L 3

inTroodcT™:amn 170
WER aPPLICaTIONS
DEUELORPMENT

AUTHOR: COORDINATOR:
C. MATEU . MAS

HENEE FIM'EE

SeEgE TECHMOLOGW
H B ACACDEMY

Introduction to
web application
development

Jordi Mas (coordinator)
Carles Mateu

q1°

JuoC

GNUFDL ¢ PID_00148372

Introduction to web application development

Jordi Mas

| Carles Mateu

Software engineer at the free
software company, Ximian, where
he works on implementation

of the free project, Mono. He
volunteers with the development
of the Abiword word processor and
engineering of the Catalan versions
of the Mozilla and Gnome project.
He is also the general coordinator
of Softcatala. As a consultant, he
has worked for companies such as
Menta, Telépolis, Vodafone, Lotus,
eresMas, Amena and Terra Espafia.

First edition: February 2010

© Carles Mateu

All rights are reserved

© of this edition, FUOC, 2010

Av. Tibidabo, 39-43, 08035 Barcelona

Design: Manel Andreu
Publishing: Eureca Media, SL

Copyright © 2010, FUOC. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation

License"

Engineer in IT from the UOC.

He is currently Director of the
Information and Communication
Systems Department of the UdL and
Associate Professor of Networks and
the Internet at the UdL.

Preface

Software has become a strategic societal resource in the last few decades.
The emergence of Free Software, which has entered in major sectors of
the ICT market, is drastically changing the economics of software
development and usage. Free Software — sometimes also referred to as
“Open Source” or “Libre Software” — can be used, studied, copied,
modified and distributed freely. It offers the freedom to learn and to
teach without engaging in dependencies on any single technology
provider. These freedoms are considered a fundamental precondition for
sustainable development and an inclusive information society.

Although there is a growing interest in free technologies (Free Software
and Open Standards), still a limited number of people have sufficient
knowledge and expertise in these fields. The FTA attempts to respond to
this demand.

Introduction to the FTA

The Free Technology Academy (FTA) is a joint initiative from several
educational institutes in various countries. It aims to contribute to a
society that permits all users to study, participate and build upon existing
knowledge without restrictions.

What does the FTA offer?

The Academy offers an online master level programme with course
modules about Free Technologies. Learners can choose to enrol in an
individual course or register for the whole programme. Tuition takes
place online in the FTA virtual campus and is performed by teaching
staff from the partner universities. Credits obtained in the FTA
programme are recognised by these universities.

Who is behind the FTA?

The FTA was initiated in 2008 supported by the Life Long Learning
Programme (LLP) of the European Commission, under the coordination
of the Free Knowledge Institute and in partnership with three european
universities: Open Universiteit Nederland (The Netherlands), Universitat
Oberta de Catalunya (Spain) and University of Agder (Norway).

For who is the FTA?
The Free Technology Academy is specially oriented to IT professionals,
educators, students and decision makers.

What about the licensing?

All learning materials used in and developed by the FTA are Open
Educational Resources, published under copyleft free licenses that allow
them to be freely used, modified and redistributed. Similarly, the
software used in the FTA virtual campus is Free Software and is built
upon an Open Standards framework.

Evolution of this book

The FTA has reused existing course materials from the Universitat
Oberta de Catalunya and that had been developed together with
LibreSoft staff from the Universidad Rey Juan Carlos. In 2008 this book
was translated into English with the help of the SELF (Science,
Education and Learning in Freedom) Project, supported by the
European Commission's Sixth Framework Programme. In 2009, this
material has been improved by the Free Technology Academy.
Additionally the FTA has developed a study guide and learning activities
which are available for learners enrolled in the FTA Campus.

Participation

Users of FTA learning materials are encouraged to provide feedback and
make suggestions for improvement. A specific space for this feedback is
set up on the FTA website. These inputs will be taken into account for
next versions. Moreover, the FTA welcomes anyone to use and distribute
this material as well as to make new versions and translations.

See for specific and updated information about the book, including
translations and other formats: hwp://ftacademy.org/materials/fsm/1. For
more information and enrolment in the FTA online course programme,
please visit the Academy's website: hzp://fiacademy.org/.

