() {
 ReviewsService service =
 new JSONReviewsService(
 "http://localhost:8080/rottenpotatoes/json/reviews/");
 Review[] reviews = service.fetchReviews("Jaws 3D");
 assertEquals(2, reviews .length);
 }

}

When we run this test, it will connect to a test reviews server at the
URL specified and use an HTTP GET to retrieve all reviews for Jaws
3D (of which we know there are two, because we control that test
data.)

In our implementation, a bunch of stuff happens:

CODEMANSHIP | TDD |119

public class JSONReviewsService implements ReviewsService {

 private final String url;

 public JSONReviewsService(String REST_url) {
 this.url = REST_url;
 }

 @Override
 public Review[] fetchReviews(String titleName) {
 String json = "";
 try {
 url += URLEncode.encode(titleName, “UTF-8”) + “/get”;
 CloseableHttpClient httpClient =

 HttpClients.createDefault();

 HttpGet getRequest = new HttpGet(url);
 getRequest.addHeader("accept", "application/json");
 HttpResponse response;
 response = httpClient.execute(getRequest);

CODEMANSHIP | TDD |120

 if (response.getStatusLine().getStatusCode() != 200) {
 throw new RuntimeException(

"Failed : HTTP error code : "
 + response.getStatusLine().getStatusCode());
 }

 BufferedReader br =

new BufferedReader(new InputStreamReader(
 (response.getEntity().getContent())));

 String output;

 while ((output = br.readLine()) != null) {
 json += output;
 }

 httpClient.close();

 } catch (ClientProtocolException e1) {
 e1.printStackTrace();
 } catch (IOException e1) {
 e1.printStackTrace();
 }

 JSONArray jsonReviews = new JSONArray(json);
 Review[] reviews = new Review[jsonReviews.length()];

 for (int i = 0; i < jsonReviews.length(); i++) {
 JSONObject obj = jsonReviews.getJSONObject(i);
 reviews[i] =
 new Review(obj.optString("title"),
 obj.optInt("rating"),
 obj.optString("comment"));

}
 return reviews;
 }
}

If we write a data service like this for every kind of externally-
provided data in our application, we could wind up with a lot of
code that has to be integration tested, and a large suite of slow-
running tests.

Remember our design principles: is this JSONReviewsService doing
one specific thing?

In fact, it does two things:

1. Fetch the JSON data from the reviews server

CODEMANSHIP | TDD |121

2. Parse the data and build an array of reviews

Let’s refactor this design into two classes.

 @Override
 public Review[] fetchReviews(String titleName) {
 RESTClient client = new RESTClient(url);
 String json = client.get(titleName);

 JSONArray jsonReviews = new JSONArray(json);
 Review[] reviews = new Review[jsonReviews.length()];

 for (int i = 0; i < jsonReviews.length(); i++) {
 JSONObject obj = jsonReviews.getJSONObject(i);
 reviews[i] =
 new Review(obj.optString("title"),
 obj.optInt("rating"),
 obj.optString("comment"));

}
 return reviews;
 }

Next, let’s compose it from the outside, using dependency injection
to make RESTClient swappable.

public class JSONReviewsService implements ReviewsService {

 private final Client client;

 public JSONReviewsService(Client client) {
 this.client = client;
 }

 @Override
 public Review[] fetchReviews(String titleName) {
 String json = client.get();

RESTClient – from which we extracted the Client interface - gets its
own integration test, which has nothing to do with reviews or
ratings.

CODEMANSHIP | TDD |122

public class RESTClientTests {

 @Test
 public void returnsDataFromSpecifiedRESTurl() {
 String url = "http://localhost:8080/resttest/json/test";
 RESTClient client = new RESTClient(url);
 assertEquals("[{ foo : 0 }]", client.get("foo"));
 }
}

We can easily separate this slow-running integration test from the
fast-running tests, enabling us to choose whether to run only unit
tests, or only integration tests. (Or all tests).

We can reuse RESTClient for other services. Say, for example, we’re
asked to pull a release schedule of new video titles from an online
retailer’s REST API.

We can even go a step further, and package our integration code
(and associated tests) separately, so it can be reused in other
development projects. (NB: in this context, “package” means a unit
of release, like a Java JAR file, or a DLL in .NET.)

CODEMANSHIP | TDD |123

The Videos package only depends directly on the ServiceClient
package, which the REST package extends. This would give us
ultimate flexibility. We could even swap in new Client
implementations without stopping the application.

Our refactored design offers us three opportunities we didn’t have
before:

 We can stub Client when testing JSONReviewsService, and
test that the JSON data is parsed correctly by itself

 @Test
 public void fetchesReviewsForTitle() {
 String reviewsJson = "[" +
 "{title : \"Jaws 3D\", rating : 3, comment: \"\"}," +
 "{title : \"Jaws 3D\", rating : 3, comment: \"\"}," +
 "]";
 ReviewsService service =
 new JSONReviewsService(

new ClientStub(reviewsJson));
 Review[] reviews = service.fetchReviews("Jaws 3D");
 assertEquals(2, reviews.length);
 }

 We can reuse RESTClient for other kinds of data that needs
to be retrieved from a REST service. All it needs is the URL
and parameter values.

 We can substitute a different client implementation
dynamically, which can help us if there are multiple data
sources, or if we’re load-balancing across multiple REST
servers.

Videos

VideoStats
<< interface >>
ReviewsService

JSONReviewsService

ServiceClient

<< interface >>
Client

REST

RESTClient

CODEMANSHIP | TDD |124

In practice, code that has direct external dependencies can be
greatly minimised by following the design principles of minimising
duplication, giving methods and classes a single responsibility, and
composing objects from the outside. I typically find integration
code need only make up less than 5% of the code in an application,
and therefore less than 5% of the tests.

We can do the maths; integration code is – by its very nature - at
the edges of our system, meaning that changes to inner code (UI
logic, controllers, business logic, etc) usually can’t break it. And, as
it’s less than 5% of the total code, we might expect to be changing
it less than 5% of the time. Which means we need to run our
integration tests 20x less often than our unit tests.

If we’re well-organised about it, slow-running integration tests
don’t have to be a burden.

There’s more refactoring that needs be done to improve this code.
We’ve made it easier by minimising and isolating the integration
code.

EXERCISE #12

Continuing with the same code you write for Exercise #11 (“Test-
drive some code that compares prices on TVs from three different
sources”), rig up test versions of those 3 data sources (a web
service, a simple TCP/IP daemon, and an Excel spreadsheet). Set-up
a local file to store audit logs.

Test-drive implementations that will get data from or write data to
these external sources. Try as much as possible to isolate the
external dependencies and minimise the code that really needs to
be integration tested.

CODEMANSHIP | TDD |125

16. TDD WITH THE CUSTOMER

Summary:

 Examples help us to pin down the precise meaning of
requirements

 We can extract data from customer examples to use in
tests

 A user story is a placeholder to have a conversation with
the customer where we agree tests that will act as our
requirements specification

 Writing tests is a skilled job, and the customer will probably
require our assistance to produce effective tests

 The customer’s tests must define every input scenario the
software will need to handle

 Negotiate feature scope and complexity by negotiating
tests

 If you realise test cases have been missed, go back to the
customer to agree new tests. You are not the customer

 A feature isn’t “done” until it passes the customer’s tests

 Work in vertical slices, delivering working software that
passes the customer’s tests

 Making customer tests machine-executable guarantees
absolute precision

 Tools like FitNesse allow customers to provide test data we
can use in executable specifications

 Once we have a failing customer test, we can implement a
design that will pass the test

 Close customer involvement is vital. There’s no
workaround or substitute that works anywhere near as
well.

CODEMANSHIP | TDD |126

A common misconception about TDD is that it focuses on unit tests
and the internal design of our software. In fact, the tests that drive
our designs can be written at any level of design. They could be
system tests that drive the software through an external interface,
integration tests that drive the interactions between systems,
services or components, or unit tests that drive the design of our
classes.

An increasingly popular application of using tests as specifications
helps us to communicate with our customers, building a precise
shared understanding of what is required from the software.

SPECIFICATION BY EXAMPLE

Decades of experience working with customers to understand their
requirements has taught us that the best way to pin down exactly
what the customer wants is to use examples.

In real life, someone might specify that they like their coffee “hot”
and “sweet”. But how hot is “hot”, and how sweet is “sweet”?

We could ask the customer to specify the precise temperature they
like their coffee served at (e.g., 90°C), and the exact sugar content

“hot”

“sweet”

CODEMANSHIP | TDD |127

they desire (40g/L). But, chances are, they don’t know what the
precise temperature is, or exactly how many grams of sugar per
litre. As expert baristas, we may think in those terms: our customer
probably doesn’t.

To understand how our customer really likes their coffee, we could
ask them to give us an example cup that they believe is just right,
and extract data from that example about the precise temperature
and sugar content.

To flesh out our understanding of how customers want their coffee,
we could ask for more examples. Maybe Jack likes his coffee “hot
and sweet”, but Jane likes it “white with no sugar” and Rajesh likes
it “milky with one lump”. Exactly how much milk do we put in to
make the coffee “white”? How much more to make it “milky”? How
much sugar is there in “one lump”? And so on.

We can apply the same technique to pinning down software
requirements. A customer may ask that:

“When a movie title is added to the library, members who expressed
an interest in borrowing it are alerted”

Which movie title? Who expressed an interest in borrowing it? How
do we know they’re interested?

“hot” = 90°C

“sweet” = 40g/L sugar

CODEMANSHIP | TDD |128

By asking the customer to give a specific example, we can remove
the ambiguity from their specification:

“When movie title The Abyss is added to library, members
joepublic, janedoe and fredbloggs are alerted because they
expressed an interest in borrowing titles containing ‘abyss’ “

In Extreme Programming, we agree the precise details of user
stories using customer test examples as our specifications.

This requires us to work very closely with our customers. Don’t let
them leave the room until you’ve got a good set of customer tests
to work from. And don’t write a line of implementation code unless
you have a failing customer test that requires it.

If you are disciplined and rigorous about it, your customer will soon
learn that if there isn’t a test for it, they ain’t getting it.

USER STORIES – PLACEHOLDERS FOR CONVERSATIONS

In Extreme Programming, customers request new features and
changes to existing features by writing user stories. A user story is
not, in itself, a requirements specification. It contains just enough
information to uniquely identify the requirement, and serves
purely as a placeholder to remind the developers to have a
conversation with the person who wrote the user story to agree the
details.

CODEMANSHIP | TDD |129

In a test-driven approach, when developers pick up a user story to
work on, the output of this conversation with the customer should
include a set of tests that precisely specify what’s required.

Customers are usually not software testers, so we must offer them
guidance on this process and help them to identify the test
scenarios we’ll need to consider (e.g., if they ask for new library
members to choose a password when they join, we might ask the
customer to consider what should happen if the password they
choose is too weak, or what should happen if the password field is
left blank, and so on.)

Teams that expect customers to go away and write the tests
themselves could be waiting a long time. This is a technical skill that
takes a long time to master. If you have dedicated testers on your
team, this is one area where they can prove very useful, helping the
customer to articulate their needs as tests.

In our example, working with the customer, we identify several
tests that the system will need to pass:

CODEMANSHIP | TDD |130

 Donating a movie title that isn’t in the library (the “happy
path”)

 Donating multiple copies of the same movie title

 Donating a copy of a movie title that the library already has
copies of

 Donating a copy of a “blockbuster” movie title (one that’s
highly sought after by members, earning double the
reward points)

TEST COMPLETENESS & TEST SCOPE

Writing good tests for a user story can require a considerable time
investment from everyone involved, and this can encourage teams
to rush the process. When we miss test cases that our code will
need to handle, we end up with an incomplete specification, and –
ultimately – incomplete software.

The software must meaningfully handle every input that its
interface allows, so we’ll need at least one test to cover every
unique possibility.

If a user story generates too many tests, then that is a sign that it’s
too complicated. We can break complex stories down into sub-
requirements, as well as limiting test cases by simplifying or
constraining the allowable inputs.

For example, we could split “Donate a DVD” into “Donate a single
copy of a DVD” and “Donate multiple copies of a DVD”. Or we could
decide that users can only donate one copy at a time (since it will
probably be a rare occurrence for them to own multiple copies of
the same movie title.)

What we must never do is allow an input that the software doesn’t
handle. For example, if the library’s user interface allows members
to donate more than one copy, but the code only registers one
copy.

CODEMANSHIP | TDD |131

Writing tests with the customer is often a negotiation over the
software’s scope, so be prepared to help them get working
software sooner by limiting that scope.

THE TESTS WE DIDN’T THINK OF

Try as we might to identify every test case for a user story before
we start writing code, the maxim “the map is not the terrain” will
inevitably apply.

