
Test-driven development Copyright © 2002 Kent Beck, All Rights Reserved 3/8/02, 132 Pages 

Test-Driven Development 
By Example 

Kent Beck, Three Rivers Institute 
 

Notes to reviewers: 
• Are there diagrams that would help orient the examples? 
• Section I: Money Example is now completely re-written. Does the new style work 

better than the old one? I have noticed several changes—shorter chapters, more 
careful adherence to “the rules”, less American-isms. Better, worse, same? 

• Please suggest your favorite glossary items 
• How does the new how/why refactoring format work? Do I need an example, or is 

it sufficient to point people to Martin’s book? 
 

jonathan
Publically availabe at
http://groups.yahoo.com/group/testdrivendevelopment/files/



Test-driven development  2 of 132 

To Do 
Glossary 

To-do lists, chapter hooks, and reviews for xUnit 

Convert to Frame (sigh…) 

Finish missing patterns 

Bold source code changes 

Run Money through Jester and a coverage tool 

Deadend in Money. Where, oh where? 

 



Test-driven development  3 of 133 

Random Thoughts 
Another mental picture—programming is like exploring a dark house. You go from 
room to room to room. Writing the test is like turning on the light. Then you can avoid 
the furniture and save your shins (the clean design resulting from refactoring). Then 
you’re ready to explore the next room. 

I need an adjective which means “can be made to work in one step”. Atomic? 
Achievable? Progressive? 

At the different stages of the cycle you are solving different problems, so the 
aesthetics change: Write a test-what should the API be? Make it compile—do as little 
as possible to satisfy the compiler. Make it run—get back to green so you have 
confidence. Refactor—remove duplication to prepare for the next test. 

Interesting error. I had two tests, one USD->USD and one USD->GBP. If I had kept 
the two assertions in the same test I wouldn’t have gone off the rails. What’s the rule 
there? When do you add assertions to existing tests and when do you write a new test? 

Splitting into orthogonal dimensions didn’t happen in either example. What up with 
that? I thought that was such an important technique. Maybe that’s what “isolate 
change” is really about, and taking smaller steps than I usually do results in making 
progress along one dimension before having to make progress in the other. 

More orientation material at the beginning of the example chapters—UML, lists of 
tests running, to do list 

Brian Marick on test-first tests as tests?  

TDD as a gesture—technical, political, aesthetic, emotional. Relationship to other 
practices. 

Since people are likely to read the chapters in the example one or two at a time, it is 
important to provide context at the beginning of each one-UML, maybe a list of the 
test cases that are running at the beginning. 

Test coverage. Use data structures that make special cases go away- iterators, number-
like numbers. 

Balancing reasoning and testing. Every one of those reasoning steps is subject to error, 
which adds risks. Replacing each and every reasoning step with a concrete test is 
extremely expensive (impossibly expensive, really). There is some tradeoff. Maybe 
that’s part of being a TDD—being aware of tradeoffs and intelligently choosing the 
crossover point for this particular situation. 

Assuming a certain geekoid value system—you want to do well by doing good (or 
vice versa). That is, you like clean code, you enjoy the feeling of designing and 
building well, and you want to be seen to be successful by managers and customers. 

Code aesthetics. For any given set of test cases, we are trying to minimize a 
complicated cost function—number of classes, number of methods, number of unique 
selectors, number of arguments, complexity of flow of control, visibility of methods 



Test-driven development  4 of 133 

and members, coupling and cohesion. Either that or we are trying to give ourselves a 
glimpse through a tiny keyhole at an eternal realm of dynamic order. 

Once and only once—part of philosophical underpinnings. Also emergence. How 
about the attractor stuff Phlip talks about? Make it run, make it right, make it fast. 
Concrete to abstract, existential to universal. 

“Clever” play on words in the title. Test-driven development is development by 
example. The book is also structured by example.  

One paragraph of my history with TDD (preface?) 

What exactly is the relationship between test cases and design patterns? Test cases and 
refactorings? 

Tease apart “test-driven development”. 

This book is another example of my overall quest to find fundamental rules underlying 
effective software development. I’m looking for a theory in the physics sense, but I 
always take something I enjoy doing, subject it to a microscopic examination, and see 
if following simple rules enhances my enjoyment. Software patterns in general, SBPP, 
XP, and now this all have the same form. 



Test-driven development  5 of 133 

Contents 
TO DO 2 

RANDOM THOUGHTS 3 

CONTENTS 5 

PREFACE 9 

Fear 10 

Acknowledgements 11 

STORY TIME 13 

SECTION I: MONEY EXAMPLE 15 

MONEY EXAMPLE 16 

DEGENERATE OBJECTS 22 

EQUALITY FOR ALL 24 

PRIVACY 27 

FRANC-LY SPEAKING 29 

EQUALITY FOR ALL, REDUX 32 

APPLES AND ORANGES 35 

MAKIN’ OBJECTS 37 

TIMES WE’RE LIVIN’ IN 40 

THE ROOT OF ALL EVIL 45 

ADDITION, FINALLY 51 



Test-driven development  6 of 134 

MAKE IT 55 

CHANGE 60 

MIXED CURRENCIES 64 

ABSTRACTION, FINALLY 68 

MONEY RETROSPECTIVE 72 

Metaphor 72 

JUnit Usage 73 

Code Statistics 73 

Process 74 

Test Quality 75 

EXAMPLE: XUNIT 76 

XUNIT TEST-FIRST 78 

SET THE TABLE 82 

COUNTING 87 

HOW SUITE IT IS 90 

XUNIT RETROSPECTIVE 94 

SECTION III: PATTERNS 95 

PATTERNS FOR TEST-DRIVEN DEVELOPMENT 96 
Test n. 96 
Isolated Test 96 
Test List 97 
Test-First 98 
Assert First 99 
Test Data 100 
Evident Data 101 

Implementation Strategies 102 



Test-driven development  7 of 135 

Fake It (‘Til You Make It) 102 
Triangulate 103 
Obvious Implementation 104 
One to Many 104 

Process 106 
One Step Test 106 
Starter Test 107 
Explanation Test 108 
Another Test 108 
Regression Test 108 
Break 109 
Do Over 110 
Cheap Desk, Nice Chair 110 

Testing Techniques 111 
Child Test 111 
Mock Object 111 
Self Shunt 112 
Log String 114 
Crash Test Dummy 114 
Broken Test 115 
Clean Check-in 116 

Using xUnit 116 
Assertion 116 
Fixture 117 
External Fixture 118 
Test Method 119 
Exception Test 119 
AllTests 119 

Design Patterns 120 
Null Object 120 
Command 121 
Template Method 121 
Composite 121 
Pluggable Object 121 
Collecting Parameter 121 
Value Object 122 
Imposter 123 

Refactoring 123 
Reconcile Differences 123 
Isolate Change 124 
Migrate Data 125 
Extract Method 126 



Test-driven development  8 of 136 

Inline Method 126 
Extract Interface 126 
Move Method 126 
Method Object 126 
Add Parameter 127 
Method Parameter to Constructor Parameter 127 

MASTERING TDD 129 

How large should your steps be? 129 

How much feedback do you need? 129 

When should you delete tests? 131 

How does the programming language and environment influence TDD? 132 

How can you use TDD to teach programming, design, and/or testing? 132 

Can you test-drive enormous systems? 132 

Can you drive development with application-level tests? 133 

Is TDD sensitive to initial conditions? 133 

Why does TDD work? 134 

GLOSSARY 135 

APPENDIX 1: INFLUENCE DIAGRAMS 136 

Feedback 136 

System Control 137 

 



Test-driven development  9 of 133 

Preface 
Test-Driven Development: 

• Don’t write a line of new code unless you first have a failing automated test. 

• Eliminate duplication. 

Two simple rules, but they generate complex individual and group behavior. Some of 
the technical implications are: 

• You must design organically, with running code providing feedback between 
decisions 

• You must write your own tests, since you can’t wait twenty times a day for 
someone else to write a test 

• Your development environment must provide rapid response to small changes 

• Your designs must consist of many highly cohesive, loosely coupled 
components, just to make testing easy 

The two rules imply an order to the tasks of programming: 

• Red—write a little test that doesn’t work, perhaps doesn’t even compile at first 

• Green—make the test work quickly, committing whatever sins necessary in the 
process 

• Refactor—eliminate all the duplication created in just getting the test to work 

Red/green/refactor. The TDDs mantra. 

Assuming for the moment that such a style is possible, it might be possible to 
dramatically reduce the defect density of code and make the subject of work crystal 
clear to all involved. If so, writing only code demanded by failing tests also has social 
implications: 

• If the defect density can be reduced enough, QA can shift from reactive to 
proactive work 

• If the number of nasty surprises can be reduced enough, project managers can 
estimate accurately enough to involve real customers in daily development 

• If the topics of technical conversations can be made clear enough, 
programmers can work in minute-by-minute collaboration instead of daily or 
weekly collaboration 

• Again, if the defect density can be reduced enough, we can have shippable 
software with new functionality every day, leading to new business 
relationships with customers 

So, the concept is simple, but what’s my motivation? Why would a programmer take 
on the additional work of writing automated tests? Why would a programmer work in 
tiny little steps when their mind is capable of great soaring swoops of design? Fear. 



Test-driven development  10 of 133 

Fear 
Test-driven development (TDD) is a way of managing fear during programming. I 
don’t mean fear in a bad way, pow widdle prwogwammew needs a pacifiew, but fear 
in the legitimate, this-is-a-hard-problem-and-I-can’t-see-the-end-from-the-beginning 
sense. If pain is nature’s way of saying “Stop!”, fear is nature’s way of saying “Be 
careful.” The problem is that fear has a host of other effects: 

• Makes you tentative 

• Makes you grumpy 

• Makes you want to communicate less 

• Makes you shy from feedback 

None of these effects are helpful when programming, especially when programming 
something hard. So, how can you face a difficult situation and  

• Instead of being tentative, begin learning concretely as quickly as possible. 

• Instead of clamming up, communicate more clearly. 

• Instead of avoiding feedback, search out helpful, concrete feedback. 

• (You’ll have to work on grumpiness on your own.)  

Imagine programming as turning a crank to pull a bucket 
of water from a well. When the bucket is small, a free-
spinning crank is fine. When the bucket is big and full of 
water, you’re going to get tired before the bucket is all 
the way up. You need a ratchet mechanism to enable you 
to rest between bouts of cranking. The heavier the 
bucket, the closer the teeth need to be on the ratchet.  

The tests in test-driven development are the teeth of the 
ratchet. Once you get one test working, you know it is 
working, now and forever. You are one step closer to 
having everything working than you were when the test 
was broken. Now get the next one working, and the next, and the next. By analogy, the 
tougher the programming problem, the less ground should be covered by each test. 

Readers of Extreme Programming Explained will notice a difference in tone between 
XP and TDD. TDD isn't an absolute like Extreme Programming. XP says, “Here are 
things you must be able to do to be prepared to evolve further.” TDD is a little fuzzier. 
TDD is an awareness of the gap between decision and feedback during programming, 
and control over that gap. You could have only application-level tests and be doing 
TDD. The gap between decision and feedback would be large—days, even—but for 
extremely skilled programmers that might be enough feedback.  

TDD gives you control over feedback. When you are cruising along in overdrive and 
the snow begins to fall, you can shift into 4WD Low and keep making progress. When 
the road clears, you can up shift and away you go. 



Test-driven development  11 of 133 

That said, most people who learn TDD find their programming practice changed for 
good. “Test Infected” is the phrase Erich Gamma coined to describe this shift. You 
might find yourself writing more tests earlier, and working in smaller steps than you 
ever dreamed would be sensible. On the other hand, some programmers learn TDD 
and go back to their earlier practices, reserving TDD for special occasions when 
ordinary programming isn’t making progress. 

There are certainly programming tasks that can’t be driven primarily by tests (or at 
least, not yet). Security software and concurrency, for example, are two topics where 
TDD has no obvious application. The ability to write concrete, deterministic, 
automated tests is a prerequisite for applying TDD. 

Once you are finished reading this book, you should be ready to: 

• Start simply 

• Write automated tests 

• Refactor to add design decisions one at a time 

This book is organized into three sections. 

1. An example of writing typical model code using TDD. The example is one I got 
from Ward Cunningham years ago, and have used many times since, multi-
currency arithmetic. In it you will learn to write tests before code, grow a design 
organically, and fail with grace (there is a dead end in the example which I swear I 
put in for pedagogical purposes.) 

2. An example of testing more complicated logic, including reflection and 
exceptions, by developing a framework for automated testing. This example also 
serves to introduce you to the xUnit architecture that is at the heart of many 
programmer-oriented testing tools. In the second example you will learn to work in 
even smaller steps than in the first example, including the kind of self-referential 
hooha beloved of computer scientists. 

3. Patterns for TDD. Included are patterns for the deciding what tests to write, how to 
write tests using xUnit, and a greatest hits selection of the design patterns and 
refactorings used in the examples. 

I wrote the examples imagining a pair programming session. For me, joking and 
banter are signs of respect between peers, and an important outlet for tension. If you 
like looking at the map before wandering around, you may want to go straight to the 
patterns in section 3 and use the examples as illustrations. If you prefer just wandering 
around and then looking at the map to see where you’ve been, try reading the 
examples through, refering to the patterns when you want more detail about a 
technique, then using the patterns as a reference. 

Acknowledgements 
Thanks to all my many brutal and opinionated reviewers. I take full responsibility for 
the contents, but this book would have been much less readable and useful without 
their help. In the order in which I typed them in, they were: Steve Freeman, Frank 



Test-driven development  12 of 133 

Westphal, Ron Jeffries, Dierk König, Edward Hieatt, Tammo Freese, Jim Newkirk, 
Johannes Link, Manfred Lange, Steve Hayes, Alan Francis, Jonathan Rasmusson, 
Shane Clauson, Simon Crase, Kay Pentecost, Murray Bishop, Ryan King, Bill Wake,  

To all of the programmers I’ve test-driven code with, I certainly appreciate your 
patience going along with what was a pretty crazy sounding idea, especially in the 
early years. I’ve learned far more from you all than I could ever think of myself. Not 
wishing to offend everyone else, but Massimo Arnoldi, Ralph Beattie, Ron Jeffries, 
and last but certainly not least Erich Gamma stand out in my memory as partners from 
whom I’ve learned much. 

My life as a real programmer started for me with patient mentoring from and 
continuing collaboration with Ward Cunningham. Sometimes I see TDD as an attempt 
to give any programmer, working in any environment, the sense of comfort and 
intimacy we had with our Smalltalk environment and our Smalltalk programs. There is 
no way to sort out the source of ideas once two people have shared a brain. If you 
assume all the good ideas here are Ward’s, you won’t be far wrong. 

It is a bit of a cliché to recognize the sacrifices a family makes once one of its 
members catches the peculiar mental affliction that results in a book. It is a cliché 
because family sacrifices are as necessary to book writing as paper. To my children 
who waited breakfast until I could finish a chapter, and most of all to my wife who 
spent two months saying everything three times, my profoundest and least adequate 
thanks. 

Finally, to the unknown author of the book which I read as a weird 12-year-old that 
suggested you type in the expected output tape from a real input tape, then code until 
the actual results matched the expected result, thank you, thank you, thank you. 



Test-driven development  13 of 133 

Story Time 
Tell the WyCash multi-currency story, perhaps with a time line “0900 – management 
asks for the impossible, 0910 – etc.” 

• WyCash was a system for managing portfolios of fixed income securities. 
Initially, it had been written for the US market, and … 

• One day they needed multi-currency arithmetic. 

• Ward invents Money and MoneyBag. 

• At the end of the day, the system was working. 

This was a moment business crave. Investing one day of a few programmers’ time 
multiplied the value of WyCash, already worth tens of millions of dollars, by several 
times. In fact, the business of software is making a bunch of bets like this and holding 
on long enough for one to pay off. The only reason sensible business people put up 
with the eccentricity, unreliability, and general orneriness of programmers is because 
occasionally the pony-tailed freaks spin straw into gold. 

Programmers, too, live for this kind of moment. Creativity, courage, and spark of 
genius combined to accomplish the impossible. Moments like this write a story that 
will keep the programmer in late-night conference beer for years, if told properly. 

The users experienced magic, too. Handling multiple currencies was, to them, a 
perfectly simple, understandable request. The users probably had the experience of 
making such perfectly simple, understandable requests of programmers before, and of 
receiving bizarre replies. “At least six months. But if you’d told me about this a year 
ago it would have been easy.” Instead, they made a simple request and a few days 
later, they got what they wanted. 

Moments that multiply the value of a project are a combination of method, motive and 
opportunity: 

• Method—Ward and the WyCash team needed to have constant experience 
growing the design of the system little-by-little, so the mechanics of the 
transformation were well practiced. 

• Motive—Ward and team had to understand clearly from the business the 
importance of making WyCash multi-currency, and to have the courage to start 
such a seemingly impossible task. 

• Opportunity— The combination of comprehensive, confidence-generating 
tests; a well-factored program; and a programming language that made it 
possible to isolate design decisions meant that there were few sources of error, 
and those errors were easy to identify.  

You can’t control whether you ever get the motive to multiply the value of your 
project by spinning technical magic. Method and opportunity, however, are entirely 
under your control. Ward and his team created method and opportunity by a 
combination of superior talent, experience, and discipline. Does this mean that if you 



Test-driven development  14 of 133 

are not one of the ten best software engineers on the planet and you don’t have a wad 
of cash in the bank so you can tell your boss to take a hike, you’re going to take the 
time to do this right, that such moments are forever beyond your reach? 

No. You absolutely can place your projects in a position for you to work magic, even 
if you are a programmer with ordinary skills and you sometimes buckle under and take 
shortcuts when the pressure builds. Test-driven development is a set of techniques any 
programmer can follow, that encourage simple designs and test suites that inspire 
confidence. If you are a genius, you don’t need these rules. If you are a dolt, the rules 
won’t help. For the vast majority of us in between, though, following these two simple 
rules can lead us to work much closer to our potential: 

• Always write a failing automated test before you write any code 

• Always remove duplication 

How exactly to do this, the subtle gradations in applying these rules, and the lengths to 
which can push these two simple rules are the topic of this book. We’ll start with the 
object Ward created in his moment of inspiration—multi-currency money. 



Test-driven development  15 of 133 

Section I: Money Example 
In this section we will develop typical model code completely driven by tests (except 
when we slip, purely for educational purposes). My goal is for you to see the rhythm 
of  test-driven development: 

1. Quickly add a test 

2. Run all tests and see the new one fail 

3. Make a little change 

4. Run all tests and see them all succeed 

5. Refactor to remove duplication 

The surprises are likely to be: 

• How each test can cover a small increment of functionality 

• How small and ugly the changes can be to make the new tests run 

• How often the tests are run 

• How many teensy tiny steps make up the refactorings 



Test-driven development  16 of 133 

Money Example 
We’ll start with the object Ward created at WyCash, multi-currency money. Suppose 
we have a report like this: 

Instrument Shares Price Total 

IBM 1000 25 25000 

GE 400 100 40000 

  Total: 75000 

To make a multi-currency report, we need to add currencies: 

Instrument Shares Price Total 

IBM 1000 25 USD 25000 USD 

Novartis 400 150 CHF 40000 CHF 

  Total: 75000 USD 

We also need to specify exchange rates: 

From To Rate 

CHF USD 1.5 

What behavior will we need to produce the revised report? Put another way, what is 
the set of tests which, when passed, will demonstrate the presence of code we are 
confident will compute the report correctly? 

• We need to be able to add amounts in two different currencies and convert the 
result given a set of exchange rates.  

• We need to be able to multiply an amount (price per share) by a number 
(number of shares) and receive an amount. 

We’ll make a to-do list to remind us what all we need to do, keep us focused, and tell 
us when we are finished: 

To do: 
$5 + 10 CHF = $10 if CHF:USD is 2:1 
$5 * 2 = $10 

What object do we need first? Trick question. We don’t start with objects, we start 
with tests (I keep having to remind myself of this, so I will pretend you are as dense as 
I am).  

Try again. What test do we need first? Looking at the list, that first test looks 
complicated. Start small or not at all. Multiplication, how hard could that be? We’ll 
work on that first. 

When we write a test, we imagine the perfect interface for our operation. We are 
telling ourselves a story about how the operation will look from the outside. Our story 



Test-driven development  17 of 133 

won’t always come true, but better to start from the best possible API and work 
backwards than to make things complicated, ugly, and “realistic” from the get go. 

Here’s a simple example of multiplication: 
 public void testMultiplication() { 
  Dollar five= new Dollar(5); 
  five.times(2); 
  assertEquals(10, five.amount); 
 } 

(I know, I know, public fields, side-effects, integers for monetary amounts and all that. 
Small steps. We’ll make a note of the stinkiness and move on. We have a failing test 
and we want it to go green as quickly as possible.) 

To do: 
$5 + 10 CHF = $10 if CHF:USD is 2:1 
$5 * 2 = $10 
Make “amount” private 
Dollar side-effects? 
Money rounding? 

The test we just typed in (I’ll explain where and how we type it in later, when we talk 
more about JUnit) doesn’t even compile. That’s easy enough to fix. What’s the least 
we can do to get it to compile, even if it doesn’t run? We have four compile errors: 

• No class “Dollar” 

• No constructor 

• No method “times(int)” 

• No field “amount” 

Let’s take them one at a time (I always search for some numerical measure of 
progress). We can get rid of one error by defining the class Dollar: 

DollarDollar  

classclass Dollar 

Now we need the constructor, but it doesn’t have to do anything just to get the test to 
compile: 

DollarDollar  

 Dollar(intint amount) { 

 } 

We need a stub implementation of times(). Again we’ll do the least work possible just 
to get the test to compile: 

DollarDollar  

 voidvoid times(intint multiplier) { 

 } 

Finally, we need an amount field: 
DollarDollar  

 intint amount; 

Now we can run the test and watch it fail. 



Test-driven development  18 of 133 

 

You are seeing the dreaded red bar. Our testing framework (JUnit, in this case) has run 
the little snippet of code we started with, and noticed that although we expected “10” 
as a result, we saw “0”. Sadness. 

No, no. Failure is progress. Now we have a concrete measure of failure. That’s better 
than just vaguely knowing we are failing. Our programming problem has been 
transformed from “give me multi-currency” to “make this test work, and then make 
the rest of the tests work.” Much simpler. Much smaller scope for fear. We can make 
this test work. 

You probably aren’t going to like the solution, but the goal right now is not to get the 
perfect answer, the goal is to pass the test. We’ll make our sacrifice at the altar of truth 
and beauty later. 

Here’s the smallest change I could imagine that would cause our test to pass: 
DollarDollar  

 intint amount= 10; 

Now we get the green bar, fabled in song and story. 



Test-driven development  19 of 133 

 

Oh joy, oh rapture! Not so fast, hacker boy (or girl). The cycle isn’t complete. There 
are very few inputs in the world that will cause such a limited, such a smelly, such a 
naïve implementation to pass. We need to generalize before we move on. Remember, 
the cycle is: 

1. Add a little test 

2. Run all tests and fail 

3. Make a little change 

4. Run the tests and succeed 

5. Refactor to remove duplication 

Sidebar: Dependency and Duplication 

Steve Freeman pointed out that the problem with the test and code as it sits is not 
duplication (which I have not yet pointed out to you, but I promise to as soon as this 
digression is over.) The problem is the dependency between the code and the test—
you can’t change one without changing the other. Our goal is to be able to write 
another test that “makes sense” to us, without having to change the code, something 
that is not possible with the current implementation. 



Test-driven development  20 of 133 

Dependency is the key problem in software development at all scales. If you have 
details of one vendor’s implementation of SQL scattered throughout the code and you 
decide to change to another vendor, you will discover that your code is dependent on 
the database vendor. You can’t change the database without changing the code. 

If dependency is the problem, duplication is the symptom. Duplication most often 
takes the form of duplicate logic—the same conditional expression appearing in 
multiple places in the code. Objects are excellent for abstracting away the duplication 
of logic. 

Duplication also appears in data. Symbolic constants were introduced to eliminate 
dependencies between code and magic numbers. Once you use a symbolic constant, 
your code is no longer dependent on the actual number. You can change the number 
all you want without having to touch the code. 

Unlike most problems in life, where eliminating the symptoms only makes the 
problem pop up elsewhere in worse form, eliminating duplication in programs 
eliminates dependency. That’s why the second rule appears in TDD. By eliminating 
duplication before we go on to the next test, we maximize our chance of being able to 
get the next test running with one and only one change. 

Now back to your regularly scheduled puzzling example. 

But where is the duplication? Usually you see duplication between two pieces of code. 
Here the duplication is between the data in the test and the data in the code. Don’t see 
it? How about if we write? 

DollarDollar  

 intint amount= 5 * 2; 

That “10” had to come from somewhere. We did the multiplication in our heads so 
fast we didn’t even notice. The “5” and “2” are now in two places, and we must 
ruthlessly eliminate duplication before moving on. 

There isn’t a single step that will eliminate the 5 and 2. However, what if we move the 
setting of the amount from object initialization to the times() method? 

DollarDollar  

 intint amount; 

 

 voidvoid times(intint multiplier) { 

  amount= 5 * 2; 

 } 

The test still passes, the bar stays green. Happiness is still ours. 

Do these steps seem too small to you? Remember, TDD is not about taking teensy tiny 
steps, it’s about being able to take teensy tiny steps. Would I code day-to-day with 
steps this small? No. But when things get the least bit weird, I’m glad I can. 