I sincerely hope this course book helps you in your personal learning
process and helps you to help others in theirs. I look forward to see you
in the free knowledge and free technology movements!

Happy learning!

Wouter Tebbens

President of the Free Knowledge Institute

Director of the Free technology Academy

GNUFDL e PID_00148375

Introduction to software development

Acknowledgenments

The authors wish to thank the Fundacié per a la
Universitat Oberta de Catalunya (http://www.uoc.edu)
for financing the first edition of this work under the
framework of the International Master's degree in Free
Software offered by this institution.

The current version of these materials in English has
been extended with the funding of the Free Technology
Academy (FTA) project. The FTA project has been
funded with support from the European Commission
(reference no. 142706- LLP-1-2008-1-NL-ERASMUS-
EVC of the Lifelong Learning Programme). This
publication reflects the views only of the authors, and the
Commission cannot be held responsible for any use
which may be made of the information contained
therein.

GNUFDL ¢ PID_00148372 3

Contents

Module 1
Introduction to web applications
Carles Mateu

1. Introduction to the Internet

2. The WWW as an Internet service
3. History of web applications
Module 2

Server installation
Carles Mateu

1. Basic web server concepts

2. Apache server

3. Other free software web servers
4. DPractical: installing a web server
Module 3

Web page design
Carles Mateu

1. Basic HTML

2. Advanced HTML

3. Dynamic HTML

4. JavaScript

5. DPractical: creating a complex web page using the techniques described.
Module 4

Text structured format: XML
Carles Mateu

1.

Al o

Introduction to XML

XML

Validation: DTD and XML Schema

Transformations: XSLT

Practical: creating an XML document with its corresponding XML
Schema and transformations with XSLT

Module 5
Dynamic content
David Megias Jiménez, Jordi Mas and Carles Mateu

1.

A o

CGI

PHP

Java servlets and JSP

Other dynamic content options

Practical: creation of a simple application with the techniques described

Introduction to web application development

GNUFDL ¢ PID_00148372

Module 6

Database access: JDBC

David Megias Jiménez, Jordi Mas and Carles Mateu
Introduction to databases

Controllers and addresses

Basic database access

Prepared statements and stored procedures
Transactions

Metadata

Practical: database access

N e W

Module 7
Web services
David Megias Jiménez, Jordi Mas and Carles Mateu

1. Introduction to web services

2. XML-RPC

3. SOAP

4. WSDL and UDDI
5. Security

Module 8

Use and maintenance

David Megias Jiménez, Jordi Mas and Carles Mateu
1. Configuring security options

2. Configuring load balancing

3. Configuring a caching proxy with Apache

4. Other Apache modules

Module 9

Monitoring and analysis

David Megias Jiménez, Jordi Mas and Carles Mateu
1. Analysis of HTTP server logs

2. Statistics and counter tools

3. Performance analysis

Annex

Introduction to web application development

Introduction to
web applications

Carles Mateu

319

U0

GNUFDL e PID_00148404 Introduction to web applications

Copyright © 2010, FUOC. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation

License"

GNUFDL e PID_00148404 Introduction to web applications

Index
1. Introduction to the Internet................ccoovvviiiiiiiiiiiiiiiiiieeeeeeeennn. 5
2. The WWW as an Internet Service.............cccccceeevvvvvvvieeiirrvveeeeennnn. 7
2.1. A brief history of the WWW ..o e 7
2.2, WED DASICS ..ciiviiiieeiiiiiiee e et e e e e e e e er e e e e eeaaas 7
2.2. 1. HTTP et e e es 8
2.2.2. HTML languagecccceevveeeeimiiiiieeieiiieeeeeeieeee e 12
3. History of web applications................ccocceiiiiiiiiiiiiiiiieiinieeen. 14

GNUFDL ¢ PID_00148404 5 Introduction to web applications

1. Introduction to the Internet

Internet, the network of networks, came about in the mid-1970s under
the auspices of DARPA, the United States Defense Advanced Research
Projects Agency. DARPA launched a research programme into techniques
and technologies to connect several packet switching networks that would
allow the computers connected in these networks to communicate with
one another easily and transparently. These projects led to the birth of a
data communication protocol called IP, the Internet Protocol, which allowed
several computers to communicate through a network, the Internet, formed
by the interconnection of several networks.

