
http://www.couchbase.com/connect15

© DZone, Inc. | DZone.com

noSQL and
Data Scalability 2.0

By eugene ciuranac
o

n
T

e
n

T
S

Ja
v

a
 E

n
t

E
r

p
r

is
E

 E
d

it
io

n
 7

This Refcard provides an introduction to basic NoSQL and
Data Scalability terminology and techniques and exhibits
in-depth examples of popular NoSQL technologies,
including architectures, common uses, and more.

NoSQL and Data Scalability 2.0 demystifies the latest
techniques in high-volume data storage, search, and
management by explaining how they work and when to
apply them.

Sc a L a BLe DaTa a rchITecTureS
Scalable data architectures have evolved to improve
overall system efficiency and reduce operational costs.
Specific NoSQL databases may have different topological
requirements, but the general architecture is the same.

Figure 1: NoSQL Architecture

In general, NoSQL architectures offer:

 • Eventual consistency

 • High availability with partition tolerance

 • Horizontal scalability (optimized for large volume of
reads and queries)

 • Cloud readiness

 • Distributed, structured data storage

Cloud readiness describes the database being used as
a service and the ability to deploy the storage grid and
cluster manager to a cloud provider.

G
et

 M
or

e
Re

fc
ar

dz
! V

is
it

 R
ef

ca
rd

z.
co

m
BrouGhT To You BY:210

n
o

s
Q

L
a

n
d

 d
a

ta
 s

c
a

La
b

iL
it

y
 2

.0

noSQL

NoSQL describes a horizontally scalable, non-relational
database with built-in replication support. Applications
interact with the database through a simple API, and
the data is stored in a schema-free repository as large
files or data blocks. The repository is often a custom file
system designed to support NoSQL operations with high
replication.

noSQL DaTaBaSeS cLaSSIfIcaTIon

DaTaBaSe TYpe uSeS

Document Documents, semi-structured data

Column Read/write raw time series data

Graph
Named entities, semantic queries,
associative data sets

Key-value
Key-value pair, where the values
can be complex and mixed data
structures (e.g. a document)

Multi-model

Two or more database types,
including relational databases
and the types listed above, with a
common database manager for all

While all database types are in common use, document
stores are most often associated with NoSQL systems
due to their pervasiveness in web and mobile content
handling applications.

 » Scalable Data Architectures

 » NoSQL

 » Cloud Databases

 » Very High-Volume Data Stores

 » Document Database: Couchbase...
& more!

http://www.dzone.com?refcardz
http://www.refcardz.com
http://www.couchbase.com/connect15

© DZone, Inc. | DZone.com

2 noSQL anD DaTa ScaLaBILITY 2.0

IS noSQL for You?

DoeS Your app DeSIGn...

 Require high-speed throughput?

 Need to handle high volumes of data?

 Work well with weak data consistency?

 Benefit from direct object-database entity mapping?

 Have to be Always On?

If you checked off four or more items from the list, then
NoSQL is a good fit for you.

Always On just means that users will have access to complete
app functionality at all times. In mobile app and gaming
contexts, it can mean access to data that is “a bit behind”
the effective system state (i.e. eventual consistency is
acceptable).

noSQL performance anD Tco comparISon

Total cost of ownership (TCO) depends on functionality
and complexity. A higher TCO may be acceptable when
performance (throughput or scalability) is a primary concern.

Figure 2: Complexity and TCO

Document and key-value stores are most popular because of
their ease of use, flexibility, and applicability across many
problem domains—at a reasonable TCO.

Tip: Graph databases are excellent replacements for complex
relational models because relationships between entities
(or graph edges) are more efficient and better suited for
high-performance applications than using explicit joins and
foreign-keys.

WhIch DaTa STore moDeL To uSe?

The flowchart in Figure 3 describes how to choose the most
appropriate database or store for the application.

Figure 3: Choosing the Right Data Store

cLouD DaTaBa SeS
Demand-based scaling is an attractive proposition for running
NoSQL systems on the cloud; it maximizes the advantages of
running the application on cloud-based providers like AWS,
Azure, or Google Cloud Computing.

 • Database-as-a-Service (DBaaS) offers turnkey
managed functionality, which delegates all operational
responsibilities to the provider.