Defensiveness aside, where were we? Ah, yes, we were getting rid of duplication 
between the test code and the working code. Where can we get a 5? That was the 
value passed to the constructor, so if we save it in the amount variable: 



Test-driven development  21 of 133 

DollarDollar  

 Dollar(intint amount) { 

  thisthis.amount= amount; 

 } 

we can use it in times(): 
DollarDollar  

 voidvoid times(intint multiplier) { 

  amount= amount * 2; 

 } 

The value of the parameter “multiplier” is 2, so we can substitute the parameter for the 
constant: 

DollarDollar  

 voidvoid times(intint multiplier) { 

  amount= amount * multiplier; 

 } 

To demonstrate our thorough-going knowledge of Java syntax, we will want to use the 
“*=” operator (which does, it must be said, reduce duplication): 

DollarDollar  

 voidvoid times(intint multiplier) { 

  amount *= multiplier; 

 } 

We can now mark off the first test as done: 
To do: 
$5 + 10 CHF = $10 if CHF:USD is 2:1 
$5 * 2 = $10 
Make “amount” private 
Dollar side-effects? 
Money rounding? 

Next we’ll take care of those strange side effects. First, though, let’s review. We: 

• Made a list of the tests we knew we needed to have working 

• Told a story with a snippet of code about how we wanted to view one 
operation 

• Ignored the details of JUnit for the moment 

• Made the test compile with stubs 

• Made the test run by committing horrible sins 

• Gradually generalized the working code, replacing constants with variables 

• Added items to our to-do list rather than addressing them all at once 



Test-driven development  22 of 133 

Degenerate Objects 
We got one test working, but in the process we noticed something strange—when we 
perform an operation on a Dollar, the Dollar changes. I would like to be able to write: 

 publicpublic voidvoid testMultiplication() { 

  Dollar five= newnew Dollar(5); 

  five.times(2); 

  assertEquals(10, five.amount); 

  five.times(3); 

  assertEquals(15, five.amount); 

 } 

I can’t imagine a clean way to get this test working. After the first call to times(), five 
isn’t five any more, it’s really ten. If, however, we return a new object from times(), 
we can multiply our original five bucks all day and never have it change. We are 
changing the interface of Dollar when we make this change, so we have to change the 
test. That’s okay. Our guesses about the right interface are no more likely to be perfect 
than our guesses about the right implementation. 

 publicpublic voidvoid testMultiplication() { 

  Dollar five= newnew Dollar(5); 

  Dollar product= five.times(2); 

  assertEquals(10, product.amount); 

  product= five.times(3); 

  assertEquals(15, product.amount); 

 } 

The new test won’t compile until we change the declaration of Dollar.times(): 
DollarDollar  

 Dollar times(intint multiplier) { 

  amount *= multiplier; 

  returnreturn nullnull; 

 } 

Now the test compiles, but it doesn’t run. Progress! Making it run requires that we 
return a new Dollar with the correct amount: 

DollarDollar  

 Dollar times(intint multiplier) { 

  returnreturn newnew Dollar(amount * multiplier); 

 } 

In the last chapter when we made a test work we started with a bogus implementation 
and gradually made it real. Here, we typed in what we thought was the right 
implementation and prayed while the tests ran (short prayers, to be sure, because 
running the test takes a few milliseconds.) Because we got lucky and the test ran, we 
can cross off another item: 



Test-driven development  23 of 133 

To do: 
$5 + 10 CHF = $10 if CHF:USD is 2:1 
$5 * 2 = $10 
Make “amount” private 
Dollar side-effects? 
Money rounding? 

These are two of the three strategies for quickly getting to green: 

• Fake It—return a constant and gradually replace constants with variables until 
you have the real code 

• Obvious Implementation—type in the real implementation 

When I use TDD in practice, I commonly shift between these two modes of 
implementation. When everything is going smoothly and I know what to type, I put in 
obvious implementation after obvious implementation (running the tests all the time to 
ensure that what’s obvious to me is still obvious to the computer). As soon as I get an 
unexpected red bar, I back up, shift to faking implementations, and refactor to the right 
code. When my confidence is back, I go back to obvious implementations. 

There is a third style of driving development, triangulation, which we will demonstrate 
in the next chapter. However, to review, we: 

• Translated a design objection (side effects) into a test case that failed because 
of the objection 

• Got the code to compile quickly with a stub implementation 

• Made the test work by typing in what seemed like the right code 

The translation of a feeling (disgust at side effects) into a test (multiply the same 
Dollar twice) is a common theme of TDD. The longer I do this, the better able I am to 
translate my aesthetic judgements into tests. When I can do this, my design 
discussions become much more interesting. First we can talk about whether the system 
should work like this or like that. Once we decide on the correct behavior, we can talk 
about the best way of achieving that behavior. We can speculate about truth and 
beauty all we want over beers, but while we are programming we can leave airy-fairy 
discussions behind and talk cases. 



Test-driven development  24 of 133 

Equality for All 
If I have an integer and I add 1 to it, I don’t expect the original integer to change, I 
expect to use the new value. Objects usually don’t behave that way. If I have a 
Contract and I add one to its coverage, the Contract’s coverage should change (yes, 
yes, subject to all sorts of interesting business rules which do not concern us here.) 

We can use objects as values, as we are using our Dollar now. The pattern for this is 
Value Object. One of the constraints on Value Objects is that the values of the 
instance variables of the object never change once they have been set in the 
constructor. 

There is one huge advantage to using value objects—you don’t have to worry about 
aliasing problems. Say I have one Check and I set its amount to $5, and then I set 
another Check’s amount to the same $5. Some of the nastiest bugs in my career have 
come when changing the first Check’s value inadvertently changed the second 
Check’s value. This is aliasing. 

When you have value objects, you don’t have to worry about aliasing. If I have $5, I 
am guaranteed that it will always and forever be $5. If someone wants $7, they have to 
make an entirely new object. 

One implication of Value Object is all operations must return a new object, as we saw 
in the previous chapter. Another implication is that value objects should implement 
equals(), since one $5 is pretty much as good as another: 

To do: 
$5 + 10 CHF = $10 if CHF:USD is 2:1 
$5 * 2 = $10 
Make “amount” private 
Dollar side-effects? 
Money rounding? 
Equals() 

If you use Dollars as the key to a hash table, you have to implement hashCode() if you 
implement equals(). We’ll put that in the list, too, and get to it when it’s a problem. 

To do: 
$5 + 10 CHF = $10 if CHF:USD is 2:1 
$5 * 2 = $10 
Make “amount” private 
Dollar side-effects? 
Money rounding? 
Equals() 
HashCode() 

You aren’t thinking about the implementation of equals(), are you? Good. Me neither. 
After snapping the back of my hand with a ruler, I’m thinking about how to test 
equality. First, $5 should equal $5: 

 public void testEquality() { 
  assertTrue(new Dollar(5).equals(new Dollar(5))); 
 } 

The bar turns obligingly red. The fake implementation is to just return true: 



Test-driven development  25 of 133 

DollarDollar  

 publicpublic booleanboolean equals(Object object) { 

  returnreturn truetrue; 

 } 

You and I both know that “true” is really “5 == 5” which is really “amount == 5” 
which is really “amount == dollar.amount”. If I went through these steps, though, I 
wouldn’t be able to demonstrate the third and most conservative implementation 
strategy, triangulation. 

If two receiving stations at a known distance from each other can both measure the 
direction of a radio signal, there is enough information to calculate the range and 
bearing of the signal (if you remember more trigonometry than I do, anyway.) This 
calculation is called triangulation. 

By analogy, when we triangulate, we only generalize code when we have two more 
more examples. We briefly ignore the duplication between test and model code. When 
the second example demands a more general solution, then and only then do we 
generalize. 

So, to triangulate we need a second example. How about $5 != $6?  
 public void testEquality() { 
  assertTrue(new Dollar(5).equals(new Dollar(5))); 
  assertFalse(new Dollar(5).equals(new Dollar(6))); 
 } 

Now we need to generalize equality: 
DollarDollar  

 publicpublic booleanboolean equals(Object object) { 

  Dollar dollar= (Dollar) object; 

  returnreturn amount == dollar.amount; 

 } 

We could have used triangulation to drive the generalization of times(), also. If we had 
$5 x 2 = $10 and $5 x 3 = $15 we would no longer have been able to return a constant. 

Triangulation feels funny to me. I only use it when I am completely unsure of how to 
refactor. If I can see how to eliminate duplication between code and tests and create 
the general solution, I just do it. Why would I need to write another test to give me 
permission to write what I probably could have written the first time? 

However, when the design thoughts just aren’t coming, triangulation gives you a 
chance to think about the problem from a slightly different direction. What axes of 
variability are you trying to support in your design? Make some of the them vary and 
the answer may become clearer. 

So, equality is done for the moment. (What about comparing with null and comparing 
with other objects? Add those to the list.) 



Test-driven development  26 of 133 

To do: 
$5 + 10 CHF = $10 if CHF:USD is 2:1 
$5 * 2 = $10 
Make “amount” private 
Dollar side-effects? 
Money rounding? 
Equals() 
HashCode() 
Equal null 
Equal object 

Now that we have equality, we can directly compare Dollars to Dollars. That will let 
us make amount private, as all good instance variables should be. Reviewing the 
above, though, we: 

• Noticed that our design pattern (Value Object) implied an operation 

• Tested for that operation 

• Implemented it simply 

• Didn’t refactor immediately, but instead tested further 

• Refactored to capture the two cases at once 



Test-driven development  27 of 133 

Privacy 
Now that we have defined equality, we can use it to make out tests more “speaking”. 
Conceptually, the operation Dollar.times() should return a Dollar whose value is the 
value of the receiver times the multiplier. Our test doesn’t exactly say that: 

 public void testMultiplication() { 
  Dollar five= new Dollar(5); 
  Dollar product= five.times(2); 
  assertEquals(10, product.amount); 
  product= five.times(3); 
  assertEquals(15, product.amount); 
 } 

We can rewrite the first assertion to compare Dollars to Dollars. 
 public void testMultiplication() { 
  Dollar five= new Dollar(5); 
  Dollar product= five.times(2); 
  assertEquals(new Dollar(10), product); 
  product= five.times(3); 
  assertEquals(15, product.amount); 
 } 

That looks better, so we rewrite the second assertion, too: 
 public void testMultiplication() { 
  Dollar five= new Dollar(5); 
  Dollar product= five.times(2); 
  assertEquals(new Dollar(10), product); 
  product= five.times(3); 
  assertEquals(new Dollar(15), product); 
 } 

Now the temporary variable “product” isn’t helping much, so we can inline it: 
 public void testMultiplication() { 
  Dollar five= new Dollar(5); 
  assertEquals(new Dollar(10), five.times(2)); 
  assertEquals(new Dollar(15), five.times(3)); 
 } 

This test speaks to us more clearly, as if it were an assertion of truth, not a sequence of 
operations. 

With these changes to the test, Dollar is now the only class using its “amount” 
instance variable, so we can make it private: 

DollarDollar  

 privateprivate intint amount; 

And we can cross another item off the list: 



Test-driven development  28 of 133 

To do: 
$5 + 10 CHF = $10 if CHF:USD is 2:1 
$5 * 2 = $10 
Make “amount” private 
Dollar side-effects? 
Money rounding? 
Equals() 
HashCode() 
Equal null 
Equal object 

Notice that we have opened ourselves up to a risk. If the test for equality fails to 
accurately check that equality is working, the test for multiplication could also fail to 
accurately check that multiplication is working. That is a risk you actively manage in 
TDD. We aren’t striving for perfection. By saying everything two ways, as both code 
and tests, we hope to reduce our defects enough to move forward with confidence. 
From time to time our reasoning will fail us and a defect will slip through. When that 
happens, we learn our lesson about the test we should have written and move on. The 
rest of the time we go forward boldly under our bravely flapping green bar (my bar 
doesn’t actually flap, but one can dream.) 

Reviewing, we: 

• Used functionality just developed to improve a test 

• Noticed that if two tests fail at once we’re sunk 

• Proceeded in spite of the risk 

• Used new functionality in the object under test to reduce coupling between the 
tests and the code 



Test-driven development  29 of 133 

Franc-ly Speaking 
How are we going to approach the first test on that list?  

To do: 
$5 + 10 CHF = $10 if CHF:USD is 2:1 
$5 * 2 = $10 
Make “amount” private 
Dollar side-effects? 
Money rounding? 
Equals() 
HashCode() 
Equal null 
Equal object 

That’s the test that’s most interesting. It still seems to be a big leap. I’m not sure I can 
write a test that I can implement in one little step. A pre-requisite seems to be having 
an object like Dollar, but to represent Francs. If we can get Francs working like 
Dollars work now, we’ll be closer to being able to write and run the mixed addition 
test. 

To do: 
$5 + 10 CHF = $10 if CHF:USD is 2:1 
$5 * 2 = $10 
Make “amount” private 
Dollar side-effects? 
Money rounding? 
Equals() 
HashCode() 
Equal null 
Equal object 
5 CHF * 2 = 10 CHF 

We can copy and edit the Dollar test: 
 public void testFrancMultiplication() { 
  Franc five= new Franc(5); 
  assertEquals(new Franc(10), five.times(2)); 
  assertEquals(new Franc(15), five.times(3)); 
 } 

(Aren’t you glad we simplified the test in the last chapter? That made our job here 
easier. Isn’t it amazing how often things work out like this in books? I didn’t actually 
plan it that way this time, but I won’t make promises for the future.) 

What short step will get us to a green bar? Copying the Dollar code and replacing 
“Dollar” with “Franc”. 

Stop. Hold on. I can hear the aesthetically inclined among you sneering and spitting. 
Copy and paste reuse? The death of abstraction? The killer of clean design? 

If you’re upset, take a cleansing breath. In…hold…out. There. Now, our cycle has 
different phases (they go by quickly, often in seconds, but they are phases.): 

1. Write a test 

2. Make it compile 



Test-driven development  30 of 133 

3. Make it run 

4. Remove duplication 

The different phases have different purposes. They call for different styles of solution, 
different aesthetic viewpoints. The first three phases need to go by quickly, so we get 
to a known state with the new functionality. You can commit any number of sins to 
get there, because speed trumps design, just for that brief moment. 

Now I’m worried. I’ve given you a license to abandon all the principles of good 
design. Off you go to your teams—“Kent says all that design stuff doesn’t matter.” 
Halt. The cycle is not complete. A three legged horse can’t gallop. The first three steps 
of the cycle won’t work without the fourth. Good design at good times. Make it run, 
make it right. 

There, I feel better. Now I’m sure you won’t show anyone except your partner your 
code until you’ve removed the duplication. Where were we? Ah, yes. Violating all the 
tenets of good design in the interest of speed (penance for our sin will occupy the next 
several chapters.) 

FrancFranc  

classclass Franc { 

 privateprivate intint amount; 

  

 Franc(intint amount) { 

  thisthis.amount= amount; 

 } 

 

 Franc times(intint multiplier) { 

  returnreturn newnew Franc(amount * multiplier); 

 } 

  

 publicpublic booleanboolean equals(Object object) { 

  Franc franc= (Franc) object; 

  returnreturn amount == franc.amount; 

 } 

} 

Because the step to running code was so short, we were even able to skip the “make it 
compile” step. 

Now we have duplication galore, and we have to eliminate it before writing our next 
test. We’ll start by generalizing equals(). However, we can cross off an item, even 
though we have to add two more: 



Test-driven development  31 of 133 

To do: 
$5 + 10 CHF = $10 if CHF:USD is 2:1 
$5 * 2 = $10 
Make “amount” private 
Dollar side-effects? 
Money rounding? 
Equals() 
HashCode() 
Equal null 
Equal object 
5 CHF * 2 = 10 CHF 
Dollar/Franc duplication 
Common equals 

Reviewing, we: 

• Couldn’t tackle a big test, so we invented a small test that represented progress 

• Wrote the test by shamelessly duplicating and editing 

• Even worse, made the test work by copying and editing model code wholesale 

• Promised ourselves we wouldn’t go home until the duplication was gone 



Test-driven development  32 of 133 

Equality for All, Redux 
There is a fabulous sequence in Wallace Stegner’s Crossing to Safety where he 
describes a character’s workshop. Every item is perfectly in place, the floor is spotless, 
all is order and cleanliness. The character, however, has never made anything. 
“Preparing has been his life’s work. He prepares, then he cleans up.” (This is also the 
book that sent me audibly blubbering in business class on a trans-Atlantic 747, so 
please read it with caution.) 

We have avoided this trap in the last chapter. We actually got a new test case working. 
However, we sinned mightily so we could do it quickly. Now it is time to clean up. 

One possibility is to make one of our classes extend the other. I tried it, and it hardly 
saves any code at all. Instead, we are going to find a common superclass for the two 
classes (I tried this already, too, and it works out great, although it will take a while.) 

Add a picture here 

What if we had a Money class to capture the common equals code? We can start 
small: 

MoneyMoney  

classclass Money 

All the tests still run (not that we could possibly have broken anything, but that’s a 
good time to run the tests anyway.) 

If Dollar extends Money, that can’t possibly break anything. 
DollarDollar  

classclass Dollar extendsextends Money { 

 privateprivate intint amount; 

} 

Can it? No, the tests still all run. Now we can move the “amount” instance variable up 
to Money: 

MoneyMoney  

classclass Money { 

  protected int protected int amount;amount;  

} 

DollarDollar  

classclass Dollar extendsextends Money { 

} 

The visibility has to change from private to protected so the subclass can still see it. (If 
we’d wanted to go even slower we could have declared the field in Money in one step, 
and then removed it from Dollar in a second step. I’m feeling bold.) 

Now we can work on getting the equals() code ready to move up. First we change the 
declaration of the temporary variable: 



Test-driven development  33 of 133 

DollarDollar  

 publicpublic booleanboolean equals(Object object) { 

    Money dollar= (Dollar) object;Money dollar= (Dollar) object;  

  returnreturn amount == dollar.amount; 

 } 

All the tests still run. Now we change the cast: 
DollarDollar  

 publicpublic booleanboolean equals(Object object) { 

    Money dollar= (Money) object;Money dollar= (Money) object;  

  returnreturn amount == dollar.amount; 

 } 

To be communicative, we should also change the name of the temporary variable: 
DollarDollar  

 publicpublic booleanboolean equals(Object object) { 

  Money moneymoney= (Money) object; 

  returnreturn amount == moneymoney.amount; 

 } 

Now we can move it from Dollar to Money: 
MoneyMoney  

 publicpublic booleanboolean equals(Object object) { 

  Money money= (Money) object; 

  returnreturn amount == money.amount; 

 } 

Now we need to eliminate Franc.equals(). First we notice that the tests for equality 
don’t cover comparing Francs to Francs. Our sins in copying code are catching up 
with us. Before we change the code, we’ll write the tests that should have been there 
in the first place. 

You will often be TDDing in code that doesn’t have adequate tests (at least for the 
next decade or so). When you don’t have enough tests, you are bound to come across 
refactorings that aren’t supported by tests. You could make a refactoring mistake and 
the tests would all still run. What do you do? 

As here, write the tests you wish you had. If you don’t, you will eventually break 
something while refactoring. Then you’ll get bad feelings about refactoring and stop 
doing it so much. Then your design will deteriorate. You’ll be fired. Your dog will 
leave you. Your teeth will go bad. So, to keep your teeth healthy, retroactively test 
before refactoring. 

Fortunately, here the tests are easy to write. We just copy the tests for Dollar: 
 public void testEquality() { 
  assertTrue(new Dollar(5).equals(new Dollar(5))); 
  assertFalse(new Dollar(5).equals(new Dollar(6))); 
  assertTrue(new Franc(5).equals(new Franc(5))); 
  assertFalse(new Franc(5).equals(new Franc(6))); 
 } 

More duplication, two lines more! We’ll atone for these sins, too. 



Test-driven development  34 of 133 

Tests in place, we can have Franc extend Money: 
FrancFranc  

classclass Franc extendsextends Money { 

 privateprivate intint amount; 

} 

We can delete Franc’s field “amount” in favor of the one in Money: 
FrancFranc  

classclass Franc extendsextends Money { 

} 

Franc.equals() is almost the same as Money.equal(). If we make them precisely the 
same, we can delete the implementation in Franc without changing the meaning of the 
program. First we change the declaration of the temporary variable: 

FrancFranc  

 publicpublic booleanboolean equals(Object object) { 

  Money franc= (Franc) object; 

  returnreturn amount == franc.amount; 

 } 

Then we change the cast: 
FrancFranc  

 publicpublic booleanboolean equals(Object object) { 

  Money franc= (Money) object; 

  returnreturn amount == franc.amount; 

 } 

Do we really have to change the name of the temporary variable to match the 
superclass? I’ll leave it up to your conscience… Okay, we’ll do it: 

FrancFranc  

 publicpublic booleanboolean equals(Object object) { 

  Money money= (Money) object; 

  returnreturn amount == money.amount; 

 } 

Now there is no difference between Franc.equals() and Money.equals(), so we delete 
the redundant implementation in Franc. And run the tests. They run. 

What happens when we compare Francs and Dollars? We’ll get to that in the next 
chapter. Reviewing what we did here, we: 

• Stepwise moved common code from one class (Dollar) to a superclass 
(Money) 

• Made a second class (Franc) also a subclass 

• Reconciled two implementations (equals()) before eliminating the redundant 
one 



Test-driven development  35 of 133 

Apples and Oranges 
The thought struck us at the end of the last chapter—what happens when we compare 
Francs and Dollars? We dutifully turned our dreadful thought into an item on our to-
do list. But we just can’t get it out of our heads. What does happen? 

 public void testEquality() { 
  assertTrue(new Dollar(5).equals(new Dollar(5))); 
  assertFalse(new Dollar(5).equals(new Dollar(6))); 
  assertTrue(new Franc(5).equals(new Franc(5))); 
  assertFalse(new Franc(5).equals(new Franc(6))); 
  assertFalse(new Franc(5).equals(new Dollar(5))); 
 } 

It fails. Dollars are Francs. Before you Swiss shoppers get all excited, let’s try to fix 
the code. The equality code needs to check that it isn’t comparing Dollars and Francs. 
We can do this right now by comparing the class of the two objects—two Moneys are 
equal only if their amounts and classes are equal. 

MoneyMoney  

 publicpublic booleanboolean equals(Object object) { 

  Money money = (Money) object; 

  returnreturn amount == money.amount && getClass().equals(money.getClass()); 

 } 
To do: 
$5 + 10 CHF = $10 if CHF:USD is 2:1 
$5 * 2 = $10 
Make “amount” private 
Dollar side-effects? 
Money rounding? 
Equals() 
HashCode() 
Equal null 
Equal object 
5 CHF * 2 = 10 CHF 
Dollar/Franc duplication 
Common equals 
Common times 
Francs != Dollars 

Using classes like this in model code is a bit smelly. We would like to use a criteria 
that made sense in the domain of finance, not the domain of Java objects. However, 
we don’t currently have anything like a currency, and this doesn’t seem like sufficient 
reason to introduce one, so this will have to do for the moment. 



Test-driven development  36 of 133 

To do: 
$5 + 10 CHF = $10 if CHF:USD is 2:1 
$5 * 2 = $10 
Make “amount” private 
Dollar side-effects? 
Money rounding? 
Equals() 
HashCode() 
Equal null 
Equal object 
5 CHF * 2 = 10 CHF 
Dollar/Franc duplication 
Common equals 
Common times 
Francs != Dollars 
Currency? 

Now we really need to get rid of the common times() code, so we can get to mixed 
currency arithmetic. Before we do, though, we can review our grand accomplishments 
of this chapter: 

• Took an objection that was bothering us and turned it into a test 

• Made the test run a reasonable, but not perfect way (getClass()) 

• Decided not to introduce more design until we had a better motivation 



Test-driven development  37 of 133 

Makin’ Objects 
The two implementations of times() are remarkably similar: 

FrancFranc  

 Franc times(intint multiplier) { 

  returnreturn newnew Franc(amount * multiplier); 

 } 

DollarDollar  

 Dollar times(intint multiplier) { 

  returnreturn newnew Dollar(amount * multiplier); 

 } 

We can take a step towards reconciling them by making them both return a Money: 
FrancFranc  

 Money times(intint multiplier) { 

  returnreturn newnew Franc(amount * multiplier); 

 } 

DollarDollar  

 Money times(intint multiplier) { 

  returnreturn newnew Dollar(amount * multiplier); 

 } 

The next step forward is not obvious. The two subclasses of Money aren’t doing 
enough work to justify their existence, so we would like to eliminate them. However, 
we can’t do it with one big step, because that wouldn’t make a very effective 
demonstration of TDD. 

Okay, we would be one step closer to eliminating the subclasses if there were fewer 
references to the subclasses directly. We can introduce a Factory Method in Money 
that returns a Dollar. We would use it like this: 

 publicpublic voidvoid testMultiplication() { 

  Dollar five = Money.dollar(5);Money.dollar(5);  

  assertEquals(new Dollar(10), five.times(2)); 

  assertEquals(new Dollar(15), five.times(3)); 

 } 

The implementation creates and returns a Dollar: 
MoneyMoney  

 staticstatic Dollar dollar(intint amount) { 

  returnreturn newnew Dollar(amount); 

 } 

But we want references to Dollars to disappear, so we need to change the declaration 
in the test: 



Test-driven development  38 of 133 

 publicpublic voidvoid testMultiplication() { 

  MoneyMoney five = Money.dollar(5); 

  assertEquals(new Dollar(10), five.times(2)); 

  assertEquals(new Dollar(15), five.times(3)); 

 } 

Our compiler politely informs us that times() is not defined for Money. We aren’t 
ready to implement it just yet, so we make Money abstract (I suppose we should have 
done that to begin with, shouldn’t we?) and declare Money.times(): 

MoneyMoney  

abstractabstract class Money 

  abstract abstract MoneyMoney  times(times(int int mmultiplier);ultiplier);  

Now we can change the declaration of the factory method: 
MoneyMoney  

 staticstatic MoneyMoney dollar(intint amount) { 

  returnreturn newnew Dollar(amount); 

 } 

The tests all run, so at least we haven’t broken anything. We can now use our factory 
method everywhere in the tests: 

 publicpublic voidvoid testMultiplication() { 

  Money five = Money.dollar(5); 

  assertEquals(Money.dollarMoney.dollar(10), five.times(2)); 

  assertEquals(Money.dollarMoney.dollar(15), five.times(3)); 

 } 

 publicpublic voidvoid testEquality() { 

  assertTrue(Money.dollarMoney.dollar(5).equals(Money.dollarMoney.dollar(5))); 

  assertFalse(Money.dollarMoney.dollar(5).equals(Money.dollarMoney.dollar(6))); 

  assertTrue(newnew Franc(5).equals(newnew Franc(5))); 

  assertFalse(newnew Franc(5).equals(newnew Franc(6))); 

  assertFalse(newnew Franc(5).equals(Money.dollarMoney.dollar(5))); 

 } 

We are now in a slightly better position than before. No client code knows that there is 
a subclass called Dollar. By de-coupling the tests from the existence of the subclasses, 
we have given ourselves freedom to change inheritance without affecting any model 
code. 