In the mid-1980s, the United States National Science Foundation created
a network called NSFNET, which became the backbone of the Internet in
conjunction with similar networks created by NASA (NSINet) and the US DoE
or Department of Energy (ESNET). In Europe, most countries had national
backbones (NORDUNET, RedIRIS, SWITCH, etc.) and a series of pan-European
initiatives sprang up too (EARN and RARE). It was around this time that the
first private Internet providers emerged, offering paid access to the Internet.

From this point on, due in part to the wide availability of implementations of
the suite of TCP/IP protocols (consisting of all Internet protocols, rather than
just TCP and IP), some of which were open source, the Internet began what
would subsequently become one of its basic features, an exponential growth
that only began to decline slightly in mid-2002.

The mid-1990s saw the Internet boom and it was around this time that the
number of private Internet access providers rocketed, allowing millions to
connect to the Internet, which was coming to be known as the Net, overtaking
all existing communication networks (Compuserve, FidoNet/BBS etc). The
turning point came with the emergence of free TCP/IP implementations
(including those forming part of the operating system) and the popularisation
and falling price of increasingly faster means of access (faster modems, ISDN,
ADSL, cable, satellites). All of these changes led to a snowball effect whereby
the more users that connected, the more costs fell, the more providers that
emerged and the more attractive and economical the Internet became, which
meant that more and more users began connecting, etc.

Nowadays, having an e-mail address, web access etc. is considered normal
in many countries around the world and is not regarded as the latest thing.
Businesses, institutions, governments, etc. are quickly migrating all of their
services, applications, stores, etc. to a web environment that will allow

GNUFDL ¢ PID_00148404 6 Introduction to web applications

their customers and users access to all this from the Internet. Despite the
slight slowdown in its growth rate, the Internet is set to become a universal

communications service that allows universal communication.

GNUFDL ¢ PID_00148404 7 Introduction to web applications

2. The WWW as an Internet service

The WWW (World Wide Web) or Web as it is informally known, has, together
with e-mail, become the warhorse of the Internet. The Web has evolved from
an immense "library" of static pages into a service offering access to multiple
features and functions, an infinite number of services, programs, stores, etc.

2.1. A brief history of the WWW

In 1989, while working at CERN, the European Organization for Nuclear
Research, Tim Berners-Lee began to design a system for easy access to CERN's
information. This system used hypertext to structure a network of links
between documents. After obtaining approval to continue with the project,
the first web browser was born, christened WorldWideWeb (without spaces).

By 1992, the system had extended beyond the walls of CERN and there were
now considerably more "stable" servers: 26 Growth was now dramatic and
by 1993 the Web was being mentioned in the New York Times. This was the
year that Mosaic was launched, an X-Window/Unix browser that later became
known as Netscape, a key factor in the popularisation of the Web. In 1994,
the WWW Consortium was set up as the catalyst for the development of the
prevailing standards on the Web (http://www.w3c.org). Its growth was now
unstoppable and by the end of the 1990s, it had become the insignia service
of the Internet, giving rise to the continuous growth of the online services
that we know today.

2.2. Web basics

The amazing success of the Web is down to two basic features: HTTP
protocol and HTML language. The first allows straightforward and easy
implementation of a communications system so that any type of file can be
easily sent, simplifying the operation of the server, allowing low-power servers
to deal with thousands of requests and cutting deployment costs. The second
feature provides an easy and straightforward mechanism for composing linked

pages that is also highly efficient and very user-friendly.