While test-driving an implementation of our movie title class, we
might discover that it’s possible for there to be two different
movies with the same name. (For example, there are two movies
called “The Thing”.) How do we disambiguate them in the library?

We could identify movies by both the name and the year of release
(e.g., “The Thing (1982)” and “The Thing (2011)”).

But this is not a change we can make without rethinking our user
interface. As developers, we must be aware that every line of code
we write in some way defines the user’s experience.

If a change to the code will mean a change to the externally visible
or measurable functioning of the software, then we shouldn’t make
that decision by ourselves. It’s really a decision for the customer.

When you hit new test cases during implementation, take them to
the customer and specify the changes with them as part of their
tests for that feature.

DEFINITION OF “DONE”

In a test-driven approach to development, the customer’s tests
provide us with a clear understanding of what they need from the
software.

CODEMANSHIP | TDD |132

Going back to our coffee example, we can deliver as many cups of
coffee to the customer as we like, but we’re not done until we’ve
delivered a cup that passes their test (90°C with 10g/L of sugar).

The customer should not accept a delivery until it passes their tests,
and this is why we often refer to them as acceptance tests.

This not only helps us to pin down requirements, clearing up
possibly very costly misunderstandings, it can also help us to
measure our progress much more objectively.

Software developers are notorious for saying they are “90% done”
when completion of really still a long way off. But when we assess
completeness based on passing customer tests (e.g., it passes 90%
of the customer’s tests), we find we get a much more realistic
picture of where we are.

GETTING TO “DONE” IN VERTICAL SLICES

Some teams make the mistake of working on application layers,
instead of cutting vertical slices through those layers. So by the
release date they may end up writing, say, two thirds of the code,
but not get as far as implementing the user interface, or wiring in
the database, so none of the features can be used.

Other teams make the mistake of going through a specific
development activity for all of the features (i.e., “we’ll design it all,

Feature Progress % UI Services Domain DB

Donate a DVD 70% 0% 80% 100% 100%

Borrow a DVD 75% 0% 100% 100% 100%

Join the library 65% 0% 60% 100% 100%

Refer a friend 75% 0% 100% 100% 100%

Review a movie 75% 0% 100% 100% 100%

Search for titles 50% 0% 0% 100% 100%

Report DVD lost or damaged 50% 0% 0% 100% 100%

Reverse a DVD 50% 0% 0% 100% 100%

Spend reward points 75% 0% 100% 100% 100%

Transfer reward points 75% 0% 100% 100% 100%

Total progress 66%

CODEMANSHIP | TDD |133

then code it all, then we’ll test it all”). Again, the risk if they only
manage to get two thirds of the work done before the release date,
they’ll have a whole bunch of untested features at the finish line.

Driving development with customer tests encourages to organise
ourselves around delivery of working features. If we only manage
to do two-thirds of the work, we should finish up with two-thirds of
the features tested and working.

Cut vertical slices through both your architecture – UI, services,
domain, database - and your development process – analysis,
design, coding, testing, release – to ensure that when you say
you’re 66% “done”, you really are 66% done, and the customer can
benefit from their investment.

Feature Progress % Analysis Design Coding Testing

Donate a DVD 75% 100% 100% 100% 0%

Borrow a DVD 75% 100% 100% 100% 0%

Join the library 68% 100% 100% 70% 0%

Refer a friend 70% 100% 100% 80% 0%

Review a movie 50% 100% 100% 0% 0%

Search for titles 50% 100% 100% 0% 0%

Report DVD lost or damaged 63% 100% 100% 50% 0%

Reverse a DVD 63% 100% 100% 50% 0%

Spend reward points 75% 100% 100% 100% 0%

Transfer reward points 75% 100% 100% 100% 0%

Total progress 66%

Feature Progress % Total Tests Passed

Donate a DVD 60% 5 3

Borrow a DVD 100% 4 4

Join the library 100% 2 2

Refer a friend 100% 2 2

Review a movie 100% 4 4

Search for titles 0% 4 0

Report DVD lost or damaged 0% 2 0

Reserve a DVD 0% 2 0

Spend reward points 100% 2 2

Transfer reward points 100% 1 1

Total progress 66%

CODEMANSHIP | TDD |134

Organise your team around the question “who do we need to
deliver this working feature?”

EXECUTABLE SPECIFICATIONS

When it comes to specifications, there’s “precise”, and then there’s
“precise enough to be executed by a computer”.

To completely eliminate ambiguity from customer specifications,
many development teams write automated tests that check the
software works as desired for each example.

There are many tools available for providing customer example
data to automated tests, but the basic design pattern is always the
same: paramaterised test with customer data.

We write a parameterised test – much as we’ve done throughout
this book – and then data provided by the customer, captured in a
file format they themselves can edit (e.g., a table in a Wiki page, or
a worksheet in a spreadsheet), is sucked in to provide the
parameter values.

A popular tool is FitNesse (www.fitnesse.org), written by Robert C.
Martin. It enables customers to write their examples on Wiki pages,
providing the example data in tables which can then be extracted
and used by automated tests.

CODEMANSHIP | TDD |135

In this example, the customer has written a general description of
their test in the Given…When…Then format prescribed by a variant
of TDD called Behaviour-Driven Development.

The Given clause describes the setup for the test. The When clause
describes the action being tested. And the Then clause describes
the desired outcomes (essentially, the test assertions.)

Underneath that, our customer has provided test data in a table for
a specific example, which we will use in our automated FitNesse
test.

To automate a FitNesse test like this one, we just need to write a
fixture – a plain old Java object that has the name we assigned to
the table, DonateFixture.

The inputs will be provided through setters on our object with
names that match the columns title and donor. The outputs will be

CODEMANSHIP | TDD |136

accessed through getters that match the columns libraryContains,
copyCount, rewardPoints, emailSubject, emailBody and recipients.
If the values of these outputs don’t precisely match the data in the
table, the test will fail.

public class DonateFixture {

 public void setDonor(String memberId){}

 public void setTitle(String name){}

 public boolean libraryContains(){ return false; }

 public int copyCount(){ return 0; }

 public int rewardPoints(){ return 0; }

 public String emailSubject(){ return null; }

 public String emailBody(){ return null; }

 public String recipients(){ return null; }
}

If we were to run our FitNesse test – by clicking on the Test link at
the top of the page – we would see that, for now, we have a failing
customer test.

CODEMANSHIP | TDD |137

In the next chapter, we’ll test-drive an implementation that will
pass this test using the techniques we’ve learned so far.

THE CUSTOMER CANNOT BE REPLACED

Usually, for organisational reasons, development teams struggle to
get the level of customer involvement a test-driven approach to
requirements specification requires.

It can take up hours of their time each week thrashing out tests for
user stories, and they also need to be available to confirm that the
software we delivered does indeed pass their acceptance tests.

They might prefer to do all of this in the early stages of
development, and then not get involved again until it’s ready to be
released. This traditional model of customer engagement has

CODEMANSHIP | TDD |138

dominated software development for decades, and it’s the
expectation of many customers and managers.

And, although tools like FitNesse are far more customer-friendly
than unit tests, they still present a non-trivial learning curve for
non-technical stakeholders. This is why 80% of teams end up
writing the “customer tests” themselves, or employ a dedicated
analyst or tester to do it on behalf of the customer.

Be absolutely clear that just because the software passes the
“acceptance tests”, that doesn’t necessarily mean it will be
accepted. Only the customer can decide that. They must be closely
involved in writing the tests, and must see the software pass them
with their own eyes.

You must move mountains if necessary to get the customer
involved. And don’t compromise on the Golden Rule – if the
customer hasn’t agreed a failing test for it, we don’t write that
code.

CODEMANSHIP | TDD |139

EXERCISE #13

Working with a friend or colleague who will act as your customer,
agree a set of user stories (no more than 6) for a software
application that solves a problem for them.

Ask your customer to pick what they believe is the most important
user story, and work with them to define a set of executable
customer tests – using real example data – and capture those tests
using a tool like FitNesse.

Starting with the most useful test example (usually the “happy
path” where the end user achieves their goal), implement just
enough of an automated test to see it fail.

CODEMANSHIP | TDD |140

17. DRIVING DESIGN FROM
CUSTOMER TESTS

Summary:

 The design process starts with a failing customer test

 Identify the work the software has to do to pass the test

 Identify what data is needed to do each piece of work

 Assign responsibility for doing the work to objects that will
own the needed data (remember Tell, Don’t Ask)

 Choose meaningful names for those objects, drawing
inspiration directly from the customer’s test

 For each unique assertion in the customer’s test, test-drive
an implementation that will make that part “go green”
using the techniques we’ve explored in this book so far

 Wire each worker object into the automated customer test
fixture, and see it pass before moving on to the next
assertion

 Keep running the customer test. Feedback, feedback,
feedback!

 Use test doubles (stubs, mocks, dummies) to exclude
external dependencies from the automated customer test,
and to allow us to “fake it ‘til we make it” for any
components we don’t want to implement yet

 When the whole customer test is passing, consider
speeding up execution by adapting the test fixture to also
run as an xUnit test, if possible

 Just because we’ve passed the automated customer test,
that doesn’t mean we’re “done” yet

CODEMANSHIP | TDD |141

In the previous chapter, we explored how we can pin down precise
requirements specifications by agreeing executable tests with our
customers.

In this chapter, we’ll look at how we can drive the internal design
of our software directly from these tests.

START WITH A FAILING CUSTOMER TEST

For the user story “Donate a DVD”, we agreed a test with our
customer for the happy path, which we captured on a FitNesse Wiki
page, and made it into an executable specification with an empty
Java test fixture.

Remember the first of the four principles of Simple Design: the
software must work.

CODEMANSHIP | TDD |142

Our ultimate goal, which we will return to continuously throughout
the implementation process, is to pass this test.

We want short feedback loops, and therefore to tackle the design
in small discrete “chunks”. We’ll tick off each outcome our test
requires one a time, verifying that it works by running the FitNesse
test.

IDENTIFY THE WORK

The first outcome we need to satisfy is that, after it’s been donated,
the library should contain that title.

So, the first piece of work our implementation needs to do is add
the donated title to the list of available titles in the library.

IDENTIFY THE KNOWLEDGE NEEDED TO DO THE WORK

If our design is going to be effectively modular, then we should aim
for classes that are cohesive and loosely coupled. The design
principle of Tell, Don’t Ask applies here.

The work of adding the donated title to the list of available titles
should be placed in the class that knows about available titles.
What we need next is to think of a good name for this class.

NAME THE WORKER

Using an idea we explored in Speaking The Customer’s Language,
let’s run our requirements specification through a tag cloud
generator and see if there’s a name that jumps out at us.

CODEMANSHIP | TDD |143

Since the list of available titles is part of the library, it makes sense
to call this class Library.

Let’s test-drive an implementation of Library to make it do this
work.

TEST-DRIVING ADDING A TITLE TO THE LIBRARY

First, observing the Golden Rule, we write a failing unit test for
Library.

CODEMANSHIP | TDD |144

public class LibraryTests {

 @Test
 public void donatedTitlesAreAddedToAvailableTitles(){
 Library library = new Library();
 Title title = mock(Title.class);
 library.donate(title);
 assertTrue(library.getAvailableTitles()

.contains(title));
 }
}

Notice how I’ve used Mockito to create a dummy Title for this test.
Title, at this point, needs no implementation, only an object
identity. No need to think about the implementation of Title while
we’re focusing on Library.

public class Title {

}

Next, we write the simplest code to make this test pass.

public class Library {

 private List<Title> availableTitles;

 public Library() {
 this.availableTitles = new ArrayList<>();
 }

 public void donate(Title title) {
 availableTitles.add(title);
 }

 public List<Title> getAvailableTitles() {
 return availableTitles;
 }
}

Next, we refactor to clean up any design problems before we move
on. In this instance, we might not be happy about exposing the
internal collection availableTitles to enable the test assertion.

CODEMANSHIP | TDD |145

Let’s extract a new method that encapsulates checking if the
Library contains a title, and move it to where it belongs.

 @Test
 public void donatedTitlesAreAddedToAvailableTitles(){
 Library library = new Library();
 Title title = mock(Title.class);
 library.donate(title);
 assertTrue(library.contains(title));
 }

Finally, getAvailableTitles() is no longer being used, so let’s inline it.

public class Library {

 private List<Title> availableTitles;

 public Library() {

 this.availableTitles = new ArrayList<>();

 }

 public void donate(Title title) {

 availableTitles.add(title);

 }

 public boolean contains(Title title) {

 return availableTitles.contains(title);

 }

}

Now that we have Library doing the first piece of work, we should
wire it into the customer’s test so we can tick off that outcome.

