
ptg

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Praise for Growing Object-Oriented Software, Guided by Tests
“The authors of this book have led a revolution in the craft of programming by controlling
the environment in which software grows. Their Petri dish is the mock object, and their
microscope is the unit test. This book can show you how these tools introduce a
repeatability to your work that would be the envy of any scientist.”

—Ward Cunningham

“At last a book, suffused with code, that exposes the deep symbiosis between TDD and
OOD. The authors, pioneers in test-driven development, have packed it with principles,
practices, heuristics, and (best of all) anecdotes drawn from their decades of professional
experience. Every software craftsman will want to pore over the chapters of worked
examples and study the advanced testing and design principles. This one’s a keeper.”

—Robert C. Martin

“Design is often discussed in depth, but without empiricism. Testing is often promoted,
but within the narrow definition of quality that relates only to the presence or absence of
defects. Both of these perspectives are valuable, but each on its own offers little more than
the sound of one hand clapping. Steve and Nat bring the two hands together in what
deserves—and can best be described as—applause. With clarity, reason, and humour,
their tour de force reveals a view of design, testing, code, objects, practice, and process
that is compelling, practical, and overflowing with insight.”

—Kevlin Henney, co-author of Pattern-Oriented Software Architecture
and 97 Things Every Programmer Should Know

“Steve and Nat have written a wonderful book that shares their software craftsmanship
with the rest of the world. This is a book that should be studied rather than read, and
those who invest sufficient time and energy into this effort will be rewarded with superior
development skills.”

—David Vydra, publisher, testdriven.com

“This book presents a unique vision of test-driven development. It describes the mature
form of an alternative strain of TDD that sprang up in London in the early 2000s,
characterized by a totally end-to-end approach and a deep emphasis on the messaging
aspect of objects. If you want to be an expert in the state of the art in TDD, you need to
understand the ideas in this book.”

—Michael Feathers

“With this book you’ll learn the rhythms, nuances in thinking, and effective programming
practices for growing tested, well-designed object-oriented applications from the masters.”

—Rebecca Wirfs-Brock

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Growing
Object-Oriented
Software,
Guided
by Tests

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The Addison-Wesley Signature Series provides readers with

practical and authoritative information on the latest trends in modern

technology for computer professionals. The series is based on one simple

premise: Great books come from great authors. Books in the series are

personally chosen by expert advisors, world-class authors in their own

right. These experts are proud to put their signatures on the covers, and

their signatures ensure that these thought leaders have worked closely

with authors to define topic coverage, book scope, critical content, and

overall uniqueness. The expert signatures also symbolize a promise to

our readers: You are reading a future classic.

Visit informit.com/awss for a complete list of available products.

The Addison-Wesley

Signature Series
Kent Beck, Mike Cohn, and Martin Fowler, Consulting Editors

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Growing
Object-Oriented
Software,
Guided
by Tests

Steve Freeman and Nat Pryce

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability
is assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content particular
to your business, training goals, marketing focus, and branding interests. For more information,
please contact:

U.S. Corporate and Government Sales
(800) 382–3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Freeman, Steve, 1958-
 Growing object-oriented software, guided by tests / Steve Freeman and Nat Pryce.
 p. cm.
 ISBN 978-0-321-50362-6 (pbk. : alk. paper) 1. Object-oriented programming
(Computer science) 2. Computer software--Testing. I. Pryce, Nat. II. Title.
 QA76.64.F747 2010
 005.1'17--dc22
 2009035239

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978–0–321–50362–6
ISBN-10: 0–321–50362–7
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing October 2009

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

To Paola, for all her support; to Philip, who sometimes missed out

—Steve

To Lamaan who put up with me spending time writing this book,
and Oliver Tarek who did not

—Nat

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Contents

xvForeword ..

xviiPreface ..

xxiAcknowledgments ...

xxiiiAbout the Authors ..

1Part I: Introduction ...

3Chapter 1: What Is the Point of Test-Driven Development?
3Software Development as a Learning Process
4Feedback Is the Fundamental Tool ..
5Practices That Support Change ..
6Test-Driven Development in a Nutshell ...
7The Bigger Picture ...
8Testing End-to-End ..
9Levels of Testing ..

10External and Internal Quality ..

13Chapter 2: Test-Driven Development with Objects
13A Web of Objects ..
13Values and Objects ..
14Follow the Messages ..
17Tell, Don’t Ask ..
17But Sometimes Ask ..
18Unit-Testing the Collaborating Objects ...
19Support for TDD with Mock Objects ..

ix

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

21Chapter 3: An Introduction to the Tools ..
21Stop Me If You’ve Heard This One Before
21A Minimal Introduction to JUnit 4 ..
24Hamcrest Matchers and assertThat() ...
25jMock2: Mock Objects ..

29Part II: The Process of Test-Driven Development ...

31Chapter 4: Kick-Starting the Test-Driven Cycle
31Introduction ..
32First, Test a Walking Skeleton ...
33Deciding the Shape of the Walking Skeleton
35Build Sources of Feedback ...
36Expose Uncertainty Early ..

39Chapter 5: Maintaining the Test-Driven Cycle
39Introduction ..
39Start Each Feature with an Acceptance Test

40
Separate Tests That Measure Progress from Those That Catch
Regressions ..

41Start Testing with the Simplest Success Case
42Write the Test That You’d Want to Read ..
42Watch the Test Fail ..
43Develop from the Inputs to the Outputs ..
43Unit-Test Behavior, Not Methods ..
44Listen to the Tests ..
45Tuning the Cycle ...

47Chapter 6: Object-Oriented Style ...
47Introduction ..
47Designing for Maintainability ..
50Internals vs. Peers ..
51No And’s, Or’s, or But’s ..
52Object Peer Stereotypes ...
53Composite Simpler Than the Sum of Its Parts
54Context Independence ...
55Hiding the Right Information ..
56An Opinionated View ..

57Chapter 7: Achieving Object-Oriented Design
57How Writing a Test First Helps the Design
58Communication over Classification ...

Contentsx

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

59Value Types ...
60Where Do Objects Come From? ..
63Identify Relationships with Interfaces ..
63Refactor Interfaces Too ...
64Compose Objects to Describe System Behavior
65Building Up to Higher-Level Programming
67And What about Classes? ..

69Chapter 8: Building on Third-Party Code ..
69Introduction ..
69Only Mock Types That You Own ...
71Mock Application Objects in Integration Tests

73Part III: A Worked Example ...

75Chapter 9: Commissioning an Auction Sniper ..
75To Begin at the Beginning ..
78Communicating with an Auction ...
79Getting There Safely ..
81This Isn’t Real ...

83Chapter 10: The Walking Skeleton ..
83Get the Skeleton out of the Closet ...
84Our Very First Test ..
86Some Initial Choices ..

89Chapter 11: Passing the First Test ..
89Building the Test Rig ...
95Failing and Passing the Test ...

102The Necessary Minimum ...

105Chapter 12: Getting Ready to Bid ..
105An Introduction to the Market ..
106A Test for Bidding ...
112The AuctionMessageTranslator ...
118Unpacking a Price Message ..
121Finish the Job ...

123Chapter 13: The Sniper Makes a Bid ...
123Introducing AuctionSniper ...
126Sending a Bid ...
131Tidying Up the Implementation ...

xiContents

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

136Defer Decisions ..
137Emergent Design ..

139Chapter 14: The Sniper Wins the Auction ..
139First, a Failing Test ..
140Who Knows about Bidders? ...
143The Sniper Has More to Say ..
144The Sniper Acquires Some State ...
146The Sniper Wins ..
148Making Steady Progress ...

149Chapter 15: Towards a Real User Interface ...
149A More Realistic Implementation ..
152Displaying Price Details ...
159Simplifying Sniper Events ...
164Follow Through ...
168Final Polish ..
171Observations ..

175Chapter 16: Sniping for Multiple Items ..
175Testing for Multiple Items ...
183Adding Items through the User Interface ..
189Observations ..

191Chapter 17: Teasing Apart Main ...
191Finding a Role ...
192Extracting the Chat ..
195Extracting the Connection ...
197Extracting the SnipersTableModel ...
201Observations ..

205Chapter 18: Filling In the Details ...
205A More Useful Application ..
205Stop When We’ve Had Enough ..
212Observations ..

215Chapter 19: Handling Failure ...
215What If It Doesn’t Work? ..
217Detecting the Failure ..
218Displaying the Failure ..
219Disconnecting the Sniper ..
221Recording the Failure ...
225Observations ..

Contentsxii

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

227Part IV: Sustainable Test-Driven Development ...

229Chapter 20: Listening to the Tests ..
229Introduction ...
230I Need to Mock an Object I Can’t Replace (without Magic)
233Logging Is a Feature ...
235Mocking Concrete Classes ...
237Don’t Mock Values ..
238Bloated Constructor ...
240Confused Object ..
241Too Many Dependencies ...
242Too Many Expectations ...
244What the Tests Will Tell Us (If We’re Listening)

247Chapter 21: Test Readability ...
247Introduction ...
248Test Names Describe Features ...
251Canonical Test Structure ..
252Streamline the Test Code ...
254Assertions and Expectations ..
255Literals and Variables ..

257Chapter 22: Constructing Complex Test Data
257Introduction ...
258Test Data Builders ...
259Creating Similar Objects ..
261Combining Builders ...
261Emphasizing the Domain Model with Factory Methods
262Removing Duplication at the Point of Use
264Communication First ...

267Chapter 23: Test Diagnostics ...
267Design to Fail ...
268Small, Focused, Well-Named Tests ..
268Explanatory Assertion Messages ..
268Highlight Detail with Matchers ...
269Self-Describing Value ...
270Obviously Canned Value ...
270Tracer Object ...
271Explicitly Assert That Expectations Were Satisfied
271Diagnostics Are a First-Class Feature ...

xiiiContents

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

273Chapter 24: Test Flexibility ..
273Introduction ...
274Test for Information, Not Representation
275Precise Assertions ...
277Precise Expectations ...
284“Guinea Pig” Objects ..

287Part V: Advanced Topics ..

289Chapter 25: Testing Persistence ..
289Introduction ...
290Isolate Tests That Affect Persistent State ..
292Make Tests Transaction Boundaries Explicit
294Testing an Object That Performs Persistence Operations
297Testing That Objects Can Be Persisted ...
300But Database Tests Are S-l-o-w! ..

301Chapter 26: Unit Testing and Threads ...
301Introduction ...
302Separating Functionality and Concurrency Policy
306Unit-Testing Synchronization ...
311Stress-Testing Passive Objects ..
312Synchronizing the Test Thread with Background Threads
313The Limitations of Unit Stress Tests ...

315Chapter 27: Testing Asynchronous Code ...
315Introduction ...
316Sampling or Listening ..
318Two Implementations ..
322Runaway Tests ..
323Lost Updates ..
325Testing That an Action Has No Effect ...
326Distinguish Synchronizations and Assertions
326Externalize Event Sources ..

329Afterword: A Brief History of Mock Objects ..

335Appendix A: jMock2 Cheat Sheet ...

343Appendix B: Writing a Hamcrest Matcher ...

347Bibliography ...

349Index ..

Contentsxiv

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Foreword

Kent Beck

One of the dilemmas posed by the move to shorter and shorter release cycles is
how to release more software in less time—and continue releasing indefinitely.
A new perspective is necessary to resolve this dilemma. More than a shift in
techniques is needed.

Growing Object-Oriented Software, Guided by Tests presents such a new per-
spective. What if software wasn’t “made,” like we make a paper airplane—finish
folding it and fly it away? What if, instead, we treated software more like a
valuable, productive plant, to be nurtured, pruned, harvested, fertilized, and
watered? Traditional farmers know how to keep plants productive for decades
or even centuries. How would software development be different if we treated
our programs the same way?

I am most impressed by how this book presents both the philosophy and
mechanics of such a shift in perspective. It is written by practitioners who
code—and teach others to code—well. From it you can learn both how to program
to sustain productivity and how to look at your programs anew.

The style of test-driven development presented here is different from what I
practice. I can’t yet articulate the difference, but I have learned from the clear,
confident presentation of the authors’ techniques. The diversity of dialects has
given me a new source of ideas to further refine my own development. Growing
Object-Oriented Software, Guided by Tests, presents a coherent, consistent system
of development, where different techniques support each other.

I invite you to read Growing Object-Oriented Software, Guided by Tests,
to follow along with the examples, to learn how the authors think about
programming and how they program. The experience will enrich your software
development style, help you program—and, just as important, see your programs
differently.

xv

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Preface

What Is This Book About?

This book is a practical guide to the best way we’ve found to write object-oriented
software: test-driven development (TDD). It describes the processes we follow,
the design principles we strive for, and the tools we use. It’s founded on our
decades of experience, working with and learning from some of the best
programmers in the world.

Within the book, we address some of the questions and confusions we see
coming up on project after project. How do I fit test-driven development into a
software project? Where do I start? Why should I write both unit and end-to-end
tests? What does it mean for tests to “drive” development? How do I test difficult
feature X?

This book is also very much about design and the way our approach to design
informs our approach to TDD. If there’s one thing we’ve learned, it’s that test-
driven development works best when taken as a whole. We’ve seen teams that
can do the raw practices (writing and running tests) but struggle with the result
because they haven’t also adopted the deeper processes that lie behind it.

Why “Growing” Object-Oriented Software?

We used the term “growing” because it gives a sense of how we develop incre-
mentally. We have something working at all times, making sure that the code is
always as well-structured as possible and thoroughly tested. Nothing else seems
to be as effective at delivering systems that work. As John Gall wrote in [Gall03],
“A complex system that works is invariably found to have evolved from a simple
system that works.”

“Growing” also hints at the biological quality we see in good software, the
sense of coherence at every level of structure. It ties into our approach to object

xvii

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

orientation which follows Alan Kay’s1 concept of objects being similar to
biological cells that send each other messages.

Why “Guided” by Tests?

We write tests first because we find that it helps us write better code. Writing a
test first forces us to clarify our intentions, and we don’t start the next piece of
work until we have an unambiguous description of what it should do. The process
of writing a test first helps us see when a design is too rigid or unfocused. Then,
when we want to follow through and fix a design flaw, the tests give us a safety
net of regression coverage.

We use the term “guided” because the technique still requires skill and
experience. We found test-driven development to be an effective design support
tool—once we’d learned how to develop incrementally and to “listen to the tests.”
Like any serious design activity, TDD requires understanding and sustained effort
to work.

We’ve seen teams that write tests and code at about the same time (and even
teams that write the tests first) where the code is a mess and the tests just raise
the cost of maintenance. They’d made a start but hadn’t yet learned that the trick,
as the title of the book suggests, is to let the tests guide development. Use the
contents of the tests to stay focused on making progress and feedback from
the tests to raise the quality of the system.

What about Mock Objects?

Our original motivation for writing the book was to finally explain the technique
of using mock objects,2 which we often see misunderstood. As we got deeper
into writing, we realized that our community’s discovery and use of mock objects
was actually an expression of our approach to writing software; it’s part of a
larger picture.

In the course of the book, we will show how the mock objects technique works,
using the jMock library. More specifically, we’ll show where it fits into the TDD
process and how it makes sense in the context of object-oriented development.

Who Is This Book For?

We wrote this book for the “informed reader.” It’s intended for developers
with professional experience who probably have at least looked at test-driven

1. Alan Kay was one of the authors of Smalltalk and coined the term “object-oriented.”
2. Mock objects are substitute implementations for testing how an object interacts with

its neighbors.

Preface xviii

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

development. When writing, we imagined we were explaining techniques to a
colleague who hadn’t come across them before.

To make room for the deeper material we wanted to cover, we’ve assumed
some knowledge of the basic concepts and tools; there are other books that
provide a good introduction to TDD.

Is This a Java Book?

We use the Java programming language throughout because it’s common enough
that we expect our readers to be able at least to understand the examples. That
said, the book is really about a set of techniques that are applicable to any
object-oriented environment.

If you’re not using Java, there are equivalents of testing and mocking libraries
we use (JUnit and jMock) in many other languages, including C#, Ruby, Python,
Smalltalk, Objective-C, and (impressively) C++. There are even versions for
more distant languages such as Scala. There are also other testing and mocking
frameworks in Java.

Why Should You Listen to Us?

This book distills our experiences over a couple of decades, including nearly ten
years of test-driven development. During that time, we have used TDD in a wide
range of projects: large message-oriented enterprise-integration systems with an
interactive web front-end backed by multiprocessor compute grids; tiny embedded
systems that must run in tens of kilobytes of memory; free games used as adver-
tising for business-critical systems; and back-end middleware and network services
to highly interactive graphical desktop applications. In addition, we’ve written
about and taught this material at events and companies across the world.

We’ve also benefited from the experience of our colleagues in the TDD
community based in London. We’ve spent many hours during and after work
having our ideas challenged and honed. We’re grateful for the opportunity to
work with such lively (and argumentative) colleagues.

What Is in This Book?

The book has six parts:
Part I, “Introduction,” is a high-level introduction to test-driven development,

mock objects, and object-oriented design within the context of a software devel-
opment project. We also introduce some of the testing frameworks we use in the
rest of the book. Even if you’re already familiar with TDD, we stilll recommend
reading through Chapters 1 and 2 since they describe our approach to software
development. If you’re familiar with JUnit and jMock, you might want to skip
the rest of the introduction.

xixPreface

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Part II, “The Process of Test-Driven Development,” describes the process of
TDD, showing how to get started and how to keep development moving. We
dig into the relationship between our test-driven approach and object-oriented
programming, showing how the principles of the two techniques support each
other. Finally, we discuss how to work with external code. This part describes
the concepts, the next part puts them to work.

Part III, “A Worked Example,” is an extended example that gives a flavor of
how we develop an object-oriented application in a test-driven manner. Along
the way, we discuss the trade-offs and motivations for the decisions we take.
We’ve made this quite a long example, because we want to show how some
features of TDD become more significant as the code starts to scale up.

Part IV, “Sustainable Test-Driven Development,” describes some practices that
keep a system maintainable. We’re very careful these days about keeping a
codebase clean and expressive, because we’ve learned over the years the costs of
letting things slip. This part describes some of the practices we’ve adopted and
explains why we do them.

Part V, “Advanced Topics,” looks at areas where TDD is more difficult:
complex test data, persistence, and concurrency. We show how we deal with
these issues and how this affects the design of the code and tests.

Finally, the appendices include some supporting material on jMock and
Hamcrest.

What Is Not in This Book?

This is a technical book. We’ve left out all the other topics that make a project
succeed, such as team organization, requirements management, and product
design. Adopting an incremental test-driven approach to development obviously
has a close relationship with how a project is run. TDD enables some new
activities, such as frequent delivery, and it can be crippled by organizational
circumstances, such as an early design freeze or team stakeholders that don’t
communicate. Again, there are plenty of other books to cover these topics.

Preface xx

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Acknowledgments

The authors would like to thank everyone who provided their support and
feedback during the writing of this book. Kent Beck and Greg Doench commis-
sioned it in the first place, and Dmitry Kirsanov and Alina Kirsanova (with great
patience) polished up the rough edges and turned it into print.

A great many people helped us by taking the trouble to read and review drafts,
or just providing support and encouragement: Romilly Cocking, Jamie Dobson,
Michael Feathers, Martin Fowler, Naresh Jain, Pete Keller, Tim Mackinnon,
Duncan McGregor, Ivan Moore, Farshad Nayeri, Isaiah Perumalla, David Peter-
son, Nick Pomfret, J. B. Rainsberger, James Richardson, Lauren Schmitt, Douglas
Squirrel, The Silicon Valley Patterns Group, Vladimir Trofimov, Daniel Wellman,
and Matt Wynne .

Thanks to Dave Denton, Jonathan “Buck” Rogers, and Jim Kuo for modeling
duties.

This book and the techniques we describe within it would not have existed
without the Extreme Tuesday Club (XTC), a regular informal meet-up in London
for people interested in agile, extreme programming and test-driven development.
We are deeply grateful to all the people with whom we shared experiences,
techniques, lessons learned, and rounds.

xxi

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

About the Authors

Steve Freeman

Steve Freeman is an independent consultant specializing in Agile software devel-
opment (http://www.m3p.co.uk). He was joint winner, with Nat Pryce, of the
2006 Agile Alliance Gordon Pask award. A founding member of the London
Extreme Tuesday Club, he was chair of the first London XP Day and is a frequent
organizer and presenter at international conferences. Steve has worked in a wide
variety of organizations, from developing shrink-wrap software for IBM to pro-
totyping for major research labs. Steve has a PhD from Cambridge University,
and degrees in statistics and music. Steve is based in London, UK.

Nat Pryce

After completing his PhD at Imperial College, Nat Pryce joined the dot-com
boom just in time to watch it bust. Since then he has worked as a programmer,
architect, trainer, and consultant in a variety of industries, including sports
reportage, marketing communications, retail, telecoms, and finance. He has also
worked on academic research projects and does occasional university teaching.
An early adopter of XP, he has written or contributed to several open source
libraries that support TDD and was one of the founding organizers of the London
XP Day conference. He also regularly presents at international conferences. Nat
is based in London, UK.

xxiii

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.m3p.co.uk
http://www.it-ebooks.info/

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Part I

Introduction
Test-Driven Development (TDD) is a deceptively simple idea:
Write the tests for your code before writing the code itself. We
say “deceptively simple” because this transforms the role testing
plays in the development process and challenges our industry’s
assumptions about what testing is for. Testing is no longer just
about keeping defects from the users; instead, it’s about helping
the team to understand the features that the users need and to
deliver those features reliably and predictably. When followed
to its conclusions, TDD radically changes the way we develop
software and, in our experience, dramatically improves the
quality of the systems we build, in particular their reliability and
their flexibility in response to new requirements.

Test-driven development is widely used in “agile” software
development approaches. It is a core practice of Extreme Pro-
gramming (XP) [Beck99], is recommended by Crystal Clear
[Cockburn04], and is often used in Scrum projects [Schwaber01].
We’ve used TDD on every agile project we’ve been involved in,
and have found uses for it in non-agile projects. We’ve even
found that it helps us make progress in pure research projects,
where the motivation is to explore ideas rather than deliver
features.

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Chapter 1

What Is the Point of
Test-Driven Development?

One must learn by doing the thing; for though you think you know it,
you have no certainty, until you try.

—Sophocles

Software Development as a Learning Process

Almost all software projects are attempting something that nobody has done
before (or at least that nobody in the organization has done before). That some-
thing may refer to the people involved, the application domain, the technology
being used, or (most likely) a combination of these. In spite of the best efforts of
our discipline, all but the most routine projects have elements of surprise. Inter-
esting projects—those likely to provide the most benefit—usually have a lot
of surprises.

Developers often don’t completely understand the technologies they’re using.
They have to learn how the components work whilst completing the project.
Even if they have a good understanding of the technologies, new applications
can force them into unfamiliar corners. A system that combines many significant
components (which means most of what a professional programmer works on)
will be too complex for any individual to understand all of its possibilities.

For customers and end users, the experience is worse. The process of building
a system forces them to look at their organization more closely than they have
before. They’re often left to negotiate and codify processes that, until now,
have been based on convention and experience.

Everyone involved in a software project has to learn as it progresses. For the
project to succeed, the people involved have to work together just to understand
what they’re supposed to achieve, and to identify and resolve misunderstandings
along the way. They all know there will be changes, they just don’t know what
changes. They need a process that will help them cope with uncertainty as their
experience grows—to anticipate unanticipated changes.

3

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Feedback Is the Fundamental Tool

We think that the best approach a team can take is to use empirical feedback to
learn about the system and its use, and then apply that learning back to the system.
A team needs repeated cycles of activity. In each cycle it adds new features and
gets feedback about the quantity and quality of the work already done. The team
members split the work into time boxes, within which they analyze, design,
implement, and deploy as many features as they can.

Deploying completed work to some kind of environment at each cycle is critical.
Every time a team deploys, its members have an opportunity to check their as-
sumptions against reality. They can measure how much progress they’re really
making, detect and correct any errors, and adapt the current plan in response to
what they’ve learned. Without deployment, the feedback is not complete.

In our work, we apply feedback cycles at every level of development, organizing
projects as a system of nested loops ranging from seconds to months, such as:
pair programming, unit tests, acceptance tests, daily meetings, iterations, releases,
and so on. Each loop exposes the team’s output to empirical feedback so that
the team can discover and correct any errors or misconceptions. The nested
feedback loops reinforce each other; if a discrepancy slips through an inner loop,
there is a good chance an outer loop will catch it.

Each feedback loop addresses different aspects of the system and development
process. The inner loops are more focused on the technical detail: what a unit of
code does, whether it integrates with the rest of the system. The outer loops are
more focused on the organization and the team: whether the application serves
its users’ needs, whether the team is as effective as it could be.

The sooner we can get feedback about any aspect of the project, the better.
Many teams in large organizations can release every few weeks. Some teams re-
lease every few days, or even hours, which gives them an order of magnitude
increase in opportunities to receive and respond to feedback from real users.

Incremental and Iterative Development

In a project organized as a set of nested feedback loops, development is
incremental and iterative.

Incremental development builds a system feature by feature, instead of building
all the layers and components and integrating them at the end. Each feature is
implemented as an end-to-end “slice” through all the relevant parts of the system.
The system is always integrated and ready for deployment.

Iterative development progressively refines the implementation of features in
response to feedback until they are good enough.

Chapter 1 What Is the Point of Test-Driven Development?4

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Practices That Support Change

We’ve found that we need two technical foundations if we want to grow a system
reliably and to cope with the unanticipated changes that always happen. First,
we need constant testing to catch regression errors, so we can add new features
without breaking existing ones. For systems of any interesting size, frequent
manual testing is just impractical, so we must automate testing as much as we
can to reduce the costs of building, deploying, and modifying versions of the
system.

Second, we need to keep the code as simple as possible, so it’s easier to under-
stand and modify. Developers spend far more time reading code than writing it,
so that’s what we should optimize for.1 Simplicity takes effort, so we constantly
refactor [Fowler99] our code as we work with it—to improve and simplify its
design, to remove duplication, and to ensure that it clearly expresses what it does.
The test suites in the feedback loops protect us against our own mistakes as we
improve (and therefore change) the code.

The catch is that few developers enjoy testing their code. In many development
groups, writing automated tests is seen as not “real” work compared to adding
features, and boring as well. Most people do not do as well as they should at
work they find uninspiring.

Test-Driven Development (TDD) turns this situation on its head. We write
our tests before we write the code. Instead of just using testing to verify our work
after it’s done, TDD turns testing into a design activity. We use the tests to clarify
our ideas about what we want the code to do. As Kent Beck described it to us,
“I was finally able to separate logical from physical design. I’d always been told
to do that but no one ever explained how.” We find that the effort of writing a
test first also gives us rapid feedback about the quality of our design ideas—that
making code accessible for testing often drives it towards being cleaner and more
modular.

If we write tests all the way through the development process, we can build
up a safety net of automated regression tests that give us the confidence to make
changes.

“… you have nothing to lose but your bugs”

We cannot emphasize strongly enough how liberating it is to work on test-driven
code that has thorough test coverage. We find that we can concentrate on the task
in hand, confident that we’re doing the right work and that it’s actually quite hard
to break the system—as long as we follow the practices.

1. Begel and Simon [Begel08] showed that new graduates at Microsoft spend most of
their first year just reading code.

5Practices That Support Change

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Test-Driven Development in a Nutshell

The cycle at the heart of TDD is: write a test; write some code to get it working;
refactor the code to be as simple an implementation of the tested features as
possible. Repeat.

Figure 1.1 The fundamental TDD cycle

As we develop the system, we use TDD to give us feedback on the quality of
both its implementation (“Does it work?”) and design (“Is it well structured?”).
Developing test-first, we find we benefit twice from the effort. Writing tests:

• makes us clarify the acceptance criteria for the next piece of work—we
have to ask ourselves how we can tell when we’re done (design);

• encourages us to write loosely coupled components, so they can easily be
tested in isolation and, at higher levels, combined together (design);

• adds an executable description of what the code does (design); and,

• adds to a complete regression suite (implementation);

whereas running tests:

• detects errors while the context is fresh in our mind (implementation); and,

• lets us know when we’ve done enough, discouraging “gold plating” and
unnecessary features (design).

This feedback cycle can be summed up by the Golden Rule of TDD:

The Golden Rule of Test-Driven Development

Never write new functionality without a failing test.

Chapter 1 What Is the Point of Test-Driven Development?6

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Refactoring.Think Local, Act Local

Refactoring means changing the internal structure of an existing body of code
without changing its behavior.The point is to improve the code so that it’s a better
representation of the features it implements, making it more maintainable.

Refactoring is a disciplined technique where the programmer applies a series of
transformations (or “refactorings”) that do not change the code’s behavior. Each
refactoring is small enough to be easy to understand and “safe”; for example, a
programmer might pull a block of code into a helper method to make the original
method shorter and easier to understand. The programmer makes sure that the
system is still working after each refactoring step, minimizing the risk of getting
stranded by a change; in test-driven code, we can do that by running the tests.

Refactoring is a “microtechnique” that is driven by finding small-scale im-
provements. Our experience is that, applied rigorously and consistently, its many
small steps can lead to significant structural improvements. Refactoring is not the
same activity as redesign, where the programmers take a conscious decision to
change a large-scale structure. That said, having taken a redesign decision, a
team can use refactoring techniques to get to the new design incrementally
and safely.

You’ll see quite a lot of refactoring in our example in Part III. The standard text on
the concept is Fowler’s [Fowler99].

The Bigger Picture

It is tempting to start the TDD process by writing unit tests for classes in the
application. This is better than having no tests at all and can catch those basic
programming errors that we all know but find so hard to avoid: fencepost errors,
incorrect boolean expressions, and the like. But a project with only unit tests is
missing out on critical benefits of the TDD process. We’ve seen projects with
high-quality, well unit-tested code that turned out not to be called from anywhere,
or that could not be integrated with the rest of the system and had to be rewritten.

How do we know where to start writing code? More importantly, how do we
know when to stop writing code? The golden rule tells us what we need to do:
Write a failing test.

When we’re implementing a feature, we start by writing an acceptance test,
which exercises the functionality we want to build. While it’s failing, an acceptance
test demonstrates that the system does not yet implement that feature; when it
passes, we’re done. When working on a feature, we use its acceptance test to
guide us as to whether we actually need the code we’re about to write—we only
write code that’s directly relevant. Underneath the acceptance test, we follow the
unit level test/implement/refactor cycle to develop the feature; the whole cycle
looks like Figure 1.2.

7The Bigger Picture

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Figure 1.2 Inner and outer feedback loops in TDD

The outer test loop is a measure of demonstrable progress, and the growing
suite of tests protects us against regression failures when we change the system.
Acceptance tests often take a while to make pass, certainly more than one check-in
episode, so we usually distinguish between acceptance tests we’re working on
(which are not yet included in the build) and acceptance tests for the features
that have been finished (which are included in the build and must always pass).

The inner loop supports the developers. The unit tests help us maintain the
quality of the code and should pass soon after they’ve been written. Failing unit
tests should never be committed to the source repository.

Testing End-to-End

Wherever possible, an acceptance test should exercise the system end-to-end
without directly calling its internal code. An end-to-end test interacts with the
system only from the outside: through its user interface, by sending messages as
if from third-party systems, by invoking its web services, by parsing reports, and
so on. As we discuss in Chapter 10, the whole behavior of the system includes
its interaction with its external environment. This is often the riskiest and most
difficult aspect; we ignore it at our peril. We try to avoid acceptance tests that
just exercise the internal objects of the system, unless we really need the speed-up
and already have a stable set of end-to-end tests to provide cover.

The Importance of End-to-End Testing: A Horror Story

Nat was once brought onto a project that had been using TDD since its inception.
The team had been writing acceptance tests to capture requirements and show
progress to their customer representatives. They had been writing unit tests for
the classes of the system, and the internals were clean and easy to change.They
had been making great progress, and the customer representatives had signed
off all the implemented features on the basis of the passing acceptance tests.

Chapter 1 What Is the Point of Test-Driven Development?8

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

But the acceptance tests did not run end-to-end—they instantiated the system’s
internal objects and directly invoked their methods. The application actually did
nothing at all. Its entry point contained only a single comment:

// TODO implement this

Additional feedback loops, such as regular show-and-tell sessions, should have
been in place and would have caught this problem.

For us, “end-to-end” means more than just interacting with the system from
the outside—that might be better called “edge-to-edge” testing. We prefer to
have the end-to-end tests exercise both the system and the process by which it’s
built and deployed. An automated build, usually triggered by someone checking
code into the source repository, will: check out the latest version; compile and
unit-test the code; integrate and package the system; perform a production-like
deployment into a realistic environment; and, finally, exercise the system through
its external access points. This sounds like a lot of effort (it is), but has to be
done anyway repeatedly during the software’s lifetime. Many of the steps might
be fiddly and error-prone, so the end-to-end build cycle is an ideal candidate for
automation. You’ll see in Chapter 10 how early in a project we get this working.

A system is deployable when the acceptance tests all pass, because they should
give us enough confidence that everything works. There’s still, however, a final
step of deploying to production. In many organizations, especially large or
heavily regulated ones, building a deployable system is only the start of a release
process. The rest, before the new features are finally available to the end users,
might involve different kinds of testing, handing over to operations and data
groups, and coordinating with other teams’ releases. There may also be additional,
nontechnical costs involved with a release, such as training, marketing, or an
impact on service agreements for downtime. The result is a more difficult release
cycle than we would like, so we have to understand our whole technical and
organizational environment.

Levels of Testing

We build a hierarchy of tests that correspond to some of the nested feedback
loops we described above:

Acceptance: Does the whole system work?

Integration: Does our code work against code we can't change?

Unit: Do our objects do the right thing, are they convenient to work with?

9Levels of Testing

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

There’s been a lot of discussion in the TDD world over the terminology for
what we’re calling acceptance tests: “functional tests,” “customer tests,” “system
tests.” Worse, our definitions are often not the same as those used by professional
software testers. The important thing is to be clear about our intentions. We use
“acceptance tests” to help us, with the domain experts, understand and agree on
what we are going to build next. We also use them to make sure that we haven’t
broken any existing features as we continue developing.

Our preferred implementation of the “role” of acceptance testing is to write
end-to-end tests which, as we just noted, should be as end-to-end as possible;
our bias often leads us to use these terms interchangeably although, in some
cases, acceptance tests might not be end-to-end.

We use the term integration tests to refer to the tests that check how some of
our code works with code from outside the team that we can’t change. It might
be a public framework, such as a persistence mapper, or a library from another
team within our organization. The distinction is that integration tests make sure
that any abstractions we build over third-party code work as we expect. In a
small system, such as the one we develop in Part III, acceptance tests might be
enough. In most professional development, however, we’ll want integration tests
to help tease out configuration issues with the external packages, and to give
quicker feedback than the (inevitably) slower acceptance tests.

We won’t write much more about techniques for acceptance and integration
testing, since both depend on the technologies involved and even the culture of
the organization. You’ll see some examples in Part III which we hope give a sense
of the motivation for acceptance tests and show how they fit in the development
cycle. Unit testing techniques, however, are specific to a style of programming,
and so are common across all systems that take that approach—in our case, are
object-oriented.

External and Internal Quality

There’s another way of looking at what the tests can tell us about a system. We
can make a distinction between external and internal quality: External quality
is how well the system meets the needs of its customers and users (is it functional,
reliable, available, responsive, etc.), and internal quality is how well it meets the
needs of its developers and administrators (is it easy to understand, easy to change,
etc.). Everyone can understand the point of external quality; it’s usually part of
the contract to build. The case for internal quality is equally important but is
often harder to make. Internal quality is what lets us cope with continual and
unanticipated change which, as we saw at the beginning of this chapter, is a fact
of working with software. The point of maintaining internal quality is to allow
us to modify the system’s behavior safely and predictably, because it minimizes
the risk that a change will force major rework.

Chapter 1 What Is the Point of Test-Driven Development?10

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Running end-to-end tests tells us about the external quality of our system, and
writing them tells us something about how well we (the whole team) understand
the domain, but end-to-end tests don’t tell us how well we’ve written the code.
Writing unit tests gives us a lot of feedback about the quality of our code, and
running them tells us that we haven’t broken any classes—but, again, unit tests
don’t give us enough confidence that the system as a whole works. Integration
tests fall somewhere in the middle, as in Figure 1.3.

Figure 1.3 Feedback from tests

Thorough unit testing helps us improve the internal quality because, to be
tested, a unit has to be structured to run outside the system in a test fixture. A
unit test for an object needs to create the object, provide its dependencies, interact
with it, and check that it behaved as expected. So, for a class to be easy to unit-
test, the class must have explicit dependencies that can easily be substituted and
clear responsibilities that can easily be invoked and verified. In software engineer-
ing terms, that means that the code must be loosely coupled and highly
cohesive—in other words, well-designed.

When we’ve got this wrong—when a class, for example, is tightly coupled to
distant parts of the system, has implicit dependencies, or has too many or unclear
responsibilities—we find unit tests difficult to write or understand, so writing a
test first gives us valuable, immediate feedback about our design. Like everyone,
we’re tempted not to write tests when our code makes it difficult, but we try to
resist. We use such difficulties as an opportunity to investigate why the test is
hard to write and refactor the code to improve its structure. We call this “listening
to the tests,” and we’ll work through some common patterns in Chapter 20.

11External and Internal Quality

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Coupling and Cohesion

Coupling and cohesion are metrics that (roughly) describe how easy it will be to
change the behavior of some code. They were described by Larry Constantine in
[Yourdon79].

Elements are coupled if a change in one forces a change in the other. For example,
if two classes inherit from a common parent, then a change in one class might
require a change in the other. Think of a combo audio system: It’s tightly coupled
because if we want to change from analog to digital radio, we must rebuild the
whole system. If we assemble a system from separates, it would have low coupling
and we could just swap out the receiver. “Loosely” coupled features (i.e., those
with low coupling) are easier to maintain.

An element’s cohesion is a measure of whether its responsibilities form a mean-
ingful unit. For example, a class that parses both dates and URLs is not coherent,
because they’re unrelated concepts.Think of a machine that washes both clothes
and dishes—it’s unlikely to do both well.2 At the other extreme, a class that parses
only the punctuation in a URL is unlikely to be coherent, because it doesn’t repre-
sent a whole concept. To get anything done, the programmer will have to find
other parsers for protocol, host, resource, and so on. Features with “high”
coherence are easier to maintain.

2. Actually, there was a combined clothes and dishwasher. The “Thor Automagic” was
manufactured in the 1940s, but the idea hasn’t survived.

Chapter 1 What Is the Point of Test-Driven Development?12

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Chapter 2

Test-Driven Development with
Objects

Music is the space between the notes.

—Claude Debussy

A Web of Objects

Object-oriented design focuses more on the communication between objects than
on the objects themselves. As Alan Kay [Kay98] wrote:

The big idea is “messaging” […] The key in making great and growable systems is
much more to design how its modules communicate rather than what their internal
properties and behaviors should be.

An object communicates by messages: It receives messages from other objects
and reacts by sending messages to other objects as well as, perhaps, returning a
value or exception to the original sender. An object has a method of handling
every type of message that it understands and, in most cases, encapsulates some
internal state that it uses to coordinate its communication with other objects.

An object-oriented system is a web of collaborating objects. A system is built
by creating objects and plugging them together so that they can send messages
to one another. The behavior of the system is an emergent property of the
composition of the objects—the choice of objects and how they are connected
(Figure 2.1).

This lets us change the behavior of the system by changing the composition of
its objects—adding and removing instances, plugging different combinations
together—rather than writing procedural code. The code we write to manage
this composition is a declarative definition of the how the web of objects will
behave. It’s easier to change the system’s behavior because we can focus on what
we want it to do, not how.

Values and Objects

When designing a system, it’s important to distinguish between values that
model unchanging quantities or measurements, and objects that have an identity,
might change state over time, and model computational processes. In the

13

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Figure 2.1 A web of objects

object-oriented languages that most of us use, the confusion is that both concepts
are implemented by the same language construct: classes.

Values are immutable instances that model fixed quantities. They have no in-
dividual identity, so two value instances are effectively the same if they have the
same state. This means that it makes no sense to compare the identity of two
values; doing so can cause some subtle bugs—think of the different ways of
comparing two copies of new Integer(999). That’s why we’re taught to use
string1.equals(string2) in Java rather than string1 == string2.

Objects, on the other hand, use mutable state to model their behavior over
time. Two objects of the same type have separate identities even if they have ex-
actly the same state now, because their states can diverge if they receive different
messages in the future.

In practice, this means that we split our system into two “worlds”: values,
which are treated functionally, and objects, which implement the stateful behavior
of the system. In Part III, you’ll see how our coding style varies depending on
which world we’re working in.

In this book, we will use the term object to refer only to instances with identity,
state, and processing—not values. There doesn’t appear to be another accepted
term that isn’t overloaded with other meanings (such as entity and process).

Follow the Messages

We can benefit from this high-level, declarative approach only if our objects are
designed to be easily pluggable. In practice, this means that they follow common
communication patterns and that the dependencies between them are made ex-
plicit. A communication pattern is a set of rules that govern how a group of ob-
jects talk to each other: the roles they play, what messages they can send and
when, and so on. In languages like Java, we identify object roles with (abstract)
interfaces, rather than (concrete) classes—although interfaces don’t define
everything we need to say.

Chapter 2 Test-Driven Development with Objects14

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

In our view, the domain model is in these communication patterns, because
they are what gives meaning to the universe of possible relationships between
the objects. Thinking of a system in terms of its dynamic, communication structure
is a significant mental shift from the static classification that most of us learn
when being introduced to objects. The domain model isn’t even obviously visible
because the communication patterns are not explicitly represented in the program-
ming languages we get to work with. We hope to show, in this book, how tests
and mock objects help us see the communication between our objects more
clearly.

Here’s a small example of how focusing on the communication between objects
guides design.

In a video game, the objects in play might include: actors, such as the player
and the enemies; scenery, which the player flies over; obstacles, which the
player can crash into; and effects, such as explosions and smoke. There are also
scripts spawning objects behind the scenes as the game progresses.

This is a good classification of the game objects from the players’ point of view
because it supports the decisions they need to make when playing the game—when
interacting with the game from outside. This is not, however, a useful classification
for the implementers of the game. The game engine has to display objects that
are visible, tell objects that are animated about the passing of time, detect colli-
sions between objects that are physical, and delegate decisions about what to do
when physical objects collide to collision resolvers.

Figure 2.2 Roles and objects in a video game

As you can see in Figure 2.2, the two views, one from the game engine and
one from the implementation of the in-play objects, are not the same. An Obstacle,
for example, is Visible and Physical, while a Script is a Collision Resolver and
Animated but not Visible. The objects in the game play different roles depending

15Follow the Messages

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

on what the engine needs from them at the time. This mismatch between static
classification and dynamic communication means that we’re unlikely to come
up with a tidy class hierarchy for the game objects that will also suit the needs
of the engine.

At best, a class hierarchy represents one dimension of an application, providing
a mechanism for sharing implementation details between objects; for example,
we might have a base class to implement the common features of frame-based
animation. At worst, we’ve seen too many codebases (including our own) that
suffer complexity and duplication from using one mechanism to represent multiple
concepts.

Roles, Responsibilities, Collaborators

We try to think about objects in terms of roles, responsibilities, and collaborators,
as best described by Wirfs-Brock and McKean in [Wirfs-Brock03]. An object is an
implementation of one or more roles; a role is a set of related responsibilities;
and a responsibility is an obligation to perform a task or know information. A
collaboration is an interaction of objects or roles (or both).

Sometimes we step away from the keyboard and use an informal design technique
that Wirfs-Brock and McKean describe, called CRC cards (Candidates, Responsi-
bilities, Collaborators). The idea is to use low-tech index cards to explore the po-
tential object structure of an application, or a part of it. These index cards allow
us to experiment with structure without getting stuck in detail or becoming too
attached to an early solution.

Figure 2.3 CRC card for a video game

Chapter 2 Test-Driven Development with Objects16

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Tell, Don’t Ask

We have objects sending each other messages, so what do they say? Our experi-
ence is that the calling object should describe what it wants in terms of the role
that its neighbor plays, and let the called object decide how to make that happen.
This is commonly known as the “Tell, Don’t Ask” style or, more formally, the
Law of Demeter. Objects make their decisions based only on the information
they hold internally or that which came with the triggering message; they avoid
navigating to other objects to make things happen. Followed consistently, this
style produces more flexible code because it’s easy to swap objects that play the
same role. The caller sees nothing of their internal structure or the structure of
the rest of the system behind the role interface.

When we don’t follow the style, we can end up with what’s known as “train
wreck” code, where a series of getters is chained together like the carriages in a
train. Here’s one case we found on the Internet:

((EditSaveCustomizer) master.getModelisable()
 .getDockablePanel()
 .getCustomizer())
 .getSaveItem().setEnabled(Boolean.FALSE.booleanValue());

After some head scratching, we realized what this fragment was meant to say:

master.allowSavingOfCustomisations();

This wraps all that implementation detail up behind a single call. The client of
master no longer needs to know anything about the types in the chain. We’ve
reduced the risk that a design change might cause ripples in remote parts of the
codebase.

As well as hiding information, there’s a more subtle benefit from “Tell, Don’t
Ask.” It forces us to make explicit and so name the interactions between objects,
rather than leaving them implicit in the chain of getters. The shorter version
above is much clearer about what it’s for, not just how it happens to be
implemented.

But Sometimes Ask

Of course we don’t “tell” everything;1 we “ask” when getting information from
values and collections, or when using a factory to create new objects. Occasion-
ally, we also ask objects about their state when searching or filtering, but we still
want to maintain expressiveness and avoid “train wrecks.”

For example (to continue with the metaphor), if we naively wanted to spread
reserved seats out across the whole of a train, we might start with something like:

1. Although that’s an interesting exercise to try, to stretch your technique.

17But Sometimes Ask

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

public class Train {
 private final List<Carriage> carriages […]
 private int percentReservedBarrier = 70;

 public void reserveSeats(ReservationRequest request) {
 for (Carriage carriage : carriages) {
 if (carriage.getSeats().getPercentReserved() < percentReservedBarrier) {
 request.reserveSeatsIn(carriage);
 return;
 }
 }
 request.cannotFindSeats();
 }
}

We shouldn’t expose the internal structure of Carriage to implement this, not
least because there may be different types of carriages within a train. Instead, we
should ask the question we really want answered, instead of asking for the
information to help us figure out the answer ourselves:

public void reserveSeats(ReservationRequest request) {
 for (Carriage carriage : carriages) {
 if (carriage.hasSeatsAvailableWithin(percentReservedBarrier)) {
 request.reserveSeatsIn(carriage);
 return;
 }
 }
 request.cannotFindSeats();
}

Adding a query method moves the behavior to the most appropriate object,
gives it an explanatory name, and makes it easier to test.

We try to be sparing with queries on objects (as opposed to values) because
they can allow information to “leak” out of the object, making the system a little
bit more rigid. At a minimum, we make a point of writing queries that describe
the intention of the calling object, not just the implementation.

Unit-Testing the Collaborating Objects

We appear to have painted ourselves into a corner. We’re insisting on focused
objects that send commands to each other and don’t expose any way to query
their state, so it looks like we have nothing available to assert in a unit test. For
example, in Figure 2.4, the circled object will send messages to one or more of
its three neighbors when invoked. How can we test that it does so correctly
without exposing any of its internal state?

One option is to replace the target object’s neighbors in a test with substitutes,
or mock objects, as in Figure 2.5. We can specify how we expect the target object
to communicate with its mock neighbors for a triggering event; we call these
specifications expectations. During the test, the mock objects assert that they

Chapter 2 Test-Driven Development with Objects18

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Figure 2.4 Unit-testing an object in isolation

Figure 2.5 Testing an object with mock objects

have been called as expected; they also implement any stubbed behavior needed
to make the rest of the test work.

With this infrastructure in place, we can change the way we approach TDD.
Figure 2.5 implies that we’re just trying to test the target object and that we al-
ready know what its neighbors look like. In practice, however, those collaborators
don’t need to exist when we’re writing a unit test. We can use the test to help us
tease out the supporting roles our object needs, defined as Java interfaces, and
fill in real implementations as we develop the rest of the system. We call this in-
terface discovery; you’ll see an example when we extract an AuctionEventListener
in Chapter 12.

Support for TDD with Mock Objects

To support this style of test-driven programming, we need to create mock in-
stances of the neighboring objects, define expectations on how they’re called and
then check them, and implement any stub behavior we need to get through the
test. In practice, the runtime structure of a test with mock objects usually looks
like Figure 2.6.

19Support for TDD with Mock Objects

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Figure 2.6 Testing an object with mock objects

We use the term mockery2 for the object that holds the context of a test, creates
mock objects, and manages expectations and stubbing for the test. We’ll show
the practice throughout Part III, so we’ll just touch on the basics here. The
essential structure of a test is:

• Create any required mock objects.

• Create any real objects, including the target object.

• Specify how you expect the mock objects to be called by the target object.

• Call the triggering method(s) on the target object.

• Assert that any resulting values are valid and that all the expected calls have
been made.

The unit test makes explicit the relationship between the target object and its
environment. It creates all the objects in the cluster and makes assertions about
the interactions between the target object and its collaborators. We can code this
infrastructure by hand or, these days, use one of the multiple mock object
frameworks that are available in many languages. The important point, as we
stress repeatedly throughout this book, is to make clear the intention of every
test, distinguishing between the tested functionality, the supporting infrastructure,
and the object structure.

2. This is a pun by Ivan Moore that we adopted in a fit of whimsy.

Chapter 2 Test-Driven Development with Objects20

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Chapter 3

An Introduction to the Tools
Man is a tool-using animal. Without tools he is nothing, with tools he
is all.

—Thomas Carlyle

Stop Me If You’ve Heard This One Before

This book is about the techniques of using tests to guide the development of
object-oriented software, not about specific technologies. To demonstrate the
techniques in action, however, we’ve had to pick some technologies for our ex-
ample code. For the rest of the book we’re going to use Java, with the JUnit 4,
Hamcrest, and jMock2 frameworks. If you’re using something else, we hope
we’ve been clear enough so that you can apply these ideas in your environment.

In this chapter we briefly describe the programming interfaces for these three
frameworks, just enough to help you make sense of the code examples in the rest
of the book. If you already know how to use them, you can skip this chapter.

A Minimal Introduction to JUnit 4

We use JUnit 4 (version 4.6 at the time of writing) as our Java test framework.1
In essence, JUnit uses reflection to walk the structure of a class and run whatever
it can find in that class that represents a test. For example, here’s a test that
exercises a Catalog class which manages a collection of Entry objects:

public class CatalogTest {
 private final Catalog catalog = new Catalog();
 @Test public void containsAnAddedEntry() {
 Entry entry = new Entry("fish", "chips");
 catalog.add(entry);
 assertTrue(catalog.contains(entry));
 }
 @Test public void indexesEntriesByName() {
 Entry entry = new Entry("fish", "chips");
 catalog.add(entry);
 assertEquals(entry, catalog.entryFor("fish"));
 assertNull(catalog.entryFor("missing name"));
 }
}

1. JUnit is bundled with many Java IDEs and is available at www.junit.org.

21

From the Library of Lee Bogdanoff

www.it-ebooks.info

www.junit.org
http://www.it-ebooks.info/

ptg

Test Cases

JUnit treats any method annotated with @Test as a test case; test methods must
have neither a return value nor parameters. In this case, CatalogTest defines two
tests, called containsAnAddedEntry() and indexesEntriesByName().

To run a test, JUnit creates a new instance of the test class and calls the relevant
test method. Creating a new test object each time ensures that the tests are isolated
from each other, because the test object’s fields are replaced before each test.
This means that a test is free to change the contents of any of the test object fields.

NUnit Behaves Differently from JUnit

Those working in .Net should note that NUnit reuses the same instance of the test
object for all the test methods, so any values that might change must either be
reset in [Setup] and [TearDown] methods (if they’re fields) or made local to the
test method.

Assertions

A JUnit test invokes the object under test and then makes assertions about the
results, usually using assertion methods defined by JUnit which generate useful
error messages when they fail.

CatalogTest, for example, uses three of JUnit’s assertions: assertTrue()
asserts that an expression is true; assertNull() asserts that an object reference
is null; and assertEquals() asserts that two values are equal. When it fails,
assertEquals() reports the expected and actual values that were compared.

Expecting Exceptions

The @Test annotation supports an optional parameter expected that declares
that the test case should throw an exception. The test fails if it does not throw
an exception or if it throws an exception of a different type.

For example, the following test checks that a Catalog throws an
IllegalArgumentException when two entries are added with the same name:

@Test(expected=IllegalArgumentException.class)
public void cannotAddTwoEntriesWithTheSameName() {
 catalog.add(new Entry("fish", "chips");
 catalog.add(new Entry("fish", "peas");
}

Chapter 3 An Introduction to the Tools22

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Test Fixtures

A test fixture is the fixed state that exists at the start of a test. A test fixture ensures
that a test is repeatable—every time a test is run it starts in the same state so it
should produce the same results. A fixture may be set up before the test runs and
torn down after it has finished.

The fixture for a JUnit test is managed by the class that defines the test and is
stored in the object’s fields. All tests defined in the same class start with an iden-
tical fixture and may modify that fixture as they run. For CatalogTest, the fixture
is the empty Catalog object held in its catalog field.

The fixture is usually set up by field initializers. It can also be set up by the
constructor of the test class or instance initializer blocks. JUnit also lets you
identify methods that set up and tear down the fixture with annotations. JUnit
will run all methods annotated with @Before before running the tests, to set up
the fixture, and those annotated by @After after it has run the test, to tear
down the fixture. Many JUnit tests do not need to explicitly tear down the fixture
because it is enough to let the JVM garbage collect any objects created when it
was set up.

For example, all the tests in CatalogTest initialize the catalog with the same
entry. This common initialization can be moved into a field initializer and @Before
method:

public class CatalogTest {
 final Catalog catalog = new Catalog();
final Entry entry = new Entry("fish", "chips");

@Before public void fillTheCatalog() {
 catalog.add(entry);
 }

 @Test public void containsAnAddedEntry() {
 assertTrue(catalog.contains(entry));
 }

 @Test public void indexesEntriesByName() {
 assertEquals(equalTo(entry), catalog.entryFor("fish"));
 assertNull(catalog.entryFor("missing name"));
 }

 @Test(expected=IllegalArgumentException.class)
 public void cannotAddTwoEntriesWithTheSameName() {
 catalog.add(new Entry("fish", "peas");
 }
}

Test Runners

The way JUnit reflects on a class to find tests and then runs those tests is controlled
by a test runner. The runner used for a class can be configured with the @RunWith

23A Minimal Introduction to JUnit 4

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

annotation.2 JUnit provides a small library of test runners. For example, the
Parameterized test runner lets you write data-driven tests in which the same test
methods are run for many different data values returned from a static method.

As we’ll see below, the jMock library uses a custom test runner to automatically
verify mock objects at the end of the test, before the test fixture is torn down.

Hamcrest Matchers and assertThat()

Hamcrest is a framework for writing declarative match criteria. While not a
testing framework itself, Hamcrest is used by several testing frameworks, including
JUnit, jMock, and WindowLicker, which we use in the example in Part III.

A Hamcrest matcher reports whether a given object matches some criteria, can
describe its criteria, and can describe why an object does not meet its criteria.
For example, this code creates matchers for strings that contain a given substring
and uses them to make some assertions:

String s = "yes we have no bananas today";

Matcher<String> containsBananas = new StringContains("bananas");
Matcher<String> containsMangoes = new StringContains("mangoes");

assertTrue(containsBananas.matches(s));
assertFalse(containsMangoes.matches(s));

Matchers are not usually instantiated directly. Instead, Hamcrest provides
static factory methods for all of its matchers to make the code that creates
matchers more readable. For example:

assertTrue(containsString("bananas").matches(s));
assertFalse(containsString("mangoes").matches(s));

In practice, however, we use matchers in combination with JUnit’s
assertThat(), which uses matcher’s self-describing features to make clear exactly
what went wrong when an assertion fails.3 We can rewrite the assertions as:

assertThat(s, containsString("bananas"));
assertThat(s, not(containsString("mangoes"));

The second assertion demonstrates one of Hamcrest’s most useful features:
defining new criteria by combining existing matchers. The not() method is a
factory function that creates a matcher that reverses the sense of any matcher
passed to it. Matchers are designed so that when they’re combined, both the code
and the failure messages are self-explanatory. For example, if we change the
second assertion to fail:

2. By the time of publication, JUnit will also have a Rule annotation for fields to support
objects that can “intercept” the lifecycle of a test run.

3. The assertThat() method was introduced in JUnit 4.5.

Chapter 3 An Introduction to the Tools24

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

assertThat(s, not(containsString("bananas"));

the failure report is:

java.lang.AssertionError:
Expected: not a string containing "bananas"
 got: "Yes, we have no bananas"

Instead of writing code to explicitly check a condition and to generate an in-
formative error message, we can pass a matcher expression to assertThat() and
let it do the work.

Hamcrest is also user-extensible. If we need to check a specific condition,
we can write a new matcher by implementing the Matcher interface and an
appropriately-named factory method, and the result will combine seamlessly with
the existing matcher expressions. We describe how to write custom Hamcrest
matchers in Appendix B.

jMock2: Mock Objects

jMock2 plugs into JUnit (and other test frameworks) providing support for the
mock objects testing style introduced in Chapter 2. jMock creates mock objects
dynamically, so you don’t have to write your own implementations of the types
you want to mock. It also provides a high-level API for specifying how the object
under test should invoke the mock objects it interacts with, and how the mock
objects will behave in response.

Understanding jMock

jMock is designed to make the expectation descriptions as clear as possible. We
used some unusual Java coding practices to do so, which can appear surprising
at first. jMock’s design was motivated by the ideas presented in this book, backed
by many years of experience in real projects. If the examples don’t make sense to
you, there’s more description in Appendix A and at www.jmock.org.We (of course)
believe that it’s worth suspending your judgment until you’ve had a chance to work
through some of the examples.

The core concepts of the jMock API are the mockery, mock objects, and expec-
tations. A mockery represents the context of the object under test, its neighboring
objects; mock objects stand in for the real neighbors of the object under test while
the test runs; and expectations describe how the object under test should invoke
its neighbors during the test.

An example will show how these fit together. This test asserts that an
AuctionMessageTranslator will parse a given message text to generate
an auctionClosed() event. For now, just concentrate on the structure; the test
will turn up again in context in Chapter 12.

25jMock2: Mock Objects

From the Library of Lee Bogdanoff

www.it-ebooks.info

www.jmock.org
http://www.it-ebooks.info/

ptg

@RunWith(JMock.class) 1
public class AuctionMessageTranslatorTest {
 private final Mockery context = new JUnit4Mockery(); 2
 private final AuctionEventListener listener =
 context.mock(AuctionEventListener.class); 3
 private final AuctionMessageTranslator translator =
 new AuctionMessageTranslator(listener); 4

 @Test public void
notifiesAuctionClosedWhenCloseMessageReceived() {

 Message message = new Message();
 message.setBody("SOLVersion: 1.1; Event: CLOSE;"); 5

 context.checking(new Expectations() {{ 6
 oneOf(listener).auctionClosed(); 7
 }});

 translator.processMessage(UNUSED_CHAT, message); 8
 } 9
}

1 The @RunWith(JMock.class) annotation tells JUnit to use the jMock test
runner, which automatically calls the mockery at the end of the test to check
that all mock objects have been invoked as expected.

2 The test creates the Mockery. Since this is a JUnit 4 test, it creates a
JUnit4Mockery which throws the right type of exception to report test failures
to JUnit 4. By convention, jMock tests hold the mockery in a field named
context, because it represents the context of the object under test.

3 The test uses the mockery to create a mock AuctionEventListener that will
stand in for a real listener implementation during this test.

4 The test instantiates the object under test, an AuctionMessageTranslator,
passing the mock listener to its constructor. The AuctionMessageTranslator
does not distinguish between a real and a mock listener: It communicates
through the AuctionEventListener interface and does not care how that
interface is implemented.

5 The test sets up further objects that will be used in the test.

6 The test then tells the mockery how the translator should invoke its neighbors
during the test by defining a block of expectations. The Java syntax we use
to do this is obscure, so if you can bear with us for now we explain it in
more detail in Appendix A.

7 This is the significant line in the test, its one expectation. It says that, during
the action, we expect the listener’s auctionClosed() method to be called
exactly once. Our definition of success is that the translator will notify its

Chapter 3 An Introduction to the Tools26

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

listener that an auctionClosed() event has happened whenever it receives a
raw Close message.

8 This is the call to the object under test, the outside event that triggers the
behavior we want to test. It passes a raw Close message to the translator
which, the test says, should make the translator call auctionClosed() once
on the listener. The mockery will check that the mock objects are invoked
as expected while the test runs and fail the test immediately if they are
invoked unexpectedly.

9 Note that the test does not require any assertions. This is quite common in
mock object tests.

Expectations

The example above specifies one very simple expectation. jMock’s expectation
API is very expressive. It lets you precisely specify:

• The minimum and maximum number of times an invocation is expected;

• Whether an invocation is expected (the test should fail if it is not received)
or merely allowed to happen (the test should pass if it is not received);

• The parameter values, either given literally or constrained by Hamcrest
matchers;

• The ordering constraints with respect to other expectations; and,

• What should happen when the method is invoked—a value to return, an
exception to throw, or any other behavior.

An expectation block is designed to stand out from the test code that surrounds
it, making an obvious separation between the code that describes how neighboring
objects should be invoked and the code that actually invokes objects and tests
the results. The code within an expectation block acts as a little declarative
language that describes the expectations; we’ll return to this idea in “Building
Up to Higher-Level Programming” (page 65).

There’s more to the jMock API which we don’t have space for in this chapter;
we’ll describe more of its features in examples in the rest of the book, and there’s
a summary in Appendix A. What really matters, however, is not the implementa-
tion we happened to come up with, but its underlying concepts and motivations.
We will do our best to make them clear.

27jMock2: Mock Objects

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Part II

The Process of Test-Driven
Development

So far we’ve presented a high-level introduction to the concept
of, and motivation for, incremental test-driven development. In
the rest of the book, we’ll fill in the practical details that actually
make it work.

In this part we introduce the concepts that define our ap-
proach. These boil down to two core principles: continuous
incremental development and expressive code.

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Chapter 4

Kick-Starting the Test-Driven
Cycle

We should be taught not to wait for inspiration to start a thing. Action
always generates inspiration. Inspiration seldom generates action.

—Frank Tibolt

Introduction

The TDD process we described in Chapter 1 assumes that we can grow the system
by just slotting the tests for new features into an existing infrastructure. But what
about the very first feature, before we have this infrastructure? As an acceptance
test, it must run end-to-end to give us the feedback we need about the system’s
external interfaces, which means we must have implemented a whole automated
build, deploy, and test cycle. This is a lot of work to do before we can even see
our first test fail.

Deploying and testing right from the start of a project forces the team to un-
derstand how their system fits into the world. It flushes out the “unknown
unknown” technical and organizational risks so they can be addressed while
there’s still time. Attempting to deploy also helps the team understand who they
need to liaise with, such as system administrators or external vendors, and start
to build those relationships.

Starting with “build, deploy, and test” on a nonexistent system sounds odd,
but we think it’s essential. The risks of leaving it to later are just too high. We
have seen projects canceled after months of development because they could not
reliably deploy their system. We have seen systems discarded because new features
required months of manual regression testing and even then the error rates were
too high. As always, we view feedback as a fundamental tool, and we want to
know as early as possible whether we’re moving in the right direction. Then,
once we have our first test in place, subsequent tests will be much quicker to write.

31

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

First, Test a Walking Skeleton

The quandary in writing and passing the first acceptance test is that it’s hard to
build both the tooling and the feature it’s testing at the same time. Changes in
one disrupt any progress made with the other, and tracking down failures is
tricky when the architecture, the tests, and the production code are all moving.
One of the symptoms of an unstable development environment is that there’s no
obvious first place to look when something fails.

We can cut through this “first-feature paradox” by splitting it into two smaller
problems. First, work out how to build, deploy, and test a “walking skeleton,”
then use that infrastructure to write the acceptance tests for the first meaningful
feature. After that, everything will be in place for test-driven development of the
rest of the system.

A “walking skeleton” is an implementation of the thinnest possible slice of
real functionality that we can automatically build, deploy, and test end-to-end
[Cockburn04]. It should include just enough of the automation, the major com-
ponents, and communication mechanisms to allow us to start working on the
first feature. We keep the skeleton’s application functionality so simple that it’s
obvious and uninteresting, leaving us free to concentrate on the infrastructure.
For example, for a database-backed web application, a skeleton would show a
flat web page with fields from the database. In Chapter 10, we’ll show an example
that displays a single value in the user interface and sends just a handshake
message to the server.

It’s also important to realize that the “end” in “end-to-end” refers to the pro-
cess, as well as the system. We want our test to start from scratch, build a deploy-
able system, deploy it into a production-like environment, and then run the tests
through the deployed system. Including the deployment step in the testing process
is critical for two reasons. First, this is the sort of error-prone activity that should
not be done by hand, so we want our scripts to have been thoroughly exercised
by the time we have to deploy for real. One lesson that we’ve learned repeatedly
is that nothing forces us to understand a process better than trying to automate
it. Second, this is often the moment where the development team bumps into the
rest of the organization and has to learn how it operates. If it’s going to take six
weeks and four signatures to set up a database, we want to know now, not
two weeks before delivery.

In practice, of course, real end-to-end testing may be so hard to achieve that
we have to start with infrastructure that implements our current understanding
of what the real system will do and what its environment is. We keep in mind,
however, that this is a stop-gap, a temporary patch until we can finish the job,
and that unknown risks remain until our tests really run end-to-end. One of the
weaknesses of our Auction Sniper example (Part III) is that the tests run against

Chapter 4 Kick-Starting the Test-Driven Cycle32

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

a dummy server, not the real site. At some point before going live, we would
have had to test against Southabee’s On-Line; the earlier we can do that, the
easier it will be for us to respond to any surprises that turn up.

Whilst building the “walking skeleton,” we concentrate on the structure and
don’t worry too much about cleaning up the test to be beautifully expressive.
The walking skeleton and its supporting infrastructure are there to help us work
out how to start test-driven development. It’s only the first step toward a complete
end-to-end acceptance-testing solution. When we write the test for the first feature,
then we need to “write the test you want to read” (page 42) to make sure that
it’s a clear expression of the behavior of the system.

The Importance of Early End-to-End Testing

We joined a project that had been running for a couple of years but had never
tested their entire system end-to-end. There were frequent production outages
and deployments often failed. The system was large and complex, reflecting the
complicated business transactions it managed.The effort of building an automated,
end-to-end test suite was so large that an entire new team had to be formed to
perform the work. It took them months to build an end-to-end test environment,
and they never managed to get the entire system covered by an end-to-end
test suite.

Because the need for end-to-end testing had not influenced its design, the system
was difficult to test. For example, the system’s components used internal timers
to schedule activities, some of them days or weeks into the future. This made it
very difficult to write end-to-end tests: It was impractical to run the tests in real-
time but the scheduling could not be influenced from outside the system. The
developers had to redesign the system itself so that periodic activities were trig-
gered by messages sent from a remote scheduler which could be replaced in the
test environment; see “Externalize Event Sources” (page 326).This was a signifi-
cant architectural change—and it was very risky because it had to be performed
without end-to-end test coverage.

Deciding the Shape of the Walking Skeleton

The development of a “walking skeleton” is the moment when we start to make
choices about the high-level structure of our application. We can’t automate the
build, deploy, and test cycle without some idea of the overall structure. We don’t
need much detail yet, just a broad-brush picture of what major system components
will be needed to support the first planned release and how they will communicate.
Our rule of thumb is that we should be able to draw the design for the “walking
skeleton” in a few minutes on a whiteboard.

33Deciding the Shape of the Walking Skeleton

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Mappa Mundi

We find that maintaining a public drawing of the structure of the system, for example
on the wall in the team’s work area as in Figure 4.1, helps the team stay oriented
when working on the code.

Figure 4.1 A broad-brush architecture diagram drawn on the
wall of a team’s work area

To design this initial structure, we have to have some understanding of the
purpose of the system, otherwise the whole exercise risks being meaningless. We
need a high-level view of the client’s requirements, both functional and non-
functional, to guide our choices. This preparatory work is part of the chartering
of the project, which we must leave as outside the scope of this book.

The point of the “walking skeleton” is to use the writing of the first test to
draw out the context of the project, to help the team map out the landscape of
their solution—the essential decisions that they must take before they can write
any code; Figure 4.2 shows how the TDD process we drew in Figure 1.2 fits into
this context.

Chapter 4 Kick-Starting the Test-Driven Cycle34

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Figure 4.2 The context of the first test

Please don’t confuse this with doing “Big Design Up Front” (BDUF) which
has such a bad reputation in the Agile Development community. We’re not trying
to elaborate the whole design down to classes and algorithms before we start
coding. Any ideas we have now are likely to be wrong, so we prefer to discover
those details as we grow the system. We’re making the smallest number of
decisions we can to kick-start the TDD cycle, to allow us to start learning and
improving from real feedback.

Build Sources of Feedback

We have no guarantees that the decisions we’ve taken about the design of our
application, or the assumptions on which they’re based, are right. We do the best
we can, but the only thing we can rely on is validating them as soon as possible
by building feedback into our process. The tools we build to implement the
“walking skeleton” are there to support this learning process. Of course, these
tools too will not be perfect, and we expect we will improve them incrementally
as we learn how well they support the team.

Our ideal situation is where the team releases regularly to a real production
system, as in Figure 4.3. This allows the system’s stakeholders to respond to how
well the system meets their needs, at the same time allowing us to judge its
implementation.

Figure 4.3 Requirements feedback

35Build Sources of Feedback

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

We use the automation of building and testing to give us feedback on qualities
of the system, such as how easily we can cut a version and deploy, how well the
design works, and how good the code is. The automated deployment helps us
release frequently to real users, which gives us feedback on how well we have
understood the domain and whether seeing the system in practice has changed
our customer’s priorities.

The great benefit is that we will be able to make changes in response to what-
ever we learn, because writing everything test-first means that we will have a
thorough set of regression tests. No tests are perfect, of course, but in practice
we’ve found that a substantial test suite allows us to make major changes safely.

Expose Uncertainty Early

All this effort means that teams are frequently surprised by the time it takes to
get a “walking skeleton” working, considering that it does hardly anything.
That’s because this first step involves establishing a lot of infrastructure and
asking (and answering) many awkward questions. The time to implement the
first few features will be unpredictable as the team discovers more about its re-
quirements and target environment. For a new team, this will be compounded
by the social stresses of learning how to work together.

Fred Tingey, a colleague, once observed that incremental development can be
disconcerting for teams and management who aren’t used to it because it front-
loads the stress in a project. Projects with late integration start calmly but gener-
ally turn difficult towards the end as the team tries to pull the system together
for the first time. Late integration is unpredictable because the team has to
assemble a great many moving parts with limited time and budget to fix any
failures. The result is that experienced stakeholders react badly to the instability
at the start of an incremental project because they expect that the end of the
project will be much worse.

Our experience is that a well-run incremental development runs in the opposite
direction. It starts unsettled but then, after a few features have been implemented
and the project automation has been built up, settles in to a routine. As a project
approaches delivery, the end-game should be a steady production of functionality,
perhaps with a burst of activity before the first release. All the mundane but
brittle tasks, such as deployment and upgrades, will have been automated so that
they “just work.” The contrast looks rather like Figure 4.4.