GNUEFDL ¢ PID_00148404 8

2.2.1. HTTP

HTTP (Hypertext Transfer Protocol) is the basic protocol of the WWW.
It is a straightforward, connection-oriented protocol without state. It is a
connection-oriented protocol because it requires a communications protocol
(TCP, Transmission Control Protocol) in connected mode, a protocol that
establishes an end-to-end communication channel (between client and server)
along which the bytes constituting the data to be transferred pass, in contrast
to datagram or non-connection-oriented protocols, which divide data into
small packages (datagrams) before sending them in different ways to the client
from the server. The protocol does not maintain state, i.e. each data transfer
is an independent connection separate from the previous one and there is no
relationship between them. This is true to the point that, when we want to
send a Web page, we need to send the HTML code of the text and the images
it contains, since the initial HTTP specification, 1.0, opened and used as many
connections as there were page components, transferring one component for
each connection (the text of the page or each image).

There is a HTTP variant called HTTPS (S for secure) that uses the SSL
(Secure Socket Layer) security protocol to encrypt and authenticate traffic
between the client and the server. This is frequently used by e-commerce Web

servers or for personal or confidential information.

The schematic operation of HTTP is as follows: the client sets up a TCP
connection to the server, to the HTTP port (or that indicated in the address of
the connection), it sends a HTTP resource request command (along with some
informative headers) and the server responds through the same connection
with the requested data and a series of informative headers.

Request —ET
GET/Index.htm
\‘ \‘ \‘ \‘ \‘ \‘ } \‘\‘ \‘ \‘ \‘ \‘ \‘ \‘ \‘
Response
) HTTP/1.1 200
Client Content_Type.text/html Server
(Browser) (Web server)
<html>

The protocol also defines how to encrypt the passing of parameters
between pages, tunnelling connections (for firewall systems), the existence of
intermediate cache servers, etc.

Introduction to web applications

Supplementary content

HTTP uses port 80 (equivalent
in a way to the TCP service or
connection identifier) for all
default connections (we can
use other ports besides 80).

Supplementary content

HTTPS uses port 443 by
default.

GNUEFDL ¢ PID_00148404 9

The request for information directives defined by HTTP 1.1 (the version

deemed stable and in use) are:

GET Request for resource.

POST Request for resource by passing parameters.

HEAD Request for data on resource.

PUT Creation or sending of resource.

DELETE Deletion of resource.

TRACE Echoes back the request just as it was received on the receiver for
debugging.

OPTIONS Used to check server capacity.

CONNECT Reserved for use on intermediate servers that can operate as
tunnels.

We will now look at some of these commands in detail as they are essential
for the development of Web applications.

All resources to be served through HTTP must be referenced with a URL
(Universal Resource Locator).

HTTP requests: GET and POST

In HTTP, requests can be made using one of two methods. If sending
parameters with the request, GET will send them encrypted in the URL. The
POST method will send parameters as part of the body of the request if sending
them.

GET requests use the following format:

GET /index. htm HITP/ 1.1

Host: www. exanpl e. com

User-Agent: Mzilla/4.5 [en]

Accept: inmmge/gif, inagel/jpeg, text/htm
Accept - | anguage: en

Accept - Char set : i so-8859-1

We can see that this is made up of:

1) Request line: contains the requested resource.

2) Request header: contains additional information about the client.

3) Request body: in POST and PUT requests, among others, it contains
additional information.

Request line

The request line contains the following elements:

Introduction to web applications

GNUEFDL ¢ PID_00148404 10

1) Method: name of HTTP method called (GET, POST, etc.).
2) Resource identifier: URL (Uniform Resource Locator) of the requested
resource.

3) Protocol version: protocol version requested for the response.

Request header

Contains additional information to help the server (or intermediate servers,
proxies and caches) to process the request correctly. The information is
provided as:

Identifier: value

Some of these identifiers, the most well-known and important being:

Host: name of requested server.

User-Agent: name of browser or program used to access the resource.
Accept: some text and image formats accepted by the client.
Accept-Language: languages supported (preferred) by the client, useful for
automatically personalising the response.

Request parameters

A HTTP request can also contain parameters, for instance, as a response to
a registration form, the selection of a product in an online store, etc. These
parameters can be passed in two ways:

e As part of the request chain encrypted as part of the URL
e As extra request data

To encrypt parameters as part of the URL, they are added to the URL after
the name of the resource, separated from the latter by the character ?. The
different parameters are separated from one another by the character &. Spaces
are replaced by +. And special characters (those mentioned above &, + | ? and
non-printing characters, etc.) are represented by %xx where xx represents the
hexadecimal ASCII code of the character.

