Grzegorz GatezowsKi

Test-Driven
Development

Extensive Tutorial

Test-Driven Development: Extensive
Tutorial

Grzegorz Gatezowski
This book is for sale at http://leanpub.com/tdd-ebook

This version was published on 2019-02-08

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have the right book and build
traction once you do.

CMOoM

This work is licensed under a Creative Commons Attribution 3.0 Unported License

http://leanpub.com/tdd-ebook
http://leanpub.com/
http://leanpub.com/manifesto
http://creativecommons.org/licenses/by/3.0/deed.en_US
http://creativecommons.org/licenses/by/3.0/deed.en_US

Tweet This Book!

Please help Grzegorz Gatezowski by spreading the word about this book on Twitter!
The suggested hashtag for this book is #tddebookxt.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

#tddebookxt

http://twitter.com
https://twitter.com/search?q=%23tddebookxt
https://twitter.com/search?q=%23tddebookxt

Contents

Front Matter 1

Dedications 2
ThanKks! 3
About code examples 4
Notes for CHUSEIS . . . v v v o o e e e e e e 4
Notes for Java users e 4

Part 1: Just the basics 8

Motivation - the first step tolearning TDD, 9
What TDD feelslikeo 10
Let’s getit started! 11

The essential tools 12
Test framework L 12
Mocking framework 17
Anonymous values generator 23
Summary 26

I'snot (only)atest. 27
When a test becomes somethingmore 27
Taking it to the software developmentland 28
A Specification rather than atestsuite 29
The differences between executable and “traditional” specifications 30

Statement-first programming L 31
What’s the point of writing a specification after the fact? 31
“Test-First” means seeing a failure 33
“Test-After” often ends up as “Test-Never” 37
“Test-After” often leads to designrework 38
Summary 39

Practicing what we have already learned 40
Letmetell youastory 40
Act:The Car. 40

Act 2: The Customer’s Site o 41

CONTENTS

Act 3: Test-Driven Development 45
Epilogue 60
Sortingoutthebits 61
How tostart? 62
Start withagoodname 62
Start by filling the GIVEN-WHEN-THEN structure with the obvious 66
Start fromtheend 69
Start by invoking a method if you haveone. L. 71
Summary 74
How is TDD about analysis and what does “GIVEN-WHEN-THEN” mean? 75
Is there really a commonality between analysis and TDD? 75
Gherkin. 76
TODO list... again! 78
What is the scope of a unit-level Statementin TDD? 83
Scopeand level 83
On what level do we specify our software? 84
What should be the functional scope of a single Statement? 84
Failing to adhere to the threerules 86
How many assertionsdo Ineed? 87
Summary 89
Developing a TDD style and Constrained Non-Determinism 90
Astyle? . oo 90
Principle: Tests As Specification L. 90
First technique: Anonymous Input 91
Second technique: Derived Values. 92
Third technique: Distinct Generated Values 93
Fourth technique: Constant Specification 95
Summary of theexample 97
Constrained non-determinism 97
Summary 98
Specifying functional boundaries and conditions, 99
Sometimes, an anonymous value is not enough 99
Exceptionstotherule L 100
Rules valid within boundaries 105
Combination of boundaries —ranges 109
Summary 111
Driving the implementation from Specification 112
Type the obvious implementation 112
Fake it (‘til youmakeit) 113
Triangulate 116

Summary 129

CONTENTS

Part 2: Object-Oriented World 130

On Object Composability 132
Another task for Johnny and Benjamin 132
A Quick Retrospective 139
Telling, not asking 140
Contractors 140
A Quick Retrospective 146
The need for mock objects 147
Composability... again! 147
Why do we need composability? 148
Pre-object-oriented approaches 148
Object-oriented programming to the rescue! 150
The power of composition 151
Summary - are you still withme? o o L oL 156
Web, messages and protocols 157
So, again, what does it mean to compose objects? 157
Alarms, again! 159
Summary 162
Composingawebofobjects L L 163
Three important questions 163
A preview of all three answers 163
When are objects composed? 164

How does a sender obtain a reference to a recipient (i.e. how connections are made)? 165

Receive as constructor parameter 165
Receive inside a message (i.e. as a method parameter) 167
Receive in response to a message (i.e. as method return value) 168
Receive as a registered observer 170
Where are objects composed? 177
Composition Root 177
Factories 181
Summary 198
Interfaces 199
Classes vsinterfaces 199
Events/callbacks vs interfaces — few wordsonroles 200
Smallinterfaces 202
Protocols 207
Protocolsexist 207

Protocol stability 209

CONTENTS

Craft messages to reflect sender’s intention 209
Model interactions after the problem domain 210
Message recipients should be told what to do, instead of being asked for information 212
Most of the getters should be removed, return values should be avoided 215
Protocols should be small and abstract 221
Summary 222
Classes 223
Single Responsibility Principleo 223
Staticrecipients 227
Summary 230
Object CompositionasaLanguage 231
More readable compositionroot L L 231
Refactoring for readability 233
Composition asalanguage 242
The significance of a higher-level language 244
Someadvice 245
Summary 250
Value Objects 251
Whatisavalue? 251
Example: money andnames 251
Value object anatomy 257
Class signature 258
Hiddendata 258
Hidden constructor. 258
String conversion methods o 264
Equality members 265
The return of investment L 266
Summary 268
Aspects of value objectsdesign 269
Immutability 269
Handling of variability 277
Special values 281
Value typesand Tell Don't Ask 282
Summary 283

Part 3: TDD in Object-Oriented World 284

Mock Objects as a testingtool 286
Abacking example 286
Interfaces. 287
Protocols 287

Roles . . . o e, 288

CONTENTS

Behaviors 288
Fillingintheroles 289
Usingamockchannel 291
Mocks as yet another context 293
Summary 293
Test-first using mock objects 294
How to start? — with mock objects 294
Responsibility and Responsibility 294
Channel and DataDispatch one more time 295
The first behavior. L 295
Second behavior — specifyinganerror 305
Summary 309
Test-driving at the inputboundary 311
Fixing the ticket office 311
Initial objects 312
Bootstrap 315
Writing the first Statement L L 315
Summary 336

THIS IS ALL I HAVE FOR NOW. WHAT FOLLOWS IS RAW, UNORDERED MATE-
RIAL THAT’S NOT YET READY TO BE CONSUMED AS PART OF THIS TUTORIAL 337

Test-driving at the input boundary - a retrospective 338
Mock objects asadesigntool 379
Outside-in development 379
Worked example 379
Programming by intention L 379
Responsibility-Driven Design 379
Specifying factories 379
Whatnottomock? 380
Internals 380
How to use value objects in Statements? 380
How to specify value objects? 380
Terminal nodes in object graph 380
Guidanceof testsmells 381
Long Statements 381
Lotsof stubbing 381
Specifying private members 381
Mocking third party 381
Revisiting topics from chapter1 Lo L 382
Constrained non-determinismin OOworld 382
Behavioral boundaries L 382

Triangulation 382

CONTENTS

Maintainable mock-based Statementso o oL 383
Setupand teardown 383
Refactoring mockcode 384
Part 4: Application architecture 385
On stable/architectural boundaries 386
Ports and adapters 387
Physical separation of layers L 387
What goes into application? 388
Application and other layers 388
What goes into ports? 389
Data transfer objects 389
Portsarenotalayer 389

Part 5: TDD on application architecture level 39

Designing automation layer L 391
Adapting screenplay pattern L 391
Driver. e 391
ACIOTS . . o o 391
Databuilders 391

FurtherReading e 392
Motivation — the first step to learning TDD 392
The Essential Tools 392

Value Objects 392

Front Matter

Dedications

Ad Deum qui laetificat iuventutem meam.

To my beloved wife Monika and our lovely son Daniel.

Thanks!

I would like to thank the following people (listed alphabetically by name) for valuable feedback,
suggestions, typo fixes and other contributions:

« Brad Appleton

« Borystaw Bobulski
o Chris Kucharski

« Daniel Dec

« Daniel Zolopa (cover image)
« Donghyun Lee
 Lukasz Maternia

o Marek Radecki

« Martin Moene

» Michael Whelan

« Polina Kravchenko
- Rafat Bigaj

« Reuven Yagel

« Rémi Goyard

« Robert Pajak

« Wiktor Zomowski

This book is not original at all. It presents various topics that others invented and I just picked
up. Thus, I would also like to thank my mentors and authorities on test-driven development and
object-oriented design that I gained most of my knowledge from (listed alphabetically by name):

Amir Kolsky

« Dan North

« Emily Bache

« Ken Pugh

« Kent Beck

o Mark Seemann
o Martin Fowler
+ Nat Pryce

« Philip Schwarz
« Robert C. Martin
« Scott Bain

« Steve Freeman

About code examples

Notes for C# users

The language of choice for code examples is C#, however, | made some exception from the typical
C# code conventions.

Dropping “I” from interface names

Personally, I am not a big fan of using ISomething as interface name, so I decided to drop the I
even though most C# developers expect to see it. I hope you can forgive me this one.

Idiomatic C#

Most of the code in this book is not idiomatic C#. I tried to avoid properties, events, and most
modern features. My goal is to allow users of other languages (especially Java) to benefit from

the book.
Using underscore in field names

Some people like it, some not. I decided to stick to the convention of putting an underscore (_)
before a class field name.

Notes for Java users

The language of choice for code examples is C#. That said, I wanted the book to be as technology-
agnostic as possible, to allow especially Java programmers to benefit from it. I tried using a
minimum number of C#-specific features and in several places even made remarks targeted at
Java users to make it easier for them. Still, there are some things I could not avoid. That’s why I
wrote up a list containing several of the differences between Java and C# that Java users could
benefit from knowing when reading the book.

Naming conventions

Most languages have their default naming conventions. For example, in Java, a class name is
written with pascal case (e.g. UserAccount), methods and fields are written with camel case,
e.g. payTaxes and constants/readonly fields are typically written in underscored upper-case (e.g.
CONNECTED_NODES).

C# uses pascal case for both classes and methods (e.g. UserAccount, PayTaxes, ConnectedNodes).
For fields, there are several naming conventions. I chose the one starting with underscore (e.g.
_myDependency). There are other minor differences, but these are the ones you are going to
encounter quite often.

About code examples 5

var keyword

For example brevity, I chose to use the var keyword in the examples. This keyword serves as
automatic type inference, e.g.

var x = 123; //x inferred as integer

Of course, this is no dynamic typing by any means - everything is resolved at compile time.

One more thing - var keyword can only be used when the type can be inferred, so ocassionally,
you will see me declaring types explicitly as in:

List<string> list = null; //list cannot be inferred

string as keyword

C# has a String type, similar to Java. It allows, however, to write this type name as keyword,
e.g. string instead of String. This is only syntactic sugar which is used by default by the C#
community.

Attributes instead of annotations

In C#, attributes are used for the same purpose as annotations in Java. So, whenever you see:

[Whatever]
public void doSomething()

think:
@Whatever

public void doSomething()

readonly and const instead of final

Where Java uses final for constants (together with static) and read-only fields, C# uses two
keywords: const and readonly. Without going into details, whenever you see something like:

About code examples 6

public class User
{
// a constant with literal:

private const int DefaultAge = 15;

// a "constant" object:
private static readonly TimeSpan DefaultSessionTime

= TimeSpan.FromDays(2);

// a read-only instance field:
private readonly List<int> _marks = new List<int>();

think:

public class User {
//a constant with literal:
private static final int DEFAULT_AGE = 15;

//a "constant" object:
private static final Duration
DEFAULT_SESSION_TIME = Duration.ofDays(2);

// a read-only instance field:
private final List<Integer> marks = new ArraylList<>();

AlList<T>

If you are a Java user, note that in C#, List<T> is not an interface, but a concrete class. it is
typically used where you would use an ArrayList.

Generics

One of the biggest difference between Java and C# is how they treat generics. First of all, C#
allows using primitive types in generic declarations, so you can write List<int> in C# where in
Java you have to write List<Integer>.

The other difference is that in C# there is no type erasure as there is in Java. C# code retains all
the generic information at runtime. This impacts how most generic APIs are declared and used
in C#.

A generic class definition and creation in Java and C# is roughly the same. There is, however,
difference on the method level. A generic method in Java is typically written as:

Bw N

About code examples 7

public <T> List<T> createArrayOf(Class<T> type) {

and called like this:
List<Integer> ints = createArrayOf(Integer.class);
whereas in C# the same method would be defined as:

public List<T> CreateArrayOf<T>()
{

and called as such:
List<int> ints = CreateArrayOf<int>();

These differences are visible in the design of the library that I use throughout this book for
generating test data. While in the C# version, one generates test data by writing:

var data = Any.Instance<MyData>();
the Java version of the library is used like this:

MyData data = Any.instanceOf(MyData.class);

Part 1: Just the basics

Status: stable

This chapter will mostly get bugfixes and cosmetic changes.

In this part I introduce the basic TDD philosophy and practices, without going much into ad-
vanced aspects like applying TDD to object-oriented systems where multiple objects collaborate
(which is a topic of part 2). In terms of design, most of the examples will be about methods of
a single object being exercised. The goal is to focus on the core of TDD before going into its
specific applications and to slowly introduce some concepts in an easy to grasp manner.

After reading part 1, you will be able to quite effectively develop classes that have no
dependencies on other classes (and on operating system resources) using TDD.

Motivation - the first step to
learning TDD

I’'m writing this book because 'm a TDD enthusiast. I believe TDD is a huge improvement over
other software development methodologies I have used to deliver quality software. I believe this
is true not only for me, but for many other software developers. Which makes me question, why
don’t more people learn and use TDD as their software delivery methodology of choice? In my
professional life, I haven’t seen the adoption rate to be big enough to justify the claim that TDD
is currently in the mainstream.

You already have my respect for deciding to pick up a book, rather than building your
understanding of TDD on the foundation of urban legends and your own imagination. I am
honored and happy you chose this one, no matter if this is your first book on TDD or one of
many you have opened up in your learning endeavors. As much as I really hope you will read
this book from cover to cover, I am aware it doesn’t always happen. That makes me want to ask
you an important question that may help you determine whether you really want to read on:
why do you want to learn TDD?

By questioning your motivation, 'm not trying to discourage you from reading this book. Rather,
I’d like you to reconsider the goal you want to achieve by reading it. Over time, I have noticed
that some of us (myself included) may think we need to learn something (as opposed to wanting
to learn something) for whatever reasons, e.g. getting a promotion at work, gaining a certificate,
adding something to CV, or just “staying up to date” with recent hypes. Unfortunately my
observation is that Test-Driven Development tends to fall into this category for many people.
Such motivation may be difficult to sustain over the long term.

Another source of motivation may be imagining TDD as something it really is not. Some of us
may only have a vague knowledge of what the real costs and benefits of TDD are. Knowing
that TDD is valued and praised by others, we may draw conclusions that it has to be good for
us as well. We may have a vague understanding of the reasons, such as “the code will be more
tested” for example. As we don’t know the real “why” of TDD, we may make up some reasons
to practice test-first development, like “to ensure tests are written for everything”. Don’t get me
wrong, these statements might be partially true, however, they miss a lot of the essence of TDD.
If TDD does not bring the benefits we imagine it might bring, dissapointment may creep in.
I heard such disappointed practitioners saying “I don’t really need TDD, because I need tests
that give me confidence on a broader scope” or “Why do I need unit tests' when I already have
integration tests, smoke tests, sanity tests, exploration tests, etc...?”. Many times, I saw TDD
getting abandoned before even being understood.

Is learning TDD a high priority for you? Are you determined to try it out and really learn it?
If you’re not, hey, | heard the new series of Game Of Thrones is on TV, why don’t you check it
out instead? Ok, I'm just teasing, however, as some say, TDD is “easy to learn, hard to master”,

"By the way, TDD is not only about unit tests, which we will get to eventually.
’I don’t know who said it first, I searched the web and found it in few places where none of the writers gave credit to anyone else
for it, so I decided just to mention that I'm not the one that coined this phrase.

Motivation — the first step to learning TDD 10

so without some guts to move on, it will be hard. Especially since my plan is to introduce the
content slowly and gradually, so that you can get better explanation of some of the practices and
techniques.

What TDD feels like

My brother and I liked to play video games in our childhood — one of the most memorable being
Tekken 3 — a Japanese tournament beat’em up for Sony Playstation. Beating the game with all
the warriors and unlocking all hidden bonuses, mini-games etc. took about a day. Some could
say the game had nothing to offer since then. Why is it then that we spent more than a year on
it?

E-EIIHB
81,

Tekken3

It is because each fighter in the game had a lot of combos, kicks and punches that could be
mixed in a variety of ways. Some of them were only usable in certain situations, others were
something I could throw at my opponent almost anytime without a big risk of being exposed to
counterattacks. I could side-step to evade enemy’s attacks and, most of all, I could kick another
fighter up in the air where they could not block my attacks and I was able to land some nice
attacks on them before they fell down. These in-the-air techniques were called “juggles”. There
were magazines that published lists of new juggles each month and the hype has stayed in the
gaming community for well over a year.

Motivation — the first step to learning TDD 11

Yes, Tekken was easy to learn — I could put one hour into training the core moves of a character
and then be able to “use” this character, but I knew that what would make me a great fighter
was the experience and knowledge on which techniques were risky and which were not, which
ones could be used in which situations, which ones, if used one after another, gave the opponent
little chance to counterattack etc. No wonder that soon many tournaments sprang, where players
could clash for glory, fame and rewards. Even today, you can watch some of those old matches
on youtube.

TDD is like Tekken. You probably heard the mantra “red-green-refactor” or the general advice
“write your test first, then the code”, maybe you even did some experiments on your own where
you were trying to implement a bubble-sort algorithm or other simple stuff by starting with
a test. But that is all like practicing Tekken by trying out each move on its own on a dummy
opponent, without the context of real-world issues that make the fight really challenging. And
while I think such exercises are very useful (in fact, I do a lot of them), I find an immense benefit
in understand the bigger picture of real-world TDD usage as well.

Some people I talk to about TDD sum up what I say to them as, “This is really demotivating —
there are so many things I have to watch out for, that it makes me never want to start!”. Easy,
don’t panic — remember the first time you tried to ride a bike — you might have been really far
back then from knowing traffic regulations and following road signs, but that didn’t really keep
you away, did it?

I find TDD very exciting and it makes me excited about writing code as well. Some guys of my
age already think they know all about coding, are bored with it and cannot wait until they move
to management or requirements or business analysis, but hey! I have a new set of techniques that
makes my coding career challenging again! And it is a skill that I can apply to many different
technologies and languages, making me a better developer overall! Isn’t that something worth
aiming for?

Let's get it started!

In this chapter, I tried to provoke you to rethink your attitude and motivation. If you are still
determined to learn TDD with me by reading this book, which I hope you are, then let’s get to
work!

© 00 1 O O b W N =

RN
=

The essential tools

Ever watched Karate Kid, either the old version or the new one? The thing they have in common
is that when the “kid” starts learning karate (or kung-fu) from his master, he is given a basic,
repetitive task (like taking off a jacket, and putting it on again), not knowing yet where it would
lead him. Or look at the first Rocky film (yeah, the one starring Sylvester Stallone), where Rocky
chases a chicken in order to train agility.

When I first tried to learn how to play guitar, I found two pieces of advice on the web: the first
was to start by mastering a single, difficult song. The second was to play with a single string,
learn how to make it sound in different ways and try to play some melodies by ear just with this
one string. Do I have to tell you that the second advice worked better?

Honestly, I could dive right into the core techniques of TDD, but I feel this would be like putting
you on a ring with a demanding opponent — you would most probably be discouraged before
gaining the necessary skills. So, instead of explaining how to win a race, in this chapter we will
take a look at what shiny cars we will be driving.

In other words, I will give you a brief tour of the three tools we will use throughout this book.

In this chapter, I will oversimplify some things just to get you up and running without getting
into the philosophy of TDD yet (think: physics lessons in primary school). Don’t worry about it
:-), I will make up for it in the coming chapters!

Test framework

The first tool we’ll use is a test framework. A test framework allows us to specify and execute
our tests.

Let’s assume for the sake of this introduction that we have an application that accepts two
numbers from commandline, multiplies them and prints the result on the console. The code
is pretty straightforward:

public static void Main(string[] args)

{
try

{
int firstNumber = Int32.Parse(args([@]);
int secondNumber = Int32.Parse(args[1]);

var result =
new Multiplication(firstNumber, secondNumber).Perform();

Console.WritelLine("Result is: " + result);

12
13
14
15
16
17

© 00 N O O & W N =

(RN
= O

The essential tools 13

}

catch(Exception e)

{

Console.WriteLine("Multiplication failed because of: " + e);

Now, let’s assume we want to check whether this application produces correct results. The most
obvious way would be to invoke it from the command line manually with some exemplary
arguments, then check the output to the console and compare it with what we expected to see.
Such testing session could look like this:

C:\MultiplicationApp\MultiplicationApp.exe 3 7
21
C:\MultiplicationApp\

As you can see, our application produces a result of 21 for the multiplication of 3 by 7. This is
correct, so we assume the application has passed the test.

Now, what if the application also performed addition, subtraction, division, calculus etc.? How
many times would we have to invoke the application manually to make sure every operation
works correctly? Wouldn’t that be time-consuming? But wait, we are programmers, right? So
we can write programs to do the testing for us! For example, here is a source code of a program
that uses the Multiplication class, but in a slightly different way then the original application:

public static void Main(string[] args)

{

var multiplication = new Multiplication(3,7);
var result = multiplication.Perform();

if(result != 21)
{

throw new Exception("Failed! Expected: 21 but was: " + result);

Looks simple, right? Now, let’s use this code as a basis to build a very primitive test framework,
just to show the pieces that such frameworks consist of. As a step in that direction, we can extract
the verification of the result into a reusable method - after all, we will be adding division in a
second, remember? So here goes:

O© 00 I O O b W N =

[S S N = e Y
© © 0 N O O & W N =~ O

© 00 N O O b W N =

10
11
12
13
14
15
16
17
18
19
20

The essential tools 14

public static void Main(string[] args)

{

var multiplication = new Multiplication(3,7);
var result = multiplication.Perform();

AssertTwolntegersAreEqual (expected: 21, actual: result);

//extracted code:
public static void AssertTwolntegersAreEqual(

int expected, int actual)

if(actual != expected)

{

throw new Exception(

"Failed! Expected:
+ expected + " but was: " + actual);

Note that I started the name of this extracted method with “Assert” — we will get back to the
naming soon, for now just assume that this is a good name for a method that verifies that a result
matches our expectation. Let’s take one last round and extract the test itself so that its code is in
a separate method. This method can be given a name that describes what the test is about:

public static void Main(string[] args)

{
Multiplication_ShouldResultInAMultiplicationOfTwoPassedNumbers();

public void
Multiplication_ShouldResultInAMultiplicationOfTwoPassedNumbers()

{
//Assuming. . .

var multiplication = new Multiplication(3,7);

//when this happens:
var result = multiplication.Perform();

//then the result should be. ..

AssertTwolntegersAreEqual (expected: 21, actual: result);

public static void AssertTwolntegersAreEqual(
int expected, int actual)

21
22
23
24
25
26
27

The essential tools 15

{
if(actual != expected)
{
throw new Exception(
"Failed! Expected: " + expected + " but was: " + actual);
}
}

And we’re done. Now if we need another test, e.g. for division, we can just add a new
method call to the Main() method and implement it. Inside this new test, we can reuse
the AssertTwolIntegersAreEqual() method, since the check for division would also be about
comparing two integer values.

As you see, we can easily write automated checks like this, using our primitive methods.
However, this approach has some disadvantages:

1. Every time we add a new test, we have to update the Main() method with a call to the new
test. If we forget to add such a call, the test will never be run. At first it isn’t a big deal, but
as soon as we have dozens of tests, an omission will become hard to notice.

2. Imagine your system consists of more than one application — you would have some
problems trying to gather summary results for all of the applications that your system
consists of.

3. Soon you’ll need to write a lot of other methods similar to AssertTwoIntegersAreEqual()
- the one we already have compares two integers for equality, but what if we wanted to
check a different condition, e.g. that one integer is greater than another? What if we wanted
to check equality not for integers, but for characters, strings, floats etc.? What if we wanted
to check some conditions on collections, e.g. that a collection is sorted or that all items in
the collection are unique?

4. Given a test fails, it would be hard to navigate from the commandline output to the
corresponding line of the source in your IDE. Wouldn't it be easier if you could click on the
error message to take you immediately to the code where the failure occurred?

For these and other reasons, advanced automated test frameworks were created such as CppUnit
(for C++), JUnit (for Java) or NUnit (C#). Such frameworks are in principle based on the very
idea that I sketched above, plus they make up for the deficiencies of our primitive approach. They
derive their structure and functionality from Smalltalk’s SUnit and are collectively referred to as
xUnit family of test frameworks.

To be honest, I can’t wait to show you how the test we just wrote looks like when a test
framework is used. But first let’s recap what we’ve got in our straightforward approach to writing
automated tests and introduce some terminology that will help us understand how automated
test frameworks solve our issues:

1. The Main() method serves as a Test List — a place where it is decided which tests to run.
2. The Multiplication_ShouldResultInAMultiplicationOfTwoPassedNumbers() method is a
Test Method.

O© 00 I O O b W N =~

SN
N =~ O

The essential tools 16

3. The AssertTwoIntegersAreEqual () method is an Assertion — a condition that, when not
met, ends a test with failure.

To our joy, those three elements are present as well when we use a test framework. Moreover,
they are far more advanced than what we have. To illustrate this, here is (finally!) the same test
we wrote above, now using the xUnit.Net® test framework:

[Fact] public void
Multiplication_ShouldResultInAMultiplicationOfTwoPassedNumbers()
{

//Assuming. . .

var multiplication = new Multiplication(3,7);

//when this happens:
var result = multiplication.Perform();

//then the result should be. ..
Assert.Equal(21, result);

Looking at the example, we can see that the test method itself is the only thing that’s left — the
two methods (the test list and assertion) that we previously had are gone now. Well, to tell you
the truth, they are not literally gone — it’s just that the test framework offers replacements that
are far better, so we used them instead. Let’s reiterate the three elements of the previous version
of the test that I promised would be present after the transition to the test framework:

1. The Test List is now created automatically by the framework from all methods marked
with a [Fact] attribute. There’s no need to maintain one or more central lists anymore, so
the Main() method is no more.

2. The Test Method is present and looks almost the same as before.

3. The Assertion takes the form of a call to the staticAssert . Equal () method — the xUnit.NET
framework is bundled with a wide range of assertion methods, so I used one of them. Of
course, no one stops you from writing your own custom assertion if the built-in assertion
methods don’t offer what you are looking for.

Phew, I hope I made the transition quite painless for you. Now the last thing to add — as there
is no Main() method anymore in the last example, you surely must wonder how we run those
tests, right? Ok, the last big secret unveiled — we use an external application for this (we will
refer to it using the term Test Runner) — we tell it which assemblies to run and then it loads
them, runs them, reports the results etc. A Test Runner can take various forms, e.g. it can be a
console application, a GUI application or a plugin for an IDE. Here is an example of a test runner
provided by a plugin for Visual Studio IDE called Resharper:

*http://xunit.github.io/

http://xunit.github.io/
http://xunit.github.io/

The essential tools 17

Unit Test Sessions - All tests from Solution

Q’]? All tests from Solution & >

v P 1 o L X EI 4-'* [@- Options -
e Jvi @0 s0 @

Type to search Lo
b of B SpinQffs (12 tests) Success -
4 f 1 TddToolkitSpecification (129 tests) Success

b+ TddEbook TddToolkitSpecification.AnySpecification (49 tests) Success

B+ TddEbook TddToolkitSpecification. AnySubstituteSpecification (7 tests) Success

b+ TddEbook TddToolkitSpecification.ChainedAssertionsSpecification (4 tests) Success

B+ TddEbook TddToolkitSpecification.CircularListSpecification (2 tests) Success

b+ TddEbook TddToolkitSpecification.CloneSpecification (2 tests) Success

B+ TddEbook TddToolkitSpecification.ConstraintsViolationsSpecification (3 tests) Success

b+ TddEbook TddToolkitSpecification.OnlySpecification (15 tests) Success

B+ TddEbook TddToolkitSpecification.ReceivedNothingSpecification (2 tests) Success
I of TddEbook.TddToolkitSpecification.RecordedfssertionsSpecification (6 tests) Success
4 +f TddEbook TddToolkitSpecification.SynchronizationSpecification (24 tests) Success
W' ShouldNotThrowWhenNonVaidMethodlsMonitorSynchronizedCorrectly Success
v ShouldMotThrowWhenNonVoidMethodlsReadSynchronizedCorrectly Success
v ShouldNotThrowWhenNonVoidMethodlsWriteSynchronizedCorrectly Success

v ShouldMotThrowWhenVoidMethodlsMonitorSynchronizedCorrectly Success
v ShouldNotThrowWhenVoid MethodlsReadSynchronizedCorrectly Success
v ShouldMotThrowWhenVoid MethodlsWriteSynchronizedCorrectly Success
W ShouldThrowWhenMNonVoidMethodDoesNotEnterMonitor&tall Success
W ShouldThrowWhenMonVoidMethodDoesMNotEnterReadLockAtAll Success
W ShouldThrowWhenMonVoidMethodDoesNotEnterWriteLockAtAll Success
W ShouldThrowWhenMNonVaidMethodDoesMNotExitMaonitor Success

v ShouldThrowWhenMNonVoidMethodDioesNotExitMonitorOnException Success - I
(C# Interactive Teamn Explorer MuGet browser Package Mana... Test Explorer | Unit Test Sessi... E

Resharper test runner docked as a window in Visual Studio 2015 IDE

Mocking framework

a This introduction is written for those who are not proficient with using mocks. Even
though, T accept the fact that the concept may be too difficult for you to grasp. If, while
reading this section, you find youreslflost, please skip it. We won’t be dealing with mock

objects until part 2, where I offer a richer and more accurate description of the concept.

When we want to test a class that depends on other classes, we may think it’s a good idea to
include those classes in the test as well. This, however, does not allow us to test a single object or a
small cluster of objects in isolation, where we would be able to verify that just a small part of the

O© 00 1 O O b W N =

N S =
a b W N =~ O

The essential tools 18

application works correctly. Thankfully, if we make our classes depend on interfaces rather than
other classes, we can easily implement those interfaces with special “fake” classes that can be
crafted in a way that makes our testing easier. For example, objects of such classes may contain
pre-programmed return values for some methods. They can also record the methods that are
invoked on them and allow the test to verify whether the communication between our object
under test and its dependencies is correct.

Nowadays, we can rely on tools to generate such a “fake” implementation of a given interface
for us and let us use this generated implementation in place of a real object in tests. This happens
in a different way, depending on a language. Sometimes, the interface implementations can be
generated at runtime (like in Java or C#), sometimes we have to rely more on compile-time
generation (e.g. in C++).

Narrowing it down to C# — a mocking framework is just that — a mechanism that allows us
to create objects (called “mock objects” or just “mocks”), that adhere to a certain interface, at
runtime. It works like this: the type of the interface we want to have implemented is usually
passed to a special method which returns a mock object based on that interface (we’ll see an
example in a few seconds). Aside from the creation of mock objects, such framework provides
an API to configure the mocks on how they behave when certain methods are called on them and
allows us to inspect which calls they received. This is a very powerful feature, because we can
simulate or verify conditions that would be difficult to achieve or observe using only production
code. Mocking frameworks are not as old as test frameworks so they haven’t been used in TDD
since the very beginning.

I'll give you a quick example of a mocking framework in action now and defer further
explanation of their purpose to later chapters, as the full description of mocks and their place in
TDD is not so easy to convey.

Let’s pretend that we have a class that allows placing orders and then puts these orders into a
database (using an implementation of an interface called OrderDatabase). In addition, it handles
any exception that may occur, by writing it into a log. The class itself does not do any important
stuff, but let’s try to imagine really hard that this is some serious domain logic. Here’s the code
for this class:

public class OrderProcessing

{
OrderDatabase _orderDatabase; //OrderDatabase is an interface
Log _log;

//we get the database object from outside the class:
public OrderProcessing(

OrderDatabase database,

Log log)

{
_orderDatabase = database;
_log = log;

}

//other code. ..

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

O© 00 I O O b W N =

[T S T N T S S N S = S G N =
N »~ © © 0 N O O & W N =~ o

The essential tools 19

public void Place(Order order)
{
try
{
_orderDatabase. Insert(order);
}
catch(Exception e)
{
_log.Write("Could not insert an order. Reason: " + e);
}
}
//other code. ..
}

Now, imagine we need to test it — how do we do that? I can already see you shake your head and
say: “Let’s just create a database connection, invoke the Place() method and see if the record is
added properly into the database”. If we did that, the first test would look like this:

[Fact] public void
ShouldInsertNewOrderToDatabaseWhenOrderIsPlaced()
{
//GIVEN
var orderDatabase = new MySqlOrderDatabase(); //uses real database
orderDatabase.Connect();
orderDatabase.Clean(); //clean up after potential previous tests
var orderProcessing = new OrderProcessing(orderDatabase, new FilelLog());
var order = new Order(
name: "Grzesiek",
surname: "Galezowski",
product: "Agile Acceptance Testing",
date: DateTime.Now,
quantity: 1);

//WHEN

orderProcessing.Place(order);

//THEN
var allOrders = orderDatabase.SelectAllOrders();
Assert.Contains(order, allOrders);

}

At the beginning of the test we open a connection to the database and clean all existing orders
in it (more on that shortly), then create an order object, insert it into the database and query the
database for all orders it contains. At the end, we make an assertion that the order we tried to
insert is among all orders in the database.

The essential tools 20

Why do we clean up the database at the beginning of the test? Remember that a database provides
persistent storage. If we don’t clean it up before executing the logic of this test, the database may
already contain the item we are trying to add, e.g. from previous executions of this test. The
database might not allow us to add the same item again and the test would fail. Ouch! It hurts
so bad, because we wanted our tests to prove something works, but it looks like it can fail even
when the logic is coded correctly. Of what use would be such a test if it couldn’t reliably tell us
whether the implemented logic is correct or not? So, to make sure that the state of the persistent
storage is the same every time we run this test, we clean up the database before each run.

Now that the test is ready, did we get what we wanted from it? I would be hesitant to answer
“yes”. There are several reasons for that:

1. The test will most probably be slow, because accessing database is relatively slow. It is not
uncommon to have more than a thousand tests in a suite and I don’t want to wait half an
hour for results every time I run them. Do you?

2. Everyone who wants to run this test will have to set up a special environment, e.g. a local
database on their machine. What if their setup is slightly different from ours? What if the
schema gets outdated — will everyone manage to notice it and update the schema of their
local databases accordingly? Should we re-run our database creation script only to ensure
we have got the latest schema available to run your tests against?

3. There may be no implementation of the database engine for the operating system running
on our development machine if our target is an exotic or mobile platform.

4. Note that the test we wrote is only one out of two. We still have to write another one for the
scenario where inserting an order ends with an exception. How do we setup the database
in a state where it throws an exception? It is possible, but requires significant effort (e.g.
deleting a table and recreating it after the test, for use by other tests that might need it to
run correctly), which may lead some to the conclusion that it is not worth writing such
tests at all.

Now, let’s try to approach this problem in a different way. Let’s assume that the MySql10rderDatabase
that queries a real database query is already tested (this is because I don’t want to get into a
discussion on testing database queries just yet - we’ll get to it in later chapters) and that the
only thing we need to test is the OrderProcessing class (remember, we’re trying to imagine
really hard that there is some serious domain logic coded here). In this situation we can leave
the MySqlOrderDatabase out of the test and instead create another, fake implementation of the
OrderDatabase that acts as if it was a connection to a database but does not write to a real
database at all - it only stores the inserted records in a list in memory. The code for such a fake
connection could look like this:

© 00 N O O b W N =

[T S G o G N S O S U U
S © 0 N O O b W N =~ O

The essential tools 21

public class FakeOrderDatabase : OrderDatabase

{

public Order _receivedArgument;

public void Insert(Order order)

{

_receivedArgument = order;

public List<Order> SelectAllOrders()
{

return new List<Order>() { _receivedOrder };

Note that the fake order database is an instance of a custom class that implements the same
interface as MySqlOrderDatabase. Thus, if we try, we can make the tested code use our fake
without knowing.

Let’s replace the real implementation of the order database by the fake instance in the test:

[Fact] public void
ShouldInsertNewOrderToDatabaseWhenOrderIsPlaced()
{
//GIVEN
var orderDatabase = new FakeOrderDatabase();
var orderProcessing = new OrderProcessing(orderDatabase, new FilelLog());
var order = new Order(
name: "Grzesiek",
surname: "Galezowski",
product: "Agile Acceptance Testing",
date: DateTime.Now,
quantity: 1);

//WHEN

orderProcessing.Place(order);

//THEN
var allOrders = orderDatabase.SelectAllOrders();
Assert.Contains(order, allOrders);

Note that we do not clean the fake database object like we did with the real database, since we
create a fresh object each time the test is run and the results are stored in a memory location
different for each instance. The test will also be much quicker now, because we are not accessing
the database anymore. What’s more, we can now easily write a test for the error case. How? Just
make another fake class, implemented like this:

© 00 N O O b W N =

N O S =
O b W N -~ O

Bw N

The essential tools 22

public class ExplodingOrderDatabase : OrderDatabase

{
public void Insert(Order order)
{
throw new Exception();

}

public List<Order> SelectAllOrders()
{

}

Ok, so far so good, but now we have two classes of fake objects to maintain (and chances are we
will need even more). Any method added to the OrderDatabase interface must also be added to
each of these fake classes. We can spare some coding by making our mocks a bit more generic
so that their behavior can be configured using lambda expressions:

public class ConfigurableOrderDatabase : OrderDatabase

{
public Action<Order> doWhenlInsertCalled;

public Func<List<Order>> doWhenSelectAllOrdersCalled;

public void Insert(Order order)

{
doWhenInsertCalled(order);

public List<Order> SelectAllOrders()

{
return doWhenSelectAllOrdersCalled();

Now, we don’t have to create additional classes for new scenarios, but our syntax becomes
awkward. Here’s how we configure the fake order database to remember and yield the inserted
order:

var db = new ConfigurableOrderDatabase();

Order gotOrder = null;

db.doWhenInsertCalled = o => {gotOrder = o;};
db.doWhenSelectAl1l0rdersCalled = () => new List<Order>() { gotOrder };

And if we want it to throw an exception when anything is inserted:

© 00 N O O b W N =

T N = =N
© 00 N O O b W N =~ O

The essential tools 23

var db = new ConfigurableOrderDatabase();
db.doWhenInsertCalled = o => {throw new Exception();};

Thankfully, some smart programmers created libraries that provide further automation in such
scenarios. One such a library is NSubstitute®. It provides an API in a form of C# extension
methods, which is why it might seem a bit magical at first, especially if you’re not familiar with
C#. Don’t worry, you’ll get used to it.

Using NSubstitute, our first test can be rewritten as:

[Fact] public void
ShouldInsertNewOrderToDatabaseWhenOrderisPlaced()
{
//GIVEN
var orderDatabase = Substitute.For<OrderDatabase>();
var orderProcessing = new OrderProcessing(orderDatabase, new FilelLog());
var order = new Order(
name: "Grzesiek",
surname: "Galezowski",
product: "Agile Acceptance Testing",
date: DateTime.Now,
quantity: 1);

//WHEN

orderProcessing.Place(order);

//THEN
orderDatabase.Received(1).Insert(order);

Note that we don’t need the SelectAll0rders() method on the database connection interface
anymore. It was there only to make writing the test easier — no production code used it. We
can delete the method and get rid of some more maintenance trouble. Instead of the call to
SelectAllOrders(), mocks created by NSubstitute record all calls received and allow us to use
a special method called Received() on them (see the last line of this test), which is actually
a camouflaged assertion that checks whether the Insert() method was called with the order
object as parameter.

This explanation of mock objects is very shallow and its purpose is only to get you up and
running. We’ll get back to mocks later as we’ve only scratched the surface here.

Anonymous values generator

Looking at the test data in the previous section we see that many values are specified literally,
e.g. in the following code:

“http://nsubstitute.github.io/

http://nsubstitute.github.io/
http://nsubstitute.github.io/

O O B W N

© 00 N O O & W N =

(AN
= O

© 00 N O O b W N =

T S =Y
O O B W N~

The essential tools 24

var order = new Order(
name: "Grzesiek",
surname: "Galezowski",
product: "Agile Acceptance Testing",
date: DateTime.Now,
quantity: 1);

the name, surname, product, date and quantity are very specific. This might suggest that the
exact values are important from the perspective of the behavior we are testing. On the other
hand, when we look at the tested code again:

public void Place(Order order)
{

try

{

this.orderDatabase. Insert(order);

}

catch(Exception e)

{

this.log.Write("Could not insert an order. Reason: " + e);

we can spot that these values are not used anywhere — the tested class does not use or check
them in any way. These values are important from the database point of view, but we already
took the real database out of the picture. Doesn’t it trouble you that we fill the order object with
so many values that are irrelevant to the test logic itself and that clutter the structure of the test
with needless details? To remove this clutter let’s introduce a method with a descriptive name
to create the order and hide the details we don’t need from the reader of the test:

[Fact] public void
ShouldInsertNewOrderToDatabase()

{
//GIVEN

var orderDatabase = Substitute.For<OrderDatabase>();
var orderProcessing = new OrderProcessing(orderDatabase, new FilelLog());
var order = AnonymousOrder();

//WHEN
orderProcessing.Place(order);

//THEN

orderDatabase.Received(1).Insert(order);

public Order AnonymousOrder()

17
18
19
20
21
22
23
24

© 00 1 O O b W N =

T S =N
O O = W N =~ O

The essential tools 25

return new Order(
name: "Grzesiek",
surname: "Galezowski",
product: "Agile Acceptance Testing",
date: DateTime.Now,
quantity: 1);

Now, that’s better. Not only did we make the test shorter, we also provided a hint to the reader
that the actual values used to create an order don’t matter from the perspective of tested order-
processing logic. Hence the name AnonymousOrder ().

By the way, wouldn’t it be nice if we didn’t have to provide the anonymous objects ourselves, but
could rely on another library to generate these for us? Susprise, surprise, there is one! It’s called
Autofixture’. It is an example of so-called anonymous values generator (although its creator
likes to say that it is also an implementation of Test Data Builder pattern, but let’s skip this
discussion here).

After changing our test to use AutoFixture, we arrive at the following:

private Fixture any = new Fixture();

[Fact] public void
ShouldInsertNewOrderToDatabase()
{
//GIVEN
var orderDatabase = Substitute.For<OrderDatabase>();
var orderProcessing = new OrderProcessing(orderDatabase, new FilelLog());
var order = any.Create<Order>();

//WHEN
orderProcessing.Place(order);

//THEN
orderDatabase.Received(1).Insert(order);

In this test, we use an instance of a Fixture class (which is a part of AutoFixture) to
create anonymous values for us via a method called Create(). This allows us to remove the
AnonymousOrder () method, thus making our test setup shorter.

Nice, huh? AutoFixture has a lot of advanced features, but to keep things simple I like to hide its
use behind a static class called Any. The simplest implementation of such class would look like
this:

*https://github.com/AutoFixture/AutoFixture

https://github.com/AutoFixture/AutoFixture
https://github.com/AutoFixture/AutoFixture

O© 00 I O O b W N =

The essential tools 26

public static class Any

{

private static any = new Fixture();

public static T Instance<T>()

{

return any.Create<T>();

}

In the next chapters, we’ll see many different methods from the Any type, plus the full explanation
of the philosophy behind it. The more you use this class, the more it grows with other methods
for creating customized objects.

Summary

This chapter introduced the three tools we’ll use in this book that, when mastered, will make your
test-driven development flow smoother. If this chapter leaves you with insufficient justification
for their use, don’t worry — we will dive into the philosophy behind them in the coming chapters.
For now, I just want you to get familiar with the tools themselves and their syntax. Go on,
download these tools, launch them, try to write something simple with them. You don’t need to
understand their full purpose yet, just go out and play :-).

It's not (only) a test

Is the role of a test only to “verify” or “check” whether a piece of software works? Surely, this is a
significant part of its runtime value, i.e. the value that we get when we execute the test. However,
when we limit our perspective on tests only to this, it could lead us to a conclusion that the only
thing that is valuable about having a test is to be able to execute it and view the result. Such acts
as designing a test or implementing a test would only have the value of producing something
we can run. Reading a test would only have value when debugging. Is this really true?

In this chapter, I argue that the acts of designing, implementing, compiling and reading a test are

all very valuable activities. And they let us treat tests as something more than just “automated
checks”.

When a test becomes something more

I studied in L6dz, a large city in the center of Poland. As probably all other students in all other
countries, we have had lectures, exercises and exams. The exams were pretty difficult. As my
computer science group was on the faculty of electronic and electric engineering, we had to grasp
a lot of classes that didn’t have anything to do with programming. For instance: electrotechnics,
solid-state physics or electronic and electrical metrology.

Knowing that exams were difficult and that it was hard to learn everything during the semester,
the lecturers would sometimes give us exemplary exams from previous years. The questions were
different from the actual exams that we were to take, but the structure and kinds of questions
asked (practice vs. theory etc.) were similar. We would usually get these exemplary questions
before we started learning really hard (which was usually at the end of a semester). Guess what
happened then? As you might suspect, we did not use the tests we received just to “verify” or
“check” our knowledge after we finished learning. Quite the contrary — examining those tests
was the very first step of our preparation. Why was that so? What use were the tests when we
knew we wouldn’t know most of the answers?

I guess my lecturers would disagree with me, but I find it quite amusing that what we were
really doing back then was similar to “lean software development”. Lean is a philosophy where,
among other things, there is a rigorous emphasis on eliminating waste. Every feature or product
that is produced but is not needed by anyone, is considered a waste. That’s because if something
is not needed, there is no reason to assume it will ever be needed. In that case the entire feature
or product adds no value. Even if it ever will be needed, it very likely will require rework to fit
the customer’s needs at that time. In such case, the work that went into the parts of the original
solution that had to be reworked is a waste — it had a cost, but brought no benefit (I am not
talking about such things as customer demos, but finished, polished features or products).

So, to eliminate waste, we usually try to “pull features from demand” instead of “pushing them”
into a product in hope they can become useful one day. In other words, every feature is there to
satisfy a concrete need. If not, the effort is considered wasted and the money drown.

1
2
3

It’s not (only) a test 28

Going back to the exams example, why can the approach of first looking through the exemplary
tests be considered “lean”? That’s because, when we treat passing an exam as our goal, then
everything that does not put us closer to this goal is considered wasteful. Let’s suppose the exam
concerns theory only — why then practice the exercises? It would probably pay off a lot more to
study the theoretical side of the topics. Such knowledge could be obtained from those exemplary
tests. So, the tests were a kind of specification of what was needed to pass the exam. It allowed us
to pull the value (i.e. our knowledge) from the demand (information obtained from realistic tests)
rather that push it from the implementation (i.e. learning everything in a course book chapter
after chapter).

So the tests became something more. They proved very valuable before the “implementation”
(i.e. learning for the exam) because:

1. they helped us focus on what was needed to reach our goal
2. they brought our attention away from what was not needed to reach our goal

That was the value of a test before learning. Note that the tests we would usually receive were
not exactly what we would encounter at the time of the exam, so we still had to guess. Yet, the
role of a test as a specification of a need was already visible.

Taking it to the software development land

I chose this lengthy metaphor to show you that a writing a “test” is really another way of
specifying a requirement or a need and that it’s not counter-intuitive to think about it this way —
it occurs in our everyday lives. This is also true in software development. Let’s take the following
“test” and see what kind of needs it specifies:

var reporting = new ReportingFeature();
var anyPowerUser = Any.Of(Users.Admin, Users.Auditor);
Assert.True(reporting.CanBePer formedBy(anyPowerUser));

(In this example, we used Any.0f() method that returns any enumeration value from the
specified list. Here, we say “give me a value that is either Users.Admin or Users.Auditor”.)

Let’s look at those (only!) three lines of code and imagine that the production code that makes
this “test” pass does not exist yet. What can we learn from these three lines about what this
production code needs to supply? Count with me:

We need a reporting feature.

We need to support a notion of users and privileges.

We need to support a concept of power user, who is either an administrator or an auditor.
Power users need to be allowed to use the reporting feature (note that it does not specify
which other users should or should not be able to use this feature — we would need a
separate “test” for that).

L e

Also, we are already after the phase of designing an API (because the test is already using it) that
will fulfill the need. Don’t you think this is already quite some information about the application
functionality from just three lines of code?

It’s not (only) a test 29

A Specification rather than a test suite

I hope you can see now that what we called “a test” can also be seen as a kind of specification.
This is also the answer to the question I raised at the beginning of this chapter.

In reality, the role of a test, if written before production code, can be broken down even further:

» designing a scenario - is when we specify our requiremnts by giving concrete examples of
behaviors we expect

« writing the test code - is when we specify an API through which we want to use the code
that we are testing

« compiling - is when we get feedback on whether the production code has the classes and
methods required by the specification we wrote. If it doesn’t, the compilation will fail.

« execution - is where we get feedback on whether the production code exhibits the behaviors
that the specification describes

« reading - is where we use the already written specification to obtain knowledge about the
production code.

Thus, the name “test” seems like narrowing down what we are doing here too much. My feelings
is that maybe a different name would be better - hence the term specification.

The discovery of tests’ role as a specification is quite recent and there is no uniform terminology
connected to it yet. Some like to call the process of using tests as specifications Specification By
Example to say that the tests are examples that help specify and clarify the functionality being
developed. Some use the term BDD (Behavior-Driven Development) to emphasize that writing
tests is really about analysing and describing behaviors. Also, you might encounter different
names for some particular elements of this approach, for example, a “test” can be referred to as
a “spec”, or an “example”, or a “behavior description”, or a “specification statement” or “a fact
about the system” (as you already saw in the chapter on tools, the xUnit.NET framework marks
each “test” with a [Fact] attribute, suggesting that by writing it, we are stating a single fact
about the developed code. By the way, xUnit.NET also allows us to state ‘theories’ about our
code, but let’s leave this topic for another time).

Given this variety in terminology, I'd like to make a deal: to be consistent throughout this book,
I will establish a naming convention, but leave you with the freedom to follow your own if you
so desire. The reason for this naming convention is pedagogical — I am not trying to create a
movement to change established terms or to invent a new methodology or anything — my hope
is that by using this terminology throughout the book, you’ll look at some things differently®.
So, let’s agree that for the sake of this book:

Specification Statement (or simply Statement, with a capital ‘S’)

will be used instead of the words “test” and “test method”
Specification (or simply Spec, also with a capital ‘S’)

will be used instead of the words “test suite” and “test list”
False Statement

will be used instead of “failing test”

“besides, this book is open source, so if you don’t like the terminology, you are free to create a fork and change it to your liking!

It’s not (only) a test 30

True Statement
will be used instead of “passing test”

From time to time I'll refer back to the “traditional” terminology, because it is better established
and because you may have already heard some other established terms and wonder how they
should be understood in the context of thinking of tests as a specification.

The differences between executable and
“traditional” specifications

You may be familiar with requirements specifications or design specifications that are written in
plain English or other spoken language. However, our Specifications differ from them in at least
few ways. In particular, the kind of Specification that we create by writing tests:

1. Is not completely written up-front like many of such “traditional” specs have been written
(which doesn’t mean it’s written after the code is done - more on this in the next chapters).

2. Is executable — you can run it to see whether the code adheres to the specification or not.
This lowers the risk of inaccuracies in the Specification and falling our of sync with the
production code.

3. Is written in source code rather than in spoken language — which is both good, as the
structure and formality of code leave less room for misunderstanding, and challenging, as
great care must be taken to keep such specification readable.

Statement-first programming

What's the point of writing a specification after the
fact?

One of the best known thing about TDD is that a failing test for a behavior of a piece of code is
written before this behavior is implemented. This concept is often called “test-first development”
and seems controversial to many.

In the previous chapter, I said that in TDD a “test” takes an additional role — one of a statement
that is part of a specification. If we put it this way, then the whole controversial concept of
“writing a test before the code” does not pose a problem at all. Quite the contrary - it only
seems natural to specify what we expect from a piece of code to do before we attempt to write
it. Does the other way round even make sense? A specification written after completing the
implementation is nothing more than an attempt at documenting the existing solution. Sure,
such attempts can provide some value when done as a kind of reverse-engineering (i.e. writing
the specification for something that was implemented long ago and for which we uncover the
previously implicit business rules or policies as we document the existing solution) — it has an
excitement of discovery in it, but doing so just after we made all the decisions ourselves doesn’t
seem to me like a productive way to spend my time, not to mention that I find it dead boring (you
can check whether you’re like me on this one. Try implementing a simple calculator app and then
write specification for it just after it is implemented and manually verified to work). Anyway,
I hardly find specifying how something should work after it works creative. Maybe that’s the
reason why, throughout the years, I have observed the specifications written after a feature is
implemented to be much less complete than the ones written before the implementation.

Oh, and did I tell you that without a specification of any kind we don’t really know whether
we are done implementing our changes or not? This is because in order to determine if the
change is complete, we need to compare the implemented functionality to “something”, even if
this “something” is only in the customer’s head. in TDD, we “compare” it to expectations set by
a suite of automated tests.

Another thing I mentioned in the previous chapter is that we approach writing a Specification of
executable Statements differently from writing a textual design or requirements specification:
even though a behavior is implemented after its Specification is ready, we do not write the
Specification entirely up-front. The usual sequence is to specify a bit first and then code a bit,
repeating it one Statement at a time. When doing TDD, we are traversing repeatedly through a
few phases that make up a cycle. We like these cycles to be short, so that we get feedback early
and often. This is essential, because it allows us to move forward, confident that what we already
have works as we intended. It also enables us to make the next cycle more efficient thanks to the
knowledge we gained in the previous cycle (if you don’t believe me that fast feedback matters,
ask yourself a question: “how many times a day do I compile the code 'm working on?”).

Statement-first programming 32

Reading so much about cycles, it is probably no surprise that the traditional illustration of the
TDD process is modeled visually as a circular flow:

Write a failing .
test Make it pass

Refactor

Basic TDD cycle

Note that the above form uses the traditional terminology of TDD, so before I explain the steps,
here’s a similar illustration that uses our terms of Specification and Statements:

Write a Statement
you wish was true Add nge
but is not make it true

Refactor

Basic TDD cycle with changed terminology

The second version seems more like common sense than the first one - specifying how something
should behave before putting that behavior in place is way more intuitive than testing something
that does not yet exist.

Anyway, these three steps deserve some explanation. In the coming chapters I’ll give you some
examples of how this process works in practice and introduce an expanded version, but in the
meantime it suffices to say that:

Write a Statement you wish were true but is not
means that the Statement evaluates to false. In the test list it appears as failing, which most
xUnit frameworks mark with red color.

Add code to make it true
means that we write just enough code to make the Statement true. In the test list it appears
as passing, which most xUnit frameworks mark with green color. Later in the course of the
book you’ll see how little can be “just enough”.

Refactor
is a step that I have silently ignored so far and will do so for several more chapters. Don’t
worry, we'll get back to it eventually. For now it’s important to be aware that the executable
Specification can act as a safety net while we are improving the quality of the code without
changing its externally visible behavior: by running the Specification often, we quickly
discover any mistake we make in the process.

Statement-first programming 33

By the way, this process is sometimes referred to as “Red-Green-Refactor”, because of the colors
that xUnit tools display for failing and passing test. I am just mentioning it here for the record -
I will not be using this term further in the book.

“Test-First” means seeing a failure

Explaining the illustration with the TDD process above, I pointed out that we are supposed to
write a Statement that we wish was true but is not. It means that not only do we have to write a
Statement before we provide implementation that makes it true, we also have to evaluate it (i.e.
run it) and watch it fail its assertions before we provide the implementation.

Why is it so important? Isn’t it enough to write the Statement first? Why run it and watch it fail?
There are several reasons and I will try to outline some of them briefly.

The main reason for writing a Statement and watching it fail is that otherwise, I don’t have any
proof that the Statement can ever fail.

Every accurate Statement fails when it isn’t fulfilled and passes when it is. That’s one of the
main reasons why we write it — to see this transition from red to green, which means that what
previously was not implemented (and we had a proof for that) is now working (and we have a
proof). Observing the transition proves that we made progress.

Another thing to note is that, after being fulfilled, the Statement becomes a part of the executable
specification and starts failing as soon as the code stops fulfilling it, for example as a result of a
mistake made during code refactoring.

Seeing a Statement proven as false gives us valuable feedback. If we run a Statement only after
the behavior it describes has been implemented and it is evaluated as true, how do we know
whether it really accurately describes a need? We never saw it failing, so what proof do we have
that it ever will?

The first time I encountered this argument was before I started thinking of tests as executable
specification. “Seriously?” — I thought - “I know what I'm writing. If I make my tests small
enough, it is self-evident that I am describing the correct behavior. This is paranoid”. However,
life quickly verified my claims and I was forced to withdraw my arguments. Let me describe
three of the ways I experienced of how one can write a Statement that is always true, whether
the code is correct or not. There are more ways, however I think giving you three should be an
illustration enough.

Test-first allowed me to avoid the following situations where Statements cheated me into
thinking they were fulfilled even when they shouldn’t be:

1. Accidental omission of including a Statementin a
Specification

It’s usually insufficient to just write the code of a Statement - we also have to let the test runner
know that a method we wrote is really a Statement (not e.g. just a helper method) and it needs
to be evaluated, i.e. ran by the runner.

o I O O b W N =~

© 00 N O O b W N =

[N
o

Statement-first programming 34

Most xUnit frameworks have some kind of mechanism to mark methods as Statements, whether
by using attributes (C#, e.g. [Fact]) or annotations (Java, e.g @Test), or by using macros (C and
C++), or by using a naming convention. We have to use such a mechanism to let the runner
know that it should execute such methods.

Let’s take xUnit.Net as an example. To turn a method into a Statement in xUnit.Net, we have to
mark it with the [Fact] attribute like this:

public class CalculatorSpecification
{
[Fact]
public void ShouldDisplayAdditionResultAsSumOfArguments()
{
VZa

}

There is a chance that we forget to decorate a method with the [Fact] attribute - in such case,
this method is never executed by the test runner. However funny it may sound, this is exactly
what happened to me several times. Let’s take the above Statement as an example and imagine
that we are writing this Statement post-factum as a unit test in an environment that has, let’s
say, more than thirty Statements already written and passing. We have written the code and now
we are just creating test after test to ensure the code works. Test — pass, test — pass, test — pass.
When I execute tests, I almost always run more than one at a time, since it’s easier for me than
selecting what to evaluate each time. Besides, I get more confidence this way that I don’t make a
mistake and break something that is already working. Let’s imagine we are doing the same here.
Then the workflow is really: Test — all pass, test — all pass, test — all pass...

Over the time, I have learned to use code snippets mechanism of my IDE to generate a template
body for my Statements. Still, in the early days, I have occasionally written something like this:

public class CalculatorSpecification

{

//... some Statements here

//oops... forgot to insert the attribute!
public void ShouldDisplayZeroWhenResetIsPer formed()

{
e

}

Asyou can see, the [Fact] attribute is missing, which means this Statement will not be executed.
This has happened not only because of not using code generators — sometimes — to create a new
Statement - it made sense to copy-paste an existing Statement, change the name and few lines
of code’. I didn’t always remember to include the [Fact] attribute in the copied source code. The
compiler was not complaining as well.

"I know copy-pasting code is considered harmful and we shouldn’t be doing that. When writing unit-level Statements, I make some
exceptions from that rule. This will be explained in part 2.

W N

© 00 1 O O b W N =

N
)

Statement-first programming 35

The reason I didn’t see my mistake was because I was running more than once at a time - when I
got a green bar (i.e. all Statements proven true), I assumed that the Statement I just wrote works
as well. It was unattractive for me to search for each new Statement in the list and make sure it’s
there. The more important reason, however, was that the absence of the [Fact] attribute did not
disturb my work flow: test — all pass, test — all pass, test — all pass... In other words, my process
did not give me any feedback that I made a mistake. So, in such case, what I end up with is a
Statement that not only will never be proven false - it won’t be evaluated at all.

How does treating tests as Statements and evaluating them before making them true help here?
The fundamental difference is that the workflow of TDD is: test — fail — pass, test — fail — pass,
test — fail — pass... In other words, we expect each Statement to be proven false at least once. So
every time we miss the “fail” stage, we get feedback from our process that something suspicious
is happening. This allows us to investigate and fix the problem if necessary.

2. Misplacing test setup

Ok, this may sound even funnier, but it happened to me a couple of times as well, so I assume it
may happen to you one day, especially if you are in a hurry.

Consider the following toy example: we want to validate a simple data structure that models a
frame of data that can arrive via network. The structure looks like this:

public class Frame

{
public int timeSlot;

and we need to write a Specification for a Validation class that accepts a Frame object as an
argument and checks whether the time slot (whatever it is) inside it is correct. The correctness
is determined by comparing the time slot to a maximum allowed value specified in a constant
called TimeS1ot.MaxAllowed (so it’s a constant defined in a TimeS1ot class). If the frame time slot
is higher than the maximum allowed, it is assumed incorrect and the validation should return
false. Otherwise, true should be returned.

Let’s take a look at the following Statement which specifies that setting a value higher than
allowed to a field of a frame should make the validation fail:

[Fact]
public void ShouldRecognizeTimeSlotAboveMaximumAllowedAsInvalid()
{
var frame = new Frame();
var validation = new Validation();
var timeSlotAboveMaximumAllowed = TimeSlot.MaxAllowed + 1;
var result = validation.PerformForTimeSlotIn(frame);
frame.timeSlot = timeSlotAboveMaximumAllowed;
Assert.False(result);

a b w N

© 00 N O O & W N =

[==Y
w N =~

Statement-first programming 36

Note how the method PerformForTimeSlotIn(), which triggers the specified behavior, is
accidentally called before a value of timeSlotAboveMaximumAllowed is set up and thus, this value
is not taken into account at the moment when the validation is executed. If, for example, we
make a mistake in the implementation of the vValidation class so that it returns false for values
below the maximum and not above, such mistake may go unnoticed, because the Statement will
always be true.

Again, this is a toy example - I just used it as an illustration of something that can happen when
dealing with more complex cases.

3. Using static data inside production code

Once in a while, we have to jump in and add some new Statements to an existing Specification
and some logic to the class it describes. Let’s assume that the class and its Specification were
written by someone else than us. Imagine the code we are talking about is a wrapper around our
product XML configuration file. We decide to write our Statements after applying the changes
(“well”, we may say, “we’re all protected by the Specification that is already in place, so we can
make our change without the risk of accidentally breaking existing functionality, and then just
test our changes and it’s all good..”).

We start coding... done. Now we start writing this new Statement that describes the functionality
we just added. After examining the Specification class, we can see that it has a member field like
this:

public class XmlConfigurationSpecification

{

XmlConfiguration config = new XmlConfiguration(xmlFixtureString);
/S

What it does is it sets up an object used by every Statement. So, each Statement uses a config
object initialized with the same xm1Configuration string value. Another quick examination leads
us to discovering the following content of the xmlFixtureString:

<config>
<section name="General Settings">

<subsection name="Network Related">
<parameter name="1IP">192.168.3.2</parameter>
<parameter name="Port">9000</parameter>
<parameter name="Protocol">AHJ-112</parameter>

</subsection>
<subsection name="User Related">
<parameter name="login">Johnny</parameter>
<parameter name="Role">Admin</parameter>
<parameter name="Password Expiry (days)">30</parameter>

/subsection>

<!-- and so on and on and on...-->

14
15

Statement-first programming 37

</section>

</config>

The string is already pretty large and messy, since it contains all information that is required by
the existing Statements. Let’s assume we need to write tests for a little corner case that does not
need all this crap inside this string. So, we decide to start afresh and create a separate object of
the XmlConfiguration class with your own, minimal string. Our Statement begins like this:

string customFixture = CreateMyOwnFixtureForThisTestOnly();

var configuration = new XmlConfiguration(customFixture);

And goes on with the scenario. When we execute it, it passes — cool... not. Ok, what’s wrong
with this? At the first sight, everything’s OK, until we read the source code of XmlConfiguration
class carefully. Inside, we can see, how the XML string is stored:

private static string xmlText; //note the static keyword!

It’s a static field, which means that its value is retained between instances. What the...? Well,
well, here’s what happened: the author of this class applied a small optimization. He thought:
“In this app, the configuration is only modified by members of the support staff and to do it,
they have to shut down the system, so, there is no need to read the XML file every time an
XmlConfiguration object is created. I can save some CPU cycles and I/O operations by reading
it only once when the first object is created. Later objects will just use the same XML!”. Good
for him, not so good for us. Why? Because, depending on the order in which the Statements are
evaluated, either the original XML string will be used for all Statements or your custom one!
Thus the Statements in this Specification may pass or fail for the wrong reason - because they
accidentally use the wrong XML.

Starting development from a Statement that we expect to fail may help when such a Statement
passes despite the fact that the behavior it describes is not implemented yet.

“Test-After” often ends up as “Test-Never”

Consider again the question I already asked in this chapter: did you ever have to write a
requirements or design document for something that you already implemented? Was it fun?
Was it valuable? Was it creative? As for me, my answer to these questions is no. I observed that
the same answer applied to writing my executable Specification. By observing myself and other
developers, I came to a conclusion that after we’ve written the code, we have little motivation
to specify what we wrote — some of the pieces of code “we can just see are correct”, other pieces
“we already saw working” when we compiled and deployed our changes and ran a few manual
checks... The design is ready... Specification? Maybe next time... Thus, the Specification may
never get to be written at all and if it is written, I often find that it covers most of the the main
flow of the program, but lacks some Statements saying what should happen in case of errors etc.

Statement-first programming 38

Another reason for ending up not writing the Specification might be time pressure, especially
in teams that are not yet mature or not have very strong professional ethics. Many times, I have
seen people reacting to pressure by dropping everything besides writing the code that directly
implements a feature. Among the things that get dropped are design, requirements and tests. And
learning as well. [have seen many times teams that, when under pressure, stopped experimenting
and learning and reverted to old “safe” behaviors in a mindset of “saving a sinking ship” and
“hoping for the best”. As in such situations I've seen pressure raise as the project approached
its deadline or milestone, leaving Specification until the end means that its’s very likely to get
dropped, especially in case when the changes are (to a degree) tested manually later anyway.

On the other hand, when doing TDD (as we will see in the coming chapters) our Specification
grows together with the production code, so there is much less temptation to drop it entirely.
Moreover, In TDD, a written Specification Statement is not an addition to the code, but rather
a reason to write the code. Creating an executable Specification becomes indispensable part of
implementing a feature.

“Test-After” often leads to design rework

I like reading and watching Uncle Bob (Robert C. Martin). One day I was listening to his keynote
at Ruby Midwest 2011, called Architecture The Lost Years®. At the end, Robert made some
digressions, one of them about TDD. He said that writing tests after the code is not TDD and
instead called it “a waste of time”.

My initial thought was that the comment was maybe a bit too exaggerated and only about
missing all the benefits that starting with a false Statement brings me: the ability to see the
Statement fail, the ability to do a clean-sheet analysis etc. However, now I feel that there’s much
more to it, thanks to something I learned from Amir Kolsky and Scott Bain — in order to be
able to write a maintainable Specification for a piece of code, the code must have a high level of
testability. We will talk about this quality in part 2 of this book, but for now let’s assume the
following simplified definition: the higher testability of a piece of code (e.g. a class), the easier it
is to write a Statement for its behavior.

Now, where’s the waste in writing the Specification after the code is written? To find out, let’s
compare the Statement-first and code-first approaches. In the Statement-first workflow for new
(non-legacy) code, my workflow and approach to testability usually look like this:

1. Write a Statement that is false to start with (during this step, detect and correct testability
issues even before the production code is written).
2. Write code to make the Statement true.

And here’s what I often see programmers do when they write the code first (extra steps marked
with strong text):

1. Write some production code without considering how it will be tested (after this step, the
testability is often suboptimal as it’s usually not being considered at this point).

®http://confreaks.tv/videos/rubymidwest2011-keynote-architecture-the-lost-years

http://confreaks.tv/videos/rubymidwest2011-keynote-architecture-the-lost-years
http://confreaks.tv/videos/rubymidwest2011-keynote-architecture-the-lost-years
http://confreaks.tv/videos/rubymidwest2011-keynote-architecture-the-lost-years

Statement-first programming 39

2. Start writing a unit test (this might not seem like an extra step, since it’s also present in
the previous approach, but once you reach the step 5, you’ll know what I mean).

3. Notice that unit testing the code we wrote is cumbersome and unsustainable and the
tests become looking messy as they try to work around the testability issues.

4. Decide to improve testability by restructuring the code, e.g. to be able to isolate objects
and use techniques such as mock objects.

5. Write unit tests (this time it should be easier as the testability of the tested is better).

What is the equivalent of the marked steps in the Statement-first approach? There is none! Doing
these things is a waste of time! Sadly, this is a waste I encounter a lot.

Summary

In this chapter, I tried to show you that the choice of when we write our Specification often makes
a huge difference and that there are numerous benefits of starting with a Statement. When we
consider the Specification as what it really is - not only as a suite of tests that check runtime
correctness - then Statement-first approach becomes less awkward and less counter-intuitive.

Practicing what we have already
learned

And now, a taste of things to come!
- Shang Tsung, Mortal Kombat The Movie

The above quote took place just before a fighting scene’ in which a nameless warrior jumped at
Sub-Zero only to be frozen and broken into multiple pieces upon hitting the wall. The scene was
not spectacular in terms of fighting technique or length. Also, the nameless guy didn’t even try
hard - the only thing he did was to jump only to be hit by a freezing ball, which, by the way, he
actually could see coming. It looked a lot like the fight was set up only to showcase Sub-Zero’s
freezing ability. Guess what? In this chapter, we're ging to do roughly the same thing — set up a
fake, easy scenario just to showcase some of the basic TDD elements!

The previous chapter was filled with a lot of theory and philosophy, don’t you think? I really
hope you didn’t fall asleep while reading it. To tell you the truth, we need to grasp much more
theory until we are really able to write real-world applications using TDD. To compensate for
this somehow, I propose we take a side trip from the trail and try what we already learned on a
quick and easy example. As we go through the example, you might wonder how on earth could
you possibly write real applications the way we will write our simple program. Don’t worry, I
will not show you all the tricks yet, so treat it as a “taste of things to come”. In other words,
the example will be as close to real world problems as the fight between Sub-Zero and nameless
ninja was to real martial arts fight, but will show you some of the elements of TDD process.

Let me tell you a story

Meet Johnny and Benjamin, two developers from Buthig Company. Johnny is quite fluent
in programming and Test-Driven Development, while Benjamin is an intern under Johnny’s
mentorship and is eager to learn TDD. They are on their way to their customer, Jane, who
requested their presence as she wants them to write a small program for her. Along with them,
we will see how they interact with the customer and how Benjamin tries to understand the
basics of TDD. Like you, Benjamin is a novice so his questions may reflect yours. However, if
you find anything explained in not enough details, do not worry — in the next chapters, we will
be expanding on this material.

Act 1: The Car

Johnny: How do you feel about your first assignment?

*https://www.youtube.com/watch?v=bOvhGEGJC8g

https://www.youtube.com/watch?v=b0vhGEGJC8g
https://www.youtube.com/watch?v=b0vhGEGJC8g

Practicing what we have already learned 41

Benjamin: [am pretty excited! I hope I can learn some of the TDD stuff you promised to teach
me.

Johnny: Not only TDD, but we are also gonna use some of the practices associated with a process
called Acceptance Test-Driven Development, albeit in a simplified form.

Benjamin: Acceptance Test-Driven Development? What is that?

Johnny: While TDD is usually referred to as a development technique, Acceptance Test-Driven
Development (ATDD) is something more of a collaboration method. Both ATDD and TDD have
a bit of analysis in them and work very well together as both use the same underlying principles,
just on different levels. We will need only a small subset of what ATDD has to offer, so don’t get
over-excited.

Benjamin: Sure. Who's our customer?

Johnny: Her name’s Jane. She runs a small shop nearby and wants us to write an application for
her new mobile. You’ll get the chance to meet her in a minute as we’re almost there.

Act 2: The Customer’s Site

Johnny: Hi, Jane, how are you?
Jane: Thanks, 'm fine, how about you?

Johnny: Me too, thanks. Benjamin, this is Jane, our customer. Jane, this is Benjamin, we’ll work
together on the task you have for us.

Benjamin: Hi, nice to meet you.
Jane: Hello, nice to meet you too.
Johnny: So, can you tell us a bit about the software you need us to write?

Jane: Sure. Recently, I bought a new smartphone as a replacement for my old one. The thing is,
[am really used to the calculator application that ran on my previous phone and I cannot find a
counterpart for my current device.

Benjamin: Can’t you just use another calculator app? There are probably plenty of them
available to download from the web.

Jane: That’s right. I checked them all and none has exactly the same behavior as the one I have
used for my tax calculations. You see, this app was like a right hand to me and it had some really
nice shortcuts that made my life easier.

Johnny: So you want us to reproduce the application to run on your new device?
Jane: Exactly.

Johnny: Are you aware that apart from the fancy features that you were using we will have to
allocate some effort to implement the basics that all the calculators have?

Jane: Sure, I am OK with that. I got used to my calculator application so much that if I use
something else for more than a few months, I will have to pay a psychotherapist instead of you

Practicing what we have already learned 42

guys. Apart from that, writing a calculator app seems like an easy task in my mind, so the cost
isn’t going to be overwhelming, right?

Johnny: I think I get it. Let’s get it going then. We will be implementing the functionality
incrementally, starting with the most essential features. Which feature of the calculator would
you consider the most essential?

Jane: That would be addition of numbers, I guess.

Johnny: Ok, that will be our target for the first iteration. After the iteration, we will deliver this
part of the functionality for you to try out and give us some feedback. However, before we can
even deliver the addition feature, we will have to implement displaying digits on the screen as
you enter them. Is that correct?

Jane: Yes, I need the display stuff to work as well - it’s a prerequisite for other features, so...

Johnny: Ok then, this is a simple functionality, so let me suggest some user stories as I understand
what you already said and you will correct me where I am wrong. Here we go:

1. In order to know that the calculator is turned on, As a tax payer I want to see “0” on the
screen as soon as I turn it on.