This aspect of test-driven development, like others, may appear counter-
intuitive, but we’ve always found it worth taking enough time to structure and
automate the basics of the system—or at least a first cut. Of course, we don’t
want to spend the whole project setting up a perfect “walking skeleton,” so we
limit ourselves to whiteboard-level decisions and reserve the right to change our
mind when we have to. But the most important thing is to have a sense of direction
and a concrete implementation to test our assumptions.

Chapter 4 Kick-Starting the Test-Driven Cycle36

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Figure 4.4 Visible uncertainty in test-first and test-later projects

A “walking skeleton” will flush out issues early in the project when there’s
still time, budget, and goodwill to address them.

Brownfield Development

We don’t always have the luxury of building a new system from the ground up.
Many of our projects have started with an existing system that must be extended,
adapted, or replaced. In such cases, we can’t start by building a “walking skeleton”;
we have to work with what already exists, no matter how hostile its structure.

That said, the process of kick-starting TDD of an existing system is not fundamen-
tally different from applying it to a new system—although it may be orders of
magnitude more difficult because of the technical baggage the system already
carries. Michael Feathers has written a whole book on the topic, [Feathers04].

It is risky to start reworking a system when there are no tests to detect regressions.
The safest way to start the TDD process is to automate the build and deploy pro-
cess, and then add end-to-end tests that cover the areas of the code we need to
change. With that protection, we can start to address internal quality issues with
more confidence, refactoring the code and introducing unit tests as we add func-
tionality.

The easiest way to start building an end-to-end test infrastructure is with the sim-
plest path through the system that we can find. Like a “walking skeleton,” this lets
us build up some supporting infrastructure before we tackle the harder problems
of testing more complicated functionality.

37Expose Uncertainty Early

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Chapter 5

Maintaining the Test-Driven
Cycle

Every day you may make progress. Every step may be fruitful. Yet there
will stretch out before you an ever-lengthening, ever-ascending,
ever-improving path. You know you will never get to the end of the
journey. But this, so far from discouraging, only adds to the joy and
glory of the climb.

—Winston Churchill

Introduction

Once we’ve kick-started the TDD process, we need to keep it running smoothly.
In this chapter we’ll show how a TDD process runs once started. The rest of the
book explores in some detail how we ensure it runs smoothly—how we write
tests as we build the system, how we use tests to get early feedback on internal
and external quality issues, and how we ensure that the tests continue to support
change and do not become an obstacle to further development.

Start Each Feature with an Acceptance Test

As we described in Chapter 1, we start work on a new feature by writing failing
acceptance tests that demonstrate that the system does not yet have the feature
we’re about to write and track our progress towards completion of the
feature (Figure 5.1).

We write the acceptance test using only terminology from the application’s
domain, not from the underlying technologies (such as databases or web servers).
This helps us understand what the system should do, without tying us to any of
our initial assumptions about the implementation or complicating the test with
technological details. This also shields our acceptance test suite from changes to
the system’s technical infrastructure. For example, if a third-party organization
changes the protocol used by their services from FTP and binary files to web
services and XML, we should not have to rework the tests for the system’s
application logic.

We find that writing such a test before coding makes us clarify what we want
to achieve. The precision of expressing requirements in a form that can be auto-
matically checked helps us uncover implicit assumptions. The failing tests keep

39

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Figure 5.1 Each TDD cycle starts with a failing acceptance test

us focused on implementing the limited set of features they describe, improving
our chances of delivering them. More subtly, starting with tests makes us look
at the system from the users’ point of view, understanding what they need it to
do rather than speculating about features from the implementers’ point of view.

Unit tests, on the other hand, exercise objects, or small clusters of objects, in
isolation. They’re important to help us design classes and give us confidence that
they work, but they don’t say anything about whether they work together with
the rest of the system. Acceptance tests both test the integration of unit-tested
objects and push the project forwards.

Separate Tests That Measure Progress from Those That
Catch Regressions

When we write acceptance tests to describe a new feature, we expect them to fail
until that feature has been implemented; new acceptance tests describe work yet
to be done. The activity of turning acceptance tests from red to green gives the
team a measure of the progress it’s making. A regular cycle of passing acceptance
tests is the engine that drives the nested project feedback loops we described in
“Feedback Is the Fundamental Tool” (page 4). Once passing, the acceptance tests
now represent completed features and should not fail again. A failure means that
there’s been a regression, that we’ve broken our existing code.

We organize our test suites to reflect the different roles that the tests fulfill.
Unit and integration tests support the development team, should run quickly,
and should always pass. Acceptance tests for completed features catch
regressions and should always pass, although they might take longer to run.
New acceptance tests represent work in progress and will not pass until a feature
is ready.

If requirements change, we must move any affected acceptance tests out of the
regression suite back into the in-progress suite, edit them to reflect the new
requirements, and change the system to make them pass again.

Chapter 5 Maintaining the Test-Driven Cycle40

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Start Testing with the Simplest Success Case

Where do we start when we have to write a new class or feature? It’s tempting
to start with degenerate or failure cases because they’re often easier. That’s a
common interpretation of the XP maxim to do “the simplest thing that could
possibly work” [Beck02], but simple should not be interpreted as simplistic.
Degenerate cases don’t add much to the value of the system and, more important-
ly, don’t give us enough feedback about the validity of our ideas. Incidentally,
we also find that focusing on the failure cases at the beginning of a feature is bad
for morale—if we only work on error handling it feels like we’re not achieving
anything.

We prefer to start by testing the simplest success case. Once that’s working,
we’ll have a better idea of the real structure of the solution and can prioritize
between handling any possible failures we noticed along the way and further
success cases. Of course, a feature isn’t complete until it’s robust. This isn’t an
excuse not to bother with failure handling—but we can choose when we want
to implement first.

We find it useful to keep a notepad or index cards by the keyboard to jot down
failure cases, refactorings, and other technical tasks that need to be addressed.
This allows us to stay focused on the task at hand without dropping detail. The
feature is finished only when we’ve crossed off everything on the list—either
we’ve done each task or decided that we don’t need to.

Iterations in Space

We’re writing this material around the fortieth anniversary of the first Moon landing.
The Moon program was an excellent example of an incremental approach (although
with much larger stakes than we’re used to). In 1967, they proposed a series of
seven missions, each of which would be a step on the way to a landing:

1. Unmanned Command/Service Module (CSM) test

2. Unmanned Lunar Module (LM) test

3. Manned CSM in low Earth orbit

4. Manned CSM and LM in low Earth orbit

5. Manned CSM and LM in an elliptical Earth orbit with an apogee of 4600 mi
(7400 km)

6. Manned CSM and LM in lunar orbit

7. Manned lunar landing

At least in software, we can develop incrementally without building a new rocket
each time.

41Start Testing with the Simplest Success Case

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Write the Test That You’d Want to Read

We want each test to be as clear as possible an expression of the behavior to be
performed by the system or object. While writing the test, we ignore the fact that
the test won’t run, or even compile, and just concentrate on its text; we act as
if the supporting code to let us run the test already exists.

When the test reads well, we then build up the infrastructure to support the
test. We know we’ve implemented enough of the supporting code when the test
fails in the way we’d expect, with a clear error message describing what needs
to be done. Only then do we start writing the code to make the test pass. We
look further at making tests readable in Chapter 21.

Watch the Test Fail

We always watch the test fail before writing the code to make it pass, and check
the diagnostic message. If the test fails in a way we didn’t expect, we know we’ve
misunderstood something or the code is incomplete, so we fix that. When we get
the “right” failure, we check that the diagnostics are helpful. If the failure descrip-
tion isn’t clear, someone (probably us) will have to struggle when the code breaks
in a few weeks’ time. We adjust the test code and rerun the tests until the error
messages guide us to the problem with the code (Figure 5.2).

Figure 5.2 Improving the diagnostics as part of the TDD cycle

As we write the production code, we keep running the test to see our progress
and to check the error diagnostics as the system is built up behind the test. Where
necessary, we extend or modify the support code to ensure the error messages
are always clear and relevant.

There’s more than one reason for insisting on checking the error messages.
First, it checks our assumptions about the code we’re working on—sometimes

Chapter 5 Maintaining the Test-Driven Cycle42

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

we’re wrong. Second, more subtly, we find that our emphasis on (or, perhaps,
mania for) expressing our intentions is fundamental for developing reliable,
maintainable systems—and for us that includes tests and failure messages. Taking
the trouble to generate a useful diagnostic helps us clarify what the test, and
therefore the code, is supposed to do. We look at error diagnostics and how to
improve them in Chapter 23.

Develop from the Inputs to the Outputs

We start developing a feature by considering the events coming into the system
that will trigger the new behavior. The end-to-end tests for the feature will simu-
late these events arriving. At the boundaries of our system, we will need to write
one or more objects to handle these events. As we do so, we discover that these
objects need supporting services from the rest of the system to perform their re-
sponsibilities. We write more objects to implement these services, and discover
what services these new objects need in turn.

In this way, we work our way through the system: from the objects that receive
external events, through the intermediate layers, to the central domain model,
and then on to other boundary objects that generate an externally visible response.
That might mean accepting some text and a mouse click and looking for a record
in a database, or receiving a message in a queue and looking for a file on a server.

It’s tempting to start by unit-testing new domain model objects and then trying
to hook them into the rest of the application. It seems easier at the start—we feel
we’re making rapid progress working on the domain model when we don’t have
to make it fit into anything—but we’re more likely to get bitten by integration
problems later. We’ll have wasted time building unnecessary or incorrect func-
tionality, because we weren’t receiving the right kind of feedback when we were
working on it.

Unit-Test Behavior, Not Methods

We’ve learned the hard way that just writing lots of tests, even when it produces
high test coverage, does not guarantee a codebase that’s easy to work with. Many
developers who adopt TDD find their early tests hard to understand when they
revisit them later, and one common mistake is thinking about testing methods.
A test called testBidAccepted() tells us what it does, but not what it’s for.

We do better when we focus on the features that the object under test should
provide, each of which may require collaboration with its neighbors and calling
more than one of its methods. We need to know how to use the class to achieve
a goal, not how to exercise all the paths through its code.

43Unit-Test Behavior, Not Methods

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The Importance of Describing Behavior, Not API Features

Nat used to run a company that produced online advertising and branded content
for clients sponsoring sports teams. One of his clients sponsored a Formula One
racing team. Nat wrote a fun little game that simulated Formula One race strategies
for the client to put on the team’s website. It took him two weeks to write, from
initial idea to final deliverable, and once he handed it over to the client he forgot
all about it.

It turned out, however, that the throw-away game was by far the most popular
content on the team’s website. For the next F1 season, the client wanted to capi-
talize on its success. They wanted the game to model the track of each Grand
Prix, to accommodate the latest F1 rules, to have a better model of car physics,
to simulate dynamic weather, overtaking, spin-outs, and more.

Nat had written the original version test-first, so he expected it to be easy to
change. However, going back to the code, he found the tests very hard to under-
stand. He had written a test for each method of each object but couldn’t understand
from those tests how each object was meant to behave—what the responsibilities
of the object were and how the different methods of the object worked together.

It helps to choose test names that describe how the object behaves in the
scenario being tested. We look at this in more detail in “Test Names Describe
Features” (page 248).

Listen to the Tests

When writing unit and integration tests, we stay alert for areas of the code that
are difficult to test. When we find a feature that’s difficult to test, we don’t just
ask ourselves how to test it, but also why is it difficult to test.

Our experience is that, when code is difficult to test, the most likely cause is
that our design needs improving. The same structure that makes the code difficult
to test now will make it difficult to change in the future. By the time that future
comes around, a change will be more difficult still because we’ll have forgotten
what we were thinking when we wrote the code. For a successful system, it might
even be a completely different team that will have to live with the consequences
of our decisions.

Our response is to regard the process of writing tests as a valuable early
warning of potential maintenance problems and to use those hints to fix a problem
while it’s still fresh. As Figure 5.3 shows, if we’re finding it hard to write the next
failing test, we look again at the design of the production code and often refactor
it before moving on.

Chapter 5 Maintaining the Test-Driven Cycle44

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Figure 5.3 Difficulties writing tests may suggest a need to fix
production code

This is an example of how our maxim—“Expect Unexpected Changes”—guides
development. If we keep up the quality of the system by refactoring when we see
a weakness in the design, we will be able to make it respond to whatever changes
turn up. The alternative is the usual “software rot” where the code decays until
the team just cannot respond to the needs of its customers. We’ll return to this
topic in Chapter 20.

Tuning the Cycle

There’s a balance between exhaustively testing execution paths and testing inte-
gration. If we test at too large a grain, the combinatorial explosion of trying all
the possible paths through the code will bring development to a halt. Worse,
some of those paths, such as throwing obscure exceptions, will be impractical to
test from that level. On the other hand, if we test at too fine a grain—just at the
class level, for example—the testing will be easier but we’ll miss problems that
arise from objects not working together.

How much unit testing should we do, using mock objects to break external
dependencies, and how much integration testing? We don’t think there’s a single
answer to this question. It depends too much on the context of the team and its
environment. The best we can get from the testing part of TDD (which is a lot)
is the confidence that we can change the code without breaking it: Fear kills
progress. The trick is to make sure that the confidence is justified.

So, we regularly reflect on how well TDD is working for us, identify any
weaknesses, and adapt our testing strategy. Fiddly bits of logic might need more
unit testing (or, alternatively, simplification); unhandled exceptions might need
more integration-level testing; and, unexpected system failures will need more
investigation and, possibly, more testing throughout.

45Tuning the Cycle

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Chapter 6

Object-Oriented Style
Always design a thing by considering it in its next larger
context—a chair in a room, a room in a house, a house in an
environment, an environment in a city plan.

—Eliel Saarinen

Introduction

So far in Part II, we’ve talked about how to get started with the development
process and how to keep going. Now we want to take a more detailed look at
our design goals and our use of TDD, and in particular mock objects, to guide
the structure of our code.

We value code that is easy to maintain over code that is easy to write.1 Imple-
menting a feature in the most direct way can damage the maintainability of the
system, for example by making the code difficult to understand or by introducing
hidden dependencies between components. Balancing immediate and longer-term
concerns is often tricky, but we’ve seen too many teams that can no longer deliver
because their system is too brittle.

In this chapter, we want to show something of what we’re trying to achieve
when we design software, and how that looks in an object-oriented language;
this is the “opinionated” part of our approach to software. In the next chapter,
we’ll look at the mechanics of how to guide code in this direction with TDD.

Designing for Maintainability

Following the process we described in Chapter 5, we grow our systems a slice of
functionality at a time. As the code scales up, the only way we can continue to
understand and maintain it is by structuring the functionality into objects, objects
into packages,2 packages into programs, and programs into systems. We use two
principal heuristics to guide this structuring:

1. As the Agile Manifesto might have put it.
2. We’re being vague about the meaning of “package” here since we want it to include

concepts such as modules, libraries, and namespaces, which tend to be confounded
in the Java world—but you know what we mean.

47

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Separation of concerns
When we have to change the behavior of a system, we want to change as
little code as possible. If all the relevant changes are in one area of code, we
don’t have to hunt around the system to get the job done. Because we cannot
predict when we will have to change any particular part of the system, we
gather together code that will change for the same reason. For example, code
to unpack messages from an Internet standard protocol will not change for
the same reasons as business code that interprets those messages, so we
partition the two concepts into different packages.

Higher levels of abstraction
The only way for humans to deal with complexity is to avoid it, by working
at higher levels of abstraction. We can get more done if we program by
combining components of useful functionality rather than manipulating
variables and control flow; that’s why most people order food from a menu
in terms of dishes, rather than detail the recipes used to create them.

Applied consistently, these two forces will push the structure of an appli-
cation towards something like Cockburn’s “ports and adapters” architecture
[Cockburn08], in which the code for the business domain is isolated from its
dependencies on technical infrastructure, such as databases and user interfaces.
We don’t want technical concepts to leak into the application model, so we write
interfaces to describe its relationships with the outside world in its terminology
(Cockburn’s ports). Then we write bridges between the application core and each
technical domain (Cockburn’s adapters). This is related to what Eric Evans calls
an “anticorruption layer” [Evans03].

The bridges implement the interfaces defined by the application model and
map between application-level and technical-level objects (Figure 6.1). For exam-
ple, a bridge might map an order book object to SQL statements so that orders
are persisted in a database. To do so, it might query values from the application
object or use an object-relational tool like Hibernate3 to pull values out of objects
using Java reflection. We’ll show an example of refactoring to this architecture
in Chapter 17.

The next question is how to find the facets in the behavior where the interfaces
should be, so that we can divide up the code cleanly. We have some second-level
heuristics to help us think about that.

3. http://www.hibernate.org

Chapter 6 Object-Oriented Style48

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.hibernate.org
http://www.it-ebooks.info/

ptgFigure 6.1 An application’s core domain model is mapped onto
technical infrastructure

Encapsulation and Information Hiding

We want to be careful with the distinction between “encapsulation” and “information
hiding.” The terms are often used interchangeably but actually refer to two separate,
and largely orthogonal, qualities:

Encapsulation
Ensures that the behavior of an object can only be affected through its API.
It lets us control how much a change to one object will impact other parts of
the system by ensuring that there are no unexpected dependencies between
unrelated components.

Information hiding
Conceals how an object implements its functionality behind the abstraction
of its API. It lets us work with higher abstractions by ignoring lower-level details
that are unrelated to the task at hand.

We’re most aware of encapsulation when we haven’t got it. When working with
badly encapsulated code, we spend too much time tracing what the potential
effects of a change might be, looking at where objects are created, what common
data they hold, and where their contents are referenced. The topic has inspired
two books that we know of, [Feathers04] and [Demeyer03].

49Designing for Maintainability

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Many object-oriented languages support encapsulation by providing control over
the visibility of an object’s features to other objects, but that’s not enough. Objects
can break encapsulation by sharing references to mutable objects, an effect known
as aliasing. Aliasing is essential for conventional object- oriented systems (other-
wise no two objects would be able to communicate), but accidental aliasing can
couple unrelated parts of a system so it behaves mysteriously and is inflexible to
change.

We follow standard practices to maintain encapsulation when coding: define
immutable value types, avoid global variables and singletons, copy collections
and mutable values when passing them between objects, and so on. We have
more about information hiding later in this chapter.

Internals vs. Peers

As we organize our system, we must decide what is inside and outside each object,
so that the object provides a coherent abstraction with a clear API. Much of the
point of an object, as we discussed above, is to encapsulate access to its internals
through its API and to hide these details from the rest of the system. An object
communicates with other objects in the system by sending and receiving messages,
as in Figure 6.2; the objects it communicates with directly are its peers.

Figure 6.2 Objects communicate by sending and receiving messages

This decision matters because it affects how easy an object is to use, and so
contributes to the internal quality of the system. If we expose too much of an
object’s internals through its API, its clients will end up doing some of its work.
We’ll have distributed behavior across too many objects (they’ll be coupled to-
gether), increasing the cost of maintenance because any changes will now ripple
across the code. This is the effect of the “train wreck” example on page 17:

Chapter 6 Object-Oriented Style50

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

((EditSaveCustomizer) master.getModelisable()
 .getDockablePanel()
 .getCustomizer())
 .getSaveItem().setEnabled(Boolean.FALSE.booleanValue());

Every getter in this example exposes a structural detail. If we wanted to change,
say, the way customizations on the master are enabled, we’d have to change all
the intermediate relationships.

Different Levels of Language

As you’ll see in Part III, we often write helper methods to make code more readable.
We’re not afraid of adding very small methods if they clarify the meaning of the
feature they represent. We name these methods to make the calling code read
as naturally as possible; we don’t have to conform to external conventions since
these methods are only there to support other code. For example, in Chapter 15
we have a line in a test that reads:

allowing(sniperListener).sniperStateChanged(with(aSniperThatIs(BIDDING)));

We’ll explain what this means at the time. What’s relevant here is that
aSniperThatIs() is a local method that constructs a value to be passed to the
with() method, and that its name is intended to describe its intent in this context.
In effect, we’re constructing a very small embedded language that defines, in this
case, a part of a test.

As well as distinguishing between value and object types (page 13), we find that
we tend towards different programming styles at different levels in the code.
Loosely speaking, we use the message-passing style we’ve just described between
objects, but we tend to use a more functional style within an object, building up
behavior from methods and values that have no side effects.

Features without side effects mean that we can assemble our code from smaller
components, minimizing the amount of risky shared state. Writing large-scale
functional programs is a topic for a different book, but we find that a little
immutability within the implementation of a class leads to much safer code and
that, if we do a good job, the code reads well too.

So how do we choose the right features for an object?

No And’s, Or’s, or But’s

Every object should have a single, clearly defined responsibility; this is the “single
responsibility” principle [Martin02]. When we’re adding behavior to a system,
this principle helps us decide whether to extend an existing object or create a
new service for an object to call.

51No And’s, Or’s, or But’s

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Our heuristic is that we should be able to describe what an object does without
using any conjunctions (“and,” “or”). If we find ourselves adding clauses to the
description, then the object probably should be broken up into collaborating
objects, usually one for each clause.

This principle also applies when we’re combining objects into new abstractions.
If we’re packaging up behavior implemented across several objects into a single
construct, we should be able to describe its responsibility clearly; there are some
related ideas below in the “Composite Simpler Than the Sum of Its Parts” and
“Context Independence” sections.

Object Peer Stereotypes

We have objects with single responsibilities, communicating with their peers
through messages in clean APIs, but what do they say to each other?

We categorize an object’s peers (loosely) into three types of relationship. An
object might have:

Dependencies
Services that the object requires from its peers so it can perform its responsi-
bilities. The object cannot function without these services. It should not be
possible to create the object without them. For example, a graphics package
will need something like a screen or canvas to draw on—it doesn’t make
sense without one.

Notifications
Peers that need to be kept up to date with the object’s activity. The object
will notify interested peers whenever it changes state or performs a significant
action. Notifications are “fire and forget”; the object neither knows nor cares
which peers are listening. Notifications are so useful because they decouple
objects from each other. For example, in a user interface system, a button
component promises to notify any registered listeners when it’s clicked, but
does not know what those listeners will do. Similarly, the listeners expect to
be called but know nothing of the way the user interface dispatches its events.

Adjustments
Peers that adjust the object’s behavior to the wider needs of the system. This
includes policy objects that make decisions on the object’s behalf (the Strat-
egy pattern in [Gamma94]) and component parts of the object if it’s a com-
posite. For example, a Swing JTable will ask a TableCellRenderer to draw
a cell’s value, perhaps as RGB (Red, Green, Blue) values for a color. If we
change the renderer, the table will change its presentation, now displaying
the HSB (Hue, Saturation, Brightness) values.

Chapter 6 Object-Oriented Style52

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

These stereotypes are only heuristics to help us think about the design, not
hard rules, so we don’t obsess about finding just the right classification of an
object’s peers. What matters most is the context in which the collaborating objects
are used. For example, in one application an auditing log could be a dependency,
because auditing is a legal requirement for the business and no object should be
created without an audit trail. Elsewhere, it could be a notification, because
auditing is a user choice and objects will function perfectly well without it.

Another way to look at it is that notifications are one-way: A notification lis-
tener may not return a value, call back the caller, or throw an exception, since
there may be other listeners further down the chain. A dependency or adjustment,
on the other hand, may do any of these, since there’s a direct relationship.

“New or new not. There is no try.”4

We try to make sure that we always create a valid object. For dependencies, this
means that we pass them in through the constructor. They’re required, so there’s
no point in creating an instance of an object until its dependencies are available,
and using the constructor enforces this constraint in the object’s definition.

Partially creating an object and then finishing it off by setting properties is brittle
because the programmer has to remember to set all the dependencies.When the
object changes to add new dependencies, the existing client code will still compile
even though it no longer constructs a valid instance. At best this will cause a
NullPointerException, at worst it will fail misleadingly.

Notifications and adjustments can be passed to the constructor as a convenience.
Alternatively, they can be initialized to safe defaults and overwritten later (note
that there is no safe default for a dependency). Adjustments can be initialized to
common values, and notifications to a null object [Woolf98] or an empty collection.
We then add methods to allow callers to change these default values, and add or
remove listeners.

Composite Simpler Than the Sum of Its Parts

All objects in a system, except for primitive types built into the language, are
composed of other objects. When composing objects into a new type, we want
the new type to exhibit simpler behavior than all of its component parts considered
together. The composite object’s API must hide the existence of its component
parts and the interactions between them, and expose a simpler abstraction to its
peers. Think of a mechanical clock: It has two or three hands for output and one
pull-out wheel for input but packages up dozens of moving parts.

4. Attributed to Yoda.

53Composite Simpler Than the Sum of Its Parts

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

In software, a user interface component for editing money values might have
two subcomponents: one for the amount and one for the currency. For the
component to be useful, its API should manage both values together, otherwise
the client code could just control it subcomponents directly.

moneyEditor.getAmountField().setText(String.valueOf(money.amount());
moneyEditor.getCurrencyField().setText(money.currencyCode());

The “Tell, Don’t Ask” convention can start to hide an object’s structure from
its clients but is not a strong enough rule by itself. For example, we could replace
the getters in the first version with setters:

moneyEditor.setAmountField(money.amount());
moneyEditor.setCurrencyField(money.currencyCode());

This still exposes the internal structure of the component, which its client still
has to manage explicitly.

We can make the API much simpler by hiding within the component everything
about the way money values are displayed and edited, which in turn simplifies
the client code:

moneyEditor.setValue(money);

This suggests a rule of thumb:

Composite Simpler Than the Sum of Its Parts

The API of a composite object should not be more complicated than that of any of
its components.

Composite objects can, of course, be used as components in larger-scale, more
sophisticated composite objects. As we grow the code, the “composite simpler
than the sum of its parts” rule contributes to raising the level of abstraction.

Context Independence

While the “composite simpler than the sum of its parts” rule helps us decide
whether an object hides enough information, the “context independence” rule
helps us decide whether an object hides too much or hides the wrong information.

A system is easier to change if its objects are context-independent; that is, if
each object has no built-in knowledge about the system in which it executes. This
allows us to take units of behavior (objects) and apply them in new situations.
To be context-independent, whatever an object needs to know about the larger
environment it’s running in must be passed in. Those relationships might be

Chapter 6 Object-Oriented Style54

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

“permanent” (passed in on construction) or “transient” (passed in to the method
that needs them).

In this “paternalistic” approach, each object is told just enough to do its job
and wrapped up in an abstraction that matches its vocabulary. Eventually, the
chain of objects reaches a process boundary, which is where the system will find
external details such as host names, ports, and user interface events.

One Domain Vocabulary

A class that uses terms from multiple domains might be violating context
independence, unless it’s part of a bridging layer.

The effect of the “context independence” rule on a system of objects is to make
their relationships explicit, defined separately from the objects themselves. First,
this simplifies the objects, since they don’t need to manage their own relationships.
Second, this simplifies managing the relationships, since objects at the same
scale are often created and composed together in the same places, usually in
mapping-layer factory objects.

Context independence guides us towards coherent objects that can be applied
in different contexts, and towards systems that we can change by reconfiguring
how their objects are composed.

Hiding the Right Information

Encapsulation is almost always a good thing to do, but sometimes information
can be hidden in the wrong place. This makes the code difficult to understand,
to integrate, or to build behavior from by composing objects. The best defense
is to be clear about the difference between the two concepts when discussing a
design. For example, we might say:

• “Encapsulate the data structure for the cache in the CachingAuctionLoader
class.”

• “Encapsulate the name of the application’s log file in the PricingPolicy
class.”

These sound reasonable until we recast them in terms of information hiding:

• “Hide the data structure used for the cache in the CachingAuctionLoader
class.”

• “Hide the name of the application’s log file in the PricingPolicy class.”

55Hiding the Right Information

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Context independence tells us that we have no business hiding details of the
log file in the PricingPolicy class—they’re concepts from different levels in
the “Russian doll” structure of nested domains. If the log file name is necessary,
it should be packaged up and passed in from a level that understands external
configuration.

An Opinionated View

We’ve taken the time to describe what we think of as “good” object-oriented
design because it underlies our approach to development and we find that it helps
us write code that we can easily grow and adapt to meet the changing needs of
its users. Now we want to show how our approach to test-driven development
supports these principles.

Chapter 6 Object-Oriented Style56

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Chapter 7

Achieving Object-Oriented
Design

In matters of style, swim with the current; in matters of principle, stand
like a rock.

—Thomas Jefferson

How Writing a Test First Helps the Design

The design principles we outlined in the previous chapter apply to finding the
right boundaries for an object so that it plays well with its neighbors—a caller
wants to know what an object does and what it depends on, but not how it
works. We also want an object to represent a coherent unit that makes sense in
its larger environment. A system built from such components will have the
flexibility to reconfigure and adapt as requirements change.

There are three aspects of TDD that help us achieve this scoping. First, starting
with a test means that we have to describe what we want to achieve before we
consider how. This focus helps us maintain the right level of abstraction for the
target object. If the intention of the unit test is unclear then we’re probably
mixing up concepts and not ready to start coding. It also helps us with information
hiding as we have to decide what needs to be visible from outside the object.

Second, to keep unit tests understandable (and, so, maintainable), we have to
limit their scope. We’ve seen unit tests that are dozens of lines long, burying the
point of the test somewhere in its setup. Such tests tell us that the component
they’re testing is too large and needs breaking up into smaller components. The
resulting composite object should have a clearer separation of concerns as we
tease out its implicit structure, and we can write simpler tests for the extracted
objects.

Third, to construct an object for a unit test, we have to pass its dependencies
to it, which means that we have to know what they are. This encourages context
independence, since we have to be able to set up the target object’s environment
before we can unit-test it—a unit test is just another context. We’ll notice that
an object with implicit (or just too many) dependencies is painful to prepare for
testing—and make a point of cleaning it up.

In this chapter, we describe how we use an incremental, test-driven approach
to nudge our code towards the design principles we described in the previous
chapter.

57

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Communication over Classification

As we wrote in Chapter 2, we view a running system as a web of communicating
objects, so we focus our design effort on how the objects collaborate to deliver
the functionality we need. Obviously, we want to achieve a well-designed class
structure, but we think the communication patterns between objects are more
important.

In languages such as Java, we can use interfaces to define the available messages
between objects, but we also need to define their patterns of communication—their
communication protocols. We do what we can with naming and convention, but
there’s nothing in the language to describe relationships between interfaces or
methods within an interface, which leaves a significant part of the design implicit.

Interface and Protocol

Steve heard this useful distinction in a conference talk: an interface describes
whether two components will fit together, while a protocol describes whether they
will work together.

We use TDD with mock objects as a technique to make these communication
protocols visible, both as a tool for discovering them during development and
as a description when revisiting the code. For example, the unit test towards the
end of Chapter 3 tells us that, given a certain input message, the translator
should call listener.auctionClosed() exactly once—and nothing else. Although
the listener interface has other methods, this test says that its protocol requires
that auctionClosed() should be called on its own.

@Test public void
notifiesAuctionClosedWhenCloseMessageReceived() {
 Message message = new Message();
 message.setBody("SOLVersion: 1.1; Event: CLOSE;");

 context.checking(new Expectations() {{
 oneOf(listener).auctionClosed();
 }});

 translator.processMessage(UNUSED_CHAT, message);
}

TDD with mock objects also encourages information hiding. We should mock
an object’s peers—its dependencies, notifications, and adjustments we categorized
on page 52—but not its internals. Tests that highlight an object’s neighbors help
us to see whether they are peers, or should instead be internal to the target object.
A test that is clumsy or unclear might be a hint that we’ve exposed too much
implementation, and that we should rebalance the responsibilities between the
object and its neighbors.

Chapter 7 Achieving Object-Oriented Design58

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Value Types

Before we go further, we want to revisit the distinction we described in “Values
and Objects” (page 13): values are immutable, so they’re simpler and have no
meaningful identity; objects have state, so they have identity and relationships
with each other.

The more code we write, the more we’re convinced that we should define
types to represent value concepts in the domain, even if they don’t do much. It
helps to create a consistent domain model that is more self-explanatory. If we
create, for example, an Item type in a system, instead of just using String, we can
find all the code that’s relevant for a change without having to chase through the
method calls. Specific types also reduce the risk of confusion—as the Mars Climate
Orbiter disaster showed, feet and metres may both be represented as numbers
but they’re different things.1 Finally, once we have a type to represent a concept,
it usually turns out to be a good place to hang behavior, guiding us towards using
a more object-oriented approach instead of scattering related behavior across
the code.

We use three basic techniques for introducing value types, which we’ve called
(in a fit of alliteration): breaking out, budding off, and bundling up.

Breaking out
When we find that the code in an object is becoming complex, that’s often
a sign that it’s implementing multiple concerns and that we can break out
coherent units of behavior into helper types. There’s an example in “Tidying
Up the Translator” (page 135) where we break a class that handles incoming
messages into two parts: one to parse the message string, and one to interpret
the result of the parsing.

Budding off
When we want to mark a new domain concept in the code, we often introduce
a placeholder type that wraps a single field, or maybe has no fields at all. As
the code grows, we fill in more detail in the new type by adding fields and
methods. With each type that we add, we’re raising the level of abstraction
of the code.

Bundling up
When we notice that a group of values are always used together, we take
that as a suggestion that there’s a missing construct. A first step might be to
create a new type with fixed public fields—just giving the group a name
highlights the missing concept. Later we can migrate behavior to the new

1. In 1999, NASA’s Mars Climate Orbiter burned up in the planet’s atmosphere because,
amongst other problems, the navigation software confused metric with imperial units.
There’s a brief description at http://news.bbc.co.uk/1/hi/sci/tech/514763.stm.

59Value Types

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://news.bbc.co.uk/1/hi/sci/tech/514763.stm
http://www.it-ebooks.info/

ptg

type, which might eventually allow us to hide its fields behind a clean
interface, satisfying the “composite simpler than the sum of its parts” rule.

We find that the discovery of value types is usually motivated by trying to
follow our design principles, rather than by responding to code stresses when
writing tests.

Where Do Objects Come From?

The categories for discovering object types are similar (which is why we shoe-
horned them into these names), except that the design guidance we get from
writing unit tests tends to be more important. As we wrote in “External and
Internal Quality” (page 10), we use the effort of unit testing to maintain the
code’s internal quality. There are more examples of the influence of testing on
design in Chapter 20.

Breaking Out: Splitting a Large Object into a Group of
Collaborating Objects

When starting a new area of code, we might temporarily suspend our design
judgment and just write code without attempting to impose much structure. This
allows us to gain some experience in the area and test our understanding of any
external APIs we’re developing against. After a short while, we’ll find our code
becoming too complex to understand and will want to clean it up. We can start
pulling out cohesive units of functionality into smaller collaborating objects,
which we can then unit-test independently. Splitting out a new object also forces
us to look at the dependencies of the code we’re pulling out.

We have two concerns about deferring cleanup. The first is how long we should
wait before doing something. Under time pressure, it’s tempting to leave the un-
structured code as is and move on to the next thing (“after all, it works and it’s
just one class…”). We’ve seen too much code where the intention wasn’t clear
and the cost of cleanup kicked in when the team could least afford it. The second
concern is that occasionally it’s better to treat this code as a spike—once we
know what to do, just roll it back and reimplement cleanly. Code isn’t sacred
just because it exists, and the second time won’t take as long.

The Tests Say…

Break up an object if it becomes too large to test easily, or if its test failures become
difficult to interpret. Then unit-test the new parts separately.

Chapter 7 Achieving Object-Oriented Design60

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Looking Ahead…

In Chapter 12, when extracting an AuctionMessageTranslator, we avoid including
its interaction with MainWindow because that would give it too many responsibilities.
Looking at the behavior of the new class, we identify a missing dependency,
AuctionEventListener, which we define while writing the unit tests.We repackage
the existing code in Main to provide an implementation for the new interface.
AuctionMessageTranslator satisfies both our design heuristics: it introduces a
separation of concerns by splitting message translation from auction display, and
it abstracts message-handling code into a new domain-specific concept.

Budding Off: Defining a New Service That an Object Needs and
Adding a New Object to Provide It

When the code is more stable and has some degree of structure, we often discover
new types by “pulling” them into existence. We might be adding behavior to an
object and find that, following our design principles, some new feature doesn’t
belong inside it.

Our response is to create an interface to define the service that the object needs
from the object’s point of view. We write tests for the new behavior as if the
service already exists, using mock objects to help describe the relationship between
the target object and its new collaborator; this is how we introduced the
AuctionEventListener we mentioned in the previous section.

The development cycle goes like this. When implementing an object, we discover
that it needs a service to be provided by another object. We give the new service
a name and mock it out in the client object’s unit tests, to clarify the relationship
between the two. Then we write an object to provide that service and, in doing
so, discover what services that object needs. We follow this chain (or perhaps a
directed graph) of collaborator relationships until we connect up to existing ob-
jects, either our own or from a third-party API. This is how we implement
“Develop from the Inputs to the Outputs” (page 43).

We think of this as “on-demand” design: we “pull” interfaces and their imple-
mentations into existence from the needs of the client, rather than “pushing” out
the features that we think a class should provide.

The Tests Say…

When writing a test, we ask ourselves, “If this worked, who would know?” If the
right answer to that question is not in the target object, it’s probably time to introduce
a new collaborator.

61Where Do Objects Come From?

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Looking Ahead…

In Chapter 13, we introduce an Auction interface. The concept of making a bid
would have been an additional responsibility for AuctionSniper, so we introduce
a new service for bidding—just an interface without any implementation.We write a
new test to show the relationship between AuctionSniper and Auction. Then we
write a concrete implementation of Auction—initially as an anonymous class in
Main, later as XMPPAuction.

Bundling Up: Hiding Related Objects into a Containing Object

This is the application of the “composite simpler than the sum of its parts” rule
(page 53). When we have a cluster of related objects that work together, we can
package them up in a containing object. The new object hides the complexity in
an abstraction that allows us to program at a higher level.

The process of making an implicit concept concrete has some other nice effects.
First, we have to give it a name which helps us understand the domain a little
better. Second, we can scope dependencies more clearly, since we can see the
boundaries of the concept. Third, we can be more precise with our unit testing.
We can test the new composite object directly, and use a mock implementation
to simplify the tests for code from which it was extracted (since, of course, we
added an interface for the role the new object plays).

The Tests Say…

When the test for an object becomes too complicated to set up—when there are
too many moving parts to get the code into the relevant state—consider bundling
up some of the collaborating objects. There’s an example in “Bloated Constructor”
(page 238).

Looking Ahead…

In Chapter 17, we introduce XMPPAuctionHouse to package up everything to do with
the messaging infrastructure, and SniperLauncher for constructing and attaching a
Sniper. Once extracted, the references to Swing behavior in SniperLauncher
stand out as inappropriate, so we introduce SniperCollector to decouple the
domains.

Chapter 7 Achieving Object-Oriented Design62

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Identify Relationships with Interfaces

We use Java interfaces more liberally than some other developers. This reflects
our emphasis on the relationships between objects, as defined by their communi-
cation protocols. We use interfaces to name the roles that objects can play and
to describe the messages they’ll accept.

We also prefer interfaces to be as narrow as possible, even though that means
we need more of them. The fewer methods there are on an interface, the more
obvious is its role in the calling object. We don’t have to worry which other
methods are relevant to a particular call and which were included for convenience.
Narrow interfaces are also easier to write adapters and decorators for; there’s
less to implement, so it’s easier to write objects that compose together well.

“Pulling” interfaces into existence, as we described in “Budding Off,” helps
us keep them as narrow as possible. Driving an interface from its client avoids
leaking excess information about its implementers, which minimizes any implicit
coupling between objects and so keeps the code malleable.

Impl Classes Are Meaningless

Sometimes we see code with classes named by adding “Impl” to the single interface
they implement. This is better than leaving the class name unchanged and
prefixing an “I” to the interface, but not by much. A name like BookingImpl is dupli-
cation; it says exactly the same as implements Booking, which is a “code smell.”
We would not be happy with such obvious duplication elsewhere in our code,
so we ought to refactor it away.

It might just be a naming problem. There’s always something specific about an
implementation that can be included in the class name: it might use a bounded
collection, communicate over HTTP, use a database for persistence, and so on.
A bridging class is even easier to name, since it will belong in one domain but
implement interfaces in another.

If there really isn’t a good implementation name, it might mean that the interface
is poorly named or designed. Perhaps it’s unfocused because it has too many re-
sponsibilities; or it’s named after its implementation rather than its role in the client;
or it’s a value, not an object—this discrepancy sometimes turns up when writing
unit tests, see “Don’t Mock Values” (page 237).

Refactor Interfaces Too

Once we have interfaces for protocols, we can start to pay attention to similarities
and differences. In a reasonably large codebase, we often start to find interfaces
that look similar. This means we should look at whether they represent a single
concept and should be merged. Extracting common roles makes the design more

63Refactor Interfaces Too

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

malleable because more components will be “plug-compatible,” so we can work
at a higher level of abstraction. For the developer, there’s a secondary advantage
that there will be fewer concepts that cost time to understand.

Alternatively, if similar interfaces turn out to represent different concepts, we
can make a point of making them distinct, so that the compiler can ensure that
we only combine objects correctly. A decision to separate similar-looking inter-
faces is a good time to reconsider their naming. It’s likely that there’s a more
appropriate name for at least one of them.

Finally, another time to consider refactoring interfaces is when we start imple-
menting them. For example, if we find that the structure of an implementing class
is unclear, perhaps it has too many responsibilities which might be a hint that
the interface is unfocused too and should be split up.

Compose Objects to Describe System Behavior

TDD at the unit level guides us to decompose our system into value types and
loosely coupled computational objects. The tests give us a good understanding
of how each object behaves and how it can be combined with others. We then
use lower-level objects as the building blocks of more capable objects; this is the
web of objects we described in Chapter 2.

In jMock, for example, we assemble a description of the expected calls for a
test in a context object called a Mockery. During a test run, the Mockery will pass
calls made to any of its mocked objects to its Expectations, each of which will
attempt to match the call. If an Expectation matches, that part of the test suc-
ceeds. If none matches, then each Expectation reports its disagreement and the
test fails. At runtime, the assembled objects look like Figure 7.1:

Figure 7.1 jMock Expectations are assembled from many objects

The advantage of this approach is that we end up with a flexible application
structure built from relatively little code. It’s particularly suitable where the code
has to support many related scenarios. For each scenario, we provide a different

Chapter 7 Achieving Object-Oriented Design64

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

assembly of components to build, in effect, a subsystem to plug into the rest of
the application. Such designs are also easy to extend—just write a new plug-
compatible component and add it in; you’ll see us write several new Hamcrest
matchers in Part III.

For example, to have jMock check that a method example.doSomething() is
called exactly once with an argument of type String, we set up our test context
like this:

InvocationExpectation expectation = new InvocationExpectation();
expectation.setParametersMatcher(
 new AllParametersMatcher(Arrays.asList(new IsInstanceOf(String.class)));
expectation.setCardinality(new Cardinality(1, 1));
expectation.setMethodMatcher(new MethodNameMatcher("doSomething"));
expectation.setObjectMatcher(new IsSame<Example>(example));

context.addExpectation(expectation);

Building Up to Higher-Level Programming

You have probably spotted a difficulty with the code fragment above: it doesn’t
explain very well what the expectation is testing. Conceptually, assembling a
web of objects is straightforward. Unfortunately, the mainstream languages we
usually work with bury the information we care about (objects and their relation-
ships) in a morass of keywords, setters, punctuation, and the like. Just assigning
and linking objects, as in this example, doesn’t help us understand the behavior
of the system we’re assembling—it doesn’t express our intent.2

Our response is to organize the code into two layers: an implementation layer
which is the graph of objects, its behavior is the combined result of how its objects
respond to events; and, a declarative layer which builds up the objects in the
implementation layer, using small “sugar” methods and syntax to describe
the purpose of each fragment. The declarative layer describes what the code will
do, while the implementation layer describes how the code does it. The declarative
layer is, in effect, a small domain-specific language embedded (in this case)
in Java.3

The different purposes of the two layers mean that we use a different coding
style for each. For the implementation layer we stick to the conventional object-
oriented style guidelines we described in the previous chapter. We’re more flexible
for the declarative layer—we might even use “train wreck” chaining of method
calls or static methods to help get the point across.

A good example is jMock itself. We can rewrite the example from the previous
section as:

2. Nor does the common alternative of moving the object construction into a separate
XML file.

3. This became clear to us when working on jMock. We wrote up our experiences in
[Freeman06].

65Building Up to Higher-Level Programming

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

context.checking(new Expectations() {{
 oneOf(example).doSomething(with(any(String.class)));
}});

The Expectations object is a Builder [Gamma94] that constructs expectations.
It defines “sugar” methods that construct the assembly of expectations and
matchers and load it into the Mockery, as shown in Figure 7.2.

Figure 7.2 A syntax-layer constructs the interpreter

Most of the time, such a declarative layer emerges from continual “merciless”
refactoring. We start by writing code that directly composes objects and keep
factoring out duplication. We also add helper methods to push the syntax noise
out of the main body of the code and to add explanation. Taking care to notice
when an area of code is not clear, we add or move structure until it is; this is
very easy to do in a modern refactoring IDE. Eventually, we find we have our
two-layer structure. Occasionally, we start from the declarative code we’d like
to have and work down to fill in its implementation, as we do with the first
end-to-end test in Chapter 10.

Our purpose, in the end, is to achieve more with less code. We aspire to raise
ourselves from programming in terms of control flow and data manipulation, to
composing programs from smaller programs—where objects form the smallest
unit of behavior. None of this is new—it’s the same concept as programming
Unix by composing utilities with pipes [Kernighan76],4 or building up layers of
language in Lisp [Graham93]—but we still don’t see it in the field as often as we
would like.

4. Kernighan and Plauger attribute the idea of pipes to Douglas McIlroy, who wrote a
memo in 1964 suggesting the metaphor of data passing through a segmented garden
hose. It’s currently available at http://plan9.bell-labs.com/who/dmr/mdmpipe.pdf.

Chapter 7 Achieving Object-Oriented Design66

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://plan9.bell-labs.com/who/dmr/mdmpipe.pdf
http://www.it-ebooks.info/

ptg

And What about Classes?

One last point. Unusually for a book on object-oriented software, we haven’t
said much about classes and inheritance. It should be obvious by now that we’ve
been pushing the application domain into the gaps between the objects, the
communication protocols. We emphasize interfaces more than classes because
that’s what other objects see: an object’s type is defined by the roles it plays.

We view classes for objects as an “implementation detail”—a way of imple-
menting types, not the types themselves. We discover object class hierarchies by
factoring out common behavior, but prefer to refactor to delegation if possible
since we find that it makes our code more flexible and easier to understand.5
Value types, on the other hand, are less likely to use delegation since they don’t
have peers.

There’s plenty of good advice on how to work with classes in, for example,
[Fowler99], [Kerievsky04], and [Evans03].

5. The design forces, of course, are different in languages that support multiple
inheritance well, such as Eiffel [Meyer91].

67And What about Classes?

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Chapter 8

Building on Third-Party Code
Programming today is all about doing science on the parts you have
to work with.

—Gerald Jay Sussman

Introduction

We’ve shown how we pull a system’s design into existence: discovering what our
objects need and writing interfaces and further objects to meet those needs. This
process works well for new functionality. At some point, however, our design
will come up against a need that is best met by third-party code: standard APIs,
open source libraries, or vendor products. The critical point about third-party
code is that we don’t control it, so we cannot use our process to guide its design.
Instead, we must focus on the integration between our design and the
external code.

In integration, we have an abstraction to implement, discovered while we de-
veloped the rest of the feature. With the third-party API pushing back at our
design, we must find the best balance between elegance and practical use of
someone else’s ideas. We must check that we are using the third-party API cor-
rectly, and adjust our abstraction to fit if we find that our assumptions are
incorrect.

Only Mock Types That You Own
Don’t Mock Types You Can’t Change

When we use third-party code we often do not have a deep understanding of
how it works. Even if we have the source available, we rarely have time to read
it thoroughly enough to explore all its quirks. We can read its documentation,
which is often incomplete or incorrect. The software may also have bugs that we
will need to work around. So, although we know how we want our abstraction
to behave, we don’t know if it really does so until we test it in combination with
the third-party code.

We also prefer not to change third-party code, even when we have the sources.
It’s usually too much trouble to apply private patches every time there’s a new
version. If we can’t change an API, then we can’t respond to any design feedback
we get from writing unit tests that touch it. Whatever alarm bells the unit tests

69

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

might be ringing about the awkwardness of an external API, we have to live with
it as it stands.

This means that providing mock implementations of third-party types is of
limited use when unit-testing the objects that call them. We find that tests that
mock external libraries often need to be complex to get the code into the right
state for the functionality we need to exercise. The mess in such tests is telling
us that the design isn’t right but, instead of fixing the problem by improving the
code, we have to carry the extra complexity in both code and test.

A second risk is that we have to be sure that the behavior we stub or mock
matches what the external library will actually do. How difficult this is depends
on the quality of the library—whether it’s specified (and implemented) well
enough for us to be certain that our unit tests are valid. Even if we get it right
once, we have to make sure that the tests remain valid when we upgrade the
libraries.

Write an Adapter Layer

If we don’t want to mock an external API, how can we test the code that drives
it? We will have used TDD to design interfaces for the services our objects
need—which will be defined in terms of our objects’ domain, not the external
library.

We write a layer of adapter objects (as described in [Gamma94]) that uses the
third-party API to implement these interfaces, as in Figure 8.1. We keep this
layer as thin as possible, to minimize the amount of potentially brittle and hard-
to-test code. We test these adapters with focused integration tests to confirm our
understanding of how the third-party API works. There will be relatively few
integration tests compared to the number of unit tests, so they should not get in
the way of the build even if they’re not as fast as the in-memory unit tests.

Figure 8.1 Mockable adapters to third-party objects

Following this approach consistently produces a set of interfaces that define
the relationship between our application and the rest of the world in our
application’s terms and discourages low-level technical concepts from leaking

Chapter 8 Building on Third-Party Code70

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

into the application domain model. In Chapter 25, we discuss a common example
where abstractions in the application’s domain model are implemented using a
persistence API.

There are some exceptions where mocking third-party libraries can be helpful.
We might use mocks to simulate behavior that is hard to trigger with the real
library, such as throwing exceptions. Similarly, we might use mocks to test a se-
quence of calls, for example making sure that a transaction is rolled back if there’s
a failure. There should not be many tests like this in a test suite.

This pattern does not apply to value types because, of course, we don’t need
to mock them. We still, however, have to make design decisions about how
much to use third-party value types in our code. They might be so fundamental
that we just use them directly. Often, however, we want to follow the same
principles of isolation as for third-party services, and translate between value
types appropriate to the application domain and to the external domain.

Mock Application Objects in Integration Tests

As described above, adapter objects are passive, reacting to calls from our code.
Sometimes, adapter objects must call back to objects from the application. Event-
based libraries, for example, usually expect the client to provide a callback object
to be notified when an event happens. In this case, the application code will give
the adapter its own event callback (defined in terms of the application domain).
The adapter will then pass an adapter callback to the external library to receive
external events and translate them for the application callback.

In these cases, we do use mock objects when testing objects that integrate with
third-party code—but only to mock the callback interfaces defined in the appli-
cation, to verify that the adapter translates events between domains correctly
(Figure 8.2).

Multithreading adds more complication to integration tests. For example,
third-party libraries may start background threads to deliver events to the appli-
cation code, so synchronization is a vital aspect of the design effort of adapter
layers; we discuss this further in Chapter 26.

Figure 8.2 Using mock objects in integration tests

71Mock Application Objects in Integration Tests

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Part III

A Worked Example
One of our goals in writing this book was to convey the whole
experience of test-driven software development. We want to
show how the techniques fit together over a larger scale than
the examples usually presented in books. We make a point of
including external components, in this case Swing and messaging
infrastructure, since the stress points of this kind of approach
are usually at the boundaries between code that we own and
code that we have to work with. The application that we build
includes such complexities as event-based design, multiple
threads, and distribution.

Another goal was to tell a realistic story, so we include
episodes where we have to backtrack on decisions that turn out
to be wrong. This happens in any software development that
we’ve seen. Even the best people misunderstand requirements
and technologies or, sometimes, just miss the point. A resilient
process allows for mistakes and includes techniques for discov-
ering and recovering from errors as early as possible. After all,
the only alternative is to leave the problems in the code where,
generally, they will cause more expensive damage later.

Finally, we wanted to emphasize our culture of very incremen-
tal development. Experienced teams can learn to make substan-
tial changes to their code in small, safe steps. To those not used
to it, incremental change can feel as if it takes too long. But
we’ve been burned too often by large restructurings that lose
their way and end up taking longer—unpredictably so. By
keeping the system always clean and always working, we can
focus on just the immediate change at hand (instead of having
to maintain a mental model of all the code at once), and merging
changes back in is never a crisis.

On formatting
Some of the code and output layout in this example looks a bit odd.
We’ve had to trim and wrap the long lines to make them fit on the
printed page. In our development environments we use a longer line
length, which (we think) makes for more readable layout of the code.

==STARTINDEX

id/ch09-d21e17/pageno/73
==ENDINDEX

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Chapter 9

Commissioning an Auction
Sniper
To Begin at the Beginning

In which we are commissioned to build an application that automati-
cally bids in auctions. We sketch out how it should work and what
the major components should be. We put together a rough plan for the
incremental steps in which we will grow the application.

We’re a development team for Markup and Gouge, a company that buys antiques
on the professional market to sell to clients “with the best possible taste.” Markup
and Gouge has been following the industry and now does a lot of its buying on-
line, largely from Southabee’s, a venerable auction house that is keen to grow
online. The trouble is that our buyers are spending a lot of their time manually
checking the state of an auction to decide whether or not to bid, and even missed
a couple of attractive items because they could not respond quickly enough.

After intense discussion, the management decides to commission an Auction
Sniper, an application that watches online auctions and automatically bids
slightly higher whenever the price changes, until it reaches a stop-price or the
auction closes. The buyers are keen to have this new application and some of
them agree to help us clarify what to build.

We start by talking through their ideas with the buyers’ group and find that,
to avoid confusion, we need to agree on some basic terms:

• Item is something that can be identified and bought.

• Bidder is a person or organization that is interested in buying an item.

• Bid is a statement that a bidder will pay a given price for an item.

• Current price is the current highest bid for the item.

• Stop price is the most a bidder is prepared to pay for an item.

• Auction is a process for managing bids for an item.

• Auction house is an institution that hosts auctions.

75

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The discussions generate a long list of requirements, such as being able to bid
for related groups of items. There’s no way anyone could deliver everything
within a useful time, so we talk through the options and the buyers reluctantly
agree that they’d rather get a basic application working first. Once that’s in place,
we can make it more powerful.

It turns out that in the online system there’s an auction for every item, so we
decide to use an item’s identifier to refer to its auction. In practice, it also turns
out that the Sniper application doesn’t have to concern itself with managing any
items we’ve bought, since other systems will handle payment and delivery.

We decide to build the Auction Sniper as a Java Swing application. It will run
on a desktop and allow the user to bid for multiple items at a time. It will show
the identifier, stop price, and the current auction price and status for each item
it’s sniping. Buyers will be able to add new items for sniping through the user
interface, and the display values will change in response to events arriving from
the auction house. The buyers are still working with our usability people, but
we’ve agreed a rough version that looks like Figure 9.1.

Figure 9.1 A first user interface

This is obviously incomplete and not pretty, but it’s close enough to get us
started.

While these discussions are taking place, we also talk to the technicians at
Southabee’s who support their online services. They send us a document that

Chapter 9 Commissioning an Auction Sniper76

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

describes their protocol for bidding in auctions, which uses XMPP (Jabber) for
its underlying communication layer. Figure 9.2 shows how it handles multiple
bidders sending bids over XMPP to the auction house, our Sniper being one of
them. As the auction progresses, Southabee’s will send events to all the connected
bidders to tell them when anyone’s bid has raised the current price and when the
auction closes.

Figure 9.2 Southabee’s online auction system

XMPP: the eXtensible Messaging and Presence Protocol

XMPP is a protocol for streaming XML elements across the network. It was origi-
nally designed for, and named after, the Jabber instant messaging system and
was renamed to XMPP when submitted to the IETF for approval as an Internet
standard. Because it is a generic framework for exchanging XML elements across
the network, it can be used for a wide variety of applications that need to exchange
structured data in close to real time.

XMPP has a decentralized, client/server architecture. There is no central server,
in contrast with other chat services such as AOL Instant Messenger or MSN
Messenger. Anyone may run an XMPP server that hosts users and lets them
communicate among themselves and with users hosted by other XMPP servers
on the network.

A user can log in to an XMPP server simultaneously from multiple devices or
clients, known in XMPP terminology as resources. A user assigns each resource
a priority. Unless addressed to a specific resource, messages sent to the user are
delivered to this user’s highest priority resource that is currently logged in.

Every user on the network has a unique Jabber ID (usually abbreviated as JID)
that is rather like an e-mail address. A JID contains a username and a DNS address
of the server where that user resides, separated by an at sign (@, for example,
username@example.com), and can optionally be suffixed with a resource name after
a forward slash (for example, username@example.com/office).

77To Begin at the Beginning

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Communicating with an Auction
The Auction Protocol

The protocol for messages between a bidder and an auction house is simple.
Bidders send commands, which can be:

Join

A bidder joins an auction. The sender of the XMPP message identifies the
bidder, and the name of the chat session identifies the item.

Bid

A bidder sends a bidding price to the auction.

Auctions send events, which can be:

Price

An auction reports the currently accepted price. This event also includes the
minimum increment that the next bid must be raised by, and the name of
bidder who bid this price. The auction will send this event to a bidder when
it joins and to all bidders whenever a new bid has been accepted.

Close

An auction announces that it has closed. The winner of the last price event
has won the auction.

Figure 9.3 A bidder’s behavior represented as a state machine

Chapter 9 Commissioning an Auction Sniper78

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

We spend some time working through the documentation and talking to
Southabee’s On-Line support people, and figure out a state machine that shows
the transitions a Sniper can make. Essentially, a Sniper joins an auction, then
there are some rounds of bidding, until the auction closes, at which point the
Sniper will have won or lost; see Figure 9.3. We’ve left out the stop price for now
to keep things simple; it’ll turn up in Chapter 18.

The XMPP Messages

Southabee’s On-Line has also sent us details of the formats they use within the
XMPP messages. They’re pretty simple, since they only involve a few names and
values, and are serialized in a single line with key/value pairs. Each line starts
with a version number for the protocol itself. The messages look like this:

SOLVersion: 1.1; Command: JOIN;
SOLVersion: 1.1; Event: PRICE; CurrentPrice: 192; Increment: 7; Bidder: Someone else;
SOLVersion: 1.1; Command: BID; Price: 199;
SOLVersion: 1.1; Event: CLOSE;

Southabee’s On-Line uses login names to identify items for sale, so to bid
for an item with identifier 12793, a client would start a chat with the “user”
auction-12793 at the Southabee’s server. The server can tell who is bidding from
the identity of the caller, assuming the accounts have been set up beforehand.

Getting There Safely

Even a small application like this is too large to write in one go, so we need to
figure out, roughly, the steps we might take to get there. A critical technique with
incremental development is learning how to slice up the functionality so that it
can be built a little at a time. Each slice should be significant and concrete enough
that the team can tell when it’s done, and small enough to be focused on one
concept and achievable quickly. Dividing our work into small, coherent chunks
also helps us manage the development risk. We get regular, concrete feedback
on the progress we’re making, so we can adjust our plan as the team discovers
more about the domain and the technologies.

Our immediate task is to figure out a series of incremental development steps
for the Sniper application. The first is absolutely the smallest feature we can build,
the “walking skeleton” we described in “First, Test a Walking Skeleton”
(page 32). Here, the skeleton will cut a minimum path through Swing, XMPP,
and our application; it’s just enough to show that we can plug these components
together. Each subsequent step adds a single element of complexity to the existing
application, building on the work that’s done before. After some discussion, we
come up with this sequence of features to build:

79Getting There Safely

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Single item: join, lose without bidding
This is our starting case where we put together the core infrastructure; it is
the subject of Chapter 10.

Single item: join, bid, and lose
Add bidding to the basic connectivity.

Single item: join, bid, and win
Distinguish who sent the winning bid.

Show price details
Start to fill out the user interface.

Multiple items
Support bidding for multiple items in the same application.

Add items through the user interface
Implement input via the user interface.

Stop bidding at the stop price
More intelligence in the Sniper algorithm.

Within the list, the buyers have prioritized the user interface over the stop
price, partly because they want to make sure they’ll feel comfortable with the
application and partly because there won’t be an easy way to add multiple items,
each with its own stop price, without a user interface.

Once this is stable, we can work on more complicated scenarios, such as
retrying if a bid failed or using different strategies for bidding. For now,
implementing just these features should keep us busy.

Figure 9.4 The initial plan

Chapter 9 Commissioning an Auction Sniper80

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

We don’t know if this is exactly the order of steps we’ll take, but we believe
we need all of this, and we can adjust as we go along. To keep ourselves
focused, we’ve written the plan on an index card, as in Figure 9.4.

This Isn’t Real

By now you may be raising objections about all the practicalities we’ve skipped
over. We saw them too. We’ve taken shortcuts with the process and design to
give you a feel of how a real project works while remaining within the limits of
a book. In particular:

• This isn’t a realistic architecture: XMPP is neither reliable nor secure, and
so is unsuitable for transactions. Ensuring any of those qualities is outside
our scope. That said, the fundamental techniques that we describe still apply
whatever the underlying architecture may be. (In our defense, we see that
major systems have been built on a protocol as inappropriate as HTTP, so
perhaps we’re not as unrealistic as we fear.)

• This isn’t Agile Planning: We rushed through the planning of the project
to produce a single to-do list. In a real project, we’d likely have a view of
the whole deliverable (a release plan) before jumping in. There are good
descriptions of how to do agile planning in other books, such as [Shore07]
and [Cohn05].

• This isn’t realistic usability design: Good user experience design investigates
what the end user is really trying to achieve and uses that to create a con-
sistent experience. The User Experience community has been engaging with
the Agile Development community for some time on how to do this itera-
tively. This project is simple enough that we can draft a vision of what we
want to achieve and work towards it.

81This Isn’t Real

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Chapter 10

The Walking Skeleton
In which we set up our development environment and write our first
end-to-end test. We make some infrastructure choices that allow us to
get started, and construct a build. We’re surprised, yet again, at how
much effort this takes.

Get the Skeleton out of the Closet

So now we’ve got an idea of what to build, can we get on with it and write our
first unit test?

Not yet.
Our first task is to create the “walking skeleton” we described in “First, Test

a Walking Skeleton” (page 32). Again, the point of the walking skeleton is to
help us understand the requirements well enough to propose and validate a broad-
brush system structure. We can always change our minds later, when we learn
more, but it’s important to start with something that maps out the landscape of
our solution. Also, it’s very important to be able to assess the approach we’ve
chosen and to test our decisions so we can make changes with confidence later.

For most projects, developing the walking skeleton takes a surprising amount
of effort. First, because deciding what to do will flush out all sorts of questions
about the application and its place in the world. Second, because the automation
of building, packaging, and deploying into a production-like environment (once
we know what that means) will flush out all sorts of technical and organizational
questions.

Iteration Zero

In most Agile projects, there’s a first stage where the team is doing initial analysis,
setting up its physical and technical environments, and otherwise getting started.
The team isn’t adding much visible functionality since almost all the work is infra-
structure, so it might not make sense to count this as a conventional iteration for
scheduling purposes. A common practice is to call this step iteration zero: “iteration”
because the team still needs to time-box its activities and “zero” because it’s before
functional development starts in iteration one. One important task for iteration zero
is to use the walking skeleton to test-drive the initial architecture.

Of course, we start our walking skeleton by writing a test.

83

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Our Very First Test

The walking skeleton must cover all the components of our Auction Sniper system:
the user interface, the sniping component, and the communication with an auction
server. The thinnest slice we can imagine testing, the first item on our to-do list,
is that the Auction Sniper can join an auction and then wait for it to close. This
slice is so minimal that we’re not even concerned with sending a bid; we just
want to know that the two sides can communicate and that we can test the system
from outside (through the client’s GUI and by injecting events as if from the ex-
ternal auction server). Once that’s working, we have a solid base on which to
build the rest of the features that the clients want.

We like to start by writing a test as if its implementation already exists, and
then filling in whatever is needed to make it work—what Abelson and Sussman
call “programming by wishful thinking” [Abelson96]. Working backwards from
the test helps us focus on what we want the system to do, instead of getting
caught up in the complexity of how we will make it work. So, first we code up
a test to describe our intentions as clearly as we can, given the expressive limits
of a programming language. Then we build the infrastructure to support the way
we want to test the system, instead of writing the tests to fit in with an existing
infrastructure. This usually takes a large part of our initial effort because there
is so much to get ready. With this infrastructure in place, we can implement the
feature and make the test pass.

An outline of the test we want is:

1. When an auction is selling an item,

2. And an Auction Sniper has started to bid in that auction,

3. Then the auction will receive a Join request from the Auction Sniper.

4. When an auction announces that it is Closed,

5. Then the Auction Sniper will show that it lost the auction.

This describes one transition in the state machine (see Figure 10.1).
We need to translate this into something executable. We use JUnit as our test

framework since it’s familiar and widely supported. We also need mechanisms
to control the application and the auction that the application is talking to.

Southabee’s On-Line test services are not freely available. We have to book
ahead and pay for each test session, which is not practical if we want to run tests
all the time. We’ll need a fake auction service that we can control from our
tests to behave like the real thing—or at least like we think the real thing behaves
until we get a chance to test against it for real. This fake auction, or stub, will
be as simple as we can make it. It will connect to an XMPP message broker,
receive commands from the Sniper to be checked by the test, and allow the test
to send back events. We’re not trying to reimplement all of Southabee’s On-Line,
just enough of it to support test scenarios.

Chapter 10 The Walking Skeleton84

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Figure 10.1 A Sniper joins, then loses

Controlling the Sniper application is more complicated. We want our skeleton
test to exercise our application as close to end-to-end as possible, to show that
the main() method initializes the application correctly and that the components
really work together. This means that we should start by working through the
publicly visible features of the application (in this case, its user interface) instead
of directly invoking its domain objects. We also want our test to be clear about
what is being checked, written in terms of the relationship between a Sniper and
its auction, so we’ll hide all the messy code for manipulating Swing in an
ApplicationRunner class. We’ll start by writing the test as if all the code it needs
exists and will fill in the implementations afterwards.

public class AuctionSniperEndToEndTest {
 private final FakeAuctionServer auction = new FakeAuctionServer("item-54321");
 private final ApplicationRunner application = new ApplicationRunner();

 @Test public void sniperJoinsAuctionUntilAuctionCloses() throws Exception {
 auction.startSellingItem(); // Step 1
 application.startBiddingIn(auction); // Step 2
 auction.hasReceivedJoinRequestFromSniper(); // Step 3
 auction.announceClosed(); // Step 4
 application.showsSniperHasLostAuction(); // Step 5
 }

// Additional cleanup
 @After public void stopAuction() {
 auction.stop();
 }
 @After public void stopApplication() {
 application.stop();
 }
}

85Our Very First Test

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

We’ve adopted certain naming conventions for the methods of the helper ob-
jects. If a method triggers an event to drive the test, its name will be a command,
such as startBiddingIn(). If a method asserts that something should have hap-
pened, its name will be descriptive;1 for example, showsSniperHasLostAuction()
will throw an exception if the application is not showing the auction status as
lost. JUnit will call the two stop() methods after the test has run, to clean up
the runtime environment.

In writing the test, one of the assumptions we’ve made is that a
FakeAuctionServer is tied to a given item. This matches the structure of our
intended architecture, where Southabee’s On-Line hosts multiple auctions, each
selling a single item.

One Domain at a Time

The language of this test is concerned with auctions and Snipers; there’s nothing
about messaging layers or components in the user interface—that’s all incidental
detail here. Keeping the language consistent helps us understand what’s significant
in this test, with a nice side effect of protecting us when the implementation inevitably
changes.

Some Initial Choices

Now we have to make the test pass, which will require a lot of preparation. We
need to find or write four components: an XMPP message broker, a stub auction
that can communicate over XMPP, a GUI testing framework, and a test har-
ness that can cope with our multithreaded, asynchronous architecture. We also
have to get the project under version control with an automated build/deploy/test
process. Compared to unit-testing a single class, there is a lot to do—but it’s es-
sential. Even at this high level, the exercise of writing tests drives the development
of the system. Working through our first end-to-end test will force some of the
structural decisions we need to make, such as packaging and deployment.

First the package selection, we will need an XMPP message broker to let the
application talk to our stub auction house. After some investigation, we decide
on an open source implementation called Openfire and its associated client library
Smack. We also need a high-level test framework that can work with Swing
and Smack, both of which are multithreaded and event-driven. Luckily for us,
there are several frameworks for testing Swing applications and the way that
they deal with Swing’s multithreaded, event-driven architecture also works well
with XMPP messaging. We pick WindowLicker which is open source and supports

1. For the grammatically pedantic, the names of methods that trigger events are in the
imperative mood whereas the names of assertions are in the indicative mood.

Chapter 10 The Walking Skeleton86

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

the asynchronous approach that we need in our tests. When assembled, the
infrastructure will look like Figure 10.2:

Figure 10.2 The end-to-end test rig

End-to-End Testing

End-to-end testing for event-based systems, such as our Sniper, has to cope with
asynchrony. The tests run in parallel with the application and do not know pre-
cisely when the application is or isn’t ready. This is unlike unit testing, where a
test drives an object directly in the same thread and so can make direct assertions
about its state and behavior.

An end-to-end test can’t peek inside the target application, so it must wait to
detect some visible effect, such as a user interface change or an entry in a log.
The usual technique is to poll for the effect and fail if it doesn’t happen within
a given time limit. There’s a further complexity in that the target application has
to stabilize after the triggering event long enough for the test to catch the result.
An asynchronous test waiting for a value that just flashes on the screen will be
too unreliable for an automated build, so a common technique is to control the
application and step through the scenario. At each stage, the test waits for an
assertion to pass, then sends an event to wake the application for the next step.
See Chapter 14 for a full discussion of testing asynchronous behavior.

All this makes end-to-end testing slower and more brittle (perhaps the test
network is just busy today), so failures might need interpretation. We’ve heard
of teams where timing-related tests have to fail several times in a row before
they’re reported. This is unlike unit tests which must all pass every time.

In our case, both Swing and the messaging infrastructure are asynchronous,
so using WindowLicker (which polls for values) to drive the Sniper covers the
natural asynchrony of our end-to-end testing.

87Some Initial Choices

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Ready to Start

You might have noticed that we skipped over one point: this first test is not really
end-to-end. It doesn’t include the real auction service because that is not easily
available. An important part of the test-driven development skills is judging where
to set the boundaries of what to test and how to eventually cover everything. In
this case, we have to start with a fake auction service based on the documentation
from Southabee’s On-Line. The documentation might or might not be correct,
so we will record that as a known risk in the project plan and schedule time to
test against the real server as soon as we have enough functionality to complete
a meaningful transaction—even if we end up buying a hideous (but cheap) pair
of candlesticks in a real auction. The sooner we find a discrepancy, the less code
we will have based on that misunderstanding and the more time to fix it.

We’d better get on with it.

Chapter 10 The Walking Skeleton88

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Chapter 11

Passing the First Test
In which we write test infrastructure to drive our non-existent applica-
tion, so that we can make the first test fail. We repeatedly fail the test
and fix symptoms, until we have a minimal working application that
passes the first test. We step through this very slowly to show how the
process works.

Building the Test Rig

At the start of every test run, our test script starts up the Openfire server, creates
accounts for the Sniper and the auction, and then runs the tests. Each test will
start instances of the application and the fake auction, and then test their com-
munication through the server. At first, we’ll run everything on the same host.
Later, as the infrastructure stabilizes, we can consider running different compo-
nents on different machines, which will be a better match to the real deployment.

