
Maybe you can’t do a one-fingered push-up, but you can master automated testing for mobile

applications with Appium running on Sauce Labs. Optimized for continuous integration workflows,

our scalable, reliable, and secure platform enables you to run your builds in parallel, so you

can get your native or hybrid iOS and Android apps to market faster.

A U T O M A T E D M O B I L E

T E S T I N G H A S A P P I U M .

See why these companies trust Sauce Labs.

M A R T I A L A R T S

H A S B R U C E L E E .

Download Your Free Appium Bootcamp Guide.

http://info.saucelabs.com/AppiumBootcamp.html?utm_source=dzone&utm_medium=ad&utm_content=mobrcefdz
https://saucelabs.com/signup/trial?utm_source=dzone&utm_medium=ad&utm_content=mobrcefdz

© DZone, Inc. | DZone.com

mobile Web
Application Testing

By Shauvik Roy choudharyc
o

n
T

e
n

T
S

Ja
v

a
 E

n
t

E
r

p
r

is
E

 E
d

it
io

n
 7

moBIle VA lIDATIon

GeneRAl VAlIDATIon
Mobile web applications are built with the same
foundational web technologies as desktop web
applications. Therefore, any validation for web
applications also applies to the mobile web. The World
Wide Web Consortium (W3C) has several validators
available at:

http://www.w3.org/QA/Tools/

These validators include: 1) the HTML Validator, to check
the markup of webpages, 2) the Link Checker, to find and
report broken links, and 3) the CSS Validator, to check the
style sheets and their conformance to the W3C standards.

moBIleoK checKeR
The W3C has standards and best practices in place for
mobile webpages, which are in sync with the mobile
browser specifications for rendering webpages. To
check whether a mobile webpage conforms to the W3C
best practices, use the mobileOK checker tool at: http://
validator.w3.org/mobile/.

Figure 1: The W3C mobileOK Checker

The tool not only reports failures for the checks
performed, but also reports details, linking back to the
W3C recommendation. This can be a good starting point to
understand the issue and develop a fix for it.

G
et

 M
or

e
Re

fc
ar

dz
! V

is
it

 R
ef

ca
rd

z.
co

m
BRoUGhT To YoU BY:211

M
o

b
il

E
 W

E
b

 a
p

p
li

c
a

t
io

n
 t

E
s

t
in

g

mAnUAl TeSTInG In moBIle BRoWSeRS

SelecTInG moBIle BRoWSeRS foR TeSTInG
It is essential for mobile webpages to be tested on
multiple mobile browsers, especially those browsers that
the target audience would be using. Selecting which
browsers to test your web application in can be a tough
decision. One way to help you make this decision is by
viewing analytics of your existing sites or browser market
share statistics using a tool such as the one provided by:

http://gs.statcounter.com

Figure 2: Top Mobile Browsers from Feb 2014 to Feb 2015

The statistics can be further narrowed down to show
statistics from a particular geographic region or time
frame. As of February 2015, the two most popular mobile
browsers globally are Chrome on Android and Safari on
iPhone. The Android browser was recently replaced by

 » General Validation

 » mobileOK Checker

 » Selecting Mobile Browsers for Testing

 » Testing on an Emulated
Mobile Browser

 » Testing on a Real Mobile Browser With
Remote Debugging...and more

http://www.dzone.com?refcardz
http://www.w3.org/QA/Tools/
http://validator.w3.org/mobile/
http://validator.w3.org/mobile/
http://www.refcardz.com
http://gs.statcounter.com
http://gs.statcounter.com
http://info.saucelabs.com/Make-CI-Part-of-Mobile-Development.html?utm_source=dzone&utm_medium=dis&utm_content=refcdz

© DZone, Inc. | DZone.com

2 moBIle WeB ApplIcATIon TeSTInG

Chrome in the Android OS but still has a significant market
share, ranking as #3 as shown in the chart.

TeSTInG on An emUlATeD moBIle BRoWSeR

chRome DeVelopeR ToolS
The Google Chrome browser provides mobile web development
tools out of the box. The Chrome Dev Tools provide support
for understanding, debugging and optimization of the web
application and browser components.

To open Developer Tools on Chrome, select the hamburger
menu on the right and then select the More tools >
Developer Tools menu option.

