ong fibonacci) {

2

searchSequence &

index0fFibonaccl =
* .urrentIndex = 2;

NN
oY codemanship

el

/7007 OfOrtbe .-u; ‘=' s;eqt;e:nce.gef(currentindex -~ 3} » |
St ’ e 6},,0 if(f = fibonacci)
6907 ’6,6‘ .Cf LI JRERLY o ul | [PRBG A DU SarN——
), (g /;
‘076”09/ % d”se diately, we run the tests to make sure mothung + Srusan.
54 /) I, .
/oq, o}; 9y, 5 N ore are still issues that might need addvessmg » -
coo,e 06,6 low-hanging fruit.
Va (. /’ 63 07@’@,.
o4 Va/(/ s top fO/' -
- S |

IOl TDDO Tips

© Codemanship Ltd 2016

101 TDD Tips

101 things you’ll learn on the Codemanship TDD 2.0 training workshop.
First published on the @codemanship Twitter feed.

Visit www.codemanship.com for more details about TDD training and coaching, and our exclusive 200-
page TDD book.

© Codemanship Ltd 2016

http://www.codemanship.com/

101 TDD Tips

About The Author

Jason Gorman is a software developer, trainer and coach
based in London. A TDD practitioner since before it had a
name, he’s helped thousands of developers to learn this
essential discipline through his company Codemanship.
He’s the founder of the original international Software
Craftsmanship 20xxx conference, an activist for software
¥ developer apprenticeships, a patron of the Bletchley Park
| Trust, a one-time-only West End producer, a failed
physicist, and a keen amateur musician. His twelve fans
know him as Apes With Hobbies.

You can follow him on Twitter (@jasongorman), or email jason.gorman@codemanship.com

About Codemanship
i Founded in 2009, Codemanship provides training,

COdE‘fﬂc’)ﬂShiD coaching and consulting in the practical software

' disciplines that enable organisations to sustain the pace

of digital innovation. Based in London, Codemanship has trained and guided teams in TDD,

refactoring, software design, Continuous Integration and Continuous Delivery, and Agile Software

Development for a wide range of clients including the BBC, UBS, Waters plc, Ordnance Survey,

salesforce.com, Electronic Arts, John Lewis, Redgate and Sky.

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #1: Refactoring to parameterised tests is a great way to reduce
duplication while generalisingthe tests so they read more like a specification

@RunwWith (JUnitParamsRunner.class)
public class FibonacciTests {

Te

Parameters({"0,0","1,1"})

public void startsWithZeroAndOne (int index, int expected) {
assertEquals(expected, getFibonacciNumber (index)):

}

@Test

@Parameters({"2,1", "3,2", "5,5"})

public void thirdNumberOnIsSumOfPreviousTwo (int index, int expected) {
assertEquals(expected, getFibonacciNumber (index)):

}

@Test (expected=IllegalArgumentException.class)

public void indexMustBePositivelInteger() {
getFibonacciNumber (-1) ;

}

private int getFibonacciNumber (int index) {
return new Fibonacci () .getNumber (index) ;

}

codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #2: Using variables and constants can make the meaning of test data
values clearer

@Test (expected=MaximumExceededException.class)
public void maximumDebitAmountCannotBeExceeded () {
BankAccount account = new BankAccount():;
account.credit (1000);
account.debit (600.01);

@Test (expected=MaximumExceededException.class)
public void maximumDebitAmountCannotBeExceeded () {
BankAccount account = new BankAccount():
account.credit (1000);
final double maxDebitAmount = 600.00;
account.debit (maxDebitZmount + 0.01);

N

2 codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #3: It’s actually okay to have getters for tests, just as long as they’re
not exposed to the client source code

@Test

public void rewardingMemberAddsPointsToTotal() {
Member member = new Member():
member.reward(10) ;

assertEquals (10, member.getRewardPoints()):

public class Member implements Rewardable {
private int rewardPoints;
@override

public void reward(int points) {
this.rewardPoints += points;

}

public int getRewardPoints() {
return rewardPoints;

}

public class Library ({
private List<Copyable> titles;

public void donate (Copyable title, Rewardable donor) {
titles.add(title);
donor.reward(10) ;

codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #4: Running customer tests through a tag cloud generator can
provide inspiration when looking for names for classes, methods, variables
etc

Given a movie title that isn't in the library,

When a member donates their copy

Then the title is added to the library,

And a default loan copy is added to the title,

And an email alert is sent to all members who expressed an interest in matching titles informing them title is
available to borrow,

And the donor is awarded 10 reward points

default member
alertEwallablematchmg

rewar borrow
po.maddedcopy

et |t] @,

arugeibrary >

informingmovie

members [+ Codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #5: You don’t necessarily need a mocking framework to create mock
objects

public class LibraryTests {
private boolean registerCopyInvoked;

@Test
public void tellsTitleToRegisterCopy() {
registerCopyInvoked = false;
Member member = new Member () {public void awardPriorityPoints(int points) {}
}:
Title title = new Title() {
public void registerCopy () {
registerCopyInvoked = true;
}
bi
new Library().donate(title, member);
assertTrue("title.registerCopy() was not invoked", registerCopyInvoked):

codemaoanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #6: The way to go faster is to go cleaner. When the schedule’s
slipping, consider taking smaller steps

@Test

public void squareRootTest () {

assertEquals(3, Maths.sqrt(9), 0.00001);
}

@Test |

@Parameters ({"O", win wgn mgu "0.25"})

public void squareOfSquareRootIsSameAsInput (double input) {
double sgrt = Maths.sqrt(input);
assertEquals(input, sqrt * sgrt, 0.00001);

codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #7: Before you make it pass, run the test to make sure the assertion
fails when the result is wrong, so you know it’s a good test

f# Package Explorer gv JUnit 2 & oo élRl| QB ® EYy v=0
Finished after 0.033 seconds

Runs: 1/1 8 Errors: 0 B Failures: 1
|
e/ donatedTitlelsAddedToTheLibrary [Runner: JUnit 4] (0.001 s)|

1-..'!

= Failure Trace oF| ¢
%1 java.lang.AssertionError:
Expected: iterable containing [<VideoTitle@77a567e1>]
but: No item matched: <VideoTitle@77a567e1>
at org.hamcrest.MatcherAssert.assertThat(MatcherAssert.java:20)

at VideolibraryTests.donatedTitlelsAddedToThelLibrary(VideoLibraryTests.java:14)

FA L doenl o
BT

g }vj codemanship

]
N Sy

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #8: Customer Tests Passed offers a more objective measure of
progress than ‘tasks completed’ or ‘layers coded’

Progress %

60%
100%
100%
100%
100%

0%
0%
0%
100%
100%

66%

Total Tests

HNNNB B NNLBWV

Passed

HNOOOMRNNDBW

Feature Progress % ul Services Domain DB
Donate a DVD 70% 0% 80% 100% 100%
Borrow a DVD 75% 0% 100% 100% 100%
Join the library 65% 0% 60% 100% 100%
Refer a friend 75% 0% 100% 100% 100%
Review a movie 75% 0% 100% 100% 100%
Search for titles 50% 0% Fleaturéw' o
Report DVD lost or damaged 50% 0% R
Reverse a DVD 50% 0%
Spend reward points 75% 0% 1 Bc?rrow a' ol
Transfer reward points 75% 0% 1 Join the library
Refer a friend
Total progress 66% Review 2 mc_w'e
Search for titles
Report DVD lost or damaged
Feature Progress % Analysk Deslgn Reserve a DVD
Bovtea BVD 5% 100% A Spend reward points
Borrow a DVD 75% 100% 1 Transfer reward points
Jointhe library 68% 100% 1
Refer a friend 70% 100% 1
Review a movie 50% 100% 1 Total progress
Search for titles 50% 100% 100% 0% 0%
Report DVD lost or damaged 63% 100% 100% 50% 0%
Reverse a DVD 63% 100% 100% 50% 0%
Spend reward points 75% 100% 100% 100% 0%
Transfer reward points 75% 100% 100% 100% 0%
Total progress 66%

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #9: Parameterised unit tests can be reused in other kinds of test
fixtures that can be run separately

@rRunWith (JUnitParamsRunner.class)
public class MathsTests ({

@Test

@Parameters ({non’ "1", n4u’ ||9n' 110.25"})

public void squareOfSquareRootIsSameAsInput (double input) {
double sgrt = Maths.sqgrt(input);
assertEquals(input, sqrt * sqgrt, 0.00001);

@rRunwWith (JUnitParamsRunner.class)
public class ExhaustiveMathsTests {

Test
Parameters (method="inputs")

public void testl000SquareRoots (double input) {

new MathsTests () .squareCfSquareRootIsSameAsInput (input);

e
e

}

private Object[] inputs () {
return DoubleStream
.iterate(l, n -> n + 0.1)
.1imit (1000)
.mapToObj (x -> X)
.toArray();

e .
-"? 1 codemanship
\ AT

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #10: When the implementation for a requirement or rule is obvious,
you don’t need to triangulate through multiple examples

@Test

public void sumOfTwoNumbers() {

assertEquals(4, Maths.sum(2,2), 0);
}

public class Maths {

public static double sum(double i, double j) {
return i + j;

}

Y codemoanship

3 g m
£ S

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #11: Don’t mock or stub 3™ party interfaces. Create your own
interfaces that you control to simplify interactions and protect your code from
changes

@Test

public void whenOrderConfirmedNotifiesWarehouse () throws IOException {

com.rabbitmg.client.Channel warehouseChannel
= mock(com.rabbitmg.client.Channel.class);

Order order = new Order (warehouseChannel):;
Product product = new Product ("Widget", 9.99):;
order.addItem(new OrderItem(product, 1));
order.confirm();

String message = "NEW ORDER\nItem 1l: Widget, Quantity: 1";

verify(warehouseChannel)
.basicPublish("", "WAREHOUSE", null, message.getBytes()):;

@Test
public void whenOrderConfirmedNotifiesWarehouse() {
Warehouse warehouse = mock(Warehouse.class);

Order order = new Order (warehouse);
Product product = new Product ("Widget", 9.99);
order.addItem(new OrderItem(product, 1)):;

order.confirm();

verify(warehouse)
.notify(order):;

codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #12: Tests should have one reason to fail, so we can more
easily pinpointfailures, and get feedback one design decision at a time

@Test

public wvoid donateTitle() {
Library library = new Library():
VideoTitle title = new VideoTitle():
Member donor = mock(Member.class);
library.donate (title, donor):
assertTrue(library.contains(title));
verify(donor) .awardPoints (10);

-

private Library library;
private VideoTitle title;
private Member donor;

@Before

public wvoid donateTitle() {
library = new Library();
title = new VideoTitle():
donor = mock (Member.class);
library.donate(title, donor);

}

@Test
public void donatedTitleIsAddedToLibrary() {
assertTrue(library.contains(title));

}

@Test
public wvoid tellsDonorToAwardTenPoints() {
verify(donor) .awardPoints (10);

}

codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #13: Writing the test assertion first and working backwards to
the setup helps us to focus on the “what” before the “how”

Test
public void donatedTitleIsAddedToLibrary() {
assertTrue(library.contains(title)):;

}]o Create local variable ‘library’ J
a Create field 'library’
© Create parameter 'library’
O Create class 'library'
a Create constant 'library’
§= Rename in file (Ctri+2, R)
i Convert to TestNG (Annotations)
i Pull @Test annotations to the class level
Change to 'Library'
@ Change to 'LibraryTests’
@ Fix project setup...

