
MySQL® Performance Optimization
P R A C T I C A L

A hands-on, business-case-driven
guide to understanding MySQL®
query parameter tuning and
database performance optimization.

and networks in both business and personal
interconnections, performance has become
one of the key metrics of successful
communication. Optimizing performance
is key to maintaining customers, fostering
relationships, and growing business endeavors.

A central component to applications in any business
system is the database, how applications query
the database, and how the database responds
to requests. MySQL is arguably one of the most
popular ways of accessing database information.
There are many methods to configuring MySQL
that can help ensure your database responds
to queries quickly and with a minimum amount
of application performance degradation.

Percona is the only company that delivers enterprise-
class software, support, consulting, and managed
services solutions for both MySQL and MongoDB®
across traditional and cloud-based platforms that
maximize application performance while streamlining
database efficiencies. Our global 24x7x365 consulting
team has worked with over 3,000 clients worldwide,
including the largest companies on the Internet,
who use MySQL, Percona Server®, Amazon®
RDS for MySQL, MariaDB® and MongoDB.

With the increasing
importance of applications

https://www.percona.com/software
https://www.percona.com/services/support
https://www.percona.com/services/consulting
https://www.percona.com/services/managed-services
https://www.percona.com/services/managed-services

This book, co-written by Peter Zaitsev (CEO
and co-founder of Percona) and Alex Rubin
(Percona consultant, who has worked with MySQL
since 2000 as DBA and Application Developer)
provides practical hands-on technical expertise to
understanding how tuning MySQL query parameters
can optimize your database performance and
ensure that its performance improves application
response times. It also will provide a thorough
grounding in the context surrounding what the
business case is for optimizing performance, and
how to view performance as a function of the
whole system (of which the database is one part).

THIS BOOK CONTAINS THE
FOLLOWING SECTIONS:

 » Section 1: Application Performance and User
Perception

 » Section 2: Why is Your Database
Performance Poor?

 » Section 3 (this section): Advanced MySQL
Tuning

For more information on Percona, and Percona's
software and services, visit us at www.percona.com.

http://www.percona.com

Peter Zaitsev, CEO

Peter Zaitsev is CEO and co-founder of Percona. A serial
entrepreneur, Peter enjoys mixing business leadership with hands-
on technical expertise. Previously he was an early employee at
MySQL AB, one of the largest open source companies in the world,
which was acquired by Sun Microsystems in 2008. Prior to joining
MySQL AB, Peter was CTO at SpyLOG, which provided statistical
information on website traffic.

Peter is the co-author of the popular book, High Performance
MySQL. He has a Master's in Computer Science from Lomonosov
Moscow State University and is one of the award-winning leaders
of the world MySQL community. Peter contributes regularly to the
Percona Performance Blog and speaks frequently at technical and
business conferences including the Percona Live series, SouthEast
LinuxFest, All Things Open, DataOps LATAM, Silicon Valley Open
Doors, HighLoad++ and many more.

Alexander Rubin, Principal Consultant

Alexander joined Percona in 2013. Alexander worked with MySQL
since 2000 as a DBA and Application Developer. Before joining
Percona he was doing MySQL consulting as a principal consultant
for over seven years (started with MySQL AB in 2006, then Sun
Microsystems and then Oracle). He helped many customers design
large, scalable and highly available MySQL systems and optimize
MySQL performance. Alexander also helped customers design big
data stores with Apache Hadoop and related technologies.

AB0UT THE AUTHORS

http://shop.oreilly.com/product/0636920022343.do
http://shop.oreilly.com/product/0636920022343.do

Advanced MySQL Tuning

Practical MySQL Performance Optimization 2

Advanced MySQL Tuning

QUERY TUNING
As we can see from the previous chapters, MySQL performance
tuning can be critical for business goals and procedures. Query
tuning can have a huge impact. In this chapter we will focus on
optimizing the typical "slow" queries.

It's important to remember that "slow query" is a relative term.
A query can run minutes, but still not affect the normal MySQL
functionality or harm the user experience. For example, a
backend query that retrieves the latest orders for storage in a data
warehousing system can run many minutes and not affect MySQL
or end users. At the same time, a really fast query (95th percentile:
1ms) that updates the "user session" table can be really "taxing," as
this query can run very frequently with a high level of parallelism.

Indexes

Practical MySQL Performance Optimization 4

Indexes

INDEXES
Before starting with query tuning we need to talk first about
indexes, and how indexes are implemented in MySQL.