This will bring up the Chrome Dev Tools pane on the side
of the browser window. To access the mobile emulation and
debugging features, turn on the “device mode” by clicking on
the small mobile button in the top left corner of the Dev Tools
panel as shown in the figure below:

Figure 3: Chrome Developer Tools Panel

When “device mode” is enabled, the browser viewport
transforms to a device emulator, where the user is allowed to
select from a set of devices with specific screen resolutions.
Users can switch between different devices and see how the
application would appear and behave in those browsers.

TeSTInG oRIenTATIonS
One of the most important things to test while using this view is
to inspect the application in portrait and landscape mode. Clicking
on the “Swap Dimensions” button can toggle this setting.

TeSTInG neTWoRK BehAVIoR
A mobile web app might not perform equally across different
network settings. Being on a slow network can cause
connection timeouts or timing issues in the application,
making it fail or appear differently. Use the Network option
to make the browser throttle the web app by simulating the
different network conditions, from GPRS to Wi-Fi. You can
also test the offline capabilities of your application through
this feature.

Figure 4: Chrome Developer Tools Device Simulation

TeSTInG meDIA QUeRIeS
Media queries were introduced in CSS3 to allow the rendering
of the application to be adaptive to different screen widths.
Knowing the boundaries at which these CSS styles change
in the application can be very helpful for testing how the
webpage looks at these boundary values. You can choose
devices that are across each boundary or manually slide the
handlebar at the end of the mobile viewport to inspect the
responsiveness of the app as the resolution changes. Queries
targeting a maximum width are represented in blue, those
with a range are shown in green, and those targeting a
minimum width are represented in orange.

Figure 5: Chrome Developer Tools Screen-Width Boundaries

TeSTInG cUSTom ReSolUTIonS
The Chrome Dev Tools have the configurations for most
popular phones, but not all phones. If you need to test for a
custom resolution, you can create a new model by clicking
“More overrides” on the top right and then selecting
Emulation > Device in the secondary pane as shown below:

Figure 6: Chrome Developer Tools Device Emulation Pane

© DZone, Inc. | DZone.com

3

TeSTInG ToUch, GpS, AnD AcceleRomeTeR
If your webpage is interactive, and allows users to use touch
gestures, you can select the “Emulate touch screen” option
under the Sensors pane of the Emulation settings to enable
this feature. You can perform the touch gestures by using a
multi-touch track pad or your computer touch screen.

For testing map components or other features that rely
on the phone’s location, you can emulate the geolocation
coordinates by providing the latitude and longitude of the
target location. The test coordinates can be found from a
mapping application, like Google Maps. These are entered
as numbers by using a negative sign for coordinates with
degrees South or degrees West.

To test applications that make use of the phone’s
accelerometer (such as games), you can enable the
“Accelerometer” setting under the Sensors pane. This binds
a 3D model of the phone, which is displayed in the emulated
accelerometer settings to the right. Turning this model
controls the virtual orientation and can be used effectively to
test such applications.

Figure 7: Chrome Developer Tools Accelerometer Simulator

TeSTInG on A ReAl moBIle BRoWSeR WITh RemoTe
DeBUGGInG
If you have a real device to test your webpage, then it might
be challenging to control and inspect the page that is loaded
on the mobile browser. To help in this scenario, Chrome Dev
Tools provides Remote Debugging capabilities that connect
the Desktop Chrome browser to any mobile browser that
implements the remote debugging protocol. This setting can
be loaded by selecting the hamburger menu , then More
tools > Inspect Devices; or by typing the URL chrome://inspect
and then navigating to the Devices pane.

You also need to connect your phone to the computer and
select the USB debugging option. On an Android phone, this is
accessed by going to Settings > Developer Options and selecting
the “USB debugging” option. If you can’t find the developer
options setting, you will need to enable it on your phone.

Once USB debugging is enabled, and the phone is connected
to the computer, Chrome will list your device, as well as
any pages loaded in the mobile browser of that device. In the
Devices pane, you can remotely open a new tab with a URL, or
you can interact with already loaded pages.