Sl TN

L@%\
] w

ﬁ\j codemaoanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #14: Start on the outside with a failing customer test, and
then test-drive the internal design to pass that customer test

I !Ig hatpy/ Nocalhost Fithesse OVDLbraryTests DonateADVD Mest p -0 |@Te-.u Results: Fithlesse DVDLL _ ! I!l!l

File Edit Yiew Favorites Tools Help

@FitNESSE Test Edit Add~ Tools -

FitMesse / DVDUbraryTests /| DonateADVD Expand All Collapse all

Donate a movie that 1Isn't in the lprary

Fallure Navigator « | [of20 »

Given a movie title that isn't in the library,

‘When a member donates their copy

Then the title is added to the library,

And a default loan copy is added to the title,

And an email alert is sent to all members who expressed an interest in matching titles informing them title is available to borrow,

And the doner is awarded 10 reward peints

import

com.codemanship.dvdlibrary.customertests

DonateFixture

title donor libraryContains? copyCount? rewardPoints? emallSubject? emallBody? reciplents?

The joepeters [Hilfle) EXpected (0] (0] Expe d () Expected [Bu!) Expected [fu!) Expected

Abyss [irtie] expected [0] [Mow available [Dear member,

1] justtollet you fanedoefhotfrogs.org.uk]

knew that The fredi@bloggs.eu]
Abyss is now
Bvailable to
borrow]

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #15: There’s often a simpler failing test to start with than you
think

@Test

public void basketTotalledCorrectly() {
ShoppingBasket basket = new ShoppingBasket():
Product widget = new Product ("Widget", 60.0);
basket.add (new Item(widget, 2));
Product flange = new Product("Flange", 30.0);
basket.add(new Item(flange, 1))
assertEquals(150.0, basket.getTotal(), 0):

@Test
public void emptyBasketHasTotalOfZero() {

assertEquals (0.0, new ShoppingBasket().getTotal(), 0):
}

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #16: Instead of multiple stub implementations, parameterise
stubs for less code and so test data can be defined inside the test
method

public class VideoTitleTests {
private final float PRICE = 3.95f;

@Test
public void titlesRatedEightOrHigherAddDollarPremium() {
VideoTitle title =
createTitle (new ImdbStubRatingEight (), PRICE);
assertEquals(PRICE + 1.0, title.totalPrice(), 0);
}

@Test
public void titlesRatedLessThanEightAddNoPremium() {
VideoTitle title =
createTitle (new ImdbStubRatingSeven(), PRICE);
assertEquals(PRICE, title.totalPrice(), 0):
}

private VideoTitle createTitle (ImdbService imdb, fleoat price) {
return new VideoTitle(imdb, price);

}

public class ImdbStub implements ImdbService ({
private int rating;

public ImdbStub (int rating) {
this.rating = rating;

}

@override
public float rating() {
return rating;

}

@Test
public wvoid titlesRatedEightOrHigherBAddDollarPremium() {
VideoTitle title =
createTitle (new ImdbStub(8), PRICE);
assertEquals(PRICE + 1.0, title.totalPrice(), 0);
}

@Test
public void titlesRatedLessThanEightAddNoPremium() {
VideoTitle title =
createTitle (new ImdbStub(7), PRICE):;
assertEquals (PRICE, title.totalPrice(), 0);

codemaoanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #17: The best source of test examples is the real world.
Observe people in situations where your software will be used.

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #18: Before you commit, merge other people’s changes into
your code and make sure all the tests pass

file Edit Navigate Search Project Run Window Heip

e’mll!»‘ = O £ CombinerTestsjava &t : i =8

il
4 [i® Compilation Unit ~
Git m“‘.‘wwmﬂsﬁw “® Import Declarations i
4 9, > COMBINER [Combiner maste 4 @ CombinerTests =3
4 13, test/com/codemanship/test « 1000
1#m CombinerTestsjava

Hlasldpua
kspace mmnﬁmz.ame«m
28 #Test T @Test Aw
29 public void threeArrays "Q public void threeArraysRetur:
30 assertArrayEquals (r| 30 assertArrayEquals (new Ob;)
31 31 q
32) 32 i} u
33 33 I i
34 @Test 34 @Test .
s public void threeArrays 35 public void threeArraysOfTwoll
< 7 > 36 assertArrayEquals (r| 36 assertArrayEquals (new Ob;)
= 37 {1, "A", true 37 (1,"A", true},
@ TaskRepositories 2 0 = & |3q {1,"A", falsl |38 (1,"A", false}, |
+ @ Tasis < By Y 0 e =
i}
. ba;;:w @ History 12 & Tasks & Problems ¢dhtia~-=0
0 gciipserg

File Edit Source Refactor Navigate Search Project Run Window Help

. | QI va | £ Team Synchronizing
12 Package -~ odvJUnt i3 < O (i) CombinerTestsjava i = 0§l TaskList 13 =a

&G QR w i v 1 package com.codemanship.testutils; ~ gvEeleIxe
- 2+ impoxrt static com.codemanship.testutils.Combine] -
fini 3 ~junit. . 4
after 0067 5 4 import static org.junit.Assert.assertArrayEqual T o] s Al > AL
Runs: 19/ © Errors: 18 Failures: 5 import org.junit.Test;
e ¢ © Connect Mylyn ©
7 public class CombinerTests { COnnect to your task
» b com.codemanshiptestutiis.Pail. & and ALM tools or creats
* Bl comcodemanshiptestutitsRar| Test alocal task

10 public void fool() |
* W comzdémenhlp tesalsCofl Jf: assertArrayEquals(new object(1(1{{1}}, . S Ogines = O

» B com.codemanship.testutiis.Rar 12 N
13 vEARRN e N
148 8Test ot
15 public void thonek 1 [] '.:
16 assertArrayEquals(new Object[][1{(1,2}, 4 O, . CombinerTest
. 17 combine (new Obje . M void |
<H ;] > 18)
= Failure Ti | 19
= u ::- v . MMMW
1 > < >

Deciarstion @Console s ® X%k | A B E@E om0

<terminated> cmo«mmmm [Unit] C\Program Files\Java\jdk1.80_91\bin\javaw.exe (24 Oct 2016, 1
185 »

rn+V
sete Void twoArraysWithOneElementAndTwoElementsReturnedAsT'
i rtArrayEquals (new Object([][1{{1,2},{1,3}},
lown combine (new Object[][1{{1},{2,3}
»
ift+S»
ift+T» | 0 Commit.. Ctrl+# L
b =in
| Repository > [PushtoUpstream I
Advanced » | %> Fetch from Upstream 3
» | % Synchronize Workspace ? ;":Islh Branch mester -
> | ** Merge Tool & | SwitchTo s
F5 Create Patch... (1,2,31] 0
PPl Catehee ew Object[][]{{1},{2},{
» | 4 Add to Index
» | % Remove from Index
%) Ignore
&) Show in History
= : I
£)_Show in Repositories View va\jdk1.8.0_91\bin\javaw.exe (24 Oc

-
-

codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #19: Avoid using mocking “power” tools to get around
dependency issues. You'll bake in a bad design. Instead, refactor to
make the dependency swappable.

@Test
public void addDollarForTitlesRatedNineOrMore () {
String titlelId = "tt0111l161";
// stub static method
PowerMockito
.stub(PowerMockito.method(ImdbService.class, "fetchRating"))
.toReturn(8.2);
VideoRental rental = new VideoRental (titleld);
assertEquals(4.95, rental.getPrice(), 0.0);

@Test

public void addDollarForTitlesRatedNineOrMore () {
String titlelId = "tt0111161";
ImdbService imdb = Mockito.mock (ImdbService.class);
Mockito.when(imdb. fetchRating(titleId)) .thenReturn(9.2);
VideoRental rental = new VideoRental (imdb, titleId):
assertEquals(4.95, rental.getPrice(), 0.0):

Vs \' - .\
2 '@3 codemaoanship

AL

8

>

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #20: The failingtests you start with don’t have to be
functional

public class QuicksortTimeComplexityTests {

@Test
public void isNLogNComplex() {
for(int N = 2; N < 1000000; N++){ // time for a coffee!
int[] array = buildRandomArray (N);
Quicksort quicksort = new Quicksort():
quicksort.sortlAsc (array):;
assertTrue(quicksort.getIterations() <= N * Math.log(N)):

}

private int[] buildRandomArray(int length) {
int[] array = new int[length]:
for (int i = 0; i < array.length; i++) {
array[i] = (int) (Math.random() * length):;
}

return array:

| codemanship

.
.
Y
e
>

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #21: Slow-running customer test fixtures can often be
adaptedto double as fast-running developer tests

public class DonateFixture { .

- FitNesse fixture

private Library library;
private Title title;
private Member donor;
private EmailQueue queue;
private ArgumentCaptor<EmailAlert> alert;
private InterestedMemberSearch search;

public DonateFixture () {[]

@Test
public void donateMovieThatIsntInTheLibrary() {
setTitle ("The Abyss");
setDonor ("joepeters"™) ;
assertTrue(libraryContains()):;
assertEquals(1l, copyCount()):;
assertEquals (10, rewardPoints()):;
assertEquals("Now available - The Abyss", emailSub:
assertEquals("Dear member, just to let you know th:
emailBody())
assertEquals("joepublic@mymail.io, janedoelhotfrog:
recipients());

}
public void setDonor (String memberId) {[]

public void setTitle (String name) {[]

codemoanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #22: Not sure how much faith you can put in your tests to
catch new bugs? Mutation testing can help.

do {
t = squareRoot;

squarsRoot = (t (number / t)) / 2:
} while ((t - squareRodot) != 0):;

‘mutate’ +into -

do {

t = squareRoot;

squareRoot = (t (number / t)) / 2:
} while ((t - squareRodt) != 0):

1% Package Explorer g JUnit 2 S,
{}vﬂnaﬂl%&:.iilvv
Finished after 3.088 seconds
Runs: 4/4 8 Errors: 3 8 Failures: 0

@ MathsTests [Runner: JUnit 4] (3.033 5)
4 i squareOfSquareRootlsSameAsinput (3.033 s)
¢ [0] 0,0 (squareOfSquareRootisSameAsinput) (0.001 s)
@ [1] 1,1 (squareOfSquareRootisSameAsinput) (1.028 s)
g [2] 4,2 (squareOfSquareRootlsSameAsinput) (1.001 s)
& [3] 0.25,0.5 (squareOfSquareRootlsSameAsinput) (1.001 s)

= Failure Trace [3H=r

% java.lang.Exception: test timed out after 1000 milliseconds|
= at Maths.sqrt(Maths.java:13)

L= at MathsTests snuareOfSauareRontlsSameAsinniut{MathsTests iava-18)

Automoted mutation
o ¢ — testing tools like PIT

{Maven Build] C\Program F

Rl s st can check every line of

> NO_COVERAGE 0

p——————— O e s being tested
>> Generated 2 Killed 2 (100%)

> KILLED 2 SURVIVED 0 TIMED OUT 0 NON_VIAB U

> MEMORY_ERROR 0 NOT_STARTED 0 STARTED 0 RUN_ERRCR 0
> NO_COVERAGE 0

[INFO] Total time: 15.762 s
[INFO] Finished at: 2016-09-13711:16:51401:00
[INFO] Final Memory: 11M/220M

[INeo] -- e

codemaoanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #23: As you triangulate a solution, your tests should be
getting more general, too.