Before we go blindly changing the testFrancMultiplication, we notice that it isn’t 
testing any logic that isn’t tested by the test for Dollar multiplication. If we delete the 
test, will we lose any confidence in the code? Still a little, so we leave it there. But it’s 
suspicious. 



Test-driven development  39 of 133 

To do: 
$5 + 10 CHF = $10 if CHF:USD is 2:1 
$5 * 2 = $10 
Make “amount” private 
Dollar side-effects? 
Money rounding? 
Equals() 
HashCode() 
Equal null 
Equal object 
5 CHF * 2 = 10 CHF 
Dollar/Franc duplication 
Common equals 
Common times 
Francs != Dollars 
Currency? 
Delete testFrancMultiplication? 

  
public void testEquality() { 

  assertTrue(Money.dollar(5).equals(Money.dollar(5))); 
  assertFalse(Money.dollar(5).equals(Money.dollar(6))); 
  assertTrue(Money.franc(5).equals(Money.franc(5))); 
  assertFalse(Money.franc(5).equals(Money.franc(6))); 
  assertFalse(Money.franc(5).equals(Money.dollar(5))); 
 } 
 
 public void testFrancMultiplication() { 
  Money five = Money.franc(5); 
  assertEquals(Money.franc(10), five.times(2)); 
  assertEquals(Money.franc(15), five.times(3)); 
 } 

The implementation is just like Money.dollar(): 
MoneyMoney  

 staticstatic Money franc(intint amount) { 

  returnreturn newnew Franc(amount); 

 } 

We’ll get rid of the duplication of times() next. For now, reviewing, we: 

• Took a step towards eliminating duplication by reconciling the signatures of 
two variants of the same method (times()) 

• Moved at least a declaration of the method to the common superclass 

• Decoupled test code from the existence of concrete subclasses by introducing 
factory methods 

• Noticed that when the subclasses disappear some tests will be redundant, but 
took no action 



Test-driven development  40 of 133 

Times We’re Livin’ In 
What is there on our list that might help us eliminate those pesky useless subclasses? 

To do: 
$5 + 10 CHF = $10 if CHF:USD is 2:1 
$5 * 2 = $10 
Make “amount” private 
Dollar side-effects? 
Money rounding? 
Equals() 
HashCode() 
Equal null 
Equal object 
5 CHF * 2 = 10 CHF 
Dollar/Franc duplication 
Common equals 
Common times 
Francs != Dollars 
Currency? 
Delete testFrancMultiplication? 

What about currency? What would happen if we introduced the notion of currency? 

How do we want to implement currencies at the moment? I blew it, again. Before the 
ruler comes out, I’ll rephrase. How do we want to test for currencies at the moment? 
There. Knuckles saved. For the moment. 

We may want to have complicated objects representing currencies, with flyweight 
factories to ensure we create no more objects than we really need. However, for the 
moment Strings will do: 

 publicpublic voidvoid testCurrency() { 

  assertEquals("USD", Money.dollar(1).currency()); 

  assertEquals("CHF", Money.franc(1).currency()); 

 } 

First we declare currency() in Money: 
MoneyMoney  

 abstractabstract String currency(); 

Then we implement it in both subclasses: 
FrancFranc  

 String currency() { 

  returnreturn returnreturn "CHF"; 

 } 

DollarDollar  

 String currency() { 

  returnreturn returnreturn "USD"; 

 } 

We want the same implementation to suffice for both classes. We could store the 
currency in an instance variable and just return the variable. (I’ll start going a little 



Test-driven development  41 of 133 

faster with the refactorings in the instance of time. If I go too fast, please tell me to 
slow down. Oh, wait, this is a book. Perhaps I just won’t speed up much.) 

FrancFranc  

 privateprivate String currency; 

 Franc(intint amount) { 

  thisthis.amount = amount; 

    currency = currency = "CHF""CHF";;  

 } 

 String currency() { 

    return currency;return currency;  

 } 

We can do the same with Dollar: 
DollarDollar  

 privateprivate String currency; 

 Dollar(intint amount) { 

  thisthis.amount = amount; 

    currency = currency = "USD""USD";;  

 } 

 String currency() { 

    return currency;return currency;  

 } 

Now we can push up the declaration of the variable and the implementation of 
currency(), since they are identical: 

MoneMoneyy  

 protectedprotected String currency; 

 String currency() { 

  returnreturn currency; 

 } 

If we move the constant strings “USD” and “CHF” to the static factory methods, the 
two constructors will be identical and we can create a common implementation. 

First we’ll add a parameter to the constructor: 
FrancFranc  

 Franc(intint amount, String currencyString currency) { 

  thisthis.amount = amount; 

  thisthis.currency = "CHF"; 

 } 

This breaks the two callers of the constructor: 



Test-driven development  42 of 133 

MoneyMoney  

 staticstatic Money franc(intint amount) { 

  returnreturn newnew Franc(amount, nullnull); 

 } 

FrancFranc  

 Money times(intint multiplier) { 

  returnreturn newnew Franc(amount * multiplier, nullnull); 

 } 

Wait a minute! Why is Franc.times() calling the constructor instead of the factory 
method? Do we want to make this change now, or will we wait? The dogmatic answer 
is that we’ll wait, not interrupting what we’re doing. The answer in my practice is that 
I will entertain a brief interruption, but only a brief one, and I will never interrupt an 
interruption (rule thanks to Jim Coplien). To be realistic, we’ll fix times() before 
proceeding: 

FrancFranc  

 Money times(intint multiplier) { 

  returnreturn Money.franc(amount * multiplier); 

 } 

Now the factory method can pass “CHF”: 
MoneyMoney  

 staticstatic Money franc(intint amount) { 

  returnreturn newnew Franc(amount, "CHF""CHF"); 

 } 

And finally we can assign the parameter to the instance variable: 
FrancFranc  

 Franc(intint amount, String currency) { 

  thisthis.amount = amount; 

  thisthis.currency = currencycurrency; 

 } 

I’m feeling defensive again about taking such teeny-tiny steps. Am I recommending 
that you actually work this way? No. I’m recommending that you be able to work this 
way. What I actually did just now was I worked in larger steps and made a stupid 
mistake half way through. I unwound a minute’s worth of changes, shifted to a lower 
gear, and did it over with little steps. I’m feeling better now, so we’ll see if we can 
make the analogous change to Dollar in one swell foop: 



Test-driven development  43 of 133 

MoneyMoney  

 staticstatic Money dollar(intint amount) { 

  returnreturn newnew Dollar(amount, "USD""USD"); 

 } 

DollarDollar  

 Dollar(intint amount, String currency) { 

  thisthis.amount = amount; 

  thisthis.currency = currencycurrency; 

 } 

 Money times(intint multiplier) { 

  returnreturn Money.dollar(amount * multiplier);Money.dollar(amount * multiplier); 

 } 

And it worked first time. Whew! 

This is the kind of tuning you will be doing constantly with TDD. Are the teeny-tiny 
steps feeling restrictive? Take bigger steps. Are you feeling a little unsure? Take 
smaller steps. TDD is a steering process—a little this way, a little that way. There is 
not right step size, now and forever. 

The two constructors are now identical, so we can push up the implementation: 



Test-driven development  44 of 133 

MoneyMoney  

 Money(intint amount, String currency) { 

  thisthis.amount = amount; 

  thisthis.currency = currency; 

 } 

FrancFranc  

 Franc(intint amount, String currency) { 

    super(amount, currency);super(amount, currency);  

 } 

DollarDollar  

 Dollar(intint amount, String currency) { 

    super(amount, currency);super(amount, currency);  

 } 
To do: 
$5 + 10 CHF = $10 if CHF:USD is 2:1 
$5 * 2 = $10 
Make “amount” private 
Dollar side-effects? 
Money rounding? 
Equals() 
HashCode() 
Equal null 
Equal object 
5 CHF * 2 = 10 CHF 
Dollar/Franc duplication 
Common equals 
Common times 
Francs != Dollars 
Currency? 
Delete testFrancMultiplication? 

We’re almost ready to push up the implementation of times() and eliminate the 
subclasses, but first, to review, we: 

• Were a little stuck on big design ideas, so we worked on something small we 
noticed earlier 

• Reconciled the two constructors by moving the variation to the caller (the 
factory method) 

• Interrupted a refactoring for a little twist (using the factory method in times()) 

• Repeated an analogous refactoring (doing to Dollar what we just did to Franc) 
in one big step 

• Pushed up the identical constructors 



Test-driven development  45 of 133 

The Root of all Evil 
When we are done with this chapter we will have a single class to represent Money. 
The two implementations of times() are close, but not identical. 

FrancFranc  

 Money times(intint multiplier) { 

  returnreturn Money.franc(amount * multiplier); 

 } 

DoDollarllar  

 Money times(intint multiplier) { 

  returnreturn Money.dollar(amount * multiplier); 

 } 

There’s not an obvious way to make them identical. Sometimes you have to go 
backwards to go forwards, a little like a Rubik’s Cube. What happens if we inline the 
factory methods? (I know, I know, we just called the factory method for the first time 
just one chapter ago. Frustrating, isn’t it?) 

FrancFranc  

 Money times(intint multiplier) { 

  returnreturn newnew Franc(amount * multiplier, "CHF"); 

 } 

DollarDollar  

 Money times(intint multiplier) { 

  returnreturn newnew Dollar(amount * multiplier, "USD"); 

 } 

In Franc, though, we know that the currency instance variable is always “CHF”, so we 
can write: 

FrancFranc  

 Money times(intint multiplier) { 

  returnreturn newnew Franc(amount * multiplier, currencycurrency); 

 } 

That works. The same trick words in Dollar: 
DollarDollar  

 Money times(intint multiplier) { 

  returnreturn newnew Dollar(amount * multiplier, currencycurrency); 

 } 

We’re almost there. Does it really matter whether we have a Franc or a Money? We 
could carefully reason about this given our knowledge of the system. However, we 
have clean code and we have tests that give us confidence. Rather than apply minutes 
of suspect reasoning, we can just ask the computer by making the change and running 
the tests. In teaching TDD I see this situation all the time—excellent programmers 
spending 5-10 minutes reasoning about a question that can be answered by the 
computer in 15 seconds. Without the tests you have no choice, you have to reason. 



Test-driven development  46 of 133 

With the tests you can decide whether an experiment would answer the question 
faster. Sometimes you should just ask the computer. 

To run our experiment we change Franc.times() to return a Money: 
FrancFranc  

 Money times(intint multiplier) { 

  returnreturn newnew MoneyMoney(amount * multiplier, currency); 

 } 

The compiler tells us that Money must be a concrete class: 
MoneyMoney  

classclass Money  

 Money times(intint amount) { 

  returnreturn nullnull; 

 } 

And we get a red bar. The error message says, “expected:<Money.Franc@31aebf> but 
was: <Money.Money@478a43>”. Not as helpful as we would perhaps like. We can 
define toString() to give us a better error message: 

MoneyMoney  

 publicpublic String toString() { 

  returnreturn amount + " " + currency; 

 } 

Whoa! Code without a test? Can you do that? We could certainly have written a test 
for toString() before we coded it. However: 

• We are about to see the results on the screen 

• Since toString() is only used for debug output, the risk of it failing is low 

• We already have a red bar, and we’d prefer not to write a test when we have a 
red bar 

Exception noted. 

Now the error message says: “expected:<10 CHF> but was:<10 CHF>”. That’s a little 
better, but still confusing. We got the right data in the answer, but the class was 
wrong—Money instead of Franc. The problem is in our implementation of equals(): 

MoneyMoney  

 publicpublic booleanboolean equals(Object object) { 

  Money money = (Money) object; 

  returnreturn amount == money.amount && getClass().equals(money.getClass()); 

 } 

We really should be checking to see that the currencies are the same, not that the 
classes are the same. 

We’d prefer not to write a test when we have a red bar. However, we are about to 
change real model code, and we can’t change model code without a test. The 
conservative course is to back out the change that caused the red bar so we’re back to 



Test-driven development  47 of 133 

green. Then we can change the test for equals(), fix the implementation, and re-try the 
original change. 

This time, we’ll be conservative (sometimes I plough ahead and write a test on a red, 
but not while the children are awake.) 

FrancFranc  

 Money times(intint multiplier) { 

  returnreturn newnew FrancFranc(amount * multiplier, currency); 

 } 

That gets us back to green. The situation that we had was a Franc(10, “CHF”) and a 
Money(10, “CHF”) that were reported to be not equal, even though we would like 
them to be equal. We can use exactly this for our test: 

 publicpublic voidvoid testDifferentClassEquality() { 

  assertTrue(newnew Money(10, "CHF").equals(newnew Franc(10, "CHF"))); 

 } 

It fails, as expected. The equals() code should compare currencies, not classes: 
MoneyMoney  

 publicpublic booleanboolean equals(Object object) { 

  Money money = (Money) object; 

  returnreturn amount == money.amount && currenccurrency().equals(money.currency()y().equals(money.currency()); 

 } 

Now we can return a Money from Franc.times() and still pass the tests: 
FrancFranc  

 Money times(intint multiplier) { 

  returnreturn newnew Money(amount * multiplier, currency); 

 } 

Will the same will work for Dollar.times()? 
DollarDollar  

 Money times(intint multiplier) { 

  returnreturn newnew MoneyMoney(amount * multiplier, currency); 

 } 

Yes! Now the two implementations are identical, so we can push them up. 



Test-driven development  48 of 133 

MoneyMoney  

 Money times(intint multiplier) { 

  returnreturn newnew Money(amount * multiplier, currency); 

 } 
To do: 
$5 + 10 CHF = $10 if CHF:USD is 2:1 
$5 * 2 = $10 
Make “amount” private 
Dollar side-effects? 
Money rounding? 
Equals() 
HashCode() 
Equal null 
Equal object 
5 CHF * 2 = 10 CHF 
Dollar/Franc duplication 
Common equals 
Common times 
Francs != Dollars 
Currency? 
Delete testFrancMultiplication? 

The two subclasses have only their constructors, so we can replace references to the 
subclasses by references to the superclass without changing the meaning of the code. 
First Franc: 

FrancFranc  

 staticstatic Money franc(intint amount) { 

  returnreturn newnew MoneMoneyy(amount, "CHF"); 

 } 

Then Dollar: 
DollarDollar  

 staticstatic Money dollar(intint amount) { 

  returnreturn newnew MoneyMoney(amount, "USD"); 

 } 

Since there are no references to Dollar, we can delete it. Franc still has one reference, 
in the test we just wrote. Looking at the equality test: 

 public void testEquality() { 
  assertTrue(Money.dollar(5).equals(Money.dollar(5))); 
  assertFalse(Money.dollar(5).equals(Money.dollar(6))); 
  assertTrue(Money.franc(5).equals(Money.franc(5))); 
  assertFalse(Money.franc(5).equals(Money.franc(6))); 
  assertFalse(Money.franc(5).equals(Money.dollar(5))); 
 } 

it looks like we have the cases for equality well covered, too well covered, actually. 
We can delete the third and fourth assertions since they duplicate the exercise of the 
first and second assertions: 

 public void testEquality() { 
  assertTrue(Money.dollar(5).equals(Money.dollar(5))); 
  assertFalse(Money.dollar(5).equals(Money.dollar(6))); 
  assertFalse(Money.franc(5).equals(Money.dollar(5))); 
 } 



Test-driven development  49 of 133 

The test we wrote forcing us to compare currencies instead of classes only makes 
sense if there are multiple classes. Since we are trying to eliminate the Franc class, a 
test to ensure that the system works if there is a Franc class is a burden, not a help. 
Away testDifferentClassEquality() goes, and Franc goes with it. 

To do: 
$5 + 10 CHF = $10 if CHF:USD is 2:1 
$5 * 2 = $10 
Make “amount” private 
Dollar side-effects? 
Money rounding? 
Equals() 
HashCode() 
Equal null 
Equal object 
5 CHF * 2 = 10 CHF 
Dollar/Franc duplication 
Common equals 
Common times 
Francs != Dollars 
Currency? 
Delete testFrancMultiplication? 

Similarly, there are separate tests for dollar and franc multiplication. Looking at the 
code, we can see there is no difference in the logic at the moment based on the 
currency (there was a difference when there were two classes). We can delete 
testFrancMultiplication() without losing any confidence in the behavior of the system. 

To do: 
$5 + 10 CHF = $10 if CHF:USD is 2:1 
$5 * 2 = $10 
Make “amount” private 
Dollar side-effects? 
Money rounding? 
Equals() 
HashCode() 
Equal null 
Equal object 
5 CHF * 2 = 10 CHF 
Dollar/Franc duplication 
Common equals 
Common times 
Francs != Dollars 
Currency? 
Delete testFrancMultiplication? 

Multiplication in place, we are ready to tackle addition. First, to review, we: 

• Reconciled two methods (times()) by first inlining the methods they called and 
then replacing constants with variables 

• Wrote a toString() without a test just to help us debug 

• Tried a change (returning Money instead of Franc) and let the tests tell us 
whether it worked 



Test-driven development  50 of 133 

• Backed out an experiment and wrote another test. Making the test work made 
the experiment work. 

• Finished gutting subclasses and deleted them 

• Eliminated tests that made sense with the old code structure but were 
redundant with the new code structure 



Test-driven development  51 of 133 

Addition, Finally 
It’s a new day, and our to-do list is getting a little cluttered, so we’ll copy the pending 
items to a fresh list: 

To do: 
$5 + 10 CHF = $10 if CHF:USD is 2:1 

(I like physically copying to-do items to a new list. If there are lots of little items, I 
tend to just take care of them rather than copy them. Little stuff that otherwise might 
build up gets taken care of just because I’m lazy. Play to your strengths.) 

I’m not sure how to write the story of the whole addition, so we’ll start with a simpler 
example—$5 + $5 = $10. 

To do: 
$5 + 10 CHF = $10 if CHF:USD is 2:1 
$5 + $5 = $10 

 publicpublic voidvoid testSimpleAddition() { 

  Money sum= Money.dollar(5).plus(Money.dollar(5)); 

  assertEquals(Money.dollar(10), sum); 

 } 

We could fake the implementation by just return “Money.dollar(10)”, but the 
implementation seems obvious. We’ll try: 

MoneyMoney  

 Money plus(Money addend) { 

  returnreturn newnew Money(amount + addend.amount, currency); 

 } 

(In general, I will begin speeding up the implementations to save trees and keep your 
interest. Where the design isn’t obvious I will still fake the implementation and 
refactor. I hope you will see through this how TDD gives you control over the size of 
steps.) 

Having said that I was going to go much faster, I will immediately go much slower, 
not in getting the tests working, but in writing the test itself. There are times and tests 
that call for careful thought. How are we going to represent multi-currency arithmetic? 
This is one of those times for careful thought. 

The most difficult design constraint is that we would like most of the code in the 
system to be unaware that it is (potentially) dealing with multiple currencies. One 
possible strategy is to immediately convert all money values into a reference currency 
(I’ll let you guess which reference currency American imperialist pig programmers 
generally choose). However, this doesn’t allow exchange rates to vary easily. 

Instead we would like a solution that lets us conveniently represent multiple exchange 
rates, and still allows most arithmetic-like expressions to look like, well, arithmetic. 

Objects to the rescue. When the object you have doesn’t behave like you want, make 
another object with the same external protocol (an Imposter), but a different 
implementation. 



Test-driven development  52 of 133 

This probably sounds a bit like magic. How do you know to think of creating an 
imposter here? I won’t kid you—there is no formula for flashes of design insight. 
Ward came up with the “trick” a decade ago and I haven’t seen it independently 
duplicated yet, so it must be a pretty tricky trick. TDD can’t guarantee that you will 
have flashes of insight at the right moment. However, confidence-giving tests and 
carefully factored code give you preparation for insight, and preparation for applying 
that insight when it comes. 

The solution is to create an object that acts like a Money, but represents the sum of 
two Moneys. I’ve tried several different metaphors to explain this idea. One is to treat 
the sum like a Wallet—you can have several different notes of different 
denominations and currencies in the same wallet. 

Another metaphor is “expressions”, as in “(2 + 3) * 5”, or in our case “($2 + 3 CHF) * 
5”. A Money is the atomic form of an expression. Operations result in Expressions, 
one of which will be a Sum. Once the operation (like adding up the value of a 
portfolio) is complete, the resulting Expression can be reduced back a single currency 
given a set of exchange rates. 

Applying this metaphor to our test, we know what we end up with: 
 publicpublic voidvoid testSimpleAddition() { 

  … 

  assertEquals(Money.dollar(10), reduced); 

 } 

The reduced Expression is created by applying exchange rates to an Expression. What 
in the real world applies exchange rates? A bank. We would like to be able to write: 

 publicpublic voidvoid testSimpleAddition() { 

  … 

  Money reduced= bank.reduce(sum, "USD"); 

  assertEquals(Money.dollar(10), reduced); 

 } 

(It’s a little weird to be mixing the “bank” metaphor and the “expression” metaphor. 
We’ll get the whole story told, and then we’ll see what we can do about literary 
value.) 

The Bank in our simple example doesn’t really need to do anything. As long as we 
have an object we’re okay: 

 publicpublic voidvoid testSimpleAddition() { 

  … 

  Bank bank= newnew Bank(); 

  Money reduced= bank.reduce(sum, "USD"); 

  assertEquals(Money.dollar(10), reduced); 

 } 

The sum of two Moneys should be an Expression: 



Test-driven development  53 of 133 

 publicpublic voidvoid testSimpleAddition() { 

  … 

  Expression sum= five.plus(five); 

  Bank bank= newnew Bank(); 

  Money reduced= bank.reduce(sum, "USD"); 

  assertEquals(Money.dollar(10), reduced); 

 } 

At least we know for sure how to get five dollars: 
 publicpublic voidvoid testSimpleAddition() { 

  Money five= Money.dollar(5); 

  Expression sum= five.plus(five); 

  Bank bank= newnew Bank(); 

  Money reduced= bank.reduce(sum, "USD"); 

  assertEquals(Money.dollar(10), reduced); 

 } 

How do we get this to compile? We need an interface Expression (we could have a 
class, but an interface is even lighter weight): 

ExpressionExpression  

interfaceinterface Expression 

Money.plus() needs to return an Expression: 
MoneyMoney  

 Expression plus(Money addend) { 

  returnreturn newnew Money(amount + addend.amount, currency); 

 } 

Which means that Money has to implement Expression (which is easy, since there are 
no operations yet): 

MoneyMoney  

classclass Money implementsimplements Expression 

We need an empty Bank class: 
BankBank  

classclass Bank 

Which stubs out reduce(): 
BankBank  

 Money reduce(Expression source, String to) { 

  returnreturn nullnull; 

 } 

Now it compiles, and fails miserably. Hooray! Progress! We can easily fake the 
implementation, though: 

BankBank  

 Money reduce(Expression source, String to) { 

  returnreturn Money.dollar(10); 

 } 

We’re back to a green bar, and ready to refactor. First, reviewing, we: 



Test-driven development  54 of 133 

• Reduced a big test to a smaller test that represented progress ($5 + 10 CHF to 
$5 + $5) 

• Thought carefully about the possible metaphors for our computation 

• Re-wrote our previous test based on our new metaphor 

• Got the test to compile quickly 

• Made it run 

• Looked forward with a bit of trepidation to the refactoring necessary to make 
the implementation real 



Test-driven development  55 of 133 

Make It 
We can’t mark our test for $5 + $5 done until we’ve removed all the duplication. We 
don’t have code duplication, but we do have data duplication. The $10 in the fake 
implementation: 

BankBank  

 Money reduce(Expression source, String to) { 

  returnreturn Money.dollar(10)Money.dollar(10); 

 } 

is really the same as the “$5 + $5” in the test: 
 publicpublic voidvoid testSimpleAddition() { 

  Money five= Money.dollar(5); 

  Expression sum= five.plus(five) five.plus(five); 

  Bank bank= newnew Bank(); 

  Money reduced= bank.reduce(sum, "USD"); 

  assertEquals(Money.dollar(10), reduced); 

 } 

Before when we’ve had a fake implementation, it’s been obvious how to work 
backwards to the real implementation. It’s just been a matter of replacing constants 
with variables. This time, though, it’s not obvious to me how to work backwards. So, 
even though it feels a little speculative, we’ll work forwards. 

First, Money.plus() needs to return a real Expression, a Sum, not just a Money 
(perhaps later we’ll optimize the special case of adding two identical currencies, but 
that’s later.) 

To do: 
$5 + 10 CHF = $10 if CHF:USD is 2:1 
$5 + $5 = $10 
Return Money from $5 + $5 

The sum of two Moneys should be a Sum: 
 publicpublic voidvoid testPlusReturnsSum() { 

  Money five= Money.dollar(5); 

  Expression result= five.plus(five); 

  Sum sum= (Sum) result; 

  assertEquals(five, sum.augend); 

  assertEquals(five, sum.addend); 

 } 

(Did you know that the first argument to addition is called the “augend”? I didn’t until 
I was writing this. Geek joy.) 

The test above is not one I would expect to live a long time. It is deeply concerned 
with the implementation of our operation, not its externally visible behavior. However, 
if we make it work, we expect we’ve moved one step closer to our goal. 

