
Take control of
your APIs

Create your free account ›

Learn more at 3scale.net

Two layers. Unlimited possibilities.
3scale’s unique separation of the cloud management layer

and traffic control mechanism delivers unmatched flexibility

and performance. Deploy on premise or in the cloud, and

manage access control policy, documentation, rate limits,

and more from a unified cloud dashboard.

http://pages.3scale.net/api-management-platform-rest-dzone.html

© DZone, Inc. | DZone.com

ReST: Foundations of
ReSTful Architecture

By Brian Slettenc
o

n
T

e
n

T
S

Ja
v

a
 E

n
t

E
r

p
r

is
E

 E
d

it
io

n
 7

InTRoDucTIon

The Representational State Transfer (REST) architectural
style is not a technology you can purchase or a library you
can add to your software development project. It is first
and foremost a worldview that elevates information into a
first class element of the architectures we build.

The ideas and terms we use to describe “RESTful”
systems were introduced and collated in Dr. Roy Fielding’s
thesis, “Architectural Styles and the Design of Network-
based Software Architectures”. This document is academic
and uses formal language, but remains accessible and
provides the basis for the practice.

The summary of the approach is that by making specific
architectural choices, we can elicit desirable properties
from the systems we deploy. The constraints detailed
in this architectural style are not intended to be used
everywhere, but they are widely applicable.

The concepts are well demonstrated in a reference
implementation we call the Web. Advocates of the REST
style are basically encouraging organizations to apply
the same principles within their boundaries as they do to
external facing customers with web pages.

The BA SIcS
A RESTful service is exposed through a Uniform Resource
Locator (URL). This is a logical name that separates the
identity of the resource from what is accepted or returned.
The URL scheme is defined in RFC 1738.

A sample RESTful URL might be something like the
following fake API for a library:

http://fakelibrary.org/library

What is actually exposed is not necessarily an arbitrary
service, however, but an information resource
representing something of value to a consumer. The URL
functions as a handle for the resource, something that can
be requested, updated, or deleted.

This starting point would be published somewhere as
the way to begin interacting with the library’s REST
services. What is returned could be XML, JSON or—more
appropriately—a hypermedia format such as Atom or
a custom MIME type. The general guidance is to reuse
existing formats where possible, but there is a growing
tolerance for properly designed media types.

G
et

 M
or

e
Re

fc
ar

dz
! V

is
it

 R
ef

ca
rd

z.
co

m
BRouGhT To You BY:129

r
E

s
t:

 F
o

u
n

d
a

t
io

n
s

 o
F

 r
E

s
t

F
u

l
a

r
c

h
it

E
c

t
u

r
E

To request the resource, a client would issue a Hypertext
Transfer Protocol (HTTP) GET request to retrieve it. This
is what happens when you type a URL into a browser and
hit return, select a bookmark, or click through an anchor
reference link.

For programmatic interaction with a RESTful API, any of
a dozen or more client side APIs or tools could be used. To
use the curl command line tool, you could type something
like:

$ curl http://fakelibrary.org/library

This will return the default representation on the
command line. You may not want the information in this
form, however. Fortunately, HTTP has a mechanism by
which you can ask for information in a different form. By
specifying an “Accept” header in the request, if the server
supports that representation, it will return it. This is
known as content negotiation and is one of the more
underused aspects of HTTP. Again, using curl, this could
be done with:

$ curl –H “Accept:application/json”
http://fakelibrary.org/library

This ability to ask for information in different forms is
possible because of the separation of the name of the
resource from its form. The ‘R’ in REST is
‘representation’, not ‘resource’. Keep this in mind and
build systems that allow clients to ask for information in
the forms they want. We will revisit this topic later.

 » The Basics

 » What about SOAP?

 » Richardson Maturity Model

 » Verbs

 » Response Codes...& more!

Flexible, scalable
API management.