This leaves us with two components to write for the test infrastructure:
ApplicationRunner and FakeAuctionServer.

Setting Up the Openfire Server

At the time of writing, we were using version 3.6 of Openfire. For these end-to-
end tests, we set up our local server with three user accounts and passwords:

sniper
sniper

auction-item-54321
auction

auction-item-65432
auction

For desktop development, we usually started the server by hand and left it running.
We set it up to not store offline messages, which meant there was no persistent
state. In the System Manager, we edited the “System Name” property to be
localhost, so the tests would run consistently. Finally, we set the resource policy
to “Never kick,” which will not allow a new resource to log in if there’s a conflict.

89

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The Application Runner

An ApplicationRunner is an object that wraps up all management and commu-
nicating with the Swing application we’re building. It runs the application as if
from the command line, obtaining and holding a reference to its main window
for querying the state of the GUI and for shutting down the application at the
end of the test.

We don’t have to do much here, because we can rely on WindowLicker to do
the hard work: find and control Swing GUI components, synchronize with
Swing’s threads and event queue, and wrap that all up behind a simple API.1
WindowLicker has the concept of a ComponentDriver: an object that can manip-
ulate a feature in a Swing user interface. If a ComponentDriver can’t find the
Swing component it refers to, it will time out with an error. For this test, we’re
looking for a label component that shows a given string; if our application doesn’t
produce this label, we’ll get an exception. Here’s the implementation (with the
constants left out for clarity) and some explanation:

public class ApplicationRunner {
 public static final String SNIPER_ID = "sniper";
 public static final String SNIPER_PASSWORD = "sniper";
 private AuctionSniperDriver driver;

 public void startBiddingIn(final FakeAuctionServer auction) {
 Thread thread = new Thread("Test Application") {
 @Override public void run() { 1
 try {
 Main.main(XMPP_HOSTNAME, SNIPER_ID, SNIPER_PASSWORD, auction.getItemId()); 2
 } catch (Exception e) {
 e.printStackTrace(); 3
 }
 }
 };
 thread.setDaemon(true);
 thread.start();
 driver = new AuctionSniperDriver(1000); 4
 driver.showsSniperStatus(STATUS_JOINING); 5
 }
 public void showsSniperHasLostAuction() {
 driver.showsSniperStatus(STATUS_LOST); 6
 }
 public void stop() {
 if (driver != null) {
 driver.dispose(); 7
 }
 }
}

1. We’re assuming that you know how Swing works; there are many other books that
do a good job of describing it. The essential point here is that it’s an event-driven
framework that creates its own internal threads to dispatch events, so we can’t be
precise about when things will happen.

Chapter 11 Passing the First Test90

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1 We call the application through its main() function to make sure we’ve as-
sembled the pieces correctly. We’re following the convention that the entry
point to the application is a Main class in the top-level package. WindowLicker
can control Swing components if they’re in the same JVM, so we start the
Sniper in a new thread. Ideally, the test would start the Sniper in a new pro-
cess, but that would be much harder to test; we think this is a reasonable
compromise.

2 To keep things simple at this stage, we’ll assume that we’re only bidding for
one item and pass the identifier to main().

3 If main() throws an exception, we just print it out. Whatever test we’re
running will fail and we can look for the stack trace in the output. Later,
we’ll handle exceptions properly.

4 We turn down the timeout period for finding frames and components. The
default values are longer than we need for a simple application like this one
and will slow down the tests when they fail. We use one second, which is
enough to smooth over minor runtime delays.

5 We wait for the status to change to Joining so we know that the application
has attempted to connect. This assertion says that somewhere in the user
interface there’s a label that describes the Sniper’s state.

6 When the Sniper loses the auction, we expect it to show a Lost status. If this
doesn’t happen, the driver will throw an exception.

7 After the test, we tell the driver to dispose of the window to make sure it
won’t be picked up in another test before being garbage-collected.

The AuctionSniperDriver is simply an extension of a WindowLicker
JFrameDriver specialized for our tests:

public class AuctionSniperDriver extends JFrameDriver {
 public AuctionSniperDriver(int timeoutMillis) {
 super(new GesturePerformer(),
 JFrameDriver.topLevelFrame(
 named(Main.MAIN_WINDOW_NAME),
 showingOnScreen()),
 new AWTEventQueueProber(timeoutMillis, 100));
 }

 public void showsSniperStatus(String statusText) {
 new JLabelDriver(
 this, named(Main.SNIPER_STATUS_NAME)).hasText(equalTo(statusText));
 }
}

91Building the Test Rig

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

On construction, it attempts to find a visible top-level window for the Auction
Sniper within the given timeout. The method showsSniperStatus() looks for the
relevant label in the user interface and confirms that it shows the given status.
If the driver cannot find a feature it expects, it will throw an exception and fail
the test.

The Fake Auction

A FakeAuctionServer is a substitute server that allows the test to check how the
Auction Sniper interacts with an auction using XMPP messages. It has three re-
sponsibilities: it must connect to the XMPP broker and accept a request to join
the chat from the Sniper; it must receive chat messages from the Sniper or fail if
no message arrives within some timeout; and, it must allow the test to send
messages back to the Sniper as specified by Southabee’s On-Line.

Smack (the XMPP client library) is event-driven, so the fake auction has to
register listener objects for it to call back. There are two levels of events: events
about a chat, such as people joining, and events within a chat, such as messages
being received. We need to listen for both.

We’ll start by implementing the startSellingItem() method. First, it connects
to the XMPP broker, using the item identifier to construct the login name; then
it registers a ChatManagerListener. Smack will call this listener with a Chat object
that represents the session when a Sniper connects in. The fake auction holds on
to the chat so it can exchange messages with the Sniper.

Figure 11.1 Smack objects and callbacks

Chapter 11 Passing the First Test92

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

So far, we have:

public class FakeAuctionServer {
 public static final String ITEM_ID_AS_LOGIN = "auction-%s";
 public static final String AUCTION_RESOURCE = "Auction";
 public static final String XMPP_HOSTNAME = "localhost";
 private static final String AUCTION_PASSWORD = "auction";

 private final String itemId;
 private final XMPPConnection connection;
 private Chat currentChat;

 public FakeAuctionServer(String itemId) {
 this.itemId = itemId;
 this.connection = new XMPPConnection(XMPP_HOSTNAME);
 }

 public void startSellingItem() throws XMPPException {
 connection.connect();
 connection.login(format(ITEM_ID_AS_LOGIN, itemId),
 AUCTION_PASSWORD, AUCTION_RESOURCE);
 connection.getChatManager().addChatListener(
 new ChatManagerListener() {
 public void chatCreated(Chat chat, boolean createdLocally) {
 currentChat = chat;
 }
 });
 }

 public String getItemId() {
 return itemId;
 }
}

A Minimal Fake Implementation

We want to emphasize again that this fake is a minimal implementation just to
support testing. For example, we use a single instance variable to hold the chat
object. A real auction server would manage multiple chats for all the bidders—but
this is a fake; its only purpose is to support the test, so it only needs one chat.

Next, we have to add a MessageListener to the chat to accept messages from
the Sniper. This means that we need to coordinate between the thread that
runs the test and the Smack thread that feeds messages to the listener—the test
has to wait for messages to arrive and time out if they don’t—so we’ll use a
single-element BlockingQueue from the java.util.concurrent package. Just as
we only have one chat in the test, we expect to process only one message at a
time. To make our intentions clearer, we wrap the queue in a helper class
SingleMessageListener. Here’s the rest of FakeAuctionServer:

93Building the Test Rig

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

public class FakeAuctionServer {
private final SingleMessageListener messageListener = new SingleMessageListener();

 public void startSellingItem() throws XMPPException {
 connection.connect();
 connection.login(format(ITEM_ID_AS_LOGIN, itemId),
 AUCTION_PASSWORD, AUCTION_RESOURCE);
 connection.getChatManager().addChatListener(
 new ChatManagerListener() {
 public void chatCreated(Chat chat, boolean createdLocally) {
 currentChat = chat;

chat.addMessageListener(messageListener);
 }
 });
 }

 public void hasReceivedJoinRequestFromSniper() throws InterruptedException {
 messageListener.receivesAMessage(); 1
 }

 public void announceClosed() throws XMPPException {
 currentChat.sendMessage(new Message()); 2
 }

 public void stop() {
 connection.disconnect(); 3
 }
}

public class SingleMessageListener implements MessageListener {
 private final ArrayBlockingQueue<Message> messages =
 new ArrayBlockingQueue<Message>(1);

 public void processMessage(Chat chat, Message message) {
 messages.add(message);
 }

 public void receivesAMessage() throws InterruptedException {
 assertThat("Message", messages.poll(5, SECONDS), is(notNullValue())); 4
 }
}

1 The test needs to know when a Join message has arrived. We just check
whether any message has arrived, since the Sniper will only be sending Join
messages to start with; we’ll fill in more detail as we grow the application.
This implementation will fail if no message is received within 5 seconds.

2 The test needs to be able to simulate the auction announcing when it closes,
which is why we held onto the currentChat when it opened. As with the
Join request, the fake auction just sends an empty message, since this is
the only event we support so far.

3 stop() closes the connection.

Chapter 11 Passing the First Test94

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4 The clause is(notNullValue()) uses the Hamcrest matcher syntax. We de-
scribe Matchers in “Methods” (page 339); for now, it’s enough to know that
this checks that the Listener has received a message within the timeout period.

The Message Broker

There’s one more component to mention which doesn’t involve any coding—the
installation of an XMPP message broker. We set up an instance of Openfire on
our local host. The Sniper and fake auction in our end-to-end tests, even though
they’re running in the same process, will communicate through this server. We
also set up logins to match the small number of item identifiers that we’ll be using
in our tests.

A Working Compromise

As we wrote before, we are cheating a little at this stage to keep development
moving. We want all the developers to have their own environments so they don’t
interfere with each other when running their tests. For example, we’ve seen teams
make their lives very complicated because they didn’t want to create a database
instance for each developer. In a professional organization, we would also expect
to see at least one test rig that represents the production environment, including
the distribution of processing across a network and a build cycle that uses it to
make sure the system works.

Failing and Passing the Test

We have enough infrastructure in place to run the test and watch it fail. For the
rest of this chapter we’ll add functionality, a tiny slice at a time, until eventually
we make the test pass. When we first started using this technique, it felt too fussy:
“Just write the code, we know what to do!” Over time, we realized that it didn’t
take any longer and that our progress was much more predictable. Focusing on
just one aspect at a time helps us to make sure we understand it; as a rule, when
we get something working, it stays working. Where there’s no need to discuss
the solution, many of these steps take hardly any time at all—they take longer
to explain than to implement.

We start by writing a build script for ant. We’ll skip over the details of its
content, since it’s standard practice these days, but the important point is that
we always have a single command that reliably compiles, builds, deploys, and
tests the application, and that we run it repeatedly. We only start coding once
we have an automated build and test working.

At this stage, we’ll describe each step, discussing each test failure in turn. Later
we’ll speed up the pace.

95Failing and Passing the Test

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

First User Interface

Test Failure
The test can’t find a user interface component with the name "Auction Sniper
Main".

java.lang.AssertionError:
Tried to look for...
 exactly 1 JFrame (with name "Auction Sniper Main" and showing on screen)
 in all top level windows
but...
 all top level windows

contained 0 JFrame (with name "Auction Sniper Main" and showing on screen)
[…]

 at auctionsniper.ApplicationRunner.stop()
 at auctionsniper.AuctionSniperEndToEndTest.stopApplication()
[…]

WindowLicker is verbose in its error reporting, trying to make failures easy
to understand. In this case, we couldn’t even find the top-level frame so JUnit
failed before even starting the test. The stack trace comes from the @After method
that stops the application.

Implementation
We need a top-level window for our application. We write a MainWindow class in
the auctionsniper.ui package that extends Swing’s JFrame, and call it from
main(). All it will do is create a window with the right name.

public class Main {
 private MainWindow ui;

 public Main() throws Exception {
startUserInterface()

 }

 public static void main(String... args) throws Exception {
 Main main = new Main();
 }

 private void startUserInterface() throws Exception {
 SwingUtilities.invokeAndWait(new Runnable() {
 public void run() {
 ui = new MainWindow();
 }
 });
 }
}

Chapter 11 Passing the First Test96

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

public class MainWindow extends JFrame {
 public MainWindow() {
 super("Auction Sniper");
 setName(MAIN_WINDOW_NAME);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setVisible(true);
 }
}

Unfortunately, this is a little messy because Swing requires us to create the
user interface on its event dispatch thread. We’ve further complicated the imple-
mentation so we can hang on to the main window object in our code. It’s not
strictly necessary here but we thought we’d get it over with.

Notes
The user interface in Figure 11.2 really is minimal. It does not look like much
but it confirms that we can start up an application window and connect to it.

Our test still fails, but we’ve moved on a step. Now we know that our harness
is working, which is one less thing to worry about as we move on to more
interesting functionality.

Figure 11.2 Just a top-level window

Showing the Sniper State

Test Failure
The test finds a top-level window, but no display of the current state of the Sniper.
To start with, the Sniper should show Joining while waiting for the auction to
respond.

java.lang.AssertionError:
Tried to look for...
 exactly 1 JLabel (with name "sniper status")
 in exactly 1 JFrame (with name "Auction Sniper Main" and showing on screen)
 in all top level windows
and check that its label text is "Joining"
but...
 all top level windows
 contained 1 JFrame (with name "Auction Sniper Main" and showing on screen)

contained 0 JLabel (with name "sniper status")
 at com.objogate.wl.AWTEventQueueProber.check()
[…]

 at AuctionSniperDriver.showsSniperStatus()
 at ApplicationRunner.startBiddingIn()
 at AuctionSniperEndToEndTest.sniperJoinsAuctionUntilAuctionCloses()
[…]

97Failing and Passing the Test

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Implementation
We add a label representing the Sniper’s state to MainWindow.

public class MainWindow extends JFrame {
 public static final String SNIPER_STATUS_NAME = "sniper status";
 private final JLabel sniperStatus = createLabel(STATUS_JOINING);

 public MainWindow() {
 super("Auction Sniper");
 setName(MAIN_WINDOW_NAME);

add(sniperStatus);
 pack();
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setVisible(true);
 }

 private static JLabel createLabel(String initialText) {
 JLabel result = new JLabel(initialText);
 result.setName(SNIPER_STATUS_NAME);
 result.setBorder(new LineBorder(Color.BLACK));
 return result;
 }
}

Notes
Another minimal change, but now we can show some content in our application,
as in Figure 11.3.

Figure 11.3 Showing Joining status

Connecting to the Auction

Test Failure
Our user interface is working, but the auction does not receive a Join request
from the Sniper.

java.lang.AssertionError:
Expected: is not null

got: null
 at org.junit.Assert.assertThat()
 at SingleMessageListener.receivesAMessage()
 at FakeAuctionServer.hasReceivedJoinRequestFromSniper()
 at AuctionSniperEndToEndTest.sniperJoinsAuctionUntilAuctionCloses()
[…]

Chapter 11 Passing the First Test98

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This failure message is a bit cryptic, but the names in the stack trace tell us
what’s wrong.

Implementation
We write a simplistic implementation to get us past this failure. It connects to
the chat in Main and sends an empty message. We create a null MessageListener
to allow us to create a Chat for sending the empty initial message, since we don’t
yet care about receiving messages.

public class Main {
 private static final int ARG_HOSTNAME = 0;
 private static final int ARG_USERNAME = 1;
 private static final int ARG_PASSWORD = 2;
 private static final int ARG_ITEM_ID = 3;

 public static final String AUCTION_RESOURCE = "Auction";
 public static final String ITEM_ID_AS_LOGIN = "auction-%s";
 public static final String AUCTION_ID_FORMAT =
 ITEM_ID_AS_LOGIN + "@%s/" + AUCTION_RESOURCE;

[…]

 public static void main(String... args) throws Exception {
 Main main = new Main();
 XMPPConnection connection = connectTo(args[ARG_HOSTNAME],
 args[ARG_USERNAME],
 args[ARG_PASSWORD]);
 Chat chat = connection.getChatManager().createChat(
 auctionId(args[ARG_ITEM_ID], connection),
 new MessageListener() {
 public void processMessage(Chat aChat, Message message) {

// nothing yet
 }
 });
 chat.sendMessage(new Message());
 }

 private static XMPPConnection
connectTo(String hostname, String username, String password)

 throws XMPPException
 {
 XMPPConnection connection = new XMPPConnection(hostname);
 connection.connect();
 connection.login(username, password, AUCTION_RESOURCE);

 return connection;
 }

 private static String auctionId(String itemId, XMPPConnection connection) {
 return String.format(AUCTION_ID_FORMAT, itemId,
 connection.getServiceName());
 }
[…]

}

99Failing and Passing the Test

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Notes
This shows that we can establish a connection from the Sniper to the auction,
which means we had to sort out details such as interpreting the item and user
credentials from the command-line arguments and using the Smack library. We’re
leaving the message contents until later because we only have one message type,
so sending an empty value is enough to prove the connection.

This implementation may seem gratuitously naive—after all, we should be able
to design a structure for something as simple as this, but we’ve often found it
worth writing a small amount of ugly code and seeing how it falls out. It helps
us to test our ideas before we’ve gone too far, and sometimes the results can be
surprising. The important point is to make sure we don’t leave it ugly.

We make a point of keeping the connection code out of the Swing
invokeAndWait() call that creates the MainWindow, because we want the user
interface to settle before we try anything more complicated.

Receiving a Response from the Auction

Test Failure
With a connection established, the Sniper should receive and display the Lost
response from the auction. It doesn’t yet:

java.lang.AssertionError:
Tried to look for...
 exactly 1 JLabel (with name "sniper status")
 in exactly 1 JFrame (with name "Auction Sniper Main" and showing on screen)
 in all top level windows
and check that its label text is "Lost"
but...
 all top level windows
 contained 1 JFrame (with name "Auction Sniper Main" and showing on screen)
 contained 1 JLabel (with name "sniper status")

label text was "Joining"
[…]

 at AuctionSniperDriver.showsSniperStatus()
 at ApplicationRunner.showsSniperHasLostAuction()
 at AuctionSniperEndToEndTest.sniperJoinsAuctionUntilAuctionCloses()
[…]

Implementation
We need to attach the user interface to the chat so it can receive the response
from the auction, so we create a connection and pass it to Main to create the Chat
object. joinAuction() creates a MessageListener that sets the status label, using
an invokeLater() call to avoid blocking the Smack library. As with the Join
message, we don’t bother with the contents of the incoming message since there’s
only one possible response the auction can send at the moment. While we’re at
it, we rename connect() to connection() to make the code read better.

Chapter 11 Passing the First Test100

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

public class Main {
 @SuppressWarnings("unused") private Chat notToBeGCd;
[…]

 public static void main(String... args) throws Exception {
 Main main = new Main();

main.joinAuction(
 connection(args[ARG_HOSTNAME], args[ARG_USERNAME], args[ARG_PASSWORD]),
 args[ARG_ITEM_ID]);
 }

 private void joinAuction(XMPPConnection connection, String itemId)
 throws XMPPException
 {
 final Chat chat = connection.getChatManager().createChat(
 auctionId(itemId, connection),
 new MessageListener() {
 public void processMessage(Chat aChat, Message message) {

SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 ui.showStatus(MainWindow.STATUS_LOST);
 }
 });
 }
 });
 this.notToBeGCd = chat;

 chat.sendMessage(new Message());
 }

Why the Chat Field?

You’ll notice that we’ve assigned the chat that we create to the field notToBeGCd
in Main. This is to make sure that the chat is not garbage-collected by the Java
runtime. There’s a note at the top of the ChatManager documentation that says:

The chat manager keeps track of references to all current chats. It will not
hold any references in memory on its own so it is necessary to keep a
reference to the chat object itself.

If the chat is garbage-collected, the Smack runtime will hand the message to a
new Chat which it will create for the purpose. In an interactive application, we would
listen for and show these new chats, but our needs are different, so we add this
quirk to stop it from happening.

We made this reference clumsy on purpose—to highlight in the code why we’re
doing it. We also know that we’re likely to come up with a better solution in a while.

We implement the display method in the user interface and, finally, the whole
test passes.

101Failing and Passing the Test

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

public class MainWindow extends JFrame {
[…]

 public void showStatus(String status) {
sniperStatus.setText(status);

 }
}

Notes
Figure 11.4 is visible confirmation that the code works.

Figure 11.4 Showing Lost status

It may not look like much, but it confirms that a Sniper can establish a
connection with an auction, accept a response, and display the result.

The Necessary Minimum

In one of his school reports, Steve was noted as “a fine judge of the necessary
minimum.” It seems he’s found his calling in writing software since this is a
critical skill during iteration zero.

What we hope you’ve seen in this chapter is the degree of focus that’s required
to put together your first walking skeleton. The point is to design and validate
the initial structure of the end-to-end system—where end-to-end includes deploy-
ment to a working environment—to prove that our choices of packages, libraries,
and tooling will actually work. A sense of urgency will help the team to strip the
functionality down to the absolute minimum sufficient to test their assumptions.
That’s why we didn’t put any content in our Sniper messages; it would be a di-
version from making sure that the communication and event handling work. We
didn’t sweat too hard over the detailed code design, partly because there isn’t
much but mainly because we’re just getting the pieces in place; that effort will
come soon enough.

Of course, all you see in this chapter are edited highlights. We’ve left out many
diversions and discussions as we figured out which pieces to use and how to make
them work, trawling through product documentation and discussion lists. We’ve
also left out some of our discussions about what this project is for. Iteration zero
usually brings up project chartering issues as the team looks for criteria to guide
its decisions, so the project’s sponsors should expect to field some deep questions
about its purpose.

Chapter 11 Passing the First Test102

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

We have something visible we can present as a sign of progress, so we can
cross off the first item on our list, as in Figure 11.5.

Figure 11.5 First item done

The next step is to start building out real functionality.

103The Necessary Minimum

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Chapter 12

Getting Ready to Bid
In which we write an end-to-end test so that we can make the Sniper
bid in an auction. We start to interpret the messages in the auction
protocol and discover some new classes in the process. We write our
first unit tests and then refactor out a helper class. We describe every
last detail of this effort to show what we were thinking at the time.

An Introduction to the Market

Now, to continue with the skeleton metaphor, we start to flesh out the application.
The core behavior of a Sniper is that it makes a higher bid on an item in an auction
when there’s a change in price. Going back to our to-do list, we revisit the next
couple of items:

• Single item: join, bid, and lose. When a price comes in, send a bid raised
by the minimum increment defined by the auction. This amount will be
included in the price update information.

• Single item: join, bid, and win. Distinguish which bidder is currently winning
the auction and don’t bid against ourselves.

We know there’ll be more coming, but this is a coherent slice of functionality
that will allow us to explore the design and show concrete progress.

In any distributed system similar to this one there are lots of interesting failure
and timing issues, but our application only has to deal with the client side of the
protocol. We rely on the underlying XMPP protocol to deal with many common
distributed programming problems; in particular, we expect it to ensure that
messages between a bidder and an auction arrive in the same order in which they
were sent.

As we described in Chapter 5, we start the next feature with an acceptance
test. We used our first test in the previous chapter to help flush out the structure
of our application. From now on, we can use acceptance tests to show incremental
progress.

105

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

A Test for Bidding
Starting with a Test

Each acceptance test we write should have just enough new requirements to force
a manageable increase in functionality, so we decide that the next one will add
some price information. The steps are:

1. Tell the auction to send a price to the Sniper.

2. Check the Sniper has received and responded to the price.

3. Check the auction has received an incremented bid from Sniper.

To make this pass, the Sniper will have to distinguish between Price and Close
events from the auction, display the current price, and generate a new bid. We’ll
also have to extend our stub auction to handle bids. We’ve deferred implementing
other functionality that will also be required, such as displaying when the Sniper
has won the auction; we’ll get to that later. Here’s the new test:

public class AuctionSniperEndToEndTest {
 @Test public void
sniperMakesAHigherBidButLoses() throws Exception {

 auction.startSellingItem();

 application.startBiddingIn(auction);
 auction.hasReceivedJoinRequestFromSniper(); 1

 auction.reportPrice(1000, 98, "other bidder"); 2
 application.hasShownSniperIsBidding(); 3

 auction.hasReceivedBid(1098, ApplicationRunner.SNIPER_XMPP_ID); 4

 auction.announceClosed(); 5
 application.showsSniperHasLostAuction();
 }
}

We have three new methods to implement as part of this test.

1 We have to wait for the stub auction to receive the Join request before con-
tinuing with the test. We use this assertion to synchronize the Sniper with
the auction.

2 This method tells the stub auction to send a message back to the Sniper with
the news that at the moment the price of the item is 1000, the increment for
the next bid is 98, and the winning bidder is “other bidder.”

3 This method asks the ApplicationRunner to check that the Sniper shows that
it’s now bidding after it’s received the price update message from the auction.

Chapter 12 Getting Ready to Bid106

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4 This method asks the stub auction to check that it has received a bid from
the Sniper that is equal to the last price plus the minimum increment. We
have to do a fraction more work because the XMPP layer constructs a longer
name from the basic identifier, so we define a constant SNIPER_XMPP_ID which
in practice is sniper@localhost/Auction.

5 We reuse the closing logic from the first test, as the Sniper still loses the
auction.

Unrealistic Money

We’re using integers to represent value (imagine that auctions are conducted in
Japanese Yen). In a real system, we would define a domain type to represent
monetary values, using a fixed decimal implementation. Here, we simplify the
representation to make the example code easier to fit onto a printed page.

Extending the Fake Auction

We have two methods to write in the FakeAuctionServer to support the end-
to-end test: reportPrice() has to send a Price message through the chat;
hasReceivedBid() is a little more complex—it has to check that the auction re-
ceived the right values from the Sniper. Instead of parsing the incoming message,
we construct the expected message and just compare strings. We also pull up the
Matcher clause from the SingleMessageListener to give the FakeAuctionServer
more flexibility in defining what it will accept as a message. Here’s a first cut:

public class FakeAuctionServer { […]
 public void reportPrice(int price, int increment, String bidder)
 throws XMPPException
 {
 currentChat.sendMessage(
 String.format("SOLVersion: 1.1; Event: PRICE; "
 + "CurrentPrice: %d; Increment: %d; Bidder: %s;",
 price, increment, bidder));
 }
 public void hasReceivedJoinRequestFromSniper() throws InterruptedException {
 messageListener.receivesAMessage(is(anything()));
 }
 public void hasReceivedBid(int bid, String sniperId)
 throws InterruptedException
 {
 assertThat(currentChat.getParticipant(), equalTo(sniperId));
 messageListener.receivesAMessage(
 equalTo(
 String.format("SOLVersion: 1.1; Command: BID; Price: %d;", bid)));
 }
}

107A Test for Bidding

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

public class SingleMessageListener implements MessageListener { […]
 @SuppressWarnings("unchecked")
 public void receivesAMessage(Matcher<? super String> messageMatcher)
 throws InterruptedException
 {
 final Message message = messages.poll(5, TimeUnit.SECONDS);
 assertThat("Message", message, is(notNullValue()));
 assertThat(message.getBody(), messageMatcher);
 }
}

Looking again, there’s an imbalance between the two “receives” methods. The
Join method is much more lax than the bid message, in terms of both the contents
of the message and the sender; we will have to remember to come back later and
fix it. We defer a great many decisions when developing incrementally, but
sometimes consistency and symmetry make more sense. We decide to retrofit
more detail into hasReceivedJoinRequestFromSniper() while we have the code
cracked open. We also extract the message formats and move them to Main
because we’ll need them to construct raw messages in the Sniper.

public class FakeAuctionServer { […]
 public void hasReceivedJoinRequestFrom(String sniperId)
 throws InterruptedException
 {

receivesAMessageMatching(sniperId, equalTo(Main.JOIN_COMMAND_FORMAT));
 }

 public void hasReceivedBid(int bid, String sniperId)
 throws InterruptedException
 {

receivesAMessageMatching(sniperId,
 equalTo(format(Main.BID_COMMAND_FORMAT, bid)));
 }

 private void receivesAMessageMatching(String sniperId,
 Matcher<? super String> messageMatcher)
 throws InterruptedException
 {
 messageListener.receivesAMessage(messageMatcher);
 assertThat(currentChat.getParticipant(), equalTo(sniperId));
 }
}

Notice that we check the Sniper’s identifier after we check the contents of the
message. This forces the server to wait until the message has arrived, which means
that it must have accepted a connection and set up currentChat. Otherwise the
test would fail by checking the Sniper’s identifier prematurely.

Chapter 12 Getting Ready to Bid108

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Double-Entry Values

We’re using the same constant to both create a Join message and check its con-
tents. By using the same construct, we’re removing duplication and expressing in
the code a link between the two sides of the system. On the other hand, we’re
making ourselves vulnerable to getting them both wrong and not having a test to
catch the invalid content. In this case, the code is so simple that pretty much any
implementation would do, but the answers become less certain when developing
something more complex, such as a persistence layer. Do we use the same
framework to write and read our values? Can we be sure that it’s not just caching
the results, or that the values are persisted correctly? Should we just write some
straight database queries to be sure?

The critical question is, what do we think we’re testing? Here, we think that the
communication features are more important, that the messages are simple enough
so we can rely on string constants, and that we’d like to be able to find code related
to message formats in the IDE. Other developers might come to a different
conclusion and be right for their project.

We adjust the end-to-end tests to match the new API, watch the test fail, and
then add the extra detail to the Sniper to make the test pass.

public class AuctionSniperEndToEndTest {
 @Test public void
sniperMakesAHigherBidButLoses() throws Exception {

 auction.startSellingItem();

 application.startBiddingIn(auction);
auction.hasReceivedJoinRequestFrom(ApplicationRunner.SNIPER_XMPP_ID);

 auction.reportPrice(1000, 98, "other bidder");
 application.hasShownSniperIsBidding();

 auction.hasReceivedBid(1098, ApplicationRunner.SNIPER_XMPP_ID);

 auction.announceClosed();
 application.showsSniperHasLostAuction();
 }
}

109A Test for Bidding

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

public class Main { […]
 private void joinAuction(XMPPConnection connection, String itemId)
 throws XMPPException
 {
 Chat chat = connection.getChatManager().createChat(
 auctionId(itemId, connection),
 new MessageListener() {
 public void processMessage(Chat aChat, Message message) {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 ui.showStatus(MainWindow.STATUS_LOST);
 }
 });
 }
 });
 this.notToBeGCd = chat;
 chat.sendMessage(JOIN_COMMAND_FORMAT);
 }
}

A Surprise Failure

Finally we write the “checking” method on the ApplicationRunner to give us
our first failure. The implementation is simple: we just add another status constant
and copy the existing method.

public class ApplicationRunner { […]
public void hasShownSniperIsBidding() {

 driver.showsSniperStatus(MainWindow.STATUS_BIDDING);
 }

 public void showsSniperHasLostAuction() {
 driver.showsSniperStatus(MainWindow.STATUS_LOST);
 }
}

We’re expecting to see something about a missing label text but instead we
get this:

java.lang.AssertionError:
Expected: is not null
 got: null
[…]

 at auctionsniper.SingleMessageListener.receivesAMessage()
 at auctionsniper.FakeAuctionServer.hasReceivedJoinRequestFromSniper()
 at auctionsniper.AuctionSniperEndToEndTest.sniperMakesAHigherBid()
[…]

and this on the error stream:

Chapter 12 Getting Ready to Bid110

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

conflict(409)
 at jivesoftware.smack.SASLAuthentication.bindResourceAndEstablishSession()
 at jivesoftware.smack.SASLAuthentication.authenticate()
 at jivesoftware.smack.XMPPConnection.login()
 at jivesoftware.smack.XMPPConnection.login()
 at auctionsniper.Main.connection()
 at auctionsniper.Main.main()

After some investigation we realize what’s happened. We’ve introduced a second
test which tries to connect using the same account and resource name as the first.
The server is configured, like Southabee’s On-Line, to reject multiple open con-
nections, so the second test fails because the server thinks that the first is still
connected. In production, our application would work because we’d stop the
whole process when closing, which would break the connection. Our little com-
promise (of starting the application in a new thread) has caught us out. The Right
Thing to do here is to add a callback to disconnect the client when we close the
window so that the application will clean up after itself:

public class Main { […]
 private void joinAuction(XMPPConnection connection, String itemId)
 throws XMPPException
 {

disconnectWhenUICloses(connection);
 Chat chat = connection.getChatManager().createChat(

[…]
 chat.sendMessage(JOIN_COMMAND_FORMAT);
 }
 private void disconnectWhenUICloses(final XMPPConnection connection) {
 ui.addWindowListener(new WindowAdapter() {
 @Override public void windowClosed(WindowEvent e) {

connection.disconnect();
 }
 });
 }
}

Now we get the failure we expected, because the Sniper has no way to start
bidding.

java.lang.AssertionError:
Tried to look for...
 exactly 1 JLabel (with name "sniper status")
 in exactly 1 JFrame (with name "Auction Sniper Main" and showing on screen)
 in all top level windows
and check that its label text is "Bidding"
but...
 all top level windows
 contained 1 JFrame (with name "Auction Sniper Main" and showing on screen)
 contained 1 JLabel (with name "sniper status")

label text was "Lost"
[…]

 at auctionsniper.AuctionSniperDriver.showsSniperStatus()
 at auctionsniper.ApplicationRunner.hasShownSniperIsBidding()
 at auctionsniper.AuctionSniperEndToEndTest.sniperMakesAHigherBidButLoses()

111A Test for Bidding

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Outside-In Development

This failure defines the target for our next coding episode. It tells us, at a high
level, what we’re aiming for—we just have to fill in implementation until it
passes.

Our approach to test-driven development is to start with the outside event that
triggers the behavior we want to implement and work our way into the code an
object at a time, until we reach a visible effect (such as a sent message or log entry)
indicating that we’ve achieved our goal. The end-to-end test shows us the end
points of that process, so we can explore our way through the space in the middle.

In the following sections, we build up the types we need to implement our
Auction Sniper. We’ll take it slowly, strictly by the TDD rules, to show how the
process works. In real projects, we sometimes design a bit further ahead to get
a sense of the bigger picture, but much of the time this is what we actually do.
It produces the right results and forces us to ask the right questions.

Infinite Attention to Detail?

We caught the resource clash because, by luck or insight, our server configuration
matched that of Southabee’s On-Line. We might have used an alternative setting
which allows new connections to kick off existing ones, which would have resulted
in the tests passing but with a confusing conflict message from the Smack library
on the error stream. This would have worked fine in development, but with a
risk of Snipers starting to fail in production.

How can we hope to catch all the configuration options in an entire system?
At some level we can’t, and this is at the heart of what professional testers do.
What we can do is push to exercise as much as possible of the system as early as
possible, and to do so repeatedly. We can also help ourselves cope with total
system complexity by keeping the quality of its components high and by constantly
pushing to simplify. If that sounds expensive, consider the cost of finding and
fixing a transient bug like this one in a busy production system.

The AuctionMessageTranslator
Teasing Out a New Class

Our entry point to the Sniper is where we receive a message from the auction
through the Smack library: it’s the event that triggers the next round of behavior
we want to make work. In practice, this means that we need a class implementing
MessageListener to attach to the Chat. When this class receives a raw message
from the auction, it will translate it into something that represents an auction
event within our code which, eventually, will prompt a Sniper action and a change
in the user interface.

Chapter 12 Getting Ready to Bid112

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

We already have such a class in Main—it’s anonymous and its responsibilities
aren’t very obvious:

new MessageListener() {
 public void processMessage(Chat aChat, Message message) {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 ui.showStatus(MainWindow.STATUS_LOST);
 }
 });
 }
}

This code implicitly accepts a Close message (the only kind of message we
have so far) and implements the Sniper’s response. We’d like to make this situation
explicit before we add more features. We start by promoting the anonymous
class to a top-level class in its own right, which means it needs a name. From our
description in the paragraph above, we pick up the word “translate” and call it
an AuctionMessageTranslator, because it will translate messages from the auction.

The catch is that the current anonymous class picks up the ui field from Main.
We’ll have to attach something to our newly promoted class so that it can respond
to a message. The most obvious thing to do is pass it the MainWindow but we’re
unhappy about creating a dependency on a user interface component. That would
make it hard to unit-test, because we’d have to query the state of a component
that’s running in the Swing event thread.

More significantly, such a dependency would break the “single responsibility”
principle which says that unpacking raw messages from the auction is quite
enough for one class to do, without also having to know how to present the
Sniper status. As we wrote in “Designing for Maintainability” (page 47), we
want to maintain a separation of concerns.

Given these constraints, we decide that our new AuctionMessageTranslator
will delegate the handling of an interpreted event to a collaborator, which we will
represent with an AuctionEventListener interface; we can pass an object that
implements it into the translator on construction. We don’t yet know what’s in
this interface and we haven’t yet begun to think about its implementation. Our
immediate concern is to get the message translation to work; the rest can wait.
So far the design looks like Figure 12.1 (types that belong to external frameworks,
such as Chat, are shaded):

Figure 12.1 The AuctionMessageTranslator

113The AuctionMessageTranslator

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The First Unit Test

We start with the simpler event type. As we’ve seen, a Close event has no
values—it’s a simple trigger. When the translator receives one, we want it to call
its listener appropriately.

As this is our first unit test, we’ll build it up very slowly to show the process
(later, we will move faster). We start with the test method name. JUnit picks up
test methods by reflection, so we can make their names as long and descriptive
as we like because we never have to include them in code. The first test says that
the translator will tell anything that’s listening that the auction has closed when
it receives a raw Close message.

package test.auctionsniper;

public class AuctionMessageTranslatorTest {
 @Test public void
notifiesAuctionClosedWhenCloseMessageReceived() {
// nothing yet

 }
}

Put Tests in a Different Package

We’ve adopted a habit of putting tests in a different package from the code they’re
exercising.We want to make sure we’re driving the code through its public interfaces,
like any other client, rather than opening up a package-scoped back door for testing.
We also find that, as the application and test code grows, separate packages make
navigation in modern IDEs easier.

The next step is to add the action that will trigger the behavior we want to
test—in this case, sending a Close message. We already know what this will look
like since it’s a call to the Smack MessageListener interface.

public class AuctionMessageTranslatorTest {
 public static final Chat UNUSED_CHAT = null;
private final AuctionMessageTranslator translator =

 new AuctionMessageTranslator();
 @Test public void
notfiesAuctionClosedWhenCloseMessageReceived() {
Message message = new Message();

 message.setBody("SOLVersion: 1.1; Event: CLOSE;");

 translator.processMessage(UNUSED_CHAT, message);
 }
}

Chapter 12 Getting Ready to Bid114

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Use nullWhen an Argument Doesn’t Matter

UNUSED_CHAT is a meaningful name for a constant that is defined as null.We pass
it into processMessage() instead of a real Chat object because the Chat class is
difficult to instantiate—its constructor is package-scoped and we’d have to fill in a
chain of dependencies to create one. As it happens, we don’t need one anyway
for the current functionality, so we just pass in a null value to satisfy the compiler
but use a named constant to make clear its significance.

To be clear, this null is not a null object [Woolf98] which may be called and will
do nothing in response. This null is just a placeholder and will fail if called during
the test.

We generate a skeleton implementation from the MessageListener interface.

package auctionsniper;

public class AuctionMessageTranslator implements MessageListener {
 public void processMessage(Chat chat, Message message) {

// TODO Fill in here
 }
}

Next, we want a check that shows whether the translation has taken
place—which should fail since we haven’t implemented anything yet. We’ve al-
ready decided that we want our translator to notify its listener when the Close
event occurs, so we’ll describe that expected behavior in our test.

@RunWith(JMock.class)
public class AuctionMessageTranslatorTest {
 private final Mockery context = new Mockery();
 private final AuctionEventListener listener =
 context.mock(AuctionEventListener.class);
 private final AuctionMessageTranslator translator =
 new AuctionMessageTranslator();

 @Test public void
notfiesAuctionClosedWhenCloseMessageReceived() {

 context.checking(new Expectations() {{
oneOf(listener).auctionClosed();

 }});

 Message message = new Message();
 message.setBody("SOLVersion: 1.1; Event: CLOSE;");

 translator.processMessage(UNUSED_CHAT, message);
 }
}

115The AuctionMessageTranslator

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This is more or less the kind of unit test we described at the end of Chapter 2,
so we won’t go over its structure again here except to emphasize the highlighted
expectation line. This is the most significant line in the test, our declaration of
what matters about the translator’s effect on its environment. It says that when
we send an appropriate message to the translator, we expect it to call the listener’s
auctionClosed() method exactly once.

We get a failure that shows that we haven’t implemented the behavior we need:

not all expectations were satisfied
expectations:
 ! expected once, never invoked: auctionEventListener.auctionClosed()
what happened before this: nothing!
 at org.jmock.Mockery.assertIsSatisfied(Mockery.java:199)
 […]
 at org.junit.internal.runners.JUnit4ClassRunner.run()

The critical phrase is this one:

expected once, never invoked: auctionEventListener.auctionClosed()

which tells us that we haven’t called the listener as we should have.
We need to do two things to make the test pass. First, we need to connect the

translator and listener so that they can communicate. We decide to pass the lis-
tener into the translator’s constructor; it’s simple and ensures that the translator
is always set up correctly with a listener—the Java type system won’t let us forget.
The test setup looks like this:

public class AuctionMessageTranslatorTest {
 private final Mockery context = new Mockery();
 private final AuctionEventListener listener =
 context.mock(AuctionEventListener.class);
 private final AuctionMessageTranslator translator =
 new AuctionMessageTranslator(listener);

The second thing we need to do is call the auctionClosed() method. Actually,
that’s all we need to do to make this test pass, since we haven’t defined any other
behavior.

public void processMessage(Chat chat, Message message) {
 listener.auctionClosed();
 }

The test passes. This might feel like cheating since we haven’t actually unpacked
a message. What we have done is figured out where the pieces are and got them
into a test harness—and locked down one piece of functionality that should
continue to work as we add more features.

Chapter 12 Getting Ready to Bid116

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Simplified Test Setup

You might have noticed that all the fields in the test class are final. As we described
in Chapter 3, JUnit creates a new instance of the test class for each test method,
so the fields are recreated for each test method. We exploit this by declaring as
many fields as possible as final and initializing them during construction, which
flushes out any circular dependencies. Steve likes to think of this visually as creating
a lattice of objects that acts a frame to support the test.

Sometimes, as you’ll see later in this example, we can’t lock everything down and
have to attach a dependency directly, but most of the time we can. Any exceptions
will attract our attention and highlight a possible dependency loop. NUnit, on the
other hand, reuses the same instance of the test class, so in that case we’d have
to renew any supporting test values and objects explicitly.

Closing the User Interface Loop

Now we have the beginnings of our new component, we can retrofit it into
the Sniper to make sure we don’t drift too far from working code. Previously,
Main updated the Sniper user interface, so now we make it implement
AuctionEventListener and move the functionality to the new auctionClosed()
method.

public class Main implements AuctionEventListener { […]

 private void joinAuction(XMPPConnection connection, String itemId)
 throws XMPPException
 {
 disconnectWhenUICloses(connection);

 Chat chat = connection.getChatManager().createChat(
 auctionId(itemId, connection),

new AuctionMessageTranslator(this));
 chat.sendMessage(JOIN_COMMAND_FORMAT);
 notToBeGCd = chat;
 }

 public void auctionClosed() {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 ui.showStatus(MainWindow.STATUS_LOST);
 }
 });
 }
}

The structure now looks like Figure 12.2.

117The AuctionMessageTranslator

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Figure 12.2 Introducing the AuctionMessageTranslator

What Have We Achieved?

In this baby step, we’ve extracted a single feature of our application into a separate
class, which means the functionality now has a name and can be unit-tested.
We’ve also made Main a little simpler, now that it’s no longer concerned with
interpreting the text of messages from the auction. This is not yet a big deal but
we will show, as the Sniper application grows, how this approach helps us keep
code clean and flexible, with clear responsibilities and relationships between its
components.

Unpacking a Price Message
Introducing Message Event Types

We’re about to introduce a second auction message type, the current price update.
The Sniper needs to distinguish between the two, so we take another look at the
message formats in Chapter 9 that Southabee’s On-Line have sent us. They’re
simple—just a single line with a few name/value pairs. Here are examples for
the formats again:

SOLVersion: 1.1; Event: PRICE; CurrentPrice: 192; Increment: 7; Bidder: Someone else;
SOLVersion: 1.1; Event: CLOSE;

At first, being object-oriented enthusiasts, we try to model these messages as
types, but we’re not clear enough about the behavior to justify any meaningful
structure, so we back off the idea. We decide to start with a simplistic solution
and adapt from there.

The Second Test

The introduction of a different Price event in our second test will force us to
parse the incoming message. This test has the same structure as the first one but
gets a different input string and expects us to call a different method on the lis-
tener. A Price message includes details of the last bid, which we need to unpack
and pass to the listener, so we include them in the signature of the new method
currentPrice(). Here’s the test:

@Test public void
notifiesBidDetailsWhenCurrentPriceMessageReceived() {

Chapter 12 Getting Ready to Bid118

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

 context.checking(new Expectations() {{
exactly(1).of(listener).currentPrice(192, 7);

 }});

 Message message = new Message();
 message.setBody(
"SOLVersion: 1.1; Event: PRICE; CurrentPrice: 192; Increment: 7; Bidder: Someone else;"
);

 translator.processMessage(UNUSED_CHAT, message);
}

To get through the compiler, we add a method to the listener; this takes just
a keystroke in the IDE:1

public interface AuctionEventListener {
 void auctionClosed();
void currentPrice(int price, int increment);

}

The test fails.

unexpected invocation: auctionEventListener.auctionClosed()
expectations:
 ! expected once, never invoked: auctionEventListener.currentPrice(<192>, <7>)
what happened before this: nothing!
[…]

 at $Proxy6.auctionClosed()
 at auctionsniper.AuctionMessageTranslator.processMessage()
 at AuctionMessageTranslatorTest.translatesPriceMessagesAsAuctionPriceEvents()
[…]

 at JUnit4ClassRunner.run(JUnit4ClassRunner.java:42)

This time the critical phrase is:

unexpected invocation: auctionEventListener.auctionClosed()

which means that the code called the wrong method, auctionClosed(), during
the test. The Mockery isn’t expecting this call so it fails immediately, showing us
in the stack trace the line that triggered the failure (you can see the workings of
the Mockery in the line $Proxy6.auctionClosed() which is the runtime substitute
for a real AuctionEventListener). Here, the place where the code failed is obvious,
so we can just fix it.

Our first version is rough, but it passes the test.

1. Modern development environments, such as Eclipse and IDEA, will fill in a missing
method on request. This means that we can write the call we’d like to make and ask
the tool to fill in the declaration for us.

119Unpacking a Price Message

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

public class AuctionMessageTranslator implements MessageListener {
 private final AuctionEventListener listener;

 public AuctionMessageTranslator(AuctionEventListener listener) {
 this.listener = listener;
 }

 public void processMessage(Chat chat, Message message) {
 HashMap<String, String> event = unpackEventFrom(message);

 String type = event.get("Event");
 if ("CLOSE".equals(type)) {
 listener.auctionClosed();
 } else if ("PRICE".equals(type)) {
 listener.currentPrice(Integer.parseInt(event.get("CurrentPrice")),
 Integer.parseInt(event.get("Increment")));
 }
 }

 private HashMap<String, String> unpackEventFrom(Message message) {
 HashMap<String, String> event = new HashMap<String, String>();
 for (String element : message.getBody().split(";")) {
 String[] pair = element.split(":");
 event.put(pair[0].trim(), pair[1].trim());
 }
 return event;
 }
}

This implementation breaks the message body into a set of key/value pairs,
which it interprets as an auction event so it can notify the AuctionEventListener.
We also have to fix the FakeAuctionServer to send a real Close event rather than
the current empty message, otherwise the end-to-end tests will fail incorrectly.

public void announceClosed() throws XMPPException {
currentChat.sendMessage("SOLVersion: 1.1; Event: CLOSE;");

}

Running our end-to-end test again reminds us that we’re still working on the
bidding feature. The test shows that the Sniper status label still displays Joining
rather than Bidding.

Discovering Further Work

This code passes the unit test, but there’s something missing. It assumes that the
message is correctly structured and has the right version. Given that the message
will be coming from an outside system, this feels risky, so we need to add some
error handling. We don’t want to break the flow of getting features to work, so
we add error handling to the to-do list to come back to it later (Figure 12.3).

Chapter 12 Getting Ready to Bid120

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Figure 12.3 Added tasks for handling errors

We’re also concerned that the translator is not as clear as it could be about
what it’s doing, with its parsing and the dispatching activities mixed together.
We make a note to address this class as soon as we’ve passed the acceptance
test, which isn’t far off.

Finish the Job

Most of the work in this chapter has been trying to decide what we want to say
and how to say it: we write a high-level end-to-end test to describe what the
Sniper should implement; we write long unit test names to tell us what a class
does; we extract new classes to tease apart fine-grained aspects of the functional-
ity; and we write lots of little methods to keep each layer of code at a consistent
level of abstraction. But first, we write a rough implementation to prove that we
know how to make the code do what’s required and then we refactor—which
we’ll do in the next chapter.

We cannot emphasize strongly enough that “first-cut” code is not finished. It’s
good enough to sort out our ideas and make sure we have everything in place,
but it’s unlikely to express its intentions cleanly. That will make it a drag on
productivity as it’s read repeatedly over the lifetime of the code. It’s like carpentry
without sanding—eventually someone ends up with a nasty splinter.

121Finish the Job

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Chapter 13

The Sniper Makes a Bid
In which we extract an AuctionSniper class and tease out its dependen-
cies. We plug our new class into the rest of the application, using an
empty implementation of auction until we’re ready to start sending
commands. We close the loop back to the auction house with an
XMPPAuction class. We continue to carve new types out of the code.

Introducing AuctionSniper
A New Class, with Dependencies

Our application accepts Price events from the auction, but cannot interpret them
yet. We need code that will perform two actions when the currentPrice() method
is called: send a higher bid to the auction and update the status in the user inter-
face. We could extend Main, but that class is looking rather messy—it’s already
doing too many things at once. It feels like this is a good time to introduce
what we should call an “Auction Sniper,” the component at the heart of our
application, so we create an AuctionSniper class. Some of its intended behavior
is currently buried in Main, and a good start would be to extract it into our new
class—although, as we’ll see in a moment, it will take a little effort.

Given that an AuctionSniper should respond to Price events, we decide to
make it implement AuctionEventListener rather than Main. The question is what
to do about the user interface. If we consider moving this method:

public void auctionClosed() {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 ui.showStatus(MainWindow.STATUS_LOST);
 }
 });
}

does it really make sense for an AuctionSniper to know about the implementation
details of the user interface, such as the use of the Swing thread? We’d be at risk
of breaking the “single responsibility” principle again. Surely an AuctionSniper
ought to be concerned with bidding policy and only notify status changes in
its terms?

123

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Our solution is to insulate the AuctionSniper by introducing a new relationship:
it will notify a SniperListener of changes in its status. The interface and the first
unit test look like this:

public interface SniperListener extends EventListener {
 void sniperLost();
}

@RunWith(JMock.class)
public class AuctionSniperTest {
 private final Mockery context = new Mockery();
 private final SniperListener sniperListener =
 context.mock(SniperListener.class);
 private final AuctionSniper sniper = new AuctionSniper(sniperListener);

 @Test public void
reportsLostWhenAuctionCloses() {

 context.checking(new Expectations() {{
 one(sniperListener).sniperLost();
 }});

 sniper.auctionClosed();
 }
}

which says that Sniper should report that it has lost if it receives a Close event
from the auction.

The failure report says:

not all expectations were satisfied
expectations:
! expected exactly 1 time, never invoked: SniperListener.sniperLost();

which we can make pass with a simple implementation:

public class AuctionSniper implements AuctionEventListener {
 private final SniperListener sniperListener;

 public AuctionSniper(SniperListener sniperListener) {
 this.sniperListener = sniperListener;
 }

public void auctionClosed() {
 sniperListener.sniperLost();
 }

 public void currentPrice(int price, int increment) {
// TODO Auto-generated method stub

 }
}

Finally, we retrofit the new AuctionSniper by having Main implement
SniperListener.

Chapter 13 The Sniper Makes a Bid124

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

public class Main implements SniperListener { […]
 private void joinAuction(XMPPConnection connection, String itemId)
 throws XMPPException
 {
 disconnectWhenUICloses(connection);

 Chat chat = connection.getChatManager().createChat(
 auctionId(itemId, connection),
 new AuctionMessageTranslator(new AuctionSniper(this)));
 this.notToBeGCd = chat;
 chat.sendMessage(JOIN_COMMAND_FORMAT);
 }

 public void sniperLost() {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 ui.showStatus(MainWindow.STATUS_LOST);
 }
 });
 }
}

Our working end-to-end test still passes and our broken one still fails at the
same place, so we haven’t made things worse. The new structure looks like
Figure 13.1.

Figure 13.1 Plugging in the AuctionSniper

Focus, Focus, Focus

Once again, we’ve noticed complexity in a class and used that to tease out a new
concept from our initial skeleton implementation. Now we have a Sniper to re-
spond to events from the translator. As you’ll see shortly, this is a better structure
for expressing what the code does and for unit testing. We also think that the
sniperLost() method is clearer than its previous incarnation, auctionClosed(),
since there’s now a closer match between its name and what it does—that is,
reports a lost auction.

Isn’t this wasteful fiddling, gold-plating the code while time slips by? Obviously
we don’t think so, especially when we’re sorting out our ideas this early in the
project. There are teams that overdo their design effort, but our experience is
that most teams spend too little time clarifying the code and pay for it in mainte-
nance overhead. As we’ve shown a couple of times now, the “single responsibil-
ity” principle is a very effective heuristic for breaking up complexity, and

125Introducing AuctionSniper

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

developers shouldn’t be shy about creating new types. We think Main still does
too much, but we’re not yet sure how best to break it up. We decide to push on
and see where the code takes us.

Sending a Bid
An Auction Interface

The next step is to have the Sniper send a bid to the auction, so who should the
Sniper talk to? Extending the SniperListener feels wrong because that relationship
is about tracking what’s happening in the Sniper, not about making external
commitments. In the terms defined in “Object Peer Stereotypes” (page 52),
SniperListener is a notification, not a dependency.

After the usual discussion, we decide to introduce a new collaborator, an
Auction. Auction and SniperListener represent two different domains in the
application: Auction is about financial transactions, it accepts bids for items in
the market; and SniperListener is about feedback to the application, it reports
changes to the current state of the Sniper. The Auction is a dependency, for a
Sniper cannot function without one, whereas the SniperListener, as we
discussed above, is not. Introducing the new interface makes the design look like
Figure 13.2.

Figure 13.2 Introducing Auction

The AuctionSniper Bids

Now we’re ready to start bidding. The first step is to implement the response to
a Price event, so we start by adding a new unit test for the AuctionSniper. It
says that the Sniper, when it receives a Price update, sends an incremented bid
to the auction. It also notifies its listener that it’s now bidding, so we add a
sniperBidding() method. We’re making an implicit assumption that the Auction
knows which bidder the Sniper represents, so the Sniper does not have to pass
in that information with the bid.

Chapter 13 The Sniper Makes a Bid126

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

public class AuctionSniperTest {
private final Auction auction = context.mock(Auction.class);

 private final AuctionSniper sniper =
 new AuctionSniper(auction, sniperListener);
[…]

 @Test public void
bidsHigherAndReportsBiddingWhenNewPriceArrives() {

 final int price = 1001;
 final int increment = 25;
 context.checking(new Expectations() {{
 one(auction).bid(price + increment);
 atLeast(1).of(sniperListener).sniperBidding();
 }});

 sniper.currentPrice(price, increment);
 }
}

The failure report is:

not all expectations were satisfied
expectations:
 ! expected once, never invoked: auction.bid(<1026>)
 ! expected at least 1 time, never invoked: sniperListener.sniperBidding()
what happened before this: nothing!

When writing the test, we realized that we don’t actually care if the Sniper
notifies the listener more than once that it’s bidding; it’s just a status update,
so we use an atLeast(1) clause for the listener’s expectation. On the other hand,
we do care that we send a bid exactly once, so we use a one() clause for its ex-
pectation. In practice, of course, we’ll probably only call the listener once, but
this loosening of the conditions in the test expresses our intent about the two
relationships. The test says that the listener is a more forgiving collaborator, in
terms of how it’s called, than the Auction. We also retrofit the atLeast(1) clause
to the other test method.

How Should We Describe Expected Values?

We’ve specified the expected bid value by adding the price and increment.There
are different opinions about whether test values should just be literals with “obvious”
values, or expressed in terms of the calculation they represent. Writing out the
calculation may make the test more readable but risks reimplementing the target
code in the test, and in some cases the calculation will be too complicated to repro-
duce. Here, we decide that the calculation is so trivial that we can just write it into
the test.

127Sending a Bid

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

jMock Expectations Don’t Need to Be Matched in Order

This is our first test with more than one expectation, so we’ll point out that the order
in which expectations are declared does not have to match the order in which the
methods are called in the code. If the calling order does matter, the expectations
should include a sequence clause, which is described in Appendix A.

The implementation to make the test pass is simple.

public interface Auction {
 void bid(int amount);
}

public class AuctionSniper implements AuctionEventListener { […]
 private final SniperListener sniperListener;
private final Auction auction;

 public AuctionSniper(Auction auction, SniperListener sniperListener) {
this.auction = auction;

 this.sniperListener = sniperListener;
 }

 public void currentPrice(int price, int increment) {
 auction.bid(price + increment);
 sniperListener.sniperBidding();
 }
}

Successfully Bidding with the AuctionSniper

Now we have to fold our new AuctionSniper back into the application. The easy
part is displaying the bidding status, the (slightly) harder part is sending the bid
back to the auction. Our first job is to get the code through the compiler. We
implement the new sniperBidding() method on Main and, to avoid having
code that doesn’t compile for too long, we pass the AuctionSniper a null
implementation of Auction.

Chapter 13 The Sniper Makes a Bid128

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

public class Main implements SniperListener { […]
 private void joinAuction(XMPPConnection connection, String itemId)
 throws XMPPException
 {

Auction nullAuction = new Auction() {
 public void bid(int amount) {}
 };
 disconnectWhenUICloses(connection);

 Chat chat = connection.getChatManager().createChat(
 auctionId(itemId, connection),
 new AuctionMessageTranslator(new AuctionSniper(nullAuction, this)));
 this.notToBeGCd = chat;
 chat.sendMessage(JOIN_COMMAND_FORMAT);
 }
 public void sniperBidding() {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 ui.showStatus(MainWindow.STATUS_BIDDING);
 }
 });
 }
}

So, what goes in the Auction implementation? It needs access to the chat so it
can send a bid message. To create the chat we need a translator, the translator
needs a Sniper, and the Sniper needs an auction. We have a dependency loop
which we need to break.

Looking again at our design, there are a couple of places we could intervene,
but it turns out that the ChatManager API is misleading. It does not require a
MessageListener to create a Chat, even though the createChat() methods imply
that it does. In our terms, the MessageListener is a notification; we can pass in
null when we create the Chat and add a MessageListener later.

Expressing Intent in API

We were only able to discover that we could pass null as a MessageListener
because we have the source code to the Smack library. This isn’t clear from the
API because, presumably, the authors wanted to enforce the right behavior and
it’s not clear why anyone would want a Chat without a listener. An alternative would
have been to provide equivalent creation methods that don’t take a listener, but
that would lead to API bloat. There isn’t an obvious best approach here, except to
note that including well-structured source code with the distribution makes libraries
much easier to work with.

129Sending a Bid

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Now we can restructure our connection code and use the Chat to send back
a bid.

public class Main implements SniperListener { […]
 private void joinAuction(XMPPConnection connection, String itemId)
 throws XMPPException
 {
 disconnectWhenUICloses(connection);

 final Chat chat =
 connection.getChatManager().createChat(auctionId(itemId, connection), null);
 this.notToBeGCd = chat;

 Auction auction = new Auction() {
 public void bid(int amount) {
 try {
 chat.sendMessage(String.format(BID_COMMAND_FORMAT, amount));
 } catch (XMPPException e) {
 e.printStackTrace();
 }
 }
 };
 chat.addMessageListener(
 new AuctionMessageTranslator(new AuctionSniper(auction, this)));
 chat.sendMessage(JOIN_COMMAND_FORMAT);
 }
}

Null Implementation

A null implementation is similar to a null object [Woolf98]: both are implementations
that respond to a protocol by not doing anything—but the intention is different. A
null object is usually one implementation amongst many, introduced to reduce
complexity in the code that calls the protocol. We define a null implementation as
a temporary empty implementation, introduced to allow the programmer to make
progress by deferring effort and intended to be replaced.

The End-to-End Tests Pass

Now the end-to-end tests pass: the Sniper can lose without making a bid, and
lose after making a bid. We can cross off another item on the to-do list, but that
includes just catching and printing the XMPPException. Normally, we regard this
as a very bad practice but we wanted to see the tests pass and get some structure
into the code—and we know that the end-to-end tests will fail anyway if there’s
a problem sending a message. To make sure we don’t forget, we add another
to-do item to find a better solution, Figure 13.3.

Chapter 13 The Sniper Makes a Bid130

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Figure 13.3 One step forward

Tidying Up the Implementation
Extracting XMPPAuction

Our end-to-end test passes, but we haven’t finished because our new implemen-
tation feels messy. We notice that the activity in joinAuction() crosses multiple
domains: managing chats, sending bids, creating snipers, and so on. We need to
clean up. To start, we notice that we’re sending auction commands from two
different levels, at the top and from within the Auction. Sending commands to
an auction sounds like the sort of thing that our Auction object should do, so it
makes sense to package that up together. We add a new method to the interface,
extend our anonymous implementation, and then extract it to a (temporarily)
nested class—for which we need a name. The distinguishing feature of this imple-
mentation of Auction is that it’s based on the messaging infrastructure, so we
call our new class XMPPAuction.

131Tidying Up the Implementation

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

public class Main implements SniperListener { […]
 private void joinAuction(XMPPConnection connection, String itemId) {
 disconnectWhenUICloses(connection);

 final Chat chat =
 connection.getChatManager().createChat(auctionId(itemId, connection),
 null);
 this.notToBeGCd = chat;

 Auction auction = new XMPPAuction(chat);
 chat.addMessageListener(
 new AuctionMessageTranslator(new AuctionSniper(auction, this)));

auction.join();
 }

 public static class XMPPAuction implements Auction {
 private final Chat chat;

 public XMPPAuction(Chat chat) {
 this.chat = chat;
 }

 public void bid(int amount) {
 sendMessage(format(BID_COMMAND_FORMAT, amount));
 }

 public void join() {
 sendMessage(JOIN_COMMAND_FORMAT);
 }

 private void sendMessage(final String message) {
 try {
 chat.sendMessage(message);
 } catch (XMPPException e) {
 e.printStackTrace();
 }
 }
 }
}

We’re starting to see a clearer model of the domain. The line auction.join()
expresses our intent more clearly than the previous detailed implementation of
sending a string to a chat. The new design looks like Figure 13.4 and we promote
XMPPAuction to be a top-level class.

We still think joinAuction() is unclear, and we’d like to pull the XMPP-related
detail out of Main, but we’re not ready to do that yet. Another point to keep
in mind.

Chapter 13 The Sniper Makes a Bid132

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Figure 13.4 Closing the loop with an XMPPAuction

Extracting the User Interface

The other activity in Main is implementing the user interface and showing the
current state in response to events from the Sniper. We’re not really happy that
Main implements SniperListener; again, it feels like mixing different responsibil-
ities (starting the application and responding to events). We decide to extract the
SniperListener behavior into a nested helper class, for which the best name we
can find is SniperStateDisplayer. This new class is our bridge between two do-
mains: it translates Sniper events into a representation that Swing can display,
which includes dealing with Swing threading. We plug an instance of the new
class into the AuctionSniper.

public class Main { // doesn't implement SniperListener
 private MainWindow ui;

 private void joinAuction(XMPPConnection connection, String itemId) {
 disconnectWhenUICloses(connection);
 final Chat chat =
 connection.getChatManager().createChat(auctionId(itemId, connection), null);
 this.notToBeGCd = chat;

 Auction auction = new XMPPAuction(chat);
 chat.addMessageListener(
 new AuctionMessageTranslator(
 connection.getUser(),
 new AuctionSniper(auction, new SniperStateDisplayer())));
 auction.join();
 }

[…]

133Tidying Up the Implementation

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

 public class SniperStateDisplayer implements SniperListener {
 public void sniperBidding() {
 showStatus(MainWindow.STATUS_BIDDING);
 }

 public void sniperLost() {
 showStatus(MainWindow.STATUS_LOST);
 }

 public void sniperWinning() {
 showStatus(MainWindow.STATUS_WINNING);
 }

 private void showStatus(final String status) {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() { ui.showStatus(status); }
 });
 }
 }
}

Figure 13.5 shows how we’ve reduced Main so much that it no longer partici-
pates in the running application (for clarity, we’ve left out the WindowAdapter
that closes the connection). It has one job which is to create the various compo-
nents and introduce them to each other. We’ve marked MainWindow as external,
even though it’s one of ours, to represent the Swing framework.

Figure 13.5 Extracting SniperStateDisplayer

Chapter 13 The Sniper Makes a Bid134

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Tidying Up the Translator

Finally, we fulfill our promise to ourselves and return to the
AuctionMessageTranslator. We start trying to reduce the noise by adding
constants and static imports, with some helper methods to reduce duplication.
Then we realize that much of the code is about manipulating the map of
name/value pairs and is rather procedural. We can do a better job by extracting
an inner class, AuctionEvent, to encapsulate the unpacking of the message con-
tents. We have confidence that we can refactor the class safely because it’s
protected by its unit tests.

public class AuctionMessageTranslator implements MessageListener {
 private final AuctionEventListener listener;

 public AuctionMessageTranslator(AuctionEventListener listener) {
 this.listener = listener;
 }
 public void processMessage(Chat chat, Message message) {

AuctionEvent event = AuctionEvent.from(message.getBody());

 String eventType = event.type();
 if ("CLOSE".equals(eventType)) {
 listener.auctionClosed();
 } if ("PRICE".equals(eventType)) {
 listener.currentPrice(event.currentPrice(), event.increment());
 }
 }
 private static class AuctionEvent {
 private final Map<String, String> fields = new HashMap<String, String>();
 public String type() { return get("Event"); }
 public int currentPrice() { return getInt("CurrentPrice"); }
 public int increment() { return getInt("Increment"); }

 private int getInt(String fieldName) {
 return Integer.parseInt(get(fieldName));
 }
 private String get(String fieldName) { return fields.get(fieldName); }

 private void addField(String field) {
 String[] pair = field.split(":");
 fields.put(pair[0].trim(), pair[1].trim());
 }
 static AuctionEvent from(String messageBody) {
 AuctionEvent event = new AuctionEvent();
 for (String field : fieldsIn(messageBody)) {
 event.addField(field);
 }
 return event;
 }
 static String[] fieldsIn(String messageBody) {
 return messageBody.split(";");
 }
 }
}

135Tidying Up the Implementation

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This is an example of “breaking out” that we described in “Value Types”
(page 59). It may not be obvious, but AuctionEvent is a value: it’s
immutable and there are no interesting differences between two instances
with the same contents. This refactoring separates the concerns within
AuctionMessageTranslator: the top level deals with events and listeners, and
the inner object deals with parsing strings.

Encapsulate Collections

We’ve developed a habit of packaging up common types, such as collections, in
our own classes, even though Java generics avoid the need to cast objects. We’re
trying to use the language of the problem we’re working on, rather than the language
of Java constructs. In our two versions of processMessage(), the first has lots of
incidental noise about looking up and parsing values.The second is written in terms
of auction events, so there’s less of a conceptual gap between the domain and
the code.

Our rule of thumb is that we try to limit passing around types with generics (the
types enclosed in angle brackets). Particularly when applied to collections, we view
it as a form of duplication. It’s a hint that there’s a domain concept that should be
extracted into a type.

Defer Decisions

There’s a technique we’ve used a couple of times now, which is to introduce a
null implementation of a method (or even a type) to get us through the next step.
This helps us focus on the immediate task without getting dragged into thinking
about the next significant chunk of functionality. The null Auction, for example,
allowed us to plug in a new relationship we’d discovered in a unit test without
getting pulled into messaging issues. That, in turn, meant we could stop and
think about the dependencies between our objects without the pressure of having
a broken compilation.

Keep the Code Compiling

We try to minimize the time when we have code that does not compile by keeping
changes incremental. When we have compilation failures, we can’t be quite sure
where the boundaries of our changes are, since the compiler can’t tell us. This, in
turn, means that we can’t check in to our source repository, which we like to do
often.The more code we have open, the more we have to keep in our heads which,
ironically, usually means we move more slowly. One of the great discoveries of
test-driven development is just how fine-grained our development steps can be.

Chapter 13 The Sniper Makes a Bid136

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Emergent Design

What we hope is becoming clear from this chapter is how we’re growing a design
from what looks like an unpromising start. We alternate, more or less, between
adding features and reflecting on—and cleaning up—the code that results. The
cleaning up stage is essential, since without it we would end up with an unmain-
tainable mess. We’re prepared to defer refactoring code if we’re not yet clear
what to do, confident that we will take the time when we’re ready. In the mean-
time, we keep our code as clean as possible, moving in small increments and using
techniques such as null implementation to minimize the time when it’s broken.

Figure 13.5 shows that we’re building up a layer around our core implementa-
tion that “protects” it from its external dependencies. We think this is just good
practice, but what’s interesting is that we’re getting there incrementally, by
looking for features in classes that either go together or don’t. Of course we’re
influenced by our experience of working on similar codebases, but we’re trying
hard to follow what the code is telling us instead of imposing our preconceptions.
Sometimes, when we do this, we find that the domain takes us in the most
surprising directions.

137Emergent Design

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Chapter 14

The Sniper Wins the Auction
In which we add another feature to our Sniper and let it win an auction.
We introduce the concept of state to the Sniper which we test by listen-
ing to its callbacks. We find that even this early, one of our refactorings
has paid off.

First, a Failing Test

We have a Sniper that can respond to price changes by bidding more, but it
doesn’t yet know when it’s successful. Our next feature on the to-do list is to
win an auction. This involves an extra state transition, as you can see in
Figure 14.1:

Figure 14.1 A sniper bids, then wins

To represent this, we add an end-to-end test based on sniperMakesAHigherBid-
ButLoses() with a different conclusion—sniperWinsAnAuctionByBiddingHigher().
Here’s the test, with the new features highlighted:

139

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

public class AuctionSniperEndToEndTest { […]
 @Test public void
sniperWinsAnAuctionByBiddingHigher() throws Exception {

 auction.startSellingItem();

 application.startBiddingIn(auction);
 auction.hasReceivedJoinRequestFrom(ApplicationRunner.SNIPER_XMPP_ID);

 auction.reportPrice(1000, 98, "other bidder");
 application.hasShownSniperIsBidding();

 auction.hasReceivedBid(1098, ApplicationRunner.SNIPER_XMPP_ID);

auction.reportPrice(1098, 97, ApplicationRunner.SNIPER_XMPP_ID);
 application.hasShownSniperIsWinning();

 auction.announceClosed();
 application.showsSniperHasWonAuction();
 }
}

In our test infrastructure we add the two methods to check that the user interface
shows the two new states to the ApplicationRunner.