To get it to compile, all we need is a Sum class with two fields, augend and addend: 



Test-driven development  56 of 133 

SumSum  

classclass Sum { 

 Money augend; 

 Money addend; 

} 

This gives us a ClassCastException, because Money.plus() is returning a Money, not a 
Sum: 

MoneyMoney  

 Expression plus(Money addend) { 

  returnreturn newnew Sum(thisthis, addend); 

 } 

Sum needs a constructor: 
SumSum  

 Sum(Money augend, Money addend) { 

 } 

And Sum needs to be a kind of Expression: 
SumSum  

classclass Sum implementsimplements Expression 

Now the system compiles again, but the test is still failing, this time because the Sum 
constructor is not setting the fields (we could fake the implementation by initializing 
the fields, but I said I’d start going faster): 

SumSum  

 Sum(Money augend, Money addend) { 

  ththisis.augend= augend; 

  thisthis.addend= addend; 

 } 

Now Bank.reduce() is being passed a Sum. If the currencies in the Sum are all the 
same, and the target currency is also the same, the result should be a Money whose 
amount is the sum of the amounts: 

 publicpublic voidvoid testReduceSum() { 

  Expression sum= newnew Sum(Money.dollar(3), Money.dollar(4)); 

  Bank bank= newnew Bank(); 

  Money result= bank.reduce(sum, "USD"); 

  assertEquals(Money.dollar(7), result);  

 } 

I carefully chose parameters that would break the existing test. When we reduce a 
Sum, the result (under these simplified circumstances) should be a Money whose 
amount is the sum of the amounts of the two Moneys and whose currency is the 
currency to which we are reducing. 



Test-driven development  57 of 133 

BankBank  

 Money reduce(Expression source, String to) { 

  Sum sum= (Sum) source; 

  intint amount= sum.augend.amount + sum.addend.amount; 

  returnreturn newnew Money(amount, to); 

 } 

This is immediately ugly on two counts: 

• The cast. This code should work with any Expression. 

• The public fields, and two levels of references at that 

Easy enough to fix. First, we can move the body of the method to Sum and get rid of 
some of the visible fields. We are “sure” we will need the Bank as a parameter in the 
future, but this pure, simple refactoring, so we leave it out (actually, just now I put it in 
because I “knew” I would need it—shame, shame on me.) 

BankBank  

 Money reduce(Expression source, String to) { 

  Sum sum= (Sum) source; 

  returnreturn sum.reduce(to); 

 } 

SumSum  

 publicpublic Money reduce(String to) { 

  intint amount= augend.amount + addend.amount; 

  returnreturn newnew Money(amount, to); 

 } 

(Which brings up the point of how we are going to implement, er… test, 
Bank.reduce() when the argument is a Money.) 

To do: 
$5 + 10 CHF = $10 if CHF:USD is 2:1 
$5 + $5 = $10 
Return Money from $5 + $5 
Bank.reduce(Money) 

Let’s write that test, since the bar is green and there is nothing else obvious to do with the 
code above: 



Test-driven development  58 of 133 

  publicpublic voidvoid testReduceMoney() { 

  Bank bank= newnew Bank(); 

  Money result= bank.reduce(Money.dollar(1), "USD"); 

  assertEquals(Money.dollar(1), result); 

 } 

BankBank  

 Money reduce(Expression source, String to) { 

    if (source instanceof Money) return (Money) source;if (source instanceof Money) return (Money) source;  

  Sum sum= (Sum) source; 

  returnreturn sum.reduce(to); 

 } 
To do: 
$5 + 10 CHF = $10 if CHF:USD is 2:1 
$5 + $5 = $10 
Return Money from $5 + $5 
Bank.reduce(Money) 
Reduce Money with conversion 

Ugly, ugly, ugly. However, we now have a green bar, and refactoring is possible. Any 
time you are checking classes explicitly, you should be using polymorphism instead. 
Since Sum implements reduce(String), if Money implemented it, too, we could then add 
it to the Expression interface. 

BankBank  

 Money reduce(Expression source, String to) { 

  ifif (source instanceofinstanceof Money) returnreturn (Money) source.reduce(to); 

  Sum sum= (Sum) source; 

  returnreturn sum.reduce(to); 

 } 

MoneyMoney  

 publicpublic Money reduce(String to) { 

  returnreturn thisthis; 

 } 

If we add reduce(String) to the Expression interface: 
ExpressionExpression  

 Money reduce(String to); 

We can eliminate all those ugly casts and class checks: 



Test-driven development  59 of 133 

BankBank  

 Money reduce(Expression source, String to) { 

  returnreturn source.reduce(to); 

 } 
To do: 
$5 + 10 CHF = $10 if CHF:USD is 2:1 
$5 + $5 = $10 
Return Money from $5 + $5 
Bank.reduce(Money) 
Reduce Money with conversion 

I’m not entirely happy with the name of the method being the same in Expression and in 
Bank, but having different parameter types. I’ve never found a satisfactory general 
solution to this problem in Java. In languages with keyword parameters, communicating 
the difference between Bank.reduce(Expression, String) and Expression.reduce(String) is 
well supported by the language syntax. With positional parameters, it’s not so easy to 
make the code speak for you about how the two are different. 

To do: 
$5 + 10 CHF = $10 if CHF:USD is 2:1 
$5 + $5 = $10 
Return Money from $5 + $5 
Bank.reduce(Money) 
Reduce Money with conversion 
Reduce(Bank, String) vs 

reduce(String) 

Next we’ll actually exchange one currency for another. First, reviewing, we: 

• Didn’t mark a test as done because the duplication had not been eliminated 

• Worked forwards instead of backwards to realize the implementation 

• Wrote a test to force the creation of an object we expected to need later (Sum) 

• Started implementing faster (the Sum constructor) 

• Implemented code with casts in one place, then moved the code where it 
belonged once the test were running 

• Introduced polymorphism to eliminate explicit class checking 



Test-driven development  60 of 133 

Change 
Change is worth embracing (especially if you have a book out with “embrace change” 
in the title). Here, though, we are thinking about a much simpler form of change—we 
have 2 francs and we want a dollar. That sounds like a test case already: 

 publicpublic voidvoid testReduceMoneyDifferentCurrency() { 

  Bank bank= newnew Bank(); 

  bank.addRate("CHF", "USD", 2); 

  Money result= bank.reduce(Money.franc(2), "USD"); 

  assertEquals(Money.dollar(1), result); 

 } 

When I go from francs to dollars, I divide by two (we’re still studiously ignoring all 
those nasty numerical problems.) We can make the bar green in one piece of ugliness: 

MoneyMoney  

 publicpublic Money reduce(String to) { 

  intint rate = (currency.equals("CHF") & to.equals("USD")) 

   ? 2 

   : 1; 

  returnreturn newnew Money(amount / rate, to); 

 } 

Now, suddenly, Money knows about exchange rates. Yuck. The Bank should be the 
only place we care about exchange rates. We’ll have to pass the Bank as a parameter 
to Expression.reduce() (see, we knew we would need it, and we were right. In the 
words of the grandfather in The Princess Bride, “You’re very clever…”) First the 
caller: 

BankBank  

 Money reduce(Expression source, String to) { 

  returnreturn source.reduce(thisthis, to); 

 } 

Then the implementors: 



Test-driven development  61 of 133 

ExpressionExpression  

 Money reduce(Bank bank, String to); 

SumSum  

 publicpublic Money reduce(Bank bank, String to) { 

  intint amount= augend.amount + addend.amount; 

  returnreturn newnew Money(amount, to); 

 } 

MoneyMoney  

 publicpublic Money reduce(Bank bank, String to) { 

  intint rate = (currency.equals("CHF") & to.equals("USD")) 

   ? 2 

   : 1; 

  returnreturn newnew Money(amount / rate, to); 

 } 

The methods have to be public because methods in interfaces have to be public (for 
some excellent reason, I’m sure.)  

Now we can calculate the rate in the Bank: 
BankBank  

 intint rate(String from, String to) { 

  returnreturn (from.equals("CHF") & to.equals("USD")) 

   ? 2 

   : 1; 

 } 

And ask the bank for the right rate: 
MoneyMoney  

 publicpublic Money reduce(Bank bank, String to) { 

  intint rate = bank.rate(currency, to); 

  returnreturn newnew Money(amount / rate, to); 

 } 

That pesky “2” still appears in both the test and the code. To get rid of it, we need to 
keep a table of rates in the Bank and look up a rate when we need it. We could use a 
Hashtable mapping pairs of currencies to rates. Can we use a two element array 
containing the two currencies as the key? Does Array.equals() check to see if the 
elements are equal? 

 publicpublic voidvoid testArrayEquals() { 

  assertEquals(newnew Object[] {"abc"}, newnew Object[] {"abc"}); 

 } 

Nope. The test fails, so we have to create a real object for the key: 



Test-driven development  62 of 133 

PairPair  

 private class Pair { 

  private String from; 

  private String to; 

   

  Pair(String from, String to) { 

   this.from= from; 

   this.to= to; 

  } 

 } 

Because we are using Pairs as keys, we have to implement equals() and hashCode(). 
I’m not going to write tests for these, because we are writing this code in the context 
of a refactoring. If we get to the payoff of the refactoring and all the tests run, we 
expect the code to have been exercised. If I was programming with someone who 
didn’t see exactly where we were going with this, or if the logic became the least bit 
complex, I would begin writing separate tests. 

PairPair  

  publicpublic booleanboolean equals(Object object) { 

   Pair pair= (Pair) object; 

   returnreturn from.equals(pair.from) & to.equals(pair.to); 

  } 

   

  publipublicc intint hashCode() { 

   returnreturn 0; 

  } 

“0” is a terrible hash value, but it has the advantage that it’s easy to implement and it 
will get us running quickly. Currency lookup will look like linear search. When we get 
lots of currencies, we can do a more thorough job with real usage data. 

We need somewhere to store the rates: 
BankBank  

 privateprivate Hashtable rates= newnew Hashtable(); 

We need to set the rate when told: 
BankBank  

 voidvoid addRate(String from, String to, intint rate) { 

  rates.put(newnew Pair(from, to), newnew Integer(rate)); 

 } 

And then we can look up the rate when asked: 



Test-driven development  63 of 133 

BankBank  

 intint rate(String from, String to) { 

  Integer rate= (Integer) rates.get(newnew Pair(from, to)); 

  returnreturn rate.intValue(); 

 } 

Wait a minute!? We got a red bar. What happened? A little snooping around tells us 
that if we ask for the rate from USD to USD, we expect the value to be 1. Since this 
was a surprise, let’s write a test to communicate what we discovered: 

 publicpublic voidvoid testIdentityRate() { 

  assertEquals(1, newnew Bank().rate("USD", "USD")); 

 } 

Now we have three errors, but we expect them all to be fixed with one change: 
BankBank  

 intint rate(String from, String to) { 

  ifif (from.equals(to)) returnreturn 1; 

  Integer rate= (Integer) rates.get(newnew Pair(from, to)); 

  returnreturn rate.intValue(); 

 } 

Green bar! 
To do: 
$5 + 10 CHF = $10 if CHF:USD is 2:1 
$5 + $5 = $10 
Return Money from $5 + $5 
Bank.reduce(Money) 
Reduce Money with conversion 
Reduce(Bank, String) vs 

reduce(String) 

Next we’ll implement our last big test, $5 + 10 CHF. Several significant techniques 
have slipped into this chapter: 

• Added a parameter, in seconds, that we expected we would need 

• Factored out the data duplication between code and tests 

• Wrote a test (testArrayEquals) to check an assumption about the operation of 
Java 

• Introduced a private helper class without distinct tests of its own 

• Made a mistake in a refactoring and chose to forge ahead, writing another test 
to isolate the problem 



Test-driven development  64 of 133 

Mixed Currencies 
Now we are finally ready to add the test that started it all, $5 + 10 CHF: 

 publicpublic voidvoid testMixedAddition() { 

  Expression fiveBucks= Money.dollar(5); 

  Expression tenFrancs= Money.franc(10); 

  Bank bank= newnew Bank(); 

  bank.addRate("CHF", "USD", 2); 

  Money result= bank.reduce(fiveBucks.plus(tenFrancs), "USD"); 

  assertEquals(Money.dollar(10), result); 

 } 

This is what we’d like to write. Unfortunately, there are a host of compile errors. 
When we were generalizing from Money to Expression, we left a lot of loose ends 
laying around. I was worried about them, but I didn’t want to disturb you. It’s 
disturbing time, now. 

We won’t be able to get the test above to compile quickly. We will make the first 
change that will ripple to the next and the next. We have two paths forward. We can 
make it work quickly by writing a more specific test and then generalizing, or we can 
trust our compiler not to let us make mistakes. I’m with you—let’s go slow (in 
practice I would probably just fix the rippling changes one at a time). 

 publicpublic voidvoid testMixedAddition() { 

  MoneyMoney fiveBucks= Money.dollar(5); 

  MoneyMoney tenFrancs= Money.franc(10); 

  Bank bank= newnew Bank(); 

  bank.addRate("CHF", "USD", 2); 

  Money result= bank.reduce(fiveBucks.plus(tenFrancs), "USD"); 

  assertEquals(Money.dollar(10), result); 

 } 

The test doesn’t work. We get 15 USD instead of 10 USD. It’s as if Sum.reduce() isn’t 
reducing the arguments. It isn’t: 

SumSum  

 publicpublic Money reduce(Bank bank, String to) { 

  intint amount= augend.amount + addend.amount; 

  returnreturn newnew Money(amount, to); 

 } 

If we reduce both of the arguments, the test should pass: 



Test-driven development  65 of 133 

SumSum  

 publicpublic Money reduce(Bank bank, String to) { 

  intint amount= augend.reduce(bank, to)reduce(bank, to).amount + addend.reduce(bank, reduce(bank, 

to)to).amount; 

  returnreturn newnew Money(amount, to); 

 } 

And it does. Now we can begin pecking away at Moneys that should be Expressions. 
To avoid the ripple effect, we’ll start at the edges and work our way back to the test 
case. For example, the augend and addend can now be Expressions: 

SumSum  

 ExpressionExpression augend; 

 ExpressionExpression addend; 

The arguments to the Sum constructor can also be Expressions: 
SumSum  

 Sum(ExpressionExpression augend, ExpressionExpression addend) { 

  thisthis.augend= augend; 

  thisthis.addend= addend; 

 } 

(Sum is starting to remind me of Composite, but not so much that I want to generalize. 
The moment we want a Sum with other than two parameters, though, I’m ready to 
transform it.) So much for Sum. How about Money? 

The argument to plus() can be an Expression: 
MoneyMoney  

 ExpressionExpression plus(ExpressionExpression addend) { 

  returnreturn newnew Sum(thisthis, addend); 

 } 

Times() can return an Expression: 
MoneyMoney  

 ExpressionExpression times(intint multiplier) { 

  returnreturn newnew Money(amount * multiplier, currency); 

 } 

This suggests that Expression should include the operations plus() and times(). That’s 
all for Money. We can now change the argument to plus() in our test case: 



Test-driven development  66 of 133 

 publicpublic voidvoid testMixedAddition() { 

  Money fiveBucks= Money.dollar(5); 

  ExpressionExpression tenFrancs= Money.franc(10); 

  Bank bank= newnew Bank(); 

  bank.addRate("CHF", "USD", 2); 

  Money result= bank.reduce(fiveBucks.plus(tenFrancs), "USD"); 

  assertEquals(Money.dollar(10), result); 

 } 

When we change fiveBucks to an Expression, we have to make several changes. 
Fortunately we have the compiler’s to-do list to keep us focused. First we make the 
change: 

 publicpublic voidvoid testMixedAddition() { 

  ExpressionExpression fiveBucks= Money.dollar(5); 

  Expression tenFrancs= Money.franc(10); 

  Bank bank= newnew Bank(); 

  bank.addRate("CHF", "USD", 2); 

  Money result= bank.reduce(fiveBucks.plus(tenFrancs), "USD"); 

  assertEquals(Money.dollar(10), result); 

 } 

We are politely told that plus() is not defined for Expressions. We define it: 
ExpressionExpression  

 Expression plus(Expression addend); 

And then we have to add it to Money and Sum. Money? Yes, it has to be public in 
Money: 

MoneyMoney  

 publicpublic Expression plus(Expression addend) { 

  returnreturn newnew Sum(thisthis, addend); 

 } 

We’ll just stub out the implementation in Sum, and add it to our list: 
SumSum  

 publicpublic Expression plus(Expression addend) { 

  returnreturn nullnull; 

 } 

Now that the program compiles, the tests all run. 
To do: 
$5 + 10 CHF = $10 if CHF:USD is 2:1 
$5 + $5 = $10 
Return Money from $5 + $5 
Bank.reduce(Money) 
Reduce Money with conversion 
Reduce(Bank, String) vs 

reduce(Expression, String) 
Expression.plus 
Sum.plus 
Expression.times 

We are ready to finish generalizing Money to Expression, but first we’ll review. We: 



Test-driven development  67 of 133 

• Wrote the test we wanted, then backed off to make it achievable in one step 

• Generalized (used a more abstract declaration) from the leaves back to the root 
(the test case) 

• Followed the compiler when we made a change (Expression fiveBucks) which 
caused changes to ripple (added plus() to Expression, etc.) 



Test-driven development  68 of 133 

Abstraction, Finally 
We need to implement Sum.plus() to finish Expression.plus, and then we need 
Expression.times(), and then we’re finished with the whole example. Here’s the test 
for Sum.plus(): 

 publicpublic voidvoid testSumPlusMoney() { 

  Expression fiveBucks= Money.dollar(5); 

  Expression tenFrancs= Money.franc(10); 

  Bank bank= newnew Bank(); 

  bank.addRate("CHF", "USD", 2); 

  Expression sum= newnew Sum(fiveBucks, tenFrancs).plus(fiveBucks); 

  Money result= bank.reduce(sum, "USD"); 

  assertEquals(Money.dollar(15), result); 

 } 

We could have created a Sum by adding fiveBucks and tenFrancs, but the form above, 
where we explicitly create the Sum, communicates more directly. You are writing 
these tests not just to make your experience of programming more fun and rewarding, 
but also as a Rosetta Stone for future generations to appreciate your genius. Think, oh 
think, of your readers. 

The test, in this case, is longer than the code. The code is the same as the code in 
Money (do I hear an abstract class in the distance?): 

SumSum  

 publicpublic Expression plus(Expression addend) { 

  returnreturn newnew Sum(thisthis, addend); 

 } 

You will likely end up with about the same number of lines of test code as model code 
when TDDing. For TDD to make economic sense, either you will have to be able to 
write twice as many lines per day as before, or write half as many lines for the same 
functionality. You’ll have to measure and see what effect TDD has on your own 
practice. Be sure to factor debugging, integrating, and explaining time into your 
metrics, though. 

If we can make Sum.times() work, then declaring Expression.times() will be one 
simple step. The test is: 



Test-driven development  69 of 133 

 publicpublic voidvoid testSumTimes() { 

  Expression fiveBucks= Money.dollar(5); 

  Expression tenFrancs= Money.franc(10); 

  Bank bank= newnew Bank(); 

  bank.addRate("CHF", "USD", 2); 

  Expression sum= newnew Sum(fiveBucks, tenFrancs).times(2); 

  Money result= bank.reduce(sum, "USD"); 

  assertEquals(Money.dollar(20), result); 

 } 

Again, the test is longer than the code (you JUnit geeks will know how to fix that—the 
rest of you will have to read Fixture): 

SumSum  

 Expression times(intint multiplier) { 

  returnreturn newnew Sum(augend.times(multiplier), addend.times(multiplier)); 

 } 

Since we abstracted augend and addend to Expressions in the last chapter, we now 
have to declare times() in Expression before the code will compile: 

ExpressionExpression  

 Expression times(intint multiplier); 

Which forces us to raise the visibility of Money.times() and Sum.times(): 
SumSum  

 publicpublic Expression times(intint multiplier) { 

  returnreturn newnew Sum(augend.times(multiplier), addend.times(multiplier)); 

 } 

MoneyMoney  

 publicpublic Expression times(iintnt multiplier) { 

  returnreturn newnew Money(amount * multiplier, currency); 

 } 

And it works. 
 To do: 
$5 + 10 CHF = $10 if CHF:USD is 2:1 
$5 + $5 = $10 
Return Money from $5 + $5 
Bank.reduce(Money) 
Reduce Money with conversion 
Reduce(Bank, String) vs 

reduce(Expression, String) 
Expression.plus 
Sum.plus 
Expression.times 

The only loose end to tie up is to experiment with returning a Money when we add $5 
+ $5. The test would be: 



Test-driven development  70 of 133 

 publicpublic voidvoid testPlusSameCurrencyReturnsMoney() { 

  Expression sum= Money.dollar(1).plus(Money.dollar(1)); 

  assertTrue(sum instanceofinstanceof Money); 

 } 

This test is a little ugly, because it is testing the guts of the implementation, not the 
externally visible behavior of the objects. However, it will drive us to make the 
changes we need to make, and this is only an experiment, after all. Here is the code we 
would have to modify to make it work: 

MoneyMoney  

 publicpublic Expression plus(Expression addend) { 

  returnreturn newnew Sum(thisthis, addend); 

 } 

There is no obvious, clean way (not to me, anyway, I’m sure you could think of 
something) to check the currency of the argument if and only if it is a Money. The 
experiment fails, we delete the test (which we didn’t like much anyway), and away we 
go. 

To do: 
$5 + 10 CHF = $10 if CHF:USD is 2:1 
$5 + $5 = $10 
Return Money from $5 + $5 
Bank.reduce(Money) 
Reduce Money with conversion 
Reduce(Bank, String) vs 

reduce(Expression, String) 
Expression.plus 
Sum.plus 
Expression.times 

The final item on the list, finding a better name for the helper method for 
Bank.reduce(), still isn’t obvious. Our design can only reflect our understanding. Less 
than perfect understanding implies a less than perfect design, and there is no such 
thing as perfect understanding. We still have to ship. A moment of silence, then, for 
our less than perfect design… Thank you. Now ship it. 

To do: 
$5 + 10 CHF = $10 if CHF:USD is 2:1 
$5 + $5 = $10 
Return Money from $5 + $5 
Bank.reduce(Money) 
Reduce Money with conversion 
Reduce(Bank, String) vs 

reduce(Expression, String) 
Expression.plus 
Sum.plus 
Expression.times 

Reviewing, we: 

• Wrote a test with future readers in mind 

• Suggested an experiment comparing TDD with your current programming 
style 



Test-driven development  71 of 133 

• Once again had changes of declarations ripple through the system, and once 
again followed the compiler’s advice to fix them 

• Tried a brief experiment, then discarded it when it didn’t work out 



Test-driven development  72 of 133 

Money Retrospective 
Let’s take a look back at the Money example, both the process we used and the results. 
We will look at: 

• Metaphor—the dramatic affect metaphor has on the structure of the design 

• JUnit Usage—when we ran tests and how we used JUnit 

• Code Metrics—a numerical abstract of the resulting code 

• Process—we say red/green/refactor, but how much work goes into each step? 

• Test Quality—how do TDD tests stack up by conventional test metrics? 

Metaphor 
The biggest surprise in coding this example is how different it came out this time. I 
have programmed Money in production at least three times that I can think of. I have 
used it as an example in print another half dozen times. I have programmed it live on 
stage (relax, it’s not as exciting as it sounds…) another fifteen times. I coded another 
three or four times preparing for writing (I ripped out Section I and rewrote it based on 
early reviews.) Then, while I was writing this, I thought of using Expression as the 
metaphor and the design went in a completely different direction than it has gone 
before. 

I really didn’t expect the metaphor to be so powerful. A metaphor should just be a 
source of names, shouldn’t it? Apparently not. 

The metaphor Ward used for “several monies together with potentially different 
currencies” was a vector, like a mathematic vector where the coefficients were 
currencies instead of x2. I used MoneySum for a while, then MoneyBag (which is nice 
and physical), and finally Wallet (which is commoner in most folks’ experience). All 
of these metaphors imply that the collection of Money’s is flat. For example, “2 USD 
+ 5 CHF + 3 USD” would result in “5 USD + 5 CHF”. Two values with the same 
currency would be merged. 

The Expression metaphor freed me from a bunch of nasty issues about merging 
duplicated currencies. The code came out cleaner and clearer than I’ve ever seen it 
before. I’m concerned about the performance of Expressions, but I’m happy to wait 
until I see some usage statistics before I start optimizing. 

What if I got to rewrite everything I ever wrote 20 times? Would I keep finding insight 
and surprise every time? Is there some way to be more mindful as I program so I can 
squeeze all the insight out of the first three times? The first time? 



Test-driven development  73 of 133 

JUnit Usage 
I had JUnit keep a log while I was coding the Money example. I pressed the Run 
button precisely 125 times. Because I was writing at the same time as I was 
programming, the interval between runs isn’t representative, but during the times I 
was just programming I ran the tests about once a minute. Only once in that whole 
time was I surprised by either success or failure, and that was a refactoring done in 
haste. 

Here is a histogram of the time interval between test runs. The large number of large 
intervals is most likely because of the time I spent writing: 

0

5

10

15

20

25

30

35

40

45

50

0 1 < 5 < 10 >= 10

Series1

 

Code Statistics 
Here are some statistics on the code: Replace these with the real numbers 

 Functional Test 

Classes 5 1 

Functions (1) 22 15 

Lines (2) 91 89 

Cyclomatic complexity 
(3) 

1.04 1 

Lines/function 4.1 (4) 5.9 (5) 

1. Because we haven’t implemented the whole API, we can’t evaluate the absolute 
number of functions, or the number of functions per class, or lines per class. 
However, the ratios are instructive. There are roughly as many lines and functions 
in the test and functional code. 



Test-driven development  74 of 133 

2. The number of lines of test code can be reduced by extracting common fixtures. 
The rough correspondance between lines of model code and lines of test code will 
remain, however. 

3. Cyclomatic complexity is a measure of conventional flow complexity. Test 
complexity is 1 because there are no branches or loops in test code. Functional 
code complexity is low because of the heavy use of polymorphism as a substitute 
for explicit control flow. 

4. This includes the function header and trailing brace. 

5. Lines/function in the tests is inflated because we have not factored out common 
fixture-building code, as explained in the section on JUnit. 