Get the technical guide ›

http://www.dzone.com?refcardz
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://tools.ietf.org/html/rfc1738
http://www.refcardz.com
http://pages.3scale.net/api-platform-tech-guide-dzonerest.html?utm_campaign=dzonerest&utm_source=dzone&utm_content=refcard

© DZone, Inc. | DZone.com

2 ReST: FounDATIonS oF
ReSTFul ARchITecTuRe

Possible URLs for our fake library might include:

 • http://fakelibrary.org/library - general information
about the library and the basis for discovering links to
search for specific books, DVDs, etc.

 • http://fakelibrary.org/book - an “information space”
for books. Conceptually, it is a placeholder for all possible
books. Clearly, if it were resolved, we would not want to
return all possible books, but it might perhaps return a way
to discover books through categories, keyword search, etc.

 • http://fakelibrary.org/book/category/1234 - within
the information space for books, we might imagine
browsing them based on particular categories (e.g. adult
fiction, children’s books, gardening, etc.) It might make
sense to use the Dewey Decimal system for this, but we
can also imagine custom groupings as well. The point is
that this “information space” is potentially infinite and
driven by what kind of information people will actually
care about.

 • http://fakelibrary.org/book/isbn/978-0596801687 -
a reference to a particular book. Resolving it should include
information about the title, author, publisher, number of
copies in the system, number of copies available, etc.

These URLs mentioned above will probably be read-only as far
as the library patrons are concerned, but applications used by
librarians might actually manipulate these resources.

For instance, to add a new book, we might imagine POSTing
an XML representation to the main /book information space.
In curl, this might look like:

$ curl –u username:password -d @book.xml -H “Content-type:
text/xml” http://fakelibrary.org/book

At this point, the resource on the server might validate the
results, create the data records associated with the book and
return a 201 response code indicating that a new resource has
been created. The URL for the new resource can be discovered
in the Location header of the response.

An important aspect of a RESTful request is that each request
contains enough state to answer the request. This allows for
the conditions of visibility and statelessness on the server,
desirable properties for scaling systems up and identifying
what requests are being made. This helps to enable the
caching of specific results. The combination of a server’s
address and the state of the request combine to form a
computational hash key into a result set:

http://fakelibrary.org + /book/isbn/978-0596801687

Because of the nature of the GET request (discussed later), this
allows a client to make very specific requests, but only if
necessary. The client can cache a result locally, the server can
cache it remotely or some intermediate architectural element
can cache it in the middle. This is an application-independent
property that can be designed into our systems.

Just because it is possible to manipulate a resource does not
mean everyone will be able to do so. We can absolutely put a

protection model in place that requires users to authenticate
and prove that they are allowed to do something before we
allow them to. We will have some pointers on ways of securing
RESTful services at the end of this card.

Wh AT A BouT SoA P?

What about it? There is a false equivalence asserted about
REST and SOAP that yields more heat than light when they
are compared. They are not the same thing. They are not
intended to do the same thing even though you can solve
many architectural problems with either approach.

The confusion largely stems from the confused idea that
REST “is about invoking Web Services through URLs.”
That has about as much truth to it as the idea that “agile
methodologies are about avoiding documentation.” Without a
deeper understanding of the larger goals of an approach, it is
easy to lose the intent of the practices.

REST is best used to manage systems by decoupling the
information that is produced and consumed from the
technologies that produce and consume it. We can achieve
the architectural properties of:

 • Performance
 • Scalability
 • Generality
 • Simplicity
 • Modifiability
 • Extensibility

This is not to say SOAP-based systems cannot be built
demonstrating some of these properties. But SOAP is
best leveraged when the lifecycle of a request cannot be
maintained in the scope of a single transaction because of
technological, organizational, or procedural complications.

