
Microservices on AWS

September 2017

© 2017, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices
This document is provided for informational purposes only. It represents AWS’s
current product offerings and practices as of the date of issue of this document,
which are subject to change without notice. Customers are responsible for
making their own independent assessment of the information in this document
and any use of AWS’s products or services, each of which is provided “as is”
without warranty of any kind, whether express or implied. This document does
not create any warranties, representations, contractual commitments,
conditions or assurances from AWS, its affiliates, suppliers or licensors. The
responsibilities and liabilities of AWS to its customers are controlled by AWS
agreements, and this document is not part of, nor does it modify, any agreement
between AWS and its customers.

Contents
Introduction 1

Characteristics of Microservices 1

Benefits of Microservices 2

Challenges of Microservices 4

Microservices and the Cloud 7

Microservices on AWS 9

Simple Microservices Architecture on AWS 9

Reducing Operational Complexity 15

Distributed Systems Components 18

Conclusion 40

Contributors 41

Document Revisions 41

Abstract
Microservices are an architectural and organizational approach to software
development designed to speed up deployment cycles, foster innovation and
ownership, and improve maintainability and scalability of software applications.
This approach includes scaling organizations that deliver software and services.
Using a microservices approach, software is composed of small independent
services that communicate over well-defined APIs. These services are owned by
small self-contained teams.

In this whitepaper, we summarize the common characteristics of microservices,
talk about the main challenges of building microservices, and describe how
product teams can leverage Amazon Web Services (AWS) to overcome those
challenges.

Amazon Web Services – Microservices on AWS

Page 1

Introduction
For the last several years, microservices have been an important trend in IT
architecture.1 Microservices architectures are not a completely new approach to
software engineering, but rather they are a collection and combination of
successful and proven concepts such as agile software development, service-
oriented architectures, API-first design, and Continuous Delivery (CD). In many
cases, design patterns of the Twelve-Factor App are leveraged for
microservices.2

Characteristics of Microservices
Microservices includes so many concepts that it is challenging to define it
precisely. However, all microservices architectures share some common
characteristics, as Figure 1 illustrates:

• Decentralized – Microservices architectures are distributed systems
with decentralized data management. They don’t rely on a unifying
schema in a central database. Each microservice has its own view on
data models. Microservices are also decentralized in the way they are
developed, deployed, managed, and operated.

• Independent – Different components in a microservices architecture
can be changed, upgraded, or replaced independently without affecting
the functioning of other components. Similarly, the teams responsible
for different microservices are enabled to act independently from each
other.

• Do one thing well – Each microservice component is designed for a
set of capabilities and focuses on a specific domain. If developers
contribute so much code to a particular component of a service that the
component reaches a certain level of complexity, then the service could
be split into two or more services.

• Polyglot – Microservices architectures don’t follow a “one size fits all”
approach. Teams have the freedom to choose the best tool for their
specific problems. As a consequence, microservices architectures take a
heterogeneous approach to operating systems, programming languages,
data stores, and tools. This approach is called polyglot persistence and
programming.

https://12factor.net/

Amazon Web Services – Microservices on AWS

Page 2

• Black box – Individual microservice components are designed as black
boxes, that is, they hide the details of their complexity from other
components. Any communication between services happens via well-
defined APIs to prevent implicit and hidden dependencies.

• You build it; you run it – Typically, the team responsible for building
a service is also responsible for operating and maintaining it in
production. This principle is also known as DevOps.3 DevOps also helps
bring developers into close contact with the actual users of their software
and improves their understanding of the customers’ needs and
expectations. The fact that DevOps is a key organizational principle for
microservices shouldn’t be underestimated because according to
Conway’s law, system design is largely influenced by the organizational
structure of the teams that build the system.4

Figure 1: Characteristics of microservices

Benefits of Microservices
Many AWS customers adopt microservices to address limitations and
challenges with agility and scalability that they experience in traditional
monolithic deployments. Let’s look at the main drivers for choosing a
microservices architecture.

https://en.wikipedia.org/wiki/DevOps
https://en.wikipedia.org/wiki/Conway%27s_law

Amazon Web Services – Microservices on AWS

Page 3

Agility
Microservices foster an organization of small independent teams that take
ownership of their services. Teams act within a small and well-understood
bounded context, and they are empowered to work independently and quickly,
thus shortening cycle times. You benefit significantly from the aggregate
throughput of the organization.

Figure 2 illustrates two types of deployment structures: many small
independent teams working on many deployments versus a single large team
working on a monolithic deployment.

Figure 2: Deploying microservices

Innovation
The fact that small teams can act autonomously and choose the appropriate
technologies, frameworks, and tools for their domains is an important driver for
innovation. Responsibility and accountability foster a culture of ownership for
services.

Establishing a DevOps culture by merging development and operational skills in
the same group eliminates possible frictions and contradicting goals. Agile
processes no longer stop when it comes to deployment. Instead, the complete
application life-cycle management processes—from committing to running
code—can be automated as a Continuous Delivery process. It becomes easy to
test new ideas quickly and to roll back in case something doesn’t work. The low
cost of failure creates a culture of change and innovation.

Amazon Web Services – Microservices on AWS

Page 4

Quality
Organizing software engineering around microservices can also improve the
quality of code. The benefits of dividing software into small and well-defined
modules are similar to those of object-oriented software engineering: improved
reusability, composability, and maintainability of code.

Scalability
Fine-grained decoupling of microservices is a best practice for building large-
scale systems. It’s a prerequisite for performance optimization since it allows
choosing the appropriate and optimal technologies for a specific service. Each
service can be implemented with the appropriate programming languages and
frameworks, leverage the optimal data persistence solution, and be fine-tuned
with the best performing service configurations.

Properly decoupled services can be scaled horizontally and independently from
each other. Vertical scaling, which is running the same software on bigger
machines, is limited by the capacity of individual servers and can incur
downtime during the scaling process. Horizontal scaling, which is adding more
servers to the existing pool, is highly dynamic and doesn’t run into limitations of
individual servers. The scaling process can be completely automated.
Furthermore, resiliency of the application can be improved because failing
components can be easily and automatically replaced.

Availability
Microservices architectures make it easier to implement failure isolation.
Techniques such as health-checking, caching, bulkheads, or circuit breakers
allow you to reduce the blast radius of a failing component and to improve the
overall availability of a given application.

Challenges of Microservices
Despite all the advantages that we have discussed, you should be aware that—as
with all architectural styles—a microservices approach is not without its
challenges. This section discusses some of the problems and trade-offs of the
microservices approach.5

• Distributed Systems - Microservices are effectively a distributed
system, which presents a set of problems often referred to as the

Amazon Web Services – Microservices on AWS

Page 5

Fallacies of Distributed Computing.6 Programmers new to distributed
systems often assume the network to be reliable, the latency zero, and
the bandwidth to be infinite.

• Migration- The migration process from a monolithic architecture to a
microservices architecture requires you to determine the right
boundaries for microservices. This process is complex and requires you
to disentangle code dependencies going down to the database layer.

• Versions - Versioning for microservices can be challenging. There are
several best practices and patterns, for example, routing-based
versioning, which can be applied at the API level.

• Organization - Microservices architecture and organization
architecture go hand in hand. Organizational problems include how to:
build an effective team structure, transform the organization to follow a
DevOps approach, and streamline communication between development
and operations.