Process 
The TDD cycle is: 

1. Write a test 

2. Make it compile 

3. Make it run 

4. Remove duplication 

Assuming that writing a test is a single step, how many changes does it take to 
compile, run, and refactor? (By change, I mean changing a method or class definition.) 
Here is the raw data: (Tufte, where are you when I need you?) 

Compile Run Refactor 

4 1 7 

1 2 0 

0 1 0 

0 1 0 

1 0 8 

0 0 6 

0 1 11 

3 2 28 

0 1 7 

1 1 0 

5 1 0 

5 1 0 

0 1 2 

0 1 5 



Test-driven development  75 of 133 

0 1 14 

0 1 0 

0 1 10 

0 1 0 

0 1 0 

Number of changes per refactoring

0

2

4

6

8

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Number of Changes

Occurrences

 

I expect that if we gathered data for a large project, the number of changes to compile 
and run would remain fairly small (they could be even smaller if the programming 
environment understood what the tests were trying to tell it—creating stubs 
automatically, for instance). However, (here’s at least a master’s thesis) the number of 
changes per refactoring should follow a “fat tail” or leptokurtotic profile, which is like 
a bell curve but with more large changes. Many measurements in nature follow this 
profile, like price changes in the stock market.1 

Test Quality 
You professional testers out there please give me some hints. What are tests that I 
missed that won’t run the first time? 

Measure Coverage 

Try defect insertion—Jester? 

                                                
1 Fractals and Scaling in Finance, Benoit Mandelbrot, editor, Springer-Verlag, 1997, ISBN 0387983635 



Test-driven development  76 of 133 

Example: xUnit 
TDD requires tests. I suppose that goes almost without say, but I’ll say it anyway, 
because it requires not just any tests, but a special kind of test. The tests must be: 
Draw influence diagrams for each of these 

• Easy to write for programmers—The basic value system of TDDs is that code 
is king. The question you want to answer at the end of the day is how much 
functionality did you get working? Test tools that require unfamiliar 
environments or languages will be less likely to be used, even if they are 
technically superior. 

• Easy to read for programmers—Unsynchronized documentation is scarce. The 
tests will be more valuable if they are readable, giving an interesting second 
perspective on the messages hidden in the source code. 

• Quick to execute—If the tests don’t run fast, they won’t get run. If they don’t 
get run, they won’t be valuable. If they aren’t valuable, they won’t continue to 
be written. Transitive closure—if the tests don’t run fast, they won’t get 
written. Any test tool that requires you to bring up the application is probably 
doomed before we start. 

• Order independent—If one test breaks, we’d like the other to succeed or fail 
independently. I once stopped automatically testing a system about the tenth 
time I received a panicked call about hundreds of failing tests that turned out to 
have a single source of error. 

• Deterministic—Tests that run one time and don’t run the next give negative 
information. The times they run you have unwarranted confidence in the 
system. This implies that TDD as described here is not suitable for the 
synchronization parts of multi-thread programming. 

• Piecemeal—We’d like to be able to write the tests a few at a time. 

• Composable—We’d like to be able to run tests in any combination. 

• Versionable—The source of the tests should play nicely with the rest of the 
source in the system. 

• A priori—We should be able to write the tests before they can possibly run. 

• Automatic—The tests should run with no human intervention. The cycle that 
kills quality is that when stress increases, errors also increase, which increases 
stress, which… Fully automated tools break this cycle. Every time you run a 
suite of tests successfully, your stress level goes down, so you are encouraged 
to run more tests when stress increases 

• Helpful when thinking about design—Writing the tests a priori should be a 
learning experience. Tools that operate within the programming concepts of 
the system can help with design, while tools that operate the system as a black 
box cannot help with structuring the internals. 



Test-driven development  77 of 133 

There are several possible testing tools we could use to write our tests. You can go 
through the list above and eliminate GUI-based tools, script-language-based tools, and 
simple-minded source code hacks on one or more counts. Such tools certainly have a 
place in the well-stocked testing-bag-o-tricks. However, they aren’t suitable for TDD. 

JUnit and its cousins are one way to negotiate this tricky, sometimes contradictory, set 
of constraints. The basic decisions are: 

• Tests are expressed in ordinary source code 

• The execution of each test is centered on an instance of a TestCase object 

• Each TestCase, before it executes the test, has the opportunity to create an 
environment for the test, and to destroy that environment when the test finishes 

• Groups of tests can be collected together, and their results of running them all 
will be reported collectively 

• We use the language’s exception handling mechanism to catch and report 
errors 



Test-driven development  78 of 133 

xUnit Test-First 
How, oh how, to talk about the implementation of a tool for test-driven development? 
Test-driven, naturally. 

The xUnit architecture comes out very smoothly in Python, so I’ll switch to Python for 
this section. Don’t worry, I’ll skip all the backtracking and boo-boos (which I will be 
making behind the scenes, never fear), so you’ll be left with just the good parts. I’ll 
also give a little commentary on Python, for those of you who haven’t seen it before. 

Now, writing a testing tool test-first, using itself as the tool, may seem a bit like 
performing brain surgery on yourself (“Don’t touch those motor centers—oh, too bad, 
game over”). It will get weird from time to time. However, the logic of the testing 
framework is more complicated than the wimpy money example above. You can read 
this chapter as a step towards test-driven development of “real” software. You can 
read this chapter as a computer-sciency exercise in self-referential programming. Or 
you can skip it, and move on to the next chapter, which gives a design-oriented 
overview of xUnit. 

First, we need to be able to create a TestCase and run a test method. For example: 
TestCase(“testMethod”).run(). We have a bootstrap problem. We are writing test cases 
to test a framework that we will be using to write the test cases. Since we don’t have a 
framework yet, we will have to verify the operation of the first tiny step by hand. 
Fortunately, we are well rested and relaxed and unlikely to make mistakes, which is 
why we will go in teensy tiny steps, verifying everything six ways from Sunday. 

We are still working test-first, of course. For our first proto-test, we need a little 
program that will print out true if a test method gets called, and false otherwise. If we 
have a test case that sets a flag inside the test method, we can print the flag after we’re 
done and make sure it’s correct. Once we have verified it manually, we can automate 
the process. 

Python executes statements as it reads a file, so we can start with invoking the test 
method manually: 

test= WasRun("testMethod") 

print test.wasRun 

test.testMethod() 

print test.wasRun 

We expect this to print “None” (None in Python is like null or nil, and stands for false, 
along with 0 and a few other objects) before the method was run, and “1” afterwards. 
It doesn’t, because we haven’t defined the class WasRun yet (test-first, test-first). 

WasRunWasRun  

class WasRun: 

pass 

(The keyword “pass” is used when there is no implementation of a class or method.) 
Now we are told we need an attribute “wasRun”. We need to create the attribute when 



Test-driven development  79 of 133 

we create the instance is created (the constructor is called “__init__” for convenience). 
In it, we set the wasRun flag false. 

WasRunWasRun  

class WasRun: 

def __init__(self, name): 

self.wasRun= None 

Running the file faithfully prints out “None”, then tells us we need to define the 
method “testMethod” (wouldn’t it be great if your IDE noticed this, provided you with 
a stub, and opened up an editor on it? Nah, too useful…) 

WasRunWasRun  

def testMethod(self): 

pass 

Now when we execute the file, we see “None” and “None”. We want to see “None” 
and “1”. We can get it by setting the flag in testMethod(): 

WasRunWasRun  

def testMethod(self): 

self.wasRun= 1 

Now we get the right answer (the green bar, hooray!). Now we have a bunch of 
refactoring to do, but as long as we maintain the green bar, we know we have made 
progress. 

Next we need to use our real interface, run(), instead of calling the test method 
directly. The test changes to: 

test= WasRun("testMethod") 

print test.wasRun 

test.run() 

print test.wasRun 

The implementation we can hardwire at the moment to: 
WasRunWasRun  

def run(self): 

self.testMethod() 

And our test is back to printing the right values again. Lots of refactoring has this 
feel—separating two parts so you can work on the separately. If they go back together 
when you are finished, fine, if not, you can leave them separate. In this case, we 
expect to create a superclass TestCase, eventually, but first we have to differentiate the 
parts of our one example. There is probably some clever analogy with mitosis in here, 
but I don’t know enough cellular biology to explain it. 

The next step is to dynamically invoke the testMethod. If the name attribute of the 
instance of WasRun is the string “testMethod”, then we can replace the direct call to 
“self.testMethod()” with “exec “self.” + self.name + “()”” (the dynamic invocation of 
methods is called Pluggable Selector, and should be used sparingly, and only if there 
are no reasonable alternatives). 



Test-driven development  80 of 133 

WasRunWasRun  

class WasRun: 

def __init__(self, name): 

self.wasRun= None 

self.name= name 

def run(self): 

exec "self." + self.name + "()" 

Here is another general pattern of refactoring—take code that works in one instance 
and generalize it to work in many by replacing constants with variables. Here the 
constant was hardwired code, not a data value, but the principle is the same. Test-first 
makes this work well by giving you running concrete examples from which to 
generalize, instead of having to generalize purely with reasoning. 

Now our little WasRun class is doing two distinct jobs—one is keeping track of 
whether a method was invoked or not, the other is dynamically invoking the method. 
Time for a little of that mitosis action. First we create an empty TestCase superclass, 
and make WasRun a subclass: 

TestCaseTestCase  

class TestCase: 

 pass 

WasRunWasRun  

class WasRun(TestCase): … 

Now we can move the “name” attribute up to the superclass: 
TestCaseTestCase  

 def __init__(self, name): 

  self.name= name 

WasRunWasRun  

 def __init__(self, name): 

  self.wasRun= None 

  TestCase.__init__(self, name) 

Finally, the run() method only uses attributes from the superclass, so it probably 
belongs in the superclass (I’m always looking to put the operations near the data.) 

TestCaseTestCase  

 def __init__(self, name): 

  self.name= name 

 def run(self): 

  exec "self." + self.name + "()" 

(Between every one of these steps I run the tests to make sure I’m getting the same 
answer.) 

We’re getting tired of looking to see that “None” and “1” are printed every time. 
Using the mechanism we just built, we can now write: 



Test-driven development  81 of 133 

TestCaseTestTestCaseTest  

class TestCaseTest(TestCase): 

 def testRunning(self): 

  test= WasRun("testMethod") 

  assert(not test.wasRun) 

  test.run() 

  assert(test.wasRun) 

TestCaseTest("testRunning").run() 

The body of the test is just the print statements turned into assertions, so you could 
just see what we have done as a complicated form of Extract Method. 

I’ll let you in on a little secret. I look at the size of the steps in the development above 
and it looks ridiculous. On the other hand, I tried it with bigger steps, probably six 
hours in all (I had to spend a lot of time looking up Python stuff), starting from scratch 
twice, and both times I thought I had the code working when I didn’t. This is about the 
worst possible case for TDD, because we are trying to get over the bootstrap step. 
However, the promise stands—you can work absolutely confidently in little tiny steps 
and go fast as a result. 

It is not necessary to work in such tiny steps as these. Once you’ve mastered TDD, 
you will be able to work in much bigger leaps of functionality between test cases. 
However, to master TDD you need to be able to work in such tiny steps when they are 
called for. 

Reviewing, we: 

• After a couple of hubris-fueled false starts, figured out how to begin with a tiny 
little step 

• Implemented functionality hardwired, then made it more general by replacing 
constants with variables 

• Used Pluggable Adaptor, which we promise not to use again for four months, 
minimum, because it makes code hard to statically analyze 

• Bootstrapped our testing framework, all in tiny steps 



Test-driven development  82 of 133 

Set the Table 
When you begin writing tests, you will discover a common pattern: 

1. Create some objects 

2. Stimulate them 

3. Check the results 

While the stimulation and checking steps are unique test-to-test, the creation step is 
often familiar. I have a 2 and 3. If I add them, I expect 5. If I subtract them, I expect –
1, if I multiply them, I expect 6. The stimulation and expected results are unique, the 2 
and the 3 don’t change. 

If this pattern repeats at different scales (and it does), then we’re faced with the 
question of how often do we want to create new objects. Looking back at our initial set 
of constraints, two constraints come into conflict: 

• Performance—we would like our tests to run as quickly as possible 

• Isolation—we would the success or failure of one test to be irrelevant to other 
tests 

For performance sake, assuming creating the objects (we’ll call them collectively the 
“fixture”) is expensive, we would like to create them once and then run lots of tests. 
But sharing objects between tests creates the possibility of test coupling. Test coupling 
can have an obvious nasty effect, where breaking one test causes the next ten to fail 
even though the code is correct. Test coupling can have a subtle really nasty effect, 
where the order of tests matters. If I run A before B, they both work, but if I run B 
before A, then A fails. Worse, the code exercised by B is wrong, but because A ran 
first, the test passes. 

Test coupling—don’t go there. Let’s assume for the moment we can make object 
creation fast enough. In this case, we would like to create the objects for a test every 
time the test runs. We’ve already seen a disguised form of this in WasRun, where we 
wanted to have a flag set to false before we ran the test. Taking steps towards this, first 
we need a test: 

TestCaseTestTestCaseTest  

 def testSetUp(self): 

  test= WasRun("testMethod") 

  test.run() 

  assert(test.wasSetUp) 

Running this, (by adding the last line “TestCaseTest("testSetUp").run()” to our file) 
Python politely informs us that there is no “wasSetUp” attribute. Of course not. We 
haven’t set it. This method should do it. 



Test-driven development  83 of 133 

WasRunWasRun  

 def setUp(self): 

  self.wasSetUp= 1 

It would if we were calling it. Calling setUp is the job of the TestCase, so we turn 
there: 

TestCaseTestCase  

 def setUp(self): 

  pass 

 def run(self): 

  self.setUp() 

  exec "self." + self.name + "()" 

That’s two steps to get a test case running, which is too many in such ticklish 
circumstances. Perhaps it will work. We’ll see. Yes, it does pass. However, if you 
want to learn something, try to figure out how we could have gotten the test to pass by 
changing no more than one method at a time. 

We can immediately use our new facility to shorten our tests. First, we can simplify 
WasRun by setting the wasRun flag in setUp: 

WWasRunasRun  

 def setUp(self): 

  self.wasRun= None 

  self.wasSetUp= 1 

We have to simplify testRunning not to check the flag before running the test. Are we 
willing to give up this much confidence in our code? Only if testSetUp is in place. 
This is a common pattern—one test can be simple iff another test is in place and 
running correctly. 

TestCaseTestTestCaseTest  

 def testRunning(self): 

  test= WasRun("testMethod") 

  test.run() 

  assert(test.wasRun) 

We can also simplify the tests themselves. In both cases we create an instance of 
WasRun, exactly that fixture we were talking about earlier. We can create the WasRun 
in setUp, and use it in the test methods. Each test method is run in a clean instance of 
TestCaseTest, so there is no way the two tests can be coupled (assuming the objects 
don’t interact in some incredibly ugly way, like setting global variables.) 



Test-driven development  84 of 133 

TestCaseTestTestCaseTest  

def setUp(self): 

self.test= WasRun("testMethod") 

def testRunning(self): 

self.test.run() 

assert(self.test.wasRun) 

def testSetUp(self): 

self.test.run() 

assert(self.test.wasSetUp) 

Garbage collectors take care of deallocating objects for us, but tests will from time to 
time also need to allocate external resources in setUp(). If we want the tests to remain 
independent, a test that allocates external resources should release them before it is 
done. Am I violating the “don’t code it until you need it” rule? Yes, a little. However, 
symmetry also cries for a tearDown() to go with setUp(), and I have a cool testing idea 
in mind I want to show you, so away we go. 

The simple minded way to write the test is to introduce yet another flag. All those 
flags are starting to bug me, and they are missing an important aspect of the 
methods—setUp() is called before the test method is run, and tearDown() is called 
afterwards. I’m going to change the testing strategy to keep a little log of what 
methods are called. By always appending to the log, we will preserve the order in 
which the methods are called. 

WasRunWasRun  

 def setUp(self): 

  self.wasRun= None 

  self.wasSetUp= 1 

  self.log= "setUp " 

Now we can change testSetUp() to look at the log instead of the flag: 
TestCaseTestTestCaseTest  

 def testSetUp(self): 

  self.test.run() 

  assert("setUp " == self.test.log) 

Now we can delete the wasSetUp flag. We can record the running of the test method, 
too: 

WasRunWasRun  

 def testMethod(self): 

  self.wasRun= 1 

  self.log= self.log + "testMethod " 

This breaks testSetUp, because the actual log contains “setUp testMethod ”. We 
change the expected value: 



Test-driven development  85 of 133 

TestCaseTestTestCaseTest  

 def testSetUp(self): 

  self.test.run() 

  assert("setUp testMethod " == self.test.log) 

Now this test is doing the work of both tests, so we can delete testRunning and rename 
testSetUp: 

TestCaseTestTestCaseTest  

 def setUp(self): 

  self.test= WasRun("testMethod") 

 def testTemplateMethod(self): 

  self.test.run() 

  assert("setUp testMethod " == self.test.log) 

Unfortunately, we are only using the instance if WasRun in one place, so we have to 
undo our clever setUp hack: 

TestCaseTestTestCaseTest  

 def testTemplateMethod(self): 

  test= WasRun("testMethod") 

  test.run() 

  assert("setUp testMethod " == test.log) 

Doing a refactoring based on a couple of early uses, then having to undo it soon after 
is fairly common. Some folks wait until they have three or four uses before refactoring 
because they don’t like undoing work. I prefer to spend my thinking cycles on design, 
so I just reflexively do the refactorings without worrying about whether I will have to 
undo them immediately. 

Now we are ready to implement tearDown(). Got you! We are ready to test for 
tearDown: 

TestCaseTestTestCaseTest  

 def testTemplateMethod(self): 

  test= WasRun("testMethod") 

  test.run() 

  assert("setUp testMethod tearDown " == test.log) 

This fails. Making it work is simple: 



Test-driven development  86 of 133 

TestCaseTestCase  

 def run(self, result): 

  result.testStarted() 

  self.setUp() 

  exec "self." + self.name + "()" 

  self.tearDown() 

WasRunWasRun  

 def setUp(self): 

  self.log= "setUp " 

 def testMethod(self): 

  self.log= self.log + "testMethod " 

 def tearDown(self): 

  self.log= self.log + "tearDown " 

Surprisingly, we get an error, not in WasRun, but in the TestCaseTest. We don’t have 
a no-op implementation of tearDown() in TestCase: 

TestCaseTestCase  

 def tearDown(self): 

  pass 

This time we got value out of using the same testing framework we are developing. 
Yippee… 



Test-driven development  87 of 133 

Counting  
I was going to implement making sure tearDown() is called regardless of exceptions 
during the test method. However, if we make a mistake implementing this, we won’t 
be able to see it because we have to catch Exceptions to make the test work (I know, I 
just tried it, and backed it out.) In general, the order of implementing the tests is 
important. The best general advice I can give on picking the next test is to find a test 
that will teach you something but which you have confidence you can make work. If 
you get that test working but get stuck on the next one, consider backing up two steps. 
It would be great if your IDE helped you with this, where you could instantly take 
snapshots of the world every time all the tests ran and quickly go backwards and 
forwards in time. 

What we would like to see is the results of running any number of tests—“5 run, 2 
failed, TestCaseTest.testFooBar—ZeroDivideException, MoneyTest.testNegation—
AssertionError”. Then if the tests stop getting called, or results stop getting reported, 
at least we have a chance of catching the error. Having the framework automatically 
report all the test cases it knows nothing about seems a bit far-fetched, at least for the 
first test case. 

TestCase.run() will return a TestResult object that records the results of running the 
test (singular for the moment, but we’ll get to that.) 

TestCaseTestTestCaseTest  

 def testResult(self): 

test= WasRun("testMethod") 

  result= test.run() 

  assert("1 run, 0 failed" == result.summary()) 

We’ll start with a stub implementation: 
TestResultTestResult  

class TestResult: 

 def summary(self): 

  return "1 run, 0 failed" 

and return a TestResult as the result of TestCase.run() 
TestCaseTestCase  

 def run(self): 

  self.setUp() 

  exec "self." + self.name + "()" 

  self.tearDown() 

  return TestResult() 

Now that the test runs, we can realize (as in “make real”) the implementation of 
summary() a little at a time. First, we can make the number of tests run a symbol 
constant: 



Test-driven development  88 of 133 

TestResultTestResult  

 def __init__(self): 

  self.runCount= 1 

 def summary(self): 

  return "%d run, 0 failed" % self.runCount 

But runCount shouldn’t be a constant, it should be computed by counting the number 
of tests run. We can initialize it to 0, then increment it every time a test is run. 

TestResultTestResult  

 def __init__(self): 

  self.runCount= 0 

 def testStarted(self): 

  self.runCount= self.runCount + 1 

 def summary(self): 

  return "%d run, 0 failed" % self.runCount 

We have to actually call this groovy new method: 
TestCaseTestCase  

 def run(self): 

  result= TestResult() 

  result.testStarted() 

  self.setUp() 

  exec "self." + self.name + "()" 

  self.tearDown() 

  return result 

We could turn the constant string “0” for the number of failed tests into a variable in 
the same way as we realized runCount. However, the tests don’t demand it. So, we 
write another test. 

TestCaseTestTestCaseTest  

 def testFailedResult(self): 

  test= WasRun("testBrokenMethod") 

  result= test.run() 

  assert("1 run, 1 failed", result.summary) 

Where: 
WasRunWasRun  

 def testBrokenMethod(self): 

  raise Exception 

The first thing we notice is that we aren’t catching the exception thrown by 
WasRun.testBrokenMethod. We would like to catch the exception and make a note in 
the result that the test failed. We’ll put this test on the shelf for the moment. 

We’ll write a smaller grained test to be sure that if we note a failed test, we print out 
the right results. 



Test-driven development  89 of 133 

TestCaseTestTestCaseTest  

 def testFailedResultFormatting(self): 

  result= TestResult() 

  result.testStarted() 

  result.testFailed() 

  assert("1 run, 1 failed" == result.summary()) 

These are the messages we expect to send to the result. If we can get the summary 
correct, then our problem is reduced to how to get these messages sent. Once they are 
sent, we expect the whole thing to work. The implementation is to keep a count of 
failures: 

TestResultTestResult  

 def __init__(self): 

  self.runCount= 0 

  self.errorCount= 0 

 def testFailed(self): 

  self.errorCount= self.errorCount + 1 

With the count correct (which I suppose we could have tested for, if we were taking 
teensy, weensy, tiny steps, but I won’t bother, the coffee has kicked in now), we can 
print correctly: 

TestResultTestResult  

 def summary(self): 

  return "%d run, %d failed" % (self.runCount, self.failureCount) 

Now we expect if we call testFailed() correctly, we will get the expected answer. 
When do we call it? When we catch an exception in the test method: 

TestCaseTestCase  

 def run(self): 

  result= TestResult() 

  result.testStarted() 

  self.setUp() 

  try: 

   exec "self." + self.name + "()" 

  except: 

   result.testFailed() 

  self.tearDown() 

  return result 

There is a subtlety hidden inside this method. The way it is written, if a disaster 
happens during setUp(), the exception won’t be caught. That can’t be what we mean—
we want our tests to run independently of each other. However, we need another test 
before we can change the code (I taught my oldest daughter TDD as her first 
programming style and she thinks the browser won’t work for new code unless there is 
a test broken. The rest of us have to muddle through reminding ourselves to write the 
tests.) That next test and its implementation are left as an exercise for the reader (sore 
fingers, again.) 



Test-driven development  90 of 133 

How Suite It Is 
We can’t leave xUnit without visiting TestSuite. The end of our file is looking pretty 
ratty: 

print TestCaseTest("testTemplateMethod").run().summary() 

print TestCaseTest("testResult").run().summary() 

print TestCaseTest("testFailedResultFormatting").run().summary() 

print TestCaseTest("testFailedResult").run().summary() 

Duplication is always a bad thing, unless you look at it as motivation to find the 
missing design element. What we would like here is the ability to compose tests and 
run them together (working hard to make them run in isolation doesn’t do us much 
good if we only ever run one at a time). Another good reason to implement TestSuite 
is that it gives us a pure example of Composite—we want to be able to treat single 
tests and groups of tests exactly the same from a programmatic perspective. 

We would like to be able to create a TestSuite, add a few tests to it, then get collective 
results from running it. 

TestCaseTestTestCaseTest  

 def testSuite(self): 

  suite= TestSuite() 

  suite.add(WasRun("testMethod")) 

  suite.add(WasRun("testBrokenMethod")) 

  result= suite.run() 

  assert("2 run, 1 failed" == result.summary()) 

Implementing the add() method just adds tests to a list: 
TestSuiteTestSuite  

class TestSuite: 

 def __init__(self): 

  self.tests= [] 

 def add(self, test): 

  self.tests.append(test) 

The run method is a bit of a problem. We want a single TestResult to be used by all 
the tests that run. Therefore, we should write: 

TestSuiteTestSuite  

 def run(self): 

  result= TestResult() 

  for test in tests: 

   test.run(result) 

  return result 

However, one of the main constraints on Composite is that the collection has to 
respond to the same messages as the individual items. If we add a parameter to 
TestCase.run(), we have to add the same parameter to TestSuite.run(). I can think of 
three alternatives: 



Test-driven development  91 of 133 

• Use Python’s default parameter mechanism. Unfortunately, the default value is 
evaluated at compile time, not run time, and we don’t want to be reusing the 
same TestResult 

• Split the method into two parts, one which allocates the TestResult and the 
other which runs the test given a TestResult 

• Allocate the TestResults in the caller 

I can’t think of good names for the two parts of the method, so we will allocate the 
TestResults in the callers. This pattern is called Collecting Parameter. 