2. In order to see what numbers I am currently operating on, As a tax payer, I want the
calculator to display the values I enter

3. In order to calculate the sum of my different incomes, As a tax payer I want the calculator
to enable addition of multiple numbers

What do you think?

Jane: The stories pretty much reflect what I want for the first iteration. I don’t think I have any
corrections to make.

Johnny: Now we’ll take each story and collect some examples of how it should work.

Benjamin: Johnny, don’t you think it is obvious enough to proceed with implementation straight
away?

Johnny: Trust me, Benjamin, if there is one word I fear most in communication, it is “obvious”.
Miscommunication happens most often around things that people consider obvious, simply
because other people do not.

Jane: Ok, I'm in. What do I do?

Johnny: Let’s go through the stories one by one and see if we can find some key examples of
how the features should work. The first story is...

In order to know that the calculator is turned on, As a tax
payer | want to see “0” on the screen as soon as | turn it on.

Jane: I don’t think there’s much to talk about. If you display “0”, I will be happy. That’s all.

Johnny: Let’s write this example down using a table:

Practicing what we have already learned 43

key sequence Displayed output Notes
N/A 0 Initial displayed value

Benjamin: That makes me wonder... what should happen when I press “0” again at this stage?

Johnny: Good catch, that’s what these examples are for — they make our thinking concrete. As
Ken Pugh says'’: “Often the complete understanding of a concept does not occur until someone
tries to use the concept”. Normally, we would put the “pressing zero multiple times” example on
a TODO list and leave it for later, because it’s a part of a different story. However, it looks like
we’re done with the current story, so let’s move straight ahead. The next story is about displaying
entered digits. How about it, Jane?

Jane: Agree.
Johnny: Benjamin?

Benjamin: Yes, go ahead.

In order to see what numbers | am currently operating on, As a
tax payer, | want the calculator to display the values | enter

Johnny: Let’s begin with the case raised by Benjamin. What should happen when I input “0”
multiple times after I only have “0” on the display?

Jane: A single “0” should be displayed, no matter how many times I press “0”.

Johnny: Do you mean this?

key sequence Displayed output Notes
0,0,0 0 Zero is a special case - it is displayed only
once

Jane: That’s right. Other than this, the digits should just show on the screen, like this:

key sequence Displayed output Notes
1,2,3 123 Entered digits are displayed

Benjamin: How about this:

key sequence Displayed output Notes
1,2,3,4,5,6,7,1,2,3,4,5,6 1234567123456? Entered digits are displayed?

Jane: Actually, no. My old calculator app has a limit of six digits that I can enter, so it should be:

key sequence Displayed output Notes
1,2,3,4,5,6,7,1,2,3,4,5,6 123456 Display limited to six digits

Johnny: Another good catch, Benjamin!
Benjamin: I think ’'m beginning to understand why you like working with examples!

Johnny: Good. Is there anything else, Jane?

K. Pugh, Prefactoring, O'Reilly Media, 2005

Practicing what we have already learned 44

Jane: No, that’s pretty much it. Let’s start working on another story.

In order to calculate sum of my different incomes, As a tax
payer | want the calculator to enable addition of multiple
numbers

Johnny: Is the following scenario the only one we have to support?

key sequence Displayed output Notes
2,+,3,+,4,= 9 Simple addition of numbers

«© o

Jane: This scenario is correct, however, there is also a case when I start with “+” without inputting
any number before. This should be treated as adding to zero:

key sequence Displayed output Notes
+,1,= 1 Addition shortcut — treated as 0+1

Benjamin: How about when the output is a number longer than six digits limit? Is it OK that
we truncate it like this?

key sequence Displayed output Notes
9,9,9.9,9,9,4+,9,9,9,9.99, = 199999 Our display is limited to six digits
only

Jane: Sure, I don’t mind. I don’t add such big numbers anyway.

Johnny: There is still one question we missed. Let’s say that I input a number, then press “+”
and then another number without asking for result with “=”. What should I see?

Jane: Every time you press “+”, the calculator should consider entering current number finished
and overwrite it as soon as you press any other digit:

key sequence Displayed output Notes

2,+,3 3 Digits entered after + operator are treated
as digits of a new number, the previous one
is stored

Jane: Oh, and just asking for result just after the calculator is turned on should result in “0”.

key sequence Displayed output Notes
= 0 Result key in itself does nothing

Johnny: Let’s sum up our discoveries:

Practicing what we have already learned 45

key sequence Displayed output Notes

N/A 0 Initial displayed value

1,2,3 123 Entered digits are displayed

0,0,0 0 Zero is a special case - it is
displayed only once

1,2,3,4,5,6,7 123456 Our display is limited to six digits
only

2,+,3 3 Digits entered after + operator are

treated as digits of a new number,
the previous one is stored

= 0 Result key in itself does nothing

+,1,= 1 Addition shortcut — treated as 0+1

2,+,3,+,4,= 9 Simple addition of numbers

9,9.99.99+.999999= 199999 Our display is limited to six digits
only

Johnny: The limiting of digits displayed looks like a whole new feature, so I suggest we add it
to the backlog and do it in another sprint. In this sprint, we will not handle such situation at all.
How about that, Jane?

Jane: Fine with me. Looks like a lot of work. Nice that we discovered it up-front. For me, the
limiting capability seemed so obvious that I didn’t even think it would be worth mentioning.

Johnny: See? That’s why I don’t like the word “obvious”. Jane, we will get back to you if any
more questions arise. For now, I think we know enough to implement these three stories for you.

Jane: good luck!

Act 3: Test-Driven Development

Benjamin: Wow, that was cool. Was that Acceptance Test-Driven Development?

Johnny: In a greatly simplified version, yes. The reason I took you with me was to show you the
similarities between working with customer the way we did and working with the code using
TDD process. They are both applying the same set of principles, just on different levels.

Benjamin: 'm dying to see it with my own eyes. Shall we start?

Johnny: Sure. If we followed the ATDD process, we would start writing what we call acceptance-
level specification. In our case, however, a unit-level specification will be enough. Let’s take the
first example:

Statement 1: Calculator should display 0 on creation

key sequence Displayed output Notes
N/A 0 Initial displayed value

Johnny: Benjamin, try to write the first Statement.

Benjamin: Oh boy, I don’t know how to start.

O© 00 1 O O b W N =

N
)

© 00 N O O b W N =

N
[\

Practicing what we have already learned 46

Johnny: Start by writing the statement in plain English. What should the calculator do?
Benjamin: It should display “0” when I turn the application on.

Johnny: In our case, “turning on” is creating a calculator. Let’s write it down as a method name:

public class CalculatorSpecification

{

[Fact] public void
ShouldDisplay@WhenCreated()
{

Benjamin: Why is the name of the class CalculatorSpecification and the name of the method
ShouldDisplay@WhenCreated?

Johnny: It is a naming convention. There are many others, but this is the one that I like. In this
convention, the rule is that when you take the name of the class without the Speci fication part
followed by the name of the method, it should form a legit sentence. For instance, if I apply it to
what we wrote, it would make a sentence: “Calculator should display 0 when created”.

Benjamin: Ah, I see now. So it’s a statement of behavior, isn’t it?

Johnny: That’s right. Now, the second trick I can sell to you is that if you don’t know what code
to start your Statement with, start with the expected result. In our case, we are expecting that
the behavior will end up as displaying “0”, right? So let’s just write it in the form of an assertion.

Benjamin: You mean something like this?

public class CalculatorSpecification

{

[Fact] public void
ShouldDisplay@WhenCreated()

{
Assert.Equal("0", displayedResult);

}

Johnny: Precisely.
Benjamin: But that doesn’t even compile. What use is it?

Johnny: The code not compiling is the feedback that you needed to proceed. While before you
didn’t know where to start, now you have a clear goal — make this code compile. Firstly, where
do you get the displayed value from?

© 00 N O O b W N =

N
N O

O© 00 1 O O b W N =

I = SN
W N s,

Practicing what we have already learned

Benjamin: From the calculator display, of course!
Johnny: Then write down how you get the value from the display.
Benjamin: Like how?

Johnny: Like this:

public class CalculatorSpecification

{

[Fact] public void
ShouldDisplay@WhenCreated()

{
var displayedResult = calculator.Display();

Assert.Equal("Q", displayedResult);
}

Benjamin: [see. Now the calculator is not created anywhere. I need to create it somewhere now
or it will not compile - this is how I know that it’s my next step. Is this how it works?

Johnny: Yes, you are catching on quickly.

Benjamin: Ok then, here goes:

public class CalculatorSpecification

{

[Fact] public void
ShouldDisplay@WhenCreated()
{

var calculator = new Calculator();

var displayedResult = calculator.Display();

Assert.Equal("0", displayedResult);
}

Johnny: Bravo!

Benjamin: The code doesn’t compile yet, because I don’t have the Calculator class defined at

all...
Johnny: Sounds like a good reason to create it.

Benjamin: OK.

47

=~ O U b W N

=~ O U b W N

Practicing what we have already learned 48

public class Calculator

{
}

Benjamin: Looks like the Display() method is missing too. I'll add it.

public class Calculator

{
public string Display()
{
return "0";
}
}

Johnny: Hey hey, not so fast!
Benjamin: What?

Johnny: You already provided an implementation of Display() that will make our current
Statement true. Remember its name? ShouldDisplay@WhenCreated — and that’s exactly what the
code you wrote does. Before we arrive at this point, let’s make sure this Statement can ever be
evaluated as false. You won'’t achieve this by providing a correct implementation out of the box.
So for now, let’s change it to this:

public class Calculator

{
public string Display()
{
return "Once upon a time in Africa";
}
}

Johnny: Look, now we can run the Specification and watch that Statement evaluate to false,
because it expects “0”, but gets “Once upon a time in Africa”.

Benjamin: Running... Ok, it is false. By the way, do you always use such silly values to make
Statements false?

Johnny: Hahaha, no, I just did it to emphasize the point. Normally, I would write return "";
or something similarly simple. Now we can evaluate the Statement and see it turn false. Hence,
we’re sure that we have not yet implemented what is required for the Statement to be true.

Benjamin: I think I get it. For now, the Statement shows that we do not have something we need
and gives us a reason to add this “thing”. When we do so, this Statement will show that we do
have what we need. So what do we do now?

Johnny: Write the simplest thing that makes this Statement true.

Benjamin: like this?

=~ O O b W N =

Practicing what we have already learned 49

public class Calculator

{
public string Display()
{

return "Q";

Johnny: Yes.

Benjamin: But that is not a real implementation. What is the value behind putting in a hardcoded
string? The final implementation is not going to be like this for sure!

Johnny: You're right. The final implementation is most probably going to be different. What we
did, however, is still valuable because:

1. You’re one step closer to implementing the final solution

2. This feeling that this is not the final implementation points you towards writing more
Statements. When there is enough Statements to make your implementation complete, it
usually means that you have a complete Specification of class behaviors as well.

3. If you treat making every Statement true as an achievement, this practice allows you to
evolve your code without losing what you already achieved. If by accident you break any
of the behaviors you’ve already implemented, the Specification is going to tell you because
one of the existing Statements that were previously true will turn false. You can then either
fix it or undo your changes using version control and start over from the point where all
existing Statements were true.

Benjamin: Ok, so it looks like there are some benefits after all. Still, I'll have to get used to this
kind of working.

Johnny: Don’t worry, this approach is an important part of TDD, so you will grasp it in no
time. Now, before we go ahead with the next Statement, let’s look at what we already achieved.
First, we wrote a Statement that turned out false. Then, we wrote just enough code to make
the Statement true. Time for a step called Refactoring. In this step, we will take a look at the
Statement and the code and remove duplication. Can you see what is duplicated between the
Statement and the code?

Benjamin: both of them contain the literal “0”. The Statement has it here:
Assert.Equal("Q", displayedResult);

and the implementation here:

return "Q";

Johnny: Good, let’s eliminate this duplication by introducing a constant called Initialvalue.
The Statement will now look like this:

O© 00 I O O b W N =

o N O O b W N =

Practicing what we have already learned 50

[Fact] public void
ShouldDisplayInitialValueWhenCreated()

{

var calculator = new Calculator();
var displayedResult = calculator.Display();

Assert.Equal(Calculator.InitialValue, displayedResult);
}

and the implementation:

public class Calculator

{
public const string InitialValue = "0@";
public string Display()
{

return InitialValue;

Benjamin: The code looks better and having the “0” constant in one place will make it more
maintainable. However, I think the Statement in its current form is weaker than before. I mean,
we can change the InitialValue to anything and the Statement will still be true, since it does
not state that this constant needs to have a value of “0”.

Johnny: That’s right. We need to add it to our TODO list to handle this case. Can you write it
down?

Benjamin: Sure. I will write it as “TODO: 0 should be used as an initial value”

Johnny: Ok. We should handle it now, especially since it’s part of the story we are currently
implementing, but I will leave it for later just to show you the power of TODO list in TDD -
whatever is on the list, we can forget and get back to when we have nothing better to do. Our
next item from the list is this:

Statement 2: Calculator should display entered digits

key sequence Displayed output Notes
1,2,3 123 Entered digits are displayed

Johnny: Benjamin, can you come up with a Statement for this behavior?

Benjamin: I'll try. Here goes:

O© 00 I O O b W N =

=Y
N =~ O

Practicing what we have already learned 51

[Fact] public void
ShouldDisplayEnteredDigits()
{

var calculator = new Calculator();

calculator.Enter(1);
calculator.Enter(2);
calculator.Enter(3);
var displayedValue = calculator.Display();

Assert.Equal("123", displayedValue);

Johnny: I see that you're learning fast. You got the parts about naming ans structuring a
Statement right. There’s one thing we will have to work on here though.

Benjamin: What is it?

Johnny: When we talked to Jane, we used examples with real values. These real values were
extremely helpful in pinning down the corner cases and uncovering missing scenarios. They were
easier to imagine as well, so they were a perfect suit for conversation. If we were automating
these examples on acceptance level, we would use those real values as well. When we write
unit-level Statements, however, we use a different technique to get this kind of specification
more abstract. First of all, let me enumerate the weaknesses of the approach you just used:

1. Making a method Enter () accept an integer value suggests that one can enter more than
one digit at once, e.g. calculator.Enter (123), which is not what we want. We could detect
such cases and throw exceptions if the value is outside the 0-9 range, but there are better
ways when we know we will only be supporting ten digits (0,1,2,3,4,5,6,7,8,9).

2. The Statement does not clearly show the relationship between input and output. Of course,
in this simple case it’s pretty self-evident that the sum is a concatenation of entered digits.
In general case, however, we don’t want anyone reading our Specification in the future to
have to guess such things.

3. The name of the Statement suggests that what you wrote is true for any value, while in
reality, it’s true only for digits other than “0”, since the behavior for “0” is different (no
matter how many times we enter “0”, the result is just “0”). There are some good ways to
communicate it.

Hence, I propose the following:

O© 00 I O O b W N =

T N =Y
O O B W N~

17
18
19
20
21
22
23
24

Practicing what we have already learned

[Fact] public void
ShouldDisplayAllEnteredDigitsThatAreNotLeadingZeroes()
{

//GIVEN

var calculator = new Calculator();

var nonZeroDigit = Any.Besides(DigitKeys.Zero);

var anyDigitl = Any.Of<DigitKeys>();

var anyDigit2 = Any.O0f<DigitKeys>();

//WHEN
calculator.Enter(nonZeroDigit);
calculator.Enter(anyDigitl);
calculator.Enter(anyDigit2);

//THEN
Assert.Equal(
string.Format("{0@}{1}{2}",
(int)nonZeroDigit,
(int)anyDigit1,
(int)anyDigit2
),
calculator.Display()
);
}

Benjamin: Johnny, I'm lost! Can you explain what’s going on here?
Johnny: Sure, what do you want to know?

Benjamin: For instance, what is this DigitKeys type doing here?

the valid values.

Benjamin: Now [get it. So how about the Any.Besides() and Any.0£()? What do they do?

DigitKeys enumeration, but not DigitKeys.Zero”.

The Any.0£() is simpler - it just returns any value in an enumeration.

Note that by saying:

52

Johnny: It is supposed to be an enumeration (note that it does not exist yet, we just assume that
we have it) to hold all the possible digits a user can enter, which are from the range of 0-9. This
is to ensure that the user will not write calculator.Enter(123). Instead of allowing our users
to enter any number and then detecting errors, we are giving them a choice from among only

Johnny: They are methods from a small utility library 'm using when writing unit-level
Specifications. Any .Besides() returns any value from enumeration besides the one passed as an
argument. Hence, the call Any .Besides(DigitKeys.Zero) means “any of the values contained in

a b W N

Practicing what we have already learned 53

var nonZeroDigit = Any.Besides(DigitKeys.Zero);
var anyDigit1 = Any.O0f<DigitKeys>();
var anyDigit2 = Any.O0f<DigitKeys>();

I specify explicitly, that the first value entered must be other than “0” and that this constraint
does not apply to the second digit, the third one and so on.

By the way, this technique of using generated values instead of literals has its own principles
and constraints which you have to know to use it effectively. Let’s leave this topic for now and
I promise I'll give you a detailed lecture on it later. Agreed?

Benjamin: You better do, because for now, I feel a bit uneasy with generating the values — it
seems like the Statement we are writing is getting less deterministic this way. The last question
— what about those weird comments you put in the code? GIVEN? WHEN? THEN?

Johnny: Yes, this is a convention that I use, not only in writing, but in thinking as well. I like to
think about every behavior in terms of three elements: assumptions (given), trigger (when) and
expected result (then). Using the words, we can summarize the Statement we are writing in the
following way: “Given a calculator, when I enter some digits, the first one being non-zero, then
they should all be displayed in the order they were entered”. This is also something that I will
tell you more about later.

Benjamin: Sure, for now I need just enough detail to be able to keep going — we can talk about
the principles, pros and cons later. By the way, the following sequence of casts looks a little bit

ugly:

string.Format("{@}{1}{2}",
(int)nonZeroDigit,
(int)anyDigit1,
(int)anyDigit2

)

Johnny: We will get back to it and make it “smarter” in a second after we make this statement
true. For now, we need something obvious. Something we know works. Let’s evaluate this
Statement. What is the result?

Benjamin: Failed: expected “351, but was “0”.

Johnny: Good, now let’s write some code to make this Statement true. First, we're going to
introduce an enumeration of digits. This enum will contain the digit we use in the Statement
(which is DigitKeys.Zero) and some bogus values:

o N O O b W N =

o N O O b W N =

Practicing what we have already learned 54

public enum DigitKeys
{

Zero = 0,
TODO1, //TODO
TODO2, //TODO - bogus value for now
TODO3, //TODO - bogus value for now
TODO4, //TODO - bogus value for now

bogus value for now

Benjamin: What’s with all those bogus values? Shouldn’t we correctly define values for all the
digits we support?

Johnny: Nope, not yet. We still don’t have a Statement which would say what digits are
supported and which would make us add them, right?

Benjamin: You say you need a Statement for an element to be in an enum?

Johnny: This is a specification we are writing, remember? It should say somewhere which digits
we support, shouldn’t it?

Benjamin: It’s difficult to agree with, I mean, I can see the values in the enum, should I really
test for something when there’s not complexity involved?

Johnny: Again, we're not only testing, we're specifying. I will try to give you more arguments
later. For now, just bear with me and note that when we get to specify the enum elements, adding
such Statement will be almost effortless.

Benjamin: OK.

Johnny: Now for the implementation. Just to remind you — what we have so far looks like this:

public class Calculator
{

public const string InitialValue = "0";
public string Display()

{

return InitialValue;

}
1

This clearly does not support displaying multiple digits (as we just proved, because the Statement
saying they are supported turned out false). So let’s change the code to handle this case:

O© 00 I O O b W N =

10
11
12
13
14
15
16

© 00 N O O & W N =

[=Y
O O b W N =~

17
18
19
20
21
22
23
24

Practicing what we have already learned 55

public class Calculator

{

public const string InitialValue = "0";
private int _result = ©;

public void Enter(DigitKeys digit)
{
_result *= 10;

_result += (int)digit;

}
public string Display()
{
return _result.ToString();
}
}

Johnny: Now the Statement is true so we can go back to it and make it a little bit prettier. Let’s
take a second look at it:

[Fact] public void
ShouldDisplayAllEnteredDigitsThatAreNotLeadingZeroes()
{

//GIVEN

var calculator = new Calculator();

var nonZeroDigit = Any.Besides(DigitKeys.Zero);

var anyDigit1l = Any.O0f<DigitKeys>();
Any.0f<DigitKeys>();

var anyDigit2

//WHEN
calculator.Enter(nonZeroDigit);
calculator.Enter(anyDigitl);
calculator.Enter(anyDigit2);

//THEN
Assert.Equal(
string.Format("{0}{1}{2}",
(int)nonZeroDigit,
(int)anyDigit1,
(int)anyDigit2
)
calculator.Display()
);
}

Johnny: Remember you said that you don’t like the part where string.Format() is used?

© 00 N O O b W N =

N
()

© 00 N O O b W N =

I S =N
O O b W NSO

17
18
19
20

Practicing what we have already learned 56

Benjamin: Yeah, it seems a bit unreadable.

Johnny: Let’s extract this part into a utility method and make it more general — we will need a
way of constructing expected displayed output in many of our future Statements. Here is my go
at this helper method:

string StringConsistingOf(params DigitKeys[] digits)
{

var result = string.Empty;

foreach(var digit in digits)

{
result += (int)digit;
}
return result;
}

Note that this is more general as it supports any number of parameters. And the Statement after
this extraction looks like this:

[Fact] public void
ShouldDisplayAllEnteredDigitsThatAreNotLeadingZeroes()
{

//GIVEN

var calculator = new Calculator();

var nonZeroDigit = Any.Besides(DigitKeys.Zero);

var anyDigit1l = Any.O0f<DigitKeys>();

var anyDigit2 = Any.O0f<DigitKeys>();

//WHEN
calculator.Enter(nonZeroDigit);
calculator.Enter(anyDigit1);
calculator.Enter(anyDigit2);

//THEN

Assert.Equal(
StringConsisting0f(nonZeroDigit, anyDigit1, anyDigit2),
calculator.Display()

)

}

Benjamin: Looks better to me. The Statement is still evaluated as true, which means we got it
right, didn’t we?

Johnny: Not exactly. With moves such as this one, I like to be extra careful and double check
whether the Statement still describes the behavior accurately. To make sure that’s still the case,
let’s comment out the body of the Enter () method and see if this Statement would still turn out
false:

a b W N -

Practicing what we have already learned 57

public void Enter(DigitKeys digit)

{
//_result *= 10;

//_result += (int)digit;
1

Benjamin: Running... Ok, it is false now. Expected “243”, got “0”.

Johnny: Good, now we’re pretty sure it works OK. Let’s uncomment the lines we just commented
out and move forward.

Benjamin: But wait, there is one thing that troubles me.
Johnny: I think I know - I was wondering if you’d catch it. Go ahead.

Benjamin: What troubles me is these two lines:

public const string InitialValue = "Q";

private int _result = ©;

Isn’t this a duplication? I mean, it’s not exactly code duiplication, but in both lines, the value of
0 has the same intent. Shouldn’t we remove this duplication somehow?

Johnny: Yes, let’s do it. My preference would be to change the InitialValue to int instead of
string and use that. But I can’t do it in a single step as I have the two Statements depending on
InitialValue being a string. if I just changed the type to int, I would break those tests asd well
as the implementation and I always want to be fixing one thing at a time.

Benjamin: So what do we do?

Johnny: Well, my first step would be to go to the Statements that use Initialvalue and use a

ToString() method there. For example, in the Statement ShouldDisplayInitialValueWhenCreated(),

I have an assertion:

Assert.Equal(Calculator.InitialValue, displayedResult);

which I can change to:
Assert.Equal(Calculator.InitialValue.ToString(), displayedResult);

Benjamin: But calling ToString() on a string just returns the same value, what’s the point?

Johnny: The point is to make the type of whatever’s on the left side of . ToString() irrelevant.
Then I will be able to change that type without breaking the Statement. The new implementation
of Calculator class will look like this:

O© 00 I O O b W N =

10
11
12
13
14
15
16

© 00 N O O b W N =

T = = =
0 N O O b 0N =~ O

Practicing what we have already learned 58

public class Calculator

{
public const int InitialValue = 0;
private int _result = InitialValue;

public void Enter(DigitKeys digit)
{
_result *= 10;

_result += (int)digit;

}
public string Display()
{
return _result.ToString();
}
}

Benjamin: Oh, I see. And the Statements are still evaluated as true.

Johnny: Yes. Shall we take on another Statement?

Statement 3: Calculator should display only one zero digit if it
is the only entered digit even if it is entered multiple times

Johnny: Benjamin, this should be easy for you, so go ahead and try it. It is really a variation of
the previous Statement.

Benjamin: Let me try... ok, here it is:

[Fact] public void

ShouldDisplayOnlyOneZeroDigitWhenItIsTheOnlyEnteredDigitEvenI fItIsEnteredMultiple\
Times()

{

//GIVEN

var calculator = new Calculator();

//WHEN
calculator.Enter(DigitKeys.Zero);
calculator.Enter(DigitKeys.Zero);

calculator.Enter(DigitKeys.Zero);

//THEN
Assert.Equal(
StringConsisting0f(DigitKeys.Zero),
calculator.Display()
);
}

© 00 N O O b W N =

NN NN N N B Ry s sy
O b 0 N =~ © O 00 N O O b W N =~ O

Practicing what we have already learned 59

Johnny: Good, you’re learning fast! Let’s evaluate this Statement.

Benjamin: It seems that our current code already fulfills the Statement. Should I try to comment
some code to make sure this Statement can fail just like you did in the previous Statement?

Johnny: That would be a wise thing to do. When a Statement turns out true without requiring
you to change any production code, it’s always suspicious. Just like you said, we have to change
production code for a second to force this Statement to become false, then undo this modification
to make it true again. This isn’t as obvious as previously, so let me do it. [will mark all the added
lines with //+ comment so that you can see them easily:

public class Calculator

{

public const int InitialValue = 0;
private int _result = InitialValue;
string _fakeResult = "0"; //+

public void Enter(DigitKeys digit)
{

_result *= 10;

_result += (int)digit;

if(digit == DigitKeys.Zero) //+

{ 7+
_fakeResult += "@"; //+
| V4
}
public string Display()
{
if(_result == 0) //+
{ 7+
return _fakeResult; //+
Yo/
return _result.ToString();
}
}

Benjamin: Wow, looks like a lot of code just to make the Statement false! Is it worth the hassle?
We will undo this whole change in a second anyway...

Johnny: Depends on how confident you want to feel. I would say that it’s usually worth it -
at least you know that you got everything right. It might seem like a lot of work, but it only
took me about a minute to add this code and imagine you got it wrong and had to debug it on a
production environment. Now that would be a waste of time.

Benjamin: Ok, I think I get it. Since we saw this Statement turn false, I will undo this change to
make it true again.

Johnny: Sure.

Practicing what we have already learned 60
Epilogue

Time to leave Johnny and Benjamin, at least for now. I actually planned to make this chapter
longer, and cover all the other operations, but I fear I would make this too long and bore you.
You should have a feel of how the TDD cycle looks like, especially since Johnny and Benjamin
had a lot of conversations on many other topics in the meantime. I will be revisiting these topics
later in the book. For now, if you felt lost or unconvinced on any of the topics mentioned by
Johnny, don’t worry — I don’t expect you to be proficient with any of the techniques shown in
this chapter just yet. The time will come for that.

Sorting out the bits

In the last chapter, there has been a lively conversation between Johnny and Benjamin. Even in
such a short session, Benjamin, as a TDD novice, had a lot of questions and a lot of things he
needed sorted out. We will pick up all those questions that were not already answered and try
to answer in the coming chapters. Here are the questions:

« How to name a Statement?

« How to start writing a Statement?

« How is TDD about analysis and what does this “GIVEN-WHEN-THEN” mean?

« What exactly is the scope of a Statement? A class, a method, or something else?

« What is the role of TODO list in TDD?

« Why use anonymous generated values instead of literals as input of a specified behavior?
« Why and how to use the Any class?

« What code to extract from a Statement to shared utility methods?

« Why such a strange approach to create enumerated constants?

A lot of questions, isn’t it? It is unfortunate that TDD has this high entry barrier, at least for
someone used to the traditional way of writing code. Anyway, that is what this tutorial is for —
to answer such questions and lower this barrier. Thus, we will try to answer those questions one
by one.

How to start?

Whenever I sat down with someone who was about to write code in a Statement-first manner
for the first time, the person would stare at the screen, then at me, then would say: “what now?”.
It’s easy to say: “You know how to write code, you know how to write a test for it, just this time
start with the latter rather than the first”, but for many people, this is something that blocks them
completely. If you are one of them, don’t worry — you’re not alone. I decided to dedicate this
chapter solely to techniques for kicking off a Statement when there is no code.

Start with a good name

I already said that a Statement is a description of a behavior expressed in code. A thought process
leading to creation of such an executable Statement might look like the following sequence of
questions:

1. What is the scope of the behavior I'm trying to specify? Example answer: 'm trying to
specify a behavior of a Calculator class.

2. What is the behavior of a Calculator class 'm trying to specify? Example answer: it should
display all entered digits that are not leading zeroes.

3. How to specify this behavior through code? Example answer: [Fact] public void
ShouldDisplayAllEnteredDigitsThatAreNotLeadingZeroes() ... (i.e. a piece of code).

Note that before writing any code, there are at least two questions that can be answered in
human language. Many times answering these questions first before starting to write the code of
the Statement makes things easier. Even though, this can still be a challenging process. To apply
this advice successfully, some knowledge on how to properly name Statements is required. I
know not everybody pays attention to naming their Statements, mainly because the Statements
are often considered second-level citizens — as long as they run and “prove the code doesn’t
contain defects”, they are considered sufficient. We will take a look at some examples of bad
names and then I'll go into some rules of good naming.

Consequences of bad naming

I have seen many people not really caring about how their Statements are named. This is
a symptom of treating the Specification as garbage or leftovers — I consider this approach
dangerous, because I have seen it lead to Specifications that are hard to maintain and that
look more like lumps of code put together accidentally in a haste than a kind of “living
documentation”. Imagine that your Specification consists of Statements named like this:

e TrySendPacket()

How to start? 63

e TrySendPacket2()

* testSendingManyPackets()
e testWrongPacketOrder1 ()
» testWrongPacketOrder2()

and try for yourself how difficult it is to answer the following questions:

1. How do you know what situation each Statement describes?

2. How do you know whether the Statement describes a single situation, or several at the same
time?

3. How do you know whether the assertions inside those Statements are really the right ones
assuming each Statement was written by someone else or a long time ago?

4. How do you know whether the Statement should stay or be removed from the Specification
when you modify the functionality described by this Statement?

5. If your changes in production code make a Statement turn false, how do you know whether
the Statement is no longer correct or the production code is wrong?

6. How do you know whether you will not introduce a duplicate Statement for a behavior
when adding to a Specification that was originally created by another team member?

7. How do you estimate, by looking at the runner tool report, whether the fix for a failing
Statement will be easy or not?

8. What do you answer new developers in your team when they ask you “what is this
Statement for?”

9. How do you know when your Specification is complete if you can’t tell from the Statement
names what behaviors you already have covered and what not?

What does a good name contain?

To be of any use, the name of a Statement has to describe its expected behavior. At the minimum,
it should describe what happens under what circumstances. Let’s take a look at one of the
names Steve Freeman and Nat Pryce came up with in their great book Growing Object-Oriented
Software Guided By Tests'':

notifieslListenersThatServerIsUnavailableWhenCannotConnectToltsMonitoringPort()
Note a few things about the name of the Statement:

1. It describes a behavior of an instance of a specific class. Note that it doesn’t contain the
name of the method that triggers the behavior, because what is specified is not a single
method, but the behavior itself (this will be covered in more detail in the coming chapters).
The Statement name simply tells what an instance does (“notifies listeners that server is
unavailable”) under certain circumstances (“when cannot connect to its monitoring port”).
It is important for me because I can derive such a description from thinking about the
responsibilities of a class without the need to know any of its method signatures or the code
that’s inside the class. Hence, this is something I can come up with before implementing —
I just need to know why I created this class and build on this knowledge.

"http://www.growing-object-oriented-software.com/

http://www.growing-object-oriented-software.com/
http://www.growing-object-oriented-software.com/
http://www.growing-object-oriented-software.com/

How to start? 64

2. The name is relatively long. Really, really, really don’t worry about it. As long as you
are describing a single behavior, I'd say it’s fine. I've seen people hesitate to give long
names to Statements, because they tried to apply the same rules to those names as to the
names of methods in production code. In production code, a long method name can be a
sign that the method has too many responsibilities or that insufficient abstraction level is
used to describe a functionality and that the name may needlessly reveal implementation
details. My opinion is that these two reasons don’t apply as much to Statements. In case of
Statements, the methods are not invoked by anyone besides the automatic test runner, so
they will not obfuscate any code that would need to call them with their long names. In
addition, the Statements names need not be as abstract as production code method names
- they can reveal more.

Alternatively, we could put all the information in a comment instead of the Statement name
and leave the name short, like this:

[Fact]
//Notifies listeners that server
//1s unavailable when cannot connect
//to its monitoring port
public void Statement_002()
{
VAR
}

0 N O O b~ W N =

however, there are two downsides to this. First, we now have to add an extra piece of
information (Statement_0@2) only to satisfy the compiler, because every method needs to
have a name anyway - and there is usually no value a human could derive from a name
such as Statement_002. The second downside is that when the Statement turns false, the
test runner shows the following line: Statement_002: FAILED — note that all the information
included in the comment is missing from the failure report. I consider it much more valuable
to receive a report like:

notifieslistenersThatServerIsUnavailableWhenCannotConnectTolItsMonitoringPort: FAILED

because in such case, a lot of information about the Statement that fails is available from
the test runner report.

3. Using a name that describes a single behavior allows me to find out quickly why the
Statement turned false. Let’s say a Statement is true when I start refactoring, but at one
point it turns false and the report in the runner looks like this: TrySendingHttpRequest:
FAILED - it only tells me that an attempt was made to send a HTTP request, but, for
instance, doesn’t tell me whether the object I specified in that Statement is some kind of
sender that should try to send this request under some circumstances, or if it is a receiver
that should handle such a request properly. To learn what went wrong, I have to go open
the source code of the Statement. On the other hand, when I have a Statement named
ShouldRespondWithAnAckWhenever ItReceivesAnHttpRequest, then if it turns false, I know
what’s broken — the object no longer responds with an ACK to an HTTP request. This may
be enough to identify which part of the code is at fault and which of my changes made the
Statement false.

~N O O b W N =~

How to start? 65

My favourite convention

There are many conventions for naming Statements appropriately. My favorite is the one
developed by Dan North'?, where each Statement name begins with the word Should. So for
example, I would name a Statement:

ShouldReportAllErrorsSortedAlphabeticallyWhenErrorsOccurDuringSearch()

The name of the Specification (i.e. class name) answers the question “who should do it?”, i.e.
when I have a class named SortingOperation and want to say that it “should sort all items in
ascending order when performed”, I say it like this:

public class SortingOperationSpecification

{

[Fact] public void
ShouldSortAllItemsInAscendingOrderWhenPer formed()
{

}

}

By writing the above, I say that “Sorting operation (this is derived from the Specification class
name) should sort all items in ascending order when performed (this is derived from the name
of the Statement)’.

The word “should” was introduced by Dan to weaken the statement following it and thus to
allow questioning what you are stating and ask yourself the question: “should it really?”. If this
causes uncertainty, then it is high time to talk to a domain expert and make sure you understand
well what you need to accomplish. If you are not a native English speaker, the “should” prefix
will probably have a weaker influence on you - this is one of the reasons why I don’t insist on
you using it. I like it though™.

When devising a name, it’s important to put the main focus on what result or action is expected
from an object, not e.g. from one of its methods. If you don’t do that, it may quickly become
troublesome. As an example, one of my colleagues was specifying a class User Id (which consisted
of user name and some other information) and wrote the following name for the Statement about
the comparison of two identifiers:

EqualOperationShouldFailForTwoInstancesWithTheSameUserName().

Note that this name is not written from the perspective of a single object, but rather from
the perspective of an operation that is executed on it. We stopped thinking in terms of object
responsibilities and started thinking in terms of operation correctness. To reflect an object
perspective, this name should be something more like:

ShouldNotBeEqualToAnotherIdThatHasDifferentUserName().

When I find myself having trouble with naming like this, I suspect one of the following may be
the case:

*https://dannorth.net/introducing-bdd/
“There are also some arguments against using the word “should”, eg. by Kevlin Henney (see
https://www.infoq.com/presentations/testing-communication).

https://dannorth.net/introducing-bdd/
https://dannorth.net/introducing-bdd/

How to start? 66

[am not specifying a behavior of a class, but rather the outcome of a method.

I am specifying more than one behavior.

The behavior is too complicated and hence I need to change my design (more on this later).
I am naming the behavior of an abstraction that is too low-level, putting too many details
in the name. I usually only come to this conclusion when all the previous points fail me.

L e

Can’t the name really become too long?

A few paragraphs ago, I mentioned you shouldn’t worry about the length of Statement names,
but I have to admit that the name can become too long occasionally. A rule I try to follow is
that the name of a Statement should be easier to read than its content. Thus, if it takes me less
time to understand the point of a Statement by reading its body than by reading its name, then
I consider the name too long. If this is the case, I try to apply the heuristics described above to
find and fix the root cause of the problem.

Start by filling the GIVEN-WHEN-THEN structure with
the obvious

This technique can be used as an extension to the previous one (i.e. starting with a good name),
by inserting one more question to the question sequence we followed the last time:

1. What is the scope of the behavior I'm trying to specify? Example answer: 'm trying to
specify a behavior of a Calculator class.

2. What is the behavior of a Calculator class I'm trying to specify? Example answer: it should
display all entered digits that are not leading zeroes.

3. What is the context (‘GIVEN”) of the behavior, the action (“WHEN”) that triggers it
and expected reaction (“THEN”) of the specified object? Example answer: Given I turn
on the calculator, when I enter any digit that’s not a 0 followed by any digits, then
they should be visible on the display.

4. How to specify this behavior through code? Example answer: [Fact] public void
ShouldDisplayAllEnteredDigitsThatAreNotLeadingZeroes() ... (i.e. a piece of code).

Alternatively, it can be used without the naming step, when it’s harder to come up with a name
than with a GIVEN-WHEN-THEN structure. In other words, a GIVEN-WHEN-THEN structure
can be easily derived from a good name and vice versa.

This technique is about taking the GIVEN, WHEN and THEN parts and translating them into
code in an almost literal, brute-force way (without paying attention to missing classes, methods
or variables), and then adding all the missing pieces that are required for the code to compile
and run.

Example

Let’s try it out on a simple problem of comparing two users for equality. We assume that two
users should be equal to each other if they have the same name:

How to start? 67

Given a user with any name
When I compare it to another user with the same name
Then it should appear equal to this other user

Let’s start with the translation part. Again, remember we're trying to make the translation as
literal as possible without paying attention to all the missing pieces for now.

The first line:

Given a user with any name

can be translated literally to the following piece of code:
var user = new User(anyName);

Note that we don’t have the User class yet and we don’t bother for now with what anyName really
is. It’s OK.

Then the second line:

When I compare it to another user with the same name
can be written as:

user .Equals(anotherUserWithTheSameName);

Great! Again, we don’t care what anotherUserWithTheSameName is yet. We treat it as a place-
holder. Now the last line:

Then it should appear equal to this other user
and its translation into the code:
Assert.True(usersArekqual);

Ok, so now that the literal translation is complete, let’s put all the parts together and see what’s
missing to make this code compile:

O© 00 I O O b W N =

=Y
N =~ O

How to start? 68

[Fact] public void
ShouldAppearEqualToAnotherUserWithTheSameName()

{
//GIVEN

var user = new User(anyName);

//WHEN
user .Equals(anotherUserWithTheSameName);

//THEN
Assert.True(usersAreEqual);

As we expected, this doesn’t compile. Notably, our compiler might point us towards the following
gaps:

1. Variable anyName is not declared.

2. Object anotherUserWithTheSameName is not declared.

3. Variable usersAreEqual is both not declared and it does not hold the comparison result.
4. If this is our first Statement, we might not even have the User class defined at all.

The compiler created a kind of a small TODO list for us, which is nice. Note that while we don’t
have compiling code, filling the gaps to make it compile boils down to making a few trivial
declarations and assignments:

1. anyName can be defined as:

var anyName = Any.String();
2. anotherUserWithTheSameName can be defined as:

var anotherUserWithTheSameName = new User(anyName);
3. usersAreEqual can be defined as variable which we assign the comparison result to:

var usersAreEqual = user.Equals(anotherUserWithTheSameName);
4. If class User does not yet exist, we can add it by simply stating:

public class User

{

public User(string name) {}

Bw N -

Putting it all together again, after filling the gaps, gives us:

O© 00 I O O b W N =

I = U =N
B w N s,

1
2

How to start? 69

[Fact] public void
ShouldAppearEqualToAnotherUserWithTheSameName()
{

//GIVEN

var anyName = Any.String();

var user = new User(anyName);

var anotherUserWithTheSameName = new User(anyName);

//WHEN
var usersAreEqual = user.Equals(anotherUserWithTheSameName);

//THEN
Assert.True(usersAreEqual);

And that’s it — the Statement itself is complete!

Start from the end

This is a technique that I suggest to people that seem to have absolutely no idea how to start.
I got it from Kent Beck’s book Test Driven Development by Example. It seems funny at first
glance, but I found it quite powerful at times. The trick is to write the Statement “backwards”,
i.e. starting with what the result verification (in terms of the GIVEN-WHEN-THEN structure, we
would say that we start with our THEN part).

This works well when we are quite sure of what the outcome of a behavior should be, but not
quite so sure of how to get there.

Example

Imagine we are writing a class containing the rules for granting or denying access to a reporting
functionality. This reporting functionality is based on roles. We have no idea what the API should
look like and how to write our Statement, but we do know one thing: in our domain the access
can be either granted or denied. Let’s take the first case we can think of - the “access granted”
case — and, starting backwards, begin with the following assertion:

//THEN

Assert.True(accessGranted);

Ok, that part was easy, but did we make any progress with that? Of course we did — we now
have code that does not compile, with the error caused by the variable accessGranted. Now, in
contrast to the previous approach where we translated a GIVEN-WHEN-THEN structure into a
Statement, our goal is not to make this compile as soon as possible. Instead, we need to answer
the question: how do I know whether the access is granted or not? The answer: it is the result
of authorization of the allowed role. Ok, so let’s just write it down in code, ignoring everything
that stands in our way:

How to start? 70

//WHEN
var accessGranted

= access.ToReportingIsGrantedTo(roleAllowedToUseReporting);

For now, try to resist the urge to define a class or variable to make the compiler happy, as that
may throw you off the track and steal your focus from what is important. The key to doing TDD
successfully is to learn to use something that does not exist yet as if it existed and not worry
until really needed.

Note that we don’t know what roleAllowedToUseReporting is, neither do we know what access
object stands for, but that didn’t stop us from writing this line. Also, the ToReportingIsGrantedTo()
method is just taken off the top of our head. It’s not defined anywhere, it just made sense to write
it like this, because it is the most direct translation of what we had in mind.

Anyway, this new line answers the question about where we take the accessGranted value from,
but it also makes us ask further questions:

1. Where does the access variable come from?
2. Where does the roleAl lowedToUseReporting variable come from?

As for access, we don’t have anything specific to say about it other than that it is an object
of a class that is not defined yet. What we need to do now is to pretend that we have such a
class (but let’s not define it yet). How do we call it? The instance name is access, so it’s quite
straightforward to name the class Access and instantiate it in the simplest way we can think of:

//GIVEN

var access = new Access();

Now for the roleAllowedToUseReporting. The first question that comes to mind when looking
at this is: which roles are allowed to use reporting? Let’s assume that in our domain, this is either
an Administrator or an Auditor. Thus, we know what is going to be the value of this variable.
As for the type, there are various ways we can model a role, but the most obvious one for a type
that has few possible values is an enum™. So:

//GIVEN
var roleAllowedToUseReporting = Any.Of(Roles.Admin, Roles.Auditor);

And so, working our way backwards, we have arrived at the final solution (in the code below, I
already gave the Statement a name - this is the last step):

“This approach of picking a single value out of several ones using Any .From() does not always work well with enums. Sometimes a
parameterized test (a “theory” in XUnit.NET terminology) is better. This topic will be discussed in one of the the coming chapters.

O© 00 I O O b W N =

I = U =N
B w N s,

How to start? 71

[Fact] public void
ShouldAllowAccessToReportingWhenAskedForEitherAdministratorOrAuditor ()
{

//GIVEN

var roleAllowedToUseReporting = Any.Of(Roles.Admin, Roles.Auditor);
var access = new Access();

//WHEN
var accessGranted
= access.ToReportingIsGrantedTo(roleAllowedToUseReporting);

//THEN
Assert.True(accessGranted);

}

Using what we learned by formulating the Statement, it was easy to give it a name.

Start by invoking a method if you have one

If preconditions for this approach are met, it’s the most straightforward one and I use it a lot™.

Many times, we have to add a new class that implements an already existing interface. The
interface imposes what methods the new class must support. If the method signatures are already
decided, we can start our Statement with a call to one of the methods and then figure out the
rest of the context we need to make it run properly.

Example

Imagine we have an application that, among other things, handles importing an existing database
exported from another instance of the application. Given that the database is large and importing
it can be a lengthy process, a message box is displayed each time a user performs the import.
Assuming the user’s name is Johnny, the message box displays the message “Johnny, please sit
down and enjoy your coffee for a few minutes as we take time to import your database.” The
class that implements this looks like:

Look for details in chapter 2.

oW N -

© 00 N O O b W N =

_oR R
N O

How to start? 72

public class FriendlyMessages

{
public string
HoldOnASecondWhileWeImportYourDatabase(string userName)

{

return string.Format("{Q}, "

"

+ "please sit down and enjoy your coffee
+ "for a few minutes as we take time "
+ "to import your database",

userName) ;

Now, imagine that we want to ship a trial version of the application with some features disabled,
one of which being the database import. One of the things we need to do is display a message
saying that this is a trial version and that the import feature is locked. We can do this by extracting
an interface from the FriendlyMessages class and implement this interface in a new class used
when the application is run as the trial version. The extracted interface looks like this:

public interface Messages

{

string HoldOnASecondWhileWeImportYourDatabase(string userName);

So our new implementation is forced to support the HoldonASecondwhi leWeImportYourDatabase()
method. Let’s call this new class TrialVersionMessages (but don’t create it yet!) and we can write
a Statement for its behavior. Assuming we don’t know where to start, we just start with creating
an object of the class (we already know the name) and invoking the method we already know
we need to implement:

[Fact]
public void TODO()

{
//GIVEN
var trialMessages = new TrialVersionMessages();

//WHEN
trialMessages.HoldOnASecondWhileWelImportYourDatabase();

//THEN
Assert.True(false); //to remember about it

As you can see, we added an assertion that always fails at the end to remind ourselves that the
Statement is not finished yet. As we don’t have any relevant assertions yet, the Statement will
otherwise be considered as true as soon as it compiles and runs and we may not notice that it’s

=~ O O s W N

O© 00 1 O O b W N =

I = U =N
W N s,

How to start? 73

incomplete. As it currently stands, the Statement doesn’t compile anyway, because there’s no
TrialVersionMessages class yet. Let’s create one with as little implementation as possible:

public class TrialVersionMessages : Messages

{

public string HoldOnASecondWhileWeImportYourDatabase(string userName)

{

throw new NotImplementedException();

Note that there’s only as much implementation in this class as required to compile this code. Still,

the Statement won’t compile yet. This is because the method HoldOnASecondwhileWeImportYourDatabase()

takes a string argument and we didn’t pass any in the Statement. This makes us ask the question

what this argument is and what its role is in the behavior triggered by the HoldOnASecondwhi leWe ImportYourData

method It looks like it’s a user name. Thus, we can add it to the Statement like this:

[Fact]

public void TODO()

{

//GIVEN

var trialMessages = new TrialVersionMessages();
var userName = Any.String();

//WHEN
trialMessages.
HoldOnASecondWhileWeImportYourDatabase(userName);

//THEN
Assert.True(false); //to remember about it

Now, this compiles but is considered false because of the guard assertion that we put at the end.
Our goal is to substitute it with a proper assertion for the expected result. The return value of
the call to HoldOnASecondWhileWeImportYourDatabase is a string message, so all we need to do
is to come up with the message that we expect in case of the trial version:

O© 00 I O O b W N =

O = N =Y
0 N O O b W N -~ O

How to start? 74

[Fact]

public void TODO()

{

//GIVEN

var trialMessages = new TrialVersionMessages();

var userName = Any.String();

var expectedMessage =

string.Format(

"{@}, better get some pocket money and buy a full version!",
userName) ;

//WHEN
var message = trialMessages.
HoldOnASecondWhileWeImportYourDatabase(userName);

//THEN
Assert.Equal (expectedMessage, message);

}

All what is left is to find a good name for the Statement. This isn’t an issue since we already
specified the desired behavior in the code, so we can just summarize it as something like
ShouldCreateAPromptForFullVersionPurchaseWhenAskedFor ImportDatabaseMessage().

Summary

When I'm stuck and don’t know how to start writing a new failing Statement, the techniques
from this chapter help me push things in the right direction. Note that the examples given are
simplistic and built on an assumption that there is only one object that takes some kind of input
parameter and returns a well defined result. However, this isn’t how most of the object-oriented
world is built. In that world, we often have objects that communicate with other objects, send
messages, invoke methods on each other and these methods often don’t have any return values
but are instead declared as void. Even though, all of the techniques described in this chapter will
still work in such case and we’ll revisit them as soon as we learn how to do TDD in the larger
object-oriented world (after the introduction of the concept of mock objects in Part 2). Here, I
tried to keep it simple.

How is TDD about analysis and what
does “GIVEN-WHEN-THEN"” mean?

During the work on the calculator code, Johnny mentioned that TDD is, among other things,
about analysis. This chapter further explores this concept. Let’s start by answering the following
question:

Is there really a commonality between analysis and
TDD?

From Wikipedia®®:

Analysis is the process of breaking a complex topic or substance into smaller parts to
gain a better understanding of it.

Thus, for TDD to be about analysis, it would have to fulfill two conditions:

1. It would have to be a process of breaking a complex topic into smaller parts
2. It would have to allow gaining a better understanding of such smaller parts

In the story about Johnny, Benjamin and Jane, I included a part where they analyze requirements
using concrete examples. Johnny explained that this is a part of process called Acceptance Test-
Driven Development. This process, followed by the three characters, fulfilled both mentioned
conditions for it to be considered analytical. But what about TDD itself?

Although I used parts of the ATDD process in the story to make the analysis part more obvious,
similar things happen at pure technical levels. For example, when starting development with a
failing application-wide Statement (i.e. one that covers a behavior of an application as a whole.
We will talk about levels of granularity of Statements later. For now the only thing you need to
know is that the so called “unit tests level” is not the only level of granularity we write Statements
on), we may encounter a situation where we need to call a web method and make an assertion
on its result. This makes us think: how should this method be named? What are the scenarios it
supports? What do I expect to get out of it? How should I, as its user, be notified about errors?
Many times, this leads us to either a conversation (if there is another stakeholder that needs to
be involved in the decision) or rethinking our assumptions. The same applies on “unit level” - if
a class implements a domain rule, there might be some good domain-related questions resulting
from trying to write a Statement for it. If a class implements a technical rule, there might be
some technical questions to discuss with other developers etc. This is how we gain a better

“https://en.wikipedia.org/wiki/Analysis

https://en.wikipedia.org/wiki/Analysis
https://en.wikipedia.org/wiki/Analysis

How is TDD about analysis and what does “GIVEN-WHEN-THEN” mean? 76

understanding of the topic we are analyzing, which makes TDD fulfill the second of the two
requirements for it to be an analysis method.

But what about the first requirement? What about breaking a complex logic into smaller parts?

If you go back to Johnny and Benjamin’s story, you will note that when talking to a customer and
when writing code, they used a TODO list. This list was first filled with whatever scenarios they
came up with, but later, they would add smaller units of work. When doing TDD, I do the same,
essentially decomposing complex topics into smaller items and putting them on the TODO list
(this is one of the practices that serve decomposition. The other one is mocking, but let’s leave
that for now). Thanks to this, I can focus on one thing at a time, crossing off item after item
from the list after it’s done. If I learn something new or encounter a new issue that needs our
attention, I can add it to the TODO list and get back to it later, for now continuing my work on
the current item of focus.

An example TODO list from the middle of an implementation task may look like this (don’t read
through it, I put it here just to give you a glimpse - you’re not supposed to understand what the
list items are about either):

. Implement behavior required from ValidateWith method in LocationMessage class for
Speed field
8. Implement behavior required from ValidateWith method in LocationMessage class for Age
field
9. Implement behavior required from ValidateWith method in LocationMessage class for

Sender field

N oA W
8
.
8
.
.
:
:

Note that some of the items are already crossed off as done, while others remain pending and
waiting to be addressed. All these items are what the article on Wikipedia calls “smaller parts” -
a result of breaking down a bigger topic.

For me, the arguments that I gave you are enough to think that TDD is about analysis. The next
question is: are there any tools we can use to aid and inform this analysis part of TDD? The
answer is yes and you already saw both of them in this book, so now we’re going to have a
closer look.

Gherkin

Hungry? Too bad, because the Gherkin I am going to tell you about is not edible. It is a notation
and a way of thinking about behaviors of the specified piece of code. It can be applied on different
levels of granularity — any behavior, whether of a whole system or a single class, may be described
using Gherkin.

Bw N

W N

How is TDD about analysis and what does “GIVEN-WHEN-THEN” mean? 77

In fact we already used this notation, we just didn’t name it so. Gherkin is the GIVEN-WHEN-
THEN structure that you can see everywhere, even as comments in the code samples. This time,
we are stamping a name on it and analyzing it further.

In Gherkin, a behavior description consists mostly of three parts:

1. Given — a context
2. When - a cause
3. Then - an effect

In other words, the emphasis is on causality in a given context. There’s also a fourth keyword:
And'” — we can use it to add more context, more causes or more effects. You’ll have a chance to
see an example in a few seconds

As I said, there are different levels you can apply this. Here is an example for such a behavior
description from the perspective of its end user (this is called acceptance-level Statement):

Given a bag of tea costs $20

And there is a discount saying "pay half for a second bag"
When I buy two bags

Then I should be charged $30

And here is one for unit-level (note again the line starting with “And” that adds to the context):

Given a list with 2 items
When I add another item
And check items count
Then the count should be 3

While on acceptance level we put such behavior descriptions together with code as a single
whole (If this doesn’t ring a bell, look at tools such as SpecFlow'® or Cucumber*® or FIT? to get
some examples), on the unit level the description is usually not written down in a literal way,
but rather it is translated and written only in form of source code. Still, the structure of GIVEN-
WHEN-THEN is useful when thinking about behaviors required from an object or objects, as we
saw when we talked about starting from Statement rather than code. I like to put the structure
explicitly in my Statements — I find that it helps make them more readable’’. So most of my
unit-level Statements follow this template:

’Some claim there are other keywords, like But and or. However, we won’t need to resort to them so I decided to ignore them in this
description.

*http://specflow.org/

https://cucumber.io/

*http://fit.c2.com/

*1Seb Rose wrote a blog post where he suggests against the //GIVEN //WHEN //THEN comments and states that he only uses empty
lines to separate the three sections, see http://claysnow.co.uk/unit-tests-are-your-specification/

http://specflow.org/
https://cucumber.io/
http://fit.c2.com/
http://specflow.org/
https://cucumber.io/
http://fit.c2.com/

O© 00 I O O b W N =

=Y
N =~ O

© 00 N O O b W N =

NN
= o

How is TDD about analysis and what does “GIVEN-WHEN-THEN” mean? 78

[Fact]
public void Should__BEHAVIOR__ ()
{

//GIVEN

...context. ..

//WHEN
...trigger. ..

//THEN
...assertions etc....

Sometimes the WHEN and THEN sections are not so easily separable — then I join them, like
in case of the following Statement specifying that an object throws an exception when asked to
store null:

[Fact]
public void ShouldThrowExceptionWhenAskedToStoreNull()
{

//GIVEN

var safelist = new SafelList();

//WHEN - THEN
Assert.Throws<Exception>(

() => safelList.Store(null)
);

By thinking in terms of these three parts of behavior, we may arrive at different circumstances
(GIVEN) at which the behavior takes place, or additional ones that are needed. The same goes
for triggers (WHEN) and effects (THEN). If anything like this comes to our mind, we add it to
the TODO list to revisit it later.

TODO list... again!

As I wrote earlier, a TODO list is a repository for our deferred work. This includes anything that
comes to our mind when writing or thinking about a Statement, but is not a part of the current
Statement we are writing. On one hand, we don’t want to forget it, on the other - we don’t want
it to haunt us and distract us from our current task, so we write it down as soon as possible and
continue with our current task. When we’are finished with it, we take another item from TODO
list and start working on it.

Imagine we’re writing a piece of logic that allows users access when they are employees of a zoo,
but denies access if they are merely guests of the zoo. Then, after starting writing a Statement we

How is TDD about analysis and what does “GIVEN-WHEN-THEN” mean? 79

realize that employees can be guests as well — for example, they might choose to visit the zoo with
their families during their vacation. Still, the two previous rules hold, so to avoid being distracted
by this third scenario, we can quickly add it as an item to the TODO list (like “TODO: what if
someone is an employee, but comes to the zoo as a guest?”) and finish the current Statement.
When we’re finished, you can always come back to the list of deferred items and pick next item
to work on.

There are two important questions related to TODO lists: “what exactly should we add as a
TODO list item?” and “How to efficiently manage the TODO list?”. We will take care of these
two questions now.

What to put on a TODO list?

Everything that we need addressed but is out of scope of the current Statement. Those items may
be related to implementing unimplemented methods, to add whole functionalities (such items
are usually broken further into more fine-grained sub tasks as soon as we start implementing
them), they might be reminders to take a better look at something (e.g. “investigate what is this
component’s policy for logging errors”) or questions about the domain that need to get answered.
If we tend to get carried away too much in coding and miss our lunch, we can even add a reminder
(“TODO: eat lunch!”). I have never encountered a case where I needed to share this TODO list
with anyone else, so I tend to treat it as my personal sketchbook. I recommend the same to you
- the list is yours!

How to pick items from a TODO list?

Which item to choose from a TODO list when we have several of them? I have no clear rule,
although I tend to take into account the following factors:

1. Risk — if what I learn by implementing or discussing a particular item from the list can
have a big impact on design or behavior of the system, I tend to pick such items first. An
example of such item is when I start implementing validation of a request that arrives to
my application and want to return different error depending on which part of the request
is wrong. Then, during the development, I may discover that more than one part of the
request can be wrong at the same time and I have to answer a question: which error code
should be returned in such case? Or maybe the return codes should be accumulated for all
validations and then returned as a list?

2. Difficulty - depending on my mental condition (how tired I am, how much noise is
currently around my desk etc.), I tend to pick items with difficulty that best matches this
condition. For example, after finishing an item that requires a lot of thinking and figuring
things out, I tend to take on some small and easy items to feel wind blowing in my sails
and to rest a little bit.

3. Completeness — in simplest words, when I finish test-driving an “if” case, I usually pick up
the “else” next. For example, after I finish implementing a Statement saying that something
should return true for values less than 50, then the next item to pick up is the “greater or
equal to 50” case. Usually, when I start test-driving a class, I take items related to this class
until I run out of them, then go on to another one.

How is TDD about analysis and what does “GIVEN-WHEN-THEN” mean? 80

Of course, a TODO list is just one source of such TODO items. Typically, when searching for
items to do, I examine the following sources of items in the following order:

1. compiler failures,
2. Statements that are false,
3. My TODO list.

Where to put a TODO list?

I encountered two ways of maintaining a TODO list. The first one is on a sheet of paper. The
drawback is that every time I need to add something to the list, I need to take my hands off the
keyboard, grab a pen or a pencil and then get back to coding. Also, the only way a TODO item
written on a sheet of paper can tell me which place in my code it is related to, is (obviously) by
its text. The good thing about paper is that it is by far one of the best tools for sketching, so when
my TODO item is best stored as a diagram or a drawing (which doesn’t happen too often, but
sometimes does) , I use pen and paper.

The second alternative is to use a TODO list functionality built-in into an IDE. Most IDEs, such
as Visual Studio (and Resharper plugin has its own enhanced version), Xamarin Studio, IntelliJ
or eclipse-based IDEs have such functionality. The rules are simple — I insert special comments
(e.q. //TODO do something) in the code and a special view in my IDE aggregates them for me,
allowing me to navigate to each item later. This is my primary way of maintaining a TODO list,
because:

1. They don’t force me to take my hands off my keyboard to add an item to the list.

2. Ican puta TODO item in a certain place in the code where is makes sense and then navigate
back to it later with a click of a mouse. This, apart from other advantages, allows writing
shorter notes than if I had to do it on paper. For example, a TODO item saying “TODO:
what if it throws an exception?” looks out of place on a sheet of paper, but when added as
a comment to my code in the right place, it’s sufficient.

3. Many TODO lists automatically add items for certain things that happen in the code. E.g.
in C#, when I'm yet to implement a method that was automatically generated by the IDE,
its body usually consists of a line that throws a Not ImplementedException exception. Guess
what — NotImplementedException occurences are added to the TODO list automatically, so
I don’t have to manually add items to the TODO list for implementing the methods where
they occur.

How is TDD about analysis and what does “GIVEN-WHEN-THEN” mean? 81

-

To-do Explorer * 1 x
HE + +E-[E- X = Fiter (all -
Group by: Project Structure -

1
4 1 <ComponentBasedTestTool.Domains (2 items) -

4 W OperationStates (2 items,
4 0 RunnableCperationState.cs (7 item)
73 MotimplementedException
I UnavailableQperationState.cs (7 item,
4 7] «ComponentBasedTestTool ViewModels> (12 items
4 B viewModels (12 items
= I OperationPropertiesViewModelBuilder.cs (7 item)
4 I OperationViewModel.cs (17 items
£é TODO persistence
E& TODO script view
& TODO removing components
E6 TODO what happens when we remove operation while
£6 TODO compaonent view and script view
E& TODO communication view like wireshark

£ TODO in component addition, create button called "Ad ™
4 2

To-do Explorer | Properties

Resharper TODO Explorer docked as a window in Visual Studio 2015 IDE

The TODO list maintained in the source code has one minor drawback - we have to remember
to clear the list when we finish working with it or we may end up pushing the TODO items to
the source control repository along with the rest of the source code. Such leftover TODO items
may accumulate in the code, effectively reducing the ability to navigate through the items that
were only added by a specific developer. There are several strategies of dealing with this:

1. For greenfield projects, I found it relatively easy to set up a static analysis check that runs
when the code is built and doesn’t allow the automatic build to pass unless all TODO
items are removed. This helps ensure that whenever a change is pushed to a version control
system, it’s stripped of the unaddressed TODO items.

2. In some other cases, it’s possible to use a strategy of removing all TODO items from a project
before starting working with it. Sometimes it may lead to conflicts between people when
TODO items are used for something else than a TDD task list and someone for whatever
reason wants them to stay in the code longer. Even though I’'m of opinion that such cases
of leaving TODO items for longer should be extremely rare at best, however, others may
have different opinions.

3. Most modern IDEs offer support markers other than //ToDO for placing items on a TODO
list, for example, //BUG. In such case, I can use the //BUG marker to mark just my items

How is TDD about analysis and what does “GIVEN-WHEN-THEN” mean? 82

and then I can filter other items out based on that marker. Bug markers are commonly not
intended to be left in the code, so it’s much less risky for them to accumulate.

4. As a last resort technique, I can usually define my own markers to be placed on TODO
list and, again, use filters to see only the items that were defined by me (plus usually
NotImplementedExceptions).

TDD process expanded with a TODO list

In one of the previous chapters, I introduced you to the basic TDD process that contained three
steps: write false Statement you wish was true, change the production code so that the Statement
is true and then refactor the code. TODO list adds new steps to this process leading to the
following expanded list:

Examine TODO list and pick an item that makes most sense to implement next.

Write false Statement you wish was true.

See it reported as false for the right reason.

Change the production code to make the Statement true and make sure all already true
Statements remain true.

Cross off the item from the TODO list.

6. Repeat steps 1-5 until no item is left on the TODO list.

L

()]

Of course, we can (and should) add new items to the TODO list as we make progress with the
existing ones and at the beginning of each cycle the list should be re-evaluated to choose the
most important item to implement next, also taking into account the things that were added
during the previous cycle.

Potential issues with TODO lists

There are also some issues one may run into when using TODO lists. I already mentioned the
biggest of them - that I often saw people add TODO items for means other than to support TDD
and they never went back to these items. Some people joke that a TODO comment left in the
code means “There was a time when I wanted to do ..”. Anyway, such items may pollute our
TDD-related TODO list with so much cruft that your own items are barely findable.

Another downside is that when you work with multiple workspaces/solutions, your IDE will
gather TODO items only from a single solution/workspace, so there may be times when several
TODO lists will need to be maintained — one per workspace or solution. Fortunately, this isn’t
usually a big deal.

What is the scope of a unit-level
Statement in TDD?

In previous chapters, I described how tests form a kind of excutable Specification consisting of
many Statements. If so, then some fundamental questions regarding these Statements need to be
raised, e.g.:

1. What goes into a single Statement?
2. How do I know that I need to write another Statement instead of expanding existing one?
3. When I see a Statement, how do I know whether it is too big, too small, or just enough?

This can be summarized as one more general question: what should be the scope of a single
Statement?

Scope and level

The software we write can be viewed in terms of structure and functionality. Functionality is
about the features — things something does and does not given certain circumstances. Structure
is how this functionality is organized and divided between many subelements, e.g. subsystems,
services, components, classes, methods etc.

A structural element can easily handle several functionalities (either by itself or in cooperation
with other elements). For example, many lists implement retrieving added items as well as some
kind of searching or sorting. On the other hand, a single feature can easily span several structural
elements (e.g. paying for a product in an online store will likely span at least several classes and
probably touch a database).

Thus, when deciding what should go into a single Statement, we have to consider both structure
and functionality and make the following decisions:

« structure — do we specify what a class should do, or what the whole component should
do, or maybe a Statement should be about the whole system? I will refer to such structural
decision as “level”.

« functionality — should a single Statement specify everything that structural element does,
or maybe only a part of it? If only a part, then which part and how big should that part be?
I will refer to such functional decision as “functional scope”.

Our questions from the beginning of the chapter can be rephrased as:

1. On what level do we specify our software?
2. What should be the functional scope of a single Statement?

O© 00 I O O b W N =~

I = U =N
W N s,

What is the scope of a unit-level Statement in TDD? 84

On what level do we specify our software?

The answer to the first question is relatively simple — we specify on multiple levels. How many
levels there are and which ones we’re interested in depends very much on the specific type of
application that we write and programming paradigm (e.g. in pure functional programming, we
don’t have classes).

In this (and next) chapter, I focus mostly on class level (I will refer to it as unit level, since a class
is a unit of behavior), i.e. every Statement is written against a public API of a specified class**.

Does that mean that we can only use a single class in our executable Statement? Let’s look at an
example of a well-written Statement and try to answer this question:

[Fact] public void
ShouldThrowValidationExceptionWithFatalErrorLevelWhenValidatedStringIsEmpty()
{

//GIVEN

var validation = new Validation();

//WHEN

var exceptionThrown = Assert.Throws<CustomException>(
() => validation.ApplyTo(string.Empty)

);

//THEN
Assert.True(exceptionThrown.IsFatalError);

Ok, so let’s see... how many real classes take part in this Statement? Three: a string, an exception
and the validation. So even though this is a Statement written against the public API of
Validation class, the API itself demands using objects of additional classes.

What should be the functional scope of a single
Statement?

The short answer to this question is: behavior. Putting it together with the previous section, we
can say that each unit-level Statement specifies a single behavior of a class written against public
API of that class. I like how Liz Keogh?* says that a unit-level Statement shows one example of
how a class is valuable to its users. Also, Amir Kolsky and Scott Bain®* say that each Statement
should “introduce a behavioral distinction not existing before”.

What exactly is a behavior? If you read this book from the beginning, you’ve probably seen a lot
of Statements that specify behaviors. Let me show you another one, though.

*’Some disagree, however, with writing Statements on the class level - see http://blog.cleancoder.com/uncle-bob/2017/03/03/TDD-
Harms-Architecture. html or https://vimeo.com/68375232

*https://lizkeogh.com/2012/05/30/showcasing-the-language-of-bdd/

**http://www.sustainabletdd.com/

https://lizkeogh.com/2012/05/30/showcasing-the-language-of-bdd/
http://www.sustainabletdd.com/
https://lizkeogh.com/2012/05/30/showcasing-the-language-of-bdd/
http://www.sustainabletdd.com/

© 00 1 O O b W N =

I S =
a b w0 N =~ O

What is the scope of a unit-level Statement in TDD? 85

Let’s consider an example of a class representing a condition for deciding whether some kind
of queue is full or not. A single bahvior we can specify is that the condition is met when it is
notified three times of something being queued on a queue (so from a bigger-picture point of
view, it’s an observer of the queue):

[Fact] public void
ShouldBeMetWhenNotifiedThreeTimesOfItemQueued()
{
//GIVEN
var condition = new FullQueueCondition();
condition.NotifyItemQueued();
condition.NotifyItemQueued();
condition.NotifyItemQueued();

//WHEN
var isMet = condition.IsMet();

//THEN
Assert.True(isMet);

}

The first thing to note is that two methods are called on the condition object:Noti fyItemQueued()
(three times) and IsMet() (once). I consider this example educative because I have seen people
misunderstand unit level as “specifying a single method”. Sure, there is usually a single method
triggering the behavior (in this case it’s isMet (), placed in the //WHEN section), but sometimes,
more calls are necessary to set up a preconditions for a given behavior (hence the three Queued()
calls placed in the //GIVEN section).

The second thing to note is that the Statement only says what happens when the condition
object is notified three times — this is the specified behavior. What about the scenario where the
condition is only notified two times and when asked afterwards, should say it isn’t met? Thisisa
separate behavior and should be described by a separate Statement. The ideal to which we strive
is characterized by three rules by Amir Kolsky and cited by Ken Pugh in his book Lean-Agile
Acceptance Test-Driven Development:

1. A Statement should turn false for well-defined reason.
2. No other Statement should turn false for the same reason.
3. A Statement should not turn false for any other reason.

While it’s impossible to achieve it in literal sense (e.g. all Statements specifying the Ful 1QueueCondition
behaviors must call a constructor, so when I put a throw new Exception() inside it, all Statements

will turn false), however we want to keep as close to this goal as possible. This way, each
Statement will introduce that “behavioral distinction” I mentioned before, i.e. it will show a

new way the class can be valuable to its users.

Most of the time, I specify behaviors using the “GIVEN-WHEN-THEN” thinking framework. A
behavior is triggered (WHEN) in some kind of context (GIVEN) and there are always some kind of
results (THEN) of that behavior.

© 00 N O O & W N =

[N T S T N T N T o S e S = = G G Y
W N O © 0N O O b W N =~ O

What is the scope of a unit-level Statement in TDD? 86

Failing to adhere to the three rules

The three rules I mentioned are derived from experience. Let’s see what happens if we don’t
follow one of them.

Our next example is about some kind of buffer size rule. This rule is asked whether the buffer
can handle a string of specified length and answers “yes” if this string is at most three-elements
long. The writer of a Statement for this class decided to violate the rules we talked about and
wrote something like this:

[Fact] public void
ShouldReportItCanHandleStringWithlLengthOf3ButNotOf4AndNotNullString()
{

//GIVEN

var bufferSizeRule = new BufferSizeRule();

//WHEN
var resultForLengthOf3
= bufferSizeRule.CanHandle(Any.StringOfLength(3));
//THEN
Assert.True(resultForLengthOf3);

//WHEN - again?
var resultForLengthOf4
= bufferSizeRule.CanHandle(Any.StringOfLength(4))
//THEN - again?
Assert.False(resultForLengthOf4);

//WHEN - again??

var resultForNull = bufferSizeRule.CanHandle(null);
//THEN - again??

Assert.False(resultForNull);

Note that it specifies three behaviors:

1. Acceptance of a string of allowed size.
2. Refusal of handling a string of size above the allowed limit.
3. Special case of null string.

As such, the Statement breaks rules: 1 (A Statement should turn false for well-defined reason)
and 3 (A Statement should not turn false for any other reason). In fact, there are three reasons
that can make our Statement false.

There are several reasons to avoid writing Statements like this. Some of them are:

What is the scope of a unit-level Statement in TDD? 87

1. Most xUnit frameworks stop executing a Statement on first assertion failure. If the first
assertion fails in the above Statement, we won’t know whether the rest of the behaviors
work fine until we fix the first one.

2. Readability tends to be worse as well as the documentation value of our Specification (the
names of such Statements tend to be far from helpful).

3. Failure isolation is worse — when a Statement turns false, we’d prefer to know exactly which
behavior was broken. Statements such as the one above don’t give us this advantage.

4. Throughout a single Statement we usually work with the same object. When we trigger
multiple behaviors on it, we can’t be sure how triggering one behavior impacts subsequent
behaviors. If we have e.g. four behaviors in a single Statement, we can’t be sure how the
three earlier ones impact the last one. In the example above, we could get away with this,
since the specified object returned its result based only on the input of a specific method (i.e.
it did not contain any mutable state). Imagine, however, what could happen if we triggered
multiple behaviors on a single list. Would we be sure that it does not contain any leftover
element after we added some items, then deleted some, then sorted the list and deleted even
more?

How many assertions do | need?

A single assertion by definition checks a single specified condition. If a single Statement is about
a single behavior, then what about assertions? Does “single behavior” mean I can only have a
single assertion per Statement? That was mostly the case for the Statements you have already
seen throughout this book, but not for all.

To tell you the truth, there is a straightforward answer to this question — a rule that says: “have a
single assertion per test”. What is important to remember is that it applies to “logical assertions”,
as Robert C. Martin indicated®”.

Before we go further, I'd like to introduce a distinction. A “physical assertion” is a single
AssertXXXxX () call. A “logical assertion” is one or more physical assertions that together specify
one logical condition. To further illustrate this distinction, I'd like to give you two examples of
logical assertions.