This section will focus on B-tree indexes only (InnoDB and
MyISAM only support B-tree indexes). Figure 1 below illustrates a
basic B-tree index implementation.

Figure 1: B-Tree Example

B-tree supports both an "equality" (where ID = 12) and a "range"
(two examples: where date > "2013-01-01" and date < "2013-07-01",
and another example would be id in (6, 12, 18)) search. Figures 2
and 3 illustrate examples of these.

Figure 2 shows an equality search, with a primary or unique key:
select * from table where id = 12

In this scenario, MySQL is able to scan through the tree and go
directly to one leaf and then stop. A primary key search is the
fastest index scan operation.

Figure 2: MySQL Primary Key Search

http://en.wikipedia.org/wiki/B-tree

Practical MySQL Performance Optimization 55

Indexes

In InnoDB, primary key searches are even faster. InnoDB "clusters"
record around the primary key.

select * from table where id in (6, 12, 18)

In this scenario, MySQL will scan through the tree and visit many
leafs/nodes:

Figure 3: InnoDB Primary Key Search

Table for the Tests
In the next section, I will use a couple of tables for the tests. The
first table is the part of the MySQL "world" test database, and can
be downloaded from dev.mysql.com.

CREATE TABLE City (
 ID int(11) NOT NULL AUTO_INCREMENT,
 Name char(35) NOT NULL DEFAULT ,
 CountryCode char(3) NOT NULL DEFAULT ,
 District char(20) NOT NULL DEFAULT ,
 Population int(11) NOT NULL DEFAULT 0,
 PRIMARY KEY (ID),
 KEY CountryCode (CountryCode)
) Engine=InnoDB;

Explain Plan
The main way to "profile" a query with MySQL is to use "explain".
The set of operations that the optimizer chooses to perform the
most efficient query is called the "query execution plan," also
known as the "explain plan." The output below shows an example
of the explain plan.

http://dev.mysql.com

Practical MySQL Performance Optimization 6

Indexes

mysql> EXPLAIN select * from City where Name =
'London'\G
**************** 1. row ***********
 id: 1
 select_type: SIMPLE
 table: City
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 4079
 Extra: Using where

As we can see from the explain plan, MySQL does not use any
indexes (key: NULL) and will have to perform a full table scan.

In this case, we can add an index to restrict the number of rows:
mysql> alter table City add key (Name);
Query OK, 4079 rows affected (0.02 sec)
Records: 4079 Duplicates: 0 Warnings: 0

The new explain shows that MySQL will use an index:
mysql> explain select * from City where Name =
'London'\G
*****************1. row**********************
 id: 1
 select_type: SIMPLE
 table: City
 type: ref
possible_keys: Name
 key: Name
 key_len: 35
 ref: const
 rows: 1
 Extra: Using where

Practical MySQL Performance Optimization 77

Indexes

Index Usages
MySQL will choose only one index per query (and per table if
the query joins multiple tables). In some cases, MySQL can also
intersect indexes (we won't cover that scenario in this section,
however). MySQL uses index statistics to make a decision about
the best possible index.

Combined Indexes
Combined indexes are very important for MySQL query
optimizations. MySQL can use the leftmost part of any index. For
example, if we have this index:

Comb(CountryCode, District, Population)

Then MySQL can use:
CountryCode only part
CountryCode + District
CountryCode + District + Population

From the explain plan shown below, we can understand which
part(s) get used:

mysql> explain select * from City
 where CountryCode = 'USA'\G
***************** 1. row ******************
 table: City
 type: ref
possible_keys: comb
 key: comb
 key_len: 3
 ref: const
 rows: 273

Practical MySQL Performance Optimization 8

Indexes

Note the key_len part shows "3". This is the number of bytes used
from our index. As the CountryCode field is declared as char(3),
that means that MySQL will use the first field from our combined
index.

