
Author or Company YOUR LOGO

Brought to you by OWASP

HTML5

Security

Cheat Sheet

HTML5 Security Cheat Sheet

Brought to you by OWASP Cheat Sheets

The following cheat sheet serves as a guide for implementing HTML 5 in a secure fashion.

Communication APIs

Web Messaging

Web Messaging (also known as Cross Domain Messaging) provides a means of messaging

between documents from different origins in a way that is generally safer than the multiple hacks

used in the past to accomplish this task. However, there are still some recommendations to keep

in mind:

 When posting a message, explicitly state the expected origin as the second argument to

postMessage rather than * in order to prevent sending the message to an unknown origin

after a redirect or some other means of the target window's origin changing.

 The receiving page should always:

o Check the origin attribute of the sender to verify the data is originating from the

expected location.

o Perform input validation on the data attribute of the event to ensure that it's in the

desired format.

 Don't assume you have control over the data attribute. A single Cross Site Scripting flaw

in the sending page allows an attacker to send messages of any given format.

 Both pages should only interpret the exchanged messages as data. Never evaluate passed

messages as code (e.g. via eval()) or insert it to a page DOM (e.g. via innerHTML), as

that would create a DOM-based XSS vulnerability. For more information see DOM

based XSS Prevention Cheat Sheet.

 To assign the data value to an element, instead of using a insecure method like

element.innerHTML = data;, use the safer option: element.textContent = data;

 Check the origin properly exactly to match the FQDN(s) you expect. Note that the

following code: if(message.orgin.indexOf(".owasp.org")!=-1) { /* ... */ } is

very insecure and will not have the desired behavior as www.owasp.org.attacker.com

will match.

 If you need to embed external content/untrusted gadgets and allow user-controlled scripts

(which is highly discouraged), consider using a JavaScript rewriting framework such as

Google Caja or check the information on sandboxed frames.

Cross Origin Resource Sharing

https://www.owasp.org/index.php/Cross-site_Scripting_%28XSS%29
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet
http://code.google.com/p/google-caja/
https://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet#Sandboxed_frames

 Validate URLs passed to XMLHttpRequest.open. Current browsers allow these URLs to

be cross domain; this behavior can lead to code injection by a remote attacker. Pay extra

attention to absolute URLs.

 Ensure that URLs responding with Access-Control-Allow-Origin: * do not include

any sensitive content or information that might aid attacker in further attacks. Use the

Access-Control-Allow-Origin header only on chosen URLs that need to be accessed

cross-domain. Don't use the header for the whole domain.

 Allow only selected, trusted domains in the Access-Control-Allow-Origin header.

Prefer whitelisting domains over blacklisting or allowing any domain (do not use *

wildcard nor blindly return the Origin header content without any checks).

 Keep in mind that CORS does not prevent the requested data from going to an

unauthenticated location. It's still important for the server to perform usual CSRF

prevention.

 While the RFC recommends a pre-flight request with the OPTIONS verb, current

implementations might not perform this request, so it's important that "ordinary" (GET and

POST) requests perform any access control necessary.

 Discard requests received over plain HTTP with HTTPS origins to prevent mixed content

bugs.

 Don't rely only on the Origin header for Access Control checks. Browser always sends

this header in CORS requests, but may be spoofed outside the browser. Application-level

protocols should be used to protect sensitive data.

WebSockets

 Drop backward compatibility in implemented client/servers and use only protocol

versions above hybi-00. Popular Hixie-76 version (hiby-00) and older are outdated and

insecure.

 The recommended version supported in latest versions of all current browsers is RFC

6455 (supported by Firefox 11+, Chrome 16+, Safari 6, Opera 12.50, and IE10).

 While it's relatively easy to tunnel TCP services through WebSockets (e.g. VNC, FTP),

doing so enables access to these tunneled services for the in-browser attacker in case of a

Cross Site Scripting attack. These services might also be called directly from a malicious

page or program.

 The protocol doesn't handle authorization and/or authentication. Application-level

protocols should handle that separately in case sensitive data is being transferred.