For example:
http://ww. exanpl e. coni | ndex. j sp?name=M +Nobody &OK=I
In the HTTP request, this would end up as:

GET /i ndex. j sp?nane=M +Nobody&OK=l HTTP/ 1.0

Host : www. exanpl e. com

User-Agent: Mzilla/4.5 [en]
Accept: image/gif, inmage/jpeg, text/htm

Introduction to web applications

GNUFDL « PID_00148404 11 Introduction to web applications

Accept - | anguage: en

Accept - Charset: is0-8859-1

To pass the parameters as extra request data, they are sent to the server as the
message body of the request. For example, the above request would look like
this:

POST /i ndex.jsp HTTP/ 1.0

Host : www. exanpl e. com

User-Agent: Mzilla/4.5 [en]

Accept: image/gif, inage/jpeg, text/htm
Accept - | anguage: en

Accept - Charset: is0-8859-1
name=M +Nobody &OK=|

Note that to pass the parameters as the body of the request, the POST method
rather than GET needs to be used, although POST requests can also carry
parameters in the request line. Parameters passed as the body of the request
are encrypted, as in the previous example, in the URL or they can use an
encryption deriving from MIME [Multipurpose Internet Mail Extensions)

format known as multipart encryption.
The previous request in multipart format would be:

POST /index.jsp HITP/ 1.0

Host: www. exanpl e. com

User-Agent: Mzilla/4.5 [en]

Accept: inmage/gif, inage/jpeg, text/htm

Accept - | anguage: en

Accept - Char set : i so-8859-1

Content-Type: multipart/formdata,
delimter="----RANDOM - - -"

- - - - RANDOM - - -
Cont ent - Di sposi tion: formdata; nanme="nane"
M Nobody

- - - - RANDOM - - -

Content - Di sposition: formdata; name="0oK"

This encryption is exclusive to the POST method and used when sending files

to the server.

GNUEFDL ¢ PID_00148404 12

HTTP responses

Responses in HTTP are very similar to requests. A W3C recommendation

response to a request from a page would look something like this:

HTTP/ 1.1 200 K

Date: Mn, 04 Aug 2003 15:19:10 GVI

Server: Apache/2.0.40 (Red Hat Linux)
Last - Modi fi ed: Tue, 25 Mar 2003 08: 52: 53 GMI
Accept - Ranges: bytes

Cont ent - Lengt h: 428

Connection: close <HTM.>

Here, we see that the first line responds with the version of the protocol used
to send us the page followed by a return code and a return phrase. The return
code can take one of the following values:

e 1xx Request received, still in process.

e 2xx Correct. Request processed correctly.

e 3xx Redirection. The request must be repeated or redirected.

e 4xx Client error. The request cannot be processed because it is incorrect,
does not exist, etc.

e Sxx Server error. The server has failed trying to process the request, which
is theoretically correct.

The return phrase will depend on the implementation but is only used to
clarify the return code.

After the status, we find a series of control fields in the same format as the
headers of the request telling us the contents (creation date, length, server
version etc). The requested contents then follow.

2.2.2. HTML language

The other basic factor in the success of the WWW is HTML (Hypertext Markup
Language). This is a markup language (marks are inserted in the text) allowing
us to represent rich content and to reference other resources (images, etc.),
links to other documents (the most common feature of the WWW), display
forms for subsequent processing etc.

HTML is currently in version 4.01 and is starting to offer advanced features for
creating pages with richer contents. A specification compatible with HTML,
XHTML (Extensible Hypertext Markup Language) has also been created, which

Introduction to web applications

GNUFDL « PID_00148404 13 Introduction to web applications

is usually defined as a validatable XML version of HTML, providing us with
an XML Schema that can be used to validate the document to check that it

is formed propetly, etc.

GNUFDL ¢ PID_00148404 14 Introduction to web applications

3. History of web applications

Originally, the Web was simply a collection of static pages, documents, etc.
that could be consulted and/or downloaded.