In this whitepaper, we mainly focus on the architectural and operational
challenges of a move to microservices. To learn more about DevOps and AWS,
see https://aws.amazon.com/devops/.7

Architectural Complexity
In monolithic architectures, the complexity and the number of dependencies
reside inside the code base, while in microservices architectures complexity
moves to the interactions of the individual services that implement a specific
domain (Figure 3).

https://aws.amazon.com/devops/

Amazon Web Services – Microservices on AWS

Page 6

Figure 3: Complexity moves to interactions of individual microservices

Architectural challenges like dealing with asynchronous communication,
cascading failures, data consistency problems, discovery, and authentication of
services are critical to successful microservices implementation, and we’ll
address them in this paper.

Operational Complexity
With a microservices approach, you no longer run a single service, but dozens or
even hundreds of services. This raises several questions:

• How to provision resources in a scalable and cost-efficient way?

• How to operate dozens or hundreds of microservice components
effectively without multiplying efforts?

• How to avoid reinventing the wheel across different teams and
duplicating tools and processes?

• How to keep track of hundreds of pipelines of code deployments and
their interdependencies?

• How to monitor overall system health and identify potential hotspots
early on?

• How to track and debug interactions across the whole system?

• How to analyze high amounts of log data in a distributed application
that quickly grows and scales beyond anticipated demand?

Amazon Web Services – Microservices on AWS

Page 7

• How to deal with a lack of standards and heterogeneous environments
that include different technologies and people with differing skill sets?

• How to value diversity without locking into a multiplicity of different
technologies that need to be maintained and upgraded over time?

• How to deal with versioning?

• How to ensure that services are still in use especially if the usage pattern
isn’t consistent?

• How to ensure the proper level of decoupling and communication
between services?

Microservices and the Cloud
AWS has a number of offerings that address the most important challenges of
microservices architectures:

• On-demand resources – AWS resources are available and rapidly
provisioned when needed. Compared to traditional infrastructures, there
is no practical limit on resources. Different environments and versions
of services can temporarily or persistently co-exist. There is no need for
difficult forecasting and guessing capacity. On-demand resources
address the challenge of provisioning and scaling resources in a cost-
efficient way.

• Experiment with low cost and risk – The fact that you only pay for
what you use dramatically reduces the cost of experimenting with new
ideas. New features or services can be rolled out easily and shut down
again if they aren’t successful. Reducing cost and risk for experimenting
with new ideas is a key element of driving innovation. This perfectly fits
with the goal of microservices to achieve high agility.

• Programmability – AWS services come with an API, Command Line
Interface (CLI), and an SDK for different programming languages.
Servers or even complete architectures can be programmatically cloned,
shut down, scaled, and monitored. Additionally, in case of failure, they
can heal themselves automatically. Standardization and automation are
keys to building speed, consistency, repeatability, and scalability. You
are empowered to summon the resources you need through code and
build-dedicated tools to minimize operational efforts for running
microservices.

Amazon Web Services – Microservices on AWS

Page 8

• Infrastructure as code – In addition to using programmatic scripts
to provision and manage an infrastructure, AWS allows you to describe
the whole infrastructure as code and manage it in a version control
system–just as you do for application code. As a consequence, any
specific version of an infrastructure can be redeployed at any time. You
can compare the quality and performance of a specific infrastructure
version with a specific application version and ensure that they are in
sync. Rollbacks are no longer limited to the application—they can
include the whole infrastructure.8

• Continuous Delivery – The programmability of the cloud allows
automation of the provisioning and deployment process. Continuous
Integration within the development part of the application lifecycle can
be extended to the operations part of the lifecycle. This enables the
adoption of Continuous Deployment and Delivery.9, 10 Continuous
delivery addresses the challenges of operational complexity that occur
when you manage multiple application life cycles in parallel.

• Managed services – A key benefit of cloud infrastructures is managed
services. Managed services relieve you of the heavy lifting of
provisioning virtual servers, installing, configuring and optimizing
software, dealing with scaling and resilience, and doing reliable backups.
System characteristics and features such as monitoring, security,
logging, scalability, and availability are already built into those services.
Managed services are a major element you can use to reduce the
operational complexity of running microservices architectures.

• Service orientation – AWS itself follows a service-oriented structure.
Each AWS service focuses on solving a well-defined problem and
communicates with other services using clearly defined APIs. You can
put together complex infrastructure solutions by combining those
service primitives like LEGO blocks. This approach prevents reinventing
the wheel and the duplication of processes.

• Polyglot – AWS provides a large choice of different storage and
database technologies. Many popular operating systems that run on
Amazon Elastic Compute Cloud (Amazon EC2) are available on the AWS
Marketplace.11 In addition AWS supports a large variety of programming
languages with SDKs.12 This enables you to use the most appropriate
solution for your specific problem.

https://aws.amazon.com/devops/continuous-integration/
https://aws.amazon.com/devops/continuous-integration/
https://aws.amazon.com/devops/continuous-delivery/

Amazon Web Services – Microservices on AWS

Page 9

Microservices on AWS
In this section, we first describe different aspects of a highly scalable, fault-
tolerant microservices architecture (user interface, microservices
implementation, and data store) and how to build it on AWS leveraging
container technologies. Next, we recommend the AWS services that are best for
implementing a typical serverless microservices architecture that reduces
operational complexity. Finally, we look at the overall system and discuss the
cross-service aspects of a microservices architecture, such as distributed
monitoring and auditing, data consistency, and asynchronous communication.

Simple Microservices Architecture on AWS
In the past, typical monolithic applications were built using different layers, for
example, a user interface (UI) layer, a business layer, and a persistence layer. A
central idea of a microservices architecture is to split functionalities into
cohesive “verticals”—not by technological layers, but by implementing a specific
domain. Figure 4 depicts a reference architecture for a typical microservices
application on AWS.

Figure 4: Typical microservices application on AWS

Amazon Web Services – Microservices on AWS

Page 10

User Interface
Modern web applications often use JavaScript frameworks to implement a
single-page application that communicates with a RESTful API. Static web
content can be served using Amazon Simple Storage Service (Amazon S3) and
Amazon CloudFront.

CloudFront is a global content delivery network (CDN) service that
accelerates delivery of your websites, APIs, video content, and other web
assets.13

Since clients of a microservice are served from the closest edge location and get
responses either from a cache or a proxy server with optimized connections to
the origin, latencies can be significantly reduced. However, microservices
running close to each other don’t benefit from a CDN. In some cases, this
approach might even add more latency. It is a best practice to implement other
caching mechanisms to reduce chattiness and minimize latencies.

Microservices
The API of a microservice is the central entry point for all client requests. The
application logic hides behind a set of programmatic interfaces, typically a
RESTful web services API.14 This API accepts and processes calls from clients
and might implement functionality such as traffic management, request
filtering, routing, caching, and authentication and authorization.

Many AWS customers use the Elastic Load Balancing (ELB) Application Load
Balancer together with Amazon EC2 Container Service (Amazon ECS) and Auto
Scaling to implement a microservices application. The Application Load
Balancer routes traffic based on advanced application-level information that
includes the content of the request.

ELB automatically distributes incoming application traffic across
multiple Amazon EC2 instances.15

The Application Load Balancer distributes incoming requests to Amazon ECS
container instances running the API and the business logic.