CODEMANSHIP | TDD |146

public class DonateFixture {

 private Library library;
 private Title title;

 public void setDonor(String memberId){
 library = new Library();
 library.donate(title);
 }

 public void setTitle(String name){
 title = new Title();
 }

 public boolean libraryContains(){
 return library.contains(title);
 }

Notice this time, we’re using a real instance of Title. As much as
possible, customer tests should use the real objects doing the work,
so we can better assure ourselves that our implementation works
end-to-end. The exception to this is objects that have direct
external dependencies, which will make our customer test fixtures
more complex (e.g., requiring a database set-up) and slower-
running.

Let’s run our customer test to see if we can tick off the first
outcome.

So far, so good. Let’s move on to the next outcome: there should
be one default loan copy added for the donated title. Who knows
about loan copies? A quick glance at our tag cloud suggests that

CODEMANSHIP | TDD |147

Title might be the best name for the class that has this
responsibility.

TEST-DRIVING ADDING A DEFAULT LOAN COPY TO THE
TITLE

First, let’s write a failing unit test for Title.

public class TitleTests {

 @Test
 public void defaultLoanCopyIsAdded(){
 Title title = new Title();
 title.addLoanCopy();
 assertEquals(1, title.getCopyCount());
 }
}

The simplest code to pass this test would just be to have
getCopyCount() return 1. We could triangulate the code to add loan
copies, but, in this instance, a general solution would be quite trivial
and obvious, and triangulating would be a lot of effort for very little
reward. So we’re just going to write the obvious implementation to
pass the test.

public class Title {

 private int loanCopies;

 public int getCopyCount() {

 return loanCopies;

 }

 public void addLoanCopy() {

 loanCopies++;

 }

}

At this point, there’s nothing in this code we might need to refactor,
so we can move on and wire this piece of work into our customer
test.

CODEMANSHIP | TDD |148

 public void setDonor(String memberId){
 library = new Library();
 library .donate(title);
 }

 public int copyCount(){
 return title.getCopyCount();
 }

To get this part of the customer’s test passing, we just need Library
to tell Title to add a loan copy.

public void donate(Title title) {
 availableTitles.add(title);
 title.addLoanCopy();
 }

Now we can tick the second piece of work off in our customer test.

Before we move on to the next outcome in our customer test, we
should take review our code to see if it needs refactoring.

We notice that Library only uses the addLoanCopy() method of
Title. Recall the design principle that classes should present client-
specific interfaces, to limit coupling to only what they need to see.

Let’s extract a new interface on Title for Library to use. Using our
tag cloud for inspiration, we choose the name Copyable.

CODEMANSHIP | TDD |149

public class Title implements Copyable {

 private int loanCopies;

 public int getCopyCount() {

 return loanCopies;

 }

 @Override

 public void addLoanCopy() {

 loanCopies++;

 }

}

Now we can bind Library to this interface instead of directly to Title.

public class Library {

 private List<Copyable> availableTitles;

 public Library() {

 this.availableTitles = new ArrayList<>();

 }

 public void donate(Copyable title) {

 availableTitles.add(title);

 title.addLoanCopy();

 }

 public boolean contains(Copyable title) {

 return availableTitles.contains(title);

 }

}

TEST-DRIVING REWARD POINTS

Next, we turn our attention to the third outcome of the customer’s
test.

CODEMANSHIP | TDD |150

public class MemberTests {

 @Test

 public void rewardingMemberAddsPointsToTotal() {

 Member member = new Member();

 member.reward(10);

 assertEquals(10, member.getRewardPoints());

 }

}

Again, the implementation is obvious, so we’ll just go straight for it
rather than triangulating.

public class Member {

 private int rewardPoints;

 public void reward(int points) {

 this.rewardPoints += points;

 }

 public int getRewardPoints() {

 return rewardPoints;

 }

}

And now we can wire this into the customer’s test.

 public void setDonor(String memberId){
 donor = new Member();
 library = new Library();
 library .donate(title, donor);
 }

 …

 public int rewardPoints(){
 return donor.getRewardPoints();
 }

Library will need to tell the donor (Member) to reward itself with
10 points to pass the customer’s test.

CODEMANSHIP | TDD |151

 public void donate(Copyable title, Member donor) {

 availableTitles.add(title);

 title.addLoanCopy();

 donor.reward(10);

 }

Now we can run the FitNesse test to check the result.

We’re nearly there, but before we move on to the email alert,
there’s a little bit of refactoring we need to do. Library only uses
the reward() method of Member, so let’s extract a client-specific
interface for that.

public class Member implements Rewardable {

 private int rewardPoints;

 @Override

 public void reward(int points) {

 this.rewardPoints += points;

 }

 public int getRewardPoints() {

 return rewardPoints;

 }

}

Library now only needs to bind directly to the Rewardable
interface.

 public void donate(Copyable title, Rewardable donor){
 availableTitles.add(title);
 title.addLoanCopy();
 donor.reward(10);
 }

As a final note before we move on to the email alert, we should
update LibraryTests so that it, too, only binds to these interfaces.

CODEMANSHIP | TDD |152

This will decouple the tests as well as the implementation from
details they don’t need to know.

 @Test
 public void donatedTitlesAreAddedToAvailableTitles (){
 Library library = new Library();
 Copyable title = mock(Copyable.class);
 Rewardable donor = mock(Rewardable.class);
 library.donate(title, donor);
 assertTrue(library.contains(title));
 }

TEST-DRIVING EMAIL ALERTS

The last piece of the jigsaw in our design for passing the customer’s
test is sending email alerts to members who expressed an interest
in matching titles.

There are four elements to this, so we’ll be doing it in four steps,
getting feedback with each.

1. Formatting the subject line of the email
2. Sending the email
3. Formatting the body of the email
4. Selecting the recipients

The last part will involve an external dependency. The plan will be
to do the first three pieces of work, and use a mock object to test-
driven the client-side code for the fourth part, all using fast-running
unit tests. Then we will test-drive an integration test for pushing
the email alert onto a queue, to be picked up and processed by an
external email server asynchronously.

FORMATTING THE SUBJECT LINE

In our design, we decide it makes most sense for an EmailAlert to
be created, passing the new Title into the constructor.

CODEMANSHIP | TDD |153

public class EmailAlertTests {

 @Test
 public void subjectLineIncludesNewTitleName() {
 EmailAlert alert =

new EmailAlert("The Abyss”);
 assertEquals("Now available - The Abyss",

alert.getSubject());
 }
}

Again, passing this test is trivial.

public class EmailAlert {

 private final String titleName;

 public EmailAlert(String titleName) {
 this.titleName = titleName;
 }

 public String getSubject() {
 return "Now available - " + titleName();
 }
}

Notice that this is the point where we implemented the name field
of Title, because this is the first outcome where it’s actually used.
We knew all along that this would be needed, but we only
implemented it when a test required it.

In TDD, it’s highly recommended that you think ahead about the
design, just as long as you don’t code ahead.

TEST-DRIVING SENDING THE EMAIL ALERT

Before we can wire our new functionality into the customer’s test,
we’ll need to test-drive code to send the alert to an external
message queue.

As we don’t want our FitNesse test to actually send an email, we’ll
use a mock object for this external dependency, and test that a
method is called to push the alert onto the queue.

CODEMANSHIP | TDD |154

 @Test
 public void sendingAlertPushesItOntoEmailQueue(){
 EmailQueue queue = mock(EmailQueue.class);
 EmailAlert alert =

new EmailAlert("The Abyss", queue);
 alert.send();
 verify(queue).send();
 }

Passing this test is easy.

 public void send() {

 queue.send(this);

 }

Before we move on, let’s get refactor away the duplicate set-up
code.

public class EmailAlertTests {

 private EmailAlert alert;
 private EmailQueue queue;

 @Before
 public void setupAlert() {
 queue = mock(EmailQueue.class);
 alert = new EmailAlert("The Abyss", queue);
 }

 @Test
 public void subjectLineIncludesNewTitleName() {
 assertEquals("Now available - The Abyss",

alert.getSubject());
 }

 @Test
 public void sendingAlertPushesItOntoEmailQueue(){
 alert.send();
 verify(queue).send(alert);
 }

Now we can wire this into the customer test, and use a mock
EmailQueue - at this point it’s just an interface – to capture the
subject value of the EmailAlert.

CODEMANSHIP | TDD |155

 private EmailQueue queue;
 private ArgumentCaptor<EmailAlert> alert;

 …

 public void setDonor(String memberId){
 donor = new Member();
 queue = mock(EmailQueue.class);
 alert = ArgumentCaptor.forClass(EmailAlert.class);
 library = new Library(queue);
 library.donate(title, donor);
 verify(queue).send(alert.capture());
 }

 …

 public String emailSubject(){
 return alert.getValue().getSubject();
 }

To pass the customer test, the donate() method of Library must
create an EmailAlert and invoke send().

 public Library(EmailQueue queue) {
 this.queue = queue;
 this.availableTitles = new ArrayList<>();
 }

 public void donate(Copyable title, Rewardable donor){
 availableTitles.add(title);
 title.addLoanCopy();
 donor.reward(10);
 new EmailAlert(title.getName(), queue).send();
 }

Now we can run the customer test.

CODEMANSHIP | TDD |156

FORMATTING THE EMAIL ALERT’S BODY

 @Test
 public void bodyIncludesNewTitleName() {
 String expectedText = "Dear member, " +
 "just to let you know that " +
 "The Abyss is now available to borrow";
 assertEquals(expectedText, alert.getBody());
 }

The implementation of this is trivial, too.

 public String getBody() {

 return "Dear member, " +

 "just to let you know that " +

 titleName +

 " is now available to borrow";

 }

Now we can write the code in our FitNesse fixture to make this part
of the customer test pass.

 public String emailBody(){

 return alert.getValue().getBody();

 }

Let’s run it and get some feedback.

POPULATING THE RECIPIENTS LIST – FAKE IT ‘TIL YOU MAKE
IT

In order to build a list of recipients’ email addresses, we will first
need to identify which members have expressed an interest in this
new title.

This opens a whole can of worms that we might not want to do deal
with right now. So we’re going to fake this functionality in order to

CODEMANSHIP | TDD |157

keep progressing with our “Donate a movie that isn’t in the library”
customer test.

All we need to know is which members expressed an interest,
according to our customer’s test data. A stub that provides that list
will enable us to move forward. We can revisit how matches are
found with the customer later.

Also, this piece of behaviour is not as trivial as that needed to
format the subject and the body of the alert, so we’re going to
triangulate it, starting with the simplest test case we can think of.

@Test
public void whenNoMembersInterestedRecipientsIsEmpty(){
 InterestedMemberSearch search
 = new InterestedMemberSearchStub(new String[]{});
 EmailAlert emailAlert

= new EmailAlert("X", null, search);
 assertEquals("", emailAlert .getRecipients());
}

InterestedMemberSearchStub implements an interface that
EmailAlert will use to get a list of email addresses of members who
expressed an interest in “X”.

We don’t know how it will select that list in the final
implementation. We just need to know that it will.

Note how we’re passing the stub data in to the constructor, so it’s
visible inside the test.

The simplest way to pass this test is:

 public String getRecipients() {

 return "";

 }

Let’s move on to another failing test.

CODEMANSHIP | TDD |158

@Test
public void whenOneMemberInterestedRecipientsIsSingleEmail(){
 InterestedMemberSearch search
 = new InterestedMemberSearchStub(

new String[]{"x@y.com"});
 EmailAlert emailAlert =

new EmailAlert("X", null, search);
 assertEquals("x@y.com", emailAlert .getRecipients());
}

Which we can pass by doing:

 public String getRecipients() {
 String recipients = "";
 String[] memberEmails = search.byTitle(titleName);
 for (int i = 0; i < memberEmails.length; i++) {
 recipients += memberEmails[i];
 }
 return recipients;
 }

Next, let’s refactor the test code to consolidate these two very
similar tests into a single JUnitParams parameterised test.

 @Test
 @Parameters(method="recipientsParams")
 public void recipientsListIsInterestedMemberEmails(
 String[] memberEmails,
 String recipients) {
 InterestedMemberSearch search
 = new InterestedMemberSearchStub(memberEmails);
 EmailAlert emailAlert = new EmailAlert("X", null, search);
 assertEquals(recipients, emailAlert .getRecipients());
 }

 private Object[] recipientsParams(){
 return new Object[][]{
 {new String[]{}, ""},
 {new String[]{"x@y.com"}, "x@y.com"}
 };
 }

Lastly, we need to handle lists of more than one interested
member, adding comma separation.