The next step in its evolution was the inclusion of a method to make dynamic
pages allowing the displayed contents to be dynamic (generated or calculated
from request data). This method was known as CGI (Common Gateway
Interface) and defined a mechanism by which information could be passed
between the HTTP server and external programs. CGls are still widely used
because they are straightforward and most web servers support them. They
also give us complete freedom in choosing the programming language to
develop them.

The operating schema of CGIs had a weak point: every time we received
a request, the web server launched a process to run the CGI program. In
addition, because most CGIs were written in an interpreted language (PERL,
Python etc.) or a language that required run-time environment (VisualBasic,
Java, etc.), it represented a heavy load for the server machine, if the web had
several CGI accesses, this led to serious problems.

Hence, alternatives to CGIs began to be developed to solve this serious
performance issue. Two main solutions were devised. Firstly, systems were
designed for executing modules that were more integrated with the server so
as to prevent the latter from having to instantiate and execute a multitude
of programs. The other solution was to equip the server with a programming
language interpreter (RXML, PHP, VBScript, etc.) allowing us to include the
pages in the code so that the server could execute them, thus cutting down

response time.

It was then that the number of architectures and programming languages
allowing us to develop web applications skyrocketed. All used one of the
above two solutions but the most common and widespread were those that
combined the two, i.e. an integrated programming language allowing the
server to interpret commands that we "embed" in HTML pages and a system
for executing programs more closely linked with the server that does not have
the performance problems of CGIs.

During this course, we will look in more detail at perhaps the most successful
and powerful of these approaches, the one used by Sun Microsystems in its
Java system, integrated by two components: a language allowing us to embed
interpretable code in HTML pages, which the server translates to executable

GNUEFDL ¢ PID_00148404 15

programs, JSP (Java Server Pages) and a programming mechanism closely
linked to the server with a performance far superior to conventional CGIs,

called Java Servlet.

Another of the more successful technologies widely used on the Internet is the
programming language interpreted by the PHP server. This language allows us
to embed HTML in programs, with syntax from C and PERL and which, with
its ease of learning, simplicity and power, is becoming a very widespread tool
in some developments.

Other Web application programming methods also have their market,
including moc_perl for Apache, RXML for Roxen, etc., but many are closely
related to a specific web server.

Introduction to web applications

GNUEFDL PID_00148404 17

Bibliography

Goodman, D. (1998). Dynamic HTML. The Definitive Reference. O'Reilly.

Musciano, C.; Kennedy, B. (2000). HTML & XHTML: The Definitive Guide. O'Reilly.
Raggett, D.; Lam, J.; Alexander, I; Kmiec, M. (1998). Raggett on
HTML 4. Addison Wesley Longman Limited. Chapter 2 available online
at:http://www.w3.org/People/Raggett/book4/ch02.html.

Rosenfeld, L.; Morville, P. (1998). Information Architecture for the World Wide Web. O'Reilly.

World Wide Web (W3) Consortium (2003).http://www.w3.org/Consortium/. World Wide
Web Consortium.

Introduction to web applications

Annex

PID_00148406

Universitat Oberta
de Catalunya

www.uoc.edu

GNUEFDL ¢ PID_00148406 Annex

Copyright © 2010, FUOC. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation

License"

GNUEFDL ¢ PID_00148406 Annex

Index

Annex B. GNU Free Documentation License..................cccovvveeeennnnnn. 5

GNUEFDL ¢ PID_00148406 5

1. Annex B. GNU Free Documentation License

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA Everyone is permitted
to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

BO.1. Preamble

The purpose of this License is to make a manual, textbook, or other functional
and useful document free in the sense of freedom: to assure everyone the
effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves
for the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of copyleft which means that derivative works of the
document must themselves be free in the same sense. It complements the
GNU General Public License, which is a copyleft license designed for free

software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction

or reference.

B.2. Applicability and definitions

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be distributed
under the terms of this License. Such a notice grants a world-wide, royalty-free
license, unlimited in duration, to use that work under the conditions stated
herein. The Document below refers to any such manual or work. Any member
of the public is a licensee, and is addressed as you You accept the license if
you copy, modify or distribute the work in a way requiring permission under
copyright law.