Amazon Web Services – Microservices on AWS

Page 11

Amazon EC2 is a web service that provides secure, resizable compute
capacity in the cloud. It is designed to make web-scale cloud computing
easier for developers.16

Amazon EC2 Container Service (Amazon ECS) is a highly scalable, high
performance container management service that supports Docker
containers and allows you to easily run applications on a managed cluster
of Amazon EC2 instances.17

Amazon ECS container instances are scaled out and scaled in, depending on the
load or the number of incoming requests. Elastic scaling allows the system to be
run in a cost-efficient way and also helps protect against denial of service
attacks.

Auto Scaling helps you maintain application availability and allows you
to scale your Amazon EC2 capacity up or down automatically according
to conditions you define.18

Containers
A common approach to reducing operational efforts for deployment is
container-based deployment. Container technologies like Docker 19 have
increased in popularity in the last few years due to the following benefits:

• Portability – Container images are consistent and immutable, that is,
they behave the same no matter where they are run (on a developer’s
desktop as well as in a production environment).

• Productivity – Containers increase developer productivity by
removing cross-service dependencies and conflicts. Each application
component can be broken into different containers running a different
microservice.

• Efficiency – Containers allow the explicit specification of resource
requirements (CPU, RAM), which makes it easy to distribute containers
across underlying hosts and significantly improve resource usage.
Containers also have only a light performance overhead compared to

https://www.docker.com/

Amazon Web Services – Microservices on AWS

Page 12

virtualized servers and efficiently share resources on the underlying
operating system.

• Control – Containers automatically version your application code and
its dependencies. Docker container images and Amazon ECS task
definitions allow you to easily maintain and track versions of a
container, inspect differences between versions, and roll back to
previous versions.

Amazon ECS eliminates the need to install, operate, and scale your own cluster
management infrastructure. With simple API calls, you can launch and stop
Docker-enabled applications, query the complete state of your cluster, and
access many familiar features like security groups, load balancers, Amazon
Elastic Block Store (Amazon EBS) volumes, and AWS Identity and Access
Management (IAM) roles.

After a cluster of EC2 instances is up and running, you can define task
definitions and services that specify which Docker container images to run on
the cluster. Container images are stored in and pulled from container registries,
which may exist within or outside your AWS infrastructure. To define how your
applications run on Amazon ECS, you create a task definition in JSON format.
This task definition defines parameters for which container image to run, CPU,
memory needed to run the image, how many containers to run, and strategies
for container placement within the cluster. Other parameters include security,
networking, and logging for your containers.

Amazon ECS supports container placement strategies and constraints to
customize how Amazon ECS places and terminates tasks. A task placement
constraint is a rule that is considered during task placement. You can associate
attributes, essentially key/value pairs, to your container instances and then use
a constraint to place tasks based on these attributes. For example, you can use
constraints to place certain microservices based on instance type or instance
capability, such as GPU-powered instances.

Docker images used in Amazon ECS can be stored in Amazon EC2 Container
Registry (Amazon ECR). Amazon ECR20 eliminates the need to operate and
scale the infrastructure required to power your container registry.

Amazon Web Services – Microservices on AWS

Page 13

Amazon EC2 Container Registry (Amazon ECR) is a fully-managed
Docker container registry that makes it easy for developers to store,
manage, and deploy Docker container images. Amazon ECR is integrated
with Amazon EC2 Container Service (Amazon ECS), simplifying your
development to production workflow.

Data Store
The data store is used to persist data needed by the microservices. Popular
stores for session data are in-memory caches such as Memcached or Redis.
AWS offers both technologies as part of the managed Amazon ElastiCache
service.

Amazon ElastiCache is a web service that makes it easy to deploy,
operate, and scale an in-memory data store or cache in the cloud.21 The
service improves the performance of web applications by allowing you to
retrieve information from fast, managed, in-memory caches, instead of
relying entirely on slower disk-based databases.

Putting a cache between application servers and a database is a common
mechanism to alleviate read load from the database, which, in turn, may allow
resources to be used to support more writes. Caches can also improve latency.

Relational databases are still very popular for storing structured data and
business objects. AWS offers six database engines (Microsoft SQL Server,
Oracle, MySQL, MariaDB, PostgreSQL, and Amazon Aurora) as managed
services via Amazon Relational Database Service (Amazon RDS).

Amazon RDS makes it easy to set up, operate, and scale a relational
database in the cloud.22 It provides cost-efficient and resizable capacity
while managing time-consuming database administration tasks, freeing
you to focus on applications and business.

Amazon Web Services – Microservices on AWS

Page 14

Relational databases, however, are not designed for endless scale, which can
make it very hard and time-intensive to apply techniques to support a high
number of queries.

NoSQL databases have been designed to favor scalability, performance, and
availability over the consistency of relational databases. One important element
is that NoSQL databases typically do not enforce a strict schema. Data is
distributed over partitions that can be scaled horizontally and is retrieved via
partition keys.

Since individual microservices are designed to do one thing well, they typically
have a simplified data model that might be well suited to NoSQL persistence. It
is important to understand that NoSQL-databases have different access patterns
than relational databases. For example, it is not possible to join tables. If this is
necessary, the logic has to be implemented in the application.

Amazon DynamoDB is a fast and flexible NoSQL database service for all
applications that need consistent, single-digit millisecond latency at any
scale.23

You can use Amazon DynamoDB to create a database table that can store and
retrieve any amount of data and serve any level of request traffic. DynamoDB
automatically spreads the data and traffic for the table over a sufficient number
of servers to handle the request capacity specified by the customer and the
amount of data stored, while maintaining consistent and fast performance.

DynamoDB is designed for scale and performance. In most cases, DynamoDB
response times can be measured in single-digit milliseconds. However, there are
certain use cases that require response times in microseconds. For these use
cases, DynamoDB Accelerator (DAX) provides caching capabilities for accessing
eventually consistent data. DAX does all the heavy lifting required to add in-
memory acceleration to your DynamoDB tables, without requiring developers to
manage cache invalidation, data population, or cluster management.

DynamoDB provides an auto scaling feature to dynamically adjust provisioned
throughput capacity on your behalf, in response to actual traffic patterns.
Provisioned throughput is the maximum amount of capacity that an application
can consume from a table or index. When the workload decreases, Application

Amazon Web Services – Microservices on AWS

Page 15

Auto Scaling decreases the throughput so that you don't pay for unused
provisioned capacity.

Reducing Operational Complexity
The architecture we have described is already using managed services, but you
still have to operate EC2 instances. We can further reduce the operational
efforts needed to run, maintain, and monitor microservices by using a fully
serverless architecture.

API Implementation
Architecting, continuously improving, deploying, monitoring, and maintaining
an API can be a time-consuming task. Sometimes different versions of APIs
need to be run to assure backward compatibility of all APIs for clients. The
different stages of the development cycle (development, testing, and
production) further multiply operational efforts.

Access authorization is a critical feature for all APIs, but it is usually complex to
build and involves repetitive work. When an API is published and becomes
successful, the next challenge is to manage, monitor, and monetize the
ecosystem of third-party developers utilizing the API.

Other important features and challenges include throttling requests to protect
the backend, caching API responses, request and response transformation, and
generating API definitions and documentation with tools such as Swagger.24

Amazon API Gateway addresses those challenges and reduces the operational
complexity of creating and maintaining RESTful APIs.