This generates a new failure message:

java.lang.AssertionError:
Tried to look for...
 exactly 1 JLabel (with name "sniper status")
 in exactly 1 JFrame (with name "Auction Sniper Main" and showing on screen)
 in all top level windows
and check that its label text is "Winning"
but...
 all top level windows
 contained 1 JFrame (with name "Auction Sniper Main" and showing on screen)
 contained 1 JLabel (with name "sniper status")
label text was "Bidding"

Now we know where we’re going, we can implement the feature.

Who Knows about Bidders?

The application knows that the Sniper is winning if it’s the bidder for the last
price that the auction accepted. We have to decide where to put that logic.
Looking again at Figure 13.5 on page 134, one choice would be that the translator
could pass the bidder through to the Sniper and let the Sniper decide. That would
mean that the Sniper would have to know something about how bidders are
identified by the auction, with a risk of pulling in XMPP details that we’ve been
careful to keep separate. To decide whether it’s winning, the only thing the Sniper
needs to know when a price arrives is, did this price come from me? This is a

Chapter 14 The Sniper Wins the Auction140

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

choice, not an identifier, so we’ll represent it with an enumeration PriceSource
which we include in AuctionEventListener.1

Incidentally, PriceSource is an example of a value type. We want code that
describes the domain of Sniping—not, say, a boolean which we would have to
interpret every time we read it; there’s more discussion in “Value Types”
(page 59).

public interface AuctionEventListener extends EventListener {
enum PriceSource {

 FromSniper, FromOtherBidder;
 };
[…]

We take the view that determining whether this is our price or not is part of
the translator’s role. We extend currentPrice() with a new parameter and
change the translator’s unit tests; note that we change the name of the existing
test to include the extra feature. We also take the opportunity to pass the Sniper
identifier to the translator in SNIPER_ID. This ties the setup of the translator to
the input message in the second test.

public class AuctionMessageTranslatorTest { […]
 private final AuctionMessageTranslator translator =
 new AuctionMessageTranslator(SNIPER_ID, listener);

 @Test public void
 notifiesBidDetailsWhenCurrentPriceMessageReceivedFromOtherBidder() {
 context.checking(new Expectations() {{
 exactly(1).of(listener).currentPrice(192, 7, PriceSource.FromOtherBidder);
 }});
 Message message = new Message();
 message.setBody(
"SOLVersion: 1.1; Event: PRICE; CurrentPrice: 192; Increment: 7; Bidder: Someone else;"
);
 translator.processMessage(UNUSED_CHAT, message);
 }

 @Test public void
notifiesBidDetailsWhenCurrentPriceMessageReceivedFromSniper() {

 context.checking(new Expectations() {{
 exactly(1).of(listener).currentPrice(234, 5, PriceSource.FromSniper);
 }});
 Message message = new Message();
 message.setBody(

"SOLVersion: 1.1; Event: PRICE; CurrentPrice: 234; Increment: 5; Bidder: "
 + SNIPER_ID + ";");
 translator.processMessage(UNUSED_CHAT, message);
 }
}

1. Some developers we know have an allergic reaction to nested types. In Java, we use
them as a form of fine-grained scoping. In this case, PriceSource is always used
together with AuctionEventListener, so it makes sense to bind the two together.

141Who Knows about Bidders?

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The new test fails:

unexpected invocation:
 auctionEventListener.currentPrice(<192>, <7>, <FromOtherBidder>)
expectations:
! expected once, never invoked:
 auctionEventListener.currentPrice(<192>, <7>, <FromSniper>)
 parameter 0 matched: <192>
 parameter 1 matched: <7>
 parameter 2 did not match: <FromSniper>, because was <FromOtherBidder>
what happened before this: nothing!

The fix is to compare the Sniper identifier to the bidder from the event message.

public class AuctionMessageTranslator implements MessageListener { […]
private final String sniperId;

 public void processMessage(Chat chat, Message message) {
[…]

 } else if (EVENT_TYPE_PRICE.equals(type)) {
 listener.currentPrice(event.currentPrice(),
 event.increment(),

event.isFrom(sniperId));
 }
 }

 public static class AuctionEvent { […]
public PriceSource isFrom(String sniperId) {

 return sniperId.equals(bidder()) ? FromSniper : FromOtherBidder;
 }
 private String bidder() { return get("Bidder"); }
 }
}

The work we did in “Tidying Up the Translator” (page 135) to separate the
different responsibilities within the translator has paid off here. All we had to
do was add a couple of extra methods to AuctionEvent to get a very readable
solution.

Finally, to get all the code through the compiler, we fix joinAuction() in Main
to pass in the new constructor parameter for the translator. We can get a correctly
structured identifier from connection.

private void joinAuction(XMPPConnection connection, String itemId) {
[…]

 Auction auction = new XMPPAuction(chat);
 chat.addMessageListener(
 new AuctionMessageTranslator(

connection.getUser(),
 new AuctionSniper(auction, new SniperStateDisplayer())));
 auction.join();
}

Chapter 14 The Sniper Wins the Auction142

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The Sniper Has More to Say

Our immediate end-to-end test failure tells us that we should make the user inter-
face show when the Sniper is winning. Our next implementation step is to follow
through by fixing the AuctionSniper to interpret the isFromSniper parameter
we’ve just added. Once again we start with a unit test.

public class AuctionSniperTest { […]
 @Test public void
reportsIsWinningWhenCurrentPriceComesFromSniper() {

 context.checking(new Expectations() {{
 atLeast(1).of(sniperListener).sniperWinning();
 }});

 sniper.currentPrice(123, 45, PriceSource.FromSniper);
 }
}

To get through the compiler, we add the new sniperWinning() method to
SniperListener which, in turn, means that we add an empty implementation
to SniperStateDisplayer.

The test fails:

unexpected invocation: auction.bid(<168>)
expectations:
! expected at least 1 time, never invoked: sniperListener.sniperWinning()
what happened before this: nothing!

This failure is a nice example of trapping a method that we didn’t expect. We set
no expectations on the auction, so calls to any of its methods will fail the test.
If you compare this test to bidsHigherAndReportsBiddingWhenNewPriceArrives()
in “The AuctionSniper Bids” (page 126) you’ll also see that we drop the price
and increment variables and just feed in numbers. That’s because, in this test,
there’s no calculation to do, so we don’t need to reference them in an expectation.
They’re just details to get us to the interesting behavior.

The fix is straightforward:

public class AuctionSniper implements AuctionEventListener { […]
 public void currentPrice(int price, int increment, PriceSource priceSource) {

switch (priceSource) {
 case FromSniper:
 sniperListener.sniperWinning();
 break;
 case FromOtherBidder:
 auction.bid(price + increment);
 sniperListener.sniperBidding();
 break;
 }
 }
}

143The Sniper Has More to Say

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Running the end-to-end tests again shows that we’ve fixed the failure that
started this chapter (showing Bidding rather than Winning). Now we have to
make the Sniper win:

java.lang.AssertionError:
Tried to look for...
 exactly 1 JLabel (with name "sniper status")
 in exactly 1 JFrame (with name "Auction Sniper Main" and showing on screen)
 in all top level windows
and check that its label text is "Won"
but...
 all top level windows
 contained 1 JFrame (with name "Auction Sniper Main" and showing on screen)
 contained 1 JLabel (with name "sniper status")
label text was "Lost"

The Sniper Acquires Some State

We’re about to introduce a step change in the complexity of the Sniper, if only
a small one. When the auction closes, we want the Sniper to announce whether
it has won or lost, which means that it must know whether it was bidding or
winning at the time. This implies that the Sniper will have to maintain some state,
which it hasn’t had to so far.

To get to the functionality we want, we’ll start with the simpler cases where
the Sniper loses. As Figure 14.2 shows, we’re starting with one- and two-step
transitions, before adding the additional step that takes the Sniper to the Won state:

Figure 14.2 A Sniper bids, then loses

Chapter 14 The Sniper Wins the Auction144

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

We start by revisiting an existing unit test and adding a new one. These tests
will pass with the current implementation; they’re there to ensure that we don’t
break the behavior when we add further transitions.

This introduces some new jMock syntax, states. The idea is to allow us to
make assertions about the internal state of the object under test. We’ll come back
to this idea in a moment.

public class AuctionSniperTest { […]
 private final States sniperState = context.states("sniper"); 1

 @Test public void
 reportsLostIfAuctionClosesImmediately() { 2
 context.checking(new Expectations() {{
 atLeast(1).of(sniperListener).sniperLost();
 }});

 sniper.auctionClosed();
 }

 @Test public void
reportsLostIfAuctionClosesWhenBidding() {

 context.checking(new Expectations() {{
 ignoring(auction); 3
 allowing(sniperListener).sniperBidding();
 then(sniperState.is("bidding")); 4

atLeast(1).of(sniperListener).sniperLost();
 when(sniperState.is("bidding")); 5
 }});

 sniper.currentPrice(123, 45, PriceSource.FromOtherBidder); 6
 sniper.auctionClosed();
 }
}

1 We want to keep track of the Sniper’s current state, as signaled by the events
it sends out, so we ask context for a placeholder. The default state is null.

2 We keep our original test, but now it will apply where there are no price
updates.

3 The Sniper will call auction but we really don’t care about that in this test,
so we tell the test to ignore this collaborator completely.

4 When the Sniper sends out a bidding event, it’s telling us that it’s in a bidding
state, which we record here. We use the allowing() clause to communicate
that this is a supporting part of the test, not the part we really care about;
see the note below.

5 This is the phrase that matters, the expectation that we want to assert. If the
Sniper isn’t bidding when it makes this call, the test will fail.

145The Sniper Acquires Some State

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6 This is our first test where we need a sequence of events to get the Sniper
into the state we want to test. We just call its methods in order.

Allowances

jMock distinguishes between allowed and expected invocations. An allowing()
clause says that the object might make this call, but it doesn’t have to—unlike an
expectation which will fail the test if the call isn’t made. We make the distinction to
help express what is important in a test (the underlying implementation is actually
the same): expectations are what we want to confirm to have happened; allowances
are supporting infrastructure that helps get the tested objects into the right state,
or they’re side effects we don’t care about. We return to this topic in “Allowances
and Expectations” (page 277) and we describe the API in Appendix A.

Representing Object State

In cases like this, we want to make assertions about an object’s behavior depending
on its state, but we don’t want to break encapsulation by exposing how that state
is implemented. Instead, the test can listen to the notification events that the Sniper
provides to tell interested collaborators about its state in their terms. jMock provides
States objects, so that tests can record and make assertions about the state of
an object when something significant happens, i.e. when it calls its neighbors; see
Appendix A for the syntax.

This is a “logical” representation of what’s going on inside the object, in this case
the Sniper. It allows the test to describe what it finds relevant about the Sniper, re-
gardless of how the Sniper is actually implemented. As you’ll see shortly, this sep-
aration will allow us to make radical changes to the implementation of the Sniper
without changing the tests.

The unit test name reportsLostIfAuctionClosesWhenBidding is very similar
to the expectation it enforces:

atLeast(1).of(sniperListener).sniperLost(); when(sniperState.is("bidding"));

That’s not an accident. We put a lot of effort into figuring out which abstractions
jMock should support and developing a style that expresses the essential intent
of a unit test.

The Sniper Wins

Finally, we can close the loop and have the Sniper win a bid. The next test
introduces the Won event.

Chapter 14 The Sniper Wins the Auction146

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

@Test public void
reportsWonIfAuctionClosesWhenWinning() {
 context.checking(new Expectations() {{
 ignoring(auction);
 allowing(sniperListener).sniperWinning(); then(sniperState.is("winning"));

 atLeast(1).of(sniperListener).sniperWon(); when(sniperState.is("winning"));
 }});
 sniper.currentPrice(123, 45, true);
 sniper.auctionClosed();
}

It has the same structure but represents when the Sniper has won. The test fails
because the Sniper called sniperLost().

unexpected invocation: sniperListener.sniperLost()
expectations:
 allowed, never invoked:
 auction.<any method>(<any parameters>) was[];
 allowed, already invoked 1 time: sniperListener.sniperWinning();
 then sniper is winning
 expected at least 1 time, never invoked: sniperListener.sniperWon();
 when sniper is winning
states:
 sniper is winning
what happened before this:
 sniperListener.sniperWinning()

We add a flag to represent the Sniper’s state, and implement the new
sniperWon() method in the SniperStateDisplayer.

public class AuctionSniper implements AuctionEventListener { […]
private boolean isWinning = false;

 public void auctionClosed() {
if (isWinning) {

 sniperListener.sniperWon();
 } else {
 sniperListener.sniperLost();
 }
 }
 public void currentPrice(int price, int increment, PriceSource priceSource) {

isWinning = priceSource == PriceSource.FromSniper;
 if (isWinning) {
 sniperListener.sniperWinning();
 } else {
 auction.bid(price + increment);
 sniperListener.sniperBidding();
 }
 }
}
public class SniperStateDisplayer implements SniperListener { […]
 public void sniperWon() {
 showStatus(MainWindow.STATUS_WON);
 }
}

147The Sniper Wins

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Having previously made a fuss about PriceSource, are we being inconsistent
here by using a boolean for isWinning? Our excuse is that we did try an enum
for the Sniper state, but it just looked too complicated. The field is private to
AuctionSniper, which is small enough so it’s easy to change later and the code
reads well.

The unit and end-to-end tests all pass now, so we can cross off another item
from the to-do list in Figure 14.3.

Figure 14.3 The Sniper wins

There are more tests we could write—for example, to describe the transitions
from bidding to winning and back again, but we’ll leave those as an exercise for
you, Dear Reader. Instead, we’ll move on to the next significant change in
functionality.

Making Steady Progress

As always, we made steady progress by adding little slices of functionality. First
we made the Sniper show when it’s winning, then when it has won. We used
empty implementations to get us through the compiler when we weren’t ready
to fill in the code, and we stayed focused on the immediate task.

One of the pleasant surprises is that, now the code is growing a little, we’re
starting to see some of our earlier effort pay off as new features just fit into the
existing structure. The next tasks we have to implement will shake this up.

Chapter 14 The Sniper Wins the Auction148

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Chapter 15

Towards a Real User Interface
In which we grow the user interface from a label to a table. We achieve
this by adding a feature at a time, instead of taking the risk of replacing
the whole thing in one go. We discover that some of the choices we
made are no longer valid, so we dare to change existing code. We
continue to refactor and sense that a more interesting structure is
starting to appear.

A More Realistic Implementation
What Do We Have to Do Next?

So far, we’ve been making do with a simple label in the user interface. That’s
been effective for helping us clarify the structure of the application and prove
that our ideas work, but the next tasks coming up will need more, and the client
wants to see something that looks closer to Figure 9.1. We will need to show
more price details from the auction and handle multiple items.

The simplest option would be just to add more text into the label, but we think
this is the right time to introduce more structure into the user interface. We de-
ferred putting effort into this part of the application, and we think we should
catch up now to be ready for the more complex requirements we’re about to
implement. We decide to make the obvious choice, given our use of Swing, and
replace the label with a table component. This decision gives us a clear direction
for where our design should go next.

The Swing pattern for using a JTable is to associate it with a TableModel. The
table component queries the model for values to present, and the model notifies
the table when those values change. In our application, the relationships will
look like Figure 15.1. We call the new class SnipersTableModel because we want
it to support multiple Snipers. It will accept updates from the Snipers and provide
a representation of those values to its JTable.

The question is how to get there from here.

149

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Figure 15.1 Swing table model for the AuctionSniper

Replacing JLabel

We want to get the pieces into place with a minimum of change, without tearing
the whole application apart. The smallest step we can think of is to replace the
existing implementation (a JLabel) with a single-cell JTable, from which we can
then grow the additional functionality. We start, of course, with the test, changing
our harness to look for a cell in a table, rather than a label.

public class AuctionSniperDriver extends JFrameDriver { […]

 public void showsSniperStatus(String statusText) {
new JTableDriver(this).hasCell(withLabelText(equalTo(statusText)));

 }
}

This generates a failure message because we don’t yet have a table.

[…] but...
 all top level windows
 contained 1 JFrame (with name "Auction Sniper Main" and showing on screen)

contained 0 JTable ()

Chapter 15 Towards a Real User Interface150

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

We fix this test by retrofitting a minimal JTable implementation. From now
on, we want to speed up our narrative, so we’ll just show the end result. If we
were feeling cautious we would first add an empty table, to fix the immediate
failure, and then add its contents. It turns out that we don’t have to change any
existing classes outside MainWindow because it encapsulates the act of updating
the status. Here’s the new code:

public class MainWindow extends JFrame { […]
private final SnipersTableModel snipers = new SnipersTableModel();

 public MainWindow() {
 super(APPLICATION_TITLE);
 setName(MainWindow.MAIN_WINDOW_NAME);

fillContentPane(makeSnipersTable());
 pack();
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setVisible(true);
 }

 private void fillContentPane(JTable snipersTable) {
 final Container contentPane = getContentPane();
 contentPane.setLayout(new BorderLayout());

 contentPane.add(new JScrollPane(snipersTable), BorderLayout.CENTER);
 }

 private JTable makeSnipersTable() {
 final JTable snipersTable = new JTable(snipers);
 snipersTable.setName(SNIPERS_TABLE_NAME);
 return snipersTable;
 }

 public void showStatusText(String statusText) {
snipers.setStatusText(statusText);

 }
}

public class SnipersTableModel extends AbstractTableModel {
 private String statusText = STATUS_JOINING;

 public int getColumnCount() { return 1; }
 public int getRowCount() { return 1; }
 public Object getValueAt(int rowIndex, int columnIndex) { return statusText; }

 public void setStatusText(String newStatusText) {
 statusText = newStatusText;
 fireTableRowsUpdated(0, 0);
 }
}

151A More Realistic Implementation

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Still Ugly

As you can see, the SnipersTableModel really is a minimal implementation; the
only value that can vary is the statusText. It inherits most of its behavior from
the Swing AbstractTableModel, including the infrastructure for notifying the
JTable of data changes. The result is as ugly as our previous version, except that
now the JTable adds a default column title “A”, as in Figure 15.2. We’ll work
on the presentation in a moment.

Figure 15.2 Sniper with a single-cell table

Displaying Price Details
First, a Failing Test

Our next task is to display information about the Sniper’s position in the auction:
item identifier, last auction price, last bid, status. These values come from updates
from the auction and the state held within the application. We need to pass them
through from their source to the table model and then render them in the display.
Of course, we start with the test. Given that this feature should be part of the
basic functionality of the application, not separate from what we already have,
we update our existing acceptance tests—starting with just one test so we don’t
break everything at once. Here’s the new version:

public class AuctionSniperEndToEndTest {
 @Test public void
sniperWinsAnAuctionByBiddingHigher() throws Exception {

 auction.startSellingItem();

 application.startBiddingIn(auction);
 auction.hasReceivedJoinRequestFrom(ApplicationRunner.SNIPER_XMPP_ID);

 auction.reportPrice(1000, 98, "other bidder");
 application.hasShownSniperIsBidding(1000, 1098); // last price, last bid

 auction.hasReceivedBid(1098, ApplicationRunner.SNIPER_XMPP_ID);

 auction.reportPrice(1098, 97, ApplicationRunner.SNIPER_XMPP_ID);
 application.hasShownSniperIsWinning(1098); // winning bid

 auction.announceClosed();
 application.showsSniperHasWonAuction(1098); // last price
 }
}

Chapter 15 Towards a Real User Interface152

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

public class ApplicationRunner {
private String itemId;

 public void startBiddingIn(final FakeAuctionServer auction) {
itemId = auction.getItemId();
[…]

 }

[…]
 public void hasShownSniperIsBidding(int lastPrice, int lastBid) {
 driver.showsSniperStatus(itemId, lastPrice, lastBid,
 MainWindow.STATUS_BIDDING);
 }

 public void hasShownSniperIsWinning(int winningBid) {
 driver.showsSniperStatus(itemId, winningBid, winningBid,
 MainWindow.STATUS_WINNING);
 }

 public void showsSniperHasWonAuction(int lastPrice) {
 driver.showsSniperStatus(itemId, lastPrice, lastPrice,
 MainWindow.STATUS_WON);
 }
}

public class AuctionSniperDriver extends JFrameDriver {
[…]

 public void showsSniperStatus(String itemId, int lastPrice, int lastBid,
 String statusText)
 {
 JTableDriver table = new JTableDriver(this);
 table.hasRow(
 matching(withLabelText(itemId), withLabelText(valueOf(lastPrice)),
 withLabelText(valueOf(lastBid)), withLabelText(statusText)));
 }
}

We need the item identifier so the test can look for it in the row, so we make
the ApplicationRunner hold on it when connecting to an auction. We extend the
AuctionSniperDriver to look for a table row that shows the item identifier, last
price, last bid, and sniper status.

The test fails because the row has no details, only the status text:

[…] but...
 all top level windows
 contained 1 JFrame (with name "Auction Sniper Main" and showing on screen)
 contained 1 JTable ()
 it is not with row with cells
 <label with text "item-54321">, <label with text "1000">,
 <label with text "1098">, <label with text "Bidding">
because

 in row 0: component 0 text was "Bidding"

153Displaying Price Details

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Sending the State out of the Sniper

With an acceptance test to show us where we want to get to, we can fill in the
steps along the way. As usual, we work “outside-in,” from the event that triggers
the behavior; in this case it’s a price update from Southabee’s On-Line.
Following along the sequence of method calls, we don’t have to change
AuctionMessageTranslator, so we start by looking at AuctionSniper and its
unit tests.

AuctionSniper notifies changes in its state to neighbors that implement the
SniperListener interface which, as you might remember, has four callback
methods, one for each state of the Sniper. Now we also need to pass in the current
state of the Sniper when we notify a listener. We could add the same set of argu-
ments to each method, but that would be duplication; so, we introduce a value
type to carry the Sniper’s state. This is an example of “bundling up” that we
described in “Value Types” (page 59). Here’s a first cut:

public class SniperState {
 public final String itemId;
 public final int lastPrice;
 public final int lastBid;

 public SniperState(String itemId, int lastPrice, int lastBid) {
 this.itemId = itemId;
 this.lastPrice = lastPrice;
 this.lastBid = lastBid;
 }
}

To save effort, we use the reflective builders from the Apache commons.lang
library to implement equals(), hashCode(), and toString() in the new class. We
could argue that we’re being premature with these features, but in practice we’ll
need them in a moment when we write our unit tests.

Public Final Fields

We’ve adopted a habit of using public final fields in value types, at least while we’re
in the process of sorting out what the type should do. It makes it obvious that the
value is immutable and reduces the overhead of maintaining getters when the class
isn’t yet stable. Our ambition, which we might not achieve, is to replace all field
access with meaningful action methods on the type. We’ll see how that pans out.

We don’t want to break all the tests at once, so we start with an easy one. In
this test there’s no history, all we have to do in the Sniper is construct a
SniperState from information available at the time and pass it to the listener.

Chapter 15 Towards a Real User Interface154

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

public class AuctionSniperTest { […]
 @Test public void
bidsHigherAndReportsBiddingWhenNewPriceArrives() {

 final int price = 1001;
 final int increment = 25;
 final int bid = price + increment;

 context.checking(new Expectations() {{
 one(auction).bid(bid);
 atLeast(1).of(sniperListener).sniperBidding(

new SniperState(ITEM_ID, price, bid));
 }});

 sniper.currentPrice(price, increment, PriceSource.FromOtherBidder);
 }
}

Then we make the test pass:

public class AuctionSniper implements AuctionEventListener { […]
 public void currentPrice(int price, int increment, PriceSource priceSource) {
 isWinning = priceSource == PriceSource.FromSniper;
 if (isWinning) {
 sniperListener.sniperWinning();
 } else {

int bid = price + increment;
 auction.bid(bid);
 sniperListener.sniperBidding(new SniperState(itemId, price, bid));
 }
 }
}

To get the code to compile, we also add the state argument to the
sniperBidding() method in SniperStateDisplayer, which implements
SniperListener, but don’t yet do anything with it.

The one significant change is that the Sniper needs access to the item identifier
so it can construct a SniperState. Given that the Sniper doesn’t need this value
for any other reason, we could have kept it in the SniperStateDisplayer and
added it in when an event passes through, but we think it’s reasonable that the
Sniper has access to this information. We decide to pass the identifier into the
AuctionSniper constructor; it’s available at the time, and we don’t want to get
it from the Auction object which may have its own form of identifier for an item.

We have one other test that refers to the sniperBidding() method, but only
as an “allowance.” We use a matcher that says that, since it’s only supporting
the interesting part of the test, we don’t care about the contents of the state object.

allowing(sniperListener).sniperBidding(with(any(SniperState.class)));

Showing a Bidding Sniper

We’ll take larger steps for the next task—presenting the state in the user
interface—as there are some new moving parts, including a new unit test. The

155Displaying Price Details

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

first version of the code will be clumsier than we would like but, as you’ll soon
see, there’ll be interesting opportunities for cleaning up.

Our very first step is to pass the new state parameter, which we’ve been ignor-
ing, through MainWindow to a new method in SnipersTableModel. While we’re at
it, we notice that just passing events through MainWindow isn’t adding much value,
so we make a note to deal with that later.

public class SniperStateDisplayer implements SniperListener { […]
 public void sniperBidding(final SniperState state) {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {

ui.sniperStatusChanged(state, MainWindow.STATUS_BIDDING);
 }
 });
 }
}

public class MainWindow extends JFrame { […]
 public void sniperStatusChanged(SniperState sniperState, String statusText) {
 snipers.sniperStatusChanged(sniperState, statusText);
 }
}

To get the new values visible on screen, we need to fix SnipersTableModel so
that it makes them available to its JTable, starting with a unit test. We take a
small design leap by introducing a Java enum to represent the columns in the
table—it’s more meaningful than just using integers.

public enum Column {
 ITEM_IDENTIFIER,
 LAST_PRICE,
 LAST_BID,
 SNIPER_STATUS;

 public static Column at(int offset) { return values()[offset]; }
}

The table model needs to do two things when its state changes: hold onto the
new values and notify the table that they’ve changed. Here’s the test:

@RunWith(JMock.class)
public class SnipersTableModelTest {
 private final Mockery context = new Mockery();
 private TableModelListener listener = context.mock(TableModelListener.class);
 private final SnipersTableModel model = new SnipersTableModel();

 @Before public void attachModelListener() { 1
 model.addTableModelListener(listener);
 }

 @Test public void
hasEnoughColumns() { 2

 assertThat(model.getColumnCount(), equalTo(Column.values().length));
 }

Chapter 15 Towards a Real User Interface156

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

 @Test public void
setsSniperValuesInColumns() {

 context.checking(new Expectations() {{
 one(listener).tableChanged(with(aRowChangedEvent())); 3
 }});

 model.sniperStatusChanged(new SniperState("item id", 555, 666), 4
 MainWindow.STATUS_BIDDING);

 assertColumnEquals(Column.ITEM_IDENTIFIER, "item id"); 5
 assertColumnEquals(Column.LAST_PRICE, 555);
 assertColumnEquals(Column.LAST_BID, 666);
 assertColumnEquals(Column.SNIPER_STATUS, MainWindow.STATUS_BIDDING);
 }

 private void assertColumnEquals(Column column, Object expected) {
 final int rowIndex = 0;
 final int columnIndex = column.ordinal();
 assertEquals(expected, model.getValueAt(rowIndex, columnIndex);
 }

 private Matcher<TableModelEvent> aRowChangedEvent() { 6
 return samePropertyValuesAs(new TableModelEvent(model, 0));
 }
}

1 We attach a mock implementation of TableModelListener to the model. This
is one of the few occasions where we break our rule “Only Mock Types That
You Own” (page 69) because the table model design fits our design approach
so well.

2 We add a first test to make sure we’re rendering the right number of columns.
Later, we’ll do something about the column titles.

3 This expectation checks that we notify any attached JTable that the contents
have changed.

4 This is the event that triggers the behavior we want to test.

5 We assert that the table model returns the right values in the right columns.
We hard-code the row number because we’re still assuming that there is
only one.

6 There’s no specific equals() method on TableModelEvent, so we use a
matcher that will reflectively compare the property values of any event it re-
ceives against an expected example. Again, we hard-code the row number.

After the usual red/green cycle, we end up with an implementation that looks
like this:

157Displaying Price Details

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

public class SnipersTableModel extends AbstractTableModel {
 private final static SniperState STARTING_UP = new SniperState("", 0, 0);
 private String statusText = MainWindow.STATUS_JOINING;
 private SniperState sniperState = STARTING_UP; 1
[…]

 public int getColumnCount() { 2
 return Column.values().length;
 }
 public int getRowCount() {
 return 1;
 }
 public Object getValueAt(int rowIndex, int columnIndex) { 3
 switch (Column.at(columnIndex)) {
 case ITEM_IDENTIFIER:
 return sniperState.itemId;
 case LAST_PRICE:
 return sniperState.lastPrice;
 case LAST_BID:
 return sniperState.lastBid;
 case SNIPER_STATUS:
 return statusText;
 default:
 throw new IllegalArgumentException("No column at " + columnIndex);
 }
 }
 public void sniperStatusChanged(SniperState newSniperState, 4
 String newStatusText)
 {
 sniperState = newSniperState;
 statusText = newStatusText;
 fireTableRowsUpdated(0, 0);
 }
}

1 We provide an initial SniperState with “empty” values so that the table
model will work before the Sniper has connected.

2 For the dimensions, we just return the numbers of values in Column or a
hard-coded row count.

3 This method unpacks the value to return depending on the column that is
specified. The advantage of using an enum is that the compiler will help with
missing branches in the switch statement (although it still insists on a default
case). We’re not keen on using switch, as it’s not object-oriented, so we’ll
keep an eye on this too.

4 The Sniper-specific method. It sets the fields and then triggers its clients to
update.

If we run our acceptance test again, we find we’ve made some progress. It’s
gone past the Bidding check and now fails because the last price column, “B”,
has not yet been updated. Interestingly, the status column shows Winning correctly,
because that code is still working.

Chapter 15 Towards a Real User Interface158

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

[…] but...
 all top level windows
 contained 1 JFrame (with name "Auction Sniper Main" and showing on screen)
 contained 1 JTable ()
 it is not with row with cells
 <label with text "item-54321">, <label with text "1098">,
 <label with text "1098">, <label with text "Winning">

because
 in row 0: component 1 text was "1000"

and the proof is in Figure 15.3.

Figure 15.3 Sniper showing a row of detail

Simplifying Sniper Events
Listening to the Mood Music

We have one kind of Sniper event, Bidding, that we can handle all the way
through our application. Now we have to do the same thing to Winning, Lost,
and Won.

Frankly, that’s just dull. There’s too much repetitive work needed to make the
other cases work—setting them up in the Sniper and passing them through
the layers. Something’s wrong with the design. We toss this one around for a
while and eventually notice that we would have a subtle duplication in our code
if we just carried on. We would be splitting the transmission of the Sniper state
into two mechanisms: the choice of listener method and the state object. That’s
one mechanism too many.

We realize that we could collapse our events into one notification that includes
the prices and the Sniper status. Of course we’re transmitting the same information
whichever mechanism we choose—but, looking at the chain of methods calls,
it would be simpler to have just one method and pass everything through in
SniperState.

Having made this choice, can we do it cleanly without ripping up the
metaphorical floorboards? We believe we can—but first, one more clarification.

We want to start by creating a type to represent the Sniper’s status (winning,
losing, etc.) in the auction, but the terms “status” and “state” are too close to
distinguish easily. We kick around some vocabulary and eventually decide that
a better term for what we now call SniperState would be SniperSnapshot: a
description of the Sniper’s relationship with the auction at this moment in time.
This frees up the name SniperState to describe whether the Sniper is winning,
losing, and so on, which matches the terminology of the state machine we drew

159Simplifying Sniper Events

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

in Figure 9.3 on page 78. Renaming the SniperState takes a moment, and we
change the value in Column from SNIPER_STATUS to SNIPER_STATE.

20/20 Hindsight

We’ve just gone through not one but two of those forehead-slapping moments that
make us wonder why we didn’t see it the first time around. Surely, if we’d spent
more time on the design, we wouldn’t have to change it now? Sometimes that’s
true. Our experience, however, is that nothing shakes out a design like trying to
implement it, and between us we know just a handful of people who are smart
enough to get their designs always right. Our coping mechanism is to get into the
critical areas of the code early and to allow ourselves to change our collective mind
when we could do better. We rely on our skills, on taking small steps, and on the
tests to protect us when we make changes.

Repurposing sniperBidding()

Our first step is to take the method that does most of what we want,
sniperBidding(), and rework it to fit our new scheme. We create an enum that
takes the SniperState name we’ve just freed up and add it to SniperSnapshot;
we take the sniperState field out of the method arguments; and, finally, we re-
name the method to sniperStateChanged() to match its intended new role. We
push the changes through to get the following code:

public enum SniperState {
 JOINING,
 BIDDING,
 WINNING,
 LOST,
 WON;
}

public class AuctionSniper implements AuctionEventListener { […]
 public void currentPrice(int price, int increment, PriceSource priceSource) {
 isWinning = priceSource == PriceSource.FromSniper;
 if (isWinning) {
 sniperListener.sniperWinning();
 } else {
 final int bid = price + increment;
 auction.bid(bid);
 sniperListener.sniperStateChanged(
 new SniperSnapshot(itemId, price, bid, SniperState.BIDDING));
 }
 }
}

Chapter 15 Towards a Real User Interface160

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

In the table model, we use simple indexing to translate the enum into displayable
text.

public class SnipersTableModel extends AbstractTableModel { […]

private static String[] STATUS_TEXT = { MainWindow.STATUS_JOINING,
 MainWindow.STATUS_BIDDING };
 public void sniperStateChanged(SniperSnapshot newSnapshot) {
 this.snapshot = newSnapshot;
 this.state = STATUS_TEXT[newSnapshot.state.ordinal()];

 fireTableRowsUpdated(0, 0);
 }
}

We make some minor changes to the test code, to get it through the compiler,
plus one more interesting adjustment. You might remember that we wrote an
expectation clause that ignored the details of the SniperState:

allowing(sniperListener).sniperBidding(with(any(SniperState.class)));

We can no longer rely on the choice of method to distinguish between different
events, so we have to dig into the new SniperSnapshot object to make sure we’re
matching the right one. We rewrite the expectation with a custom matcher that
checks just the state:

public class AuctionSniperTest {
[…]

 context.checking(new Expectations() {{
 ignoring(auction);
 allowing(sniperListener).sniperStateChanged(
 with(aSniperThatIs(BIDDING)));
 then(sniperState.is("bidding"));

 atLeast(1).of(sniperListener).sniperLost(); when(sniperState.is("bidding"));
 }});

[…]

 private Matcher<SniperSnapshot> aSniperThatIs(final SniperState state) {
 return new FeatureMatcher<SniperSnapshot, SniperState>(
 equalTo(state), "sniper that is ", "was")
 {
 @Override
 protected SniperState featureValueOf(SniperSnapshot actual) {
 return actual.state;
 }
 };
 }
}

161Simplifying Sniper Events

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Lightweight Extensions to jMock

We added a small helper method aSniperThatIs() to package up our specializa-
tion of FeatureMatcher behind a descriptive name. You’ll see that the method
name is intended to make the expectation code read well (or as well as we can
manage in Java).We did the same earlier in the chapter with aRowChangedEvent().
As we discussed in “Different Levels of Language” on page 51, we’re effectively
writing extensions to a language that’s embedded in Java. jMock was designed to
be extensible in this way, so that programmers can plug in features described in
terms of the code they’re testing.You could think of these little helper methods as
creating new nouns in jMock’s expectation language.

Filling In the Numbers

Now we’re in a position to feed the missing price to the user interface, which
means changing the listener call from sniperWinning() to sniperStateChanged()
so that the listener will receive the value in a SniperSnapshot. We start by
changing the test to expect the different listener call, and to trigger the event by
calling currentPrice() twice: once to force the Sniper to bid, and again to tell
the Sniper that it’s winning.

public class AuctionSniperTest { […]
 @Test public void
reportsIsWinningWhenCurrentPriceComesFromSniper() {

 context.checking(new Expectations() {{
 ignoring(auction);
 allowing(sniperListener).sniperStateChanged(
 with(aSniperThatIs(BIDDING)));
 then(sniperState.is("bidding"));

atLeast(1).of(sniperListener).sniperStateChanged(
 new SniperSnapshot(ITEM_ID, 135, 135, WINNING));
 when(sniperState.is("bidding"));
 }});

sniper.currentPrice(123, 12, PriceSource.FromOtherBidder);
 sniper.currentPrice(135, 45, PriceSource.FromSniper);
 }
}

We change AuctionSniper to retain its most recent values by holding on to the
last snapshot. We also add some helper methods to SniperSnapshot, and find
that our implementation starts to simplify.

Chapter 15 Towards a Real User Interface162

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

public class AuctionSniper implements AuctionEventListener { […]
private SniperSnapshot snapshot;

 public AuctionSniper(String itemId, Auction auction, SniperListener sniperListener)
 {
 this.auction = auction;
 this.sniperListener = sniperListener;

this.snapshot = SniperSnapshot.joining(itemId);
 }

 public void currentPrice(int price, int increment, PriceSource priceSource) {
 isWinning = priceSource == PriceSource.FromSniper;
 if (isWinning) {

snapshot = snapshot.winning(price);
 } else {
 final int bid = price + increment;
 auction.bid(bid);

snapshot = snapshot.bidding(price, bid);
 }

sniperListener.sniperStateChanged(snapshot);
 }
}

public class SniperSnapshot { […]
 public SniperSnapshot bidding(int newLastPrice, int newLastBid) {
 return new SniperSnapshot(itemId, newLastPrice, newLastBid, SniperState.BIDDING);
 }

 public SniperSnapshot winning(int newLastPrice) {
 return new SniperSnapshot(itemId, newLastPrice, lastBid, SniperState.WINNING);
 }

 public static SniperSnapshot joining(String itemId) {
 return new SniperSnapshot(itemId, 0, 0, SniperState.JOINING);
 }
}

Nearly a State Machine

We’ve added some constructor methods to SniperSnapshot that provide a clean
mechanism for moving between snapshot states. It’s not a full state machine, in
that we don’t enforce only “legal” transitions, but it’s a hint, and it nicely packages
up the getting and setting of fields.

We remove sniperWinning() from SniperListener and its implementations,
and add a value for winning to SnipersTableModel.STATUS_TEXT.

Now, the end-to-end test passes.

163Simplifying Sniper Events

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Follow Through
Converting Won and Lost

This works, but we still have two notification methods in SniperListener left to
convert before we can say we’re done: sniperWon() and sniperLost(). Again,
we replace these with sniperStateChanged() and add two new values to
SniperState.

Plugging these changes in, we find that the code simplifies further. We drop
the isWinning field from the Sniper and move some decision-making into
SniperSnapshot, which will know whether the Sniper is winning or losing,
and SniperState.

public class AuctionSniper implements AuctionEventListener { […]
 public void auctionClosed() {

snapshot = snapshot.closed();
 notifyChange();
 }

 public void currentPrice(int price, int increment, PriceSource priceSource) {
switch(priceSource) {

 case FromSniper:
 snapshot = snapshot.winning(price);
 break;

case FromOtherBidder:
 int bid = price + increment;
 auction.bid(bid);
 snapshot = snapshot.bidding(price, bid);
 break;
 }

notifyChange();
 }

 private void notifyChange() {
 sniperListener.sniperStateChanged(snapshot);
 }
}

We note, with smug satisfaction, that AuctionSniper no longer refers to
SniperState; it’s hidden in SniperSnapshot.

public class SniperSnapshot { […]
 public SniperSnapshot closed() {
 return new SniperSnapshot(itemId, lastPrice, lastBid, state.whenAuctionClosed());
 }
}

Chapter 15 Towards a Real User Interface164

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

public enum SniperState {
 JOINING {
 @Override public SniperState whenAuctionClosed() { return LOST; }
 },
 BIDDING {
 @Override public SniperState whenAuctionClosed() { return LOST; }
 },
 WINNING {
 @Override public SniperState whenAuctionClosed() { return WON; }
 },
 LOST,
 WON;

 public SniperState whenAuctionClosed() {
 throw new Defect("Auction is already closed");
 }
}

We would have preferred to use a field to implement whenAuctionClosed(). It
turns out that the compiler cannot handle an enum referring to one of its values
which has not yet been defined, so we have to put up with the syntax noise of
overridden methods.

Not Too Small to Test

At first SniperState looked too simple to unit-test—after all, it’s exercised through
the AuctionSniper tests—but we thought we should keep ourselves honest.
Writing the test showed that our simple implementation didn’t handle re-closing an
auction, which shouldn’t happen, so we added an exception. It would be better to
write the code so that this case is impossible, but we can’t see how to do that
right now.

A Defect Exception

In most systems we build, we end up writing a runtime exception called something
like Defect (or perhaps StupidProgrammerMistakeException). We throw this
when the code reaches a condition that could only be caused by a programming
error, rather than a failure in the runtime environment.

165Follow Through

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Trimming the Table Model

We remove the accessor setStatusText() that sets the state display string in
SnipersTableModel, as everything uses sniperStatusChanged() now. While we’re
at it, we move the description string constants for the Sniper state over from
MainWindow.

public class SnipersTableModel extends AbstractTableModel { […]
private final static String[] STATUS_TEXT = {

 "Joining", "Bidding", "Winning", "Lost", "Won"
 };

 public Object getValueAt(int rowIndex, int columnIndex) {
 switch (Column.at(columnIndex)) {
 case ITEM_IDENTIFIER:
 return snapshot.itemId;
 case LAST_PRICE:
 return snapshot.lastPrice;
 case LAST_BID:
 return snapshot.lastBid;
 case SNIPER_STATE:
 return textFor(snapshot.state);
 default:
 throw new IllegalArgumentException("No column at" + columnIndex);
 }
 }

 public void sniperStateChanged(SniperSnapshot newSnapshot) {
this.snapshot = newSnapshot;

 fireTableRowsUpdated(0, 0);
 }

 public static String textFor(SniperState state) {
 return STATUS_TEXT[state.ordinal()];
 }
}

The helper method, textFor(), helps with readability, and we also use it to get
hold of the display strings in tests since the constants are no longer accessible
from MainWindow.

Object-Oriented Column

We still have a couple of things to do before we finish this task. We start by
removing all the old test code that didn’t specify the price details, filling in the
expected values in the tests as required. The tests still run.

The next change is to replace the switch statement which is noisy, not very
object-oriented, and includes an unnecessary default: clause just to satisfy the
compiler. It’s served its purpose, which was to get us through the previous coding
stage. We add a method to Column that will extract the appropriate field:

Chapter 15 Towards a Real User Interface166

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

public enum Column {
 ITEM_IDENTIFIER {
 @Override public Object valueIn(SniperSnapshot snapshot) {
 return snapshot.itemId;
 }
 },

 LAST_PRICE {
 @Override public Object valueIn(SniperSnapshot snapshot) {
 return snapshot.lastPrice;
 }
 },

 LAST_BID{
 @Override public Object valueIn(SniperSnapshot snapshot) {
 return snapshot.lastBid;
 }
 },

 SNIPER_STATE {
 @Override public Object valueIn(SniperSnapshot snapshot) {
 return SnipersTableModel.textFor(snapshot.state);
 }
 };

abstract public Object valueIn(SniperSnapshot snapshot);
[…]

}

and the code in SnipersTableModel becomes negligible:

public class SnipersTableModel extends AbstractTableModel { […]
 public Object getValueAt(int rowIndex, int columnIndex) {
 return Column.at(columnIndex).valueIn(snapshot);
 }
}

Of course, we write a unit test for Column. It may seem unnecessary now, but
it will protect us when we make changes and forget to keep the column mapping
up to date.

Shortening the Event Path

Finally, we see that we have some forwarding calls that we no longer need.
MainWindow just forwards the update and SniperStateDisplayer has collapsed
to almost nothing.

public class MainWindow extends JFrame { […]
 public void sniperStateChanged(SniperSnapshot snapshot) {
 snipers.sniperStateChanged(snapshot);
 }
}

167Follow Through

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

public class SniperStateDisplayer implements SniperListener { […]
 public void sniperStateChanged(final SniperSnapshot snapshot) {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() { mainWindow.sniperStateChanged(snapshot); }
 });
 }
}

SniperStateDisplayer still serves a useful purpose, which is to push updates
onto the Swing event thread, but it no longer does any translation between do-
mains in the code, and the call to MainWindow is unnecessary. We decide to sim-
plify the connections by making SnipersTableModel implement SniperListener.
We change SniperStateDisplayer to be a Decorator and rename it to
SwingThreadSniperListener, and we rewire Main so that the Sniper connects
to the table model rather than the window.

 public class Main { […]
private final SnipersTableModel snipers = new SnipersTableModel();

 private MainWindow ui;

 public Main() throws Exception {
 SwingUtilities.invokeAndWait(new Runnable() {
 public void run() { ui = new MainWindow(snipers); }
 });
 }

 private void joinAuction(XMPPConnection connection, String itemId) {
[…]

 Auction auction = new XMPPAuction(chat);
 chat.addMessageListener(
 new AuctionMessageTranslator(
 connection.getUser(),
 new AuctionSniper(itemId, auction,

new SwingThreadSniperListener(snipers))));
 auction.join();
 }
}

The new structure looks like Figure 15.4.

Final Polish
A Test for Column Titles

To make the user interface presentable, we need to fill in the column titles which,
as we saw in Figure 15.3, are still missing. This isn’t difficult, since most of the
implementation is built into Swing’s TableModel. As always, we start with
the acceptance test. We add extra validation to AuctionSniperDriver that will
be called by the method in ApplicationRunner that starts up the Sniper. For good
measure, we throw in a check for the application’s displayed title.

Chapter 15 Towards a Real User Interface168

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Figure 15.4 TableModel as a SniperListener

public class ApplicationRunner { […]
 public void startBiddingIn(final FakeAuctionServer auction) {
 itemId = auction.getItemId();

 Thread thread = new Thread("Test Application") {
[…]

 };
 thread.setDaemon(true);
 thread.start();

 driver = new AuctionSniperDriver(1000);
driver.hasTitle(MainWindow.APPLICATION_TITLE);
driver.hasColumnTitles();

 driver.showsSniperStatus(JOINING.itemId, JOINING.lastPrice,
 JOINING.lastBid, textFor(SniperState.JOINING));
 }
}

public class AuctionSniperDriver extends JFrameDriver { […]
 public void hasColumnTitles() {
 JTableHeaderDriver headers = new JTableHeaderDriver(this, JTableHeader.class);
 headers.hasHeaders(matching(withLabelText("Item"), withLabelText("Last Price"),
 withLabelText("Last Bid"), withLabelText("State")));
 }
}

The test fails:

169Final Polish

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

java.lang.AssertionError:
Tried to look for...
 exactly 1 JTableHeader ()
 in exactly 1 JFrame (with name "Auction Sniper Main" and showing on screen)
 in all top level windows
and check that it is with headers with cells
 <label with text "Item">, <label with text "Last Price">,
 <label with text "Last Bid">, <label with text "State">
but...
 all top level windows
 contained 1 JFrame (with name "Auction Sniper Main" and showing on screen)
 contained 1 JTableHeader ()
 it is not with headers with cells
 <label with text "Item">, <label with text "Last Price">,
 <label with text "Last Bid">, <label with text "State">

because component 0 text was "A"

Implementing the TableModel

Swing allows a JTable to query its TableModel for the column headers, which is
the mechanism we’ve chosen to use. We already have Column to represent the
columns, so we extend this enum by adding a field for the header text which we
reference in SnipersTableModel.

public enum Column {
 ITEM_IDENTIFIER("Item") { […]
 LAST_PRICE("Last Price") { […]
 LAST_BID("Last Bid") { […]
 SNIPER_STATE("State") { […]
public final String name;

 private Column(String name) {
this.name = name;

 }
}
public class SnipersTableModel extends AbstractTableModel implements SniperListener
{ […]
 @Override public String getColumnName(int column) {
 return Column.at(column).name;
 }
}

All we really need to check in the unit test for SniperTablesModel is the link
between a Column value and a column name, but it’s so simple to iterate that we
check them all:

public class SnipersTableModelTest { […]
 @Test public void
setsUpColumnHeadings() {

 for (Column column: Column.values()) {
 assertEquals(column.name, model.getColumnName(column.ordinal()));
 }
 }
}

Chapter 15 Towards a Real User Interface170

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The acceptance test passes, and we can see the result in Figure 15.5.

Figure 15.5 Sniper with column headers

Enough for Now

There’s more we should do, such as set up borders and text alignment, to tune
the user interface. We might do that by associating CellRenderers with each
Column value, or perhaps by introducing a TableColumnModel. We’ll leave those
as an exercise for the reader, since they don’t add any more insight into our
development process.

In the meantime, we can cross off one more task from our to-do list:
Figure 15.6.

Figure 15.6 The Sniper shows price information

Observations
Single Responsibilities

SnipersTableModel has one responsibility: to represent the state of our bidding
in the user interface. It follows the heuristic we described in “No And’s, Or’s, or

171Observations

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

But’s” (page 51). We’ve seen too much user interface code that is brittle because
it has business logic mixed in. In this case, we could also have made the model
responsible for deciding whether to bid (“because that would be simpler”), but
that would make it harder to respond when either the user interface or the bidding
policy change. It would be harder to even find the bidding policy, which is why
we isolated it in AuctionSniper.

Keyhole Surgery for Software

In this chapter we repeatedly used the practice of adding little slices of behavior
all the way through the system: replace a label with a table, get that working;
show the Sniper bidding, get that working; add the other values, get that
working. In all of these cases, we’ve figured out where we want to get to (always
allowing that we might discover a better alternative along the way), but we want
to avoid ripping the application apart to get there. Once we start a major rework,
we can’t stop until it’s finished, we can’t check in without branching, and merging
with rest of the team is harder. There’s a reason that surgeons prefer keyhole
surgery to opening up a patient—it’s less invasive and cheaper.

Programmer Hyper-Sensitivity

We have a well-developed sense of the value of our own time. We keep an eye
out for activities that don’t seem to be making the best of our (doubtless signifi-
cant) talents, such as boiler-plate copying and adapting code: if we had the right
abstraction, we wouldn’t have to bother. Sometimes this just has to be done, es-
pecially when working with existing code—but there are fewer excuses when it’s
our own. Deciding when to change the design requires a good sense for trade-
offs, which implies both sensitivity and technical maturity: “I’m about to repeat
this code with minor variations, that seems dull and wasteful” as against “This
may not be the right time to rework this, I don’t understand it yet.”

We don’t have a simple, reproducible technique here; it requires skill and ex-
perience. Developers should have a habit of reflecting on their activity, on the
best way to invest their time for the rest of a coding session. This might mean
carrying on exactly as before, but at least they’ll have thought about it.

Celebrate Changing Your Mind

When the facts change, I change my mind. What do you do, sir?

—John Maynard Keynes

During this chapter, we renamed several features in the code. In many develop-
ment cultures, this is viewed as a sign of weakness, as an inability to do a proper
job. Instead, we think this is an essential part of our development process. Just

Chapter 15 Towards a Real User Interface172

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

as we learn more about what the structure should be by using the code we’ve
written, we learn more about the names we’ve chosen when we work with them.
We see how the type and method names fit together and whether the concepts
are clear, which stimulates the discovery of new ideas. If the name of a feature
isn’t right, the only smart thing to do is change it and avoid countless hours of
confusion for all who will read the code later.

This Isn’t the Only Solution

Examples in books, such as this one, tend to read as if there was an inevitability
about the solution. That’s partly because we put effort into making the narrative
flow, but it’s also because presenting one solution tends to drive others out of
the reader’s consciousness. There are other variations we could have considered,
some of which might even resurface as the example develops.

For example, we could argue that AuctionSniper doesn’t need to know whether
it’s won or lost the auction—just whether it should bid or not. At present, the
only part of the application that cares about winning is the user interface, and
it would certainly simplify the AuctionSniper and SniperSnapshot if we moved
that decision away from them. We won’t do that now, because we don’t yet
know if it’s the right choice, but we find that kicking around design options
sometimes leads to much better solutions.

173Observations

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Chapter 16

Sniping for Multiple Items
In which we bid for multiple items, splitting the per-connection code
from the per-auction code. We use the table model we just introduced
to display the additional bids. We extend the user interface to allow
users to add items dynamically. We’re pleased to find that we don’t
have to change the tests, just their implementation. We tease out a
“user request listener” concept, which means we can test some features
more directly. We leave the code in a bit of a mess.

Testing for Multiple Items
A Tale of Two Items

The next task on our to-do list is to be able to snipe for multiple items at the
same time. We already have much of the machinery we’ll need in place, since our
user interface is based on a table, so some minor structural changes are all we
need to make this work. Looking ahead in the list, we could combine this change
with adding items through the user interface, but we don’t think we need to do
that yet. Just focusing on this one task means we can clarify the distinction be-
tween those features that belong to the Sniper’s connection to the auction house,
and those that belong to an individual auction. So far we’ve specified the item
on the command line, but we can extend that to pass multiple items in the
argument list.

As always, we start with a test. We want our new test to show that the appli-
cation can bid for and win two different items, so we start by looking at the tests
we already have. Our current test for a successful bid, in “First, a Failing Test”
(page 152), assumes that the application has only one auction—it’s implicit in
code such as:

application.hasShownSniperIsBidding(1000, 1098);

We prepare for multiple items by passing an auction into each of the
ApplicationRunner calls, so the code now looks like:

application.hasShownSniperIsBidding(auction, 1000, 1098);

Within the ApplicationRunner, we remove the itemId field and instead extract
the item identifier from the auction parameters.

175

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

public void hasShownSniperIsBidding(FakeAuctionServer auction,
 int lastPrice, int lastBid)
{
 driver.showsSniperStatus(auction.getItemId(), lastPrice, lastBid,
 textFor(SniperState.BIDDING));
}

The rest is similar, which means we can write a new test:

public class AuctionSniperEndToEndTest {
 private final FakeAuctionServer auction = new FakeAuctionServer("item-54321");
private final FakeAuctionServer auction2 = new FakeAuctionServer("item-65432");

 @Test public void
sniperBidsForMultipleItems() throws Exception {

 auction.startSellingItem();
auction2.startSellingItem();

 application.startBiddingIn(auction, auction2);
 auction.hasReceivedJoinRequestFrom(ApplicationRunner.SNIPER_XMPP_ID);

auction2.hasReceivedJoinRequestFrom(ApplicationRunner.SNIPER_XMPP_ID);

 auction.reportPrice(1000, 98, "other bidder");
 auction.hasReceivedBid(1098, ApplicationRunner.SNIPER_XMPP_ID);

auction2.reportPrice(500, 21, "other bidder");
 auction2.hasReceivedBid(521, ApplicationRunner.SNIPER_XMPP_ID);

 auction.reportPrice(1098, 97, ApplicationRunner.SNIPER_XMPP_ID);
auction2.reportPrice(521, 22, ApplicationRunner.SNIPER_XMPP_ID);

 application.hasShownSniperIsWinning(auction, 1098);
application.hasShownSniperIsWinning(auction2, 521);

 auction.announceClosed();
auction2.announceClosed();

 application.showsSniperHasWonAuction(auction, 1098);
application.showsSniperHasWonAuction(auction2, 521);

 }
}

Following the protocol convention, we also remember to add a new user,
auction-item-65432, to the chat server to represent the new auction.

Avoiding False Positives

We group the showsSniper methods together instead of pairing them with their
associated auction triggers. This is to catch a problem that we found in an earlier
version where each checking method would pick up the most recent change—the
one we’d just triggered in the previous call. Grouping the checking methods together
gives us confidence that they’re both valid at the same time.

Chapter 16 Sniping for Multiple Items176

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The ApplicationRunner

The one significant change we have to make in the ApplicationRunner is to the
startBiddingIn() method. Now it needs to accept a variable number of auctions
passed through to the Sniper’s command line. The conversion is a bit messy since
we have to unpack the item identifiers and append them to the end of the other
command-line arguments—this is the best we can do with Java arrays:

public class ApplicationRunner { […]s
 public void startBiddingIn(final FakeAuctionServer... auctions) {
 Thread thread = new Thread("Test Application") {
 @Override public void run() {
 try {
 Main.main(arguments(auctions));
 } catch (Throwable e) {

[…]
for (FakeAuctionServer auction : auctions) {

 driver.showsSniperStatus(auction.getItemId(), 0, 0, textFor(JOINING));
}

 }

 protected static String[] arguments(FakeAuctionServer... auctions) {
 String[] arguments = new String[auctions.length + 3];
 arguments[0] = XMPP_HOSTNAME;
 arguments[1] = SNIPER_ID;
 arguments[2] = SNIPER_PASSWORD;
 for (int i = 0; i < auctions.length; i++) {
 arguments[i + 3] = auctions[i].getItemId();
 }
 return arguments;
 }
}

We run the test and watch it fail.

java.lang.AssertionError:
Expected: is not null
 got: null
 at auctionsniper.SingleMessageListener.receivesAMessage()

A Diversion, Fixing the Failure Message

We first saw this cryptic failure message in Chapter 11. It wasn’t so bad then
because it could only occur in one place and there wasn’t much code to test
anyway. Now it’s more annoying because we have to find this method:

public void receivesAMessage(Matcher<? super String> messageMatcher)
 throws InterruptedException
{
 final Message message = messages.poll(5, TimeUnit.SECONDS);
 assertThat(message, is(notNullValue()));
 assertThat(message.getBody(), messageMatcher);
}

177Testing for Multiple Items

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

and figure out what we’re missing. We’d like to combine these two assertions and
provide a more meaningful failure. We could write a custom matcher for the
message body but, given that the structure of Message is not going to change
soon, we can use a PropertyMatcher, like this:

public void receivesAMessage(Matcher<? super String> messageMatcher)
 throws InterruptedException
{
 final Message message = messages.poll(5, TimeUnit.SECONDS);
 assertThat(message, hasProperty("body", messageMatcher));
}

which produces this more helpful failure report:

java.lang.AssertionError:
Expected: hasProperty("body", "SOLVersion: 1.1; Command: JOIN;")
 got: null

With slightly more effort, we could have extended a FeatureMatcher to extract
the message body with a nicer failure report. There’s not much difference, expect
that it would be statically type-checked. Now back to business.

Restructuring Main

The test is failing because the Sniper is not sending a Join message for the second
auction. We must change Main to interpret the additional arguments. Just to
remind you, the current structure of the code is:

public class Main {
 public Main() throws Exception {
 SwingUtilities.invokeAndWait(new Runnable() {
 public void run() {
 ui = new MainWindow(snipers);
 }
 });
 }

 public static void main(String... args) throws Exception {
 Main main = new Main();
 main.joinAuction(
 connection(args[ARG_HOSTNAME], args[ARG_USERNAME], args[ARG_PASSWORD]),
 args[ARG_ITEM_ID]);
 }

 private void joinAuction(XMPPConnection connection, String itemId) {
 disconnectWhenUICloses(connection);
 Chat chat = connection.getChatManager()
 .createChat(auctionId(itemId, connection), null);

[…]
 }
}

Chapter 16 Sniping for Multiple Items178

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

To add multiple items, we need to distinguish between the code that establishes
a connection to the auction server and the code that joins an auction. We start
by holding on to connection so we can reuse it with multiple chats; the result is
not very object-oriented but we want to wait and see how the structure develops.
We also change notToBeGCd from a single value to a collection.

public class Main {
 public static void main(String... args) throws Exception {
 Main main = new Main();

XMPPConnection connection =
 connection(args[ARG_HOSTNAME], args[ARG_USERNAME], args[ARG_PASSWORD]);

main.disconnectWhenUICloses(connection);
 main.joinAuction(connection, args[ARG_ITEM_ID]);
 }
 private void joinAuction(XMPPConnection connection, String itemId) {
 Chat chat = connection.getChatManager()
 .createChat(auctionId(itemId, connection), null);

notToBeGCd.add(chat);

 Auction auction = new XMPPAuction(chat);
 chat.addMessageListener(
 new AuctionMessageTranslator(
 connection.getUser(),
 new AuctionSniper(itemId, auction,
 new SwingThreadSniperListener(snipers))));
 auction.join();
 }
}

We loop through each of the items that we’ve been given:

public static void main(String... args) throws Exception {
 Main main = new Main();
 XMPPConnection connection =
 connection(args[ARG_HOSTNAME], args[ARG_USERNAME], args[ARG_PASSWORD]);
 main.disconnectWhenUICloses(connection);

for (int i = 3; i < args.length; i++) {
 main.joinAuction(connection, args[i]);
 }
}

This is ugly, but it does show us a separation between the code for the single
connection and multiple auctions. We have a hunch it’ll be cleaned up before long.

The end-to-end test now shows us that display cannot handle the additional
item we’ve just fed in. The table model is still hard-coded to support one row,
so one of the items will be ignored:

[…] but...
 it is not table with row with cells
 <label with text "item-65432">, <label with text "521">,
 <label with text "521">, <label with text "Winning">
 because

in row 0: component 0 text was "item-54321"

179Testing for Multiple Items

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Incidentally, this result is a nice example of why we needed to be aware of timing
in end-to-end tests. This test might fail when looking for auction1 or auction2.
The asynchrony of the system means that we can’t tell which will arrive first.

Extending the Table Model

The SnipersTableModel needs to know about multiple items, so we add a new
method to tell it when the Sniper joins an auction. We’ll call this method
from Main.joinAuction() so we show that context first, writing an empty
implementation in SnipersTableModel to satisfy the compiler:

private void
joinAuction(XMPPConnection connection, String itemId) throws Exception {
safelyAddItemToModel(itemId);
[…]

}
private void safelyAddItemToModel(final String itemId) throws Exception {
 SwingUtilities.invokeAndWait(new Runnable() {
 public void run() {
 snipers.addSniper(SniperSnapshot.joining(itemId));
 }
 });
}

We have to wrap the call in an invokeAndWait() because it’s changing the state
of the user interface from outside the Swing thread.

The implementation of SnipersTableModel itself is single-threaded, so we can
write direct unit tests for it—starting with this one for adding a Sniper:

@Test public void
notifiesListenersWhenAddingASniper() {
 SniperSnapshot joining = SniperSnapshot.joining("item123");
 context.checking(new Expectations() { {
 one(listener).tableChanged(with(anInsertionAtRow(0)));
 }});

 assertEquals(0, model.getRowCount());

 model.addSniper(joining);

 assertEquals(1, model.getRowCount());
 assertRowMatchesSnapshot(0, joining);
}

This is similar to the test for updating the Sniper state that we wrote in
“Showing a Bidding Sniper” (page 155), except that we’re calling the new method
and matching a different TableModelEvent. We also package up the comparison
of the table row values into a helper method assertRowMatchesSnapshot().

We make this test pass by replacing the single SniperSnapshot field with a
collection and triggering the extra table event. These changes break the existing
Sniper update test, because there’s no longer a default Sniper, so we fix it:

Chapter 16 Sniping for Multiple Items180

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

@Test public void
setsSniperValuesInColumns() {
 SniperSnapshot joining = SniperSnapshot.joining("item id");
 SniperSnapshot bidding = joining.bidding(555, 666);
 context.checking(new Expectations() {{

allowing(listener).tableChanged(with(anyInsertionEvent()));

 one(listener).tableChanged(with(aChangeInRow(0)));
 }});

model.addSniper(joining);
 model.sniperStateChanged(bidding);

 assertRowMatchesSnapshot(0, bidding);
}

We have to add a Sniper to the model. This triggers an insertion event which
isn’t relevant to this test—it’s just supporting infrastructure—so we add an
allowing() clause to let the insertion through. The clause uses a more forgiving
matcher that checks only the type of the event, not its scope. We also change
the matcher for the update event (the one we do care about) to be precise about
which row it’s checking.

Then we write more unit tests to drive out the rest of the functionality. For
these, we’re not interested in the TableModelEvents, so we ignore the listener
altogether.

@Test public void
holdsSnipersInAdditionOrder() {
 context.checking(new Expectations() { {
 ignoring(listener);
 }});

 model.addSniper(SniperSnapshot.joining("item 0"));
 model.addSniper(SniperSnapshot.joining("item 1"));

 assertEquals("item 0", cellValue(0, Column.ITEM_IDENTIFIER));
 assertEquals("item 1", cellValue(1, Column.ITEM_IDENTIFIER));
}
updatesCorrectRowForSniper() { […]
throwsDefectIfNoExistingSniperForAnUpdate() { […]

The implementation is obvious. The only point of interest is that we add an
isForSameItemAs() method to SniperSnapshot so that it can decide whether it’s
referring to the same item, instead of having the table model extract and compare
identifiers.1 It’s a clearer division of responsibilities, with the advantage that we
can change its implementation without changing the table model. We also decide
that not finding a relevant entry is a programming error.

1. This avoids the “feature envy” code smell [Fowler99].

181Testing for Multiple Items

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

public void sniperStateChanged(SniperSnapshot newSnapshot) {
 int row = rowMatching(newSnapshot);
 snapshots.set(row, newSnapshot);
 fireTableRowsUpdated(row, row);
}
private int rowMatching(SniperSnapshot snapshot) {
 for (int i = 0; i < snapshots.size(); i++) {
 if (newSnapshot.isForSameItemAs(snapshots.get(i))) {
 return i;
 }
 }
 throw new Defect("Cannot find match for " + snapshot);
}

This makes the current end-to-end test pass—so we can cross off the task from
our to-do list, Figure 16.1.

Figure 16.1 The Sniper handles multiple items

The End of Off-by-One Errors?

Interacting with the table model requires indexing into a logical grid of cells. We
find that this is a case where TDD is particularly helpful. Getting indexing right can
be tricky, except in the simplest cases, and writing tests first clarifies the boundary
conditions and then checks that our implementation is correct. We’ve both lost too
much time in the past searching for indexing bugs buried deep in the code.

Chapter 16 Sniping for Multiple Items182

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Adding Items through the User Interface
A Simpler Design

The buyers and user interface designers are still working through their ideas, but
they have managed to simplify their original design by moving the item entry
into a top bar instead of a pop-up dialog. The current version of the design looks
like Figure 16.2, so we need to add a text field and a button to the display.

Figure 16.2 The Sniper with input fields in its bar

Making Progress While We Can

The design of user interfaces is outside the scope of this book. For a project of any
size, a user experience professional will consider all sorts of macro- and micro-
details to provide the user with a coherent experience, so one route that some
teams take is to try to lock down the interface design before coding. Our experience,
and that of others like Jeff Patton, is that we can make development progress whilst
the design is being sorted out. We can build to the team’s current understanding
of the features and keep our code (and attitude) flexible to respond to design ideas
as they firm up—and perhaps even feed our experience back into the process.

Update the Test

Looking back at AuctionSniperEndToEndTest, it already expresses everything we
want the application to do: it describes how the Sniper connects to one or more
auctions and bids. The change is that we want to describe a different implemen-
tation of some of that behavior (establishing the connection through the user
interface rather than the command line) which happens in the ApplicationRunner.
We need a restructuring similar to the one we just made in Main, splitting the
connection from the individual auctions. We pull out a startSniper() method
that starts up and checks the Sniper, and then start bidding for each auction
in turn.

183Adding Items through the User Interface

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

public class ApplicationRunner {
 public void startBiddingIn(final FakeAuctionServer... auctions) {
 startSniper();
 for (FakeAuctionServer auction : auctions) {

final String itemId = auction.getItemId();
 driver.startBiddingFor(itemId);
 driver.showsSniperStatus(itemId, 0, 0, textFor(SniperState.JOINING));
 }
 }

 private void startSniper() {
// as before without the call to showsSniperStatus()

 }
[…]

}

The other change to the test infrastructure is implementing the new method
startBiddingFor() in AuctionSniperDriver. This finds and fills in the text field
for the item identifier, then finds and clicks on the Join Auction button.

public class AuctionSniperDriver extends JFrameDriver {
 @SuppressWarnings("unchecked")
 public void startBiddingFor(String itemId) {
 itemIdField().replaceAllText(itemId);
 bidButton().click();
 }

 private JTextFieldDriver itemIdField() {
 JTextFieldDriver newItemId =
 new JTextFieldDriver(this, JTextField.class, named(MainWindow.NEW_ITEM_ID_NAME));
 newItemId.focusWithMouse();
 return newItemId;
 }

 private JButtonDriver bidButton() {
 return new JButtonDriver(this, JButton.class, named(MainWindow.JOIN_BUTTON_NAME));
 }
[…]

}

Neither of these components exist yet, so the test fails looking for the text field.

[…] but...
 all top level windows
 contained 1 JFrame (with name "Auction Sniper Main" and showing on screen)

contained 0 JTextField (with name "item id")

Adding an Action Bar

We address this failure by adding a new panel across the top to contain the
text field for the identifier and the Join Auction button, wrapping up the activity
in a makeControls() method to help express our intent. We realize that this code
isn’t very exciting, but we want to show its structure now before we add any
behavior.

Chapter 16 Sniping for Multiple Items184

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

public class MainWindow extends JFrame {
 public MainWindow(TableModel snipers) {
 super(APPLICATION_TITLE);
 setName(MainWindow.MAIN_WINDOW_NAME);
 fillContentPane(makeSnipersTable(snipers), makeControls());

[…]
 }

 private JPanel makeControls() {
 JPanel controls = new JPanel(new FlowLayout());
 final JTextField itemIdField = new JTextField();
 itemIdField.setColumns(25);
 itemIdField.setName(NEW_ITEM_ID_NAME);
 controls.add(itemIdField);

 JButton joinAuctionButton = new JButton("Join Auction");
 joinAuctionButton.setName(JOIN_BUTTON_NAME);
 controls.add(joinAuctionButton);

 return controls;
 }
[…]

}

With the action bar in place, our next test fails because we don’t create the
identified rows in the table model.

[…] but...
 all top level windows
 contained 1 JFrame (with name "Auction Sniper Main" and showing on screen)
 contained 1 JTable ()
it is not with row with cells
 <label with text "item-54321">, <label with text "0">,
 <label with text "0">, <label with text "Joining">

A Design Moment

Now what do we do? To review our position: we have a broken acceptance
test pending, we have the user interface structure but no behavior, and the
SnipersTableModel still handles only one Sniper at a time. Our goal is that, when
we click on the Join Auction button, the application will attempt to join the
auction specified in the item field and add a new row to the list of auctions to
show that the request is being handled.

In practice, this means that we need a Swing ActionListener for the JButton
that will use the text from the JTextField as an item identifier for the new session.
Its implementation will add a row to the SnipersTableModel and create a new
Chat to the Southabee’s On-Line server. The catch is that everything to do with
connections is in Main, whereas the button and the text field are in MainWindow.
This is a distinction we’d like to maintain, since it keeps the responsibilities of
the two classes focused.

185Adding Items through the User Interface

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

We stop for a moment to think about the structure of the code, using the CRC
cards we mentioned in “Roles, Responsibilities, Collaborators” on page 16 to
help us visualize our ideas. After some discussion, we remind ourselves that the
job of MainWindow is to manage our UI components and their interactions; it
shouldn’t also have to manage concepts such as “connection” or “chat.” When
a user interaction implies an action outside the user interface, MainWindow should
delegate to a collaborating object.