TestCaseTestTestCaseTest  

 def testSuite(self): 

  suite= TestSuite() 

  suite.add(WasRun("testMethod")) 

  suite.add(WasRun("testBrokenMethod")) 

  result= TestResult() 

  suite.run(result) 

  assert("2 run, 1 failed" == result.summary()) 

This solution has the advantage that run() now has no explicit return: 
TestSuiteTestSuite  

 def run(self, result): 

  for test in tests: 

   test.run(result) 

TestCaseTestCase  

 def run(self, result): 

  result.testStarted() 

  self.setUp() 

  try: 

   exec "self." + self.name + "()" 

  except: 

   result.testFailed() 

  self.tearDown() 

Now we can clean up the invocation of the tests at the end of the file: 
suite= TestSuite() 

suite.add(TestCaseTest("testTemplateMethod")) 

suite.add(TestCaseTest("testResult")) 

suite.add(TestCaseTest("testFailedResultFormatting")) 

suite.add(TestCaseTest("testFailedResult")) 

suite.add(TestCaseTest("testSuite")) 

result= TestResult() 

suite.run(result) 

print result.summary() 

There is substantial duplication here, which we could eliminate if we had a way of 
constructing a suite automatically given a test class. However, first we have to fix the 
4 failing tests (they use the old no-argument run interface): 



Test-driven development  92 of 133 

TestCaseTestTestCaseTest  

 def testTemplateMethod(self): 

  test= WasRun("testMethod") 

  result= TestResult() 

  test.run(result) 

  assert("setUp testMethod tearDown " == test.log) 

 def testResult(self): 

  test= WasRun("testMethod") 

  result= TestResult() 

  test.run(result) 

  assert("1 run, 0 failed" == result.summary()) 

 def testFailedResult(self): 

  test= WasRun("testBrokenMethod") 

  result= TestResult() 

  test.run(result) 

  assert("1 run, 1 failed" == result.summary()) 

 def testFailedResultFormatting(self): 

  result= TestResult() 

  result.testStarted() 

  result.testFailed() 

  assert("1 run, 1 failed" == result.summary()) 

Notice that now each test allocates a result, exactly the problem solved by setUp(). We 
can simplify the tests (at the cost of making them a little more difficult to read), by 
creating the TestResult in setUp(): 



Test-driven development  93 of 133 

TestCaseTestTestCaseTest  

 def setUp(self): 

  self.result= TestResult() 

 def testTemplateMethod(self): 

  test= WasRun("testMethod") 

  test.run(self.result) 

  assert("setUp testMethod tearDown " == test.log) 

 def testResult(self): 

  test= WasRun("testMethod") 

  test.run(self.result) 

  assert("1 run, 0 failed" == self.result.summary()) 

 def testFailedResult(self): 

  test= WasRun("testBrokenMethod") 

  test.run(self.result) 

  assert("1 run, 1 failed" == self.result.summary()) 

 def testFailedResultFormatting(self): 

  self.result.testStarted() 

  self.result.testFailed() 

  assert("1 run, 1 failed" == self.result.summary()) 

 def testSuite(self): 

  suite= TestSuite() 

  suite.add(WasRun("testMethod")) 

  suite.add(WasRun("testBrokenMethod")) 

  suite.run(self.result) 

  assert("2 run, 1 failed" == self.result.summary()) 

All those extra “self.”s are a bit ugly, but that’s Python. If it was an object language, 
the self would be assumed and references to global variables would require 
qualification. Instead, it is a scripting language with object support (excellent object 
support, to be sure) added, so global reference is implied and referring to self is 
explicit. 



Test-driven development  94 of 133 

xUnit Retrospective 
If the time comes for you to implement your own testing framework, the above 
sequence can serve as your guide. The details of the implementation are not nearly as 
important as the test cases. If you can support a set of test cases like the ones above, 
you can write tests that are isolated and composeable, and you will be on your way to 
being able to develop test-first. 

xUnit has been ported to more than 30 languages at this writing. Your language is 
likely to already have an implementation. There are a couple of reasons for 
implementing it even if there is a version already available: 

• Mastery—The spirit of xUnit is simplicity. Martin Fowler said, “Never in the 
annals of software engineering was so much owed by so many to so little 
code.” Some of the implementations have gotten a little complicated for my 
taste. Rolling your own will give you a tool over which you have a feeling of 
mastery. 

• Exploration—Say you are faced with a new programming language. By the 
time you have implemented the first 8-10 test cases, you will have explored 
many of the facilities you will be using in daily programming 

When you begin using xUnit, you will discover a big difference between assertions 
that fail and other kinds of errors while running tests—assertion failures consistently 
take much longer to debug. Because of this, most implementations of xUnit 
distinguish between failures—meaning assertion failures—and errors. The GUIs 
present them differently, often with the errors on top. 

JUnit declares a simple Test interface that is implemented by both TestCase and 
TestSuite. If you want your tests to be runnable by JUnit tools, you can implement the 
Test interface, too.  

public interface Test { 

 public abstract int countTestCases(); 

 public abstract void run(TestResult result); 

} 

Languages with optimistic typing don’t even have to declare their allegiance to an 
interface, they can just implement the operations. If you write a test scripting 
language, Script can implement countTestCases() to return 1 and run to notify the 
TestResult on failure and you can run your scripts along with the ordinary TestCases. 



Test-driven development  95 of 133 

Section III: Patterns 
What follows are the “greatest hits” patterns for TDD. Some of the patterns are TDD 
tricks, some are design patterns, and some are refactorings. 

The goal in these patterns is not to be comprehensive. If you want to understand 
testing, design patterns, or refactoring you will have to go elsewhere for mastery. If 
you are not familiar with these topics, there is enough here to get you going. If you are 
familiar with one of these topics, the patterns here will show you how the topics play 
with TDD. 

 



Test-driven development  96 of 133 

Patterns for Test-Driven Development 
Test n. 

How do you test your software? Write an automated test. 

No programmers release even the tiniest change without testing, except the very 
confident and the very sloppy. I’ll assume that if you’ve gotten this far, your’re 
neither. While you may test your changes, testing changes is not the same as having 
tests. Why does a test that runs automatically feel different than poking a few buttons 
and looking at a few answers on the screen? 

(What follows in an influence diagram, a la Gerry Weinberg’s Quality Software 
Management. An arrow between nodes means an increase in the first node implies an 
increase in the second. An arrow with a circle means an increase in the first node 
implies a decrease in the second.) 

What happens when the stress level rises? 

Figure 1 has Stress negatively connected to Testing negatively connected to Errors 
positively connected to Stress. 

This is a positive feedback loop. The more stress you feel, the less testing you will do. 
The less testing you do, the more errors you will make. The more errors you make, the 
more stress you feel. Rinse and repeat. 

How do you get out of such a loop? Either introduce a new element, replace one of the 
elements, or change the arrows. In this case we’ll replace “testing” with “automated 
testing”. 

Figure 2 has Stress positively connected to Automated Testing negatively connected to 
Errors and Stress, and Errors positively connected to Stress. 

“Did I just break something else with that change?” When I have automated tests, 
when I start to feel stress I run the tests. “No, the tests are all still green.” The more 
stress I feel, the more I run the tests. Running the tests immediately gives me a good 
feeling, and reduces the number of errors I make, which further reduces the stress I 
feel. 

“We don’t have time to run the tests. Just release it!” The second picture isn’t 
guaranteed. If the stress level rises high enough, it breaks down. However, with the 
automated tests you have a chance to choose your level of fear. 

Isolated Test 

How should the running of tests affect each other? Not at all. 

When I was a young programmer, long long ago when we had to dig our own bits out 
of the snow and carry heavy buckets of them bare-footed back to our cubicles leaving 
bloody little footprints for the wolves to follow… Sorry, just reminiscing. My first 
experience of automated tests was having a set of GUI-based tests (you know, record 



Test-driven development  97 of 133 

the keystrokes and mouse events and play them back) for a debugger I was working on 
(hi Jothy, hi John!). Every morning when I came in there would be a neat stack of 
paper on my chair describing last nights test runs (hi Al!). On good days there would 
be a single sheet summarizing that nothing broke. On bad days there would be many 
many sheets, one for each broken test. I began to dread days when I saw a pile of 
paper on my chair. 

I took two lessons from this experience. First, make the tests so fast to run that I can 
run them myself, and run them often. That way I can catch errors before anyone else 
sees them, and I don’t have to dread coming in in the morning. Second, I noticed after 
a while that a huge stack of paper didn’t usually mean a huge list of problems. More 
often it meant that one test had broken early, leaving the system in an unpredictable 
state for the next test. 

We tried to get around this problem by starting and stopping the system between each 
test, but it took to long, which taught me another lesson about seeking tests at a 
smaller scale than the whole application. But the main lesson I took was that tests 
should be able to ignore each other completely. If I had one test broken, I wanted one 
problem. If I had two tests broken, I wanted two problems. 

One convenient implication of isolated tests is that the tests are order independent. If I 
want to grab a subset of tests and run them, I can do so without worrying that a test 
will break now because a prerequisite test is gone. 

Performance is the usual reason cited for having tests share data. A second implication 
of isolated tests is that you have to work, sometimes work hard, to break your problem 
into little orthogonal dimensions, so setting up the environment for each test is easy 
and quick. Isolating tests encourages you to compose solutions out of many highly 
cohesive, loosely coupled objects. I always heard this was a good idea, and I was 
happy when I achieved it, but I never knew exactly how to regularly achieve high 
cohesion and loose coupling until I started writing isolated tests. 

Test List 

What should you test? Before you begin, write a list of all the tests you know you will 
have to write. 

The first part of our strategy for dealing with programming stress is to never take a 
step forward unless we know where our foot is going to land. When we sit down to a 
programming session, what is it we intend to accomplish? 

One strategy for keeping track of what we’re trying to accomplish is to hold it all in 
our heads. I tried this for several years, and found I got into a positive feedback loop. 
The more experience I accumulated, the more things I knew that might need to be 
done. The more things I knew might need to be done, the less attention I had for what 
I was doing. The less attention I had for what I was doing, the less I accomplished. 
The less I accomplished, the more things I knew that needed to be done. 

Just ignoring random items on the list and programming at whim did not appear to 
work to break this cycle. 



Test-driven development  98 of 133 

I got in the habit of writing down everything I wanted to accomplish over the next few 
hours on a slip of paper next to my computer. I had a similar list, but with weekly or 
monthly scope pinned on the wall. As soon as I had all that written down, I knew I 
wasn’t going to forget something. When a new item came up, I would quickly and 
consciously decide whether it belonged on the “now” list, the “later” list, or it didn’t 
really need to be done at all. 

Applied to test-driven development, what we put on the list are the tests we want to 
implement. If you want a comprehensive treatment of this subject, I recommend Bob 
Binder’s “???”. The material here is just enough to get you started. First, put on the list 
examples of every operation that you know you need to implement. Next, for those 
operations that don’t already exist, put the null version of that operation. Finally, list 
all the refactorings that you think you will have to do to have clean code at the end of 
this session. 

Instead of outlining the tests, we could just go ahead and implement them. There are a 
couple of reasons this hasn’t worked for me. First, every test you implement is a bit of 
inertia when you have to refactor. With automated refactoring tools this is less of a 
problem, but when you’ve implemented ten tests and then you discover the arguments 
need to be in the opposite order, you are just that much less likely to go clean up. 
Second, if you have ten tests broken, you are a long way from the green bar. If you 
want to get to green quickly, you have to throw all ten tests away. If you want to get 
all the tests working, you are going to be staring at a red bar for a long time. 

Conservative mountain climbers have a rule that you have to have three out of your 
four hands and feet attached at any one time. Dynamic moves where you let go of two 
at once are much more dangerous. The extreme form of TDD, where you are never 
more than one change away from a green bar, is like that three out of four rule. 

As you make the tests run, the implementation will imply new tests. Write the new 
tests down on the list. Likewise with refactorings. “This is getting ugly.” “<sigh> Put 
it on the list. We’ll get to it before we check in.” 

Items that are left on the list when the session is done need to be taken care of. If you 
are really half way through a piece of functionality, use the same list later. If you have 
discovered larger refactorings that are out of scope for the moment, move them to the 
“later” list. I can’t recall ever moving a test case to the “later” list. If I can think of a 
test that might not work, nothing is more important than getting it to work. 

Test-First 

When should you write your tests? Before you write the code that is to be tested. 

You won’t test after. Your goal as a programmer is running functionality. 

You need a way to think about design 

You need a method for scope control 

Let’s look at the usual influence diagram relating stress and testing (but not stress 
testing, that’s different): 

Stress above negatively connected to testing below negatively connected to stress. 



Test-driven development  99 of 133 

The more stress you feel, the less likely you are to test enough. When you know you 
haven’t tested enough, you add to your stress. Positive feedback loop. Once again, 
there needs to be a way to break the loop. 

What if we adopted the rule that we would always test first. Then we can invert the 
diagram and get a virtuous cycle: 

Test-first above negatively connected to stress below negatively connected to test-
First.. 

When we test-first, we reduce the stress, which makes us more likely to test. There are 
lots of other elements feeding into stress, however, so the tests must live in other 
virtuous cycles or they will be abandoned when stress increases enough. 

Assert First 

When should you write the asserts? Try writing them first. 

Don't you just love self-similarity?  

• Where should you start building a system? With the stories that you will be 
able to tell about the system when it is done. 

• Where should you start writing a bit of functionality? With the tests that will 
run when it is done.  

• Where should you start writing a test? With the asserts that will pass when it is 
done. 

Jim Newkirk introduced me to this technique. When I test assert-first I find it has a 
powerful simplifying effect. When you are writing a test, you are solving several 
problems at once, even if you no longer have to think about the implementation. 

• Where does the functionality belong? Is it a modification of an existing 
method, a new method on an existing class, an existing method name 
implemented in a new place, or a new class? 

• What should the names be called? 

• How are you going to check for the right answer? 

• What is the right answer? 

• What other tests does this test suggest? 

Pea-sized brains like mine can't possibly do a good job of solving all these problems at 
once. The two problems from the list that can be easily separated from the rest are 
"what is the right answer?" and "how am I going to check?" 

Here's an example. Suppose we want to communicate with another system over a 
socket. When we're done, the socket should be closed and we should have read the 
string "abc". 



Test-driven development  100 of 133 

testCompleteTransaction() { 

 ... 

 assertTrue(reader.isClosed()); 

 assertEquals("abc", reply.contents()); 

} 

Where does the buffer come from? The socket, of course: 
testCompleteTransaction() { 

 ... 

 Buffer reply= reader.contents(); 

 assertTrue(reader.isClosed()); 

 assertEquals("abc", reply.contents()); 

} 

And the socket? We create it by connecting to a server: 
testCompleteTransaction() { 

 ... 

 Socket reader= Socket("localhost", defaultPort()); 

 Buffer reply= reader.contents(); 

 assertTrue(reader.isClosed()); 

 assertEquals("abc", reply.contents()); 

} 

But before this, we need to open a server: 
testCompleteTransaction() { 

 Server writer= Server(defaultPort(), "abc"); 

 Socket reader= Socket("localhost", defaultPort()); 

 Buffer reply= reader.contents(); 

 assertTrue(reader.isClosed()); 

 assertEquals("abc", reply.contents()); 

} 

Now we may have to adjust the names based on actual usage, but we have created the 
outlines of the test in teensy tiny steps, informing each decision with feedback within 
seconds. 

Test Data 

What data do you use for test-first tests? Use data that makes the tests easy to read and 
follow. 

You are writing tests to an audience. Don’t scatter data values around just to be 
scattering data values around. If there is a difference in the data, it should be 
meaningful. If there isn’t a conceptual difference between 1 and 2, use 1. 

Test Data isn’t a license to stop short of full confidence. If your system has to handle 
multiple inputs, your tests should reflect multiple inputs. However, don’t have a list of 
10 items as the input data is a list of 3 items will lead you to the same design and 
implementation decisions. 



Test-driven development  101 of 133 

The alternative to Test Data is Realistic Data, where you use data from the real world. 
Realistic Data is useful when: 

• You are testing real-time systems using traces of external events gathered from 
the actual execution 

• You are matching the output of the current system with the output of a 
previous system (Parallel Testing) 

• You are refactoring a simulation and expect precisely the same answers when 
you are finished, particularly if floating point accuracy may be a problem 

Evident Data 

How do you represent the intent of the data? Include expected and actual results in the 
test itself, and try to make their relationship apparent. 

You are writing tests for a reader, not just the computer. Someone in decades to come 
will be asking themselves the question, "What in the heck was this joker thinking 
about?" You'd like to leave as many clues as possible, especially if that frustrated 
reader is going to be you. 

Here's an example. If we convert from one currency to another, we take a 1.5% 
commission on the transaction. If the exchange rate from USD to GBP is 2:1, then if 
we exchange $100, we should get 50 GBP - 1.5% = 49.25 GBP. We could write this 
test like this: 

Exchange bank= new Exchange(). 

bank.addRate("USD", "GBP", STANDARD_RATE); 

bank.commission(STANDARD_COMMISSION); 

Money result= bank.convert(new Note(100, "USD"), "GBP"); 

assertEquals(new Note(49.25, "GBP"), result); 

or we could try to make the calculation obvious: 
Exchange bank= new Exchange(). 

bank.addRate("USD", "GBP", 2); 

bank.commission(0.0015); 

Money result= bank.convert(new Note(100, "USD"), "GBP"); 

assertEquals(new Note(100 / 2 * (1 - 0.0015), "GBP"), result); 

Draw lines from the source data to the assertion data. I can read this test and see the 
connection between the numbers used in the input and the numbers used to calculate 
the expected result. 

One beneficial side effect of Evident Data is that it makes programming easier. Once 
we've written the expression in the assertion, we know what we need to program. 
Somehow we have to get the program to evaluation a division and a multiplication. 
We can even use Fake It Til You Make It to discover where the operations belong 
incrementally. 

Evident Data seems to be an exception to the rule that you don't want magic numbers 
in your code. Why is this? 



Test-driven development  102 of 133 

Implementation Strategies 
TDD is not about blindly following a set of rules for how to program. It is about 
intelligently choosing the size of your programming steps and the amount of feedback 
depending on conditions. The patterns in this section are all ways of taking small steps 
forwards. 

Even though I’m in an sharing, caring, “can’t-we-all-just-get-along” mood, it is only 
fair to tell you that programmers practicing TDD consistently report that they take 
smaller and smaller steps over time. Your brain is likely to suffer the same rot if you 
continue. Don’t say I didn’t warn you. 

Fake It (‘Til You Make It) 

What is your first implementation once you have a broken test? Return a constant. 
Once you have the test running, gradually transform the constant into an expression 
using variables. 

A simple example occurred in our implementation of xUnit. 
return "1 run, 0 failed" 

became: 
return "%d run, 0 failed" % self.runCount 

became: 
return "%d run, %d failed" % (self.runCount , self failureCount) 

Fake It is a bit like driving a piton above your head when you are climbing a rock. 
You haven’t really gotten there yet (the test is there but the code structure is wrong). 
However, when you do get there, you know you will be safe (the test will still run). 

There are a couple of effects that make Fake It Til You Make It powerful: 

• Psychological—Having a green bar is completely different than not having a 
green bar. When the bar is green, you know where you stand. Refactoring from 
there you can do with confidence. 

• Scope control—Programmers are good at imagining all sorts of future 
problems. Starting with one concrete example and generalizing from there 
prevents you from prematurely confusing yourself with extraneous concerns. 
You can do a better job of solving the immediate problem because you are 
focused. When you go to implement the next test case, you can focus on that 
one, too, knowing that the previous test is guaranteed to work. 

Does Fake It violate the rule that says you don’t write any code that isn’t needed? I 
don’t think so, because in the refactoring step you are eliminating duplication of data 
between the test case and the code. When I write2: 

                                                
2 Thanks to Dierk König for the example. 



Test-driven development  103 of 133 

 assertEquals(new MyDate("28.2.02"), new MyDate("1.3.02").yesterday()); 

MyDateMyDate  

 public MyDate yesterday() 

 { 

  return new MyDate("28.2.02"); 

 } 

There is duplication between the test and the code. I can shift it around by writing 
MyDateMyDate  

 public MyDate yesterday() 

 { 

  return new MyDate(new MyDate("31.1.02").days()-1); 

 } 

But there is still duplication. However, I can eliminate the data duplication (because 
this = MyDate(“31.1.02”) for the purposes of my test) by writing: 

MyDateMyDate  

 public MyDate yesterday() 

 { 

  return new MyDate(this.days()-1); 

 } 

Not everyone is convinced by this bit of sophistry, which is why you can Triangulate, 
at least until you are sick of it. 

When I use Fake It, I’m reminded of long car trips with kids in the back. I write the 
first test, I make it work some ugly way, and then, “Don’t make me stop this car and 
write another test. If I have to pull over, you’ll be sorry.” “Okay, okay, Dad. I’ll clean 
the code up. You don’t have to get all huffy.” 

Triangulate 

How do you most conservatively drive abstraction with tests? Only 
abstract when you have two or more examples. 

Here’s an example. Suppose we want to write a function that will 
return the sum of two integers. We write: 

 public void testSum() { 

  assertEquals(4, plus(2, 2)); 

 } 

  

 private int plus(int augend, int addend) { 

  return 4; 

 } 

Do we need to have the discussion about unused arguments again? Probably. Sigh… 

If we are triangulating to the right design, we have to write: 



Test-driven development  104 of 133 

 public void testSum() { 

  assertEquals(4, plus(2, 2)); 

  assertEquals(7, plus(3,4)); 

 } 

(We were careful to give the two parameters different values in the second example, 
so we couldn’t self-righteously claim we only needed one parameter.) When we have 
the second example, we can abstract the implementation of plus(): 

  private int private int plus(iint nt augend, int int addend) { 

    return return augend + addend; 

 } 

Triangulation is attractive because the rules for it seem so clear. The rules for Fake It, 
where we are relying on our sense of duplication between the test case and the piggy 
implementation to drive abstraction, seem a bit vague and subject to interpretation. 
While they seem simple, the rules for triangulation create an infinite loop. Once we 
have the two assertions and we have abstracted the correct implementation for plus, 
we can delete one of the assertions on the grounds that it is completely redundant with 
the other. If we do that, however, we can simplify the implementation of plus() to just 
return a constant, which requires us to add an assertion. 

I only use triangulation when I’m really, really unsure about the correct abstraction for 
the calculation. Otherwise I rely on either Obvious Implementation or Fake It.  

Obvious Implementation 

How do you implement simple operations? Just implement them. 

Fake It and Triangulation are teensy-weensy tiny steps. Sometimes you are sure you 
know how to implement an operation. Go ahead.  

For example, would I really use Fake It to implement something as simple as plus()? 
Not usually. I would just type in the obvious implementation. If I noticed I was getting 
surprised by red bars, I would go to smaller steps. 

Keep track of how often you get surprised by red bars using Obvious Implementation. 
You want to maintain that red/green/refactor rhythm. Obvious Implementation is 
second gear. Be prepared to downshift if your brain starts writing checks your fingers 
can’t cash. 

One to Many 

How do you implement an operation that works with collections of objects? 
Implement it without the collections first, then make it work with collections. 

For example, suppose we are writing a function to sum an array of numbers. We can 
start with one: 



Test-driven development  105 of 133 

 public void testSum() { 

  assertEquals(5, sum(5)); 

 } 

  

 private int sum(int value) { 

  return value; 

 } 

(I am implementing sum() in the TestCase class to avoid writing a new class just for 
one method.) 

We want to test sum(new int[] {5, 7}) next. First we add a parameter to sum() taking 
an array of values: 

 public void testSum() { 

  assertEquals(5, sum(5, new int[] {5})); 

 } 

  

 private int sum(int value, int[] values) { 

  return value; 

 } 

You can look at this step as an example of Isolate Change. Once we add the parameter 
in the test case we are free to change the implementation without affecting the test 
case. 

Now we can use the collection instead of the single value: 
  private int private int sum(int int value, intint[] values) { 

    int int sum= 0; 

    for for (int int i= 0; i<values.length; i++) 

   sum += values[i]; 

    return return sum; 

 } 

Now we can delete the unused single parameter: 
 public void testSum() { 

  assertEquals(5, sum(new int[] {5})); 

 } 

  

 private int sum(int[] values) { 

  int sum= 0; 

  for (int i= 0; i<values.length; i++) 

   sum += values[i]; 

  return sum; 

 } 

The previous step is also an example of Isolate Change, where we change the code so 
we can change the test cases without affecting the code. Now we can enrich the test 
case as planned: 



Test-driven development  106 of 133 

 public void testSum() { 

  assertEquals(12, sum(new int[] {5, 7})); 

 } 

Process 
These patterns are about when you write a test, where you write tests, and when you 
stop. 

One Step Test 

Which test should you pick next from the list? Pick a test that will teach you 
something and that you are confident you can implement. 

Each test should represent one step towards your overall goal. If we are looking at the 
following Test List, which test should we pick next? 

• Plus 

• Minus 

• Times 

• Divide 

• Plus like 

• Equals 

• Equals null 

• Null exchange 

• Exchange one currency 

• Exchange two currencies 

• Cross rate 

There is no right answer. What is one step for me, never having implemented these 
objects before, will be one tenth of a step to you, with your vast experience. 

When I look at a Test List, I think, “That’s obvious, that’s obvious, I have no idea, 
obvious, what was I thinking about with that one, ah, this one I can do.” That’s the test 
I implement next. 

If you don’t find any test on the list that represents one step, add some new tests that 
would represent progress towards the items there. 

A program grown from tests like this can appear to be written top-down, because you 
can begin with a test that represents a simple case of the entire computation. A 
program grown from tests can also appear to be written bottom-up, because you start 
with small pieces and aggregate them larger and larger.  



Test-driven development  107 of 133 

Neither top-down nor bottom-up really describes the process helpfully. First, a vertical 
metaphor is a simplistic visualization of how programs change over time. “Growth” 
implies a kind of self-similar feedback loop where the environment affects the 
program and the program affects the environment. Second, if we have to have a 
direction in our metaphor, “known-to-unknown” is a helpful description. Known-to-
unknown implies that we have some knowledge and experience on which to draw, and 
that we expect to learn in the course of development. Put these two together and we 
have programs growing from known to unknown. 

Starter Test 

Which test should you start with? Start by testing a variant of an operation that doesn't 
do anything. 