API Gateway is a fully managed service that makes it easy for developers
to create, publish, maintain, monitor, and secure APIs at any scale.25

API Gateway allows you to create your APIs programmatically by importing
Swagger definitions by using the AWS API or by using the AWS Management
Console. API Gateway serves as a front door to any web application running on
Amazon EC2, Amazon ECS, AWS Lambda, or on any on-premises environment.
In a nutshell: It allows you to run APIs without managing servers.

Amazon Web Services – Microservices on AWS

Page 16

Figure 5 illustrates how API Gateway handles API calls and interacts with other
components. Requests from mobile devices, websites, or other backend services
are routed to the closest CloudFront Point of Presence (PoP) to minimize
latency and provide optimum user experience. Additionally, CloudFront offers
Regional Edge Caches. These locations are deployed globally at close proximity
to your viewers. They sit between your origin server and the global edge
locations that serve traffic directly to your viewers. API Gateway first checks if
the request is in the cache at either an edge location or Regional Edge Cache
location and, if no cached records are available, then forwards it to the backend
for processing. This only applies to GET requests—all other request methods are
automatically passed through. After the backend has processed the request, API
call metrics are logged in Amazon CloudWatch, and content is returned to the
client.

Figure 5: API Gateway call flow

Serverless Microservices
“No server is easier to manage than no server”.26 Getting rid of servers is the
ultimate way to eliminate operational complexity.

AWS Lambda lets you run code without provisioning or managing
servers.27 You pay only for the compute time you consume – there is no
charge when your code is not running. With Lambda, you can run code

Amazon Web Services – Microservices on AWS

Page 17

for virtually any type of application or backend service – all with zero
administration.

You simply upload your code and let Lambda take care of everything required to
run and scale the execution to meet your actual demand curve with high
availability. Lambda supports several programming languages and can be
triggered from other AWS services or be called directly from any web or mobile
application.

Lambda is highly integrated with API Gateway. The possibility of making
synchronous calls from API Gateway to AWS Lambda enables the creation of
fully serverless applications and is described in detail in our documentation.28

Figure 6 shows the architecture of a serverless microservice where the complete
service is built out of managed services. This eliminates the architectural burden
of designing for scale and high availability and eliminates the operational efforts
of running and monitoring the microservice’s underlying infrastructure.

Figure 6: Serverless microservice

Amazon Web Services – Microservices on AWS

Page 18

Deploying Lambda-Based Applications
You can use AWS CloudFormation to specify, deploy, and configure serverless
applications.

CloudFormation is a service that helps you model and set up your AWS
resources so that you can spend less time managing those resources and
more time focusing on your applications that run in AWS.29

The AWS Serverless Application Model (AWS SAM) is a convenient way to
define serverless applications.30 AWS SAM is natively supported by
CloudFormation and defines a simplified syntax for expressing serverless
resources. To deploy your application, simply specify the resources you need as
part of your application, along with their associated permissions policies in a
CloudFormation template, package your deployment artifacts, and deploy the
template.

Distributed Systems Components
After looking at how AWS can solve challenges related to individual
microservices, we now want to look at cross-service challenges such as service
discovery, data consistency, asynchronous communication, and distributed
monitoring and auditing.

Service Discovery
One of the primary challenges with microservices architectures is allowing
services to discover and interact with each other. The distributed characteristics
of microservices architectures not only make it harder for services to
communicate, but they also present challenges, such as checking the health of
those systems and announcing when new applications come online. In addition,
you must decide how and where to store meta-store information, such as
configuration data that can be used by applications. Here we explore several
techniques for performing service discovery on AWS for microservices-based
architectures.

Client-Side Service Discovery
The most simplistic approach for connecting different tiers or services is to
hardcode the IP address of the target as part of the configuration of the

https://github.com/awslabs/serverless-application-model

Amazon Web Services – Microservices on AWS

Page 19

communication source. This configuration can be stored in Domain Name
System (DNS) or application configuration and leveraged whenever systems
need to communicate with each other. Obviously, this solution doesn’t work
well when your application scales. It isn’t recommended for microservices
architectures due to the dynamic nature of target properties. Every time the
target system changes its properties—regardless of whether it’s the IP address
or port information—the source system has to update the configuration.

Figure 7: Client-side service discovery

Application Load Balancer-Based Service Discovery
One of the advantages of Application Load Balancing is that it provides health
checks and automatic registration/de-registration of backend services in failure
cases. The Application Load Balancer also offers path- and host-based routing
approaches. Combining these features with DNS capabilities, it’s possible to
build a simple service discovery solution with minimum efforts and low cost.

You can configure a custom domain name for each microservice and associate
the domain name with the Application Load Balancer’s DNS name using a
CNAME entry.31 The DNS names of the service endpoints are then published
across other applications that need access.

Figure 8: Application Load Balancer-based service discovery

Amazon Web Services – Microservices on AWS

Page 20

DNS-Based Service Discovery
Amazon Route 53 could be another source for holding service discovery
information.

Figure 9: Domain Name System-based service discovery

Route 53 is a highly available and scalable cloud DNS web service.32

Route 53 provides several features that can be leveraged for service discovery.
The private hosted zones feature allows it to hold DNS record sets for a domain
or subdomains and restrict access to specific virtual private clouds (VPCs).33
You register IP addresses, hostnames, and port information as service records
(SRV records) for a specific microservice and restrict access to the VPCs of the
relevant client microservices. You can also configure health checks that
regularly verify the status of the application and potentially trigger a failover
among resource records.34

Service Discovery Using Amazon ECS Event Stream
A different approach to implementing Route 53-based service discovery is to
leverage the capabilities of the Amazon ECS event stream feature.

Amazon Web Services – Microservices on AWS

Page 21

Figure 10: Service discovery using Amazon ECS event stream

You can use Amazon ECS event stream for CloudWatch events to receive near
real-time notifications regarding the current state of both the container
instances within an Amazon ECS cluster and the current state of all tasks
running on those container instances. It is possible to use CloudWatch rules to
filter on specific changes within the ECS cluster (e.g., start, stop) and use that
information to update the DNS entries in Route 53.35

Service Discovery Using Configuration Management
Using Configuration Management tools (like Chef, Puppet, or Ansible) is
another way to implement service discovery. Agents running on EC2 instances
can register configuration information during server start. This information can
be stored either on hosts or a centralized store along with other configuration
management information.

One of the challenges of using configuration management tools is the frequency
of updating health check information. Configuration of clients must be done
thoroughly to retrieve the health of the application and to propagate updates
immediately to prevent stale status information.

Amazon Web Services – Microservices on AWS

Page 22

Figure 11 shows a service discovery mechanism using the configuration
management system AWS OpsWorks.

OpsWorks is a configuration management service that uses Chef, an
automation platform that treats server configurations as code. OpsWorks
uses Chef to automate how servers are configured, deployed, and
managed across your EC2 instances or on-premises compute
environments.36

Figure 11: Service discovery using configuration management

Service Discovery Using Key Value Store
You can also use a key-value store for discovery of microservices. Although it
takes longer to build this approach compared to other approaches, it provides
more flexibility and extensibility and doesn’t encounter DNS caching issues. It
also works well with client-side load-balancing techniques such as Netflix
Ribbon.37 Client-side load balancing can help eliminate bottlenecks and simplify
management.