Logical assertion - example #1

A good example would be an assertion that specifies that all items in a list are unique (i.e. the list
contains no duplicates). XUnit.net does not have such an assertion by default, but we can imagine
we have written something like that and called it AssertHasUniqueItems(). Here’s some code
that uses this assertion:

*Clean Code series, episode 19 (https://cleancoders.com/episode/clean-code-episode-19-p1/show), Robert C. Martin, 2013

a b W N -

© 00 N O O & W N =

[==Y
w N =~ O

=~ O O b W N =

What is the scope of a unit-level Statement in TDD? 88

//some hypothetical code for getting the list:
var list = GetList();

//invoking the assertion:
AssertHasUniqueltems(list);

Note that it’s a single logical assertion, specifying a well-defined condition. If we peek into the
implementation however, we will find the following code:

public static void AssertHasUniqueltems<T>(List<T> list)
{
for(var i = @ ; i < list.Count ; i++)
{
for(var j = 0 ; j < list.Count ; j++)
{
if(i 1= j)
{
Assert.NotEqual(list[i], list[j]);

Which already executes several physical assertions. If we knew the exact number of elements in

collection, we could even use three Assert . NotEqual() assertions instead of AssertHasUniqueItems():

//some hypothetical code for getting the collection:
var list = GetlLastThreeElements();

//invoking the assertions:

Assert.NotEqual(list[Q], list[1]);
Assert.NotEqual(list[0], 1list[2]);
Assert.NotEqual(list[1], list[2]);

[s it still a single assertion? Physically no, but logically — yes. There is still one logical thing these
assertions specify and that is the uniqueness of the items in the list.

Logical assertion - example #2

Another example of a logical assertion is one that specifies exceptions: Assert.Throws(). We
already encountered one like this in this chapter. Here is the code again:

O© 00 I O O b W N =

I = U =N
B w N s,

© 00 N O O b W N =

RN
= O

What is the scope of a unit-level Statement in TDD? 89

[Fact] public void
ShouldThrowValidationExceptionWithFatalErrorLevelWhenValidatedStringIsEmpty()
{

//GIVEN

var validation = new Validation();

//WHEN

var exceptionThrown = Assert.Throws<CustomException> (
() => validation.ApplyTo(string.Empty)

);

//THEN
Assert.True(exceptionThrown.IsFatalError);

Note that in this case, there are two physical assertions (Assert.Throws() and Assert.True()),
but one intent - to specify the exception that should be thrown. We may as well extract these
two physical assertions into a single one with a meaningful name:

[Fact] public void
ShouldThrowValidationExceptionWithFatalErrorLevelWhenValidatedStringIsEmpty()
{

//GIVEN

var validation = new Validation();

//WHEN - THEN
AssertFatalErrorIsThrownWhen(

() => validation.ApplyTo(string.Empty)
);

So every time we have several physical assertions that can be (or are) extracted into a single
assertion method with a meaningful name, I consider them a single logical assertion. There
is always a gray area in what can be considered a “meaningful name” (but let’s agree that
AssertAllConditionsAreMet() is not a meaningful name, ok?). The rule of thumb is that this
name should express our intent better and clearer than the bunch of assertions it hides. If we look
again at the example of AssertHasUniquelItems() this assertion does a better job of expressing
our intent than a set of three Assert.NotEqual().

Summary

In this chapter, we tried to find out how much should go into a single Statement. We examined
the notions of level and functional scope to end up with a conclusion that a Statement should
cover a single behavior. We backed this statement by three rules by Amir Kolsky and looked at
an example of what could happen when we don’t follow one of them. Finally, we discussed how
the notion of “single Statement per behavior” is related to “single assertion per Statement”.

Developing a TDD style and
Constrained Non-Determinism

In one of the first chapters, I introduced to you the idea of anonymous values generator. I showed
you the Any class which I use for generating such values. Throughout the chapters that followed,
I have used it quite extensively in many of the Statements I wrote.

The time has come to explain a little bit more about the underlying principles of using anonymous
values in Statements. Along the way, we’ll also examine developing a style of TDD.

A style?

Yep. Why am [wasting your time writing about style instead of giving you the hardcore technical
details? Here’s my answer: before I started writing this tutorial, I read four or five books solely on
TDD and maybe two others that contained chapters on TDD. All of this added up to about two
or three thousands of paper pages, plus numerous posts on many blogs. And you know what
I noticed? No two authors use exactly the same set of techniques for test-driving their code!
I mean, sometimes, when you look at the techniques they suggest, two authorities contradict
each other. As each authority has their followers, it isn’t uncommon to observe and take part
in discussions about whether this or that technique is better than a competing one or which
technique is “a smell”*® and leads to trouble in the long run.

I’'ve done a lot of this, too. I also tried to understand how come people praise techniques I (thought
I) KNEW were wrong and led to disaster. Over time, I came to understand that this is not a
“technique A vs. technique B” debate. There are certain sets of techniques that work together
and symbiotically enhance each other. Choosing one technique leaves us with issues we have to
resolve by adopting other techniques. This is how a style is developed.

Developing a style starts with a set of problems to solve and an underlying set of principles we
consider important. These principles lead us to adopt our first technique, which makes us adopt
another one and, ultimately, a coherent style emerges. Using Constrained Non-Determinism as
an example, I will try to show you how part of a style gets derived from a technique that is
derived from a principle.

Principle: Tests As Specification

As I already stressed, I strongly believe that tests should constitute an executable specification.
Thus, they should not only pass input values to an object and assert on the output, they should
also convey to their reader the rules according to which objects and functions work. The
following toy example shows a Statement where it isn’t explicitly explained what the relationship
between input and output is:

**One of such articles can be found at https://martinfowler.com/articles/mocksArentStubs.html

O© 00 I O O b W N =

=Y
N =~ O

© 00 N O O b W N =

Developing a TDD style and Constrained Non-Determinism 91

[Fact] public void
ShouldCreateBackupFileNameContainingPassedHostName()
{

//GIVEN

var fileNamePattern = new BackupFileNamePattern();

//WHEN
var name = fileNamePattern.ApplyTo("MY_HOST_NAME");

//THEN
Assert.Equal("backup_MY_HOST_NAME.zip", name);

Although in this case the relationship can be guessed quite easily, it still isn’t explicitly stated,
so in more complex scenarios it might not be as trivial to spot. Also, seeing code like that makes
me ask questions like:

« Is the "backup_" prefix always applied? What if I pass the prefix itself instead of "MY_-
HOST_NAME"? Will the name be "backup_backup_.zip", or just "backup_.zip"?

« Is this object responsible for any validation of passed string? If I pass "MY HOST NAME" (with
spaces) will this throw an exception or just apply the formatting pattern as usual?

« Last but not least, what about letter casing? Why is "MY_HOST_NAME" written as an upper-
case string? If I pass "my_host_name", will it be rejected or accepted? Or maybe it will be
automatically converted to upper case?

This makes me adopt a first technique to provide my Statements with better support for the
principle I follow.

First technique: Anonymous Input

I can wrap the actual value "MY_HOST_NAME" with a method and give it a name that better
documents the constraints imposed on it by the specified functionality. In this case, the
BackupFileNamePattern() method should accept whatever string I feed it (the object is not
responsible for input validation), so I will name the wrapping method AnyString():

[Fact] public void
ShouldCreateBackupFileNameContainingPassedHostName()

{
//GIVEN

var hostName = AnyString();
var fileNamePattern = new BackupFileNamePattern();

//WHEN
var name = fileNamePattern.ApplyTo(hostName);

10
11
12
13
14
15
16
17
18

Developing a TDD style and Constrained Non-Determinism 92

//THEN
Assert.Equal("backup_MY_HOST_NAME.zip", name);

public string AnyString()

{
return "MY_HOST_NAME";

By using anonymous input, I provided a better documentation of the input value. Here, I wrote
AnyString(), but of course, there can be a situation where I use more constrained data, e.g. I
would invent a method called AnyAlphaNumericString() if I was in need of a string that doesn’t
contain any characters other than letters and digits.

o Anonymous input and equivalence classes

Note that this technique is useful only when we specify a behavior that should occur
for all members of some kind of equivalence class. An example of equivalence class
is “a string starting with a number” or “a positive integer” or “any legal URI”. When
a behavior should occur only for a single specific input value, there is no room for
making it anonymous. Taking authorization as an example, when a certain behavior
occurs only when the input value is Users.Admin, we have no useful equivalence class
and we should just use the literal value of Users . Admin. On the other hand, for a behavior
that occurs for all values other than Users.Admin, it makes sense to use a method like
AnyUserOtherThan(Users.Admin) or even AnyNonAdminUser(), because this is a useful
equivalence class.

Now that the Statement itself is freed from the knowledge of the concrete value of hostName
variable, the concrete value of "backup_MY_HOST_NAME .zip" in the assertion looks kind of weird.
That’s because, there is still no clear indication of the kind of relationship between input and
output and whether there is any at all (as it currently is, the Statement suggests that the result
of the ApplyTo() is the same for any hostName value). This leads us to another technique.

Second technique: Derived Values

To better document the relationship between input and output, we have to simply derive the
expected value we assert on from the input value. Here is the same Statement with the assertion

changed:

O© 00 I O O b W N =

T O SN
N O O 0N~

Developing a TDD style and Constrained Non-Determinism 93

[Fact] public void
ShouldCreateBackupFileNameContainingPassedHostName()
{

//GIVEN

var hostName = AnyString();

var fileNamePattern = new BackupFileNamePattern();

//WHEN
var name = fileNamePattern.ApplyTo(hostName);

//THEN

Assert.Equal($"backup_{hostName}.zip", name);
}
public string AnyString()

{
return "MY_HOST_NAME";

This looks more like a part of specification, because we are documenting the format of the backup
file name and show which part of the format is variable and which part is fixed. This is something
you would probably find documented in a paper specification for the application you are writing
— it would probably contain a sentence saying: “The format of a backup file should be backup_-
H.zip, where H is the current local host name”. What we used here was a derived value.

Derived values are about defining expected output in terms of the input that was passed to
provide a clear indication on what kind of “transformation” the production code is required to
perform on its input.

Third technique: Distinct Generated Values

Let’s assume that some time after our initial version is shipped, we are asked to change the backup
feature so that it stores backed up data separately for each user that invokes this functionality.
As the customer does not want to have any name conflicts between files created by different
users, we are asked to add name of the user doing backup to the backup file name. Thus, the new
format is backup_H_U.zip, where H is still the host name and U is the user name. Our Statement
for the pattern must change as well to include this information. Of course, we are trying to use
the anonymous input again as a proven technique and we end up with:

O© 00 I O O b W N =

P = =y
© 00 N O O b W N =~ O

© 00 N O O b W N =

O = ==
N O O b W N -~ O

Developing a TDD style and Constrained Non-Determinism 94

[Fact] public void
ShouldCreateBackupFileNameContainingPassedHostNameAndUserName()

{
//GIVEN

var hostName = AnyString();

var userName = AnyString();
var fileNamePattern = new BackupFileNamePattern();

//WHEN
var name = fileNamePattern.ApplyTo(hostName, userName);

//THEN
Assert.Equal($"backup_{hostName}_{userName}.zip", name);

public string AnyString()

{
return "MY_HOST_NAME";

Now, we can clearly see that there is something wrong with this Statement. AnyString() is used
twice and each time it returns the same value, which means that evaluating the Statement does
not give us any guarantee, that both arguments of the ApplyTo() method are used and that they
are used in the correct places. For example, the Statement will be considered true when user
name value is used in place of a host name by the ApplyTo() method. This means that if we still
want to use the anonymous input effectively without running into false positives”’, we have to
make the two values distinct, e.g. like this:

[Fact] public void
ShouldCreateBackupFileNameContainingPassedHostNameAndUserName()
{

//GIVEN

var hostName = AnyStringl();

var userName = AnyString2(); //different value
var fileNamePattern = new BackupFileNamePattern();

//WHEN
var name = fileNamePattern.ApplyTo(hostName, userName);

//THEN
Assert.Equal($"backup_{hostName}_{userName}.zip", name);

public string AnyString1()
{

" A “false positive” is a test that should be failing but is passing.

18
19
20
21
22
23
24

© 00 N O O b W N =

= ==Y
© 00 N O O b W N =~ O

Developing a TDD style and Constrained Non-Determinism 95

return "MY_HOST_NAME";
}
public string AnyString2()
{
return "MY_USER_NAME";
}

We solved the problem (for now) by introducing another helper method. However, as you can
see, this is not a very scalable solution. Thus, let’s try to reduce the amount of helper methods
for string generation to one and make it return a different value each time:

[Fact] public void
ShouldCreateBackupFileNameContainingPassedHostNameAndUserName()
{

//GIVEN

var hostName

AnyString();
var userName = AnyString();
var fileNamePattern = new BackupFileNamePattern();

//WHEN
var name = fileNamePattern.ApplyTo(hostName, userName);

//THEN
Assert.Equal($"backup_{hostName}_{userName}.zip", name);

public string AnyString()

{
return Guid.NewGuid().ToString();

This time, the AnyString() method returns a guid instead of a human-readable text. Generating
a new guid each time gives us a fairly strong guarantee that each value would be distinct. The
string not being human-readable (contrary to something like "MY_HOST_NAME") may leave you
worried that maybe we are losing something, but hey, didn’t we say AnyString()?

Distinct generated values means that each time we generate an anonymous value, it’s different
(if possible) than the previous one and each such value is generated automatically using some
kind of heuristics.

Fourth technique: Constant Specification

Let’s consider another modification that we are requested to make — this time, the backup
file name needs to contain version number of our application as well. Remembering that we

© 00 N O O b W N =

[T = S S T T G = U U
S © 0 N O O b W N =~ O

O N O O b W N =

Developing a TDD style and Constrained Non-Determinism 96

want to use the derived values technique, we will not hardcode the version number into
our Statement. Instead, we will use a constant that’s already defined somewhere else in the
application’s production code (this way we also avoid duplication of this version number across
the application). Let’s imagine this version number is stored as a constant called Number in
Version class. The Statement updated for the new requirements looks like this:

[Fact] public void
ShouldCreateBackupFileNameContainingPassedHostNameAndUserNameAndVersion()
{

//GIVEN

var hostName = AnyString();

var userName = AnyString();

var fileNamePattern = new BackupFileNamePattern();

//WHEN
var name = fileNamePattern.ApplyTo(hostName, userName);

//THEN
Assert.Equal(

$"backup_{hostName}_{userName}_{Version.Number}.zip", name);

public string AnyString()
{
return Guid.NewGuid().ToString();

}

Again, rather than a literal value of something like 5.0, I used the Version.Number constant
which holds the value. This allowed me to use a derived value in the assertion, but left me a little
worried about whether the Version.Number itself is correct — after all, I used the production code
constant for creation of expected value. If I accidentally modified this constant in my code to
an invalid value, the Statement would still be considered true, even though the behavior itself
would be wrong.

To keep everyone happy, I usually solve this dillemma by writing a single Statement just for the
constant to specify what the value should be:

public class VersionSpecification
{
[Fact] public void
ShouldContainNumberEqualTo1_0()
{
Assert.Equal("1.0", Version.Number);
}
}

By doing so, I made sure that there is a Statement that will turn false whenever I accidentally
change the value of Version.Number. This way, I don’t have to worry about it in the rest of the

Developing a TDD style and Constrained Non-Determinism 97

Specification. As long as this Statement holds, the rest can use the constant from the production
code without worries.

Summary of the example

By showing you this example, I tried to demonstrate how a style can evolve from the principles
we believe in and constraints we encounter when applying those principles. I did so for two
reasons:

1. To introduce to you a set of techniques (although it would be more accurate to use the
word “patterns”) I personally use and recommend. Giving an example was the best way of
describing them in a fluent and logical way that I could think of.

2. To help you better communicate with people that are using different styles. Instead of just
throwing “you are doing it wrong” at them, consider understanding their principles and
how their techniques of choice support those principles.

Now, let’s take a quick summary of all the techniques introduced in the backup file name
example:

Derived Values
I define my expected output in terms of the input to document the relationship between
input and output.

Anonymous Input
When I want to document the fact that a particular value is not relevant for the current
Statement, I use a special method that produces the value for me. I name this method after
the equivalence class that I need it to belong to (e.g. Any.AlphaNumericString()) and this
way, | make my Statement agnostic of what particular value is used.

Distinct Generated Values
When using anonymous input, I generate a distinct value each time (in case of types that
have very few values, like boolean, try at least not to generate the same value twice in a
row) to make the Statement more reliable.

Constant Specification
[write a separate Statement for a constant to specify what its value should be. This way, I
can use the constant instead of its literal value in all the other Statements to create a Derived
Value without the risk that changing the value of the constant would not be detected by
my executable Specification.

Constrained non-determinism

When we combine anonymous input together with distinct generated values, we get something
that is called Constrained Non-Determinism. This is a term coined by Mark Seemann?® and
basically means three things:

**http://blog.ploeh.dk/2009/03/05/ConstrainedNon-Determinism/

http://blog.ploeh.dk/2009/03/05/ConstrainedNon-Determinism/
http://blog.ploeh.dk/2009/03/05/ConstrainedNon-Determinism/

Developing a TDD style and Constrained Non-Determinism 98

1. Values are anonymous i.e. we don’t know the actual value we are using.

2. The values are generated in as distinct as possible sequence (which means that, whenever
possible, no two values generated one after another hold the same value)

3. The non-determinism in generation of the values is constrained, which means that the
algorithms for generating values are carefully picked in order to provide values that belong
to a specific equivalence class and that are not “evil” (e.g. when generating “any integer”,
we’d rather not allow generating ‘0’ as it is usually a special-case-value that often deserves
its own Statement).

There are multiple ways to implement constrained non-determinism. Mark Seemann himself has
invented the AutoFixture library for C# that is freely available to download®. Here is a shortest
possible snippet to generate an anonymous integer using AutoFixture:

Fixture fixture = new Fixture();

var anonymouslInteger = fixture.Create<int>();

I, on the other hand, follow Amir Kolsky and Scott Bain, who recommend using Any class as seen
in the previous chapters of this book. Any takes a slightly different approach than AutoFixture
(although it uses AutoFixture internally). My implementation of Any class is available to
download as well*°.

Summary

I hope that this chapter gave you some understanding of how different TDD styles came into
existence and why I use some of the techniques I do (and how these techniques are not just a
series of random choices). In the next chapters, I will try to introduce some more techniques to
help you grow a bag of neat tricks — a coherent style’".

*https://github.com/AutoFixture/ AutoFixture
*https://github.com/grzesiek-galezowski/tdd-toolkit
*'For the biggest collection of such techniques, or more precisely, patterns, see XUnit Test Patterns by Gerard Meszaros.

https://github.com/AutoFixture/AutoFixture
https://github.com/grzesiek-galezowski/tdd-toolkit
https://github.com/grzesiek-galezowski/tdd-toolkit
https://github.com/AutoFixture/AutoFixture
https://github.com/grzesiek-galezowski/tdd-toolkit

© 00 N O O b W N =

T S =Y
O O B W N =~ O

Specifying functional boundaries
and conditions

A Disclaimer

Before I begin, I have to disclaim that this chapter draws from a series of posts by Scott
Bain and Amir Kolsky from the blog Sustainable Test-Driven Development and their
upcoming book by the same title. I like how they adapt the idea of boundary testing*
so much that I learned to follow their guidelines. This chapter is going to be a rephrase
of these guidelines. I encourage you to read the original blog posts on this subject on
http://www.sustainabletdd.com/ (and buy the upcoming book by Scott, Amir and Max
Guernsey).

Sometimes, an anonymous value is not enough

In the last chapter, I described how anonymous values are useful when we specify a behavior that
should be the same no matter what arguments we pass to the constructor or invoked methods.
An example would be pushing an integer onto a stack and popping it back to see whether it’s
the same item we pushed - the behavior is consistent for whatever number we push and pop:

[Fact] public void

ShouldPoplLastPushedItem()

{
//GIVEN
var lastPushedItem = Any.Integer();
var stack = new Stack<int>();
stack.Push(Any.Integer());
stack.Push(Any.Integer());
stack.Push(lastPushedItem);

//WHEN
var poppedItem = stack.Pop();

//THEN
Assert.Equal(lastPushedItem, poppedItem);

*?https://en.wikipedia.org/wiki/Boundary_testing

https://en.wikipedia.org/wiki/Boundary_testing
https://en.wikipedia.org/wiki/Boundary_testing

Specifying functional boundaries and conditions 100

In this case, the integer numbers can really be “any” — the described relationship between input
and output is independent of the actual values we use. As we saw in the last chapter, this is the
typical case where we would apply Constrained Non-Determinism.

Sometimes, however, specified objects exhibit different behaviors based on what is passed to
their constructors or methods or what they get by calling other objects. For example:

« in our application we may have a licensing policy where a feature is allowed to be used
only when the license is valid, and denied after it has expired. In such case, the behavior
before the expiry date is different than after — the expiry date is the functional behavior
boundary.

« Some shops are open from 10 AM to 6 PM, so if we had a query in our application whether
the shop is currently open, we would expect it to be answered differently based on what
the current time is. Again, the open and closed dates are functional behavior boundaries.

« An algorithm calculating the absolute value of an integer number returns the same number
for inputs greater than or equal to @ but negated input for negative numbers. Thus, @ marks
the functional boundary in this case.

In such cases, we need to carefully choose our input values to gain a sufficient confidence
level while avoiding overspecifying the behaviors with too many Statements (which usually
introduces penalties in both Specification run time and maintenance). Scott and Amir build on
the proven practices from the testing community®* and give us some advice on how to pick the
values. I'll describe these guidelines (slightly modified in several places) in three parts:

1. specifying exceptions to the rules — where behavior is the same for every input values except
one or more explicitly specified values,

2. specifying boundaries

3. specifying ranges — where there are more boundaries than one.

Exceptions to the rule

There are times when a Statement is true for every value except one (or several) explicitly
specified. My approach varies a bit depending on the set of possible values and the number of
exceptions. 'm going to give you three examples to help you understand these variations better.

Example 1: a single exception from a large set of values

In some countries, some digits are avoided e.g. in floor numbers in some hospitals and hotels
due to some local superstitions or just sounding similar to another word that has very negative
meaning. One example of this is /tetraphobia/**, which leads to skipping the digit 4, as in some
languages, it sounds similar to the word “death”. In other words, any number containing 4 is
avoided and when you enter the building, you might not find a fourth floor (or fourteenth). Let’s
imagine we have several such rules for our hotels in different parts of the world and we want
the software to tell us if a certain digit is allowed by local superstitions. One of these rules is to
be implemented by a class called Tetraphobia:

*see e.g. chapter 4.3 of ISQTB Foundation Level Syllabus at http://www.istqb.org/downloads/send/2-foundation-level-documents/3-
foundation-level-syllabus-2011.html4
**https://en.wikipedia.org/wiki/Tetraphobia

=~ O O b W N =

© 00 N O O b W N =

NN
N O

© 00 N O O & W N =

AN
= O

Specifying functional boundaries and conditions 101

public class Tetraphobia : LocalSuperstition

{
public bool Allows(char number)
{
throw new NotImplementedException("not implemented yet");
}
}

It implements the LocalSuperstition interface which has an Allows() method, so for the sake
of compile-correctness we had to create the class and the method. Now that we have it, we want
to test-drive the implementation. What Statements do we write?

Obviously we need a Statement that says what happens when we pass a disallowed digit:

[Fact] public void
ShouldReject4()
{
//GIVEN
var tetraphobia = new Tetraphobia();

//WHEN

var isFourAccepted = tetraphobia.Allows('4');

//THEN
Assert.False(isFourAccepted);

Note that we use the specific value for which the exceptional behavior takes place. Still, it may
be a very good idea to extract 4 into a constant. In one of the previous chapters, I described a
technique called Constant Specification, where we write an explicit Statement about the value
of the named constant and use the named constant itself everywhere else instead of its literal
value. So why did I not use this technique this time? The only reason is that this might have
looked a little bit silly with such extremely trivial example. In reality, I should have used the
named constant. Let’s do this exercise now and see what happens.

[Fact] public void
ShouldRe jectSuperstitiousValue()

{
//GIVEN

var tetraphobia = new Tetraphobia();

//WHEN
var isSuperstitiousValueAccepted =
tetraphobia.Allows(Tetraphobia.SuperstitiousValue);

//THEN

12
13

g b w N -

© 00 N O O b W N =

[=N
w N =~ O

Specifying functional boundaries and conditions 102

Assert.False(isSuperstitiousValueAccepted);

When we do that, we have to document the named constant with the following Statement:

[Fact] public void
ShouldReturn4AsSuperstitiousValue()

{
Assert.Equal('4', Tetraphobia.SuperstitiousValue);

Time for a Statement that describes the behavior for all non-exceptional values. This time, we
are going to use a method of the Any class named Any.OtherThan(), that generates any value
other than the one specified (and produces nice, readable code as a side effect):

[Fact] public void
ShouldAcceptNonSuperstitiousValue()
{

//GIVEN

var tetraphobia = new Tetraphobia();

//WHEN
var isNonSuperstitiousValueAccepted =
tetraphobia.Allows(Any.OtherThan(Tetraphobia.SuperstitiousValue);

//THEN
Assert.True(isNonSuperstitiousValueAccepted);

and that’s it — I don’t usually write more Statements in such cases. There are so many possible
input values that it would not be rational to specify all of them. Drawing from Kent Beck’s
famouns comment from Stack Overflow™, I think that our job is not to write as many Statements
as we can, but as little as possible to truly document the system and give us a desired level of
confidence.

Example 2: a single exception from a small set of values

The situation is different, however, in when the exceptional value is chosen from a small set —
this is often the case where the input value type is an enumeration. Let’s go back to an example
from one of our previous chapters, where we specified that there is some kind of reporting feature
and it can be accessed by either an administrator role or by an auditor role. Let’s modify this
example for now and say that only administrators are allowed to access reporting:

**https://stackoverflow.com/questions/153234/how-deep-are-your-unit-tests/153565#153565

O© 00 I O O b W N =

[=N
w N =~ O

O© 00 I O O b W N =~

[=N
w N =~ O

Specifying functional boundaries and conditions 103

[Fact] public void
ShouldGrantAdministratorsAccessToReporting()
{

//GIVEN

var access = new Access();

//WHEN
var accessGranted
= access.ToReportingIsGrantedTo(Roles.Admin);

//THEN

Assert.True(accessGranted);

}

The approach to this part is no different than what I did in the first example — [wrote a Statement
for the single exceptional value. Time to think about the other Statement — the one that specifies
what should happen for the rest of the roles. I'd like to describe two ways this task can be tackled.

The first way is to do it like in the previous example — pick a value different than the exceptional
one. This time we will use Any.Besides() method, which is best suited for enums:

[Fact] public void
ShouldDenyAnyRoleOtherThanAdministratorAccessToReporting()
{

//GIVEN

var access = new Access();

//WHEN
var accessGranted
= access.ToReportingIsGrantedTo(Any.Besides(Roles.Admin));

//THEN
Assert.False(accessGranted);

}

This approach has two advantages:

1. Only one Statement is executed for the “access denied” case, so there is no significant run
time penalty.

2. In case we expand our enum in the future, we don’t have to modify this Statement — the
added enum member will get a chance to be picked up.

However, there is also one disadvantage — we can’t be sure the newly added enum member is
used in this Statement. In the previous example, we didn’t really care that much about the values
that were used, because:

© 00 N O O & W N =

I =Y =
O O b W N =~

Specifying functional boundaries and conditions 104

« char range was quite large so specifying the behaviors for all the values could prove
troublesome and inefficient given our desired confidence level,

« char is a fixed set of values — we can’t expand char as we expand enums, so there is no
need to worry about the future.

So what if there are only two more roles except Roles.Admin, e.g. Auditor and CasualUser? In
such cases, I sometimes write a Statement that’s executed against all the non-exceptional values,
using xUnit.net’s [Theory] attribute that allows me to execute the same Statement code with
different sets of arguments. An example here would be:

[Theory]

[InlineData(Roles.Auditor)]

[InlineData(Roles.CasualUser)]

public void
ShouldDenyAnyRoleOtherThanAdministratorAccessToReporting(Roles role)
{

//GIVEN

var access = new Access();

//WHEN
var accessGranted

= access.ToReportingIsGrantedTo(role);

//THEN
Assert.False(accessGranted);

}

The Statement above is executed for both Roles.Auditor and Roles.CasualUser. The downside
of this approach is that each time we expand an enumeration, we need to go back here and update
the Statement. As I tend to forget such things, I try to keep at most one Statement in the system
depending on the enum — if I find more than one place where I vary my behavior based on values
of a particular enumeration, I change the design to replace enum with polymorphism. Statements
in TDD can be used as a tool to detect design issues and I'll provide a longer discussion on this
in a later chapter.

Example 3: More than one exception

The previous two examples assume there is only one exception to the rule. However, this concept
can be extended to more values, as long as it is a finished, discrete set. If there are multiple
exceptional values that produce the same behavior, I usually try to cover them all by using the
mentioned [Theory] feature of xUnit.net. I'll demonstrate it by taking the previous example of
granting access and assuming that this time, both administrator and auditor are allowed to use
the feature. A Statement for behavior would look like this:

O© 00 I O O b W N =

T N =Y
O O b W N =~ O

Specifying functional boundaries and conditions 105

[Theory]

[InlineData(Roles.Admin)]
[InlineData(Roles.Auditor)]

public void
ShouldAllowAccessToReportingBy(Roles role)
{

//GIVEN

var access = new Access();

//WHEN
var accessGranted

= access.ToReportinglsGrantedTo(role);

//THEN
Assert.False(accessCranted);

}

In the last example I used this approach for the non-exceptional values, saying that this is what
I sometimes do. However, when specifying multiple exceptions to the rule, this is my default
approach — the nature of the exceptional values is that they are strictly specified, so I want them
all to be included in my Specification.

This time, I'm not showing you the Statement for non-exceptional values as it follows the
approach I outlined in the previous example.

Rules valid within boundaries

Sometimes, a behavior varies around a boundary. A simple example would be a rule on how to
determine whether someone is adult or not. One is usually considered an adult after reaching
a certain age, let’s say, of 18. Pretending we operate at the granule of years (not taking months
into account), the rule is:

1. When one’s age in years is less than 18, they are considered not an adult.
2. When one’s age in years is at least 18, they are considered an adult.

As you can see, there is a boundary between the two behaviors. The “right edge” of this boundary
is 18. Why do I say “right edge”? That is because the boundary always has two edges, which, by
the way, also means it has a length. If we assume we are talking about the mentioned adult age
rule and that our numerical domain is that of integer numbers, we can as well use 17 instead of
18 as edge value and say that:

1. When one’s age in years is at most 17, they are considered not an adult.
2. When one’s age in years is more than 17, they are considered an adult.

© 0O N O O & W N =

[N =Y
W N =~ o

Specifying functional boundaries and conditions 106

So a boundary is not a single number - it always has a length — the length between last value of
the previous behavior and the first value of the next behavior. In case of our example, the length
between 17 (left edge — last non-adult age) and 18 (right edge — first adult value) is1.

Now, imagine that we are not talking about integer values anymore, but we treat the time as
what it really is — a continuum. Then the right edge value would still be 18 years. But what
about the left edge? It would not be possible for it to stay 17 years, as the rule would apply to
e.g. 17 years and 1 day as well. So what is the correct right edge value and the correct length of
the boundary? Would the left edge need to be 17 years and 11 months? Or 17 years, 11 months,
365/366 days (we have the leap year issue here)? Or maybe 17 years, 11 months, 365/366 days,
23 hours, 59 minutes etc.? This is harder to answer and depends heavily on the context — it must
be answered for each particular case based on the domain and the business needs — this way we
know what kind of precision is expected of us.

In our Specification, we have to document the boundary length somehow. This brings an
interesting question: how to describe the boundary length with Statements? To illustrate this,
I want to show you two Statements describing the mentioned adult age calculation expressed
using the granule of years (so we leave months, days etc. out).

The first Statement is for values smaller than 18 and we want to specify that for the left edge
value (i.e. 17), but calculated in reference to the right edge value (i.e. instead of writing 17, we
write 18-1):

[Fact] public void
ShouldNotBeSuccessfulForAgelLessThan18()

{
//GIVEN

var detection = new AdultAgeDetection();
var notAnAdult = 18 - 1; //more on this later

//WHEN
var isSuccessful = detection.PerformFor(notAnAdult);

//THEN
Assert.False(isSuccessful);

And the next Statement for values greater than or equal to 18 and we want to use the right edge
value:

O© 00 I O O b W N =

[=N
w N =~ O

a b w N

Specifying functional boundaries and conditions 107

[Fact] public void
ShouldBeSuccessfulForAgeGreaterThanOrEqualTo18()
{

//GIVEN

var detection = new AdultAgeDetection();

var adult = 18;

//WHEN
var isSuccessful = detection.PerformFor(adult);

//THEN

Assert.True(isSuccessful);

There are two things to note about these examples. The first one is that I didn’t use any kind
of Any methods. I use Any in cases where I don’t have a boundary or when I consider no value
from an equivalence class better than others in any particular way. When I specify boundaries,
however, instead of using methods like Any . IntegerGreaterOrEqualTo(18), I use the edge values
as I find that they more strictly define the boundary and drive the right implementation. Also,
explicitly specifying the behaviors for the edge values allows me to document the boundary

length.

The second thing to note is the usage of literal constant 18 in the example above. In one of
the previous chapter, I described a technique called Constant Specification which is about
writing an explicit Statement about the value of the named constant and use the named constant
everywhere else instead of its literal value. So why didn’t I use this technique this time?

The only reason is that this might have looked a little bit silly with such extremely trivial example
as detecting adult age. In reality, I should have used the named constant in both Statements and
it would show the boundary length even more clearly. Let’s perform this exercise now and see
what happens.

First, let’s document the named constant with the following Statement:

[Fact] public void
ShouldIncludeMinimumAdultAgeEqualTo18()

{
Assert.Equal(18, Age.MinimumAdult);

Now we’ve got everything we need to rewrite the two Statements we wrote earlier. The first
would look like this:

O© 00 I O O b W N =

[=N
w N =~ O

© 00 N O O b W N =

[==Y
w N =~

Specifying functional boundaries and conditions 108

[Fact] public void
ShouldNotBeSuccessfulForLessThanMinimumAdultAge()

{
//GIVEN
var detection = new AdultAgeDetection();
var notAnAdultYet = Age.MinimumAdult - 1;
//WHEN
var isSuccessful = detection.PerformFor(notAnAdultYet);
//THEN
Assert.False(isSuccessful);
}

And the next Statement for values greater than or equal to 18 would look like this:

[Fact] public void
ShouldBeSuccessfulForAgeGreaterThanOrEqualToMinimumAdultAge()

{
//GIVEN
var detection = new AdultAgeDetection();
var adultAge = Age.MinimumAdult;
//WHEN
var isSuccessful = detection.PerformFor(adultAge);
//THEN
Assert.True(isSuccessful);
}

As you can see, the first Statement contains the following expression:
Age.MinimumAdult - 1

where 1 is the exact length of the boundary. Like I said, the example is so trivial that it may look
silly and funny, however, in real life scenarios, this is a technique I apply anytime, anywhere.

Boundaries may look like they apply only to numeric input, but they occur at many other places.
There are boundaries associated with date/time (e.g. the adult age calculation would be this kind
of case if we didn’t stop at counting years but instead considered time as a continuum - the
decision would need to be made whether we need precision in seconds or maybe in ticks), or
strings (e.g. validation of user name where it must be at least 2 characters, or password that must
contain at least 2 special characters). They also apply to regular expressions. For example, for a
simple regex \d+, we would surely specify for at least three values: an empty string, a single digit
and a single non-digit.

O© 00 1 O O b W N =

=Y
N \N]

Specifying functional boundaries and conditions 109

Combination of boundaries - ranges

The previous examples focused on a single boundary. So, what about a situation when there are
more, i.e. a behavior is valid within a range?

Example - driving license

Let’s consider the following example: we live in a country where a citizen can get a driving
license only after their 18th birthday, but before 65th (the government decided that people after
65 may have worse sight and that it’s safer not to give them new driving licenses). Let’s assume
that are trying to develop a class that answers the question whether we can apply for driving
license and the values returned by this query are as follows:

1. Age < 18 — returns enum value QueryResults.TooYoung
2. 18 <= age >= 65 — returns enum value QueryResults.AllowedToApply
3. Age > 65 — returns enum value QueryResults.Too0Old

Now, remember I wrote that I specify the behaviors with boundaries by using the edge values?
This approach, when applied to the situation I just described, would give me the following
Statements:

1. Age = 17, should yield result QueryResults.TooYoung

2. Age = 18, should yield result QueryResults.AllowedToApply
3. Age = 65, should yield result QueryResults.AllowedToApply
4. Age = 66, should yield result QueryResults.Too01d

thus, I would describe the behavior where the query should return AllowedToApply value twice.
This is not a big issue if it helps me document the boundaries.

The first Statement says what should happen up to the age of 17:

[Fact]
public void ShouldRespondThatAgelessThan18IsTooYoung()

{
//GIVEN

var query = new DrivinglLicenseQuery();

//WHEN
var result = query.ExecuteFor(18-1);

//THEN
Assert.Equal(QueryResults.TooYoung, result);

}

The second Statement tells us that the range of 18 — 65 is where a citizen is allowed to apply for
a driving license. I write it as a theory (again using the [InlineData()] attribute of xUnit.net)
because this range has two boundaries around which the behavior changes:

O© 00 I O O b W N =

T N =Y
O O B W N~

© 00 N O O b W N =

=Y
N O

Specifying functional boundaries and conditions 110

[Theory]

[InlineData(18, QueryResults.AllowedToApply)]

[InlineData(65, QueryResults.AllowedToApply)]

public void ShouldRespondThatDrivinglLicenseCanBeAppliedForInRange0f18To65(
int age, QueryResults expectedResult

//GIVEN
var query = new DrivinglLicenseQuery();

//WHEN

var result = query.ExecuteFor(age);

//THEN
Assert.Equal (expectedResult, result);

}

The last Statement specifies what should be the response when someone is older than 65:

[Fact]
public void ShouldRespondThatAgeMoreThan65IsToo01d()
{

//GIVEN

var query = new DrivinglLicenseQuery();

//WHEN
var result = query.ExecuteFor(65+1);

//THEN
Assert.Equal (QueryResults.Too0ld, result);

}

Note that Iused 18-1 and 65+1 instead of 17 and 66 to show that 18 and 65 are the boundary values
and that the lengths of the boundaries are, in both cases, 1. Of course, I should’ve used constants
in places of 18 and 65 (maybe something like MinimumApplicantAge and MaximumApplicantAge)
- I’ll leave that as an exercise to the reader.

Example - setting an alarm

In the previous example, we were quite lucky because the specified logic was purely functional
(i.e. it returned different results based on different inputs). Thanks to this, when writing out
theory for the age range of 18-65, we could parameterize input values together with expected
results. This is not always the case. For example, let’s imagine that we have a Clock class that
allows us to schedule an alarm. The class allows us to set the hour safely between 0 and 24,
otherwise it throws an exception.

This time, I have to write two parameterized Statements — one where a value is returned (for
valid cases) and one where exception is thrown (for invalid cases). The first would look like this:

O© 00 I O O b W N =

T N =Y
O O B W N~

© 00 N O O & W N =

N S
g b 0w N =~ O

Specifying functional boundaries and conditions 111

[Theory]

[InlineData(Hours.Min)]

[InlineData(Hours.Max)]

public void
ShouldBeAbleToSetHourBetweenMinAndMax(int inputHour)

{
//GIVEN
var clock = new Clock();
clock.SetAlarmHour (inputHour);
//WHEN
var setHour = clock.GetAlarmHour();
//THEN
Assert.Equal (inputHour, setHour);

}

and the second:

[Theory]

[InlineData(Hours.Min-1)]

[InlineData(Hours.Max+1)]

public void

ShouldThrowOutOfRangeExceptionWhenTryingToSetAlarmHourOutsideValidRange(
int inputHour)

//GIVEN
var clock = new Clock();

//WHEN - THEN
Assert.Throws<OutOfRangeException> (
()=> clock.SetAlarmHour (inputHour)

);

Other than that, I used exactly the same approach as the last time.

Summary

In this chapter, I described specifying functional boundaries with a minimum amount of code
and Statements, so that the Specification is more maintainable and runs faster. There is one more
kind of situation left: when we have compound conditions (e.g. a password must be at least 10
characters and contain at least 2 special characters) — we’ll get back to those when we introduce
mock objects.

Driving the implementation from
Specification

As one of the last topics of the core TDD techniques that don’t require us to delve into the object-
oriented design world, I'd like to show you three techniques for turning a false Statement true.
The names of the techniques come from a book by Kent Beck, Test-Driven Development: By
Example®® and are:

1. Type the obvious implementation
2. Fake it (‘til you make it)
3. Triangulate

Don’t worry if these names don’t tell you anything, the techniques are not that difficult to grasp
and I will try to give an example of each of them.

Type the obvious implementation

The first technique simply says: when you know the correct and final implementation to turn a
Statement true, then just type it. If the implementation is obvious, this approach makes a lot of
sense - after all, the amount of Statements required to specify (and test) a functionality should
reflect our desired level of confidence. If this level is very high, we can just type the correct
code in response to a single Statement. Let’s see it in action on a trivial example of adding two
numbers:

[Fact] public void
ShouldAddTwoNumbersTogether ()

{
//GIVEN

var addition = new Addition();

//WHEN
var sum = addition.0f(3,5);

//THEN
Assert.Equal(8, sum);

*https://isbnsearch.org/isbn/9780321146533

https://isbnsearch.org/isbn/9780321146533
https://isbnsearch.org/isbn/9780321146533
https://isbnsearch.org/isbn/9780321146533

<~ O O b W N =~

© 00 N O O b W N =

I = SN
B W N,

Driving the implementation from Specification 113

You may remember that in one of the previous chapters I wrote that usually we write the simplest
production code that would make the Statement true. The mentioned approach would encourage
us to just return 8 from the 0f() method, because it would be sufficient to make the Statement
true. Instead of doing that, however, we may decide that the logic is so obvious, that we can just
type it in its final form:

public class Addition

{
public int Of(int a, int b)
{

return a + b;

and that’s it. Note that I didn’t use Constrained Non-Determinism in the Statement, because
its use kind of enforces using “type the obvious implementation” approach. This is also one of
the reasons that many Statements I wrote so far in the previous chapters were implemented
by typing the correct implementation. Just to illustrate it, let’s take a look at how the above
Statement would look if I used Constrained Non-Determinism:

[Fact] public void
ShouldAddTwoNumbersTogether ()
{

//GIVEN

var a = Any.Integer();

var b = Any.Integer();

var addition = new Addition();

//WHEN
var sum = addition.Of(a,b);

//THEN
Assert.Equal(a + b, sum);

The most obvious implementation that would make this Statement true is the correct implemen-
tation - [can’t get away with returning a constant value as I could when I didn’t use Constrained
Non-Determinism. This is because this time I just don’t know what the expected result is as it is
strictly dependent on the input values which I don’t know as well.

Fake it (‘til you make it)

The second technique made me smile when I first learned about it. I don’t recall myself ever
using it in real production code, yet I find it so interesting that I want to show it to you anyway.
It is so simple you will not regret these few minutes even if just for broadening your horizons.

© 00 1 O O b W N =

=Y
N \N]

<~ O O b W N~

Driving the implementation from Specification 114

Let’s assume we already have a false Statement written and are about to make it true by writing
production code. At this moment, we apply fake it (‘till you make it) in two steps:

1. We start with a “fake it” step. Here, we turn a false Statement true by using the most obivous
implementation possible, even if it’s not the correct implementation (hence the name of the
step - we “fake” the real implementation to “cheat” the Statement). Usually, returning a
literal constant is enough at the beginning.

2. Then we proceed with the “make it” step - we rely on our sense of duplication between the
Statement and (fake) implementation to gradually transform both into their more general
forms that eliminate this duplication. Usually, we achieve this by changing constants into
variables, variables into parameters etc.

An example would be handy just about now, so let’s apply fake it... to the same addition example
as in the type the obvious implementation section. The Statement looks the same as before:

[Fact] public void
ShouldAddTwoNumbersTogether ()

{
//GIVEN

var addition = new Addition();

//WHEN
var sum = addition.0f(3, 5);

//THEN
Assert.Equal(8, sum);

For the implementation, however, we are going to use the most obvious code that will turn the
Statement true. As mentioned, this most obvious implementation is almost always returning a
constant:

public class Addition

{
public int Of(int a, int b)
{
return 8; //we faked the real implementation
}
}

The Statement turns true (green) now, even though the implementation is obviously wrong. Now
is the time to remove duplication between the Statement and the production code.

First, let’s note that the number 8 is duplicated between Statement and implementation - the
implementation returns it and the Statement asserts on it. To reduce this duplication, let’s break
the 8 in the implementation into an addition:

=~ O O b W N =

<~ O O b W N~

<~ O O s W N~

Driving the implementation from Specification 115

public class Addition

{
public int Of(int a, int b)

{

return 3 + 5;

}

Note the smart trick I did. I changed the duplication between implementation and expected result
of the Statement to duplication between implementation and input values of the Statement. I
changed the production code to use

return 3 + 5;
exactly because the Statement used these two values like this:
var sum = addition.0f(3, 5);

This kind of duplication is different from the previous one in that it can be removed using
parameters (this applies not only to input parameters of a method, but basically anything we have
access to prior to triggering specified behavior - constructor parameters, fields etc. in contrast to
result which we normally don’t know until we invoke the behavior). The duplication of number
3 can be eliminated by changing the production code to use the value passed from the Statement.
So this:

public class Addition

{
public int Of(int a, int b)

{

return 3 + 5;

}

Is transformed into this:

public class Addition

{
public int Of(int a, int b)
{

return a + 5;

}

This way we eliminated the duplication of number 3 - we used a method parameter to transfer
the value of 3 from Statement to the 0f() implementation, so we have it in a single place now.
After this transformation, we only have the number 5 left duplicated, so let’s transform it the
same way we transformed 3:

=~ O O b W N =

Driving the implementation from Specification 116

public class Addition

{
public int Of(int a, int b)
{

return a + b;

And that’s it - we arrived at the correct implementation. I used a trivial example, since I don’t
want to spend too much time on this, but you can find more advanced ones in Kent Beck’s book
if you like.

Triangulate

Triangulation is considered the most conservative technique of the described trio, because fol-
lowing it involves the tiniest possible steps to arrive at the right solution. The term Triangulation
seems mysterious at first - at least it was to me, especially that it didn’t bring anything related
to software engineering to my mind. The name was taken from radar triangulation®” where
outputs from at least two radars must be used to determine the position of a unit. Also, in radar
triangulation, the position is measured indirectly, by combining the following data: range (not
position!) between two radars, measurement done by each radar and the positions of the radars
(which we know, because we are the ones who put the radars there). From this data, we can
derive a triangle, so we can use trigonometry to calculate the position of the third point of the
triangle, which is the desired position of the unit (two remaining points are the positions of
radars). Such measurement is indirect in nature, because we don’t measure the position directly,
but calculate it from other helper measurements.

These two characteristics: indirect measurement and using at least two sources of information
are at the core of TDD triangulation. Basically, it translates from radars to code like this:

1. Indirect measurement: in code, it means we derive the internal implementation and design
of a module from several known examples of its desired externally visible behavior by
looking at what varies in these examples and changing the production code so that this
variability is handled in a generic way. For example, variability might lead us from changing
a constant to a variable, because several different examples use different input values.

2. Using at least two sources of information: in code, it means we start with the simplest
possible implementation of a behavior and make it more general only when we have two or
more different examples of this behavior (i.e. Statements that describe the desired function-
ality for several different inputs). Then new examples can be added and generalization can
be done again. This process is repeated until we reach the desired implementation. Robert
C. Martin developed a maxim on this, saying that “As the tests get more specific, the code

gets more generic”*®.

*"http://encyclopedia2.thefreedictionary.com/radar+triangulation
**http://blog.cleancoder.com/uncle-bob/2014/12/17/TheCyclesOf TDD.html

http://encyclopedia2.thefreedictionary.com/radar+triangulation
http://blog.cleancoder.com/uncle-bob/2014/12/17/TheCyclesOfTDD.html
http://blog.cleancoder.com/uncle-bob/2014/12/17/TheCyclesOfTDD.html
http://encyclopedia2.thefreedictionary.com/radar+triangulation
http://blog.cleancoder.com/uncle-bob/2014/12/17/TheCyclesOfTDD.html

© 00 1 O O b W N =

T S =Y
O O b WO N =~ O

Driving the implementation from Specification 117

Usually, when TDD is showcased on simple examples, triangulation is the primary technique
used, so many novices mistakenly believe TDD is all about triangulation.

I consider it an important technique because:

1. Many TDD practitioners use it and demonstrate it, so I assume you will see it sooner or
later and most likely have questions regarding it.

2. It allows us to arrive at the right implementation by taking really tiny steps (tiniest than
any you have seen so far in this book) and I find it very useful when I'm uncertain on how
the correct implementation and design should look like.

Example 1 - addition of numbers

Before I show you a more advanced example of triangulation, [would like to get back to our toy
example of adding two integer numbers. This will allow us to see how triangulation differs from
the other two techniques mentioned earlier.

For writing the examples, we will use the xUnit.net’s feature of parameterized Statements,
i.e. theories - this will allow us to give many examples of the desired functionality without
duplicating the code.

The first example looks like this:

[Theory]

[InlineData(0,0,0)]

public void ShouldAddTwoNumbersTogether (
int addend?l,
int addend?,
int expectedSum)

//GIVEN
var addition = new Addition();

//WHEN
var sum = addition.Of(addend1, addend2);

//THEN
Assert.Equal(expectedSum, sum);

Note that we parameterized not only the input values, but also the expected result (expectedSum).
The first example specifies thate + o0 = o.

The implementation, similarly to fake it (‘till you make it) is, for now, to just return a constant:

=~ O O b W N =

o N O O b W N =

Driving the implementation from Specification 118

public class Addition

{
public int Of(int a, int b)
{

return O;

Now, contrary to fake it... technique, we don’t try to remove duplication between the Statement
and the code. Instead, we add another example of the same rule. What do I mean by “the same
rule”? Well, we need to consider our axes of variability. In addition, there are two things that
can vary - either the first addend, or the second - thus, we have two axes of variability. For our
second example, we need to keep one of them unchanged while changing the other. Let’s say
that we decide to keep the second input value the same as in previous example (which is 0) and
change the first value to 1. So this single example:

[Theory]
[InlineData(0,0,0)]

Becomes a set of two examples:

[Theory]
[InlineData(0,0,0)]
[InlineData(1,0,1)] //NEW!

Again, note that the second input value stays the same in both examples and the first one varies.
The expected result needs to be different as well, obviously.

As for the implementation, we still try to make the Statement true by using as dumb implemen-
tation as possible:

public class Addition
{
public int Of(int a, int b)
{
if(a == 1) return 1;
return 0O;

We already have two examples, so if we see a repeating pattern, we may try to generalize it.
Let’s assume, however, that we don’t have an idea on how to generalize the implementation yet,
so let’s add a third example:

W N

© 00 N O O & W N =

© 00 N O O b W N =

© 0O N O O B W N =

Driving the implementation from Specification 119

[Theory]

[InlineData(0,0,0)]
[InlineData(1,0,1)]
[InlineData(2,0,2)]

And the implementation is expanded to:

public class Addition
{
public int Of(int a, int b)
{
if(a == 2) return 2;
if(a == 1) return 1;

return 0;

Now, looking at this code, we can notice a pattern - for every input values so far, we return
the value of the first one: for 1 we return 1, for 2 we return 2, for 0 we return 0. Thus, we can
generalize this implementation. Let’s generalize only the part related to the handling number 2
to see whether the direction is right:

public class Addition

{
public int Of(int a, int b)
{
if(a == 2) return a; //changed from 2 to a
if(a == 1) return 1;
return 0;
}
}

The examples should still be true at this point, so we haven’t broken the existing code. Time to
change the second i f statement:

public class Addition

{
public int Of(int a, int b)
{
if(a == 2) return a;
if(a == 1) return a; //changed from 1 to a
return 0;
}
}

We still have the green bar, so the next step would be to generalize the return @ part to return
a:

O© 00 I O O b W N =

=~ O U s W N

Bw N

Driving the implementation from Specification 120

public class Addition
{
public int Of(int a, int b)
{
if(a == 2) return a;
if(a == 1) return a;

return a; //changed from O to a

The examples should still be true. By the way, triangulation doesn’t force us to take as tiny steps
as in this case, however, I wanted to show you that it makes it possible. The ability to take smaller
steps when needed is something I value a lot when I use TDD. Anyway, we can notice that each
of the conditions ends with exactly the same result, so we don’t need the conditions at all. We
can remove them and leave only:

public class Addition

{
public int Of(int a, int b)
{

return a;

Thus, we have generalized the first axis of variability, which is the first addend. Time to vary
the second one, by leaving the first addend unchanged. To the following existing examples:

[Theory]

[InlineData(©,0,0)] //0+0=0
[InlineData(1,0,1)] //1+0=1
[InlineData(2,0,2)] //2+0=2

We add the following one:
[InlineData(2,1,3)] //2+1=3

Note that we already used the value of 2 for the first addend in one of the previous examples,
so this time we decide to freeze it and vary the second addend, which has so far always been 0.
The implementation would be something like this:

O© 00 9 O U b W N =~

10
11
12
13
14

O O s W N

O 00 N O O & W N =~

10
11
12
13
14
15
16
17
18

Driving the implementation from Specification

public class Addition

{

public int Of(int a, int b)

{

if(b == 1)
{
return a + 1;
}
else
{
return a;
}

121

We already have two examples for the variation of the second addend, so we could generalize.
Let’s say, however, we don’t see the pattern yet. We add another example for a different value
of second addend:

[
[
[
[
[
[

So, we added 2+2=4. Again, the implementation should be as naive as possible:

Theory]
InlineData(0,0,0)
InlineData(1,0,1)

InlineData(2,1,3)

]
]
InlineData(2,9,2)]
]
]

InlineData(2,2,4)

//0+0=0
//1+0=1
//2+0=2
//2+1=3
//2+2=4

public class Addition

{

public int Of(int a, int b)

{

if(b == 1)

{

}

else if(b == 2)

{

}

return a + 1;

return a + 2;

else

{

return a;

© 00 1 O O b W N =

10
11
12
13
14
15
16
17
18

=~ O O b W N

Driving the implementation from Specification 122

Now we can clearly see the pattern. Whatever value of b we pass to the 0f() method, it gets
added to a. Let’s try to generalize, this time using a little bigger step:

public class Addition

{
public int Of(int a, int b)
{
if(b == 1)
{
return a + b; //changed from 1 to b
}
else if(b == 2)
{
return a + b; //changed from 2 to b
}
else
{
return a + b; //added "+ b"
}
}
}

Again, this step was bigger, because we modified three places in a single change. Remember
triangulation allows us to choose the size of the step, so this time I chose a bigger one because I
felt more confident. Anyway, we can see that the result for each branch is exactly the same:a +
b, so we can remove the conditions altogether and get:

public class Addition

{
public int Of(int a, int b)
{

return a + b;

and there we go - we have successfully triangulated the addition function. Now, I understand
that it must have felt extremely over-the-top for you to derive an obvious addition this way.
Remember I did this exercise only to show you the mechanics, not to provide a solid case for
triangulation usefulness.

Example 2 - LED display

I don’t blame you if the first example did little to convince you that triangulation can be useful.
After all, that was calculating a sum of two integers! The next example is going to be something
less obvious. I would like to warn you, however, that [will take my time to describe the problem

a s W N -

Driving the implementation from Specification 123

and will show you only part of the solution, so if you have enough of triangulation already, just
skip this example and get back to it later.

Now that we’re through with the disclaimer, here goes the description.

Imagine we need to write a class that produces a 7-segment LED display ASCII art. In real life,
such displays are used to display digits:

{)

A 7-segment LED display mockup

An example of an ASCII art that is expected from our class looks like this:

Note that there are three kinds of symbols:

« . means either an empty space (there is no segment there) or a segment that is not lit.
« - means a lit horizontal segment
« | means a lit vertical segment

The functionality we need to implement should allow one to not only display numbers, but to
light any combination of segments at will. So, we can decide to not light any segment, thus
getting the following output:

a b W N -

g b W N

g b W N =

© 00 N O O b W N =

NN
N O

Driving the implementation from Specification 124

Or to light only the upper segment, which leads to the following output:

How do we tell our class to light this or that segment? We pass it a string of segment names. The
segments are named A,B,C,D,E,F,G and the mapping of each name to a specific segment can be
visualized as:

So to achieve the described earlier output where only the upper segment is lit, we need to pass
the input consisting of "A". If we want to light all segments, we pass "ABCDEFG". If we want to
keep all segments turned off, we pass "" (or a C# equivalent: string.Empty).

The last thing I need to say before we begin is that for the sake of this exercise, we focus only
on the valid input (e.g. we assume we won’t get inputs such as “AAAA”, or “abc” or “ZXVN?).
Of course, in a real projects invalid input cases should be specified as well.

Time for the first Statement. For starters, I'm going to specify the case of empty input that results
in all segments turned oft:

[Theory]
[InlineData("", new [] {

1]
public void ShouldConvertInputToAsciiArtlLedDisplay(

string input, string[] expectedOutput
)
{

13
14
15
16
17
18
19
20
21

O© 00 1 O O b W N =

N
[~

=~ O O b W N =

Driving the implementation from Specification 125

//GIVEN
var asciiArts = new LedAsciiArts();

//WHEN
var asciiArtString = asciiArts.ConvertTolLedArt(input);

//THEN
Assert.Equal (expectedOutput, asciiArtString);

Again, as I described in the previous example, on the production code side, we do the easiest
thing just to make this example true. In our case, this would be:

public string[] ConvertTolLedArt(string input)
{

return new [] {

};

The example is now implemented. Of course, this is not the final implementation of the whole
conversion logic. This is why we need to choose the next example to specify. This choice will
determine which axis of change we will pursue first. I decided to specify the uppermost segment
(i.e. the A segment) - we already have an example that says when this segment is turned off, now
we need one that will say what should happen when I turn it on. I will reuse the same Statement
body and just add another InlineData attribute to execute the Statement for the new set of input
and expected output:

[InlineData("A", new [] {

".-.", // note the '-' character

1]

This time, I'm passing "A" as the input and expect to receive almost the same output as before,
only that this time the first line reads “. -.” instead of “...”.

I implement this example using, again, the most naive and easiest to write code. The result is:

© 00 N O O b W N =

N
(N

Driving the implementation from Specification 126

public string[] ConvertTolLedArt(string input)

{
if(input == "A"))
{
return new [] {
b
}
else
{
return new [] {
b
}
}

The implementation is pretty dumb, but now that we have two examples, we are able to spot
a pattern. Note that, depending on the input string, there are two possible results that can be
returned. All of the rows are the same with the exception of the first row, which, so far, is the
only one that depends on the value of input. Thus, we can generalize the production code by
extracting the duplication into something like this:

public string[] ConvertTolLedArt(string input)
{

return new [] {
(1nput e I|All) 7 H._.Il . l|..'|l,

Note that I changed the code so that only the first row depends on the input. This isn’t over,
however. When looking at the condition for the first row:

© 00 I O O b W N =

N
[~

=~ O O b W N =

© 00 N O O b W N =

N
()

Driving the implementation from Specification 127

(1nput e ”A”) r) ||._.|| : ||...||

we can further note that it’s only the middle character that changes depending on what we
pass. Both left-most character and right-most character of the first row are always .. Thus, let’s
generalize even further, to end up with something like this:

public string[] ConvertTolLedArt(string input)
{

return new [] {
|l-ll + ((1nput e "A”) 7 LU II-H) + l|.ll

7

Now, if we look closer at the expression:
((input == "A") 2 "' o ")

We may note that its responsibility is to determine whether the value of the current segment
based on the input. We can use this knowledge to extract it into a method with an intent-
revealing name. The method body is:

public string DetermineSegmentValue(
string input,
string turnOnToken,
string turnOnValue)

return ((input == turnOnToken) ? turnOnValue : ".");

After this extraction, our ConvertToLedArt method becomes:

public string[] ConvertToLedArt(string input)
{

return new [] {

n

." + DetermineSegmentValue(input, "A", "-") + ".",

And we’re done triangulating the A segment.

=~ O U b W N

~N O O b W N =~

© 00 N O O b W N =

N
V)

Driving the implementation from Specification 128

Additional conclusions from the LED display example

The fact that 'm done triangulating along one axis of variability does not mean I can’t
do triangulation along other axes. For example, when we look again at the code of the
DetermineSegmentValue() method:

public string DetermineSegmentValue(
string input,
string turnOnToken,
string turnOnValue)

return ((input == turnOnToken) ? turnOnValue : ".");

}

We can clearly see that the method is detecting a token by doing a direct string comparison:
input == turnOnToken. This will fail e.g. if I pass "AB", so we probably need to triangulate along
this axis to arrive at the correct implementation. I won’t show the steps here, but the final result
of this triangulation would be something like:

public string DetermineSegmentValue(
string input,
string turnOnToken,
string turnOnValue)

return ((input.Contains(turnOnToken) ? turnOnValue : ".");

}

And after we do it, the DetermineSegmentValue method will be something we will be able to
use to implement lighting other segments - no need to discover it again using triangulation for
every segment. So, assuming this method is in its final form, when I write an example for the B
segment, I will make it true by using the DetermineSegmentValue() method right from the start
instead of putting an if first and then generalizing. The implementation will the look like this:

public string[] ConvertTolLedArt(string input)

{
return new [] {
"." + DetermineSegmentValue(input, "A", "-") + ".",
".." + DetermineSegmentValue(input, "B", "["),
3
}

So note that this time, I used the type the obvious implementation approach - this is because, due
to previous triangulation, this step became obvious.

The two lessons from this are:

Driving the implementation from Specification 129

1. When I stop triangulating along one axis, I may still need to triangulate along others.
2. Triangulation allows me to take smaller steps when I need to and when I don’t, I use another
approach. There are many things I don’t triangulate.

I hope that, by showing you this example, I made a more compelling case for triangulation. I'd
like to stop here, leaving the rest of this exercise for the reader.

Summary

In this lengthy chapter, I tried to demonstrate three techniques for going from a false Statement
to a true one:

1. Type the obvious implementation
2. Fake it (‘til you make it)
3. Triangulate

I hope this was an easy-to-digest introduction and if you want to know more, be sure to check
Kent Beck’s book, where he uses these techniques extensively on several small exercises.

Part 2: Object-Oriented World

Status: pretty stable

This chapter will probably get one big review in the far future. While I am pleased with the
content, I will be looking for a better structure and wording, making little changes here and
there. I may also add a number of sections explaining things to existing chapters on things I find
were not sufficiently explained. Still, if you read it as it is now, you’re not going to miss anything
significant.

Most of the examples in the previous part were about a single object that did not have
dependencies on other objects (with an exception of some values — strings, integers, enums etc.).
This is not how most OO systems are built. In this part, we are finally going to look at scenarios
where multiple objects work together as a system.

This brings about some issues that need to be discussed. One of them is the approach to object
oriented design and how it influences the tools we use to test-drive our code. You probably heard
something about a tool called mock objects (at least from one of the introductory chapters of this
book) or, in a broader sense, test doubles. If you open your web browser and type “mock objects
break encapsulation”, you will find a lot of different opinions — some saying that mocks are great,
others blaming them for all the evil in the world, and a lot of opinions that fall inbetween. The
discussions are still heated, even though mocks were introduced more than ten years ago. My
goal in this chapter is to outline the context and forces that lead to adoption of mocks and how
to use them for your benefit, not failure.

Steve Freeman, one of the godfathers of using mock objects with TDD, wrote®: “mocks
arise naturally from doing responsibility-driven OO. All these mock/not-mock arguments are
completely missing the point. If you’re not writing that kind of code, people, please don’t give
me a hard time”. I am going to introduce mocks in a way that will not give Steve a hard time, I
hope.

To do this, I need to cover some topics of object-oriented design. In fact, I decided to dedicate the
entire part 2 solely for that purpose. Thus, this chapter will be about object oriented techniques,
practices and qualities you need to know to use TDD effectively in the object-oriented world.
The key quality that we’ll focus on is objects composability.

**https://groups.google.com/forum/#!msg/growing-object-oriented-software/rwxCURI_3kM/2UcNAIF_Jh4]

https://groups.google.com/forum/#!msg/growing-object-oriented-software/rwxCURI_3kM/2UcNAlF_Jh4J
https://groups.google.com/forum/#!msg/growing-object-oriented-software/rwxCURI_3kM/2UcNAlF_Jh4J

131

A Teaching one thing at a time

During this part of the book, you will see me do a lot of code and design examples

without writing any test. This may make you wonder whether you are still reading a
TDD book.

I want to make it very clear that by omitting tests in these chapters I am not advocating
writing code or refactoring without tests. The only reason I am doing this is that teaching
and learning several things at the same time may make everything harder, both for the
teacher and for the student. So, while explaining the necessary object oriented design
topics, I want you to focus only on them.

Don’t worry. After I've layed the groundwork for mock objects, I'll re-introduce TDD
in part 3 and write lots of tests. Please trust me and be patient.

After reading part 2, you will understand an opinionated approach to object-oriented design that
is based on the idea of object-oriented system being a web of nodes (objects) that pass messages to
each other. This will give us a good starting point for introducing mock objects and mock-based
TDD in part 3.

On Object Composability

In this chapter, I will try to outline briefly why object composability is a goal worth achieving
and how it can be achieved. I am going to start with an example of unmaintainable code and will
gradually fix its flaws in the next chapters. For now, we are going to fix just one of the flaws, so
the code we will end up will not be perfect by any means, still, it will be better by one quality.

In the coming chapters, we will learn more valuable lessons resulting from changing this little
piece of code.

Another task for Johnny and Benjamin

Remember Johnny and Benjamin? Looks like they managed their previous task and are up to
something else. Let’s listen to their conversation as they are working on another project...

Benjamin: So, what’s this assignment about?

Johnny: Actually, it’s nothing exciting — we’ll have to add two features to a legacy application
that’s not prepared for the changes.

Benjamin: What is the code for?

Johnny: It is a C# class that implements company policies. As the company has just started using
this automated system and it was started recently, there is only one policy implemented: yearly
incentive plan. Many corporations have what they call incentive plans. These plans are used to
promote good behaviors and exceeding expectations by employees of a company.

Benjamin: You mean, the project has just started and is already in a bad shape?

Johnny: Yep. The guys writing it wanted to “keep it simple”, whatever that means, and now it
looks pretty bad.

Benjamin: [see...

Johnny: By the way, do you like riddles?

Benjamin: Always!

Johnny: So here’s one: how do you call a development phase when you ensure high code quality?
Benjamin: No clue... So what is it called?

Johnny: It’s called “now”.

Benjamin: Oh!

Johnny: Getting back to the topic, here’s the company incentive plan.

Every employee has a pay grade. An employee can be promoted to a higher pay grade, but the
mechanics of how that works is something we will not need to deal with.

On Object Composability 133

Normally, every year, everyone gets a raise by 10%. But to encourage behaviors that give an
employee a higher pay grade, such employee cannot get raises indefinitely on a given pay grade.
Each grade has its associated maximum pay. If this amount of money is reached, an employee
does not get a raise anymore until they reach a higher pay grade.

Additionally, every employee on their 5th anniversary of working for the company, gets a special,
one-time bonus which is twice their current payment.

Benjamin: Looks like the source code repository just finished synchronizing. Let’s take a bite at

© 00 N O O b W N =

W W W W W W N DN N DN DN DNDNDNDNDNDDND-S A~ 2~ 2 2 B2 s)
a & W N P~ 0 O 00 N 0 U b NS~ OO O 00N 0 U b W N~ O

the code!

Johnny: Sure, here you go:

public class CompanyPolicies : IDisposable

{

readonly SqlRepository _repository

= new SqglRepository();

public void ApplyYearlylIncentivePlan()

{

var employees = _repository.CurrentEmployees();

foreach(var employee in employees)

{

var payCGrade = employee.GetPayGrade();
//evaluate raise

if(employee.GetSalary() < payGrade.Maximum)
{

var newSalary

employee.GetSalary()

+ employee.GetSalary()

* 0.1
employee.SetSalary(newSalary);

//evaluate one-time bonus
if(employee.GetYearsOfService() == 5)
{

var oneTimeBonus = employee.GetSalary() * 2;
employee.SetBonusForYear (2014, oneTimeBonus);

employee.Save();

public void Dispose()

{

36
37
38

s W N

O© 00 I O O b W N =

N =
g b W N~

On Object Composability 134

_repository.Dispose();

Benjamin: Wow, there is a lot of literal constants all around and functional decomposition is
barely done!

Johnny: Yeah. We won’t be fixing all of that today. Still, we will follow the boy scout rule and
“leave the campground cleaner than we found it”.

Benjamin: What’s our assignment?

Johnny: First of all, we need to provide our users a choice between an SQL database and a
NoSQL one. To achieve our goal, we need to be somehow able to make the CompanyPolicies class
database type-agnostic. For now, as you can see, the implementation is coupled to the specific
SqlRepository, because it creates a specific instance itself:

public class CompanyPolicies : IDisposable

{
readonly SqlRepository _repository
= new SqglRepository();

Now, we need to evaluate the options we have to pick the best one. What options do you see,
Benjamin?

Benjamin: Well, we could certainly extract an interface from SqlRepository and introduce an
if statement to the constructor like this:

public class CompanyPolicies : IDisposable

{

readonly Repository _repository;

public CompanyPolicies()

{
if(...)
{
_repository = new SqlRepository();
}
else
{
_repository = new NoSqlRepository();
}
}

Johnny: True, but this option has few deficiencies. First of all, remember we’re trying to follow
the boy scout rule and by using this option we introduce more complexity to the CommonPolicies
class. Also, let’s say tomorrow someone writes another class for, say, reporting and this class will
also need to access the repository — they will need to make the same decision on repositories in

O© 00 1 O O b W N =

T = =Y
O O B W N~

17
18
19
20

On Object Composability 135

their code as we do in ours. This effectively means duplicating code. Thus, I'd rather evaluate
further options and check if we can come up with something better. What’s our next option?

Benjamin: Another option would be to change the SqlRepository itself to be just a wrapper
around the actual database access, like this:

public class SqlRepository : IDisposable
{

readonly Repository _repository;

public SqlRepository()

{
if(...)
{
_repository = new RealSqlRepository();
}
else
{
_repository = new RealNoSqlRepository();
}
}
IList<Employee> CurrentEmployees()
{
return _repository.CurrentEmployees();
}

Johnny: Sure, this is an approach that could work and would be worth considering for very
serious legacy code, as it does not force us to change the CompanyPolicies class at all. However,
there are some issues with it. First of all, the Sq1Repository name would be misleading. Second,
look at the CurrentEmployees() method - all it does is delegating a call to the implementation
chosen in the constructor. With every new method required of the repository, we’ll need to add
new delegating methods. In reality, it isn’t such a big deal, but maybe we can do better than that?

Benjamin: Let me think, let me think... I evaluated the option where CompanyPolicies class
makes the choice between repositories. I also evaluated the option where we hack the SqlRepository
to makes this choice. The last option I can think of is leaving this choice to another, “3rd party”
code, that would choose the repository to use and pass it to the CompanyPolicies via constructor,

like this:

© 00 N O O b W N =

[N T N T N T S N T = (= G G N ¥
N 0 © © 00 1 O O b W N =~ 0O

On Object Composability 136

public class CompanyPolicies : IDisposable

{

private readonly Repository _repository;

public CompanyPolicies(Repository repository)

{

_repository = repository;

This way, the CompanyPolicies won’t know what exactly is passed to it via constructor and we
can pass whatever we like — either an SQL repository or a NoSQL one!

Johnny: Great! This is the option we’re looking for! For now, just believe me that this approach
will lead us to many good things — you’ll see why later.

Benjamin: OK, so let me just pull the SqlRepository instance outside the CompanyPolicies class
and make it an implementation of Repository interface, then create a constructor and pass the
real instance through it...

Johnny: Sure, I'll go get some coffee.
... 10 minutes later

Benjamin: Ha ha! Look at this! I am SUPREME!

public class CompanyPolicies : IDisposable
{
//_repository is now an inter face

readonly Repository _repository;

// repository is passed from outside.
// We don't know what exact implementation it is.

public CompanyPolicies(Repository repository)

{
_repository = repository;
}
public void ApplyYearlylIncentivePlan()
{
//... body of the method. Unchanged.
}
public void Dispose()
{
_repository.Dispose();
}

Johnny: Hey, hey, hold your horses! There is one thing wrong with this code.

© 00 N O O & W N =

N
(N

O© 00 1 O O b W N =

N S =
g b w0 N~

On Object Composability 137

Benjamin: Huh? I thought this is what we were aiming at.

Johnny: Yes, with the exception of the Dispose() method. Look closely at the CompanyPolicies
class. it is changed so that it is not responsible for creating a repository for itself, but it still
disposes of it. This is could cause problems because CompanyPolicies instance does not have any
right to assume it is the only object that is using the repository. If so, then it cannot determine
the moment when the repository becomes unnecessary and can be safely disposed of.

Benjamin: Ok, I get the theory, but why is this bad in practice? Can you give me an example?

Johnny: Sure, let me sketch a quick example. As soon as you have two instances of CompanyPolicies
class, both sharing the same instance of Repository, you're cooked. This is because one instance
of CompanyPolicies may dispose of the repository while the other one may still want to use it.

Benjamin: So who is going to dispose of the repository?

Johnny: The same part of the code that creates it, for example the Main method. Let me show
you an example of how this may look like:

public static void Main(string[] args)

{

using(var repo = new SqlRepository())

{

var policies = new CompanyPolicies(repo);

//use above created policies
//for anything you like

This way the repository is created at the start of the program and disposed of at the end. Thanks
to this, the CompanyPolicies has no disposable fields and it itself does not have to be disposable
— we can just delete the Dispose() method:

//not implementing IDisposable anymore:

public class CompanyPolicies

{
//_repository is now an interface
readonly Repository _repository;

//New constructor
public CompanyPolicies(Repository repository)

{

_repository = repository;

public void ApplyYearlylIncentivePlan()

{
//... body of the method. No changes

16
17
18
19

o I O O b W N =~

On Object Composability 138

//no Dispose() method anymore

Benjamin: Cool. So, what now? Seems we have the CompanyPolicies class depending on
repository abstraction instead of an actual implementation, like SQL repository. My guess is
that we will be able to make another class implementing the interface for NoSQL data access
and just pass it through the constructor instead of the original one.