To express this, we decide to add a listener to MainWindow to notify neighboring
objects about such requests. We call the new collaborator a UserRequestListener
since it will be responsible for handling requests made by the user:

public interface UserRequestListener extends EventListener {
 void joinAuction(String itemId);
}

Another Level of Testing

We want to write a test for our proposed new behavior, but we can’t just write
a simple unit test because of Swing threading. We can’t be sure that the Swing
code will have finished running by the time we check any assertions at the end
of the test, so we need something that will wait until the tested code has
stabilized—what we usually call an integration test because it’s testing how our
code works with a third-party library. We can use WindowLicker for this level
of testing as well as for our end-to-end tests. Here’s the new test:

public class MainWindowTest {
 private final SnipersTableModel tableModel = new SnipersTableModel();
 private final MainWindow mainWindow = new MainWindow(tableModel);
 private final AuctionSniperDriver driver = new AuctionSniperDriver(100);

 @Test public void
makesUserRequestWhenJoinButtonClicked() {

 final ValueMatcherProbe<String> buttonProbe =
 new ValueMatcherProbe<String>(equalTo("an item-id"), "join request");

 mainWindow.addUserRequestListener(
 new UserRequestListener() {
 public void joinAuction(String itemId) {
 buttonProbe.setReceivedValue(itemId);
 }
 });

 driver.startBiddingFor("an item-id");
 driver.check(buttonProbe);
 }
}

Chapter 16 Sniping for Multiple Items186

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

WindowLicker Probes

In WindowLicker, a probe is an object that checks for a given state. A driver’s
check() method repeatedly fires the given probe until it’s satisfied or times out. In
this test, we use a ValueMatcherProbe, which compares a value against a Ham-
crest matcher, to wait for the UserRequestListener’s joinAuction() to be called
with the right auction identifier.

We create an empty implementation of MainWindow.addUserRequestListener,
to get through the compiler, and the test fails:

Tried to look for...
 join request "an item-id"
but...
 join request "an item-id". Received nothing

To make this test pass, we fill in the request listener infrastructure in MainWindow
using Announcer, a utility class that manages collections of listeners.2 We add a
Swing ActionListener that extracts the item identifier and announces it to the
request listeners. The relevant parts of MainWindow look like this:

public class MainWindow extends JFrame {
 private final Announcer<UserRequestListener> userRequests =
 Announcer.to(UserRequestListener.class);

 public void addUserRequestListener(UserRequestListener userRequestListener) {
 userRequests.addListener(userRequestListener);
 }

[…]
 private JPanel makeControls(final SnipersTableModel snipers) {

[…]
 joinAuctionButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {

userRequests.announce().joinAuction(itemIdField.getText());
 }
 });
[…]

 }
}

To emphasize the point here, we’ve converted an ActionListener event, which
is internal to the user interface framework, to a UserRequestListener event,
which is about users interacting with an auction. These are two separate domains
and MainWindow’s job is to translate from one to the other. MainWindow is
not concerned with how any implementation of UserRequestListener might
work—that would be too much responsibility.

2. Announcer is included in the examples that ship with jMock.

187Adding Items through the User Interface

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Micro-Hubris

In case this level of testing seems like overkill, when we first wrote this example
we managed to return the text field’s name, not its text—one was item-id and the
other was item id. This is just the sort of bug that’s easy to let slip through and a
nightmare to unpick in end-to-end tests—which is why we like to also write
integration-level tests.

Implementing the UserRequestListener

We return to Main to see where we can plug in our new UserRequestListener.
The changes are minor because we did most of the work when we restructured
the class earlier in this chapter. We decide to preserve most of the existing
code for now (even though it’s not quite the right shape) until we’ve made
more progress, so we just inline our previous joinAuction() method into the
UserRequestListener’s. We’re also pleased to remove the safelyAddItemToModel()
wrapper, since the UserRequestListener will be called on the Swing thread. This
is not obvious from the code as it stands; we make a note to address that later.

public class Main {
 public static void main(String... args) throws Exception {
 Main main = new Main();
 XMPPConnection connection =
 connection(args[ARG_HOSTNAME], args[ARG_USERNAME], args[ARG_PASSWORD]);
 main.disconnectWhenUICloses(connection);

main.addUserRequestListenerFor(connection);
 }

 private void addUserRequestListenerFor(final XMPPConnection connection) {
 ui.addUserRequestListener(new UserRequestListener() {
 public void joinAuction(String itemId) {

snipers.addSniper(SniperSnapshot.joining(itemId));
 Chat chat = connection.getChatManager()
 .createChat(auctionId(itemId, connection), null);
 notToBeGCd.add(chat);

 Auction auction = new XMPPAuction(chat);
 chat.addMessageListener(
 new AuctionMessageTranslator(connection.getUser(),
 new AuctionSniper(itemId, auction,
 new SwingThreadSniperListener(snipers))));
 auction.join();
 }
 });
 }
}

We try our end-to-end tests again and find that they pass. Slightly stunned, we
break for coffee.

Chapter 16 Sniping for Multiple Items188

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Observations
Making Steady Progress

We’re starting to see more payback from some of our restructuring work. It was
pretty easy to convert the end-to-end test to handle multiple items, and most of
the implementation consisted of teasing apart code that was already working.
We’ve been careful to keep class responsibilities focused—except for the one
place, Main, where we’ve put all our working compromises.

We made an effort to stay honest about writing enough tests, which has forced
us to consider a couple of edge cases we might otherwise have left. We also intro-
duced a new intermediate-level “integration” test to allow us to work out the
implementation of the user interface without dragging in the rest of the system.

TDD Confidential

We don’t write up everything that went into the development of our
examples—that would be boring and waste paper—but we think it’s worth a
note about what happened with this one. It took us a couple of attempts to get
this design pointing in the right direction because we were trying to allocate be-
havior to the wrong objects. What kept us honest was that for each attempt to
write tests that were focused and made sense, the setup and our assertions kept
drifting apart. Once we’d broken through our inadequacies as programmers, the
tests became much clearer.

Ship It?

So now that everything works we can get on with more features, right? Wrong.
We don’t believe that “working” is the same thing as “finished.” We’ve left quite
a design mess in Main as we sorted out our ideas, with functionality from various
slices of the application all jumbled into one, as in Figure 16.3. Apart from the
confusion this leaves, most of this code is not really testable except through the
end-to-end tests. We can get away with that now, while the code is still small,
but it will be difficult to sustain as the application grows. More importantly,
perhaps, we’re not getting any unit-test feedback about the internal quality of
the code.

We might put this code into production if we knew the code was never going
to change or there was an emergency. We know that the first isn’t true, because
the application isn’t finished yet, and being in a hurry is not really a crisis. We
know we will be working in this code again soon, so we can either clean up now,
while it’s still fresh in our minds, or re-learn it every time we touch it. Given that
we’re trying to make an educational point here, you’ve probably guessed
what we’ll do next.

189Observations

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Chapter 17

Teasing Apart Main
In which we slice up our application, shuffling behavior around to
isolate the XMPP and user interface code from the sniping logic. We
achieve this incrementally, changing one concept at a time without
breaking the whole application. We finally put a stake through the
heart of notToBeGCd.

Finding a Role

We’ve convinced ourselves that we need to do some surgery on Main, but what
do we want our improved Main to do?

For programs that are more than trivial, we like to think of our top-level class
as a “matchmaker,” finding components and introducing them to each other.
Once that job is done it drops into the background and waits for the application to
finish. On a larger scale, this what the current generation of application containers
do, except that the relationships are often encoded in XML.

In its current form, Main acts as a matchmaker but it’s also implementing some
of the components, which means it has too many responsibilities. One clue is to
look at its imports:

import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;
import java.util.ArrayList;

import javax.swing.SwingUtilities;

import org.jivesoftware.smack.Chat;
import org.jivesoftware.smack.XMPPConnection;
import org.jivesoftware.smack.XMPPException;

import auctionsniper.ui.MainWindow;
import auctionsniper.ui.SnipersTableModel;
import auctionsniper.AuctionMessageTranslator;
import auctionsniper.XMPPAuction;

We’re importing code from three unrelated packages, plus the auctionsniper
package itself. In fact, we have a package loop in that the top-level and
UI packages depend on each other. Java, unlike some other languages, tolerates
package loops, but they’re not something we should be pleased with.

191

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

We think we should extract some of this behavior from Main, and the XMPP
features look like a good first candidate. The use of the Smack should be an
implementation detail that is irrelevant to the rest of the application.

Extracting the Chat
Isolating the Chat

Most of the action happens in the implementation of
UserRequestListener.joinAuction() within Main. We notice that we’ve inter-
leaved different domain levels, auction sniping and chatting, in this one unit of
code. We’d like to split them up. Here it is again:

public class Main { […]
 private void addUserRequestListenerFor(final XMPPConnection connection) {
 ui.addUserRequestListener(new UserRequestListener() {
 public void joinAuction(String itemId) {
 snipers.addSniper(SniperSnapshot.joining(itemId));
 Chat chat = connection.getChatManager()
 .createChat(auctionId(itemId, connection), null);
 notToBeGCd.add(chat);

 Auction auction = new XMPPAuction(chat);
chat.addMessageListener(

 new AuctionMessageTranslator(connection.getUser(),
 new AuctionSniper(itemId, auction,
 new SwingThreadSniperListener(snipers))));
 auction.join();
 }
 });
 }
}

The object that locks this code into Smack is the chat; we refer to it several times:
to avoid garbage collection, to attach it to the Auction implementation, and to
attach the message listener. If we can gather together the auction- and Sniper-
related code, we can move the chat elsewhere, but that’s tricky while there’s still
a dependency loop between the XMPPAuction, Chat, and AuctionSniper.

Looking again, the Sniper actually plugs in to the AuctionMessageTranslator
as an AuctionEventListener. Perhaps using an Announcer to bind the two together,
rather than a direct link, would give us the flexibility we need. It would also make
sense to have the Sniper as a notification, as defined in “Object Peer Stereotypes”
(page 52). The result is:

Chapter 17 Teasing Apart Main192

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

public class Main { […]
 private void addUserRequestListenerFor(final XMPPConnection connection) {
 ui.addUserRequestListener(new UserRequestListener() {
 public void joinAuction(String itemId) {
 Chat chat = connection.[…]
 Announcer<AuctionEventListener> auctionEventListeners =
 Announcer.to(AuctionEventListener.class);
 chat.addMessageListener(
 new AuctionMessageTranslator(
 connection.getUser(),

auctionEventListeners.announce()));
 notToBeGCd.add(chat);

 Auction auction = new XMPPAuction(chat);
auctionEventListeners.addListener(

 new AuctionSniper(itemId, auction, new SwingThreadSniperListener(snipers)));
 auction.join();
 }
 }
 }
}

This looks worse, but the interesting bit is the last three lines. If you squint, it
looks like everything is described in terms of Auctions and Snipers (there’s still
the Swing thread issue, but we did tell you to squint).

Encapsulating the Chat

From here, we can push everything to do with chat, its setup, and the use of the
Announcer, into XMPPAuction, adding management methods to the Auction inter-
face for its AuctionEventListeners. We’re just showing the end result here, but
we changed the code incrementally so that nothing was broken for more than a
few minutes.

public final class XMPPAuction implements Auction { […]
 private final Announcer<AuctionEventListener> auctionEventListeners = […]
 private final Chat chat;

 public XMPPAuction(XMPPConnection connection, String itemId) {
 chat = connection.getChatManager().createChat(
 auctionId(itemId, connection),
 new AuctionMessageTranslator(connection.getUser(),
 auctionEventListeners.announce()));
 }

 private static String auctionId(String itemId, XMPPConnection connection) {
 return String.format(AUCTION_ID_FORMAT, itemId, connection.getServiceName());
 }
}

193Extracting the Chat

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Apart from the garbage collection “wart,” this removes any references to Chat
from Main.

public class Main { […]
 private void addUserRequestListenerFor(final XMPPConnection connection) {
 ui.addUserRequestListener(new UserRequestListener() {
 public void joinAuction(String itemId) {
 snipers.addSniper(SniperSnapshot.joining(itemId));
 Auction auction = new XMPPAuction(connection, itemId);
 notToBeGCd.add(auction);

auction.addAuctionEventListener(
 new AuctionSniper(itemId, auction,
 new SwingThreadSniperListener(snipers)));

auction.join();
 }
 });
 }
}

Figure 17.1 With XMPPAuction extracted

Writing a New Test

We also write a new integration test for the expanded XMPPAuction to show that
it can create a Chat and attach a listener. We use some of our existing end-to-end
test infrastructure, such as FakeAuctionServer, and a CountDownLatch from the
Java concurrency libraries to wait for a response.

Chapter 17 Teasing Apart Main194

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

@Test public void
receivesEventsFromAuctionServerAfterJoining() throws Exception {
 CountDownLatch auctionWasClosed = new CountDownLatch(1);

 Auction auction = new XMPPAuction(connection, auctionServer.getItemId());
 auction.addAuctionEventListener(auctionClosedListener(auctionWasClosed));

 auction.join();
 server.hasReceivedJoinRequestFrom(ApplicationRunner.SNIPER_XMPP_ID);
 server.announceClosed();

 assertTrue("should have been closed", auctionWasClosed.await(2, SECONDS));
}

private AuctionEventListener
auctionClosedListener(final CountDownLatch auctionWasClosed) {
 return new AuctionEventListener() {
 public void auctionClosed() { auctionWasClosed.countDown(); }
 public void currentPrice(int price, int increment, PriceSource priceSource) {

// not implemented
 }
 };
}

Looking over the result, we can see that it makes sense for XMPPAuction to en-
capsulate a Chat as now it hides everything to do with communicating between
a request listener and an auction service, including translating the messages. We
can also see that the AuctionMessageTranslator is internal to this encapsulation,
the Sniper doesn’t need to see it. So, to recognize our new structure, we move
XMPPAuction and AuctionMessageTranslator into a new auctionsniper.xmpp
package, and the tests into equivalent xmpp test packages.

Compromising on a Constructor

We have one doubt about this implementation: the constructor includes some real
behavior. Our experience is that busy constructors enforce assumptions that one
day we will want to break, especially when testing, so we prefer to keep them very
simple—just setting the fields. For now, we convince ourselves that this is “veneer”
code, a bridge to an external library, that can only be integration-tested because
the Smack classes have just the kind of complicated constructors we try to avoid.

Extracting the Connection

The next thing to remove from Main is direct references to the XMPPConnection.
We can wrap these up in a factory class that will create an instance of an Auction
for a given item, so it will have a method like

Auction auction = <factory>.auctionFor(item id);

195Extracting the Connection

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

We struggle for a while over what to call this new type, since it should have a
name that reflects the language of auctions. In the end, we decide that the concept
that arranges auctions is an “auction house,” so that’s what we call our new type:

public interface AuctionHouse {
 Auction auctionFor(String itemId);
}

The end result of this refactoring is:

public class Main { […]
 public static void main(String... args) throws Exception {
 Main main = new Main();

XMPPAuctionHouse auctionHouse =
 XMPPAuctionHouse.connect(
 args[ARG_HOSTNAME], args[ARG_USERNAME], args[ARG_PASSWORD]);
 main.disconnectWhenUICloses(auctionHouse);
 main.addUserRequestListenerFor(auctionHouse);
 }
 private void addUserRequestListenerFor(final AuctionHouse auctionHouse) {
 ui.addUserRequestListener(new UserRequestListener() {
 public void joinAuction(String itemId) {
 snipers.addSniper(SniperSnapshot.joining(itemId));

Auction auction = auctionHouse.auctionFor(itemId);
 notToBeGCd.add(auction);

[…]
 }
 }
 }
}

Figure 17.2 With XMPPAuctionHouse extracted

Chapter 17 Teasing Apart Main196

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Implementing XMPPAuctionHouse is straightforward; we transfer there all the
code related to connection, including the generation of the Jabber ID from
the auction item ID. Main is now simpler, with just one import for all the XMPP
code, auctionsniper.xmpp.XMPPAuctionHouse. The new version looks like
Figure 17.2.

For consistency, we retrofit XMPPAuctionHouse to the integration test for
XMPPAuction, instead of creating XMPPAuctions directly as it does now, and rename
the test to XMPPAuctionHouseTest.

Our final touch is to move the relevant constants from Main where we’d left
them: the message formats to XMPPAuction and the connection identifier format
to XMPPAuctionHouse. This reassures us that we’re moving in the right direction,
since we’re narrowing the scope of where these constants are used.

Extracting the SnipersTableModel
Sniper Launcher

Finally, we’d like to do something about the direct reference to the
SnipersTableModel and the related SwingThreadSniperListener—and the awful
notToBeGCd. We think we can get there, but it’ll take a couple of steps.

The first step is to turn the anonymous implementation of UserRequestListener
into a proper class so we can understand its dependencies. We decide to call the
new class SniperLauncher, since it will respond to a request to join an auction
by “launching” a Sniper. One nice effect is that we can make notToBeGCd local
to the new class.

public class SniperLauncher implements UserRequestListener {
 private final ArrayList<Auction> notToBeGCd = new ArrayList<Auction>();
 private final AuctionHouse auctionHouse;
 private final SnipersTableModel snipers;

 public SniperLauncher(AuctionHouse auctionHouse, SnipersTableModel snipers) {
// set the fields

 }

 public void joinAuction(String itemId) {
snipers.addSniper(SniperSnapshot.joining(itemId));

 Auction auction = auctionHouse.auctionFor(itemId);
 notToBeGCd.add(auction);
 AuctionSniper sniper =
 new AuctionSniper(itemId, auction,
 new SwingThreadSniperListener(snipers));
 auction.addAuctionEventListener(snipers);
 auction.join();
 }
}

With the SniperLauncher separated out, it becomes even clearer that the
Swing features don’t fit here. There’s a clue in that our use of snipers, the

197Extracting the SnipersTableModel

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

SnipersTableModel, is clumsy: we tell it about the new Sniper by giving it an
initial SniperSnapshot, and we attach it to both the Sniper and the auction.
There’s also some hidden duplication in that we create an initial SniperSnaphot
both here and in the AuctionSniper constructor.

Stepping back, we ought to simplify this class so that all it does is establish a
new AuctionSniper. It can delegate the process of accepting the new Sniper into
the application to a new role which we’ll call a SniperCollector, implemented
in the SnipersTableModel.

public static class SniperLauncher implements UserRequestListener {
 private final AuctionHouse auctionHouse;
 private final SniperCollector collector;
[…]

 public void joinAuction(String itemId) {
 Auction auction = auctionHouse.auctionFor(itemId);

AuctionSniper sniper = new AuctionSniper(itemId, auction);
 auction.addAuctionEventListener(sniper);

collector.addSniper(sniper);
 auction.join();
 }
}

The one behavior that we want to confirm is that we only join the auction after
everything else is set up. With the code now isolated, we can jMock a States to
check the ordering.

public class SniperLauncherTest {
 private final States auctionState = context.states("auction state")

.startsAs("not joined");
[…]

 @Test public void
addsNewSniperToCollectorAndThenJoinsAuction() {

 final String itemId = "item 123";
 context.checking(new Expectations() {{
 allowing(auctionHouse).auctionFor(itemId); will(returnValue(auction));

 oneOf(auction).addAuctionEventListener(with(sniperForItem(itemId)));
when(auctionState.is("not joined"));

 oneOf(sniperCollector).addSniper(with(sniperForItem(item)));
when(auctionState.is("not joined"));

 one(auction).join(); then(auctionState.is("joined"));
 }});

 launcher.joinAuction(itemId);
 }
}

where sniperForItem() returns a Matcher that matches any AuctionSniper
associated with the given item identifier.

We extend SnipersTableModel to fulfill its new role: now it accepts
AuctionSnipers rather than SniperSnapshots. To make this work, we have to
convert a Sniper’s listener from a dependency to a notification, so that we can

Chapter 17 Teasing Apart Main198

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

add a listener after construction. We also change SnipersTableModel to use the
new API and disallow adding SniperSnapshots.

public class SnipersTableModel extends AbstractTableModel
 implements SniperListener, SniperCollector
{
 private final ArrayList<AuctionSniper> notToBeGCd = […]

 public void addSniper(AuctionSniper sniper) {
 notToBeGCd.add(sniper);
 addSniperSnapshot(sniper.getSnapshot());
 sniper.addSniperListener(new SwingThreadSniperListener(this));
 }

 private void addSniperSnapshot(SniperSnapshot sniperSnapshot) {
 snapshots.add(sniperSnapshot);
 int row = snapshots.size() - 1;
 fireTableRowsInserted(row, row);
 }
}

One change that suggests that we’re heading in the right direction is that the
SwingThreadSniperListener is now packaged up in the Swing part of the code,
not in the generic SniperLauncher.

Sniper Portfolio

As a next step, we realize that we don’t yet have anything that represents all our
sniping activity and that we might call our portfolio. At the moment, the
SnipersTableModel is implicitly responsible for both maintaining a record of
our sniping and displaying that record. It also pulls a Swing implementation detail
into Main.

We want a clearer separation of concerns, so we extract a SniperPortfolio
to maintain our Snipers, which we make our new implementer of
SniperCollector. We push the creation of the SnipersTableModel into MainWindow,
and make it a PortfolioListener so the portfolio can tell it when we add or
remove a Sniper.

public interface PortfolioListener extends EventListener {
 void sniperAdded(AuctionSniper sniper);
}

public class MainWindow extends JFrame {
 private JTable makeSnipersTable(SniperPortfolio portfolio) {

SnipersTableModel model = new SnipersTableModel();
 portfolio.addPortfolioListener(model);
 JTable snipersTable = new JTable(model);
 snipersTable.setName(SNIPERS_TABLE_NAME);
 return snipersTable;
 }
}

199Extracting the SnipersTableModel

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This makes our top-level code very simple—it just binds together the user
interface and sniper creation through the portfolio:

public class Main { […]
 private final SniperPortfolio portfolio = new SniperPortfolio();

 public Main() throws Exception {
 SwingUtilities.invokeAndWait(new Runnable() {
 public void run() {
 ui = new MainWindow(portfolio);
 }
 });
 }

 private void addUserRequestListenerFor(final AuctionHouse auctionHouse) {
 ui.addUserRequestListener(new SniperLauncher(auctionHouse, portfolio));
 }
}

Even better, since SniperPortfolio maintains a list of all the Snipers, we can
finally get rid of notToBeGCd.

This refactoring takes us to the structure shown in Figure 17.3. We’ve separated
the code into three components: one for the core application, one for XMPP
communication, and one for Swing display. We’ll return to this in a moment.

Figure 17.3 With the SniperPortfolio

Chapter 17 Teasing Apart Main200

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Now that we’ve cleaned up, we can cross the next item off our list: Figure 17.4.

Figure 17.4 Adding items through the user interface

Observations
Incremental Architecture

This restructuring of Main is a key moment in the development of the application.
As Figure 17.5 shows, we now have a structure that matches the “ports and

adapters” architecture we described in “Designing for Maintainability” (page 47).
There is core domain code (for example, AuctionSniper) which depends on
bridging code (for example, SnipersTableModel) that drives or responds to
technical code (for example, JTable). We’ve kept the domain code free of any
reference to the external infrastructure. The contents of our auctionsniper
package define a model of our auction sniping business, using a self-contained
language. The exception is Main, which is our entry point and binds the domain
model and infrastructure together.

What’s important for the purposes of this example, is that we arrived at this
design incrementally, by adding features and repeatedly following heuristics.
Although we rely on our experience to guide our decisions, we reached this
solution almost automatically by just following the code and taking care to keep
it clean.

201Observations

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Figure 17.5 The application now has a “ports and adapters”
architecture

Three-Point Contact

We wrote this refactoring up in detail because we wanted to make some points
along the way and to show that we can do significant refactorings incrementally.
When we’re not sure what to do next or how to get there from here, one way of
coping is to scale down the individual changes we make, as Kent Beck showed
in [Beck02]. By repeatedly fixing local problems in the code, we find we can ex-
plore the design safely, never straying more than a few minutes from working
code. Usually this is enough to lead us towards a better design, and we can always
backtrack and take another path if it doesn’t work out.

One way to think of this is the rock climbing rule of “three-point contact.”
Trained climbers only move one limb at a time (a hand or a foot), to minimize
the risk of falling off. Each move is minimal and safe, but combining enough of
them will get you to the top of the route.

In “elapsed time,” this refactoring didn’t take much longer than the time you
spent reading it, which we think is a good return for the clearer separation of
concerns. With experience, we’ve learned to recognize fault lines in code so we
can often take a more direct route.

Chapter 17 Teasing Apart Main202

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Dynamic as Well as Static Design

We did encounter one small bump whilst working on the code for this chapter.
Steve was extracting the SniperPortfolio and got stuck trying to ensure that the
sniperAdded() method was called within the Swing thread. Eventually he remem-
bered that the event is triggered by a button click anyway, so he was already
covered.

What we learn from this (apart from the need for pairing while writing book
examples) is that we should consider more than one view when refactoring code.
Refactoring is, after all, a design activity, which means we still need all the skills
we were taught—except that now we need them all the time rather than periodi-
cally. Refactoring is so focused on static structure (classes and interfaces) that
it’s easy to lose sight of an application’s dynamic structure (instances and threads).
Sometimes we just need to step back and draw out, say, an interaction diagram
like Figure 17.6:

Figure 17.6 An Interaction Diagram

An Alternative Fix to notToBeGCd

Our chosen fix relies on the SniperPortfolio holding onto the reference. That’s
likely to be the case in practice, but if it ever changes we will get transient failures
that are hard to track down. We’re relying on a side effect of the application to
fix an issue in the XMPP code.

An alternative would be to say that it’s a Smack problem, so our XMPP layer
should deal with it. We could make the XMPPAuctionHouse hang on to the
XMPPAuctions it creates, in which case we’d to have to add a lifecycle listener of
some sort to tell us when we’re finished with an Auction and can release it. There
is no obvious choice here; we just have to look at the circumstances and exercise
some judgment.

203Observations

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Chapter 18

Filling In the Details
In which we introduce a stop price so we don’t bid infinitely, which
means we can now be losing an auction that hasn’t yet closed. We add
a new field to the user interface and push it through to the Sniper. We
realize we should have created an Item type much earlier.

A More Useful Application

So far the functionality has been prioritized to attract potential customers by
giving them a sense of what the application will look like. We can show items
being added and some features of sniping. It’s not a very useful application be-
cause, amongst other things, there’s no upper limit for bidding on an item—it
could be very expensive to deploy.

This is a common pattern when using Agile Development techniques to work
on a new project. The team is flexible enough to respond to how the needs of
the sponsors change over time: at the beginning, the emphasis might be on
proving the concept to attract enough support to continue; later, the emphasis
might be on implementing enough functionality to be ready to deploy; later still,
the emphasis might change to providing more options to support a wider range
of users.

This dynamic is very different from both a fixed design approach, where the
structure of the development has to be approved before work can begin, and a
code-and-fix approach, where the system might be initially successful but not
resilient enough to adapt to its changing role.

Stop When We’ve Had Enough

Our next most pressing task (especially after recent crises in the financial markets)
is to be able to set an upper limit, the “stop price,” for our bid for an item.

Introducing a Losing State

With the introduction of a stop price, it’s possible for a Sniper to be losing before
the auction has closed. We could implement this by just marking the Sniper as
Lost when it hits its stop price, but the users want to know the final price when
the auction has finished after they’ve dropped out, so we model this as an extra
state. Once a Sniper has been outbid at its stop price, it will never be able to win,

205

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

so the only option left is to wait for the auction to close, accepting updates of
any new (higher) prices from other bidders.

We adapt the state machine we drew in Figure 9.3 to include the new
transitions. The result is Figure 18.1.

Figure 18.1 A bidder may now be losing

The First Failing Test

Of course we start with a failing test. We won’t go through all the cases here,
but this example will take us through the essentials. First, we write an end-to-
end test to describe the new feature. It shows a scenario where our Sniper bids
for an item but loses because it bumps into its stop price, and other bidders
continue until the auction closes.

@Test public void sniperLosesAnAuctionWhenThePriceIsTooHigh() throws Exception {
 auction.startSellingItem();
application.startBiddingWithStopPrice(auction, 1100);

 auction.hasReceivedJoinRequestFrom(ApplicationRunner.SNIPER_XMPP_ID);
 auction.reportPrice(1000, 98, "other bidder");
 application.hasShownSniperIsBidding(auction, 1000, 1098);

 auction.hasReceivedBid(1098, ApplicationRunner.SNIPER_XMPP_ID);

 auction.reportPrice(1197, 10, "third party");
application.hasShownSniperIsLosing(auction, 1197, 1098);

 auction.reportPrice(1207, 10, "fourth party");
application.hasShownSniperIsLosing(auction, 1207, 1098);

 auction.announceClosed();
 application.showsSniperHasLostAuction(auction, 1207, 1098);
}

Chapter 18 Filling In the Details206

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This test introduces two new methods into our test infrastructure, which we
need to fill in to get through the compiler. First, startBiddingWithStopPrice()
passes the new stop price value through the ApplicationRunner to the
AuctionSniperDriver.

public class AuctionSniperDriver extends JFrameDriver {
 public void startBiddingFor(String itemId, int stopPrice) {
 textField(NEW_ITEM_ID_NAME).replaceAllText(itemId);

textField(NEW_ITEM_STOP_PRICE_NAME).replaceAllText(String.valueOf(stopPrice));
 bidButton().click();
 }
[…]

}

This implies that we need a new input field in the user interface for the stop price,
so we create a constant to identify it in MainWindow (we’ll fill in the component
itself soon). We also need to support our existing tests which do not have a stop
price, so we change them to use Integer.MAX_VALUE to represent no stop price
at all.

The other new method in ApplicationRunner is hasShownSniperIsLosing(),
which is the same as the other checking methods, except that it uses a new Losing
value in SniperState:

public enum SniperState {
LOSING {

 @Override public SniperState whenAuctionClosed() { return LOST; }
 }, […]

and, to complete the loop, we add a value to the display text in
SnipersTableModel:

private final static String[] STATUS_TEXT = {
 "Joining", "Bidding", "Winning", "Losing", "Lost", "Won"
};

The failure message says that we have no stop price field:

[…] but...
 all top level windows
 contained 1 JFrame (with name "Auction Sniper Main" and showing on screen)
contained 0 JTextField (with name "stop price")

Now we have a failing end-to-end test that describes our intentions for the
feature, so we can implement it.

Typing In the Stop Price

To make any progress, we must add a component to the user interface that will
accept a stop price. Our current design, which we saw in Figure 16.2, has only
a field for the item identifier but we can easily adjust it to take a stop price in the
top bar.

207Stop When We’ve Had Enough

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

For our implementation, we will add a JFormattedTextField for the stop price
that is constrained to accept only integer values, and a couple of labels. The new
top bar looks like Figure 18.2.

Figure 18.2 The Sniper with a stop price field in its bar

We get the test failure we expect, which is that the Sniper is not losing because
it continues to bid:

[…] but...
 all top level windows
 contained 1 JFrame (with name "Auction Sniper Main" and showing on screen)
 contained 1 JTable ()
 it is not table with row with cells
 <label with text "item-54321">, <label with text "1098">,
 <label with text "1197">, <label with text "Losing">
 because

in row 0: component 1 text was "1197"

Propagating the Stop Price

To make this feature work, we need to pass the stop price from the user interface
to the AuctionSniper, which can then use it to limit further bidding. The chain
starts when MainWindow notifies its UserRequestListener using:

void joinAuction(String itemId);

The obvious thing to do is to add a stopPrice argument to this method and to
the rest of the chain of calls, until it reaches the AuctionSniper class. We want
to make a point here, so we’ll force a slightly different approach to propagating
the new value.

Another way to look at it is that the user interface constructs a description of
the user’s “policy” for the Sniper’s bidding on an item. So far this has only in-
cluded the item’s identifier (“bid on this item”), but now we’re adding a stop
price (“bid up to this amount on this item”) so there’s more structure.

Chapter 18 Filling In the Details208

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

We want to make this structure explicit, so we create a new class, Item. We
start with a simple value that just carries the identifier and stop price as public
immutable fields; we can move behavior into it later.

public class Item {
 public final String identifier;
 public final int stopPrice;

 public Item(String identifier, int stopPrice) {
 this.identifier = identifier;
 this.stopPrice = stopPrice;
 }
// also equals(), hashCode(), toString()

}

Introducing the Item class is an example of budding off that we described in
“Value Types” (page 59). It’s a placeholder type that we use to identify a concept
and that gives us somewhere to attach relevant new features as the code grows.

We push Item into the code and see what breaks, starting with
UserRequestListener:

public interface UserRequestListener extends EventListener {
 void joinAuction(Item item);
}

First we fix MainWindowTest, the integration test we wrote for the Swing imple-
mentation in Chapter 16. The language is already beginning to shift. In the pre-
vious version of this test, the probe variable was called buttonProbe, which
describes the structure of the user interface. That doesn’t make sense any more,
so we’ve renamed it itemProbe, which describes a collaboration between
MainWindow and its neighbors.

@Test public void
makesUserRequestWhenJoinButtonClicked() {
 final ValueMatcherProbe<Item> itemProbe =
 new ValueMatcherProbe<Item>(equalTo(new Item("an item-id", 789)), "item request");
 mainWindow.addUserRequestListener(
 new UserRequestListener() {
 public void joinAuction(Item item) {

itemProbe.setReceivedValue(item);
 }
 });
 driver.startBiddingFor("an item-id", 789);
 driver.check(itemProbe);
}

We make this test pass by extracting the stop price value within MainWindow.

209Stop When We’ve Had Enough

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

joinAuctionButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 userRequests.announce().joinAuction(new Item(itemId(), stopPrice()));
 }
 private String itemId() {
 return itemIdField.getText();
 }
 private int stopPrice() {
 return ((Number)stopPriceField.getValue()).intValue();
 }
});

This pushes Item into SniperLauncher which, in turn, pushes it through to its
dependent types such as AuctionHouse and AuctionSniper. We fix the compilation
errors and make all the tests pass again—except for the outstanding end-to-end
test which we have yet to implement.

We’ve now made explicit another concept in the domain. We realize that an
item’s identifier is only one part of how a user bids in an auction. Now the code
can tell us exactly where decisions are made about bidding choices, so we don’t
have to follow a chain of method calls to see which strings are relevant.

Restraining the AuctionSniper

The last step to finish the task is to make the AuctionSniper observe the stop
price we’ve just passed to it and stop bidding. In practice, we can ensure that
we’ve covered everything by writing unit tests for each of the new state transitions
drawn in Figure 18.1. Our first test triggers the Sniper to start bidding and then
announces a bid outside its limit—the stop price is set to 1234. We’ve also
extracted a common expectation into a helper method.1

@Test public void
doesNotBidAndReportsLosingIfSubsequentPriceIsAboveStopPrice() {
 allowingSniperBidding();
 context.checking(new Expectations() {{
 int bid = 123 + 45;
 allowing(auction).bid(bid);
 atLeast(1).of(sniperListener).sniperStateChanged(
 new SniperSnapshot(ITEM_ID, 2345, bid, LOSING));
 when(sniperState.is("bidding"));
 }});
 sniper.currentPrice(123, 45, PriceSource.FromOtherBidder);
 sniper.currentPrice(2345, 25, PriceSource.FromOtherBidder);
}
private void allowingSniperBidding() {
 context.checking(new Expectations() {{
 allowing(sniperListener).sniperStateChanged(with(aSniperThatIs(BIDDING)));
 then(sniperState.is("bidding"));
 }});
}

1. jMock allows checking() to be called multiple times within a test.

Chapter 18 Filling In the Details210

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Distinguishing between Test Setup and Assertions

Once again we’re using the allowing clause to distinguish between the test setup
(getting the AuctionSniper into the right state) and the significant test assertion
(that the AuctionSniper is now losing). We’re very picky about this kind of
expressiveness because we’ve found it’s the only way for the tests to remain
meaningful, and therefore useful, over time.We return to this at length in Chapter 21
and Chapter 24.

The other tests are similar:

doesNotBidAndReportsLosingIfFirstPriceIsAboveStopPrice()
reportsLostIfAuctionClosesWhenLosing()
continuesToBeLosingOnceStopPriceHasBeenReached()
doesNotBidAndReportsLosingIfPriceAfterWinningIsAboveStopPrice()

We change AuctionSniper, with supporting features in SniperSnapshot and
Item, to make the test pass:

public class AuctionSniper { […]
 public void currentPrice(int price, int increment, PriceSource priceSource) {
 switch(priceSource) {
 case FromSniper:
 snapshot = snapshot.winning(price);
 break;
 case FromOtherBidder:
 int bid = price + increment;
 if (item.allowsBid(bid)) {
 auction.bid(bid);
 snapshot = snapshot.bidding(price, bid);

} else {
 snapshot = snapshot.losing(price);
 }
 break;
 }
 notifyChange();
 } […]

public class SniperSnapshot { […]
 public SniperSnapshot losing(int newLastPrice) {
 return new SniperSnapshot(itemId, newLastPrice, lastBid, LOSING);
 } […]

public class Item { […]
 public boolean allowsBid(int bid) {
 return bid <= stopPrice;
 } […]

The end-to-end tests pass and we can cross the feature off our list, Figure 18.3.

211Stop When We’ve Had Enough

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Figure 18.3 The Sniper stops bidding at the stop price

Observations
User Interfaces, Incrementally

It looks like we’re making significant changes again to the user interface at a late
stage in our development. Shouldn’t we have seen this coming? This is an active
topic for discussion in the Agile User Experience community and, as always, the
answer is “it depends, but you have more flexibility than you might think.”

In truth, for a simple application like this it would make sense to work out the
user interface in more detail at the start, to make sure it’s usable and coherent.
That said, we also wanted to make a point that we can respond to changing
needs, especially if we structure our tests and code so that they’re flexible, not a
dead weight. We all know that requirements will change, especially once we put
our application into production, so we should be able to respond.

Other Modeling Techniques Still Work

Some presentations of TDD appear to suggest that it supersedes all previous
software design techniques. We think TDD works best when it’s based on skill
and judgment acquired from as wide an experience as possible—which includes
taking advantage of older techniques and formats (we hope we’re not being too
controversial here).

State transition diagrams are one example of taking another view. We regularly
come across teams that have never quite figured out what the valid states and
transitions are for key concepts in their domain, and applying this simple

Chapter 18 Filling In the Details212

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

formalism often means we can clean up a lucky-dip of snippets of behavior
scattered across the code. What’s nice about state transitions diagrams is that
they map directly onto tests, so we can show that we’ve covered all the
possibilities.

The trick is to understand and use other modeling techniques for support and
guidance, not as an end in themselves—which is how they got a bad name in the
first place. When we’re doing TDD and we’re uncertain what to do, sometimes
stepping back and opening a pack of index cards, or sketching out the interactions,
can help us regain direction.

Domain Types Are Better Than Strings

The string is a stark data structure and everywhere it is passed there
is much duplication of process. It is a perfect vehicle for hiding
information.

—Alan Perlis

Looking back, we wish we’d created the Item type earlier, probably when we
extracted UserRequestListener, instead of just using a String to represent the
thing a Sniper bids for. Had we done so, we could have added the stop price to
the existing Item class, and it would have been delivered, by definition, to where
it was needed.

We might also have noticed sooner that we do not want to index our table on
item identifier but on an Item, which would open up the possibility of trying
multiple policies in a single auction. We’re not saying that we should have de-
signed more speculatively for a need that hasn’t been proved. Rather, when we
take the trouble to express the domain clearly, we often find that we have more
options.

It’s often better to define domain types to wrap not only Strings but other
built-in types too, including collections. All we have to do is remember to apply
our own advice. As you see, sometimes we forget.

213Observations

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Chapter 19

Handling Failure
In which we address the reality of programming in an imperfect world,
and add failure reporting. We add a new auction event that reports
failure. We attach a new event listener that will turn off the Sniper if
it fails. We also write a message to a log and write a unit test that mocks
a class, for which we’re very sorry.

To avoid trying your patience any further, we close our example here.

So far, we’ve been prepared to assume that everything just works. This might be
reasonable if the application is not supposed to last—perhaps it’s acceptable if
it just crashes and we restart it or, as in this case, we’ve been mainly concerned
with demonstrating and exploring the domain. Now it’s time to start being explicit
about how we deal with failures.

What If It Doesn’t Work?

Our product people are concerned that Southabee’s On-Line has a reputation
for occasionally failing and sending incorrectly structured messages, so they want
us to show that we can cope. It turns out that the system we talk to is actually
an aggregator for multiple auction feeds, so the failure of an individual auction
does not imply that the whole system is unsafe. Our policy will be that when we
receive a message that we cannot interpret, we will mark that auction as Failed
and ignore any further updates, since it means we can no longer be sure what’s
happening. Once an auction has failed, we make no attempt to recover.1

In practice, reporting a message failure means that we flush the price and bid
values, and show the status as Failed for the offending item. We also record the
event somewhere so that we can deal with it later. We could make the display
of the failure more obvious, for example by coloring the row, but we’ll keep this
version simple and leave any extras as an exercise for the reader.

The end-to-end test shows that a working Sniper receives a bad message, dis-
plays and records the failure, and then ignores further updates from this auction:

1. We admit that it’s unlikely that an auction site that regularly garbles its messages
will survive for long, but it’s a simple example to work through. We also doubt that
any serious bidder will be happy to let their bid lie hanging, not knowing whether
they’ve bought something or lost to a rival. On the other hand, we’ve seen less plau-
sible systems succeed in the world, propped up by an army of special handling, so
perhaps you can let us get away with this one.

215

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

@Test public void
sniperReportsInvalidAuctionMessageAndStopsRespondingToEvents()
 throws Exception
{
 String brokenMessage = "a broken message";
 auction.startSellingItem();
 auction2.startSellingItem();

 application.startBiddingIn(auction, auction2);
 auction.hasReceivedJoinRequestFrom(ApplicationRunner.SNIPER_XMPP_ID);

 auction.reportPrice(500, 20, "other bidder");
 auction.hasReceivedBid(520, ApplicationRunner.SNIPER_XMPP_ID);

 auction.sendInvalidMessageContaining(brokenMessage);
 application.showsSniperHasFailed(auction);

 auction.reportPrice(520, 21, "other bidder");
waitForAnotherAuctionEvent();

 application.reportsInvalidMessage(auction, brokenMessage);
 application.showsSniperHasFailed(auction);
}

private void waitForAnotherAuctionEvent() throws Exception {
 auction2.hasReceivedJoinRequestFrom(ApplicationRunner.SNIPER_XMPP_ID);
 auction2.reportPrice(600, 6, "other bidder");
 application.hasShownSniperIsBidding(auction2, 600, 606);
}

where sendInvalidMessageContaining() sends the given invalid string via a chat
to the Sniper, and showsSniperHasFailed() checks that the status for the item is
Failed and that the price values have been zeroed. We park the implementation
of reportsInvalidMessage() for the moment; we’ll come back to it later in this
chapter.

Testing That Something Doesn’t Happen

You’ll have noticed the waitForAnotherAuctionEvent() method which forces an
unrelated Sniper event and then waits for it to work through the system. Without
this call, it would be possible for the final showSniperHasFailed() check to pass
incorrectly because it would pick up the previous Sniper state—before the system
has had time to process the relevant price event. The additional event holds back
the test just long enough to make sure that the system has caught up. See
Chapter 27 for more on testing with asynchrony.

To get this test to fail appropriately, we add a FAILED value to the SniperState
enumeration, with an associated text mapping in SnipersTabelModel. The
test fails:

Chapter 19 Handling Failure216

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

[…] but...
 it is not table with row with cells
 <label with text "item-54321">, <label with text "0">,
 <label with text "0">, <label with text "Failed">
 because

in row 0: component 1 text was "500"
 in row 1: component 0 text was "item-65432"

It shows that there are two rows in the table: the second is for the other auction,
and the first is showing that the current price is 500 when it should have been
flushed to 0. This failure is our marker for what we need to build next.

Detecting the Failure

The failure will actually occur in the AuctionMessageTranslator (last shown in
Chapter 14) which will throw a runtime exception when it tries to parse the
message. The Smack library drops exceptions thrown by MessageHandlers,
so we have to make sure that our handler catches everything. As we write
a unit test for a failure in the translator, we realize that we need to report a
new type of auction event, so we add an auctionFailed() method to the
AuctionEventListener interface.

@Test public void
notifiesAuctionFailedWhenBadMessageReceived() {
 context.checking(new Expectations() {{
 exactly(1).of(listener).auctionFailed();
 }});

 Message message = new Message();
 message.setBody("a bad message");

 translator.processMessage(UNUSED_CHAT, message);
}

This fails with an ArrayIndexOutOfBoundsException when it tries to unpack a
name/value pair from the string. We could be precise about which exceptions to
catch but in practice it doesn’t really matter here: we either parse the message or
we don’t, so to make the test pass we extract the bulk of processMessage() into
a translate() method and wrap a try/catch block around it.

public class AuctionMessageTranslator implements MessageListener {
 public void processMessage(Chat chat, Message message) {
 try {

translate(message.getBody());
 } catch (Exception parseException) {
 listener.auctionFailed();
 }
 }

While we’re here, there’s another failure mode we’d like to check. It’s possible
that a message is well-formed but incomplete: it might be missing one of its fields

217Detecting the Failure

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

such as the event type or current price. We write a couple of tests to confirm that
we can catch these, for example:

@Test public void
notifiesAuctionFailedWhenEventTypeMissing() {
 context.checking(new Expectations() {{
 exactly(1).of(listener).auctionFailed();
 }});
 Message message = new Message();
 message.setBody("SOLVersion: 1.1; CurrentPrice: 234; Increment: 5; Bidder: "
 + SNIPER_ID + ";");
 translator.processMessage(UNUSED_CHAT, message);
}

Our fix is to throw an exception whenever we try to get a value that has not
been set, and we define MissingValueException for this purpose.

public static class AuctionEvent { […]
 private String get(String name) throws MissingValueException {
 String value = values.get(name);

if (null == value) {
 throw new MissingValueException(name);
 }
 return value;
 }
}

Displaying the Failure

We added an auctionFailed() method to AuctionEventListener while unit-
testing AuctionMessageTranslator. This triggers a compiler warning in
AuctionSniper, so we added an empty implementation to keep going. Now
it’s time to make it work, which turns out to be easy. We write some tests in
AuctionSniperTest for the new state transitions, for example:

@Test public void
reportsFailedIfAuctionFailsWhenBidding() {
 ignoringAuction();
 allowingSniperBidding();

 expectSniperToFailWhenItIs("bidding");

 sniper.currentPrice(123, 45, PriceSource.FromOtherBidder);
 sniper.auctionFailed();
}

private void expectSniperToFailWhenItIs(final String state) {
 context.checking(new Expectations() {{
 atLeast(1).of(sniperListener).sniperStateChanged(
 new SniperSnapshot(ITEM_ID, 00, 0, SniperState.FAILED));
 when(sniperState.is(state));
 }});
}

Chapter 19 Handling Failure218

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

We’ve added a couple more helper methods: ignoringAuction() says that we
don’t care what happens to auction, allowing events to pass through so we can
get to the failure; and, expectSniperToFailWhenItIs() describes what a failure
should look like, including the previous state of the Sniper.

All we have to do is add a failed() transition to SniperSnapshot and use it
in the new method.

public class AuctionSniper implements AuctionEventListener {
 public void auctionFailed() {
 snapshot = snapshot.failed();
 listeners.announce().sniperStateChanged(snapshot);
 } […]

public class SniperSnapshot {
 public SniperSnapshot failed() {
 return new SniperSnapshot(itemId, 0, 0, SniperState.FAILED);
 } […]

This displays the failure, as we can see in Figure 19.1.

Figure 19.1 The Sniper shows a failed auction

The end-to-end test, however, still fails. The synchronization hook we added
reveals that we haven’t disconnected the Sniper from receiving further events
from the auction.

Disconnecting the Sniper

We turn off a Sniper by removing its AuctionMessageTranslator from its Chat’s
set of MessageListeners. We can do this safely while processing a message because
Chat stores its listeners in a thread-safe “copy on write” collection. One obvious
place to do this is within processMessage() in AuctionMessageTranslator, which
receives the Chat as an argument, but we have two doubts about this. First, as
we pointed out in Chapter 12, constructing a real Chat is painful. Most of the
mocking frameworks support creating a mock class, but it makes us uncomfort-
able because then we’re defining a relationship with an implementation, not a
role—we’re being too precise about our dependencies. Second, we might be as-
signing too many responsibilities to AuctionMessageTranslator; it would have
to translate the message and decide what to do when it fails.

219Disconnecting the Sniper

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Our alternative approach is to attach another object to the translator that im-
plements this disconnection policy, using the infrastructure we already have for
notifying AuctionEventListeners.

public final class XMPPAuction implements Auction {
 public XMPPAuction(XMPPConnection connection, String auctionJID) {
 AuctionMessageTranslator translator = translatorFor(connection);
 this.chat = connection.getChatManager().createChat(auctionJID, translator);
 addAuctionEventListener(chatDisconnectorFor(translator));
 }

 private AuctionMessageTranslator translatorFor(XMPPConnection connection) {
 return new AuctionMessageTranslator(connection.getUser(),
 auctionEventListeners.announce());
 }

z

 private AuctionEventListener
chatDisconnectorFor(final AuctionMessageTranslator translator) {

 return new AuctionEventListener() {
 public void auctionFailed() {

chat.removeMessageListener(translator);
 }
 public void auctionClosed(// empty method
 public void currentPrice(// empty method
 };
 } […]

The end-to-end test, as far as it goes, passes.

The Composition Shell Game

The issue in this design episode is not the fundamental complexity of the feature,
which is constant, but how we divide it up. The design we chose (attaching a dis-
connection listener) could be argued to be more complicated than its alternative
(detaching the chat within the translator). It certainly takes more lines of code, but
that’s not the only metric. Instead, we’re emphasizing the “single responsibility”
principle, which means each object does just one thing well and the system behavior
comes from how we assemble those objects.

Sometimes this feels as if the behavior we’re looking for is always somewhere else
(as Gertrude Stein said, “There is no there there”), which can be frustrating for
developers not used to the style. Our experience, on the other hand, is that focused
responsibilities make the code more maintainable because we don’t have to cut
through unrelated functionality to get to the piece we need. See Chapter 6 for a
longer discussion.

Chapter 19 Handling Failure220

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Recording the Failure

Now we want to return to the end-to-end test and the reportsInvalidMessage()
method that we parked. Our requirement is that the Sniper application must log
a message about these failures so that the user’s organization can recover the
situation. This means that our test should look for a log file and check its contents.

Filling In the Test

We implement the missing check and flush the log before each test, delegating
the management of the log file to an AuctionLogDriver class which uses the
Apache Commons IO library. It also cheats slightly by resetting the log manager
(we’re not really supposed to be in the same address space), since deleting the
log file can confuse a cached logger.

public class ApplicationRunner { […]
private AuctionLogDriver logDriver = new AuctionLogDriver();

 public void reportsInvalidMessage(FakeAuctionServer auction, String message)
 throws IOException
 {

logDriver.hasEntry(containsString(message));
 }

 public void startBiddingWithStopPrice(FakeAuctionServer auction, int stopPrice) {
 startSniper();
 openBiddingFor(auction, stopPrice);
 }
 private startSniper() {

logDriver.clearLog()
 Thread thread = new Thread("Test Application") {
 @Override public void run() { // Start the application […]
 }
}

public class AuctionLogDriver {
 public static final String LOG_FILE_NAME = "auction-sniper.log";
 private final File logFile = new File(LOG_FILE_NAME);

 public void hasEntry(Matcher<String> matcher) throws IOException {
 assertThat(FileUtils.readFileToString(logFile), matcher);
 }
 public void clearLog() {
 logFile.delete();
 LogManager.getLogManager().reset();
 }
}

This new check only reassures us that we’ve fed a message through the system
and into some kind of log record—it tells us that the pieces fit together. We’ll
write a more thorough test of the contents of a log record later. The end-to-end
test now fails because, of course, there’s no log file to read.

221Recording the Failure

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Failure Reporting in the Translator

Once again, the first change is in the AuctionMessageTranslator. We’d like
the record to include the auction identifier, the received message, and
the thrown exception. The “single responsibility” principle suggests that the
AuctionMessageTranslator should not be responsible for deciding how to report
the event, so we invent a new collaborator to handle this task. We call it
XMPPFailureReporter:

public interface XMPPFailureReporter {
 void cannotTranslateMessage(String auctionId, String failedMessage,
 Exception exception);
}

We amend our existing failure tests, wrapping up message creation and common
expectations in helper methods, for example:

@Test public void
notifiesAuctionFailedWhenBadMessageReceived() {
 String badMessage = "a bad message";
expectFailureWithMessage(badMessage);

 translator.processMessage(UNUSED_CHAT, message(badMessage));
}
private Message message(String body) {
 Message message = new Message();
 message.setBody(body);
 return message;
}
private void expectFailureWithMessage(final String badMessage) {
 context.checking(new Expectations() {{
 oneOf(listener).auctionFailed();

oneOf(failureReporter).cannotTranslateMessage(
 with(SNIPER_ID), with(badMessage),
 with(any(Exception.class)));
 }});
}

The new reporter is a dependency for the translator, so we feed it in through
the constructor and call it just before notifying any listeners. We know that
message.getBody() will not throw an exception, it’s just a simple bean, so we
can leave it outside the catch block.

public class AuctionMessageTranslator implements MessageListener {
 public void processMessage(Chat chat, Message message) {
 String messageBody = message.getBody();
 try {
 translate(messageBody);
 } catch (RuntimeException exception) {

failureReporter.cannotTranslateMessage(sniperId, messageBody, exception);
 listener.auctionFailed();
 }
 } […]

The unit test passes.

Chapter 19 Handling Failure222

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Generating the Log Message

The next stage is to implement the XMPPFailureReporter with something that
generates a log file. This is where we actually check the format and contents of
a log entry. We start a class LoggingXMPPFailureReporter and decide to use Java’s
built-in logging framework. We could make the tests for this new class write and
read from a real file. Instead, we decide that file access is sufficiently covered by
the end-to-end test we’ve just set up, so we’ll run everything in memory to
reduce the test’s dependencies. We’re confident we can take this shortcut, because
the example is so simple; for more complex behavior we would write some
integration tests.

The Java logging framework has no interfaces, so we have to be more concrete
than we’d like. Exceptionally, we decide to use a class-based mock to override
the relevant method in Logger; in jMock we turn on class-based mocking
with the setImposteriser() call. The AfterClass annotation tells JUnit to call
resetLogging() after all the tests have run to flush any changes we might have
made to the logging environment.

@RunWith(JMock.class)
public class LoggingXMPPFailureReporterTest {
 private final Mockery context = new Mockery() {{

setImposteriser(ClassImposteriser.INSTANCE);
 }};
 final Logger logger = context.mock(Logger.class);
 final LoggingXMPPFailureReporter reporter = new LoggingXMPPFailureReporter(logger);

@AfterClass
 public static void resetLogging() {
 LogManager.getLogManager().reset();
 }

 @Test public void
writesMessageTranslationFailureToLog() {

 context.checking(new Expectations() {{
 oneOf(logger).severe("<auction id> "
 + "Could not translate message \"bad message\" "
 + "because \"java.lang.Exception: bad\"");
 }});
 reporter.cannotTranslateMessage("auction id", "bad message", new Exception("bad"));
 }
}

We pass this test with an implementation that just calls the logger with a string
formatted from the inputs to cannotTranslateMessage().

Breaking Our Own Rules?

We already wrote that we don’t like to mock classes, and we go on about it further
in Chapter 20. So, how come we’re doing it here?

223Recording the Failure

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

What we care about in this test is the rendering of the values into a failure message
with a severity level. The class is very limited, just a shim above the logging layer,
so we don’t think it’s worth introducing another level of indirection to define the
logging role. As we wrote before, we also don’t think it worth running against a real
file since that introduces dependencies (and, even worse, asynchrony) not really
relevant to the functionality we’re developing. We also believe that, as part of the
Java runtime, the logging API is unlikely to change.

So, just this once, as a special favor, setting no precedents, making no promises,
we mock the Logger class. There are a couple more points worth making before we
move on. First, we would not do this for a class that is internal to our code, because
then we would be able write an interface to describe the role it’s playing. Second,
if the LoggingXMPPFailureReporter were to grow in complexity, we would probably
find ourselves discovering a supporting message formatter class that could be
tested directly.

Closing the Loop

Now we have the pieces in place to make the whole end-to-end test pass. We
plug an instance of the LoggingXMPPFailureReporter into the XMPPAuctionHouse
so that, via its XMPPAuctions, every AuctionMessageTranslator is constructed
with the reporter. We also move the constant that defines the log file name there
from AuctionLogDriver, and define a new XMPPAuctionException to gather up
any failures within the package.

public class XMPPAuctionHouse implements AuctionHouse {
 public XMPPAuctionHouse(XMPPConnection connection)
 throws XMPPAuctionException
 {
 this.connection = connection;

this.failureReporter = new LoggingXMPPFailureReporter(makeLogger());
 }
 public Auction auctionFor(String itemId) {
 return new XMPPAuction(connection, auctionId(itemId, connection), failureReporter);
 }
 private Logger makeLogger() throws XMPPAuctionException {
 Logger logger = Logger.getLogger(LOGGER_NAME);
 logger.setUseParentHandlers(false);
 logger.addHandler(simpleFileHandler());
 return logger;
 }
 private FileHandler simpleFileHandler() throws XMPPAuctionException {
 try {
 FileHandler handler = new FileHandler(LOG_FILE_NAME);
 handler.setFormatter(new SimpleFormatter());
 return handler;
 } catch (Exception e) {
 throw new XMPPAuctionException("Could not create logger FileHandler "
 + getFullPath(LOG_FILE_NAME), e);
 }
 } […]

Chapter 19 Handling Failure224

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The end-to-end test passes completely and we can cross another item off our
list: Figure 19.2.

Figure 19.2 The Sniper reports failed messages from an auction

Observations
“Inverse Salami” Development

We hope that by now you’re getting a sense of the rhythm of incrementally
growing software, adding functionality in thin but coherent slices. For each new
feature, write some tests that show what it should do, work through each of
those tests changing just enough code to make it pass, restructure the code as
needed either to open up space for new functionality or to reveal new
concepts—then ship it. We discuss how this fits into the larger development picture
in Chapter 5. In static languages, such as Java and C#, we can often use the
compiler to help us navigate the chain of implementation dependencies: change
the code to accept the new triggering event, see what breaks, fix that breakage,
see what that change breaks in turn, and repeat the process until the
functionality works.

The skill is in learning how to divide requirements up into incremental slices,
always having something working, always adding just one more feature. The
process should feel relentless—it just keeps moving. To make this work, we have
to understand how to change the code incrementally and, critically, keep the
code well structured so that we can take it wherever we need to go (and we
don’t know where that is yet). This is why the refactoring part of a test-driven

225Observations

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

development cycle is so critical—we always get into trouble when we don’t keep
up that side of the bargain.

Small Methods to Express Intent

We have a habit of writing helper methods to wrap up small amounts of code—for
two reasons. First, this reduces the amount of syntactic noise in the calling code
that languages like Java force upon us. For example, when we disconnect
the Sniper, the translatorFor() method means we don’t have to type
"AuctionMessageTranslator" twice in the same line. Second, this gives a mean-
ingful name to a structure that would not otherwise be obvious. For example,
chatDisconnectorFor() describes what its anonymous class does and is less
intrusive than defining a named inner class.

Our aim is to do what we can to make each level of code as readable and self-
explanatory as possible, repeating the process all the way down until we actually
have to use a Java construct.

Logging Is Also a Feature

We defined XMPPFailureReporter to package up failure reporting for the
AuctionMessageTranslator. Many teams would regard this as overdesign and
just write the log message in place. We think this would weaken the design by
mixing levels (message translation and logging) in the same code.

We’ve seen many systems where logging has been added ad hoc by developers
wherever they find a need. However, production logging is an external interface
that should be driven by the requirements of those who will depend on it, not
by the structure of the current implementation. We find that when we take the
trouble to describe runtime reporting in the caller’s terms, as we did with
the XMPPFailureReporter, we end up with more useful logs. We also find that
we end up with the logging infrastructure clearly isolated, rather than scattered
throughout the code, which makes it easier to work with.

This topic is such a bugbear (for Steve at least) that we devote a whole section
to it in Chapter 20.

Chapter 19 Handling Failure226

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Part IV

Sustainable Test-Driven
Development

This part discusses the qualities we look for in test code that
keep the development “habitable.” We want to make sure the
tests pull their weight by making them expressive, so that we
can tell what’s important when we read them and when they
fail, and by making sure they don’t become a maintenance drag
themselves. We need to apply as much care and attention to the
tests as we do to the production code, although the coding styles
may differ. Difficulty in testing might imply that we need to
change our test code, but often it’s a hint that our design ideas
are wrong and that we ought to change the production code.

We’ve written up these guidelines as separate chapters, but
that has more to do with our need for a linear structure that
will fit into a book. In practice, these qualities are all related to
and support each other. Test-driven development combines
testing, specification, and design into one holistic activity.1

1. For us, a sign of this interrelatedness was the difficulty we had in breaking up the
material into coherent chapters.

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Chapter 20

Listening to the Tests
You can see a lot just by observing.

—Yogi Berra

Introduction

Sometimes we find it difficult to write a test for some functionality we want to
add to our code. In our experience, this usually means that our design can be
improved—perhaps the class is too tightly coupled to its environment or does
not have clear responsibilities. When this happens, we first check whether it’s an
opportunity to improve our code, before working around the design by making
the test more complicated or using more sophisticated tools. We’ve found
that the qualities that make an object easy to test also make our code responsive
to change.

The trick is to let our tests drive our design (that’s why it’s called test-driven
development). TDD is about testing code, verifying its externally visible qualities
such as functionality and performance. TDD is also about feedback on the code’s
internal qualities: the coupling and cohesion of its classes, dependencies that are
explicit or hidden, and effective information hiding—the qualities that keep the
code maintainable.

With practice, we’ve become more sensitive to the rough edges in our tests, so
we can use them for rapid feedback about the design. Now when we find a feature
that’s difficult to test, we don’t just ask ourselves how to test it, but also why is
it difficult to test.

In this chapter, we look at some common “test smells” that we’ve encountered
and discuss what they might imply about the design of the code. There are two
categories of test smell to consider. One is where the test itself is not well
written—it may be unclear or brittle. Meszaros [Meszaros07] covers several such
patterns in his “Test Smells” chapter. This chapter is concerned with the other
category, where a test is highlighting that the target code is the problem. Meszaros
has one pattern for this, called “Hard-to-Test Code.” We’ve picked out some
common cases that we’ve seen that are relevant to our approach to TDD.

229

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

I Need to Mock an Object I Can’t Replace (without Magic)
Singletons Are Dependencies

One interpretation of reducing complexity in code is making commonly useful
objects accessible through a global structure, usually implemented as a singleton.
Any code that needs access to a feature can just refer to it by its global name
instead of receiving it as an argument. Here’s a common example:

Date now = new Date();

Under the covers, the constructor calls the singleton System and sets the new
instance to the current time using System.currentTimeMillis(). This is a conve-
nient technique, but it comes at a cost. Let’s say we want to write a test like this:

@Test public void rejectsRequestsNotWithinTheSameDay() {
 receiver.acceptRequest(FIRST_REQUEST);
// the next day

 assertFalse("too late now", receiver.acceptRequest(SECOND_REQUEST));
}

The implementation looks like this:

public boolean acceptRequest(Request request) {
 final Date now = new Date();
 if (dateOfFirstRequest == null) {
 dateOfFirstRequest = now;
 } else if (firstDateIsDifferentFrom(now)) {
 return false;
 }
// process the request

 return true;
}

where dateOfFirstRequest is a field and firstDateIsDifferentFrom() is a helper
method that hides the unpleasantness of working with the Java date library.

To test this timeout, we must either make the test wait overnight or do some-
thing clever (perhaps with aspects or byte-code manipulation) to intercept the
constructor and return suitable Date values for the test. This difficulty in testing
is a hint that we should change the code. To make the test easier, we need to
control how Date objects are created, so we introduce a Clock and pass it into
the Receiver. If we stub Clock, the test might look like this:

@Test public void rejectsRequestsNotWithinTheSameDay() {
 Receiver receiver = new Receiver(stubClock);
 stubClock.setNextDate(TODAY);
 receiver.acceptRequest(FIRST_REQUEST);

 stubClock.setNextDate(TOMORROW);
 assertFalse("too late now", receiver.acceptRequest(SECOND_REQUEST));
}

Chapter 20 Listening to the Tests230

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

and the implementation like this:

public boolean acceptRequest(Request request) {
 final Date now = clock.now();
 if (dateOfFirstRequest == null) {
 dateOfFirstRequest = now;
 } else if (firstDateIsDifferentFrom(now)) {
 return false;
 }
// process the request

 return true;
}

Now we can test the Receiver without any special tricks. More importantly,
however, we’ve made it obvious that Receiver is dependent on time—we can’t
even create one without a Clock. Some argue that this is breaking encapsulation
by exposing the internals of a Receiver—we should be able to just create an in-
stance and not worry—but we’ve seen so many systems that are impossible to
test because the developers did not isolate the concept of time. We want to know
about this dependency, especially when the service is rolled out across the world,
and New York and London start complaining about different results.

From Procedures to Objects

Having taken the trouble to introduce a Clock object, we start wondering if our
code is missing a concept: date checking in terms of our domain. A Receiver
doesn’t need to know all the details of a calendar system, such as time zones and
locales; it just need to know if the date has changed for this application. There’s
a clue in the fragment:

firstDateIsDifferentFrom(now)

which means that we’ve had to wrap up some date manipulation code in Receiver.
It’s the wrong object; that kind of work should be done in Clock. We write the
test again:

@Test public void rejectsRequestsNotWithinTheSameDay() {
 Receiver receiver = new Receiver(clock);
 context.checking(new Expectations() {{
 allowing(clock).now(); will(returnValue(NOW));

one(clock).dayHasChangedFrom(NOW); will(returnValue(false));
 }});

 receiver.acceptRequest(FIRST_REQUEST);
 assertFalse("too late now", receiver.acceptRequest(SECOND_REQUEST));
}

The implementation looks like this:

231I Need to Mock an Object I Can’t Replace (without Magic)

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

public boolean acceptRequest(Request request) {
 if (dateOfFirstRequest == null) {
 dateOfFirstRequest = clock.now();
 } else if (clock.dayHasChangedFrom(dateOfFirstRequest)) {
 return false;
 }
// process the request

 return true;
}

This version of Receiver is more focused: it doesn’t need to know how to dis-
tinguish one date from another and it only needs to get a date to set the first
value. The Clock interface defines exactly those date services Receiver needs from
its environment.

But we think we can push this further. Receiver only retains a date so that it
can detect a change of day; perhaps we should delegate all the date functionality
to another object which, for want of a better name, we’ll call a SameDayChecker.

@Test public void rejectsRequestsOutsideAllowedPeriod() {
 Receiver receiver = new Receiver(sameDayChecker);
 context.checking(new Expectations() {{

allowing(sameDayChecker).hasExpired(); will(returnValue(false));
 }});

 assertFalse("too late now", receiver.acceptRequest(REQUEST));
}

with an implementation like this:

public boolean acceptRequest(Request request) {
 if (sameDayChecker.hasExpired()) {
 return false;
 }
// process the request

 return true;
}

All the logic about dates has been separated out from Receiver, which can
concentrate on processing the request. With two objects, we can make sure that
each behavior (date checking and request processing) is unit-tested cleanly.

Implicit Dependencies Are Still Dependencies

We can hide a dependency from the caller of a component by using a global
value to bypass encapsulation, but that doesn’t make the dependency go away—it
just makes it inaccessible. For example, Steve once had to work with a Microsoft
.Net library that couldn’t be loaded without installing ActiveDirectory—which
wasn’t actually required for the features he wanted to use and which he couldn’t
install on his machine anyway. The library developer was trying to be helpful
and to make it “just work,” but the result was that Steve couldn’t get it to work
at all.

Chapter 20 Listening to the Tests232

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

One goal of object orientation as a technique for structuring code is to make
the boundaries of an object clearly visible. An object should only deal with values
and instances that are either local—created and managed within its scope—or
passed in explicitly, as we emphasized in “Context Independence” (page 54).

In the example above, the act of making date checking testable forced us to
make the Receiver’s requirements more explicit and to think more clearly about
the domain.

Use the Same Techniques to Break Dependencies in Unit Tests
as in Production Code

There are several frameworks available that use techniques such as manipulating
class loaders or bytecodes to allow unit tests to break dependencies without
changing the target code. As a rule, these are advanced techniques that most
developers would not use when writing production code. Sometimes these tools
really are necessary, but developers should be aware that they come with a
hidden cost.

Unit-testing tools that let the programmer sidestep poor dependency management
in the design waste a valuable source of feedback.When the developers eventually
do need to address these design weaknesses to add some urgent feature, they
will find it harder to do. The poor structure will have influenced other parts of the
system that rely on it, and any understanding of the original intent will have
evaporated. As with dirty pots and pans, it’s easier to get the grease off before it’s
been baked in.

Logging Is a Feature

We have a more contentious example of working with objects that are hard to
replace: logging. Take a look at these two lines of code:

log.error("Lost touch with Reality after " + timeout + "seconds");
log.trace("Distance traveled in the wilderness: " + distance);

These are two separate features that happen to share an implementation. Let
us explain.

• Support logging (errors and info) is part of the user interface of the appli-
cation. These messages are intended to be tracked by support staff, as well
as perhaps system administrators and operators, to diagnose a failure or
monitor the progress of the running system.

• Diagnostic logging (debug and trace) is infrastructure for programmers.
These messages should not be turned on in production because they’re in-
tended to help the programmers understand what’s going on inside the
system they’re developing.

233Logging Is a Feature

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Given this distinction, we should consider using different techniques for these
two type of logging. Support logging should be test-driven from somebody’s re-
quirements, such as auditing or failure recovery. The tests will make sure we’ve
thought about what each message is for and made sure it works. The tests will
also protect us from breaking any tools and scripts that other people write to
analyze these log messages. Diagnostic logging, on the other hand, is driven by
the programmers’ need for fine-grained tracking of what’s happening in the sys-
tem. It’s scaffolding—so it probably doesn’t need to be test-driven and the mes-
sages might not need to be as consistent as those for support logs. After all, didn’t
we just agree that these messages are not to be used in production?

Notification Rather Than Logging

To get back to the point of the chapter, writing unit tests against static global
objects, including loggers, is clumsy. We have to either read from the file system
or manage an extra appender object for testing; we have to remember to clean
up afterwards so that tests don’t interfere with each other and set the right level
on the right logger. The noise in the test reminds us that our code is working at
two levels: our domain and the logging infrastructure. Here’s a common example
of code with logging:

Location location = tracker.getCurrentLocation();
for (Filter filter : filters) {
 filter.selectFor(location);
if (logger.isInfoEnabled()) {

 logger.info("Filter " + filter.getName() + ", " + filter.getDate()
 + " selected for " + location.getName()
 + ", is current: " + tracker.isCurrent(location));
 }
}

Notice the shift in vocabulary and style between the functional part of the
loop and the (emphasized) logging part. The code is doing two things at
once—something to do with locations and rendering support information—which
breaks the single responsibility principle. Maybe we could do this instead:

Location location = tracker.getCurrentLocation();
for (Filter filter : filters) {
 filter.selectFor(location);
support.notifyFiltering(tracker, location, filter);}

where the support object might be implemented by a logger, a message bus,
pop-up windows, or whatever’s appropriate; this detail is not relevant to the
code at this level.

This code is also easier to test, as you saw in Chapter 19. We, not the logging
framework, own the support object, so we can pass in a mock implementation
at our convenience and keep it local to the test case. The other simplification is
that now we’re testing for objects, rather than formatted contents of a string. Of

Chapter 20 Listening to the Tests234

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

course, we will still need to write an implementation of support and some focused
integration tests to go with it.

But That’s Crazy Talk…

The idea of encapsulating support reporting sounds like over-design, but it’s
worth thinking about for a moment. It means we’re writing code in terms of our
intent (helping the support people) rather than implementation (logging), so it’s
more expressive. All the support reporting is handled in a few known places, so
it’s easier to be consistent about how things are reported and to encourage reuse.
It can also help us structure and control our reporting in terms of the application
domain, rather than in terms of Java packages. Finally, the act of writing a test
for each report helps us avoid the “I don’t know what to do with this exception,
so I’ll log it and carry on” syndrome, which leads to log bloat and production
failures because we haven’t handled obscure error conditions.