Figure 8: Chrome Developer Tools Real Device Inspector

InSpecTInG WeBpAGeS loADeD on The moBIle
DeVIce
You can click on the “Inspect” option under a webpage listed
on the Inspect devices page to load the page into the Chrome
Dev Tools. As you interact with the pages in the Dev Tools, you
can select to see a screencast of the webpage on the computer
by selecting the Screencast option on the top right.

Figure 9: Chrome Developer Tools Inspection Pane

TeSTInG locAl WeBSITeS
To test webpages hosted locally on your computer and not
accessible by a public IP or URL, you can select the port
forwarding option to map the computer’s web server port to
the mobile device. After this setting has been enabled, you can
browse the webpage on your mobile device just as if it was
hosted on the phone, using the URL http://localhost:[port]

Figure 10: Chrome Port Forwarding Settings

moBIle WeB ApplIcATIon TeSTInG

© DZone, Inc. | DZone.com

4

AUTomATeD TeSTInG In moBIle BRoWSeRS

SelenIUm pRImeR (In pYThon)
Selenium (also known as WebDriver) is a framework that
allows writing automated scripts for web applications. The
Selenium project provides libraries for multiple languages,
including Java, Ruby, and Python. In this tutorial, we will be
using Selenium’s Python bindings specifically to test mobile
web apps.

InSTAllInG SelenIUm
The Selenium library for Python can be installed using the
pip command:

$ pip install selenium

If you don’t have pip available on your system, install it by
following the directions at https://pip.pypa.io/en/latest/
installing.html.

The Selenium library provides functions for performing
various actions for testing. These range from actions to select
a browser and load the web app in the browser, to actions for
interacting with the webpage. We will cover these in the rest
of this section.

loADInG The WeB ApplIcATIon InTo A BRoWSeR
SeSSIon
To start a browser session and load a page into the session,
you can initialize a particular WebDriver class and use it to
load the web application using the driver.get() function:

driver = selenium.webdriver.Chrome()
driver.get(“http://www.google.com”)

fInDInG elemenTS

In order to perform actions or assertions on elements on a
webpage, you need to obtain a reference to such elements.
You can locate webpage elements by using their different
HTML properties. The corresponding WebDriver functions
are listed in the table below.

find_element_by_id Unique id

find_element_by_name Name attribute

find_element_by_xpath Xpath locator

find_element_by_link_text Text inside the link

find_element_by_partial_link_text Partial link text

find_element_by_tag_name HTML tag name

find_element_by_class_name
HTML class
attribute

find_element_by_css_selector CSS selector

Example:

<input type=“text” name=“txtName” id=“txtId” />

To find this text input element, one could use any of the
following locators:

element = driver.find_element_by_id(“txtId”)
element = driver.find_element_by_name(“txtName”)
element = driver.find_element_by_xpath(“//input[@id=
‘txtId’]”)

By default, the above functions return the first element that is
found. If you would like to work with later elements identified
by your locator, you would need to use the find_elements_
by_<locator> version of the function (which finds multiple
elements) and access the later elements in the array returned.

peRfoRmInG AcTIonS
Once you have a reference to an element, you can interact with
it through the following functions:

element.click() Perform a click operation

element.send_keys(“<text>”)
Type “text” into the
element

element.submit()
Submit the form element
associated with element

There are also several other advanced functionalities, such
as operations on HTML select elements or alert dialogs, and
on performing drag-drop operations. Information on these
can be found in the documentation for the Selenium-Python
package.

ASSeRTIonS
For performing assertions, you can either use the assert
directive in Python or write your tests using the unittest
package.

InSTAllInG chRomeDRIVeR
ChromeDriver provides control of the Google Chrome browser
though the WebDriver interface. You can download the latest
version of the ChromeDriver from:

http://chromedriver.storage.googleapis.com/index.html

Place the ChromeDriver binary in suitable path. For this
tutorial, I will place ChromeDriver inside /usr/local/bin.

TeSTInG on An emUlATeD moBIle BRoWSeR
An easy way to run automated mobile web tests is to emulate
a mobile browser on a desktop computer, thereby avoiding
the need to set up a real device. ChromeDriver provides an
experimental option to emulate a supported mobile browser.