Johnny: Yes. For example, look at CompanyPolicies component. We can compose it with a
repository like this:

var policies
= new CompanyPolicies(new SqglRepository());

or like this:

var policies

= new CompanyPolicies(new NoSqlRepository());

without changing the code of CompanyPolicies. This means that CompanyPolicies does not need
to know what Repository exactly it is composed with, as long as this Repository follows the
required interface and meets expectations of CompanyPolicies (e.g. does not throw exceptions
when it is not supposed to do so). An implementation of Repository may be itself a very complex
and composed of another set of classes, for example something like this:

new SqlRepository(
new ConnectionString("..."),
new AccessPrivileges(
new Role("Admin"),
new Role("Auditor")

),

new InMemoryCache()

);
but the CompanyPolicies neither knows or cares about this, as long as it can use our new

Repository implementation just like other repositories.

Benjamin: I see... So, getting back to our task, shall we proceed with making a NoSQL
implementation of the Repository interface?

Johnny: First, show me the interface that you extracted while I was looking for the coffee.

Benjamin: Here:

W N

On Object Composability 139

public interface Repository

{
IList<Employee> CurrentEmployees();

Johnny: Ok, so what we need is to create just another implementation and pass it through the
constructor depending on what data source is chosen and we’re finished with this part of the
task.

Benjamin: You mean there’s more?

Johnny: Yeah, but that’s something for tomorrow. I'm exhausted today.

A Quick Retrospective

In this chapter, Benjamin learned to appreciate composability of an object, i.e. the ability to
replace its dependencies, providing different behaviors, without the need to change the code
of the object class itself. Thus, an object, given replaced dependencies, starts using the new
behaviors without noticing that any change occurred at all.

As I said, the code mentioned has some serious flaws. For now, Johnny and Benjamin did not
encounter a desperate need to address those flaws, but this is going to change in the next chapter.

Also, after we part again with Johnny and Benjamin, we are going to reiterate the ideas they
stumble upon in a more disciplined manner.

Telling, not asking

In this chapter, we’ll get back to Johnny and Benjamin as they introduce another change in the
code they are working on. In the process, they discover the impact that return values and getters
have on composability of objects.

Contractors

Johnny: G’'morning. Ready for another task?
Benjamin: Of course! What’s next?

Johnny: Remember the code we worked on yesterday? It contains a policy for regular employees
of the company. But the company wants to start hiring contractors as well and needs to include
a policy for them in the application.

Benjamin: So this is what we will be doing today?

Johnny: That’s right. The policy is going to be different for contractors. While, just as regular
employees, they will be receiving raises and bonuses, the rules will be different. I made a small
table to allow comparing what we have for regular employees and what we want to add for
contractors:

Employee Type Raise Bonus

Regular Employee +10% of current salary if not +200% of current salary one
reached maximum on a time after five years
given pay grade

Contractor +5% of average salary +10% of current salary when

calculated for last 3 years of a contractor receives score
service (or all previous years more than 100 for the

of service if they have previous year

worked for less than 3 years

So while the workflow is going to be the same for both a regular employee and a contractor:

1. Load from repository
2. Evaluate raise

3. Evaluate bonus

4. Save

the implementation of some of the steps will be different for each type of employee.

Benjamin: Correct me if I am wrong, but these “load” and “save” steps do not look like they
belong with the remaining two - they describe something technical, while the other steps
describe something strictly related to how the company operates...

Telling, not asking 141

Johnny: Good catch, however, this is something we’ll deal with later. Remember the boy scout
rule — just don’t make it worse. Still, we’re going to fix some of the design flaws today.

Benjamin: Aww... I'd just fix all of it right away.

Johnny: Ha ha, patience, Luke. For now, let’s look at the code we have now before we plan
further steps.

Benjamin: Let me just open my IDE... OK, here it is:

© 00 1 O O b W N =

W W W W W W W W W NN NDNDDNDNDDNDDNDDNDDND®S=S » 2 2 B2 B2 B
w N O O b W N -~ OO O 00 N O O b W N~ OO O© 0 N O U b W N~ O

public class CompanyPolicies

{

readonly Repository _repository;

public CompanyPolicies(Repository repository)

{

_repository = repository;

public void ApplyYearlylIncentivePlan()

{

var employees = _repository.CurrentEmployees();

foreach(var employee in employees)

{

var payGrade = employee.GetPayGrade();

//evaluate raise
if(employee.GetSalary() < payGrade.Maximum)
{
var newSalary
= employee.GetSalary()
+ employee.GetSalary()
* 0.1;
employee.SetSalary(newSalary);

//evaluate one-time bonus

if(employee.GetYearsOfService() == 5)
{

var oneTimeBonus = employee.GetSalary() * 2;
employee.SetBonusForYear (2014, oneTimeBonus);

employee.Save();

© 00 N O O & W N =

N
(Y

© 0O N O O & W N =

N
(Y

Telling, not asking 142

Benjamin: Look, Johnny, the class in fact contains all the four steps you mentioned, but they
are not named explicitly — instead, their internal implementation for regular employees is just
inserted in here. How are we supposed to add the variation of the employee type?

Johnny: Time to consider our options. We have few of them. Well?

Benjamin: For now, I can see two. The first one would be to create another class similar to
CompanyPolicies, called something like CompanyPoliciesForContractors and implement the
new logic there. This would let us leave the original class as is, but we would have to change
the places that use CompanyPolicies to use both classes and choose which one to use somehow.
Also, we would have to add a separate method to repository for retrieving the contractors.

Johnny: In addition, we would miss our chance to communicate through the code that the
sequence of steps is intentionally similar in both cases. Others who read this code in the future
will see that the implementation for regular employees follows the steps: load, evaluate raise,
evaluate bonus, save. When they look at the implementation for contractors, they will see the
same order of steps, but they will be unable to tell whether the similarity is intentional, or is it
there by pure accident.

Benjamin: So our second option is to put an if statement into the differing steps inside the
CompanyPolicies class, to distinguish between regular employees and contractors. The Employee
class would have an isContractor () method and depending on what it would return, we would
either execute the logic for regular employees or for contractors. Assuming that the current
structure of the code looks like this:

foreach(var employee in employees)

{

//evaluate raise

//evaluate one-time bonus

//save employee

the new structure would look like this:

foreach(var employee in employees)

{
if(employee.IsContractor())
{
//evaluate raise for contractor
}
else
{

//evaluate raise for regular

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

O O B W N~

Telling, not asking 143

if(employee.IsContractor())
{

//evaluate one-time bonus for contractor

}

else

{

//evaluate one-time bonus for regular

//save employee

this way we would show that the steps are the same, but the implementation is different. Also,
this would mostly require us to add code and not move the existing code around.

Johnny: The downside is that we would make the class even uglier than it was when we started.
So despite initial easiness, we’ll be doing a huge disservice to future maintainers. We have at
least one another option. What would that be?

Benjamin: Let’s see... we could move all the details concerning the implementation of the steps
from CompanyPolicies class into the Employee class itself, leaving only the names and the order
of steps in CompanyPolicies:

foreach(var employee in employees)
{
employee.EvaluateRaise();
employee.EvaluateOneTimeBonus();
employee.Save();

Then, we could change the Employee into an interface, so that it could be either aRegularEmployee
or ContractorEmployee — both classes would have different implementations of the steps, but the
CompanyPolicies would not notice, since it would not be coupled to the implementation of the
steps anymore — just the names and the order.

Johnny: This solution would have one downside — we would need to significantly change the
current code, but you know what? I'm willing to do it, especially that I was told today that the
logic is covered by some tests which we can run to see if a regression was introduced.

Benjamin: Cool, what do we start with?

Johnny: The first thing that is between us and our goal are these getters on the Employee class:

© 0O N O O b W N =

O O B W N =

Telling, not asking 144

GetSalary();
GetGrade();
GetYearsOfService();

They just expose too much information specific to the regular employees. It would be impossible
to use different implementations when these are around. These setters don’t help much:

SetSalary(newSalary);
SetBonusForYear(year, amount);

While these are not as bad, we’d better give ourselves more flexibility. Thus, let’s hide all of this
behind more abstract methods that hide what actually happens, but reveal our intention.

First, take a look at this code:

//evaluate raise
if(employee.GetSalary() < payGrade.Maximum)
{
var newSalary
= employee.GetSalary()
+ employee.GetSalary()
¥ 0.1;
employee.SetSalary(newSalary);

Each time you see a block of code separated from the rest with blank lines and starting with a
comment, you see something screaming “I want to be a separate method that contains this code
and has a name after the comment!”. Let’s grant this wish and make it a separate method on the
Employee class.

Benjamin: Ok, wait a minute... here:
employee.EvaluateRaise();
Johnny: Great! Now, we’ve got another example of this species here:

//evaluate one-time bonus
if(employee.GetYearsOfService() == 5)
{

var oneTimeBonus = employee.GetSalary() * 2;
employee.SetBonusForYear (2014, oneTimeBonus);

Benjamin: This one should be even easier... Ok, take a look:

© 00 N O O b W N =

RN
= O

Telling, not asking 145

employee.EvaluateOneTimeBonus();

Johnny: Almost good. I'd only leave out the information that the bonus is one-time from the
name.

Benjamin: Why? Don’t we want to include what happens in the method name?

Johnny: Actually, no. What we want to include is our intention. The bonus being one-time is
something specific to the regular employees and we want to abstract away the details about this
or that kind of employee, so that we can plug in different implementations without making the
method name lie. The names should reflect that we want to evaluate a bonus, whatever that
means for a particular type of employee. Thus, let’s make it:

employee.EvaluateBonus();

Benjamin: Ok, I get it. No problem.

Johnny: Now let’s take a look at the full code of the EvaluateIncentivePlan method to see
whether it is still coupled to details specific to regular employees. Here’s the code:

public void ApplyYearlylIncentivePlan()
{

var employees = _repository.CurrentEmployees();

foreach(var employee in employees)
{
employee.EvaluateRaise();
employee.EvaluateBonus();

employee.Save();

Benjamin: It seems that there is no coupling to the details about regular employees anymore.
Thus, we can safely make the repository return a combination of regulars and contractors without
this code noticing anything. Now I think I understand what you were trying to achieve. If we
make interactions between objects happen on a more abstract level, then we can put in different
implementations with less effort.

Johnny: True. Can you see another thing related to the lack of return values on all of employee’s
methods in the current implementation?

Benjamin: Actually, no. Does it matter?

Johnny: Well, if Employee methods had return values and this code depended on them, all
subclasses of Employee would be forced to supply return values as well and these return values
would need to match the expectations of the code that calls these methods, whatever these
expectations were. This would make introducing other kinds of employees harder. But now that
there are no return values, we can, for example:

Telling, not asking 146

« introduce a TemporaryEmployee that has no raises, by leaving its EvaluateRaise() method
empty, and the code that uses employees will not notice.

« introduce a ProbationEmployee that has no bonus policy, by leaving its EvaluateBonus()
method empty, and the code that uses employees will not notice.

« introduce an InMemoryEmployee that has empty Save() method, and the code that uses
employees will not notice.

As you see, by asking the objects less, and telling it more, we get greater flexibility to create
alternative implementations and the composability, which we talked about yesterday, increases!

Benjamin: I see... So telling objects what to do instead of asking them for their data makes
the interactions between objects more abstract, and so, more stable, increasing composability of
interacting objects. This is a valuable lesson — it is the first time I hear this and it seems a pretty
powerful concept.

A Quick Retrospective

In this chapter, Benjamin learned that the composability of an object (not to mention clarity) is
reinforced when interactions between it and its peers are: abstract, logical and stable. Also, he
discovered, with Johnny’s help, that it is further strengthened by following a design style where
objects are told what to do instead of asked to give away information to somebody who then
makes the decision on their behalf. This is because if an API of an abstraction is built around
answering to specific questions, the clients of the abstraction tend to ask it a lot of questions and
are coupled to both those questions and some aspects of the answers (i.e. what is in the return
values). This makes creating another implementation of abstraction harder, because each new
implementation of the abstraction needs to not only provide answers to all those questions, but
the answers are constrained to what the client expects. When abstraction is merely told what its
client wants it to achieve, the clients are decoupled from most of the details of how this happens.
This makes introducing new implementations of abstraction easier — it often even lets us define
implementations with all methods empty without the client noticing at all.

These are all important conclusions that will lead us towards TDD with mock objects.

Time to leave Johnny and Benjamin for now. In the next chapter, 'm going to reiterate on their
discoveries and put them in a broader context.

The need for mock objects

We already experienced mock objects in the chapter about tools, although at that point, I gave
you an oversimplified and deceiving explanation of what a mock object is, promising that I will
make up for it later. Now is the time.

Mock objects were made with specific goal in mind. My hope is that when you understand the
real goal, you will probably understand the means to the goal far better.

In this chapter, we will explore the qualities of object-oriented design which make mock objects
a viable tool.

Composability... again!

In the two previous chapters, we followed Johnny and Benjamin in discovering the benefits of
and prerequisites for composability of objects. Composability is the number one quality of the
design we’re after. After reading Johhny and Benjamin’s story, you might have some questions
regarding composability. Hopefully, they are among the ones answered in the next few chapters.
Ready?

© 00 N O O b W N =

NN
= O

a b w N

Why do we need composability?

It might seem stupid to ask this question here — if you have managed to stay with me this long,
then you’re probably motivated enough not to need a justification? Well, anyway, it’s still worth
discussing it a little. Hopefully, you’ll learn as much reading this back-to-basics chapter as I did
writing it.

Pre-object-oriented approaches

Back in the days of procedural programming*’, when we wanted to execute a different code based
on some factor, it was usually achieved using an ‘if” statement. For example, if our application
was in need to be able to use different kinds of alarms, like a loud alarm (that plays a loud
sound) and a silent alarm (that does not play any sound, but instead silently contacts the police)
interchangeably, then usually, we could achieve this using a conditional like in the following
function:

void triggerAlarm(Alarm* alarm)

{
if(alarm->kind == LOUD_ALARM)

{
playLoudSound(alarm);

}
else if(alarm->kind == SILENT_ALARM)

{

notifyPolice(alarm);

The code above makes decision based on the alarm kind which is embedded in the alarm
structure:

struct Alarm
{
int kind;
//other data
¥

If the alarm kind is the loud one, it executes behavior associated with loud alarm. If this is a
silent alarm, the behavior for silent alarms is executed. This seems to work. Unfortunately, if we

“’T am simplifying the discussion on purpose, leaving out e.g. functional languages and assuming that “pre-object-oriented” means
procedural or structural. While this is not true in general, this is how the reality looked like for many of us. If you are good at functional
programming, you already understand the benefits of composability.

© 00 N O O & W N =

NN
= o

Why do we need composability? 149

wanted to make a second decision based on the alarm kind (e.g. we needed to disable the alarm),
we would need to query the alarm kind again. This would mean duplicating the conditional
code, just with a different set of actions to perform, depending on what kind of alarm we were
dealing with:

void disableAlarm(Alarm* alarm)
{
if(alarm->kind == LOUD_ALARM)
{
stopLoudSound(alarm);
}
else if(alarm->kind == SILENT_ALARM)
{
stopNotifyingPolice(alarm);
}

Do I have to say why this duplication is bad? Do I hear a “no”? My apologies then, but I'll tell you
anyway. The duplication means that every time a new kind of alarm is introduced, a developer
has to remember to update both places that contain ‘if-else’ — the compiler will not force this.
As you are probably aware, in the context of teams, where one developer picks up work that
another left and where, from time to time, people leave to find another job, expecting someone
to “remember” to update all the places where the logic is duplicated is asking for trouble.

So, we see that the duplication is bad, but can we do something about it? To answer this question,
let’s take a look at the reason the duplication was introduced. And the reason is: We have two
things we want to be able to do with our alarms: triggering and disabling. In other words, we
have a set of questions we want to be able to ask an alarm. Each kind of alarm has a different
way of answering these questions — resulting in having a set of “answers” specific to each alarm

kind:

Alarm Kind Triggering Disabling
Loud Alarm playlLoudSound() stopLoudSound()
Silent Alarm notifyPolice() stopNotifyingPolice()

So, at least conceptually, as soon as we know the alarm kind, we already know which set of
behaviors (represented as a row in the above table) it needs. We could just decide the alarm kind
once and associate the right set of behaviors with the data structure. Then, we would not have
to query the alarm kind in few places as we did, but instead, we could say: “execute triggering
behavior from the set of behaviors associated with this alarm, whatever it is”.

Unfortunately, procedural programming does not let’s bind behaviors with data. As a matter
of fact, the whole paradigm of procedural programming is about separating behaviors and
data! Well, honestly, they had some answers to those concerns, but these answers were mostly
awkward (for those of you that still remember C language: I'm talking about macros and function
pointers). So, as data and behaviors are separated, we need to query the data each time we want
to pick a behavior based on it. That’s why we have the duplication.

a b w N

© 00 N O O b W N =

=Y
N =~ O

Why do we need composability? 150

Object-oriented programming to the rescue!

On the other hand, object-oriented programming has for a long time made available two
mechanisms that enable what we didn’t have in procedural languages:

1. Classes — that allow binding behavior together with data.

2. Polymorphism - allows executing behavior without knowing the exact class that holds
them, but knowing only a set of behaviors that it supports. This knowledge is obtained
by having an abstract type (interface or an abstract class) define this set of behaviors,
with no real implementation. Then we can make other classes that provide their own
implementation of the behaviors that are declared to be supported by the abstract type.
Finally, we can use the instances of those classes where an instance of the abstract type is
expected. In case of statically-typed languages, this requires implementing an interface or
inheriting from an abstract class.

So, in case of our alarms, we could make an interface with the following signature:

public interface Alarm

{
void Trigger();

void Disable();

and then make two classes: LoudAlarm and SilentAlarm, both implementing the Alarm interface.
Example for LoudAlarm:

public class LoudAlarm : Alarm

{
public void Trigger()

{
//play very loud sound

}

public void Disable()

{
//stop playing the sound

}

Now, we can make parts of code use the alarm, but by knowing the interface only instead of the
concrete classes. This makes the parts of the code that use alarm this way not having to check
which alarm they are dealing with. Thus, what previously looked like this:

o N O O b W N =

Why do we need composability? 151

if(alarm->kind == LOUD_ALARM)
{
playLoudSound(alarm);
}
else if(alarm->kind == SILENT_ALARM)
{

notifyPolice(alarm);

becomes just:
alarm.Trigger();

where alarm is either LoudAlarm or SilentAlarm, but seen polymorphically as Alarm, so there’s
no need for ‘if-else’ anymore.

But hey, isn’t this cheating? Even provided I can execute the trigger behavior on an alarm without
knowing the actual class of the alarm, I still have to decide which class it is in the place where I
create the actual instance:

// we must know the exact type here:

alarm = new LoudAlarm();

so it looks like I am not eliminating the ‘else-if” after all, just moving it somewhere else! This
may be true (we will talk more about it in future chapters), but the good news is that I eliminated
at least the duplication by making our dream of “picking the right set of behaviors to use with
certain data once” come true.

Thanks to this, I create the alarm once, and then I can take it and pass it to ten, a hundred or a
thousand different places where I will not have to determine the alarm kind anymore to use it
correctly.

This allows writing a lot of classes that have no knowledge whatsoever about the real class of the
alarm they are dealing with, yet are able to use the alarm just fine only by knowing a common
abstract type — Alarm. If we are able to do that, we arrive at a situation where we can add more
alarms implementing Alarm and watch existing objects that are already using Alarm work with
these new alarms without any change in their source code! There is one condition, however -
the creation of the alarm instances must be moved out of the classes that use them. That’s
because, as we already observed, to create an alarm using a new operator, we have to know
the exact type of the alarm we are creating. So whoever creates an instance of LoudAlarm or
SilentAlarm, loses its uniformity, since it is not able to depend solely on the Alarm interface.

The power of composition

Moving creation of alarm instances away from the classes that use those alarms brings up an
interesting problem - if an object does not create the objects it uses, then who does it? A solution

o I O O b W N =~

© 0O N O O & W N =

[==Y
w N =~ o

Why do we need composability? 152

is to make some special places in the code that are only responsible for composing a system from
context-independent objects*’. We saw this already as Johnny was explaining composability to
Benjamin. He used the following example:

new SqlRepository(
new ConnectionString("..."),
new AccessPrivileges(
new Role("Admin"),
new Role("Auditor")

),

new InMemoryCache()

)

We can do the same with our alarms. Let’s say that we have a secure area that has three buildings
with different alarm policies:

« Office building - the alarm should silently notify guards during the day (to keep office staff
from panicking) and loud during the night, when guards are on patrol.

« Storage building - as it is quite far and the workers are few, we want to trigger loud and
silent alarms at the same time.

« Guards building - as the guards are there, no need to notify them. However, a silent alarm
should call police for help instead, and a loud alarm is desired as well.

Note that besides just triggering loud or silent alarm, we have a requirement for a combination
(“loud and silent alarms at the same time”) and a conditional (“silent during the day and loud
during the night”). we could just hardcode some fors and i f-elses in our code, but instead, let’s
factor out these two operations (combination and choice) into separate classes implementing the
alarm interface.

Let’s call the class implementing the choice between two alarms DayNightSwitchedAlarm. Here
is the source code:

public class DayNightSwitchedAlarm : Alarm
{

private readonly Alarm _dayAlarm;
private readonly Alarm _nightAlarm;

public DayNightSwitchedAlarm(
Alarm dayAlarm,
Alarm nightAlarm)

_dayAlarm = dayAlarm;
_nightAlarm = nightAlarm;

“'More on context-independence and what these “special places” are, in the next chapters.

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

O 00 I O O b W N =

[S = S G N = e Y
S © 00 N O O & W N =~ O

Why do we need composability? 153

public void Trigger()
{
if(/* is day */)
{
_dayAlarm.Trigger();
}

else

{
_nightAlarm.Trigger();

public void Disable()

{
_dayAlarm.Disable();
_nightAlarm.Disable();

Studying the above code, it is apparent that this is not an alarm per se, e.g. it does not raise any
sound or notification, but rather, it contains some rules on how to use other alarms. This is the
same concept as power splitters in real life, which act as electric devices but do not do anything
other than redirecting the electricity to other devices.

Next, let’s use the same approach and model the combination of two alarms as a class called
HybridAlarm. Here is the source code:

public class HybridAlarm : Alarm
{
private readonly Alarm _alarmi;
private readonly Alarm _alarm2;

public HybridAlarm(
Alarm alarmi,
Alarm alarm2)

{
_alarml = alarmi;
_alarm2 = alarm2;
}
public void Trigger()
{
_alarml.Trigger();
_alarm2.Trigger();
}

public void Disable()

21
22
23
24
25

© 00 N O O & W N =

[S = S G S o U S G S Y
© © 00 N O O & W N =~ O

Why do we need composability? 154

_alarmi.Disable();
_alarm2.Disable();

Using these two classes along with already existing alarms, we can implement the requirements
by composing instances of those classes like this:

new SecureArea(
new OfficeBuilding(
new DayNightSwitchedAlarm(
new SilentAlarm("222-333-444"),
new LoudAlarm()
)
),

new StorageBuilding(
new HybridAlarm(
new SilentAlarm("222-333-444"),
new LoudAlarm()
)
),

new GuardsBuilding(

new HybridAlarm(
new SilentAlarm("919"), //call police

new LoudAlarm()

)
)

Note that the fact that we implemented combination and choice of alarms as separate objects
implementing the Alarm interface allows us to define new, interesting alarm behaviors using the
parts we already have, but composing them together differently. For example, we might have, as
in the above example:

new DayNightSwitchAlarm(
new SilentAlarm("222-333-444"),
new LoudAlarm());

which would mean triggering silent alarm during a day and loud one during night. However,
instead of this combination, we might use:

W N - N O O s W N

=N O O b W N =

© 00 N O O b W N =

N
[\

Why do we need composability? 155

new DayNightSwitchAlarm(
new SilentAlarm("222-333-444"),
new HybridAlarm(
new SilentAlarm("919"),
new LoudAlarm()

Which would mean that we use silent alarm to notify the guards during the day, but a
combination of silent (notifying police) and loud during the night. Of course, we are not limited
to combining a silent alarm with a loud one only. We can as well combine two silent ones:

new HybridAlarm(
new SilentAlarm("919"),
new SilentAlarm("222-333-444")

Additionally, if we suddenly decided that we do not want alarm at all during the day, we could
use a special class called NoAlarm that would implement Alarm interface, but have both Trigger
and Disable methods do nothing. The composition code would look like this:

new DayNightSwitchAlarm(
new NoAlarm(), // no alarm during the day
new HybridAlarm(
new SilentAlarm("919"),
new LoudAlarm()

And, last but not least, we could completely remove all alarms from the guards building using
the following NoAlarm class (which is also an Alarm):

public class NoAlarm : Alarm

{
public void Trigger()

{
}

public void Disable()
{
}

and passing it as the alarm to guards building:

Why do we need composability? 156

new GuardsBuilding(

new NoAlarm()

Noticed something funny about the last few examples? If not, here goes an explanation: in the
last few examples, we have twisted the behaviors of our application in wacky ways, but all of
this took place in the composition code! We did not have to modify any other existing classes!
True, we had to write a new class called NoAlarm, but did not need to modify any other code than
the composition code to make objects of this new class work with objects of existing classes!

This ability to change the behavior of our application just by changing the way objects are
composed together is extremely powerful (although you will always be able to achieve it only
to certain extent), especially in evolutionary, incremental design, where we want to evolve some
pieces of code with as little as possible other pieces of code having to realize that the evolution
takes place. This ability can be achieved only if our system consists of composable objects, thus
the need for composability — an answer to a question raised at the beginning of this chapter.

Summary - are you still with me?

We started with what seemed to be a repetition from basic object-oriented programming course,
using a basic example. It was necessary though to make a fluent transition to the benefits of
composability we eventually introduced at the end. I hope you did not get overwhelmed and can
understand now why I am putting so much stress on composability.

In the next chapter, we will take a closer look at composing objects itself.

Web, messages and protocols

In the previous chapter, we talked a little bit about why composability is valuable, now let’s flesh
out a little bit of terminology to get more precise understanding.

So, again, what does it mean to compose objects?

Basically it means that an object has obtained a reference to another object and is able to invoke
methods on it. By being composed together, two objects form a small system that can be expanded
with more objects as needed. Thus, a bigger object-oriented system forms something similar to
a web:

Web, messages and protocols 158

‘..-

Web of objects — the circles are the objects and the arrows are methods invocations from one object on another

If we take the web metaphor a little bit further, we can note some similarities to e.g. a TCP/IP
network:

1. An object can send messages to other objects (i.e. call methods on them — arrows on the
above diagram) via interfaces. Each message has a sender and at least one recipient.

2. To send a message to a recipient, a sender has to acquire an address of the recipient, which,
in object-oriented world, we call a reference (and in languages such as C++, references are
just that — addresses in memory).

3. A communication between sender and recipients has to follow a certain protocol. For
example, a sender usually cannot invoke a method passing nulls as all arguments, or should
expect an exception if it does so. Don’t worry if you don’t see the analogy now - I'll follow
up with more explanation of this topic later).

© 00 N O O b W N =

T = U
W N s,

Web, messages and protocols 159

Alarms, again!

Let’s try to apply this terminology to an example. Imagine that we have an anti-fire alarm system
in an office. When triggered, this alarm system makes all lifts go to bottom floor, opens them
and then disables each of them. Among others, the office contains automatic lifts, that contain
their own remote control systems and mechanical lifts, that are controlled from the outside by a
special custom-made mechanism.

Let’s try to model this behavior in code. As you might have guessed, we will have some objects
like alarm, automatic lift and mechanical lift. The alarm will control the lifts when triggered.

Firstly, we don’t want the alarm to have to distinguish between an automatic and a mechanical
lift — this would only add complexity to the alarm system, especially that there are plans to add
a third kind of lift — a more modern one - in the future. So, if we made the alarm aware of the
different kinds of lifts, we would have to modify it each time a new kind of lift is introduced.
Thus, we need a special interface (let’s call it Lift) to communicate with both AutoLift and
Mechanicallift (and ModernLift in the future). Through this interface, an alarm will be able to
send messages to both types of lifts without having to know the difference between them.

public interface Lift
{

public class AutoLift : Lift
{

public class MechanicallLift : Lift
{

Next, to be able to communicate with specific lifts through the L i ft interface, an alarm object has
to acquire “addresses” of the lift objects (i.e. references to them). We can pass these references
e.g. through a constructor:

O O B W N

© 00 N O O b W N =

Web, messages and protocols 160

public class Alarm

{

private readonly IEnumerable<Lift> _lifts;

//obtain "addresses" here

public Alarm(IEnumerable<Lift> 1ifts)

{
//store the "addresses" for later use
_lifts = lifts;

Then, the alarm can send three kinds of messages: GoToBottomFloor(), OpenDoor (), and
DisablePower () to any of the lifts through the Li ft interface:

public interface Lift

{
void GoToBottomFloor();
void OpenDoor();

void DisablePower();

and, as a matter of fact, it sends all these messages when triggered. The Trigger() method on
the alarm looks like this:

public void Trigger()
{
foreach(var lift in _lifts)
{
lift.GoToBottomFloor();
1ift.OpenDoor();
lift.DisablePower();

By the way, note that the order in which the messages are sent does matter. For example, if we
disabled the power first, asking the powerless lift to go anywhere would be impossible. This is a
first sign of a protocol existing between the Alarm and a Lift.

In this communication, Alarm is a sender - it knows what it sends (messages that control lifts),
it knows why (because the alarm is triggered), but does not know what exactly are the recipients
going to do when they receive the message — it only knows what it wants them to do, but
does not know how they are going to achieve it. The rest is left to objects that implement Li ft
(namely, AutoLift and Mechanicallift). They are the recipients — they don’t know who they
received the message from (unless they are told in the content of the message somehow — but
even then they can be cheated), but they know how to react, based on who they are (AutolLift

Web, messages and protocols 161

has its own way of reacting and Mechanicallift has its own as well). They also know what kind
of the message they received (a lift does a different thing when asked to go to bottom floor than
when it is asked to open its door) and what’s the message content (i.e. method arguments - in
this simplistic example there are none).

To illustrate that this separation between a sender and a recipient does, in fact, exist, I'll say that
we could even write an implementation of a Lift interface that would just ignore the messages
it got from the Alarm (or fake that it did what it was asked for) and the Alarm will not even
notice. We sometimes say that this is because deciding on a specific reaction is not the Alarm’s
responsibility.

ecipient:: DoSomething()..;ﬁ <<interface>>..;"(§:oncreteRecipient: :DoSomething Concrete
Recipient Recipient

Lift::GoToBottomFloor()... <<interface>> ...AutoLift::GoToBottomFloor()

Alarm Lift AutolLift

o

Sender, interface, and recipient

New requirements

It was decided that whenever any malfunction happens in the lift when it is executing
the alarm emergency procedure, the lift object should report this by throwing an exception
called LiftUnoperationalException. This affects both Alarm and implementations of the Lift
interface:

1. The Lift implementations need to know that when a malfunction happens, they should
report it by throwing the exception.

2. The Alarm must be ready to handle the exception thrown from lifts and act accordingly (e.g.
still try to secure other lifts).

This is another example of a protocol existing between Alarm and Li ft that must be adhered to
by both sides. Here is an exemplary code of Alarm keeping to its part of the protocol, i.e. handling
the malfunction reports in its Trigger () method:

public void Trigger()
{
foreach(var lift in _lifts)
{
try
{
1ift.GoToBottomFloor();
lift.OpenDoor();
lift.DisablePower();
}

catch(LiftUnoperationalException e)

12
13
14
15
16

Web, messages and protocols 162

report.ThatCannotSecure(lift);
}

Summary

Each of the objects in the web can receive messages and most of them send messages to other
objects. Throughout the next chapters, I will refer to an object sending a message as sender and
an object receiving a message as recipient.

For now, it may look unjustified to introduce this metaphor of webs, protocols, interfaces etc.
Still, I have two reasons for doing so:

« This is the way L interpret Alan Kay’s** mental model of what object-oriented programming
is about.

« I find it useful for some things want to explain in the next chapters: how to make
connections between objects, how to design an object boundary and how to achieve strong
composability.

By the way, the example from this chapter is a bit naive. For one, in real production code, the
lifts would have to be notified in parallel, not sequentially. Also, I would probably use some
kind of observer pattern to separate the instructions give to each lift from raising an event (I
will demonstrate an exmaple of using observers in this fashion in the next chapter). These two
choices, in turn, would probably make me rethink error handling - there is a chance I wouldn’t
be able to get away with just catching exceptions. Anyway, I hope the naive form helped explain
the idea of protocols and messages without raising the bar in other topics.

“*http://c2.com/cgi/wiki? AlanKayOnMessaging

http://c2.com/cgi/wiki?AlanKayOnMessaging
http://c2.com/cgi/wiki?AlanKayOnMessaging

O O b W N

Composing a web of objects

Three important questions

Now that we know that such thing as a web of objects exists, that there are connections, protocols
and such, time to mention the one thing I left out: how does a web of objects come into existence?

This is, of course, a fundamental question, because if we are unable to build a web, we don’t have
a web. In addition, this is a question that is a little more tricky than it looks like at first glance.
To answer it, we have to find the answer to three other questions:

1. When are objects composed (i.e. when are the connections made)?

2. How does an object obtain a reference to another one in the web (i.e. how are the
connections made)?

3. Where are objects composed (i.e. where are connections made)?

At first sight, finding the difference between these questions may be tedious, but the good news
is that they are the topic of this chapter, so I hope we’ll have that cleared shortly.

A preview of all three answers

Before we take a deep dive, let’s try to answer these three questions for a really naive example
code of a console application:

public static void Main(string[] args)

{

var sender = new Sender(new Recipient());

sender .Work();

}

This is a piece of code that creates two objects and connects them together, then it tells the sender
object to work on something. For this code, the answers to the three questions I raised are:

1. When are objects composed? Answer: during application startup (because Main() method
is called at console application startup).

2. How does an object (Sender) obtain a reference to another one (Recipient)? Answer: the
reference is obtained by receiving a Recipient as a constructor parameter.

3. Where are objects composed? Answer: at application entry point (Main() method)

Depending on circumstances, we may have different sets of answers. Also, to avoid rethinking
this topic each time we create an application, I like to have a set of default answers to these
questions. I'd like to demonstrate these answers by tackling each of the three questions in-depth,
one by one, in the coming chapters.

1

When are objects composed?

The quick answer to this question is: as early as possible. Now, that wasn’t too helpful, was it?
So here goes a clarification.

Many of the objects we use in our applications can be created and connected up-front when the
application starts and can stay alive until the application finishes executing. Let’s call this part
the static part of the web.

Apart from that, there’s something I'll call dynamic part — the objects that are created, connected
and destroyed many times during the application lifecycle. There are at least two reasons this
dynamic part exists:

1. Some objects represent requests or user actions that arrive during the application runtime,
are processed and then discarded. These objects cannot be created up-front, but only as
early as the events they represent occur. Also, these objects do not live until the application
is terminated, but are discarded as soon as the processing of a request is finished. Other
objects represent e.g. items in cache that live for some time and then expire, so, again, we
don’t have enough information to compose these objects up-front and they often don’t live
as long as the application itself. Such objects come and go, making temporary connections.

2. There are objects that have life spans as long as the application has, but the nature of
their connections are temporary. Consider an example where we want to encrypt our data
storage for export, but depending on circumstances, we sometimes want to export it using
one algorithm and sometimes using another. If so, we may sometimes invoke the encryption
method like this:

database.encryptUsing(encryptioni);
and sometimes like this:
database.encryptUsing(encryption2);

In the first case, database and encryptiont are only connected temporarily, for the time it takes
to perform the encryption. Still, nothing prevents these objects from being created during the
application startup. The same applies to the connection of database and encryption2 - this
connection is temporary as well.

Given these definitions, it is perfectly possible for an object to be part of both static and dynamic
part — some of its connections may be made up-front, while others may be created later, e.g.
when its reference is passed inside a message sent to another object (i.e. when it is passed as
method parameter).

O U W N

How does a sender obtain a
reference to a recipient (i.e. how
connections are made)?

There are several ways a sender can obtain a reference to a recipient, each of them being useful
in certain circumstances. These ways are:

1. Receive as constructor parameter

2. Receive inside a message (i.e. as a method parameter)

3. Receive in response to a message (i.e. as method return value)
4. Receive as a registered observer

Let’s take a closer look at what each of them is about and which one to choose in what
circumstances.

Receive as constructor parameter

Two objects can be composed by passing one into a constructor of another:
sender = new Sender(recipient);

A sender that receives the recipient then saves a reference to it in a private field for later, like
this:

private Recipient _recipient;
public Sender(Recipient recipient)

{

_recipient = recipient;

}

Starting from this point, the Sender may send messages to Recipient at will:

o N O O b W N =

How does a sender obtain a reference to a recipient (i.e. how connections are made)? 166

public void DoSomething()
{

//... other code

_recipient.DoSomethingElse();

//... other code

Advantage: “what you hide, you can change”

Composing using constructors has one significant advantage. Let’s look again at how Sender is
created:

sender = new Sender(recipient);
and at how it’s used:
sender .DoSomething();

Note that only the code that creates a Sender needs to be aware of it having an access to a
Recipient. When it comes to actually invoking a method, this private reference is invisible
from outside. Now, remember when I described the principle of separating object use from its
construction? If we follow this principle here, we end up with the code that creates a Sender
being in a totally different place than the code that uses it. Thus, every code that uses a Sender
will not be aware of it sending messages to aRecipient at all. There is a maxim that says: “what
you hide, you can change”’ — in this particular case, if we decide that the Sender does not need a
Recipient to do its job, all we have to change is the composition code to remove the Recipient:

//no need to pass a reference to Recipient anymore

new Sender();

and the code that uses Sender doesn’t need to change at all — it still looks the same as before,
since it never had the knowledge of Recipient:

sender .DoSomething();

Communication of intent: required recipient

Another advantage of the constructor approach is that it allows to state explicitly what the
required recipients are for a particular sender. For example, a Sender accepts a Recipient in
its constructor:

“’I got this saying from Amir Kolsky and Scott Bain

W N

g b W N =~

How does a sender obtain a reference to a recipient (i.e. how connections are made)? 167

public Sender(Recipient recipient)

{
s

}

The signature of the constructor makes it explicit that a reference to Recipient is required for
a Sender to work correctly — the compiler will not allow creating a Sender without passing
something as a Recipient®*.

Where to apply

Passing into constructor is a great solution in cases we want to compose sender with a recipient
permanently (i.e. for the lifetime of a Sender). To be able to do this, a Recipient must, of course,
exist before a Sender does. Another less obvious requirement for this composition is that a
Recipient must be usable at least as long as a Sender is usable. A simple example of violating
this requirement is this code:

sender = new Sender(recipient);
recipient.Dispose(); //but sender is unaware of it

//and may still use recipient later:
sender . DoSomething();

In this case, when we tell sender to DoSomething(), it uses a recipient that is already disposed
of, which may lead to some nasty bugs.

Receive inside a message (i.e. as a method
parameter)

Another common way of composing objects together is passing one object as a parameter of
another object’s method call:

sender .DoSomethingWithHelpOf(recipient);

In such case, the objects are most often composed temporarily, just for the time of execution of
this single method:

“‘Sure, we could pass a null but then we are the ones asking for trouble.

o N O O b W N =

o I O O b W N =~

How does a sender obtain a reference to a recipient (i.e. how connections are made)? 168

public void DoSomethingWithHelpOf(Recipient recipient)
{

//... perform some logic
recipient.HelpMe();

//... perform some logic

Where to apply

Contrary to the constructor approach, where a Sender could hide from its user the fact that
it needs a Recipient, in this case the user of Sender is explicitly responsible for supplying a
Recipient. In other words, there need to be some kind of coupling between the code using Sender
and a Recipient. It may look like this coupling is a disadvantage, but I know of some scenarios
where it’s actually required for code using Sender to be able to provide its own Recipient —
it allows us to use the same sender with different recipients at different times (most often from
different parts of the code):

//in one place

sender . DoSomethingWithHelpOf(recipient);

//in another place:
sender .DoSomethingWithHelpOf(anotherRecipient);

//in yet another place:
sender . DoSomethingWithHelpOf(yetAnotherRecipient);

If this ability is not required, I strongly prefer the constructor approach as it removes the (then)
unnecessary coupling between code using Sender and a Recipient, giving me more flexibility.

Receive in response to a message (i.e. as method
return value)

This method of composing objects relies on an intermediary object — often an implementation
of a factory pattern®” — to supply recipients on request. To simplify things, I will use factories
in examples presented in this section, although what I tell you is true for some other creational
patterns*® as well (also, later in this chapter, I'll cover some aspects of factory pattern in depth).

To be able to ask a factory for recipients, the sender needs to obtain a reference to it first.
Typically, a factory is composed with a sender through constructor (an approach I already
described). For example:

“*http://www.netobjectives.com/PatternRepository/index.php?title=TheAbstractFactoryPattern
“*https://en.wikipedia.org/wiki/Creational_pattern

http://www.netobjectives.com/PatternRepository/index.php?title=TheAbstractFactoryPattern
https://en.wikipedia.org/wiki/Creational_pattern
https://en.wikipedia.org/wiki/Creational_pattern
http://www.netobjectives.com/PatternRepository/index.php?title=TheAbstractFactoryPattern
https://en.wikipedia.org/wiki/Creational_pattern

© 00 N O O & W N =

[==Y
w N =~ o

g b W N =

How does a sender obtain a reference to a recipient (i.e. how connections are made)? 169
var sender = new Sender(recipientFactory);

The factory can then be used by the Sender at will to get a hold of new recipients:

public class Sender

{
ass

public void DoSomething()
{
//ask the factory for a recipient:

var recipient = _recipientFactory.CreateRecipient();

//use the recipient:

recipient.DoSomethingElse();

Where to apply

I find this kind of composition useful when a new recipient is needed each time DoSomething() is
called. In this sense it may look much like in case of previously discussed approach of receiving
a recipient inside a message. There is one difference, however. Contrary to passing a recipient
inside a message, where the code using the Sender passed a Recipient “from outside” of the
Sender, in this approach, we rely on a separate object that is used by a Sender “from the inside”.

To be more clear, let’s compare the two approaches. Passing recipient inside a message looks like
this:

//Sender gets a Recipient from the "outside":

public void DoSomething(Recipient recipient)

{

recipient.DoSomethingElse();

and obtaining from factory:

=~ O O b W N =

How does a sender obtain a reference to a recipient (i.e. how connections are made)? 170

//a factory is used "inside" Sender

//to obtain a recipient

public void DoSomething()

{
var recipient = _factory.CreateRecipient();
recipient.DoSomethingElse();

So in the first example, the decision on which Recipient is used is made by whoever calls
DoSomething(). In the factory example, whoever calls DoSomething() does not know at all about
the Recipient and cannot directly influence which Recipient is used. The factory makes this
decision.

Factories with parameters

So far, all of the factories we considered had creation methods with empty parameter lists, but
this is not a requirement of any sort - I just wanted to make the examples simple, so I left out
everything that wasn’t helpful in making my point. As the factory remains the decision maker on
which Recipient is used, it can rely on some external parameters passed to the creation method
to help it make the decision.

Not only factories

Throughout this section, we have used a factory as our role model, but the approach of obtaining
a recipient in response to a message is wider than that. Other types of objects that fall into this
category include, among others: repositories*’, caches*, builders*’, collections®. While they are
all important concepts (which you can look up on the web if you like), they are not required to
progress through this chapter so I won’t go through them now.

Receive as a registered observer

This means passing a recipient to an already created sender (contrary to passing as constructor
parameter where recipient was passed during creation) as a parameter of a method that stores
the reference for later use. Usually, I meet two kinds of registrations:

1. a “setter” method, where someone registers an observer by calling something like sender . SetRecipient (rec

Honestly, even though it’s a setter, I don’t like naming it according to the convention
“setWhatever()” — after Kent Beck® I find this convention too much implementation-
focused instead of purpose-focused. Thus, I pick different names based on what domain
concept is modeled by the registration method or what is its purpose. Anyway, this
approach allows only one observer and setting another overwrites the previous one.

“"https://martinfowler.com/eaaCatalog/repository.html

“*https://en.wikipedia.org/wiki/Cache_%28computing%29

“’http://www.blackwasp.co.uk/Builder.aspx

*°Tf you never used collections before and you are not a copy-editor, then you are probably reading the wrong book :-)
'Kent Beck, Implementation Patterns

https://martinfowler.com/eaaCatalog/repository.html
https://en.wikipedia.org/wiki/Cache_(computing)
http://www.blackwasp.co.uk/Builder.aspx
http://www.oodesign.com/observer-pattern.html
https://martinfowler.com/eaaCatalog/repository.html
https://en.wikipedia.org/wiki/Cache_(computing)
http://www.blackwasp.co.uk/Builder.aspx

O O b W N~

© 00 N O O b W N =

[N
o

How does a sender obtain a reference to a recipient (i.e. how connections are made)? 171

2. an “addition” method - where someone registers an observer by calling something like
sender .addRecipient(recipient) - in this approach, a collection of observers needs to
be maintained somewhere and the recipient registered as observer is merely added to the
collection.

Note that there is one similarity to the “passing inside a message” approach — in both, a recipient
is passed inside a message. The difference is that this time, contrary to “pass inside a message”
approach, the passed recipient is not used immediately (and then forgotten), but rather it’s
remembered (registered) for later use.

I hope I can clear up the confusion with a quick example.

Example

Suppose we have a temperature sensor that can report its current and historically mean value to
whoever subscribes with it. If no one subscribes, the sensor still does its job, because it still has
to collect the data for calculating a history-based mean value in case anyone subscribes later.

We may model this behavior by using an observer pattern and allow observers to register in
the sensor implementation. If no observer is registered, the values are not reported (in other
words, a registered observer is not required for the object to function, but if there is one, it can
take advantage of the reports). For this purpose, let’s make our sensor depend on an interface
called TemperatureObserver that could be implemented by various concrete observer classes.
The interface declaration looks like this:

public interface TemperatureObserver

{
void NotifyOn(
Temperature currentValue,
Temperature meanValue);
}

Now we’re ready to look at the implementation of the temperature sensor itself and how it uses
this TemperatureObserver interface. Let’s say that the class representing the sensor is called
TemperatureSensor. Part of its definition could look like this:

public class TemperatureSensor

{

private TemperatureObserver _observer

= new NullObserver(); //ignores reported values

private Temperature _meanValue
= Temperature.Celsius(Q);

// + maybe more fields related to storing historical data

11
12
13
14
15
16
17
18
19
20
21
22
23

© 00 N O O & W N =

I ==Y
W N s,

How does a sender obtain a reference to a recipient (i.e. how connections are made)? 172

public void Run()
{
while(/* needs to run */)
{
var currentValue = /* get current value somehow */;

_meanValue = /* update mean value somehow */;
_observer.NotifyOn(currentValue, _meanValue);

WaitUntilTheNextMeasurementTime();

As you can see, by default, the sensor reports its values to nowhere (Null0Observer), which is a
safe default value (using a null for a default value instead would cause exceptions or force us
to put a null check inside the Run() method). We have already seen such “null objects™* a few
times before (e.g. in the previous chapter, when we introduced the NoAlarm class) —NullObserver
is just another incarnation of this pattern.

Registering observers

Still, we want to be able to supply our own observer one day, when we start caring about
the measured and calculated values (the fact that we “started caring” may be indicated to our
application e.g. by a network packet or an event from the user interface). This means we need
to have a method inside the TemperatureSensor class to overwrite this default “do-nothing”
observer with a custom one after the TemperatureSensor instance is created. As I said, I don’t
like the “SetXYZ()” convention, so I will name the registration method FromNowOnReportTo()
and make the observer an argument. Here are the relevant parts of the TemperatureSensor class:

public class TemperatureSensor

{

private TemperatureObserver _observer

= new NullObserver(); //ignores reported values
Y/
public void FromNowOnReportTo(TemperatureObserver observer)

{

_Observer = observer;

s

>’This pattern has a name and the name is.. Null Object (surprise!). You can read more on this pattern at
http://www.cs.oberlin.edu/~jwalker/nullObjPattern/ and http://www.cs.oberlin.edu/~jwalker/refs/woolf.ps (a little older document)

© 00 N O O b W N =

I S =
O O b W N =~

How does a sender obtain a reference to a recipient (i.e. how connections are made)? 173

This allows us to overwrite the current observer with a new one should we ever need to do it.
Note that, as [mentioned, this is the place where registration approach differs from the “pass
inside a message” approach, where we also received a recipient in a message, but for immediate
use. Here, we don’t use the recipient (i.e. the observer) when we get it, but instead we save it for
later use.

Communication of intent: optional dependency

Allowing registering recipients after a sender is created is a way of saying: “the recipient is
optional — if you provide one, fine, if not, I will do my work without it”. Please, don’t use this
kind of mechanism for required recipients — these should all be passed through a constructor,
making it harder to create invalid objects that are only partially ready to work.

Let’s examine an example of a class that:

« accepts a recipient in its constructor,
« allows registering a recipient as an observer,
« accepts a recipient for a single method invocation

This example is annotated with comments that sum up what these three approaches say:

public class Sender

{
//"I will not work without a Recipienti”
public Sender(Recipienti1 recipient1) {...}

//"I will do fine without Recipient2 but you
//can overwrite the default here if you are
//interested in being notified about something
//or want to customize my default behavior"

public void Register(Recipient2 recipient2) {...}

//"I need a recipient3 only here and you get to choose
//what object to give me each time you invoke

//this method on me"

public void DoSomethingWith(Recipient3 recipient3) {...}

More than one observer

Now, the observer API we just skimmed over gives us the possibility to have a single observer
at any given time. When we register a new observer, the reference to the old one is overwritten.
This is not really useful in our context, is it? With real sensors, we often want them to report
their measurements to multiple places (e.g. we want the measurements printed on screen, saved
to database, used as part of more complex calculations). This can be achieved in two ways.

The first way would be to just hold a collection of observers in our sensor, and add to this
collection whenever a new observer is registered:

=~ O O b W N =

O O B W N

© 00 N O O b W N =

RN
= O

How does a sender obtain a reference to a recipient (i.e. how connections are made)?

private IList<TemperatureObserver> _observers
= new List<TemperatureObserver>();

public void FromNowOnReportTo(TemperatureObserver observer)

{

_observers.Add(observer) ;

In such case, reporting would mean iterating over the observers list:

foreach(var observer in _observers)

{

observer.NotifyOn(currentValue, meanValue);

174

The approach shown above places the policy for notifying observers inside the sensor. Many
times this could be sufficient. Still, the sensor is coupled to the answers to at least the following

questions:

« in what order do we notify the observers? In the example above, we notify them in order

of registration.

« how do we handle errors (e.g. one of the observers throws an exception) - do we stop
notifying further observers, or log an error and continue, or maybe do something else? In
the example above, we stop on first observer that throws an exception and rethrow the

exception. Maybe it’s not the best approach for our case?

« is our notification model synchronous or asynchronous? In the example above, we are using

a synchronous for loop.

We can gain a bit more flexibility by extracting the notification logic into a separate observer
that would receive a notification and pass it to other observers. We can call it “a broadcasting

observer”. The implementation of such observer could look like this:

public class BroadcastingObserver
. TemperatureObserver,

TemperatureObservable //I'11 explain it in a second

private IList<TemperatureObserver> _observers
= new List<TemperatureObserver>();

public void FromNowOnReportTo(TemperatureObserver observer)

{

_observers.Add(observer);

12
13
14
15
16
17
18
19
20
21
22

© 00 N O O b W N =

[T S S o O = U Y
S © 0 N O O b W N =~ O

Bsw N

How does a sender obtain a reference to a recipient (i.e. how connections are made)?

public void NotifyOn(
Temperature currentValue,
Temperature meanValue)

foreach(var observer in _observers)

{

observer .NotifyOn(currentValue, meanValue);

This BroadcastingObserver could be instantiated and registered like this:

//instantiation:
var broadcastingObserver
= new BroadcastingObserver();

//somewhere else in the code. .. :
sensor . FromNowOnReportTo(broadcastingObserver);

//somewhere else in the code. .. :
broadcastingObserver . FromNowOnReportTo(
new DisplayingObserver())

//somewhere else in the code. .. :
broadcastingObserver . FromNowOnReportTo(
new StoringObserver());

//somewhere else in the code. .. :
broadcastingObserver . FromNowOnReportTo(

new CalculatingObserver());

175

With this design, the other observers register with the broadcasting observer. However, they
don’t really need to know who they are registering with - to hide it, I introduced a special

interface called TemperatureObservable, which has the FromNowOnReportTo() method:

public interface TemperatureObservable

{

public void FromNowOnReportTo(TemperatureObserver observer);

This way, the code that registers an observer does not need to know what the concrete observable

object is.

=~ O U s W N

=~ O O s W N

How does a sender obtain a reference to a recipient (i.e. how connections are made)? 176

The additional benefit of modeling broadcasting as an observer is that it would allow us
to change the broadcasting policy without touching either the sensor code or the other
observers. For example, we might replace our for loop-based observer with something like
ParallelBroadcastingObserver that would notify each of its observers asynchronously instead
of sequentially. The only think we would need to change is the observer object that’s registered
with a sensor. So instead of:

//instantiation:
var broadcastingObserver
= new BroadcastingObserver();

//somewhere else in the code. .. :
sensor . FromNowOnReportTo(broadcastingObserver);

We would have

//instantiation:
var broadcastingObserver

= new ParallelBroadcastingObserver();

//somewhere else in the code. . .:

sensor . FromNowOnReportTo(broadcastingObserver);
and the rest of the code would remain unchanged. This is because the sensor implements:

« TemperatureObserver interface, which the sensor depends on,
« TemperatureObservable interface which the code that registers the observers depends on.

Anyway, as I said, use registering instances very wisely and only if you specifically need it.
Also, if you do use it, evaluate how allowing changing observers at runtime is affecting your
multithreading scenarios. This is because a collection of observers might potentially be modified
by two threads at the same time.

O O B W N~

Where are objects composed?

Ok, we went through some ways of passing a recipient to a sender. We did it from the “internal”
perspective of a sender that is given a recipient. What we left out for the most part is the “external”
perspective, i.e. who should pass the recipient into the sender?

For almost all of the approaches described above there is no limitation — you pass the recipient
from where you need to pass it.

There is one approach, however, that is more limited, and this approach is passing as a
constructor parameter.

Why is that? Because, we are trying to be true to the principle of “separating objects creation
from use” and this, in turn, is a result of us striving for composability.

Anyway, if an object cannot both use and create another object, we have to make special objects
just for creating other objects (there are some design patterns for how to design such objects, but
the most popular and useful is a factory) or defer the creation up to the application entry point
(there is also a pattern for this, called composition root).

So, we have two cases to consider. I'll start with the second one — composition root.

Composition Root

let’s assume, just for fun, that we are creating a mobile game where a player has to defend a
castle. This game has two levels. Each level has a castle to defend. When we manage to defend
the castle long enough, the level is considered completed and we move to the next one. So, we
can break down the domain logic into three classes: a Game that has two Levels and each of
them that contain a Castle. Let’s also assume that the first two classes violate the principle of
separating use from construction, i.e. that a Game creates its own levels and each Level creates
its own castle.

A Game class is created in the Main() method of the application:

public static void Main(string[] args)

{

var game = new Game();

game.Play();
}

The Game creates its own Level objects of specific classes implementing the Level interface and
stores them in an array:

o N O O b W N =

© 00 N O O b W N =

[=N
w N =~ O

© 00 N O O & W N =

Where are objects composed? 178

public class Game

{

private Level[] _levels = new[] {
new Levell1(), new Level2()

};

//some methods here that use the levels

And the Level implementations create their own castles and assign them to fields of interface
type Castle:

public class Levell

{

private Castle _castle = new SmallCastle();

//some methods here that use the castle

public class Level2

{

=

private Castle _castle = new BigCastle();

//some methods here that use the castle

Now, I said (and I hope you see it in the code above) that the Game, Level1 and Level2 classes
violate the principle of separating use from construction. We don’t like this, do we? Let’s try to
make them more compliant to the principle.

Achieving separation of use from construction

First, let’s refactor the Level1 and Level2 according to the principle by moving instantiation of
their castles outside. As existence of a castle is required for a level to make sense at all — we will
say this in code by using the approach of passing a castle through a Level’s constructor:

public class Levell

{

private Castle _castle;

//now castle is received as
//constructor parameter
public Level1(Castle castle)
{

_castle = castle;

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

© 00 N O O b W N =

N
[~

Where are objects composed? 179

//some methods here that use the castle

public class Level2

{

private Castle _castle;

//now castle is received as
//constructor parameter
public Level2(Castle castle)
{

_castle = castle;

//some methods here that use the castle

This was easy, wasn’t it? However, it leaves us with an issue to resolve: if the instantiations of
castles are not in Level1 and Level2 anymore, then they have to be passed by whoever creates
the levels. In our case, this falls on the shoulders of Game class:

public class Game
{
private Level[] _levels = new[] {
//now castles are created here as well:
new Leveli1(new SmallCastle()),
new Level2(new BigCastle())

}
//some methods here that use the levels
But remember - this class suffers from the same violation of not separating objects use from

construction as the levels did. Thus, to make this class compliant to the principle as well, we
have to treat it the same as we did the level classes — move the creation of levels outside:

O© 00 I O O b W N =

[=N
w N =~ O

© 00 N1 O O b W N =

RN
= O

© 00 N O O b W N =

NN
= O

Where are objects composed? 180

public class Game

{

private Level[] _levels;

//now levels are received as
//constructor parameter
public Game(Level[] levels)
{

_levels = levels;

//some methods here that use the levels

There, we did it, but again, the levels now must be supplied by whoever creates the Game. Where
do we put them? In our case, the only choice left is the Main() method of our application, so this
is exactly where we are going to create all the objects that we pass to a Game:

public static void Main(string[] args)
{
var game =
new Game(
new Level[] {
new Leveli(new SmallCastle()),
new Level2(new BigCastle())

});

game.Play();

By the way, the Levell and Level2 are differed only by the castle types and this difference
is no more as we refactored it out, so we can make them a single class and call it e.g.
TimeSurvivallLevel (because such level is considered completed when we manage to defend
our castle for a specific period of time). After this move, now we have:

public static void Main(string[] args)
{
var game =
new Game(
new Level[] {
new TimeSurvivallLevel(new SmallCastle()),
new TimeSurvivallLevel(new BigCastle())

});

game.Play();

Where are objects composed? 181

Looking at the code above, we might come to another funny conclusion - this violates the
principle of separating use from construction as well! First, we create and connect the web of
objects and then send the Play() message to the game object. Can we fix this as well?

I would say “no”, for two reasons:

1. There is no further place we can defer the creation. Sure, we could move the creation of
the Game object and its dependencies into a separate object responsible only for the creation
(e.g. a factory), but it would still leave us with the question: where do we create the factory?
Of course, we could use a static method to call it in our Main() like this: var app =
ApplicationRoot.Create(), but that would be delegating the composition, not pulling it
up.

2. The whole point of the principle we are trying to apply is decoupling, i.e. giving ourselves
the ability to change one thing without having to change another. When we think of it,
there is no point of decoupling the entry point of the application from the application itself,
since this is the most application-specific and non-reusable part of the application we can
imagine.

What I consider important is that we reached a place where the web of objects is created using
constructor approach and we have no place left to defer the creation of the web (in other words,it
is as close as possible to application entry point). Such a place is called a composition root>.

We say that composition root is “as close as possible” to application entry point, because there
may be different frameworks in control of your application and you will not always have the
Main() method at your service®.

Apart from the constructor invocations, the composition root may also contain, e.g., registrations
of observers (see registration approach to passing recipients) if such observers are already known
at this point. It is also responsible for disposing of all objects it created that require explicit
disposal after the application finishes running. This is because it creates them and thus it is the
only place in the code that can safely determine when they are not needed.

The composition root above looks quite small, but you can imagine it growing a lot in bigger
applications. There are techniques of refactoring the composition root to make it more readable
and cleaner — we will explore such techniques in a dedicated chapter.

Factories

Earlier, I described how it isn’t always possible to pass everything through the constructor. One
of the approaches we discussed that we can use in such cases is a factory.

When we previously talked about factories, we focused on it being just a source of objects. This
time we will have a much closer look at what factories are and what are their benefits.

But first, let’s look at an example of a factory emerging in code that was not using it, as a mere
consequence of trying to follow the principle of separating objects use from construction.

>*http://blog.ploeh.dk/2011/07/28/CompositionRoot/
**For details, check Dependency Injection in .NET by Mark Seemann.

http://blog.ploeh.dk/2011/07/28/CompositionRoot/
http://blog.ploeh.dk/2011/07/28/CompositionRoot/

© 00 N O O b W N =

NN NN NN NN R R R Sl s
= 0 O B WD S O O N0 U WD

Where are objects composed? 182

Emerging factory - example

Consider the following code that receives a frame that came from the network (as raw data),
then packs it into an object, validates and applies to the system:

public class Messagelnbound

{

//...Initialization code here. ..

public void Handle(Frame frame)

{
// determine the type of message
// and wrap it with an object
ChangeMessage change = null;
if(frame.Type == FrameTypes.Update)

{

change = new UpdateRequest(frame);
}
else if(frame.Type == FrameTypes.Insert)
{

change = new InsertRequest(frame);
}
else
{

throw

new InvalidRequestException(frame.Type);

}

change.ValidateUsing(_validationRules);
_system.Apply(change);

Note that this code violates the principle of separating use from construction. The change is first
created, depending on the frame type, and then used (validated and applied) in the same method.
On the other hand, if we wanted to separate the construction of change from its use, we have to
note that it is impossible to pass an instance of the ChangeMessage through the MessageInbound
constructor, because this would require us to create the ChangeMessage before we create the
MessageInbound. Achieving this is impossible, because we can create messages only as soon as
we know the frame data which the MessageInbound receives.

Thus, our choice is to make a special object that we would move the creation of new messages
into. It would produce new instances when requested, hence the name factory. The factory itself
can be passed through a constructor, since it does not require a frame to exist — it only needs one
when it is asked to create a message.

Knowing this, we can refactor the above code to the following:

© 00 N O O & W N =

I = U=
W N s,

Where are objects composed? 183

public class MessagelInbound
{
private readonly
MessageFactory _messageFactory;
private readonly
ValidationRules _validationRules;
private readonly

ProcessingSystem _system;

public MessagelInbound(
//this is the factory:
MessageFactory messageFactory,
ValidationRules validationRules,
ProcessingSystem system)

_messageFactory = messageFactory;
_validationRules = validationRules;
_system = system;

public void Handle(Frame frame)

{
var change = _messageFactory.CreateFrom(frame);
change.ValidateUsing(_validationRules);
_system.Apply(change);

This way we have separated message construction from its use.

By the way, note that we extracted not only a single constructor, but the whole object creation
logic. It’s in the factory now:

public class InboundMessageFactory
MessageFactory

ChangeMessage CreateFrom(Frame frame)

{
if(frame.Type == FrameTypes.Update)

{

return new UpdateRequest(frame);

}

else if(frame.Type == FrameTypes.Insert)

{

return new InsertRequest(frame);

}

else

15
16
17
18
19
20

Bw N

© 00 N O O b W N =

RGN
=

Where are objects composed? 184

throw

new InvalidRequestException(frame.Type);

And that’s it. We have a factory now and the way we got to this point was by trying to adhere
to the principle of separating use from construction.

Now that we are through with the example, we’re ready for some more general explanation on
factories.

Reasons to use factories

As demonstrated in the example, factories are objects responsible for creating other objects.
They are used to achieve the separation of objects construction from their use. They are useful
for creating objects that live shorter than the objects that use them. Such shorter lifespan results
from not all of the context necessary to create an object being known up-front (i.e. until a user
enters credentials, we would not be able to create an object representing their account). We
pass the part of the context we know up-front (so called global context) in the factory via its
constructor and supply the rest that becomes available later (so called local context) in a form
of factory method parameters when it becomes available:

var factory = new Factory(globalContextKnownUpFront);

//... some time later:
factory.Createlnstance(localContext);

Another case for using a factory is when we need to create a new object each time some kind of
request is made (a message is received from the network or someone clicks a button):

var factory = new Factory(globalContext);

/)

//we need a fresh instance

factory.Createlnstance();

/)

//we need another fresh instance

factory.Createlnstance();

In the above example, two independent instances are created, even though both are created in
an identical way (there is no local context that would differentiate them).

Both these reasons were present in our example from the last chapter:

=~ O O b W N =

© 00 N O O b W N =

Where are objects composed? 185

1. We were unable to create a ChangeMessage before knowing the actual Frame.
2. For each Frame received, we needed to create a new ChangeMessage instance.

Simplest factory

The simplest possible example of a factory object is something along the following lines:

public class MyMessageFactory

{
public MyMessage CreateMyMessage()
{

return new MyMessage();

Even in this primitive shape the factory already has some value (e.g. we can make MyMessage an
abstract type and return instances of its subclasses from the factory, and the only place impacted
by the change is the factory itself>’). More often, however, when talking about simple factories,
I think about something like this:

//Let's assume MessageFactory
//and Message are interfaces
public class XmlMessageFactory : MessageFactory

{

public Message CreateSessionlnitialization()

{

return new XmlSessionlInitialization();

Note the two things that the factory in the second example has that the one in the first example
did not:

« it implements an interface (a level of indirection is introduced)
« its CreateSessionInitialization() method declares a return type to be an interface
(another level of indirection is introduced)

Thus, we introduced two additional levels of indirection. In order for you to use factories effec-
tively, I need you to understand why and how these levels of indirection are useful, especially
when I talk with people, they often do not understand the benefits of using factories, “because we
already have the new operator to create objects”. The point is, by hiding (encapsulating) certain
information, we achieve more flexibility:

55

A. Shalloway et al., Essential Skills For The Agile Developer.

a b w N

Where are objects composed? 186

Factories allow creating objects polymorphically
(encapsulation of type)

Each time we invoke a new operator, we have to put a name of a concrete type next to it:

new List<int>(); //0K!
new IList<int>(); //won't compile. ..

This means that whenever we change our mind and instead of using List<int>() we want to
use an object of another class (e.g. SortedList<int>()), we have to either change the code to
delete the old type name and put new type name, or provide some kind of conditional (if-else).
Both options have drawbacks:

« changing the name of the type requires a code change in the class that calls the constructor
each time we change our mind, effectively tying us to a single implementation,

« conditionals require us to know all the possible subclasses up-front and our class lacks
extensibility that we often require.

Factories allow dealing with these defficiencies. Because we get objects from a factory by
invoking a method, not by saying explicitly which class we want to get instantiated, we can
take advantage of polymorphism, i.e. our factory may have a method like this:

IList<int> CreateContainerForData() {...}
which returns any instance of a real class that implements IList<int> (say, List<int>):

public IList<int> /* return type is interface */
CreateContainerForData()

{

return new List<int>(); /* instance of concrete class */

}

Of course, it makes little sense for the return type of the factory to be a library class or interface
like in the above example (rather, we use factories to create instances of our own classes), but
you get the idea, right?

Anyway, it’s typical for a declared return type of a factory to be an interface or, at worst, an
abstract class. This means that whoever uses the factory, it knows only that it receives an object
of a class that is implementing an interface or is derived from abstract class. But it doesn’t know
exactly what concrete type it is. Thus, a factory may return objects of different types at different
times, depending on some rules only it knows.

Time to look at some more realistic example of how to apply this. Let’s say we have a factory of
messages like this:

20
21
22
23

Where are objects composed? 187

public class VersioniProtocolMessageFactory
MessageFactory

public Message NewInstanceFrom(MessageData rawData)

{

if(rawData.IsSessionInit())

{

return new SessionInit(rawData);

}

else if(rawData.IsSessionEnd())

{

return new SessionEnd(rawData);

}

else if(rawData.IsSessionPayload())

{

return new SessionPayload(rawData);

}

else

{

throw new UnknownMessageException(rawData);

The factory can create many different types of messages depending on what is inside the raw
data, but from the perspective of the user of the factory, this is irrelevant. All that it knows is that
it gets a Message, thus, it (and the rest of the code operating on messages in the whole application
for that matter) can be written as general-purpose logic, containing no “special cases” dependent
on type of message:

var message = _messageFactory.NewInstanceFrom(rawData);
message.ValidateUsing(_primitiveValidations);
message . ApplyTo(_sessions);

Note that this code doesn’t need to change in case we want to add a new type of message that’s
compatible with the existing flow of processing messages®. The only place we need to modify
in such case is the factory. For example, imagine we decided to add a session refresh message.
The modified factory would look like this:

*Salthough it does need to change when the rule “first validate, then apply to sessions” changes

Where are objects composed? 188

public class VersioniProtocolMessageFactory
: MessageFactory

public Message NewInstanceFrom(MessageData rawData)

{

if(rawData.IsSessionInit())

{

return new SessionInit(rawData);

}

else if(rawData.IsSessionEnd())

{

return new SessionEnd(rawData);

}

else if(rawData.IsSessionPayload())

{

return new SessionPayload(rawData);

}

else if(rawData.IsSessionRefresh())
{
//new message type!
return new SessionRefresh(rawData);

}

else

{

throw new UnknownMessageException(rawData);

}

and the rest of the code could remain untouched.

Using the factory to hide the real type of message returned makes maintaining the code easier,
because there are fewer places in the code impacted by adding new types of messages to the
system or removing existing ones (in our example — in case when we do not need to initiate a
session anymore) °’ — the factory hides that and the rest of the application is coded against the
general scenario.

The above example demonstrated how a factory can hide that many classes can play the same
role (i.e. different messages could play the role of a Message), but we can as well use factories
to hide that the same class plays many roles. An object of the same class can be returned from
different factory method, each time as a different interface and clients cannot access the methods
it implements from other interfaces.

Factories are themselves polymorphic (encapsulation of rule)

Another benefit of factories over inline constructor calls is that if a factory is received an object
that can be passed as interface, which allows us to use use another factory that implements the

>"Note that this is an application of Gang of Four guideline: “encapsulate what varies”.

=~ O O s W N

Bw N

Where are objects composed? 189

same interface in its place via polymorphism. This allows replacing the rule used to create objects
with another one, by replacing one factory implementation with another.

Let’s get back to the example from the previous section, where we had aVersion1ProtocolMessageFactory

that could create different kinds of messages based on some flags being set on raw data (e.g.
IsSessionInit(), IsSessionEnd() etc.). Imagine we decided that having so many flags is too
cumbersome as we need to deal with a situation where two or more flags are set to true (e.g. a
message can indicate that it’s both a session initialization and a session end). Thus, a new version
of the protocol was conceived — a version 2. This version, instead of using several flags, uses an
enum (called MessageTypes) to specify message type:

public enum MessageTypes

{
SessionlInit,
SessionEnd,
SessionPayload,
SessionRefresh

thus, instead of querying different flags, version 2 allows querying a single value that defines
the message type.

Unfortunately, to sustain backward compatibility with some clients, both versions of the protocol
need to be supported, each version hosted on a separate endpoint. The idea is that when all clients
migrate to the new version, the old one will be retired.

Before introducing version 2, the composition root had code that looked like this:

var controller = new MessagingApi(new VersioniProtocolMessageFactory());
/S

controller.HostApi(); //start listening to messages
where MessagingApi has a constructor accepting the MessageFactory interface:

public MessagingApi(MessageFactory messageFactory)

{

_messagefFactory = messageFactory;

and some general message handling code:

var message = _messageFactory.NewInstanceFrom(rawData);
message.ValidateUsing(_primitiveValidations);

message . ApplyTo(_sessions);

This logic needs to remain the same in both versions of the protocol. How do we achieve this
without duplicating this code for each version?

The solution is to create another message factory, i.e. another class implementing the MessageFactory

interface. Let’s call it Version2ProtocolMessageFactory and implement it like this:

O© 00 I O O b W N =

T N S N S o S = S N N S
, O O 00 N O O b W N =~ O

g b W N =

Where are objects composed? 190

//note that now it is a version 2 protocol factory
public class Version2ProtocolMessageFactory
MessageFactory

public Message NewlInstanceFrom(MessageData rawData)

{
switch(rawData.GetMessageType())

{
case MessageTypes.Sessionlnit:
return new SessionlInit(rawData);
case MessageTypes.SessionEnd:
return new SessionEnd(rawData);
case MessageTypes.SessionPayload:
return new SessionPayload(rawData);
case MessageTypes.SessionRefresh:
return new SessionRefresh(rawData);
default:
throw new UnknownMessageException(rawData);

Note that this factory can return objects of the same classes as version 1 factory, but it makes
the decision using the value obtained from GetMessageType() method instead of relying on the

flags.

Having this factory enables us to create an MessagingApi instance working with either the
version 1 protocol:

new MessagingApi(new VersioniProtocolMessageFactory());
or the version 2 protocol:
new MessagingApi(new Version2ProtocolMessageFactory());

and, since for the time being we need to support both versions, our composition root will have
this code somewhere’®:

var viController = new MessagingApi(new VersioniProtocolMessageFactory());
var v2Controller = new MessagingApi(new Version2ProtocolMessageFactory());
S/

viController.HostApi(); //start listening to messages
v2Controller.HostApi(); //start listening to messages

*¥The two versions of the API would probably be hosted on different URLs or on different ports. In real-world scenario, these different
values would probably need to be passed as constructor parameters as well.

© 0O N O O & W N =

NN NN N N P Ry s Ly
O b W0 N P 0 O 00 N O O b W N »~ O

Where are objects composed? 191

Note that the MessagingApi class itself did not need to change. As it depends on the MessageFactory
interface, all we had to do was supplying a different factory object that made its decision in a
different way:.

This example shows something I like calling “encapsulation of rule”. The logic inside the factory
is a rule on how, when and which objects to create. Thus, if we make our factory implement
an interface and have other objects depend on this interface only, we will be able to switch the
rules of object creation by providing another factory without having to modify these objects (as
in our case where we did not need to modify the MessagingApi class).