@Test
public void rootOfZerolIsZero() {
assertEquals(0, Maths.sqrt(0), 0.00001);

}

@Test

@Parameters ({"0,0", "1,1"})

public void squarceRootTest (double input, double expected) |
assertEquals (expected, Maths.sgrt(input), 0.00001);

}

BTest

fParameters({"0", 1", 4", "0" =G0, ny_oon()

public void squareOfRootSameAsInput (double input) {
double root = Maths.sgrt(input):;
assertEquals(input, root * root, 0.00001);

codemaoanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #24: Testing tools for TDD exist in most languages. And it
only takes a day or two to write a basic framework in most.

%

()
GrysiallabViEW 1l
ah GO0l

VB6. OT\mBScrim Objective-G

ITTGroovyFortransystemvVerilogjavascrip!

HLSL PostureSOL visual Basic HEAlhasmMATU\B
HTTPHaskell.,p OhjectScript Simulink Pascal
KSSEI % -Progressnesl}\nsl

o %, Common LispPython
Eg’,,sa% % Genexus!rlang;_‘l(Ml

?Ocam' cl Racket ScNET
. inhiSOL-PLRuby

codemoanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #25: Writing the test assertion first and working backwards
can also apply to interaction tests.

@Test
public void tellsDonatedTitleToAddLoanCOpY()ﬂ

} m title cannot be resolved to a variable
4 quick fixes available:

@ (Create local variable 'title’
o (Create field 'title’

@ Create parameter 'title’

o (Create constant ‘title’

&

codemaoanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #26: When opponents of TDD in your organisation say it’s
“untried” in industry, tell them developers have been doing it
successfully since the 1950s

Project Mercury ran with very short (half-day)
iterations that were time boxed. The development
team conducted a technical review of all changes,
and, interestingly, applied the Extreme Pro-
gramming practice of test-first development, plan-
ning and writing tests before each micro-increment.
They also practiced top-down development with
stubs.

Craig Larman & Victor Basili
Iterative development on NASA’s Project Mercury, 1957
Iterative & Incremental Development: A Brief History

W‘ ST :
4 s codemansh
o =

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #27: Failing tests (examples) can drive the design of business
operations as well as software

' Jane Smith calls to complain that her order (no.

10739) for 6x Lenovo laptops hasn't arrived

The call centre tracks the order, and
learns we only had 4 in stock. 2 are on
order. Delivery is expected to be another
14 days. We offer to ship the 4 we have
now, and the remaining 2 atno cost
later. We also offer to throw in MS Office
at no charge.

KT
L’? w‘?ﬁi codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #28: Test doubles can enable us to test asynchronous code
synchronously and simplify concurrent designs

public class InboxTests {

@Test

public void sendsMessageToQueueForProcessing() {
MailQueue gqueue = mock (MailQueue.class);
Message message = mock(Message.class); // dummy
Inbox inbox = new Inbox (queue);
inbox.sendAsync (message) ;
verify(queue) .send (message);

}

@Test

public void sentMessagesAddedToSentList() {
Sender sender = new Inbox(null); // Callback interface
Message message = mock (Message.class);
// callback method, invoked when queue has sent message
sender.messagesSent (message) ;
assertThat (((Inbox) sender) .sentMessages (), hasItem(message)):;

codemaonship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #29: We can use test doubles to make tests that use
changing or random datarepeatable

@Test

public void underageCustomerCannotRentEighteenRatedTitle () {
VideoTitle title = new VideoTitle (Rating.EIGHTEEN) ;
CurrentDate date = mock(CurrentDate.class);
when(date.get ()) .thenReturn("31/12/2016");
Customer customer = new Customer ("1/1/1999", date):;
assertFalse(customer.canRent (title));

@Test
public void doubleSixGivesPlayerExtraMove () {
Player playerl = new Player():
Player player2 = new Player():
Dice dice = mock(Dice.class);
when (dice.randomThrow()) .thenReturn(new int([]{6,6});
Game game = new Game (dice, playerl, player2);
game.move (playerl);
assertThat (game.nextPlayer(), is(playerl)):;

) codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #30: Jot down new tests you think of for working on later, so
you can stay focused on the current test

SHOPPinG BASKETTESTS

L a foe o L i o e e
i e s a2 = TS

BASKETOR x MEAS OF 3 AnE PRODOGT
HASTOTRL OF 2% UnNITPRCE

BASKETOE pmErad OF 7 PRODUCTE HAS
S0 OF URTRRICES

By B AS UETC ANNOTEAECKOST

BASKETIWMH (ROSSTOTA > $100 HAS
5°fs DISCOUNTAPPLIEDTD NEFTOT,

R,

S
..\:_Il

codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #31: 90% of the time, developers don’t go back to fix code
qualityissues. Don’t move on to the next test unless you're happy
leavingthe code as it is.

-

Red Green

REFACTOR!!!

TR _
Si L codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #32: When users report a system failure, write a failingtest before you fix it,
so you can get early warning if it returns

«plorer g JUnit &2 “ B [J) ElectionTestsjava &2 9] Electionjava) Candidatejava U] Qualificationjava

S oPdBEIORNEY < l#import static org.junit.Assert.assertThat;[]
Finished after 0.023 seconds

6

public class ElectionTests {
Runs: 1/1 o Errors: 0 O Failures: 1
|
@Test
public void mostQualifiedCandidateShouldwin() {
Candidate donald = new Candidate ("Donald"):
donald.setQualifications (null);
Candidate hillary = new Candidate ("Hillary");
hillary.setQualifications(new Qualification{] {
new Qualification("Law degree from Yale"),
new Qualification("Congressional legal counsel"),
new Qualification("First Lady of Arkansas"),
new Qualification("First Lady of United States"),
new Qualification("Secretary of State") });
Election election = new Election(donald, hillary);
election.run():;
assertThat (election.winner(), is(hillary)):

ol mostQualifiedCandidateShouldWin [Runner: JUni

< >
= Failure Trace \IP
J% javalang.AssertionError:
Expected: is <Hillary>
but: was <Donald>
= at org.hamcrest.MatcherAssert.assertThat(MatcherA
= at ElectionTests.mostQualifiedCandidateShouldWin

N

» 2 codemanship

TDD Tip #33: Contract tests can serve as a specification for components other
developers might be working on
Team A works on

public class CommentTests { in1p|en1enting

private final String sanit‘.iz<=.'ci_f;‘,ex‘l‘_"f= "You are a ¥*¥** x¥x head!";

@Test "

public void commentTextIsSanitized() {
WebComment4Comment = createComment();
comment.setText ("You are a poo poo head!"):;

assertEquals(sanitizedText, comment.getText()):
}

protected WebComment createComment () {
CommentSanitizer sanitizer = mock(CommentSanitizer.class):;

when(sanitizer.sanitize (anyString())) .thenReturn(sanitizedText);
return new WebComment (sanitizer);

}
} Team B works on
implementing
public class CommentIntegrationTests extends CommentTests { 7
////
@Override H#
protected WebComment createComment () { ¥
return new WebComment (new SuperConservativeCommentSanitizer()):
}:
}

et
i
Zel
7]

i) codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #34: Leaving a test failingwhen you step away from the code (e.g.,
for lunch) can help you quickly “find your place” again when you return

{2 Package Explorer guJUnit 2 4GPl E By Yo O

Finished after 0.153 seconds

Runs: 9/9 B Errors: 0 8 Failures: 1

i Hi com.codemanship.dvdlibrary.unittests.EmailAlertTests [Runner: JUnit 4] (0.122 s)

4 gt com.codemanship.dvdlibrary.unittests.LibraryTests [Runner: JUnit 4] (0.014 s)
e tellsDonatedTitleToAddLoanCopy (0.014 s)

i e com.codemanship.dvdlibrary.unittests.TitleTests [Runner: JUnit 4] (0.001 s)

b Hi com.codemanship.dvdlibrary.unittests.MemberTests [Runner: JUnit 4] (0.000 s)

= Failure Trace BB
) Wanted but not invoked:
copyable.addLoanCopy();
= -> at com.codemanship.dvdlibrary.unittests.LibraryTests.tellsDonatedTitleToAddLoanCo
Actually, there were zero interactions with this mock.

= at com.codemanship.dvdlibrary.unittests.LibraryTests.tellsDonatedTitleToAddLoanCopy

codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #35: Mock objects are an easy way to implement the Null Object
pattern for test dummies you know methods will be invoked on

public class BankTransfer implements Transaction {

private double amount;
private Account payer:;
private Account payee;
private AuditTrail audit;

public BankTransfer (double amount,

Account payer,
Account payee,
AuditTrail audit) {

this.amount = amount;

this.payer = payer;

this.payee payee;

this.audit = audit;

}

public void execute() {
payer.debit (amount) ;
payee.credit (amount) ;
audit.log(this);

@Test
public void transferAmountDebitedFromPayer () {
Account payer = new Account();
payer.credit (100);
Account payee = new Account():;
BankTransfer transfer = new BankTransfer(
S0,
payer,
payee,
mock (AuditTrail.class)
):
transfer.execute()
assertEquals (50, payer.getBalance(), 0):

?{%@Q’i codemanship
RN

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #36: Example data removes ambiguity from customer tests

“hot”

“sweet”

“hot” = 90°C

“sweet” = 40g/L sugar

,‘—O*‘ ,

| codemoanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #37: In a test-driven approach to design, testers are
requirements analysts

~
e

L

L
~

foe Eon ew ’m Took by
B)FitNesse 7Te= ot add- Toos - Saarch for page

PitNesse OVOUraryTests DonstedDVD Capard AR CoBagre AR

Donate a movie that isn't in the library

o V) Given 5 movie titie that 130t in the Sbrary,
_MALL&LLD—L!-&M When a member donates their copy

Then the ttis Iy added o the IRrary,
And » cefauit loan copy |s pdded to the title,
| (e A A onad And an emall slert I sant to 8T Mmembers Who expressed an interest in matching tithes informing them tithe s
avadable 10 borrow,
And the donor 15 awarded 10 rewand points
. mport
o Cravs e com codemanship. dvaibrary
ConateFature
ttie Oonor NbraryCorzains? copyCount? rewardPoints? emefiSubject? emeliBedy? recplents?
The jospeters true 1 10 Now avallable Dear LepubleDmymal.lo,
Abryss ~The Abyss member, JAned0e O harfrogs. org. uk,
Jattolet fracdoblogos.ew
you know
that The
Abyss

Front Page | User Guide | root (for global 'path's, efc.) | Press ' for keyboard shortouts (e0t)

codemasanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #38: Avoiding mistakes is cheaper than fixing them.
Slow down to go faster!