Figure 12 shows an architecture that leverages Amazon DynamoDB as a key-
value store and Amazon DynamoDB Streams38 to propagate status changes to
other microservices.

Amazon Web Services – Microservices on AWS

Page 23

Figure 12: Service discovery using key/value store

Third-party software
A different approach to implementing service discovery is using third-party
software like HashiCorp Consul,39 etcd,40 or Netflix Eureka.41 All three
examples are distributed, reliable key-value stores. For HashiCorp Consul, there
is an AWS Quick Start42 that sets up a flexible, scalable AWS Cloud environment
and launches HashiCorp Consul automatically into a configuration of your
choice.

Distributed Data Management
Monolithic applications are typically backed by a large relational database,
which defines a single data model common to all application components. In a
microservices approach, such a central database would prevent the goal of
building decentralized and independent components. Each microservice
component should have its own data persistence layer.

Distributed data management, however, raises new challenges. As explained by
the CAP Theorem,43 distributed microservices architectures inherently trade off
consistency for performance and need to embrace eventual consistency.

Building a centralized store of critical reference data that is curated by master
data management tools and procedures provides a means for microservices to
synchronize their critical data and possibly roll back state.44 Using AWS
Lambda with scheduled Amazon CloudWatch Events you can build a simple
cleanup and deduplication mechanism.45

It’s very common for state changes to affect more than a single microservice. In
those cases, event sourcing has proven to be a useful pattern.46 The core idea
behind event sourcing is to represent and persist every application change as an

https://www.consul.io/
https://github.com/coreos/etcd
https://github.com/Netflix/eureka
https://aws.amazon.com/quickstart/architecture/consul/
https://en.wikipedia.org/wiki/CAP_theorem

Amazon Web Services – Microservices on AWS

Page 24

event record. Instead of persisting application state, data is stored as a stream of
events. Database transaction logging and version control systems are two well-
known examples for event sourcing. Event sourcing has a couple of benefits:
state can be determined and reconstructed for any point in time. It naturally
produces a persistent audit trail and also facilitates debugging.

In the context of microservices architectures, event sourcing enables decoupling
different parts of an application by using a publish/subscribe pattern, and it
feeds the same event data into different data models for separate microservices.
Event sourcing is frequently used in conjunction with the CQRS pattern
(Command, Query, Responsibility, Segregation) to decouple read from write
workloads and optimize both for performance, scalability, and security.47 In
traditional data management systems, commands and queries are run against
the same data repository.

Figure 13 shows how the event sourcing pattern can be implemented on AWS.
Amazon Kinesis Streams serves as the main component of the central event
store that captures application changes as events and persists them on Amazon
S3.

Kinesis Streams enables you to build custom applications that process or
analyze streaming data for specialized needs.48 Kinesis Streams can
continuously capture and store terabytes of data per hour from hundreds
of thousands of sources, such as website clickstreams, financial
transactions, social media feeds, IT logs, and location-tracking events.

Figure 13 depicts three different microservices composed of Amazon API
Gateway, Amazon EC2, and Amazon DynamoDB. The blue arrows indicate the
flow of the events: when microservice 1 experiences an event state change, it
publishes an event by writing a message into Kinesis Streams. All microservices
run their own Kinesis Streams application on a fleet of EC2 instances that read a
copy of the message, filter it based on relevancy for the microservice, and
possibly forward it for further processing.

Amazon Web Services – Microservices on AWS

Page 25

Figure 13: Event sourcing pattern on AWS

Amazon S3 durably stores all events across all microservices and is the single
source of truth when it comes to debugging, recovering application state, or
auditing application changes.

Asynchronous Communication and Lightweight Messaging
In traditional, monolithic applications communication is rather simple: parts of
the application can communicate with other parts using method calls or an
internal event distribution mechanism. If the same application is implemented
using decoupled microservices, the communication between different parts of
the application has to be implemented using network communication.

REST-based Communication
The HTTP/S protocol is the most popular way to implement synchronous
communication between microservices. In most cases, RESTful APIs use HTTP
as a transport layer. The REST architectural style relies on stateless
communication, uniform interfaces, and standard methods.

With API Gateway you can create an API that acts as a “front door” for
applications to access data, business logic, or functionality from your backend
services, such as workloads running on Amazon EC2 and Amazon ECS, code
running on Lambda, or any web application. An API object defined with the API
Gateway service is a group of resources and methods. A resource is a typed

Amazon Web Services – Microservices on AWS

Page 26

object within the domain of an API and may have associated a data model or
relationships to other resources. Each resource can be configured to respond to
one or more methods, that is, standard HTTP verbs such as GET, POST, or PUT.
REST APIs can be deployed to different stages, versioned as well as cloned to
new versions.

API Gateway handles all the tasks involved in accepting and processing up to
hundreds of thousands of concurrent API calls, including traffic management,
authorization and access control, monitoring, and API version management.

Asynchronous Messaging
An additional pattern to implement communication between microservices is
message passing. Services communicate by exchanging messages via a queue.
One major benefit of this communication style is that it’s not necessary to have
a service discovery. Amazon Simple Queue Service (Amazon SQS) and Amazon
Simple Notification Service (Amazon SNS) make it simple to implement this
pattern.

Amazon SQS is a fast, reliable, scalable, fully managed queuing service
that makes it simple and cost effective to decouple the components of a
cloud application.49

Amazon SNS is fully managed notification service that provides
developers with a highly scalable, flexible, and cost-effective capability to
publish messages from an application and immediately deliver them to
subscribers or other applications.50

Both services work closely together. Amazon SNS allows applications to send
messages to multiple subscribers through a push mechanism. By using Amazon
SNS and Amazon SQS together, one message can be delivered to multiple
consumers. Figure 14 demonstrates the integration of Amazon SNS and Amazon
SQS.

Amazon Web Services – Microservices on AWS

Page 27

Figure 14: Message bus pattern on AWS

When you subscribe an SQS queue to an SNS topic, you can publish a message
to the topic and Amazon SNS sends a message to the subscribed SQS queue. The
message contains subject and message published to the topic along with
metadata information in JSON format.

Orchestration and State Management
The distributed character of microservices makes it challenging to orchestrate
workflows with multiple microservices involved. Developers might be tempted
to add orchestration code into their services directly. This should be avoided as
it introduces tighter coupling and makes it harder to quickly replace individual
services.

AWS Step Functions makes it easy to coordinate the components of
distributed applications and microservices using visual workflows.51

You can use Step Functions to build applications from individual components
that each perform a discrete function. Step Functions provides a state machine
that hides the complexities of service orchestration, such as error handling and
serialization/parallelization. This lets you scale and change applications quickly
while avoiding additional coordination code inside services.

Step Functions is a reliable way to coordinate components and step through the
functions of your application. Step Functions provides a graphical console to
arrange and visualize the components of your application as a series of steps.
This makes it simple to build and run distributed services. Step Functions
automatically triggers and tracks each step and retries when there are errors, so
your application executes in order and as expected. Step Functions logs the state

Amazon Web Services – Microservices on AWS

Page 28

of each step so when something goes wrong, you can diagnose and debug
problems quickly. You can change and add steps without even writing code to
evolve your application and innovate faster.