 • Hosted VM databases are provisioned on virtual images,
much like they would be on premises, and all operational
responsibility belongs to the user.

DaTaBaSe prImarY moDeL

Amazon Dynamo Key-value

Amazon SimpleDB Column

Google Data Store Column

IBM Cloudant Document

Microsoft DocumentDB Document

MongoDB Document

Couchbase Server Document

Neo4j Graph

Apache Cassandra Column

Tip: Billing overruns are very easy when using a Database-
as-a-service. Engage a usage/cost monitoring system to help
manage expenses and to avoid nasty surprises.

H
os

te
d

 V
M

 D
B

D
B

 a
s

a
se

rv
ic

e

© DZone, Inc. | DZone.com

3

VerY hIGh-VoLum e DaTa SToreS

Many applications require the storage of very large binary data
sets. Traditional data stores can’t handle them because their
size makes it impractical. Enter the High-Volume Data Store
(HVDS).

Most very high-volume data applications are used in scientific
or financial problem domains. These applications rely on
dedicated, optimized binary data formats that allow quick
access, manipulation, and data format description within a
single scope.

hIGh-VoLume DaTa characTerISTIcS

 • Very large data sets

 • Multidimensional distribution

 • Most data is numerical

 • Batch processing (including Hadoop) is optimal

 • Strong typing

hVDS characTerISTIcS

 • Provided data structures (atoms, groups, arrays)

 • Persistence management

 • Self-describing mechanisms to store the data, obviating
versioning issues

 • ACID (Atomicity, Consistency, Isolation, Durability)
properties

 • Language independence

 • No query language—access to structures is application and
language/API dependent

 • No security model

 • Application or access APIs must provide concurrency

Rule of Thumb: High-Volume Data Stores handle very few I/O
operations, but each consists of very large amounts of data;
NoSQL handles lots of I/O operations on small amounts of data.

Data is stored in HVDS prior to initial processing, where the
HVDS API provides more efficient access than the file system or a
database system. The intermediate or final results move to NoSQL
or relational stores for end-user reporting and manipulation.

HVDS maps onto local files, like Hadoop’s HDFS, allowing
volumes to move between files systems (e.g. HFS+ to NTFS)
without issues. Most HVDS originates in scientific research
organizations, and portability is a primary design concern.

hVDS cLaSSIfIcaTIon

hVDS uSeS

HDF5 Astronomy, genetics, finance

CDF Astronomy, aeronautics

FITS Astronomy

GRIB Meteorology

Protocol Buffers Network communication

RData Finance, genetics, statistics, energy

hVDS WorkfLoW

Figure 4: High Volume Data Store Workflow

DocumenT DaTaBaSe: couchBaSe SerVer

Couchbase Server is a document-based database that bridges
the gaps between scalable key-value stores, relational database
querying, and robustness capabilities. Its characteristics
include:

 • Document-oriented storage – data is manipulated as JSON
documents

 • Querying – uses a robust query language with document
handling semantics, N1QL

 • Multi-dimensional scalability (MDS) – different
components may scale up or out, depending on load and
performance required

 • MapReduce – built-in, indispensable for querying on non-
indexed document attributes

 • Caching – integrated across all database services

 • Replication – transparent replication across multiple data
centers

 • Spatial views – handles geometric, geospatial data
definitions and allows mapping of attributes to
multidimensional indices (e.g. table-like)

Couchbase Server provides datacenter consistency and
partition tolerance. The database is based on the independent
scaling and replication model shown in Figure 5. Data is
handled across 3 different service zones: indexing, querying,
and data.

noSQL anD DaTa ScaLaBILITY 2.0

© DZone, Inc. | DZone.com

4

Figure 5: Couchbase Server MDS Cluster

The service zones have different scalability requirements
according to their function.

SerVIce funcTIon

Data Core operations, MapReduce

Query
N1QL execution engine with index
and data service sync

Indexing
Global secondary index partitions
and query fulfillment

The Couchbase Server software and general documentation is
at http://docs.couchbase.com/admin/admin/Couchbase-intro.
html

Each database service node can replicate data to its peer, and
each cluster can replicate to other clusters. Couchbase Server
provides facilities for cross datacenter replication (XDCR),
simplifying disaster recovery, high availability, and data
locality scenarios.