RIch A RDSon m ATuRITY moDel

In part to help elucidate the differences between SOAP and
REST, and to provide a framework for classifying the different
kinds of systems many people were inappropriately calling
“REST,” Leonard Richardson introduced a Maturity Model.
You can think of the classifications as a measure of how closely
a system embraces the different pieces of Web Technology:
Information resources, HTTP as an application protocol, and
hypermedia as the medium of control.

level ADoPTIon

0

This is basically where SOAP is. There are no
information resources, HTTP is treated like a
transport protocol, and there is no concept of
hypermedia. Conclusion: REST and SOAP are
different approaches.

© DZone, Inc. | DZone.com

3

level ADoPTIon

1

URLs are used, but not always as appropriate
information resources, and everything is usually a
GET request (including requests that update server
state). Most people new to REST first build systems
that look like this.

2

URLs are used to represent information resources.
HTTP is respected as an application protocol,
sometimes including content negotiation. Most
Internet-facing “REST” web services are really
only at this level because they only support non-
hypermedia formats.

3

URLs are used to represent information resources.
HTTP is respected as an application protocol
including content negotiation. Hypermedia drives
the interactions for clients.

Calling it a “maturity model” might seem to suggest that you
should only build systems at the most “mature” level. That
should not be the take-home message. There is value at being
at Level 2, and the shift to Level 3 is often simply the adoption
of a new MIME type. The shift from Level 0 to Level 3 is much
harder, so even incremental adoption adds value.

Start by identifying the information resources you would
like to expose. Adopt HTTP as an application protocol for
manipulating these information resources—including support
for content negotiation. Then, when you are ready, adopt
hypermedia-based MIME types and you should get the full
benefits of REST.

veRBS

The limited number of verbs in RESTful systems confuses
and frustrates people new to the approach. What seem like
arbitrary and unnecessary constraints are actually intended
to encourage predictable behavior in non-application-specific
ways. By explicitly and clearly defining the behavior of these
verbs, clients can be self-empowered to make decisions in the
face of network interruptions and failure.

There are four main HTTP verbs (sometimes called methods)
used by well-designed RESTful systems.

GeT
The most common verb on the Web, a GET request transfers
representations of named resources from a server to a client.
The client does not necessarily know anything about the
resource it is requesting. What it gets back is a bytestream
tagged with metadata that indicates how the client should
interpret it. On the Web, this is typically “text/html” or
“application/xhtml+xml”. As we indicated above, using
content negotiation, the client can be proactive about what is
requested as long as the server supports it.

One of the key points about the GET request is that it should
not modify anything on the server side. It is fundamentally

a safe request. This is one of the biggest mistakes made by
people new to REST. With RMM Level 1 systems, you often see
URLs such as:

http://example.com/res/action=update?data=1234

Do not do this! Not only will RESTafarians mock you, but you
will not build RESTful ecosystems that yield the desired
properties. The safety of a GET request allows it to be cached.

GET requests are also intended to be idempotent. This
means that issuing a request more than once will have no
consequences. This is an important property in a distributed,
network-based infrastructure. If a client is interrupted
while it is making a GET request, it should be empowered
to issue it again because of the idempotency of the verb.
This is an enormously important point. In a well-designed
infrastructure, it does not matter what the client is requesting
from which application. There will always be application-
specific behavior, but the more we can push into non-
application-specific behavior, the more resilient and easier to
maintain our systems will be.

PoST
The situation gets a little less clear when we consider the
intent of the POST and PUT verbs. Based on their definitions,
both seem to be used to create or update a resource from the
client to the server. They have distinct purposes, however.

POST is used when the client cannot predict the identity of the
resource it is requesting to be created. When we hire people,
place orders, submit forms, etc., we cannot predict how the
server will name these resources we are creating. This is why
we POST a representation of the resource to a handler (e.g.
servlet). The server will accept the input, validate it, verify
the user’s credentials, etc. Upon successful processing, the
server will return a 201 HTTP response code with a “Location”
header indicating the location of the newly created resource.