One objection we’ve heard is, “I can’t pass in a logger for testing because I’ve
got logging all over my domain objects. I’d have to pass one around everywhere.”
We think this is a test smell that is telling us that we haven’t clarified our design
enough. Perhaps some of our support logging should really be diagnostic logging,
or we’re logging more than we need because of something that we wrote when
we hadn’t yet understood the behavior. Most likely, there’s still too much dupli-
cation in our domain code and we haven’t yet found the “choke points” where
most of the production logging should go.

So what about diagnostic logging? Is it disposable scaffolding that should be
taken down once the job is done, or essential infrastructure that should be tested
and maintained? That depends on the system, but once we’ve made the distinction
we have more freedom to think about using different techniques for support and
diagnostic logging. We might even decide that in-line code is the wrong technique
for diagnostic logging because it interferes with the readability of the production
code that matters. Perhaps we could weave in some aspects instead (since that’s
the canonical example of their use); perhaps not—but at least we’ve now
clarified the choice.

One final data point. One of us once worked on a system where so much
content was written to the logs that they had to be deleted after a week to fit on
the disks. This made maintenance very difficult as the relevant logs were usually
gone by the time a bug was assigned to be fixed. If they’d logged nothing at all,
the system would have run faster with no loss of useful information.

Mocking Concrete Classes

One approach to interaction testing is to mock concrete classes rather than inter-
faces. The technique is to inherit from the class you want to mock and override
the methods that will be called within the test, either manually or with any of

235Mocking Concrete Classes

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

the mocking frameworks. We think this is a technique that should be used only
when you really have no other options.

Here’s an example of mocking by hand. The test verifies that the music centre
starts the CD player at the requested time. Assume that setting the schedule on
a CdPlayer object involves triggering some behavior we don’t want in the test,
so we override scheduleToStartAt() and verify afterwards that we’ve called it
with the right argument.

public class MusicCentreTest {
 @Test public void
startsCdPlayerAtTimeRequested() {

 final MutableTime scheduledTime = new MutableTime();
 CdPlayer player = new CdPlayer() {
 @Override public void scheduleToStartAt(Time startTime) {
 scheduledTime.set(startTime);
 }
 }

 MusicCentre centre = new MusicCentre(player);
 centre.startMediaAt(LATER);

 assertEquals(LATER, scheduledTime.get());
 }
}

The problem with this approach is that it leaves the relationship between the
CdPlayer and MusicCentre implicit. We hope we’ve made clear by now that our
intention in test-driven development is to use mock objects to bring out relation-
ships between objects. If we subclass, there’s nothing in the domain code to make
such a relationship visible—just methods on an object. This makes it harder to
see if the service that supports this relationship might be relevant elsewhere, and
we’ll have to do the analysis again next time we work with the class. To make
the point, here’s a possible implementation of CdPlayer:

public class CdPlayer {
 public void scheduleToStartAt(Time startTime) { […]
 public void stop() { […]
 public void gotoTrack(int trackNumber) { […]
 public void spinUpDisk() { […]
 public void eject() { […]
}

It turns out that our MusicCentre only uses the starting and stopping methods
on the CdPlayer; the rest are used by some other part of the system. We would
be overspecifying the MusicCentre by requiring it to talk to a CdPlayer; what it
actually needs is a ScheduledDevice. Robert Martin made the point (back in
1996) in his Interface Segregation Principle that “Clients should not be forced
to depend upon interfaces that they do not use,” but that’s exactly what we do
when we mock a concrete class.

Chapter 20 Listening to the Tests236

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

There’s a more subtle but powerful reason for not mocking concrete classes.
When we extract an interface as part of our test-driven development process, we
have to think up a name to describe the relationship we’ve just discovered—in
this example, the ScheduledDevice. We find that this makes us think harder about
the domain and teases out concepts that we might otherwise miss. Once something
has a name, we can talk about it.

“Break Glass in Case of Emergency”

There are a few occasions when we have to put up with this smell. The least un-
acceptable situation is where we’re working with legacy code that we control
but can’t change all at once. Alternatively, we might be working with third-party
code that we can’t change at all (see Chapter 8). We find that it’s almost always
better to write a veneer over an external library rather than mock it directly—but
occasionally, it’s just not worth it. We broke the rule with Logger in Chapter 19
but apologized a lot and felt bad about it. In any case, these are unfortunate but
necessary compromises that we would try to work our way out of when possible.
The longer we leave them in the code, the more likely it is that some brittleness
in the design will cause us grief.

Above all, do not override a class’ internal features—this just locks down your
test to the quirks of the current implementation. Only override visible methods.
This rule also prohibits exposing internal methods just to override them in a test.
If you can’t get to the structure you need, then the tests are telling you that it’s
time to break up the class into smaller, composable features.

Don’t Mock Values

There’s no point in writing mocks for values (which should be immutable any-
way). Just create an instance and use it. For example, in this test Video holds
details of a part of a show:

@Test public void sumsTotalRunningTime() {
 Show show = new Show();
 Video video1 = context.mock(Video.class); // Don't do this
 Video video2 = context.mock(Video.class);

 context.checking(new Expectations(){{
 one(video1).time(); will(returnValue(40));
 one(video2).time(); will(returnValue(23));
 }});

 show.add(video1);
 show.add(video2);
 assertEqual(63, show.runningTime())
}

237Don’t Mock Values

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Here, it’s not worth creating an interface/implementation pair to control which
time values are returned; just create instances with the appropriate times and
use them.

There are a couple of heuristics for when a class is likely to be a value and so
not worth mocking. First, its values are immutable—although that might also
mean that it’s an adjustment object, as described in “Object Peer Stereotypes”
(page 52). Second, we can’t think of a meaningful name for a class that would
implement an interface for the type. If Video were an interface, what would we
call its class other than VideoImpl or something equally vague? We discuss class
naming in “Impl Classes Are Meaningless” on page 63.

If you’re tempted to mock a value because it’s too complicated to set up an
instance, consider writing a builder; see Chapter 22.

Bloated Constructor

Sometimes during the TDD process, we end up with a constructor that has a
long, unwieldy list of arguments. We most likely got there by adding the object’s
dependencies one at a time, and it got out of hand. This is not dreadful, since
the process helped us sort out the design of the class and its neighbors, but now
it’s time to clean up. We will still need the functionality that depends on all the
current constructor arguments, so we should see if there’s any implicit structure
there that we can tease out.

One possibility is that some of the arguments together define a concept that
should be packaged up and replaced with a new object to represent it. Here’s a
small example:

public class MessageProcessor {
 public MessageProcessor(MessageUnpacker unpacker,
 AuditTrail auditor,
 CounterPartyFinder counterpartyFinder,
 LocationFinder locationFinder,
 DomesticNotifier domesticNotifier,
 ImportedNotifier importedNotifier)
 {

// set the fields here
 }

 public void onMessage(Message rawMessage) {
 UnpackedMessage unpacked = unpacker.unpack(rawMessage, counterpartyFinder);
 auditor.recordReceiptOf(unpacked);

// some other activity here
 if (locationFinder.isDomestic(unpacked)) {
 domesticNotifier.notify(unpacked.asDomesticMessage());
 } else {
 importedNotifier.notify(unpacked.asImportedMessage())
 }
 }
}

Chapter 20 Listening to the Tests238

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Just the thought of writing expectations for all these objects makes us wilt,
which suggests that things are too complicated. A first step is to notice that the
unpacker and counterpartyFinder are always used together—they’re fixed at
construction and one calls the other. We can remove one argument by pushing
the counterpartyFinder into the unpacker.

public class MessageProcessor {
 public MessageProcessor(MessageUnpacker unpacker,
 AuditTrail auditor,
 LocationFinder locationFinder,
 DomesticNotifier domesticNotifier,
 ImportedNotifier importedNotifier) { […]

 public void onMessage(Message rawMessage) {
 UnpackedMessage unpacked = unpacker.unpack(rawMessage);

// etc.
 }

Then there’s the triple of locationFinder and the two notifiers, which seem
to go together. It might make sense to package them into a MessageDispatcher.

public class MessageProcessor {
 public MessageProcessor(MessageUnpacker unpacker,
 AuditTrail auditor,

MessageDispatcher dispatcher) { […]

 public void onMessage(Message rawMessage) {
 UnpackedMessage unpacked = unpacker.unpack(rawMessage);
 auditor.recordReceiptOf(unpacked);

// some other activity here
dispatcher.dispatch(unpacked);

 }
}

Although we’ve forced this example to fit within a section, it shows that being
sensitive to complexity in the tests can help us clarify our designs. Now we have
a message handling object that clearly performs the usual three stages:
receive, process, and forward. We’ve pulled out the message routing code (the
MessageDispatcher), so the MessageProcessor has fewer responsibilities and we
know where to put routing decisions when things get more complicated. You
might also notice that this code is easier to unit-test.

When extracting implicit components, we start by looking for two conditions:
arguments that are always used together in the class, and those that have the
same lifetime. Once we’ve found a coincidence, we have the harder task of finding
a good name that explains the concept.

As an aside, one sign that a design is developing nicely is that this kind of
change is easy to integrate. All we have to do is find where the MessageProcessor
is created and change this:

239Bloated Constructor

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

messageProcessor =
 new MessageProcessor(new XmlMessageUnpacker(),
 auditor, counterpartyFinder,
 locationFinder, domesticNotifier,
 importedNotifier);

to this:

messageProcessor =
 new MessageProcessor(new XmlMessageUnpacker(counterpartyFinder),
 auditor,

new MessageDispatcher(
 locationFinder,
 domesticNotifier, importedNotifier));

Later we can reduce the syntax noise by extracting out the creation of the
MessageDispatcher.

Confused Object

Another diagnosis for a “bloated constructor” might be that the object itself is
too large because it has too many responsibilities. For example,

public class Handset {
 public Handset(Network network, Camera camera, Display display,
 DataNetwork dataNetwork, AddressBook addressBook,
 Storage storage, Tuner tuner, …)
 {

// set the fields here
 }
 public void placeCallTo(DirectoryNumber number) {
 network.openVoiceCallTo(number);
 }
 public void takePicture() {
 Frame frame = storage.allocateNewFrame();
 camera.takePictureInto(frame);
 display.showPicture(frame);
 }
 public void showWebPage(URL url) {
 display.renderHtml(dataNetwork.retrievePage(url));
 }
 public void showAddress(SearchTerm searchTerm) {
 display.showAddress(addressBook.findAddress(searchTerm));
 }
 public void playRadio(Frequency frequency) {
 tuner.tuneTo(frequency);
 tuner.play();
 }
// and so on

}

Like our mobile phones, this class has several unrelated responsibilities which
force it to pull in many dependencies. And, like our phones, the class is confusing
to use because unrelated features interfere with each other. We’re prepared to

Chapter 20 Listening to the Tests240

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

put up with these compromises in a handset because we don’t have enough
pockets for all the devices it includes, but that doesn’t apply to code. This class
should be broken up; Michael Feathers describes some techniques for doing so
in Chapter 20 of [Feathers04].

An associated smell for this kind of class is that its test suite will look confused
too. The tests for its various features will have no relationship with each other,
so we’ll be able to make major changes in one area without touching others. If
we can break up the test class into slices that don’t share anything, it might be
best to go ahead and slice up the object too.

Too Many Dependencies

A third diagnosis for a bloated constructor might be that not all of the arguments
are dependencies, one of the peer stereotypes we defined in “Object Peer
Stereotypes” (page 52). As discussed in that section, we insist on dependencies
being passed in to the constructor, but notifications and adjustments can be set
to defaults and reconfigured later. When a constructor is too large, and we don’t
believe there’s an implicit new type amongst the arguments, we can use more
default values and only overwrite them for particular test cases.

Here’s an example—it’s not quite bad enough to need fixing, but it’ll do to
make the point. The application is a racing game; players can try out different
configurations of car and driving style to see which one wins.1 A RacingCar
represents a competitor within a race:

public class RacingCar {
 private final Track track;
 private Tyres tyres;
 private Suspension suspension;
 private Wing frontWing;
 private Wing backWing;
 private double fuelLoad;
 private CarListener listener;
 private DrivingStrategy driver;
 public RacingCar(Track track, DrivingStrategy driver, Tyres tyres,
 Suspension suspension, Wing frontWing, Wing backWing,
 double fuelLoad, CarListener listener)
 {
 this.track = track;
 this.driver = driver;
 this.tyres = tyres;
 this.suspension = suspension;
 this.frontWing = frontWing;
 this.backWing = backWing;
 this.fuelLoad = fuelLoad;
 this.listener = listener;
 }
}

1. Nat once worked in a job that involved following the Formula One circuit.

241Too Many Dependencies

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

It turns out that track is the only dependency of a RacingCar; the hint is that
it’s the only field that’s final. The listener is a notification, and everything else
is an adjustment; all of these can be modified by the user before or during the
race. Here’s a reworked constructor:

public class RacingCar {
 private final Track track;

 private DrivingStrategy driver = DriverTypes.borderlineAggressiveDriving();
 private Tyres tyres = TyreTypes.mediumSlicks();
 private Suspension suspension = SuspensionTypes.mediumStiffness();
 private Wing frontWing = WingTypes.mediumDownforce();
 private Wing backWing = WingTypes.mediumDownforce();
 private double fuelLoad = 0.5;

 private CarListener listener = CarListener.NONE;

 public RacingCar(Track track) {
 this.track = track;
 }

 public void setSuspension(Suspension suspension) { […]
 public void setTyres(Tyres tyres) { […]
 public void setEngine(Engine engine) { […]

 public void setListener(CarListener listener) { […]
}

Now we’ve initialized these peers to common defaults; the user can configure
them later through the user interface, and we can configure them in our unit tests.
We’ve initialized the listener to a null object, again this can be changed later
by the object’s environment.

Too Many Expectations

When a test has too many expectations, it’s hard to see what’s important and
what’s really under test. For example, here’s a test:

@Test public void
decidesCasesWhenFirstPartyIsReady() {
 context.checking(new Expectations(){{
 one(firstPart).isReady(); will(returnValue(true));
 one(organizer).getAdjudicator(); will(returnValue(adjudicator));
 one(adjudicator).findCase(firstParty, issue); will(returnValue(case));
 one(thirdParty).proceedWith(case);
 }});

 claimsProcessor.adjudicateIfReady(thirdParty, issue);
}

that might be implemented like this:

Chapter 20 Listening to the Tests242

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

public void adjudicateIfReady(ThirdParty thirdParty, Issue issue) {
 if (firstParty.isReady()) {
 Adjudicator adjudicator = organization.getAdjudicator();
 Case case = adjudicator.findCase(firstParty, issue);
 thirdParty.proceedWith(case);
 } else{
 thirdParty.adjourn();
 }
}

What makes the test hard to read is that everything is an expectation, so every-
thing looks equally important. We can’t tell what’s significant and what’s just
there to get through the test.

In fact, if we look at all the methods we call, there are only two that
have any side effects outside this class: thirdParty.proceedWith() and
thirdParty.adjourn(); it would be an error to call these more than once. All the
other methods are queries; we can call organization.getAdjudicator() repeat-
edly without breaking any behavior. adjudicator.findCase() might go either
way, but it happens to be a lookup so it has no side effects.

We can make our intentions clearer by distinguishing between stubs, simulations
of real behavior that help us get the test to pass, and expectations, assertions we
want to make about how an object interacts with its neighbors. There’s a longer
discussion of this distinction in “Allowances and Expectations” (page 277).
Reworking the test, we get:

@Test public void decidesCasesWhenFirstPartyIsReady() {
 context.checking(new Expectations(){{

allowing(firstPart).isReady(); will(returnValue(true));
allowing(organizer).getAdjudicator(); will(returnValue(adjudicator));
allowing(adjudicator).findCase(firstParty, issue); will(returnValue(case));

 one(thirdParty).proceedWith(case);
 }});

 claimsProcessor.adjudicateIfReady(thirdParty, issue);
}

which is more explicit about how we expect the object to change the world
around it.

Write Few Expectations

A colleague, Romilly Cocking, when he first started working with us, was surprised
by how few expectations we usually write in a unit test. Just like “everyone” has
now learned to avoid too many assertions in a test, we try to avoid too many
expectations. If we have more than a few, then either we’re trying to test too large
a unit, or we’re locking down too many of the object’s interactions.

243Too Many Expectations

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Special Bonus Prize

We always have problems coming up with good examples. There’s actually a
better improvement to this code, which is to notice that we’ve pulled out a chain
of objects to get to the case object, exposing dependencies that aren’t relevant
here. Instead, we should have told the nearest object to do the work for us,
like this:

public void adjudicateIfReady(ThirdParty thirdParty, Issue issue) {
 if (firstParty.isReady()) {

organization.adjudicateBetween(firstParty, thirdParty, issue);
 } else {
 thirdParty.adjourn();
 }
}

or, possibly,

public void adjudicateIfReady(ThirdParty thirdParty, Issue issue) {
 if (firstParty.isReady()) {
 thirdParty.startAdjudication(organization, firstParty, issue);
 } else{
 thirdParty.adjourn();
 }
}

which looks more balanced. If you spotted this, we award you a Moment of
Smugness™ to be exercised at your convenience.

What the Tests Will Tell Us (If We’re Listening)

We’ve found these benefits from learning to listen to test smells:

Keep knowledge local
Some of the test smells we’ve identified, such as needing “magic” to create
mocks, are to do with knowledge leaking between components. If we can
keep knowledge local to an object (either internal or passed in), then its im-
plementation is independent of its context; we can safely move it wherever
we like. Do this consistently and your application, built out of pluggable
components, will be easy to change.

If it’s explicit, we can name it
One reason why we don’t like mocking concrete classes is that we like to
have names for the relationships between objects as well the objects them-
selves. As the legends say, if we have something’s true name, we can control
it. If we can see it, we have a better chance of finding its other uses and so
reducing duplication.

Chapter 20 Listening to the Tests244

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

More names mean more domain information
We find that when we emphasize how objects communicate, rather than
what they are, we end up with types and roles defined more in terms of the
domain than of the implementation. This might be because we have a greater
number of smaller abstractions, which gets us further away from the under-
lying language. Somehow we seem to get more domain vocabulary into
the code.

Pass behavior rather than data
We find that by applying “Tell, Don’t Ask” consistently, we end up with a
coding style where we tend to pass behavior (in the form of callbacks) into
the system instead of pulling values up through the stack. For example, in
Chapter 17, we introduced a SniperCollector that responds when told about
a new Sniper. Passing this listener into the Sniper creation code gives us
better information hiding than if we’d exposed a collection to be added
to. More precise interfaces give us better information-hiding and clearer
abstractions.

We care about keeping the tests and code clean as we go, because it helps to
ensure that we understand our domain and reduces the risk of being unable
to cope when a new requirement triggers changes to the design. It’s much easier to
keep a codebase clean than to recover from a mess. Once a codebase starts
to “rot,” the developers will be under pressure to botch the code to get the next
job done. It doesn’t take many such episodes to dissipate a team’s good intentions.

We once had a posting to the jMock user list that included this comment:

I was involved in a project recently where jMock was used quite heavily. Looking
back, here’s what I found:

1. The unit tests were at times unreadable (no idea what they were doing).

2. Some tests classes would reach 500 lines in addition to inheriting an abstract
class which also would have up to 500 lines.

3. Refactoring would lead to massive changes in test code.

A unit test shouldn’t be 1000 lines long! It should focus on at most a few
classes and should not need to create a large fixture or perform lots of preparation
just to get the objects into a state where the target feature can be exercised. Such
tests are hard to understand—there’s just so much to remember when reading
them. And, of course, they’re brittle, all the objects in play are too tightly coupled
and too difficult to set to the state the test requires.

Test-driven development can be unforgiving. Poor quality tests can slow devel-
opment to a crawl, and poor internal quality of the system being tested will result
in poor quality tests. By being alert to the internal quality feedback we get from

245What the Tests Will Tell Us (If We’re Listening)

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

writing tests, we can nip this problem in the bud, long before our unit tests ap-
proach 1000 lines of code, and end up with tests we can live with. Conversely,
making an effort to write tests that are readable and flexible gives us more feed-
back about the internal quality of the code we are testing. We end up with tests
that help, rather than hinder, continued development.

Chapter 20 Listening to the Tests246

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Chapter 21

Test Readability
To design is to communicate clearly by whatever means you can control
or master.

—Milton Glaser

Introduction

Teams that adopt TDD usually see an early boost in productivity because the
tests let them add features with confidence and catch errors immediately. For
some teams, the pace then slows down as the tests themselves become a mainte-
nance burden. For TDD to be sustainable, the tests must do more than verify the
behavior of the code; they must also express that behavior clearly—they must
be readable. This matters for the same reason that code readability matters: every
time the developers have to stop and puzzle through a test to figure out what it
means, they have less time left to spend on creating new features, and the team
velocity drops.

We take as much care about writing our test code as about production code,
but with differences in style since the two types of code serve different purposes.
Test code should describe what the production code does. That means that it
tends to be concrete about the values it uses as examples of what results to expect,
but abstract about how the code works. Production code, on the other hand,
tends to be abstract about the values it operates on but concrete about how it
gets the job done. Similarly, when writing production code, we have to consider
how we will compose our objects to make up a working system, and manage
their dependencies carefully. Test code, on the other hand, is at the end of the
dependency chain, so it’s more important for it to express the intention of its
target code than to plug into a web of other objects. We want our test code to
read like a declarative description of what is being tested.

In this chapter, we’ll describe some practices that we’ve found helpful to keep
our tests readable and expressive.

247

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Could Do Better1

We’ve seen many unit test suites that could be much more effective given a
little extra attention. They have too many “test smells” of the kind cataloged in
[Meszaros07], as well as in our own Chapters 20 and 24.When cleaning up tests,
or just trying to write new ones, the readability problems we watch out for are:

• Test names that do not clearly describe the point of each test case and its
differences from the other test cases;

• Single test cases that seem to be exercising multiple features;

• Tests with different structure, so the reader cannot skim-read them to
understand their intention;

• Tests with lots of code for setting up and handling exceptions, which buries
their essential logic; and,

• Tests that use literal values (“magic numbers”) but are not clear about what,
if anything, is significant about those values.

Test Names Describe Features

The name of the test should be the first clue for a developer to understand what
is being tested and how the target object is supposed to behave.

Not every team we’ve worked with follows this principle. Some naive developers
use names that don’t mean anything at all:

public class TargetObjectTest {
 @Test public void test1() { […]
 @Test public void test2() { […]
 @Test public void test3() { […]

We don’t see many of these nowadays; the world has moved on. A common
approach is to name a test after the method it’s exercising:

public class TargetObjectTest {
 @Test public void isReady() { […]
 @Test public void choose() { […]
 @Test public void choose1() { […]

public class TargetObject {
 public void isReady() { […]
 public void choose(Picker picker) { […]

perhaps with multiple tests for different paths through the same method.

1. This is (or was) a common phrase in UK school reports for children whose schoolwork
isn’t as good as it could be.

Chapter 21 Test Readability248

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

At best, such names duplicate the information a developer could get just by
looking at the target class; they break the “Don’t Repeat Yourself” principle
[Hunt99]. We don’t need to know that TargetObject has a choose() method—we
need to know what the object does in different situations, what the method is for.

A better alternative is to name tests in terms of the features that the target
object provides. We use a TestDox convention (invented by Chris Stevenson)
where each test name reads like a sentence, with the target class as the implicit
subject. For example,

• A List holds items in the order they were added.

• A List can hold multiple references to the same item.

• A List throws an exception when removing an item it doesn’t hold.

We can translate these directly to method names:

public class ListTests {
 @Test public void holdsItemsInTheOrderTheyWereAdded() { […]
 @Test public void canHoldMultipleReferencesToTheSameItem() { […]
 @Test public void throwsAnExceptionWhenRemovingAnItemItDoesntHold() { […]

These names can be as long as we like because they’re only called through
reflection—we never have to type them in to call them.

The point of the convention is to encourage the developer to think in terms of
what the target object does, not what it is. It’s also very compatible with our in-
cremental approach of adding a feature at a time to an existing codebase. It gives
us a consistent style of naming all the way from user stories, through tasks and
acceptance tests, to unit tests—as you saw in Part III.

As a matter of style, the test name should say something about the expected
result, the action on the object, and the motivation for the scenario. For example,
if we were testing a ConnectionMonitor class, then

pollsTheServersMonitoringPort()

doesn’t tell us enough: why does it poll, what happens when it gets a result? On
the other hand,

notifiesListenersThatServerIsUnavailableWhenCannotConnectToItsMonitoringPort()

explains both the scenario and the expected behavior. We’ll show later how this
style of naming maps onto our standard test structures.

249Test Names Describe Features

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Test Name First or Last?

We’ve noticed that some developers start with a placeholder name, fill out the body
of the test, and then decide what to call it. Others (such as Steve) like to decide
the test name first, to clarify their intentions, before writing any test code. Both ap-
proaches work as long as the developer follows through and makes sure that the
test is, in the end, consistent and expressive.

The TestDox format fulfills the early promise of TDD—that the tests should
act as documentation for the code. There are tools and IDE plug-ins that unpack
the “camel case” method names and link them to the class under test, such
as the TestDox plug-in for the IntelliJ IDE; Figure 21.1 shows the automatic
documentation for a KeyboardLayout class.

Figure 21.1 The TestDox IntelliJ plug-in

Regularly Read Documentation Generated from Tests

We find that such generated documentation gives us a fresh perspective on the
test names, highlighting the problems we’re too close to the code to see. For
example, when generating the screenshot for Figure 21.1, Nat noticed that the
name of the first test is unclear—it should be “translates numbers to key strokes
in all known layouts.”

We make an effort to at least skim-read the documentation regularly during
development.

Chapter 21 Test Readability250

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Canonical Test Structure

We find that if we write our tests in a standard form, they’re easier to
understand. We can skim-read to find expectations and assertions quickly and
see how they relate to the code under test. If we’re finding it difficult to write a
test in a standard form, that’s often a hint that the code is too complicated or
that we haven’t quite clarified our ideas.

The most common form for a test is:

1. Setup: prepare the context of the test, the environment in which the target
code will run;

2. Execute: call the target code, triggering the tested behavior;

3. Verify: check for a visible effect that we expect from the behavior; and,

4. Teardown: clean up any leftover state that might corrupt other tests.

There are other versions of this form, such as “Arrange, Act, Assert,” which
collapse some of the stages.

For example:

public class StringTemplateTest {
 @Test public void expandsMacrosSurroundedWithBraces() {
 StringTemplate template = new StringTemplate("{a}{b}"); // Setup
 HashMap<String,Object> macros = new HashMap<String,Object>();
 macros.put("a", "A");
 macros.put("b", "B");

 String expanded = template.expand(macros); // Execute
 assertThat(expanded, equalTo("AB")); // Assert
 } // No Teardown
}

Tests that set expectations on mock objects use a variant of this structure where
some of the assertions are declared before the execute stage and are implicitly
checked afterwards—for example, in LoggingXMPPFailureReporterTest from
Chapter 19:

@RunWith(JMock.class)
public class LoggingXMPPFailureReporterTest {
 private final Mockery context = new Mockery() {{ // Setup
 setImposteriser(ClassImposteriser.INSTANCE);
 }};

 final Logger logger = context.mock(Logger.class);
 final LoggingXMPPFailureReporter reporter = new LoggingXMPPFailureReporter(logger);

251Canonical Test Structure

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

 @Test public void writesMessageTranslationFailureToLog() {
 Exception exception = new Exception("an exception");
 context.checking(new Expectations() {{ // Expect
 oneOf(logger).severe(expected log message here);
 }});

 reporter.cannotTranslateMessage("auction id", // Execute
 "failed message", exception);

// implicitly check expectations are satisfied // Assert
 }

 @AfterClass public static void resetLogging() { // Teardown
 LogManager.getLogManager().reset();
 }
}

Write Tests Backwards

Although we stick to a canonical format for test code, we don’t necessarily write
tests from top to bottom. What we often do is: write the test name, which helps us
decide what we want to achieve; write the call to the target code, which is the entry
point for the feature; write the expectations and assertions, so we know what effects
the feature should have; and, write the setup and teardown to define the context
for the test. Of course, there may be some blurring of these steps to help the
compiler, but this sequence reflects how we tend to think through a new unit test.
Then we run it and watch it fail.

How Many Assertions in a Test Method?

Some TDD practitioners suggest that each test should only contain one expectation
or assertion.This is useful as a training rule when learning TDD, to avoid asserting
everything the developer can think of, but we don’t find it practical. A better rule
is to think of one coherent feature per test, which might be represented by up to
a handful of assertions. If a single test seems to be making assertions about
different features of a target object, it might be worth splitting up. Once again,
expressiveness is the key: as a reader of this test, can I figure out what’s
significant?

Streamline the Test Code

All code should emphasize “what” it does over “how,” including test code; the
more implementation detail is included in a test method, the harder it is for
the reader to understand what’s important. We try to move everything out
of the test method that doesn’t contribute to the description, in domain
terms, of the feature being exercised. Sometimes that involves restructuring the
code, sometimes just ignoring the syntax noise.

Chapter 21 Test Readability252

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Use Structure to Explain

As you’ll have seen throughout Part III, we make a point of following “Small
Methods to Express Intent” (page 226), even to the extent of writing a tiny
method like translatorFor() just to reduce the Java syntax noise. This fits
nicely into the Hamcrest approach, where the assertThat() and jMock expecta-
tion syntaxes are designed to allow developers to compose small features into a
(more or less) readable description of an assertion. For example,

assertThat(instruments, hasItem(instrumentWithPrice(greaterThan(81))));

checks whether the collection instruments has at least one Instrument with a
strikePrice property greater than 81. The assertion line expresses our intent,
the helper method creates a matcher that checks the value:

private Matcher<? super Instrument>
instrumentWithPrice(Matcher<? super Integer> priceMatcher) {
 return new FeatureMatcher<Instrument, Integer>(
 priceMatcher, "instrument at price", "price") {
 @Override protected Integer featureValueOf(Instrument actual) {
 return actual.getStrikePrice();
 }
 };
}

This may create more program text in the end, but we’re prioritizing expressive-
ness over minimizing the source lines.

Use Structure to Share

We also extract common features into methods that can be shared between tests
for setting up values, tearing down state, making assertions, and occasionally
triggering the event. For example, in Chapter 19, we exploited jMock’s facility
for setting multiple expectation blocks to write a expectSniperToFailWhenItIs()
method that wraps up repeated behavior behind a descriptive name.

The only caution with factoring out test structure is that, as we said in the in-
troduction to this chapter, we have to be careful not to make a test so abstract
that we cannot see what it does any more. Our highest concern is making the
test describe what the target code does, so we refactor enough to be able to see
its flow, but we don’t always refactor as hard as we would for production code.

Accentuate the Positive

We only catch exceptions in a test if we want to assert something about them. We
sometimes see tests like this:

253Streamline the Test Code

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

@Test public void expandsMacrosSurroundedWithBraces() {
 StringTemplate template = new StringTemplate("{a}{b}");

 try {
 String expanded = template.expand(macros);
 assertThat(expanded, equalTo("AB"));
 } catch (TemplateFormatException e) {
 fail("Template failed: " + e);
 }
}

If this test is intended to pass, then converting the exception actually drops infor-
mation from the stack trace. The simplest thing to do is to let the exception
propagate for the test runtime to catch. We can add arbitrary exceptions to the
test method signature because it’s only called by reflection. This removes at least
half the lines of the test, and we can compact it further to be:

@Test public void expandsMacrosSurroundedWithBraces() throws Exception {
 assertThat(new StringTemplate("{a}{b}").expand(macros),
 equalTo("AB"));
}

which tells us just what is supposed to happen and ignores everything else.

Delegate to Subordinate Objects

Sometimes helper methods aren’t enough and we need helper objects to support
the tests. We saw this in the test rig we built in Chapter 11. We developed the
ApplicationRunner, AuctionSniperDriver, and FakeAuctionServer classes so we
could write tests in terms of auctions and Snipers, not in terms of Swing and
messaging.

A more common technique is to write test data builders to build up complex
data structures with just the appropriate values for a test; see Chapter 22 for
more detail. Again, the point is to include in the test just the values that are rele-
vant, so that the reader can understand the intent; everything else can be defaulted.

There are two approaches to writing subordinate objects. In Chapter 11 we
started by writing the test we wanted to see and then filling in the supporting
objects: start from a statement of the problem and see where it goes. The alterna-
tive is to write the code directly in the tests, and then refactor out any clusters
of behavior. This is the origin of the WindowLicker framework, which started
out as helper code in JUnit tests for interacting with the Swing event dispatcher
and eventually grew into a separate project.

Assertions and Expectations

The assertions and expectations of a test should communicate precisely what
matters in the behavior of the target code. We regularly see code where tests assert

Chapter 21 Test Readability254

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

too much detail, which makes them difficult to read and brittle when things
change; we discuss what this might mean in “Too Many Expectations” (page 242).

For the expectations and assertions we write, we try to keep them as narrowly
defined as possible. For example, in the “instrument with price” assertion above,
we check only the strike price and ignore the rest of the values as irrelevant in
that test. In other cases, we’re not interested in all of the arguments to a method,
so we ignore them in the expectation. In Chapter 19, we define an expectation
that says that we care about the Sniper identifier and message, but that any
RuntimeException object will do for the third argument:

oneOf(failureReporter).cannotTranslateMessage(
 with(SNIPER_ID), with(badMessage),
 with(any(RuntimeException.class)));

If you learned about pre- and postconditions in college, this is when that training
will come in useful.

Finally, a word of caution on assertFalse(). The combination of the failure
message and negation makes it easy to read this as meaning that the two dates
should not be different:

assertFalse("end date", first.endDate().equals(second.endDate()));

We could use assertTrue() and add a “!” to the result but, again, the single
character is easy to miss. That’s why we prefer to use matchers to make the code
more explicit:

assertThat("end date", first.endDate(), not(equalTo(second.endDate())));

which also has the advantage of showing the actual date received in the failure
report:

java.lang.AssertionError: end date
Expected: not <Thu Jan 01 02:34:38 GMT 1970>
 but: was <Thu Jan 01 02:34:38 GMT 1970>

Literals and Variables

One last point. As we wrote in the introduction to this chapter, test code tends
to be more concrete than production code, which means it has more literal values.
Literal values without explanation can be difficult to understand because the
programmer has to interpret whether a particular value is significant (e.g. just
outside the allowed range) or just an arbitrary placeholder to trace behavior (e.g.
should be doubled and passed on to a peer). A literal value does not describe its
role, although there are some techniques for doing so that we will show in
Chapter 23

One solution is to allocate literal values to variables and constants with names
that describe their function. For example, in Chapter 12 we declared

255Literals and Variables

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

public static final Chat UNUSED_CHAT = null;

to show that we were using null to represent an argument that was unused in
the target code. We weren’t expecting the code to receive null in production,
but it turns out that we don’t care and it makes testing easier. Similarly, a team
might develop conventions for naming common values, such as:

public final static INVALID_ID = 666;

We name variables to show the roles these values or objects play in the test and
their relationships to the target object.

Chapter 21 Test Readability256

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Chapter 22

Constructing Complex Test
Data

Many attempts to communicate are nullified by saying too much.

—Robert Greenleaf

Introduction

If we are strict about our use of constructors and immutable value objects, con-
structing objects in tests can be a chore. In production code, we construct such
objects in relatively few places and all the required values are available to hand
from, for example, user input, a database query, or a received message. In tests,
however, we have to provide all the constructor arguments every time we want
to create an object:

@Test public void chargesCustomerForTotalCostOfAllOrderedItems() {
 Order order = new Order(
 new Customer("Sherlock Holmes",
 new Address("221b Baker Street",
 "London",
 new PostCode("NW1", "3RX"))));
 order.addLine(new OrderLine("Deerstalker Hat", 1));
 order.addLine(new OrderLine("Tweed Cape", 1));
[…]

}

The code to create all these objects makes the tests hard to read, filling them
with information that doesn’t contribute to the behavior being tested. It also
makes tests brittle, as changes to the constructor arguments or the structure of
the objects will break many tests. The object mother pattern [Schuh01] is one
attempt to avoid this problem. An object mother is a class that contains a number
of factory methods [Gamma94] that create objects for use in tests. For example,
we could write an object mother for orders:

Order order = ExampleOrders.newDeerstalkerAndCapeOrder();

An object mother makes tests more readable by packaging up the code that
creates new object structures and giving it a name. It also helps with maintenance
since its features can be reused between tests. On the other hand, the object

257

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

mother pattern does not cope well with variation in the test data—every minor
difference requires a new factory method:

Order order1 = ExampleOrders.newDeerstalkerAndCapeAndSwordstickOrder();
Order order2 = ExampleOrders.newDeerstalkerAndBootsOrder();
[…]

Over time, an object mother may itself become too messy to support, either
full of duplicated code or refactored into an infinity of fine-grained methods.

Test Data Builders

Another solution is to use the builder pattern to build instances in tests, most
often for values. For a class that requires complex setup, we create a test data
builder that has a field for each constructor parameter, initialized to a safe value.
The builder has “chainable” public methods for overwriting the values in its
fields and, by convention, a build() method that is called last to create a new
instance of the target object from the field values.1 An optional refinement is to
add a static factory method for the builder itself so that it’s clearer in the test
what is being built. For example, a builder for Order objects might look like:

public class OrderBuilder {
 private Customer customer = new CustomerBuilder().build();
 private List<OrderLine> lines = new ArrayList<OrderLine>();
 private BigDecimal discountRate = BigDecimal.ZERO;

 public static OrderBuilder anOrder() {
 return new OrderBuilder();
 }
 public OrderBuilder withCustomer(Customer customer) {
 this.customer = customer;
 return this;
 }
 public OrderBuilder withOrderLines(OrderLines lines) {
 this.lines = lines;
 return this;
 }
 public OrderBuilder withDiscount(BigDecimal discountRate) {
 this.discountRate = discountRate;
 return this;
 }
 public Order build() {
 Order order = new Order(customer);
 for (OrderLine line : lines) order.addLine(line);
 order.setDiscountRate(discountRate);
 }
 }
}

1. This pattern is essentially the same as a Smalltalk cascade.

Chapter 22 Constructing Complex Test Data258

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Tests that just need an Order object and are not concerned with its contents
can create one in a single line:

Order order = new OrderBuilder().build();

Tests that need particular values within an object can specify just those values
that are relevant and use defaults for the rest. This makes the test more expressive
because it includes only the values that are relevant to the expected results.
For example, if a test needed an Order for a Customer with no postcode, we
would write:

new OrderBuilder()
 .fromCustomer(
 new CustomerBuilder()
 .withAddress(new AddressBuilder().withNoPostcode().build())
 .build())
 .build();

We find that test data builders help keep tests expressive and resilient to change.
First, they wrap up most of the syntax noise when creating new objects. Second,
they make the default case simple, and special cases not much more complicated.
Third, they protect the test against changes in the structure of its objects. If we
add an argument to a constructor, then all we have to change is the relevant
builder and those tests that drove the need for the new argument.

A final benefit is that we can write test code that’s easier to read and spot errors,
because each builder method identifies the purpose of its parameter. For example,
in this code it’s not obvious that “London” has been passed in as the second
street line rather than the city name:

TestAddresses.newAddress("221b Baker Street", "London", "NW1 6XE");

A test data builder makes the mistake more obvious:

new AddressBuilder()
 .withStreet("221b Baker Street")
 .withStreet2("London")
 .withPostCode("NW1 6XE")
 .build();

Creating Similar Objects

We can use builders when we need to create multiple similar objects. The most
obvious approach is to create a new builder for each new object, but this leads
to duplication and makes the test code harder to work with. For example, these
two orders are identical apart from the discount. If we didn’t highlight the
difference, it would be difficult to find:

259Creating Similar Objects

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Order orderWithSmallDiscount = new OrderBuilder()
 .withLine("Deerstalker Hat", 1)
 .withLine("Tweed Cape", 1)
 .withDiscount(0.10)
 .build();

Order orderWithLargeDiscount = new OrderBuilder()
 .withLine("Deerstalker Hat", 1)
 .withLine("Tweed Cape", 1)
 .withDiscount(0.25)
 .build();

Instead, we can initialize a single builder with the common state and then, for
each object to be built, define the differing values and call its build() method:

OrderBuilder hatAndCape = new OrderBuilder()
 .withLine("Deerstalker Hat", 1)
 .withLine("Tweed Cape", 1);

Order orderWithSmallDiscount = hatAndCape.withDiscount(0.10).build();
Order orderWithLargeDiscount = hatAndCape.withDiscount(0.25).build();

This produces a more focused test with less code. We can name the builder
after the features that are common, and the domain objects after their differences.

This technique works best if the objects differ by the same fields. If the objects
vary by different fields, each build() will pick up the changes from the previous
uses. For example, it’s not obvious in this code that orderWithGiftVoucher will
carry the 10% discount as well as a gift voucher:

Order orderWithDiscount = hatAndCape.withDiscount(0.10).build();
Order orderWithGiftVoucher = hatAndCape.withGiftVoucher("abc").build();

To avoid this problem, we could add a copy constructor or a method that
duplicates the state from another builder:

Order orderWithDiscount = new OrderBuilder(hatAndCape)
 .withDiscount(0.10)
 .build();

Order orderWithGiftVoucher = new OrderBuilder(hatAndCape)
 .withGiftVoucher("abc")
 .build();

Alternatively, we could add a factory method that returns a copy of the builder
with its current state:

Order orderWithDiscount = hatAndCape.but().withDiscount(0.10).build();
Order orderWithGiftVoucher = hatAndCape.but().withGiftVoucher("abc").build();

For complex setups, the safest option is to make the “with” methods functional
and have each one return a new copy of the builder instead of itself.

Chapter 22 Constructing Complex Test Data260

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Combining Builders

Where a test data builder for an object uses other “built” objects, we can pass
in those builders as arguments rather than their objects. This will simplify the
test code by removing the build() methods. The result is easier to read because
it emphasizes the important information—what is being built—rather than the
mechanics of building it. For example, this code builds an order with no postcode,
but it’s dominated by the builder infrastructure:

Order orderWithNoPostcode = new OrderBuilder()
 .fromCustomer(
 new CustomerBuilder()
 .withAddress(new AddressBuilder().withNoPostcode().build())
 .build())
 .build();

We can remove much of the noise by passing around builders:

Order order = new OrderBuilder()
 .fromCustomer(
 new CustomerBuilder()
 .withAddress(new AddressBuilder().withNoPostcode())))
 .build();

Emphasizing the Domain Model with Factory Methods

We can further reduce the noise in the test code by wrapping up the construction
of the builders in factory methods:

Order order =
anOrder().fromCustomer(

aCustomer().withAddress(anAddress().withNoPostcode())).build();

As we compress the test code, the duplication in the builders becomes more
obtrusive; we have the name of the constructed type in both the “with” and
“builder” methods. We can take advantage of Java’s method overloading by
collapsing this to a single with() method, letting the Java type system figure out
which field to update:

Order order =
 anOrder().from(aCustomer().with(anAddress().withNoPostcode())).build();

Obviously, this will only work with one argument of each type. For example,
if we introduce a Postcode, we can use overloading, whereas the rest of the builder
methods must have explicit names because they use String:

Address aLongerAddress = anAddress()
 .withStreet("221b Baker Street")
 .withCity("London")
 .with(postCode("NW1", "3RX"))
 .build();

261Emphasizing the Domain Model with Factory Methods

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This should encourage us to introduce domain types, which, as we wrote in
“Domain Types Are Better Than Strings” (page 213), leads to more expressive
and maintainable code.

Removing Duplication at the Point of Use

We’ve made the process of assembling complex objects for tests simpler and more
expressive by using test data builders. Now, let’s look at how we can structure
our tests to make the best use of these builders in context. We often find ourselves
writing tests with similar code to create supporting objects and pass them to the
code under test, so we want to clean up this duplication. We’ve found that some
refactorings are better than others; here’s an example.

First, Remove Duplication

We have a system that processes orders asynchronously. The test feeds orders
into the system, tracks their progress on a monitor, and then looks for them in
a user interface. We’ve packaged up all the infrastructure so the test looks like this:

@Test public void reportsTotalSalesOfOrderedProducts() {
 Order order1 = anOrder()
 .withLine("Deerstalker Hat", 1)
 .withLine("Tweed Cape", 1)
 .withCustomersReference(1234)
 .build();
 requestSender.send(order1);
 progressMonitor.waitForCompletion(order1);

 Order order2 = anOrder()
 .withLine("Deerstalker Hat", 1)
 .withCustomersReference(5678)
 .build();
 requestSender.send(order2);
 progressMonitor.waitForCompletion(order2);

 TotalSalesReport report = gui.openSalesReport();
 report.checkDisplayedTotalSalesFor("Deerstalker Hat", is(equalTo(2)));
 report.checkDisplayedTotalSalesFor("Tweed Cape", is(equalTo(1)));
}

There’s an obvious duplication in the way the orders are created, sent, and
tracked. Our first thought might be to pull that into a helper method:

@Test public void reportsTotalSalesOfOrderedProducts() {
submitOrderFor("Deerstalker Hat", "Tweed Cape");
submitOrderFor("Deerstalker Hat");

 TotalSalesReport report = gui.openSalesReport();
 report.checkDisplayedTotalSalesFor("Deerstalker Hat", is(equalTo(2)));
 report.checkDisplayedTotalSalesFor("Tweed Cape", is(equalTo(1)));
}

Chapter 22 Constructing Complex Test Data262

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

void submitOrderFor(String ... products) {
 OrderBuilder orderBuilder = anOrder()
 .withCustomersReference(nextCustomerReference());

 for (String product : products) {
 orderBuilder = orderBuilder.withLine(product, 1);
 }

 Order order = orderBuilder.build();
 requestSender.send(order);
 progressMonitor.waitForCompletion(order);
}

This refactoring works fine when there’s a single case but, like the object
mother pattern, does not scale well when we have variation. As we deal with
orders with different contents, amendments, cancellations, and so on, we end up
with this sort of mess:

void submitOrderFor(String ... products) { […]
void submitOrderFor(String product, int count,
 String otherProduct, int otherCount) { […]
void submitOrderFor(String product, double discount) { […]
void submitOrderFor(String product, String giftVoucherCode) { […]

We think a bit harder about what varies between tests and what is common,
and realize that a better alternative is to pass the builder through, not its argu-
ments; it’s similar to when we started combining builders. The helper method
can use the builder to add any supporting detail to the order before feeding it
into the system:

@Test public void reportsTotalSalesOfOrderedProducts() {
sendAndProcess(anOrder()

 .withLine("Deerstalker Hat", 1)
 .withLine("Tweed Cape", 1));
sendAndProcess(anOrder()

 .withLine("Deerstalker Hat", 1));

 TotalSalesReport report = gui.openSalesReport();
 report.checkDisplayedTotalSalesFor("Deerstalker Hat", is(equalTo(2)));
 report.checkDisplayedTotalSalesFor("Tweed Cape", is(equalTo(1)));
}

void sendAndProcess(OrderBuilder orderDetails) {
 Order order = orderDetails
 .withDefaultCustomersReference(nextCustomerReference())
 .build();
 requestSender.send(order);
 progressMonitor.waitForCompletion(order);
}

263Removing Duplication at the Point of Use

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Then, Raise the Game

The test code is looking better, but it still reads like a script. We can change its
emphasis to what behavior is expected, rather than how the test is implemented,
by rewording some of the names:

@Test public void reportsTotalSalesOfOrderedProducts() {
havingReceived(anOrder()

 .withLine("Deerstalker Hat", 1)
 .withLine("Tweed Cape", 1));
havingReceived(anOrder()

 .withLine("Deerstalker Hat", 1));

 TotalSalesReport report = gui.openSalesReport();
 report.displaysTotalSalesFor("Deerstalker Hat", equalTo(2));
 report.displaysTotalSalesFor("Tweed Cape", equalTo(1));
}

@Test public void takesAmendmentsIntoAccountWhenCalculatingTotalSales() {
 Customer theCustomer = aCustomer().build();

havingReceived(anOrder().from(theCustomer)
 .withLine("Deerstalker Hat", 1)
 .withLine("Tweed Cape", 1));

havingReceived(anOrderAmendment().from(theCustomer)
 .withLine("Deerstalker Hat", 2));

 TotalSalesReport report = user.openSalesReport();
 report.containsTotalSalesFor("Deerstalker Hat", equalTo(2));
 report.containsTotalSalesFor("Tweed Cape", equalTo(1));
}

We started with a test that looked procedural, extracted some of its behavior
into builder objects, and ended up with a declarative description of what the
feature does. We’re nudging the test code towards the sort of language we could
use when discussing the feature with someone else, even someone non-technical;
we push everything else into supporting code.

Communication First

We use test data builders to reduce duplication and make the test code more ex-
pressive. It’s another technique that reflects our obsession with the language of
code, driven by the principle that code is there to be read. Combined with factory
methods and test scaffolding, test data builders help us write more literate,
declarative tests that describe the intention of a feature, not just a sequence of
steps to drive it.

Using these techniques, we can even use higher-level tests to communicate di-
rectly with non-technical stakeholders, such as business analysts. If they’re willing

Chapter 22 Constructing Complex Test Data264

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

to ignore the obscure punctuation, we can use the tests to help us narrow down
exactly what a feature should do, and why.

There are other tools that are designed to foster collaboration across the
technical and non-technical members in a team, such as FIT [Mugridge05]. We’ve
found, as have others such as the LiFT team [LIFT], that we can achieve much
of this while staying within our development toolset—and, of course, we can
write better tests for ourselves.

265Communication First

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Chapter 23

Test Diagnostics
Mistakes are the portals of discovery.

—James Joyce

Design to Fail

The point of a test is not to pass but to fail. We want the production code to
pass its tests, but we also want the tests to detect and report any errors that
do exist. A “failing” test has actually succeeded at the job it was designed to do.
Even unexpected test failures, in an area unrelated to where we are working, can
be valuable because they reveal implicit relationships in the code that we hadn’t
noticed.

One situation we want to avoid, however, is when we can’t diagnose a test
failure that has happened. The last thing we should have to do is crack open the
debugger and step through the tested code to find the point of disagreement. At
a minimum, it suggests that our tests don’t yet express our requirements clearly
enough. In the worst case, we can find ourselves in “debug hell,” with deadlines
to meet but no idea of how long a fix will take. At this point, the temptation will
be high to just delete the test—and lose our safety net.

Stay Close to Home

Synchronize frequently with the source code repository—up to every few minutes—
so that if a test fails unexpectedly it won’t cost much to revert your recent changes
and try another approach.

The other implication of this tip is not to be too inhibited about dropping code and
trying again. Sometimes it’s quicker to roll back and restart with a clear head than
to keep digging.

We’ve learned the hard way to make tests fail informatively. If a failing test
clearly explains what has failed and why, we can quickly diagnose and correct
the code. Then, we can get on with the next task.

Chapter 21 addressed the static readability of tests. This chapter describes
some practices that we find helpful to make sure the tests give us the information
we need at runtime.

267

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Small, Focused, Well-Named Tests

The easiest way to improve diagnostics is to keep each test small and focused
and give tests readable names, as described in Chapter 21. If a test is small, its
name should tell us most of what we need to know about what has gone wrong.

Explanatory Assertion Messages

JUnit’s assertion methods all have a version in which the first parameter is a
message to display when the assertion fails. From what we’ve seen, this feature
is not used as often as it should be to make assertion failures more helpful.

For example, when this test fails:

Customer customer = order.getCustomer();
assertEquals("573242", customer.getAccountId());
assertEquals(16301, customer.getOutstandingBalance());

the report does not make it obvious which of the assertions has failed:

ComparisonFailure: expected:<[16301]> but was:<[16103]>

The message is describing the symptom (the balance is 16103) rather than the
cause (the outstanding balance calculation is wrong).

If we add a message to identify the value being asserted:

assertEquals("account id", "573242", customer.getAccountId());
assertEquals("outstanding balance", 16301, customer.getOustandingBalance());

we can immediately see what the point is:

ComparisonFailure: outstanding balance expected:<[16301]> but was:<[16103]>

Highlight Detail with Matchers

Developers can provide another level of diagnostic detail by using assertThat()
with Hamcrest matchers. The Matcher API includes support for describing the
value that mismatched, to help with understanding exactly what is different. For
example, the instrument strike price assertion on page 252 generates this failure
report:

Expected: a collection containing instrument at price a value greater than <81>
 but: price was <50>, price was <72>, price was <31>

which shows exactly which values are relevant.

Chapter 23 Test Diagnostics268

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Self-Describing Value

An alternative to adding detail to the assertion is to build the detail into values
in the assertion. We can take this in the same spirit as the idea that comments
are a hint that the code needs to be improved: if we have to add detail to an
assertion, maybe that’s a hint that we could make the failure more obvious.

In the customer example above, we could improve the failure message by setting
the account identifier in the test Customer to the self-describing value "a customer
account id":

ComparisonFailure: expected:<[a customer account id]> but was:<[id not set]>

Now we don’t need to add an explanatory message, because the value itself
explains its role.

We might be able to do more when we’re working with reference types. For
example, in a test that has this setup:

Date startDate = new Date(1000);
Date endDate = new Date(2000);

the failure message reports that a payment date is wrong but doesn’t describe
where the wrong value might have come from:

java.lang.AssertionError: payment date
Expected: <Thu Jan 01 01:00:01 GMT 1970>
 got: <Thu Jan 01 01:00:02 GMT 1970>

What we really want to know is the meaning of these dates. If we force the
display string:

Date startDate = namedDate(1000, "startDate");
Date endDate = namedDate(2000, "endDate");

Date namedDate(long timeValue, final String name) {
 return new Date(timeValue) { public String toString() { return name; } };
}

we get a message that describes the role that each date plays:

java.lang.AssertionError: payment date
Expected: <startDate>
 got: <endDate>

which makes it clear that we’ve assigned the wrong field to the payment date.1

1. This is yet another motivation for defining more domain types to hide the basic types
in the language. As we discussed in “Domain Types Are Better Than Strings”
(page 213), it gives us somewhere to hang useful behavior like this.

269Self-Describing Value

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Obviously Canned Value

Sometimes, the values being checked can’t easily explain themselves. There’s not
enough information in a char or int, for example. One option is to use improb-
able values that will be obviously different from the values we would expect in
production. For an int, for example, we might use a negative value (if that doesn’t
break the code) or Integer.MAX_VALUE (if it’s wildly out of range). Similarly, the
original version of startDate in the previous example was an obviously canned
value because nothing in the system dated back to 1970.

When a team develops conventions for common values, it can ensure that they
stand out. The INVALID_ID at the end of the last chapter was three digits long;
that would be very obviously wrong if real system identifiers were five digits
and up.

Tracer Object

Sometimes we just want to check that an object is passed around by the code
under test and routed to the appropriate collaborator. We can create a tracer
object, a type of Obviously Canned Value, to represent this value. A tracer object
is a dummy object that has no supported behavior of its own, except to describe
its role when something fails. For example, this test:

@RunWith(JMock.class)
public class CustomerTest {
 final LineItem item1 = context.mock(LineItem.class, "item1");
 final LineItem item2 = context.mock(LineItem.class, "item2");
 final Billing billing = context.mock(Billing.class);

 @Test public void
requestsInvoiceForPurchasedItems() {

 context.checking(new Expectations() {{
 oneOf(billing).add(item1);
 oneOf(billing).add(item2);
 }});

 customer.purchase(item1, item2);
 customer.requestInvoice(billing);
 }
}

might generate a failure report like this:

not all expectations were satisfied
expectations:
 expected once, already invoked 1 time: billing.add(<item1>)
 ! expected once, never invoked: billing.add(<item2>>)
what happened before this:
 billing.add(<item1>)

Chapter 23 Test Diagnostics270

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Notice that jMock can accept a name when creating a mock object that will
be used in failure reporting. In fact, where there’s more than one mock object of
the same type, jMock insists that they are named to avoid confusion (the default
is to use the class name).

Tracer objects can be a useful design tool when TDD’ing a class. We sometimes
use an empty interface to mark (and name) a domain concept and show how
it’s used in a collaboration. Later, as we grow the code, we fill in the interface
with methods to describe its behavior.

Explicitly Assert That Expectations Were Satisfied

A test that has both expectations and assertions can produce a confusing failure.
In jMock and other mock object frameworks, the expectations are checked after
the body of the test. If, for example, a collaboration doesn’t work properly and
returns a wrong value, an assertion might fail before any expectations are checked.
This would produce a failure report that shows, say, an incorrect calculation result
rather than the missing collaboration that actually caused it.

In a few cases, then, it’s worth calling the assertIsSatisfied() method on
the Mockery before any of the test assertions to get the right failure report:

context.assertIsSatisfied();
assertThat(result, equalTo(expectedResult));

This demonstrates why it is important to “Watch the Test Fail” (page 42). If
you expect the test to fail because an expectation is not satisfied but a postcondi-
tion assertion fails instead, you will see that you should add an explicit call to
assert that all expectations have been satisfied.

Diagnostics Are a First-Class Feature

Like everyone else, we find it easy to get carried away with the simple three-step
TDD cycle: fail, pass, refactor. We’re making good progress and we know what
the failures mean because we’ve just written the test. But nowadays, we try to
follow the four-step TDD cycle (fail, report, pass, refactor) we described in
Chapter 5, because that’s how we know we’ve understood the feature—and
whoever has to change it in a month’s time will also understand it. Figure 23.1
shows again that we need to maintain the quality of the tests, as well as the
production code.

271Diagnostics Are a First-Class Feature

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Figure 23.1 Improve the diagnostics as part of the TDD cycle

Chapter 23 Test Diagnostics272

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Chapter 24

Test Flexibility
Living plants are flexible and tender;
the dead are brittle and dry.
[…]
The rigid and stiff will be broken.
The soft and yielding will overcome.

—Lao Tzu (c.604—531 B.C.)

Introduction

As the system and its associated test suite grows, maintaining the tests can become
a burden if they have not been written carefully. We’ve described how we can
reduce the ongoing cost of tests by making them easy to read and generating
helpful diagnostics on failure. We also want to make sure that each test fails
only when its relevant code is broken. Otherwise, we end up with brittle
tests that slow down development and inhibit refactoring. Common causes of test
brittleness include:

• The tests are too tightly coupled to unrelated parts of the system or unrelated
behavior of the object(s) they’re testing;

• The tests overspecify the expected behavior of the target code, constraining
it more than necessary; and,

• There is duplication when multiple tests exercise the same production code
behavior.

Test brittleness is not just an attribute of how the tests are written; it’s also
related to the design of the system. If an object is difficult to decouple from its
environment because it has many dependencies or its dependencies are hidden,
its tests will fail when distant parts of the system change. It will be hard to judge
the knock-on effects of altering the code. So, we can use test brittleness as a
valuable source of feedback about design quality.

There’s a virtuous relationship with test readability and resilience. A test that
is focused, has clean set-up, and has minimal duplication is easier to name and is
more obvious about its purpose. This chapter expands on some of the techniques
we discussed in Chapter 21. Actually, the whole chapter can be collapsed into a
single rule:

273

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Specify Precisely What Should Happen and No More

JUnit, Hamcrest, and jMock allow us to specify just what we want from the
target code (there are equivalents in other languages). The more precise we are,
the more the code can flex in other unrelated dimensions without breaking tests
misleadingly. Our experience is that the other benefit of keeping tests flexible is
that they’re easier for us to understand because they are clearer about what they’re
testing—about what is and is not important in the tested code.

Test for Information, Not Representation

A test might need to pass a value to trigger the behavior it’s supposed to exercise
in its target object. The value could either be passed in as a parameter to a method
on the object, or returned as a result from a query the object makes on one of
its neighbors stubbed by the test. If the test is structured in terms of how the
value is represented by other parts of the system, then it has a dependency on
those parts and will break when they change.

For example, imagine we have a system that uses a CustomerBase to store and
find information about our customers. One of its features is to look up a Customer
given an email address; it returns null if there’s no customer with the given
address.

public interface CustomerBase {
// Returns null if no customer found

 Customer findCustomerWithEmailAddress(String emailAddress);
[…]

}

When we test the parts of the code that search for customers by email address,
we stub CustomerBase as a collaborating object. In some of those tests, no
customer will be found so we return null:

allowing(customerBase).findCustomerWithEmailAddress(theAddress);
 will(returnValue(null));

There are two problems with this use of null in a test. First, we have to remember
what null means here, and when it’s appropriate; the test is not self-explanatory.
The second concern is the cost of maintenance.

Some time later, we experience a NullPointerException in production and
track the source of the null reference down to the CustomerBase. We realize we’ve
broken one of our design rules: “Never Pass Null between Objects.” Ashamed,
we change the CustomerBase’s search methods to return a Maybe type, which im-
plements an iterable collection of at most one result.

Chapter 24 Test Flexibility274

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

public interface CustomerBase {
Maybe<Customer> findCustomerWithEmailAddress(String emailAddress);

}

public abstract class Maybe<T> implements Iterable<T> {
 abstract boolean hasResult();

 public static Maybe<T> just(T oneValue) { …
 public static Maybe<T> nothing() { …
}

We still, however, have the tests that stub CustomerBase to return null, to
represent missing customers. The compiler cannot warn us of the mismatch be-
cause null is a valid value of type Maybe<Customer> too, so the best we can do
is to watch all these tests fail and change each one to the new design.

If, instead, we’d given the tests their own representation of “no customer
found” as a single well-named constant instead of the literal null, we could have
avoided this drudgery. We would have changed one line:

public static final Customer NO_CUSTOMER_FOUND = null;

to

public static final Maybe<Customer> NO_CUSTOMER_FOUND = Maybe.nothing();

without changing the tests themselves.
Tests should be written in terms of the information passed between objects,

not of how that information is represented. Doing so will both make the tests
more self-explanatory and shield them from changes in implementation controlled
elsewhere in the system. Significant values, like NO_CUSTOMER_FOUND, should be
defined in one place as a constant. There’s another example in Chapter 12 when
we introduce UNUSED_CHAT. For more complex structures, we can hide the details
of the representation in test data builders (Chapter 22).

Precise Assertions

In a test, focus the assertions on just what’s relevant to the scenario being tested.
Avoid asserting values that aren’t driven by the test inputs, and avoid reasserting
behavior that is covered in other tests.

We find that these heuristics guide us towards writing tests where each method
exercises a unique aspect of the target code’s behavior. This makes the tests more
robust because they’re not dependent on unrelated results, and there’s less
duplication.

Most test assertions are simple checks for equality; for example, we assert the
number of rows in a table model in “Extending the Table Model” (page 180).
Testing for equality doesn’t scale well as the value being returned becomes more

275Precise Assertions

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

complex. Different test scenarios may make the tested code return results that
differ only in specific attributes, so comparing the entire result each time is
misleading and introduces an implicit dependency on the behavior of the whole
tested object.

There are a couple of ways in which a result can be more complex. First, it
can be defined as a structured value type. This is straightforward since we can
just reference directly any attributes we want to assert. For example, if we take
the financial instrument from “Use Structure to Explain” (page 253), we might
need to assert only its strike price:

assertEquals("strike price", 92, instrument.getStrikePrice());

without comparing the whole instrument.
We can use Hamcrest matchers to make the assertions more expressive and

more finely tuned. For example, if we want to assert that a transaction identifier
is larger than its predecessor, we can write:

assertThat(instrument.getTransactionId(), largerThan(PREVIOUS_TRANSACTION_ID));

This tells the programmer that the only thing we really care about is that the new
identifier is larger than the previous one—its actual value is not important in this
test. The assertion also generates a helpful message when it fails.

The second source of complexity is implicit, but very common. We often have
to make assertions about a text string. Sometimes we know exactly what the text
should be, for example when we have the FakeAuctionServer look for specific
messages in “Extending the Fake Auction” (page 107). Sometimes, however,
all we need to check is that certain values are included in the text.

A frequent example is when generating a failure message. We don’t want all
our unit tests to be locked to its current formatting, so that they fail when we
add whitespace, and we don’t want to have to do anything clever to cope with
timestamps. We just want to know that the critical information is included, so
we write:

assertThat(failureMessage,
 allOf(containsString("strikePrice=92"),
 containsString("id=FGD.430"),
 containsString("is expired")));

which asserts that all these strings occur somewhere in failureMessage. That’s
enough reassurance for us, and we can write other tests to check that a message
is formatted correctly if we think it’s significant.

One interesting effect of trying to write precise assertions against text strings
is that the effort often suggests that we’re missing an intermediate structure
object—in this case perhaps an InstrumentFailure. Most of the code would be
written in terms of an InstrumentFailure, a structured value that carries all the
relevant fields. The failure would be converted to a string only at the last possible
moment, and that string conversion can be tested in isolation.

Chapter 24 Test Flexibility276

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Precise Expectations

We can extend the concept of being precise about assertions to being precise
about expectations. Each mock object test should specify just the relevant details
of the interactions between the object under test and its neighbors. The combined
unit tests for an object describe its protocol for communicating with the rest of
the system.

We’ve built a lot of support into jMock for specifying this communication
between objects as precisely as it should be. The API is designed to produce tests
that clearly express how objects relate to each other and that are flexible because
they’re not too restrictive. This may require a little more test code than some
of the alternatives, but we find that the extra rigor keeps the tests clear.

Precise Parameter Matching

We want to be as precise about the values passed in to a method as we are about
the value it returns. For example, in “Assertions and Expectations” (page 254)
we showed an expectation where one of the accepted arguments was any type
of RuntimeException; the specific class doesn’t matter. Similarly, in “Extracting
the SnipersTableModel” (page 197), we have this expectation:

oneOf(auction).addAuctionEventListener(with(sniperForItem(itemId)));

The method sniperForItem() returns a Matcher that checks only the item identifier
when given an AuctionSniper. This test doesn’t care about anything else in the
sniper’s state, such as its current bid or last price, so we don’t make it more
brittle by checking those values.

The same precision can be applied to expecting input strings. If, for example,
we have an auditTrail object to accept the failure message we described
above, we can write a precise expectation for that auditing:

oneOf(auditTrail).recordFailure(with(allOf(containsString("strikePrice=92"),
 containsString("id=FGD.430"),
 containsString("is expired"))));

Allowances and Expectations

We introduced the concept of allowances in “The Sniper Acquires Some State”
(page 144). jMock insists that all expectations are met during a test, but al-
lowances may be matched or not. The point of the distinction is to highlight
what matters in a particular test. Expectations describe the interactions that are
essential to the protocol we’re testing: if we send this message to the object, we
expect to see it send this other message to this neighbor.

Allowances support the interaction we’re testing. We often use them as stubs
to feed values into the object, to get the object into the right state for the behavior
we want to test. We also use them to ignore other interactions that aren’t relevant

277Precise Expectations

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

to the current test. For example, in “Repurposing sniperBidding()” we have a
test that includes:

ignoring(auction);
allowing(sniperListener).sniperStateChanged(with(aSniperThatIs(BIDDING)));
 then(sniperState.is("bidding"));

The ignoring() clause says that, in this test, we don’t care about messages
sent to the auction; they will be covered in other tests. The allowing() clause
matches any call to sniperStateChanged() with a Sniper that is currently bidding,
but doesn’t insist that such a call happens. In this test, we use the allowance to
record what the Sniper has told us about its state. The method aSniperThatIs()
returns a Matcher that checks only the SniperState when given a SniperSnapshot.

In other tests we attach “action” clauses to allowances, so that the call will
return a value or throw an exception. For example, we might have an allowance
that stubs the catalog to return a price that will be returned for use later in
the test:

allowing(catalog).getPriceForItem(item); will(returnValue(74));

The distinction between allowances and expectations isn’t rigid, but we’ve
found that this simple rule helps:

Allow Queries; Expect Commands

Commands are calls that are likely to have side effects, to change the world outside
the target object.When we tell the auditTrail above to record a failure, we expect
that to change the contents of some kind of log. The state of the system will be
different if we call the method a different number of times.

Queries don’t change the world, so they can be called any number of times, includ-
ing none. In our example above, it doesn’t make any difference to the system how
many times we ask the catalog for a price.

The rule helps to decouple the test from the tested object. If the implementation
changes, for example to introduce caching or use a different algorithm, the test
is still valid. On the other hand, if we were writing a test for a cache, we would
want to know exactly how often the query was made.

jMock supports more varied checking of how often a call is made than just
allowing() and oneOf(). The number of times a call is expected is defined by the
“cardinality” clause that starts the expectation. In “The AuctionSniper Bids,”
we saw the example:

atLeast(1).of(sniperListener).sniperBidding();

Chapter 24 Test Flexibility278

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

which says that we care that this call is made, but not how many times. There
are other clauses which allow fine-tuning of the number of times a call is expected,
listed in Appendix A.

Ignoring Irrelevant Objects

As you’ve seen, we can simplify a test by “ignoring” collaborators that are not
relevant to the functionality being exercised. jMock will not check any calls to
ignored objects. This keeps the test simple and focused, so we can immediately
see what’s important and changes to one aspect of the code do not break
unrelated tests.

As a convenience, jMock will provide “zero” results for ignored methods that
return a value, depending on the return type:

“Zero” valueType

falseBoolean

0Numeric type

"" (an empty string)String

Empty arrayArray

An ignored mockA type that can be mocked by the Mockery

nullAny other type

The ability to dynamically mock returned types can be a powerful tool for
narrowing the scope of a test. For example, for code that uses the Java Persistence
API (JPA), a test can ignore the EntityManagerFactory. The factory will return
an ignored EntityManager, which will return an ignored EntityTransaction on
which we can ignore commit() or rollback(). With one ignore clause, the test
can focus on the code’s domain behavior by disabling everything to do with
transactions.

Like all “power tools,” ignoring() should be used with care. A chain of ignored
objects might suggest that the functionality ought to be pulled out into a new
collaborator. As programmers, we must also make sure that ignored features are
tested somewhere, and that there are higher-level tests to make sure everything
works together. In practice, we usually introduce ignoring() only when writing
specialized tests after the basics are in place, as for example in “The Sniper
Acquires Some State” (page 144).

279Precise Expectations

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Invocation Order

jMock allows invocations on a mock object to be called in any order; the expec-
tations don’t have to be declared in the same sequence.1 The less we say in the
tests about the order of interactions, the more flexibility we have with the imple-
mentation of the code. We also gain flexibility in how we structure the tests; for
example, we can make test methods more readable by packaging up expectations
in helper methods.

Only Enforce Invocation Order When It Matters

Sometimes the order in which calls are made is significant, in which case we add
explicit constraints to the test. Keeping such constraints to a minimum avoids
locking down the production code. It also helps us see whether each case is
necessary—ordered constraints are so uncommon that each use stands out.

jMock has two mechanisms for constraining invocation order: sequences,
which define an ordered list of invocations, and state machines, which can describe
more sophisticated ordering constraints. Sequences are simpler to understand
than state machines, but their restrictiveness can make tests brittle if used
inappropriately.

Sequences are most useful for confirming that an object sends notifications to
its neighbors in the right order. For example, we need an AuctionSearcher object
that will search its collection of Auctions to find which ones match anything from
a given set of keywords. Whenever it finds a match, the searcher will notify its
AuctionSearchListener by calling searchMatched() with the matching auction.
The searcher will tell the listener that it’s tried all of its available auctions by
calling searchFinished().

Our first attempt at a test looks like this:

public class AuctionSearcherTest { […]
 @Test public void
announcesMatchForOneAuction() {

 final AuctionSearcher auctionSearch =
 new AuctionSearcher(searchListener, asList(STUB_AUCTION1));
 context.checking(new Expectations() {{
 oneOf(searchListener).searchMatched(STUB_AUCTION1);
 oneOf(searchListener).searchFinished();
 }});
 auctionSearch.searchFor(KEYWORDS);
 }
}

1. Some early mock frameworks were strictly “record/playback”: the actual calls had
to match the sequence of the expected calls. No frameworks enforce this any more,
but the misconception is still common.