Similarly, MySQL can use the two leftmost fields, or all three fields
from the index. In this example, the two leftmost fields are used:

mysql> explain select * from City
where CountryCode = 'USA' and District =
'California'\G
*******************1. row ******************
 table: City
 type: ref
possible_keys: comb
 key: comb
 key_len: 23
 ref: const,const
 rows: 68

So MySQL will use the two first fields from the comb key:

 » CountryCode = 3 chars
 » District = 20 chars
 » Total = 23

Whereas in this explain plan, all three fields are used from the
index:

mysql> explain select * from City
where CountryCode = 'USA' and District =
'California'
and population > 10000\G
*******************1. row ******************
 table: City
 type: range
possible_keys: comb
 key: comb
 key_len: 27
 ref: NULL
 rows: 6

Practical MySQL Performance Optimization 99

Indexes

 » CountryCode = 3 chars/bytes
 » District = 20 chars/bytes
 » Population = 4 bytes (INT)
 » Total = 27

However, if the query does not have the first leftmost part of an
index, MySQL can't use it:

mysql> explain select * from City where
District = 'California' and population >
10000\G
********************1. row ******************
 table: City
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 3868

As we do not have the CountryCode in the where clause, MySQL
will not be able to use our "comb" index.

If you are too tired to do the math for calculating the actual
fields in the index, MySQL 5.6 and 5.7 has a great feature: explain
format=JSON:

mysql> explain format=JSON select * from
City where CountryCode = 'USA' and District =
'California'\G
***************1. row ***********************
EXPLAIN: {
 "query_block": {
 "select_id": 1,
 "table": {
 "table_name": "City",
 "access_type": "ref",
 "possible_keys": [
 "comb"
],

Practical MySQL Performance Optimization 10

Indexes

 "key": "comb",
 "used_key_parts": [
 "CountryCode",
 "District"
],
 "key_length": "23",
 "ref": [
 "const",
 "const"
],
 "rows": 84,
 ...

With the JSON format, MySQL shows the list of fields inside the
index that MySQL will use.

Covered Index
The covered index is an index that covers all fields in the query. For
example, for this query:

select name from City where CountryCode =
'USA' and District = 'Alaska' and population >
10000

the following index will be a "covered" index:
cov1(CountryCode, District, population, name)

The above index uses all fields in the query, in this order:

 » Where part
 » Group By/Order (not used now)
 » Select part (here: name)

Practical MySQL Performance Optimization 1111

Indexes

Here is an example:
mysql> explain select name from City where
CountryCode = 'USA' and District = 'Alaska'
and population > 10000\G
******************* 1. row ****************
 table: City
 type: range
possible_keys: cov1
 key: cov1
 key_len: 27
 ref: NULL
 rows: 1
 Extra: Using where; Using index

The extra field here is an informational field inside the explain
output that shows additional information (very useful in most
cases) about the explain plan and how MySQL will execute the
query.

The "Using index" (informational flag) in the extra field of the
explain output means that MySQL will use our covered index. That
also means that MySQL will use only that index to satisfy the query
(and does not have to read the data from the table).

From the previous example, we can see that we need to filter
by: CountryCode, District and population. In addition, we will
need to retrieve "name". All those fields are already in our "cov1"
index, so MySQL can read the index and return the result without
touching the data file. That is usually much faster, especially if we
have a lots of other fields in our table. This should improve query
performance.

Order of the Fields in Index
The order of the fields in the index is very important. The way
B-tree works, it is better to have the "equality" comparison
field first and the fields with a "range" (more than and less than
comparisons) second.

Practical MySQL Performance Optimization 12

Indexes

For example, take the following query:
select * from City where district =
'California' and population > 30000

The best index will be on (district, population), in this particular
order.

Figure 4: Index for District, Population

In this case, MySQL can go "directly" (via index scan) to the correct
district ("CA") and do a range scan by population. All other nodes
for the "district" field (other US states in this example) will not be
scanned. If we put population first and district second, MySQL will
need to perform more work:

Practical MySQL Performance Optimization 1313

Indexes

Figure 5: Index for Population, District

In this example, MySQL must do a "range" scan for the population,
and for each index record, will have to check for the correct district.
This is much slower.

Queries

Practical MySQL Performance Optimization 1515

Queries

COMPLEX SLOW QUERIES
In this section we will be talking about two major query types:

 » Queries with "group by"
 » Queries with "order by"

These queries are usually the slowest ones. We will show how to
optimize these queries and decrease the query response time, as
well as the application performance in general.

"Group by" Example
Let's look at this simple example, a query of how many cities there
are in each country.

mysql> explain select CountryCode, count(*)
from City group by CountryCode\G
 id: 1
 select_type: SIMPLE
 table: City
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 4079
 Extra: Using temporary; Using filesort

As we can see in the output above, MySQL does not use any
indexes (no proper indexes are available), but it also shows "Using
temporary; Using filesort". MySQL will need to create a temporary
table to satisfy the "Group by" clause if there is no appropriate
index.