Note: Some people treat POST like a conversational GET on
creation requests. Instead of returning a 201, they return a
200 with the body of the resource created. This seems like
a shortcut to avoid a second request, but it also conflates
POST and GET and complicates the potential for caching
the resource. Try to avoid the urge to take shortcuts at the
expense of the larger picture. It seems worth it in the short-
term, but over time, these shortcuts will add up and likely
work against you.

Another major use of the POST verb is to “append” a resource.
This is an incremental edit or a partial update, not a full
resource submission. For that, use the PUT operation. A POST
update to a known resource would be used for something like
adding a new shipping address to an order or updating the
quantity of an item in a cart.

Because of this partial update potential, POST is neither safe
nor idempotent.

ReST: FounDATIonS oF
ReSTFul ARchITecTuRe

© DZone, Inc. | DZone.com

4

A final common use of POST is to submit queries. Either a
representation of a query or URL-encoded form values are
submitted to a service to interpret the query. It is usually fair
to return results directly from this kind of a POST since there
is no identity associated with the query.

Note: Consider turning a query like this into an information
resource itself. If you POST the definition into a query
information space, you can then issue GET requests to it,
which can be cached. You can also share this link with others.

PuT
Many developers largely ignore the PUT verb because HTML
forms do not currently support it. It serves an important
purpose, however, and is part of the full vision for RESTful
systems.

A client can issue a PUT request to a known URL as a means of
passing the representation back to the server in order to do an
overwrite action. This distinction allows a PUT request to be
idempotent in a way that POST updates are not.

If a client is in the process of issuing a PUT overwrite and it
is interrupted, it can feel empowered to issue it again because
an overwrite action can be reissued with no consequences;
the client is attempting to control the state, so it can simply
reissue the command.

Note: This protocol-level handling does not necessarily
preclude the need for higher (application-level) transactional
handling, but again, it is an architecturally desirable property
to bake in below the application level.

PUT can also be used to create a resource if the client is able
to predict the resource’s identity. This is usually not the case,
as we discussed under the POST section, but if the client
is in control of the server-side information spaces, it is a
reasonable thing to allow.

DeleTe
The DELETE verb does not find wide use on the public Web
(thankfully!), but for information spaces you control, it is a
useful part of a resource’s lifecycle.

DELETE requests are intended to be idempotent, so you
should generally build resources that respond to DELETE
requests by failing silently and returning a 204 (No Content)
even if the resource has already been deleted. Some security
policies may require you to return a 404 for non-existent or
deleted resources so DELETE requests do not leak information
about the presence of resources.

There are three other verbs that are not as widely used but
provide value.

heAD
The HEAD verb is used to issue a request for a resource
without actually retrieving it. It is a way for a client to check
for the existence of a resource and possibly discover metadata
about it.

oPTIonS
The OPTIONS verb is also used to interrogate a server about
a resource by asking what other verbs are applicable to the
resource.

PATch
The newest of the verbs, PATCH was only officially adopted
as part of HTTP in early 2010. The goal is to provide a
standardized way to express partial updates. Because POST
can be used for anything, it is unclear when it is being used
for partial updates.

A PATCH request in a standard format could allow an
interaction to be more explicit about the intent. There are
RFCs from the IETF for patching XML and JSON.

If the client issues a PATCH request with an If-Match header,
it is possible for this partial update to become idempotent. An
interrupted request can be retried because, if it succeeded the
first time, the If-Match header will differ from the new state.
If they are the same, the original request was not handled and
the PATCH can be applied.

ReSPonSe coDeS

HTTP response codes give us a rich dialogue between clients
and servers about the status of a request. Most people are
only familiar with 200, 403, 404 and maybe 500 in a general
sense, but there are many more useful codes to use. The tables
presented here are not comprehensive, but cover many of the
most important codes you should consider using in a RESTful
environment.