- -
-

/I’I/ /QI) \\\\

{,’?F NN

| codemanship

1o
Y Vo
XS

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #39: For complex logic, use models to visualise and
help spot tests you might otherwise miss

In Frogeesa

'I squirifn] fconlent =n == capacily
Ermply I >

bk -
] fconlent = n < Capaciy)
buttonPressed doorOpened doorClosed timerTimesOut
Brinkes
e [Ready To Cook Conking Daar Open Can't Hoppen | Evert Igroced
Cooking
Cooking Cooking Extended Interrupted Can't Happen | Coowing Complete
€ i Coaking Do Open Can't Happerned Can't Happen
| Rules
| conditions i 2 3% 4 & & 7
Infank passengers (age: < 2) ¥ ¥ rnt ignaned Con't Happen Ready To Cook Event igroned
Youth passengers (age! 2 to 16) LR
Frequent ﬂ"l‘eﬁ ¥ ¥ rent lgnared Can't Happen Ready To Cook Can't Happen
Domestic fights ¥ c
k
Intematicnal flighers Y ¥ kingExtended| | 09Nr9 Can't Happen | Cooiing Complets
Early reservation ¥ Y| Y i
Off-season traveling ¥
| Actions 1 2 3 &4 5 & 7 &8
Offer 1096 discourts X X
Offer 15% diseourits X X
Offer 20% discounts X X
Offer 70% discounts X
Offer B0% discounts X

codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #40: Check for backwards compatibility by running older versions of
API tests against new implementations

public class WarehouseRpiTests |
private WarchouseRpi warehouse;
@Before

public veid createWarehouse() {
warehouse = new Warehouse ("http://localhost/warehouse");

}

@Test
public veid checkProductStock() {
assertEquals(l, warehouse.checkStock("GI Joe"));
}
@Test

public veoid orderIsShippedToGivenAddress() {
Address address = new Address("10 Acacia Lane, Trumpton, TRU% 3RT");
Order order = new Order ("GI Joe"™, 1, address);
ShippingNote shipping = warehouse.fulfil (order);
assertEquals(address, shipping.getAddress()):

| codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #41: Under delivery pressure, TDD newbies revert to old habits. With
regular practice, build up to applying it to everyday work.

@Test
public void numbersDivisibleByThreeReplacedWithFizz () {
assertEquals("Fizz", new FizzBuzzer().fizzBuzz(3)):

}

@Test

public void firstFibonacciNumberIsZero() ({
assertEquals(0, new Fibonacci().get(0)):

}

@Test
public void romanNumeralForFourIsIV() {
assertEquals("IV", new RomanNumerals().convert(4)):

}
12 Package Explorer i ESle 770 [AnayMatcherTestsjava | i) BecauseMockTests
4 54 > BecauseMock [BecauseMock master 12 I | backage com.codemanship.becaus

& src 7 £ g
- (% test J#import org.junit.Before;[

+ 8 com.codemanstiip.becat k public class BecauseMockTests

4 ArrayMatcherTests java 11
4 BecauseMockTests java 12 private MyInterface mock:
|4} DefaultValueGeneratorTestsjava 13
14 InvocationsTests java 14 @Test
[MockExceptionTestsjava 1 public void methodInvokedA
2 Mylnterface java = moc}f.doi‘oo‘() z
3 verify(mock) .doFoo() ;
») StubsTestsjava }

®\ JRE System Library [JavaSE-17

=\ Maven Dependencies . e ore

®\ JUnit4 21 public void createMock() {

& > target 22 mock = mock(MyInterfac

» pomxml ‘ }

i README. o a .
~ B READ qu» I @Test (expectedsMockExceptis
i BecauseUnit [Because a public void methodNotInvok:

verify(mock) .doFoo();
}
@Test (expected=MockExceptis
2 Package Explorer © E v 'O ubanTestsjng | @ EmailAlenTens i
& AsyncTests ~ B : package com.codemanship.dvdlibrary.unittes
¥ BeycodTcd examples
& Buglests #import static org.junit.Assert.*;
Sy)) Runkith(JUnitParamsRunner.class)
¥ Desigrérinciples_example public class EmailAlertTests |
 3¥ DveLibrary
- v private EmailAlert alert:
S ety private EmailQueue queue;
@ ¥ Test J private InterestedMemberSearch search:
1) DonateFixture java e

= hier public void setupAlert() |

= Mibrary lntec o 7itle title = new Title(“The Abyss

» o' rabbe queue mock (EmailQueue.class);

« @ comcodemanship dvdlibrary unittests Ll » = pew InterestedMemderSearc
4 EmailAlentTests java : ale = new EmailAlert(title.getNa

U inecestedMemberSearchStab java]
) UbraryTestsjava

Ul MemberTestsjova public void subjectLineIncludesNewT

kst assertEquals(*Now available -
@ cor YTt TSt)
™ Untd
2 Maven Depenciencies Test
W RE System Library v ¢ publ;:x-:::dhz:o«‘
& bin " ng exp
& target
™ pomuxml 4 assertPoualslexsected?

© Codemanship Ltd 2016

Week 1-6 : basic TDD
exercises

~2 hours per week

Week 7-12 : small self-
contained projects

~3-4 hours per week

Week 13 - 24 : apply TDD to
real projects, starting at a
comfortable pace when less
delivery pressure

~8-40 hours per week

codemaoanship

101 TDD Tips

TDD Tip #42: Favour fast-running unit tests so you can re-test as much logic as
possible quickly for more frequent feedback

systemy/Ul

;’/ tests
i \\
i N,

N
",

 Integration Tests

4/ ™
y

Unit Tests

:é?’*“-‘ﬁ*’.‘-ﬁ@ﬂ
Wy L E .
1ok | codemonship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #43: Don’t expect your customer to learn new tools so they can

participatein definingtests

R : Bogk! - Bxoe T ®m -0
“ HOME INSERT PAGE LAYOUT FORMULAS TEAM ik lason
¥ | Calibri -{n]
T RciAa Alignment Number Editing
~ « S L - % . .
E1 - e
A 8 L D -
1 |Produsct Cuamntity Uit Prica Subtetal i
2 Ewample Basket #1
3 Widget i 100 160
4 Example Basket 82
5 Widget 2 100 00
6 |Example Basket 83
7 ‘widget 1 100 100
& Doodad 1 50 150
9 Ewample Basket 84
10 Widget 2 100 200
11 Doodad 2 50 300
12 | Thinguevig F 150 60O
Shopping Basket tests F i

avalabia o bormow,
And the Soner 1 swvardes 10 rewand pants

DonsteFiiure
s denor BraryConEInGY CopYCOUE? FERBRIPOINGT SMBISUBMSETY GMABBSdY? ROty
Tha jospeters tros 1 H Mow avallsbis Dsar 3
Abryss ~Tha dbyss mamber, janad
Just o nt
s v
tat The
Abyves b
Front Fage | User Guide | reot (for global ipati's, efc.) | Press 'F for keyboand shorbosts [edi

r, — B - G| @) revens vermytema.. « [0 D
Gl o Yew Fperne Tool Hew
BmiFitNesse Test Edit Add. Tools -
Fithai i CADLUIbrnry Tadts ConstadOVD
Donate a movie that isn't in the library
Given & Mo D thet 57T I the bbfary,
1t o Ehe bile,
| alert is sant o all members who sxprassed an interest in matching tithes informing tham title is

© Codemanship Ltd 2016

Let them use familiartools
you can easily extract test
data from

Drive unfamiliar ATDD/BDD
tools for them during
collaborative sessions

Design tools to work the
way they think (which
nobody’s done yet!)

sRmgET

% codemanship
b Vs

1

L

101 TDD Tips

TDD Tip #44: TDD is a gateway drug to Continuous Delivery

potentially
. shippable
code

Refactor

A

RN
.

2 @\i codemaoanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #45: The opposite of duplication isreuse. Refactoring
duplicate code during TDD often reveals useful abstractions.

public class FatherJackCensor {

// censors Father Ted scripts for more conservative tastes
public String sanitize(String text) {

text = text.replaceAll ("feck"™, "¥x¥¥xn)_

text text.replaceAll ("drink", "Xxxxxx").

text = text.replaceAll ("girls", "xxxxxw)_

return text;

public class FatherJackCensor {
private String[] profaneWords;

public FatherJackCensor (String[] profaneWords) {
this.profaneWords = profaneWords;

}

// censors Father Ted scripts for more conservative tastes
public String sanitize(String text) {
for (String word : profaneWords) {
text = replaceWord(text, word):;

}

return text;

}

private String replaceWord(String text, String word) {
return text.replaceAll (word, word.replaceAll(".", "*"));

}

codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #46: “Adversarial” pairing can help you write better tests

_ Fred writes a failingtest
@Test po

public void borrowedTitlesArelAddedToMembersLoans () |
Member member = new Member();
VideoTitle title = new VideoTitle():
member.borrow(title)

assertBEquals(l, member.getLoans().size()):

' Emma writes code that passes the test,
public class Member { butisn’t what Fred intended

F
public List<VideoTitle> getLoans() {

return Arrays.asList(new VideoTitle[] {null}):

}

public void borrow(VideoTitle title) {
}

‘ _ Fred makes the test stronger
@Test -
public void borrowedTitlesAreRddedToMembersLoans () {
Member member = new Member():
VideoTitle title = new VideoTitle():;
member . borrow(title);

assertThat (member.getLoans (), contains(title));

codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #47: In TDD, we don’t have to build features in a “logical
order”. Using test doubles, we can fake it until we make it.

Obviously, we'll need to get
payment processing working
before we cantackle order
fulfilment

Let’s fake payment processing
using a mock object so we can
work on fulfilling orders

N

(7 ey, "

IS e =
;g&g i codemonship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #48: A good way to know if you're ready to apply TDD to
commercial projects is when it doesn’t slow you significantly

Time yourself tackling a non-trivial problem
(e.g., Roman numeral converter) without
applying TDD

Time yourself tackling the same
problem applying TDD rigorously

* Ask a colleague to acceptance test the solution thoroughly when
you believe you are finished. You aren’t done until they say so.

* Repeat the exercise 3 times so that learning from one pass is
applied to the next pass. Consider the first pass to be a trial run,
and only use the timings from the next 2 passes

* Also ask your colleague to review the quality of the code. You
aren’t done until they say the code’s clean enough.

* If youcan TDD it without taking more than ~20% longer, you're
probably ready to start TDDing real production code

VZ:‘ *"?\i codemoanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #49: Under pressure, we revert to our default way of
working. Focus on buildinggood habits to make TDD your default
behaviour.

* Start by writing a failing test

* Write the simplest, quickest code to pass the test

* Refactor to make the next test easier

* Don’t write source code unless you have a failing test that requires
it

* Triangulate when the solution isn’t trivial

* Don’t refactor when tests are failing

* Write the assertion first and work backwards

* See the test assertion fail so you know it’s a good test

* Write tests that have one reason to fail

* Write tests that clearly convey their intent

* Cleanly separate test code and source code

* Organise test code to make it easy to see what’s being tested

* Write tests that can run individually and in any order

FRRE

ot codemanship
LRy N

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #50: The best time to sell the benefits of TDD is after you’ve
achievedthem. Under-promise and over-deliver.