CODEMANSHIP | TDD |159

 private Object[] recipientsParams(){
 return new Object[][]{
 {new String[]{}, ""},
 {new String[]{"x@y.com"}, "x@y.com"},
 {new String[]{"x@y.com", "a@b.com"},

"x@y.com, a@b.com"}
 };
 }

Which we can pass by doing:

 public String getRecipients() {
 String recipients = "";
 String[] memberEmails = search.byTitle(titleName);
 for (int i = 0; i < memberEmails.length; i++) {
 recipients += memberEmails[i];
 if(i < memberEmails.length - 1){
 recipients += ", ";
 }
 }
 return recipients;
 }

This is pretty old-fashioned imperative code for Java 8. Let’s
refactor it to make it declarative and less prone to breaking if it has
to change.

 public String getRecipients() {
 String[] memberEmails = search.byTitle(titleName);
 if(memberEmails.length > 0)
 return Arrays.asList(memberEmails)
 .stream()
 .reduce((current, next) -> current + ", " + next)
 .get();
 return "";
 }

This should handle any valid list of member emails. Now let’s wire
it into the FitNesse test.

CODEMANSHIP | TDD |160

 private InterestedMemberSearch search;

 public DonateFixture(){
 search = new InterestedMemberSearchStub(
 new String[]{
 "joepublic@mymail.io",
 "janedoe@hotfrogs.org.uk",
 "fred@bloggs.eu"
 }
);
 }

…

 public void setDonor(Strting memberId){

 donor = new Member();
 queue = mock(EmailQueue.class);
 alert = ArgumentCaptor.forClass(EmailAlert.class);
 library = new Library(queue, search);
 library .donate(title, donor);
 verify(queue).send(alert.capture());
 }

 …

 public String recipients(){
 return alert.getValue().getRecipients();
 }

Let’s run the test to get our final piece of feedback.

THE “LONDON SCHOOL” OF TDD

In our worked example, we mostly wrote unit tests in the familiar
style using assertions to check that the work got done. We only

CODEMANSHIP | TDD |161

wired the objects doing the work in to pass our failing customer
test.

An increasingly popular alternative approach is to focus our unit
tests on the wiring itself, allowing us to test-drive the interactions,
and therefore the design of interfaces to support those
interactions, directly.

We use mock objects to write tests that fail until an interaction
between two objects occurs – indeed, that is the purpose for which
mock objects were invented.

Working again from the outside in, we start with failing tests for an
implementation of Library, and mock its collaborators.

public class LibraryTests {

 @Test

 public void tellsDonatedTitleToAddLoanCopy(){

 Copyable title = mock(Copyable.class);

 Rewardable donor = mock(Rewardable.class); // dummy

 Library library = new Library();

 library.donate(title, donor);

 verify(title).addLoanCopy();

 }

}

In this failing test, we define that Library will communicate with the
donated title through a Copyable interface, which has an
addLoanCopy() method.

We don’t test that the donated title is added to the library here.
Instead, we test that the library invokes the addLoanCopy method.
The FitNesse test checks that the title was added to the library.

Once we have Library working to our satisfaction, we move inwards
to test-driving implementations of its collaborators, mocking their
collaborators, until our design’s working end to end, and we’re able
to pass the customer test completely.

 public boolean libraryContains(){
 return library.contains(title);
 }

This is a reversal of the way we did things before, where we test-

CODEMANSHIP | TDD |162

driven the work the objects do with unit tests and wire them
together to pass the customer test. In this style of TDD – commonly
referred to as the “London school”, because that’s where it
originated from practitioners like Steve Freeman and Nat Pryce,
who wrote the book Growing Object Oriented Software Guided By
Tests – we drive the wiring using unit tests and let the customer
test check the work got done.

There are advantages and disadvantages to both approaches. The
first approach we saw duplicates testing of the work objects do, but
has the advantage of putting the tests closer to the modules being
tested, which can make debugging easier when tests fail, and
makes the tests themselves more portable. Also, an over-reliance
on mock objects can lead to issues with maintainability of the
design emerging is not modular enough.

The London School places greater emphasis on the object oriented
design and encourages a ‘Tell, Don’t Ask’ style of design, where we
focus on roles, responsibilities and especially collaborations
between objects.

On balance, we find that either approach can be successful. It’s
therefore a question of trying both and seeing which feels right for
you. Be sure, though: both approaches require considerable
practice to master.

MAKING CUSTOMER TESTS RUN FASTER

By excluding external dependencies like the email message queue,
we can write a FitNesse test that runs faster. But it still has to read
test data values from a Wiki file, and reading things from files slows
execution down very significantly.

Our customer test for donating a DVD takes almost a whole second
to run. If we have a couple of hundred such customer tests, we’d

CODEMANSHIP | TDD |163

have to wait 3 minutes to run the suite. In TDD, we seek the
shortest feedback loops possible, so can we speed this up?

One way to achieve that would be to adapt the test’s Java fixture
so it can also be run as a JUnit test.

@Test
public void donateMovieThatIsntInTheLibrary(){
 setTitle("The Abyss");
 setDonor("joepeters");
 assertTrue(libraryContains());
 assertEquals(1, copyCount());
 assertEquals(10, rewardPoints());
 assertEquals("Now available - The Abyss", emailSubject());
 assertEquals("Dear member, just to let you know that “ +

“The Abyss is now available to borrow",
 emailBody());
 assertEquals("joepublic@mymail.io, “ +

“janedoe@hotfrogs.org.uk, “ +

“fred@bloggs.eu",
 recipients());
 }

This test takes a fraction of the time to run.

Be careful, though. We copied and pasted the customer’s data
directly from the FitNesse Wiki page, and if that data changes, our
JUnit version could get out of step. We’ll need to re-run the
FitNesse test every time the Wiki page is edited.

ARE WE “DONE” YET?

Our implementation passes the customer test we wrote in
FitNesse, but is this actually a working feature?

CODEMANSHIP | TDD |164

Email alerts aren’t actually sent to recipients, and the list of email
addresses of members who expressed an interest in the title is
faked.

On top of that, how will people be able to use this functionality?
There’s no user interface (unless they know Java, of course!) And
the minute the program stops running, all of our data will be lost.

This is quite some way from being a working feature that end users
could benefit from.

But our customer test has helped us flesh out an internal design on
which these extra elements can now be built. We have
placeholders, in the shape of interfaces, for sending emails to the
queue, and for retrieving interested members’ email addresses.

The next step would be to test-drive implementations for these
interfaces using integration tests. (See the chapter “Test-Driving
Integration Code”.)

EXERCISE #15

Following a similar process to that illustrated in this chapter, pick
one of your customer’s happy path tests, and implement an
internal design that passes that test. Use test doubles for any
external dependencies or components you want to defer thinking
about for now (“fake it ‘til you make it”).

When you’ve passed that customer test, adapt it to run as a faster
unit test. Then pick another and implement that. After you’ve
implemented the code to pass 2-3 customer tests, you will get a
feel for how the process works.

CODEMANSHIP | TDD |165

18. THE TESTING PYRAMID

In our previous two chapters, we walked through a process for
driving the design of some software directly from an executable
specification written with the customer.

CODEMANSHIP | TDD |166

To deliver a working piece of software, we may end up with several
different kinds of tests. To allow us to run the different kinds of
tests separately (or all together as a single suite), we package them
separately, too.

Our tests can be roughly split into three categories here:

1. Customer tests

CODEMANSHIP | TDD |167

2. Integration tests
3. Unit tests

We may also wish to consider – probably in a separate project and
using a different toolset – writing a system test that checks that the
whole thing hangs together correctly end-to-end, including the Java
Server Faces UI, the core logic we created to pass the FitNesse test,
the email message queue, the email server that reads messages
from that queue and sends the emails, and a back-end database
mapped on to our core objects using Hibernate.

The question arises: how much of each kind of testing do we need?

Some development teams automate all the checking of their
application’s core logic using tests that drive the user interface
(e.g., driving a website using Selenium). We find that this produces
test suites that run very slowly. It’s not unheard of for teams to
have to wait an hour or more to find out if a change they made has
broken any of the code.

Some development teams automate all the checking of their core
logic using a tool like FitNesse, bypassing the UI and driving the
application through controllers or services, and excluding external
dependencies using test doubles. While this can produce test suites
that run much faster than UI tests, they still can take far too long to
enable the rapid, frequent feedback we’re going to need.

A majority of development teams have learned to check as much
of the logic of their application as possible using fast-running unit
tests.

There’s still a need to test the integration with external
dependencies, and still a need to test that the software does
exactly what the customer asked for. There’s also a need to test
that, when all the pieces are wired together, the system as a whole
works.

The trick is to recognise the purpose of each kind of testing,
understand the risks that each level of testing can address, and
then apportion the right amount of test automation to each.

CODEMANSHIP | TDD |168

Typically, what teams end up with is a “testing pyramid”.

Although it can vary depending on the kind of application and on
the technology used, we would expect the great majority of
automated tests to be unit tests. A 100,000 line application may
have 10,000 unit tests (yes, really that many!), 1,000 integration
tests, a few hundred customer tests, and maybe a few dozen
system-level “smoke tests” to make sure it all works when it’s
plugged together.

We would rely most of the time on the unit tests to catch bugs we
may have introduced, running them many times in an hour.

We would run our integration tests whenever we’ve changed
integration code, which might apply to 5-20% of the changes we
make in total.

We’d run our customer tests frequently, for which we might have
adapted them to run faster as unit tests like we did in the previous
chapter. But, as we saw, for every time we ran the customer test,
we ran our unit tests multiple times, getting feedback at a lower

System

Customer

Integration

Unit

< 1%

~ 5-10%

~ 5-20%

~ 70-90%

CODEMANSHIP | TDD |169

level until we were ready to wire the new code into the customer
test.

We might run our system-level tests before committing our
changes to a shared repository like Git or Subversion, just to make
sure that there aren’t any configuration problems we’ve missed.

If we’ve divided up the testing work effectively, then our entire
suite of tests – including system tests – might run in just a few
minutes, so we could potentially run them all as part of a build.

EXERCISE #16

Complete the features you worked on in the previous exercises,
writing integration tests for any external dependencies it requires
(e.g., storing object data), and adding a simple user interface on
your preferred technology stack (e.g., a web interface, or a desktop
GUI).

Organise your tests into the categories: Customer, Integration and
Unit. Count the number of each kind of test, and draw your own
testing pyramid showing how they’re split as a percentage. Time
how long it takes to run each set of tests, and also how long to run
the entire suite of tests.

CODEMANSHIP | TDD |170

19. TDD & CONTINUOUS
INTEGRATION

Summary:

 The automated tests we create doing TDD can give us
confidence that our software is always working

 Before committing code changes to a shared repository,
merge other people’s changes into your local copy and
make sure it passes all the tests

 Run the tests as part of the build to catch problems caused
by local configurations

 Use a “build token” to prevent issues caused by developers
committing conflicting changes on top of each other

 Optimise test suite execution times to speed up builds

 Create a build tree for large systems, where every
component has its own build process, and dependencies
are drawn from the outputs of successful sub-builds

 Continuous Delivery is enabled by TDD

 Avoid feature branching as a strategy for hiding unfinished
features from end users, because you will lose the benefits
of Continuous Integration

 Use feature toggles to hide unfinished features until
they’re ready

Continuous Integration is a popular practice on software
development teams where multiple programmers working on
different parts of the software frequently commit their changes to
a shared repository.

To eliminate the possibility that the code only works on the
developer’s own computer, a Continuous Integration (or “build”)

CODEMANSHIP | TDD |171

server will build the code from the shared repository on another
machine every time someone commits changes.

They do this for several reasons:

1. To check that their changes work with everyone else’s
changes

2. To check that their changes work on a different machine
3. To communicate their changes to the other developers
4. To make their changes available to the customer as soon as

possible

TDD and Continuous Integration work well together. The suite of
automated tests it produces can give us higher confidence that the
code does indeed work and the changes we’ve made haven’t
broken it.

BEFORE WE COMMIT: UPDATE/MERGE & TEST LOCALLY

A pre-condition to committing changes to code is to check that our
changes work with other people’s changes. It’s vital, therefore, to
make sure that the local copy you’re working on is up to date with
other people’s changes.

shared
repository

> git commit

> git push > git pull

> git pull > git pull

CODEMANSHIP | TDD |172

Whenever we plan to commit our changes, we should first get an
update from the shared repository that includes any changes that
have been made since our last update.

We merge those changes into our local copy of the code, resolving
any conflicts that may have arisen from edits to the same files that
we’ve changed.

Our local copy, merged with other people’s changes, now
represents what the code in the repository will look like after we
commit.

Before we commit, we need to check that it works on our
computer. We do this by building it locally and running our
automated tests.

Only if all the tests pass should we consider committing our
changes. If any tests fail, we must fix the problems, and repeat this
process when we think we’re ready.

AFTER WE COMMIT: WAIT FOR THE TESTS TO PASS ON A
BUILD SERVER

It’s possible that the tests all passed on your local machine because
of some quirk of that machine’s configuration. (For example, there
may be a version of a library installed on your machine that other
machines don’t have.)

To help us eliminate this possibility, we wait to see that the code
builds and passes the tests on a different machine, often referred
to as a “build server”.