(You can find more information about the temporary tables here.)

However, MySQL can use a combined index to satisfy the "group
by" clause and avoid creating a temporary table.

http://dev.mysql.com/doc/refman/5.5/en/internal-temporary-tables.html

Practical MySQL Performance Optimization 16

Queries

"Group by" and Covered Indexes
To illustrate the "group by" queries, I will use the following table:

CREATE TABLE ontime_2012 (
 YearD int(11) DEFAULT NULL,
 MonthD tinyint(4) DEFAULT NULL,
 DayofMonth tinyint(4) DEFAULT NULL,
 DayOfWeek tinyint(4) DEFAULT NULL,
 Carrier char(2) DEFAULT NULL,
 Origin char(5) DEFAULT NULL,
 DepDelayMinutes int(11) DEFAULT NULL,
 ...
) ENGINE=InnoDB DEFAULT CHARSET=latin1

The table contains freely available airline performance statistics.
The table is six million rows and approximately 2GB in size.

From this data we want to:

 » Find maximum delay for flights on Sunday
 » Group by airline

Our example query is:
select max(DepDelayMinutes),
carrier, dayofweek
from ontime_2012
where dayofweek = 7
group by Carrier

Practical MySQL Performance Optimization 1717

Queries

The explain plan is:
explain select max(DepDelayMinutes),
carrier, dayofweek
from ontime_2012
where dayofweek = 7
group by Carrier
...
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 4833086
 Extra: Using where; Using temporary;
 Using filesort

As we can see, MySQL does not use any index and has to scan
~4M rows. In addition, it will have to create a large temporary table.

Creating a "dayofweek" index will only filter out some rows, and
MySQL will still need to create a temporary table:

mysql> alter table ontime_2012 add key
(dayofweek);
mysql> explain select max(DepDelayMinutes),
Carrier, dayofweek from ontime_2012 where
dayofweek =7
group by Carrier\G
 type: ref
possible_keys: DayOfWeek
 key: DayOfWeek
 key_len: 2
 ref: const
 rows: 817258
 Extra: Using where; Using temporary;
 Using filesort

However, we can create a covered index on "dayofweek", "Carrier"
and "DepDelayMinutes", in this particular order. In this case,
MySQL can use this index and avoid creating a temporary table:

Practical MySQL Performance Optimization 18

Queries

mysql> alter table ontime_2012
add key covered(dayofweek, Carrier,
DepDelayMinutes);
explain select max(DepDelayMinutes), Carrier,
dayofweek from ontime_2012 where dayofweek =7
group by Carrier \G
...
possible_keys: DayOfWeek,covered
 key: covered
 key_len: 2
 ref: const
 rows: 905138
 Extra: Using where; Using index

As we can see from the explain, MySQL will use our index and
will avoid creating a temporary table. This is the fastest possible
solution.

Note that MySQL will also be able to use a non-covered index
on (dayofweek, Carrier) and avoid creating a temporary table.
However, a covered index will be faster as MySQL is able to satisfy
the whole query by just reading the index.

"Group by" and a Range Scan
The covered index works well if we have a "const" (where
dayofweek=N). However, MySQL will not be able to use an index
and avoid a filesort if we have a "range" scan in the "where" clause.
Here's an example:

Practical MySQL Performance Optimization 1919

Queries

mysql> explain select max(DepDelayMinutes),
carrier, dayofweek from ontime_2012
where dayofweek > 5 group by Carrier,
dayofweek\G
...
 type: range
possible_keys: covered
 key: covered
 key_len: 2
 ref: NULL
 rows: 2441781
 Extra: Using where; Using index; Using
 temporary; Using filesort

MySQL will still have to create a temporary table. To fix that we
can use a simple trick and rewrite the query into two parts with
UNION:

(select max(DepDelayMinutes), Carrier,
dayofweek
from ontime_2012
where dayofweek = 6
group by Carrier, dayofweek)
union
(select max(DepDelayMinutes), Carrier,
dayofweek
from ontime_2012
where dayofweek = 7
group by Carrier, dayofweek)

For each of the two queries in the union, MySQL will be able to
use an index instead of creating a temporary table, as shown in the
explain plan below:

Practical MySQL Performance Optimization 20

Queries

************** 1. row ***********************
 table: ontime_2012
 key: covered
...
 Extra: Using where; Using index
************** 2. row ***********************
 table: ontime_2012
 key: covered
...
 Extra: Using where; Using index
************** 3. row ***********************
 id: NULL
 select_type: UNION RESULT
 table:
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: NULL
 Extra: Using temporary

As we can see, MySQL uses our covered index for each of the two
queries. It will still have to create a temporary table to merge the
results. However, it will probably be a much smaller temporary
table as it will only need to store the result sets of two queries.