In-memorY cache == hIGher performance

Couchbase Server performs very well during writes because it
uses a memory-first mechanism. Data is written to the in-
memory cache with a fast response to the caller. Couchbase
Server asynchronously replicates the data to other nodes or
clusters, updates the indices, and persists the data to disk.
Database clients may override any of these operations to make
them synchronous.

A read request is guaranteed to always get the most recent
result at the time of the beginning of the request.

DocumenT formaT

Couchbase Server handles JSON documents. Being a
schemaless database, any valid document can be committed
to the database. Couchbase Server assigns two additional
attributes to each document upon creation for tracking the
document’s unique ID (_id) and revision number (_rev).
These attributes are required for all operations other than
creation. A typical document and its cross-language
representation could be:

{
 “type” : “Person”,
 “name” : “Tom”,
 “age” : 42
}

LanGuaGe repreSenTaTIon

Python

{
 u“type” : u“Person”,
 u“name” : u“Tom”,
 u“age” : 42
}

Ruby

{
 “type” => “Person”,
 “name” => “Tom”,
 “age” => 42
}

PHP
array(“type” => “Person”,
 “name” => “Tom”,
 “age” => 42);

Dynamic languages offer a closer object mapping to JSON than
compiled languages.

Tip: “Type” is just a JSON attribute in this example, like any
other. It’s good practice to define a document type to simplify
queries, but it isn’t compulsory.

VIeWS

Views are the primary query and reporting tool in Couchbase
Server. A view is just a JavaScript function that maps view
keys to values. Views are stored on the server and used when
needed. They are only updated upon request (query or report),
not upon document creation or updates. For example, in a
database that contains Person and Animal objects, a view for
listing all the instances of “Person” could be:

Listing 1: View-Based Query

function (d) { // d ::= document
 if (d.type == “Person”)
 emit(d.name, { d.name, d.age });
}

The output will be something like this:

{ “total_rows”: 1, “offset”: 0, “rows”:
 [{ “id”: “6921”, “key”: “Tom”,
 “value”: {
 “name”: “Tom”,
 “age”: 42 } }] }

View operations are defined in terms of MapReduce
techniques.

STream-BaSeD VIeWS

Couchbase Server also introduced stream-based views based
on the Data Change Protocol (DCP). A stream-based view
submits the query to the managed cache. The managed cache
asynchronously updates the disk queue, the actual disk, or
replicates the query to another node.

noSQL anD DaTa ScaLaBILITY 2.0

http://docs.couchbase.com/admin/admin/Couchbase-intro.html
http://docs.couchbase.com/admin/admin/Couchbase-intro.html

© DZone, Inc. | DZone.com

5

View queries may include the stale data freshness flag with
one of these settings:

 • false – waits for the indexer to commit changes
corresponding to the current key-value document set
before returning the latest entries from the view index

 º responses may include up-to-date latest results that
haven’t been committed to disk

 • update_after – returns the current index entries, then
initiate an index update

 • ok – returns the current entries from the index

A configurable, automatic process updates the indices at
configurable intervals based on whether changes within a
threshold have occurred.

SpaTIaL VIeWS

Couchbase Server enables the creation of multi-dimensional
spatial indices containing geometry data that can express
information based on geometries within a multidimensional
range. Some examples include:

 • Geographical data for mobile, map, or other geo-location
applications

 • Geometrical data for statistical analysis and data science
applications

 • Arbitrary multidimensional collections for handling tables
in a manner similar to how relational and column databases
map structured and semi-structured data to schemas

The spatial views reference covering geospatial and arbitrary
data collections information is available from http://docs.
couchbase.com/4.0/admin/Views/spatial-views.html

n1QL – a SQL-LIke LanGuaGe for DocumenTS

While views are powerful, they are somewhat cumbersome
to manage. Couchbase Server introduced N1QL (pronounced
“nickel”) to ease integration with legacy reporting systems
and to assist programmers in unleashing more efficient,
maintainable, and robust queries. Its main features include:

 • JSON attributes string concatenation and matching in
SELECT statements

 • Ability to remove duplicate but valid results through the
DISTINCT keyword (e.g. COUNT (DISTINCT someID))

 • Semantics for handling document missing values—a valid
NoSQL construct—to test conditions similar to IS NULL in
SQL