The first collection of response codes indicates that the client
request was well formed and processed. The specific action
taken is indicated by one of the following:

coDe DeScRIPTIon

200
OK. The request has successfully executed.
Response depends upon the verb invoked.

201

Created. The request has successfully executed and
a new resource has been created in the process.
The response body is either empty or contains a
representation containing URIs for the resource
created. The Location header in the response
should point to the URI as well.

ReST: FounDATIonS oF
ReSTFul ARchITecTuRe

© DZone, Inc. | DZone.com

5

coDe DeScRIPTIon

202

Accepted. The request was valid and has been
accepted but has not yet been processed. The
response should include a URI to poll for status
updates on the request. This allows asynchronous
REST requests

204
No Content. The request was successfully
processed but the server did not have any
response. The client should not update its display.

Table 1 - Successful Client Requests

coDe DeScRIPTIon

301

Moved Permanently. The requested resource is
no longer located at the specified URL. The new
Location should be returned in the response
header. Only GET or HEAD requests should redirect
to the new location. The client should update its
bookmark if possible.

302

Found. The requested resource has temporarily
been found somewhere else. The temporary
Location should be returned in the response
header. Only GET or HEAD requests should redirect
to the new location. The client need not update its
bookmark as the resource may return to this URL.

303

See Other. This response code has been
reinterpreted by the W3C Technical Architecture
Group (TAG) as a way of responding to a valid
request for a non-network addressable resource.
This is an important concept in the Semantic
Web when we give URIs to people, concepts,
organizations, etc. There is a distinction between
resources that can be found on the Web and those
that cannot. Clients can tell this difference if they
get a 303 instead of 200. The redirected location
will be reflected in the Location header of the
response. This header will contain a reference to
a document about the resource or perhaps some
metadata about it.

Table 2 - Redirected Client Requests

The third collection of response codes indicates that the
client request was somehow invalid and will not be handled
successfully if reissued in the same condition. These
failures include potentially improperly-formatted requests,
unauthorized requests, requests for resources that do not
exist, etc.

coDe DeScRIPTIon

400 Bad Request.

401 Unauthorized.

403 Forbidden.

404 Not Found.

coDe DeScRIPTIon

405 Method Not Allowed.

406 Not Acceptable.

410 Gone

411 Length Required.

412 Precondition Failed.

413 Entity Too Large.

414 URI Too Long.

415 Unsupported Media Type.

417 Expectation Failed.

Table 3 - Invalid Client Requests

The final collection of response codes indicates that the server
was temporarily unable to handle the client request (which
may still be invalid) and that it should reissue the command at
some point in the future.

coDe DeScRIPTIon

500 Internal Service Error.

501 Not Implemented.

503 Service Unavailable.

Table 4 - Server Failed to Handle the Request

The service zones have different scalability requirements
according to their function.

ReST ReSouRceS

TheSIS
Dr. Fielding’s thesis, “Architectural Styles and the Design
of Network-based Software Architectures” is the main
introduction to the ideas discussed here: http://www.ics.uci.
edu/~fielding/pubs/dissertation/top.htm.

RFcS
The specifications for the technologies that define the most
common uses of REST are driven by the Internet Engineering
Task Force (IETF) Request for Comments (RFC) process.
Specifications are given numbers and updated occasionally
over time with new versions that obsolete existing ones. At the
moment, here are the latest relevant RFCs.

URI:
The generic syntax of URIs as a naming scheme are covered
in RFC 3986. A URI is a naming scheme that can include
encoding other naming schemes such as website addresses,
namespace-aware sub-schemes, etc.

Site: http://www.ietf.org/rfc/rfc3986.txt

ReST: FounDATIonS oF
ReSTFul ARchITecTuRe

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ietf.org/rfc/rfc3986.txt

© DZone, Inc. | DZone.com

6

URL:
A Uniform Resource Locator (URL) is a form of URI that has
sufficient information embedded within it (access scheme and
address usually) to resolve and locate the resource.