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #51: You can use the Builder pattern to encapsulate
duplicated set-up code

@Test
public void membersGetTenPercentDiscount() {
Membership membership = new Membership("08-12-2016");
Country country = new Country("United Kingdom"):;
Address address = new Address ("1 High Street", "Nontown", "NT1l S5AA", country):
Customer customer = new Customer("Bill Smith", address, membership);
ShoppingCart cart = new ShoppingCart (customer);
cart.add (new Item("Widget", 1, 10.0));
assertEquals(9.0, cart.netTotal(), 0):
}

@Test
public void nonMembersGetNoDiscount() {
Country country = new Country("United Kingdom");
Address address = new Address ("1 High Street", "Nontown", "NT1 SAA", country);
Customer customer = new Customer("Bill Smith", address, null);
ShoppingCart cart = new ShoppingCart (customer);
cart.add(new Item("Widget", 1, 10.0));
assertEquals(10.0, cart.netTotal(), 0);
}

@Test
public void noFreeShippingOutsideUK() {
Country country = new Country("France"):;
Address address = new Address("1 High Street", "Nontown", "NT1 SAA", country);
Customer customer = new Customer("Bill Smith", address, null);
ShoppingCart cart = new ShoppingCart (customer);
cart.add (new Item("Widget", 1, 10.0)):;
assertFalse(cart.freeShipping()):

@Test
public void membersGetTenPercentDiscount () {
ShoppingCart cart = ShoppingCartBuilder

.aShoppingCart ()
.withMembership ()
.build();
assertEquals(9.0, cart.netTotal(), 0);
}
@Test

public void nonMembersGetNoDiscount () {
ShoppingCart cart = ShoppingCartBuilder

.aShoppingCart ()
.build();
assertEquals(10.0, cart.netTotal(), 0);
}
@Test

public void noFreeShippingOutsideUK() {
ShoppingCart cart = ShoppingCartBuilder
.aShoppingCart ()
.withCountry ("France")
.build():;
assertFalse(cart.freeShipping()):

codemonship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #52: Code isn’t the only thing that can be test-driven

0] N T R x - .
Ble Edit \iew Favoctes Jools Help Welcome, joepeters!
i T Add - Is - Search for pi|
@F'tNesse = L2 od UEEE s £ You have 25 reward points
FitNesse | DVDUbraryTests | DenatedDVD Expand Al

Donate

Donate a movie that isn’t in the library click

Given a movie title that isn't in the library,
‘When a member donates their copy Star Wars 5

Than thae title is added to the library,

And a default loan copy Is addad to the titls, Donate
And an email alert is sent to all members who expressed an interest in matching titles informing them titl] Some Like It Hot

avallable to borrow,

And the doner is awarded 10 reward peints

The French Connection Title ‘ The Abyss ‘

Impart

com.codemanship.dvdlibrary cance|
DonateFixture
title donor libraryContains? copyCount? 4 il
The joepeters true 1 10 Now available Dear Joepublic
Abyss - The Abyss member, janedoedihotfrags.org.uk, -
Justtolet fredi@bloggs.eu CI | Ck
you know
that The - -
Abyss Is ‘Welcome, joepeters!
Front Page | User Guide | root (for global Ipath's, ete.) | Press ‘2 for keyboard shorteuts (edit) ' .
You have 35 reward points

Star Wars 3
Some Like It Hot 1
The French Connection 2
The Abyss al

codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #53: Tests that run faster can be run more often. Optimise
your automated test suites as they grow.

FetchA =7
Fetch B

Fetch C

Fetch A, B, C

10 MB
test DB

100 GB copy of live DB

© Codemanship Ltd 2016

Minimise slow-running tests
(favour fast-running unit tests)

Localise test execution and
code under test (ideally, in
same process)

e.g., run browser tests on
same machine as web server,
use in-memory database, run
JS Ul tests in fake browser
container

Batch expensive network
communications

e.g., send all the DB queries
for a web page with multiple
datasets in the same SQL
command

Test with the smallest
possible datasets

101 TDD Tips

(TDD Tip #53 continued)

load shopping cart Web

= server
check total Reuse work already done
e.g., when multiple tests
load shopping cart could share the same set-up
.
check discounts
|
load shopping cart

check total
dlscounts

%

I_

I

1

L

Upgrading hardware is often
much cheaper thana
developer’stime

Inteli3 CPU Inteli7 CPU
4 GB RAM 32 GB RAM
500 GB HDD 512 GB SSD

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #54: If your implementation contains conditional logicto
pass the first test, you're doing TDD wrong

@Test
public void rootOfOnelIsOne () {

assertEquals(l, MathUtils.sqrroot(l), 0);
}

public class MathUtils {

public static double sgrroot (double input) {

if (input < 0) throw new IllegalArgumentException():
return 1;

{1 o codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #55: If your tests contain conditional logic, they may well be
testing more than one thing

ERunWith (JUnitParamsRunner.class)
public class SquareRootTests ({

@Rule
public ExpectedException thrown = ExpectedException.none():

@Test
@Parameters({"—l", lIOII’ uo'sn, "1"’ n4||, ugn})
public void squareOfSquareRootIsSameAsInput (double input) {
if (input < 0)
thrown.expect (IllegalArgumentException.class);
double root = MathUtils.sqrroot(input);
assertEquals(input, root * root, 0.00001);

@Runwith (JUnitParamsRunner.class)
public class SquareRootTests {

@GRule
public ExpectedException thrown = ExpectedException.none():;

@Test

@Parameters({"0", "0.5", "1", "4", "9"})

public void squareOfSquareRootIsSameAsInput (double input) {
double root = MathUtils.sgrroot (input);
assertEquals(input, root * root, 0.00001);

}

@Test
public void cannotSquareRootNegativeInputs() {
thrown.expect (IllegalArgumentException.class);

MathUtils.sgrroot(-1):;

FEREES,
s '@’i codemanship

o
\...
A]

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #56: If you think of a test case you missed when agreeing
acceptance tests, talk to the customer before addingit to the code

Donate movie to library tests

1. Donate additional copy of existing title
2. Donate copy of new title

3. Donate multiplecopies of same title
4. Loancopy to library for fixed term

5. Donate copies in different formats

(PVD, VHS, Blu-ray) 7

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #57: Apply more rigour to test-driving critical code

Code where
consequences of failure
are more severe

ABS Layouts and Components.

S Whee! Sensors
—]

Code that’s executed

In stock.
more frequently

Dispatched from and sold by Amazon.
Gift-wrap available.

Quantity Add to Shopping Basket

\ Add to Basket

Turn on 1-Click ordering for this browser

Dispatch to:

Code that’s more

\ T / depended upon

Code that has more ways
of being wrong

codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #58: Contrary to what some critics of TDD claim, it’s okay to
think ahead about design. In fact, we recommend it.

‘ 1 ey
0. 1 s Rt
A
= } UrA-"Mfé) \
& I e
p——

AAras> shippgiddves:

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #59: Open Source customer testing tools make it easier to
involve the whole team, and scale up/out test execution

Assertions: 1) o °
Contents:

@ StringManipulationTest
- Test RESRTS anery)

Tent X,

.

e

Rortactor

Whaew Used

S

rgont
frsharpriarngTests

et Onargen g Wankputance Tew

Lo workd

© Codemanship Ltd 2016

Fiy@ece Of Tent | Swcond Prece Of Taxt | Jon Teat Together!

[htiw ekt eepcied [Mvlio Workd]

Acme Inc. automated their
customer tests using a
proprietary test automation
tool costing Sthousands per
license. Their full regression
test suite takes 4 hours to run.
They can’t afford more
licenses.

FizzBuzz Ltd automated all
their customer tests with an
Open Source framework. In
total, they take 4 hours to run,
but they use a cloud solution
to run them in parallel in< 5
minutes

)

X
i

| codemanship

101 TDD Tips

TDD Tip #60: The most important quality of software is that it works. While
TDD-ing internal design, revisit your customer tests continuously.

DonateFixture
title donor libraryContains? copyCount? rewardPoints? emailSubject
The joepeters true 1 10 [AlI] expectt

Abyss -.q

Feature: Ordering answers

=IScenario: The answer with the highest vote gets to the top
Given there is a question "What's your favorite colour?” with the answers
Answer	vote
Red i	
Cucumber green	1
When you upvote answer "Cucumber green”
Then the answer "Cucumber green” should be on top|

feature “Signing in" do
background do
User.make(temail »> 'userfexample.com’, :password => ‘caplin')

end

scenario "Signing in with correct credentials” do

visit '/sessions/new’

within(“#session”) do
fill in ‘Login’, :with => ‘ugerfexample.com’
fill in "Password’', :with => ‘caplin’

ond

click_link 'Sign in’

oexpect (page).to have_content 'Success’

codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #61: Effective, sustainable TDD requires us to master a range of
developmentdisciplines. It's not just about unit tests!

DonateFixture
title donor libraryContains? copyCount? rewardPoints? emailSubject|
The joepeters true 1 10 (A1) expect{
Abyss -l-\q
Library Title
Knows sbout - Titie Knows its
tities: ember Name, —derector-
Hnows sbout e Eoymar of
tither Telezte
Adds donated Yo Sbout
titien rental copies
Adds new titles Remisters
rental copy
Email Alert Member
Sendsemsi to H - Knows about
members who pricrty points
e Avards
matching e priarity peints
@Test
public void donatedIlitlesAreRddedTolwvailableTitles(){
Library likbrary = new Library();
Title title = mock({Title.class);
library.donate{title);
assertTrue(library.contains(title));
i

public class Title {

Rename... Alt+5Shift+R
prjlvate i Move... Alt+Shift+V
private S

Extract Interface...

P“blic_Ti Extract Superclass...
this. Use Supertype Where Possible...
} Pull Up...
Disely Dvrnaen

For quick access, pLCe your bockmarks here on the bookmarks bar,

Jel

Build Pipeline: My pipeline

owos virse Tt Rase oep e
o pammetars — a
 ————
condition
Title is already inlibrary T|T|T|T|F|F|F|F
Title release date < 1 yearago T|T|F|F|T|T|F|F
Title IMDB rating > 8 T|F|T|F|T|F|T|F
action
add title to library X|X|X|X
add loan copy to title XX XXX XX |X
award donor 10 ADDED TITLE points X|X|X|X
award donor 5 NEW RELEASE points |X|[X X|X
award donor 5 TOP TITLE points X |X] |X| [X
award donor 5 NEW COPY points X[X|X|X
send ADDED TITLE email alert XXX (X

© Codemanship Ltd 2016

Requirements: we have to work
with our customer to agree failing
tests

Design: we have to think of how our
software can be composed of
functions and modules that will pass
the customer’s tests

Programming: we have to
implement our designs reliably in
code

Refactoring: we have to
continuously apply good design
principles to keep our code easy to
change

Continuous Integration: we have to
continuously merge our changes,
making sure the software always
works using our automated tests

Testing: we have to think like testers
to help our customers spot
examples we might have otherwise
missed

codemonship

101 TDD Tips

TDD Tip #62: Avoid noise words like ‘should’ in test names. They’'re
redundantand create clutter.

@Test
public void underl100ShouldGetNoDiscount () {
assertEquals (0, new Discount().calculate(99.99), 0):

}

@Test

public void froml00To200ShouldGetSPercent () {
assertEquals (5, new Discount () .calculate(100.00), 0);

}

@Test
public void over200ShouldGetlOPercent() {
assertEquals(20.01, new Discount().calculate(200.10), 0):

@Test

public void underl00GetsNoDiscount () {
assertEquals(0, new Discount().calculate(99.99), 0);

}

}

@Test
public void froml00To200GetsS5Percent() {

assertEquals(5, new Discount() .calculate(100.00), 0);
}

@Test
public void over200GetslOPercent () {

assertEquals(20.01, new Discount().calculate(200.10), 0);
}

codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #63: Starting over is sometimes cheaper than fixing a mess, and

often cheaper than living with one.