The first question you have to ask with a new operation is "Where does it belong?" 
Until you've answered this question, you don't know what to type for the test. In the 
spirit of solving one problem at a time, how can we answer just this question and no 
other? 

If you write a “realistic” test first, you will find yourself solving a bunch of problems 
at once: 

• Where does the operation belong? 

• What are the correct inputs? 

• What is the correct output given those inputs? 

If you begin withAnswering these question a realistic  will leave you too long without 
feedback. Red/green/refactor, red/green/refactor. You want that loop to be minutes. 

You can shorten the loop by choosing inputs and outputs that are trivially easy to 
discover. For example, a poster on the Extreme Programming newsgroup asked about 
how to write a polygon reducer test-first. The input is a mesh of polygons and the 
output is a mesh of polygons that describes precisely the same surface, but with fewer 
polygons. “How can I test-drive this problem since getting a test to work requires 
reading Ph.D. theses?” 

Starter Test provides an answer: 

• The output should be the same as the input. Some configurations of polygons 
are already normalized, incapable of further reduction. 

• The input should be as small as possible, like a single polygon, or even an 
empty list of polygons. 

Bing! First test is running. Now for all the rest of the tests on the list. 

One Step Test applies: Pick a Starter Test that will teach you something but that you 
are certain you can get working quickly. If you are implementing something for the 
Nth time, pick a test that will require an operation or two. You will be justifiably 
confident you can get it working. If you are implementing something hairy and 
complicated for the first time, you need a little courage pill immediately. 



Test-driven development  108 of 133 

Explanation Test 

How do you spread the use of automated testing? Ask for and give explanations in 
terms of tests. 

It can be frustrating to be the only TDD on a team. Soon, you will notice fewer 
integration problems and defect reports in tested code, and the designs will be simpler 
and easier to explain. It has even happened before that folks get downright enthusiastic 
about testing, and testing first. 

Beware the enthusiasm of the newly converted. Nothing will stop the spread of TDD 
faster than pushing it in people’s faces. If you’re a manager or leader, you can’t force 
anyone to change the way they work. 

What can you do? A simple start is to start asking for explanations in terms of test 
cases. “Let me see if I understand what you’re saying. For example, if I have a Foo 
like this and a Bar like that then the answer should be 76?” A companion technique is 
to start giving explanations in terms of tests. “Here’s how it works now. When I have 
a Foo like this and a Bar like that, the answer is 76. If I have a Foo like that and a Bar 
like this, though, I would like the answer to be 67.” 

You can do this at higher levels of abstraction. If someone is explaining a sequence 
diagram to you, you can ask for permission to convert it to a more familiar notation. 
Then you type in a test case that contains all the externally visible objects and 
messages in the diagram. 

Another Test 

How do you keep a technical discussion from straying off topic? When a tangential 
idea arises, add a test to the list and go back to the topic. 

I love wandering discussions (you’ve read most of the book now, so you’ve probably 
reached that conclusion yourself). Keeping a conversation strictly on course is a great 
way to stifle brilliant ideas. You hop from here to there to there, and how did we get 
here? who cares, this is cool! 

Some programming is like this. You’re looking for a breakthrough to get you going. 
Most programming, though, is a bit more pedestrian. You have ten things to 
implement and you’ve only implemented three of them. I’m an accomplished 
procrastinator at such times. Retreating to hummingbird conversation is a way of 
avoiding work (and maybe the fear that goes along with it.) 

Whole unproductive days have taught me that at times it’s best to stay on track. When 
I’m feeling this way, new ideas are greeted with respect, but not allowed to divert my 
attention. I write them down on the list, and get back to what I was working on. 

Regression Test 

What's the first thing you do when a defect is reported? Write the smallest possible 
test that fails, and that once it runs, the defect will be repaired. 



Test-driven development  109 of 133 

Regression tests are tests that, with perfect foreknowledge, you would have written 
when coding originally. Every time you have to write a regression test, think about 
how you could have known to write the test in the first place. 

You will also gain value by testing at the level of the whole application. Regression 
tests for the application give your users a chance to speak concretely to you about 
what is wrong and what they expect. Regression tests at the smaller scale are a way for 
you to improve your testing. The defect report will be about a bizarre large negative 
number in a report. The lesson for you is that you need to test for integer rollover 
when you are writing your test list. 

You may have to refactor the system before you can easily isolate the defect. The 
defect in this case was your system’s way of telling you, “You aren’t quite done 
designing me yet.” 

Break 

What do you do when you feel tired or stuck? Take a break. 

Take a drink, take a walk, take a nap. Wash your hands clean of your emotional 
commitment to the decisions you just made and the characters you typed. 

Often, this amount of distance is all it will take to break loose the idea you’ve been 
lacking. You’ll just be standing up when you realize, “I haven’t tried it with the 
parameters reversed!” Take the break anyway. Give yourself a couple of minutes. The 
idea won’t go away. 

If you don’t get “the idea”, review your goals for the session. Are they still realistic or 
should you pick new goals? Is what you were trying to accomplish impossible? If so, 
what are the implications for the team? 

Dave Ungar calls this his Shower Methodology. If you know what to type, type. If you 
don’t know what to type, take a shower. Many teams would be happier, more 
productive, and smell a whole lot better if they took his advice. 

Here is an influence diagram that shows the positive feedback loop at work: 

Fatigue negatively affects judgement which negatively affects fatigue 

You’re getting tired, so you’re less capable of realizing that you’re tired, so you keep 
going and get more tired. 

The way out of this loop is to introduce an additional outside element. 

• At the scale of hours, keep a water bottle by your keyboard so biology provides 
the motivation for regular breaks. 

• At the scale of a day, commitments after regular work hours can help you stop 
when you need sleep before progress. 

• At the scale of a week, weekend commitments help get your conscious, 
energy-sucking thoughts off work. (My wife swears I get my best ideas Friday 
evening.) 



Test-driven development  110 of 133 

• At the scale of a year, mandatory vacation policies help you refresh yourself 
completely. The French do this right—two contiguous weeks of vacation aren’t 
enough. You spend the first week decompressing, and the second week getting 
ready to go back to work. Therefore three weeks, or better four, are necessary 
for you to be your most effective the rest of the year. 

There is a flip side to taking breaks. Sometimes when faced with a tough problem 
what you need to do is press on, push through it. However, programming culture is so 
infected with macho, “I’ll ruin my health, alienate my family, and kill myself if 
necessary,” spirit that I don’t feel compelled to give any advice along these lines. If 
you find yourself caffeine-addicted and making no progress whatsoever, perhaps you 
shouldn’t take quite so many breaks. In the meantime, take a walk. 

Do Over 

What do you do when you are feeling lost? Throw away the code and start over. 

You’re lost. You’ve taken the break, rinsed your hands in the brook, sounded the 
Tibetan temple bell, and still you’re lost. The code that was going so well an hour ago 
is now a mess, you can’t think of how to get the next test case working, and you’ve 
thought of 20 more tests that you really should implement. 

This has happened to me several times in writing this book. I would get the code a bit 
twisted. “But I have to finish the book. The children are starving and the bill 
collector’s are pounding on the door.” My gut reaction would be to untwist it just 
enough to move on. After a pause for reflection, starting over always made more 
sense. The one time I pressed on regardless, I had to throw away 25 pages of 
manuscript because it was based on an obviously stupid programming decision. 

My favorite example of Do Over is a story Tim Mackinnon told me. He was 
interviewing someone by the simple expedient of asking her to pair program with him 
for an hour. At the end of the session, they’d implemented several new test cases and 
done some nice refactoring. It was the end of the day, though, and they felt tired when 
they were done, so they discarded their work. 

Switching pair programming partners is a good way to motivate productive Do Overs. 
You’ll try to explain the complicated mess you made for a few minutes when your 
new partner, completely uninvested in the mistakes you’ve made, will gently take the 
keyboard and say, “I’m terribly sorry for being so dense, but what if we started like 
this…” 

Cheap Desk, Nice Chair 

What physical setup should you use for test-driven development? Get a really nice 
chair, skimping on the rest of the furniture if necessary. 

You can’t program well if your back hurts. Yet, organizations that will spend a 
hundred thousand dollars a month on a team won’t spend ten thousand dollars on 
decent chairs. 



Test-driven development  111 of 133 

My solution is to use cheap, ugly folding tables for my computers, but buy the best 
chairs I can find. I have plenty of desk space, and I can easily get more, and I am fresh 
and ready for programming in the afternoon and the morning. 

Get comfortable when you’re pair programming. Clean off the desk surface enough 
that you can slide the keyboard back and forth. Each partner should be able to sit 
comfortably directly in front of the keyboard when they are driving. One of my 
favorite coaching tricks is to come up behind a pair that is hacking away and gently 
slide the keyboard so it is comfortably placed for the person typing. 

Manfred Lange points out that careful resource allocation also applies to computer 
hardware. Get cheap/slow/old machines for individual email and surfing, and the 
hottest possible machines for shared development. 

Testing Techniques 
Child Test 

How do you get a test case running that turns out to be too big? Write a smaller test 
case that represents the broken part of the bigger test case. Get the smaller test case 
running. Reintroduce the larger test case. 

The red/green/refactor rhythm is so important for continuous success that when you 
are at risk of losing it, it is worth extra effort to maintain it. This commonly happens to 
me when I write a test that accidentally requires several changes to make work. Even 
ten minutes with a red bar gives me the willies. 

When I write a test that is too big, I first try to learn the lesson. Why was it too big? 
What could I have done differently that would have made it smaller? How am I feeling 
right now. 

Metaphysical navel gazing accomplished, I delete the offending test and start over. 
“Well, getting these three things working at once was too much. If I had A, B, and C 
working, though, getting the whole thing working would be a cinch.” 

Can I tell you a secret? Sometimes I don’t even bother to delete the offending test. 
Shhhhh… Do as I say, not as I do. I live with two, count ‘em two, broken tests for a 
matter of a couple of minutes while I get the child test working. I could be making a 
mistake when I do this. Two broken tests could easily be a holdover from my bad old 
test-last-if-ever days. 

Try it both ways yourself. See if you feel different, program different, when you have 
two tests broken. Respond as appropriate. 

Mock Object 

How do you test an object that relies on an expensive or complicated resource? Create 
a fake version of the resource that answers constants. 

There is at least a book’s worth of material in Mock Object, but this will serve as an 
introduction. 



Test-driven development  112 of 133 

The classic example is a database. Databases take a long time to start, they are difficult 
to keep clean, and if they are located on a remote server, they tie your tests to a 
physical location on a network. The database is also a fertile source of error in 
development. 

The solution is not to use a real database most of the time. Most tests are written in 
terms of an object that acts like a database, but is really just sitting in memory. 

  public void public void testOrderLookup() { 

  Database db= new new MockDatabase(); 

  db.expectQuery("select order_no from Order where cust_no is 123"); 

  db.returnResult(new new String[] {"Order 2" ,"Order 3"}); 

  … 

 } 

If the MockDatabase does not get the query it expects, it throws an exception. If the 
query is correct, it returns something that looks like a result set constructed from the 
constant strings. 

Another value of mocks, aside from performance and reliability, is readability. You 
can read the test above from one end to another. If you have a test database full of 
realistic data, when you see that a query should have resulted in 14 replies, you have 
no idea why 14 is the right answer. 

One of the costs of using mocks is you can’t easily store expensive resources in global 
variables (even if they masquerade as singletons). In the case of the database example, 
you need to pass the database as a parameter wherever it will be used. 

There have been times when I was furious at this restriction. Massimo Arnoldi and I 
were working on some code relying on a set of exchange rates stored in a global 
variable. Each test needed different subsets of the data, and sometimes they needed 
different exchange rates. After a while of trying to get the global variable to work, we 
decided one morning (courageous design decisions come more often in the morning 
for me) to just pass the Exchange around wherever we needed it. We thought we 
would have to modify hundreds of methods. In the end, we added a parameter to ten or 
fifteen methods, and cleaned up other aspects of the design along the way. 

Mocks will encourage you down the path of carefully considering the visibility of 
every object, reducing the coupling in your designs. 

Mock Objects add a risk to the project—what if the mock doesn’t behave like the real 
object? You can reduce this strategy by having a set of tests for the mock that can also 
be applied to the real object when it becomes available. 

Self Shunt 

How do you test that one object communicates correctly with another? Have the object 
under test communicate with the test case instead of with the object it expects. 

Suppose we wanted to dynamically update the green bar on the testing user interface. 
If we could connect an object to the TestResult, it could be notified when a test ran, 
when it failed, when a whole suite started and finished, and so on. 



Test-driven development  113 of 133 

First we need an object to count the number of notifications: 
ResultListenerResultListener  

class ResultListener: 

 def __init__(self): 

  self.count= 0 

 def startTest(self): 

  self.count= self.count + 1 

Then we need to create a ResultListener, attach it to a TestResult, run a test, and see 
that the count has been incremented: 

ResultListenerTestResultListenerTest  

 def testNotification(self): 

  result= TestResult() 

  listener= ResultListener() 

  result.addListener(listener) 

  WasRun("testMethod").run(result) 

  assert 1 == listener.count 

But wait. Why do we need a separate object for the listener? We can just use the test 
case itself: 

ResultListenerTestResultListenerTest  

 def testNotification(self): 

  self.count= 0 

  result= TestResult() 

  result.addListener(self) 

  WasRun("testMethod").run(result) 

  assert 1 == self.count 

 def startTest(self): 

  self.count= self.count + 1 

Tests written with Self Shunt tend to read better than tests written without. The test 
above is a good example. The count was 0, and then it was 1. How did it get to be 1? 
Someone must have called startTest(). How did startTest() get called? It must happen 
when running the test. This is another example of symmetry—the second version of 
the test method has the two values for count in one place, where in the first version the 
count is set to 0 in one class and expected to be 1 in another. 

Self Shunt may require that you use Extract Interface to get an interface to implement. 
You will have to decide whether extracting the interface is easier or if testing the 
existing class as a black box is easier. I have noticed, though, that interfaces extracted 
for shunts tend to get their third and subsequent implementations soon thereafter. 

As a result of using Self Shunt, you will see tests in Java implementing all sorts of 
bizarre interfaces what is the goofiest example? In optimistically typed languages, the 
test case class need only implement those operations that are actually used in the 
running of the test. In Java, however, you have to implement all the operations of the 
interface, even if most of the implementations are empty, so you would like interfaces 
to be as narrow as possible. 



Test-driven development  114 of 133 

Log String 

How do you test that the sequence in which messages are called is correct? Keep a log 
in a string, and append to the string when a message is called. 

This is just a handy little trick, hardly worth a pattern of its own, but I like it when the 
alternative is a bunch of flags getting set. 

The example from xUnit serves. We have a Template Method which we expect to call 
setUp(), a testing method, and tearDown(), in that order. By implementing the 
methods to record in a string that they were called, the test reads nicely: 

 def testTemplateMethod(self): 

  test= WasRun("testMethod") 

  result= TestResult() 

  test.run(result) 

  assert("setUp testMethod tearDown " == test.log) 

And the implementation is simple, too: 
WasRunWasRun  

 def setUp(self): 

  self.log= "setUp " 

 def testMethod(self): 

  self.log= self.log + "testMethod " 

 def tearDown(self): 

  self.log= self.log + "tearDown " 

Log Strings are particularly useful when you are implementing Observer and you 
expect notifications to come in a certain order. If you expected certain notifications 
but you didn’t care about the order, you could keep a set of strings, and use set 
comparison in the assertion. 

Log String works well with Self Shunt. The test case implements the methods in the 
shunted interface by adding to the log and then returning reasonable values. 

Crash Test Dummy 

How do you test error code that is unlikely to be invoked? Invoke it anyway with a 
special object that throws an exception instead of doing real work. 

Code that isn’t tested doesn’t work. This seems to be the safe assumption. What to do 
with all those odd error conditions, then? Do you have to test them, too? Only if you 
want them to work. 

Let’s say we want to test what happens to our application when the file system is full. 
We could go to a lot of work to create many big files and fill the file system, or we 
could fake it. “Fake it” doesn’t sound dignified, does it? We’ll simulate it. 

Here’s our crash test dummy for a file: 



Test-driven development  115 of 133 

 private class FullFile extends File { 

  public FullFile(String path) { 

   super(path); 

  } 

  public boolean createNewFile() throws IOException { 

   throw new IOException(); 

  } 

 } 

Now we can write our Expected Exception test: 
  public void public void testFileSystemError() { 

  File f= new new FullFile("foo"); 

  try try { 

   saveAs(f); 

   fail(); 

  } catch catch (IOException e) { 

  } 

 } 

A Crash Test Dummy is like a Mock Object, except you don’t need to Mock up the 
whole object. Java’s anonymous inner classes work well for sabotaging just the right 
method to simulate the error we want to exercise. 

Broken Test 

How do you leave a programming session when you’re programming alone? Leave 
the last test broken. 

Richard Gabriel taught me the trick of finishing a writing session in mid-sentence. 
When you sit back down, you look at the half sentence and you have to figure out 
what you were thinking when you wrote it. Once you have the thought thread back, 
you finish the sentence and continue. Without the urge to finish the sentence, you can 
spend many minutes first sniffing around for what to work on next, then trying to 
remember your mental state, then finally getting back to typing. 

I tried the analogous technique for my solo projects and I really like the effect. Finish 
a solo session by writing a test case and running it to be sure it doesn’t pass. When you 
come back to the code, you have an obvious place to start, you have an obvious, 
concrete bookmark to help you remember what you were thinking, and making that 
test work should be quick work, so you’ll quickly get your feet back on that victory 
road. 

I thought it would bother me to have a test broken overnight. It doesn’t, I think 
because I know that the program isn’t finished. A broken test doesn’t make the 
program any less finished, it just makes the status of the program manifest. The ability 
to quickly pick up a thread of development after weeks of hiatus is worth that little 
twinge of walking away from a red bar. 



Test-driven development  116 of 133 

Clean Check-in 

How do you leave a programming session when you’re programming in a team? 
Leave all the tests running. 

“Do I contradict myself? Tough.”  

–Bubba Whitman, Walt’s stevedore brother 

When you are responsible to your teammates, the picture changes completely. When 
you start programming on a team project, you don’t know in detail what has happened 
to the code since you saw it last. You need to start from a place of confidence and 
certainty. Therefore, always make sure all the tests are running before you check in 
your code (a bit like how each test case leaves the world in a known-good state, if you 
are prone to computer metaphors for human behavior, which I’m not (usually)). 

Here is a sample Ant script for building, testing, and checking in the Money example: 

Help!!! 

The test suite you run when you check in may be more extensive than the one you are 
running every minute during development (don’t give up on running the whole suite 
all the time until it is slow enough to be annoying). You will occasionally find a test 
broken in the integration suite when you try to check in. What to do? 

The simplest rule is to just throw away your work and start over. The broken test is 
pretty strong evidence that you didn’t know enough to program what you just 
programmed. If the team adopted this rule, there would be a tendency for folks to 
check in more often because the first person to check in doesn’t risk losing any work. 
Checking in more often is probably a good thing. 

A slightly more libertine approach is to give you a chance to fix the defect and try 
again. To keep from dominating the integration resources, you should probably give 
up after a few minutes and start over. It goes without saying, so I’ll say it anyway, that 
commenting out tests to make the suite pass is strictly verboten, and grounds for some 
serious beer purchasing at that Friday late afternoon’s offsite planning meeting. 

Using xUnit 
Assertion 

How do you check that tests worked correctly? Write boolean expressions that 
automate your judgment about whether the code worked. 

If we are going to make the tests fully automated, every bit of human judgment has to 
be taken out of the evaluation of the results.  

Be specific--assertNotNull(result) can be satisfied by almost any code. 

Many xUnit implementations have a special assertion for testing equality. Testing for 
equality is common, and if you know you are testing equality you can write an 
informative error message. 



Test-driven development  117 of 133 

I am challenged sometimes to think about the object as a black box. If I have a 
Contract with a Status that can either be an instance of Offered or Running, I might 
want to write a test like: 

contract= Contract() # Offered status by default 

contract.begin() # Changes status to Running 

assert(contract.status.class = Running) 

This test is really talking about the current implementation of status. If the 
representation of status could change to a boolean, how could we write the test so that 
it still worked? Perhaps once the status changes to Running, it is possible to ask for the 
actual start date. 

assert(contract.startDate() == ...) # Throws an exception if the status is Offered 

I'm aware that I am swimming against the tide in insisting that all tests be written 
using only unprotected protocol. There is even a package that extends JUnit, JXUnit, 
that allows testing the value of variables, even those declared private.  

Wishing for white box testing is not a testing problem, it is a design problem. Any 
time I want to use a variable as a way of checking to see whether code ran correctly or 
not, I have an opportunity to improve the design. If I give in to my fear and just check 
the variable, I lose that opportunity. That said, if the design idea doesn't come, it 
doesn't come. I'll check the variable, shed a tear, make a note to come back on one of 
my smarter days, and move on. 

The original SUnit had simple assertions. If one broke, a debugger popped up, you 
fixed the code, and away you went. Because the IDEs for Java aren't so sophisticated, 
and because building Java-based software often happens in a batch environment, it 
makes sense to add information about the assertion which will be printed if it ever 
fails.  

In JUnit, this takes the form of an optional first parameter (I know, optional 
parameters are supposed to come at the end, but we tried it that way and it didn't 
work). If you write "assertTrue("Should be true", false)", when the test is run you will 
see an error message something like "Assertion failed: Should be true". This is often 
enough information to send you straight to the source of the error in the code. Some 
teams adopt the convention that all assertions must be accompanied by an informative 
error message. Try it both ways and see if the investment in the error messages pays 
off for you. 

Fixture 

How do you create common objects needed by several tests? Convert the local 
variables in the tests into instance variables. Override setUp() and initialize those 
variables. 

Talk about the tradeoff, where you have a bunch of implicit state, so you can't just 
read the tests in isolation any more. Writing tests is faster, but reading them requires 
establishing context first. 

The relationship of classes and instances of TestCase is one of the most confusing 
parts of xUnit. Each new kind of fixture should be a new subclass of TestCase. Each 



Test-driven development  118 of 133 

new instance of the fixture is created in an instance of that subclass, used once, then 
discarded. UML diagram 

This implies that there is no simple relationship between test classes and model 
classes. Sometimes one fixture serves to test several classes (although this is rare). 
Sometimes two or three fixtures are needed for a single model class. In practice, you 
usually end up with roughly the same number of test classes as model classes, but not 
because for each and every model class you write one and only one test class. 

External Fixture 

How do you release external resources in the fixture? Override tearDown() and release 
the resources. 

Remember that the goal of each test is to leave the world in exactly the same state as 
before it ran. For example, if you open a file in a test, you need to be sure to close it 
before the test completes. You could write: 

testMethod(self): 

 file= File("foobar").open() 

 try: 

  ...run the test... 

 finally: 

  file.close() 

If the file was used in several tests, you could make it part of the common fixture: 
setUp(self): 

 self.file= File("foobar").open() 

testMethod(self): 

 try: 

  ...run the test... 

 finally: 

  self.file.close() 

First, there is that pesky duplication of the finally clause telling us that we are missing 
something in the design. Second, this method is error prone because it is easy to forget 
the finally clause, or forget to close the file altogether. Lastly, there are three lines of 
noise in the test. 

xUnit guarantees that a method called tearDown() will be run after the test method. 
TearDown() will be called regardless of what happens in the test method (although if 
setUp() fails tearDown() won't be called). We can transform the above to: 



Test-driven development  119 of 133 

setUp(self): 

 self.file= File("foobar").open() 

testMethod(self): 

 ...run the test... 

tearDown(self): 

 self.file.close() 

Test Method 

How do you represent a single test case? As a method (whose name begins with “test” 
by convention.) 

Exception Test 

How do you test for expected exceptions? Catch expected exceptions and ignore them, 
failing only if the exception isn’t thrown. 

Let’s say we’re writing some code to look up a value. If the value isn’t found, we want 
to throw an exception. Testing the lookup is easy enough.  

  public void public void testRate() {  

  exchange.addRate("USD", "GBP", 2); 

  int rate= exchange.findRate(“USD”, “GBP”); 

  assertEquals(2, rate); 

 } 

Testing the exception may not be so obvious. Here’s how we do it: 
 public void public void testMissingRate() { 

  try try { 

   exchange.findRate("USD", “GBP"); 

   fail(); 

  } catch catch (IllegalArgumentException expected) { 

  } 

 } 

If findRate() doesn’t throw an exception, we will call fail(), an xUnit method which 
reports that the test failed. Notice that we are careful only to catch the particular 
exception we expect, so if the wrong kind of exception is thrown, we will also be 
notified. 

AllTests 

How do you run all tests together? Make a suite of all the suites, one for each package 
and one aggregating the package tests for the whole application. 

This is really a JUnit idiom, and one that is only necessary because the version of 
JUnit (3.7 at the time of this writing) doesn’t support collecting bunches of tests 
automatically. 

What you’d really like to have happen is that when you add a TestCase subclass to a 
package and you add a test method to that class, the next time all the tests run that test 
method would run, too (there’s that test-driven stuff—the preceding is the outline for a 



Test-driven development  120 of 133 

test that I would probably just go and implement if I wasn’t busy writing a book.) 
Because this isn’t supported, yet, each package should declare a class AllTests that 
implements a static method suite() that returns a TestSuite. Here is AllTests for the 
Money example: 

public class AllTests { 

 public static void main(String[] args) { 

  junit.swingui.TestRunner.run(AllTests.class); 

 } 

  

 public static Test suite() { 

  TestSuite result= new TestSuite("TFD tests"); 

  result.addTestSuite(MoneyTest.class); 

  result.addTestSuite(ExchangeTest.class); 

  result.addTestSuite(IdentityRateTest.class); 

  return result; 

 } 

} 

As you see, can give it a main() method so the class can be run directly from the IDE. 