Factories can hide some of the created object dependencies
(encapsulation of global context)

Let’s consider another toy example. We have an application that, again, can process messages.
One of the things that is done with those messages is saving them in a database and another is val-
idation. The processing of message is, like in previous examples, handled by a MessageProcessing
class, which, this time, does not use any factory, but creates the messages based on the frame
data itself. Let’s look at this class:

public class MessageProcessing

{
private DataDestination _database;
private ValidationRules _validation;

public MessageProcessing(
DataDestination database,
ValidationRules validation)

_database = database;
_validation = validation;

public void ApplyTo(MessageData data)
{

//note this creation:
var message =
new Message(data, _database, _validation);

message.Validate();

message.Persist();

//... other actions

There is one noticeable thing about the MessageProcessing class. It depends on both DatabDestination
and ValidationRules interfaces, but does not use them. The only thing it needs those interfaces

© 00 N O O b W N =

T S =Y
O O b W N =~

17
18
19
20

© 00 N O O b W N =

NN
N O

Where are objects composed? 192

for is to supply them as parameters to the constructor of a Message. As a number of Message con-
structor parameters grows, the MessageProcessing will have to change to take more parameters
as well. Thus, the MessageProcessing class gets polluted by something that it does not directly
need.

We can remove these dependencies from MessageProcessing by introducing a factory that would
take care of creating the messages in its stead. This way, we only need to pass DataDestination
and ValidationRules to the factory, because MessageProcessing never needed them for any
reason other than creating messages. This factory may look like this:

public class MessageFactory
{
private DataDestination _database;

private ValidationRules _validation;

public MessageFactory(
DataDestination database,

ValidationRules validation)

_database = database;
_validation = validation;

//clients only need to pass data here:

public Message CreateFrom(MessageData data)

{

return
new Message(data, _database, _validation);

Now, note that the creation of messages was moved to the factory, along with the dependencies
needed for this. The MessageProcessing does not need to take these dependencies anymore, and
can stay more true to its real purpose:

public class MessageProcessing

{
private MessageFactory _factory;
//now we depend on the factory only:
public MessageProcessing(

MessageFactory factory)

_factory = factory;

public void ApplyTo(MessageData data)

13
14
15
16
17
18
19
20
21
22
23

Where are objects composed? 193

//no need to pass database and validation
//since they already are inside the factory:

var message = _factory.CreateFrom(data);

message.Validate();

message.Persist();

//... other actions

So, instead of DataDestination and ValidationRules interfaces, the MessageProcessing de-
pends only on the factory. This may not sound as a very attractive tradeoff (taking away
two dependencies and introducing one), but note that whenever the MessageFactory needs
another dependency that is like the existing two, the factory is all that will need to change.
The MessageProcessing will remain untouched and still coupled only to the factory.

The last thing that I want to mention is that not all dependencies can be hidden inside a factory.
Note that the factory still needs to receive the MessageData from whoever is asking for a Message,
because the MessageData is not available when the factory is created. You may remember that I
call such dependencies a local context (because it is specific to a single use of a factory and passed
from where the factory creation method is called). On the other hand, what a factory accepts
through its constructor can be called a global context (because it is the same throughout the
factory lifetime). Using this terminology, the local context cannot be hidden from users of the
factory, but the global context can. Thanks to this, the classes using the factory do not need to
know about the global context and can stay cleaner, coupled to less things and more focused.

Factories can help increase readability and reveal intention
(encapsulation of terminology)

Let’s assume we are writing an action-RPG game which consists of many game levels (not to
be mistaken with experience levels). Players can start a new game or continue a saved game.
When they choose to start a new game, they are immediately taken to the first level with empty
inventory and no skills. Otherwise, when they choose to continue an old game, they have to
select a file with a saved state (then the game level, skills and inventory are loaded from the file).
Thus, we have two separate workflows in our game that end up with two different methods
being invoked: OnNewGame() for new game mode and OnContinue() for resuming a saved game:

O© 00 I O O b W N =

© 0O N O O & W N =

Bw N

Where are objects composed? 194

public void OnNewGame()

{
s

public void OnContinue(PathToFile savedGameFilePath)

{
ass

In each of these methods, we have to somehow assemble a Game class instance. The constructor
of Game allows composing it with a starting level, character’s inventory and a set of skills the
character can use:

public class FantasyGame : Game

{
public FantasyGame(
Level startinglLevel,
Inventory inventory,
Skills skills)
{
}
}

There is no special class for “new game” or for “resumed game” in our code. A new game is just
a game starting from the first level with empty inventory and no skills:

var newGame = new FantasyGame(
new FirstlLevel(),
new BackpackInventory(),
new KnightSkills());

In other words, the “new game” concept is expressed by a composition of objects rather than by
a single class, called e.g. NewGame.

Likewise, when we want to create a game object representing resumed game, we do it like this:

O© 00 I O O b W N =

[=N
w N =~ O

© 00 N O O & W N =

NN N N P R R N N L s s
W N O O 0N 0O O kx W N = O

Where are objects composed?

try
{

saveFile.Open();

var loadedGame = new FantasyGame(
saveFile.lLoadlLevel(),
saveFile.lLoadlInventory(),
saveFile.lLoadSkills());
}
finally

{

saveFile.Close();

195

Again, the concept of “resumed game” is represented by a composition rather than a single class,
just like in case of “new game”. On the other hand, the concepts of “new game” and “resumed
game” are part of the domain, so we must make them explicit somehow or we loose readability.

One of the ways to do this is to use a factory®’. We can create such factory and put inside two
methods: one for creating a new game, another for creating a resumed game. The code of the

factory could look like this:

public class FantasyGameFactory : GameFactory

{

public Game NewGame()
{
return new FantasyGame(
new FirstlLevel(),
new BackpackInventory(),
new KnightSkills());

}
public Game GameSavedIn(PathToFile savedGameFilePath)
{

var saveFile = new SaveFile(savedGameFilePath);

try

{

saveFile.Open();

var loadedGame = new FantasyGame(

saveFile.LoadlLevel(),
saveFile.LoadInventory(),
saveFile.LoadSkills());

return loadedGame;

**There are simpler ways, yet none is as flexible as using factories.

24
25
26
27
28
29
30

© 00 N O O b W N =

© 00 N O O b W N =

(RN
= O

Where are objects composed?

}
finally

{

saveFile.Close();

196

Now we can use the factory in the place where we are notified of the user choice. Remember?

This was the place:

public void OnNewGame()

{
/e

public void OnContinue(PathToFile savedGameFilePath)

{
e

When we fill the method bodies with the factory usage, the code ends up like this:

public void OnNewGame()
{

var game = _gameFactory.NewGame();
game.Start();

public void OnContinue(PathToFile savedGameFilePath)
{

var game = _gameFactory.GameSavedIn(savedGameFilePath);
game.Start();

Note that using factory helps in making the code more readable and intention-revealing.
Instead of using a nameless set of connected objects, the two methods shown above ask using
terminology from the domain (explicitly requesting either NewGame() or GameSavedIn(path)).
Thus, the domain concepts of “new game” and “resumed game” become explicit. This justifies
the first part of the name I gave this section (i.e. “Factories can help increase readability and

reveal intention”).

There is, however, the second part of the section name: “encapsulating terminology” which I need
to explain. Here’s an explanation: note that the factory is responsible for knowing what exactly
the terms “new game” and “resumed game” mean. As the meaning of the terms is encapsulated
in the factory, we can change the meaning of these terms throughout the application merely

© 00 N O O b W N =

O© 00 1 O O b W N =

Where are objects composed? 197

by changing the code inside the factory. For example, we can say that new game starts with
inventory that is not empty, but contains a basic sword and a shield, by changing the NewGame ()
method of the factory to this:

public Game NewGame()
{
return new FantasyGame(
new FirstlLevel(),
new BackpackInventory(
new BasicSword(),
new BasicShield()),
new KnightSkills());

Putting it all together, factories allow giving names to some specific object compositions to
increase readability and they allow hiding the meaning of some of the domain terms for easier
change in the future, because we can modify a meaning of the encapsulated term by changing
the code inside the factory methods.

Factories help eliminate redundancy

Redundancy in code means that at least two things need to change for the same reason in the
same way*’. Usually it is understood as code duplication, but I consider “conceptual duplication”
a better term. For example, the following two methods are not redundant, even though the
code seems duplicated (by the way, the following is not an example of good code, just a simple
illustration):

public int MetersToCentimeters(int value)

{

return value*100;

}

public int DollarsToCents(int value)

{

return value*100;

}

As I said, I don’t consider this to be redundancy, because the two methods represent different
concepts that would change for different reasons. Even if I was to extract “common logic”
from the two methods, the only sensible name I could come up with would be something like
MultiplyBy100() which, in my opinion, wouldn’t add any value at all.

Note that so far, we considered four things factories encapsulate about creation of objects:

60

A. Shalloway et al., Essential Skills For The Agile Developer.

Where are objects composed? 198

1. Type

2. Rule

3. Global context
4. Terminology

Thus, if factories didn’t exist, all these concepts would leak to surrounding classes (we saw an
example when we were talking about encapsulation of global context). Now, as soon as there
is more than one class that needs to create instances, these things leak to all of these classes,
creating redundancy. In such case, any change to how instances are created probably means a
change to all classes needing to create those instances.

Thankfully, by having a factory — an object that takes care of creating other objects and nothing
else — we can reuse the ruleset, the global context and the type-related decisions across many
classes without any unnecessary overhead. All we need to do is reference the factory and ask it
for an object.

There are more benefits to factories, but I hope I explained myself why I consider them a pretty
darn beneficial concept for a reasonably low cost.

Summary

In the last chapter several chapters, I tried to show you a variety of ways of composing objects
together. Don’t worry if you feel overwhelmed, for the most part, just remember to follow the
principle of separating use from construction and you should be fine.

The rules outlined here apply to the most of the objects in our application. Wait, did I say most
of? Not all? So there are exceptions? Yes, there are and we’ll talk about them shortly, when I
introduce value objects, but first, we need to further examine the influence composability has
on our object-oriented design approach.

s W N

Interfaces

Some objects are harder to compose with other objects, others are easier. Of course, we are
striving for the higher composability. There are numerous factors influencing this. I already
discussed some of them indirectly, so time to sum things up and fill in the gaps. This chapter
will deal with the role interfaces play in achieving high composability and the next one will deal
with the concept of protocols.

Classes vs interfaces

As we said, a sender is composed with a recipient by obtaining a reference to it. Also, we said
that we want our senders to be able to send messages to many different recipients. This is, of
course, done using polymorphism.

So, one of the questions we have to ask ourselves in our quest for high composability is: on
what should a sender depend on to be able to work with as many recipients as possible? Should
it depend on classes or interfaces? In other words, when we plug in an object as a message
receipient like this:

public Sender(Recipient recipient)

{

this._recipient = recipient;

Should the Recipient be a class or an interface?

If we assume that Recipient is a class, we can get the composability we want by deriving another
class from it and implementing abstract methods or overriding virtual ones. However, depending
on a class as a base type for a recipient has the following disadvantages:

1. The recipient class may have some real dependencies. For example, if our Recipient
depends on Windows Communication Foundation (WCF) stack, then all classes depending
directly on Recipient will indirectly depend on WCEF, including our Sender. The more
damaging version of this problem is where such a Recipient class does something like
opening a network connection in a constructor - the subclasses are unable to prevent it, no
matter if they like it or not, because a subclass has to call a superclass’ constructor.

2. Recipient’s constructor must be invoked by any class deriving from it, which may be
smaller or bigger trouble, depending on what kind of parameters the constructor accepts
and what it does.

3. In languages that support single inheritance only, deriving from Recipient class uses up
the only inheritance slot, constraining our design.

Interfaces 200

4. We must make sure to mark all the methods of Recipient class as virtual to enable
overriding them by subclasses. otherwise, we won’t have full composability. Subclasses
will not be able to redefine all of the Recipient behaviors, so they will be very constrained
in what they can do.

As you see, there are some difficulties using classes as “slots for composability”, even if
composition is technically possible this way. Interfaces are far better, just because they do not
have the above disadvantages.

It is decided then that if a sender wants to be composable with different recipients, it has to accept
a reference to a recipient in a form of interface reference. We can say that, by being lightweight
and behaviorless, interfaces can be treated as “slots” or “sockets” for plugging in different
objects.

As a matter of fact, on UML diagrams, one way to depict a class implementing an interface is by
drawing it with a plug. Thus, it seems that the “interface as slot for pluggability” concept is not
so unusual.

Q
Recipjent2

ConcreteRecipient

Recipientl

QO
Recipient3

ConcreteRecipient class implementing three interfaces in UML. The interfaces are shown as “plugs” exposed by
the class meaning it can be plugged into anything that uses any of the three interfaces

As you may have already guessed from the previous chapters, we are taking the idea of
pluggability and composability to the extreme, making it one of the top priorities.

Events/callbacks vs interfaces - few words on roles

Did I just say that composability is “one of the top priorities” in our design approach? Wow, that’s
quite a statement, isn’t it? Unfortunately for me, it also lets you raise the following argument:
“Hey, interfaces are not the most extreme way of achieving composability! What about e.g. C#
events feature? Or callbacks that are supported by some other languages? Wouldn’t it make the
classes even more context-independent and composable, if we connected them through events
or callbacks, not interfaces?”

Actually, it would, but it would also strip us from another very important aspect of our design
approach that I did not mention explicitly until now. This aspect is: roles. When we use interfaces,
we can say that each interface stands for a role for a real object to play. When these roles are
explicit, they help design and describe the communication between objects.

© 00 N O O b W N =

N
[\

© 00 N O O b W N =

NN
=

Interfaces 201

Let’s look at an example of how not defining explicit roles can remove some clarity from the
design. This is a sample method that sends some messages to two recipients held as interfaces:

//role players:
private readonly Rolel recipienti;
private readonly Role2 recipient2;

public void SendSomethingToRecipients()
{

recipient1.DoX();

recipient1.DoY();

recipient2.DoZ();

and we compare it with similar effect achieved using callback invocation:

//callbacks:

private readonly Action DoX;
private readonly Action DoY;
private readonly Action DoZ;

public void SendSomethingToRecipients()
{

DoX();

DoY();

Doz();

We can see that in the second case we are losing the notion of which message belongs to which
recipient — each callback is standalone from the point of view of the sender. This is unfortunate,
because in our design approach, we want to highlight the roles each recipient plays in the
communication, to make it readable and logical. Also, ironically, decoupling using events or
callbacks can make composability harder. This is because roles tell us which sets of behaviors
belong together and thus, need to change together. If each behavior is triggered using a separate
event or callback, an overhead is placed on us to remember which behaviors should be changed
together, and which ones can change independently.

This does not mean that events or callbacks are bad. It’s just that they are not fit for replacing
interfaces — in reality, their purpose is a little bit different. We use events or callbacks not to
tell somebody to do something, but to indicate what happened (that’s why we call them events,
after all...). This fits well the observer pattern we already talked about in the previous chapter.
So, instead of using observer objects, we may consider using events or callbacks instead (as
in everything, there are some tradeoffs for each of the solutions). In other words, events and
callbacks have their use in the composition, but they are fit for a case so specific, that they cannot
be treated as a default choice. The advantage of interfaces is that they bind together messages
that represent a coherent abstractions and convey roles in the communication. This improves
readability and clarity.

g b W N =

a b w N

Interfaces 202

Small interfaces

Ok, so we said that he interfaces are “the way to go” for reaching the strong composability we’re
striving for. Does merely using interfaces guarantee us that the composability will be strong?
The answer is “no” — while using interfaces as “slots” is a necessary step in the right direction, it
alone does not produce the best composability.

One of the other things we need to consider is the size of interfaces. Let’s state one thing that is
obvious in regard to this:

All other things equal, smaller interfaces (i.e. with less methods) are easier to implement
than bigger interfaces.

The obvious conclusion from this is that if we want to have really strong composability, our
“slots”, i.e. interfaces, have to be as small as possible (but not smaller — see previous section on
interfaces vs events/callbacks). Of course, we cannot achieve this by blindly removing methods
from interfaces, because this would break classes that use these methods e.g. when someone is
using an interface implementation like this:

public void Process(Recipient recipient)
{
recipient.DoSomething();
recipient.DoSomethingElse();

}

It is impossible to remove either of the methods from the Recipient interface, because it would
cause a compile error saying that we are trying to use a method that does not exist.

So, what do we do then? We try to separate groups of methods used by different senders and
move them to separate interfaces, so that each sender has access only to the methods it needs.
After all, a class can implement more than one interface, like this:

public class ImplementingObject
Inter faceForSender1,
Inter faceForSender2,
Inter faceForSender3

{ ...}

This notion of creating a separate interface per sender instead of a single big interface for all
senders is known as the Interface Segregation Principle®’.

A simple example: separation of reading from writing

Let’s assume we have a class in our application that represents enterprise organizational
structure. This application exposes two APIs. The first one serves for notifications about changes
of organizational structure by an administrator (so that our class can update its data). The

“'http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

O© 00 1 O O b W N =

O = = =S
0 N O O b W N -~ O

O© 00 I O O b W N =

I =S
W N s,

Interfaces 203

second one is for client-side operations on the organizational data, like listing all employees.
The interface for the organizational structure class may contain methods used by both these
APIs:

public interface
OrganizationStructure
{
W2
//used by administrator:

LIS S

void Make(Change change);
//...other administrative methods

SIS S
//used by clients:

LIS

void ListAllEmployees(
EmployeeDestination destination);
//...other client-side methods

However, the administrative API handling is done by a different code than the client-side API
handling. Thus, the administrative part has no use of the knowledge about listing employees and
vice-versa — the client-side one has no interest in making administrative changes. We can use
this knowledge to split our interface into two:

public interface
OrganizationalStructureAdminCommands
{

void Make(Change change);

//... other administrative methods

public interface
OrganizationalStructureClientCommands
{
void ListAllEmployees(
EmployeeDestination destination);
//... other client-side methods

Note that this does not constrain the implementation of these interfaces — a real class can still
implement both of them if this is desired:

O O B W N

© 00 N O O b W N =

T = =N =
0 N O O b W N =~ O

Interfaces 204

public class InMemoryOrganizationalStructure
: OrganizationalStructureAdminCommands,
OrganizationalStructureClientCommands

s

In this approach, we create more interfaces (which some of you may not like), but that shouldn’t
bother us much, because in return, each interface is easier to implement (because the number of
methods to implement is smaller than in case of one big interface). This means that composability
is enhanced, which is what we want the most.

It pays off. For example, one day, we may get a requirement that all writes to the organizational
structure (i.e. the admin-related operations) have to be traced. In such case, all we have to do is
to create a proxy class implementing OrganizationalStructureAdminCommands interface, which
wraps the original class’ methods with a notification to an observer (that can be either the trace
that is required or anything else we like):

public class NotifyingAdminComands : OrganizationalStructureAdminCommands
{
public NotifyingCommands(
OrganizationalStructureAdminCommands wrapped,
ChangeObserver observer)

{
_wrapped = wrapped;
_Observer = observer;
}
void Make(Change change)
{
_wrapped.Make(change);
_observer .NotifyAbout(change);
}

//...other administrative methods

Note that when defining the above class, we only had to implement one interface: OrganizationalStructureAdmi

and could ignore the existence of OrganizationalStructureClientCommands. This is because of
the interface split we did before. If we had not separated interfaces for admin and client access,
our Noti fyingAdminComands class would have to implement the ListAl1Employees method (and
others) and make it delegate to the original wrapped instance. This is not difficult, but it’s
unnecessary effort. Splitting the interface into two smaller ones spared us this trouble.

Interfaces should model roles

In the above example, we split the one bigger interface into two smaller, in reality exposing that
the InMemoryOrganizationalStructure class objects can play two roles.

a b w N

Interfaces 205

Considering roles is another powerful way of separating interfaces. For example, in the organi-
zational structure we mentioned above, we may have objects of class Employee, but that does
not mean this class has to implement an interface called IEmployee or Employeel fc of anything
like that. Honestly speaking, this is a situation that we may start of with, when we don’t have
better ideas yet, but would like to get away from as soon as we can through refactoring. What we
would like to do as soon as we can is to recognize valid roles. In our example, from the point of
view of the structure, the employee might play a Node role. If it has a parent (e.g. an organization
unit) it belongs to, from its perspective it might play a Childunit role. Likewise, if it has any
children in the structure (e.g. employees he manages), he can be considered their Parent or
DirectSupervisor. All of these roles should be modeled using interfaces which Employee class
implements:

public class Employee : Node, ChildUnit, DirectSupervisor

{
/S

and each of those interfaces should be given only the methods that are needed from the point of
view of objects interacting with a role modeled with this interface.

Interfaces should depend on abstractions, not implementation details

It is tempting to think that every interface is an abstraction by definition. I believe otherwise —
while interfaces abstract away the concrete type of the class that implements it, they may still
contain some other things not abstracted that are basically implementation details. Let’s look at
the following interface:

public interface Basket
{
void WriteTo(SqlConnection sqlConnection);
bool IsAllowedToEditBy(SecurityPrincipal user);

See the arguments of those methods? SqlConnection is a library object for interfacing directly
with SQL Server database, so it is a very concrete dependency. SecurityPrincipal is one of the
core classes of .NET’s authorization library that works with users database on local system or
Active Directory. So again, a very concrete dependency. With dependencies like that, it will be
very hard to write other implementations of this interface, because we will be forced to drag
around concrete dependencies and mostly will not be able to work around that if we want
something different. Thus, we may say that these concrete types I mentioned are implementation
details exposed in the interface. Thus, this interface is a failed abstraction. It is essential to abstract
these implementation details away, e.g. like this:

a b W N -

o N O O b W N =

<~ O O s W N~

Interfaces 206

public interface Basket
{
void WriteTo(ProductOutput output);
bool IsAllowedToEditBy(BasketOwner user);

This is better. For example, as ProductOutput is a higher level abstraction (most probably an
interface, as we discussed earlier) no implementation of the writeTo method must be tied to any
particular storage kind. This means that we are more free to develop different implementations
of this method. In addition, each implementation of the writeTo method is more useful as it can
be reused with different kinds of ProductOutputs.

Another example might be a data interface, i.e. an interface with getters and setters only. Looking
at this example:

public interface Employee
{
HumanName Name { get; set; }
HumanAge Age { get; set; }
Address Address { get; set; }
Money Pay { get; set; }
EmploymentStatus EmploymentStatus { get; set; }

in how many different ways can we implement such interface? Not many — the only question we
can answer differently in different implementations of Employee is: “what is the data storage?”.
Everything besides this question is exposed, making this a very poor abstraction. As a matter of
fact, this is similar to what Johnny and Benjamin were battling in the payroll system, when they
wanted to introduce another kind of employee — a contractor employee. Thus, most probably, a
better abstraction would be something like this:

public interface Employee
{
void Sign(Document document);
void Send(PayrollReport payrollReport);
void Fire();
void GiveRaiseBy(Percentage percentage);

So the general rule is: make interfaces real abstractions by abstracting away the implementation
details from them. Only then are you free to create different implementations of the interface
that are not constrained by dependencies they do not want or need.

W N -

© 00 N O O b W N =

10

Protocols

You already know that objects are connected (composed) together and communicate through
interfaces, just as in IP network. There is one more similarity, that’s as important. It’s protocols.
In this section, we will look at protocols between objects and their place on our design approach.

Protocols exist

I do not want to introduce any scientific definition, so let’s just establish an understanding that
protocols are sets of rules about how objects communicate with each other.

Really? Are there any rules? Is it not enough the the objects can be composed together through
interfaces, as I explained in previous sections? Well, no, it’s not enough and let me give you a
quick example.

Let’s imagine a class Sender that, in one of its methods, asks Recipient (let’s assume Recipient
is an interface) to extract status code from some kind of response object and makes a decision
based on that code whether or not to notify an observer about an error:

if(recipient.ExtractStatusCodeFrom(response) == -1)

{

observer .NotifyErrorOccured();

This design is a bit simplistic, but never mind. Its role is to make a certain point. Whoever the
recipient is, it is expected to report error by returning a value of -1. Otherwise, the Sender
(which is explicitly checking for this value) will not be able to react to the error situation
appropriately. Similarly, if there is no error, the recipient must not report this by returning
-1, because if it does, the Sender will be mistakenly recognize this as error. So for example
this implementation of Recipient, although implementing the interface required by Sender, is
wrong, because it does not behave as Sender expects it to:

public class WrongRecipient : Recipient

{
public int ExtractStatusFrom(Response response)
{
if(/* success */)
{
return -1; // but -1 is for errors!
}
else

{

11
12
13
14

© 00 N O O b W N =

I = U SN
W N s,

Protocols 208

return 1; // -1 should be used!

So as you see, we cannot just write anything in a class implementing an interface, because of a
protocol that imposes certain constraints on both a sender and a recipient.

This protocol may not only determine the return values necessary for two objects to interact
properly, it can also determine types of exceptions thrown, or the order of method calls. For
example, anybody using some kind of connection object would imagine the following way of
using the connection: first open it, then do something with it and close it when finished, e.g.

connection.Open();
connection.Send(data);
connection.Close();

Assuming the above connection is an implementation of Connection interface, if we were to
implement it like this:

public class WrongConnection : Connection
{
public void Open()
{
// imagine implementation

// for *closing* the connection is here!!

public void Close()
{
// imagine implementation for

// *opening* the connection is herel!!

it would compile just fine, but fail badly when executed. This is because the behavior would
be against the protocol set between Connection abstraction and its user. All implementations of
Connection must follow this protocol.

So, again, there are certain rules that restrict the way two objects can communicate. Both sender
and recipient of a message must adhere to the rules, or the they will not be able to work together.

The good news is that, most of the time, we are the ones who design these protocols, along
with the interfaces, so we can design them to be either easier or harder to follow by different
implementations of an interface. Of course, we are wholeheartedly for the “easier” part.

Protocols 209

Protocol stability

Remember the last story about Johnny and Benjamin when they had to make a design change to
add another kind of employees (contractors) to the application? To do that, they had to change
existing interfaces and add new ones. This was a lot of work. We don’t want to do this much work
every time we make a change, especially when we introduce a new variation of a concept that is
already present in our design (e.g. Johnny and Benjamin already had the concept of “employee”
and they were adding a new variation of it, called “contractor”).

To achieve this, we need the protocols to be more stable, i.e. less prone to change. By drawing
some conclusions from experiences of Johnny and Benjamin, we can say that they had problems
with protocols stability because the protocols were:

1. complicated rather than simple
2. concrete rather than abstract
3. large rather than small

Based on analysis of the factors that make the stability of the protocols bad, we can come up
with some conditions under which these protocols could be more stable:

1. protocols should be simple
2. protocols should be abstract
3. protocols should be logical
4. protocols should be small

And there are some heuristics that let us get closer to these qualities:

Craft messages to reflect sender’s intention

The protocols are simpler if they are designed from the perspective of the object that sends the
message, not the one that receives it. In other words, methods should reflect the intention of
senders rather than capabilities of recipients.

As an example, let’s look at a code for logging in that uses an instance of an AccessGuard class:

accessGuard. SetLogin(login);
accessGuard. SetPassword(password) ;

accessGuard.Login();

In this little snippet, the sender must send three messages to the accessGuard object: SetLogin(),
SetPassword() and Login(), even though there is no real need to divide the logic into three steps
— they are all executed in the same place anyway. The maker of the AccessGuard class might
have thought that this division makes the class more “general purpose”, but it seems this is a
“premature optimization” that only makes it harder for the sender to work with the accessGuard
object. Thus, the protocol that is simpler from the perspective of a sender would be:

1
2
3

Protocols 210

accessGuard.lLoginWith(login, password);

Naming by intention

Another lesson learned from the above example is: setters (like SetLogin and SetPassword in our
example) rarely reflect senders’ intentions — more often they are artificial “things” introduced
to directly manage object state. This may also have been the reason why someone introduced
three messages instead of one — maybe the AccessGuard class was implemented to hold two
fields (login and password) inside, so the programmer might have thought someone would
want to manipulate them separately from the login step... Anyway, setters should be either
avoided or changed to something that reflects the intention better. For example, when dealing
with observer pattern, we don’t want to say: SetObserver (screen), but rather something like
FromNowOnReportCurrentWeatherTo(screen)

The issue of naming can be summarized as this: a name of an interface should be assigned after
the role that its implementations play and methods should be named after the responsibilities
we want the role to have. I love the example that Scott Bain gives in his Emergent Design
book®?: if I asked you to give me your driving license number, you might’ve reacted differently
based on whether the driving license is in your pocket, or your wallet, or your bag, or in your
house (in which case you would need to call someone to read it for you). The point is: I, as a
sender of this “give me your driving license number” message, do not care how you get it. I say
RetrieveDrivinglLicenseNumber (), not OpenYourWalletAndReadTheNumber ().

This is important, because if the name represents the sender’s intention, the method will not
have to be renamed when new classes are created that fulfill this intention in a different way.

Model interactions after the problem domain

Sometimes at work, I am asked to conduct a design workshop. The example I often give to my
colleagues is to design a system for order reservations (customers place orders and shop deliverers
can reserve who gets to deliver which order). The thing that struck me the first few times I did
this workshop was that even though the application was all about orders and their reservation,
nearly none of the attendees introduced any kind of Order interface or class with Reserve()
method on it. Most of the attendees assume that Order is a data structure and handle reservation
by adding it to a “collection of reserved items” which can be imagined as the following code
fragment:

// order is just a data structure,
// added to a collection
reservedOrders.Add(order)

While this achieves the goal in technical terms (i.e. the application works), the code does not
reflect the domain.

?Scott Bain, Emergent Design

© 00 N O O & W N =

.
(N

Protocols 211

If roles, responsibilities and collaborations between objects reflect the domain, then any change
that is natural in the domain is natural in the code. If this is not the case, then changes that seem
small from the perspective of the problem domain end up touching many classes and methods
in highly unusual ways. In other words, the interactions between objects becomes less stable
(which is exactly what we want to avoid).

On the other hand, let’s assume that we have modeled the design after the domain and have
introduced a proper Order role. Then, the logic for reserving an order may look like this:

order .ReserveBy(deliverer);

Note that this line is as stable as the domain itself. It needs to change e.g. when orders are not
reserved anymore, or someone other than deliverers starts reserving the orders. Thus, I'd say the
stability of this tiny interaction is darn high.

Even in cases when the understanding of the domain evolves and changes rapidly, the stability
of the domain, although not as high as usually, is still one of the highest the world around us has
to offer.

Another example

Let’s assume that we have a code for handling alarms. When an alarm is triggered, all gates are
closed, sirens are turned on and a message is sent to special forces with the highest priority to
arrive and terminate the intruder. Any error in this procedure leads to shutting down power in

the building. If this workflow is coded like this:

try
{
gates.CloseAll();
sirens.TurnOn();
specialForces.NotifyWith(Priority.High);
}

catch(SecurityFailure failure)

{

powerSystem. TurnOf fBecauseOf(failure);

}

Then the risk of this code changing for other reasons than the change of how domain works (e.g.
we do not close the gates anymore but activate laser guns instead) is small. Thus, interactions
that use abstractions and methods that directly express domain rules are more stable.

So, to sum up - if a design reflects the domain, it is easier to predict how a change of domain
rules will affect the design. This contributes to maintainability and stability of the interactions
and the design as a whole.

Protocols 212

Message recipients should be told what to do,
instead of being asked for information

Let’s say we are paying an annual income tax yearly and are too busy (i.e. have too many
responsibilities) to do this ourselves. Thus, we hire a tax expert to calculate and pay the taxes for
us. He is an expert on paying taxes, knows how to calculate everything, where to submit it etc.
but there is one thing he does not know — the context. In other word, he does not know which
bank we are using or what we have earned this year that we need to pay the tax for. This is
something we need to give him.

Here’s the deal between us and the tax expert summarized as a table:

Who? Needs Can provide
Us The tax paid context (bank, income
documents)
Tax Expert context (bank, income The service of paying the tax
documents)

It is us who hire the expert and us who initiate the deal, so we need to provide the context, as
seen in the above table. If we were to model this deal as an interaction between two objects, it

could e.g. look like this:

taxExpert.PayAnnualIncomeTax(
our IncomeDocuments,

ourBank);

One day, our friend, Joan, tells us she needs a tax expert as well. We are happy with the one
we hired, so we recommend him to Joan. She has her own income documents, but they are
functionally similar to ours, just with different numbers here and there and maybe some different
formatting. Also, Joan uses a different bank, but interacting with any bank these days is almost
identical. Thus, our tax expert knows how to handle her request. If we model this as interaction
between objects, it may look like this:

taxExpert.PayAnnualIncomeTax(
joansIncomeDocuments,
joansBank);

Thus, when interacting with Joan, the tax expert can still use his abilities to calculate and pay
taxes the same way as in our case. This is because his skills are independent of the context.

Another day, we decide we are not happy anymore with our tax expert, so we decide to make a
deal with a new one. Thankfully, we do not need to know how tax experts do their work — we
just tell them to do it, so we can interact with the new one just as with the previous one:

O O B W N

Protocols 213

//this 1s the new tax expert,

//but no change to the way we talk to him:

taxExpert.PayAnnual IncomeTax(
our IncomeDocuments,
ourBank) ;

This small example should not be taken literally. Social interactions are far more complicated and
complex than what objects usually do. But I hope I managed to illustrate with it an important
aspect of the communication style that is preferred in object-oriented design: the Tell Don’t Ask
heuristic.

Tell Don’t Ask basically means that each object, as an expert in its job, is not doing what is not
its job, but instead relying on other objects that are experts in their respective jobs and provide
them with all the context they need to achieve the tasks it wants them to do as parameters of the
messages it sends to them.

This can be illustrated with a generic code pattern:
recipient.DoSomethingForMe(allTheContextYouNeedToKnow);
This way, a double benefit is gained:

1. Our recipient (e.g. taxExpert from the example) can be used by other senders (e.g. pay
tax for Joan) without needing to change. All it needs is a different context passed inside a
constructor and messages.

2. We, as senders, can easily use different recipients (e.g. different tax experts that do the task
they are assigned with differently) without learning how to interact with each new one.

If you look at it, as much as bank and documents are a context for the tax expert, the tax expert is
a context for us. Thus, we may say that a design that follows the Tell Don’t Ask principle creates
classes that are context-independent.

This has very profound influence on the stability of the protocols. As much as objects are context-
independent, they (and their interactions) do not need to change when context changes.

Again, quoting Scott Bain, “what you hide, you can change”. Thus, telling an object what to do
requires less knowledge than asking for data and information. Again using the driver license
metaphor: I may ask another person for a driving license number to make sure they have the
license and that it is valid (by checking the number somewhere). I may also ask another person
to provide me with the directions to the place I want the first person to drive. But isn’t it easier to
just tell “buy me some bread and butter”? Then, whoever I ask, has the freedom to either drive,
or walk (if they know a good store nearby) or ask yet another person to do it instead. I don’t care
as long as tomorrow morning, I find the bread and butter in my fridge.

All of these benefits are, by the way, exactly what Johnny and Benjamin were aiming at when
refactoring the payroll system. They went from this code, where they asked employee a lot of
questions:

a b W N -

=~ O U s W N

Protocols 214

var newSalary

= employee.GetSalary()

+ employee.GetSalary()

* 0.1;
employee.SetSalary(newSalary);

to this design that told employee do do its job:

employee.EvaluateRaise();

This way, they were able to make this code interact with bothRegularEmployee and ContractorEmployee

the same way.

This guideline should be treated very, very seriously and applied in almost an extreme way.
There are, of course, few places where it does not apply and we’ll get back to them later.

Oh, I almost forgot one thing! The context that we are passing is not necessarily data. It is even
more frequent to pass around behavior than to pass data. For example, in our interaction with
the tax expert:

taxExpert.PayAnnual IncomeTax(
our IncomeDocuments,

ourBank);

Bank is probably not a piece of data. Rather, I would imagine Bank to implement an interface
that looks like this:

public interface Bank
{
void TransferMoney(
Amount amount,
AccountlId sourceAccount,
AccountId destinationAccount);

So as you can see, this Bank is a piece of behavior, not data, and it itself follows the Tell Don’t
Ask style as well (it does something well and takes all the context it needs from outside).

Where Tell Don’t Ask does not apply

As I already said, there are places where Tell Don’t Ask does not apply. Here are some examples
from the top of my head:

1. Factories — these are objects that produce other objects for us, so they are inherently “pull-
based” — they are always asked to deliver objects.

Protocols 215

2. Collections - they are merely containers for objects, so all we want from them is adding
objects and retrieving objects (by index, by predicate, using a key etc.). Note however, that
when we write a class that wraps a collection inside, we want this class to expose interface
shaped in a Tell Don’t Ask manner.

3. Data sources, like databases — again, these are storage for data, so it is more probable that
we will need to ask for this data to get it.

4. Some APIs accessed via network — while it is good to use as much Tell Don’t Ask as we can,
web APIs have one limitation — it is hard or impossible to pass behaviors as polymorphic
objects through them. Usually, we can only pass data.

5. So called “fluent APIs”, also called “internal domain-specific languages”®

Even in cases where we obtain other objects from a method call, we want to be able to apply Tell
Don’t Ask to these other objects. For example, we want to avoid the following chain of calls:

Radio radio = radioRepository().GetRadio(12);
var userName = radio.GetUsers().First().GetName();
primaryUsersList.Add(userName);

This way we make the communication tied to the following assumptions:

1. Radio has many users

2. Radio must have at least one user
3. Each user must have a name

4. The name is not null

On the other hand, consider this implementation:

Radio radio = radioRepository().GetRadio(12);
radio.AddPrimaryUserNameTo(primaryUsersList);

It does not have any of the weaknesses of the previous example. Thus, it is more stable in face
of change.

Most of the getters should be removed, return
values should be avoided

The above stated guideline of “Tell Don’t Ask” has a practical implication of getting rid of (almost)
all the getters. We did say that each object should stick to its work and tell other objects to do
their work, passing context to them, didn’t we? If so, then why should we “get” anything from
other objects?

For me the idea of “no getters” was very extreme at first, but in a short time I learned that
this is in fact how I am supposed to write object-oriented code. You see, I started learning

“*This topic is outside the scope of the book, but you can take a look at: M. Fowler, Domain-Specific Languages, Addison-Wesley 2010

O O W N

Protocols 216

programming using structural languages such as C, where a program was divided into procedures
or functions and data structures. Then I moved on to object-oriented languages that had far better
mechanisms for abstraction, but my style of coding didn’t really change much. I would still have
procedures and functions, just divided into objects. I would still have data structures, but now
more abstract, e.g. objects with setters, getters and some other query methods.

But what alternatives do we have? Well, [already introduced Tell Don’t Ask, so you should know
the answer. Even though you should, I want to show you another example, this time specifically
about getters and setters.

Let’s say that we have a piece of software that handles user sessions. A session is represented
in code using a Session class. We want to be able to do three things with our sessions: display
them on the GUI, send them through the network and persist them. In our application, we want
each of these responsibilities handled by a separate class, because we think it is good if they are
not tied together.

So, we need three classes dealing with data owned by the session. This means that each of these
classes should somehow obtain access to the data. Otherwise, how can this data be e.g. persisted?
It seems we have no choice and we have to expose it using getters.

Of course, we might re-think our choice of creating separate classes for sending, persistence
etc. and consider a choice where we put all this logic inside a Session class. If we did that,
however, we would make a core domain concept (a session) dependent on a nasty set of third-
party libraries (like a particular GUI library), which would mean that e.g. every time some GUI
displaying concept changes, we will be forced to tinker in core domain code, which is pretty
risky. Also, if we did that, the Session would be hard to reuse, because every place we would
want to reuse this class, we would need to take all these heavy libraries it depends on with us.
Plus, we would not be able to e.g. use Session with different GUI or persistence libraries. So,
again, it seems like our (not so good, as we will see) only choice is to introduce getters for the
information pieces stored inside a session, like this:

public interface Session

{
string GetOwner();
string GetTarget();
DateTime GetExpiryTime();

So yeah, in a way, we have decoupled Session from these third-party libraries and we may even
say that we have achieved context-independence as far as Session itself is concerned — we can
now pull all its data e.g. in a GUI code and display it as a table. The Session does not know
anything about it. Let’s see that:

O© 00 I O O b W N =

© 00 N O O b W N =

O© 00 I O O b W N =~

Protocols 217

// Display sessions as a table on GUI

foreach(var session in sessions)

{
var tableRow = TableRow.Create();
tableRow.SetCellContentFor("owner", session.GetOwner());
tableRow.SetCellContentFor("target", session.GetTarget());
tableRow.SetCellContentFor("expiryTime", session.GetExpiryTime());
table.Add(tableRow);

}

It seems we solved the problemr by separating the data from the context it is used in and pulling
data to a place that has the context, i.e. knows what to do with this data. Are we happy? We may
be unless we look at how the other parts look like — remember that in addition to displaying
sessions, we also want to send them and persist them. The sending logic looks like this:

//part of sending logic

foreach(var session in sessions)

{
var message = SessionMessage.Blank();
message.Owner = session.GetOwner();
message.Target = session.GetTarget();
message.ExpiryTime = session.GetExpiryTime();
connection.Send(message);

and the persistence logic like this:

//part of storing logic

foreach(var session in sessions)

{
var record = Record.Blank();
dataRecord.Owner = session.GetOwner();
dataRecord.Target = session.GetTarget();
dataRecord.ExpiryTime = session.GetExpiryTime();
database.Save(record);

See anything disturbing here? If no, then imagine what happens when we add another piece of
information to the Session, say, priority. We now have three places to update and we have to
remember to update all of them every time. This is called “redundancy” or “asking for trouble”.
Also, composability of these three classes is pretty bad, because they will have to change a lot
just because data in a session changes.

The reason for this is that we made the Session class effectively a data structure. It does not
implement any domain-related behaviors, just exposes data. There are two implications of this:

Bw N

Protocols 218

1. This forces all users of this class to define session-related behaviors on behalf of the Session,
meaning these behaviors are scattered all over the place®. If one is to make change to the
session, they must find all related behaviors and correct them.

2. As a set of object behaviors is generally more stable than its internal data (e.g. a session
might have more than one target one day, but we will always be starting and stopping
sessions), this leads to brittle interfaces and protocols — certainly the opposite of what we
are striving for.

Bummer, this solution is pretty bad, but we seem to be out of options. Should we just accept that
there will be problems with this implementation and move on? Thankfully, we don’t have to. So
far, we have found the following options to be troublesome:

1. The Session class containing the display, store and send logic, i.e. all the context needed -
too much coupling to heavy dependencies.

2. The session class to expose its data via getters, so that we may pull it where we have enough
context to know how to use it — communication is too brittle and redundancy creeps in (by
the way, this design will also be bad for multithreading, but that’s something for another
time).

Thankfully, we have a third alternative, which is better than the two we already mentioned.
We can just pass the context into the Session class. “Isn’t this just another way to do what we
outlined in point 1? If we pass the context in, isn’t Session still coupled to this context?”, you
may ask. The answer is: not necessarily, because we can make Session class depend on interfaces
only instead of the real thing to make it context-independent enough.

Let’s see how this plays out in practice. First let’s remove those ugly getters from the Session and
introduce new method called bumpInto() that will take a Destination interface implementation
as a parameter:

public interface Session

{

void DumpInto(Destination destination);

The implementation of Session, e.g. a RealSession can pass all fields into this destination like
s0:

“This is sometimes called Feature Envy. It means that a class is more interested in other class’ data than in its own.

W N

© 00 N O O & W N =

N = =y
© 00 N O O & W N =~ O

Protocols 219

public class RealSession : Session

{
s

public void DumpInto(Destination destination)

{

destination.AcceptOwner(this.owner);
destination.AcceptTarget(this.target);
destination.AcceptExpiryTime(this.expiryTime);
destination.Done();

ass

And the looping through sessions now looks like this:

foreach(var session : sessions)

{

session.DumpInto(destination);

In this design, RealSession itself decides which parameters to pass and in what order (if that
matters) — no one is asking for its data. This DumpInto() method is fairly general, so we can use
it to implement all three mentioned behaviors (displaying, persistence, sending), by creating a
implementation for each type of destination, e.g. for GUI, it might look like this:

public class GuiDestination : Destination

{

private TableRow _row;
private Table _table;

public GuiDestination(Table table, TableRow row)

{
_table = table;
_rOw = row;
}
public void AcceptOwner(string owner)
{
_row.SetCellContentFor("owner", owner);
}

public void AcceptTarget(string target)

_row.SetCellContentFor("target", target);

20
21
22
23
24
25
26
27
28
29
30
31

O O B W N =

O© 00 1 O O b W N =

N S =
g b w0 N~

Protocols 220

}
public void AcceptExpiryTime(DateTime expiryTime)
{
_row.SetCellContentFor("expiryTime", expiryTime);
}
public void Done()
{
_table.Add(_row);
}
}

The protocol is now more stable as far as the consumers of session data are concerned. Previously,
when we had the getters in the Session class:

public class Session

{
string GetOwner();
string GetTarget();
DateTime GetExpiryTime();

the getters had to return something. So what if we had sessions that could expire and decided
we want to ignore them when they do (i.e. do not display, store, send or do anything else with
them)? In case of the “getter approach” seen in the snippet above, we would have to add another
getter, e.g. called IsExpired() to the session class and remember to update each consumer the
same way — to check the expiry before consuming the data... you see where this is going, don’t
you? On the other hand, with the current design of the Session interface, we can e.g. introduce
a feature where the expired sessions are not processed at all in a single place:

public class TimedSession : Session

{
ass

public void DumpInto(Destination destination)
{
if(!IsExpired())
{
destination.AcceptOwner(this.owner);
destination.AcceptTarget(this.target);
destination.AcceptExpiryTime(this.expiryTime);

destination.Done();

16
17

© 00 N O O b W N =

NN N N N B R R sy s s
B W N A0 © 00N 0 O bk N~ O

Protocols 221

s
}

and there is no need to change any other code to get this working®’.

Another advantage of designing/making Session to not return anything from its methods is
that we have more flexibility in applying patterns such as proxy and decorator to the Session
implementations. For example, we can use proxy pattern to implement hidden sessions that are
not displayed/stored/sent at all, but at the same time behave like another session in all the other
cases. Such a proxy forwards all messages it receives to the original, wrapped Session object,
but discards the DumpInto() calls:

public class HiddenSession : Session

{

private Session _innerSession;

public HiddenSession(Session innerSession)

{
_innerSession = innerSession;

}

public void DoSomethig()

{
// forward the message to wrapped instance:
_innerSession.DoSomething();

}

S/

public void DumpInto(Destination destination)

{

// discard the message - do nothing

/e
}

The clients of this code will not notice this change at all. When we are not forced to return
anything, we are more free to do as we like. Again, “Tell, don’t ask”.

Protocols should be small and abstract

I already said that interfaces should be small and abstract, so am I not just repeating myself here?
The answer is: there is a difference between the size of protocols and the size of interfaces. As
an extreme example, let’s take the following interface:

®*We can even further refactor this into a state machine using a Gang of Four State pattern. There would be two states in such a state
machine: started and expired.

W N

O© 00 1 O O b W N =

10
11
12
13
14
15
16
17
18

Protocols 222

public interface Interpreter

{

public void Execute(string command);

Is the interface small? Of course! Is it abstract? Well, kind of, yes. Tell Don’t Ask? Sure! But let’s
see how it’s used by one of its collaborators:

public void RunScript()

{
_interpreter.Execute("cd dirl1");
_interpreter.Execute("copy *.cs ../../dir2/src");
_interpreter.Execute("copy *.xml ../../dir2/config");
_interpreter.Execute("cd ../../dir2/");
_interpreter.Execute("compile *.cs");
_interpreter.Execute("cd dir3");
_interpreter.Execute("copy *.cs ../../dir4/src");
_interpreter.Execute("copy *.xml ../../dir4/config");
_interpreter.Execute('"cd ../../dir4/");
_interpreter.Execute("compile *.cs");
_interpreter.Execute("cd dir5");
_interpreter.Execute("copy *.cs ../../dir6/src");
_interpreter.Execute("copy *.xml ../../dir6/config");
_interpreter.Execute('"cd ../../dir6/");
_interpreter.Execute("compile *.cs");

}

The point is: the protocol is neither abstract nor small. Thus, making implementations of interface
that is used as such can be pretty painful.

Summary

In this lengthy chapter I tried to show you the often underrated value of designing communi-
cation protocols between objects. They are not a “nice thing to have”, but rather a fundamental
part of the design approach that makes mock objects useful, as you will see when finally we get
to them. But first, I need you to swallow few more object-oriented design ideas. I promise it will
pay off.

Classes

We already covered interfaces and protocols. In our quest for composability, We need to look at
classes as well. Classes:

« implement interfaces (i.e. play roles)
« communicate through interfaces to other services
« follow protocols in this communication

So in a way, what is “inside” a class is a byproduct of how objects of this class acts on the “outside”.
Still, it does not mean there is nothing to say about classes themselves that contributes to better
composability.

Single Responsibility Principle

[already said that we want our system to be a web of composable objects. Obviously, an object
is a granule of composability — we cannot e.g. unplug a half of an object and plug in another
half. Thus, a valid question to ask is: how big should an object be to make the composability
comfortable — to let us unplug as much logic as we want, leaving the rest untouched and ready
to work with the new recipients we plug in?

The answer comes with a Single Responsibility Principle (in short: SRP) for classes®’, which
basically says®’:

A code of a Class should have only one reason to change.

There has been a lot written about the principle on the web, so I am not going to be wiser than
your favourite web search engine (my recent search yielded over 74 thousands results). Still, I
believe it is useful to explain this principle in terms of composability.

Usually, the hard part about this principle is how to understand “a reason to change”. Robert C.
Martin explains®® that this is about a single source of entropy that generates changes to the class.
Which leads us to another trouble of defining a “source of entropy”. So I think it’s better to just
give you an example.

®*This principle can be applied to methods as well, but we are not going to cover this part, because it is not directly tied to the notion
of composability and this is not a design book ;-).

*"http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod.

**https://stackoverflow.fogbugz.com/default.asp?W29030

© 00 N O O & W N =

(RN
= O

© 00 N O O & W N =

[N ==Y
W N =~ o

Classes 224

Separating responsibilities

Remember the code Johnny and Benjamin used to apply incentive plans to employees? In case
you don’t, here it is (it’s just a single method, not a whole class, but it should be enough for our
needs):

public void ApplyYearlylIncentivePlan()
{

var employees = _repository.CurrentEmployees();

foreach(var employee in employees)
{
employee.EvaluateRaise();
employee.EvaluateBonus();
employee.Save();

So... how many reasons to change does this piece of code have? If we weren’t talking about
“reason to change” but simply a “change”, the answer would be “many”. For example, someone
may decide that we are not giving raises anymore and the employee.EvaluateRaise() line
would be gone. Likewise, a decision could be made that we are not giving bonuses, then the
employee.EvaluateBonus() line would have to be removed. So, there are undoubtedly many
ways this method could change. But would it be for different reasons? Actually, no. The reason
in both cases would be (probably) that the CEO approved a new incentive plan. So, there is one
“source of entropy” for these two changes, although there are many ways the code can change.
Hence, the two changes are for the same reason.

Now the more interesting part of the discussion: what about saving the employees — is the reason
for changing how we save employees the same as for the bonuses and pays? For example, we
may decide that we are not saving each employee separately, because it would cause a huge
performance load on our data store, but instead, we will save them together in a single batch
after we finish processing the last one. This causes the code to change, e.g. like this:

public void ApplyYearlylIncentivePlan()
{

var employees = _repository.CurrentEmployees();

foreach(var employee in employees)

{

employee.EvaluateRaise();
employee.EvaluateBonus();

//now all employees saved once

_repository.SaveAll(employees);

o I O O b W N =~

o N O O b W N =

g b W N~

Classes 225

So, as you might’ve already guessed, the reason for this change is different as for changing
incentive plan, thus, it is a separate responsibility and the logic for reading and storing employees
should be separated from this class. The method after the separation would look something like
this:

public void ApplyYearlylncentivePlanTo(IEnumerable<Employee> employees)
{
foreach(var employee in employees)
{
employee.EvaluateRaise();

employee.EvaluateBonus();

In the example above, we moved reading and writing employees out, so that it is handled by
different code — thus, the responsibilities are separated. Do we now have a code that adheres to
Single Reponsibility Principle? We may, but consider this situation: the evaluation of the raises
and bonuses begins getting slow and, instead of doing this for all employees in a sequential for
loop, we would rather parallelize it to process every employee at the same time in a separate
thread. After applying this change, the code could look like this (This uses C#-specific API for
parallel looping, but I hope you get the idea):

public void ApplyYearlylncentivePlanTo(IEnumerable<Employee> employees)

{

Parallel.ForEach(employees, employee =>
{
employee.EvaluateRaise();
employee.EvaluateBonus();

});

Is this a new reason to change? Of course it is! Decisions on parallelizing processing come from
different source than incentive plan modifications. So, we may say we encountered another
responsibility and separate it. The code that remains in the ApplyYearlyIncentivePlanTo()
method looks like this now:

public void ApplyYearlylIncentivePlanTo(Employee employee)
{

employee.EvaluateRaise();
employee.EvaluateBonus();

}

The looping, which is a separate responsibility, is now handled by a different class.

Classes 226

How far do we go?

The above example begs some questions:

1. Can we reach a point where we have separated all responsibilities?
2. If we can, how can we be sure we have reached it?

The answer to the first question is: probably no. While some reasons to change are common sense,
and others can be drawn from our experience as developers or knowledge about the domain of
the problem, there are always some that are unexpected and until they surface, we cannot foresee
them. Thus, the answer for the second question is: “there is no way”. Which does not mean we
should not try to separate the different reasons we see — quite the contrary. We just don’t get
overzealous trying to predict every possible change.

I like the comparison of responsibilities to our usage of time in real life. Brewing time of black
tea is usually around three to five minutes. This is what is usually printed on the package we
buy: “3 — 5 minutes”. Nobody gives the time in seconds, because such granularity is not needed.
If seconds made a noticeable difference in the process of brewing tea, we would probably be
given time in seconds. But they don’t. When we estimate tasks in software engineering, we also
use different time granularity depending on the need® and the granularity becomes finer as we
reach a point where the smaller differences matter more.

Likewise, a simplest software program that prints “hello world” on the screen may fit into a single
“main” method and we will probably not see it as several responsibilities. But as soon as we get
a requirement to write “hello world” in a native language of the currently running operating
system, obtaining the text becomes a separate responsibility from putting it on the screen. It all
depends on what granularity we need at the moment (which, as I said, may be spotted from code
or, in some cases, known up-front from our experience as developers or domain knowledge).

The mutual relationship between Single Responsibility
Principle and composability

The reason I am writing all this is that responsibilities’® are the real granules of composability.
The composability of objects that I have talked about a lot already is a mean to achieve
composability of responsibilities. So, this is what our real goal is. If we have two collaborating
objects, each having a single responsibility, we can easily replace the way our application
achieves one of these responsibilities without touching the other. Thus, objects conforming to
SRP are the most comfortably composable and the right size.”".

A good example from another playground where single responsibility goes hand in hand with
composability is UNIX. UNIX is famous for its collection of single-purpose command-line tools,
like 1s, grep, ps, sed etc. The single-purposeness of these utilities along with the ability of UNIX
commandline to pass output stream of one command to the input stream of another by using the

*Provided we are not using a measure such as story points.

"°Note that I'm writing about responsibility in terms of single responsibility principle. In responsibility-driven design, responsibility
means something different. See Rebecca Wirfs-Brock’s clarification.

"'Note that I am talking about responsibilities the way SRP talks about them, not the way they are understood by e.g. Responsibility
Driven Design. Thus, I am talking about responsibilities of a class, not responsibilities of its API.

http://www.wirfs-brock.com/PDFs/PrinciplesInPractice.pdf

0 N O O b W N =

Classes 227

| (pipe) operator. For example, we may combine three commands: 1s (lists contents of directory),
sort (sorts passed input) and more (allows comfortably viewing on the screen input that takes
more than one screen) into a pipeline:

ls | sort | more

Which displays sorted content of current directory for comfortable view. This philosophy of
composing a set of single-purpose tools into a more complex and more useful whole is what
we are after, only that in object-oriented software development, we’re using objects instead of
executables. We will talk more about it in the next chapter.

Static recipients

While static fields in a class body may sometimes seem like a good idea of “sharing” recipient
references between its instances and a smart way to make the code more “memory efficient”,
they actually hurt composability more often than not. Let’s take a look at a simple example to
get a feeling of how static fields constraint our design.

SMTP Server

Imagine we need to implement an e-mail server that receives and sends SMTP messages’. We
have an OutboundSmtpMessage class which symbolizes SMTP messages we send to other parties.
To send the message, we need to encode it. For now, we always use an encoding called Quoted-
Printable, which is declared in a separate class called QuotedPrintableEncoding and the class
OutboundSmtpMessage declares a private field of this type:

public class OutboundSmtpMessage
{
//... other code

private Encoding _encoding = new QuotedPrintableEncoding();

//... other code

Note that each message has its own encoding objects, so when we have, say, 1000000 messages
in memory, we also have the same amount of encoding objects.

Premature optimization

One day we notice that it is a waste for each message to define its own encoding object, since
an encoding is pure algorithm and each use of this encoding does not affect further uses in any

"2SMTP stands for Simple Mail Transfer Protocol and is a standard protocol for sending and receiving e-mail. You can read more on
Wikipedia.

https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol

o N O O b W N =

Classes 228

way — so we can as well have a single instance and use it in all messages — it will not cause any
conflicts. Also, it may save us some CPU cycles, since creating an encoding each time we create
a new message has its cost in high throughput scenarios.

But how we make the encoding shared between all instances? Out first thought — static fields! A
static field seems fit for the job, since it gives us exactly what we want — a single object shared
across many instances of its declaring class. Driven by our (supposedly) excellent idea, we modify
our OutboundSmtpMessage message class to hold QuotedPrintableEncoding instance as a static

field:

public class OutboundSmtpMessage

{
//... other code

private static Encoding _encoding = new QuotedPrintableEncoding();

//... other code

There, we fixed it! But didn’t our mommies tell us not to optimize prematurely? Oh well...

Welcome, change!

One day it turns out that in our messages, we need to support not only Quoted-Printable encoding
but also another one, called Base64. With our current design, we cannot do that, because, as a
result of using a static field, a single encoding is shared between all messages. Thus, if we change
the encoding for message that requires Base64 encoding, it will also change the encoding for the
messages that require Quoted-Printable. This way, we constraint the composability with this
premature optimization — we cannot compose each message with the encoding we want. All of
the message use either one encoding, or another. A logical conclusion is that no instance of such
class is context-independent — it cannot obtain its own context, but rather, context is forced on
it.

So what about optimizations?

Are we doomed to return to the previous solution to have one encoding per message? What if
this really becomes a performance or memory problem? Is our observation that we don’t need
to create the same encoding many times useless?

Not at all. We can still use this observation and get a lot (albeit not all) of the benefits of static
field. How do we do it? How do we achieve sharing of encodings without the constraints of
static field? Well, we already answered this question few chapters ago — give each message an
encoding through its constructor. This way, we can pass the same encoding to many, many
OutboundSmtpMessage instances, but if we want, we can always create a message that has another
encoding passed. Using this idea, we will try to achieve the sharing of encodings by creating a
single instance of each encoding in the composition root and have it passed it to a message
through its constructor.

o N O O b W N =

o N O O b W N =

O© 00 1 O O b W N =

N S =
g b w0 N~

Classes 229

Let’s examine this solution. First, we need to create one of each encoding in the composition
root, like this:

// We are in a composition root!
//...some initialization

var base64Encoding = new Base64Encoding();
var quotedPrintableEncoding = new QuotedPrintableEncoding();

//...some more initialization

Ok, encodings are created, but we still have to pass them to the messages. In our case, we need
to create new OutboundSmtpMessage object at the time we need to send a new message, i.e. on
demand, so we need a factory to produce the message objects. This factory can (and should) be
created in the composition root. When we create the factory, we can pass both encodings to its
constructor as global context (remember that factories encapsulate global context?):

// We are in a composition root!
//...some initialization

var messageFactory
= new StmpMessageFactory(base64Encoding, quotedPrintableEncoding);

//...some more initialization

The factory itself can be used for the on-demand message creation that we talked about. As the
factory receives both encodings via its constructor, it can store them as private fields and pass
whichever one is appropriate to a message object it creates:

public class SmtpMessageFactory : MessageFactory

{

private Encoding _quotedPrintable;
private Encoding _base64;

public SmtpMessageFactory(
Encoding quotedPrintable,
Encoding base64)

_quotedPrintable = quotedPrintable;

_baseb64 = baseb4;

public Message CreateFrom(string content, MessagelLanguage language)

{

16
17
18
19
20
21
22
23
24
25
26
27

Classes 230

if(language.IslLatinBased)

{
//each message gets the same instance of encoding:
return new StmpMessage(content, _quotedPrintable);

}

else
{
//each message gets the same instance of encoding:

return new StmpMessage(content, _base64);

The performance and memory saving is not exactly as big as when using a static field (e.g. each
OutboundSmtpMessage instance must store a separate reference to the received encoding), but it
is still a huge improvement over creating a separate encoding object per message.

Where statics work?

What I wrote does not mean that statics do not have their uses. They do, but these uses are very
specific. I will show you one of such uses in the next chapters after I introduce value objects.

Summary

In this chapter, I tried to give you some advice on designing classes that does not come so
naturally from the concept of composability and interactions as those described in previous
chapters. Still, as I hope I was able to show, they enhance composability and are valuable to
us.

© 00 N O O b W N =

NN
=

Object Composition as a Language

While most of the earlier chapters talked a lot about viewing object composition as a web, this
one will take a different view — one of a language. These two views are remarkably similar in
nature and complement each other in guiding design.

It might surprise you that I am comparing object composition to a language, but, as I hope you’ll
see, there are many similarities. Don’t worry, we’ll get there step by step, the first step being
taking a second look at the composition root.

More readable composition root

When describing object compositon and composition root in particular, I promised to get back
to the topic of making the composition code cleaner and more readable.

Before I do this, however, we need to get one important question answered...

Why bother?

By now you have to be sick and tired of how I stress the importance of composability. I do so,
however, because I believe it is one of the most important aspect of well-designed classes. Also,
said that to reach high composability of a class, it has to be context-independent. To explain how
to reach this independence, I introduced the principle of separating object use from construction,
pushing the construction part away into specialized places in code. I also said that a lot can be
contributed to this quality by making the interfaces and protocols abstract and having them
expose as small amount of implementation details as possible.

All of this has its cost, however. Striving for high context-independence takes away from us the
ability to look at a single class and determine its context just by reading its code. Such class
knows very little about the context it operates in. For example, few chapters back we dealt with
dumping sessions and I showed you that such dump method may be implemented like this:

public class RealSession : Session

{
e

public void DumpInto(Destination destination)

{
destination.AcceptOwner(this.owner);
destination.AcceptTarget(this.target);
destination.AcceptExpiryTime(this.expiryTime);
destination.Done();

12
13
14

O© 00 I O O b W N =~

[S = S G N = e Y
© © 00 N O O b W N =~ O

Object Composition as a Language 232

/2

Here, the session knows that whatever the destination is, Destination it accepts owner, target
and expiry time and needs to be told when all information is passed to it. Still, reading this code,
we cannot tell where the destination leads to, since Destination is an interface that abstracts
away the details. It is a role that can be played by a file, a network connection, a console screen
or a GUI widget. Context-independence enables composability.

On the other hand, as much as context-independent classes and interfaces are important, the
behavior of the application as a whole is important as well. Didn’t I say that the goal of
composability is to be able to change the behavior of application more easily? But how can
we consciously make decision about changing application behavior when we do not understand
it? And no longer than a paragraph ago we came to conclusion that just reading a class after
class is not enough. We have to have a view of how these classes work together as a system. So,
where is the overall context that defines the behavior of the application?

The context is in the composition code — the code that connects objects together, passing a real
collaborators to each object and showing the connected parts make a whole.

Example

[assume you barely remember the alarms example I gave you in one of the first chapters of this
part of the book to explain changing behavior by changing object composition. Anyway, just to
remind you, we ended with a code that looked like this:

new SecureArea(
new OfficeBuilding(
new DayNightSwitchedAlarm(
new SilentAlarm("222-333-444"),
new LoudAlarm()
)
),

new StorageBuilding(
new HybridAlarm(
new SilentAlarm("222-333-444"),
new LoudAlarm()
)
),

new GuardsBuilding(
new HybridAlarm(
new SilentAlarm("919"), //call police

new LoudAlarm()

O O B W N~

Object Composition as a Language 233

So we had three buildings all armed with alarms. The nice property of this code was that we
could read the alarm setups from it, e.g. the following part of the composition:

new OfficeBuilding(
new DayNightSwitchedAlarm(
new SilentAlarm("222-333-444"),
new LoudAlarm()
)
),

meant that we were arming an office building with an alarm that calls number 222-333-444
when triggered during the day, but plays loud sirens when activated during the night. We could
read this straight from the composition code, provided we knew what each object added to the
overall composite behavior. So, again, composition of parts describes the behavior of the whole.
There is, however, one more thing to note about this piece of code: it describes the behavior
without explicitly stating its control flow (if, else, for, etc.). Such description is often called
declarative — by composing objects, we write what we want to achieve without writing how to
achieve it — the control flow itself is hidden inside the objects.

Let’s sum up these two conclusions with the following statement:

The composition code is a declarative description of the overall behavior of our
application.

Wow, this is quite a statement, isn’t it? But, as we already noticed, it is true. There is, however,
one problem with treating the composition code as overall application description: readability.
Even though the composition is the description of the system, it doesn’t read naturally. We want
to see the description of behavior, but most of what we see is: new, new, new, new, new... There
is a lot of syntactic noise involved, especially in real systems, where composition code is much
longer than this tiny example. Can’t we do something about it?

Refactoring for readability

The declarativeness of composition code goes hand in hand with an approach of defining so
called fluent interfaces. A fluent interface is an API made with readability and flow-like reading
in mind. It is usually declarative and targeted towards specific domain, thus another name:
internal domain specific languages, in short: DSL.

There are some simple patterns for creating such domain-specific languages. One of them that
can be applied to our situation is called nested function”, which, in our context, means wrapping
a call to new with a more descriptive method. Don’t worry if that confuses you, we’ll see how it
plays out in practice in a second. We will do this step by step, so there will be a lot of repeated
code, but hopefully, you will be able to closely watch the process of improving the readability of
composition code.

Ok, Let’s see the code again before making any changes to it:

"*M. Fowler, Domain-Specific Languages, Addison-Wesley 2010.

O© 00 I O O b W N =

[S S N = e Y
© © 0 N O O & W N =~ O

Bsw N

© 00 N O O b W N =

Object Composition as a Language 234

new SecureArea(
new OfficeBuilding(
new DayNightSwitchedAlarm(
new SilentAlarm("222-333-444"),
new LoudAlarm()
)
),

new StorageBuilding(
new HybridAlarm(
new SilentAlarm("222-333-444"),
new LoudAlarm()
)
),

new GuardsBuilding(

new HybridAlarm(
new SilentAlarm("919"), //call police

new LoudAlarm()

)
)

Note that we have few places where we create SilentAlarm. Let’s move creation of these objects
into a separate method:

public Alarm Calls(string number)

{

return new SilentAlarm(number);

This step may look silly, (after all, we are introducing a method wrapping a single line of code),
but there is a lot of sense to it. First of all, it lets us reduce the syntax noise — when we need to
create a silent alarm, we do not have to say new anymore. Another benefit is that we can describe
the role a SilentAlarm instance plays in our composition (I will explain later why we are doing
it using passive voice).

After replacing each invocation of SilentAlarm constructor with a call to this method, we get:

new SecureArea(
new OfficeBuilding(
new DayNightSwitchedAlarm(
Calls("222-333-444"),
new LoudAlarm()
)
),

new StorageBuilding(
new HybridAlarm(

10
11
12
13
14
15
16
17
18
19
20

W N

© 00 1 O O b W N =

[S = S S N G = N Y
© © 00 N O O b W N =~ O

Object Composition as a Language

Calls("222-333-444"),
new LoudAlarm()
)
),

new GuardsBuilding(

new HybridAlarm(
Calls("919"), //police number

new LoudAlarm()

)
);

Next, let’s do the same with LoudAlarm, wrapping its creation with a method:

public Alarm MakeslLoudNoise()
{

return new LoudAlarm();

and the composition code after applying this method looks like this:

new SecureArea(
new OfficeBuilding(
new DayNightSwitchedAlarm(
Calls("222-333-444"),
MakesLoudNoise()
)
),

new StorageBuilding(
new HybridAlarm(
Calls("222-333-444"),
MakeslLoudNoise()
)
),

new GuardsBuilding(
new HybridAlarm(
Calls("919"), //police number
MakeslLoudNoise()

)
)

Note that we have removed some more news in favor of something that’s more readable. This is

exactly what I meant by “reducing syntax noise”.

Now let’s focus a bit on this part:

O O B W N

O O B W N

Object Composition as a Language 236

new GuardsBuilding(
new HybridAlarm(
Calls("919"), //police number
MakesLoudNoise()

and try to apply the same trick of introducing factory method toHybridAlarm creation. You know,
we are always told that class names should be nouns and that’s why HybridAlarm is named like
this. But it does not act well as a description of what the system does. Its real functionality is
to trigger both alarms when it is triggered itself. Thus, we need to come up with a better name.
Should we name the method TriggersBothAlarms()? Naah, it’s too much noise — we already
know it’s alarms that we are triggering, so we can leave the “alarms” part out. What about
“triggers”? It says what the hybrid alarm does, which might seem good, but when we look at the
composition, Calls() and MakesLoudNoise() already say what is being done. The HybridAlarm
only says that both of those things happen simultaneously. We could leave Trigger if we changed
the names of the other methods in the composition to look like this:

new GuardsBuilding(
TriggersBoth(
Calling("919"), //police number
LoudNoise()

But that would make the names Calling() and LoudNoise() out of place everywhere it is not
being nested as TriggersBoth() arguments. For example, if we wanted to make another building
that would only use a loud alarm, the composition would look like this:

new OtherBuilding(LoudNoise());
or if we wanted to use silent one:
new OtherBuilding(Calling("919"));

Instead, let’s try to name the method wrapping construction of HybridAlarm just Both() — it is
simple and communicates well the role hybrid alarms play — after all, they are just a kind of
combining operators, not real alarms. This way, our composition code is now:

O O B W N - O O B W N Bw N O O B W N

O O B W N =

Object Composition as a Language 237

new GuardsBuilding(
Both(
Calls("919"), //police number
MakesLoudNoise()

and, by the way, the Both() method is defined as:

public Alarm Both(Alarm alarmi, Alarm alarm2)

{

return new HybridAlarm(alarml, alarm2);

Remember that HybridAlarm was also used in the StorageBuilding instance composition:

new StorageBuilding(
new HybridAlarm(
Calls("222-333-444"),
MakeslLoudNoise()
)
),

which now becomes:

new StorageBuilding(
Both(
Calls("222-333-444"),
MakeslLoudNoise()
)
),

Now the most difficult part - finding a way to make the following piece of code readable:

new OfficeBuilding(
new DayNightSwitchedAlarm(
Calls("222-333-444"),
MakesLoudNoise()
)
),

The difficulty here is that DayNightSwitchedAlarm accepts two alarms that are used alternatively.
We need to invent a term that:

1. Says it’s an alternative.

O O B W N -

Bw N

a s W N -

Object Composition as a Language 238

2. Says what kind of alternative it is (i.e. that one happens at day, and the other during the
night).

3. Says which alarm is attached to which condition (silent alarm is used during the day and
loud alarm is used at night).

If we introduce a single name, e.g. FirstDuringDayAndSecondAtNight(), it will feel awkward
and we will loose the flow. Just look:

new OfficeBuilding(
FirstDuringDayAndSecondAtNight(
Calls("222-333-444"),
MakesLoudNoise()

)
)I

It just doesn’t feel well... We need to find another approach to this situation. There are two
approaches we may consider:

Approach 1: use named parameters

Named parameters are a feature of languages like Python or C#. In short, when we have a method

like this:

public void DoSomething(int first, int second)

{
/S

we can call it with the names of its arguments stated explicitly, like this:
DoSomething(first: 12, second: 33);

We can use this technique to refactor the creation of DayNightSwitchedAlarm into the following
method:

public Alarm DependingOnTimeOfDay(
Alarm duringDay, Alarm atNight)

return new DayNightSwitchedAlarm(duringDay, atNight);

This lets us write the composition code like this:

O O B W N

© 00 N O O b W N =

=N
N O

O O B W N =

Object Composition as a Language 239

new OfficeBuilding(
DependingOnTimeOfDay(
duringDay: Calls("222-333-444"),
atNight: MakesLoudNoise()
)
),

which is quite readable. Using named parameters has this small added benefit that it lets us pass
the arguments in different order they were declared, thanks to their names stated explicitly. This
makes both following invocations valid:

//this is valid:
DependingOnTimeOfDay (
duringDay: Calls("222-333-444"),
atNight: MakeslLoudNoise()

//arguments in different order,
//but this is valid as well:
DependingOnTimeOfDay (
atNight: MakeslLoudNoise(),
duringDay: Calls("222-333-444")

Now, on to the second approach.

Approach 2: use method chaining

This approach is better translatable to different languages and can be used e.g. in Java and C++.
This time, before I show you the implementation, let’s look at the final result we want to achieve:

new OfficeBuilding(
DependingOnTimeOfDay
.DuringDay(Calls("222-333-444"))
.AtNight(MakesLoudNoise())
)
),

So as you see, this is very similar in reading, the main difference being that it’s more work. It
might not be obvious from the start how this kind of parameter passing works:

© 00 N O O b W N =

SN
N »~ O

g b W N -

Object Composition as a Language 240

DependingOnTimeOfDay
.DuringDay(...)
JAtNight(...)

so, let’s decipher it. First, DependingOnTimeOfDay. This is just a class:

public class DependingOnTimeOfDay

{
}

which has a static method called DuringDay():

//note: this method is static

public static

DependingOnTimeOfDay DuringDay(Alarm alarm)
{

return new DependingOnTimeOfDay(alarm);

//The constructor is private:
private DependingOnTimeOfDay(Alarm dayAlarm)

{
_dayAlarm = dayAlarm;

Now, this method seems strange, doesn’t it? It is a static method that returns an instance of its
enclosing class (not an actual alarm!). Also, the private constructor stores the passed alarm inside
for later... why?