Please note: IN condition is also an example of range scan (some
examples are listed here: http://dev.mysql.com/doc/refman/5.7/
en/range-optimization.html), so converting the original query to
"where dayofweek in (6,7)" will not help.

Practical MySQL Performance Optimization 2121

Queries

mysql> explain
 -> select max(DepDelayMinutes), Carrier,
 -> dayofweek
 -> from ontime
 -> where dayofweek in (6,7)
 -> group by Carrier, dayofweek\G
*********** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: ontime
 type: range
possible_keys: DayOfWeek
 key: DayOfWeek
 key_len: 2
 ref: NULL
 rows: 79882092
 Extra: Using index condition; Using
 temporary; Using filesort
 1 row in set (0.00 sec)

"Group by" and a Loose Index Scan
A "loose index scan" is another MySQL algorithm that can be used
to optimize Group By queries. Loose index scans consider only a
fraction of the keys in an index, and therefore are very fast. The
following limitations apply:

 » The query is over a single table.
 » The GROUP BY names only columns that form a leftmost

prefix of the index and no other columns.
 » The only aggregate functions used in the select list (if any) are

MIN() and MAX(), same column

(More information can be found in MySQL documentation on
Loose Index Scan.)

Practical MySQL Performance Optimization 22

Queries

For a loose index scan to work, we will need to create an additional
index. It should start with columns in the "Group by" clause, and
then all fields in the "where" clause (the order of the fields in the
index matters). For example, for our query:

select max(DepDelayMinutes) as ddm, Carrier,
dayofweek from ontime_2012 where dayofweek =
5 group by Carrier, dayofweek

We will need to create this index:
KEY loose_index_scan
(Carrier,DayOfWeek,DepDelayMinutes)

Note that loose_index_scan is a placeholder for the name of the
index. It can be any name:

mysql> explain select max(DepDelayMinutes)
as ddm, Carrier, dayofweek from ontime_2012
where dayofweek = 5 group by Carrier,
dayofweek
 table: ontime_2012
 type: range
possible_keys: covered
 key: loose_index_scan
 key_len: 5
 ref: NULL
 rows: 201
 Extra: Using where; Using index
 for group-by

"Using index for group-by" in the where clause means that MySQL
will use the loose index scan. A loose index scan is very fast as it
only scans a fraction of the key. It will also work with the range scan:

Practical MySQL Performance Optimization 2323

Queries

mysql> explain select max(DepDelayMinutes) as
ddm, Carrier, dayofweek from ontime_2012
where dayofweek > 5 group by Carrier,
dayofweek;
table: ontime_2012
 type: range
possible_keys: covered
 key: loose_index_scan
 key_len: 5
 ref: NULL
 rows: 213
 Extra: Using where; Using index
 for group-by;

Benchmarks

Practical MySQL Performance Optimization 2525

Benchmarks

BENCHMARK
Below is a benchmark that compares query speed with a temporary
table, a tight index scan (covered index) and a loose index scan.
The table is six million rows and approximately 2GB in size:

Figure 6: Query Speed (in milliseconds)

As we can see, the loose index scan index shows the best
performance. (The smaller the better, the response time (Y-axis)
is in seconds.) Unfortunately, loose index scans only work with
two aggregate functions, "MIN" and "MAX" for the GROUP BY.
"AVG" together with the GROUP BY does not work with a loose
index scan. As we can see below, MySQL will use a covered index
(not loose_index_scan index) and, because we have a range in the
where clause (dayofweek > 5), it will have to create a temporary
table.

Practical MySQL Performance Optimization 26

Benchmarks

mysql> explain select avg(DepDelayMinutes) as
ddm, Carrier, dayofweek from ontime_2012 where
dayofweek >5 group by Carrier, dayofweek\G
 table: ontime_2012
 type: range
 key: covered
 key_len: 2
 ref: NULL
 rows: 2961617
 Extra: Using where; Using index;
 Using temporary; Using filesort

ORDER BY and Filesort
MySQL may have to perform a "filesort" operation when a query
uses the "order by" clause.