Design Patterns 
Null Object 

How do you represent special cases using objects? Create an object representing the 
special case. Give it the same protocol as the regular objects. 

java.io.Filejava.io.File  

  public boolean public boolean setReadOnly() { 

  SecurityManager security = System.getSecurityManager(); 

  if if (security != nullnull) { 

   security.checkWrite(path); 

  } 

  return return fs.setReadOnly(thisthis); 

 } 

There are 18 places where the same “security != null” check takes place in java.io.File. 
While I appreciate their diligence in making files safe for the world, I’m also a bit 
nervous. Are they careful to always check for a null as the result of 
getSecurityManager()? 

The alternative is to create a new class, LaxSecurity, which doesn’t throw exceptions 
ever. 

java.io.LaxSecurityjava.io.LaxSecurity  

 public void checkWrite(String path) { 

 } 

If someone asks for a SecurityManager and there isn’t one available, we send back a 
LaxSecurity instead: 



Test-driven development  121 of 133 

java.lang.Securitjava.lang.SecurityManageryManager  

  public static public static SecurityManager getSecurityManager() { 

    return security != null ? security : new LaxSecurity();return security != null ? security : new LaxSecurity();  

     } 

Now we don’t have to worry about someone forgetting to check for null. The original 
code cleans up considerably: 

java.io.Filejava.io.File  

  ppublic boolean ublic boolean setReadOnly() { 

  SecurityManager security = System.getSecurityManager(); 

  security.checkWrite(path); 

  return return fs.setReadOnly(thisthis); 

 } 

Erich Gamma and I once got in an argument at an OOPSLA tutorial about whether a 
Null Object was appropriate somewhere in JHotDraw. I was ahead on points when he 
pointed out the cost of introducing the Null Object was around 10 lines of code, for 
which we would get to eliminate 1 conditional. I hate those late round TKOs. 

Command 

Template Method 

Composite 

 

Pluggable Object 

 

Collecting Parameter 

How do you collect the results of an operation that is spread over several objects? Add 
a parameter to the operation in which the results will be collected. 

A simple example is the java.io.Externalizable interface. The writeExternal method 
writes an object and all the objects it references. Since the objects all have to 
cooperate loosely to get written out, the method is passed a parameter, an 
ObjectOutput, as the collecting parameter: 

java.io.Externalizablejava.io.Externalizable  

public interfpublic interface ace Externalizable extends extends java.io.Serializable { 

  void void writeExternal(ObjectOutput out) throws throws IOException; 

} 

 



Test-driven development  122 of 133 

Value Object 

How do you design objects that will be widely shared, but for whom identity is 
unimportant? Set their state when they are created and never change it. Operations on 
the object always return a new object. 

Objects are wonderful. I can say that here, can’t I? Objects are a great way to organize 
logic for later understanding and growth. However, there is one little problem (okay, 
more than one, but this one will do for now.) 

Suppose I (an object) have a Rectangle. I compute some value based on the Rectangle, 
like its area. Later, someone politely asks me for my Rectangle, and I, not wanting to 
appear uncooperative, give it to them. Moments later, lo and behold, the Rectangle has 
been changed behind my back. The area I computed earlier is out of date, and there is 
no way for me to know. 

This is the classic aliasing problem. If two objects share a reference to a third, if one 
object changes the referred object, the other object better not rely on the state of the 
shared object. 

There are several ways out of the aliasing problem. One solution is never to give out 
the objects that you rely on, but instead to always make copies. This can get expensive 
in time and space, and ignores those times when you want to share changes to a shared 
object. Another solution is Observer, where you explicit register with objects on which 
you rely and expect to be notified when they change. Observer can make control flows 
difficult to follow, and the logic for setting up and removing the dependencies gets 
ugly. 

Another solution is to treat the object as less than an object. Objects have state that 
change over time. We can, if we choose, eliminate the “that change over time”. If I 
have an object and I know it won’t change, I can pass around references to it all I 
want, knowing that aliasing won’t be a problem. There can be no hidden changes to a 
shared object if there are no changes. 

I remember puzzling over Integers when I was first learning Smalltalk. If I change bit 
2 to a 1, why don’t all 2’s become 6’s?  

a := 2. 

b := a. 

a := a bitAt: 2 put: 1. 
a => 6 

b => 2 

Because Integers are really values masquerading as objects. In Smalltalk this is 
literally true of small integers, and simulated in the case of integers that don’t fit in a 
single machine word. When I set that bit, what I get back is a new object with the bit 
set, not the old one with the bit changed. 

When implementing a Value Object, every operation has to return a fresh object, 
leaving the original unchanged. Users have to be aware they are using a Value Object 
and store the result (as in the example above.) All of these object allocations can 
create performance problems, which should be handled like all performance problems, 



Test-driven development  123 of 133 

when you have realistic data sets, realistic usage patterns, profiling data, and 
complaints about performance. 

I have a tendency to use Value Object whenever I have a situation that looks like 
algebra—geometric shapes being intersected and unioned, unit values where units are 
carried around with a number, symbolic arithmetic. Any time Value Object makes the 
least sense I try it, because it makes reading and debugging so much easier. 

All Value Objects have to implement equality (and in many languages by implication 
they have to implement hashing.) If I have this Contract and that Contract and they 
aren’t the same object, then they are different, not equal. However, if I have this five 
francs and that five francs, it doesn’t matter if they are the same five francs, five francs 
are five francs and they should be equal. 

Imposter 

Refactoring 
There is a brief description of how to accomplish each refactoring in small steps. More 
importantly, each refactoring discusses why you might want to use it. 

In TDD we use “refactoring” in an interesting way. Usually, a refactoring cannot 
change the semantics of the program under any circumstances. In TDD, the 
circumstances we care about are the tests that are already passing. So, for example, we 
can replace constants with variables in TDD can call this operation, in good 
conscience, a refactoring, because it doesn’t change the set of tests that pass. The only 
circumstance under which semantics are preserved may actually be our one test case. 
Any other test case that was passing would fail. However, we don’t have those tests 
yet, so we don’t worry about them. 

This kind of weird “refactoring with respect to tests” places a burden on you to have 
enough tests that as far as you know, a refactoring with respect to the tests is the same 
as a refactoring with respect to all possible tests, at least by the time you’re done. It’s 
no excuse to say, “I knew there was a problem, but the tests all passed so I checked the 
code in.” Write more tests. 

Reconcile Differences 

How do you unify two similar looking pieces of code? Gradually bring them closer. 
Unify them only when they are absolutely identical. 

Refactoring can be a nerve wracking experience. The easy ones are obvious. If I 
extract a method, as long as I do it mechanically correctly, there is very little chance of 
changing the system’s behavior. Some refactorings push you to examine the control 
flows and data values carefully. A long chain of reasoning leads you to believe that the 
change you are about to make won’t change any answers. Those are the refactorings 
that enhance your hairline. 



Test-driven development  124 of 134 

Such a leap of faith refactoring is exactly what we’re trying to avoid with our strategy 
of small steps and concrete feedback. While you can’t always avoid leapy 
refactorings, you can reduce their incidence. 

For example, suppose we have code in two subclasses that we think does exactly the 
same thing: 

I’m having trouble finding an example 

We could just write a method in the superclass that we think implements the same 
algorithm. That would be a big step. However, if the two methods were exactly the 
same, we could put the method in the superclass without any worries. 

The same general strategy works for all refactorings—if you want to make a big 
change, think about how the last step of the change could be trivial, then work 
backwards. For example, if you want to remove several subclasses, the trivial last step 
is if a subclass contains nothing. Then the subclass can be replaced by the superclass 
without changing the behavior of the system. One by one, empty out the subclasses 
and, when they are empty, replace references to them by references to the superclass. 

Isolate Change 

How do you change one part of a multi-part method or object? First, isolate the part 
that has to change. 

If you want to be absolutely sure you aren't changing anything accidentally (not that 
you'll be right always), before you change it, make a place for it. We saw an example 
in working with Money. The conversion code said: 

return new Note(source.amount / rate, currency) 

We wanted to change rate lookup. First we extracted the access to the instance 
variable rate into its own method: 

return new Note(source.amount / findRate(), currency) 

private int findRate() { 

 return rate; 

} 

Now we can work on findRate() in isolation, without having to worry about affecting 
the parts of convert() that have nothing to do with rate lookup. 

The picture that comes to my mind is surgery, where all of the patient except the part 
to be operated on is draped. The draping leaves the surgeon with only a fixed set of 
variables. Now, we could have long arguments over whether this abstraction of a 
person to a lower left quadrant abdomen leads to good health care, but at the moment 
of surgery, I'm kind of glad the surgeon can focus. 

You may find that once you've isolated the change and then made the change, that the 
result is so trivial that you can undo the isolation. If we found that really all we needed 
was to return the instance variable in findRate(), we should consider inlining 
findRate() everywhere it is used and deleting it. Don't make these changes 
automatically, however. Balance the cost of an additional method with the value of 
having an additional concept explicit in the code. 



Test-driven development  125 of 134 

Some possible ways to Isolate Change are Extract Method (the most common), Extract 
Object, and Method Object. 

Migrate Data 

How do you move from one representation? Temporarily duplicate the data. 

How: 

Here is the internal-to-external version: 

1. Add an instance variable in the new format 

2. Set the new format variable everywhere you set the old format 

3. Use the new format variable everywhere you use the old format 

4. Delete the old format 

5. Change the external interface to reflect the new format 

Sometimes, though, you want to change the API first. Then you should: 

1. Add a parameter in the new format 

2. Translate from the new format parameter to the old format internal representation 

3. Delete the old format parameter 

4. Replace uses of the old format with the new format 

5. Delete the old format 

Why: 

One to Many creates a data migration problem every time. Suppose we wanted to 
implement TestSuite using One to Many. We would start with: 

 def testSuite(self): 

  suite= TestSuite() 

  suite.add(WasRun("testMethod")) 

  suite.run(self.result) 

  assert("1 run, 0 failed" == self.result.summary()) 

Which is implemented (in the “One” part of One to Many) by: 
class TestSuite: 

 def add(self, test): 

  self.test= test 

 def run(self, result): 

  self.test.run(result) 

Now we begin duplicating data. First we initialize the collection of tests: 
TestSuiteTestSuite  

 def __init__(self): 

  self.tests= [] 

Everywhere “test” is set, we add to the collection, too: 



Test-driven development  126 of 134 

TestSuiteTestSuite  

 def add(self, test): 

  self.test= test 

  self.tests.append(test)self.tests.append(test)  

Now we use the list of tests instead of the single test. For purposes of the current test 
cases this is a refactoring (it preserves semantics) because there is only ever one 
element in the collection. 

TestSuiteTestSuite  

 def run(self, result): 

  for test in self.tests:for test in self.tests:  

      test.run(result)test.run(result) 

We delete the now-unused instance variable “test”: 
TestSuiteTestSuite  

 def add(self, test): 

  self.tests.append(test) 

You can also use stepwise data migration when moving between equivalent formats 
with different protocols, as in moving from Java’s Vector/Enumerator to 
Collection/Iterator. Would this make a better example, since the above example is 
duplicated elsewhere in the text? 

Extract Method 

 

Inline Method 

 

Extract Interface 

 

Move Method 

 

Method Object 

How do you represent a complicated method that requires several parameters and local 
variables? Make an object out of the method. 

How: 

1. Create an object with the same parameters as the method.  

2. Make the local variables also instance variables of the object.  

3. Create one method called "run()", whose body is the same as the body of the 
original method.  

4. In the original method, create a new object and invoke run(). 



Test-driven development  127 of 134 

Why: 

Method Objects are useful in preparation for adding a whole new kind of logic to the 
system. For example, you might have several methods involved in computing the cash 
flow from component cash flows. When you want to start computing the net present 
value of the cash flows, you can first create a Method Object out of the first style of 
computation. Then you can write the new style of computation with its own, smaller-
scale, tests. Then plugging in the new style will be a single step. 

Method Objects are also good for simplifying code that doesn’t yield to Extract 
Method. Sometimes you’ll find a block of code that has a bunch of temporary 
variables and parameters, and every time you try to extract a piece of it you have to 
carry along five or six temps and parameters. The resulting extracted method doesn’t 
look any better than the original code, because the method signature is so long. 
Creating a Method Object gives you a new namespace in which you can extract 
methods without having to pass anything. 

Add Parameter 

How do you add a parameter to a method?  

How: 

1. If the method is in an interface, add the parameter to the interface first   

2. Use the compiler errors to tell you what other code you need to change 

Why: 

Adding a parameter is often an extension step. You got the first test case running 
without needing the parameter, but in this new circumstance you have to take more 
information into account in order to compute correctly. 

Adding a parameter can also be part of migrating from one data representation to 
another. First you add the parameter, then you delete all uses of the old parameter, 
then you delete the old parameter. 

Method Parameter to Constructor Parameter 

How do you move a parameter from a method or methods to the constructor?  

How: 

1. Add a parameter to the constructor 

2. Add an instance variable with the same name as the parameter 

3. Set the variable in the constructor 

4. One by one, convert references to “parameter” to “this.parameter” 

5. When no more references exist to the parameter, delete the parameter from the 
method and all caller 

6. Remove the now-superfluous “this.” from references 

7. Rename the variable correctly 



Test-driven development  128 of 135 

Why: 

If you pass the same parameter to several different methods in the same object, you 
can simplify the API by passing the parameter once (eliminating duplication). You can 
run this refactoring in reverse if you find that an instance variable is only used in one 
method. 



Test-driven development  129 of 135 

Mastering TDD 
I hope to raise questions here for you to ponder as you integrate TDD into your own 
practice. Some of the questions are small, and some are large. 

How large should your steps be? 
There are really two questions lurking here: 

• How much ground should each test cover? 

• How many intermediate stages should you go through as you refactor? 

You could write the tests so they each encouraged the addition of a single line of logic 
and a handful of refactorings. You could write the tests so they each encouraged the 
addition of hundreds of lines of logic and hours of refactoring. Which should you do? 

Part of the answer is that you should be able to do either. The tendency of TDDers 
over time is clear, though—smaller steps. However, folks are experimenting with 
driving development from application-level tests, either alone or in conjunction with 
the programmer-level tests we’ve been writing. 

At first when you refactor, you should be prepared to take lots of little tiny steps. 
Manual refactoring is prone to error, and the more errors you make and only catch 
later, the less likely you are to refactor. Once you’ve done a refactoring 20 times by 
hand in little tiny steps, experiment with leaving out some of the steps. 

Automated refactoring accelerates refactoring enormously. What would have taken 
you 20 manual steps now becomes a single menu item. An order of magnitude change 
in quantity generally constitute a change in quality, and this is true of automated 
refactoring. When you know you are supported by an excellent tool, you become 
much more aggressive in your refactorings, trying many more experiments to see how 
the code wants to be structured. 

The Refactoring Browser for Smalltalk is as I write still the best refactoring tool 
available. Java refactoring support is appearing in many Java IDEs, and refactoring 
support is sure to spread quickly to other languages and environments. 

How much feedback do you need? 
How many tests should you write? Here’s a simple problem—given three integers 
representing the length of the sides of a triangle, return: 

• 1 if the triangle is equilateral 

• 2 if the triangle is isoceles 

• 3 if the triangle is scalene 

and throw an exception if the triangle is not well formed. 



Test-driven development  130 of 135 

Go ahead, try the problem (my Smalltalk solution is listed at the end of this question). 

I wrote 6 tests (kind of like Name That Tune, “I can code that problem in four tests.” 
“Code that problem.”) Bob Binder, in his comprehensive book Testing Object-
Oriented Software, wrote 65 for the same problem. You’ll have to decide, from 
experience and reflection, about how many tests you want to write. 

I think about Mean Time Between Failure (MTBF) when I think about how many tests 
to write. For example, Smalltalk integers act like integers, not like a 32-bit counter, so 
it doesn’t make sense to test MAXINT. Well, there is a MAXINT, but it has to do with 
how much memory you have. Do I need to write a test that fills up memory with 
extremely large integers? How will that affect the MTBF of my program? If I’m never 
going to get anywhere close to that size of triangle, my program is not measurably 
more robust with such a test than without it.  

Whether a test makes sense to write depends on how carefully you measure MTBF. If 
you are trying to get from an MTBF of 10 years to an MTBF of 100 years in your 
pacemaker, it probably makes sense, unless you can demonstrate in some other way 
that you never get triangles that large. 

TDD’s view of testing is pragmatic. The tests are a means to an end, the end being 
code in which we have great confidence. If our knowledge of the implementation 
gives us confidence in the absence of a test, we will not write that test. Black box 
testing, where we deliberately choose to ignore the implementation, has some 
advantages. By ignoring the code, it demonstrates a different value system—the tests 
are valuable alone. It’s an appropriate attitude to take in some circumstances. 
However, it is different than TDD. 



Test-driven development  131 of 136 

TriangleTestTriangleTest  

testEquilateral 

 self assert: (self evaluate: 2 side: 2 side: 2) = 1 

 

testIsoceles 

 self assert: (self evaluate: 1 side: 2 side: 2) = 2 

 

testScalene 

 self assert: (self evaluate: 2 side: 3 side: 4) = 3 

 

testIrrational 

 [self evaluate: 1 side: 2 side: 3] 

  on: Exception 

  do: [:ex | ^self]. 

 self fail 

 

testNegative 

 [self evaluate: -1 side: 2 side: 2] 

  on: Exception 

  do: [:ex | ^self]. 

 self fail 

 

testStrings 

 [self evaluate: 'a' side: 'b' side: 'c'] 

  on: Exception 

  do: [:ex | ^self]. 

 self fail 

 

evaluate: aNumber1 side: aNumber2 side: aNumber3 

 | sides | 

 sides := SortedCollection 

  with: aNumber1 

  with: aNumber2 

  with: aNumber3. 

 sides first <= 0 ifTrue: [self fail]. 

 (sides at: 1) + (sides at: 2) <= (sides at: 3) ifTrue: [self fail]. 

 ^sides asSet size 

When should you delete tests? 
More tests is better, but if two tests are redundant with respect to each other, should 
you keep them both around? 



Test-driven development  132 of 137 

How does the programming language 
and environment influence TDD? 

Try TDD in Smalltalk with the Refactoring Browser. Try it in C++ with vi. How does 
your experience differ? 

In programming languages and environments where cycles are harder to come by 
(TDD cycles—test/compile/run/refactor), you will likely be tempted to take larger 
steps: 

• Cover more ground with each test 

• Refactor with fewer intermediate steps 

Does this make you go faster or slower. 

In programming languages where cycles are plentiful, you will likely be tempted to try 
lots more experiments. Does this help you go faster or reach better solutions, or would 
you be better off institutionalizing some kind of time for pure reflection (reviews or 
literate programs)? 

How can you use TDD to teach 
programming, design, and/or 
testing? 

Should you use TDD to teach CS1? Should (or how should) experienced TDDers use 
it to learn new languages or environments? How should TDD be modified to maintain 
the current pedagogical separation between programming, testing, and design? How 
should the current pedagogical separation between programming, testing, and design 
be modified to take advantage of TDD? How does TDD change when pair 
programming? How about if the pair are both inexperienced? If one is inexperienced 
and one is experienced? If both are experienced? If both are experienced but in 
different domains? 

Can you test-drive enormous 
systems? 

Does TDD scale to extremely large systems? What new tests would you have to write? 
What new kinds of refactorings would you need? 



Test-driven development  133 of 137 

Can you drive development with 
application-level tests? 

The problem with driving development with small scale tests (I call them “unit tests”, 
but they don’t match the accepted definition of unit tests very well. Why?) is that you 
run the risk of implementing what you think a user wants, but having it turn out to be 
not what they wanted at all. What if we wrote the tests at the level of the application? 
Then the users (with some help) could write tests themselves for what exactly they 
wanted. 

There is a technical problem—fixturing. How can you write and run a test for a feature 
that doesn’t exist yet. There always seems to be some way out of this problem, 
typically by introducing an interpreter which gracefully signals an error when it comes 
across a test that it doesn’t know how to interpret yet. 

There is also a social problem with application test driven development. Writing tests 
is a new responsibility for users (by which I really mean a team that includes users), 
and that responsibility comes at a new place in the development cycle, namely before 
implementation begins. Organizations resist this kind of shift of responsibility. It will 
require concerted effort (that is, the effort of many people on the team working in 
concert) to get application tests written first. 

TDD as described in this book is a technique that is entirely under your control. You 
can pick it up and start using it today if you so choose. Mixing up the rhythm of 
red/green/refactor, the technical issues of application fixturing, and the organizational 
change issues surrounding user-written tests is unlikely to be successful. The One Step 
Test rule applies. Get red/green/refactor going in your own practice, then spread the 
message. 

Another aspected of ATDD is the length of the cycle between test and feedback. If a 
customer wrote a test and ten days later it finally worked, you would be staring at a 
red bar most of the time. I think I would want to still do programmer-level TDD so: 

• I got immediate green bars 

• I simplified the internal design 

Is TDD sensitive to initial conditions? 
Some orders in which you take the tests seem to work very smoothly. 
Red/green/refactor/red/green/refactor. You can take the same tests and implement 
them in a different order, and it seems like there is not a way to advance in small steps. 
Is it really true that one sequence of tests is an order of magnitude faster/easier to 
implement than another? Is this just because my implementation technique is not up to 
the challenge? Is there something about the tests that should tell me to tackle them in a 
certain order? If TDD is sensitive to initial conditions in the small, is it predictable in 
the large? (In the same way that little eddies in the Mississippi are unpredictable, but 
you can count on 2,000,000 cfs. more or less at the river mouth.) 



Test-driven development  134 of 137 

Why does TDD work? 
I saved the weirdest for last. Let’s assume for the moment that TDD helps teams 
productively build loosely coupled, highly cohesive systems with low defect rates and 
low cost maintenance profiles. (I’m claiming no such thing in general, just for myself, 
but I trust you to imagine impossible things.) How could such a thing happen? 

An answer comes from the fevered imagination of complex systems. The inimitable 
Phlip says: 

Adopt programming practices that "attract" correct code as a limit function, not as 
an absolute value. If you write UnitTests for every feature, and if you Refactor to 
simplify code between each step, and if you add features one at a time and only 
after all the UnitTests pass, you will create what mathematicians call an "iterative 
dynamic attractor". This is a point in a state space that all flows converge on. Code 
is more likely to change for the better over time instead of for the worse; the 
attractor approaches correctness as a limit function.  

This is the "correctness" that nearly all programmers get by with (except, of course, 
for medical or aerospace software). But it's better to explicitly understand the 
attractor concept than deny it or disregard its importance. 

I hope that gives you something to chew on. 



Test-driven development  135 of 137 

Glossary 
I tend to use technical terms without defining them. If we were talking together, that 
glazed look in your eyes would tell me I’d wandered off into jargon land. In the 
absence of your inestimable feedback, here are the terms reviewers have huh’d. 

SBPP 

value object 

hashCode 

inline 

model code 

method signature 



Test-driven development  136 of 137 

Appendix 1: Influence Diagrams 
You will find many examples of influence diagrams in the text. The idea of influence 
diagrams is taken from Gerald Weinberg’s excellent Quality Software Management 
series, particularly book 1 Systems Thinking (Dorset House, 1992). The purpose of an 
influence diagram is to see how the elements of a system affect each other. 

Influence diagrams have three elements: 

• Activities, notated as a word or short phrase 

• Positive connections, notated as a directed arrow between two activities, 
meaning that more of the source activity tends to create more of the destination 
activity or less of the source activity tends to create less of the destination 
activity 

• Negative connections, notated as a directed arrow between two activities with 
a circle over it, meaning that more of the source activity tends to create less of 
the destination activity or less of the source activity tends to create more of the 
destination activity 

That’s lots of words for a simple concept. Here are some examples: 

Circus attendance and hedge trimming 

Figure N: Two seemingly unrelated activites 

Eating positively connected to weight 

Figure N: Positively connected activities 

The more I eat, the more I weigh. The less I eat, the less I weigh. (Personal weight is a 
far more complicated system than this, of course. Influence diagrams are models to 
help you understand some aspect of the system, not understand and control it 
perfectly.) 

Exercise negatively connected to weight 

Figure N: Negatively connected activities 

Feedback 
Influence doesn’t just work one way. Often the effects of an activity come back 
around to change the activity itself, either positively or negatively. For example: 

Weight negatively connected to self esteem negatively connected to eating positively 
connected to weight. 

Figure N: Feedback 

If my weight rises, my self-esteem drops, which makes we want to eat more, which 
makes my weight rise, and so on. Any time you have a cycle in an influence diagram, 
you have feedback. 



Test-driven development  137 of 138 

There are two kinds of feedback: 

• Positive 

• Negative 

Positive feedback causes systems to encourage more and more of an activity. You can 
find positive feedback loops by counting the number of negative connections in a 
cycle. If there are an even number of negative connections, you have a positive 
feedback loop. The loop above is a positive feedback loop. It will cause you to keep 
gaining weight until the influence of some other activity kicks in. 

Negative feedback damps or reduces an activity. Cycles with an odd number of 
negative connections are negative feedback loops. 

The key to system design is  

• Creating virtuous cycles, where positive feedback loops encourage the growth 
of good activities 

• Avoiding death spirals, where positive feedback loops encourage the growth of 
unproductive or destructive activities 

• Creating negative feedback cycles to prevent overuse of good activities 

System Control 
When choosing a system of software development practices, you’d like the practices 
to support each other so that you tend to do about the right amount of any activity, 
even under stress. Here’s an example of a system of practices that leads to insufficient 
testing: 

Time pressure neg testing neg errors pos time pressure 

Figure N: Not enough time to test reduces the available time 

Under the pressure of time, you reduce the amount of testing, which increases the 
number of errors, which increases the time pressure. Eventually some outside activity 
(like “Cash Flow Panic”) steps in to ship the software regardless. 

When you have a system that isn’t behaving, you have a host of options: 

• Drive a positive feedback loop the other directions. If you have a loop between 
tests and confidence, and tests have been failing thus reducing confidence, you 
can make more tests work to increase confidence in your ability to get more 
test working. 

• Introduce a negative feedback loop to control an activity which has grown too 
large. 

• Create or break connections to eliminate loops that are not helping. 