 Process the messages received by the websocket as data. Don't try to assign it directly to

the DOM nor evaluate as code. If the response is JSON, never use the insecure eval()

function; use the safe option JSON.parse() instead.

 Endpoints exposed through the ws:// protocol are easily reversible to plain text. Only

wss:// (WebSockets over SSL/TLS) should be used for protection against Man-In-The-

Middle attacks.

 Spoofing the client is possible outside a browser, so the WebSockets server should be

able to handle incorrect/malicious input. Always validate input coming from the remote

site, as it might have been altered.

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29
http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/html/rfc6455

 When implementing servers, check the Origin: header in the Websockets handshake.

Though it might be spoofed outside a browser, browsers always add the Origin of the

page that initiated the Websockets connection.

 As a WebSockets client in a browser is accessible through JavaScript calls, all

Websockets communication can be spoofed or hijacked through Cross Site Scripting.

Always validate data coming through a WebSockets connection.

Server-Sent Events

 Validate URLs passed to the EventSource constructor, even though only same-origin

URLs are allowed.

 As mentioned before, process the messages (event.data) as data and never evaluate the

content as HTML or script code.

 Always check the origin attribute of the message (event.origin) to ensure the message

is coming from a trusted domain. Use a whitelist approach.

Storage APIs

Local Storage

 Also known as Offline Storage, Web Storage. Underlying storage mechanism may vary

from one user agent to the next. In other words, any authentication your application

requires can be bypassed by a user with local privileges to the machine on which the data

is stored. Therefore, it's recommended not to store any sensitive information in local

storage.

 Use the object sessionStorage instead of localStorage if persistent storage is not needed.

sessionStorage object is available only to that window/tab until the window is closed.

 A single Cross Site Scripting can be used to steal all the data in these objects, so again it's

recommended not to store sensitive information in local storage.

 A single Cross Site Scripting can be used to load malicious data into these objects too, so

don't consider objects in these to be trusted.

 Pay extra attention to “localStorage.getItem” and “setItem” calls implemented in HTML5

page. It helps in detecting when developers build solutions that put sensitive information

in local storage, which is a bad practice.

 Do not store session identifiers in local storage as the data is always accesible by

JavaScript. Cookies can mitigate this risk using the httpOnly flag.

 There is no way to restrict the visibility of an object to a specific path like with the

attribute path of HTTP Cookies, every object is shared within an origin and protected

with the Same Origin Policy. Avoid host multiple applications on the same origin, all of

them would share the same localStorage object, use different subdomains instead.

Client-side databases

https://www.owasp.org/index.php/Cross_Site_Scripting_Flaw
https://www.owasp.org/index.php/Cross-site_Scripting_%28XSS%29
https://www.owasp.org/index.php/Cross-site_Scripting_%28XSS%29

 On November 2010, the W3C announced Web SQL Database (relational SQL database)

as a deprecated specification. A new standard Indexed Database API or IndexedDB

(formerly WebSimpleDB) is actively developed, which provides key/value database

storage and methods for performing advanced queries.

 Underlying storage mechanisms may vary from one user agent to the next. In other

words, any authentication your application requires can be bypassed by a user with local

privileges to the machine on which the data is stored. Therefore, it's recommended not to

store any sensitive information in local storage.

 If utilized, WebDatabase content on the client side can be vulnerable to SQL injection

and needs to have proper validation and parameterization.

 Like Local Storage, a single Cross Site Scripting can be used to load malicious data into a

web database as well. Don't consider data in these to be trusted.

Geolocation

 The Geolocation RFC recommends that the user agent ask the user's permission before

calculating location. Whether or how this decision is remembered varies from browser to

browser. Some user agents require the user to visit the page again in order to turn off the

ability to get the user's location without asking, so for privacy reasons, it's recommended

to require user input before calling getCurrentPosition or watchPosition.

Web Workers

 Web Workers are allowed to use XMLHttpRequest object to perform in-domain and

Cross Origin Resource Sharing requests. See relevant section of this Cheat Sheet to

ensure CORS security.