(You can find more information about "filesort" here: http://dev.
mysql.com/doc/refman/5.5/en/order-by-optimization.html.)

The filesort operation below is usually a fairly slow operation (even
if it does not involve creating a file on disk), especially if MySQL
has to sort a lot of rows:

 table: City
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 4079
 Extra: Using where; Using filesort

http://dev.mysql.com/doc/refman/5.5/en/order-by-optimization.html
http://dev.mysql.com/doc/refman/5.5/en/order-by-optimization.html

Practical MySQL Performance Optimization 2727

Benchmarks

To optimize this query, we can use a combined index:
mysql> alter table City
add key my_sort2 (CountryCode, population);
mysql> explain select district, name,
population from City where CountryCode = 'USA'
order by population desc limit 10\G
 table: City
 type: ref
 key: my_sort2
 key_len: 3
 ref: const
 rows: 207
 Extra: Using where

MySQL was able to use our combined index to avoid sorting: as
the index is sorted, MySQL was able to read the index leafs in the
correct order.

Sorting and Limit
If we have a "LIMIT" clause in our query, and the limit is relatively
small (i.e., LIMIT 10 or LIMIT 100) compared to the amount of
rows in the table, MySQL can avoid using a filesort and can use an
index instead.

Here's an example:
mysql> alter table ontime_2012 add key
(DepDelayMinutes);

We can create an index on DepDelayMinutes fields only, and run
the explain below (note the query with LIMIT 10):

mysql> explain select * from ontime_2012
where dayofweek in (6,7) order by
DepDelayMinutes desc limit 10\G
 type: index
possible_keys: DayOfWeek,covered
 key: DepDelayMinutes
 key_len: 5
 ref: NULL
 rows: 24
 Extra: Using where

Practical MySQL Performance Optimization 28

Benchmarks

As we can see, MySQL uses an index on DepDelayMinutes only.
Here is how it works. As Index is sorted, MySQL can:

 » Scan the whole table in the order of the index
 » Filter the results (using the "where" clause condition, but not

using the index)
 » Stop after finding ten rows matching the "where" condition

This can be very fast if MySQL finds the rows right away. For
example, if there are a lot of rows matching our condition
(dayofweek in (6,7)), MySQL will find ten rows quickly. However, if
there are no rows matching our condition (i.e., empty result set, all
rows filtered out), MySQL will have to scan the whole table using
an index scan. If we have two indexes, a covered index and an index
on the "ORDER BY" field only, MySQL usually is able to figure out
the best possible index to use.

Using "ORDER BY" + limit optimization can help optimize your
queries.

Calculated Expressions and Indexes
Let us look at another query example:

SELECT carrier, count(*)
FROM ontime
WHERE year(FlightDate) = 2013
group by carrier\G

Practical MySQL Performance Optimization 2929

Benchmarks

The explain plan:
mysql> EXPLAIN SELECT carrier, count(*) FROM
ontime
 WHERE year(FlightDate) = 2013 group by
carrier\G
************** 1. row ************************
 id: 1
 select_type: SIMPLE
 table: ontime
 type: ALL
possible_keys: NULL
 key: NULL
 Key_len: NULL
 ref: NULL
 rows: 151253427
 Extra: Using where; Using temporary;
Using filesort
Results:
16 rows in set (1 min 49.48 sec)

The reason why MySQL is not using an index here is year
(FlightDate). "year" is a MySQL function, so MySQL can't just
compare the field (FlightDate) to a constant (2013). Instead
MySQL will have to "calculate" an expression first (by applying the
year function to the field's value, and then comparing it to "2013").

To fix this particular query we can re-write it to use a "range":
mysql> SELECT carrier, count(*)
 FROM ontime
 WHERE FlightDate >= '2013-01-01' and
 FlightDate < '2014-01-01'
 group by carrier\G

This type of comparison (range of dates) will allow MySQL to use
an index:

Practical MySQL Performance Optimization 30

Benchmarks

mysql> EXPLAIN SELECT carrier, count(*) FROM
ontime
 WHERE FlightDate between '2013-01-01'
 and '2014-01-01'
 GROUP BY carrier\G
******************** 1. row *****************
 id: 1
 select_type: SIMPLE
 table: ontime
 type: range
possible_keys: FlightDate
 key: FlightDate
 key_len: 4
 ref: NULL
 rows: 10434762
 Extra: Using index condition; Using
temporary; Using filesort
Results:
16 rows in set (11.98 sec)