The mystery resolves itself when we look at another method defined in the DependingOnTime0fDay
class:

//note: this method is NOT static
public Alarm AtNight(Alarm nightAlarm)

{
return new DayNightSwitchedAlarm(_dayAlarm, nightAlarm);

This method is not static and it returns the alarm that we were trying to create. To do so, it uses
the first alarm passed through the constructor and the second one passed as its parameter. So if
we were to take this construct:

O U W N

O 00 I O O b W N =

[S = S G N = e Y
S © 00 N O O & W N =~ O

Object Composition as a Language 241

DependingOnTimeOfDay //class
.DuringDay(dayAlarm) //static method
.AtNight(nightAlarm) //non-static method

and assign a result of each operation to a separate variable, it would look like this:

DependingOnTimeOfDay firstPart = DependingOnTimeQOfDay.DuringDay(dayAlarm);
Alarm alarm = firstPart.AtNight(nightAlarm);

Now, we can just chain these calls and get the result we wanted to:

new OfficeBuilding(
DependingOnTimeOfDay
.DuringDay(Calls("222-333-444"))
.AtNight(MakesLoudNoise())
)
),

The advantage of this solution is that it does not require your programming language of choice
to support named parameters. The downside is that the order of the calls is strictly defined. The
DuringDay returns an object on which AtNight is invoked, so it must come first.

Discussion continued

For now, I will assume we have chosen approach 1 because it is simpler.

Our composition code looks like this so far:

new SecureArea(
new OfficeBuilding(
DependingOnTimeQfDay (
duringDay: Calls("222-333-444"),
atNight: MakeslLoudNoise()
)
),

new StorageBuilding(
Both(
Calls("222-333-444"),
MakeslLoudNoise()
)
),

new GuardsBuilding(
Both(
Calls("919"), //police number
MakeslLoudNoise()

W N -

W N

© 00 N O O b W N =

[T S = S U S
O O 00 N O O b W N ~ O

Object Composition as a Language 242

There are few more finishing touches we need to make. First of all, let’s try and extract these
dial numbers like 222-333-444 into constants. When we do so, then, for example, this code:

Both(
Calls("919"), //police number
MakesLoudNoise()

becomes

Both(
Calls(Police),
MakesLoudNoise()

And the last thing is to hide creation of the following classes: SecureArea, OfficeBuilding,
StorageBuilding, GuardsBuilding and we have this:

SecureAreaContaining(
OfficeBuildingWithAlarmThat(
DependingOnTimeQfDay (
duringDay: Calls(Guards),
atNight: MakesLoudNoise()
)

),
StorageBuildingWithAlarmThat(

Both(
Calls(Guards),
MakeslLoudNoise()

)

),
GuardsBuildingWithAlarmThat(

Both(
Calls(Police),
MakeslLoudNoise()

)
);

And here it is — the real, declarative description of our application! The composition reads better
than when we started, doesn’t it?

Composition as a language

Written this way, object composition has another important property — it is extensible and can
be extended using the same terms that are already used (of course we can add new ones as well).

Bw N

o N O O b W N =

Object Composition as a Language 243

For example, using the methods we invented to make the composition more readable, we may
write something like this:

Both(
Calls(Police),
MakesLoudNoise()

but, using the same terms, we may as well write this:

Both(
Both(
Calls(Police),
Calls(Security)),
Both(
Calls(Boss),
MakeslLoudNoise()))

to obtain different behavior. Note that we have invented something that has these properties:

1. Tt defines some kind of vocabulary - in our case, the following “words” are form part of
the vocabulary: Both, Calls, MakesLoudNoise, DependingOnTimeOfDay, atNight, duringDay,
SecureAreaContaining, GuardsBuildingWithAlarmThat, OfficeBuildingWithAlarmThat.

2. It allows combining the words from the vocabulary. These combinations have meaning,
which is based solely on the meaning of used words and the way they are combined. For
example: Both(Calls(Police), Calls(Guards)) has the meaning of “calls both police and
guards when triggered” - thus, it allows us to combine words into sentences.

3. Although we are quite liberal in defining behaviors for alarms, there are some rules as
what can be composed with what (for example, we cannot compose guards building with
an office, but each of them can only be composed with alarms). Thus, we can say that the
sentences we write have to obey certain rules that look a lot like a grammar.

4. The vocabulary is constrained to the domain of alarms. On the other hand, it is more power-
ful and expressive as a description of this domain than a combination of i f statements, for
loops, variable assignments and other elements of a general-purpose language. It is tuned
towards describing rules of a domain on a higher level of abstraction.

5. The sentences written define a behavior of the application — so by writing sentences
like this, we still write software! Thus, what we do by combining words into sentences
constrained by a grammar is still programming!

All of these points suggest that we have created a Domain-Specific Language™, which, by
the way, is a higher-level language, meaning we describe our software on a higher level of
abstraction.

"*M. Fowler, Domain-Specific Languages, Addison-Wesley 2010.

Object Composition as a Language 244

The significance of a higher-level language

So... why do we need a higher-level language to describe the behavior of our application? After
all, expressions, statements, loops and conditions (and objects and polymorphism) are our daily
bread and butter. Why invent something that moves us away from this kind of programming
into something “domain-specific™?

My main answer is: to deal with with complexity more effectively.

What’s complexity? For our purpose we can approximately define it as a number of different
decisions our application needs to make. As we add new features and fix errors or implement
missed requirements, the complexity of our software grows. What can we do when it grows
larger than we are able to manage? We have the following choices:

1. Remove some decisions - i.e. remove features from our application. This is very cool when
we can do this, but there are times when this might be unacceptable from the business
perspective.

2. Optimize away redundant decisions - this is about making sure that each decision is made
once in the code base - I already showed you some examples how polymorphism can help
with that.

3. Use 3rd party component or a library to handle some of the decisions for us — while this is
quite easy for “infrastructure” code and utilities, it is very, very hard (impossible?) to find
a library that will describe our “domain rules” for us. So if these rules are where the real
complexity lies (and often they are), we are still left alone with our problem.

4. Hide the decisions by programming on higher level of abstraction - this is what we did in
this chapter so far. The advantage is that it allows us to reduce complexity of our domain,
by creating a bigger building blocks from which a behavior description can be created.

So, as you see, only the last of the above points really helps in reducing domain complexity. This is
where the idea of domain-specific languages falls in. If we carefully craft our object composition
into a set of domain-specific languages (one is often too little in all but simplest cases), one day
we may find that we are adding new features by writing new sentences in these languages in
a declarative way rather than adding new imperative code. Thus, if we have a good language
and a firm understanding of its vocabulary and grammar, we can program on a higher level of
abstraction which is more expressive and less complex.

This is very hard to achieve — it requires, among others:

1. A huge discipline across a develoment team.

2. A sense of direction of how to structure the composition and where to lead the language
designs as they evolve.

3. Merciless refactoring.

4. Some minimal knowledge of language design and experience in doing so.

5. Knowledge of some techniques (like the ones we used in our example) that make constructs
written in general-purpose language look like another language.

Object Composition as a Language 245

Of course, not all parts of the composition make a good material to being structured like a
language. Despite these difficulties, I think it’s well worth the effort. Programming on higher
level of abstraction with declarative code rather than imperative is where I place my hope for
writing maintainable and understandable systems.

Some advice

So, eager to try this approach? Let me give you a few pieces of advice first:

Evolve the language as you evolve code

At the beginning of this chapter, we achieved our higher-level language by refactoring already
existing object composition. This does not at all mean that in real projects we need to wait for a
lot of composition code to appear and then try to wrap all of it. It is true that I did just that in
the alarm example, but this was just an example and its purpose was mainly didactical.

In reality, the language is better off evolving along the composition it describes. One reason for
this is because there is a lot of feedback about the composability of the design gained by trying
to put a language on top of it. As I said in the chapter on single responsibility, if objects are not
comfortably composable, something is probably wrong with the distribution of responsibilities
between them (for comparison of wrongly placed responsibilities, imagine a general-purpose
language that would not have a separate i f and for constructs but only a combination of them
called forif :-)). Don’t miss out on this feedback!

The second reason is because even if you can safely refactor all the code because you have an
executable Specification protecting you from making mistakes, it’s just too many decisions to
handle at once (plus it takes a lot of time and your colleagues keep adding new code, don’t
they?). Good language grows and matures organically rather than being created in a big bang
effort. Some decisions take time and a lot of thought to be made.

Composition is not a single DSL, but a series of mini DSLs”

[already briefly noted this. While it may be tempting to invent a single DSL to describe whole
application, in practice it is hardly possible, because our applications have different subdomains
that often use different sets of terms. Rather, it pays off to hunt for such subdomains and create
smaller languages for them. The alarm example shown above would probably be just a small
part of a real composition. Not all parts would lend themselves to shape this way, at least not
instantly. What starts off as a single class might become a subdomain with its own vocabulary at
some point. We need to pay attention. Hence, we still want to apply some of the DSL techniques
even to those parts of the composition that are not easily turned into DSLs and hunt for an
occasion when we are able to do so.

As Nat Pryce puts it’¢, it’s all about:

73 A reader noted that the ideas in this section are remarkably similar to the notion of Bounded Contexts in a book: E. Evans, Domain-
Driven Design: Tackling Complexity in the Heart of Software, Prentice Hall 2003.
"Shttp://www.natpryce.com/articles/000783.html

http://www.natpryce.com/articles/000783.html
http://www.natpryce.com/articles/000783.html

g b W N =

Object Composition as a Language 246

(...) clearly expressing the dependencies between objects in the code that composes
them, so that the system structure can easily be refactored, and aggressively refac-
toring that compositional code to remove duplication and express intent, and thereby
raising the abstraction level at which we can program (...). The end goal is to need less
and less code to write more and more functionality as the system grows.

For example, a mini-DSL for setting up handling of an application configuration updates might
look like this:

return ConfigurationUpdates(
0f(log),
Of(localSettings),
OfResource(Departments()),
OfResource(Projects()));

Reading this code should not be difficult, especially when we know what each term in the
sentence means. This code returns an object handling configuration updates of four things:
application log, local settings, and two resources (in this subdomain, resources mean things that
can be added, deleted and modified). These two resources are: departments and projects (e.g. we
can add a new project or delete an existing one).

Note that the constructs of this language make sense only in a context of creating configuration
update handlers. Thus, they should be restricted to this part of composition. Other parts that
have nothing to do with configuration updates, should not need to know these constructs.

Do not use an extensive amount of DSL tricks

In creating internal DSLs, one can use a lot of neat tricks, some of them being very “hacky” and
twisting the general-purpose language in many ways to achieve “flluent” syntax. But remember
that the composition code is to be maintained by your team. Unless each and every member of
your team is an expert on creating such DSLs, do not show off with too many, too sophisticated
tricks. Stick with a few of the proven ones that are simple to use and work, like the ones I have
used in the alarm example.

Martin Fowler”” describes a lot of tricks for creating such DSLs and at the same time warns
against using too many of them in the same language.

Factory method nesting is your best friend

One of the DSL techniques, the one I have used the most, is factory method nesting. Basically,
it means wrapping a constructor (or constructors — no one said each factory method must wrap
exactly one new) invocation with a method that has a name more fitting for a context it is used
in (and which hides the obscurity of the new keyword). This technique is what makes this:

"’"M. Fowler, Domain-Specific Languages, Addison-Wesley 2010.

B wWw N = W N - W N -

W N

Object Composition as a Language 247

new HybridAlarm(
new SilentAlarm("222-333-444"),
new LoudAlarm()

look like this:

Both(
Calls("222-333-444"),
MakeslLoudNoise()

As you probably remember, in this case each method wraps a constructor, e.g.Calls() is defined
as:

public Alarm Calls(string number)

{

return new SilentAlarm(number);

This technique is great for describing any kind of tree and graph-like structures as each method
provides a natural scope for its arguments:

Method1(//beginning of scope
NestedMethod1(),
NestedMethod2()

); //end of scope

Thus, it is a natural fit for object composition, which is a graph-like structure.

This approach looks great on paper but it’s not like everything just fits in all the time. There are
two issues with factory methods that we need to address.

Where to put these methods?

In the usual case, we want to be able to invoke these methods without any qualifier before
them, i.e. we want to call MakesLoudNoise() instead of alarmsFactory.MakesLoudNoise() or
this.MakesLoudNoise() or anything.

If so, where do we put such methods?

There are two options’®:

1. Put the methods in the class that performs the composition.
2. Put the methods in superclass.

"®In some languages, there is a third way: Java lets us use static imports which are part of C# as well starting with version 6.0. C++
has always supported bare functions, so it’s not a topic there.

© 00 N O O b W N =

RN
= O

O Uk wWw N

Object Composition as a Language 248

Apart from that, we can choose between:

1. Making the factory methods static.
2. Making the factory methods non-static.

First, let’s consider the dilemma of putting in composing class vs having a superclass to inherit
from. This choice is mainly determined by reuse needs. The methods that we use in one
composition only and do not want to reuse are mostly better off as private methods in the
composing class. On the other hand, the methods that we want to reuse (e.g. in other applications
or services belonging to the same system), are better put in a superclass which we can inherit
from. Also, a combination of the two approaches is possible, where superclass contains a more
general method, while composing class wraps it with another method that adjusts the creation
to the current context. By the way, remember that in most languages, we can inherit from a
single class only — thus, putting methods for each language in a separate superclass forces us
to distribute compositiion code across several classes, each inheriting its own set of methods
and returning an object or several objects. This is not bad at all — quite the contrary, this is
something we’d like to have, because it enables us to evolve a language and sentences written in
this language in an isolated context.

The second choice between static and non-static is one of having access to instance fields -
instance methods have this access, while static methods do not. Thus, if the following is an
instance method of a class called AlarmComposition:

public class AlarmComposition

{
/e

public Alarm Calls(string number)

{

return new SilentAlarm(number);

/2

and I need to pass an additional dependency to SilentAlarm that I do not want to show in the
main composition code, I am free to change the Calls method to:

public Alarm Calls(string number)

{

return new SilentAlarm(
number,
_hiddenDependency) //field

and this new dependency may be passed to the AlarmComposition via constructor:

a b W N -

g b W N~

g b W N -

o N O O b W N =

Object Composition as a Language 249

public AlarmComposition(
HiddenDependency hiddenDependency)

_hiddenDependency = hiddenDependency;

This way, I can hide it from the main composition code. This is freedom I do not have with static
methods.

Use implicit collections instead of explicit ones

Most object-oriented languages support passing variable argument lists (e.g. in C# this is achieved
with the params keyword, while Java has . . . operator). This is valuable in composition, because
we often want to be able to pass arbitrary number of objects to some places. Again, coming back
to this composition:

return ConfigurationUpdates(
0f(log),
Of(localSettings),
OfResource(Departments()),
OfResource(Projects()));

the ConfigurationUpdates() method is using variable argument list:

public ConfigurationUpdates ConfigurationUpdates(
params ConfigurationUpdate[] updates)

return new MyAppConfigurationUpdates(updates);

Note that we could, of course, pass the array of ConfigurationUpdate instances using explicit
definition: new ConfigurationUpdate[] {...}, but that would greatly hinder readability and
flow of this composition. See for yourself:

return ConfigurationUpdates(
new [] { //explicit definition brings noise
0f(log),
Of(localSettings),
OfResource(Departments()),
OfResource(Projects())
}
),

Not so pretty, huh? This is why we like the ability to pass variable argument lists as it enhances
readability.

g b W N~

o N O O b W N =

Object Composition as a Language 250

A single method can create more than one object

No one said each factory method must create one and only one object. For example, take a look
again at this method creating configuration updates:

public ConfigurationUpdates ConfigurationUpdates(
params ConfigurationUpdate[] updates)

return new MyAppConfigurationUpdates(updates);
1

Now, let’s assume we need to trace each invocation on the instance of ConfigurationUpdates
class and we want to achieve this by wrapping the MyAppConfigurationUpdates instance with
a tracing proxy (a wrapping object that passes the calls along to a real object, but writes some
trace messages before and after it does). For this purpose, we can reuse the method we already
have, just adding the additional object creation there:

public ConfigurationUpdates ConfigurationUpdates(
params ConfigurationUpdate[] updates)

//now two objects created instead of one:
return new TracedConfigurationUpdates(
new MyAppConfigurationUpdates(updates)

);

Note that the TracedConfigurationUpdates is not important from the point of view of compo-
sition — it is pure infrastructure code, not a new domain rule. Because of that, it may be a good
idea to hide it inside the factory method.

Summary

In this chapter, I tried to convey to you a vision of object composition as a language, with its
own vocabulary, its own grammar, keywords and arguments. We can compose the words from
the vocabulary in different sentences to create new behaviors on higher level of abstraction.

This area of object-oriented design is something I am still experimenting with, trying to catch up
with what authorities on this topic share. Thus, I am not as fluent in it as in other topics covered
in this book. Expect this chapter to grow (maybe into several chapters) or to be clarified in the
future. For now, if you feel you need more information, please take a look at the video by Steve

79

Freeman and Nat Pryce called “Building on SOLID foundations”™””.

"https://vimeo.com/105785565

https://vimeo.com/105785565
https://vimeo.com/105785565

Value Objects

I spent several chapters talking about composing objects in a web where real implementation
was hidden and only interfaces were exposed. These objects exchanged messages and modeled
roles in our domain.

However, this is just one part of object-oriented design approach that I'm trying to explain.
Another part of the object-oriented world, complementary to what we have been talking about,
are values. They have their own set of design constraints and ideas, so most of the concepts from
the previous chapters do not apply to them,or apply in a different way.

What is a value?

In short, values are usually seen as immutable quantities, measurements® or other objects that
are compared by their content, not their identity. There are some examples of values in the
libraries of our programming languages. For example, String class in Java or C# is a value,
because it is immutable and every two strings are considered equal when they contain the same
data. Other examples are the primitive types that are built-in into most programming languages,
like numbers or characters.

Most of the values that are shipped with general-purpose libraries are quite primitive or general.
There are many times, however, when we want to model a domain abstraction as a value. Some
examples include: date and time (which nowadays is usually a part of standard library, because it
is usable in so many domains), money, temperature, but also things such as file paths or resource
identifiers.

As you may have already spotted when reading this book, I'm really bad at explaining things
without examples, so here is one:

Example: money and names

Imagine we are developing a web store for a customer. There are different kinds of products sold
and the customer wants to have the ability to add new products.

Each product has at least two important attributes: name and price (there are others like quantity,
but let’s leave them alone for now).

Now, imagine how you would model these two things - would the name be modeled as a mere
string and price be a double or a decimal type?

Let’s say that we have indeed decided to use a decimal to hold a price, and a string to hold a
name. Note that both are generic library types, not connected to any domain. Is it a good choice
to use “library types” for domain abstractions? We shall soon find out...

#S. Freeman, N. Pryce, Growing Object-Oriented Software Guided by Tests, Addison-Wesley Professional, 2009

Value Objects 252

Time passes...

One day, it turns out that these values must be shared across a few subdomains of the system.
For example:

1. The website needs to display them

2. They are used in income calculations

3. They are taken into account when defining and checking discount rules (e.g. “buy three,
pay for two”)

4. They must be supplied when printing invoices

etc.

The code grows larger and larger and, as the concepts of product name and price are among the
main concepts of the application, they tend to land in many places.

Change request

Now, imagine that one of the following changes must make its way into the system:

1. The product name must be compared as case insensitive, since the names of the products are
always printed in uppercase on the invoice. Thus, creating two products that differ only in a
letter case (eg. “laptop” and “LAPTOP”) would confuse the customers as both these products
look the same on the invoice. Also, the only way one would create two products that differ
by letter case only is by mistake and we want to avoid that.

2. The product name is not enough to differentiate a product. For example, a notebook
manufacturers have the same models of notebooks in different configurations (e.g. different
amount of RAM or different processor models inside). So each product will receive
additional identifier that will have to be taken into account during comparisons.

3. To support customers from different countries, new currencies must be supported.

In current situation, these changes are really painful to make. Why? It’s because we used
primitive types to represent the things that would need to change, which means we’re coupled
in multiple places to a particular implementation of product name (string) and a particular
implementation of money (e.g. decimal). This wouldn’t be so bad, if not for the fact that we're
coupled to implementation we cannot change!

Are we sentnced to live with issues like that in our code and cannot do anything about it? Let’s
find out by exploring the options we have.

From now on, let’s put the money concept aside and focus only on the product name, as both
name and price are similar cases with similar solutions, so it’s sufficient for us to consider just
one of them.

Value Objects 253

What options do we have to address product name changes?

To support new requirements, we have to find all places where we use the product name (by
the way, an IDE will not help us much in this search, because we would be searching for all the
occurences of type string) and make the same change. Every time we need to do something like
this (i.e. we have to make the same change in multiple places an there is a non-zero possibility
we’ll miss at least one of those places), it means that we have introduced redundancy. Remember?
We talked about redundancy when discussing factories and mentioned that redundancy is about
conceptual duplication that forces us to make the same change (not literally, but conceptually)
in several places.

Al Shalloway coined a humouristic “law” regarding redundancy, called The Shalloway’s Law,
which says:

Whenever the same change needs to be applied in N places and N > 1, Shalloway will
tind at most N-1 such places.

An example of an application of this law would be:

Whenever the same change needs to be applied in 4 places, Shalloway will find at
most 3 such places.

While making fun of himself, Al described something that I see common of myself and some
other programmers - that conceptual duplication makes us vulnerable and when dealing with it,
we have no advanced tools to help us - just our memory and patience.

Thankfully, there are multiple ways to approach this redundancy. Some of them are better and
some are worse®'.

Option one - just modify the implementation in all places

This option is about leaving the redundancy where it is and just making the change in all places,
hoping that this is the last time we change anything related to product name.

So let’s say we want to add comparison with letter case ignored. Using this option would lead
us to find all places where we do something like this:

if(productName == productName2)

{

or

#1All engineering decisions are trade offs anyway, so I should really say “some of them make better trade-offs in our context, and
some make worse”.

W N

Value Objects 254

if(String.Equals(productName, productName2))
{

And change them to a comparisong that ignores case, e.g.:

if(String.Equals(productName, productName2,
StringComparison.OrdinallgnoreCase))

This deals with the problem, at least for now, but in the long run, it can cause some trouble:

1. It will be very hard®® to find all these places and chances are you’ll miss at least one. This
is an easy way for a bug to creep in.

2. Even if this time you’ll be able to find and correct all the places, every time the domain
logic for product name comparisons changes (e.g. we’ll have to use InvariantIgnoreCase
option instead of OrdinalIgnoreCase for some reasons, or handle the case I mentioned
earlier where comparison includes an identifier of a product), you’ll have to do it over. And
Shalloway’s Law applies the same every time. In other words, you’re not making things
better.

3. Everyone who adds new logic that needs to compare product names in the future, will
have to remember that character case is ignored in such comparisons. Thus, they will need
to keep in mind that they should use OrdinallIgnoreCase option whenever they add new
comparisons somewhere in the code. If you want to know my opinion, accidental violation
of this convention in a team that has either a fair size or more than minimal staff turnover
rate is just a matter of time.

4. Also, there are other changes that will be tied to the concept of product name equality in
a different way (for example, hash sets and hash tables determine equality based on hash
code, not plain comparisons of data) and you’ll need to find those places and make changes
there as well.

So, as you can see, this approach does not make things any better. In fact, it is this approach that
led us to the trouble we are trying to get away in the first place.

Option two - use a helper class

We can address the issues #1 and #2 of the above list (i.e. the necessity to change multiple places
when the comparison logic of product names changes) by moving this comparison into a static
helper method of a helper class, (let’s simply call it ProductNameComparison) and make this
method a single place that knows how to compare product names. This would make each of
the places in the code when comparison needs to be made look like this:

#http://www.netobjectives.com/blogs/shalloway %E2%80%99s-law-and- shalloway %E2%80%99s- principle

http://www.netobjectives.com/blogs/shalloway%E2%80%99s-law-and-shalloway%E2%80%99s-principle
http://www.netobjectives.com/blogs/shalloway%E2%80%99s-law-and-shalloway%E2%80%99s-principle

g b W N

Value Objects 255

i f(ProductNameComparison.AreEqual (productName, productName2))

{

Note that the details of what it means to compare two product names is now hidden inside
the newly created static AreEqual() method. This method has become the only place that has
knowledge of these details and each time the comparison needs to be changed, we have to modify
this method alone. The rest of the code just calls this method without knowing what it does, so
it won’t need to change. This frees us from having to search and modify this code each time the
comparison logic changes.

However, while it protects us from the change of comparison logic indeed, it’s still not enough.
Why? Because the concept of a product name is still not encapsulated - a product name is still
a string and it allows us to do everything with it that we can do with any other string, even
when it does not make sense for product names. This is because in the domain of the problem,
product names are not sequences of characters (which stringss are), but an abstraction with a
special set of rules applicable to it. By failing to model this abstraction appropriately, we can run
into a situation where another developer who starts adding some new code may not even notice
that product names need to be compared differently than other strings and just use the default
comparison of a string type.

Other deficiencies of the previous approach apply as well (as I said, except from the issues #1
and #2).

Option three - encapsulate the domain concept and create a “value object”

I think it’s more than clear now that a product name is a not “just a string”, but a domain concept
and as such, it deserves its own class. Let us introduce such a class then, and call it ProductName.
Instances of this class will have Equals() method overridden®’ with the logic specific to product
names. Given this, the comparison snippet is now:

// productName and productNameZ2

// are both instances of ProductName
if(productName.Equals(productName2))
{

How is it different from the previous approach where we had a helper class, called ProductNameComparison?

Previously the data of a product name was publicly visible (as a string) and we used the helper
class only to store a function operating on this data (and anybody could create their own
functions somewhere else without noticing the ones we already added). This time, the data of
the product name is hidden®* from the outside world. The only available way to operate on this
data is through the ProductName’s public interface (which exposes only those methods that we

#and, for C#, overriding equality operators (== and !=) is probably a good idea as well, not to mention GetHashCode() (See
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/equality-operators)

#In reality this is only partially true. For example, we will have to override ToString() somewhere anyway to ensure interoperability
with 3rd party libraries that don’t know about our ProductName type, but will accept string arguments. Also, one can always use reflection
to get private data. I hope you get the point though :-).

Value Objects 256

think make sense for product names and no more). In other words, whereas before we were
dealing with a general-purpose type we couldn’t change, now we have a domain-specific type
that’s completely under our control. This means we can freely change the meaning of two names
being equal and this change will not ripple throughout the code.

In the following chapters, I will further explore this example of product name to show you some
properties of value objects.

© 00 N O O & W N =

NN NN NN NN NN S R R Rl s
© 00 9 O O & W N~ OO © W 3 0O O b W N~ &

Value object anatomy

In the previous chapter, we saw a value object - ProductName in action. In this chapter, we’ll study
its anatomy - line by line, field by field, method after method. After doing this, you’ll hopefully
have a better feel of some of the more general properties of value objects.

Let’s begin our examination by taking a look at the definition of the type ProductName from the
previous chapter (the code I will show you is not legal C# - I omitted method bodies, putting ;
after each method declaration. I did this because it would be a lot of code to grasp otherwise and
I don’t necessary want to delve into the code of each method). Each section of the ProductName
class definition is marked with a comment. These comments mark the topics we’ll be discussing
throughout this chapter.

So here is the promised definition of ProductName:

//This is the class we created and used

//in the previous chapter

// class signature
public sealed class ProductName

IEquatable<ProductName>

// Hidden data:
private string _value;

// Constructor - hidden as well:

private ProductName(string value);

// Static method for creating new instances:

public static ProductName For(string value);

// Overridden version of ToString()
// from Object class
public override string ToString();

// Non-standard version of ToString().
// I will explain its purpose later

public string ToString(Format format);

// For value types, we need to implement all the equality
// methods and operators, plus GetHashCode():

public override bool Equals(Object other);

public bool Equals(ProductName other);

public override int GetHashCode();

30
31
32

Value object anatomy 258

public static bool operator ==(ProductName a, ProductName b);
public static bool operator !=(ProductName a, ProductName b);

Using the comments, I divided the class into sections and will describe them in order.

Class signature

There are two things to note about the class signature. The first one is that the class is sealed (in
Java that would be final), i.e.Idisallow inheriting from it. This is because I want the ojects of this
class to be immutable. On the first sight, sealing the class has nothing to do with immutability.
I will explain it in the next chapter when I discuss the aspects of value object design.

The second thing to note is that the class implements an IEquatable interface that adds more
strongly typed versions of the Equals(T object) method. This is not strictly required as in C#,
every object has a default Equals(Object o) method, but is typically considered a good practice
since it allows e.g. more efficient use of value objects with C# collections such as Dictionary®.

Hidden data

The actual data is private:
private string _value;
Only the methods we publish can be used to operate on the state. This is useful for three things:

1. To restrict allowed operations to what we think makes sense to do with a product name.
Everything else (i.e. what we think does not make sense to do) is not allowed.

2. To achieve immutability of ProductName instances (more on why we want the type to be
immutable later), which means that when we create an instance, we cannot modify it. If
the _value field was public, everyone could modify the state of ProductName instance by
writing something like: csharp productName.data = "something different";

3. To protect against creating a product name with an invalid state. When creating a product
name, we have to pass a string with containing a name through a static For () method that
can perform the validation (more on this later). If there are no other ways we can set the
name, we can rest assured that the validation will happen every time someone wants to
create a ProductName.

Hidden constructor

Note that the constructor is made private as well:

#https://stackoverflow.com/questions/2734914/whats-the-difference-between-iequatable-and-just-overriding-object-equals

W N

O© 00 1 O O b W N =

I =S =N
W N s,

Value object anatomy 259

private ProductName(string value)

{

_value = value;

and you probably wonder why. I'd like to decompose the question further into two others:

1. How should we create new instances then?
2. Why private and not public?

Let’s answer them one by one.

How should we create new instances?

The ProductName class contains a special static factory method, called For(). It invokes the

constructor and handles all input parameter validations**. An example implementation could
be:

public static ProductName For(string value)
{
if(string.IsNullOrWhiteSpace(value))
{
//validation failed
throw new ArgumentException(
"Product names must be human readable!");

}

else

{

//here we call the constructor

return new ProductName(value);

There are several reasons for not exposing a constructor directly, but use a static factory method
instead. Below, I briefly describe some of them.

Explaining intention

Just like factories, static factory methods help explaining intention, because, unlike constructors,
they can have names, while constructors have the constraint of being named after their class®.
One can argue that the following:

8By the way, the code contains a call to IsNul10rEmpty(). There are several valid arguments against using this method, e.g. by
Mark Seemann (http://blog.ploeh.dk/2014/11/18/the-isnullorwhitespace-trap/), but in this case, I put it in to make the code shorter as the
validation logic itself is not that important at the moment.

®"This is literally true for languages like Java, C# or C++. There are other languages (like Ruby), with different rules regarding object
construction. Still, the original argument - that the naming of methods responsible for object creation is constrained - holds.

Value object anatomy 260

ProductName.For("super laptop X112")
is not that more readable than:
new ProductName('"super laptop X112");

but note that in our example, we have a single, simple factory method. The benefit would be
more visible when we would need to support an additional way of creating a product name.
Let’s assume that in above example of “super laptop X112”, the “super laptop” is a model
and “X112” is a specific configuration (since the same laptop models are often sold in several
different configurations, with more or less RAM, different operating systems etc.) and we find it
comfortable to pass these two pieces of information as separate arguments in some places (e.g.
because we may obtain them from different sources) and let the ProductName combine them. If
we used a constructor for that, we would write:

// assume model is "super laptop"
// and configuration is "X112"

new ProductName(model, configuration)

On the other hand, we can craft a factory method and say:
ProductName.CombinedOf(model, configuration)

which reads more fluently. Or, if we like to be super explicit:
ProductName .FromModelAndConfig(model, configuration)

which is not my favourite way of writing code, because I don’t like repeating the same
information in method name and argument names. [wanted to show you that we can do this if
we want though.

I met a lot developers that find using factory methods somehow unfamiliar, but the good news is
that factory methods for value objects are getting more and more mainstream. Just to give you
two examples, TimeSpan type in C# uses them (e.g. we can write TimeSpan.FromSeconds(12) and
Period type in Java (e.g. Period.ofNanos(2222)).

Ensuring consistent initialization of objects

In case where we have different ways of initializing an object that share a common part (i.e.
whichever way we choose, part of the initialization must always be done the same), having
several constructors that delegate to one common seems like a good idea. For example, we can
have two constructors, one delegating to the other, that holds a common initialization logic:

O© 00 I O O b W N =

NN
= o

© 00 N O O b W N =

O O b W N

Value object anatomy 261

// common initialization logic
public ProductName(string value)

{

_value = value;

//another constructor that uses the common initialization
public ProductName(string model, string configuration)
. this(model + " " + configuration) //delegation to "common'" constructor

Thanks to this, the field _value is initialized in a single place and we have no duplication.

The issue with this approach is this binding between constructors is not enforced - we can use
it if we want, otherwise we can skip it. For example, we can as well use a totally separate set of
fields in each constructor:

public ProductName(string value)

{

_value = value;

public ProductName(string model, string configuration)
//oops, no delegation to the other constructor

{

}

which leaves room for mistakes - we might forget to initialize all the fields all the time and allow
creating objects with invalid state.

[argue that using several static factory methods while leaving just a single constructor is safer
in that it enforces every object creation to pass through this single constructor. This constructor
can then ensure all fields of the object are properly initialized. There is no way in such case that
we can bypass this constructor in any of the static factory methods, e.g.:

public ProductName CombinedOf(string model, string configuration)
{

// no way to bypass the constructor here,

// and to avoid initializing the _value field

return new ProductName(model + " " + configuration);

What I wrote above might seem an unnecessary complication as the example of product names
is trivial and we are unlikely to make a mistake like the one I described above, however:

1. There are more complex cases when we can indeed forget to initialize some fields in
multiple constructors.

© 00 N O O b W N =

I = SN
B W N s,

a b w N

Value object anatomy 262

2. Itis always better to be protected by the compiler than not when the price for the protection
is considerably low. At the very least, when something happens, we’ll have one place less
to search for bugs.

Better place for input validation

Let’s look again at the For () factory method:

public static ProductName For(string value)

{
if(string.IsNullOrWhiteSpace(value))

{
//validation failed
throw new ArgumentException(
"Product names must be human readable!");

}

else

{
//here we call the constructor
return new ProductName(value);

and note that it contains some input validation, while the constructor did not. Is it a wise decision
to move the validation to such a method and leave constructor for just assigning fields? The
answer to this questions depends on the answer to another one: are there cases where we do not
want to validate constructor arguments? If no, then the validation should go to the constructor,
as its purpose is to ensure an object is properly initialized.

Apparently, there are cases when we want to keep validations out of the constructor. Consider
the following case: we want to create bundles of two product names as one. For this purpose,
we introduce a new method on ProductName, called BundleWith(), which takes another product
name:

public ProductName BundleWith(ProductName other)
{
return new ProductName(

"Bundle: " + _value + other._value);

Note that the Bundlewith() method doesn’t contain any validations but instead just calls the
constructor. It is safe to do so in this case, because we know that:

1. The string will be neither null nor empty, since we are appending values of both product
names to the constant value of "Bundle: ".The result of such append operation will never
give us an empty string or anull.

W N

© 00 N O O b W N =

= U=
W N s,

Value object anatomy 263

2. The _value fields of both this and the other product name components must be valid,
because if they were not, the two product names that contain those values would fail to be
created in the first place.

This was a case where we didn’t need the validation because we were sure the input was valid.
There may be another case - when it is more convenient for a static factory method to provide
a validation on its own. Such validation may be more detailed and helpful as it is in a factory
method made for specific case and knows more about what this case is. For example, let’s look
at the method we already saw for combining the model and configuration into a product name.
If we look at it again (it does not contain any validations yet):

public ProductName CombinedOf(string model, string configuration)

{

return ProductName.For(model + " " + configuration);

We may argue that this method would benefit from a specialized set of validations, because
probably both model and configuration need to be validated separately (by the way, it sometimes
may be a good idea to create value objects for model and configuration as well - it depends on
where we get them and how we use them). We could then go as far as to throw a different
exception for each case, e.g.:

public ProductName CombinedOf(string model, string configuration)
{
if(!IsValidModel(model))

{

throw new InvalidModelException(model);

if(!IsValidConfiguration(configuration))

{

throw new InvalidConfigurationException(configuration);

non

return ProductName.For(model + + configuration);

What if we need the default validation in some cases? We can still put them in a common
factory method and invoke it from other factory methods. This looks a bit like going back to
the problem with multiple constructors, but I'd argue that this issue is not as serious - in my
mind, the problem of validations is easier to spot than mistakenly missing a field assignment as
in the case of constructors. You may have different preferences though.

Remember we asked two questions and I have answered just one of them. Thankfully, the other
one - why the constructor is private not public - is much easier to answer now.

g b W N =

Value object anatomy 264

Why private and not public?

My personal reasons for it are: validation and separating use from construction.

Validation

Looking at the constructor of ProductName - we already discussed that it does not validate
its input. This is OK when the constructor is used internally inside ProductName (as I just
demonstrated in the previous section), because it can only be called by the code we, as creators
of ProductName class, can trust. On the other hand, there probably is a lot of code that will create
instances of ProductName. Some of this code is not even written yet, most of it we don’t know,
so we cannot trust it. For such code, we want to use only the “safe” methods that validate input
and raise errors, not the constructor.

Separating use from construction®

I already mentioned that most of the time, we do not want to use polymorphism for values, as
they do not play any roles that other objects can fill. Even though, I consider it wise to reserve
some degree of flexibility to be able to change our decision more easily in the future, especially
when the cost of the flexibility is very low.

Static factory methods provide more flexibility when compared to constructors. For example,
when we have a static factory method like this:

public static ProductName For(string value)
{

//validations skipped for brevity

return new ProductName(value);

}

and all our code depends on it for creating product names rather than on the constructor, we
are free to make the ProductName class abstract at some point and have the For () method return
an instance of a subclass of ProductName. This change would impact just this static method, as
the constructor is hidden and accessible only from inside the ProductName class. Again, this is
something I don’t recommend doing by default, unless there is a very strong reason. But if there
is, the capability to do so is here.

String conversion methods

The overridden version of ToString() usually returns the internally held value or its string
representation. It can be used to interact with third party APIs or other code that does not
know about our ProductName type. For example, if we want to save the product name inside

88

A. Shalloway et al., Essential Skills For The Agile Developer.

O© 00 1 O O b W N =

Value object anatomy 265

the database, the database API has no idea about ProductName, but rather accepts library types
such as strings, numbers etc. In such case, we can use ToString() to make passing the product
name possible:

// let's assume that we have a variable

// productName of type ProductName.

var dataRecord = new DataRecord();
dataRecord["Product Name"] = productName.ToString();

/)

database.Save(dataRecord);

Things get more complicated when a value object has multiple fields or when it wraps another
type like DateTime or an int - we may have to implement other accessor methods to obtain this
data. ToString() can then be used for diagnostic purposes to allow printing user-friendly data
dump.

Apart from the overridden ToString(), our ProductName type has an overload with signature
ToString(Format format). This version of ToString() is not inherited from any other class, so
it’s a method we made to fit our goals. The ToString() name is used only out of convenience, as
the name is good enough to describe what the method does and it feels familiar. Its purpose
is to be able to format the product name differently for different outputs, e.g. reports and
on-screen printing. True, we could introduce a special method for each of the cases (e.g.
ToStringForScreen() and ToStringForReport()), but that could make the ProductName know
too much about how it is used - we would have to extend the type with new methods every time
we wanted to print it differently. Instead, the ToString() accepts a Format (which is an interface,
by the way) which gives us a bit more flexibility.

When we need to print the product name on screen, we can say:
var name = productName.ToString(new ScreenFormat());

and for reports, we can say:

var name = productName.ToString(new ReportingFormat());

Nothing forces us to call this method ToString() - we can use another name if we want to.

Equality members

For values such as ProductName, we need to implement all equality operations plus GetHashCode().
The purpose of equality operations to give product names value semantics and allow the
following expressions:

Value object anatomy 266

ProductName.For("a").Equals(ProductName.For("a"));
ProductName.For("a") == ProductName.For("a");

to return true, since the state of the compared objects is the same despite them being separate
instances in terms of references. In Java, of course, we can only override equals() method -
we are unable to override equality operators as their behavior is fixed to comparing references
(with the exception of primitive types), but Java programmers are so used to this, that it’s rarely
a problem.

One thing to note about the implementation of ProductName is that it implements IEquatable <ProductName>
interface. In C#, overriding this interface when we want to have value semantics is considered a

good practice. The IEquatable<T> interface is what forces us to create a strongly typed Equals()

method:

public bool Equals(ProductName other);

while the one inherited from object accepts an object as a parameter. The use and existence of
IEquatable<T> interface is mostly C#-specific, so I won’t go into the details here, but you can
always look it up in the documentation®.

When we override Equals(), the GetHashCode() method needs to be overridden as well. The
rule is that all objects that are considered equal should return the same hash code and all objects
considered not equal should return different hash codes. The reason is that hash codes are used
to intentify objects in hash tables or hash sets - these data structures won’t work properly with
values if GetHashCode() is not properly implemented. That would be too bad, because values are
often used as keys in various hash-based dictionaries.

The return of investment

There are some more aspects of values that are not visible on the ProductName example, but
before I explain them in the next chapter, I'd like to consider one more thing.

Looking into the ProductName anatomy, it may seem like it’s a lot of code just to wrap a single
string. Is it worth it? Where is the return of investment?

To answer that, I'd like to get back to our original problem with product names and remind
you that I introduced a value object to limit the impact of some changes that could occur to the
codebase where product names are used. As it’s been a long time, here are the changes that we
wanted to impact our code as little as possible:

1. Changing the comparison of product names to case-insensitive
2. Changing the comparison to take into account not only a product name, but also a
configuration in which a product is sold.

Let’s find out whether introducing a value object would pay off in these cases.

*https://msdn.microsoft.com/en-us/library/ms131187.aspx

https://msdn.microsoft.com/en-us/library/ms131187.aspx
https://msdn.microsoft.com/en-us/library/ms131187.aspx

g b W N =

O© 00 1 O O b W N =

N S =
a b W N =~ O

Value object anatomy 267

First change - case-insensitivity

This one is easy to perform - we just have to modify the equality operators, Equals() and
GetHashCode() operations, so that they treat names with the same content in different letter
case equal. I won’t go over the code now as it’s not too interesting, I hope you imagine how that
implementation would look like. We would need to change all comparisons between strings to
use an option to ignore case, e.g. OrdinalIgnoreCase. This would need to happen only inside the
ProductName class as it’s the only one that knows how what it means for two product names to
be equal. This means that the encapsulation we’ve introduced with out ProductName class has

paid off.

Second change - additional identifier

This change is more complex, but having a value object in place makes it much easier anyway
over the raw string approach. To make this change, we need to modify the creation of
ProductName class to take an additional parameter, called config:

private ProductName(string value, string config)
{

_value = value;

_config = config;

Note that this is an example we mentioned earlier. There is one difference, however. While earlier
we assumed that we don’t need to hold value and configuration separately inside a ProductName
instance and concatenated them into a single string when creating an object, this time we assume
that we will need this separation between name and configuration later.

After modifying the constructor, the next thing is to add additional validations to the factory
method:

public static ProductName CombinedOf(string value, string config)
{
if(string.IsNullOrWhiteSpace(value))
{
throw new ArgumentException(
"Product names must be human readable!");
}
else if(string.IsNullOrWhiteSpace(config))
{
throw new ArgumentException(
"Configs must be human readable!");

}

else

{

return new ProductName(value, config);

16
17

Value object anatomy 268

Note that this modification requires changes all over the code base (because additional argument
is needed to create an object), however, this is not the kind of change that we’re afraid of too
much. That’s because changing the signature of the method will trigger compiler errors. Each of
these errors will need to be fixed before the compilation can pass (we can say that the compiler
creates a nice TODO list for us and makes sure we address each and every item on that list). This
means that we don’t fall into the risk of forgetting to make one of the places where we need to
make a change. This greatly reduces the risk of violating the Shalloway’s Law.

The last part of this change is to modify equality operators, Equals() and GetHashCode(), to
compare instances not only by name, but also by configuration. And again, I will leave the code
of those methods as an exercise to the reader. I'll just briefly note that this modification won’t
require any changes outside the ProductName class.

Summary

So far, we have talked about value objects using a specific example of product names. I hope
you now have a feel of how such objects can be useful. The next chapter will complement the
description of value objects by explaining some of their general properties.

Aspects of value objects design

In the last chapter, we examined the anatomy of a value object. Still, there are several more
aspects of value objects design that I still need to mention to give you a full picture.

Immutability

I mentioned before that value objects are usually immutable. Some say immutability is the core
part of something being a value (e.g. Kent Beck goes as far as to say that 1 is always 1 and
will never become 2), while others don’t consider it as a hard constraint. One way or another,
designing value objects as immutable has served me exceptionally well to the point that I don’t
even consider writing value object classes that are mutable. Allow me to describe three of the
reasons I consider immutability a key constraint for value objects.

Accidental change of hash code

Many times, values are used as keys in hash maps (.e.g NET’s Dictionary<K,V> is essentially a
hash map). Let’s imagine we have a dictionary indexed with instances of a type called KeyOb ject:

Dictionary<KeyObject, AnObject> _objects;

When we use a KeyObject to insert a value into a dictionary:

KeyObject key -
_objects[key] = anObject;

then its hash code is calculated and stored separately from the original key.

When we read from the dictionary using the same key:
AnObject anObject = _objects[key];

then its hash code is calculated again and only when the hash codes match are the key objects
compared for equality.

Thus, in order to successfully retrieve an object from a dictionary with a key, this key object
must meet the following conditions in regard to the key we previously used to put the object in:

1. The GetHashCode() method of the key used to retrieve the object must return the same hash
code as that of the key used to insert the object did during the insertion,

o N O O b W N =

Aspects of value objects design 270

2. The Equals() method must indicate that both the key used to insert the object and the key
used to retrieve it are equal.

The bottom line is: if any of the two conditions is not met, we cannot expect to get the item we
inserted.

I mentioned in the previous chapter that hash code of a value object is calculated based on its
state. A conclusion from this is that each time we change the state of a value object, its hash code
changes as well. So, let’s assume our KeyOb ject allows changing its state, e.g. by using a method
SetName(). Thus, we can do the following:

KeyObject key = KeyObject.With("name");
_objects[key] = new AnObject();

// we mutate the state:
key.SetName("name2");

//do we get the inserted object or not?
var objectIInsertedTwolLinesAgo = _objects[key];

This will throw a KeyNotFoundException (this is the dictionary’s behavior when it is indexed
with a key it does not contain), as the hash code when retrieving the item is different than it was
when inserting it. By changing the state of the key with the statement: key . SetName("name2");,
I also changed its calculated hash code, so when I asked for the previously inserted object with
_objects[val], I tried to access an entirely different place in the dictionary than the one where
my object is stored.

As I find it a quite common situation that value objects end up as keys inside dictionaries, I'd
rather leave them immutable to avoid nasty surprises.

Accidental modification by foreign code

I bet many who code or coded in Java know its Date class. Date behaves like a value (it has
overloaded equality and hash code generation), but is mutable (with methods like setMonth(),
setTime(), setHours() etc.).

Typically, value objects tend to be passed a lot throughout an application and used in calculations.
Many Java programmers at least once exposed a Date value using a getter:

a o w N

oW N -

Aspects of value objects design 271

public class ObjectWithDate {
private final Date date = new Date();

s

public Date getDate() {

//oops. ..
return this.date;

}

The getDate() method allows users of the ObjectWithDate class to access the date. But
remember, a date object is mutable and a getter returns a reference! Everyone who calls the
getter gains access to the internally stored instance of Date and can moditfy it like this:

ObjectWithDate o = new ObjectWithDate();
o.getDate().setTime(date.getTime() + 10000); //oops!

return date;

Of course, almost no one would probably do it in the same line like in the snippet above, but
usually, this date would be accessed, assigned to a variable and then passed through several
methods, one of which would do something like this:

public void doSomething(Date date) {
date.setTime(date.getTime() + 10000); //oops!
this.nextUpdateTime = date;

}

This led to unpredicted situations as the date objects were accidentally modified far, far away
from the place they were retrieved™.

As most of the time it wasn’t the intention, the problem of date mutability forced us to manually
create a copy each time their code returned a date:

public Date getDate() {
return (Date)this.date.clone();

}

which many of us tended to forget. This cloning approach, by the way, may have introduced a
performance penalty because the objects were cloned every time, even when the code that was
calling the getDate() had no intention of modifying the date.

Even when we follow the suggestion of avoiding getters, the same applies when our class passes
the date somewhere. Look at the body of a method, called dumptInto():

°*This is sometimes called “aliasing bug”: https://martinfowler.com/bliki/AliasingBug.html
'Unless Java optimizes it somehow, e.g. by using copy-on-write approach.

o N O O b W N =

Aspects of value objects design 272

public void dumpInto(Destination destination) ({

destination.write(this.date); //passing reference to mutable object

Here, the destination is allowed to modify the date it receives anyway it likes, which, again, is
usually against developers’ intentions.

[saw many, many issues in production code caused by the mutability of Java Date type alone.
That’s one of the reasons the new time library in Java 8 (java. time) contains immutable types for
time and date. When a type is immutable, you can safely return its instance or pass it somewhere
without having to worry that someone will overwrite your local state against your will.

Thread safety

When mutable values are shared between threads, there is a risk that they are changed by several
threads at the same time or modified by one thread while being read by another. This can cause
data corruption. Like I mentioned, value objects tend to be created many times in many places
and passed inside methods or returned as results a lot - this seems to be their nature. Thus, this
risk of data corruption or inconsistency raises.

Imagine our code took hold of a value object of type Credentials, containing username and
password. In addition, let’s assume Credentials objects are mutable. If so, one thread may
accidentally modify the object while it is used by another thread, leading to data inconsistency.
So, provided we need to pass login and password separately to a third-party security mechanism,
we may run into the following:

public void LogIn(Credentials credentials)
{
thirdPartySecuritySystem.LogIn(
credentials.GetlLogin(),
//imagine password is modified before the next Iline
//from a different thread
credentials.GetPassword())

On the other hand, when an object is immutable, there are no multithreading concerns. If a piece
of data is read-only, it can be safely read by as many threads as we like. After all, no one is able
to modify the state of an object, so there is no possibility of inconsistency®”.

If not mutability, then what?

For the reasons I described, I consider immutability a crucial aspect of value object design and
in this book, when I talk about value objects, I assume they are immutable.

Still there is one question that remains unanswered: what about a situation when I really want
to:

°?This is one of the reasons why functional languages, where data is immutable by default, gain a lot of attention in domains where
doing many things in parallel is necessary.

W N

Aspects of value objects design 273

« replace all occurences of letter ‘r’ in a string to letter I'?

« move a date forward by five days?

« add a file name to an absolute directory path to form an absolute file path (e.g. “C:” +
“myFile.txt” = “C:\myFile.txt”)?

If I am not allowed to modify an existing value, how can I achieve such goals?

The answer is simple - value objects have operations that, instead of modifying the existing
object, return a new one, with the state we are expecting. The old value remains unmodified.
This is the way e.g. strings behave in Java and C#.

Just to address the three examples I mentioned

« when I have an existing string and want to replace every occurence of letter r with letter
1

string oldString = "rrrr";

string newString = oldString.Replace('r', '1');

//o0ldString is still "rrrr", newString is "I1I11"
« When I want to move a date forward by five days:

DateTime oldDate = DateTime.Now;
DateTime newString = oldDate + TimeSpan.FromDays(5);
//oldDate is unchanged, newDate is later by 5 days

« When I want to add a file name to a directory path to form an absolute file path”:

AbsoluteDirectoryPath oldPath

= AbsoluteDirectoryPath.Value(@"C:\Directory");
AbsoluteFilePath newPath = oldPath + FileName.Value("file.txt");
//oldPath is "C:\Directory", newPath is "C:\Directory\file.txt"

So, again, anytime we want to have a value based on a previous value, instead of modifying the
previous object, we create a new object with desired state.

Immutability gotchas

Watch out for the constructor!

Going back to the Java’s Date example - you may think that it’s fairly easy to get used to cases
such as that one and avoid them by just being more careful, but I find it difficult due to many
gotchas associated with immutability in languages such as C# or Java. For example, another
variant of the Date case from Java could be something like this: Let’s imagine we have a Money
type, which is defined as:

“this example uses a library called Atma Filesystem: https://www.nuget.org/packages/ AtmaFilesystem/

O© 00 I O O b W N =

10
11
12
13
14
15
16
17
18

O U kW N

Aspects of value objects design 274

public sealed class Money
{
private readonly int _amount;
private readonly Currencies _currency;

private readonly List<ExchangeRate> _exchangeRates;

public Money(
int amount,
Currencies currency,

List<ExchangeRate> exchangeRates)

_amount = amount;
_currency = currency;
_exchangeRates = exchangeRates;

//... other methods
}

Note that this class has a field of type List<>, which is itself mutable. But let’s also imagine
that we have carefully reviewed all of the methods of this class so that this mutable data is not
exposed. Does it mean we are safe?

The answer is: as long as our constructor stays as it is, no. Note that the constructor takes a
mutable list and just assigns it to a private field. Thus, someone may do something like this:

List<ExchangeRate> rates = GetExchangeRates();
Money dollars = new Money(100, Currencies.USD, rates);

//modify the list that was passed to dollars object
rates.Add(GetAnotherExchangeRate());

In the example above, the dollars object was changed by modifying the list that was passed
inside. To get the immutability, one would have to either use an immutable collection library or
change the following line:

_exchangeRates = exchangeRates;
to:

_exchangeRates = new List<ExchangeRate>(exchangeRates);

Inheritable dependencies can surprise you!

Another gotcha has to do with objects of types which can be subclassed (i.e. are not sealed).
Let’s take a look at the example of a class called DateWithZone, representing a date with a time
zone. Let’s say that this class has a dependency on another class called Zoneld and is defined as
such:

O© 00 I O O b W N =

10
11
12
13
14
15
16
17

W N

Aspects of value objects design 275

public sealed class DateWithZone : IEquatable<DateWithZone>
{

private readonly Zoneld _zoneld;

public DateWithZone(Zoneld zoneld)

{
_zoneld = zoneld;
}
//... some equality methods and operators. ..

public override int GetHashCode()
{

return (_zoneld != null ? _zoneld.GetHashCode() : 0);

Note that for simplicity, I made the DateWithZone type consist only of zone id, which of course in
reality does not make any sense. I am doing this only because I want this example to be stripped
to the bone. This is also why, for the sake of this example, ZoneId type is defined simply as:

public class Zoneld

{

There are two things to note about this class. First, it has an empty body, so no fields and methods
defined. The second thing is that this type is not sealed (OK, the third thing is that this type does
not have value semantics, since its equality operations are inherited as reference-based from the
Object class, but, again for the sake of simplification, let’s ignore that).

[just said that the Zoneld does not have any fields and methods, didn’t I? Well, I lied. A class
in C# inherits from Ob ject, which means it implicitly inherits some fields and methods. One of
these methods is GetHashCode(), which means that the following code compiles:

var zoneld = new Zoneld();
Console.WritelLine(zoneld.GetHashCode());

The last piece of information that we need to see the bigger picture is that methods like Equals()
and GetHashCode() can be overridden. This, combined with the fact that our ZoneId isnotsealed,
means that somebody can do something like this:

=~ O U s W N

BwWw N

Aspects of value objects design 276

public class EvilZoneld : Zoneld

{

private int _i = 0;
public override GetHashCode()

{
i++:

—_ 7

return i;

When calling GetHashCode() on an instance of this class multiple times, it’s going to return
1,2,3,4,5,6,7... and so on. This is because the _i field is in fact a piece of mutable state and it is
modified every time we request a hash code. Now, I assume no sane person would write code
like this, but on the other hand, the language does not restrict it. So assuming such an evil class
would come to existence in a code base that uses the DateWithZone, let’s see what could be the
consequence on this type.

First, let’s imagine someone doing the following:

var date = new DateWithZone(new EvilZoneId());
/e

DoSomething(date.GetHashCode());
DoSomething(date.GetHashCode());
DoSomething(date.GetHashCode());

Note that the user of the DateWithZone instance uses its hash code, but the GetHashCode()
operation of this class is implemented as:

public override int GetHashCode()
{

return (_zoneld != null ? _zoneld.GetHashCode() : 0);

So it uses the hash code of the zone id, which, in our example, is of class EvilZoneId which is
mutable. As a consequence, our instance of DateWithZone ends up being mutable as well.

This example shows a trivial and not too believable case of GetHashCode() because I wanted
to show you that even empty classes have some methods that can be overridden to make the
objects mutable. To make sure the class cannot be subclassed in a mutable way, we would have
to either make all methods sealed (including those inherited from Object) or, better, make the
class sealed. Another observation that can be made is that if our ZoneId was an abstract class
with at least one abstract method, we would have no chance of ensuring immutability of its
implementations, as abstract methods by definition exist to be implemented in subclasses, so we
cannot make an abstract method or class sealed.

Aspects of value objects design 277

There are more gotchas (e.g. a similar one applied to generic types), but I'll leave them for another
time.

Handling of variability

As in ordinary objects, there can be some variability in the world of values. For example, money
can be dollars, pounds, zlotys (Polish money), euros etc. Another example of something that can
be modelled as a value are path values (you know, C: \Directory\file.txt or /usr/bin/sh) -
there can be absolute paths, relative paths, paths to files and paths pointing to directories, we
can have unix paths and Windows paths.

Contrary to ordinary objects, however, where we solved variability by using interfaces and
different implementations (e.g. we had an Alarm interface with implementing classes such as
LoudAlarm or SilentAlarm), in the world values we do it differenly. Taking the alarms I just
mentioned as an example, we can say that the different kinds of alarms varied in how they
fulfilled the responsibility of signaling that they were turned on (we said they responded to the
same message with — sometimes entirely — different behaviors). Variability in the world of values
is typically not behavioral in the same way as in case of objects. Let’s consider the following
examples:

1. Money can be dollars, punds, zlotys etc., and the different kinds of currencies differ in what
exchange rates are applied to them (e.g. “how many dollars do I get from 10 Euros and how
many from 10 Pounds?”), which is not a behavioral distinction. Thus, polymorphism does
not fit this case.

2. Paths can be absolute and relative, pointing to files and directories. They differ in what
operations can be applied to them. E.g. we can imagine that for paths pointing to files, we
can have an operation called GetFileName(), which doesn’t make sense for a path pointing
to a directory. While this is a behavioral distinction, we cannot say that “directory path” and
a “file path” are variants of the same abstraction - rather, that are two different abstractions.
Thus, polymorphism does not seem to be the answer here either.

3. Sometimes, we may want to have a behavioral distinction, like in the following example.
We have a value class representing product names and we want to write in several different
formats depending on situation.

How do we model this variability? I usually consider three basic approaches, each applicable in
different contexts:

« implicit - which would apply to the money example,
« explicit - which would fit the paths case nicely,
« delegated - which would fit the case of product names.

Let me give you a longer description of each of these approaches.

W N

Aspects of value objects design 278

Implicit variability

Let’s go back to the example of modeling money using value objects’*. Money can have different
currencies, but we don’t want to treat each currency in any special way. The only things that
are impacted by currency are rates by which we exchange them for other currencies. We want
the rest of our program to be unaware of which currency it’s dealing with at the moment (it
may even work with several values, each of different currency, at the same time, during one
calculation or another business operation).

This leads us to making the differencies between currencies implicit, i.e. we will have a single
type called Money, which will not expose its currency at all. We only have to tell what the currency
is when we create an instance:

Money tenPounds = Money.Pounds(10);
Money tenBucks = Money.Dollars(10);
Money tenYens = Money.Yens(10);

and when we want to know the concrete amount in a given currency:

//doesn't matter which currency it is, we want dollars.

decimal amountOfDollarsOnMyAccount = mySavings.AmountOfDollars();
other than that, we are allowed to mix different currencies whenever and wherever we like®>:

Money mySavings =
Money.Dollars(100) +
Money .Euros(200) +
Money.Zlotys(1000) ;

This appeoach works under the assumption that all of our logic is common for all kinds of money
and we don’t have any special piece of logic just for Pounds or just for Euros that we don’t want
to pass other currencies into by mistake®.

To sum up, we designed the Money type so that the variability of currency is implicit - most of the
code is simply unaware of it and it is gracefully handled under the hood inside the Money class.

Explicit variability
There are times, however, when we want the variability to be explicit, i.e. modeled using different

types. Filesystem paths are a good example.

For starters, let’s imagine we have the following method for creating a backup archives that
accepts a destination path (for now as a string - we’ll get to path objects later) as its input
parameter:

°*This example is loosely based on Kent Beck’s book Test-Driven Development By Example.

°*] could use extension methods to make the example even more idiomatic, e.g. to be able to write 5.Dol1ars(), but I don’t want to
go to far in the land of idioms specific to any language, because my goal is an audience wider than just C# programmers.

%] am aware that this example looks a bit naive - after all, adding money in several currencies would imply they need to be converted
to a single currency and the exchange rates would then apply, which could make us lose money. Kent Beck acknowledged and solved this
problem in his book Test-Driven Development By Example - be sure to take a look what he came up with if you’re interested.

Aspects of value objects design 279

void Backup(string destinationPath);

This method has one obvious drawback - its signature doesn’t tell anything about the character-
istics of the destination path, which begs some questions:

« Should it be an absolute path, or a relative path. If relative, then relative to what?

« Should the path contain a file name for the backup file, or should it be just a directory
path and file name will be given according to some kind of pattern (e.g. a word “backup” +
current timestamp)?

« Or maybe the file name in the path is optional and if none is given, then a default name is
used?

These questions suggest that the current design doesn’t convey the intention explicitly enough.
We can try to work around it by changing the name of the parameter to hint the constraints, like
this:

void Backup(string absoluteFilePath);

but the effectiveness of that is based solely on someone reading the argument name and besides,
before a path (passed as a string) reaches this method, it is usually passed around several times
and it’s very hard to keep track of what is inside this string, so it becomes easy to mess things up
and pass e.g. a relative path where an absolute one is expected. The compiler does not enforce
any constraints. More than that, one can pass an argument that’s not even a path, because a
string can contain any arbitrary content.

Looks to me like a good situation to introduce a value object, but what kind of type or types
should we introduce? Surely, we could create a single type called Path®” that would have methods
like IsAbsolute(), IsRelative(), IsFilePath() and IsDirectoryPath() (i.e. it would handle the
variability implicitly), which would solve (only - we’ll see that shortly) one part of the problem
- the signature would be:

void Backup(Path absoluteFilePath);

and we would not be able to pass an arbitrary string, only an instance of a Path, which may
expose a factory method that checks whether the string passed is in a proper format:

//the following could throw an exception
//because the argument is not in a proper format
Path path = Path.Value(@"C:\C:\C:\C:\//\/\/");

Such factory method could throw an exception at the time of path object creation. This is
important - previously, when we did not have the value object, we could assign garbage to a
string, pass it between several objects and get an exception from the Backup() method. Now,
that we modeled paths as value objects, there is a high probability that the Path type will be

°"This is what Java did. I don’t declare that Java designers made a bad decision - a single Path class is probably much more versatile.
The only thing I'm saying is that this design is not optimal for our particular scenario.

O Uk wWw N

Aspects of value objects design 280

used as early as possible in the chain of calls. Thanks to this and to the validation inside the
factory method, we will get an exception much closer to the place where the mistake was made,
not at the end of the call chain.

So yeah, introducing a general Path value object might solve some problems, but not all of them.
Still, the signature of the Backup() method does not signal that the path expected must be an
absolute path to a file, so one may pass a relative path or a path to a directory, even though only
one kind of path is acceptable.

In this case, the varying properties of paths are not just an obstacle, a problem to solve, like in case
of money. They are they key differentiating factor in choosing whether a behavior is appropriate
for a value or not. In such case, it makes a lot of sense to create several different value types,
each representing a different set of path constraints.

Thus, we may decide to introduce types like”®:

« AbsoluteFilePath - representing an absolute path containing a file name, e.g.C: \Dir\file.txt
+ RelativeFilePath - representing a relative path containing a file name, e.g. Dir\file.txt

« AbsoluteDirPath - representing an absolute path not containing a file name, e.g. C: \Dir\

« RelativeDirPath - representing a relative path not containing a file name, e.g. Dir\

Having all these types, we can now change the signature of the Backup() method to:
void Backup(AbsoluteFilePath path);

Note that we don’t have to explain the constraints with the name of the argument - we can just
call it path, because the type already says what needs to be said. And by the way, no one will be
able to pass e.g. a RelativeDirPath now by accident, not to mention an arbitrary string.

Making variability among values explicit by creating separate types usually leads us to introduce
some conversion methods between these types where such conversion is legal. For example,
when all we’ve got is an AbsoluteDirPath, but we still want to invoke the Backup() method, we
need to convert our path to an AbsoluteFilePath by adding a file name, that can be represented
by a value objects itself (let’s call its class FileName). In C#, we can use operator overloading
for some of the conversions, e.g. the + operator would do nicely for appending a file name to a
directory path. The code that does the conversion would then look like this:

AbsoluteDirPath dirPath = ...
FileName fileName = ...

//'+' operator is overloaded to handle the conversion:
AbsoluteFilePath filePath = dirPath + fileName;

Of course, we create conversion methods only where they makes sense from the point of view of
the domain we are modelling. We wouldn’t put a conversion method inside AbsoluteDirectoryPath
that would combine it with another AbsoluteDirectoryPath®.

**for reference, please take a look at https://www.nuget.org/packages/AtmaFilesystem/
*’frankly, as in the case of money, the vision of paths I described here is a bit naive. Still, this naive view may be all what we need in
our particular case.

Aspects of value objects design 281

Delegated variability

Finally, we can achieve variability by delegating the varying behavior to an interface and have
a value object accept that interface implementation as a method parameter. An example of this
would be the Product class from the previous chapter that had the following method declared:

public string ToString(Format format);

where Format was an interface and we passed different implementations of this interface to
this method, e.g. ScreenFormat or ReportingFormat. Note that having the Format as a method
parameter instead of e.g. a constructor parameter allows us to uphold the value semantics,
because Format is not part of the object but rather a “guest helper”. Thanks to this, we are free
from dillemas such as “is the name ‘laptop’ formatted for screen equal to ‘laptop’ formatted for
a report?”

Summing up the implicit vs explicit vs delegated discussion

Note that while in the first example (the one with money), making the variability (in currency)
among values implicit helped us achieve our design goals, in the path example it made more
sense to do exactly the opposite - to make the variability (in both absolute/relative and to file/to
directory axes) as explicit as to create a separate type for each combination of constraints.

If we choose the implicit approach, we can treat all variations the same, since they are all of the
same type. If we decide on the explicit approach, we end up with several types that are usually
incompatible and we allow conversions between them where such conversions make sense. This
is useful when we want some pieces of our program to be explicitly compatible with only one of
the variations.

[must say I find delegated variability a rare case (formatting the conversion to string is a typical
example) and throughout my entire career I had maybe one or two situations where I had to
resort to it. However, some libraries use this approach and in your particular domain or type of
applications such cases may be much more typical.

Special values

Some value types have values that are so specific that they have their own names. For example, a
string value consisting of "" is called “an empty string”. 2,147,483, 647 is called “a maximum 32
bit integer value”. These special values make their way into value objects design. For example, in
C#, we have Int32.MaxValue and Int32.MinValue which are constants representing a maximum
and minimum value of 32 bit integer and string.Empty representing an empty string. In Java, we
have things like Duration.ZERO to represent a zero duration or DayOfWeek . MONDAY to represent a
specific day of week.

For such values, the common practice I've seen is making them globally accessible from the value
object classes, as is done in all the above examples from C# and Java. This is because values are
immutable, so the global accessibility doesn’t hurt. For example, we can imagine string.Empty
implemented like this:

O O B W N

© 00 N O O b W N =

oW N

Aspects of value objects design 282

public sealed class String //... some interfaces here
{

/o

public const string Empty = "";

/S
}

The additional const modifier ensures no one will assign any new value to the Empty field. By
the way, in C#, we can use const only for types that have literal values, like a string or an int.
For our custom value objects, we will have to use a static readonly modifier (or static final
in case of Java). To demonstrate it, let’s go back to the money example from this chapter and
imagine we want to have a special value called None to symbolize no money in any currency.
As our Money type has no literals, we cannot use the const modifier, so instead we have to do
something like this:

public class Money

{
/S

public static readonly

Money None = new Money(©@, Currencies.Whatever);

/S

This idiom is the only exception I know from the rule I gave you several chapters ago about not
using static fields at all. Anyway, now that we have this None value, we can use it like this:

if(accountBalance == Money.None)

{
/e

Value types and Tell Don’t Ask

When talking about the “web of objects” metaphor, I stressed that objects should be told what to
do, not asked for information. I also wrote that if a responsibility is too big for a single object to
handle, it shouldn’t try to achieve it alone, but rather delegate the work further to other objects
by sending messages to them. I mentioned that preferably we would like to have mostly void
methods that accept their context as arguments.

What about values? Does that metaphor apply to them? And if so, then how? And what about
Tell Don’t Ask?

First of all, values don’t appear explicitly in the web of objects metaphor, at least they’re not
“nodes” in this web. Although in almost all object-oriented languages, values are implemented

Aspects of value objects design 283

using the same mechanism as objects - classes'®, I treat them as somewhat different kind of
construct with their own set of rules and constraints. Values can be passed between objects in
messages, but we don’t talk about values sending messages by themselves.

A conclusion from this may be that values should not be composed of objects (understood
as nodes in the “web”). Values should be composed of other values (as our Path type had a
string inside), which ensures their immutability. Also, they can occasionally accept objects as
parameters of their methods (like the ProductName class from previous chapter that had a method
ToString() accepting a Format interface), but this is more of an exception than a rule. In rare
cases, I need to use a collection inside a value object. Collections in Java and C# are not typically
treated as values, so this is kind of an exception from the rule. Still, when I use collections inside
value objects, I tend to use the immutable ones, like ImmutableList'*".

If the above statements about values are true, then it means values simply cannot be expected to
conform to Tell Don’t Ask. Sure, we want them to be encapsulate domain concepts, to provide
higher-level interface etc., so we struggle very hard for the value objects not to become plain
data structures like the ones we know from C, but the nature of values is rather as “intelligent
pieces of data” rather than “abstract sets of behaviors”.

As such, we expect values to contain query methods (although, as I said, we strive for something
more abstract and more useful than mere “getter” methods most of the time). For example, you
might like the idea of having a set of path-related classes (like AbsoluteFilePath), but in the end,
you will have to somehow interact with a host of third party APIs that don’t know anything
about those classes. Then, a ToString() method that just returns internally held value will come
in handy.

Summary

This concludes my writing on value objects. I never thought there would be so much to discuss
as to how I believe they should be designed. For readers interested in seeing a state-of-the-art
case study of value objects, I recommend looking at Noda Time'** (for C#) and Joda Time'** (for
Java) libraries (or Java 8 new time and date API'**).

19°C# has structs, which can sometimes come in handy when implementing values, even though they have some constraints (see
https://stackoverflow.com/questions/333829/why-cant-i-define-a-default-constructor-for-a-struct-in-net).

1https://msdn.microsoft.com/en-us/library/dn467185(v=vs.111).aspx

19%https://nodatime.org/

19http://www.joda.org/joda-time/

19%http://www.oracle.com/technetwork/articles/java/jf14-date-time-2125367.html

https://msdn.microsoft.com/en-us/library/dn467185(v=vs.111).aspx
https://nodatime.org/
http://www.joda.org/joda-time/
http://www.oracle.com/technetwork/articles/java/jf14-date-time-2125367.html
https://msdn.microsoft.com/en-us/library/dn467185(v=vs.111).aspx
https://nodatime.org/
http://www.joda.org/joda-time/
http://www.oracle.com/technetwork/articles/java/jf14-date-time-2125367.html

Part 3: TDD in Object-Oriented
World

Status: under development

I am in progress of writing this part. Still, there are several chapters that are already available
for reading and pretty stable. I look forward to receiving your feedback!

So far, we’ve talked a lot about the object-oriented world, consisting of objects that exhibit the
following properties:

1. Objects send messages to each other using interfaces and according to protocols. As long as
these interfaces and protocols are adhered to by the recipients of the messages, the sender
objects don’t need to know who exactly is on the other side to handle the message. In
other words, interfaces and protocols allow decoupling senders from the identity of their
recipients.

2. Objects are built with Tell Don’t Ask heuristic in mind, so that each object has its own
responsibility and fulfills it when it’s told to do something, without revealing the details of
how it handles this responsibility,

3. Objects, their interfaces and protocols, are designed with composability in mind, which
allows us to compose them as we would compose parts of sentences, creating small higher-
level languages, so that we can reuse the objects we already have as our “vocabulary” and
add more functionality by combining them into new “sentences”.

4. Objects are created in places well separated from the places that use those objects. The place
of object creation depends on the object lifecycle - it may be e.g. a factory or a composition
root.

The world of objects is complemented by the world of values that exhibit the following
characteristics:

1. Values represent quantities, measurements and other discrete pieces of data that we want
to name, combine with each other, transform and pass along. Examples are: dates, strings,
money, time durations, path values, numbers, etc.

2. Values are compared based on their data, not their references. Two values containing the
same data are considered equal.

285

3. Values are immutable - when we want to have a value like another one, but with one aspect
changed, we create a new value containing this change based on the previous value and the
previous value remains unchanged.

4. Values do not (typically) rely on polymorphism - if we have several value types that need
to be used interchangeably, the usual strategy is to provide explicit conversion methods
between those types.

There are times when choosing whether something should be an object or a value poses a problem
(I ran into situations when I modelled the same concept as a value in one application and as an
object in another), so there is no strict rule on how to choose and, additionally, different people
have different preferences.

This joint world is the world we are going to fit mock objects and other TDD practices into in
the next part.

I know we have put TDD aside for such a long time. Believe me that this is because I consider
understanding the concepts from part 2 crucial to getting mocks right.