 While Web Workers don't have access to DOM of the calling page, malicious Web

Workers can use excessive CPU for computation, leading to Denial of Service condition

or abuse Cross Origin Resource Sharing for further exploitation. Ensure code in all Web

Workers scripts is not malevolent. Don't allow creating Web Worker scripts from user

supplied input.

 Validate messages exchanged with a Web Worker. Do not try to exchange snippets of

Javascript for evaluation e.g. via eval() as that could introduce a DOM Based

XSS vulnerability.

Sandboxed frames

 Use the sandbox attribute of an iframe for untrusted content.

 The sandbox attribute of an iframe enables restrictions on content within a iframe. The

following restrictions are active when the sandbox attribute is set:

1. All markup is treated as being from a unique origin.

2. All forms and scripts are disabled.

3. All links are prevented from targeting other browsing contexts.

https://www.owasp.org/index.php/Cross-site_Scripting_%28XSS%29
https://www.owasp.org/index.php/DOM_Based_XSS
https://www.owasp.org/index.php/DOM_Based_XSS

4. All features that triggers automatically are blocked.

5. All plugins are disabled.

It is possible to have a fine-grained control over iframe capabilities using the value of the

sandbox attribute.

 In old versions of user agents where this feature is not supported, this attribute will be

ignored. Use this feature as an additional layer of protection or check if the browser

supports sandboxed frames and only show the untrusted content if supported.

 Apart from this attribute, to prevent Clickjacking attacks and unsolicited framing it is

encouraged to use the header X-Frame-Options which supports the deny and same-

origin values. Other solutions like framebusting if(window!== window.top) {

window.top.location = location; } are not recommended.

Offline Applications

 Whether the user agent requests permission to the user to store data for offline browsing

and when this cache is deleted varies from one browser to the next. Cache poisoning is an

issue if a user connects through insecure networks, so for privacy reasons it is encouraged

to require user input before sending any manifest file.

 Users should only cache trusted websites and clean the cache after browsing through

open or insecure networks.

Progressive Enhancements and Graceful

Degradation Risks

 The best practice now is to determine the capabilities that a browser supports and

augment with some type of substitute for capabilities that are not directly supported. This

may mean an onion-like element, e.g. falling through to a Flash Player if the <video> tag

is unsupported, or it may mean additional scripting code from various sources that should

be code reviewed.

HTTP Headers to enhance security

X-Frame-Options

 This header can be used to prevent ClickJacking in modern browsers.

 Use the same-origin attribute to allow being framed from urls of the same origin or

deny to block all. Example: X-Frame-Options: DENY

 For more information on Clickjacking Defense please see the Clickjacking Defense

Cheat Sheet.

http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet
https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet

X-XSS-Protection

 Enable XSS filter (only works for Reflected XSS).

 Example: X-XSS-Protection: 1; mode=block

Strict Transport Security

 Force every browser request to be sent over TLS/SSL (this can prevent SSL strip

attacks).

 Use includeSubDomains.

 Example: Strict-Transport-Security: max-age=8640000; includeSubDomains

Content Security Policy

 Policy to define a set of content restrictions for web resources which aims to mitigate

web application vulnerabilities such as Cross Site Scripting.

 Example: X-Content-Security-Policy: allow 'self'; img-src *; object-src

media.example.com; script-src js.example.com

Origin

 Sent by CORS/WebSockets requests.

 There is a proposal to use this header to mitigate CSRF attacks, but is not yet

implemented by vendors for this purpose.

Authors and Primary Editors

First Last Email

Mark Roxberry mark.roxberry [at] owasp.org

Krzysztof Kotowicz krzysztof [at] kotowicz.net

Will Stranathan will [at] cltnc.us

Shreeraj Shah shreeraj.shah [at] blueinfy.net

Juan Galiana Lara jgaliana [at] owasp.org

This document exists under the (CC BY-SA 3.0) http://creativecommons.org/licenses/by-sa/3.0/