Step Functions is part of the AWS Serverless Platform and supports
orchestration of Lambda functions as well as applications based on compute
resources such as Amazon EC2 and Amazon ECS. Figure 15 illustrates that
invocations of Lambda functions are pushed directly from Step Functions to
AWS Lambda, whereas workers on Amazon EC2 or Amazon ECS continuously
poll for invocations.

Step Functions manages the operations and underlying infrastructure for you to
help ensure your application is available at any scale.

Figure 15: Orchestration with AWS Step Functions

To build workflows Step Functions uses the Amazon States Language.52
Workflows can contain sequential or parallel steps as well as branching steps.

Figure 16 shows an example workflow for a microservices architecture
combining sequential and parallel steps. Invoking such a workflow can be done
either through the Step Functions API or with API Gateway.

AWS Step Functions

EC2 Instances Containers Lambda Function

push
poll

Amazon Web Services – Microservices on AWS

Page 29

Figure 16: An example of a microservices workflow invoked by AWS Step
Functions

Distributed Monitoring
A microservices architecture consists of many different distributed parts that
have to be monitored.

CloudWatch is a monitoring service for AWS Cloud resources and the
applications you run on AWS.53

Amazon Web Services – Microservices on AWS

Page 30

You can use CloudWatch to collect and track metrics, centralize and monitor log
files, set alarms, and automatically react to changes in your AWS environment.
CloudWatch can monitor AWS resources such as EC2 instances, DynamoDB
tables, and RDS DB instances, as well as custom metrics generated by your
applications and services, and any log files your applications generate.

Monitoring
You can use CloudWatch to gain system-wide visibility into resource utilization,
application performance, and operational health. CloudWatch provides a
reliable, scalable, and flexible monitoring solution that you can start using
within minutes. You no longer need to set up, manage, and scale your own
monitoring systems and infrastructure. In a microservices architecture, the
capability of monitoring custom metrics using CloudWatch is an additional
benefit because developers can decide which metrics should be collected for
each service. In addition to that, dynamic scaling can be implemented based on
custom metrics.54

Centralizing Logs
Consistent logging is critical for troubleshooting and identifying issues.
Microservices allow teams to ship many more releases than ever before and
encourage engineering teams to run experiments on new features in production.
Understanding customer impact is crucial to improving an application
gradually.

Most AWS services already centralize log files. The primary destinations for log
files on AWS are Amazon S3 and Amazon CloudWatch Logs. For applications
running on top of EC2 instances a daemon is available to ship log files to
CloudWatch Logs. Lambda functions natively ship their log output to
CloudWatch Logs and Amazon ECS includes support for the awslogs log driver
that allows the centralization of container logs to CloudWatch Logs.55

Figure 17 illustrates the logging capabilities of some of the services. Teams are
then able to search and analyze these logs using tools like Amazon Elasticsearch
Service (Amazon ES) and Kibana. Amazon Athena can be used to run ad-hoc
queries against centralized logfiles in Amazon S3.

Amazon Web Services – Microservices on AWS

Page 31

Figure 17: Logging capabilities of AWS services

Distributed Tracing
In many cases, a set of microservices works together to handle a request.
Imagine a complex system consisting of tens of microservices in which an error
occurs in one of the services in the call chain. Even if every microservice is
logging properly and logs are consolidated in a central system, it can be very
hard to find all relevant log messages.

AWS X-Ray provides an end-to-end view of requests as they travel
through your application and shows a map of your application’s
underlying components.56

The central idea behind X-Ray is the use of correlation IDs, which are unique
identifiers attached to all requests and messages related to a specific event
chain. The trace ID is added to HTTP requests in specific tracing headers named
X-Amzn-Trace-Id when the request hits the first X-Ray-integrated service
(for example, an Application Load Balancer or API Gateway) and is included in
the response. Via the X-Ray SDK, any microservice can read but can also add or
update this header.

AWS X-Ray works with Amazon EC2, Amazon ECS, AWS Lambda, and AWS
Elastic Beanstalk. You can use X-Ray with applications written in Java, Node.js,
and .NET that are deployed on these services.

Amazon Web Services – Microservices on AWS

Page 32

Figure 18: AWS X-Ray service map

Options for Log Analysis on AWS
Searching, analyzing, and visualizing log data is an important aspect of
understanding distributed systems. One popular option for analyzing log files is
to use Amazon ES together with Kibana.

Amazon ES makes it easy to deploy, operate, and scale Elasticsearch for
log analytics, application monitoring, interactive search, and more.57

Amazon ES can be used for full-text search, structured search, analytics, and all
three in combination. Kibana is an open source data visualization plugin for
Amazon ES that seamlessly integrates with it.

Figure 19 demonstrates log analysis with Amazon ES and Kibana. CloudWatch
Logs can be configured to stream log entries to Amazon ES in near real time
through a CloudWatch Logs subscription. Kibana visualizes the data and
exposes a convenient search interface to data stores in Amazon ES. This
solution can be used in combination with software like ElastAlert to implement
an alerting system in order to send SNS notifications, emails, create JIRA
tickets, etc., if anomalies, spikes, or other patterns of interest are detected in the
data.58

https://github.com/Yelp/elastalert

Amazon Web Services – Microservices on AWS

Page 33

Figure 19: Log analysis with Amazon Elasticsearch Service and Kibana

Another option for analyzing log files is to use Amazon Redshift together with
Amazon QuickSight.

Amazon Redshift is a fast, fully managed, petabyte-scale data warehouse
service that makes it simple and cost-effective to analyze all your data
using your existing business intelligence tools.59

Amazon QuickSight is a fast, cloud-powered business analytics service to
build visualizations, perform ad-hoc analysis, and quickly get business
insights from your data.60

Amazon QuickSight can be easily connected to AWS data services, including
Amazon Redshift, Amazon RDS, Amazon Aurora, Amazon EMR, Amazon
DynamoDB, Amazon S3, and Amazon Kinesis.

Amazon CloudWatch Logs can act as a centralized store for log data, and, in
addition to storing the data, it is possible to stream log entries to Amazon
Kinesis Firehose.

Amazon Web Services – Microservices on AWS

Page 34

Kinesis Firehose is a fully managed service for delivering real-time
streaming data to destinations such as Amazon S3, Amazon Redshift, or
Amazon ES.61

Figure 20 depicts a scenario where log entries are streamed from different
sources to Amazon Redshift using CloudWatch Logs and Kinesis Firehose.
Amazon QuickSight uses the data stored in Amazon Redshift for analysis,
reporting, and visualization.

Figure 20: Log analysis with Amazon Redshift and Amazon QuickSight

Figure 21 depicts a scenario of log analysis on Amazon S3. When the logs are
stored in S3 buckets, the log data can be loaded in different AWS data services,
for example, Amazon Redshift or Amazon EMR, to analyze the data stored in
the log stream and find anomalies.

Amazon Web Services – Microservices on AWS

Page 35

Figure 21: Log analysis on Amazon S3

Chattiness
By breaking monolithic applications into small microservices, the
communication overhead increases because microservices have to talk to each
other. In many implementations, REST over HTTP is used as a communication
protocol. It is a light-weight protocol, but high volumes can cause issues. In
some cases, it might make sense to think about consolidating services that send
a lot of messages back and forth. If you find yourself in a situation where you
consolidate more and more of your services just to reduce chattiness, you
should review your problem domains and your domain model.