% FF

Remove from Context
Build Path

Source

Refactor

Import...

Export...

Refresh

Close Project

Assign Working Sets...

Run As

Debug As
Validate

Restore from Local History...
| Maven

Team
Compare With

Damlasa WAL+

© Codemanship Ltd 2016

Ctrl+Alt+Shift+ Down
3

Alt+Shift+5 ¥
Alt+Shift+T ¥

F5

IQ&IQE ”

T

Switch To
Advanced

Synchronize Workspace

Merge Tool
Merge...

Rebase...

Reset...

Create Patch...
Apply Patch...
Add to Index

Remaove from Index
lgnore

Show in History
Show in Repositaries View

Disconnect

P,

{{

(ne1

sEau

{{

((ru

ati
{{

(ne

sRe

codemanship

101 TDD Tips

TDD Tip #64: If a customer test fails, but all your developer tests pass,
there’s a gap in your developer tests.

itz flocalbont/iessn VDU Tests Donatea 0 £ = G | (3) Test Resss FitNesse DVDU. X
| e £Gt Yew favortes oo Help

@FitNesse Test Edit Add - Tools - « [lefis A

FitNessa = OVDLIbraryTests = DonateADVD

Expand AN Collapse All

X Test Pages: 0 right, 1 wrong, 0 ignored, 0 exceptions Assartions: 0 right, 6 wrong, 0 Ignored, 0 axceptions (

Test System: slim:fitnesse.slim.SlimService

Donate a movie that isn't in the library

Given a movie titie that isn’t in the library,
When a member donates their copy

Then the titie is added to the library,

And a default loan copy Is added to the title,

And il Alosd is anmh ha ol s

| & Package Explorerfu JUnit ! | ==
PR AR EE Y 7

Finished after 17.701 seconds

Runs: 1259/1259 8 Errors: 0 B Failures: 0
e |

b B com.codemanship.dvdlibrary.unittests.EmailAlertTests [Runner: JU
» #d com.codemanship.dvdlibrary.unittests.LibraryTests [Runner: JUnit
» @ com.codemanship.dvdlibrary.unittests.TitleTests [Runner: JUnit 4]

e

= codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #65: When you’re about to work on an existing code base
for the first time, start by making sure all the tests pass

{# Package Explorer v JUnit &2 ‘ 2SR Q A & e 2= 0
Finished after 0.061 seconds

Runs: 19/19 8 Errors: 0 B Failures: 0
-

4 Fi:] com.codemanship.testutils.PairwiseTests [Runner: JUnit 4] (0.014 s) A
gl pairwiseOfTwoParametersisCombinationOfBoth (0.000 s)
&) pairwiseOfSingleParameterlsSameAsinput (0.000 s)
& pairwisedTestCasesCoverAllValuePairs (0.000 s)
&/ largeNumberOfPossibleCombinationsReducedDramaticallyWhenPairwised ((
4 i com.codemanship.testutils.RangeEdgeTests [Runner: JUnit 4] (0.008 s)
& handlesBigRange (0.007 s)
g/ numberTypeMustBeATypeOfNumber (0.000 s)
&/ incrementMustBeGreaterThanZero (0.001 s)
4 Hi com.codemanship.testutils.CombinerTests [Runner: JUnit 4] (0.003 s)
¢/ threeArraysReturnCombinationsWithThreeElements (0.001 s)
&/ twoArraysWithOneElementAndTwoElementsReturnedAsTwoCombinations (0
&/ fourArraysOfOneTwoThreeAndOneElementsReturnSixCombinations (0.000 s)
g threeArraysOfTwoElementsReturnEightCombinations (0.001 s)

gl foo (0.000 s)

& twoArraysWithTwoElementsEachReturnedAsFourCombinations (0.001 s) v
< >
= Failure Trace 28]

¥ codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #66: Test doubles that return test doubles could be a sign
that the class you're testing breaks the Law of Demeter

@Test

public void shippingCostsExtraPoundOutsideEU() {
Customer customer = mock(Customer.class);
Address address = mock (Address.class);
Country country = mock(Country.class);
when (customer.getAddress ()) .thenReturn (address) ;
when(address.getCountry ()) .thenReturn (country) ;
when(country.isInEu()) .thenReturn(false);
double euShipping = 4.95;
Invoice invoice = new Invoice (customer, euShipping):
assertEquals(euShipping + 1, invoice.getTotalShipping(), 0):

public class Invoice {

private final Customer customer;
private final double shipping;

public Invoice (Customer customer, double shipping) {
this.customer = customer;
this.shipping = shipping;
if (!customer.getAddress() .getCountry() .isInEu())
shipping += 1.0;

refactored

@Test

public void shippingCostsExtraPoundOutsideEU() {
Customer customer = mock(Customer.class):;
when(customer.isInEu()) .thenReturn(false)
double euShipping = 4.95;
Invoice invoice = new Invoice(customer, euShipping):;
assertEquals(euShipping + 1, invoice.getTotalShipping(), 0):

SN

PSLE
)

codemaoanship

B

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #67: Like ballet dancers practicing in front of a mirror, it can
help to watch yourself do TDD to see where you could improve

i
ey

11§
e

.

T T SN

mm A
| TR RN N

ova - FIBONACCT TDO_EXAMPLEN s/ com/codemansdugy/Ton % e
Fle [dr Jowrce Refactor Nowgete Segrch Progect Bun Wndow Help

e $-0-Q- LWE- NG V- s PAvae QO dicyrvo-.
odts B Ml Jew | ™ O) emccimetedmtion S,

package com.codemanship. £1boORACL!

1 PRONACCLTOD EXAVPLE
R
OB et
@ com.codemanihip fbo

IMpOrt StAtio org.junis.Assert.*;

import org.jcnit.Test:
4, FbeaacoGenenator
W JRE System Libesey publie olass FibomaooilemeratorTests (
o Uned
& LAZY_CLASS Moot
o LAZY CLASS 2 public void LirstFibonacciNapezislesc() throws Exception (
sssezfrquals (0, sew FibonacciGes))

4 Problems 1T @ Jevadec| 1 Dectaration | D Comscie| 5 Debeg

7 eme

Descrption = [[
I Infes (7 term)

LRt

TEE "
fg ﬁj codemaoanship
h.:. Y

© Codemanship Ltd 2016

101 TDD Tips

“% " Codemanship

o _ pcodemanship

TDD Tip #68: There's still a place for a bit of
up-front analysis & design in TDD #101TddTips

jasongorman @jasongorman
When I'm not sure how to approach a problem, | make lists and
draw little pictures. Often, a door opens #tdd

11:07 PM - 11 Jan 2017

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #69: The most common reason for failing with TDD is not
putting enough effort into refactoring the test code

%j codemanship

0
\
e

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #70: TDD and Formal Methods have much in common.
Experience of both can improve you at either.

public class HtlRoomsTest |

private HtlRooms htlRooms;

private Room room;

BTest

public void afterCheckInReoomIsCOceupied() {
checkIntoRoom() :

assertThat (htlRooms.getOocupied (), contains(rocm)):
¥

BTest (expected=RoomNot InHotelException.class)

public woid cannoctCheckIntoRoomMotInHotel () {
Room room = new Room();
HtlRooms htlRooms = new HtlRooms (new ArrayList<Room>());
htlRooms.ckIn (room) ;

}

BTest

public void aftercCheckoutRoomIsUnoccupied() {
checkIntcRoom() ;

htlRooms.ckOut (room) ;

assertThat(htlRooms.getOccupied(), not{contains{rocm)));

}

private woid checkIntoRoom() |
room = new Room();
List<Room> rooms = new ArrayList<s():
rooms.add(zoom) ;
htlRooms = neW HTlRooms (rooms):

© Codemanship Ltd 2016

He lRooms

rooms: P ROON
occupied: P ROOH

occupied C rooms

—— CkiIn
A& occupied
r?: ROOH

£? € rooms A £? € occupied
occupied' = occupied W (£?}
— CkOut

A oceupied
£?: ROOM

£? € occupied
occupied' =occupied \ (r?

— LisctVac
rms': P ROON

rma'=rooms \ occupied

codemaoanship

101 TDD Tips

TDD Tip #71: With a little extra code, unit tests can be reused as
integration tests

public class ShoppingCartTests {

protected ShoppingCartBuilder builder;

@Before
public void setUp() {

builder = new ShoppingCartBuilder():
}

Test
public void membersGetTenPercentDiscount () {
ShoppingCart cart = builder
.aShoppingCart ()
.withMembership ()
build()
assertEquals(9.0, cart.netTotal(), 0):

public class ShoppingCartPayPalTests extends ShoppingCartTests {

@Before
@override public void setUp() {

builder = new PayPalShoppingCartBuilder();
}

codemoanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #72: Rollingyour own unit testing frameworks can be a. great practice,
and b. help you better appreciate their design

@ ¥ 2 B [JBecauseCheckerjava [J) BecauseParameterisedTestjava &2
» ¥ > BecauseMock [BecauseMock master 12] [] 1 backaqe com.codemanship.becauseunit;

G4 BecauseUnit [BecauseUnit master
- 3% sre 3#import static com.codemanship.becauseunit.Checker.*;

Gf

{2 Package Explorer &2 B

-~

4 i com.codemanship.becauseunit
+ [} Checkerjava

@ ~

public class BecauseParameterisedTest {

e)

» (B ClassReader.java 10 private SpyWriter writer;

- [#} Outputjava 11

o % Parameterised java 128 public void becauseParameterTypesAreListed() throwd
3 ParameterisedTest test = createParameterisedTe

- 1#} ParameterisedTestjava 13

. B Runnerjava 14 check(test.getParameterTypes() (0] .equals(Strin
v [@) SimpleTestjava (}

- B Testjava 17 public void becauseFindsDataForParameterisedTest ()
+ [# TestLoaderjava 18 ParameterisedTest test = createParameterisedTef
+ 5} TestMethodFinder.java 19 check (test.getData() .length == datafor_ parametg
. [} TestMethodValidator.java 20 }

+ (B Writerjava

» #§ com.codemanship.becauseunit.console

» # com.codemanship.becauseunit.exceptio

. #§ com.codemanship.becauseunit.fileloade
4 &% test

4 #§ com.codemanship.becauseunit

23s public void becauseRunningParameterisedTestInvokes'
2 ParameterisedTest test = createParameterisedTe
runTest (test) ;

check (writer.getLastWrite () .contains("passed")

}

+ 5} BecauseChecker.java E; ;
©) BecauseParameterisedTestjava ;, public void becauseFallsTestIngtaDoesntb"{atchParams
e — 30 Test test = createParameterisedTest ("parameter
3) % 31 runTest (test);
19 BecauseSimpleTestjava 32 check (writer.getLastWrite () .contains("failed")
v [BecauseTestMethodFinder.java 33 }
- #§ com.codemanship.becauseunit.console 34

» i com.codemanship.becauseunit.doubles <
» M com.codemanship.becauseunit.example

28y = Declaration
. # com.codemanship.becauseunitfileloade "~ ' CDIemS

codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #73: You can’t automate customer acceptance testing. The customer
needs to see it working for themselves.