Site: http://www.ietf.org/rfc/rfc1738.txt

IRI:
An Internationalized Resource Identifier (IRI) is conceptually
a URI encoded in Unicode to support characters from the
languages of the world in the identifiers they use on the Web.
The IETF chose to create a new standard rather than change
the URI scheme itself to avoid breaking existing systems and
to draw explicit distinctions between the two approaches.
Those who support IRIs do so deliberately. There are mapping
schemes defined for converting between IRIs and URIs as well.

Site: http://www.ietf.org/rfc/rfc3987.txt

HTTP:
The Hypertext Transfer Protocol (HTTP) version 1.1 defines an
application protocol for manipulating information resources
generally represented in hypermedia formats. While it is
an application-level protocol, it is generally not application
specific, and important architectural benefits emerge as a
result. Most people think of HTTP and the Hypertext Markup
Language (HTML) as “The Web”, but HTTP is useful in the
development of non-document-oriented systems as well.

Site: http://www.ietf.org/rfc/rfc2616.txt

PATCH Formats:
JavaScript Object Notation (JSON) Patch

Site: https://www.ietf.org/rfc/rfc6902.txt

XML Patch

Site: https://www.ietf.org/rfc/rfc7351.txt

DeScRIPTIon lAnGuAGeS
There is strong interest in having languages to describe APIs
to make it easier to document or possibly even generate
skeletons for clients and servers. Some of the more popular or
interesting languages are described below:

RAML:
A YAML/JSON language for describing Level 2-oriented APIs.
It includes support for reusable patterns and traits that can
help standardize features across API design.

Site: http://raml.org

Swagger:
Another YAML/JSON language for describing Level 2-oriented
APIs. It includes code generators, an editor, visualization of API
documentation, and the ability to integrate with other services.

Site: http://swagger.io

Apiary.io:
A collaborative, hosted site with support for Markdown-based
documentation of APIs, social interactions around the design
process, and support for mock hosted implementations to
make it easy to test APIs before they are implemented.

Site: http://apiary.io

Hydra-Cg:
A Hypermedia description language expressed via standards
such as JSON-LD to make it easy to support Linked Data and
interaction with other data sources.

Site: http://www.hydra-cg.com

ImPlemenTATIonS
There are several libraries and frameworks available for
building systems that produce and consume RESTful systems.
While any web server can be configured to supply a REST API,
these frameworks, libraries, and environments make it easier
to do so.

Here is an overview of some of the main environments:

JAX-RS:
This specification adds support for REST to JEE environments.

Site: https://jax-rs-spec.java.net

Restlet:
The Restlet API was one of the first attempts at creating a
Java API for producing and consuming RESTful systems.
The attention paid to both the client and server sides of the
equation yields some very clean and powerful APIs.

The Restlet Studio is a free tool that allows conversion
between RAML and Swagger-based API descriptions, as well
as skeleton and stub support for Restlet, Node, and JAX-RS
servers and clients.

Site: http://restlet.org

NetKernel:
One of the more interesting RESTful systems, NetKernel
represents a microkernel-based environment supporting
a wide variety of architectural styles. It benefits from the
adoption of the economic properties of the Web in a software
architecture. You can think of it as “bringing REST inside.”
Whereas any REST-based system kind of looks the same
externally, NetKernel continues to look like that within its
execution environment as well.

Site: http://netkernel.org

Play:
One of the two main Scala REST frameworks.

Site: https://www.playframework.com

Spray:
One of the two main Scala REST frameworks. This is designed

ReST: FounDATIonS oF
ReSTFul ARchITecTuRe

http://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc3987.txt
http://www.ietf.org/rfc/rfc2616.txt
https://www.ietf.org/rfc/rfc6902.txt
https://www.ietf.org/rfc/rfc7351.txt
http://raml.org
http://swagger.io
http://apiary.io
http://www.hydra-cg.com
https://jax-rs-spec.java.net
http://restlet.org
http://netkernel.org
https://www.playframework.com

7

to work with the Akka actor model.