Most teams have a CI server like CruiseControl
(cruisecontrol.sourceforge.net) or Jenkins (jenkins.io) that “listens”
for new commits and triggers a build – complete with tests –
automatically.

Until the build succeeds on the build server, we don’t know for sure
that we haven’t broken the software. It’s highly advisable that

CODEMANSHIP | TDD |173

nobody else commits changes until the build has succeeded. Most
CI servers will notify the team of the outcome.

USE A “BUILD TOKEN” TO PREVENT OVERLAPPING COMMITS

On development teams, there’s a real risk of two programmers
committing conflicting changes on top of each other. Imagine Dave
plans to commit his changes, so he gets an update from the
repository and runs his tests locally. While he’s doing that, Sofia
commits her changes, one of which conflicts with Dave’s. Dave’s
tests all pass, so he commits his changes, and “breaks the build”.

The most disciplined practitioners of Continuous Integration
mitigate this risk by having a system that “locks” the repository
while one person is committing their changes.

A low-tech approach is to have an easily identifiable “build token”;
an object that developers need to grab in order to commit. They
take the token when they’re about to update, and don’t return it
until their build has succeeded on the CI server.

One team I know uses a felt beef burger as their build token. If a
team member plans to commit, they take the burger to their desk.

CODEMANSHIP | TDD |174

They only return it when their build has succeeded on the CI server.
Taking too long over commits has become known as “hogging the
burger”.

MAKING BUILDS FAST

Some teams have automated tests suites that take a long time to
run. This slows Continuous Integration down, sometimes to a point
where there’s really nothing “continuous” about it.

A build – complete with automated testing – needs to take a few
minutes at the most. Firstly, this means we need to put significant
effort into optimising our test suites. If most of our tests drive the
software through the user interface, and/or include external
dependencies like reading and writing files, or using web services,
then it’s not uncommon for teams to have to wait more than an
hour to get feedback from the build server. This is an hour when it’s
not safe for anyone else to commit their changes.

Slow builds block teams.

Aim for a pyramid of tests: with mostly unit tests, fewer integration
tests, and just a handful of system tests. Some teams exclude the
bulk of their slow-running tests from the build process, falling back
on a handful of “smoke tests” that might catch any obvious
configuration problems. But this increases the risk of the build
testing missing more subtle conflicts in the logic. The more of your
tests you can run in the build, the lower that risk.

Instead of excluding slow-running tests, explore how they can be
speeded up – e.g., by caching data read from files, using in-memory
databases, or reusing datasets once they’re loaded so there’s less
need to set up multiple test databases, and so on.

CODEMANSHIP | TDD |175

BUILD TREES

On large software systems (millions of lines of code), building and
testing the whole thing – even when we’ve optimised those tests –
can still take a long time.

Look to break down the system architecture into smaller, loosely
coupled sub-systems or components, each of which can be built
and tested separately.

In this theoretical example, every component has its own build
process, which includes running its own suite of tests.

We can build and test D, E, and F by themselves. To build and test
B, we just use the outputs of the most recent successful builds of
its dependencies D, E and F. Likewise, we can built and test C using
the outputs of the last successful builds of G and H.

And to build and test component A, we use the outputs of the most
recent successful builds of B and C.

Take extra care to avoid introducing cycles into the component
architecture, where one component becomes indirectly dependent
on itself.

A

D

CB

E F G H

CODEMANSHIP | TDD |176

In order to build and test A, we’ll have to build and test all of the
other components in the cycle (C & H).

TDD & CONTINUOUS DELIVERY

If we have good tests, and fast builds, we dramatically increase the
confidence our customer can have that – at any given time - there
is a working version of the software that could potentially be put to
use.

At any point in time, the software is potentially shippable. We call
this “Continuous Delivery”. It puts control into the hands of the
customer. If they need the new software right now, it’s ready to go.

This can have a profound effect on the economics of making
software. The typical experience of a customer, when they request
a new feature or a change to the software, is having to wait months
for the next big release until they can use it and get value from that
investment.

With Continuous Delivery, they can have it as soon as it’s ready.
And if we’re doing TDD well, then they can have high confidence
that when we say it’s ready, it really is ready.

A

D

CB

E F G H

CODEMANSHIP | TDD |177

It should come as no surprise that there are no development teams
doing Continuous Delivery who aren’t doing TDD. TDD can enable
continuously shippable software.

FEATURE BRANCHING & FEATURE TOGGLES

If we’re committing changes to our code many times a day, there’s
a danger we may end up releasing a half-finished feature. End users
should not have access to unfinished features, for the same reason
that motorists should not be given access to unfinished bridges.

Teams employ two approaches to hiding unfinished work from the
users.

Feature branching has become quite popular, and involves
developers creating their own branch of the master repository into
which they commit their code for the feature they’re working on.
They continuously build and test their branch (each branch has its
own build process), but don’t merge their changes into the master
until the feature is ready to be released.

Strictly speaking, this isn’t Continuous Integration. My changes
would not be made visible to my team mates until I did that final
merge into master. This can store up some nasty surprises when
that time comes, and rather defeats the object of doing CI. For this
reason, many experienced practitioners advise against feature
branching.

A better approach used by some teams is to employ what they call
“feature toggles” in the user interface. Everyone commits their
changes into master – so it’s genuine Continuous Integration – but
the button, or link, or menu item users would use to invoke the new
feature is hidden until it’s ready.

The easiest way to achieve this is to comment out the line of code
that displays the user control until the feature’s working. A more
sophisticated approach would be to use a configuration file that can
dynamically toggle features on and off. (This can have other useful

CODEMANSHIP | TDD |178

applications, like allowing users or administrators to customise an
application for different groups of users.)

Feature toggles that are configurable without having to recompile
the code have the advantage of allowing us to deploy a version of
the software that exposes the new feature for user testing, while
keeping it hidden in real deployments.

EXERCISE #16

If you haven’t already, commit the code you created in the previous
two chapters into a shared online repository like GitHub.

Set up a Continuous Integration server – for example, using Jenkins
or CruiseControl – that will build the code and run all the
automated tests whenever changes are committed to that shared
repository.

Working with your customer, dream up one or two new user stories
that you believe will add value for any end users of the software.

Ask a friend or colleague – or your “customer”, if she is a developer
too – to share the work of implementing these new stories. Apply
the ideas covered in this chapter while you work together on
different parts of the code.

Use a feature toggle to hide the new functionality until it’s ready to
go.

CODEMANSHIP | TDD |179

20. TDD & LEGACY CODE

Summary:

 Legacy code is code for which we have no automated tests

 The “Catch 22” with legacy code is that we need to refactor
to make automating tests easy, but it’s not safe to refactor
without automated tests

 Start by identifying the “change point”: the part of the code
that will need to change to accommodate a new
requirement

 Then identify “inflection points”: parts of the software that
directly depend on the change point, where – if we broke
the code – it would show

 Introduce tests around the inflection points. These could
be unit tests, integration tests, system tests, or even
manual tests

 Refactor the code to break the external dependencies
preventing us from making our tests fast-running

 Keep running your inflection point tests after every
refactoring – no matter how long this takes. After
refactoring, it will get easier

 Be a good “boy scout”, and leave code you work on in
better order than you found it to make the going easier in
future

Most books about software development focus on new code. (And
this one, so far, has been no exception.)

But the reality for most developers is that, most of the time, we’re
trying to add features or make changes to existing software.

CODEMANSHIP | TDD |180

In a straw poll, 43% of developers who found they were prevented
from doing TDD cited legacy code as the reason.

WHAT MAKES CODE “LEGACY”?

The impact of automated tests on the cost of changing software
can be profound. In his book Working Effectively With Legacy Code,
Michael Feathers defines “legacy code” as code for which we have
no automated tests.

The risk when changing code is that we’ll break the software, and
having good automated tests can help us to catch those regressions
sooner, when they’re much easier and cheaper to fix.

When we inherit legacy code, and are asked to make changes to it
by our customer, we’ll probably want to start by writing a failing
test.

Typically, what prevents us from doing this is dependencies in the
existing code; talking to databases, reading files, and so on.

To write a good fast-running automated test, we’ll need to refactor
the existing code to make those external dependencies swappable,
so we can mock or stub them.

CODEMANSHIP | TDD |181

But we can’t safely refactor the code because there are no tests.
It’s a chicken-and-egg situation.

START BY IDENTIFYING THE CHANGE POINT(S)

Imagine we inherit the code for a web-based video-on-demand
system. Rental prices are currently calculated based on information
about the video title. Recent releases command a $1 premium, and
an extra dollar is charged for especially good movies with an IMDb
rating greater than 8.0.

No automated tests

to support refactoring

Need to refactor to

make code unit

testable

CODEMANSHIP | TDD |182

public class Pricer {

 public float calculatePrice(String imdbID){
 Video video = ImdbService.fetchInfo(imdbID);
 float price = 2.95f; // default rental price
 // recent releases command premium
 if(video.getYear() == currentYear()){
 price += 1.0f;
 }
 // best films command premium
 if(video.getRating() > 8.0f){
 price += 1.0f;
 }
 return price;
 }

 int currentYear() {
 return Calendar.getInstance().get(Calendar.YEAR);
 }
}

Our customer also wishes to change the pricing logic so that movies
with IMDb ratings less than 4.0 get a $1 discount (they call it their
“bargain bin” price).

The calculatePrice() method of Pricer is our “change point” – the
part of the software we’ll need to change to accommodate the
customer’s new requirement.

NEXT, IDENTIFY INFLECTION POINTS

Then we ask ourselves “if we changed calculatePrice(), what
modules that depend on that could be broken?”

To make it safe to change calculatePrice(), we’ll want to write
automated tests for the modules that could be broken by that
change.

CODEMANSHIP | TDD |183

In his book, Michael Feathers calls these “inflection points” (some
people call them “test points”). An inflection point is the position in
the call stack where, if the change has broken the software, it will
be immediately evident. They’re where we’ll need to write some
automated tests before we make the change.

In our case, changing calculatePrice() could break the charge()
method of the Rental class that uses the Pricer, so we’ll be looking
to write automated tests for Rental.

INTRODUCE TESTS. ANY KIND OF TESTS.

Remember, at this point our code has no automated tests.
Unfortunately, our architecture makes fast-running unit tests
impossible without refactoring because of the external
dependencies.

The temptation here is to skip the testing part and just start hacking
away at the code. But refactoring without tests is dangerous. So
resist that temptation. It may be hard work at first, but potentially

: RentalServlet

: Rental

charge()

CustomerDAO

fetch()

ImdbService

calculatePrice()

fetch()

charge()

: Customer

save()

RentalDAO

save(this)

: Pricer

Connects to MySQL DB

Connects to OMDb API

Connects to MySQL DB

Connects to payment
gateway

CODEMANSHIP | TDD |184

a walk in the park compared to how hard it might later be if we
break the code without realising it.

In this instance, we could probably write some integration tests
against a test MySQL database, and use the real IMDb API, as it’s
read-only and free.

Worst case, if even automated integration or system tests are not
currently possible, we would need to write some manual test
scripts, run the software and verify it ourselves after each
refactoring. That takes considerable discipline and patience, but is
usually worth the effort in the long run.

BREAK THE EXTERNAL DEPENDENCIES

Once we have some tests around the inflection points, the next
priority is to turn those into fast-running unit tests to make the
going easier.

Our goal is to test Rental without hitting the database or the IMDb
API, which means we need to make the classes that contain those
direct dependencies swappable.

Let’s start with the IMDb dependency, which exists in a static
method fetch() on the ImdbService class.

public class Pricer {

 public float calculatePrice(String imdbID){
 Video video = ImdbService.fetchInfo(imdbID);

First, let’s turn that non-swappable static method into an instance
method.

public class Pricer {

 public float calculatePrice(String imdbID){
 Video video = new ImdbService().fetchInfo(imdbID);

Now, we should run our inflection point tests. (Yes, even for a
change this small. Even if they’re manual tests.)

CODEMANSHIP | TDD |185

Next, let’s use dependency injection to make ImdbService
swappable via a MovieInfo interface that it implements.

public class Pricer {

 private final MovieInfo imdb;

 public Pricer(MovieInfo imdb) {
 this.imdb = imdb;
 }

 public float calculatePrice(String imdbID){
 Video video = imdb.fetchInfo(imdbID);

And now we should run our tests again.

Next, we need to inject an instance of Pricer into Rental, so we can
wire in the ImdbService object from the outside in our tests. Again,
we want Pricer to be easily swappable, so we need to extract an
interface for Rental to use. But, in this case, Pricer would actually
be the best name for that interface. So, let’s rename the class to
make it more specific.

public class ImdbPricer implements Pricer {

Which we inject into Rental.