[T T —y s

Automating customer tests helps guide
P Lo Yo Tpomes look two . - .
GFitNesse te: o - Toos - [EEEEE s «w .~ ustoa working solution design, and can
N 1 ORI/ GHAOVD e e provide cheaper regression testing

X Tast Pages: 0 right, 1 wiong, 0 kgnored, O axceptions Assartions: 0 right, & wrong, O ignored, O axceptions

Test System: slim:fitnesse.slim.SlimService

Donate a movie that isn’t in the library

Glven a movie title that isn't in the Sbrary,
When & member dosates ther copy
Then the tite is sdded to the lcary,
And & defuutt loan copy It added to the ttte,

And an email slert is sant to all members who expressed an intarast in matching tities informing them title is
avalatie to borrow,

And the donoe s awarded 10 reward points

import
com.codemanship. dvidibrary

Donetefixture
ttle denor SbraryCortaing? copyCount? rewardboints? emailSubject? emabBody’ recplnts?
Tra joepeters (Mille] L] (0] wxpacted (W)) () ipacted

Front Page | User Guide | rost (for glodal {path's, etc.) | Press ' for keyboard shortouts (edt)

But real customer feedback from using
the software is required before we can
be sure we delivered what they were
expecting. When it’s ready, get them to
execute the tests you agreed for
themselves.

codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #74: If you're the only person on your team doing TDD, be careful not to
end up fixing everyone else’s broken commits

Evenif it’s using your own personal
test suite & Cl server, make sure every
commit gets tested. Report problems
immediately.

Travis

nextcat

X squirrel-organizer
JackNapier broke the build at 9:00 AM
Last build on at 10:20 AM by TimD

@ fabricat
TimDrake on at 11:30 PM

Finished after 3.028 seconds Write some high-level ‘smoke tests’ to
Runs: 10/10 8 Errors: 0 B Failures: 0 quickly sanity-check each commit,
including code you’re not working on.
""" g
Just a few key user journeys could reveal
4 -] com.codemanship.videoretail.smoketests.VideoStoreSmoke| obvious problems.
=l calculateTaxes (0.457 s)
&) search (0.266 3)
i register (0.136 5)
& login (0.354 s)
&l findStore (0.469 s)
g addToBasket (0.180 s)
g trackOrder (0.368 s)
= reviewTitle (0.442 s)
el checkout (0.182 s)

Don’tlet management bury their heads
in the sand about this issue. Talk about

it openly and constructively. Don’t just

moan. Demonstrate workable solutions
and sell the benefits.

And if the team simply don’t wantto
know, then maybe you’re on the wrong
team?

codemoanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #75: Avoid setting team targets for TDD like test coverage. They're
too easily gamed. Pairing is the best way to see what developers do.

w

ct

ie

s
public void testEveryMethod() {
List<Class> classes = ClassUtils.loadAllClasses():

for (Class c : classes) {
Object instance = ClassUtils.createInstance(c):;
Method[] methods = c.getMethods ()
for (Method m : methods) {
Object[] defaultvalues
= ClassUtils.createDefaultParamValues(m) ;
try {
m.invoke (instance, defaultvValues);
} catch (Exception e) {
// ignore unhandled exceptions

}

assertTrue(true);

codemonship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #76: ‘Happy path’ test scenarios tend to have the most value,
because the end user achieves their goal. Prioritise accordingly.

Shoppiwa basket tests

POy et ceeptent

ol]
POVEVLC TEECLEN

Pitppmewnt processtmg thmesont

o rd g e car e mn
[T e R W N P L T Y P P P

P

Basket abimatonedd

Y codemanship
e

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #77: Your software must meaningfully handle any inputs
it allows. Any inputs it can’t handle should not be allowed.

Email Address | jasong@blahblahetc.com |

Password | R RO |

| R RO |

Confirm Password

p

. Email addressisvalid \

Password confirmation Password isalphanumeric && >
\matches password 6 characters /

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #78: Listen to your tests. Complex set-ups are trying to telling you a class has
too many dependencies and probably knows/does too much

@Test
public void checkoutNeedsAWholeBunchOfStuff () ({
PaymentProcessor paymentProcessor = new PayPalProcessor():;
Address address = new Address ("1 High Street, London, WC1 1wWC"):;
Customer customer = new Customer ("Jason", "Gorman", address):;
Warehouse warehouse = mock(Warehouse.class):;
Movie movie = new Movie("Star Wars", 10.99);
when (warehouse.checkStock (movie)) .thenReturn (1) ;
ReviewService imdb = mock (ReviewService.class);
when (imdb.getRating (movie)) .thenReturn(9.0);
OrderDAO orderDAO = mock (OrderDAO.class);
DiscountCalculator discounter = new HolidaySeasonDiscounter():;
Logistics logistics = mock(Logistics.class);
when(logistics.arrangeShipping (customer)) .thenReturn(new ShippingNote (customer)):;
Marketing marketing = mock (Marketing.class):;
Logger logging = mock(Logger.class);
ShoppingBasket basket = new ShoppingBasket (
paymentProcessor,
customer,
warehouse,
imdb,
orderDAO,
discounter,
logistics,
marketing,
logging);
basket.add (movie, 1):;
basket.checkout () ;
Order order = basket.getOrder():
assertEquals(OrderStatus.PAID, order.getStatus()):

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #79: Organise your test suites to make it easy to find and
run different kinds of tests

4 32 Dvdlibrary
b & src
4 (B tests
> # com.codemanship.dvdlibrary.customertests
> #8 com.codemanship.dvdlibrary.integrationtests.hibernate
> ## com.codemanship.dvdlibrary.integrationtests.jsf
» i com.codemanship.dvdlibrary.integrationtests.rabbitmq
> | ## com.codemanship.dvdlibrary.unittests
> # com.codemanship.dvdlibrary.unittests.mvctests
> @ JUnit 4
> ® Maven Dependencies
» @ JRE System Library [JavaSE-1.7]
> & bin
= target
M pom.xml

1ou ;| codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #80: TDD isn’t what matters. The results you can get with
TDD are what matters.

cost

99% of
teams are
here

Costof Change

relizbility

Project Lifecycle Progress

Develop

Release

© Codemanship Ltd 2016

TDD can not only deliver
more reliable software,
but it can also save you
time & money

TDD can help teams
sustain the pace of
innovation by flattening
the cost of change curve

The small cycles of TDD
enable Continuous
Delivery, so your business
can outlearn the
competition

codemanship

101 TDD Tips

TDD Tip #81: You don’t need to write tests for every method of
every class. Lead with useful behaviour, and let these details follow

SurgeryQueue
k]
enqueue(Patient) Om Patient
dequeue(Patient)
next()
last()
indexOf(Patient)

public class SurgeryQueueTests {

® public veoid engqueuePatient() {[]

- public void degueuePatient() {[]

® public veoid containsEnqueuedPatient() {[]

+ public void doesntContainPatientIfNotEngueued() {[]
® public void mostRecentlyEnqueuedIsLastInQueue() {[]
® public void leastRecentlyEnqueuedIsNextInQueue() {[]
® public void findsIndexOfPatientInQueue() {[]

® public void indexOfPatientNotFoundInQueue() {[]

> public class SurgerygueuseTests {

e public void patientArrivesInWaitingRoom() {[]

L

i@ public wvoid doctorSeesNextPatient() {[]

i® public void patientEnquiresiboutPositionIngQueue () {[]
L

% public void patientLeavesWaitingRoom() {[]

| Ccodemoanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #82: TDD is a technical decision. If your boss forbids youto do TDD,
escalate every technical decision to them until they insist *you®* decide

.
Qo - W Untitled - Message (HTML) oo
Message Insert Options Format Text Review [e
=N o v | b g ; | D Wl Attach File ¥ Follow Up =
o = = ITER IR TR aaH@J@ P
- 3 @ attach Item = ¥ High Importance
Paste r aby = = = | i= i= Address Check
= 7 BIU i a = = =15 | Book MNames | [&& Signature ~ § LowlImportance
Clipboard * | Basic Text MNames Include Tags - | Zoom |
To... |John Q. Manager
=1
Cc...
8 Send
| Subject: | For Loops — decision needed urgently
I £
|| Hilohn =
[
I'm afraid we're blocked from making any progress until we can get an executive decision on using |
temporary variables in For loops
Is it okay to use the for(int i=0; i < N; i++) { X tempX = arrayOfX[i]; ... } style of For loop? Or should
We use the For Each style of loop?
w
L)
codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #83: Be clear on the difference between a mock, a stub, and a
dummy. What mattersis how it’s used, not how it was created.

@Test

public void membersAreEmailedAboutNewDonatedTitle () {
// this is a STUB because it returns test-specific data
Title title = mock(Title.class);
when(title.getName ()) .thenReturn ("The Abyss"):;

// this is a MOCK, because we're testing the
// interaction with it
EmailQueue emailQueue = mock(EmailQueue.class);

// this is a DUMMY because it's required to compile
// the code and run the test, but it's not relevant
// to the test

Logger logger = mock(Logger.class);

Library library = new Library(emailQueue, logger):;
library.donate(title);
verify(emailQueue) .send ("A11",

"A new title has been added you might like",
"The Abyss"):;

ammguaTay

| codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #84: Introducing a “view model” to represent your user interface
makes it possible to unit test the logic of the user’s experience

E i [
i ’ —

! renders 1
Model View Model

! ' forwards L 1
events - -
! 5 GUI
Controller !

Plain Old Objects

public class RaceMeetViewTests {

@Test
public woid placingBetOnRunner() {
// build view from domain object data
List<Horse> runners = new ArrayList<>():;
Horse runner = new Horse ("Tea Biscuit");
runners.add (runner) ;
BettingController controller = mock(BettingController.class);
RaceMeet race = new RaceMeet ("Aintres",
"1/7/2017",
"14:00",
runners) ;
RaceMeetView view = new RaceMeetView(controller,race):

// set view state for user input
view.setSelectedRunner ("Tea Biscuit");
view.setBetAmount (100.00);

view.bet():;

// test that right system behaviour is invoked
verify(controller) .placeBet (race, runner, 100.00);

codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #85: The best way to know if a developercan really do TDD is to
watch them do TDD

If you want to know if
someone can reallyjuggle,
ask to see them juggle

i codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #86: The key to good OO design is to start by identifying the work the software

needs to do. Objects that do the work come |ater.

Given a DVD title that's already in the library,

When a member donates a copy of that title,

Then...