Chapter 24 Test Flexibility280

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

where searchListener is a mock AuctionSearchListener, KEYWORDS is a set of
keyword strings, and STUB_AUCTION1 is a stub implementation of Auction that
will match one of the strings in KEYWORDS.

The problem with this test is that there’s nothing to stop searchFinished()
being called before searchMatched(), which doesn’t make sense. We have an in-
terface for AuctionSearchListener, but we haven’t described its protocol. We
can fix this by adding a Sequence to describe the relationship between the calls
to the listener. The test will fail if searchFinished() is called first.

@Test public void
announcesMatchForOneAuction() {
 final AuctionSearcher auctionSearch =
 new AuctionSearcher(searchListener, asList(STUB_AUCTION1));

 context.checking(new Expectations() {{
Sequence events = context.sequence("events");

 oneOf(searchListener).searchMatched(STUB_AUCTION1); inSequence(events);
 oneOf(searchListener).searchFinished(); inSequence(events);
 }});

 auctionSearch.searchFor(KEYWORDS);
}

We continue using this sequence as we add more auctions to match:

@Test public void
announcesMatchForTwoAuctions() {
 final AuctionSearcher auctionSearch = new AuctionSearcher(searchListener,
 new AuctionSearcher(searchListener,
 asList(STUB_AUCTION1, STUB_AUCTION2));

 context.checking(new Expectations() {{
 Sequence events = context.sequence("events");

 oneOf(searchListener).searchMatched(STUB_AUCTION1); inSequence(events);
oneOf(searchListener).searchMatched(STUB_AUCTION2); inSequence(events);

 oneOf(searchListener).searchFinished(); inSequence(events);
 }});

 auctionSearch.searchFor(KEYWORDS);
}

But is this overconstraining the protocol? Do we have to match auctions in
the same order that they’re initialized? Perhaps all we care about is that the right
matches are made before the search is closed. We can relax the ordering constraint
with a States object (which we first saw in “The Sniper Acquires Some State”
on page 144).

A States implements an abstract state machine with named states. We can
trigger state transitions by attaching a then() clause to an expectation. We

281Precise Expectations

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

can enforce that an invocation only happens when object is (or is not) in a
particular state with a when() clause. We rewrite our test:

@Test public void
announcesMatchForTwoAuctions() {
 final AuctionSearcher auctionSearch = new AuctionSearcher(searchListener,
 new AuctionSearcher(searchListener,
 asList(STUB_AUCTION1, STUB_AUCTION2));

 context.checking(new Expectations() {{
States searching = context.states("searching");

 oneOf(searchListener).searchMatched(STUB_AUCTION1);
when(searching.isNot("finished"));

 oneOf(searchListener).searchMatched(STUB_AUCTION2);
when(searching.isNot("finished"));

 oneOf(searchListener).searchFinished(); then(searching.is("finished"));
 }});

 auctionSearch.searchFor(KEYWORDS);
}

When the test opens, searching is in an undefined (default) state. The searcher
can report matches as long as searching is not finished. When the searcher reports
that it has finished, the then() clause switches searching to finished, which
blocks any further matches.

States and sequences can be used in combination. For example, if our require-
ments change so that auctions have to be matched in order, we can add a sequence
for just the matches, in addition to the existing searching states. The new
sequence would confirm the order of search results and the existing states would
confirm that the results arrived before the search is finished. An expectation can
belong to multiple states and sequences, if that’s what the protocol requires. We
rarely need such complexity—it’s most common when responding to external
feeds of events where we don’t own the protocol—and we always take it as a
hint that something should be broken up into smaller, simpler pieces.

When Expectation Order Matters

Actually, the order in which jMock expectations are declared is sometimes significant,
but not because they have to shadow the order of invocation. Expectations are
appended to a list, and invocations are matched by searching this list in order. If
there are two expectations that can match an invocation, the one declared first will
win. If that first expectation is actually an allowance, the second expectation will
never see a match and the test will fail.

Chapter 24 Test Flexibility282

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The Power of jMock States

jMock States has turned out to be a useful construct. We can use it to model
each of the three types of participants in a test: the object being tested, its peers,
and the test itself.

We can represent our understanding of the state of the object being tested, as
in the example above. The test listens for the events the object sends out to its
peers and uses them to trigger state transitions and to reject events that would
break the object’s protocol.

As we wrote in “Representing Object State” (page 146), this is a logical repre-
sentation of the state of the tested object. A States describes what the test finds
relevant about the object, not its internal structure. We don’t want to constrain
the object’s implementation.

We can represent how a peer changes state as it’s called by the tested object.
For instance, in the example above, we might want to insist that the listener must
be ready before it can receive any results, so the searcher must query its state.
We could add a new States, listenerState:

allowing(searchListener).isReady(); will(returnValue(true));
 then(listenerState.is("ready"));
oneOf(searchListener).searchMatched(STUB_AUCTION1);
 when(listenerState.is("ready"));

Finally, we can represent the state of the test itself. For example, we could
enforce that some interactions are ignored while the test is being set up:

ignoring(auction); when(testState.isNot("running"));
testState.become("running");
oneOf(auction).bidMore(); when(testState.is("running"));

Even More Liberal Expectations

Finally, jMock has plug-in points to support the definition of arbitrary expecta-
tions. For example, we could write an expectation to accept any getter method:

allowing(aPeerObject).method(startsWith("get")).withNoArguments();

or to accept a call to one of a set of objects:

oneOf (anyOf(same(o1),same(o2),same(o3))).method("doSomething");

Such expectations move us from a statically typed to a dynamically typed world,
which brings both power and risk. These are our strongest “power tool”
features—sometimes just what we need but always to be used with care. There’s
more detail in the jMock documentation.

283Precise Expectations

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

“Guinea Pig” Objects

In the “ports and adapters” architecture we described in “Designing for
Maintainability” (page 47), the adapters map application domain objects onto
the system’s technical infrastructure. Most of the adapter implementations we
see are generic; for example, they often use reflection to move values between
domains. We can apply such mappings to any type of object, which means we
can change our domain model without touching the mapping code.

The easiest approach when writing tests for the adapter code is to use types
from the application domain model, but this makes the test brittle because it
binds together the application and adapter domains. It introduces a risk of mis-
leadingly breaking tests when we change the application model, because we
haven’t separated the concerns.

Here’s an example. A system uses an XmlMarshaller to marshal objects to and
from XML so they can be sent across a network. This test exercises XmlMarshaller
by round-tripping an AuctionClosedEvent object: a type that the production
system really does send across the network.

public class XmlMarshallerTest {
 @Test public void
marshallsAndUnmarshallsSerialisableFields() {

 XMLMarshaller marshaller = new XmlMarshaller();

 AuctionClosedEvent original = new AuctionClosedEventBuilder().build();

 String xml = marshaller.marshall(original);
 AuctionClosedEvent unmarshalled = marshaller.unmarshall(xml);

 assertThat(unmarshalled, hasSameSerialisableFieldsAs(original));
 }
}

Later we decide that our system won’t send an AuctionClosedEvent after all,
so we should be able to delete the class. Our refactoring attempt will fail because
AuctionClosedEvent is still being used by the XmlMarshallerTest. The irrelevant
coupling will force us to rework the test unnecessarily.

There’s a more significant (and subtle) problem when we couple tests to domain
types: it’s harder to see when test assumptions have been broken. For example,
our XmlMarshallerTest also checks how the marshaller handles transient and
non-transient fields. When we wrote the tests, AuctionClosedEvent included both
kind of fields, so we were exercising all the paths through the marshaller. Later,
we removed the transient fields from AuctionClosedEvent, which means that we
have tests that are no longer meaningful but do not fail. Nothing is alerting us
that we have tests that have stopped working and that important features are
not being covered.

Chapter 24 Test Flexibility284

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

We should test the XmlMarshaller with specific types that are clear about the
features that they represent, unrelated to the real system. For example, we can
introduce helper classes in the test:

public class XmlMarshallerTest {
 public static class MarshalledObject {
 private String privateField = "private";
 public final String publicFinalField = "public final";
 public int primitiveField;

// constructors, accessors for private field, etc.
 }
 public static class WithTransient extends MarshalledObject {
 public transient String transientField = "transient";
 }

 @Test public void
marshallsAndUnmarshallsSerialisableFields() {

 XMLMarshaller marshaller = new XmlMarshaller();

WithTransient original = new WithTransient();

 String xml = marshaller.marshall(original);
 AuctionClosedEvent unmarshalled = marshaller.unmarshall(xml);

 assertThat(unmarshalled, hasSameSerialisableFieldsAs(original));
 }
}

The WithTransient class acts as a “guinea pig,” allowing us to exhaustively
exercise the behavior of our XmlMarshaller before we let it loose on our produc-
tion domain model. WithTransient also makes our test more readable because
the class and its fields are examples of “Self-Describing Value” (page 269), with
names that reflect their roles in the test.

285Guinea Pig Objects

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Part V

Advanced Topics
In this part, we cover some topics that regularly cause teams to
struggle with test-driven development. What’s common to these
topics is that they cross the boundary between feature-level and
system-level design. For example, when we look at multi-
threaded code, we need to test both the behavior that runs
within a thread and the way different threads interact.

Our experience is that such code is difficult to test when we’re
not clear about which aspect we’re addressing. Lumping every-
thing together produces tests that are confusing, brittle, and
sometimes misleading. When we take the time to listen to these
“test smells,” they often lead us to a better design with a clearer
separation of responsibilities.

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Chapter 25

Testing Persistence
It is always during a passing state of mind that we make lasting
resolutions.

—Marcel Proust

Introduction

As we saw in Chapter 8, when we define an abstraction in terms of a third-party
API, we have to test that our abstraction behaves as we expect when integrated
with that API, but cannot use our tests to get feedback about its design.

A common example is an abstraction implemented using a persistence mecha-
nism, such as Object/Relational Mapping (ORM). ORM hides a lot of sophisti-
cated functionality behind a simple API. When we build an abstraction upon an
ORM, we need to test that our implementation sends correct queries, has correctly
configured the mappings between our objects and the relational schema, uses a
dialect of SQL that is compatible with the database, performs updates and deletes
that are compatible with the integrity constraints of the database, interacts
correctly with the transaction manager, releases external resources in a timely
manner, does not trip over any bugs in the database driver, and much more.

When testing persistence code, we also have more to worry about with respect
to the quality of our tests. There are components running in the background that
the test must set up correctly. Those components have persistent state that could
make tests interfere with each other. Our test code has to deal with all this extra
complexity. We need to spend additional effort to ensure that our tests remain
readable and to generate reasonable diagnostics that pinpoint why tests fail—to
tell us in which component the failure occurred and why.

This chapter describes some techniques for dealing with this complexity. The
example code uses the standard Java Persistence API (JPA), but the techniques
will work just as well with other persistence mechanisms, such as Java Data
Objects (JDO), open source ORM technologies like Hibernate, or even when
dumping objects to files using a data-mapping mechanism such as XStream1 or
the standard Java API for XML Binding (JAXB).2

1. http://xstream.codehaus.org
2. Apologies for all the acronyms. The Java standardization process does not require

standards to have memorable names.

289

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://xstream.codehaus.org
http://www.it-ebooks.info/

ptg

An Example Scenario

The examples in this chapter will all use the same scenario. We now have a web
service that performs auction sniping on behalf of our customers.

A customer can log in to different auction sites and has one or more payment
methods by which they pay for our service and the lots they bid for. The system
supports two payment methods: credit cards and an online payment service called
PayMate. A customer has a contact address and, if they have a credit card, the
card has a billing address.

This domain model is represented in our system by the persistent entities shown
in Figure 25.1 (which only includes the fields that show what the purpose of the
entity is.)

Figure 25.1 Persistent entities

Isolate Tests That Affect Persistent State

Since persistent data hangs around from one test to the next, we have to take
extra care to ensure that persistence tests are isolated from one another. JUnit
cannot do this for us, so the test fixture must ensure that the test starts with its
persistent resources in a known state.

For database code, this means deleting rows from the database tables before
the test starts. The process of cleaning the database depends on the database’s
integrity constraints. It might only be possible to clear tables in a strict order.
Furthermore, if some tables have foreign key constraints between them that
cascade deletes, cleaning one table will automatically clean others.

Chapter 25 Testing Persistence290

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Clean Up Persistent Data at the Start of a Test, Not at the End

Each test should initialize the persistent store to a known state when it starts.When
a test is run individually, it will leave data in the persistent store that can help you
diagnose test failures. When it is run as part of a suite, the next test will clean up
the persistent state first, so tests will be isolated from each other. We used this
technique in “Recording the Failure” (page 221) when we cleared the log before
starting the application at the start of the test.

The order in which tables must be cleaned up should be captured in one place
because it must be kept up-to-date as the database schema evolves. It’s an ideal
candidate to be extracted into a subordinate object to be used by any test that
uses the database:

public class DatabaseCleaner {
 private static final Class<?>[] ENTITY_TYPES = {
 Customer.class,
 PaymentMethod.class,
 AuctionSiteCredentials.class,
 AuctionSite.class,
 Address.class
 };
 private final EntityManager entityManager;

 public DatabaseCleaner(EntityManager entityManager) {
 this.entityManager = entityManager;
 }

 public void clean() throws SQLException {
 EntityTransaction transaction = entityManager.getTransaction();
 transaction.begin();

 for (Class<?> entityType : ENTITY_TYPES) {
 deleteEntities(entityType);
 }

 transaction.commit();
 }

 private void deleteEntities(Class<?> entityType) {
 entityManager
 .createQuery("delete from " + entityNameOf(entityType))
 .executeUpdate();
 }
}

291Isolate Tests That Affect Persistent State

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

We use an array, ENTITY_TYPES, to ensure that the entity types (and, therefore,
database tables) are cleaned in an order that does not violate referential integrity
when rows are deleted from the database.3 We add DatabaseCleaner to a setup
method, to initialize the database before each test. For example:

public class ExamplePersistenceTest {
 final EntityManagerFactory factory =
 Persistence.createEntityManagerFactory("example");
 final EntityManager entityManager = factory.createEntityManager();

 @Before
 public void cleanDatabase() throws Exception {

new DatabaseCleaner(entityManager).clean();
 }
[…]

}

For brevity, we won’t show this cleanup in the test examples. You should assume
that every persistence test starts with the database in a known, clean state.

Make Tests Transaction Boundaries Explicit

A common technique to isolate tests that use a transactional resource (such as a
database) is to run each test in a transaction which is then rolled back at the end
of the test. The idea is to leave the persistent state the same after the test as before.

The problem with this technique is that it doesn’t test what happens on commit,
which is a significant event. The ORM flushes the state of the objects it is man-
aging in memory to the database. The database, in turn, checks its integrity
constraints. A test that never commits does not fully exercise how the code under
test interacts with the database. Neither can it test interactions between distinct
transactions. Another disadvantage of rolling back is that the test discards data
that might be useful for diagnosing failures.

Tests should explicitly delineate transactions. We also prefer to make transac-
tion boundaries stand out, so they’re easy to see when reading the test. We usu-
ally extract transaction management into a subordinate object, called a transactor,
that runs a unit of work within a transaction. In this case, the transactor will
coordinate JPA transactions, so we call it a JPATransactor.4

3. We’ve left entityNameOf() out of this code excerpt. The JPA says the the name of an
entity is derived from its related Java class but doesn’t provide a standard API to do
so. We implemented just enough of this mapping to allow DatabaseCleaner to work.

4. In other systems, tests might also use a JMSTransactor for coordinating transactions
in a Java Messaging Service (JMS) broker, or a JTATransactor for coordinating
distributed transactions via the standard Java Transaction API (JTA).

Chapter 25 Testing Persistence292

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

public interface UnitOfWork {
 void work() throws Exception;
}

public class JPATransactor {
 private final EntityManager entityManager;

 public JPATransactor(EntityManager entityManager) {
 this.entityManager = entityManager;
 }

 public void perform(UnitOfWork unitOfWork) throws Exception {
 EntityTransaction transaction = entityManager.getTransaction();

 transaction.begin();
 try {
 unitOfWork.work();
 transaction.commit();
 }
 catch (PersistenceException e) {
 throw e;
 }
 catch (Exception e) {
 transaction.rollback();
 throw e;
 }
 }
}

The transactor is called by passing in a UnitOfWork, usually created as an
anonymous class:

transactor.perform(new UnitOfWork() {
 public void work() throws Exception {
 customers.addCustomer(aNewCustomer());
 }
});

This pattern is so useful that we regularly use it in our production code as well.
We’ll show more of how the transactor is used in the next section.

“Container-Managed” Transactions

Many Java applications use declarative container-managed transactions, where
the application framework manages the application’s transaction boundaries.The
framework starts each transaction when it receives a request to an application
component, includes the application’s transactional resources in transaction, and
commits or rolls back the transaction when the request succeeds or fails. Java EE
is the canonical example of such frameworks in the Java world.

293Make Tests Transaction Boundaries Explicit

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The techniques we describe in this chapter are compatible with this kind of
framework.We have used them to test applications built within Java EE and Spring,
and with “plain old” Java programs that use JPA, Hibernate, or JDBC directly.

The frameworks wrap transaction management around the objects that make
use of transactional resources, so there’s nothing in their code to mark the appli-
cation’s transaction boundaries. The tests for those objects, however, need to
manage transactions explicitly—which is what a transactor is for.

In the tests, the transactor uses the same transaction manager as the application,
configured in the same way. This ensures that the tests and the full application
run the same transactional code. It should make no difference whether a trans-
action is controlled by a block wrapped around our code by the framework, or by
a transactor in our tests. But if we’ve made a mistake and it does make a difference,
our end-to-end tests should catch such failures by exercising the application code
in the container.

Testing an Object That Performs Persistence Operations

Now that we’ve got some test scaffolding we can write tests for an object that
performs persistence.

In our domain model, a customer base represents all the customers we know
about. We can add customers to our customer base and find customers that match
certain criteria. For example, we need to find customers with credit cards that
are about to expire so that we can send them a reminder to update their payment
details.

public interface CustomerBase { […]
 void addCustomer(Customer customer);
 List<Customer> customersWithExpiredCreditCardsAt(Date deadline);
}

When unit-testing code that calls a CustomerBase to find and notify the
relevant customers, we can mock the interface. In a deployed system, however,
this code will call a real implementation of CustomerBase that is backed by JPA
to save and load customer information from a database. We must also test that
this persistent implementation works correctly—that the queries it makes and
the object/relational mappings are correct. For example, below is a test of the
customersWithExpiredCreditCardsAt() query. There are two helper methods
that interact with customerBase within a transaction: addCustomer() adds a set
of example customers, and assertCustomersExpiringOn() queries for customers
with expired cards.

Chapter 25 Testing Persistence294

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

public class PersistentCustomerBaseTest { […]
 final PersistentCustomerBase customerBase =
 new PersistentCustomerBase(entityManager);
 @Test
 @SuppressWarnings("unchecked")
 public void findsCustomersWithCreditCardsThatAreAboutToExpire() throws Exception {
 final String deadline = "6 Jun 2009";

 addCustomers(
 aCustomer().withName("Alice (Expired)")
 .withPaymentMethods(aCreditCard().withExpiryDate(date("1 Jan 2009"))),
 aCustomer().withName("Bob (Expired)")
 .withPaymentMethods(aCreditCard().withExpiryDate(date("5 Jun 2009"))),
 aCustomer().withName("Carol (Valid)")
 .withPaymentMethods(aCreditCard().withExpiryDate(date(deadline))),
 aCustomer().withName("Dave (Valid)")
 .withPaymentMethods(aCreditCard().withExpiryDate(date("7 Jun 2009")))
);
 assertCustomersExpiringOn(date(deadline),
 containsInAnyOrder(customerNamed("Alice (Expired)"),
 customerNamed("Bob (Expired)")));
 }

 private void addCustomers(final CustomerBuilder... customers) throws Exception {
transactor.perform(new UnitOfWork() {

 public void work() throws Exception {
 for (CustomerBuilder customer : customers) {

customerBase.addCustomer(customer.build());
 }
 }
 });
 }

 private void assertCustomersExpiringOn(final Date date,
 final Matcher<Iterable<Customer>> matcher)
 throws Exception
 {

transactor.perform(new UnitOfWork() {
 public void work() throws Exception {
 assertThat(customerBase.customersWithExpiredCreditCardsAsOf(date), matcher);
 }
 });
 }
}

We call addCustomers() with CustomerBuilders set up to include a name and
an expiry date for the credit card. The expiry date is the significant field for this
test, so we create customers with expiry dates before, on, and after the deadline to
demonstrate the boundary condition. We also set the name of each customer
to identify the instances in a failure (notice that the names self-describe the relevant
status of each customer). An alternative to matching on name would have been
to use each object’s persistence identifier, which is assigned by JPA. That would
have been more complex to work with (it’s not exposed as a property on
Customer), and would not be self-describing.

295Testing an Object That Performs Persistence Operations

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The assertCustomersExpiringOn() method runs the query we’re testing for
the given deadline and checks that the result conforms to the Hamcrest matcher
we pass in. The containsInAnyOrder() method returns a matcher that checks
that there’s a sub-matcher for each of the elements in a collection. We’ve written
a customerNamed() method to return a custom matcher that tests whether an
object is a Customer with a given name (there’s more on custom matchers in
Appendix B). So, this test says that we expect to receive back exactly two Customer
objects, named "Alice (Expired)" and "Bob (Expired)".

The test implicitly exercises CustomerBase.addCustomer() by calling it to set
up the database for the query. Thinking further, what we actually care about is
the relationship between the result of calling addCustomer() and subsequent
queries, so we probably won’t test addCustomer() independently. If there’s an
effect of addCustomer() that is not visible through some feature of the system,
then we’d have to ask some hard questions about its purpose before writing a
special test query to cover it.

Better Test Structure with Matchers

This test includes a nice example of using Hamcrest to create a clean test structure.
The test method constructs a matcher, which gives a concise description of a valid
result for the query. It passes the matcher to assertCustomersExpiringOn(),
which just runs the query and passes the result to the matcher. We have a clean
separation between the test method, which knows what is expected to be retrieved,
and the query/assert method, which knows how to make a query and can be used
in other tests.

Here is an implementation of PersistentCustomerBase that passes the test:

public class PersistentCustomerBase implements CustomerBase {
 private final EntityManager entityManager;

 public PersistentCustomerBase(EntityManager entityManager) {
 this.entityManager = entityManager;
 }

 public void addCustomer(Customer customer) {
 entityManager.persist(customer);
 }

 public List<Customer> customersWithExpiredCreditCardsAt(Date deadline) {
 Query query = entityManager.createQuery(
 "select c from Customer c, CreditCardDetails d " +
 "where d member of c.paymentMethods " +
 " and d.expiryDate < :deadline");
 query.setParameter("deadline", deadline);
 return query.getResultList();
 }
}

Chapter 25 Testing Persistence296

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This implementation looks trivial—it’s so much shorter than its test—but it
relies on a lot of XML configuration that we haven’t included and on a third-party
framework that implements the EntityManager’s simple API.

On Patterns and Type Names

The CustomerBase interface and PersistentCustomerBase class implement the
repository or data access object pattern (often abbreviated to DAO). We have not
used the terms “Repository,” “DataAccessObject,” or “DAO” in the name of the
interface or class that implements it because:

• Using such terms leaks knowledge about the underlying technology layers
(persistence) into the application domain, and so breaks the “ports and
adapters” architecture.The objects that use a CustomerBase are persistence-
agnostic: they do not care whether the Customer objects they interact with
are written to disk or not.The Customer objects are also persistence-agnostic:
a program does not need to have a database to create and use Customer
objects. Only PersistentCustomerBase knows how it maps Customer objects
in and out of persistent storage.

• We prefer not to name classes or interfaces after patterns; what matters
to us is their relationship to other classes in the system. The clients of
CustomerBase do not care what patterns it uses. As the system evolves, we
might make the CustomerBase class work in some other way and the name
would then be misleading.

• We avoid generic words like “data,” “object,” or “access” in type names. We
try to give each class a name that identifies a concept within its domain or
expresses how it bridges between the application and technical domains.

Testing That Objects Can Be Persisted

The PersistentCustomerBase relies on so much configuration and underlying
third-party code that the error messages from its test can be difficult to diagnose.
A test failure could be caused by a defect in a query, the mapping of the Customer
class, the mapping of any of the classes that it uses, the configuration of the ORM,
invalid database connection parameters, or a misconfiguration of the database
itself.

We can write more tests to help us pinpoint the cause of a persistence failure
when it occurs. A useful test is to “round-trip” instances of all persistent entity
types through the database to check that the mappings are configured correctly
for each class.

Round-trip tests are useful whenever we reflectively translate objects to and
from other forms. Many serialization and mapping technologies have the same
advantages and difficulties as ORM. The mapping can be defined by compact,

297Testing That Objects Can Be Persisted

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

declarative code or configuration, but misconfiguration creates defects that are
difficult to diagnose. We use round-trip tests so we can quickly identify the cause
of such defects.

Round-Tripping Persistent Objects

We can use a list of “test data builders” (page 257) to represent the persistent
entity types. This makes it easy for the test to instantiate each instance. We can
also use builder types more than once, with differing set-ups, to create entities
for round-tripping in different states or with different relationships to other
entities.

This test loops through a list of builders (we’ll show how we create
the list in a moment). For each builder, it creates and persists an entity in
one transaction, and retrieves and compares the result in another. As in the
last test, we have two transactor methods that perform transactions.
The setup method is persistedObjectFrom() and the query method is
assertReloadsWithSameStateAs().

public class PersistabilityTest { […]
 final List<? extends Builder<?>> persistentObjectBuilders = […]

 @Test public void roundTripsPersistentObjects() throws Exception {
 for (Builder<?> builder : persistentObjectBuilders) {
 assertCanBePersisted(builder);
 }
 }
 private void assertCanBePersisted(Builder<?> builder) throws Exception {
 try {
 assertReloadsWithSameStateAs(persistedObjectFrom(builder));
 } catch (PersistenceException e) {
 throw new PersistenceException("could not round-trip " + typeNameFor(builder), e);
 }
 }
 private Object persistedObjectFrom(final Builder<?> builder) throws Exception {
 return transactor.performQuery(new QueryUnitOfWork() {
 public Object query() throws Exception {
 Object original = builder.build();
 entityManager.persist(original);
 return original;
 }
 });
 }
 private void assertReloadsWithSameStateAs(final Object original) throws Exception {

transactor.perform(new UnitOfWork() {
 public void work() throws Exception {
 assertThat(entityManager.find(original.getClass(), idOf(original));
 hasSamePersistenFieldsAs(original));
 }
 });
 }

Chapter 25 Testing Persistence298

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

 private String typeNameFor(Builder<?> builder) {
 return builder.getClass().getSimpleName().replace("Builder", "");
 }
}

The persistedObjectFrom() method asks its given builder to create an entity
instance which it persists within a transaction. Then it returns the new instance
to the test, for later comparison; QueryUnitOfWork is a variant of UnitOfWork that
allows us to return a value from a transaction.

The assertReloadsWithSameStateAs() method extracts the persistence identifier
that the EntityManager assigned to the expected object (using reflection), and
uses that identifier to ask the EntityManager to retrieve another copy of the entity
from the database. Then it calls a custom matcher that uses reflection to check
that the two copies of the entity have the same values in their persistent fields.

On the Use of Reflection

We have repeatedly stated that we should test through an object’s public API, so
that our tests give us useful feedback about the design of that API. So, why are
we using reflection here to bypass our objects’ encapsulation boundaries and
reach into their private state? Why are we using the persistence API in a way we
wouldn’t do in production code?

We’re using these round-trip tests to test-drive the configuration of the ORM, as
it maps our objects into the database. We’re not test-driving the design of the ob-
jects themselves. The state of our objects is encapsulated and hidden from other
objects in the system. The ORM uses reflection to save that state to, and retrieve
it from, the database—so here, we use the same technique as the ORM does to
verify its behavior.

Round-Tripping Related Entities

Creating a list of builders is complicated when there are relationships between
entities, and saving of one entity is not cascaded to its related entities. This is the
case when an entity refers to reference data that is never created during a
transaction.

For example, our system knows about a limited number of auction sites. Cus-
tomers have AuctionSiteCredentials that refer to those sites. When the system
creates a Customer entity, it associates it with existing AuctionSites that it loads
from the database. Saving the Customer will save its AuctionSiteCredentials,
but won’t save the referenced AuctionSites because they should already exist in
the database. At the same time, we must associate a new AuctionSiteCredentials
with an AuctionSite that is already in the database, or we will violate referential
integrity constraints when we save.

299Testing That Objects Can Be Persisted

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The fix is to make sure that there’s a persisted AuctionSite before we save a
new AuctionSiteCredentials. The AuctionSiteCredentialsBuilder delegates
to another builder to create the AuctionSite for the AuctionSiteCredentials
under construction (see “Combining Builders” on page 261). We ensure referential
integrity by wrapping the AuctionSite builder in a Decorator [Gamma94] that
persists the AuctionSite before it is associated with the AuctionSiteCredentials.
This is why we call the entity builder within a transaction—some of the related
builders will perform database operations that require an active transaction.

public class PersistabilityTest { […]
 final List<? extends Builder<?>> persistentObjectBuilders = Arrays.asList(
 new AddressBuilder(),
 new PayMateDetailsBuilder(),
 new CreditCardDetailsBuilder(),
 new AuctionSiteBuilder(),
 new AuctionSiteCredentialsBuilder().forSite(persisted(new AuctionSiteBuilder())),
 new CustomerBuilder()
 .usingAuctionSites(
 new AuctionSiteCredentialsBuilder().forSite(persisted(new AuctionSiteBuilder())))
 .withPaymentMethods(
 new CreditCardDetailsBuilder(),
 new PayMateDetailsBuilder()));
 private <T> Builder<T> persisted(final Builder<T> builder) {
 return new Builder<T>() {
 public T build() {
 T entity = builder.build();
 entityManager.persist(entity);
 return entity;
 }
 };
 }
}

But Database Tests Are S-l-o-w!

Tests that run against realistic infrastructure are much slower than unit tests that
run everything in memory. We can unit-test our code by defining a clean interface
to the persistence infrastructure (defined in terms of our code’s domain) and using
a mock persistence implementation—as we described in “Only Mock Types That
You Own” (page 69). We then test the implementation of this interface with
fine-grained integration tests so we don’t have to bring up the entire system to
test the technical layers.

This lets us organize our tests into a chain of phases: unit tests that run very
quickly in memory; slower integration tests that reach outside the process, usually
through third-party APIs, and that depend on the configuration of external services
such as databases and messaging brokers; and, finally, end-to-end tests that run
against a system packaged and deployed into a production-like environment.
This gives us rapid feedback if we break the application’s core logic, and incre-
mental feedback about integration at increasingly coarse levels of granularity.

Chapter 25 Testing Persistence300

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Chapter 26

Unit Testing and Threads
It is decreed by a merciful Nature that the human brain cannot think
of two things simultaneously.

—Sir Arthur Conan Doyle

Introduction

There’s no getting away from it: concurrency complicates matters. It is a challenge
when doing test-driven development. Unit tests cannot give you as much
confidence in system quality because concurrency and synchronization are system-
wide concerns. When writing tests, you have to worry about getting the synchro-
nization right within the system and between the test and the system. Test failures
are harder to diagnose because exceptions may be swallowed by background
threads or tests may just time out with no clear explanation.

It’s hard to diagnose and correct synchronization problems in existing code,
so it’s worth thinking about the system’s concurrency architecture ahead of
time. You don’t need to design it in great detail, just decide on a broad-brush
architecture and principles by which the system will cope with concurrency.

This design is often prescribed by the frameworks or libraries that an
application uses. For example:

• Swing dispatches user events on its own thread. If an event handler runs
for a long time, the user interface becomes unresponsive because Swing
does not process user input while the event handler is running. Event call-
backs must spawn “worker” threads to perform long-running tasks, and
those worker threads must synchronize with the event dispatch thread to
update the user interface.

• A servlet container has a pool of threads that receive HTTP requests and
pass them to servlets for processing. Many threads can be active in the same
servlet instance at once.

• Java EE containers manage all the threading in the application. The contain-
er guarantees that only one thread will call into a component at a time.
Components cannot start their own threads.

• The Smack library used by the Auction Sniper application starts a daemon
thread to receive XMPP messages. It will deliver messages on a single thread,

301

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

but the application must synchronize the Smack thread and the Swing thread
to avoid the GUI components being corrupted.

When you must design a system’s concurrency architecture from scratch, you
can use modeling tools to prove your design free of certain classes of synchroniza-
tion errors, such as deadlock, livelock, or starvation. Design tools that help you
model concurrency are becoming increasingly easy to use. The book Concurrency:
State Models & Java Programs [Magee06] is an introduction to concurrent pro-
gramming that stresses a combination of formal modeling and implementation
and describes how to do the formal modeling with the LTSA analysis tool.

Even with a proven design, however, we have to cross the chasm between design
and implementation. We need to ensure that our components conform to the
architectural constraints of the system. Testing can help at this point. Once we’ve
designed how the system will manage concurrency, we can test-drive the objects
that will fit into that architecture. Unit tests give us confidence that an object
performs its synchronization responsibilities, such as locking its state or blocking
and waking threads. Coarser-grained tests, such as system tests, give us confidence
that the entire system manages concurrency correctly.

Separating Functionality and Concurrency Policy

Objects that cope with multiple threads mix functional concerns with synchro-
nization concerns, either of which can be the cause of test failures. Tests must
also synchronize with the background threads, so that they don’t make assertions
before the threads have finished working or leave threads running that might
interfere with later tests. Worse, in the presence of threads, unit tests do not
usually report failures well. Exceptions get thrown on the hidden threads, killing
them unexpectedly and breaking the behavior of the tested object. If a test times
out waiting for background threads to finish, there’s often no diagnostic other
than a basic timeout message. All this makes unit testing difficult.

Searching for Auctions Concurrently

Let’s look at an example. We will extend our Auction Sniper application to let
the user search for auctions of interest. When the user enters search
keywords, the application will run the search concurrently on all auction houses
that the application can connect to. Each AuctionHouse will return a list of
AuctionDescriptions that contain information about its auctions matching the
search keywords. The application will combine the results it receives from all
AuctionHouses and display a single list of auctions to the user. The user can then
decide which of them to bid for.

The concurrent search is performed by an AuctionSearch object which passes
the search keywords to each AuctionHouse and announces the results they return

Chapter 26 Unit Testing and Threads302

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

to an AuctionSearchConsumer. Our tests for the Auction Search are complicated
because an AuctionSearch will spawn multiple threads per search, one for each
AuctionHouse. If it hides those threads behind its API, we will have to implement
the searching and notification functionality and the synchronization at the same
time. When a test fails, we will have to work out which of those concerns is at
fault. That’s why we prefer our usual practice of incrementally adding
functionality test by test.

It would be easier to test and implement the AuctionSearch if we could tackle
the functional behavior and the synchronization separately. This would allow
us to test the functional behavior within the test thread. We want to separate the
logic that splits a request into multiple tasks from the technical details of how
those tasks are executed concurrently. So we pass a “task runner” in to the
AuctionSearch, which can then delegate managing tasks to the runner instead of
starting threads itself. In our unit tests we’ll give the AuctionSearch a fake task
runner that calls tasks directly. In the real system, we’ll give it a task runner that
creates threads for tasks.

Introducing an Executor

We need an interface between the AuctionHouse and the task runner. We can use
this one from Java’s standard java.util.concurrent package:

public interface Executor {
 void execute(Runnable command);
}

How should we implement Executor in our unit tests? For testing, we need to
run the tasks in the same thread as the test runner instead of creating new task
threads. We could use jMock to mock Executor and write a custom action to
capture all calls so we can run them later, but that sounds too complicated. The
easiest option is to write a class to implement Executor. We can us it to explicitly
run the tasks on the test thread after the call to the tested object has returned.
jMock includes such a class, called DeterministicExecutor. We use this
executor to write our first unit test. It checks that AuctionSearch notifies its
AuctionSearchConsumer whenever an AuctionHouse returns search results and
when the entire search has finished.

In the test setup, we mock the consumer because we want to show how
it’s notified by AuctionSearch. We represent auction houses with a simple
StubAuctionHouse that just returns a list of descriptions if it matches keywords,
or an empty list if not (real ones would communicate to auction services over
the Internet). We wrote a custom stub, instead of using a jMock allowance, to
reduce the “noise” in the failure reports; you’ll see how this matters when
we start stress-testing in the next section. We also pass an instance of
DeterministicExecutor to AuctionSearch so that we can run the tasks within
the test thread.

303Separating Functionality and Concurrency Policy

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

@RunWith(JMock.class)
public class AuctionSearchTests {
 Mockery context = new JUnit4Mockery();
 final DeterministicExecutor executor = new DeterministicExecutor();
 final StubAuctionHouse houseA = new StubAuctionHouse("houseA");
 final StubAuctionHouse houseB = new StubAuctionHouse("houseB");

 List<AuctionDescription> resultsFromA = asList(auction(houseA, "1"));
 List<AuctionDescription> resultsFromB = asList(auction(houseB, "2"));;

 final AuctionSearchConsumer consumer = context.mock(AuctionSearchConsumer.class);
 final AuctionSearch search =
 new AuctionSearch(executor, houses(houseA, houseB), consumer);

 @Test public void
searchesAllAuctionHouses() throws Exception {

 final Set<String> keywords = set("sheep", "cheese");
 houseA.willReturnSearchResults(keywords, resultsFromA);
 houseB.willReturnSearchResults(keywords, resultsFromB);

 context.checking(new Expectations() {{
 final States searching = context.states("searching");

 oneOf(consumer).auctionSearchFound(resultsFromA); when(searching.isNot("done"));
 oneOf(consumer).auctionSearchFound(resultsFromB); when(searching.isNot("done"));
 oneOf(consumer).auctionSearchFinished(); then(searching.is("done"));
 }});

 search.search(keywords);
executor.runUntilIdle();

 }
}

In the test, we configure the StubAuctionHouses to return example results when
they’re queried with the given keywords. We specify our expectations that the
consumer will be notified of the two search results (in any order), and then that
the search has finished.

When we call search.search(keywords), the AuctionSearch hands a task for
each of its auction houses to the executor. By the time search() returns, the tasks
to run are queued in the executor. Finally, we call executor.runUntilIdle() to
tell the executor to run queued tasks until its queue is empty. The tasks run on
the test thread, so any assertion failures will be caught and reported by JUnit,
and we don’t have to worry about synchronizing the test thread with background
threads.

Implementing AuctionSearch

This implementation of AuctionSearch calls its executor to start a search for
each of its auction houses. It tracks how many searches are unfinished in its
runningSearchCount field, so that it can notify the consumer when it’s finished.

Chapter 26 Unit Testing and Threads304

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

public class AuctionSearch {
 private final Executor executor;
 private final List<AuctionHouse> auctionHouses;
 private final AuctionSearchConsumer consumer;

private int runningSearchCount = 0;

 public AuctionSearch(Executor executor,
 List<AuctionHouse> auctionHouses,
 AuctionSearchConsumer consumer)
 {
 this.executor = executor;
 this.auctionHouses = auctionHouses;
 this.consumer = consumer;
 }

 public void search(Set<String> keywords) {
 for (AuctionHouse auctionHouse : auctionHouses) {
 startSearching(auctionHouse, keywords);
 }
 }

 private void startSearching(final AuctionHouse auctionHouse,
 final Set<String> keywords)
 {

runningSearchCount++;

 executor.execute(new Runnable() {
 public void run() {
 search(auctionHouse, keywords);
 }
 });
 }

 private void search(AuctionHouse auctionHouse, Set<String> keywords) {
 consumer.auctionSearchFound(auctionHouse.findAuctions(keywords));

runningSearchCount--;
 if (runningSearchCount == 0) {
 consumer.auctionSearchFinished();
 }
 }
}

Unfortunately, this version is unsafe because it doesn’t synchronize access to
runningSearchCount. Different threads may overwrite each other when they
decrement the field. So far, we’ve clarified the core behavior. We’ll drive out this
synchronization issue in the next test. Pulling out the Executor has given us two
advantages. First, it makes development easier as we can unit-test the basic
functionality without getting confused by threading issues. Second, the object’s
API no longer hides its concurrency policy.

Concurrency is a system-wide concern that should be controlled outside the
objects that need to run concurrent tasks. By passing an appropriate Executor
to the constructor, we’re following the “context independence” design principle.

305Separating Functionality and Concurrency Policy

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The application can now easily adapt the object to the application’s threading
policy without changing its implementation. For example, we could introduce a
thread pool should we need to limit the number of active threads.

Unit-Testing Synchronization

Separating the functional and synchronization concerns has let us test-drive the
functional behavior of our AuctionSearch in isolation. Now it’s time to test-drive
the synchronization. We will do this by writing stress-tests that run multiple
threads through the AuctionSearch implementation to cause synchronization
errors. Without precise control over the thread scheduler, we can’t guarantee
that our tests will find synchronization errors. The best we can do is run the same
code enough times on enough threads to give our tests a reasonable likelihood
of detecting the errors.

One approach to designing stress tests is to think about the aspects of an ob-
ject’s observable behavior that are independent of the number of threads calling
into the object. These are the object’s observable invariants with respect to con-
currency.1 By focusing on these invariants, we can tune the number of threads
in a test without having to change its assertions. This gives us a process for
writing stress tests:

• Specify one of the object’s observable invariants with respect to concurrency;

• Write a stress test for the invariant that exercises the object multiple times
from multiple threads;

• Watch the test fail, and tune the stress test until it reliably fails on every
test run; and,

• Make the test pass by adding synchronization.

We’ll demonstrate this with an example.

Safety First

In this chapter we have made the unit tests of functional behavior pass before we
covered stress testing at the unit level because that allowed us to explain each
technique on its own. In practice, however, we often write both a unit test for func-
tionality and a stress test of the synchronization before writing any code, make
sure they both fail, then make them both pass.This helps us avoid checking in code
that passes its tests but contains concurrency errors.

1. This differs from the use of invariants in “design by contract” and formal methods
of modeling concurrency. These define invariants over the object’s state.

Chapter 26 Unit Testing and Threads306

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

A Stress Test for AuctionSearch

One invariant of our AuctionSearch is that it notifies the consumer just once
when the search has finished, no matter how many AuctionHouses it searches—that
is, no matter how many threads its starts.

We can use jMock to write a stress test for this invariant. We don’t always use
jMock for stress tests because expectation failures interfere with the threads of
the object under test. On the other hand, jMock reports the actual sequence
of calls to its mock objects when there is a failure, which helps diagnose defects.
It also provides convenient facilities for synchronizing between the test thread
and the threads being tested.

In AuctionSearchStressTests, we set up AuctionSearch with a thread-pool
executor that will run tasks in background threads, and a list of auction houses
stubbed to match on the given keywords. jMock is not thread-safe by default,
so we set up the Mockery with a Synchroniser, an implementation of its threading
policy that allows us to call mocked objects from different threads. To make
tuning the test easier, we define constants at the top for the “degree of stress”
we’ll apply during the run.

@RunWith(JMock.class)
public class AuctionSearchStressTests {
 private static final int NUMBER_OF_AUCTION_HOUSES = 4;
 private static final int NUMBER_OF_SEARCHES = 8;
 private static final Set<String> KEYWORDS = setOf("sheep", "cheese");

 final Synchroniser synchroniser = new Synchroniser();
 final Mockery context = new JUnit4Mockery() {{
 setThreadingPolicy(synchroniser);
 }};
 final AuctionSearchConsumer consumer = context.mock(AuctionSearchConsumer.class);
 final States searching = context.states("searching");

 final ExecutorService executor = Executors.newCachedThreadPool();
 final AuctionSearch search = new AuctionSearch(executor, auctionHouses(), consumer);
[…]

 private List<AuctionHouse> auctionHouses() {
 ArrayList<AuctionHouse> auctionHouses = new ArrayList<AuctionHouse>();
 for (int i = 0; i < NUMBER_OF_AUCTION_HOUSES; i++) {
 auctionHouses.add(stubbedAuctionHouse(i));
 }
 return auctionHouses;
 }

 private AuctionHouse stubbedAuctionHouse(final int id) {
 StubAuctionHouse house = new StubAuctionHouse("house" + id);
 house.willReturnSearchResults(
 KEYWORDS, asList(new AuctionDescription(house, "id" + id, "description")));
 return house;
 }

307Unit-Testing Synchronization

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

 @Test(timeout=500) public void
onlyOneAuctionSearchFinishedNotificationPerSearch() throws Exception {

 context.checking(new Expectations() {{
 ignoring (consumer).auctionSearchFound(with(anyResults()));
 }});

 for (int i = 0; i < NUMBER_OF_SEARCHES; i++) {
 completeASearch();
 }
 }

 private void completeASearch() throws InterruptedException {
 searching.startsAs("in progress");
 context.checking(new Expectations() {{
 exactly(1).of(consumer).auctionSearchFinished(); then(searching.is("done"));
 }});

 search.search(KEYWORDS);
synchroniser.waitUntil(searching.is("done"));

 }

 @After
 public void cleanUp() throws InterruptedException {

executor.shutdown();
executor.awaitTermination(1, SECONDS);

 }
}

In the test method onlyOneAuctionSearchFinishedNotificationPerSearch(),
we run a complete search NUMBER_OF_SEARCHES times, to increase the likelihood
of finding any race conditions. It finishes each search by asking synchroniser
to wait until it’s collected all the background threads the executor has
launched, or until it’s timed out. Synchroniser provides a method that will
safely wait until a state machine is (or is not) in a given state. The test ignores
auctionSearchFound() notifications, since here we’re only interested in making
sure that the searches finish cleanly. Finally, we shut down executor in the test
teardown.

It’s important to watch a stress test fail. It’s too easy to write a test that passes
even though the tested object has a synchronization hole. So, we “test the test”
by making it fail before we’ve synchronized the code, and checking that we get
the failure report we expected. If we don’t, then we might need to raise the
numbers of threads or iterations per thread until we can trust the test to reveal
the error.2 Then we add the synchronization to make the test pass. Here’s our
test failure:

2. Of course, the stress parameters may differ between environments, such as develop-
ment vs. build. We can’t follow that through here, except to note that it needs
addressing.

Chapter 26 Unit Testing and Threads308

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

java.lang.AssertionError: unexpected invocation: consumer.auctionSearchFinished()
expectations:
 allowed, already invoked 5 times: consumer.auctionSearchFound(ANYTHING)
 expected once, already invoked 1 time: consumer.auctionSearchFinished();
 then searching is done
 expected once, already invoked 1 time: consumer.auctionSearchFinished();
 then searching is done
states:
 searching is done
what happened before this:
 consumer.auctionSearchFound(<[AuctionDescription[auctionHouse=houseA,[…]
 consumer.auctionSearchFound(<[AuctionDescription[auctionHouse=houseB,[…]
 consumer.auctionSearchFound(<[AuctionDescription[auctionHouse=houseB,[…]
 consumer.auctionSearchFinished()
 consumer.auctionSearchFound(<[AuctionDescription[auctionHouse=houseA,[…]
 consumer.auctionSearchFinished()
 consumer.auctionSearchFound(<[AuctionDescription[auctionHouse=houseB,[…]

This says that AuctionSearch has called auctionFinished() once too often.

Fixing the Race Condition (Twice)

We haven’t synchronized access to runningSearchCount. If we use an
AtomicInteger from the Java concurrency libraries instead of a plain int, the
threads should be able to decrement it without interfering with each other.

public class AuctionSearch { […]
private final AtomicInteger runningSearchCount = new AtomicInteger();

 public void search(Set<String> keywords) {
 for (AuctionHouse auctionHouse : auctionHouses) {
 startSearching(auctionHouse, keywords);
 }
 }

 private void startSearching(final AuctionHouse auctionHouse,
 final Set<String> keywords)
 {

runningSearchCount.incrementAndGet();

 executor.execute(new Runnable() {
 public void run() { search(auctionHouse, keywords); }
 });
 }

 private void search(AuctionHouse auctionHouse, Set<String> keywords) {
 consumer.auctionSearchFound(auctionHouse.findAuctions(keywords));

 if (runningSearchCount.decrementAndGet() == 0) {
 consumer.auctionSearchFinished();
 }
 }
}

309Unit-Testing Synchronization

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

We try this and, in spite of our use of an AtomicInteger, our test still fails! We
haven’t got our synchronization right after all.

We look again at the failure and see that now the AuctionSearch is
reporting that the search has finished more than once per search. Previously,
the unsafe concurrent access to runningSearchCount resulted in fewer
auctionSearchFinshed() notifications than expected, because AuctionSearch
was losing updates to the field. Something else must be wrong.

As an eagle-eyed reader, you’ll have noticed a race condition in the way
AuctionSearch increments and decrements runningSearchCount. It increments
the count before starting a task thread. Once the main thread has started creating
task threads, the thread scheduler can preëmpt it and start running whatever task
threads are ready—while the main thread still has search tasks left to create. If
all these started task threads complete before the scheduler resumes the main
thread, they will decrement the count to 0 and the last one will send an
auctionSearchFinshed() notification. When the main thread finally resumes, it
will continue by starting its remaining searches, which will eventually trigger
another notification.

This sort of error shows why we need to write stress tests, to make sure that
we see them fail, and to understand the failure messages—it’s also a good moti-
vation for us to write comprehensible failure reports. This example also highlights
the benefits of splitting tests of “raw” functionality from threaded tests. With the
single-threaded version stable, we know we can concentrate on looking for race
conditions in the stress tests.

We fix the code by setting runningSearchCount to the expected number of
searches before starting any threads:

public class AuctionSearch { […]
 public void search(Set<String> keywords) {

runningSearchCount.set(auctionHouses.size());

 for (AuctionHouse auctionHouse : auctionHouses) {
 startSearching(auctionHouse, keywords);
 }
 }

 private void startSearching(final AuctionHouse auctionHouse,
 final Set<String> keywords)
 {

// no longer increments the count here
 executor.execute(new Runnable() {
 public void run() { search(auctionHouse, keywords); }
 });
 }
}

Chapter 26 Unit Testing and Threads310

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Stress-Testing Passive Objects

AuctionSearch actively starts multiple threads by calling out to its executor.
Most objects that are concerned with threading, however, don’t start threads
themselves but have multiple threads “pass through” them and alter their state.
Servlets, for example, are required to support multiple threads touching the same
instance. In such cases, an object must synchronize access to any state that might
cause a race condition.

To stress-test the synchronization of a passive object, the test must start its
own threads to call the object. When all the threads have finished, the state of
the object should be the same as if those calls had happened in sequence. For
example, AtomicBigCounter below does not synchronize access to its count vari-
able. It works when called from a single thread but can lose updates when called
from multiple threads:

public class AtomicBigCounter {
 private BigInteger count = BigInteger.ZERO;

 public BigInteger count() { return count; }
 public void inc() { count = count.add(BigInteger.ONE); }
}

We can show this failure by calling inc() from multiple threads enough times
to give us a good chance of causing the race condition and losing an update.
When this happens, the final result of count() will be less than the number of
times we’ve called inc().

We could spin up multiple threads directly in our test, but the mess of detail
for launching and synchronizing threads would get in the way of understanding
the intent. The threading concerns are a good candidate for extracting into a
subordinate object, MultiThreadedStressTester, which we use to call the counter’s
inc() method:

public class AtomicBigCounterTests { […]
 final AtomicBigCounter counter = new AtomicBigCounter();

 @Test public void
canIncrementCounterFromMultipleThreadsSimultaneously() throws InterruptedException {

 MultithreadedStressTester stressTester = new MultithreadedStressTester(25000);

 stressTester.stress(new Runnable() {
 public void run() {
 counter.inc();
 }
 });
 stressTester.shutdown();

 assertThat("final count", counter.count(),
 equalTo(BigInteger.valueOf(stressTester.totalActionCount())));
 }
}

311Stress-Testing Passive Objects

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The test fails, showing the race condition in AtomicBigCounter:

java.lang.AssertionError: final count
Expected: <50000>
 got: <36933>

We pass the test by making the inc() and count() methods synchronized.

Synchronizing the Test Thread with Background Threads

When writing a test for code that starts threads, the test cannot confirm the code’s
behavior until it has synchronized its thread with any threads the code has
started. For example, in AuctionSearchStressTests we make the test thread wait
until all the task threads launched by AuctionSearch have been completed. Syn-
chronizing with background threads can be challenging, especially if the tested
object does not delegate to an executor to run concurrent tasks.

The easiest way to ensure that threads have finished is for the test to sleep long
enough for them all to run to completion. For example:

private void waitForSearchToFinish() throws InterruptedException {
 Thread.sleep(250);
}

This works for occasional use—a sub-second delay in a few tests won’t be
noticeable—but it doesn’t scale. As the number of tests with delays grows, the
total delay adds up and the test suite slows down so much that running it becomes
a distraction. We must be able to run all the unit tests so quickly as to not even
think about whether we should. The other problem with fixed sleeps is that our
choice of delay has to apply across all the environments where the tests run. A
delay suitable for an underpowered machine will slow the tests everywhere else,
and introducing a new environment may force another round of tuning.

An alternative, as we saw in AuctionSearchStressTests, is to use jMock’s
Synchroniser. It provides support for synchronizing between test and background
threads, based on whether a state machine has entered or left a given state:

synchroniser.waitUntil(searching.is("finished"));
synchroniser.waitUntil(searching.isNot("in progress"));

These methods will block forever for a failing test, where the state machine never
meets the specified criteria, so they should be used with a timeout added to the
test declaration:

@Test(timeout=500)

This tells the test runnner to force a failure if the test overruns the timeout period.

Chapter 26 Unit Testing and Threads312

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

A test will run as fast as possible if successful (Synchroniser’s implementation
is based on Java monitors), and only wait the entire 500 ms for failures. So, most
of the time, the synchronization will not slow down the test suite.

If not using jMock, you can write a utility similar to Synchroniser to synchro-
nize between test and background threads. Alternatively, we describe other
synchronization techniques in Chapter 27.

The Limitations of Unit Stress Tests

Having a separate set of tests for our object’s synchronization behavior helps us
pinpoint where to look for defects if tests fail. It is very difficult to diagnose race
conditions with a debugger, as stepping through code (or even adding print
statements) will alter the thread scheduling that’s causing the clash.3 If a change
causes a stress test to fail but the functional unit tests still pass, at least we know
that the object’s functional logic is correct and we’ve introduced a defect into its
synchronization, or vice versa.

Obviously, stress tests offer only a degree of reassurance that code is thread-safe,
not a guarantee. There may be scheduling differences between different operating
systems (or versions of an operating system) and between different processor
combinations. Further, there may be other processes on a host that affect
scheduling while the tests are running. The best we can do is to run the tests
frequently in a range of environments—locally before committing new code, and
on multiple build servers after commit. This should already be part of the devel-
opment process. We can tune the amount of work and number of threads in the
tests until they are reliable enough at detecting errors—where the meaning of
“enough” is an engineering decision for the team.

To cover our backs, we take a “belt and braces” approach.4 We run unit tests
to check that our objects correctly synchronize concurrent threads and to pin-
point synchronization failures. We run end-to-end tests to check that unit-level
synchronization policies integrate across the entire system. If the concurrency
architecture is not imposed on us by the frameworks we are using, we sometimes
use formal modeling tools, such as the LTSA tool described in [Magee06], to
prove that our concurrency model avoids certain classes of errors. Finally, we
run static analysis tools as part of our automated build process to catch further
errors. There are now some excellent practical examples, such as Findbugs,5 that
can detect synchronization errors in everyday Java code.

3. These are known as “Heisenbugs,” because trying to detect the bug alters it.
4. For American readers, this means “belt and suspenders,” but suspenders are a

significantly different garment in British English.
5. http://findbugs.sf.net

313The Limitations of Unit Stress Tests

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://findbugs.sf.net
http://www.it-ebooks.info/

ptg

In this chapter, we’ve considered unit-level testing of concurrent code. Larger-
scale testing of concurrent behavior is much more complex—the tested code
might be running in multiple, distributed processes; the test setup might not be
able to control the creation of threads with an executor; some of the synchroniza-
tion events might not be easily detectable; and, the system might detect and
swallow errors before they can be reported to a test. We address this level of
testing in the next chapter.

Chapter 26 Unit Testing and Threads314

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Chapter 27

Testing Asynchronous Code
I can spell banana but I never know when to stop.

—Johnny Mercer (songwriter)

Introduction

Some tests must cope with asynchronous behavior—whether they’re end-to-end
tests probing a system from the outside or, as we’ve just seen, unit tests exercising
multithreaded code. These tests trigger some activity within the system to run
concurrently with the test’s thread. The critical difference from “normal” tests,
where there is no concurrency, is that control returns to the test before the tested
activity is complete—returning from the call to the target code does not mean
that it’s ready to be checked.

For example, this test assumes that a Set has finished adding an element when
the add() method returns. Asserting that set has a size of one verifies that it did
not store duplicate elements.

@Test public void storesUniqueElements() {
 Set set = new HashSet<String>();

 set.add("bananana");
 set.add("bananana");

 assertThat(set.size(), equalTo(1));
}

By contrast, this system test is asynchronous. The holdingOfStock() method
synchronously downloads a stock report by HTTP, but the send() method sends
an asynchronous message to a server that updates its records of stocks held.

@Test public void buyAndSellOfSameStockOnSameDayCancelsOutOurHolding() {
 Date tradeDate = new Date();

 send(aTradeEvent().ofType(BUY).onDate(tradeDate).forStock("A").withQuantity(10));
 send(aTradeEvent().ofType(SELL).onDate(tradeDate).forStock("A").withQuantity(10));

 assertThat(holdingOfStock("A", tradeDate), equalTo(0));
}

The transmission and processing of a trade message happens concurrently with
the test, so the server might not have received or processed the messages yet

315

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

when the test makes its assertion. The value of the stock holding that the assertion
checks will depend on timings: how long the messages take to reach the server,
how long the server takes to update its database, and how long the test takes to
run. The test might fire the assertion after both messages have been processed
(passing correctly), after one message (failing incorrectly), or before either
message (passing, but testing nothing at all).

As you can see from this small example, with an asynchronous test we have
to be careful about its coordination with the system it’s testing. Otherwise, it can
become unreliable, failing intermittently when the system is working or, worse,
passing when the system is broken.

Current testing frameworks provide little support for dealing with asynchrony.
They mostly assume that the tests run in a single thread of control, leaving the
programmer to build the scaffolding needed to test concurrent behavior. In this
chapter we describe some practices for writing reliable, responsive tests for
asynchronous code.

Sampling or Listening

The fundamental difficulty with testing asynchronous code is that a test triggers
activity that runs concurrently with the test and therefore cannot immediately
check the outcome of the activity. The test will not block until the activity has
finished. If the activity fails, it will not throw an exception back into the test, so
the test cannot recognize if the activity is still running or has failed. The test
therefore has to wait for the activity to complete successfully and fail if this
doesn’t happen within a given timeout period.

Wait for Success

An asynchronous test must wait for success and use timeouts to detect failure.

This implies that every tested activity must have an observable effect: a test
must affect the system so that its observable state becomes different. This sounds
obvious but it drives how we think about writing asynchronous tests. If an activ-
ity has no observable effect, there is nothing the test can wait for, and therefore
no way for the test to synchronize with the system it is testing.

There are two ways a test can observe the system: by sampling its observable
state or by listening for events that it sends out. Of these, sampling is often the
only option because many systems don’t send any monitoring events. It’s quite
common for a test to include both techniques to interact with different “ends”
of its system. For example, the Auction Sniper end-to-end tests sample the user
interface for display changes, through the WindowLicker framework, but listen
for chat events in the fake auction server.

Chapter 27 Testing Asynchronous Code316

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Beware of Flickering Tests

A test can fail intermittently if its timeout is too close to the time the tested behavior
normally takes to run, or if it doesn’t synchronize correctly with the system. On a
small system, an occasional flickering test might not cause problems—the test will
most likely pass during the next build—but it’s risky. As the test suite grows, it be-
comes increasingly difficult to get a test run in which none of the flickering tests fail.

Flickering tests can mask real defects. If the system itself occasionally fails, the
tests that accurately detect those failures will seem to be flickering. If the suite
contains unreliable tests, intermittent failures detected by reliable tests can easily
be ignored. We need to make sure we understand what the real problem is before
we ignore flickering tests.

Allowing flickering tests is bad for the team. It breaks the culture of quality where
things should “just work,” and even a few flickering tests can make a team stop
paying attention to broken builds. It also breaks the habit of feedback. We should
be paying attention to why the tests are flickering and whether that means we
should improve the design of both the tests and code. Of course, there might be
times when we have to compromise and decide to live with a flickering test for the
moment, but this should be done reluctantly and include a plan for when it will
be fixed.

As we saw in the last chapter, synchronizing by simply making each test wait
for a fixed time is not practical. The test suite for a system of any size will take
too long to run. We know we’ll have to wait for failing tests to time out, but
succeeding tests should be able to finish as soon as there’s a response from
the code.

Succeed Fast

Make asynchronous tests detect success as quickly as possible so that they provide
rapid feedback.

Of the two observation strategies we outlined in the previous section, listening
for events is the quickest. The test thread can block, waiting for an event from
the system. It will wake up and check the result as soon as it receives an event.

The alternative—sampling—means repeatedly polling the target system for a
state change, with a short delay between polls. The frequency of this polling has
to be tuned to the system under test, to balance the need for a fast response
against the load it imposes on the target system. In the worst case, fast polling
might slow the system enough to make the tests unreliable.

317Sampling or Listening

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Put the Timeout Values in One Place

Both observation strategies use a timeout to detect that the system has failed.
Again, there’s a balance to be struck between a timeout that’s too short, which will
make the tests unreliable, and one that’s too long, which will make failing tests too
slow. This balance can be different in different environments, and will change as
the system grows over time.

When the timeout duration is defined in one place, it’s easy to find and change.
The team can adjust its value to find the right balance between speed and reliability
as the system develops.

Two Implementations

Scattering ad hoc sleeps and timeouts throughout the tests makes them difficult
to understand, because it leaves too much implementation detail in the tests
themselves. Synchronization and assertion is just the sort of behavior that’s
suitable for factoring out into subordinate objects because it usually turns into
a bad case of duplication if we don’t. It’s also just the sort of tricky code that we
want to get right once and not have to change again.

In this section, we’ll show an example implementation of each observation
strategy.

Capturing Notifications

An event-based assertion waits for an event by blocking on a monitor until it
gets notified or times out. When the monitor is notified, the test thread wakes
up and continues if it finds that the expected event has arrived, or blocks again.
If the test times out, then it raises a failure.

NotificationTrace is an example of how to record and test notifications sent
by the system. The setup of the test will arrange for the tested code to call
append() when the event happens, for example by plugging in an event listener
that will call the method when triggered. In the body of the test, the test thread
calls containsNotification() to wait for the expected notification or fail if it
times out. For example:

trace.containsNotification(startsWith("WANTED"));

will wait for a notification string that starts with WANTED.
Within NotificationTrace, incoming notifications are stored in a list trace,

which is protected by a lock traceLock. The class is generic, so we don’t specify
the type of these notifications, except to say that the matchers we pass into
containsNotification() must be compatible with that type. The implementation
uses Timeout and NotificationStream classes that we’ll describe later.

Chapter 27 Testing Asynchronous Code318

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

public class NotificationTrace<T> {
 private final Object traceLock = new Object();
 private final List<T> trace = new ArrayList<T>(); 1
 private long timeoutMs;
// constructors and accessors to configure the timeout […]

 public void append(T message) { 2
 synchronized (traceLock) {
 trace.add(message);

traceLock.notifyAll();
 }
 }

 public void containsNotification(Matcher<? super T> criteria) 3
 throws InterruptedException
 {
 Timeout timeout = new Timeout(timeoutMs);

 synchronized (traceLock) {
 NotificationStream<T> stream = new NotificationStream<T>(trace, criteria);

 while (! stream.hasMatched()) {
 if (timeout.hasTimedOut()) {
 throw new AssertionError(failureDescriptionFrom(criteria));
 }
 timeout.waitOn(traceLock);
 }
 }
 }

 private String failureDescriptionFrom(Matcher<? super T> matcher) { […]
 // Construct a description of why there was no match,
 // including the matcher and all the received messages.
}

1 We store notifications in a list so that they’re available to us for other queries
and so that we can include them in a description if the test fails (we don’t
show how the description is constructed).

2 The append() method, called from a worker thread, appends a new notifica-
tion to the trace, and then tells any threads waiting on traceLock to wake
up because there’s been a change. This is called by the test infrastructure
when triggered by an event in the system.

3 The containsNotification() method, called from the test thread, searches
through all the notifications it has received so far. If it finds a notification
that matches the given criteria, it returns. Otherwise, it waits until more
notifications arrive and checks again. If it times out while waiting, then it
fails the test.

The nested NotificationStream class searches the unexamined elements in its
list for one that matches the given criteria. It allows the list to grow between calls
to hasMatched() and picks up after the last element it looked at.

319Two Implementations

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

private static class NotificationStream<N> {
 private final List<N> notifications;
 private final Matcher<? super N> criteria;
 private int next = 0;

 public NotificationStream(List<N> notifications, Matcher<? super N> criteria) {
 this.notifications = notifications;
 this.criteria = criteria;
 }

 public boolean hasMatched() {
 while (next < notifications.size()) {
 if (criteria.matches(notifications.get(next)))
 return true;
 next++;
 }
 return false;
 }
}

NotificationTrace is one example of a simple coordination class between test
and worker threads. It uses a simple approach, although it does avoid a possible
race condition where a background thread delivers a notification before the test
thread has started waiting. Another implementation, for example, might have
containsNotification() only search messages received after the previous call.
What is appropriate depends on the context of the test.

Polling for Changes

A sample-based assertion repeatedly samples some visible effect of the system
through a “probe,” waiting for the probe to detect that the system has entered
an expected state. There are two aspects to the process of sampling: polling the
system and failure reporting, and probing the system for a given state. Separating
the two helps us think clearly about the behavior, and different tests can reuse the
polling with different probes.

Poller is an example of how to poll a system. It repeatedly calls its probe, with
a short delay between samples, until the system is ready or the poller times out.
The poller drives a probe that actually checks the target system, which we’ve
abstracted behind a Probe interface.

public interface Probe {
 boolean isSatisfied();
 void sample();
 void describeFailureTo(Description d);
}

The probe’s sample() method takes a snapshot of the system state that the test
is interested in. The isSatisfied() method returns true if that state meets the
test’s acceptance criteria. To simplify the poller logic, we allow isSatisfied()
to be called before sample().

Chapter 27 Testing Asynchronous Code320

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

public class Poller {
 private long timeoutMillis;
 private long pollDelayMillis;
// constructors and accessors to configure the timeout […]

 public void check(Probe probe) throws InterruptedException {
 Timeout timeout = new Timeout(timeoutMillis);

 while (! probe.isSatisfied()) {
 if (timeout.hasTimedOut()) {
 throw new AssertionError(describeFailureOf(probe));
 }
 Thread.sleep(pollDelayMillis);

 probe.sample();
 }
 }
 private String describeFailureOf(Probe probe) { […]
}

This simple implementation delegates synchronization with the system to
the probe. A more sophisticated version might implement synchronization in the
poller, so it could be shared between probes. The similarity to NotificationTrace
is obvious, and we could have pulled out a common abstract structure, but we
wanted to keep the designs clear for now.

To poll, for example, for the length of a file, we would write this line in a test:

assertEventually(fileLength("data.txt", is(greaterThan(2000))));

This wraps up the construction of our sampling code in a more expressive
assertion. The helper methods to implement this are:

public static void assertEventually(Probe probe) throws InterruptedException {
 new Poller(1000L, 100L).check(probe);
}

public static Probe fileLength(String path, final Matcher<Integer> matcher) {
 final File file = new File(path);
 return new Probe() {
 private long lastFileLength = NOT_SET;

 public void sample() { lastFileLength = file.length(); }
 public boolean isSatisfied() {
 return lastFileLength != NOT_SET && matcher.matches(lastFileLength);
 }
 public void describeFailureTo(Description d) {
 d.appendText("length was ").appendValue(lastFileLength);
 }
 };
}

Separating the act of sampling from checking whether the sample is satisfactory
makes the structure of the probe clearer. We can hold on to the sample result to
report the unsatisfactory result we found if there’s a failure.

321Two Implementations

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Timing Out

Finally we show the Timeout class that the two example assertion classes use. It
packages up time checking and synchronization:

public class Timeout {
 private final long endTime;

 public Timeout(long duration) {
 this.endTime = System.currentTimeMillis() + duration;
 }

 public boolean hasTimedOut() { return timeRemaining() <= 0; }

 public void waitOn(Object lock) throws InterruptedException {
 long waitTime = timeRemaining();
 if (waitTime > 0) lock.wait(waitTime);
 }

 private long timeRemaining() { return endTime - System.currentTimeMillis(); }
}

Retrofitting a Probe

We can now rewrite the test from the introduction. Instead of making an assertion
about the current holding of a stock, the test must wait for the holding of the
stock to reach the expected level within an acceptable time limit.

@Test public void buyAndSellOfSameStockOnSameDayCancelsOutOurHolding() {
 Date tradeDate = new Date();

 send(aTradeEvent().ofType(BUY).onDate(tradeDate).forStock("A").withQuantity(10));
 send(aTradeEvent().ofType(SELL).onDate(tradeDate).forStock("A").withQuantity(10));

assertEventually(holdingOfStock("A", tradeDate, equalTo(0)));
}

Previously, the holdingOfStock() method returned a value to be compared.
Now it returns a Probe that samples the system’s holding and returns if it meets
the acceptance criteria defined by a Hamcrest matcher—in this case equalTo(0).

Runaway Tests

Unfortunately, the new version of the test is still unreliable, even though we’re
now sampling for a result. The assertion is waiting for the holding to become
zero, which is what we started out with, so it’s possible for the test to pass before
the system has even begun processing. This test can run ahead of the system
without actually testing anything.

Chapter 27 Testing Asynchronous Code322

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The worst aspect of runaway tests is that they give false positive results, so
broken code looks like it’s working. We don’t often review tests that pass, so it’s
easy to miss this kind of failure until something breaks down the line. Even more
tricky, the code might have worked when we first wrote it, as the tests happened
to synchronize correctly during development, but now it’s broken and we
can’t tell.

Beware of Tests That Return the System to the Same State

Be careful when an asynchronous test asserts that the system returns to a previous
state. Unless it also asserts that the system enters an intermediate state before
asserting the initial state, the test will run ahead of the system.

To stop the test running ahead of the system, we must add assertions that wait
for the system to enter an intermediate state. Here, for example, we make sure
that the first trade event has been processed before asserting the effect of the
second event:

@Test public void buyAndSellOfSameStockOnSameDayCancelsOutOurHolding() {
 Date tradeDate = new Date();

 send(aTradeEvent().ofType(BUY).onDate(tradeDate).forStock("A").withQuantity(10));
assertEventually(holdingOfStock("A", tradeDate, equalTo(10)));

 send(aTradeEvent().ofType(SELL).onDate(tradeDate).forStock("A").withQuantity(10));
 assertEventually(holdingOfStock("A", tradeDate, equalTo(0)));
}

Similarly, in Chapter 14, we check all the displayed states in the acceptance
tests for the Auction Sniper user interface:

auction.reportPrice(1098, 97, ApplicationRunner.SNIPER_XMPP_ID);
application.hasShownSniperIsWinning();
auction.announceClosed();
application.hasShownSniperHasWon();

We want to make sure that the sniper has responded to each message before
continuing on to the next one.