CODEMANSHIP | TDD |186

public class Rental {

 private final String imdbID;
 private final long customerID;
 private float amountCharged;
 private final Pricer pricer;

 public Rental(String imdbID,
long customerID,
Pricer pricer){

 this.imdbID = imdbID;
 this.customerID = customerID;
 this.pricer = pricer;
 }

 public void charge(){
 Customer customer = CustomerDAO.fetch(customerID);
 amountCharged = pricer.calculatePrice(imdbID);
 customer.charge(amountCharged);
 save();
 }

And… run the tests!

Then we can turn our attention to the classes that access the
MySQL database, starting with CustomerDAO.

 public void charge(){
 Customer customer = CustomerDAO.fetch(customerID);
 amountCharged = pricer.calculatePrice(imdbID);
 customer.charge(amountCharged);
 save();
 }

The process is quite similar; make static methods instance
methods.

 public void charge(){
 Customer customer =

new CustomerDAO().fetch(customerID);
 amountCharged = pricer.calculatePrice(imdbID);
 customer.charge(amountCharged);
 save();
 }

And then inject the dependency in through the constructor, so that

CODEMANSHIP | TDD |187

it can be wired in – and substituted when necessary – from the
outside in our test code.

 private final DAO customerDAO;

 public Rental(String imdbID, long customerID,
Pricer pricer, DAO customerDAO){

 this.imdbID = imdbID;
 this.customerID = customerID;
 this.pricer = pricer;
 this.customerDAO = customerDAO;
 }

 public void charge(){
 Customer customer = customerDAO.fetch(customerID);
 amountCharged = pricer.calculatePrice(imdbID);
 customer.charge(amountCharged);
 save();
 }

Rinse and repeat for RentalDAO, which can implement the same
DAO interface as CustomerDAO.

CODEMANSHIP | TDD |188

 private final DAO rentalDAO;

public Rental(String imdbID,
long customerID,
Pricer pricer,
DAO customerDAO,
DAO rentalDAO){

 this.imdbID = imdbID;
 this.customerID = customerID;
 this.pricer = pricer;
 this.customerDAO = customerDAO;
 this.rentalDAO = rentalDAO;
 }

…

 private void save() {
 rentalDAO.save(this);
 }
}

…

public interface DAO {

 Entity fetch(long entityId);

 void save(Entity entity);

}

We can now re-write our slow-running integration test to use test
doubles for these external dependencies, making it easier and safer
to test-drive the changes to the pricing logic the customer wants.

Or can we? There’s a dependency we missed that might make
automated tests problematic. Some of the pricing logic is date-
driven. We might write a test for a movie that, at the time we wrote
it, was a brand new release. What would happen if we ran that test
years later?

To make the tests totally repeatable and predictable, we need to
make the current year swappable, too.

CODEMANSHIP | TDD |189

public class Pricer {

 private final MovieInfo imdb;
 private final CurrentYear currentYear;

 public Pricer(MovieInfo imdb,
CurrentYear currentYear) {

 this.imdb = imdb;
 this.currentYear = currentYear;
 }

 public float calculatePrice(String imdbID){
 Video video = imdb.fetchInfo(imdbID);
 float price = 2.95f; // default rental price
 if(video.getYear() == currentYear.get()){
 price += 1.0f;
 }

Don’t forget to run the inflection points tests after every
refactoring. It may seem like a total drag, but an even bigger drag
is debugging broken code without fast-running automated tests to
support us.

Now we can write fast-running, repeatable tests.

public class RentalTests {

 @Test
 public void videosRatedLessThanFourOnImdbGetDollarOff() {
 String imdbID = "tt2975590";
 int customerID = 999;
 Video video =

new Video(imdbID,
"Batman vs Superman",
2016,

3.9f);
Pricer pricer = new Pricer(createImdbStub(video),

createYearStub(2016));
 Rental rental =

new Rental(imdbID,
customerID,
pricer ,
createCustomerDAOStub(customerID),
createRentalDAODummy());

 rental.charge();
 assertEquals(2.95,rental.getAmountCharged(),0.01);
 }

CODEMANSHIP | TDD |190

THE “BOY SCOUT” RULE

Good scouts leave their campsites tidier than they found them.
Good developers leave code they change in better order than they
found it, too, to make future changes easier.

Notice there’s a fair amount of set-up code hidden away behind
helper methods in our test code. This is indicative of dependency
problems. Rental knows too much about other objects in the
system – it has too many collaborators.

A cleaner version might remove all the data access dependencies
from Rental and Pricer, so that they just handle the logic, and we
can handle fetching and saving data outside of that as a separate
concern (with its own set of tests.)

With fast-running tests to support us, this is a refactoring that will
be much easier and safer to do.

public class Rental {

 private float amountCharged;
 private final Video video;
 private final Customer customer;
 private final Pricer pricer;

 public Rental(Video video, Customer customer, Pricer pricer){
 this.video = video;
 this.customer = customer;
 this.pricer = pricer;
 }

 public void charge(){
 amountCharged = pricer.calculatePrice(video);
 customer.charge(amountCharged);
 }

 public float getAmountCharged() {
 return amountCharged;
 }
}

The refactored test tells a story of a much simplified design.

CODEMANSHIP | TDD |191

 @Test
 public void videosRatedLessThanFourOnImdbGetDollarOff() {
 String imdbID = "tt2975590";
 Video video = new Video(imdbID,

"Batman vs Superman",
2016,

3.9f);
 Customer customer = mock(Customer.class);
 Rental rental = new Rental(video,

customer,
new Pricer(

createYearStub(2016))

);
 rental.charge();
 assertEquals(2.95,rental.getAmountCharged(),0.01);
 }

EXERCISE #17

Find some legacy code that you could add value to. It could be code
you’ve worked on, or code from another project – maybe an Open
Source project – that uses technology you’re familiar with.

Build and run the software, and familiarise yourself with its
features.

Think about 1-3 small ways in which the software could be
improved by adding or changing features.

Apply the ideas covered in this chapter to test-drive the addition of
those changes, paying special attention to the discipline of re-
running the inflection point tests after ever refactoring.

CODEMANSHIP | TDD |192

21. BEYOND TEST-DRIVEN
DEVELOPMENT

One of the things that makes TDD such a useful approach to
software design is that, aside from the benefits we’ve already
looked at, it can be a jumping off point for more advanced kinds of
software testing.

DATA-DRIVEN & PROPERTY-BASED TESTS

Throughout this book, I’ve encouraged you to refactor duplication
in your test code by consolidating multiple similar test cases into a
single parameterised test.

Not only is this a great way to remove test code duplication, helping
us to write tests that read more like a specification in the process,
we can leverage those parameterised tests to buy us much greater
assurance with relatively little extra code.

Imagine we’ve test-driven some code to calculate square roots.

@Test
@Parameters({"0,0", "1,1", "4,2", "9,3", "0.25,0.5"})
public void rootOfPositiveInputIsFound(double input,

double expected){
 assertEquals(expected, Maths.sqrt(input), 0.00001);
}

Our final solution passes all of these tests, and – while we can’t
think of any more test cases that we’d expect to fail – maybe we
don’t have 100 confidence that our design will always work.

With a bit of extra work, we have the potential to test our code
against a much larger set of cases.

CODEMANSHIP | TDD |193

If we wanted to perform tests on 1,000 different inputs, we’re not
going to code every test case by hand. We’re going to want to
generate the input data, and therefore we’ll have to calculate the
expected output.

So, the first thing we’ll need to do is generalise our test assertion
so that expected result is calculated rather than supplied as a
parameter value.

@Test
@Parameters({"0", "1", "4", "9", "0.25"})
public void squareOfSquareRootSameAsInput(double input){
 double sqrt = Maths.sqrt(input);
 assertEquals(input, sqrt * sqrt, 0.00001);
}

Notice how I renamed the test to more accurately describe the rule,
which is now explicitly described in the assertion. Generalising our
tests like this can make them more self-describing.

Now the expected result’s being calculated, we can generate as
much input data to drive this test as we like.

For example, we could generate a range of inputs from 0 to 100,
incrementing by 0.1 each time.

@Test
@Parameters(method="inputs")
public void squareOfSquareRootSameAsInput(double input){
 double sqrt = Maths.sqrt(input);
 assertEquals(input, sqrt * sqrt, 0.00001);
}

private Object[] inputs(){
 List<Double> numbers = new ArrayList<>();
 double i = 0d;
 while(i < 100){
 numbers.add(i);
 i += 0.1;
 }
 return numbers.toArray();
}

These tests take a while to run, so we might not want to include
them every time we run our unit tests. We could have our cake and

CODEMANSHIP | TDD |194

eat here by having two versions of the same test fixture – one that
tests a handful of cases, and one that does a more exhaustive set
of tests.

@RunWith(JUnitParamsRunner.class)

public class ExhaustiveMathsTests extends MathsTests {

 @Test

 @Parameters(method="inputs")

 public void squareOfSquareRootIsSameAsInput(double input) {

 super.squareOfSquareRootIsSameAsInput(input);

 }

 private Object[] inputs(){

 List<Double> numbers = new ArrayList<>();

 double i = 0d;

 while(i < 100){

 numbers.add(i);

 i += 0.1;

 }

 return numbers.toArray();

 }

}

I’ve extended the original test fixture, and added our test data
generator to this new subclass. When I want to run these
exhaustive tests, I run this test fixture. When I just want to run the
original unit tests, I run the original fixture. Easy as peas!

We can use any algorithm we like to generate our test data. It could
be a range, like we did here for this simple one-input problem.

If there are multiple input parameters that interact with each other
in our solution’s logic (e.g., “when a customer is over 18 AND has
more than 12 loyalty points THEN they get a free loan of any video
title”), then we could generate different combinations of inputs.

And we could generate random input values, just to see what
happens - a sort of automated exploratory testing.

CODEMANSHIP | TDD |195

@RunWith(JCheckRunner.class)
public class RandomMathsTests extends MathsTests {

 @Test
 @Configuration(tests=1000)
 public void squareOfSquareRootIsSameAsInput(double input){
 imply(input >= 0);
 super.squareOfSquareRootIsSameAsInput(input);
 }
}

In this example, I’ve used a tool called JCheck (www.jcheck.org - a
Java implementation of Haskell’s QuickCheck) to generate 1,000
random test cases, all of which must have positive input values. For
just a few extra lines of code, we can get 1,000 extra tests!

Tests that express the rules in general terms are called property-
based tests, and they can be a gateway to much more powerful
kinds of testing that are able to produce very high levels of
reliability.

CRITICAL CODE

Would we use techniques like this all the time, on all of our code?
Probably not. Though it varies from application to application, we
tend to find that parts of our code are more critical than others.

As a default, I recommend that you try to test-driven as much of
your code as possible. Not only does it lead to simpler, cleaner
designs, but the level of reliability basic TDD can achieve is good
enough for the majority of situations.

But some of your code is likely to be especially critical, and with that
code we may choose to go beyond TDD. Here are three factors you
may want to look out for when deciding how much extra testing
code might need:

1. Business risk – starting with customer tests, identify
scenarios where the stakes are high if the software breaks.
Talk to the customer and ask “how big a deal will it be if this
doesn’t work 1 time in 1,000? 1 time in 10,000? 1 time in 1

CODEMANSHIP | TDD |196

million?” Here, software can be a victim of its own success.
Seemingly unimportant code running a website like, say,
Facebook, can become a big deal when it’s being executed
billions of times every day. There may only be a 1:1,000,000
chance of failure, but on some websites that means it will
happen hundreds of times every day.

2. Complexity – how likely is it that a piece of code could be
broken? Typically, the more complex code is, the more
things that can go wrong. We won’t need to test a method
that adds a list of numbers together more than once. But a
Fast Fourier Transform might need thousands of tests.
Target your testing at code that presents the greatest risk
due to its complexity.

3. Dependencies – a piece of code may be simple, but if it’s
used (directly or indirectly) by millions of lines of client
code then, when it breaks, everything breaks. Analyse the
dependencies in your software to determine which
modules and methods are carrying the biggest load in
terms of reuse (a useful metric here is called the rank of
that module or method), and target your testing where the
load is heaviest.

The important thing is to be aware of the risk your code presents
and, with practice, you’ll learn how to apply an appropriate amount
of effort to making sure the most critical parts of your software are
good enough for use in the real world.

MUTATION TESTING

Although TDD can produce tests that give us confidence that our
code is working, there will always be times when we have doubts.
Just because the tests are all green, that doesn’t necessarily mean
our code has no bugs we need to worry about.

Experienced TDD practitioners recommend testing your tests by
running them to make sure they actually do fail when the code
gives the wrong result.

CODEMANSHIP | TDD |197

We can take this further with a technique called mutation testing.

Let’s ask ourselves how confident are we that if our square root
solution was broken in any way, one of our tests would catch it.