1. Thetitleis added to the library

2. Adefaultrental copy is added to the title

3. The donor is awarded 10 priority points

4, Members who expressed an interest in matching titles are alerted by

email

donate title

add title to
E—
library
add loan
copy

awar

> priority
oints

alert
members

aw rded
matching

defauItCO p
brar pc‘f.%l';e’

ren aI n terest
priority
alerted

t| les
J%m?”a

(roles)

onor

read
onates mbers
S

E
expressed

add title to
library

Library

. add loan

awar

Member ——* Bty

alert
I3 N 3 N

add loan copy

— |

the work

donate

alert members

award priority points

© Codemanship Ltd 2016

1. Identify work required
(responsibilities)

2. Identify candidate objects
that could do the work

3. Assign responsibilitiesto
objects that have the
knowledge required to do

4, Figure out how objects will
collaborateto coordinate the
work (collaborations)

| codemanship

101 TDD Tips

TDD Tip #87: TDD can help us see through the illusion of being ‘done’ sooner
when we cut corners

Roman Numerals Kata

30

Time To
Completion 29
(mins)

28
27
26 -

B With TDD
¥ No TDD

25
24 -
23 -

Iterations

http://www.codemanship.co.uk/parlezuml/blog/?postid=1021

1| codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #88: If your test code is difficult to change, your software is
difficult to change. Don’t skimp on test code design & refactoring.

@Test

public void squareRootOfZeroIsZero() {
assertEquals (0, Maths.sqgroot(0), 0.00001);

}

@Test
public void squareRootOfOnelIsOne () {
assertEquals(l, Maths.sqroot(l), 0.00001);

}

@Test
public void squareRootOfFourIsTwo() {
assertEquals (2, Maths.sqroot(4), 0.00001);

}

@Test
public void squareRootOfNineIsThree() {
assertEquals(3, Maths.sqroot(9), 0.00001);

}

@Test
public void squareRootOfSixteenIsFour() {
assertEquals (4, Maths.sgroot(l6), 0.00001);

}

@Test
public void squareRootOfOneQuarterIsOneHalf () {
assertEquals (0.5, Maths.sqroot(0.25), 0.00001);

}
refactored

@Test
@Parameters({“o“, "1", "4"1 "9"I "16“’ "0.25"})
public void squareOfSquareRootIsSameAsInput (double input) {
double sgrootSqguared = Maths.sqroot (input)
* Maths.sqroot (input);
assertEquals(input, sgrootSguared, 0.00001);

S codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #89: If asked to change legacy code (code that has no automated
tests), priority one is to get tests around anything that change might break

Customer wants us to

change pricing logic

'
V
'
! charge() # !
'
'

CuswmchAol | ImdbScrviccl | : Customer | I RentalDAC I

T T

/
£
Need to regression
test client of Pricer

External
——— dependencies
- prevent fast-
// running unit tests
 for Rental

|
|
|
|
|
|
|
‘\
v

calculatePrice()
]

Connects to OMDb AP|

T (B, N

N

B . S T

fetchf)

'
[l
|
5y
ST
1
1
1

Connects toMysQLDB [l ;
i '
fetch() Connects to payment
gateway
1
chargef() '

savef) Connects to MySQL DB

save(this)

-

Write automated integration tests for Rental::charge()

-

Make external dependencies swappable using dependency
injection, so we can turn those slow integration tests into fast-
running unit tests

o

public class Rental {

private float amountCharged;
private final DAO customerDRO;
private final Pricer pricer;
private final DAO rentalDAO;

public Rental (Pricer pricer, DAO customerDAO, DAO rentalDRO) {
this.customerDAO = customerDAO;
this.pricer = pricer;
this.rentalDAO = rentalDAO;

}

public void charge() {
Customer customer = customerDAO.fetch():
amountCharged = pricer.calculatePrice():
customer.charge (amountCharged) ;
save ()

}

private void save() {
rentalDAO.save (this) ;
}

codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #90: 9/10 developers who claim they can do TDD give themselves away with
some of these classic tell-tale signs of inexperience

* Plasters CV with meaningless * Doesn’t refactor when the code calls for
references to TDD it

» Configures project for stuff *might* * Doesn’t refactor test code
need later + Writes “design-driven tests”

* Talks about “testing”, not design » Writes test code that doesn’t clearly

i = . communicate intent
» Starts writing solution code first

_ * Doesn’'t know commonly used shortcuts
* Doesn’t separate test and solution code in chosen IDE

* Writes multiple failingtests ata time * Doesn’t use available automated

factori
» Makes the test fail with fail() A REn g

o * Doesn’t know the difference between a
* Doesn’t check that the test fails first stub, a mock and a dummy

» Starts with a complicated example * Doesn’t use test doubles & dependency

. , . injection for external dependencies
* Writes a general solution for a single

test * Tests mocks and stubs

“"\.\.'\

} ", codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #91: Do not conclude from your initial inability to make TDD work
for you that TDD does not work

After 3 frustrating lessons, Phil concluded that the tubais nota
viable musical instrument

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #92: Commenting out failing tests does not make the problem go
away

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #93: Don’t get bogged down in unit tests. Take a step back to see the
bigger picture.

b
p)
;

Wi codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #94: Don’t waste time trying to force-feed TDD to colleagues. Let
them see the benefits and make up their own minds.

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #95: In a test-driven approach, we declare source code for 2 reasons:
to fix a broken test, or when we’re refactoring

We declare the class Library so

‘ @Test 5 2
our test code will compile

public void donatedTitlesAddedToLibrary()
library;
assertT p dlass ‘Library’
O Create interface ‘Library’
@ Create enum 'Library’

a AdA b mmrmmnnboe 'l et ba N Al

We extract the interface Copyable
to present a client-specific

N

public class Title ({

)
; private int copies; interface to Library
"

9|8 Interface name: Copyable

0 Use the extracted interface type where possible

5 [Use the extracted interface in ‘instanceof’ expressions

3 [] Generate ‘@Override’ annotations (1.6 or higher)

4

2 Members to declare in the interface:

[v] @ addCopies(int) : void
[] @ getCopyCount(: int

codemaoanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #96: The most important TDD metrics are not about its effect on
code, but its effect on the business

Building software in micro-iterations, always
ending with something that’s potentially

Release Build shippable means we can dramatically reduce
delivery cycle & lead times
Test
120 TDD can produce more reliable software at
100 minimal —often no - extra cost. Lower bug
80 countsin releases mean happier users, and
- more time for new feature developmentin
i subsequentreleases
20 I I
p _ wm |
G‘g& &° 0&{‘% <& &OO
& o C &
3 3
Q?‘& q
The automated tests TDD creates, together with
o its tendency to produce simpler code, can
120 dramatically flatten the cost of change curve for
100 the software, meaning we can sustain the pace
80 of innovation for longer, and effectively outlearn
60 the competition
40
20
0

= Cost of change

N codemanship

e
w_@g el

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #97: Good TDD-ers are still hard to find. Save everyone’s time by
starting candidates with a 10-minute remote pairing session

| 800 /@ cooper Hangours x
\(— 3 C | B s //plus.google.com/hangouts/_/022d587d9959d4d2ebarabd 3¢ Bcef

Fle Edit Source Refactor Navigste Search Project Run Window Melp
S IR O - A G S E I S R e o s | o | (@)

4 FdonacaTestsjava 1
1sisport static org.junit.Asserc.*;
¢
BRun¥ith (JUnitParansRunner.class)
public class FibonacciTestsa |

void star ithfercAndOne (int index, iat expected) |
assertEquals(expected, getFibonacciNumber(index));

¢ ters({®2,1%, "3,2%, "5,5"))

public void thirdNumberOnlsSumOfPreviousTwo(int index, 4dnt expected)|
assertEquals(expected, getFibonacciNumber (index)):

b

#Test (expected=IllegalArgumentException.class)
F public void indexMustBePositivelnteger() |{
24 getFibonacciNunber (~1);

}
v

B
=
@l
Lol | TR
el
&
4

No consoles 10 dsplay at this time.

codemaoanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #98: TDD starts before we even write a test. Use examples to test
your understanding of the customer’s requirements.

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #99: In a test-driven approach, design patterns are discovered as a product
of refactoring rather than planned with up-front design

@Test
@Parameters
public void writesCorrectKindOfResponse (ResponseKind responseKind,
String startsWithString) {
Customer customer = new Customer ("Kent Beck"):
String response = new ResponseWriter ().createResponse (customer, responseKind);
assertTrue(response.startsWith(startswithString)):
}

private Object[] parametersForWritesCorrectKindOfResponse () {
return new Object[][]{
{ResponseKind.HTML, "<html>"},
{ResponseKind.XML, "<customer>"},
{ResponseKind.STRING, "Customer"}
}:
}

public class ResponseWriter {

public String createResponse (Customer customer, ResponseKind responseKind) {
String response = "";
switch (responseKind) {
case HIML:
response = new HtmlSerializer().serializeToHtml (customer);
break;
case XML:
response = new XmlSerializer().serializeToXml (customer);
break;
default:
response = new StringSerializer().serializeToString(customer);
}

return response;

Replace type code with
Strategy pattern

@Test
@Parameters
public void writesCorrectKindOfResponse (Serializer serializer,
String startsWithString) {
Customer customer = new Customer ("Kent Beck"):;
String response = new ResponseWriter () .createResponse (customer, serializer);
assertTrue(response.startsWith(startsWithString)):;

}

private Object[] parametersForWritesCorrectKindOfResponse () {
return new Object[][]{
{new HtmlSerializer(), "<html>"},
{new XmlSerializer(), "<customer>"},
{new StringSerializer(), "Customer"}
}:
}

public class ResponseWriter {

public String createResponse (Customer customer, Serializer serializer) {
return serializer.serialize (customer);

}

AA m D
?’” i codemanship
o J

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #100: If changing the contents of a file can break your software, you should consider test-
driving it

<?xml version="1.0"2>
<!DOCTYPE project>

<project name="Boilerplate Build" default="build" basedir="../"><!-- one back since we're in build/ -->

<!-- load shell environmen

<property environment="ENV" />

load pre

<property file="build/config/project.properties”/><property file="build/config/default.properties”/>
<?xml version="1.0" encoding="UTF-8"2?>

<!-- Load in Ant-Contrib to give us <!DOCTYPE hibernate-configuration PUBLIC
<! the .jar file is located in thi *-//Hibernate/Hibernate Configuration DTD 3.0//EN"
<taskdef resource="net/sf/antcontri “http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>
<classpath>

2 _ <session-factory>
<pathelement location="${ba
Jc1 " <property name="hibernate.connection.driver_class">org.apache.derby.jdbc.ClientDriver</property>
</classpath>

<property name="hibernate.connection.password”>password</property>

<property name="hibernate.connection.url™>jdbc:derby://localhost:1527/BookStore</property>

<property name="hibernate.connection.username”>guest</property>

</taskdef>

<3 merge the stylesheet propertie <property name="hibernate.dialect">org.hibernate.dialect.DerbyDialect</property>

<var name="stylesheet-files" value=

<property name="hibernate.connection.pool_size">1</property>

<property name="connection.release_mode">after_statement</property>

<property name="transaction.flush_before_completion™>true</property>

»ad local contextual

ssions >

<property name="hibernate.current_session_context_class">
thread

</property>

codemanship

© Codemanship Ltd 2016

101 TDD Tips

TDD Tip #101: TDD isn’t compulsory. The choice is yours.
Choose to minimise costly misunderstandings about

requirements

Choose to deliver more reliable and more
maintainable code

Choose to have code that’s always shippable, for
faster feedback cycles and shorter lead times

Choose to be able to sustain the pace of innovation
on your product for longer & outlearn the
competition

© Codemanship Ltd 2016

101 TDD Tips

For the most practical, hands-on TDD training, visit www.codemanship.com

© Codemanship Ltd 2016

http://www.codemanship.com/