Mock objects are not a new tool, however, there is still a lot of misunderstanding of what their
nature is and where and how they fit best into the TDD approach. Some opinions went as far as
to say that there are two styles of TDD: one that uses mocks (called “mockist TDD” or “London
style TDD”) and another without them (called “cassic TDD” or “Chicago style TDD”). Personally,
I don’t support this division. I like very much what Nat Pryce said about it'*:

(...) T argue that there are not different kinds of TDD. There are different design
conventions, and you pick the testing techniques and tools most appropriate for the
conventions you’re working in.

The explanation of the “design conventions” that mocks were born from required putting you
through so many pages about a specific view on object-oriented design. This is the view that
mock objects as a tool and as a technique were chosen to support. Talking about mock objects
out of the context of this view would make me feel like I'm painting a false picture.

After reading part 3, you will understand how mocks fit into test-driving object-oriented code,
how to make Statements using mocks maintainable and how some of the practices I introduced
in the chapters of part 1 apply to mocks. You will also be able to test-drive simple object-oriented
systems.

19https://groups.google.com/forum/#'msg/growing- object-oriented-software/GNS8bQ93yOo/GViu-YvWCEo]

https://groups.google.com/forum/#!msg/growing-object-oriented-software/GNS8bQ93yOo/GViu-YvWCEoJ
https://groups.google.com/forum/#!msg/growing-object-oriented-software/GNS8bQ93yOo/GViu-YvWCEoJ

© 00 N O O b W N =

T =V =N
N O O b W N =~ O

Mock Objects as a testing tool

Remember one of the first chapters of this book, where I introduced mock objects and mentioned
that I had lied to you about their true purpose and nature? Now that we have a lot more
knowledge on object-oriented design (at least on a specific, opinionated view on it), we can
truly understand where mocks come from and what thay are for.

In this chapter, I won’t say anything about the role of mock objects in test-driving object-oriented
code yet. For now, I want to focus on justifying their place in the context of testing objects written
in the style that I described in part 2.

A backing example

For the need of this chapter, I will use one toy example. Before I describe it, I need you to know
that I don’t consider this example a showcase for mock objects. Mocks shine where there are
domain-driven interactions between objects and this example is not like that - the interactions
here are more implementation-driven. Still, I decided to use it anyway because I consider it
something easy to understand and good enough to discuss some mechanics of mock objects. In
the next chapter, I will use the same example as an illustration, but after that, 'm dropping it
and going into more interesting stuff.

The example is a single class, called DataDispatch, which is responsible for sending received
data to a channel (represented by a Channel interface). The Channel needs to be opened before
the data is sent and closed after. DataDispatch implements this requirement. Here is the full code
for the DataDispatch class:

public class DataDispatch
{

private Channel _channel;

public DataDispatch(Channel channel)
{

_channel = channel;

public void Dispatch(byte[] data)
{
_channel .Open();
try
{
_channel .Send(data);

}
finally

18
19
20
21
22

O Uk W N

Mock Objects as a testing tool 287

_channel .Close();

}

}

The rest of this chapter will focus on dissecting the behaviors of DataDispatch and their context.

I will start describing this context by looking at interface used by DataDispatch.
Interfaces

As shown above, DataDispatch depends on a single interface called Channel. Here is the full
definition of this interface:

public interface Channel
{
void Open();
void Send(byte[] data);
void Close();

}

An implementation of Channel is passed into the constructor of DataDispatch. In other words,
DataDispatch can be composed with anything that implements Channel interface. At least from
compiler point of view. This is because, as I mentioned in the last part, for two composed objects
to be able to work together successfully, interfaces are not enough. They also have to establish
and follow a protocol.

Protocols

Note that when we look at the DataDispatch class, there are two protocols it has to follow. I will
describe them one by one.

Protocol between patabispatch and its user

The first protocol is between DataDispatch and the code that uses it, i.e. the one that calls the
Dispatch() method. Someone, somewhere, has to do the following:

dataDispatch.Send(messagelnBytes);

or there would be no reason for DataDispatch to exist. Looking further into this protocol, we can
note that DataDispatch does not require too much from its users — it doesn’t have any kind of
return value. The only feedback it gives to the code that uses it is rethrowing any exception raised
by a channel, so the user code must be prepared to handle the exception. Note that DataDispatch
neither knows nor defines the kinds of exceptions that can be thrown. This is a responsibility of
a particular channel implementation. The same goes for deciding under which condition should
an exception be thrown.

Mock Objects as a testing tool 288

Protocol between patabDispatch and Channel

The second protocol is between DataDispatch and Channel. Here, DataDispatch will work with
any implementation of Channel the allows it to invoke the methods of a Channel specified
number of times in a specified order:

1. Open the channel - once,
2. Send the data - once,
3. Close the channel - once.

Whatever actual implementation of Channel interface is passed to DataDispatch, it will operate
on the assumption that this indeed is the count and order in which the methods will be called.
Also, DataDispatch assumes it is required to close the channel in case of error while sending
data (hence the finally block wrapping the Close() method invocation).

Two conversations

Summing it up, there are two “conversations” a DataDispatch object is involved in when fulfilling
its responsibilities — one with its user and one with a dependency passed by its creator. We cannot
specify these two conversations separately as the outcome of each of these two conversations
depends on the other. Thus, we have to specify the DataDispatch class, as it is involved in both
of these conversations at the same time.

Roles

Our conclusion from the last section is that the environment in which behaviors of DataDispatch
take place is comprised of three roles (arrows show the direction of dependencies, or “who sends
messages to whom”):

User -> DataDispatch -> Channel

Where DataDispatch is the specified class and the rest is its context (Channel being the part of
the context DataDispatch depends on. As much as I adore context-independence, most classes
need to depend on some kind of context, even if to a minimal degree).

Let’s use this environment to define the behaviors of DataDispatch we need to specify.

Behaviors

The behaviors of DataDispatch defined in terms of this context are:

1. Dispatching valid data:

Mock Objects as a testing tool 289

GIVEN User wants to dispatch a piece of data
AND a DataDispatch instance is connected to a Channel
that accepts such data
WHEN the User dispatches the data via the DataDispatch instance
THEN the DataDispatch object should
open the channel,
then send the User data through the channel,
then close the channel

1. Dispatching invalid data:

GIVEN User wants to dispatch a piece of data
AND a DataDispatch instance is connected to a Channel
that rejects such data
WHEN the User dispatches the data via the DataDispatch instance
THEN the DataDispatch object should report to the User
that data is invalid
AND close the connection anyway

For the remainder of this chapter I will focus on the first behavior as our goal for now is not to

create a complete Specification of DataDispatch class, but rather to observe some mechanics of
mock objects as a testing tool.

Filling in the roles

As mentioned before, the environment in which the behavior takes place looks like this:
User -> DataDispatch -> Channel

Now we need to say who will play these roles. I marked the ones we don’t have filled yet with
question marks (?):

User? -> DataDispatch? -> Channel?

Let’s start with the role of DataDispatch. Probably not surprisingly, it will be filled by the concrete
class DataDispatch — after all, this is the class that we specify.

Our environment looks like this now:
User? -> DataDispatch (concrete class) -> Channel?
Next, who is going to be the user of the DataDispatch class? For this question, I have an easy

answer — the Statement body is going to be the user — it will interact with DataDispatch to trigger
the specified behaviors. This means that our environment looks like this now:

© 00 N O O b W N =

N S U
B W N s,

Mock Objects as a testing tool 290

Statement body -> DataDispatch (concrete class) -> Channel?

Now, the last element is to decide who is going to play the role of channel. We can express this
problem with the following, unfinished Statement (I marked all the current unknowns with a
double question mark: ??):

[Fact] public void
ShouldSendDataThroughOpenChannelThenCloseWhenAskedToDispatch()
{

//GIVEN

Channel channel = ??; //what is it going to be?

var dispatch = new DataDispatch(channel);

var data = Any.Array<byte>();

//WHEN
dispatch.ApplyTo(data);

//THEN
?? //how to specify DataDispatch behavior?

Asyou see, we need to pass an implementation of Channel to a DataDispatch, but we don’t know
what this channel should be. Likewise, we have no good idea of how to specify the expected calls
and their order.

From the perspective of DataDispatch, it is designed to work with everything that implements
the Channel interface and follows the protocol, so there is no single “privileged” implementation
that is more appropriate than others. This means that we can pretty much pick and choose the
one we like best. Which one do we like best? The one that makes writing the specification easiest,
of course. Ideally, we’d like to pass a channel that best fulfills the following requirements:

1. Adds as little side effects of its own as possible. If a channel implementation used in a
Statement added side effects, we would never be sure whether the behavior we observe
when executing our Specification is the behavior of DataDispatch or maybe the behavior of
the particular Channel implementation that is used in this Statement. This is a requirement
of trust — we want to trust our Specification that it specifies what it says it does.

2. Is easy to control - so that we can easily make it trigger different conditions in the object we
are specifying. Also, we want to be able to easily verify how the specified object interacts
with it. This is a requirement of convenience.

3. Is quick to create and easy to maintain — because we want to focus on the behaviors we
specify, not on maintaining or creating helper classes. This is a requirement of low friction.

There is a tool that fulfills these three requirements better than others I know of and it’s called
a mock object. Here’s how it fulfills the mentioned requirements:

© 00 N1 O O b W N =

I = = U=
W N s,

Mock Objects as a testing tool 291

1. Mocks add almost no side effects of its own. Although they do have some hardcoded default
behaviors (e.g. when a method returning int is called on a mock, it returns @ by default),
but these behaviors are as default and meaningless as they can possibly be. This allows us
to put more trust in our Specification.

2. Mocks are easy to control - every mocking library comes provided with an API for defining
pre-canned method call results and for verification of received calls. Having such API
provides convenience, at least from my point of view.

3. Mocks can be trivial to maintain. While you can write your own mocks (i.e. your own
implementation of an interface that allows setting up and verifying calls), mos of us
use libraries that generate them, typically using a reflection feature of a programming
language (in our case, C#). Typically, mock libraries free us from having to maintain
mock implementations, lowering the friction of writing and maintaining our executable
Statements.

So let’s use a mock in place of Channel! This makes our environment of the specified behavior
look like this:

Statement body -> DataDispatch (concrete class) -> Mock Channel

Note that the only part of this environment that comes from production code is the DataDispatch,
while its context is Statement-specific.

Using a mock channel

I hope you remember the NSubstitute library for creating mock objects that I introduced way
back at the beginning of the book. We can use it now to quickly create an implementation of
Channel that behaves the way we like, allows easy verification of protocol and between Dispatch
and Channel and introduces as minimal number of side effects as possible.

By using this mock to fill the gaps in our Statement, this is what we end up with:

[Fact] public void
ShouldSendDataThroughOpenChannelThenCloseWhenAskedToDispatch()
{

//GIVEN

var channel = Substitute.For<Channel>();

var dispatch = new DataDispatch(channel);

var data = Any.Array<byte>();

//WHEN
dispatch.ApplyTo(data);

//THEN
Received.InOrder(() =>

{

15
16
17
18
19

O O W N

O O b W N

Mock Objects as a testing tool 292

channel .Open();
channel .Send(data);
channel .Close();

};

previously, this Statement was incomplete, because we lacked the answer to the following two
questions:

1. Where to get the channel from?
2. How to verify DataDispatch behavior?

I answered the question of “where to get the channel from?” by creating it as a mock:
var channel = Substitute.For<Channel>();

Then the second question: “how to verify DataDispatch behavior?” was answered by using the
NSubstitute API for verifying that the mock received three calls (or three messages) in a specific
order:

Received.InOrder(() =>

{

channel .Open();
channel .Send(data);
channel .Close();

};

The consequence is that if I rearrange the order of the messages sent to Channel in the
implementation of the ApplyTo() method from this one:

public void Dispatch(byte[] data)

{
_channel .Open();
_channel .Send(data);
_channel .Close();

1

to this one (note the changed call order):

O O B W N

Mock Objects as a testing tool 293

public void Dispatch(byte[] data)

{
_channel .Send(data); //before Open()!
_channel .Open();
_channel .Close();

}

The Statement will turn false (i.e. will fail).

Mocks as yet another context

What we did in the above example was to put our DataDispatch in a context that was most
trustworthy, convenient and frictionless for us to use in our Statement.

Some say that specifying object interactions in context of mocks is “specifying in isolation” and
that providing such mock dependencies is “isolating” the class from its “real” dependencies. I
don’t identify with this point of view very much. From the point of view of a specified class,
mocks are yet another context — they are neither better, nor worse, they are neither more nor
less real than other contexts we want to put our Dispatch in. Sure, this is not the context in
which it runs in production, but we may have other situations than mere production work - e.g.
we may have a special context for demos, where we count sent packets and show the throughput
on a GUI screen. We may also have a debugging context that in each method, before passing the
control to a production code, writes a trace message to a log. The DataDispatch class may be
used in the production code in several contexts at the same time. We may dispatch data through
network, to a database and to a file all at the same time in our application and the DataDispatch
class may be used in all these scenarios, each time connected to a different implementation of
Channel and used by a different piece of code.

Summary

The goal of this chapter was only to show you how mock objects fit into testing code written in
a “tell don’t ask” style, focusing on roles, responsibilities, behaviors, interfaces and protocols of
objects. This example was meant as something you could easily understand, not as a showcase
for TDD using mocks. For one more chapter, we will work on this toy example and then I will
try to show you how I apply mock objects in more interesting cases.

Test-first using mock objects

Now that we saw mocks in action and placed them in the context of a specific design approach,
I’d like to show you how mock objects are used when employing the test-first approach. To
do that, 'm going to reiterate the example from the last chapter. I already mentioned how this
example is not particularly strong in terms of showcasing the power of mock objects, so I won’t
repeat myself here. In the next chapter, I will give you an example I consider more suited.

How to start? - with mock objects

You probably remember the chapter “How to start?” from part 1 of this book. In that chapter, I
described the following ways to kick-start writing a Statement before the actual implementation
is in place:

1. Start with a good name.

2. Start by filling the GIVEN-WHEN-THEN structure with the obvious.
3. Start from the end.

4. Start by invoking a method if you have one.

Pretty much all of these strategies work equally well with Statements that use mock objects, so
I won’t be describing them in detail again. In this chapter, I will focus on “Start by invoking a
method if you have one” as it’s the one I use most often. This is driven not only by my choice to
use mock objects, but also by the development style I most often use. This style is called “outside-
in” and all we need to know about it for now is that following it means starting the development
form the input of system and ending on the output. Many consider this counter-intuitive as it
means we will write classes collaborating with classes that don’t exist yet. I will give you a small
taste of it (together with a technique called “interface discovery”) in this chapter and will expand
on these ideas in the next one.

Responsibility and Responsibility

In this chapter, I will be using two concepts that, unfortunately, happen to share the same name:
“responsibility”. One meaning of responsibility was coined by Rebecca Wirfs-Brock'*® to mean
“an obligation to perform a task or know certain information”, and the other by Robert C. Martin
to mean “a reason to change”. To avoid this ambiguity, [will try calling the first one “obligation”
and the second one “purpose” in this chapter.

The relationship between the two can be described by the following sentences:

1. A class has obligations towards its clients.

19http://www.wirfs-brock.com/PDFs/PrinciplesInPractice.pdf

http://www.wirfs-brock.com/PDFs/PrinciplesInPractice.pdf
http://www.wirfs-brock.com/PDFs/PrinciplesInPractice.pdf

=~ O U s W N

© 00 N O O b W N =

NN
N O

Test-first using mock objects 295

2. The obligations are what the class “promises” to do for its clients.

3. The class does not have to fulfill the obligations alone. Typically, it does so with help from
other objects - its collaborators. Those collaborators, in turn, have their obligations and
collaborators.

4. Each of the collaborators is given a purpose resulting from decomposition of the obligation.

Channel and DataDispatch one more time

Remember the example from the last chapter? Imagine we are in a situation where we already
have the DataDispatch class, but its implementation is empty — after all, this is what we’re going
to test-drive.

So for now, the DataDispatch class looks like this

public class DataDispatch

{
public void ApplyTo(byte[] data)
{
throw new NotImplementedException();
}
}

Where did I get this class from in this shape? Well, let’s assume for now that I am in the middle
of development and this class is a result of my previous TDD activities (after reading this and
the next chapter, you’ll hopefully have a better feel on how it happens).

The first behavior

A TDD cycle starts with a false Statement. What behavior should it describe? I'm not sure yet,
but, as I already know the class that will have the behaviors that I want to specify, plus it only
has a single method (ApplyTo()), I can almost blindly write a Statement where I create an object
of this class and invoke the method:

[Fact] public void
Shoul dXXXXXXXXXYYY() //TODO give a better name

{
//GIVEN

var dispatch = new DataDispatch();

//WHEN
dispatch.ApplyTo(); //TODO doesn't compile

//THEN
Assert.True(false); //TODO state expectations

© 00 N O O b W N =

SN
N O

Test-first using mock objects 296

Note several things:

1. I'm currently using a dummy name for the Statement and I added a TODO item to my list
to correct it later, when I define the purpose and behavior of DataDispatch.

2. According to its signature, the ApplyTo() method takes an argument, but I didn’t provide
any in the Statement. For now, I don’t want to think too hard, I just want to brain-dump
everything I know.

3. the //THEN section is empty for now - it only contains a single assertion that is designed to
fail when the execution flow reaches it (this way I protect myself from mistakenly making
the Statement true until I state my true expectations). I will define the //THEN section once
I figure out what is the purpose that I want to give this class and the behavior that I want
to specify.

4. If you remember the Channel interface from the last chapter, well, in this continuum it
doesn’t exist yet and let’s assume that, I don’t even know that I need it. I will “discover” it
later.

Leaning on the compiler

So I did my brain dump. What do I do now? I don’t want to think too hard yet (time will come
for that). First, I reach for the feedback to my compiler — maybe it can give me some hints on
what I am missing?

Currently, the compiler complains that I invoke the ApplyTo() method without passing any
argument. What’s the name of the argument? AsIlook up the signature of the ApplyTo() method,
it looks like the name is data:

public void ApplyTo(byte[] data)

Hmm, if it’s data it wants, then let’s pass some data. I don’t want to decide what it is yet, so I
will act as if I had a variable called data and just write its name where the argument is expected:

[Fact] public void
Shoul dXXXXXXXXXYYY() //TODO give a better name

{
//GIVEN

var dispatch = new DataDispatch();

//WHEN
dispatch.ApplyTo(data); //TODO still doesn't compile

//THEN
Assert.True(false); //TODO state expectations

The compiler gives me more feedback - it says my data variable is undefined. It might sound
funny (as if I didn’t know!), but this way I progressed one step further. Now I know I need to

Test-first using mock objects 297

define this data. I can use a “quick fix” capability of my IDE to introduce a variable. E.g. in
Jetbrains IDEs (Intelli] IDEA, Resharper, Rider...) this can be done by pressing ALT + ENTER when
the cursor is on the name of the missing variable. The IDE will create the following declaration:

byte[] data;

Note that the IDE guessed the type of the variable for me. How did it know? Because the
definition of the method where I try to pass it already has the type declared:

public void ApplyTo(byte[] data)

Of course, the declaration of data that my IDE put in the code will still not compile because C#
requires variables to be explicitly initialized, i.e. the code should look like this:

byte[] data = ... /* whatever initialization code*/;

Turning the brain on - what about data?

It looks like I can’t continue my brain-dead parade anymore. In order to decide how to define
this data, [have to turn on my thought processes and decide what exactly is the obligation of the
ApplyTo() method and what does it need the data for. After some thinking (how convenient of
me to exclude this part from the book!) I decide that applying data dispatch should send the data
it receives. But... should it do it alone? There are at least two things associated with sending the
data:

1. The raw sending logic (i.e. laying out the data, pushing it e.g. through a web socket etc.)

2. Managing the connection lifetime (i.e. deciding when it should be opened and when closed,
disposing of all the allocated resources, even in the face of an exception that may be raised
while sending).

I decide to not put the entirety of logic in the DataDispatch class, because:

1. It would have more than one purpose (as described earlier) — in other words, it would violate
the Single Responsibility Principle.

2. I am mentally unable to figure out how to write a false Statement for so much logic before
the implementation. I always treat it as a sign that I'm trying to use a single class for too
much'”’.

*"more on this in further chapters.

Bw N

Test-first using mock objects 298

Introducing a collaborator

Thus, my decision is to divide and conquer, i.e. find DataDispatch some collaborators that will
help it achieve its goal and delegate parts of the logic to them. After some consideration, I decide
that the purpose of DataDispatch should be managing the connection lifetime. The rest of the
logic I decide to delegate to a collaborator role that I named Channel. The process of coming out
with collaborator roles and delegating some obligations to them is called interface discovery.
will cover it in the next chapter.

Anyway, since my DataDispatch is going to delegate some logic to the Channel, it has to know
it. Thus, I'll connect this new collaborator to the DataDispatch. A DataDispatch will not work
without a Channel, which means I need to pass the channel to DataDispatch as a constructor
parameter. It’s tempting to just go to the definition of this constructor and add a parameter
there, but that’s not what I'll do. I will, as usual, start my changes from the Statement. Thus, I
will modify the following code:

//GIVEN
var dispatch = new DataDispatch();

to:

//GIVEN
var dispatch = new DataDispatch(channel); //doesn't compile

I passed a channel object as if it was already defined in the Statement body and as if the
constructor already accepted it. Of course, none of these is the case yet. This makes my compiler
give me more compile errors. For me, this is a valuable source of feedback that I need to progress
further. The first thing the compiler tells me to do is to introduce a channel variable. Again, I
use my IDE to generate it for me. This time, however, the result of the generation is:

Object channel;

The IDE could not guess the correct type of channel (which would be Channel) and made it an
Object, because, obviously, I haven’t created the Channel type yet.

First, I'll introduce the Channel interface by changing the declaration Object channel; into
Channel channel;. This will give me another compile error, as the Channel type does not exist.
Thankfully, creating it is just one IDE click away (e.g. in Resharper, I place my cursor at the
non-existent type, press ALT + ENTER and pick an option to create it as an interface.). Doing this
will give me:

public interface Channel

{

Bw N

© 00 N O O & W N =

==Y
W N s,

Test-first using mock objects 299

which is enough to get past this particular compiler error, but then I get another one — nothing
is assigned to the channel variable. Again, I have to turn my thinking on. Luckily, this time I can
lean on a simple rule: in my design, Channel is a role and, as mentioned in the last chapter, I use
mocks to play the roles of my collaborators. So the conclusion is to use a mock. By applying this
rule, I change the following line:

Channel channel;
to:
var channel = Substitute.For<Channel>();

The last compiler error I need to address to fully introduce the Channel collaborator is to make
the DataDispatch constructor accept the channel as its argument. For now DataDispatch uses
an implicit parameterless constructor. I need to generate a new one, again, using my IDE, going
to the place where the constructor is used with the channel and telling my IDE to correct the
constructor signature for me. This way I get a constructor code inside the DataDispatch class:

public DataDispatch(Channel channel)
{

Note that the constructor doesn’t do anything with the channel. I could create a new field and
assign the channel to it, but [wouldn’t use the field at this moment anyway. Thus, I decide I can
wait a little bit longer before introducing a field.

Taking a bird’s-eye view on my Statement, I currently have:

[Fact] public void
Shoul dXXXXXXXXXYYY() //TODO give a better name

{
//GIVEN

byte[] data; // does not compile yet
var channel = Substitute.For<Channel>();
var dispatch = new DataDispatch(channel);

//WHEN
dispatch.ApplyTo(data);

//THEN
Assert.True(false); //TODO state expectations

This way, I defined a Channel collaborator and introduced it first in my Statement, and then in
the production code.

Test-first using mock objects 300

Specifying expectations

The compiler and my TODO list point out that I still have three tasks to accomplish for the
current Statement:

« define data variable,
« name my Statement and
- state my expectations (the THEN section of the Statement)

I can do them in any order I see fit, so I pick the last task from the list - stating the expected
behavior.

To specify what is expected from DataDispatch, | have to answer myself four questions:

1. What are the obligations of DataDispatch?

2. What is the purpose of DataDispatch?

3. Who are the collaborators that need to receive messages from DataDispatch?
4. What is the behavior of DataDispatch that I need to specify?

My answers to these questions are:

1. DataDispatch is obligated to sending data as long as it is valid. In case of invalid data, it
throws an exception. That’s two scenarios. As I only specify a single scenario per Statement,
I need to pick one of them. I pick the first one (which I will call “the happy path” from now
on), adding the second one to my TODO list:

1 //TODO: specify a behavior where sending data

2 /J/ through a channel raises an exception

2. The purpose of DataDispatch is to manage connection lifetime while sending data received
via the ApplyTo() method. Putting it together with the answer to the last question, what I
would need to specify is how DataDispatch manages this lifetime during the “happy path”
scenario. The rest of what I need to fulfill the obligation of DataDispatch is outside the
scope of the current Statement as I decided to push it to collaborators.

3. Ialready defined one collaborator and called it Channel. As mentioned in the last chapter, in
unit-level Statements, I fill my collaborators’ roles with mocks and specify what messages
they should receive. Thus, I know that the THEN section will say what are the messages that
the Channel role (played by a mock object) is expected to receive from my DataDispatch.

4. Now that I know the scenario, the purpose and the collaborators, I can define my expected
behavior in terms of those things. My conclusion is that I expect DataDispatch to properly
manage (purpose) a Channel (collaborator) in a “happy path” (scenario) where the data is
sent without errors (obligation). As channels are typically opened before they are used and
are closed afterwards, then what my DataDispatch is expected to do is to open the channel,
then push data through it, and then close it.

How to implement such expectations? Implementation-wise, what I expect is that DataDispatch:

W N

© 00 N O O b W N =

= ==Y
© 00 N O O b W N =~ O

Test-first using mock objects 301

makes correct calls (open, send, close)

« with correct arguments (the received data)

in correct order (cannot e.g. call close before open)

« correct number of times (e.g. should not send the data twice)

I can specify that using NSubstitute’s Received. InOrder () syntax. I will thus use it to state that
the three methods are expected to be called in a specific order. Wait, what methods? After all,
our Channel interface looks like this:

public interface Channel

{

so there are no methods here whatsoever. The answer is — just like I discovered the need for
the Channel interface and then brought it to life afterwards, I now discovered that I need three
methods: Open(), Send() and Close(). Exactly the same way as I did with the Channel interface,
I will use them in my Statement as if they existed:

[Fact] public void
Shoul dXXXXXXXXXYYY() //TODO give a better name
{

//GIVEN

byte[] data; // does not compile yet

var channel = Substitute.For<Channel>();

var dispatch = new DataDispatch(channel);

//WHEN
dispatch.ApplyTo(data);

//THEN

Received.InOrder(() =>

{
channel .Open(); //doesn't compile
channel .Send(data); //doesn't compile
channel .Close(); //doesn't compile
1

}

and then pull them into existence using my IDE and its shortcut for generating missing classes
and methods. This way, I get:

O O B W N

© 00 N O O & W N =

N = =y
O© 00 I O O b W N =~ O

Test-first using mock objects 302

public interface Channel
{

void Open();

void Send(byte[] data);
void Close();

}

Now I have only two things left on my list — giving the Statement a good name and deciding
what the data variable should hold. I'll go with the latter as it is the last thing that prevents the
compiler from compiling and running my Statement and I expect it will give me more useful

feedback.

The data variable

What should I assign to the data variable? Time to think about how much does the DataDispatch
need to know about the data it needs to push through the channel. I decide that DataDispatch
should work with any data — its purpose is to manage the connection after all — it does not
need to read or manipulate the data to do this. Someone, somewhere, probably needs to validate
this data, but I decide that if I added validation logic to the DataDispatch, it would break the
single-purposeness. So I push validation further to the Channel interface, as whether a channel
can accept the data or not depends on the actual implementation of sending logic. Thus, I define
the data variable in my Statement as just Any . Array<byte>():

[Fact] public void

Shoul dXXXXXXXXXYYY() //TODO give a better name
{

//GIVEN

var data = Any.Array<byte>();

var channel = Substitute.For<Channel>();

var dispatch = new DataDispatch(channel);

//WHEN
dispatch.ApplyTo(data);

//THEN
Received.InOrder(() =>
{
channel .Open();
channel .Send(data);
channel .Close();
1)
}

© 00 N O O b W N =

T S =Y
O O B W N~

17
18
19

© 00 N O O b W N =

=Y
N O

Test-first using mock objects 303

Good name

The Statement now compiles and runs (it is currently false, of course, but I'll get to that), so what I
need is to give this Statement a better name. I'll go with ShouldSendDataThroughOpenChannelThenCloseWhenAske
This was the last TODO on the Specification side, so let’s see the full Statement code:

[Fact] public void
ShouldSendDataThroughOpenChannelThenCloseWhenAskedToDispatch()
{

//GIVEN

var data = Any.Array<byte>();

var channel = Substitute.For<Channel>();

var dispatch = new DataDispatch(channel);

//WHEN
dispatch.ApplyTo(data);

//THEN
Received.InOrder(() =>

{

channel .Open();
channel .Send(data);
channel .Close();

1);
}

Failing for the correct reason

The Statement I just wrote can now be evaluated and, as expected, it is false, because for now,
the implementation throws a Not ImplementedException:

public class DataDispatch

{
public DataDispatch(Channel channel)
{
}
public void ApplyTo(byte[] data)
{
throw new NotImplementedException();
}
}

What I’d like to see before I start implementing the correct behavior is that the Statement is
false because assertions (in this case — mock verifications) fail. So the part of the Statement that
I would like to see throwing an exception is this one:

Bw N - O O b W N -

Bw N

Test-first using mock objects 304

Received.InOrder(() =>

{
channel .Open();

channel .Send(data);
channel .Close();

});
but instead, I get an exception as early as:

//WHEN
dispatch.ApplyTo(data);

To make progress past the WHEN section, I need to push the production code a little bit further
towards the correct behavior, but only as much as to see the expected failure. Thankfully, I can
achieve it easily, by going into the ApplyTo() method and removing the throw clause, making it:

public void ApplyTo(byte[] data)
{

This alone is enough to see the mock verification making my Statement false. Now that I can see
that the Statement is false for the correct reason, my next step is to put the correct implementation
to make the Statement true.

Making the Statement true

[start with the DataDispatch constructor, which currently takes a Channel as a parameter, but
doesn’t do anything with it:

public DataDispatch(Channel channel)
{

[want to assign the channel to a newly created field (this can be done using a single command
in most IDEs). The code then becomes:

O O B W N

O U W N

1
2

Test-first using mock objects 305

private readonly Channel _channel;

public DataDispatch(Channel channel)
{

_channel = channel;

}

This allows me to use the _channel in the ApplyTo() method that I'm trying to implement.
Remembering that my goal is to open the channel, push the data and the close the channel, I

type:

public void ApplyTo(byte[] data)
{

_channel .Open();

_channel .Send(data);

_channel .Close();

}

To tell you the truth, usually before writing the correct implementation, I play a bit,
making the Statement wrong in several ways, just to see if I can correctly guess the
reason why the Statement will turn false and to make sure the error messages are
informative enough. For example, I may only implement opening the channel at first
and observe whether the Statement is still false and if the reason for that is changed as I
expected. Then I may add sending the data, but pass something other than _data to the
Send() method (e.g. a null) etc. This way, I “test my test”, not only for correctness
(whether it will fail for the right reason) but also for diagnostics (will it give me
enough information when it fails?). Finally, this is also a way I learn about how my
test automation tools inform me of issues in such cases.

Second behavior - specifying an error

The first Statement is implemented, so time for the second one — remember I put it on the TODO
list a while ago so that I don’t forget about it:

//TODO: specify a behavior where sending data

// through a channel raises an exception

This second behavior is that in case the sending fails with exception, the user of DataDispatch
should receive this exception and the connection should be safely closed. Note that the notion
of what “closing the connection” means is delegated to the Channel implementations, so when
specitying the behaviors of DataDispatch I only need to care whether Channel’s Close() method
is invoked correctly. The same goes for the meaning of “errors while sending data” — this is also
the obligation of Channel. What we need to specify about DataDispatch is how it handles the
sending errors in regard to its user and its Channel.

a b w N

© 00 N O O b W N =

I = SN
B W N S,

Test-first using mock objects 306

Starting with a good name

This time, I choose the strategy of starting with a good name, because I feel I have a much better
understanding of what behavior I need to specify than with my previous Statement. I pick the
following name to state the expected behavior:

public void
ShouldRethrowExceptionAndCloseChannelWhenSendingDataFails()
{

Y/

}

Before I start dissecting the name into useful code, I start by stating the bleedy obvious (note
that I'm mixing two strategies of starting from false Statement now — I didn’t say you can’t do
that now, did I?). Having learned a lot by writing and implementing the previous Statement, I
know for sure that:

. I need to work with DataDispatch again.

. I need to pass a mock of Channel to DataDispatch constructor.

. Channel role will be played by a mock object.

. I need to invoke the ApplyTo() method.

. Ineed some kind of invalid data (although I don’t know yet what to do to make it “invalid”).

Gl W DN

I write that down in a form of code:

public void
ShouldRethrowExceptionAndCloseChannelWhenSendingDataFails()

{
//GIVEN

var channel = Substitute.For<Channel>();
var dataDispatch = new DataDispatch(channel);
byte[] invalidData; //doesn't compile

//WHEN
dataDispatch.ApplyTo(invalidData);

//THEN
Assert.True(false); //no expectations yet

Expecting that channel is closed

I also know that one aspect of the expected behavior is closing the channel. I know how to write
this expectation — I can use the Received() method of NSubstitute on the channel mock. This
will, of course, go into the //THEN section:

W N

Test-first using mock objects 307

//THEN
channel .Received(1).Close(); //added
Assert.True(false); //not removing this yet

}

[used Received(1) instead of just Received(), because attempting to close the channel several
times might cause trouble, so want to be explicit on the expectaton that the DataDispatch should
close the channel exactly once. Another thing — I am not removing the Assert . True(false) yet,
as the current implementation already closes the channel and so the Statement could become
true if not for this assertion (if it compiled, that is). I will remove this assertion only after I fully
define the behavior.

Expecting exception

Another thing I expect DataDispatch to do in this behavior is to rethrow any sending errors,
which are reported as exceptions thrown by Channel from the Send() method.

Typically, I rarely write Statements about rethrown exceptions, but here I have no choice
— if T don’t catch the exception in my Statement, I won’t be able to evaluate whether
the channel was closed or not, since the uncaught exception will stop executing the
Statement.

To specify that I expect an exception in my Statement, I need to use a special assertion called
Assert.Throws <> () and pass the code that should throw the exception as a lambda:

//WHEN
Assert.Throws<Exception>(() =>
dataDispatch.ApplyTo(invalidData));

Defining invalid data

My compiler shows me that the data variable is undefined. OK, now the time has come to decide
what actually is invalid data.

First of all, remember that DataDispatch cannot tell the difference between valid and invalid
data - this is the purpose of the Channel as each Channel implementation might have different
criteria for data validation. In my Statement, I use a mock to play the channel role, so I can just
tell my mock that it should treat the data I define in my Statement as invalid. Thus, the value of
the data itself is irrelevant as long as I configure my Channel mock to act as if it was invalid. As
a conclusion, I define the data as any byte array:

var invalidData = Any.Array<byte>();

I also need to write down the assumption of how the channel will behave given this data:

W N

© 00 N O O & W N =

N = =y
© 0O N O O b W N =~ O

Test-first using mock objects 308

//GIVEN

var exceptionFromChannel = Any.Exception();
channel .When(c => c¢.Send(invalidData)).Throw(exceptionFromChannel);

Note that the place where I configure the mock to throw an exception is the //GIVEN section.
This is because any predefined mock behavior is my assumption. By pre-canning the method
outcome in this case, I say “given that channel for some reason rejects this data”.

Now that I have the full Statement code, I can get rid of the Assert.True(false) assertion. The
full Statement looks like this:

public void
ShouldRethrowExceptionAndCloseChannelWhenSendingDataFails()
{

//GIVEN

var channel = Substitute.For<Channel>();

var dataDispatch = new DataDispatch(channel);

var data = Any.Array<byte>();

var exceptionFromChannel = Any.Exception();

channel .When(c => c¢.Send(data)).Throw(exceptionFromChannel);

//WHEN
var exception = Assert.Throws<Exception>(() =>
dataDispatch.ApplyTo(invalidData));

//THEN
Assert.Equal(exceptionFromChannel, exception);
channel .Received(1).Close();

Now, it may look a bit messy, but given my toolset, this will have to do. This Statement will now
turn false on the second assertion. Wait, the second? What about the first one? Well, the first
assertion says that an exception should be rethrown and methods in C# rethrow the exception
by default, not requiring any implementation on my part'®®. Should I just acept it and go on?
Well, I don’t want to. Remember what I wrote in the first part of the book — we need to see each
assertion fail at least once. An assertion that passes straight away is something we should be
suspicious about. What I need to do now is to temporary break the behavior do that I can see the
failure. I can do that in (at least) two ways:

1. By going to the Statement and commenting out the line that configures the Channel mock
to throw an exception.

2. By going to the production code and surrounding the channel.Send(data) statement with
a try-catch block.

1%8that’s why typically I don’t specify that something should rethrow an exception — I do it this time because otherwise it would not

let me specify how DataDispatch uses a Channel.

© 00 N O O b W N =

Test-first using mock objects 309

Either way would do, but I typically prefer to change the production code and not alter my
Statements, so I chose the second way. By wrapping the Send() invocation with try and empty
catch, I can now observe the assertion fail, because an exception was expected but none came out
of the dataDispatch.ApplyTo() invocation. Now I'm ready to undo my last change, confident
that my Statement describes this part of the behavior well and I can focus on the second assertion,
which is:

channel .Received(1).Close();
This assertion fails because my current implementation of the ApplyTo() method is:

_channel .Open();
_channel.Send(data);
_channel .Close();

and an exception thrown from the Send() method interrupts the processing, instantly exiting the
method, so Close() is never called. We can change this behavior by using try-finally block to

wrap the call to Send()**:
_channel .Open();
try
{
_channel .Send(data);
}
finally
{
_channel.Close();
}

This makes my second Statement true and concludes this example. If I were to go on, my next
step would be to implement the newly discovered Channel interface, as currently it has no
implementation at all.

Summary

In this chapter, we delved into writing mock-based Statements and developing classes in a test-
first manner. This example is not a strict prescription or any kind of “one true way” of test-
driving such implementation - some things could’ve been done differently. For example, there
were many situations where I got several TODO items pointed by my compiler or my false
Statement. Depending on many factors, I might’ve approached them in a different order. For
example, in the second behavior, I could’ve defined data as Any.Array<byte> () right from the
start (and left a TODO item to check on it later and confirm whether it can stay this way) to get
the Statement to compiling state quicker.

1%0f course, the idiomatic way to do it in C# would be to use the IDisposable interface and a using block.

Test-first using mock objects 310

Another interesting point was the moment when I discovered the Channel interface — I'm aware
that I slipped over it by saying something like “we can see that the class has too many purposes,
then magic happens and then we’ve got an interface to delegate parts of the logic to”. This “magic
happens” part is often called “interface discovery” and we will dig a little deeper into it in the
next chapter.

You might’ve noticed that this chapter was longer than the last one, which may lead you to
a conclusion that TDD complicates things rather than simplifying them. There were, however,
several factors that made this chapter longer:

1. In this chapter, we specified two behaviors (a “happy path” plus error handling), whereas
in the last chapter we only specified one (the “happy path”).

2. In this chapter, we designed and implemented the DataDispatch class and discovered the
Channel interface whereas in the last chapter they were given to us right from the start.

3. Because [assume the test-first way of writing Statements may be less familiar to you, I took
my time to explain it in more detail.

So don’t worry — when one gets used to it, the process I described typically takes several minutes
at worst.

Test-driving at the input boundary

In this chapter, we’ll be joining Johnny and Benjamin again as they try to test-drive a system
starting from its input boundaries. This will hopefully show a picture of how abstractions are
pulled from need and how roles are invented at the boundary of a system. The further chapters
will explore domain model. This example makes several assumptions:

1. In this story, Johnny is a super programmer, who never makes mistakes. In real-life TDD,
people make mistakes and correct them, sometimes they go back and forth thinking about
tests and design. Here, Johnny gets everything right the first time. Although I know this is a
drop on realism, I hope that it will help my readers in observing how some TDD mechanics
work. This is also why Johnny and Benjamin will not need to refactor anything in this
chapter.

2. There will be no Statements written on higher than unit level. This means that Johnny and
Benjamin will do TDD using unit-level Statements only. This is why they will need to do
some things they could avoid if they could write a higher-level test. A separate part of this
book will cover working with different levels of tests at the same time.

3. This chapter (and several next ones) will avoid the topic of working with any I/O,
randomness and other hard to test stuff. For now I want to focus on test-driving pure code-
based logic.

With all of that out of our way, let’s join Johnny and Benjamin and see what kind of issue they
are dealing with and how they try to solve it using TDD.

Fixing the ticket office

Johnny: What do you think about trains, Benjamin?

Benjamin: Are you asking because I was travelling by train yesterday to get here? Well, I like
it, especially after some of the changes that happened over the recent years. I truly think that
today’s railways are modern and passenger-friendly.

Johnny: And about the seat reservation process?

Benjamin: Oh yeah, that... | mean, why didn’t they still automate the process? Is this even
thinkable that in the 21st century I cannot reserve a seat through the internet?

Johnny: I kinda hoped you’d say that, because our next assignment is to do exactly that.
Benjamin: You mean reserving seats through the internet?

Johnny: Yes, the railroads company hired us.

Benjamin: You're kidding me, right?

Johnny: No, I'm being really honest.

© 00 N O O b W N =

NN
= o

Test-driving at the input boundary 312

Benjamin: No way.
Johnny: Take your smartphone and check your e-mail, I already forwarded the details to you.
Benjamin: Hey, that looks legit. Why didn’t you tell me earlier?

Johnny: I'll explain on the way. Come on, let’s go.

Initial objects

Benjamin: do we have any sort of requirements, stories or whatever to work with?

Johnny: Yes, I'll explain some as I walk you through the input and output data structures. This
will be enough to get us going.

Request

Johnny: Somebody’s already written the part that accepts an HTTP request and maps it to the
following structure:

public class ReservationRequestDto

{

public readonly string trainld;
public readonly uint seatCount;

public ReservationRequestDto(string trainld, uint seatCount)

{
this.trainld = trainld;

this.seatCount = seatCount;

Benjamin: I see... Hey, why does the ReservationRequestDto name has Dto in it? What is it?

Johnny: The suffix Dto means that this class represents a Data Transfer Object (in short, DTO)'*.
Its role is just to transfer data across the process boundaries.

Benjamin: So you mean it is just needed to represent some kind of XML or JSON that is sent to
the application?

Johnny: Yes, you could say that. The reason people typically place Dto in these names is because
these data structures are special - they represent an outside contract and cannot be freely
modified like other objects.

Benjamin: Does it mean that I can’t touch them?

Johnny: It means that if you did touch them, you’d have to make sure they are still correctly
mapped from outside data, like JSON or XML.

1%Patterns of enterprise application architecture, M. Fowler.

O© 00 1 O O b W N =

T N =Y
O O B W N~

Test-driving at the input boundary 313

Benjamin: Cool, and what about the ID?

Johnny: It represents a train. The client application will know these IDs and someone has
slaready written the part for retrieving them.

Benjamin: Cool, what’s next?

Johnny: The client tells us how many seats we need to reserve, but doesn’t tell us where. This
is why there’s only a seatCount parameter. We are the ones who determine which steas to pick.

Benjamin: So if a couple wants to reserve two steas, they can be in different coaches?

Johnny: Yes, however, there are some preference rules that we need to code in, like, if we can, a
single reservation should have all seats in the same coach. I'll fill you in on the rules later as for
now we’re not going to need them.

Response

Benjamin: Do we return something back to the client?

Johnny: Yes, need to return a response, which, guess what, is also a DTO. This response
represents the reservation made:

public class ReservationDto

{

public readonly string trainld;
public readonly string reservationlId;
public readonly List<TicketDto> perSeatTickets;

public ReservationDto(
string trainld,
List<TicketDto> perSeatTickets,
string reservationlId)

this.trainld = trainld;
this.perSeatTickets = perSeatTickets;
this.ticketlId = ticketld;

Benjamin: OK, I can see that there’s a train ID, which is... the same as the one in the request, I
suppose?

Johnny: Right.
Benjamin: ...and there is a reservation ID that is probably assigned by our application.
Johnny: correct.

Benjamin: but the perSeatTickets field... it is a list of TicketDto, which as I understand is one
of our custom types. Where is it?

Johnny: Oh, yeah, forgot to show it to you. TicketDto is defined as:

O© 00 I O O b W N =

10
11

© 00 1 O O b W N =

Test-driving at the input boundary 314

public class TicketDto
{

public readonly string coach;
public readonly int seatNumber;

public TicketDto(string coach, int seatNumber)

{
this.coach = coach;
this.seatNumber = seatNumber;

so it has a coach name and a seat number, and we have a list of these in our reservation.

Benjamin: Ok, so a single reservation can contain many tickets and each ticket is for a single
place in a specific coach, right?

Johnny: Yes.

Ticket Office class

Benjamin: Ok. So we need these data structures to deserialize some kind of JSON or XML input
into them?

Johnny: Don’t you remember? This part is already done, lucky us. Our work starts from the
point where the desrialized data is passed to the application logic as a DTO. The request entry
point is in a class called TicketOffice:

[SomeKindOfController]
public class TicketOffice
{
[SuperFrameworkMethod]
public ReservationDto MakeReservation(ReservationRequestDto requestDto)

{

throw new NotImplementedException("Not implemented");

Johnny: As I can see, it has some annotations specific to a web framework, so we will probably
not implement the use case directly in the MakeReservation method to avoid coupling our use
case logic to code that needs to meet the requirements of a specific framework.

Benjamin: So what you’re saying is that you’re trying to keep the TicketOffice as much away
from the business logic as you can?

Johnny: Yes, in a way, I think about it as an anti-corruption layer. I only need it to wrap all
the objects into appropriate abstractions and run the use case where it is us who dictate the
conditions, not a framework.

© 00 N O O b W N =

Test-driving at the input boundary 315

Bootstrap

Benjamin: Are we ready to go?

Johnny: Typically, if I were you, I would like to see one more place in the code.
Benjamin: Which is..?

Johnny: The composition root, of course.

Benjamin: Why would I like to see a composition root?

Johnny: Well, first reason is that it is very close to the entry point for the application, so it is a
chance for you to see how the application manages its dependencies. The second reason is that
each time we will be adding a new class that has the same lifespan as the application, we will
need to go to the composition root and modify it. Sooo it would probably be nice to be able to
tell where it is and know how to work with it.

Benjamin: I thought I could find that later, but while we're at it, can you show me the
composition root?

Johnny: Sure, it’s here, in the Application class:

public class Application

{

public static void Main(string[] args)

{
new WebApp(

new TicketOffice()
) .Host();

Benjamin: Good to see it doesn’t require us to use any fancy reflection-based mechanism for
composing objects.

Johnny: Yes, we’re lucky about that. We can just create the objects with new operator and pass
them to the framework.

Writing the first Statement

Johnny: Anyway, I think we’re ready to start.

Benjamin: Ok, where do we start from? Should we write some kind of a class called “Reservation”
or “Train” first?

Johnny: No, what we will do is we will start from the inputs and work our way towards the
inside of the application. Then, if necessary, to the outputs again.

Benjamin: I don’t think I understand what you’re talking about. Do you mean this “outside-in”
approach that you talked about yesterday?

=~ O O b W N -~

Bw N

Test-driving at the input boundary 316

Johnny: Yes and don’t worry if you didn’t get what I said, I will explain as we go. For now, the
only thing I mean by it is that we will follow the path of the request as it comes from the outside
of our application and start implementing at the first place that where the request is not handled
as it should. Specifically, this means we start at:

public class TicketOffice

{
public ReservationDto MakeReservation(ReservationRequestDto requestDto)
{
throw new NotImplementedException("Not implemented");
}
}

Benjamin: Why?

Johnny: Because this is the place nearest to the request entry point where the behavior differs
from the one we expect. As soon as the request reaches this point, its handling will stop and an
exception will be thrown. We need to alter this code if we want the request to go any further.

Benjamin: [see... so... if we didn’t have the request deserialization code in place already, we’'d
start there, because that would be the first place where the request would stuck on its way
towards it goal, right?

Johnny: Yes, you got it.
Benjamin: And... we start with a false Statement, no?

Johnny: Yes, let’s do that.

First Statement skeleton

Benjamin: Don’t tell me anything, I'll try doing it myself.
Johnny: Sure, as you wish.

Benjamin: The first thing [need to do is to add an empty Specification for the TicketOffice class:

public class TicketOfficeSpecification

{
//TODO add a Statement

}

Then, I need to add my first Statement. I know that in this Statement, I need to create an instance
of the TicketOffice class and call the MakeReservation method, since it’s the only method in
this class and it’s not implemented.

Johnny: so what strategy do you use for starting with a false Statement?
Benjamin: “invoke method when you have one”, as far as [remember.
Johnny: So what’s the code going to look like?

Benjamin: for starters, [will do my brain dump just as you taught me. After stating all the bleedy
obvious facts, I get:

O© 00 I O O b W N =

=Y
N =~ O

Test-driving at the input boundary 317

[Fact]
public void ShouldXXXXX() //TODO better name

{
//WHEN

var ticketOffice = new TicketOffice();

//WHEN
ticketOffice.MakeReservation(requestDto);

//THEN
Assert.True(false);

Johnny: Good... my... apprentice...
Benjamin: What?

Johnny: Oh, nevermind... anyway, the code doesn’t compile now, since this line:
ticketOffice.MakeReservation(requestDto);

uses a variable requestDto that does not exist. Let’s generate it using our IDE!

Benjamin: By the way, I wanted to ask about this line. Making it compile is something we need
to do to move on. Weren’t we supposed to add a TODO comment for things we need to get back
to, like we did with the Statement name, which was:

public void ShouldXXXXX() //TODO better name

Johnny: My opinion is that this is not necessary, because the compiler, by failing on this line,
has already creeated a TODO item of sort for us, just not on our TODO list but on compile error
log. This is different than e.g. the need to change a method name, which the compiler will not
remind us about.

Benjamin: So my TODO list is composed of compile errors, false Statements and the items I
manually mark as ToDO? Is this how I should understand it?

Johnny: Exactly. Going back to the requestDto variable, let’s create it.

Benjamin: Sure. It came out like this:
ReservationRequestDto requestDto;

We need to assign something to the variable.
Johnny: Yes, and since it’s a DTO, it is certainly not going to be a mock.
Benjamin: You mean we don’t mock DTOs?

Johnny: No, there’s no need to. DTOs are, by definition, data structures and mocking involves
polymorphism which applies to behavior rather than data. Later I will explain it in more details.
For now, just accept my word on it.

Test-driving at the input boundary 318

Benjamin: Sooo... if it’s not going to be a mock, then let’s generate it using the Any . Instance<> ()
method.

Johnny: That is exactly what I would do.

Benjamin: So I will change this line:
ReservationRequestDto requestDto;
to:

var requestDto = Any.Instance<ReservationRequestDto>();

Setting up the expectation

Johnny: Yes, and now the Statement compiles, so after everything compiles, our Statement seems
to be false. This is because of this line:

Assert.True(false);

Benjamin: so we change this false to true and we’re done here, right?
Johnny: ...

Benjamin: Oh, this was a joke. You believe me, don’t you? What I really wanted to say is let’s
turn this assertion into something useful.

Johnny: phew, don’t scare me like that. Yes, this assertion needs to be rewritten. And it so
happens that when we look at the following line:

ticketOffice.MakeReservation(requestDto);

it doesn’t make any use of the return value of MakeReservation() while it’s evident from the
signature that its return type is a ReservationDto. Look:

public ReservationDto MakeReservation(ReservationRequestDto requestDto)

In our Statement, we don’t do anything with it.

Benjamin: Ok, let me guess, you want me go to the Statement, assign this return value to a
variable and then assert its equality to... what exactly?

Johnny: For now, to an expected value, which we don’t know yet what’s going to be, but we
will worry about it later when it really blocks us.

Benjamin: This is one of those situations where we need to imagine that we already have
something we don’t, right?. Ok, here goes:

O© 00 I O O b W N =

I = U =N
B w N s,

Test-driving at the input boundary 319

[Fact]

public void ShouldXXXXX() //TODO better name

{
//WHEN
var requestDto = Any.Instance<ReservationRequestDto>();
var ticketOffice = new TicketOffice();

//WHEN
var reservationDto = ticketOffice.MakeReservation(requestDto);

//THEN
//doesn't compile - we don't have expectedReservationDto yet:

Assert.Equal (expectedReservationDto, reservationDto);

There, I did what you asked. So please explain to me now how did it get us any closer to our
goal?

Johnny: Well, we transformed our problem from “what assertion to write” into “what is the
reservation that we expect”. This is indeed a step in the right direction.

Benjamin: Enlighten me then - what is “the reservation that we expect”?

Johnny: For now, the Statement is not compiling at all, so to go any step further, we can just
introduce a expectedReservationDto as any value. Thus, we can just write in the GIVEN section:

var expectedReservationDto = Any.Instance<ReservationDto>();
and it will make the following code compile:

//THEN
Assert.Equal (expectedReservationDto, reservationDto);

Benjamin: But this assertion will fail anyway...
Johnny: That’s still better than not compiling, isn’t it?

Benjamin: Well, if you put it this way... Now our problem is that the expected value from the
assertion is something the production code doesn’t know about - this is just something we created
in our Statement. This means that this assertion is not an assertion on the outcome of the behavior
of production code. How do we solve this?

Johnny: This is where we need to exercise our design skills to introduce some new collaborators.
This task is hard at the boundaries of application logic, since we need to draw the collaborators
not from the domain, but rather think about design patterns that will allow us to reach our
goals. Every time we enter our application logic, we do so from a perspective of a use case. In
this particular example, our use case is “making a reservation”. A use case is typically represented
by either a method in a facade["FacadePattern] or a command object[*CommandPattern].
Commands are a bit more complex, but more scalable. If making a reservation was our only

Test-driving at the input boundary 320

use case, it probably wouldn’t make sense to use it. But as we already have more high priority
requests for features, I believe we can assume that commands will be a better fit.

Benjamin: So you propose to use more complex solution - isn’t that “big design up front™?

Johnny: I believe that it isn’t. Remember I'm using just a bit more complex solution. The cost of
implementation is only a bit higher as well as the cost of maintenance in case I'm wrong. If for
some peculiar reason someone says tommorow that they don’t need the rest of the features at
all, the increase in complexity will be negligible taking into account the small size of the overall
code base. If, however, we add more features, then using commands will save us some time in the
longer run. Thus, given what I know, I am not adding this to support speculative new features,
but to make the code easier to modify in the long run''*. I agree though that choosing just enough
complexity for a given moment is a difficult task'*?.

Benjamin: I still don’t get it how introducing a command is going to help us here. Typically, a
command has an Execute() method that typically doesn’t return anything. How then will it give
us the response that we need to return from the MakeReservation()? And also, there’s this an-
other issue: how is this command going to be created? It will probably require the request passed
as one of its constructor parameters, so we cannot pass the command to the TicketOffice’s
constructor as the first time we can access the request is when the MakeReservation() method
is invoked.

Johnny: Yes, you are right in both of your concerns. Thankfully, when you choose to go
with commands, typically there are standard solutions to the problems you mentioned. The
commands are typically created using factories and they can convey their results using a pattern
called collecting parameter["KerievskyCollectingParameter] - we will pass an object inside the
command to gather all the events from handling the use case and then be able to prepare a
response for us.

Introducing a reservation in progress collaborator

Johnny: Let’s start with the collecting parameter, which will represent a domain concept of a
reservation in progress. What we currently know about it is that it’s going to give us a response
DTO at the very end. All of the three objects: the command, the collecting parameter and the
factory, are collaborators, so they will be mocks in our Statement.

Benjamin: Ok, lead the way.

Johnny: Allright, let’s start with the GIVEN section. Here, we need to say that the collecting
parameter mock, let’s call it reservationInProgress will give us the expectedReservationDto
(which is already defined in the body of the Statement) when asked:

//GIVEN
/S

reservationInProgress.ToDto().Returns(expectedReservationDto);

Of course, we don’t have the reservationInProgress yet, so now we need to introduce it. As
I explained earlier, this needs to be a mock, because otherwise, we wouldn’t be able to call
Returns() on it:

"https://martinfowler.com/bliki/Yagni.html
"2https://www.youtube.com/watch?v=aCLBd3alrwk

https://martinfowler.com/bliki/Yagni.html
https://martinfowler.com/bliki/Yagni.html
https://www.youtube.com/watch?v=aCLBd3a1rwk
https://www.youtube.com/watch?v=aCLBd3a1rwk
https://martinfowler.com/bliki/Yagni.html
https://www.youtube.com/watch?v=aCLBd3a1rwk

W N - B W N a W N

© 00 N O O b W N =

NN
=

Test-driving at the input boundary

///GIVEN

var reservationInProgress = Substitute.For<ReservationInProgress>();
/S

reservationInProgress.ToDto() .Returns(expectedReservationDto);

S/

321

Now, the Statement does not compile because the ReservationInProgress interface that I just
used in the mock definition is not introduced yet.

Benjamin: In other words, you just discovered that you need this interface.

Johnny: Exactly. What I’'m currently doing is I'm pulling abstractions and objects into my code

as I need them. And my current need is to have the following interface in my code:

public interface ReservationInProgress

{

Now, the Statement still doesn’t compile, because there’s this line:

reservationInProgress.ToDto().Returns(expectedReservationDto);

which requires the ReservationInProgress interface to have a ToDto() method, but for now,
this interface is empty. After adding the required method, it looks like this:

public interface ReservationInProgress

{

ReservationDto ToDto();

and the Statement compiles again, although it is still a false one.

Benjamin: Ok. Now give me a second to grasp the full Statement in its current state.

Johnny: Sure, take your time, this is how it currently looks like:

[Fact]
public void ShouldXXXXX() //TODO better name

{

//WHEN

var requestDto = Any.Instance<ReservationRequestDto>();

var ticketOffice = new TicketOffice();

var reservationInProgress = Substitute.For<ReservationInProgress>();

var expectedReservationDto = Any.Instance<ReservationDto>();

reservationInProgress.ToDto() .Returns(expectedReservationDto);

12
13
14
15
16
17

Test-driving at the input boundary 322

//WHEN
var reservationDto = ticketOffice.MakeReservation(requestDto);

//THEN
Assert.Equal (expectedReservationDto, reservationDto);

Introducing a factory collaborator

Benjamin: Ok, I think I managed to catch up. Can I grab the keyboard?
Johnny: I was about to suggest it. Here.

Benjamin: Thanks. Looking at this Statement, we have this ReservationInProgress all set up
and created, but this mock of ours is not passed to the TicketOffice at all. So how should the
TicketOffice use our pre-configured reservationInProgress?

Johnny: Remember our discussion about separating object use from construction?

Benjamin: Yeah, I guess I know what you’re getting at. The TicketOffice should somehow get
an already created ReservationInProgress object from the outside. It can get it e.g. through a
constructor or from a factory.

Johnny: Yes, and if you look at the lifetime scope of our TicketOffice, which is created
once at the start of the application, it can’t really accept a ReservationInProgress through a
constructor, because every time a new reservation request is made, we want to have a new
ReservationInProgress, so passing it through a TicketOffice constructor would force us to
create a new TicketOffice every time as well. Thus, the solution that better fits our current
situation is...

Benjamin: A factory, right? You’re suggesting that instead of passing a ReservationInProgress
through a constructor, we should rather pass something that knows how to createReservationInProgress
instances?

Johnny: Exactly.
Benjamin: Ok, so how to write it in the Statement?

Johnny: First, write what you really need. The factory needs to be a mock, because we need to
configure it so that when asked, it returns our ReservationInProgress mock. So let’s write that
return configuration first, pretending we already have the factory available in our Statement

body.

Benjamin: Let me see... right, that should do it:

//GIVEN

reservationInProgressFactory.Freshinstance().Returns(reservationInProgress);

Johnny: Nice. Now the code does not compile, because we don’t have areservationInProgressFactory.
So let’s create it.

Benjamin: And, like you said earlier, it should be a mock. Then this will be the definition:

W N

W N

W N

Test-driving at the input boundary 323

var reservationInProgressFactory = Substitute<ReservationInProgressFactory>();

For the need of this line, I pretended that I have an interface called ReservationInProgressFactory,
and, let me guess, you want me to introduce this interface now?

Johnny: (smiles)
Benjamin: Allright. Here:

public interface ReservationInProgressRepository

{

And now, the compiler tells us that we don’t have the FreshInstance() method, so let me
introduce it:

public interface ReservationInProgressRepository

{

ReservationInProgress Freshlnstance();

Good, the compiler doesn’t complain anymore, but the Statement fails with aNot ImplementedException.

Johnny: Yes, this is because the current body of the MakeReservation() method of the TicketOffice
class looks like this:

public ReservationDto MakeReservation(ReservationRequestDto requestDto)

{

throw new NotImplementedException("Not implemented");

Expanding the ticket office constructor

Benjamin: So should we implement this now?
Johnny: We still some stuff to do in the Statement.
Benjamin: Like..?

Johnny: For example, the ReservationInProgressFactory mock that we just created is not
passed to the TicketOffice constructor yet, so there is no way for the ticket office to use this
factory.

Benjamin: Ok, so I'll add it. The Statement will change in this place:

W N

O© 00 I O O b W N =

Test-driving at the input boundary 324

var reservationInProgressFactory = Substitute<ReservationInProgressFactory>();
var ticketOffice = new TicketOffice();

to:

var reservationInProgressFactory = Substitute<ReservationInProgressFactory>();
var ticketOffice = new TicketOffice(reservationInProgressFactory);

and a constructor needs to be added to the TicketOffice class:

public TicketOffice(ReservationInProgressFactory reservationInProgressFactory)

{

Johnny: Agreed. And, we need to maintain the composition root which just stopped compiling.
This is because the constructor of a TicketOffice is invoked there and it needs an update as well:

public class Application

{
public static void Main(string[] args)
{
new WebApp(
new TicketOffice(/* compile error - instance missing */)
).Host();
}
}

Benjamin: But what should we pass? We have an interface, but no class of which we could create
an instance.

Johnny: We need to create the class. Typically, if I have an idea about the name of the required
class, I create the class by that name. If I don’t have any idea on how to call it yet, I can call it
e.g. TodoReservationInProgressFactory and leave a TODO comment to get back to it later. For
now, we just need this class to compile the code. It’s still out of scope of our current Statement.

Benjamin: So maybe We could pass a null so that we have new TicketOffice(null)?

Johnny: We could, but that’s not my favourite option. I typically just create the class. One of
the reasons is that the class will need to implement an interface to compile and then we will
need to introduce a methods which will by default throw a Not ImplementedException and these
exceptions will end up on my TODO list as well.

Benjamin: Ok, that sounds reasonable for me. So this line:
new TicketOffice(/* compile error - instance missing */)

becomes:

<~ O O s W N~

W N

Test-driving at the input boundary 325

new TicketOffice(
new TodoReservationInProgressFactory()) //TODO change the name

And it doesn’t compile, because we need to create this class so let me do it:

public class TodoReservationInProgressFactory : ReservationInProgressFactory

{
}

Johnny: It still doesn’t compile, because the interface ReservationInProgressFactory has some
methods that we need to implement. Thankfully, we can do this with a single IDE command and
get:

public class TodoReservationInProgressFactory : ReservationInProgressFactory

{

public ReservationInProgress FreshInstance()

{

throw new NotImplementedException();

and, as I mentioned a second ago, this exception will end up on my TODO list, reminding me
that I need to address it.

Let’s backtrack to the constructor of TicketOffice:

public TicketOffice(ReservationInProgressFactory reservationInProgressFactory)

{

here, we could already assign the constructor parameter to a field, but it’s also OK to do it later.

Benjamin: Let’s so it later, I wonder how far we can get delaying work like this.

Introducing a command collaborator

Johnny: Sure. So let’s take a look at the Statement we’re writing. It seems we are missing one
more expectation in our THEN section. if you look at the Statement’s full body as it is now:

O© 00 I O O b W N =

P = =y
O© 00 N O O b W N =~ O

Test-driving at the input boundary 326

[Fact]
public void ShouldXXXXX() //TODO better name
{
//WHEN
var requestDto = Any.Instance<ReservationRequestDto>();
var reservationInProgressFactory = Substitute<ReservationInProgressFactory>();
var ticketOffice = new TicketOffice(reservationInProgressFactory);
var reservationInProgress = Substitute.For<ReservationInProgress>();
var expectedReservationDto = Any.Instance<ReservationDto>();

reservationInProgressFactory.Freshlnstance().Returns(reservationInProgress);

reservationInProgress.ToDto().Returns(expectedReservationDto);

//WHEN
var reservationDto = ticketOffice.MakeReservation(requestDto);

//THEN
Assert.Equal (expectedReservation, reservationDto);

the only interaction between a TicketOffice and ReservationInProgress it describes is the
former calling the ToDto method on the latter. So the question that we need to ask ourselves now
is “how will the instance of ReservationInProgress know what ReservationDto to create when
this method is called?”.

Benjamin: Oh right... the ReservationDto needs to be created by the ReservationInProgress
based on the current application state and the data in the ReservationRequestDto, but the
ReservationInProgress knows nothing about any of these things so far.

Johnny: Yes, filling the ReservationInProgress is one of the responsibilities of the application
we are writing. If we did it all in thie TicketOffice class, this class would surely have too much
to handle and our Statement would grow immensely. So we need to push the responsibility of
handling our use case further to other collaborating objects and use mocks for those objects here.

Benjamin: So what do you propose?

Johnny: Remember our discussion from several minutes ago? Usually, when I push a use case-
related logic to another object at the system boundary, I pick from among the Facade pattern
and the Command pattern. Fadaces are simpler but less scalable, while commands are way more
scalable and composable but a new command object needs to be created by the application each
time a use case is triggered and a new command class needs to be created by a programmer when
support for a new use case is added to the system.

Benjamin: Ok, I already know that you prefer commands.

Johnny: Well, yeah, bear with me if only for the sake of seeing how commands can be used here.
[am sure you could figure out the Facade option by yourself.

Benjamin: Ok, so what do I type?

W N

Test-driving at the input boundary 327

Johnny: Well, let’s assume we have this command and then let’s think about what we want our
TicketOffice to do with it.

Benjamin: We want the TicketOffice to execute the command, obviously..?
Johnny: Right, let’s write this in form of expectation.

Benjamin: Ok, I'd write something like this:
reservationCommand.Received(1).Execute(reservationInProgress);

I already passed the reservationInProgress as the command will need to fill it.

Johnny: Wait, it so happens that I prefer another way of passing this reservationInProgress to
the Execute() method. Please for now make the Execute() method parameterless.

Benjamin: As you wish, but I thought this would be a good place to pass it.

Johnny: It might look like it, but typically, I want my commands to have parameterless execution
methods. This way I can compose them more freely.

Benjamin: [removed the parameter and the THEN section looks like this:

//THEN
reservationCommand.Received(1).Execute();
Assert.Equal (expectedReservationDto, reservationDto);

and it doesn’t compile of course. So I already know I need to introduce a variable of a type that
I have to pretend already exists. Aaaand, I already know it should be a mock, since I verify that
it received a call to its Execute() method.

Johnny: (nods)

Benjamin: In the GIVEN section, I'll add the reservationCommand as a mock:
var reservationCommand = Substitute.For<ReservationCommand>();
and now I don’t have this ReservationCommand interface so I can create it:

public interface ReservationCommand

{

and the code still doesn’t compile, because in the Statement, I expect to receive an Execute()
method call on the command but there’s no such method. I can fix it by adding this method on
the command interface:

W N

W N

Test-driving at the input boundary 328

public interface ReservationCommand

{

void Execute();

and now everything compiles again.

Introducing a command factory collaborator

Johnny: Sure, now we need to figure out how to pass this command to the TicketOffice. As
we discussed, by nature, a command object represents, well, an issued command, so it cannot be
created once in the composition root and then passed to the constructor, because then:

1. it would essentially become a facade,
2. we would need to pass the reservationInProgress to the Execute() method which we
wanted to avoid.

Benjamin: Wait, don’t tell me... you want to add another factory here?
Johnny: Yes, that’s what I would like to do.

Benjamin: But... that’s a second factory in a single Statement. Aren’t we, like, overdoing it a
little?

Johnny: I understand why you feel that way. Still, this is a consequence of my design choice. We
wouldn’t need a command factory if we went with a facade. In simple apps, I just use a facade
and do away with this dilemma. I could also drop the use of collecting parameter patern and
then I wouldn’t need a factory for reservations in progress, but that would mean I would not
resolve the command-query separation principle violation and would need to push this violation
further into my code. To cheer you up, this is an entry point for a use case where we need to
wrap some things in abstractions, so I don’t expect this many factories in the rest of the code. I
treat this part as a sort of anti-corruption layer which protects me from everything imposed by
outside of my application logic which I don’t want to deal with inside of my application logic.

Benjamin: I will need to trust you on that. I hope it will make things easier later because for
now... ugh...

Johnny: Let’s introduce the factory mock. Of course, before we define it, we want to use it first
to feel a need for it. This code needs to go into the GIVEN section:

//GIVEN

commandFactory.CreateReservationCommand(requestDto, reservationInProgress)
.Returns(reservationCommand);

This doesn’t compile because we have no commandFactory yet.

Benjamin: Oh, I can see that the factory’s CreateReservationCommand() is where you decided to
pass the reservationInProgress that I wanted to pass to the Execute() method earlier. Clever.

W N - SO O B W N -

O U W N

© 00 N O O & W N =

[N ==Y
W N =~ o

Test-driving at the input boundary 329

By leaving the commands’s Execute() method parameterless, you made it more abstract and
made the interface decpoupled from any particular argument types. On the other hand, the
command is created in the same scope it is used, so there is literally no issue with passing all the
parameters through the factory method.

Johnny: That’s right. We now know we need a factory, plus that it needs to be a mock, since we
configure it to return a command when it is asked for one. I propose something like this:

//GIVEN
var commandFactory = Substitute.For<CommandFactory>();

commandFactory.CreateReservationCommand(requestDto, reservationInProgress)

.Returns(reservationCommand);
Benjamin: ...and the CommandFactory doesn’t exist, so let’s create it:

public interface CommandFactory

{

and let’s add the missing CreateReservationCommand method:

public interface CommandFactory

{

ReservationCommand CreateReservationCommand(
ReservationRequestDto requestDto,
ReservationInProgress reservationInProgress);

}

Benjamin: Now the code compiles and looks like this:

[Fact]
public void ShouldXXXXX() //TODO better name
{
//WHEN
var requestDto = Any.Instance<ReservationRequestDto>();
var commandFactory = Substitute.For<CommandFactory>();
var reservationInProgressFactory = Substitute<ReservationInProgressFactory>();
var ticketOffice = new TicketOffice(reservationInProgressFactory);
var reservationInProgress = Substitute.For<ReservationInProgress>();
var expectedReservationDto = Any.Instance<ReservationDto>();

var reservationCommand = Substitute.For<ReservationCommand>();

commandFactory.CreateReservationCommand(requestDto, reservationInProgress)

14
15
16
17
18
19
20
21
22
23
24

O O B W N =

Test-driving at the input boundary 330

.Returns(reservationCommand);
reservationInProgressFactory.FreshInstance().Returns(reservationInProgress);
reservationInProgress.ToDto().Returns(expectedReservationDto);

//WHEN
var reservationDto = ticketOffice.MakeReservation(requestDto);

//THEN
Assert.Equal (expectedReservationDto, reservationDto);
reservationCommand.Received(1) .Execute();

Benjamin: I can see that the command factory is not passed anywhere from the Statement - the
TicketOffice doesn’t know about it.

Johnny: Yes, and, lucky us, a factory is something that can have the same lifetime scope as the
TicketOffice since to create the factory, we don’t need to know anything about a request for
reservation. This is why we can pass it through the constructor of TicketOffice. Which means
that these two lines:

var commandFactory = Substitute.For<CommandFactory>();

var ticketOffice = new TicketOffice(reservationInProgressFactory);
will now look like this:

var commandFactory = Substitute.For<CommandFactory>();
var ticketOffice = new TicketOffice(

reservationInProgressFactory, commandFactory);
As this doesn’t compile, we need to add a parameter of type CommandFactory to the constructor:

public TicketOffice(
ReservationInProgressFactory reservationInProgressFactory,

CommandFactory commandFactory)

and, this forces us to add a parameter to our composition root. So this part of the composition
root:

new TicketOffice(
new TodoReservationInProgressFactory()) //TODO change the name

becomes:

o I O O b W N =

Test-driving at the input boundary 331

new TicketOffice(
new TodoReservationInProgressFactory(), //TODO change the name
new TicketOfficeCommandFactory())

which in turn forces us to create the TicketOfficeCommandFactory class:

public class TicketOfficeCommandFactory : CommandFactory
{

public ReservationCommand CreateReservationCommand(ReservationRequestDto reques\
tDto)

{

throw new NotImplementedException();

}

Benjamin: Hey, this time you gave the class a better name than the previous factory which was
called TodoReservationInProgressFactory. Why didn’t you want to leave it for later this time?

Johnny: This time, I think I have a better idea on how to name this class. Typically, I name
concrete classes based on something from their implementation and I find the names hard to
find when I don’t have this implementation yet. This time I believe I have a name that can last
a bit, which is also why I didn’t leave a TODO comment next to this name. Still, further work
can invalidate my naming choice and I will be happy to change the name when a need arises.
For now, it should suffice.

Giving the Statement a name

Anyway, getting back to the Statement, I think we’ve got it all covered. Let’s just give it a good
name. Looking at the assertions:

reservationCommand.Received(1).Execute();
Assert.Equal (expectedReservationDto, reservationDto);

I think we can say:

public void

ShouldExecuteReservationCommandAndReturnResponseWhenMak ingReservation()

Benjamin: Just curious... Didn’t you tell me to watch out for the “and” word in Statement names
and that it may suggest something is wrong with the scenario.

Johnny: Yes, and in this particular case, there is something wrong - the class TicketOffice
violates the command-query separation principle. This is also why the Statement looks so messy.
For this class, however, we don’t have a big choice since our framework requires this kind of
method signature. That’s also why we are working so hard in this class to introduce the collecting
parameter and protect the rest of the design from the violation.

Benjamin: Ok, I hope the future Statements will be easier to write than this one.

Johnny: Me too.