To switch which mobile browser you are emulating, you can
change the deviceName to the name of another device that you
would like Chrome to emulate for the test.

moBIle WeB ApplIcATIon TeSTInG

https://pip.pypa.io/en/latest/installing.html
https://pip.pypa.io/en/latest/installing.html
http://chromedriver.storage.googleapis.com/index.html

© DZone, Inc. | DZone.com

5

SAmple TeST ScRIpT:
import os, time
from selenium import webdriver

Set up chromedriver path
chromedriver = “/usr/local/bin/chromedriver”
os.environ[“webdriver.chrome.driver”] = chromedriver

Configure mobile emulation in Desktop Chrome
device = { “deviceName”: “Google Nexus 5” }
options = webdriver.ChromeOptions()
options.add_experimental_option(“mobileEmulation”, device)
driver = webdriver.Chrome(executable_path=chromedriver,
chrome_options=options)

Test steps
driver.get(“http://www.google.com”);
search_box = driver.find_element_by_name(“q”)
search_box.send_keys(“DZone”)
search_box.submit()
time.sleep(5) # Sleep for 5 seconds
assert “www.dzone.com” in driver.page_source

Quit chromedriver to close the browser window
driver.quit()

This test loads up http://www.google.com and searches for
“DZone” and checks if its domain www.dzone.com is present
in the search results. There is a sleep function added to allow
the page to load the search result.

When this test runs, either it will fail and display an error
message, or it will not report anything. For managing larger
sets of tests, and for better test reporting, you might consider
using the Python unittest module.

TeSTInG WITh The pYThon UnITTeST moDUle
By using the unittest module, you will avoid repeating the
setup and teardown operations for each test and get a better
pass-fail report from running your test case.

import unittest, os, time
from selenium import webdriver

Set up chromedriver path
chromedriver = “/usr/local/bin/chromedriver”
os.environ[“webdriver.chrome.driver”] = chromedriver

Configure mobile emulation in Desktop Chrome
device = { “deviceName”: “Apple iPhone 5” }
options = webdriver.ChromeOptions()
options.add_experimental_option(“mobileEmulation”, device)

class GoogleSearch(unittest.TestCase):

 def setUp(self):
 self.driver = webdriver.Chrome(executable_
path=chromedriver, chrome_options=options)

 def test_title(self):
 driver = self.driver
 driver.get(“http://www.google.com”)
 self.assertIn(“Google”, driver.title)

 def test_dzone(self):
 driver = self.driver
 driver.get(“http://www.google.com”)
 search_box = driver.find_element_by_name(“q”)
 search_box.send_keys(“DZone”)
 search_box.submit()
 time.sleep(5) # sleep for 5 seconds
 assert “www.dzone.com” in driver.page_source

 def tearDown(self):
 self.driver.quit()

if __name__ == “__main__”:
 unittest.main()

This test code, written using the unittest module, contains a
setUp function to perform the initialization before each test,
and a tearDown function to clean up the driver instance after
each test. This test code contains two tests: test_title() and
test_dzone(), as shown above. Upon running this test, we get
the following output:

$ python google_test.py
..
--
Ran 2 tests in 16.636s
 OK
[Finished in 17.08s]

moBIle-WeB TeSTInG on A ReAl oR VIRTUAl DeVIce
Some situations cannot be tested on an emulated mobile
browser, and the test might need the full functionality of a
physical mobile device or the capabilities of a virtual device
(e.g. the iPhone Simulator or the Android Emulator). In such
scenarios, ChromeDriver can be used for testing Android apps,
but it is often easier to use the open-source Appium tool, which
makes it possible to run tests on Android, as well as on iOS
devices by using ChromeDriver and iOS Auto underneath.

InSTAllInG AnD RUnnInG AppIUm
Appium can be downloaded and installed using the node
package manager. If you don’t have npm available on your
command line, install Node.js from its website.

$ npm install -g appium

Then to run Appium, you would run the following command:

$ appium &

By default, Appium shows all messages in its log, which is
nice for debugging purposes. You can configure the Appium
tool using its command-line options.