To do this, we can deliberately introduce an error, like changing a +
into a - .

 do {

 t = squareRoot;

 squareRoot = (t + (number / t)) / 2;

 } while ((t - squareRoot) != 0);

We could “mutate” this code into:

 do {

 t = squareRoot;

 squareRoot = (t - (number / t)) / 2;

 } while ((t - squareRoot) != 0);

Then we run our unit tests to see if they “kill the mutant”.

The first test passes, but the second test gets stuck in an infinite
loop. None of these calculations should take more than a few

CODEMANSHIP | TDD |198

milliseconds. Let’s add a timeout to the tests, so we can see them
fail.

 @Test(timeout=1000)
 @Parameters({"0,0","1,1","4,2","0.25,0.5"})
 public void squareOfSquareRootIsSameAsInput(

double input,

double expected) {
 assertEquals(expected, Maths.sqrt(input), 0.00001);
 }

Our tests have caught the error we deliberately introduced, so we
have greater confidence that part of our code is being effectively
tested.

Let’s change it back, and “mutate” another part of our code,
repeating this process until we’re confident that our tests would
catch errors in all of it.

CODEMANSHIP | TDD |199

Boy, that sounds like laborious work, doesn’t it? Make a single
“mutation” like turning + into -, or > into <, run all the tests, change
it back. For every line of code? Phew!

Thankfully, there are tools available that can do this for us. I’m
using a mutation testing tool called PIT (www.pitest.org) for my
example. Conveniently, I can run it from within Eclipse using
Maven.

My square root tests have survived comprehensive automated
mutation testing, and my confidence in those tests is now much
higher.

TEST-DRIVING THE “UNTESTABLE”

Some programming languages and platforms lend themselves
more readily to TDD than others. Programmers looking for an
excuse not to write automated tests will sometimes cite the
technology as the main obstacle: e.g., “We’d TDD this, but it’s SQL”,
or “We can’t do TDD here because these classes can only run inside
a web server.”

CODEMANSHIP | TDD |200

IF YOU CAN CALL IT, YOU CAN AUTOMATE IT

The fact is, though, that we can test-driven pretty much anything
that we can automate in code, and we can automate pretty much
anything in any programming language. It just takes some ingenuity
and imagination.

Programming language choice is rarely the barrier it appears to be.
There’s a SQLUnit, a COBOLUnit, and even frameworks for unit
testing microprocessor designs. If it offers the ability to invoke
programs or functions written in that language, then we can test-
drive it.

SEPARATE CONCERNS

The question we should ask ourselves when we’re faced with a
tricky technology for TDD is “how much code do we really need to
write in this technology?”

Take user interfaces, for example. Most UI frameworks, like Java
Swing or JSF, present challenges for writing fast-running automated
tests.

But how much of our code really needs to be inside a Swing control,
or a JSF Facelet? Typically, we find our UI classes do more than they
need to, including processing that really has nothing to do with how
data is displayed or users interact with the application.

The trick here is to treat UI frameworks as external dependencies,
like we did in a previous chapter, and to factor our code to minimise
the amount that directly depends on the framework.

Specifically, the code that knows how to populate, say, a text box
or a listbox from application data, and that knows which method
on which application object to call when a user performs and
action.

It’s just two questions, really, we need to answer that directly
involves the UI:

CODEMANSHIP | TDD |201

1. Is the data rendered correctly?
2. Was the action/event handled?

If clicking a button calculates insurance premiums and then displays
them on the screen, our UI tests only need concern themselves
with whether the right method on the right object was invoked (for
which we could use a mock of that object), and whether the result
is displayed in the way the customer wants (for which we could use
a stub to get a test value). Whether or not the actual premium is
calculated correctly is somebody else’s problem.

A good way to minimise UI-specific code is to apply the Model-
View-Controller pattern, but with an extra layer of classes that
represent the logic of the views (a “view model”).

The view model represents an abstract concept of a UI component.
If the Insurance Premium web page has a premium amount
displayed on it, then the equivalent view model would have a
premiumAmount field that represents the underlying data.

If clicking the OK button calculates the premium amount, then that
event should be forwarded to a calculatePremium() method on the
view model.

The flow and logic of user interactions are handled by a core of plain
old objects with no direct external dependencies on a UI
framework, and therefore completely amenable to unit testing.

Model View Model

Controller

X

renders

forwards
events

Plain Old Objects

GUI

CODEMANSHIP | TDD |202

What’s left is a thin sliver of code that binds directly to the UI
framework’s API. In our testing pyramid, these bindings can be
checked using a much smaller number of system-level tests to
make sure everything’s wired together correctly.

FAKE IT

If you’re really determined to write automated tests for, say, JSF
Facelets or ASP.NET web forms, there’s usually a way to fake the
container that those classes need to run in.

A good example of this is MockServer (www.mock-server.com),
which can act like a web server in which your code is running. It
recreates web request scenarios so that we can repeatedly test
how our code handles them.

NON-FUNCTIONAL TDD

Another psychological barrier developers new to TDD have trouble
overcoming is the idea that not all our tests need to be about the
logic of our code.

It’s entirely possible to ask other kinds of questions, like “Does this
function execute fast enough?” and “How much memory does this
algorithm use?”

We’ve already seen an example of specifying a timeout for a JUnit
test using the built-in parameter of the @test annotation.

 @Test(timeout=1000)
 @Parameters({"0,0","1,1","4,2","0.25,0.5"})
 public void squareOfSquareRootIsSameAsInput(

double input,

double expected) {
 assertEquals(expected, Maths.sqrt(input), 0.00001);
 }

If we wanted to see how our code performs under a bigger load
than a single client thread, we could use a tool like TestNG
(www.testng.org)

http://www.testng.org/

CODEMANSHIP | TDD |203

 @Test(threadPoolSize = 3,

invocationCount = 10,

timeOut = 50)
 public void millionItemsSearchedInUnder50ms() {
 String[] items = new String[1000000];
 for (int i = 0; i < items.length; i++) {
 items[i] = "BLAH" + i;
 }
 int ITEM_INDEX = 555555;
 items[ITEM_INDEX] = "Jason";
 assertEquals(ITEM_INDEX,

new BinarySearch(items).find("Jason"));
 }

WHERE DO NON-FUNCTIONAL TESTS COME FROM?

How do we know if our code needs to be tested non-functionally?
Do we just test all of it to make sure it’s as fast and efficient and
scalable and secure and maintainable and accessible and all the
other –ables as a matter of course?

No, that would be a silly waste of effort. Not all code is
performance-critical, for example. A function may run slow, but if
it’s only run once a month that might not be a problem.

We should look to our customers to learn what parts of our
software might need other kinds of testing. When discussing a user
story, for example, ask questions like “How often will this be used?”
and “What sort of hardware will this be running on?”

A banking feature might be used thousands of times every second,
and therefore we might want to test that it can scale up to handle
that sort of load.

A feature in a computer game might be timing-critical: not much
point shooting your weapon if the computer’s going to take 3
seconds to process that.

Code might be running on devices with very limited memory, in
which case using a gigabyte of RAM in an algorithm probably isn’t
an option.

CODEMANSHIP | TDD |204

What we should generally not do is invent non-functional
requirements without consulting the customer, and speculatively
optimise our code “just in case”. Let the customer’s needs and real
technical constraints (budget, hardware, legal compliance, etc)
drive your non-functional tests.

And relate the non-functional tests directly to functional customer
tests wherever possible, so you can be sure that you and the
customer are talking specifics. When you talk about a feature being
used very frequently, be sure which scenario you’re referring to.
Withdrawing cash from an ATM may occur frequently, but an edge
case like the mechanism that dispenses the notes jamming occurs
very rarely.

UNPREDICTABLE BEHAVIOUR/DATA & “FLICKERING BUILDS”

One of the risks when we write tests that, for example, specify a
maximum response time for a method, is that there may be times
when the computer is busy doing whatever it is that computers do
when we’re not looking.

The threading models of modern operating systems can be
unpredictable, and we might see a performance test very
occasionally fail.

This leads to what some programmers call “Heisenbugs” (a pun on
the discoverer of the Uncertainty Principle in quantum physics),
and flickering builds; builds that sometimes succeed and
sometimes fail.

Three ways to reduce this risk are:

a. Make sure you leave a good margin for error. If you
believe a method might take 10ms on average to complete,
setting the timeout for your test to 11ms is very likely to
produce flickering builds. Think “orders of magnitude”:
setting the timeout to 10x the average (100ms) should
make failures vanishingly rare. But not extinct.

CODEMANSHIP | TDD |205

b. Approach performance in a more deterministic way. A
binary search execution time may vary, but on the same
input, it will always do the exact same number of
comparisons. So instead of writing a test that requires the
search to take less than 10ms, write a test that requires the
search to have no worse than O(log N) performance.

c. Fake the unpredictable part. Stubs and mocks can be used
to return unpredictable data, like the current date and
time, or a “random number” used in a game, to ensure
repeatable tests

CLEAN CODE & CONTINUOUS INSPECTION

Some developers would argue that there’s one exception to the
rule about non-functional tests coming from the customer, and
that’s tests that are about the maintainability of our code.

For sure, the customer’s not likely to be directly interested in how
readable the code is, or how complex the modules and functions in
it are, or how much code duplication there is.

But when it comes to maintainability requirements, the clue is in
the name. What almost certainly will interest the customer is how
much it will cost to change the code at a later date.

Cost of change has a direct impact on our ability to sustain the pace
of innovation, delivering more value for longer through a software
product or system.

Without paying continuous attention to factors that increase the
cost of adding or changing code, change can become so expensive
as to effectively rule it out. When businesses can’t change their
software easily, then they can’t change the way their business
works easily.

It’s important to understand when we embark on a new piece of
software what its lifespan is intended to be, so we can judge the
importance of maintainability.

CODEMANSHIP | TDD |206

But beware: there’s a lot of software out there that was originally
intended as a short-term, tactical, throwaway solution to a
problem, but has ended up in use for decades.

Better to ask not how long the solution needs to last, but how long
the problem will be around in some form. A mobile app for a one-
off promotion is likely to only be needed for the duration of the
promotion. A ticketing system for a venue is likely to be around for
as long as that venue sells tickets.

This is one of many situations where we need to guide our
customers firmly. Given a choice, most non-technical stakeholders
will reject putting significant technical considerations like code
quality in favour of “more features”.

The conversation you need to have with them needs to be a non-
technical conversation about what happens after the first release,
and how that might impact their business.

Establishing measures for things the customer cares about, like cost
of change, as well as lead time on delivering features and change
requests, can help to ”join the dots” between the code-level
benefits of TDD and the business benefits. The relatively few
organisations that track these things have learned that cutting
corners on code quality leads to a rapidly slowing pace of
development. Some can even tell you what that has cost them as a
business in terms of extra development effort and missed business
opportunities.

Developers also need code-level indicators to give them an early
warning of maintainability issues. Maintainability “bugs” are like
functional bugs, in so much as the longer they’re left in the code,
the more they cost to fix. So we want to catch them as early as we
can.

Every change we make potentially introduces a code quality bug;
adding a new branch to an IF statement can make it too
complicated, for example. Code goes bad one change at a time.

CODEMANSHIP | TDD |207

Teams that consistently deliver maintainable code apply some kind
of continuous code quality testing that checks their code very
frequently for new problems.

Pair programming, when pairing partners keep one eye on code
quality issues as they work, can help keep quality up. And some
teams have a policy of performing code review before anyone can
commit their code to the shared repository.

A pre-commit code inspection is what we call a quality gate.
Changes only get integrated into the code base if other members
of the team consider that they’re good enough.

In practice, experience teaches us that pair programming and code
reviews are useful, not sufficient to achieve the level of
maintainability most software really needs.

More advanced development teams automate their code reviews
so that they can be performed very frequently across all of the code
at minimal cost. This practice is called Continuous Inspection.

The next Codemanship book, “Software Design Principles”, will
cover Continuous Inspection in some depth, but we present a brief
explanation here to hopefully get you started.

Identify goals - Continuous Inspection starts by identifying design
goals; for example, to have loosely coupled modules in your code.

Agree indicators - Then the team agree indicators which would
alert us if any code fails that goal. E.g., if there are any examples of
“feature envy” in the code. Feature envy is when a method in one
class calls multiple methods in another class, giving a strong
indication that the method is in the wrong class, prompting us to
move it.

Select examples - Next, we gather some representative code – test
cases –that we agree are and are not examples of feature envy.
Here are some C# test samples.

CODEMANSHIP | TDD |208

Automate quality gates – In a test-driven manner, one test case at
a time, we automate a quality gate that will catch the bad examples
and allow the good examples through.

There are many tools available for writing automated code quality
gates. At the very least, you need a parser to read code and extract
in-memory models of it that we can query programmatically. Here,
I’ve used a tool called FxCop (it comes with Visual Studio) to analyse
C# looking for examples of feature envy.