This is almost ten times faster (12 seconds compared to 1 minute
50 seconds). However, in some cases it can be hard to implement
converting the date function to a range. For example:

 SELECT carrier, count(*) FROM ontime
 WHERE dayofweek(FlightDate) = 7 group by
 carrier
mysql> EXPLAIN SELECT carrier, count(*) FROM
ontime
 WHERE dayofweek(FlightDate) = 7 group
by carrier\G
**************** 1. row *********************
 id: 1
 select_type: SIMPLE
 table: ontime
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 151253427
 Extra: Using where; Using temporary;
Using filesort
Results:
32 rows in set (1 min 57.93 sec)

Practical MySQL Performance Optimization 3131

Benchmarks

Similar to the previous example, MySQL is unable to use an index.
But with the dayofweek() function, it is much harder to convert
it to a range. The usual way to fix this issue is to "materialize" the
field. In other words, store an additional field called "dayofweek":

CREATE TABLE ontime (
 id int(11) NOT NULL AUTO_INCREMENT,
 YearD year(4) NOT NULL,
 FlightDate date DEFAULT NULL,
 Carrier char(2) DEFAULT NULL,
 OriginAirportID int(11) DEFAULT NULL,
 OriginCityName varchar(100) DEFAULT NULL,
 OriginState char(2) DEFAULT NULL,
 DestAirportID int(11) DEFAULT NULL,
 DestCityName varchar(100) DEFAULT NULL,
 DestState char(2) DEFAULT NULL, DEFAULT
 DepDelayMinutes int(11) NULL,
 ArrDelayMinutes int(11) DEFAULT NULL,
 Cancelled tinyint(4) DEFAULT NULL,
…
 Flight_dayofweek tinyint NOT NULL,
PRIMARY KEY (id),
KEY Flight_dayofweek (Flight_dayofweek)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

However, we will need to change the application to update this
field (or use MySQL triggers which can be slow). In addition, it will
require additional storage that will increase the size of the table
(not significantly, though).

Calculated Fields in MySQL 5.7

Practical MySQL Performance Optimization 3333

Calculated Fields in MySQL 5.7

CALCULATED FIELDS IN MYSQL 5.7
Starting with MySQL 5.7, we can use a new feature called "Virtual"
or "Generated" columns:

CREATE TABLE ontime_virtual (
 id int(11) NOT NULL AUTO_INCREMENT,
 YearD year(4) NOT NULL,
 FlightDate date DEFAULT NULL,
 Carrier char(2) DEFAULT NULL,
 OriginAirportID int(11) DEFAULT NULL,
 OriginCityName varchar(100) DEFAULT NULL,
 OriginState char(2) DEFAULT NULL,
 DestAirportID int(11) DEFAULT NULL,
 DestCityName varchar(100) DEFAULT NULL,
 DestState char(2) DEFAULT NULL,
 DepDelayMinutes int(11) DEFAULT NULL,
 ArrDelayMinutes int(11) DEFAULT NULL,
 Cancelled tinyint(4) DEFAULT NULL,
...
 Flight_dayofweek tinyint(4)
 GENERATED ALWAYS AS (dayofweek(FlightDate
 VIRTUAL,
PRIMARY KEY (id),
KEY Flight_dayofweek (Flight_dayofweek)
) ENGINE=InnoDB;

Here the Flight_dayofweek is a virtual column, so it will not be
stored in the table. We can index it, however, and the index will be
built and stored. MySQL can use the index:

Practical MySQL Performance Optimization 34

Calculated Fields in MySQL 5.7

mysql> EXPLAIN SELECT carrier, count(*) FROM
ontime_virtual WHERE Flight_dayofweek = 7
group by carrier\G
**************** 1. row *********************
 id: 1
 select_type: SIMPLE
 table: ontime_virtual
 partitions: NULL
 type: ref
 possible_keys: Flight_dayofweek
 key: Flight_dayofweek
 key_len: 2
 ref: const
 rows: 165409
 filtered: 100.00
 Extra: Using where; Using temporary;
 Using filesort

Conclusion

Practical MySQL Performance Optimization 36

Conclusion

CONCLUSION
We have discussed different indexing strategies to optimize your
slow queries.

 » Covered indexes are a great MySQL feature and, in most cases,
can increase MySQL performance significantly.