For testing your web application in either a real or virtual
Android device, you also need to download and install the
Android SDK from the Android developer website. Similarly, for
testing on the iPhone Simulator or a real iOS device, install the
Apple iOS developer tool chain. To easily check if you have the
required dependencies, you can run the appium-doctor tool:

$ appium-doctor

TeST moDIfIcATIon foR RUnnInG App USInG AppIUm
For using Appium for mobile web testing on a real or virtual
mobile device, we will use a Remote WebDriver instead of

moBIle WeB ApplIcATIon TeSTInG

http://www.google.com
http://www.dzone.com

6

the ChromeDriver and initialize it with a set of capabilities to
describe the environment on which to test.

capabilities = {
 “platformName”: “Android”,
 “platformVersion”: “4.4”,
 “deviceName”: “Android Phone”,
 “browserName”: “Chrome”
}
driver = webdriver.Remote(“http://localhost:4723/wd/hub”,
capabilities)

This code essentially replaces the statements inside the setUp
function in the previous section to run the same test on a real
Android device. Appium chooses a connected real device or a
running virtual device on the computer. In the case of iOS, you
can change the configuration to the following to target the
Safari browser in the iPhone Simulator.

capabilities = {
 “platformName”: “iOS”,
 “platformVersion”: “7.1”,
 “browserName”: “Safari”,
 “deviceName”: “iPhone Simulator”
}

Running mobile web tests on a real iPhone is not as straight
forward as other cases shown in this document. It requires
setting up ios–webkit-debug-proxy, which is used by Appium
to communicate with Mobile Safari. More information on this
can be found in the Appium documentation.

RefeRenceS:
ChromeDriver documentation:
https://sites.google.com/a/chromium.org/chromedriver/

Appium Documentation.
http://appium.io/slate/en/master

Selenium-Python API Docs:
http://selenium-python.readthedocs.org/

Android Developer Website:
http://developer.android.com/sdk/index.html

moBIle WeB ApplIcATIon TeSTInG

 |

Dr. Shauvik Roy Choudhary received his PhD in Computer
Science from Georgia Tech, where he worked on techniques for
cross-platform testing and maintenance for web and mobile
applications. Currently, he is building a startup to bring new
mobile testing and automation tools to developers, while also
teaching at Georgia Tech. Prior to his PhD, Shauvik received his
MS in Information Security from Georgia Tech and his BE in
Computer Engineering from Mumbai University. Over the years,
he has held several development, testing and research positions
at companies including, Google, Fujitsu Labs of America, Yahoo!
Inc., IBM Research, Goldman Sachs and HSBC Software. For more
information about Shauvik, visit his website at http://shauvik.com.

BRoWSe oUR collecTIon of 250+ fRee ReSoURceS, InclUDInG:
ReSeARch GUIDeS: Unbiased insight from leading tech experts

RefcARDZ: Library of 200+ reference cards covering the latest tech topics

commUnITIeS: Share links, author articles, and engage with other tech experts

JoIn noW

© DZone, Inc.

DZone, Inc.
150 PRESTOn ExECUTiVE DR.
CaRy, nC 27513

888.678.0399
919.678.0300

rEfcardz fEEdback WElcoME
refcardz@dzone.com

sponsorship opportunitiEs
sales@dzone.com

Copyright © 2015 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. Version 1.0 $7.95

DZone communities deliver over 6 million pages each month to more than 3.3 million software
developers, architects and decision makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, research guides, feature articles, source code and more.

"DZone is a developer's dream," says PC Magazine.

ABoUT The AUThoR RecommenDeD BooK
Learning Selenium Testing Tools with Python further
discusses ways you can utilize Selenium to test your web
applications. Like the examples in this Refcard, it uses
Python to demonstrate automated testing, and gives a
more comprehensive look at Python’s unites module.
A great resource to continue learning about Python
Selenium testing, this book will help with all kinds of
web application testing use cases.

BUY noW

cReDITS:
Editor: G. Ryan Spain | Designer: Farhin Dorothi | Production: Chris Smith | Sponsor Relations: Brandon Rosser | Marketing: Chelsea Bosworth

https://sites.google.com/a/chromium.org/chromedriver/
http://appium.io/slate/en/master
http://selenium-python.readthedocs.org/
http://developer.android.com/sdk/index.html
http://shauvik.com
http://www.dzone.com/links/index.html
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.amazon.com/Learning-Selenium-Testing-Tools-Python-ebook/dp/B00RP13D10/
http://www.amazon.com/Learning-Selenium-Testing-Tools-Python-ebook/dp/B00RP13D10/