This is feature envy

This is NOT feature envy

This is NOT feature envy

CODEMANSHIP | TDD |209

private void InspectMethodBody(Method method)
{

 if (method != null)
 {

 var visitor = VisitStatements(method);
 CheckForFeatureEnvy(method, visitor);

 }

}

private MethodInvocationVisitor VisitStatements(Method method)
{

 MethodInvocationVisitor visitor =

new MethodInvocationVisitor(method.DeclaringType);
 visitor.VisitStatements(method.Body.Statements);

 return visitor;
}

private void CheckForFeatureEnvy(Method method,
MethodInvocationVisitor visitor)

{

 var enviedTypes = visitor.EnviedTypes;
 if (enviedTypes.Count > 0)
 {

 AddFeatureEnvyProblem(method, enviedTypes);

 }

}

And, of course, I used TDD to implement this custom FxCop rule.

[TestFixture]
public class FeatureEnvyRuleTests
{

 [Test]
 [TestCase("MethodThatMakesOneCallOnOneSupplier", 0)]
 [TestCase("MethodThatMakesTwoCallsOnOneSupplier", 1)]
 [TestCase("MethodThatMakesTwoCallsOnDifferentSuppliers", 0)]
 public void MethodsThatMakeMultipleCallsHaveFeatureEnvy(

string methodName,
int expectedProblemCount)

 {

 FeatureEnvyRule rule = new FeatureEnvyRule();
 rule.Check(GetMemberToCheck(methodName));

 Assert.AreEqual(expectedProblemCount,
rule.Problems.Count);

 }

Deploy Quality Gate – once we’re satisfied that our quality gate
works well enough to be tried out on real projects, we integrate it
into our build cycle. Before we do this, the team needs to agree on
the policy that they’ll stick to when this particular gate fails. A hard
gate will fail the build if any code is caught in the gate and the
developer who committed that code will have to address the issue.

CODEMANSHIP | TDD |210

A soft gate will report issues, but the team may have a process for
reviewing the suspect code and – if they feel it’s not a problem –
let it through.

Of course, like Jones the cat in the movie Alien, letting code quality
issues through the gate means they will show up again in later
inspections. If we’re happy to let code through, we need a
mechanism for ignoring previously addressed issues. There’s
nothing less useful than a continuous inspection report that’s
stuffed full of potential issues we already know about and chose to
ignore.

This is why many teams exclude previously raised issues from
inspection reports, so only new issues that get picked up are
highlighted. FxCop has a feature that enables this, but it can be a
bit hit and miss. In my implementation, I use an XML diff tool to
compare the new report with the previous one.

Clean Check-In – just as it’s a good idea to make sure the code
passes the functional tests before we commit it, we should also
check that it passes the code quality gates, so as not to risk breaking
the build and wasting the team’s time. I’m in the habit of running
code quality checks continuously on my desktop, typically only
going 10-15 minutes between inspections.

It helps enormously if you can run code analysis from within your
IDE. Visual Studio is quite advanced in this respect.

CODEMANSHIP | TDD |211

Feedback – As with all code, we’re unlikely to be so lucky as to get
it exactly right first time. Using code quality gates on real projects
will be a learning experience, and we need to feedback those
lessons and evolve our gates as well as our Continuous Inspection
processes. It can take several months for them to mature and bed
in.

Reuse – The good news is that, for a specific technology, once
we’ve learned lessons about Continuous Inspection on one project,
much of that can be reused on new projects. Feature envy is feature
envy, and it doesn’t really matter if we’re building a mobile weather
app or a cloud-based trading system.

CODEMANSHIP | TDD |212

EXERCISE #18

Convert one of the parameterised tests you write for a previous
exercise into a property-based test, and drive it using
programmatically generated data.

EXERCISE #19

Performing code mutations manually by making a single edit to the
code (e.g., turning a + into a -), mutation test the code you wrote
for a previous exercise. Remember to do one simple mutation at a
time, and revert the code after each one.

If your tests fail to “kill the mutant”, look at how the tests could be
improved, and then check that improvement by repeating the
mutation.

If a mutation testing tool exists for the programming language
you’re working in, try using the tool to do it, too.

EXERCISE #20

Using mock objects to count the number of times a “swap” method
is invoked, write a non-functional property-based test that will fail
if an implementation of a sorting algorithm has worse than O(N log
N) performance for random (very unsorted) lists of strings of up to
1,000,000 length. (HINT: you’ll be needing a sorting algorithm
that’s quick).

EXERCISE #21

Design and implement an automated code quality gate to flag up
methods that are too long and/or too complicated.

CODEMANSHIP | TDD |213

22. MASTERING TDD

In this book, we’ve explored TDD in depth. Hopefully, by now,
you’ve learned there’s much more to it than “red-green-refactor”.

I’ve been writing tests first since before it had a name, and have
trained and coached thousands of other developers in these
disciplines.

If there’s one thing I’ve learned from all that TDD experience, it’s
this: if you don’t want to learn TDD, you won’t.

TDD takes longer than a weekend to become proficient enough in
to use on real projects. Making the move to TDD requires a longer-
term commitment, typically 4-6 months.

There’s a whole bunch of stuff you need to know, and there’s also
a bunch of habits you need to build to make TDD work for you;
habits like remembering to start by writing a failing test,
remembering to refactor your code after passing a test, and
remembering to see the test fail for the right reasons before writing
the code to make it pass.

When you first start doing TDD, it will probably feel uncomfortable,
like asking a violinist to hold the bow differently to the way they’ve
been doing it for years.

TDD will “click” for you after many hours of mindful practice, which
is why it’s important to try the exercises in this book. You can no
more learn TDD just by reading this book than you could learn to
ride a bicycle that way.

CODEMANSHIP | TDD |214

BUILDING HABITS

Kent Beck, author of Test-Driven Development By Example, once
said of himself: “'I'm not a great programmer; I'm just a good
programmer with great habits”.

Mastering TDD requires mastery of two things: the “art” of test-
driving designs, which takes years and years of experience, and the
basic habits of TDD, which you can build in a few months with
regular practice.

The habits are important because, once they become second
nature, your mind is then free to focus on solving the problem.

An experienced guitar player is usually not consciously aware of her
picking technique. She is focused on the music.

And experienced TDD practitioner is usually not consciously aware
of running the tests after every change, or writing the assertion first
and working backwards, or avoiding doing any refactoring when
tests are failing. She is focused on solving the problem.

Here’s a list of my TDD habits:

 I start by writing a failing test. Always.

 I write the simplest code I can think of to get it passing
quickly

 I refactor the code to make the next test easier

 I don’t write source code unless there’s a failing test that
requires it

 I write tests that only have on reason to fail

 I make sure I’ve seen the test fail for the right reason

 I triangulate when the solution’s not obvious & trivial

 I write the assertion first and work backwards

 I don’t refactor when a test is failing

 I make sure the test code is self-explanatory and reads like
a specification

CODEMANSHIP | TDD |215

 I refactor duplicate tests into parameterised tests (for all
the reasons we’ve seen)

 I write my code using the customer’s language whenever
possible

 I drive internal designs directly from failing customer tests

 I use dependency injection and test doubles to isolate
external dependencies in my tests

 I favour fast-running tests whenever possible

 I use mock objects to write tests that are about
collaborations between objects, and assertions to write
tests that are about the work objects do

 I organise my test code so it’s obvious what’s being tested,
and what kinds of tests they are (unit, integration,
customer, performance etc)

 I keep my test code and source code separate so it’s
obvious which is which and they can easily be packaged
separately for DevOps reasons

 I don’t write tests that can have a domino effect on other
tests (e.g., if they’re sharing data that one test changes and
the next test relies on). I can run my tests individually and
in any order.

 I avoid tests that rely on unpredictable behaviour or data
that changes (e.g., a test that uses the current date and
time)

 I maintain my test code so that it remains valuable, up-to-
date documentation

MAKE TDD YOUR DEFAULT BEHAVIOUR

By far the most commonly cited cause of failing with TDD is teams
who attempt to learn it while under delivery pressure. When
people are under pressure, we revert to our default behaviour.

At first, TDD feels clunky and difficult and slow. Developers who are
climbing the TDD learning curve see their productivity drop. Teams

CODEMANSHIP | TDD |216

underestimate the steepness of the curve, and the length of climb.
It’s not days, or weeks; it’s months.

No wonder, when the heat is on, so many developers get out of the
TDD kitchen.

The breakthrough happens when TDD becomes your default
behaviour. The more pressure you’re under, the smaller the steps
you take, the more you triangulate, the more your refactor, the
more you “TDD”.

This is healthy. Your boss probably won’t believe you, but the way
the most advanced software teams get back on schedule is not by
cutting corners, but by taking more care.

UNDER THE RADAR

For these reasons, I strongly recommend against attempting to
test-drive everything on real projects from day one. Your
productivity will circle the drain, and your customer and your boss
will not be happy. There are far too many development teams out
there who are forbidden to do TDD

Instead, adopt TDD by stealth. Make a bit of time available every
day to work on your TDD skills and build those habits.

As your confidence grows, you’ll feel more comfortable doing TDD
for extended periods on increasingly more challenging problems,
until – one day – you’ll be doing it every day as your default way of
working. You’ll find it hard not to do TDD.

UNDER-PROMISE, OVER-DELIVER

The purported benefits of TDD, like more reliable software, shorter
cycle times for delivering features and a lower cost of changing
code, really only apply to developers who can do TDD reasonably
well. There’s going to be quite a lead time before you notice these
improvements – typically more than a year.

CODEMANSHIP | TDD |217

The experience of many teams is that if you over-sell the benefits
and how soon the business will feel them, you can set expectations
unrealistically high. Disappointment is likely to follow.

The smarter way to adopt TDD is to adopt by stealth, gradually
building up, and then – rather than promise future benefits – draw
attention to benefits already being felt.

Would you rather be in a meeting persuading your boss to let you
try TDD because “it will reduce bugs in production by 90%”, or in a
meeting proudly revealing that bug counts are down 90%? If
nothing else, it will make life a lot easier for other teams who are
hoping to try TDD.

This is why I also strongly recommend, as your TDD confidence
grows, you keep track of key measures like defect counts, cycle
times, and cost of change, so you can make your case when the
time comes.

IT’S EASIER TO APOLOGISE THAN GET PERMISSION

What’s your company’s policy on FOR loops? Did you need
permission to use them?

To an experienced TDD practitioner, writing failing tests first is just
how they write code. It doesn’t take them any longer, typically, and
often saves time. It doesn’t require investment in software licenses
or other purchases. It doesn’t change the flow of the user
experience or alter the application’s UI design. Arguably, TDD-ing
code is a developer’s decision, just like using FOR loops.

It only becomes a business decision when TDD-ing your code is
going to cost more money, or take more time, or fundamentally
alter the business-eye view of the software in some way.

But if you ask…

All too often, managers will say “no”. Which is why, as an
experienced test-driven developer, I just don’t ask.

CODEMANSHIP | TDD |218

PRACTICE, PRACTICE, PRACTICE!

I’m going to finish this book where I started. To learn TDD, you need
to do TDD. Lots of TDD.

Use the exercises in this book. Seek out TDD project ideas on the
Web (searching for “TDD katas” is a good place to start). Come up
with your own ideas for projects you could test-drive.

And when you’ve completed an exercise or a project. Do it again,
better. I must have done the Fibonacci Numbers TDD kata 100
times, and I’m still discovering new ways of doing it.

Practice alone. Pair program with friends. Do a screencast of you
TDD-ing and watch it back (you’d be amazed the stuff we do that
we didn’t know we were doing). Grab a space, a laptop and
projector and “mob program”. Watch other developers doing TDD.
YouTube is crammed full of screencasts (though not all of them
setting great examples – but even TDD done badly can be
educational.)

Don’t be afraid to try. Don’t be afraid to fail.

Good luck!

CODEMANSHIP | TDD |219

CODEMANSHIP | TDD |220

SUGGESTED FURTHER READING

Test Driven Development: By Example (Addison-Wesley, 2002) –
Kent Beck

Growing Object-Oriented Software, Guided by Tests (Addison-
Wesley, 2009) – Steve Freeman & Nat Pryce

Refactoring: Improving the Design of Existing Code (Addison-
Wesley, 1999) – Martin Fowler

Working Effectively with Legacy Code (Prentice Hall, 2004) –
Michael Feathers

Clean Code: A Handbook of Agile Software Craftsmanship
(Prentice Hall, 2008) – Robert C Martin

Specification by Example: How Successful Teams Deliver the Right
Software (Manning, 2011) – Gojko Adzic

xUnit Test Patterns: Refactoring Test Code (Addison Wesley, 2007)
– Gerard Meszaros

Continuous Delivery: Reliable Software Releases Through Build,
Test, and Deployment Automation (Addison Wesley, 2010) – Jez
Humble & David Farley

CODEMANSHIP | TDD |221

CODEMANSHIP | TDD |222