A Modified Version of the Document means any work containing the Document
or aportion of it, either copied verbatim, or with modifications and/or
translated into another language.

Annex

GNUEFDL ¢ PID_00148406 6

A Secondary Section is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or
authors of the Document to the Document's overall subject (or to related
matters) and contains nothing that could fall directly within that overall
subject. (Thus, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship could
be a matter of historical connection with the subject or with related matters,
or of legal, commercial, philosophical, ethical or political position regarding
them.

The Invariant Sections are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that
the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections. If the Document does
not identify any Invariant Sections then there are none.

The Cover Texts are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text may be at most 5 words, and
a Back-Cover Text may be at most 25 words.

A Transparent copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public,
that is suitable for revising the document straightforwardly with generic text
editors or (for images composed of pixels) generic paint programs or (for
drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable
for input to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart or
discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy
that is not Transparent is called Opaque.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or
XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary
word processors, SGML or XML for which the DTD and/or processing tools
are not generally available, and the machine-generated HTML, PostScript or
PDF produced by some word processors for output purposes only.

Annex

GNUEFDL ¢ PID_00148406 7

The Title Page means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License
requires to appear in the title page. For works in formats which do not have
any title page as such,Title Page means the text near the most prominent

appearance of the work's title, preceding the beginning of the body of the text.

A section Entitled XYZ means a named subunit of the Document whose title
either is precisely XYZ or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ stands for a specific section
name mentioned below, such as Acknowledgements, Dedications, Endorsements,
or History. To Preserve the Title of such a section when you modify the
Document means that it remains a section Entitled XYZ according to this
definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License.

B.3. Verbatim copying

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the copyright
notices, and the license notice saying this License applies to the Document
are reproduced in all copies, and that you add no other conditions whatsoever
to those of this License. You may not use technical measures to obstruct
or control the reading or further copying of the copies you make or
distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the

conditions in section 3.

You may also lend copies, under the same conditions stated above, and you

may publicly display copies.

B.4. Copying in quantity

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document's
license notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front cover must
present the full title with all words of the title equally prominent and visible.

Annex

GNUEFDL ¢ PID_00148406 8

You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and

satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete
Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution
of Opaque copies in quantity, to ensure that this Transparent copy will remain
thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers)
of that edition to the public.

It is requested, but not required, that you contact the authors of the Document
well before redistributing any large number of copies, to give them a chance
to provide you with an updated version of the Document.

B.5. Modifications

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the
role of the Document, thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it. In addition, you must do
these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if there
were any, be listed in the History section of the Document). You may use the
same title as a previous version if the original publisher of that version gives

permission.

B. List on the Title Page, as authors, one or more persons or entities responsible
for authorship of the modifications in the Modified Version, together with at
least five of the principal authors of the Document (all of its principal authors,
if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

Annex

GNUEFDL ¢ PID_00148406 9

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the

other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the
public permission to use the Modified Version under the terms of this License,
in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and
required Cover Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled History. Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no section Entitled History in
the Document, create one stating the title, year, authors, and publisher of the
Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on. These
may be placed in the History section. You may omit a network location for a
work that was published at least four years before the Document itself, or if
the original publisher of the version it refers to gives permission.

K. For any section Entitled Acknowledgements or Dedications Preserve the Title
of the section, and preserve in the section all the substance and tone of each
of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered part

of the section titles.

M. Delete any section Entitled Endorsements Such a section may not be

included in the Modified Version.

N. Do not retitle any existing section to be Entitled Endorsements or to conflict
in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.
If the Modified Version includes new front-matter sections or appendices

that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections as

Annex

GNUEFDL ¢ PID_00148406 10

invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version's license notice. These titles must be distinct from any other

section titles.