 » Some queries may also be optimized with a separate index,
which will enable the loose index scan algorithm.

 » "Order by" optimizations can be done with a covered index
and with the "order by+limit" index technique, as described
above.

Now you can look again at your MySQL slow query log, and
optimize the slower queries.

How Percona Can Help

Practical MySQL Performance Optimization 38

How Percona Can Help

How Percona Can Help
Potential performance killers are easy to miss when you are busy
with daily database administration. Once these problems are
discovered and corrected, you will see noticeable improvements in
database performance and resilience.

Percona Consulting can help you maximize the performance
of your database deployment with our MySQL performance
audit, tuning and optimization services. The first step is usually
a Performance Audit. As part of a Performance Audit, we will
methodically and analytically review your servers and provide a
detailed report of their current health, as well as detail potential
areas for improvement. Our analysis encompasses the full stack
and provides you with detailed metrics and recommendations
that go beyond the performance of your software to enable
true performance optimization. Most audits lead to substantial
performance gains.

If you are ready to proactively improve the performance of your
system, we can help with approaches such as offloading workload-
intensive operations to Memcached. If your user base is growing
rapidly and you need optimal performance on a large scale, we can
help you evaluate solutions. If performance problems lie outside
of MySQL or NoSQL, such as in your web server, we can usually
diagnose and report on that as well.

Percona Support can provide developers and members of your
operation team the 24x7x365 resources they need to both build
high-performance applications and fix potential performance
issues. Percona Support is a highly responsive, effective, affordable
option to ensure the continuous performance of your deployment.

Practical MySQL Performance Optimization 3939

How Percona Can Help

Our user-friendly Support team is accessible 24x7x365 online or
by phone to ensure that your databases are running optimally. We
can help you increase your uptime, be more productive, reduce
your support budget, and implement fixes for performance issues
faster.

If you want to put your time and focus on your business, but
still have peace of mind knowing that your database will be
fast, available, resilient and secure, Percona Database Managed
Services may be ideal for you. With Percona Managed Services,
your application performance can be proactively managed by
our team of experts so that problems are identified and resolved
before they impact your business. When you work with Percona's
Managed Service team you can leverage our deep operational
knowledge of Percona Server for MySQL, Percona Server for
MongoDB, MongoDB, MariaDB®, OpenStack Trove, Google Cloud
SQL and Amazon® RDS to ensure your databases performing at
the highest levels.

Our experts are available to help, if you need additional manpower
or expertise to improve and ensure the performance of your system.
To discuss your performance optimization needs, please call us at
+1-888-316-9775 (USA), +44 (203) 6086727 (Europe), visit
http://learn.percona.com/contact-me or have us contact you.

http://learn.percona.com/contact-me

Practical MySQL Performance Optimization 40

How Percona Can Help

ABOUT PERCONA

Percona is the only company that delivers enterprise-class
software, support, consulting, and managed services solutions for
MySQL, MariaDB and MongoDB across traditional and cloud-
based platforms that maximize application performance while
streamlining database efficiencies. Our global 24x7x365 consulting
team has worked with over 3,000 clients worldwide, including
the largest companies on the Internet, who use MySQL, Percona
Server for MySQL, Percona Server for MongoDB, Amazon RDS for
MySQL, Google Cloud SQL, MariaDB and MongoDB.

Percona consultants have decades of experience solving complex
database and data performance issues and design challenges.
Because we are both broadly and deeply experienced, we can help
build complete solutions. Our consultants work both remotely and
on site. We can also provide full-time or part-time interim staff to
cover employee absences or provide extra help on big projects.

Percona was founded in August 2006 by Peter Zaitsev and Vadim
Tkachenko, and now employs a global network of experts with
a staff of over 140 people. Our customer list is large and diverse
and we have one of the highest renewal rates in the business.
Our expertise is visible in our widely read Percona Database
Performance blog and our book High Performance MySQL.

Visit Percona at www.percona.com

http://www.percona.com

Copyright © 2016 Percona LLC. All rights reserved. Percona is a registered trademark of Percona LLC. All other trademarks or service marks are property of their respective owners.

Percona Corporate Headquarters

400 Arco Corporate Drive, Suite 170
Raleigh, NC 27617, USA

www.percona.com
info@percona.com

usa +1-888-316-9775
eur +44 (203) 6086727

http://www.percona.com
mailto:info%40percona.com?subject=Question