 • Dot-notation and ARRAY semantics for addressing JSON
document attributes in query results

 • JOIN, NEST, and UNNEST capabilities specific to handling
variable column JSON result sets

The N1QL example in Figure 6 shows the language’s flexibility
in dealing with schemaless documents:

Figure 6: N1QL and JSON Data

Check out a Couchbase Server N1QL quick reference at
http://query.couchbase.com

couchBaSe SerVer common appLIcaTIonS

 • Caching - more robust capabilities, indexing, and
persistence with built-in replication and HA

 • Real-time analytics - RDBMS may be too expensive or
slow to run in comparison

 • Content management systems - JSON objects can
represent any kind of document, including those with a
binary representation

 • Named entity index – for scalable semantic search and
machine learning applications

couchBaSe SerVer DraWBackS

 • Complex queries - some complex queries and indices that
require pivot tables are better suited for SQL or graph
databases than for N1QL or Views

 • No full text search

 • No built-in collections or tables – ad hoc attribute
definitions are used for logical groupings; spatial views and
new N1QL features help in table creation but are harder than
native collection/table support in other database technologies

Gr a ph DaTa Ba Se: neo 4 j

Neo4j is an embeddable database with transactional
capabilities that stores data in graphs. Entities are stored as
graph nodes, and relationships between nodes are stored as
edges connecting them. Its main features include:

 • Relationships and nodes have the same priority during
searches

 • Relationships are first class objects, not compound
constructs like joins, and look up tables in other databases

 • High performance through memory mapping of entities
and indices

 • ACID and transactional integrity

 • Cypher, an expressive and efficient declarative language
for querying the database

noSQL anD DaTa ScaLaBILITY 2.0

http://docs.couchbase.com/4.0/admin/Views/spatial-views.html
http://docs.couchbase.com/4.0/admin/Views/spatial-views.html
http://query.couchbase.com

© DZone, Inc. | DZone.com

6

The Neo4j downloads and documentation are available from:
http://neo4j.com.

Figure 7 shows how Neo4j may be embedded in a JVM-based
application, where Neo4j exposes a set of Java packages to
make direct calls to the database.

Figure 7: Embedded Neo4j

The Neo4j stand-alone configuration in Figure 8 exposes a
RESTful API and runs on dedicated servers to optimize memory
usage since objects and indices are memory-mapped.

Figure 8: Stand-Alone Neo4j

cachInG

Neo4j excels at content delivery and query speed because it
offers two different caches:

 • Low-level – file system cache for data stored in the actual
medium; it’s configured to assume that the database runs
in a dedicated server

 • Objects – cache of individual nodes and relationships
optimized for quick graph traversal

Both caches have a number of configuration options; consult
the Neo4j web documentation for details.

core: properTY Graph

The property graph is made up of nodes, relationships, and
properties. A graph database manages all the storage and

searching aspects of property graph traversal.

Figure 9: Property Graph

 • Nodes are aggregations of properties

 • Properties are arbitrary key-value pairs

 F Keys must be strings

 F Values can be any of any type

 • Relationships connect nodes in a directed graph with a
start and an end node:

 F No dangling relationships allowed!

 F Relationships also have properties, often in the form
of metadata that aids in graph manipulation and
defining run-time query constraints

Source: Graph Databases, Robinson, Webber, & Eifrem, O’Reilly, 2014

QuerYInG neo4j WITh cYpher

Cypher is a declarative query language specific to Neo4j that
describes database operation patterns. It’s loosely based on
SQL, though it features ASCII text constructs to represent
patterns and directionality.

Figure 10: Cypher Example

Cypher enables users to describe what to create, update,
delete, or select from the graph without requiring an explicit
description of how to do it. It describes the nodes, attributes,
and relationships in the property graph.