Test-driving at the input boundary 332

Making the Statement true - the first assertion

Johnny: Let’s take a look at the code of the Statement:

[Fact] public void
ShouldExecuteReservationCommandAndReturnResponseWhenMakingReservation()
{
//GIVEN
var requestDto = Any.Instance<ReservationRequestDto>();
var commandFactory = Substitute.For<CommandFactory>();
var reservationInProgressFactory = Substitute<ReservationInProgressFactory>();
var reservationInProgress = Substitute.For<ReservationInProgress>();
var expectedReservationDto = Any.Instance<ReservationDto>();

var reservationCommand = Substitute.For<ReservationCommand>();

var ticketOffice = new TicketOffice(
reservationInProgressFactory,
commandFactory);

reservationInProgressFactory.FreshInstance()
.Returns(reservationInProgress);

commandFactory.CreateReservationCommand(requestDto, reservationInProgress)
.Returns(reservationCommand);

reservationInProgress.ToDto()
.Returns(expectedReservationDto);

//WHEN
var reservationDto = ticketOffice.MakeReservation(requestDto);

//THEN
Assert.Equal (expectedReservationDto, reservationDto);
reservationCommand.Received(1).Execute();

Johnny: I think it is complete, but we won’t know that until we see the assertions failing and
then passing. For now, the implementation of MakeReservation() method throws an exception
and this exception makes our Statement stop at the WHEN stage, not even getting to the assertions.

Benjamin: But I can’t just put the right implementation in yet, right? This is what you have
always told me.

Johnny: Yes, ideally, we should see the assertion errors to gain confidence that the Statement
can turn false when the expected behavior is not in place.

Benjamin: This can only mean one thing - return null from the TicketOffice instead of
throwing the exception. Right?

Johnny: Yes, let me do it. I'll just change this code:

W N

W N

W N

O O W N

Test-driving at the input boundary 333

public ReservationDto MakeReservation(ReservationRequestDto requestDto)

{

throw new NotImplementedException("Not implemented");

to:

public ReservationDto MakeReservation(ReservationRequestDto requestDto)

{

return null;

Now I can see that the first assertion:
Assert.Equal (expectedReservationDto, reservationDto);

is failing, because it expects an expectedReservationDto from the reservationInProgress but
the reservationInProgress itself can only be received from the factory. The relevant lines in the
Statement that say this are:

reservationInProgressFactory.FreshInstance()
.Returns(reservationInProgress);
reservationInProgress.ToDto()
.Returns(expectedReservationDto);

Let’s just implement the part that is required to pass the first assertion. To do this, I will need
to create a field in the TicketOffice class for the factory, based on one of the constructor
parameters. So this code:

public TicketOffice(
ReservationInProgressFactory reservationInProgressFactory,
CommandFactory commandFactory)

Becomes:

o N O O b W N =

Test-driving at the input boundary 334

private readonly ReservationInProgressFactory _reservationInProgressFactory;

public TicketOffice(
ReservationInProgressFactory reservationInProgressFactory,
CommandFactory commandFactory)

_reservationInProgressFactory = reservationInProgressFactory;

Benjamin: Couldn’t you just introduce the other field as well?

Johnny: Yes, I could and I usually do that. But since we are training, I want to show you that we
will be forced to do so anyway to make the second assertion pass.

Benjamin: Ok, go on.

Johnny: Now I have to modify the MakeReservation() method by adding the following code
that creates the reservation in progress and makes it return a DTO:

var reservationlnProgress = _reservationInProgressFactory.Freshlnstance();
return reservationInProgress.ToDto();

Benjamin: ...and the first assertion passes.

Making the Statement true - the second assertion

Johnny: Yes, and this is clearly not enough. If you look at the production code, we are not doing
anything with the ReservationRequestDto instance. Thankfully, we have the second assertion:

reservationCommand.Received(1).Execute();

and this one fails. In order to make it pass, We need to create a command and execute it.

Benjamin: Wait, why are you calling this an “assertion”? There isn’t a word “assert” anywhere
in this line. Shouldn’t we just call it “mock verification” or something like that?

Johnny: 'm OK with “mock verification”, however, I consider it correct to call it an assertion as
well, because, in essence, that’s what it is - a check that throws an exception when a condition
is not met.

Benjamin: OK, if that’s how you put it...
Johnny: anyway, we still need this assertion to pass.

Benjamin: Let me do this. So to create a command, we need the command factory and this
is why at this moment, we need to introduce the second TicketOffice constructor argument,
because as of now, the constructor looks like this:

O© 00 1 O O b W N = O O B W N

s W N

Bw N

Test-driving at the input boundary 335

public TicketOffice(
ReservationInProgressFactory reservationInProgressFactory,
CommandFactory commandFactory)

_reservationInProgressFactory = reservationInProgressFactory;

}

And I need to modify this code to assign the constructor parameter to a new field:

private readonly CommandFactory _commandFactory;

public TicketOffice(
ReservationInProgressFactory reservationInProgressFactory,
CommandFactory commandFactory)

_reservationInProgressFactory = reservationInProgressFactory;
_commandFactory = commandFactory;

}

and now [can use the factory in the MakeReservation() method and pass the request DTO inside:

var reservationInProgress = _reservationInProgressFactory.FreshInstance();
var reservationCommand = _commandFactory.CreateReservationCommand(
requestDto, reservationInProgress);

return reservationInProgress.ToDto();
At last, T just need to execute the command like this:

var reservationInProgress = _reservationInProgressFactory.FreshInstance();

var reservationCommand = _commandFactory.CreateReservationCommand(requestDto);
reservationCommand.Execute();

return reservationInProgress.ToDto();

Johnny: Great! Now the Statement is true.

Benjamin: Wow, this isn’t a lot of code for such a big Statement that we wrote.

Johnny: Yeah, the real complexity is not even in the lines of code, but the amount of dependencies
that we had to drag inside. Note that we have two factories in here. Each factory is a dependency
and it creates another dependency. This is better visible in the Statement and this is why I find
it a good idea to pay close attention to how a Statement is growing and using it as a feedback
mechanism for the quality of design. For this particular class, the design issue we observe in the
Statement can’t be helped a lot since, as I mentioned, this is the boundary where we need to
wrap things in abstractions.

Benjamin: You'll have to explain this bit about design quality a bit more later.
Johnny: Yeah, sure. Tea?
Benjamin: Coffee.

Johnny: Whatever, let’s go.

Test-driving at the input boundary 336

Summary

This is how Johnny and Benjamin accomplished their first Statement using TDD and mock with
an outside-in design approach. What will follow in the next chapter is a small retrospective with
comments on what these guys did. One thing I'd like to mention now is that the outside-in
approach does not rely solely on unit tests, so what you saw here is not the full picture. We will
get to that soon.

THIS IS ALL | HAVE FOR NOW. WHAT
FOLLOWS IS RAW, UNORDERED
MATERIAL THAT'S NOT YET READY
TO BE CONSUMED AS PART OF THIS
TUTORIAL

Test-driving at the input boundary -
a retrospective

TODO: overdesign (and Sandro Mancuso version - compare with code and dependencies count,
query count), anticorruption layer, mapping vs. wrapping. Wrapping is a little bit harder to
maintain in case domain model follows the data, but is more convenient when domain model

diverges from the data model.

[Fact] public void

ShouldExecuteReservationCommandAndReturnResponseWhenMak ingReservation()

{

//GIVEN

var requestDto = Any.Instance<ReservationRequestDto>();

var commandFactory = Substitute.For<CommandFactory>();

var reservationInProgressFactory = Substitute<ReservationInProgressFactory>();
var reservationInProgress = Substitute.For<ReservationInProgress>();

var expectedReservationDto = Any.Instance<ReservationDto>();

var reservationCommand = Substitute.For<ReservationCommand>();

var ticketOffice = new TicketOffice(
reservationInProgressFactory,
commandFactory);

reservationInProgressFactory.FreshInstance()
.Returns(reservationInProgress);

commandFactory.CreateReservationCommand(requestDto, reservationInProgress)
.Returns(reservationCommand);

reservationInProgress.ToDto()
.Returns(expectedReservationDto);

//WHEN
var reservationDto = ticketOffice.MakeReservation(requestDto);

//THEN
Assert.Equal (expectedReservationDto, reservationDto);

reservationCommand.Received(1).Execute();

O© 00 I O O b W N =

O = N =Y
0 N O O b W N -~ O

© 0O N O O & W N =

Test-driving at the input boundary - a retrospective 339

[Fact] public void
ShouldExecuteReservationCommandAndReturnResponseWhenMak ingReservation()

{
//GIVEN

var requestDto = Any.Instance<ReservationRequestDto>();
var expectedReservationDto = Any.Instance<ReservationDto>();

var ticketOffice = new TicketOffice(
facade);

facade.MakeReservation(requestDto) .Returns(expectedReservationDto);

//WHEN
var reservationDto = ticketOffice.MakeReservation(requestDto);

//THEN
Assert.Equal (expectedReservationDto, reservationDto);

No value unless we intend to catch some exceptions here. The next class has to handle the DTO.

TODO: other ways to test-drive this (higher level tests) TODO: Design quality vs. Tests (intro)
and what this example told us - verifying and setting up a mock for the same method is violation
of the CQS principle, too many mocks - too many dependencies. Too many stubs - violation of
TDA principle. These things may mean a violation.

Next chapter - a factory
1. No refactoring
2. There will be no story slicing

3. No higher level tests
4.7

T

+++ b/Java/src/main/java/logic/BookingCommandFactory.java

+public class BookingCommandFactory : CommandFactory {

+
+ public Command CreateBookCommand(ReservationRequestDto reservation, Ticket t\
icket)

+ {

+ //todo implement

+ return null;

+ }

+}

+++ b/Java/src/main/java/logic/TrainTicketFactory.java

O© 00 I O O b W N =

© 00 N O O b W N =

N N = S =Y
0 N O O b W N -~ O

Test-driving at the input boundary - a retrospective 340

+public class TrainTicketFactory : TicketFactory

+
+

+ public TicketInProgress CreateBlankTicket()
+ {

+ //todo implement

+ return null;

+ }

+}

s
Date: Wed Feb 28 16:40:33 2018 +0100

I pick the factory as there is not much I can do with Ticket yet
I pick command factory as there is not much I can do with tickets

+++ b/Java/src/test/java/logic/BookingCommandFactorySpecification.java

+public class BookingCommandFactorySpecification {
+

+3

writing a failing test for a type and dependencies:

+++ b/Java/src/test/java/logic/BookingCommandFactorySpecification.java

public class BookingCommandFactorySpecification {
[Fact]
public void ShouldCreateBookTicketCommand() {
//GIVEN
var bookingCommandFactory = new BookingCommandFactory();
var reservation = Substitute.For<ReservationRequestDto>();
var ticket = Substitute.For<Ticket>();

//WHEN
Command result = bookingCommandFactory.CreateBookCommand(reservation, ti\

+ o+ o+ 4+ o+ o+ + 4+

Q
~
D
&
~

7

//THEN
assertThat(result).isInstanceOf(BookTicketCommand.class);
assertThat(result).has(dependencyOn(reservation));
assertThat(result).has(dependencyOn(ticket));

+ + o+ o+ 4+

This demands new implementation:

+++ b/Java/src/main/java/logic/BookTicketCommand.java

O© 00 N O O & W N =~ =~ O U s W N

© 00 N O O b W N =

N
()

Test-driving at the input boundary - a retrospective 341

+public class BookTicketCommand {
+3
Returning book ticket command forced interface implementation (can be applied via a quick fix)

+++ b/Java/src/main/java/logic/BookingCommandFactory.java

public Command CreateBookCommand(
ReservationRequestDto reservation, TicketInProgress ticket)

- //todo implement
- return null;

+ return new BookTicketCommand();

The above does not compile yet as the BookTicketCommand does not implement a Command
interface. Need to add it (can be done via quick fix):

+++ b/Java/src/main/java/logic/BookTicketCommand.java

-public class BookTicketCommand
+public class BookTicketCommand : Command

+{
+
+ public void Execute()
+ {
+ //todo implement
+ }

}

Made 2nd assertion pass by introducing field for dto. The 3rd assertion still fails:

+++ b/Java/src/main/java/logic/BookingCommandFactory.java
public class BookingCommandFactory : CommandFactory {
public Command CreateBookCommand(
ReservationRequestDto reservation,

TicketInProgress ticket)

- return new BookTicketCommand();

+ return new BookTicketCommand(reservation, ticket);

Generating the constructor:

+++ b/Java/src/main/java/logic/BookTicketCommand.java

o N O O b W N =

O© 00 I O O b W N =

N S =
g b W0 N~

Test-driving at the input boundary - a retrospective 342

public class BookTicketCommand : Command {
private ReservationRequestDto reservation;

+ private Ticket ticket;

+ public BookTicketCommand(ReservationRequestDto reservation, Ticket ticket) {
+ this.reservation = reservation;

+ this.ticket = ticket;

+ }

(Question: why could we do so many steps? Should we not generate the constructor first and
assign the field only when the test fails for the right reason? Probably no, since we already saw
it failing for the right reason...)

The test now passes. New items on TODO list (e.g. Execute() method)
(btw, mention here that I tried to specify BookCommand and failed)
T 72722

Discovered TrainRepository interface, because the command will need to get the train from
somewhere. Adding it to the test:

+++ b/Java/src/test/java/logic/BookingCommandFactorySpecification.java

@@ -12,10 +12,12 @@ public class BookingCommandFactorySpecification {
[Fact]
public void ShouldCreateBookTicketCommand() {
//GIVEN
- var bookingCommandFactory = new BookingCommandFactory();
var trainRepo = Substitute.For<TrainRepository>();
var bookingCommandFactory = new BookingCommandFactory(
trainRepo

+ + o+ 4+

);
var reservation = Substitute.For<ReservationRequestDto>();
var ticket = Substitute.For<Ticket>();

//WHEN
Command result = bookingCommandFactory
.CreateBookCommand(reservation, ticket);

And the class constructor:

+++ b/Java/src/main/java/logic/BookingCommandFactory.java

O© 00 I O O b W N =

© 00 N O O b W N =

[N T N T N T S N e T — S G G NS ¥
N »~ © © 00 N O O b W N =~ 0O

Test-driving at the input boundary - a retrospective 343

public class BookingCommandFactory : CommandFactory {
public BookingCommandFactory(TrainRepository trainRepo) {
//todo implement

public Command CreateBookCommand(ReservationRequestDto reservation, Ticket tic\
ket) {
return new BookTicketCommand(reservation, ticket);

Thus i have discovered a train repository:

+++ b/Java/src/main/java/logic/TrainRepository.java

+public interface TrainRepository
+{
+}

(btw, shouldn’t T have started with the command? I already have the factory and the command
concrete type...)

Discovered train collaborator and getBy repo method. Now what type should the train variable
be?

+++ b/Java/src/test/java/logic/BookingCommandFactorySpecification.java

public class BookingCommandFactorySpecification

{
Y

);
var reservation = Substitute.For<ReservationRequestDto>();
var ticket = Substitute.For<TicketInProgress>();

+

+ trainRepo.GetTrainBy(reservation.trainld)

+ .Returns(train);

+
//WHEN

Command result = bookingCommandFactory
.CreateBookCommand(reservation, ticket);

@@ -26,5 +31,7 @@
assertThat(result).isInstanceOf(BookTicketCommand.class);
assertThat(result).has(dependencyOn(reservation));
assertThat(result).has(dependencyOn(ticket));
assertThat(result).has(dependencyOn(ticket));
assertThat(result).has(dependencyOn(train));

© 00 N O O b W N =

O© 00 1 O O b W N =

N
[~

Test-driving at the input boundary - a retrospective

Discovered a Train interface
First in test:

+++ b/Java/src/test/java/logic/BookingCommandFactorySpecification.java

@@ -19,6 +19,7 @@ public class BookingCommandFactorySpecification

{
)
var reservation = Substitute.For<ReservationRequestDto>();
var ticket = Substitute.For<Ticket>();

+ var train = Substitute.For<Train>();

trainRepo.GetTrainBy(reservation.trainld)
.Returns(train);

And introduced using the IDE:

+++ b/Java/src/main/java/logic/Train.java

+public interface Train
+{
+}
Discovered GetTrainBy:
+++ b/Java/src/main/java/logic/TrainRepository.java
public interface TrainRepository ({
+ Train GetTrainBy(String trainId);
}
Discovered CouchDbTrainRepository. The TODO list grows

+++ b/Java/src/main/java/bootstrap/Main.java

public class Main

{
public static void Main(string[] args)
{
- new TicketOffice(new BookingCommandFactory(),
+ new TicketOffice(new BookingCommandFactory(
+ new CouchDbTrainRepository()
+), new TrainTicketFactory());
}

+++ b/Java/src/main/java/logic/CouchDbTrainRepository.java

We won’t be implementing it here... Just call the constructor later.

344

o N O O b W N =

O© 00 1 O O b W N =

O = N =Y
0 N O O & W N -~ O

Test-driving at the input boundary - a retrospective 345

+public class CouchDbTrainRepository : TrainRepository

+{

+ public Train GetTrainBy(String trainId)
+ {

+ //todo implement

+ return null;

+ }

+}

Date: Thu Mar 1 16:21:38 2018 +0100

Made the last assertion from the factory test pass
(one more backtracking will be needed)

Adding the dependencies to the factory:

+++ b/Java/src/main/java/logic/BookingCommandFactory.java

public class BookingCommandFactory : CommandFactory {

- public BookingCommandFactory(TrainRepository trainRepo) {
- //todo implement
+ private TrainRepository trainRepo;

public BookingCommandFactory(TrainRepository trainRepo) {

this.trainRepo = trainRepo;

public Command CreateBookCommand(ReservationRequestDto reservation, Ticket t\
icket) {
- return new BookTicketCommand(reservation, ticket);
return new BookTicketCommand(

reservation,

+ o+ o+

ticket, trainRepo.GetTrainBy(reservation.trainld));

and the command created with that factory:

+++ b/Java/src/main/java/logic/BookTicketCommand.java

O© 00 I O O b W N =

I = U =N
B w N s,

W N e

© 00 N O O b W N =

=N
N O

Test-driving at the input boundary - a retrospective 346

public class BookTicketCommand : Command {
private ReservationRequestDto reservation;
private Ticket ticket;

+ private Train trainBy;

- public BookTicketCommand(ReservationRequestDto reservation, Ticket ticket) {
public BookTicketCommand(

ReservationRequestDto reservation,

Ticket ticket,

Train train) {

+ o+ o+ o+

this.reservation = reservation;
this.ticket = ticket;

+ this.trainBy = train;

As my next step, I choose BookTicketCommand

I prefer it over TicketFactory as it will allow me to learn more about the TicketInProgress
interface. So now I am optimizing for learning.

+++ b/Java/src/test/java/logic/BookTicketCommandSpecification.java

+public class BookTicketCommandSpecification

+{

+

+3

I have yet to discover what behavior I will require from the command

+++ b/Java/src/test/java/logic/BookTicketCommandSpecification.java

+public class BookTicketCommandSpecification {

+ [Fact]

+ public void ShouldXXXXXXXXXXXXX()

+ {

+ //GIVEN

"

+ / /WHEN

+ //THEN
assertThat(1).isEqualTo(2);

.

+)

Starting command test brain dump - just invoke the only existing method

+++ b/Java/src/test/java/logic/BookTicketCommandSpecification.java

O© 00 I O O b W N =

I = U =N
B w N s,

Test-driving at the input boundary - a retrospective

@@ -9,8 +10,10 @@ public class BookTicketCommandSpecification

{

[Fact]
public void ShouldXXXXXXXXXXXXX()

{

//GIVEN

var bookTicketCommand

= new BookTicketCommand(reservation, ticket, train);
//WHEN
bookTicketCommand.Execute();

//THEN
assertThat(1).isEqualTo(2);

Introducing collaborators and stating expectations

+++ b/Java/src/test/java/logic/BookTicketCommandSpecification.java

public class BookTicketCommandSpecification

{

[Fact]
public void ShouldXXXXXXXXXXXXX()

{

//GIVEN
var reservation = Any.Instance<ReservationRequestDto>();
var ticket = Any.Instance<Ticket>();
var train = Substitute.For<Train>();
var bookTicketCommand
= new BookTicketCommand(reservation, ticket, train);
//WHEN
bookTicketCommand.Execute();

//THEN
assertThat(1).isEqualTo(2);
train.Received(1).Reserve(reservation.seatCount, ticket);

The test used a non-existing Recerve method - time to introduce it now.

+++ b/Java/src/main/java/logic/Train.java

347

© 00 N O O b W N =

NN NN N B R R sy s sy
B WO N 0 © 00N O O b N~ O

Test-driving at the input boundary - a retrospective 348

public interface Train {

+ void Reserve(uint seatCount, TicketInProgress ticketToFill);

}

Implementation to pass the test:

+++ b/Java/src/main/java/logic/BookTicketCommand.java

public class BookTicketCommand : Command {
private ReservationRequestDto reservation;
private Ticket ticket;

- private Train trainBy;

+ private Train train;

public BookTicketCommand(
ReservationRequestDto reservation,
@@ -13,12 +13,12 @@ public class BookTicketCommand : Command {
Train train) {
this.reservation = reservation;
this.ticket = ticket;
- this.trainBy = train;
+ this.train = train;

public void Execute() {
- //todo implement

//todo a full DTO is not required
train.Reserve(reservation.seatCount, ticket);

+++ b/Java/src/main/java/logic/BookingCommandFactory.java
Date: Mon Mar 5 08:14:42 2018 +0100

Made dummy implementation of TrainWithCoaches. We’re not test-driving this - Benjamin will
go for coffee.

+++ b/Java/src/main/java/logic/CouchDbTrainRepository.java

O© 00 N O O & W N = o N O O b W N =

g b W N

Test-driving at the input boundary - a retrospective

public class CouchDbTrainRepository : TrainRepository {

public Train GetTrainBy(String trainId) {

//todo implement
- return null;
+ return new TrainWithCoaches();

349

TrainWithCoaches implements an interface, so it has to have the signatures. These empty

methods make it to the TODO list.

+++ b/Java/src/main/java/logic/TrainWithCoaches.java

+public class TrainWithCoaches : Train

+{

+

+ public void Reserve(uint seatCount, TicketInProgress ticketToFill)
+ {

+ //todo implement

+

+ }

+}

Date: Mon Mar 5 15:23:23 2018 +0100
Renaming a test (should’ve done this earlier). Should have left a TODO.

+++ b/Java/src/test/java/logic/BookTicketCommandSpecification.java

public class BookTicketCommandSpecification {

[Fact]
§ public void ShouldXXXXXXXXXXXXX() {
+ public void ShouldReserveSeatsOnTrainWhenExecuted() {

As we discovered a new class, time to test-drive it:

+++ b/Java/src/test/java/logic/TrainWithCoachesSpecification.java

O© 00 I O O b W N =

I = U =N
B w N s,

© 00 N O O b W N =

N
[\

© 00 N O O b W N =

NN
N O

Test-driving at the input boundary - a retrospective

+public class TrainWithCoachesSpecification

+

+
+
+
+
+
+
+
+

+

[Fact]
public void ShouldXXXXX()
{ //todo rename

//GIVEN

var trainWithCoaches = new TrainWithCoaches();

//WHEN
trainWithCoaches.Reserve(seatCount, ticket);

//THEN
assertThat(1).isEqualTo(2);

This doesn’t pass the compilation yet. Time to fill the blanks.

+++ b/Java/src/test/java/logic/TrainWithCoachesSpecification.java

public class TrainWithCoachesSpecification {

Passed the compiler. Now time for some deeper thinking on the expectation I know one coach

[Fact]
public void ShouldXXXXX() { //todo rename
//GIVEN
var trainWithCoaches = new TrainWithCoaches();
var seatCount = Any.UnsignedInt();
var ticket = Substitute.For<TicketInProgress>();

//WHEN
trainWithCoaches.Reserve(seatCount, ticket);

should be reserved even though more meet the condition

+++ b/Java/src/test/java/logic/TrainWithCoachesSpecification.java

@@ -13,13 +14,16 @@ public class TrainWithCoachesSpecification

{

[Fact]

//GIVEN

var trainWithCoaches = new TrainWithCoaches();
var seatCount = Any.UnsignedInt();

var ticket = Substitute.For<TicketInProgress>();

//WHEN
trainWithCoaches.Reserve(seatCount, ticket);

13
14
15
16
17
18
19

O© 00 1 O O b W N =

N
[~

W N

Test-driving at the input boundary - a retrospective 351

//THEN
- assertThat(1).isEqualTo(2);
+ coach1.DidNotReceive().Reserve(seatCount, ticket);
+ coach2.Received(1).Reserve(seatCount, ticket);
+ coach3.DidNotReceive().Reserve(seatCount, ticket);
}
}

Verifying coaches although none were added yet. Discovered the coach interface:

+public interface Coach
+{
+}

Time to introduce the coaches. 3 is many:

+++ b/Java/src/test/java/logic/TrainWithCoachesSpecification.java

@@ -15,6 +15,9 @@ public class TrainWithCoachesSpecification {
var trainWithCoaches = new TrainWithCoaches();
var seatCount = Any.UnsignedInt();
Substitute.For<TicketInProgress>();
Substitute.For<Coach>();
Substitute.For<Coach>();
Substitute.For<Coach>();

var ticket

var coach1

var coach?2

var coach3

//WHEN
trainWithCoaches.Reserve(seatCount, ticket);

Also, discovered the Reserve() method - time to put it in:

+++ b/Java/src/main/java/logic/Coach.java

public interface Coach

{

+ void Reserve(uint seatCount, TicketInProgress ticket);

passing coaches as vararg: not test-driving the vararg, using the Kent Beck’s putting the right
implementation.

+++ b/Java/src/main/java/logic/TrainWithCoaches.java

a b W N -

© 00 N O O b W N =

O = =N =Y
0 N O O b W N =~ O

© 00 N O O & W N =

I = U=
W N s,

Test-driving at the input boundary - a retrospective 352

public class TrainWithCoaches : Train

+{

+ public TrainWithCoaches(params Coach[] coaches)
+ {

+ }

This should still pass. now passing the coaches as parameters:

+++ b/Java/src/test/java/logic/TrainWithCoachesSpecification.java

@@ -12,12 +12,14 @@ public class TrainWithCoachesSpecification
{
[Fact]
public void ShouldXXXXX()
{ //todo rename
//GIVEN
- var trainWithCoaches = new TrainWithCoaches();
var seatCount = Any.UnsignedInt();
var ticket = Substitute.For<TicketInProgress>();
var coach1 = Substitute.For<Coach>();
var coach2 = Substitute.For<Coach>();
var coach3 = Substitute.For<Coach>();
var trainWithCoaches = new TrainWithCoaches(

coach1, coach2, coach3

)

//WHEN

trainWithCoaches.Reserve(seatCount, ticket);

Missing the assumptions about whether the coach allows up front reservation:

+++ b/Java/src/test/java/logic/TrainWithCoachesSpecification.java

@@ -21,6 +22,14 @@ public class TrainWithCoachesSpecification {
coach1, coach2, coach3

)

coach1.AllowsUpFrontReservationOf(seatCount)
.Returns(false);

coach2.AllowsUpFrontReservationOf(seatCount)
.Returns(true);

coach3.AllowsUpFrontReservationOf(seatCount)
.Returns(true);

+ + + + + o+ o+ +

//WHEN
trainWithCoaches.Reserve(seatCount, ticket);

15
16
17
18
19
20
21
22

O U W N

=~ O U s W N

Test-driving at the input boundary - a retrospective 353

@@ -29,6 +38,5 @@ public class TrainWithCoachesSpecification {

coach2.Received(1).Reserve(seatCount, ticket);
coach3.DidNotReceive().Reserve(seatCount, ticket);
}
+ //todo what if no coach allows up front reservation?
}

Added an item to TODO list - we’ll get back to it later. if no coach allows up front, we take the
first one that has the limit.

Discovered AllowsUpFrontReservationOf() method.

Introduced the method. a too late TODO - CouchDbRepository should supply the coaches:
+++ b/Java/src/main/java/logic/Coach.java

@@ -2,4 +2,6 @@ package logic;

public interface Coach

{

void Reserve(uint seatCount, TicketInProgress ticket);

+ bool AllowsUpFrontReservationOf(uint seatCount);

+++ b/Java/src/main/java/logic/CouchDbTrainRepository.java

public class CouchDbTrainRepository : TrainRepository {

public Train GetTrainBy(String trainId) {
+ //todo there should be something passed here!!

return new TrainWithCoaches();

gave a good name to the test.

+++ b/Java/src/main/java/logic/TrainWithCoaches.java

=~ O O b W N =

N O O B W N~

© 00 1 O O b W N =

[T N T S S o S = S N N S
, O © 00 N O O b Ww N =~ O

Test-driving at the input boundary - a retrospective 354

@@ -7,6 +7,5 @@ public class TrainWithCoaches : Train

{
public void Reserve(uint seatCount, TicketInProgress ticketInProgress)
{
//todo implement
}
}

Now that the scenario is ready, I can give it a good name:

+++ b/Java/src/test/java/logic/TrainWithCoachesSpecification.java

public class TrainWithCoachesSpecification {
[Fact]
- public void ShouldXXXXX() { //todo rename
+ public void ShouldReserveSeatsInFirstCoachThatHasPlaceBelowLimit() {
//GIVEN
var seatCount = Any.UnsignedInt();
var ticket = Substitute.For<TicketInProgress>();

Implementing the first behavior. (in the book, play with the if and return to see each assertion
fail):

+++ b/Java/src/main/java/logic/TrainWithCoaches.java

public class TrainWithCoaches : Train

{
+ private Coach[] coaches;
public TrainWithCoaches(Coach... coaches)
{
+ this.coaches = coaches;
}
- public void Reserve(uint seatCount, TicketInProgress ticketInProgress)
{
- //todo implement
+ foreach (var coach in coaches) {
+ if(coach.AllowsUpFrontReservationOf(seatCount)) {
+ coach.Reserve(seatCount, ticketInProgress);
+ return;
+ }
+ }
+
}

Test-driving at the input boundary - a retrospective 355

//by the way, this can be nicely converted to Ling: coaches.First(c = c.AllowsUpFrontReservationOf(seatCount)).
ticketInProgress);

Discovered AllowsReservationOf method:

+++ b/Java/src/test/java/logic/TrainWithCoachesSpecification.java

public class TrainWithCoachesSpecification

{

[Fact]
public void
ShouldReserveSeatsInFirstCoachThatHasFreeSeatsI fNoneAllowsReservationUpFront\

© 00 N O O b W N =

DWW W W W W W W WWN NN NN NN NN N R L
© © ® 9 O O & ® N~ & © ® 9 0 O B W N0 O W 3 0 g n WwN =~

+ 4+ + + + + + + + + + + + + o+ + + +F + + o+ + o+ + A+ o+ + o+~ + + o+

~

//GIVEN

var seatCount = Any.UnsignedInt();
Substitute.For<TicketInProgress>();
Substitute.For<Coach>();
Substitute.For<Coach>();
Substitute.For<Coach>();

var trainWithCoaches = new TrainWithCoaches(

var ticket

var coachi1

var coach?2

var coach3

coach1, coach2, coach3

)

coachi1.AllowsUpFrontReservationOf(seatCount)
.Returns(false);
coach2.AllowsUpFrontReservationOf(seatCount)
.Returns(false);
coach3.AllowsUpFrontReservationOf(seatCount)
.Returns(false);
coach1.AllowsReservationOf(seatCount)
.Returns(false);
coach2.AllowsReservationOf(seatCount)
.Returns(true);
coach3.AllowsReservationOf(seatCount)

.Returns(false);

//WHEN
trainWithCoaches.Reserve(seatCount, ticket);

//THEN

coach1.DidNotReceive().Reserve(seatCount, ticket);
coach2.Received(1).Reserve(seatCount, ticket);
coach3.DidNotReceive().Reserve(seatCount, ticket);

41
42

o N O O b W N =

© 00 N O O b W N =

T = = =
0 N O O b W N =~ O

Test-driving at the input boundary - a retrospective 356

}
+++ b/Java/src/main/java/logic/Coach.java

@@ -4,4 +4,6 @@ public interface Coach

{
void Reserve(uint seatCount, TicketInProgress ticket);
bool AllowsUpFrontReservationOf(uint seatCount);
+ bool AllowsReservationOf(uint seatCount);
}

Bad implementation (break; instead of return;) alows the test to pass! Need to fix the first test:

+++ b/Java/src/main/java/logic/TrainWithCoaches.java

@@ -9,6 +9,12 @@ public class TrainWithCoaches : Train

{
public void Reserve(uint seatCount, TicketInProgress ticketInProgress)
{
+ foreach (var coach in coaches)
+ {
+ if(coach.AllowsReservationOf(seatCount))
+ {
+ coach.Reserve(seatCount, ticketInProgress);
+ break;
+ }
+ }
foreach (var coach in coaches)
{

if(coach.AllowsUpFrontReservationOf(seatCount))

{

coach.Reserve(seatCount, ticketInProgress);

In the following changes, forced the right implementation. But need to refactor the tests. Next
time we change this class, we refactor the code:

First we need to say we allow reservations. This dependency between tests is a sign of a design
problem. Then, the method is long. Also, every time we set mock to return up front reservation,
we need to set not upfront reservation and vice versa. We could refactor this to chain of
responsibility with two elements, but it’s too early for that. We could also refactor to return
a value object or enum for the kind of reservation. Or, we could use a collecting parameter, pass
it through the list and make it do the reservation.

I change the first Statement to include the queries:

+++ b/Java/src/test/java/logic/TrainWithCoachesSpecification.java

O© 00 I O O b W N =

N =
g b W0 N~

© 00 1 O O b W N =

NN NN NN NN R R R sl
=4 0 O B WD S O O 0 N0 U WD

Test-driving at the input boundary - a retrospective

@@ -28,6 +28,12 0@ public class TrainWithCoachesSpecification
{

.Returns(true);
coach3.AllowsUpFrontReservationOf(seatCount)
.Returns(true);
coach1.AllowsReservationOf(seatCount)
.Returns(true);
coach2.AllowsReservationOf(seatCount)
.Returns(true);
coach3.AllowsReservationOf(seatCount)

+ + + + o+ o+

.Returns(true);

//WHEN
trainWithCoaches.Reserve(seatCount, ticket);

THe Statement is now false. Let’s just change the implementation:

+++ b/Java/src/main/java/logic/TrainWithCoaches.java

@@ -10,17 +10,16 @@ public class TrainWithCoaches : Train
{

public void Reserve(uint seatCount, TicketInProgress ticketInProgress)

{
foreach (var coach in coaches)
{
- if(coach.AllowsReservationOf(seatCount))
: {
+ if(coach.AllowsUpFrontReservationOf(seatCount))
{
coach.Reserve(seatCount, ticketInProgress);
- break;
+ return;
}
1
foreach (var coach in coaches)
{
- if(coach.AllowsUpFrontReservationOf(seatCount))
- {
+ if(coach.AllowsReservationOf(seatCount))
{
coach.Reserve(seatCount, ticketInProgress);
return;
}
}

28
29

© 00 N O O b W N =

W W W W W WwWw wWw wwwNnDNNDDDNDDNDDNDDNDDNDDN=S - »
© 00 N O O & W N »» 0 © 0 1 O O b W N =~ O O 0 3 O O b Ww N =~ O

Test-driving at the input boundary - a retrospective

For now, refactored coaches Statement (truth be told, I should refactor prod code, not test, but
this test refactoring will allow me to refactor the prod. code later as well, e.g. to return an enum):

+++ b/Java/src/test/java/logic/TrainWithCoachesSpecification.java

+ + o+ o+ o+

//GIVEN

var seatCount = Any.UnsignedInt();

var ticket = Substitute.For<TicketInProgress>();
var coach1l = Substitute.For<Coach>();

var coach2 = Substitute.For<Coach>();

var coach3 = Substitute.For<Coach>();

CoachWithoutAvailableUpFront(seatCount);
CoachWithAvailableUpFront(seatCount);
CoachWithAvailableUpFront(seatCount);

Coach coachi

Coach coach?2

Coach coach3

var trainWithCoaches = new TrainWithCoaches(
coachl, coach2, coach3

);

coach1.AllowsUpFrontReservationOf(seatCount)
.Returns(false);

coach2.AllowsUpFrontReservationOf(seatCount)
.Returns(true);

coach3.AllowsUpFrontReservationOf(seatCount)
.Returns(true);

coach1.AllowsReservationOf(seatCount)
.Returns(true);

coach2.AllowsReservationOf(seatCount)
.Returns(true);

coach3.AllowsReservationOf(seatCount)
.Returns(true);

//WHEN
trainWithCoaches.Reserve(seatCount, ticket);

@@ -44,6 +32,24 @0 public class TrainWithCoachesSpecification {

+ o+ o+ o+

coach3.DidNotReceive().Reserve(seatCount, ticket);

private Coach CoachWithAvailableUpFront(Integer seatCount) {
var coach2 = Substitute.For<Coach>();
coach2.AllowsUpFrontReservationOf(seatCount)
.Returns(true);

40
41
42
43
44
45
46
47
48
49
50
51
52
53

© 00 1 O O b W N =

NN NN NN P R sy s
O O B WD, O O 0N 0w N,

Test-driving at the input boundary - a retrospective

+ + + 4+ + + + o+ + A+ o+ o+ 4+

359

coach2.AllowsReservationOf(seatCount)

.Returns(true);

return coach2;

private Coach CoachWithoutAvailableUpFront(Integer seatCount) {
var coach1 = Substitute.For<Coach>();

coach1.AllowsUpFrontReservationOf(seatCount)

.Returns(false);

coach1.AllowsReservationOf(seatCount)

.Returns(true);

return coachil;

Refactored tests. TODO start from this committ to show refactoring of production code later!!

Adding CoachWithout() method as well to the other tests:

+++ b/Java/src/test/java/logic/TrainWithCoachesSpecification.java

@@ -32,50 +32,19 @@ public class TrainWithCoachesSpecification {
coach3.DidNotReceive().Reserve(seatCount, ticket);

[Fact]

public void

shouldReserveSeatsInFirstCoachThatHasFreeSeatsIfNoneAllowsReservationUpFront\

//GIVEN
seatCount = Any.UnsignedInt();

var
var
- var
- var
- var
var

var

+ o+ o+

var

var

);

ticket
coachil
coach?2
coach3
coachl
coach?2
coach3

Substitute.For<TicketInProgress>();
Substitute.For<Coach>();
Substitute.For<Coach>();
Substitute.For<Coach>();
coachWithout(seatCount);
CoachWithoutAvailableUpFront(seatCount);
coachWithout(seatCount);

trainWithCoaches = new TrainWithCoaches(

coach1l, coach2, coach3

- coach1.AllowsUpFrontReservationOf(seatCount)

.Returns(false);

- coach2.AllowsUpFrontReservationOf(seatCount)

.Returns(false);

- coach3.AllowsUpFrontReservationOf(seatCount)

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

O© 00 1 O O b W N =

N
(N

Test-driving at the input boundary - a retrospective 360

- .Returns(false);

- coach1.AllowsReservationOf(seatCount)
- .Returns(false);

- coach2.AllowsReservationOf(seatCount)
- .Returns(true);

- coach3.AllowsReservationOf(seatCount)

- .Returns(false);

//WHEN
trainWithCoaches.Reserve(seatCount, ticket);

@@ -85,6 +54,30 @@ public class TrainWithCoachesSpecification {
coach3.DidNotReceive().Reserve(seatCount, ticket);

private Coach coachWithout(Integer seatCount) {
var coach1l = Substitute.For<Coach>();
coachi1.AllowsUpFrontReservationOf(seatCount)
.Returns(false);
coach1.AllowsReservationOf(seatCount)
.Returns(false);

return coachi;

+ + + + + o+ o+ +

- //todo what if no coach allows up front reservation?

Addressed todo - created a class CoachWithSeats (or else it would probably not compile).

+++ b/Java/src/main/java/logic/CouchDbTrainRepository.java

@@ -4,6 +4,8 @@ public class CouchDbTrainRepository : TrainRepository {

public Train GetTrainBy(String trainId) {
- //todo there should be something passed here!!
- return new TrainWithCoaches();
return new TrainWithCoaches(

new CoachWithSeats()

+ o+ o+

);

The body of the class looks like this:

O© 00 9 O U b W N =~

T N S N S o S = S N N S
, O O 00 N O O b W N =~ O

O© 00 N O O b W N =~

S T N T S S S o S = S G O S G
, 0 © 00 N O O b Ww N =~ O

Test-driving at the input boundary - a retrospective 361

+public class CoachWithSeats : Coach

+{

+

+ public void Reserve(uint seatCount, TicketInProgress ticket)
+ {

+ //todo implement

+

+ }

+

"

+ public bool AllowsUpFrontReservationOf(uint seatCount)
+ {

+ //todo implement (does not compile)

+ }

"

:

+ public bool AllowsReservationOf(uint seatCount)

+ {

+ //todo implement (does not compile)

+ }

+}

The code does not compile yet, so adding just enough code to make it compile.

+++ b/Java/src/main/java/logic/CoachWithSeats.java

+public class CoachWithSeats : Coach

+{

+

+ public void Reserve(uint seatCount, TicketInProgress ticket)
+ {

+ //todo implement

+

+ }

+

+

+ public bool AllowsUpFrontReservationOf(uint seatCount)
+ {

+ //todo implement

+ return false;

+ }

+

+

+ public bool AllowsReservationOf(uint seatCount)

+ {

+ //todo implement

+ return false;

22
23

© 0O N O O & W N =

I S =
O O b W N~

© 00 N O O b W N =

= = =
W N O O B W N =~ O

Test-driving at the input boundary - a retrospective 362

+ }
+3

Starting specification for new class, using brain dump:

+++ b/Java/src/test/java/logic/CoachWithSeatsSpecification.java

+public class CoachWithSeatsSpecification

o

"

+ [Fact]

+ public void xxXXxxXX()

+ { //TODO rename

+ //GIVEN

+ var coachWithSeats = new CoachWithSeats();
+ //WHEN

+ uint seatCount = Any.UnsignedInt();

+ var reservationAllowed = coachWithSeats.AllowsReservationOf(seatCount);
+

+ //THEN

+ Assert.True(reservationAllowed);

+ }

+}

Now we need to somehow determine the seat count. I pass seats and then create an instance of
the first one and this leads me to inventing a type for it. This way, I discover the Seat interface:

+++ b/Java/src/test/java/logic/CoachWithSeatsSpecification.java

@@ -11,7 +11,18 @@ public class CoachWithSeatsSpecification {
[Fact]
public void xxXXxxXX() //todo rename

{
//GIVEN

var coachWithSeats = new CoachWithSeats();

Seat seat1 = Any.Instance<Seat>(); //introduced later
var coachWithSeats = new CoachWithSeats(

seatl,

seat?2,

seat3,

seat4,

seath,

seatb,

seatT”,

seat8,

seat9,

seat10

+ + + + + o+ o+ + o+ + o+

Test-driving at the input boundary - a retrospective 363

+)
//WHEN
uint seatCount = Any.UnsignedInt();
var reservationAllowed = coachWithSeats.AllowsReservationOf(seatCount);

and we define the interface:

+++ b/Java/src/main/java/logic/Seat.java

+public interface Seat
+{
+}

Created enough seats:

+++ b/Java/src/test/java/logic/CoachWithSeatsSpecification.java

@@ -11,7 +11,17 @@ public class CoachWithSeatsSpecification {

[Fact]
public void xxXXxxXX() { //todo rename
//GIVEN
+ //todo what's special about these seats?

Seat seat1 = Any.Instance<Seat>();

© 00 N O O b W N =

N T S =Y
0 N O O b W N =~ O

Bow N -

var coachWithSeats = new CoachWithSeats(

seatl,
seat2,

Added a constructor:

+ Seat seat2 = Any.Instance<Seat>();
+ Seat seat3 = Any.Instance<Seat>();
+ Seat seat4 = Any.Instance<Seat>();
+ Seat seatb = Any.Instance<Seat>();
+ Seat seat6 = Any.Instance<Seat>();
+ Seat seat7 = Any.Instance<Seat>();
+ Seat seat8 = Any.Instance<Seat>();
+ Seat seat9 = Any.Instance<Seat>();
+ Seat seat1@ = Any.Instance<Seat>();

b/Java/src/main/java/logic/CoachWithSeats.java

+++ b/Java/src/main/java/logic/CoachWithSeats.java

public class CoachWithSeats : Coach {

+ public CoachWithSeats(Seat. ..

+)
+

Clarified scenario. Test passes right away. suspicious:

+++ b/Java/src/test/java/logic/CoachWithSeatsSpecification.java

seats) {

O© 00 I O O b W N =

NN NN NN NN NN RS R R Rl s
© 0O 9 O O & W N = 0 © 0 9 O U & WN =~ O

Test-driving at the input boundary - a retrospective 364

public class CoachWithSeatsSpecification {

[Fact]
- public void xxXXxxXX() //todo rename
+ public void ShouldNotAllowReservingMoreSeatsThanItHas()

//GIVEN
//todo what's special about these seats?
Seat seat1 = Any.Instance<Seat>();

Seat seat2 = Any.Instance<Seat>();
Seat seat3 = Any.Instance<Seat>();
@@ -34,12 +33,14 @@ public class CoachWithSeatsSpecification {

seat9,
seat10
);
+
//WHEN
- uint seatCount = Any.UnsignedInt();
- var reservationAllowed = coachWithSeats.AllowsReservationOf(seatCount);
+ var reservationAllowed = coachWithSeats.AllowsReservationOf(11);
//THEN
- Assert.True(reservationAllowed);
+ Assert.False(reservationAllowed);
}
+ //todo what's special about these seats?
+
}

//1/1/TODOOOOOOO0O I stop here and start writing the chapter. Still wondering if a method
for determining the best possible reservation type returning an enum would be better than two
boolean questions.

Reused test and added todo:

+++ b/Java/src/test/java/logic/CoachWithSeatsSpecification.java

public class CoachWithSeatsSpecification {

[Fact]
public void ShouldNotAllowReservingMoreSeatsThanItHas()
{
//GIVEN
Seat seatl = Any.Instance<Seat>();
Seat seat2 = Any.Instance<Seat>();
@@ -36,11 +36,15 @@ public class CoachWithSeatsSpecification {

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

© 00 1 O O b W N =

NN NN NN NN R R R sl
=4 0 O B WD S O O 0 N0 U WD

Test-driving at the input boundary - a retrospective 365

//WHEN
var reservationAllowed = coachWithSeats.AllowsReservationOf(11);
+ var upFrontAllowed = coachWithSeats.AllowsUpFrontReservationOf(11);
//THEN
assertThat(reservationAllowed).isFalse();
+ assertThat (upFrontAllowed).isFalse();
}
//todo all free
//todo other scenarios
//todo what's special about these seats?
}

another test. the non-upfront is easier, that’s why I take it first:

+++ b/Java/src/test/java/logic/CoachWithSeatsSpecification.java

[Fact]
public void ShouldAllowReservingSeatsThatAreFree() {

//GIVEN
Seat seatl = FreeSeat();
Seat seat2 = FreeSeat();
Seat seat3 = FreeSeat();
Seat seat4 = FreeSeat();
Seat seatb = FreeSeat();
Seat seat6 = FreeSeat();
Seat seat7 = FreeSeat();
Seat seat8 = FreeSeat();
Seat seat9 = FreeSeat();
Seat seat1@ = FreeSeat();
var coachWithSeats = new CoachWithSeats(

seatl,

seat?2,

seat3d,

seat4,

seatb,

seatb,

seat’,

seat8,

seat9,

seatl10

);

+ + + + + + + + + + + F o+ + + + + + o+ + o+ o+ 4+ + o+

//WHEN

28
29
30
31
32
33
34
35
36
37
38
39
40
41

O© 00 N O O & W N =~

T S =
O O W N O

Test-driving at the input boundary - a retrospective

+
+
+ //THEN
+ Assert.True(reservationAllowed);
+ }
+
+ private Seat FreeSeat() {
+ return Any.Instance<Seat>();
+ }
+
+
//todo all free
//todo other scenarios
//todo what's special about these seats?

Made the test pass. but this is not the right implementation:

+++ b/Java/src/main/java/logic/CoachWithSeats.java

public class CoachWithSeats : Coach {
+ private Seat[] seats;

public CoachWithSeats(Seat... seats) {
+ this.seats = seats;

@@ -18,7 +23,7 @@ public class CoachWithSeats : Coach {

public bool AllowsReservationOf(uint seatCount) ({
- //todo implement
- return false;
//todo not yet the right implementation
return seatCount == Arrays.stream(seats).count();

Discovered isFree method when clarifying the behavior

+++ b/Java/src/main/java/logic/Seat.java

public interface Seat {
+ bool isFree();

}

+++ b/Java/src/test/java/logic/CoachWithSeatsSpecification.java

var reservationAllowed = coachWithSeats.AllowsReservationOf(10);

O© 00 I O O b W N =

10

© 00 N O O b W N =

W W WNNNDNDDNDDNDNDNDN N S R R R Ry oy
N~ ® © 0 9 O O b W N~ 0 © W 3 0 O b w N~

Test-driving at the input boundary - a retrospective

public class CoachWithSeatsSpecification

{
aes

private Seat FreeSeat() {

- return Any.Instance<Seat>();

+ o+ o+

return mock;

Seat mock = Substitute.For<Seat>();
mock . IsFree().Returns(true);

Refactored test. no need for variables:

diff —git a/Java/src/test/java/logic/CoachWithSeatsSpecification.java

[Fact]

public void ShouldAllowReservingSeatsThatAreFree()

{

//GI
- Seat
- Seat
- Seat
- Seat
- Seat
- Seat
- Seat
- Seat
- Seat
- Seat

VEN

seatl = FreeSeat();

seat2 = FreeSeat();

seat3 = FreeSeat();

seat4d = FreeSeat();

seatb = FreeSeat();

seatb = FreeSeat();

seat? = FreeSeat();

seat8 = FreeSeat();

seat9 = FreeSeat();

seat1@ = FreeSeat();
var coachWithSeats = new CoachWithSeats(

seatl,

seat?2,

seat3d,

seat4,

seatb,

seat6,

seat”,

seat8,

seat9,

seat10

FreeSeat(),

FreeSeat(),

FreeSeat(),

FreeSeat(),

+ o+ o+ o+ o+ o+

FreeSeat(),
FreeSeat(),
FreeSeat(),

367

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

© 00 N O O & W N =

NN NN N N P R s s Ly
O b W0 N »~ © O 00 NN O O b W N »~ O

Test-driving at the input boundary - a retrospective 368

FreeSeat(),
FreeSeat(),
FreeSeat()
)i
//WHEN
@@ -78,6 +68,8 @@ public class CoachWithSeatsSpecification
{
Assert.True(reservationAllowed);
}
+
+
private Seat FreeSeat()

{
Seat mock = Substitute.For<Seat>();
mock . IsFree().Returns(true);

added another test:

+++ b/Java/src/test/java/logic/CoachWithSeatsSpecification.java

@@ -68,6 +68,34 @@ public class CoachWithSeatsSpecification

var reservationAllowed = coachWithSeats.AllowsReservationOf(10);

{
Assert.True(reservationAllowed);
}
+ [Fact]
+ public void ShouldNotAllowReservingWhenNotEnoughFreeSeats()
+ {
+ //GIVEN
+ var coachWithSeats = new CoachWithSeats(
+ FreeSeat(),
+ FreeSeat(),
+ FreeSeat(),
+ ReservedSeat(),
+ FreeSeat(),
+ FreeSeat(),
+ FreeSeat(),
+ FreeSeat(),
+ FreeSeat(),
+ FreeSeat()
+),
+
+ //WHEN
+
"

26
27
28
29
30
31
32
33
34
35
36
37
38

o N O O b W N =

0 N O O b W N =

Test-driving at the input boundary - a retrospective 369

+ //THEN
+ Assert.True(reservationAllowed);
.
+
+ private Seat ReservedSeat()
+ {
+ Seat mock = Substitute.For<Seat>();
+ mock . IsFree().Returns(false);
+ return mock;
+ }
private Seat FreeSeat() ({

implemented only free seats:

diff —git a/Java/src/main/java/logic/CoachWithSeats.java b/Java/src/main/java/logic/CoachWith-
Seats.java

public bool AllowsReservationOf(uint seatCount) {
- //todo not yet the right implementation

- return seatCount == Arrays.stream(seats).count();
+ return seatCount == seats
+ .Where(seat => seat.IsFree())
+ .Count();
}
}

diff —git a/Java/src/test/java/logic/CoachWithSeatsSpecification.java

var reservationAllowed = coachWithSeats.AllowsReservationOf(10);
//THEN
- Assert.True(reservationAllowed);
+ assertThat(reservationAllowed).isFalse();
private Seat ReservedSeat() {

First test for up front reservations:

why 7 and not calculating? Don't be smart in tests - if you have to, put smartnes\
s in a well-tested library.
TODO delegate criteria to a separate class??

dift —git a/Java/src/test/java/logic/CoachWithSeatsSpecification.java

O© 00 I O O b W N =

NN NN NN P 1 s s Ly iy
a b 0o N »~ O ©O© 00 N O O b Ww N »~ O

O O B W N

Test-driving at the input boundary - a retrospective 370

[Fact]
public void ShouldAllowReservingUpFrontUpToT7T@OPercentOfSeats()
//GIVEN
var coachWithSeats = new CoachWithSeats(
FreeSeat(),
FreeSeat(),
FreeSeat(),
FreeSeat(),
FreeSeat(),
FreeSeat(),
FreeSeat(),
FreeSeat(),
FreeSeat(),
FreeSeat()

);

//WHEN
var reservationAllowed =

coachWithSeats.AllowsUpFrontReservationOf(7);

//THEN
Assert.True(reservationAllowed);

+ + + + + + + F + + F o+ + + + + + o+ + + o+ o+ 4+

Naively passing the test
+++ b/Java/src/main/java/logic/CoachWithSeats.java

public bool AllowsUpFrontReservationOf(uint seatCount) {
- //todo implement
- return false;
//todo not the right implementation yet
return true;

New test for up front:

diff —git a/Java/src/test/java/logic/CoachWithSeatsSpecification.java

O© 00 I O O b W N =

W N NN NN NN N NN A R R Rl sl
© © W T O O & W N A~ O © W I 0 U » W N~

O© 00 1 O O b W N =

N
[~

Test-driving at the input boundary - a retrospective 371

@@ -115,6 +115,29 @@ public class CoachWithSeatsSpecification {
Assert.True(reservationAllowed);

[Fact]
public void ShouldNotAllowReservingUpFrontOverToT7@PercentOfSeats() {
//GIVEN
var coachWithSeats = new CoachWithSeats(
FreeSeat(),
FreeSeat(),
FreeSeat(),
FreeSeat(),
FreeSeat(),
FreeSeat(),
FreeSeat(),
FreeSeat(),
FreeSeat(),
FreeSeat()

);

//WHEN
var reservationAllowed =
coachWithSeats.AllowsUpFrontReservation0f(8);

//THEN
Assert.True(reservationAllowed);

+ + + + + + + + + + + + + + o+ + + o+ 4+ + o+

private Seat ReservedSeat() {
Seat mock = Substitute.For<Seat>();

Commented out a failing test and refactored:
+++ b/Java/src/main/java/logic/CoachWithSeats.java
public bool AllowsReservationOf(uint seatCount) {

- return seatCount == Arrays.stream(seats)
return seatCount == freeSeatCount();

private long freeSeatCount() ({

+ + o+ o+ o+

return Arrays.stream(seats)
.filter(seat -> seat.IsFree())

.count();

+++ b/Java/src/test/java/logic/CoachWithSeatsSpecification.java

a b W N -

O© 00 1 O O b W N =

S
N =~ O

© 00 N O O & W N =

N = ==
N O O b W N -~ O

Test-driving at the input boundary - a retrospective 372

- [Fact]
+ //[Fact] todo uncomment!
public void ShouldNotAllowReservingUpFrontOverTo70PercentOfSeats() {
//GIVEN
var coachWithSeats = new CoachWithSeats(

Damn, 2 tests failing...

+++ b/Java/src/test/java/logic/CoachWithSeatsSpecification.java

- //[Fact] todo uncomment!
+ [Fact]
public void ShouldNotAllowReservingUpFrontOverTo70PercentOfSeats() {
//GIVEN
var coachWithSeats = new CoachWithSeats(
@@ -136,7 +136,7 @@ public class CoachWithSeatsSpecification {
coachWithSeats.AllowsUpFrontReservation0f(8);

//THEN

- Assert.True(reservationAllowed);
+ assertThat(reservationAllowed).isFalse();

OK, one test failing:

+++ b/Java/src/main/java/logic/CoachWithSeats.java

@@ -17,13 +17,13 @@ public class CoachWithSeats : Coach {

public bool AllowsUpFrontReservationOf(uint seatCount) {

//todo not the right implementation yet
- return true;

+ return seatCount <= seats.length;

public bool AllowsReservationOf(uint seatCount) ({
- return seatCount == freeSeatCount();

return seatCount <= freeSeatCount();

private long freeSeatCount() {

Made last test pass. omitting rounding behavior etc.:

+++ b/Java/src/main/java/logic/CoachWithSeats.java

=~ O O b W N =

oW N -

© 00 N O O b W N =

NN NN NN B R R sy s sy
O O b WO N O O 0 N O U bk Ww N~ O

Test-driving at the input boundary - a retrospective 373

@@ -17,7 +17,7 @@ public class CoachWithSeats : Coach {

public bool AllowsUpFrontReservationOf(uint seatCount) {
- return seatCount <= seats.length;
+ return seatCount <= seats.length * 0.7;

}

Picked the right formula for the criteria. Another test green.

+++ b/Java/src/main/java/logic/CoachWithSeats.java

public bool AllowsUpFrontReservationOf(uint seatCount) {
- return seatCount <= seats.length * 0.7;
+ return (freeSeatCount() - seatCount) >= seats.length * 0.3;

}
+++ b/Java/src/test/java/logic/CoachWithSeatsSpecification.java

+ [Fact]
+ public void ShouldNotAllowReservingUpFrontOver70PercentOfSeatsWhenSomeAreAlr\
eadyReserved() ({
//GIVEN
var coachWithSeats = new CoachWithSeats(
ReservedSeat(),
FreeSeat(),
FreeSeat(),
FreeSeat(),
FreeSeat(),
FreeSeat(),
FreeSeat(),
FreeSeat(),
FreeSeat(),
FreeSeat()

)

//WHEN
var reservationAllowed =
coachWithSeats.AllowsUpFrontReservationOf(7);

//THEN
assertThat(reservationAllowed).isFalse();

+ + + + + + + F o+ + + + + + o+ + o+ + A+ + o+

Added reservation test:

+++ b/Java/src/main/java/logic/CoachWithSeats.java

O W N = =~ O O b W N =

© 0O N O O b W N =

NN N N K R R N N L s s
W N, O O 0N 0O O kW N -=r o

Test-driving at the input boundary - a retrospective 374

@@ -22,7 +22,6 @@ public class CoachWithSeats : Coach

{
public bool AllowsReservationOf(uint seatCount)
{
return seatCount <= freeSeatCount();
}

+++ b/Java/src/main/java/logic/Seat.java

public interface Seat
{
bool isFree();
+ void reserveFor(TicketInProgress ticketInProgress);

+++ b/Java/src/test/java/logic/CoachWithSeatsSpecification.java

public class CoachWithSeatsSpecification {

[Fact]
public void ShouldReserveFirstFreeSeats() {
//GIVEN
var seatl = Substitute.For<Seat>();
var seat2 = Substitute.For<Seat>();
var seat3 = Substitute.For<Seat>();
var ticketInProgress = Substitute.For<TicketInProgress>();

var coachWithSeats = new CoachWithSeats(

seatl,
seat?2,
seatd
);
//WHEN

coachWithSeats.Reserve(2, ticketInProgress);

//THEN

then(seatl).should().reserveFor(ticketInProgress);
then(seat2).should().reserveFor(ticketInProgress);
then(seatl).should(never()).reserveFor(any(TicketInProgress.class));

+ o+ + + + + + F o+ + A+ o+ + o+ o+ A+ o+ +

Added reservation:

+++ b/Java/src/main/java/logic/CoachWithSeats.java

O© 00 9 O U b W N =~

N =
a b W N~

O© 00 N9 O O b W N =~

= =Y
© 00 N O O b Ww N =~ O

Test-driving at the input boundary - a retrospective 375

public void Reserve(uint seatCount, TicketInProgress ticket) {

//todo implement

+ foreach (var seat in seats)
+ {

+ if (seatCount == 0)

+ {

+ return;

+ }

+ else

+ {

+ seat.reserveFor(ticket);
+ seatCount--;

+ }

+ }

+++ b/Java/src/test/java/logic/CoachWithSeatsSpecification.java

@@ -185,7 +185,7 @@ public class CoachWithSeatsSpecification {
//THEN
then(seatl).should().reserveFor(ticketInProgress);
then(seat2).should().reserveFor(ticketInProgress);
- then(seat1).should(never()).reserveFor(any(TicketInProgress.class));
+ then(seat3).should(never()).reserveFor(any(TicketInProgress.class));

private Seat ReservedSeat() {
@@ -202,8 +202,5 @@ public class CoachWithSeatsSpecification {

}

- //todo all free
- //todo other scenarios
- //todo what's special about these seats?

+ //todo should we protect Reserve() method?

Discovered a NamedSeat class:

+++ b/Java/src/main/java/logic/CouchDbTrainRepository.java

O© 00 9 O U b W N =~

I = U =N
W N,

O© 00 N O O & W N =~

T S =Y
O O B W N =~

Test-driving at the input boundary - a retrospective 376

@@ -5,7 45,10 @@ public class CouchDbTrainRepository : TrainRepository

{
public Train GetTrainBy(string trainld)

{
//todo there should be something passed here!!
return new TrainWithCoaches(
- new CoachWithSeats()
+ new CoachWithSeats(
+ new NamedSeat(),
+ new NamedSeat()
+)
);
}
}

+++ b/Java/src/main/java/logic/NamedSeat.java

+public class NamedSeat : Seat

+{

+

+ public bool isFree()
+ {

+ //todo implement
+ return false;

+ }

+

+

+ public void reserveFor(TicketInProgress ticketInProgress)
+ {

+ //todo implement
+

+ }

+}

Added failing test. Note that depending on what Any.boolean() returns, this might\
pass or not:

+++ b/Java/src/main/java/logic/CouchDbTrainRepository.java

O© 00 9 O U b W N =~

S
N =~ O

O© 00 N O O b W N =~

O© 0 N O O & W N =

O = = =S
o I O O b W N =~ O

Test-driving at the input boundary - a retrospective 377

@@ -6,8 +6,8 @@ public class CouchDbTrainRepository : TrainRepository
{
//todo there should be something passed here!!
return new TrainWithCoaches(
new CoachWithSeats(
- new NamedSeat(),
- new NamedSeat()
new NamedSeat(true),
new NamedSeat(true)

+++ b/Java/src/main/java/logic/NamedSeat.java

public class NamedSeat : Seat {
public NamedSeat(bool isFree) {
//todo implement

+ + o+ o+ 4+

public bool isFree() {
//todo implement

+++ b/Java/src/test/java/logic/NamedSeatSpecification.java

+public class NamedSeatSpecification

+{

+ [Fact]

+ public void ShouldBeFreeDependingOnPassedConstructorParameter() {
+ //GIVEN

+ var islnitiallyFree = Any.booleanValue();

+ var namedSeat = new NamedSeat(isInitiallyFree);

+

+ //WHEN

+ var isEventuallyFree = namedSeat.IsFree();

+

+ //THEN

+ assertThat(isEventuallyFree).isEqualTo(isInitiallyFree);
+ }

+

+ //todo add ctrl + enter to presentation

+ //todo add CamelHumps to presentation

+
—

© 0O =N O O & W N =

N = =y
© 00 N O O & W N =~ O

0 N O O b W N

Test-driving at the input boundary - a retrospective 378
improved the test by repeating two times:
+++ b/Java/src/main/java/logic/NamedSeat.java

public class NamedSeat : Seat

{
+ private bool isfFree;
- public NamedSeat(bool isFree)
- {
- //todo implement
+ public NamedSeat(bool isFree)
+ {
+ this.isFree = isFree;
}
public bool isFree()
{
- //todo implement
- return false;
+ return isFree;
}

+++ b/Java/src/test/java/logic/NamedSeatSpecification.java

public class NamedSeatSpecification {
- [Fact]
+ [Fact] (invocationCount = 2) //TODO repeat in xunit.net??2?2?7?7222772222772227272227\
??
public void ShouldBeFreeDependingOnPassedConstructorParameter()
{
//GIVEN
var islnitiallyFree = Any.booleanValue();

Mock objects as a design tool

Outside-in development

Worked example

Johhny and Benjamin, creating subscription, subscription is validated (as few fields as possible)
when a subscription is created, a notification is sent. Use command pattern, collecting parameter,
maybe observer. Note that until we do something with this subscription, there is no need to store
it. Second example - scheduled expiry.

Programming by intention
Responsibility-Driven Design

Specifying factories

What not to mock?

Internals
How to use value objects in Statements?
How to specify value objects?

Terminal nodes in object graph

Guidance of test smells

Long Statements

Lots of stubbing

Specifying private members
Mocking third party

Mocking time

Mocking random

Mocking long-running threads
Mocking timers with callbacks
Mocking asynchronous tasks

Mocking databases

Revisiting topics from chapter 1

Constrained non-determinism in OO world

Passive vs active roles

Behavioral boundaries

Triangulation

Maintainable mock-based
Statements

Setup and teardown

Refactoring mock code

until you pop it out through the constructor, it’s object’s private business.

mocks rely on the boundaries being stable. If wrong on this, tests need to be rewritten, but the
feedbak from tests allows stabilizing the boundaries further. And there are not that many tests

to change as we test small pieces of code.

Part 4: Application
architecture

On stable/architectural boundaries

Ports and adapters

Physical separation of layers

“Screaming” architecture

What goes into application?

Application and other layers

Services, entities, interactors, domain etc. - how does it match?

What goes into ports?

Data transfer objects

Ports are not a layer

Part 5: TDD on application
architecture level

Designing automation layer

Adapting screenplay pattern

code in terms of intention (when knowing more about intention) refactor the domain-specific
API (when knowing more about underlying technology)

Driver

reusing the composition root

Separate start method

Fake adapters

They include port-specific setup and assertions.

Create a new fake adapter per each call.
Using fakes
For threads and e.g. databases - simpler objects with partially defined behavior

Actors

Where do assertions go? into the actors or context?
How to manage per-actor context (e.g. each actor has its own sent & received messages stored)

These are not actors as in actor model

Data builders

nesting builders, builders as immutable objects.

Further Reading

Motivation - the first step to learning TDD

« Fearless Change: Patterns for Introducing New Ideas by Mary Lynn Manns Ph.D. and Linda
Rising Ph.D. is worth looking at.
« Resistance Is Not to Change'*”® by Al Shalloway

The Essential Tools

« Gerard Meszaros has written a long book about using the XUnit family of test frameworks,
called XUnit Test Patterns'*“. This book also explains a lot of philosophy behind these tools.

Value Objects

« Ken Pugh has a chapter devoted to value objects in his book Prefactoring (the name of the
chapter is Abstract Data Types).

« Growing Object Oriented Software Guided By Tests contains some examples of using value
objects and some strategies on refactoring towards them.

« Value object discussion** on C2 wiki.

« Martin Fowler’s bliki mentions'*® value objects. They are also one of the patterns in his
book Patterns of Enterprise Application Architecture'"”

« Arlo Beshele describes'*® how he uses value objects (described under the name of Whole
Value) much more than I do in this book, presenting an alternative design style that is closer
to functional that the one I write about.

« Implementation Patterns'*” book by Kent Beck includes value object as one of the patterns.

http://www.netobjectives.com/blogs/resistance-not-change
http://xunitpatterns.com/
3http://c2.com/cgi/wiki?ValueObject
%https://martinfowler.com/bliki/ValueObject.html
"https://martinfowler.com/books/eaa.html
8http://arlobelshee.com/the-no-mocks-book/
https://isbnsearch.org/isbn/9780321413093

http://www.netobjectives.com/blogs/resistance-not-change
http://xunitpatterns.com/
http://c2.com/cgi/wiki?ValueObject
https://martinfowler.com/bliki/ValueObject.html
https://martinfowler.com/books/eaa.html
http://arlobelshee.com/the-no-mocks-book/
https://isbnsearch.org/isbn/9780321413093
http://www.netobjectives.com/blogs/resistance-not-change
http://xunitpatterns.com/
http://c2.com/cgi/wiki?ValueObject
https://martinfowler.com/bliki/ValueObject.html
https://martinfowler.com/books/eaa.html
http://arlobelshee.com/the-no-mocks-book/
https://isbnsearch.org/isbn/9780321413093

	Table of Contents
	Front Matter
	Dedications
	Thanks!
	About code examples
	Notes for C# users
	Notes for Java users

	Part 1: Just the basics
	Motivation – the first step to learning TDD
	What TDD feels like
	Let's get it started!

	The essential tools
	Test framework
	Mocking framework
	Anonymous values generator
	Summary

	It's not (only) a test
	When a test becomes something more
	Taking it to the software development land
	A Specification rather than a test suite
	The differences between executable and ``traditional'' specifications

	Statement-first programming
	What's the point of writing a specification after the fact?
	``Test-First'' means seeing a failure
	``Test-After'' often ends up as ``Test-Never''
	``Test-After'' often leads to design rework
	Summary

	Practicing what we have already learned
	Let me tell you a story
	Act 1: The Car
	Act 2: The Customer's Site
	Act 3: Test-Driven Development
	Epilogue

	Sorting out the bits
	How to start?
	Start with a good name
	Start by filling the GIVEN-WHEN-THEN structure with the obvious
	Start from the end
	Start by invoking a method if you have one
	Summary

	How is TDD about analysis and what does ``GIVEN-WHEN-THEN'' mean?
	Is there really a commonality between analysis and TDD?
	Gherkin
	TODO list… again!

	What is the scope of a unit-level Statement in TDD?
	Scope and level
	On what level do we specify our software?
	What should be the functional scope of a single Statement?
	Failing to adhere to the three rules
	How many assertions do I need?
	Summary

	Developing a TDD style and Constrained Non-Determinism
	A style?
	Principle: Tests As Specification
	First technique: Anonymous Input
	Second technique: Derived Values
	Third technique: Distinct Generated Values
	Fourth technique: Constant Specification
	Summary of the example
	Constrained non-determinism
	Summary

	Specifying functional boundaries and conditions
	Sometimes, an anonymous value is not enough
	Exceptions to the rule
	Rules valid within boundaries
	Combination of boundaries – ranges
	Summary

	Driving the implementation from Specification
	Type the obvious implementation
	Fake it (`til you make it)
	Triangulate
	Summary

	Part 2: Object-Oriented World
	On Object Composability
	Another task for Johnny and Benjamin
	A Quick Retrospective

	Telling, not asking
	Contractors
	A Quick Retrospective

	The need for mock objects
	Composability… again!

	Why do we need composability?
	Pre-object-oriented approaches
	Object-oriented programming to the rescue!
	The power of composition
	Summary – are you still with me?

	Web, messages and protocols
	So, again, what does it mean to compose objects?
	Alarms, again!
	Summary

	Composing a web of objects
	Three important questions
	A preview of all three answers

	When are objects composed?
	How does a sender obtain a reference to a recipient (i.e. how connections are made)?
	Receive as constructor parameter
	Receive inside a message (i.e. as a method parameter)
	Receive in response to a message (i.e. as method return value)
	Receive as a registered observer

	Where are objects composed?
	Composition Root
	Factories
	Summary

	Interfaces
	Classes vs interfaces
	Events/callbacks vs interfaces – few words on roles
	Small interfaces

	Protocols
	Protocols exist
	Protocol stability
	Craft messages to reflect sender's intention
	Model interactions after the problem domain
	Message recipients should be told what to do, instead of being asked for information
	Most of the getters should be removed, return values should be avoided
	Protocols should be small and abstract
	Summary

	Classes
	Single Responsibility Principle
	Static recipients
	Summary

	Object Composition as a Language
	More readable composition root
	Refactoring for readability
	Composition as a language
	The significance of a higher-level language
	Some advice
	Summary

	Value Objects
	What is a value?
	Example: money and names

	Value object anatomy
	Class signature
	Hidden data
	Hidden constructor
	String conversion methods
	Equality members
	The return of investment
	Summary

	Aspects of value objects design
	Immutability
	Handling of variability
	Special values
	Value types and Tell Don't Ask
	Summary

	Part 3: TDD in Object-Oriented World
	Mock Objects as a testing tool
	A backing example
	Interfaces
	Protocols
	Roles
	Behaviors
	Filling in the roles
	Using a mock channel
	Mocks as yet another context
	Summary

	Test-first using mock objects
	How to start? – with mock objects
	Responsibility and Responsibility
	Channel and DataDispatch one more time
	The first behavior
	Second behavior – specifying an error
	Summary

	Test-driving at the input boundary
	Fixing the ticket office
	Initial objects
	Bootstrap
	Writing the first Statement
	Summary

	THIS IS ALL I HAVE FOR NOW. WHAT FOLLOWS IS RAW, UNORDERED MATERIAL THAT'S NOT YET READY TO BE CONSUMED AS PART OF THIS TUTORIAL
	Test-driving at the input boundary - a retrospective
	Mock objects as a design tool
	Outside-in development
	Worked example
	Programming by intention
	Responsibility-Driven Design
	Specifying factories

	What not to mock?
	Internals
	How to use value objects in Statements?
	How to specify value objects?
	Terminal nodes in object graph

	Guidance of test smells
	Long Statements
	Lots of stubbing
	Specifying private members
	Mocking third party

	Revisiting topics from chapter 1
	Constrained non-determinism in OO world
	Behavioral boundaries
	Triangulation

	Maintainable mock-based Statements
	Setup and teardown

	Refactoring mock code

	Part 4: Application architecture
	On stable/architectural boundaries
	Ports and adapters
	Physical separation of layers

	What goes into application?
	Application and other layers

	What goes into ports?
	Data transfer objects
	Ports are not a layer

	Part 5: TDD on application architecture level
	Designing automation layer
	Adapting screenplay pattern
	Driver
	Actors
	Data builders

	Further Reading
	Motivation – the first step to learning TDD
	The Essential Tools
	Value Objects