Lost Updates

A significant difference between tests that sample and those that listen for events
is that polling can miss state changes that are later overwritten, Figure 27.1.

323Lost Updates

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Figure 27.1 A test that polls can miss changes in the system
under test

If the test can record notifications from the system, it can look through its
records to find significant notifications.

Figure 27.2 A test that records notifications will not lose updates

To be reliable, a sampling test must make sure that its system is stable before
triggering any further interactions. Sampling tests need to be structured as a series
of phases, as shown in Figure 27.3. In each phase, the test sends a stimulus to
prompt a change in the observable state of the system, and then waits until that
change becomes visible or times out.

Figure 27.3 Phases of a sampling test

Chapter 27 Testing Asynchronous Code324

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This shows the limits of how precise we can be with a sampling test. All the
test can do between “stimulate” and “sample” is wait. We can write more
reliable tests by not confusing the different steps in the loop and only triggering
further changes once we’ve detected that the system is stable by observing a
change in its sampled state.

Testing That an Action Has No Effect

Asynchronous tests look for changes in a system, so to test that something has
not changed takes a little ingenuity. Synchronous tests don’t have this problem
because they completely control the execution of the tested code. After invoking
the target object, synchronous tests can query its state or check that it hasn’t
made any unexpected calls to its neighbors.

If an asynchronous test waits for something not to happen, it cannot even be
sure that the system has started before it checks the result. For example, if we
want to show that trades in another region are not counted in the stock holding,
then this test:

@Test public void doesNotShowTradesInOtherRegions() {
 send(aTradeEvent().ofType(BUY).forStock("A").withQuantity(10)

.inTradingRegion(OTHER_REGION));
 assertEventually(holdingOfStock("A", tradeDate, equalTo(0)));
}

cannot tell whether the system has correctly ignored the trade or just not received
it yet. The most obvious workaround is for the test to wait for a fixed period of
time and then check that the unwanted event did not occur. Unfortunately, this
makes the test run slowly even when successful, and so breaks our rule of
“succeed fast.”

Instead, the test should trigger a behavior that is detectable and use that to
detect that the system has stabilized. The skill here is in picking a behavior that
will not interfere with the test’s assertions and that will complete after the tested
behavior. For example, we could add another trade event to the regions example.
This shows that the out-of-region event is excluded because its quantity is not
included in the total holding.

@Test public void doesNotShowTradesInOtherRegions() {
 send(aTradeEvent().ofType(BUY).forStock("A").withQuantity(10)
 .inTradingRegion(OTHER_REGION));
 send(aTradeEvent().ofType(BUY).forStock("A").withQuantity(66)
 .inTradingRegion(SAME_REGION));
 assertEventually(holdingOfStock("A", tradeDate, equalTo(66)));
}

Of course, this test assumes that trade events are processed in sequence, not
in parallel, so that the second event cannot overtake the first and give a false
positive. That’s why such tests are not completely “black box” but have to make
assumptions about the structure of the system. This might make these tests

325Testing That an Action Has No Effect

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

brittle—they would misreport if the system changes the assumptions they’ve been
built on. One response is to add a test to confirm those expectations—in this
case, perhaps a stress test to confirm event processing order and alert the team
if circumstances change. That said, there should already be other tests that confirm
those assumptions, so it may be enough just to associate these tests, for example
by grouping them in the same test package.

Distinguish Synchronizations and Assertions

We have one mechanism for synchronizing a test with its system and for making
assertions about that system—wait for an observable condition and time out if
it doesn’t happen. The only difference between the two activities is our interpre-
tation of what they mean. As always, we want to make our intentions explicit,
but it’s especially important here because there’s a risk that someone may look
at the test later and remove what looks like a duplicate assertion, accidentally
introducing a race condition.

We often adopt a naming scheme to distinguish between synchronizations and
assertions. For example, we might have waitUntil() and assertEventually()
methods to express the purpose of different checks that share an underlying
implementation.

Alternatively, we might reserve the term “assert” for synchronous tests and
use a different naming conventions in asynchronous tests, as we did in the Auction
Sniper example.

Externalize Event Sources

Some systems trigger their own events internally. The most common example is
using a timer to schedule activities. This might include repeated actions that run
frequently, such as bundling up emails for forwarding, or follow-up actions that
run days or even weeks in the future, such as confirming a delivery date.

Hidden timers are very difficult to work with because they make it hard to tell
when the system is in a stable state for a test to make its assertions. Waiting for
a repeated action to run is too slow to “succeed fast,” to say nothing of an action
scheduled a month from now. We also don’t want tests to break unpredictably
because of interference from a scheduled activity that’s just kicked in. Trying to
test a system by coinciding timers is just too brittle.

The only solution is to make the system deterministic by decoupling it from
its own scheduling. We can pull event generation out into a shared service that
is driven externally. For example, in one project we implemented the system’s
scheduler as a web service. System components scheduled activities by making
HTTP requests to the scheduler, which triggered activities by making HTTP
“postbacks.” In another project, the scheduler published notifications onto a
message bus topic that the components listened to.

Chapter 27 Testing Asynchronous Code326

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

With this separation in place, tests can step the system through its behavior
by posing as the scheduler and generating events deterministically. Now we can
run system tests quickly and reliably. This is a nice example of a testing require-
ment leading to a better design. We’ve been forced to abstract out scheduling,
which means we won’t have multiple implementations hidden in the system.
Usually, introducing such an event infrastructure turns out to be useful for
monitoring and administration.

There’s a trade-off too, of course. Our tests are no longer exercising the entire
system. We’ve prioritized test speed and reliability over fidelity. We compensate
by keeping the scheduler’s API as simple as possible and testing it rigorously
(another advantage). We would probably also write a few slow tests, running in
a separate build, that exercise the whole system together including the real
scheduler.

327Externalize Event Sources

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Afterword

A Brief History of Mock
Objects
Tim Mackinnon

Introduction

The ideas and concepts behind mock objects didn’t materialise in a single day.
There’s a long history of experimentation, discussion, and collaboration between
many different developers who have taken the seed of an idea and grown it into
something more profound. The final result—the topic of this book—should help
you with your software development; but the background story of “The Making
of Mock Objects” is also interesting—and a testament to the dedication of the
people involved. I hope revisiting this history will inspire you too to challenge
your thoughts on what is possible and to experiment with new practices.

Origins

The story began on a roundabout1 near Archway station in London in late 1999.
That evening, several members of a London-based software architecture group2

met to discuss topical issues in software. The discussion turned to experiences
with Agile Software Development and I mentioned the impact that writing tests
seemed to be having on our code. This was before the first Extreme Programming
book had been published, and teams like ours were still exploring how to do
test-driven development—including what constituted a good test. In particular,
I had noticed a tendency to add “getter” methods to our objects to facilitate
testing. This felt wrong, since it could be seen as violating object-oriented princi-
ples, so I was interested in the thoughts of the other members. The conversation
was quite lively—mainly centering on the tension between pragmatism in testing
and pure object-oriented design. We also had a recent example of a colleague,

1. “Roundabout” is the UK term for a traffic circle.
2. On this occasion, they were Tim Mackinnon, Peter Marks, Ivan Moore, and John

Nolan.

329

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Oli Bye, stubbing out the Java Servlet API for testing a web application without
a server.

I particularly remember from that evening a crude diagram of an onion3 and
its metaphor of the many layers of software, along with the mantra “No Getters!
Period!” The discussion revolved around how to safely peel back and test layers
of that onion without impacting its design. The solution was to focus on the
composition of software components (the group had discussed Brad Cox’s ideas
on software components many times before). It was an interesting collision of
opinions, and the emphasis on composition—now referred to as dependency
injection—gave us a technique for eliminating the getters we were “pragmatically”
adding to objects so we could write tests for them.

The following day, our small team at Connextra4 started putting the idea into
practice. We removed the getters from sections of our code and used a composi-
tional strategy by adding constructors that took the objects we wanted to test
via getters as parameters. At first this felt cumbersome, and our two recent
graduate recruits were not convinced. I, however, had a Smalltalk background,
so to me the idea of composition and delegation felt right. Enforcing a “no getters”
rule seemed like a way to achieve a more object-oriented feeling in the Java
language we were using.

We stuck to it for several days and started to see some patterns emerging. More
of our conversations were about expecting things to happen between our
objects, and we frequently had variables with names like expectedURL and
expectedServiceName in our injected objects. On the other hand, when our tests
failed we were tired of stepping through in a debugger to see what went wrong.
We started adding variables with names like actualURL and actualServiceName
to allow the injected test objects to throw exceptions with helpful messages.
Printing the expected and actual values side-by-side showed us immediately what
the problem was.

Over the course of several weeks we refactored these ideas into a group of
classes: ExpectationValue for single values, ExpectationList for multiple values
in a particular order, and ExpectationSet for unique values in any order. Later,
Tung Mac also added ExpectationCounter for situations where we didn’t want
to specify explicit values but just count the number of calls. It started to feel as
if something interesting was happening, but it seemed so obvious to me that there
wasn’t really much to describe. One afternoon, Peter Marks decided that we
should come up with name for what we were doing—so we could at least package
the code—and, after a few suggestions, proposed “mock.” We could use it both
as a noun and a verb, and it refactored nicely into our code, so we adopted it.

3. Initially drawn by John Nolan.
4. The team consisted of Tim Mackinnon, Tung Mac, and Matthew Cooke, with

direction from Peter Marks and John Nolan. Connextra is now part of Bet Genius.

Afterword A Brief History of Mock Objects330

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Spreading the Word

Around this time, we5 also started the London Extreme Tuesday Club (XTC) to
share experiences of Extreme Programming with other teams. During one meeting,
I described our refactoring experiments and explained that I felt that it helped
our junior developers write better object-oriented code. I finished the story by
saying, “But this is such an obvious technique that I’m sure most people do it
eventually anyway.” Steve pointed out that the most obvious things aren’t always
so obvious and are usually difficult to describe. He thought this could make a
great paper if we could sort the wood from the trees, so we decided to collaborate
with another XTC member (Philip Craig) and write something for the XP2000
conference. If nothing else, we wanted to go to Sardinia.

We began to pick apart the ideas and give them a consistent set of names,
studying real code examples to understand the essence of the technique. We
backported new concepts we discovered to the original Connextra codebase to
validate their effectiveness. This was an exciting time and I recall that it took
many late nights to refine our ideas—although we were still struggling to come
up with an accurate “elevator pitch” for mock objects. We knew what it felt like
when using them to drive great code, but describing this experience to other
developers who weren’t part of the XTC was still challenging.

The XP2000 paper [Mackinnon00] and the initial mock objects library had a
mixed reception—for some it was revolutionary, for others it was unnecessary
overhead. In retrospect, the fact that Java didn’t have good reflection when we
started meant that many of the steps were manual, or augmented with code
generation tools.6 This turned people off—they couldn’t separate the idea from
the implementation.

Another Generation

The story continues when Nat Pryce took the ideas and implemented them in
Ruby. He exploited Ruby’s reflection to write expectations directly into the test
as blocks. Influenced by his PhD work on protocols between components, his li-
brary changed the emphasis from asserting parameter values to asserting messages
sent between objects. Nat then ported his implementation to Java, using the new
Proxy type in Java 1.3 and defining expectations with “constraint” objects. When
Nat showed us this work, it immediately clicked. He donated his library to the
mock objects project and visited the Connextra offices where we worked together
to add features that the Connextra developers needed.

5. With Tim Mackinnon, Oli Bye, Paul Simmons, and Steve Freeman. Oli coined the
name XTC.

6. This later changed as Java 1.1 was released, which improved reflection, and as others
who had read our paper wrote more tools, such as Tammo Freese’s Easymock.

331Another Generation

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

With Nat in the office where mock objects were being used constantly, we
were driven to use his improvements to provide more descriptive failure messages.
We had seen our developers getting bogged down when the reason for a test
failure was not obvious enough (later, we observed that this was often a hint
that an object had too many responsibilities). Now, constraints allowed us to
write tests that were more expressive and provided better failure diagnostics, as
the constraint objects could explain what went wrong.7 For example, a failure
on a stringBegins constraint could produce a message like:

Expected a string parameter beginning with "http"
 but was called with a value of "ftp.domain.com"

We released the new improved version of Nat’s library under the name Dynamock.
As we improved the library, more programmers started using it, which intro-

duced new requirements. We started adding more and more options to the API
until, eventually, it became too complicated to maintain—especially as we had
to support multiple versions of Java. Meanwhile, Steve tired of the the duplication
in the syntax required to set up expectations, so he introduced a version of a
Smalltalk cascade—multiple calls to the same object.

Then Steve noticed that in a statically typed language like Java, a cascade could
return a chain of interfaces to control when methods are made available to the
caller—in effect, we could use types to encode a workflow. Steve also wanted to
improve the programming experience by guiding the new generation of IDEs
to prompt with the “right” completion options. Over the course of a year, Steve
and Nat, with much input from the rest of us, pushed the idea hard to produce
jMock, an expressive API over our original Dynamock framework. This was also
ported to C# as NMock. At some point in this process, they realized that
they were actually writing a language in Java which could be used to write
expectations; they wrote this up later in an OOPLSA paper [Freeman06].

Consolidation

Through our experience in Connextra and other companies, and through giving
many presentations, we improved our understanding and communication of the
ideas of mock objects. Steve (inspired by some of the early lean software material)
coined the term “needs-driven development,” and Joe Walnes, another colleague,
drew a nice visualisation of islands of objects communicating with each other.
Joe also had the insight of using mock objects to drive the design of interfaces
between objects. At the time, we were struggling to promote the idea of using
mock objects as a design tool; many people (including some authors) saw it only
as a technique for speeding up unit tests. Joe cut through all the conceptual
barriers with his simple heuristic of “Only mock types you own.”

7. Later, Steve talked Charlie Poole into including constraints in NUnit. It took some
extra years to have matchers (the latest version of constraints) adopted by JUnit.

Afterword A Brief History of Mock Objects332

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

We took all these ideas and wrote a second conference paper, “Mock Roles
not Objects” [Freeman04]. Our initial description had focused too much on im-
plementation, whereas the critical idea was that the technique emphasizes the
roles that objects play for each other. When developers are using mock objects
well, I observe them drawing diagrams of what they want to test, or using CRC
cards to roleplay relationships—these then translate nicely into mock objects and
tests that drive the required code.

Since then, Nat and Steve have reworked jMock to produce jMock2, and Joe
has extracted constraints into the Hamcrest library (now adopted by JUnit).
There’s also now a wide selection of mock object libraries, in many different
languages.

The results have been worth the effort. I think we can finally say that there is
now a well-documented and polished technique that helps you write better soft-
ware. From those humble “no getters” beginnings, this book summarizes years
of experience from all of us who have collaborated, and adds Steve and Nat’s
language expertise and careful attention to detail to produce something that is
greater than the sum of its parts.

333Consolidation

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Appendix A

jMock2 Cheat Sheet
Introduction

We use jMock2 as our mock object framework throughout this book. This
chapter summarizes its features and shows some examples of how to use them.
We’re using JUnit 4.6 (we assume you’re familiar with it); jMock also supports
JUnit3. Full documentation is available at www.jmock.org.

We’ll show the structure of a jMock unit test and describe what its features
do. Here’s a whole example:

import org.jmock.Expectations;
import org.jmock.Mockery;
import org.jmock.integration.junit4.JMock;
import org.jmock.integration.junit4.JUnit4Mockery;

@RunWith(JMock.class)
public class TurtleDriverTest {
 private final Mockery context = new JUnit4Mockery();
 private final Turtle turtle = context.mock(Turtle.class);

 @Test public void
goesAMinimumDistance() {

 final Turtle turtle2 = context.mock(Turtle.class, "turtle2");
 final TurtleDriver driver = new TurtleDriver(turtle1, turtle2); // set up

 context.checking(new Expectations() {{ // expectations
 ignoring (turtle2);
 allowing (turtle).flashLEDs();

 oneOf (turtle).turn(45);
 oneOf (turtle).forward(with(greaterThan(20)));
 atLeast(1).of (turtle).stop();
 }});

 driver.goNext(45); // call the code
 assertTrue("driver has moved", driver.hasMoved()); // further assertions
 }
}

335

From the Library of Lee Bogdanoff

www.it-ebooks.info

www.jmock.org
http://www.it-ebooks.info/

ptg

Test Fixture Class

First, we set up the test fixture class by creating its Mockery.

import org.jmock.Expectations;
import org.jmock.Mockery;
import org.jmock.integration.junit4.JMock;
import org.jmock.integration.junit4.JUnit4Mockery;

@RunWith(JMock.class)
public class TurtleDriverTest {
 private final Mockery context = new JUnit4Mockery();
[…]

}

For the object under test, a Mockery represents its context—the neighboring
objects it will communicate with. The test will tell the mockery to create
mock objects, to set expectations on the mock objects, and to check at the end
of the test that those expectations have been met. By convention, the mockery is
stored in an instance variable named context.

A test written with JUnit4 does not need to extend a specific base class but
must specify that it uses jMock with the @RunWith(JMock.class) attribute.1 This
tells the JUnit runner to find a Mockery field in the test class and to assert (at the
right time in the test lifecycle) that its expectations have been met. This requires
that there should be exactly one mockery field in the test class. The class
JUnit4Mockery will report expectation failures as JUnit4 test failures.

Creating Mock Objects

This test uses two mock turtles, which we ask the mockery to create. The first is
a field in the test class:

private final Turtle turtle = context.mock(Turtle.class);

The second is local to the test, so it’s held in a variable:

final Turtle turtle2 = context.mock(Turtle.class, "turtle2");

The variable has to be final so that the anonymous expectations block has access
to it—we’ll return to this soon. This second mock turtle has a specified name,
turtle2. Any mock can be given a name which will be used in the report if the
test fails; the default name is the type of the object. If there’s more than one mock
object of the same type, jMock enforces that only one uses the default name; the
others must be given names when declared. This is so that failure reports can
make clear which mock instance is which when describing the state of the test.

1. At the time of writing, JUnit was introducing the concept of Rule. We expect to extend
the jMock API to adopt this technique.

Appendix A jMock2 Cheat Sheet336

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Tests with Expectations

A test sets up its expectations in one or more expectation blocks, for example:

context.checking(new Expectations() {{
oneOf (turtle).turn(45);

}});

An expectation block can contain any number of expectations. A test can
contain multiple expectation blocks; expectations in later blocks are appended
to those in earlier blocks. Expectation blocks can be interleaved with calls to the
code under test.

What’s with the Double Braces?

The most disconcerting syntax element in jMock is its use of double braces in an
expectations block. It’s a hack, but with a purpose. If we reformat an expectations
block, we get this:

context.checking(new Expectations() {
 {
 oneOf (turtle).turn(45);
 }
});

We’re passing to the checking() method an anonymous subclass of Expectations
(first set of braces). Within that subclass, we have an instance initialization block
(second set of braces) that Java will call after the constructor.Within the initialization
block, we can reference the enclosing Expectations object, so oneOf() is actually
an instance method—as are all of the expectation structure clauses we describe
in the next section.

The purpose of this baroque structure is to provide a scope for building up
expectations. All the code in the expectation block is defined within an anonymous
instance of Expectations, which collects the expectation components that the
code generates. The scoping to an instance allows us to make this collection im-
plicit, which requires less code. It also improves our experience in the IDE, since
code completion will be more focused, as in Figure A.1.

Referring back to the discussion in “Building Up to Higher-Level Programming”
(page 65), Expectations is an example of the Builder pattern.

337Tests with Expectations

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Figure A.1 Narrowed scope gives better code completion

Expectations

Expectations have the following structure:

invocation-count(mock-object).method(argument-constraints);
inSequence(sequence-name);
when(state-machine.is(state-name));
will(action);
then(state-machine.is(new-state-name));

The invocation-count and mock-object are required, all the other clauses are
optional. You can give an expectation any number of inSequence, when, will,
and then clauses. Here are some common examples:

oneOf (turtle).turn(45); // The turtle must be told exactly once to turn 45 degrees.
atLeast(1).of (turtle).stop(); // The turtle must be told at least once to stop.
allowing (turtle).flashLEDs(); // The turtle may be told any number of times,
 // including none, to flash its LEDs.
allowing (turtle).queryPen(); will(returnValue(PEN_DOWN));

// The turtle may be asked about its pen any
 // number of times and will always return PEN_DOWN.
ignoring (turtle2); // turtle2 may be told to do anything. This test ignores it.

Invocation Count

The invocation count is required to describe how often we expect a call to be
made during the run of the test. It starts the definition of an expectation.

exactly(n).of

The invocation is expected exactly n times.

oneOf

The invocation is expected exactly once. This is a convenience shorthand for
exactly(1).of

Appendix A jMock2 Cheat Sheet338

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

atLeast(n).of

The invocation is expected at least n times.

atMost(n).of

The invocation is expected at most n times.

between(min, max).of

The invocation is expected at least min times and at most max times.

allowing

ignoring

The invocation is allowed any number of times including none. These
clauses are equivalent to atLeast(0).of, but we use them to highlight that
the expectation is a stub—that it’s there to get the test through to the
interesting part of the behavior.

never

The invocation is not expected. This is the default behavior if no expectation
has been set. We use this clause to emphasize to the reader of a test that an
invocation should not be called.

allowing, ignoring, and never can also be applied to an object as a whole.
For example, ignoring(turtle2) says to allow all calls to turtle2. Similarly,
never(turtle2) says to fail if any calls are made to turtle2 (which is the same
as not specifying any expectations on the object). If we add method expectations,
we can be more precise, for example:

allowing(turtle2).log(with(anything()));
never(turtle2).stop();

will allow log messages to be sent to the turtle, but fail if it’s told to stop. In
practice, while allowing precise invocations is common, blocking individual
methods is rarely useful.

Methods

Expected methods are specified by calling the method on the mock object within
an expectation block. This defines the name of the method and what argument
values are acceptable. Values passed to the method in an expectation will be
compared for equality:

oneOf (turtle).turn(45); // matches turn() called with 45
oneOf (calculator).add(2, 2); // matches add() called with 2 and 2

Invocation matching can be made more flexible by using matchers as arguments
wrapped in with() clauses:

339Expectations

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

oneOf(calculator).add(with(lessThan(15)), with(any(int.class)));
// matches add() called with a number less than 15 and any other number

Either all the arguments must be matchers or all must be values:

oneOf(calculator).add(with(lessThan(15)), 22); // this doesn't work!

Argument Matchers

The most commonly used matchers are defined in the Expectations class:

equal(o)

The argument is equal to o, as defined by calling o.equals() with the actual
value received during the test. This also recursively compares the contents
of arrays.

same(o)

The argument is the same object as o.

any(Class<T> type)

The argument is any value, including null. The type argument is required
to force Java to type-check the argument at compile time.

a(Class<T> type)

an(Class<T> type)

The argument is an instance of type or of one of its subtypes.

aNull(Class<T> type)

The argument is null. The type argument is to force Java to type-check the
argument at compile time.

aNonNull(Class<T> type)

The argument is not null. The type argument is to force Java to type-check
the argument at compile time.

not(m)

The argument does not match the matcher m.

anyOf(m1, m2, m3, […])

The argument matches at least one of the matchers m1, m2, m3, […].

allOf(m1, m2, m3, […])

The argument matches all of the matchers m1, m2, m3, […].

More matchers are available from static factory methods of the Hamcrest
Matchers class, which can be statically imported into the test class. For more
precision, custom matchers can be written using the Hamcrest library.

Appendix A jMock2 Cheat Sheet340

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Actions

An expectation can also specify an action to perform when it is matched, by
adding a will() clause after the invocation. For example, this expectation will
return PEN_DOWN when queryPen() is called:

allowing (turtle).queryPen(); will(returnValue(PEN_DOWN));

jMock provides several standard actions, and programmers can provide custom
actions by implementing the Action interface. The standard actions are:

will(returnValue(v))

Return v to the caller.

will(returnIterator(c))

Return an iterator for collection c to the caller.

will(returnIterator(v1, v2, […], vn))

Return a new iterator over elements v1 to v2 on each invocation.

will(throwException(e))

Throw exception e when called.

will(doAll(a1, a2, […], an))

Perform all the actions a1 to an on every invocation.

Sequences

The order in which expectations are specified does not have to match the order
in which their invocations are called. If invocation order is significant, it can be
enforced in a test by adding a Sequence. A test can create more than one sequence
and an expectation can be part of more than once sequence at a time. The syntax
for creating a Sequence is:

Sequence sequence-variable = context.sequence("sequence-name");

To expect a sequence of invocations, create a Sequence object, write the expec-
tations in the expected order, and add an inSequence() clause to each relevant
expectation. Expectations in a sequence can have any invocation count. For
example:

context.checking(new Expectations() {{
 final Sequence drawing = context.sequence("drawing");
 allowing (turtle).queryColor(); will(returnValue(BLACK));

 atLeast(1).of (turtle).forward(10); inSequence(drawing);
 oneOf (turtle).turn(45); inSequence(drawing);
 oneOf (turtle).forward(10); inSequence(drawing);
}});

341Expectations

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Here, the queryColor() call is not in the sequence and can take place at
any time.

States

Invocations can be constrained to occur only when a condition is true, where a
condition is defined as a state machine that is in a given state. State machines can
switch between states specified by state names. A test can create multiple state
machines, and an invocation can be constrained to one or more conditions. The
syntax for creating a state machine is:

States state-machine-name =
 context.states("state-machine-name").startsAs("initial-state");

The initial state is optional; if not specified, the state machine starts in an unnamed
initial state.

Add these clauses to expectations to constrain them to match invocations in
a given state, or to switch the state of a state machine after an invocation:

when(stateMachine.is("state-name"));

Constrains the last expectation to occur only when stateMachine is in the
state "state-name".

when(stateMachine.isNot("state-name"));

Constrains the last expectation to occur only when stateMachine is not in
the state "state-name".

then(stateMachine.is("state-name"));

Changes stateMachine to be in the state "state-name" when the invocation
occurs.

This example allows turtle to move only when the pen is down:

context.checking(new Expectations() {{
 final States pen = context.states("pen").startsAs("up");
 allowing (turtle).queryColor(); will(returnValue(BLACK));

 allowing (turtle).penDown(); then(pen.is("down"));
 allowing (turtle).penUp(); then(pen.is("up"));

 atLeast(1).of (turtle).forward(15); when(pen.is("down"));
 one (turtle).turn(90); when(pen.is("down"));
 one (turtle).forward(10); when(pen.is("down"));
}}

Notice that expectations with states do not define a sequence; they can be com-
bined with Sequence constraints if order is significant. As before, the queryColor()
call is not included in the states, and so can be called at any time.

Appendix A jMock2 Cheat Sheet342

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Appendix B

Writing a Hamcrest Matcher
Introduction

Although Hamcrest 1.2 comes with a large library of matchers, sometimes these
do not let you specify an assertion or expectation accurately enough to convey
what you mean or to keep your tests flexible. In such cases, you can easily define
a new matcher that seamlessly extends the JUnit and jMock APIs.

A matcher is an object that implements the org.hamcrest.Matcher interface:

public interface SelfDescribing {
 void describeTo(Description description);
}

public interface Matcher<T> extends SelfDescribing {
 boolean matches(Object item);
 void describeMismatch(Object item, Description mismatchDescription);
}

A matcher does two things:

• Reports whether a parameter value meets the constraint (the matches()
method);

• Generates a readable description to be included in test failure messages (the
describeTo() method inherited from the SelfDescribing interface and
the describeMismatch() method).

A New Matcher Type

As an example, we will write a new matcher that tests whether a string starts
with a given prefix. It can be used in tests as shown below. Note that the
matcher seamlessly extends the assertion: there is no visible difference between
built-in and third-party matchers at the point of use.

@Test public void exampleTest() {
[…]

 assertThat(someString, startsWith("Cheese"));
}

343

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

To write a new matcher, we must implement two things: a new class that im-
plements the Matcher interface and the startsWith() factory function for our
assertions to read well when we use the new matcher in our tests.

To write a matcher type, we extend one of Hamcrest’s abstract base classes,
rather than implementing the Matcher interface directly.1 For our needs, we can
extend TypeSafeMatcher<String>, which checks for nulls and type safety, casts
the matched Object to a String, and calls the template methods [Gamma94] in
our subclass.

public class StringStartsWithMatcher extends TypeSafeMatcher<String> {
 private final String expectedPrefix;

 public StringStartsWithMatcher(String expectedPrefix) {
 this.expectedPrefix = expectedPrefix;
 }
 @Override
 protected boolean matchesSafely(String actual) {
 return actual.startsWith(expectedPrefix);
 }
 @Override
 public void describeTo(Description matchDescription) {
 matchDescription.appendText("a string starting with ")
 .appendValue(expectedPrefix);
 }
 @Override protected void
describeMismatchSafely(String actual, Description mismatchDescription) {

 String actualPrefix =
 actual.substring(0, Math.min(actual.length(), expectedPrefix.length()));

 mismatchDescription.appendText("started with ")
 .appendValue(actualPrefix);
 }
}

Matcher Objects Must Be Stateless

When dispatching each invocation, jMock uses the matchers to find an expectation
that matches the invocation’s arguments. This means that it will call the matchers
many times during the test, maybe even after the expectation has already been
matched and invoked. In fact, jMock gives no guarantees of when and how many
times it will call the matchers. This has no effect on stateless matchers, but the
behavior of stateful matchers is unpredictable.

If you want to maintain state in response to invocations, write a custom jMock
Action, not a Matcher.

1. This lets the Hamcrest team add methods to the Matcher interface without breaking
all the code that implements that interface, because they can also add a default
implementation to the base class.

Appendix B Writing a Hamcrest Matcher344

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The text generated by the describeTo() and describeMismatch() must follow
certain grammatical conventions to fit into the error messages generated by
JUnit and jMock. Although JUnit and jMock generate different messages,
matcher descriptions that complete the sentence “expected description but it
mismatch-description” will work with both libraries. That sentence completed
with the StringStartsWithMatcher’s descriptions would be something like:

expected a string starting with "Cheese" but it started with "Bananas"

To make the new matcher fit seamlessly into JUnit and jMock, we also write
a factory method that creates an instance of the StringStartsWithMatcher.

public static Matcher<String> aStringStartingWith(String prefix) {
 return new StringStartsWithMatcher(prefix);
}

The point of the factory method is to make the test code read clearly, so
consider how it will look when used in an assertion or expectation.

And that’s all there is to writing a matcher.

345A New Matcher Type

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Bibliography

[Abelson96] Abelson, Harold and Gerald Sussman. Structure and Interpretation of

Computer Programs. MIT Press, 1996, ISBN 978-0262011532.

[Beck99] Beck, Kent. Extreme Programming Explained: Embrace Change. Addison-
Wesley, 1999, ISBN 978-0321278654.

[Beck02] Beck, Kent. Test Driven Development: By Example. Addison-Wesley, 2002, ISBN
978-0321146530.

[Begel08] Begel, Andrew and Beth Simon. “Struggles of New College Graduates in Their
First Software Development Job.” In: SIGCSE Bulletin, 40, no. 1 (March 2008):
226–230, ACM, ISSN 0097-8418.

[Cockburn04] Cockburn, Alistair. Crystal Clear: A Human-Powered Methodology for
Small Teams. Addison-Wesley Professional, October 29, 2004, ISBN 0201699478.

[Cockburn08] Cockburn, Alistair. Hexagonal Architecture: Ports and Adapters (“Object
Structural”). June 19, 2008, http://alistair.cockburn.us/ Hexagonal+architecture.

[Cohn05] Cohn, Mike. Agile Estimating and Planning. Prentice Hall, 2005, ISBN
978-0131479418.

[Demeyer03] Demeyer, Serge, Stéphane Ducasse, and Oscar Nierstrasz. Object-Oriented
Reengineering Patterns. http://scg.unibe.ch/download/oorp/.

[Evans03] Evans, Eric. Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley, 2003, ISBN 978-0321125217.

[Feathers04] Feathers, Michael. Working Effectively with Legacy Code. Prentice Hall,
2004, ISBN 978-0131177055.

[Fowler99] Fowler, Martin. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999, ISBN 978-0201485677.

[Freeman04] Freeman, Steve, Tim Mackinnon, Nat Pryce, and Joe Walnes. “Mock
Roles, Not Objects.” In: Companion to the 19th ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages, and Applications,
OOPLSA, Vancouver, BC, October 2004, New York: ACM, ISBN 1581138334,
http://portal.acm.org/citation.cfm?doid=1028664.1028765 .

[Freeman06] Freeman, Steve and Nat Pryce. “Evolving an Embedded Domain-Specific
Language in Java.” In: Companion to the 21st ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applications, OOPLSA, Portland,
Oregon, October 2006, New York: ACM, http://www.jmock.org/oopsla06.pdf.

[Gall03] Gall, John. The Systems Bible: The Beginner’s Guide to Systems Large and Small.
General Systemantics Pr/Liberty, 2003, ISBN 978-0961825171.

[Gamma94] Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

347

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.jmock.org/oopsla06.pdf
http://alistair.cockburn.us/Hexagonal+architecture
http://scg.unibe.ch/download/oorp/
http://portal.acm.org/citation.cfm?doid=1028664.1028765
http://www.it-ebooks.info/

ptg

[Graham93] Graham, Paul. On Lisp. Prentice Hall, 1993, ISBN 0130305529,
http://www.paulgraham.com/onlisp.html.

[Hunt99] Hunt, Andrew and David Thomas. The Pragmatic Programmer: From Journey-
man to Master. Addison-Wesley Professional, October 30, 1999, ISBN 020161622X.

[Kay98] Kay, Alan. Email Message Sent to the Squeak Mailing List. October 10, 1998,
http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/017019.html.

[Kerievsky04] Kerievsky, Joshua. Refactoring to Patterns. Addison-Wesley, 2004, ISBN
978-0321213358.

[Kernighan76] Kernighan, Brian and P. J. Plauger. Software Tools. Addison-Wesley, 1976,
ISBN 978-0201036695.

[Lieberherr88] Lieberherr, Karl, Ian Holland, and Arthur Riel. “Object-Oriented Program-
ming: An Objective Sense of Style.” In: OOPSLA, 23, no. 11 (1988): 323–334.

[LIFT] Framework for Literate Functional Testing. https://lift.dev.java.net/.

[Mackinnon00] Mackinnon, Tim, Steve Freeman, and Philip Craig. “Endo-Testing:
Unit Testing with Mock Objects.” In: Giancarlo Succi and Michele Marchesi,
Extreme Programming Examined, Addison-Wesley, 2001, pp. 287–301, ISBN 978-
0201710403.

[Magee06] Magee, Jeff and Jeff Kramer. Concurrency: State Models & Java Programs.
Wiley, 2006, ISBN 978-0470093559.

[Martin02] Martin, Robert C. Agile Software Development, Principles, Patterns, and
Practices. Prentice Hall, 2002, ISBN 978-0135974445.

[Meszaros07] Meszaros, Gerard. xUnit Test Patterns: Refactoring Test Code. Addison-
Wesley, 2007, ISBN 978-0131495050.

[Meyer91] Meyer, Betrand. Eiffel: The Language. Prentice Hall, 1991, ISBN 978-
0132479257.

[Mugridge05] Mugridge, Rick and Ward Cunningham. Fit for Developing Software:
Framework for Integrated Tests. Prentice Hall, 2005, ISBN 978-0321269348.

[Schuh01] Schuh, Peter and Stephanie Punke. ObjectMother: Easing Test Object Creation
In XP. XP Universe, 2001.

[Schwaber01] Schwaber, Ken and Mike Beedle. Agile Software Development with Scrum.
Prentice Hall, 2001, ISBN 978-0130676344.

[Shore07] Shore, James and Shane Warden. The Art of Agile Development. O’Reilly
Media, 2007, ISBN 978-0596527679.

[Wirfs-Brock03] Wirfs-Brock, Rebecca and Alan McKean. Object Design: Roles,
Responsibilities, and Collaborations. Addison-Wesley, 2003, ISBN 0201379430.

[Woolf98] Woolf, Bobby. “Null Object.” In: Pattern Languages of Program Design 3.
Edited by Robert Martin, Dirk Riehle, and Frank Buschmann. Addison-Wesley, 1998,
http://www.cse.wustl.edu/~schmidt/PLoP-96/woolf1.ps.gz.

[Yourdon79] Yourdon, Edward and Larry Constantine. Structured Design: Fundamentals
of a Discipline of Computer Program and Systems Design. Prentice Hall, 1979, ISBN
978-0138544713.

Bibliography 348

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.paulgraham.com/onlisp.html
http://www.cse.wustl.edu/~schmidt/PLoP-96/woolf1.ps.gz
http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/017019.html
https://lift.dev.java.net/
http://www.it-ebooks.info/

ptg

A
a(), jMock, 340
AbstractTableModel class, 152
acceptance tests, 4, 7–10

failing, 6–7, 39–40, 42, 271
for changed requirements, 40
for completed features, 40
for degenerate cases, 41
for new features, 6, 39–40, 105, 225
readability of, 42

Action interface, 341, 344
ActionListener interface, 185, 187
ActiveDirectory, 232
adapters, 48, 70–71, 284, 297
addSniper(), 180
addUserRequestListenerFor(), 187
adjustments, 52–53, 238

mocking, 58
@After annotation, 23, 96
@AfterClass annotation, 223
Agile Development, 35, 47, 81, 83, 205, 329
aliasing, 50
allOf(), Hamcrest, 340
allowances, 146, 277–279
allowing(), jMock, 145–146, 181, 211, 243,

278, 278, 339
an(), jMock, 340
announce(), jMock, 187
announceClosed(), 106–107, 176
Announcer class, 187, 192
aNonNull(), jMock, 340
ant build tool, 95
aNull(), jMock, 340
any(), Hamcrest, 340
anyOf(), Hamcrest, 340
Apache Commons IO library, 221
application model, 48
ApplicationRunner class, 85, 89–92,

106–107, 140, 153, 168, 175–177, 183,
207, 254

aRowChangedEvent(), 157, 162
ArrayIndexOutOfBoundsException, 217
aSniperThatIs(), 161–162, 278

assertColumnEquals(), 157
assertEquals(), JUnit, 21–22, 276
assertEventually(), 321–323, 326
assertFalse(), JUnit, 24, 255
assertions, 22, 254–255

extending, 343–345
failing, 24, 268
messages for, 268
naming, 86
narrowness of, 255, 275–276
quantity of, 252
vs. synchronizations, 326
vs. test setup, 211

assertIsSatisfied(), JUnit, 271
assertNull(), JUnit, 21–22
assertRowMatchesSnapshot(), 180
assertThat(), JUnit, 24–25, 253–255, 268,

276
assertTrue(), JUnit, 21–22, 24, 255
asynchrony, 87, 180, 216, 262

testing, 315–327
atLeast(), jMock, 127, 278, 339
atMost(), jMock, 339
AtomicBigCounter class, 311–312
AtomicInteger class, 309–310
attachModelListener(), Swing, 156–157
Auction interface, 62, 126–131, 136, 155,

193, 203
Auction Sniper, 75–226

bidding, 79, 84, 105–121, 126–131, 162
for multiple items, 175
stopping, 79, 205–213

connecting, 108, 111, 179, 183
disconnecting, 219–220
displaying state of, 97–98, 128, 144–146,

152–155, 159–160, 171, 323
failing, 215–217
joining auctions, 79, 84, 91, 94, 98–100,

179–181, 184–186, 197–199
losing, 79, 84, 91, 100–102, 125, 130,

164, 205–206
portfolio of, 199
refactoring, 191–203

Index

349

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Auction Sniper (continued)
synchronizing, 106, 301
table model for, 149–152, 156–160, 166
translating messages from auction,

112–118, 139–142, 217
updating current price, 118–121
user interface of, 79, 84, 96–97, 149–173,

183–188, 207–208, 212, 316
walking skeleton for, 79, 83–88
when an auction is closed, 84, 94
winning, 79, 139–148, 162–164

auctionClosed(), 25, 58, 116–117,
119–120, 123–125

AuctionEvent class, 134–136
AuctionEventListener interface, 19, 26, 61,

113, 117, 120, 123–124, 141, 192–193,
217–220

auctionFailed(), 217–220
AuctionHouse interface, 196, 210
AuctionLogDriver class, 221, 224
AuctionMessageTranslator class, 25–27, 61,

112–118, 134–136, 154, 192, 195,
217–219, 222, 224, 226

AuctionMessageTranslatorTest class, 141
AuctionSearchStressTests class, 307–309
AuctionSniper class, 62, 123–134, 154–155,

172–173, 192, 198–199, 208, 210–212
AuctionSniperDriver class, 91, 153, 168,

184, 207, 254
AuctionSniperEndToEndTest class, 85, 152,

183
AuctionSniperTest class, 218

B
@Before annotation, 23
between(), jMock, 339
bidsHigherAndReportsBiddingWhenNew-

PriceArrives(), 127, 143
“Big Design Up Front,” 35
BlockingQueue class, 93
breaking out technique, 59–61, 136
budding off technique, 59, 61–62, 209
build

automated, 9, 36–37, 95
features included in, 8
from the start of a project, 31

build(), 258–261
Builder pattern, 66, 337
builders. See test data builders, 254
bundling up technique, 59–60, 62, 154

C
C# programming language, 225
cannotTranslateMessage(), 222–223
CatalogTest class, 21, 23
Chat class, 112, 115, 129–130, 185, 192,

219
encapsulating, 193–195

chatDisconnectorFor(), 220, 226
ChatManager class, 101, 129
ChatManagerListener interface, 92
check(), WindowLicker, 187
checking(), jMock, 210, 337
classes, 14

coherent, 12
context-independent, 55
encapsulating collections into, 136
helper, 93
hierarchy of, 16, 67
internal features of, 237
loosely coupled, 11–12
mocking, 223–224, 235–237
naming, 63, 159–160, 238, 285, 297
tightly coupled, 12

Clock interface, 230–232
code

adapting, 172
assumptions about, 42
cleaning up, 60, 118, 125, 131, 137, 245,

262–264
compiling, 136
declarative layer of, 65
difficult to test, 44, 229
external quality of, 10–11
implementation layer of, 65
internal quality of, 10–11, 60
loosely coupled, 11–12
maintenance of, 12, 125
readability of, 51, 162, 173, 226, 247
reimplementing, 60
tightly coupled, 12

code smells, 63, 181
cohesion, 11–12
collaborators, 16, 279
collections

encapsulating, 136
vs. domain types, 213

commands, 78, 278
commit(), 279
communication patterns, 14, 58
communication protocols, 58, 63

Index350

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

ComponentDriver, 90
“composite simpler than the sum of its

parts,” 53–54, 60, 62
concurrency, 301–306, 309, 313–316
connect(), Smack, 100
connection(), 100
Connextra, 330–332
constants, 255
constructors

bloated, 238–242
real behavior in, 195

container-managed transactions, 293
containsTotalSalesFor(), 264
context independence, 54–57, 233, 305
CountDownLatch class, 194
coupling, 11–12
CRC cards, 16, 186, 333
createChat(), Smack, 129
Crystal Clear, 1
currentPrice(), 118–120, 123, 141,

162–163
currentTimeMillis(), java.lang.System,

230
customer tests. See acceptance tests

D
DAO (Data Access Object), 297
database tests. See persistence tests
DatabaseCleaner class, 291–292
databases

cleaning up before testing, 290–292
operations with active transactions in, 300

data-driven tests, 24
date manipulation, 230–233
“debug hell,” 267
Decorator pattern, 168, 300
Defect exception, 165
dependencies, 52–53, 126

breaking in unit tests, 233
explicit, 14
hidden, 273
implicit, 57, 232–233
knowing about, 231
loops of, 117, 129, 192
mocking, 58
on user interface components, 113
quantity of, 57, 241–242, 273
scoping, 62
using compiler for navigating, 225

dependency injections, 330

deployment, 4, 9
automated, 35–37
from the start of a project, 31
importance for testing, 32

describeMismatch(), Hamcrest, 343–345
describeTo(), Hamcrest, 343–345
design

changing, 172
clarifying, 235
feedback on, 6
quality of, 273

DeterministicExecutor class, 303–304
development

from inputs to outputs, 43, 61
incremental, 4, 36, 73, 79, 136, 201, 303
iterative, 4
of user interface, 183
working compromises during, 90, 95

disconnect(), Smack, 111
disconnectWhenUICloses(), 111, 179
domain model, 15, 48, 59, 71, 290
domain types, 213, 262, 269
domain-specific language, embedded in Java,

332
“Don’t Repeat Yourself” principle, 248
duplication, 262–264, 273, 275
Dynamock library, 332

E
Eclipse development environment, 119
encapsulation, 49–50, 55
end-to-end tests, 8–10

asynchronous, 87
brittleness of, 87
early, 32–33
failing, 87
for event-based systems, 87
for existing systems, 33, 37
on synchronization, 313
running, 11
simulating input and output events, 43
slowness of, 87, 300

EntityManager class, 279, 297, 299
EntityManagerFactory class, 279
EntityTransaction class, 279
equal(), jMock, 340
equals(), java.lang.Object, 154
equalTo(), Hamcrest, 322
error messages. See failure messages
event-based systems, 86–87

351Index

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

events, 78
external, 71, 326–327
listening for, 316–317, 323–325
processed in sequence, 325–326

exactly(), jMock, 338
exceptions, 22

catching, 253–254
on hidden threads, 302
runtime, 165
with helpful messages, 330

Executor interface, 303, 305
“Expect Unexpected Changes” principle, 45
Expectation jMock class, 64
ExpectationCounter jMock class, 330
expectations, 18, 27, 64–66, 146, 254–255,

277–279, 338
blocks of, 337, 339
checking after test’s body, 271
clear descriptions of, 25
narrowness of, 255, 277–283
order of, 128, 282, 341–342
quantity of, 242–244, 252
specifying actions to perform, 341

Expectations jMock class, 66, 337, 340
ExpectationSet jMock class, 330
ExpectationValue jMock class, 330
expectFailureWithMessage(), 222
expectSniperToFailWhenItIs(), 219, 253

F
failed(), 219
failure messages, 268–269, 276

clearness of, 42
self-explanatory, 24–25, 343

failures, 41
detecting, 217–218
diagnostics for, 267–273, 297, 302–307,

332
displaying, 218–219
handling, 215–226
messages about, 255
recording, 221–225, 291
writing down while developing, 41

FakeAuctionServer class, 86, 89, 92–95,
107–110, 120, 176, 194, 254, 276

FeatureMatcher Hamcrest class, 162, 178
feedback, 4, 229, 233

from automated deployment, 35–36
incremental, 300

loops of, 4–5, 8, 40
on design, 6, 299
on failure cases, 41
on implementations, 6
rapid, 317

Findbugs, 313
fixtures, 23
functional tests. See acceptance tests

G
garbage collection, 23, 91, 101, 192–194
getBody(), Smack, 222
getColumnCount(), Swing, 158
getValueAt(), Swing, 158

H
Hamcrest library, 21, 24–25, 95, 268, 274,

296, 322, 333, 340, 343–345
hasColumnTitles(), 169
hasEnoughColumns(), 156–157
hashCode(), java.lang.Object, 154
hasProperty(), Hamcrest, 178
hasReceivedBid(), 106–107
hasReceivedJoinRequestFrom(), 109, 176
hasReceivedJoinRequestFromSniper(),

106–108
hasShownSniperHasWon(), 323
hasShownSniperIsBidding(), 106, 110
hasShownSniperIsLosing(), 206–207
hasShownSniperIsWinning(), 140, 176, 323
hasTitle(), 169
helper methods, 7, 51, 66, 162, 166, 210,

226, 253, 263, 280
naming, 51, 162

Hibernate, 48, 289, 294
HTTP (HyperText Transfer Protocol), 81

I
IDEs

filling in missing methods on request, 119
navigation in, 114

IETF (Internet Engineering Task Force), 77
ignoring(), jMock, 145, 278–279, 339
ignoringAuction(), 219
IllegalArgumentException, 22
implementations

feedback on, 6
independent of context, 244
null, 130, 136, 180, 218

Index352

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

index cards
for technical tasks to be addressed, 41
for to-do lists, 80–81, 103, 120–121,

130–131, 148, 171, 182, 201,
211–212, 225

information hiding, 49, 55–56
initializers, 23
inSequence(), jMock, 338, 341
instanses, 237–238
integration tests, 9–10, 186–188

and threads, 71
difficult to code, 44
for adapters, 70
for persistence implementations, 300
passing, 40
speed of, 300

IntelliJ IDEA, 119, 250
interface discovery, 19
interfaces, 14, 58, 61

callback, 71
implementing, 63–64
mocking, 235
naming, 63–64, 237, 297
narrowness of, 63
pulling, 61, 63
refactoring, 63–64
relationships with, 63
segregating, 236

invocations
allowed, 27, 146
constrained, 342
counting, 338–339
expected, 27, 146
number of, 27
order of, 279–282, 341

invokeAndWait(), Swing, 100, 180
invokeLater(), Swing, 100
isForSameItemAs(), 181
isSatisfied(), WindowLicker, 320–321
Item class, 209–211, 213
iteration zero, 83, 102

J
Jabber. See XMPP
Java programming language, 21

arrays in, 177
collections in, 179
logging framework in, 223
method overloading in, 261
package loops in, 191
synchronization errors in, 313

syntax noise of, 253
using compiler to navigate dependencies,

225
Java EE (Java Platform, Enterprise Edition),

293–294, 301
Java Servlet API, 330
JAXB (Java API for XML Binding), 289
JButton Swing component, 185
JDBC (Java Database Connectivity), 294
JDO (Java Data Objects), 289
JFormattedTextField Swing component, 208
JFrame Swing component, 96
JFrameDriver WindowLicker class, 91
JIDs (Jabber IDs), 77, 197
JLabel Swing component, 150
jMock library, 24–27, 274, 332

allowances in, 146
double braces in, 337
expectations in, 25, 64–66, 146
extensions to, 162
generating messages in, 345
states in, 145
using for stress tests, 307
verifying mock objects in, 24
version 2, 21, 25–27, 333, 335–342

JMS (Java Messaging Service), 292
JMSTransactor class, 292
joinAuction(), 100, 131–132, 142,

180–182, 187–188, 192, 208
JPA (Java Persistence API), 279, 289, 294

persistence identifiers in, 295
JTA (Java Transaction API), 292
JTable Swing component, 52, 149–157, 170
JTATransactor class, 292–293
JTextField Swing component, 185
JUnit library, 84, 274, 332–333

generating messages in, 345
new instances for each test in, 22, 117
version 4.5, 24
version 4.6, 21, 335

JUnit4Mockery jMock class, 336

L
Law of Demeter. See “Tell, Don’t Ask”

principle
Lisp programming language, 66
literals. See values
locks, 302, 318
log files, 221–225, 291

cleaning up before testing, 221
generating, 223

353Index

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Logger class, 223–224, 237
logging, 233–235

amount of, 235
diagnostic, 233–235
isolated in a separate class, 226

LoggingXMPPFailureReporter class, 223–224
LTSA tool, 302, 313

M
Main class, 91, 101, 108, 117–118, 123, 126,

132–134, 142, 168, 178–180, 183, 185,
188–203

matchmaker role of, 191
main(), 91, 96
MainWindow class, 96, 100, 113, 134, 151,

156, 166–167, 185–187, 199, 208–209
MainWindowTest class, 186, 209
makeControls(), 184–185
Mars Climate Orbiter disaster, 59
Matcher interface, 25, 268, 343–345
matchers, 24–25, 95, 155, 157, 276, 322,

339–340
combining, 24
custom, 25, 178, 296, 340, 343–345
reversing, 24
stateless, 344

Matchers Hamcrest class, 340
matches(), Hamcrest, 343
meetings, 4
MessageHandler class, 217
MessageListener interface, 93–94, 99,

112–115, 129, 219
messages, 13, 17

between objects, 50, 58
creating and checking in the same

construct, 109
parsing, 118–120
See also failure messages

methods, 13
calling, 65

order of, 128
expected, 339–340
factory, 257–258, 260–261
getter, 329–330
grouping together, 176
ignoring, 279
naming, 86, 173, 250
overloading, 261
side effects of, 51
“sugar,” 65–66

testing, 43
See also helper methods

MissingValueException, 218
mock objects, 18–20, 25–27

creating, 336
for third-party code, 69–71, 157, 300
history of, 329–333
invocation order of, 279–282
naming, 336
to visualize protocols, 58, 61

mockery, 20, 25
Mockery jMock class, 26, 64, 66, 307, 336
mocking

adjustments, 58
classes, 223–224, 235–237
dependencies, 58
interfaces, 235
notifications, 58
peers, 58
returned types, 279
third-party code, 237
values, 237–238

Moon program, 41
multithreading. See threads

N
.Net, 22, 232
“Never Pass Null between Objects”

principle, 274
never(), jMock, 339
NMock library, 332
not(), Hamcrest, 24, 340
notifications, 52–53, 126, 192

capturing, 318–320
mocking, 58
order of, 280
recording, 324

notifiesAuctionClosedWhenCloseMessage-

Received(), 114
notifiesAuctionFailedWhenBadMessage-

Received(), 217
notifiesAuctionFailedWhenEventType-

Missing(), 218
notifiesBidDetailsWhenCurrentPrice-

MessageReceivedFromOtherBidder(),
141

notifiesBidDetailsWhenCurrentPrice-

MessageReceivedFromSniper(), 141
notToBeGCd field, 101, 179, 197, 200, 203
NullPointerException, 53, 274
NUnit library, 22, 117, 332

Index354

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

O
object mother pattern, 257–258
object-oriented programming, 13, 329
objects

abstraction level of, 57
bringing out relationships between, 236
collaborating, 18–20, 52–53, 58, 60–62,

186
communicating, 13–14, 50, 58, 244–245
composite, 53–54
context-independent, 54–55, 233
created by builders, 259–260
difficult to decouple, 273
mutable, 14

sharing references to, 50
naming, 62, 244
null, 22, 115, 130, 242
observable invariants with respect to

concurrency of, 306
passive, 311–312
persistent, 298–299
simplifying, 55
single responsibility of, 51–52
states of, 13, 59, 145–146, 281–283, 299,

306, 342
subordinate, 254, 291–292, 311
tracer, 270–271
validity of, 53
vs. values, 13–14, 51, 59
web of, 13, 64–65

oneOf(), jMock, 278, 337–338
Openfire, 86, 89, 95
ORM (Object/Relational Mapping), 289,

297, 299

P
packages

loops of, 191
single responsibility of, 52

pair programming, 4
patterns, naming after, 297
peers, 50

mocking, 58
types of, 52–53

persistence tests, 289–300
and transactions, 292–294
cleaning up at the start, 291
failure diagnostics in, 297
isolating from one another, 290–292
round-trip, 297–300
slowness of, 300

Poller class, 320–321
polling for changes, 317, 320–321, 323–325
PortfolioListener interface, 199
ports, 48
“ports and adapters” architecture, 48, 201,

284, 297
PriceSource enumeration, 141, 148
Probe interface, 320–322
probing a system, 315, 320–322
processMessage(), Smack, 114–115,

135–136, 217, 219
production environment, 95
programming styles, 51
progress measuring, 4, 40
PropertyMatcher Hamcrest class, 178

Q
queries, 278

R
receivesAMessageMatching(), 108
redesign, 7
refactoring, 5–7

code difficult to test, 44–45
importance of, during TDD, 225–226
incremental, 202
writing down while developing, 41

reference types, 269
regression suites, 6, 40
regression tests, 5
releases, 4, 9

planning, 81
to a production system, 35

removeMessageListener(), Smack, 220
reportPrice(), 106–107, 176
reportsInvalidMessage(), 216, 221
reportsLostIfAuctionClosesImmediately(),

145
reportsLostIfAuctionClosesWhenBidding(),

146
repository pattern, 297
resetLogging(), 223
responsibilities, 16, 171, 220, 222

quantity of, 61, 240–241, 332
See also “single responsibility” principle

reverting changes, 267
rock climbing, 202
roles, 16
rollback(), 279
rolling back, 267
Ruby programming language, 331

355Index

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Rule annotation, 24
RuntimeException, 255, 277
runUntilIdle(), 304
@RunWith annotation, 23, 26, 336

S
safelyAddItemToModel(), 180, 188
same(), jMock, 340
sample(), WindowLicker, 320–321
scheduled activities, 326–327
Scrum projects, 1
SelfDescribing interface, 343
sendInvalidMessageContaining(), 216
Sequence jMock class, 341–342
sequences, 279–282, 341–342
servlets, 301, 311
setImposteriser(), jMock, 223
setStatusText(), 166
[Setup] methods, 22
showsSniperHasFailed(), 216
showsSniperHasWonAuction(), 140, 176
showsSniperStatus(), 91–92
“single responsibility” principle, 51–52, 113,

123, 125, 220, 222
SingleMessageListener class, 93–94,

107–108
singleton pattern, 50, 230
Smack library, 86

exceptions in, 217
threads in, 93, 301

Smalltalk programming language
cascade, 258, 330, 332
programming style compared to Java, 330

Sniper application. See Auction Sniper
Sniper class, 62
sniperAdded(), 203
sniperBidding(), 126–128, 155, 160–162
SniperCollector class, 62, 198–199, 245
sniperForItem(), 198
SniperLauncher class, 62, 197–199, 210
SniperListener interface, 124–126, 133,

154–155, 163–164, 168
sniperLost(), 125, 147, 164
sniperMakesAHigherBidButLoses(), 139
SniperPortfolio class, 199–203
sniperReportsInvalidAuctionMessageAnd-

StopsRespondingToEvents(), 216
SniperSnapshot class, 159–164, 173,

180–181, 198–199, 211, 219, 278

SnipersTableModel class, 149, 151–152, 156,
166, 168, 170–171, 180–182, 185,
197–201, 207

SniperState class, 155, 158–161, 207, 216,
278

sniperStateChanged(), 156–164, 278
SniperStateDisplayer class, 133, 147, 155,

167–168
sniperWinning(), 143, 162–163
sniperWinsAnAuctionByBiddingHigher(),

139
sniperWon(), 147, 164
Spring, 294
startBiddingFor(), 184
startBiddingIn(), 177
startBiddingWithStopPrice(), 206–207
startSellingItem(), 92, 176
startSniper(), 183–184
startsWith(), Hamcrest, 343–345
state machines, 279–282, 342
state transition diagrams, 212
States jMock class, 146, 198, 281–283
static analysis tools, 313
stop price, 80, 205–213
stress tests, 306–313

failing, 308–309, 313
on event processing order, 326
on passive objects, 311–312
running in different environments, 313

strings
checking if starts with a given prefix,

343–345
comparing, 14
vs. domain types, 213, 262, 269

StringStartsWithMatcher Hamcrest class,
345

stubs, 84, 243, 277, 339
success cases, 41
Swing

manipulating features in, 90
testing, 86–87
threads in, 123, 133, 180, 301

SwingThreadSniperListener interface, 168,
197, 199

Synchroniser jMock class, 307–308,
312–313

synchronizations, 301–314
errors in, 302
testing, 302, 306–310, 313
vs. assertions, 326

Index356

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

system
application model of, 48
changing behavior of, 48, 55
concurrency architecture of, 301–302
maintainability of, 47
public drawings of, during development,

34
returning to initial state after a test, 323
simplifying, 112

system tests. See acceptance tests

T
tableChanged(), Swing, 157, 181
TableModel class, 149, 168–171
TableModelEvent class, 157, 180–181
TableModelListener class, 156–157
task runners, 303
TDD (Test-Driven Development), 1, 5, 229

cycle of, 6, 39–45, 271–272
for existing systems, 37
golden rule of, 6
kick-starting, 31–37
sustainable, 227–285

[TearDown] methods, 22
“Tell, Don’t Ask” principle, 17, 54, 245
template methods, 344
test data builders, 238, 258–259

calling within transactions, 300
combining, 261, 300
creating similar objects with, 259–260
lists of, 298–299
removing duplication with, 262–264
wrapping up in factory methods, 261

test runner, 23–24
JMock, 26
Parameterized, 24

“test smells,” 229, 235, 248
benefits of listening to, 244–246

@Test annotation, 22
TestDox convention, 249–250
Test-Driven Development. See TDD
tests

against fake services, 84, 88, 93
against real services, 32, 88, 93
asynchronous, 315–327
at the beginning of a project, 36, 41
brittleness of, 229, 255, 257, 273
cleaning up, 245, 248, 273
decoupling from tested objects, 278
dependencies in, 275
explicit constraints in, 280

failing, 267–273
flexibility of, 273–285
flickering, 317
focused, 273, 277, 279, 279
for late integration, 36
hierarchy of, 9–10
maintaining, 247, 273–274
naming, 44, 248–250, 252, 264, 268, 326
readability of, 247–257, 273, 280
repeatability of, 23
runaway, 322–323
running, 6
sampling, 316–317, 320–325
self-explanatory, 274–275
separate packages for, 114
size of, 45, 268
states of, 283
synchronizing, 301–314, 317

with background threads, 312–313
tightly coupled, 273
triggering detectable behavior, 325
writing, 6

backwards, 252
in a standard form, 251–252

See also acceptance tests, end-to-end tests,
integration tests, persistence tests,
unit tests

textFor(), 166
“the simplest thing that could possibly

work,” 41
then(), jMock, 281–282, 338, 342
third-party code, 69–72

abstractions over, 10
mocking, 69–71, 157, 237, 300
patching, 69
testing integration with, 186–188, 289
value types from, 71

Thor Automagic, 12
threads, 71, 301–315

scheduling, 313
three-point contact, 202
time boxes, 4
Timeout class, 318, 322
timeouts, 230, 312–313, 316–318
timestamps, 276
toString(), java.lang.Object, 154
tracer object, 270–271
“train wreck” code, 17, 50–51, 65
transaction management, 294
transactors, 292–293
translate(), 217

357Index

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

translatorFor(), 220, 226, 253
TypeSafeMatcher<String> Hamcrest class,

344

U
unit tests, 4, 9

against static global objects, 234
and threads, 301–314
at the beginning of a project, 43
breaking dependencies in, 233
brittleness of, 245
difficult to code, 44
failing, 8
isolating from each other, 22, 117
length of, 245–246
limiting scope of, 57
naming, 114, 141
on behavior, not methods, 43
on collaborating objects, 18–20
on synchronization, 302, 306–310, 313
passing, 40
readability of, 245–246
simplifying, 62
speed of, 300, 312
structure of, 335–342
writing, 11

Unix, 66
User Experience community, 81, 212
user interface

configuring through, 242
dependencies on, 113
handling user requests, 186
support logging in, 233
working on parallel to development, 183,

212
UserRequestListener interface, 186–188,

208–209, 213

V
value types, 59–60, 141

from third-party code, 71
helper, 59
naming, 173
placeholder, 59, 209
public final fields in, 154
vs. values, 59
with generics, 136

valueIn(), 166–167
ValueMatcherProbe WindowLicker class, 187

values, 255–256
comparing, 22
expected, 127
immutable, 50, 59
mocking, 237–238
mutable, 50
obviously canned, 270
self-describing, 269, 285
side effects of, 51
vs. objects, 13–14, 51, 59

variables, 255–256
global, 50
naming, 209, 330

W
waitForAnotherAuctionEvent(), 216
waitUntil(), 326
walking skeleton, 32–37

for Auction Sniper, 79, 83–88
when(), jMock, 281–282, 338, 342
whenAuctionClosed(), 164–165
will(), jMock, 338, 341
WindowAdapter class, 134
WindowLicker library, 24, 86–87, 186–187,

254, 316
controlling Swing components in, 90–91
error messages in, 96

with(), jMock, 339–340
overloaded, 261

X
XmlMarshaller class, 284–285
XmlMarshallerTest class, 284
XMPP (eXtensible Messaging and Presence

Protocol), 76–77, 105, 203
messages in, 301
reliability of, 81
security of, 81

XMPP message brokers, 84, 86, 95
XMPPAuction class, 62, 131–132, 192–197,

203, 224
XMPPAuctionException, 224
XMPPAuctionHouse class, 62, 196–197, 203,

224
XMPPConnection class, 195–197
XMPPException, 130
XMPPFailureReporter class, 222–223, 226
XP (Extreme Programming), 1, 41, 331
XStream, 289
XTC (London Extreme Tuesday Club), 331

Index358

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

 InformIT is a brand of Pearson and the online presence
for the world’s leading technology publishers. It’s your source
for reliable and qualified content and knowledge, providing
access to the top brands, authors, and contributors from
the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seeking
timely and relevant information and tutorials? Looking for expert opinions,
advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by
subscribing to a wide variety of newsletters.
Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at
informit.com/articles.

• Access thousands of books and videos in the Safari Books
Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the
hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?
Connect with Pearson authors and editors via RSS feeds, Facebook,

Twitter, YouTube, and more! Visit informit.com/socialconnect.

From the Library of Lee Bogdanoff

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Your purchase of Growing Object-Oriented Software, Guided by Tests includes access
to a free online edition for 45 days through the Safari Books Online subscription service.
Nearly every Addison-Wesley Professional book is available online through Safari Books
Online, along with more than 5,000 other technical books and videos from publishers
such as Cisco Press, Exam Cram, IBM Press, O’Reilly, Prentice Hall, Que, and Sams.

SAFARI BOOKS ONLINE allows you to search for a specifi c answer, cut and paste
code, download chapters, and stay current with emerging technologies.

Activate your FREE Online Edition at

www.informit.com/safarifree

STEP 1: Enter the coupon code: CYMIQVH.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have diffi culty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

FREE Online
Edition

From the Library of Lee Bogdanoff

www.it-ebooks.info

www.informit.com/safarifree
http://www.it-ebooks.info/

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Authors
	Part I: Introduction
	Chapter 1: What Is the Point of Test-Driven Development?
	Software Development as a Learning Process
	Feedback Is the Fundamental Tool
	Practices That Support Change
	Test-Driven Development in a Nutshell
	The Bigger Picture
	Testing End-to-End
	Levels of Testing
	External and Internal Quality

	Chapter 2: Test-Driven Development with Objects
	A Web of Objects
	Values and Objects
	Follow the Messages
	Tell, Don't Ask
	But Sometimes Ask
	Unit-Testing the Collaborating Objects
	Support for TDD with Mock Objects

	Chapter 3: An Introduction to the Tools
	Stop Me If You've Heard This One Before
	A Minimal Introduction to JUnit 4
	Hamcrest Matchers and assertThat()
	jMock2: Mock Objects

	Part II: The Process of Test-Driven Development
	Chapter 4: Kick-Starting the Test-Driven Cycle
	Introduction
	First, Test a Walking Skeleton
	Deciding the Shape of the Walking Skeleton
	Build Sources of Feedback
	Expose Uncertainty Early

	Chapter 5: Maintaining the Test-Driven Cycle
	Introduction
	Start Each Feature with an Acceptance Test
	Separate Tests That Measure Progress from Those That Catch Regressions
	Start Testing with the Simplest Success Case
	Write the Test That You'd Want to Read
	Watch the Test Fail
	Develop from the Inputs to the Outputs
	Unit-Test Behavior, Not Methods
	Listen to the Tests
	Tuning the Cycle

	Chapter 6: Object-Oriented Style
	Introduction
	Designing for Maintainability
	Internals vs. Peers
	No And's, Or's, or But's
	Object Peer Stereotypes
	Composite Simpler Than the Sum of Its Parts
	Context Independence
	Hiding the Right Information
	An Opinionated View

	Chapter 7: Achieving Object-Oriented Design
	How Writing a Test First Helps the Design
	Communication over Classification
	Value Types
	Where Do Objects Come From?
	Identify Relationships with Interfaces
	Refactor Interfaces Too
	Compose Objects to Describe System Behavior
	Building Up to Higher-Level Programming
	And What about Classes?

	Chapter 8: Building on Third-Party Code
	Introduction
	Only Mock Types That You Own
	Mock Application Objects in Integration Tests

	Part III: A Worked Example
	Chapter 9: Commissioning an Auction Sniper
	To Begin at the Beginning
	Communicating with an Auction
	Getting There Safely
	This Isn't Real

	Chapter 10: The Walking Skeleton
	Get the Skeleton out of the Closet
	Our Very First Test
	Some Initial Choices

	Chapter 11: Passing the First Test
	Building the Test Rig
	Failing and Passing the Test
	The Necessary Minimum

	Chapter 12: Getting Ready to Bid
	An Introduction to the Market
	A Test for Bidding
	The AuctionMessageTranslator
	Unpacking a Price Message
	Finish the Job

	Chapter 13: The Sniper Makes a Bid
	Introducing AuctionSniper
	Sending a Bid
	Tidying Up the Implementation
	Defer Decisions
	Emergent Design

	Chapter 14: The Sniper Wins the Auction
	First, a Failing Test
	Who Knows about Bidders?
	The Sniper Has More to Say
	The Sniper Acquires Some State
	The Sniper Wins
	Making Steady Progress

	Chapter 15: Towards a Real User Interface
	A More Realistic Implementation
	Displaying Price Details
	Simplifying Sniper Events
	Follow Through
	Final Polish
	Observations

	Chapter 16: Sniping for Multiple Items
	Testing for Multiple Items
	Adding Items through the User Interface
	Observations

	Chapter 17: Teasing Apart Main
	Finding a Role
	Extracting the Chat
	Extracting the Connection
	Extracting the SnipersTableModel
	Observations

	Chapter 18: Filling In the Details
	A More Useful Application
	Stop When We've Had Enough
	Observations

	Chapter 19: Handling Failure
	What If It Doesn't Work?
	Detecting the Failure
	Displaying the Failure
	Disconnecting the Sniper
	Recording the Failure
	Observations

	Part IV: Sustainable Test-Driven Development
	Chapter 20: Listening to the Tests
	Introduction
	I Need to Mock an Object I Can't Replace (without Magic)
	Logging Is a Feature
	Mocking Concrete Classes
	Don't Mock Values
	Bloated Constructor
	Confused Object
	Too Many Dependencies
	Too Many Expectations
	What the Tests Will Tell Us (If We're Listening)

	Chapter 21: Test Readability
	Introduction
	Test Names Describe Features
	Canonical Test Structure
	Streamline the Test Code
	Assertions and Expectations
	Literals and Variables

	Chapter 22: Constructing Complex Test Data
	Introduction
	Test Data Builders
	Creating Similar Objects
	Combining Builders
	Emphasizing the Domain Model with Factory Methods
	Removing Duplication at the Point of Use
	Communication First

	Chapter 23: Test Diagnostics
	Design to Fail
	Small, Focused, Well-Named Tests
	Explanatory Assertion Messages
	Highlight Detail with Matchers
	Self-Describing Value
	Obviously Canned Value
	Tracer Object
	Explicitly Assert That Expectations Were Satisfied
	Diagnostics Are a First-Class Feature

	Chapter 24: Test Flexibility
	Introduction
	Test for Information, Not Representation
	Precise Assertions
	Precise Expectations
	"Guinea Pig" Objects

	Part V: Advanced Topics
	Chapter 25: Testing Persistence
	Introduction
	Isolate Tests That Affect Persistent State
	Make Tests Transaction Boundaries Explicit
	Testing an Object That Performs Persistence Operations
	Testing That Objects Can Be Persisted
	But Database Tests Are S-l-o-w!

	Chapter 26: Unit Testing and Threads
	Introduction
	Separating Functionality and Concurrency Policy
	Unit-Testing Synchronization
	Stress-Testing Passive Objects
	Synchronizing the Test Thread with Background Threads
	The Limitations of Unit Stress Tests

	Chapter 27: Testing Asynchronous Code
	Introduction
	Sampling or Listening
	Two Implementations
	Runaway Tests
	Lost Updates
	Testing That an Action Has No Effect
	Distinguish Synchronizations and Assertions
	Externalize Event Sources

	Afterword: A Brief History of Mock Objects
	Appendix A: jMock2 Cheat Sheet
	Appendix B: Writing a Hamcrest Matcher
	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