 • Parentheses encapsulate a node

noSQL anD DaTa ScaLaBILITY 2.0

http://neo4j.com
http://neo4j.com/docs/stable/

7

 • Operators show directionality arrows and attributes

 • SQL-like statements describe database operations

Check out the DZone Refcard Querying Graphs with Neo4j for
more details on writing queries with Cypher, available at http://
refcardz.dzone.com/refcardz/querying-graphs-neo4j.

cYpher anD jaVa

 • Cypher queries can be executed as payloads in RESTful
calls or through the various native language wrappers

 • Database operations are made more efficient if Neo4j is
embedded mode if the program make direct calls the Neo4j
Java API, bypassing the RESTful API and Cypher; all Cypher
operations have counterparts in the Java API

common uSe caSeS

 • Recommendations – e-commerce, social media,
entertainment

 • Route optimization – actual geographical routes or
operations research algorithms

 • Logistics – B2B, disaster management

 • Authorization and access control – better capabilities than
traditional LDAP and other ACL

 • Finance – stock analysis, historical performance analysis

 • Named entity analysis – semantic web, fraud detection,
natural language processing

neo4j DraWBackS

 • Poor horizontal scalability for load distribution

 • Cypher lacks end-user exact traversal patterns definition

 • Lack of support for composite keys

 • No auto-sharding – users must model the property
graphs, databases, and server allocations manually

STaYInG currenT

Do you want to know about specific projects and use cases
where NoSQL and data scalability are the hot topics? Follow
the author’s data science and scalability feed: http://twitter.
com/ciurana

puBLIc aTIonS

By Eugene Ciurana

 • DZone Refcard #105: NoSQL and Data Scalability
 • DZone Refcard #43: Scalability and High Availability
 • DZone Refcard #128: Apache Hadoop Deployment
 • DZone Refcard #117: Getting Started with Apache Hadoop
 • Developing with Google App Engine, Apress
 • DZone Refcard #38: SOA Patterns
 • The Tesla Testament: A Thriller, CIMEntertainment

noSQL anD DaTa ScaLaBILITY 2.0

 |

Eugene Ciurana is an open source evangelist and entrepreneur
who specializes in the design and implementation of mission-
critical, high availability systems. As CTO of Summly, he led the
team that built one of the highest throughput natural language
and automatic summarization systems in the world, leveraging
NoSQL technologies like document and graph databases. Eugene
is the founder and CEO of Cosmify, Inc., where his team is
democratizing high-volume unstructured data analysis by
humanizing machine learning, knowledge discovery, and data
visualization—doing away with the need for Big Data shamans
and expensive infrastructure.

BroWSe our coLLecTIon of 250+ free reSourceS, IncLuDInG:
reSearch GuIDeS: Unbiased insight from leading tech experts

refcarDZ: Library of 200+ reference cards covering the latest tech topics

communITIeS: Share links, author articles, and engage with other tech experts

joIn noW

© DZone, Inc.

DZone, Inc.
150 PReStoN exeCUtiVe DR.
CARy, NC 27513

888.678.0399
919.678.0300

rEfcardz fEEdback WELcomE
refcardz@dzone.com

sponsorship opportunitiEs
sales@dzone.com

Copyright © 2015 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. Version 1.0 $7.95

DZone communities deliver over 6 million pages each month to more than 3.3 million software
developers, architects and decision makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, research guides, feature articles, source code and more.

"DZone is a developer's dream," says PC Magazine.

aBouT The auThor recommenDeD Book
NoSQL Distilled by Martin Fowler and Pramod Sadalage
offers a glimpse into the universe of non-relational
database systems. This book begins by introducing the
reader to high-level concepts like CAP theorem before
diving into specific databases and use cases. It includes
information on such databases as MongoDB, Cassandra,
and Neo4j, offering a wide level of coverage within the
NoSQL space.

BuY noW

http://refcardz.dzone.com/refcardz/querying-graphs-neo4j
http://refcardz.dzone.com/refcardz/querying-graphs-neo4j
http://twitter.com/ciurana
http://twitter.com/ciurana
http://www.dzone.com/links/index.html
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.amazon.com/NoSQL-Distilled-Emerging-Polyglot-Persistence/dp/0321826620
http://www.amazon.com/NoSQL-Distilled-Emerging-Polyglot-Persistence/dp/0321826620
http://refcardz.dzone.com/refcardz/getting-started-nosql-and-data
http://refcardz.dzone.com/refcardz/scalability
http://refcardz.dzone.com/refcardz/deploying-hadoop
http://refcardz.dzone.com/refcardz/getting-started-apache-hadoop
http://www.apress.com/9781430218319/
http://refcardz.dzone.com/refcardz/soa-patterns
http://www.amazon.com/The-Tesla-Testament-Eugene-Ciurana/dp/1411673174