Site: http://spray.io

Express:
One of the two main Node.js REST frameworks.

Site: http://expressjs.com

hapi:
One of the two main Node.js REST frameworks.

Site: http://hapijs.com

Sinatra:
Sinatra is a domain specific language (DSL) for creating
RESTful applications in Ruby.

Site: http://www.sinatrarb.com

OpenRasta:
OpenRasta brings the concept of REST to the .NET platform in
ways that allow it to be deployed alongside ASP.NET and WCF
components.

Site: http://openrasta.org

There are many other implementations to investigate.
For more information, please consult this list of known
implementations:

http://code.google.com/p/implementing-rest/wiki/
RESTFrameworks

BookS
“RESTful Web APIs” by Leonard Richardson, Mike Amundsen
and Sam Ruby, 2013. O’Reilly Media.

“RESTful Web Services Cookbook” by Subbu Allamaraju, 2010.
O’Reilly Media.

“REST in Practice” by Jim Webber, Savas Parastatidis and Ian
Robinson, 2010. O’Reilly Media.

“Restlet in Action” by Jerome Louvel and Thierry Boileau, 2011.
Manning Publications.

“Resource-Oriented Architecture Patterns for Webs of
Data (Synthesis Lectures on the Semantic Web: Theory and
Technology)” by Brian Sletten, 2013. Morgan & Claypool.

ReST: FounDATIonS oF
ReSTFul ARchITecTuRe

 |

Brian Sletten is a liberal arts-educated software engineer with
a focus on forward-leaning technologies. His experience has
spanned many industries including retail, banking, online games,
defense, finance, hospitality, publications and health care. He
has a B.S. in Computer Science from the College of William and
Mary and lives in Auburn, CA. He focuses on web architecture,
resource-oriented computing, social networking, the Semantic
Web, data science, 3D graphics, visualization, scalable systems,
security consulting and other technologies of the late 20th and
early 21st Centuries. He is also a rabid reader, devoted foodie and
has excellent taste in music. If pressed, he might tell you about
his International Pop Recording career.

BRoWSe ouR collecTIon oF 250+ FRee ReSouRceS, IncluDInG:
ReSeARch GuIDeS: Unbiased insight from leading tech experts

ReFcARDZ: Library of 200+ reference cards covering the latest tech topics

communITIeS: Share links, author articles, and engage with other tech experts

JoIn noW

© DZone, Inc.

DZone, Inc.
150 PReSTOn exeCUTiVe DR.
CARy, nC 27513

888.678.0399
919.678.0300

rEFcardz FEEdback WElcomE
refcardz@dzone.com

sponsorship opportunitiEs
sales@dzone.com

Copyright © 2015 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. Version 1.0 $7.95

DZone communities deliver over 6 million pages each month to more than 3.3 million software
developers, architects and decision makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, research guides, feature articles, source code and more.

"DZone is a developer's dream," says PC Magazine.

ABouT The AuThoR RecommenDeD Book
This cookbook includes more than 100 recipes to
help you take advantage of REST, HTTP, and the
infrastructure of the Web. You’ll learn ways to design
RESTful web services for client and server applications
that meet performance, scalability, reliability, and
security goals, no matter what programming language
and development framework you use.

BuY noW

cReDITS:
editor: G. Ryan Spain | Designer: Farhin Dorothi | Production: Chris Smith | Sponsor Relations: Brandon Rosser

http://spray.io
http://expressjs.com
http://hapijs.com
http://www.sinatrarb.com
http://openrasta.org
http://code.google.com/p/implementing-rest/wiki/RESTFrameworks
http://code.google.com/p/implementing-rest/wiki/RESTFrameworks
http://www.dzone.com/links/index.html
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://shop.oreilly.com/product/9780596801694.do?sortby=publicationDate
http://shop.oreilly.com/product/9780596801694.do?sortby=publicationDate