Protocols
Earlier in this whitepaper, in the section Asynchronous Communication and
Lightweight Messaging, different possible protocols are discussed. For
microservices it is quite common to use simple protocols like HTTP. Messages
exchanged by services can be encoded in different ways, for example, in a
human-readable format like JSON or YAML or in an efficient binary format
such as Avro or Protocol Buffers.

Caching
Caches are a great way to reduce latency and chattiness of microservices
architectures. Several caching layers are possible depending on the actual use

Amazon Web Services – Microservices on AWS

Page 36

case and bottlenecks. Many microservice applications running on AWS use
Amazon ElastiCache to reduce the amount calls to other microservices by
caching results locally. API Gateway provides a built-in caching layer to reduce
the load on the backend servers. In addition, caching is useful to reduce load
from the data persistence layer. The challenge for all caching mechanisms is to
find the right balance between a good cache hit rate and the
timeliness/consistency of data.

Auditing
Another challenge to address in microservices architectures with potentially
hundreds of distributed services is to ensure visibility of user actions on all
services and to be able to get a good overall view at an organizational level. To
help enforce security policies, it is important to audit both resource access as
well as activities leading to system changes. Changes must be tracked on the
level of individual services and on the wider system across services. It is typical
in microservices architectures that changes happen very often, which means
that auditing change becomes even more important. In this section, we look at
the key services and features within AWS that can help audit your microservices
architecture.

Audit Trail
AWS CloudTrail is a useful tool for tracking change in microservices because it
enables all API calls made on the AWS Cloud to be logged and passed to either
CloudWatch Logs in near real time or to Amazon S3 within several minutes.

CloudTrail is a web service that records AWS API calls for your account
and delivers log files to you.62 This includes those taken on the AWS
Management Console, the AWS CLI, SDKs, and calls made directly to the
AWS API.

All user actions and automated systems become searchable and can be analyzed
for unexpected behavior, company policy violations, or debugging. Information
recorded includes user/account information, a timestamp, the service that was
called along with the action requested, the IP address of the caller, as well as
request parameters and response elements.

Amazon Web Services – Microservices on AWS

Page 37

CloudTrail allows the definition of multiple trails for the same account, which
allows different stakeholders, such as security administrators, software
developers, or IT auditors, to create and manage their own trail. If microservice
teams have different AWS accounts, it is possible to aggregate trails into a single
S3 bucket.63

Storing CloudTrail log files in S3 buckets has a few advantages: trail data is
stored durably, new files can trigger an SNS notification or start a Lambda
function to parse the log file, and data can be automatically archived into
Amazon Glacier via lifecycle policies.64 In addition (and as described earlier in
the performance monitoring section), services like Amazon EMR or Amazon
Redshift can be leveraged to further analyze the data.

The advantages of storing the audit trails in CloudWatch are that trail data is
generated in real time and rerouting information to Amazon ES for search and
visualization becomes very easy. It is possible to configure CloudTrail to log into
both Amazon S3 and CloudWatch Logs.

Events and Real-Time Actions
There are certain changes in systems architectures that must be responded to
quickly, and an action to remediate must be performed, or specific governance
procedures to authorize must be followed.

CloudWatch Events delivers a near real-time stream of system events
that describe changes in AWS resources.65 Declarative rules associate
events of interest with automated actions to be taken.

The integration of CloudWatch Events with CloudTrail allows CloudWatch
Events to generate events for all mutating API calls across all AWS services. It’s
also possible to define custom events or generate events based on a fixed
schedule.

When an event is fired and matches a rule that you defined in your system, the
right people in your organization can be immediately notified. This allows them
to take the appropriate action. Even better, it’s possible to automatically trigger
built-in workflows or invoke a Lambda function.

Amazon Web Services – Microservices on AWS

Page 38

Figure 22 shows a setup where CloudTrail and CloudWatch Events work
together to address auditing and remediation requirements within a
microservices architecture. All microservices are being tracked by CloudTrail
and the audit trail is stored in an Amazon S3 bucket. CloudWatch Events sits on
top of CloudTrail and triggers alerts when a specific change is made to your
architecture.

Figure 22: Auditing and remediation

Resource Inventory and Change Management
To maintain control over fast-changing infrastructure configurations in agile
development teams, a more automated, managed approach to auditing and
control of your architecture is beneficial.

Amazon Web Services – Microservices on AWS

Page 39

AWS Config is a fully managed service that provides you with an AWS
resource inventory, configuration history, and configuration change
notifications to enable security and governance.66 The AWS Config rules
feature enables you to create rules that automatically check the
configuration of AWS resources recorded by AWS Config.

While CloudTrail and CloudWatch Events track and respond to infrastructure
changes across microservices, AWS Config rules allow a company to define
security policies using specific rules and automatically detect, track, and alert
violations to these policies.

In the example that follows, a developer team made a change to the API
Gateway for his microservice to open up the endpoint to inbound HTTP traffic
rather than allowing only HTTPS requests. Because this is a security compliance
concern for the organization, an AWS Config rule is watching for this type of
noncompliance, identifies the change as a security violation, and performs two
actions: it creates a log of the detected change in an S3 bucket (for auditing) and
creates an SNS notification.

Amazon SNS is used for two purposes in our scenario: 1) to send an email to a
specified group to inform them about the security violation, and 2) to add a
message into an SQS queue. The message is picked up from the SQS queue, and
the compliant state is restored by changing the API Gateway configuration. This
example demonstrates how it’s possible to detect, inform, and automatically
react to noncompliant configuration changes within your microservices
architecture.

Amazon Web Services – Microservices on AWS

Page 40

Figure 23: Detecting security violations with AWS Config

Conclusion
Microservices architecture is a distributed approach designed to overcome the
limitations of traditional monolithic architectures. Microservices help to scale
applications and organizations while improving cycle times. However, they also
come with challenges that might cause additional architectural complexity and
operational burden.

AWS offers a large portfolio of managed services that help product teams build
microservices architectures and minimize architectural and operational
complexity. This whitepaper guides you through the relevant AWS services and
how to implement typical patterns such as service discovery or event sourcing
natively with AWS services.

Amazon Web Services – Microservices on AWS

Page 41

Contributors
The following individuals and organizations contributed to this document:

• Matthias Jung, Solutions Architecture, AWS

• Sascha Möllering, Solutions Architecture, AWS

• Peter Dalbhanjan, Solutions Architecture, AWS

• Peter Chapman, Solutions Architecture, AWS

• Christoph Kassen, Solutions Architecture, AWS

Document Revisions
Date Description

September 2017 Integration of AWS Step Functions, AWS X-Ray, and ECS event streams.

December 2016 First publication

1 https://www.google.com/trends/explore#q=Microservices

2 https://12factor.net/

3 https://en.wikipedia.org/wiki/DevOps

4 https://en.wikipedia.org/wiki/Conway%27s_law

5 http://highscalability.com/blog/2014/4/8/microservices-not-a-free-
lunch.html

6 https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

7 https://aws.amazon.com/devops/

8 https://aws.amazon.com/cloudformation/

9 https://aws.amazon.com/devops/continuous-integration/

10 https://aws.amazon.com/devops/continuous-delivery/

11 https://aws.amazon.com/marketplace/b/2649367011

Notes

https://www.google.com/trends/explore%23q=Microservices
https://12factor.net/
https://en.wikipedia.org/wiki/DevOps
https://en.wikipedia.org/wiki/Conway%27s_law
http://highscalability.com/blog/2014/4/8/microservices-not-a-free-lunch.html
http://highscalability.com/blog/2014/4/8/microservices-not-a-free-lunch.html
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
https://aws.amazon.com/devops/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/devops/continuous-integration/
https://aws.amazon.com/devops/continuous-delivery/
https://aws.amazon.com/marketplace/b/2649367011

Amazon Web Services – Microservices on AWS

Page 42

12 https://aws.amazon.com/tools/#sdk

13 https://aws.amazon.com/cloudfront/

14 https://en.wikipedia.org/wiki/Representational_state_transfer

15 https://aws.amazon.com/elasticloadbalancing/

16 https://aws.amazon.com/ec2/

17 https://aws.amazon.com/ecs/

18 https://aws.amazon.com/autoscaling/

19 https://www.docker.com/

20 https://aws.amazon.com/ecr/

21 https://aws.amazon.com/elasticache/

22 https://aws.amazon.com/rds/

23 https://aws.amazon.com/dynamodb/

24 http://swagger.io/

25 https://aws.amazon.com/api-gateway/

26 https://twitter.com/awsreinvent/status/652159288949866496

27 https://aws.amazon.com/lambda/

28 http://docs.aws.amazon.com/apigateway/latest/developerguide/getting-
started.html

29 https://aws.amazon.com/cloudformation/

30 https://github.com/awslabs/serverless-application-model

31 http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/using-
domain-names-with-elb.html#dns-associate-custom-elb

32 https://aws.amazon.com/route53/

33 http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/hosted-zones-
private.html

34 http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/dns-failover-
private-hosted-zones.html

35 https://github.com/awslabs/ecs-refarch-service-discovery/

36 https://aws.amazon.com/opsworks/

37 https://github.com/Netflix/ribbon

https://aws.amazon.com/tools/%23sdk
https://aws.amazon.com/cloudfront/
https://en.wikipedia.org/wiki/Representational_state_transfer
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ecs/
https://aws.amazon.com/autoscaling/
https://www.docker.com/
https://aws.amazon.com/ecr/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/rds/
https://aws.amazon.com/dynamodb/
http://swagger.io/
https://aws.amazon.com/api-gateway/
https://twitter.com/awsreinvent/status/652159288949866496
https://aws.amazon.com/lambda/
http://docs.aws.amazon.com/apigateway/latest/developerguide/getting-started.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/getting-started.html
https://aws.amazon.com/cloudformation/
https://github.com/awslabs/serverless-application-model
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/using-domain-names-with-elb.html%23dns-associate-custom-elb
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/using-domain-names-with-elb.html%23dns-associate-custom-elb
https://aws.amazon.com/route53/
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/hosted-zones-private.html
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/hosted-zones-private.html
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/dns-failover-private-hosted-zones.html
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/dns-failover-private-hosted-zones.html
https://github.com/awslabs/ecs-refarch-service-discovery/
https://aws.amazon.com/opsworks/
https://github.com/Netflix/ribbon

Amazon Web Services – Microservices on AWS

Page 43

38

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Strea
ms.html

39 https://www.consul.io/

40 https://github.com/coreos/etcd

41 https://github.com/Netflix/eureka

42 https://aws.amazon.com/quickstart/architecture/consul/

43 https://en.wikipedia.org/wiki/CAP_theorem

44 https://en.wikipedia.org/wiki/Master_data_management

45 http://docs.aws.amazon.com/lambda/latest/dg/with-scheduled-events.html

46 http://martinfowler.com/eaaDev/EventSourcing.html

47 http://martinfowler.com/bliki/CQRS.html

48 https://aws.amazon.com/kinesis/streams/

49 https://aws.amazon.com/sqs/

50 https://aws.amazon.com/sns/

51 https://aws.amazon.com/step-functions/

52 https://states-language.net/spec.html

53 https://aws.amazon.com/cloudwatch/

54
https://docs.aws.amazon.com/autoscaling/latest/userguide/policy_creating.
html

55
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_aws
logs.html

56 https://aws.amazon.com/xray/

57 https://aws.amazon.com/elasticsearch-service/

58 https://github.com/Yelp/elastalert

59 https://aws.amazon.com/redshift/

60 https://aws.amazon.com/quicksight/

61 https://aws.amazon.com/kinesis/firehose/

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html
https://www.consul.io/
https://github.com/coreos/etcd
https://github.com/Netflix/eureka
https://aws.amazon.com/quickstart/architecture/consul/
https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/Master_data_management
http://docs.aws.amazon.com/lambda/latest/dg/with-scheduled-events.html
http://martinfowler.com/eaaDev/EventSourcing.html
http://martinfowler.com/bliki/CQRS.html
https://aws.amazon.com/kinesis/streams/
https://aws.amazon.com/sqs/
https://aws.amazon.com/sns/
https://aws.amazon.com/step-functions/
https://states-language.net/spec.html
https://aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/autoscaling/latest/userguide/policy_creating.html
https://docs.aws.amazon.com/autoscaling/latest/userguide/policy_creating.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_awslogs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_awslogs.html
https://aws.amazon.com/xray/
https://aws.amazon.com/elasticsearch-service/
https://github.com/Yelp/elastalert
https://aws.amazon.com/redshift/
https://aws.amazon.com/quicksight/
https://aws.amazon.com/kinesis/firehose/

Amazon Web Services – Microservices on AWS

Page 44

62 https://aws.amazon.com/cloudtrail/

63 http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-
receive-logs-from-multiple-accounts.html

64 https://aws.amazon.com/glacier/

65
http://docs.aws.amazon.com/AmazonCloudWatch/latest/events/WhatIsClou
dWatchEvents.html

66 https://aws.amazon.com/config/

https://aws.amazon.com/cloudtrail/
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://aws.amazon.com/glacier/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/events/WhatIsCloudWatchEvents.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/events/WhatIsCloudWatchEvents.html
https://aws.amazon.com/config/

	Abstract
	Introduction
	Characteristics of Microservices
	Benefits of Microservices
	Agility
	Innovation
	Quality
	Scalability
	Availability

	Challenges of Microservices
	Architectural Complexity
	Operational Complexity

	Microservices and the Cloud

	Microservices on AWS
	Simple Microservices Architecture on AWS
	User Interface
	Microservices
	Containers

	Data Store

	Reducing Operational Complexity
	API Implementation
	Serverless Microservices
	Deploying Lambda-Based Applications

	Distributed Systems Components
	Service Discovery
	Client-Side Service Discovery
	Application Load Balancer-Based Service Discovery
	DNS-Based Service Discovery
	Service Discovery Using Amazon ECS Event Stream
	Service Discovery Using Configuration Management
	Service Discovery Using Key Value Store
	Third-party software

	Distributed Data Management
	Asynchronous Communication and Lightweight Messaging
	REST-based Communication
	Asynchronous Messaging
	Orchestration and State Management

	Distributed Monitoring
	Monitoring
	Centralizing Logs
	Distributed Tracing
	Options for Log Analysis on AWS

	Chattiness
	Protocols
	Caching

	Auditing
	Audit Trail
	Events and Real-Time Actions
	Resource Inventory and Change Management

	Conclusion
	Contributors
	Document Revisions