You may add a section Entitled Endorsements, provided it contains nothing
but endorsements of your Modified Version by various parties--for example,
statements of peer review or that the text has been approved by an
organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts
in the Modified Version. Only one passage of Front-Cover Text and one of
Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old
one, on explicit permission from the previous publisher that added the old

one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

B.6. Combining documents

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions,
provided that you include in the combination all of the Invariant Sections
of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice, and that you preserve
all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else
a unique number. Make the same adjustment to the section titles in the list of

Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled History in the
various original documents, forming one section Entitled History; likewise
combine any sections Entitled Acknowledgements, and any sections Entitled
Dedications. You must delete all sections Entitled Endorsements.

B.7. Collections of documents

Annex

GNUEFDL ¢ PID_00148406 11

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each

of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

B.8. Aggregation with independent works

A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or
distribution medium, is called an aggregate if the copyright resulting from the
compilation is not used to limit the legal rights of the compilation's users
beyond what the individual works permit. When the Document is included in
an aggregate, this License does not apply to the other works in the aggregate
which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of
the Document, then if the Document is less than one half of the entire
aggregate, the Document's Cover Texts may be placed on covers that bracket
the Document within the aggregate, or the electronic equivalent of covers if
the Document is in electronic form. Otherwise they must appear on printed
covers that bracket the whole aggregate.

B.9. Translation

Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing
Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections. You
may include a translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions of those
notices and disclaimers. In case of a disagreement between the translation
and the original version of this License or a notice or disclaimer, the original

version will prevail.

If a section in the Document is Entitled Acknowledgements, Dedications, or
History, the requirement (section 4) to Preserve its Title (section 1) will
typically require changing the actual title.

Annex

GNUEFDL ¢ PID_00148406 12

B.10. Termination

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to copy,
modity, sublicense or distribute the Document is void, and will automatically
terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

B.11. Future revisions of this License

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new
problems or concerns. Seehttp://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License or any
later version applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

B.12. Addendum: How to use this License for your documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices
just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts. A copy of the license is included in the

section entitled GNU Free Documentation License

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,

replace the with...Texts. line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the situation.

Annex

GNUEFDL ¢ PID_00148406 13 Annex

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of free
software license, such as the GNU General Public License, to permit their use

in free software.

Server installation

Carles Mateu

uoC

§c|.|
= .

GNUFDL e PID_00148400 Server installation

Copyright © 2010, FUOC. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation

License"

GNUEFDL ¢ PID_00148400

Server installation

Index
1. Basic web server concepts.............ccccoeiiiiiiiiiiiiiiiieneee e
1.1, Static file SEIVICEcccevviiiiriiiiiiiieieeeece e
1.2. Security and authenticationc..cc.cccccevriiiiiiiiiiiieeeniiieeeeene
1.3. DynamicC CONteNtcceeiiiiiiiiiiiiiiiiieieteeeeeee e
1.4, ViIrtual SEIVETScceiriiiiiiiiiiiiieiiiee ettt
1.5, EXtra featuresccccccoviiiiniiiniiiiiiiiiicececee e
1.6. Acting as representativesccccccvvvviiiiiiiiiiiiicieeiiiiiniceeeee
1.7. Additional ProtoColscceeereiiiieiiiriiiiee e
2. APACRE SEIVEYcoooiiiiiiiiiiiiiee ettt et
2.1. The birth of APacheccccoeiiiiiiiiiiiiiiiie e
2.2. Installing Apacheccccccoiiiniiiiniiiii
2.2.1. Compiling from SOUICEccceciiiiiiiiiniiiiniiiiiniieinnne,
2.2.2. Installation with binary packagescccccccervvvneeeinnnne
2.3. Configuring APacheccccooveviiieiiiiiiiiiiieecere e
2.3.1. Configuration file structureccccoeceereiriiinieernncnnneen.
2.3.2. Global configuration directivescccccccceeiriiinecennnnns
2.3.3. Main direCtiVesccccoumiriiiieieieiieeeeeeiceeeeeeeee e e e
2.3.4. Section dir€Ctivescccooevviiiiiriiiiieiiiiiiieee e
2.3.5. VIrtual SEIVEISccccceirviiiieiiiiiiieenieiee et
3. Other free software web Servers...............ccccoevviiiiiniiniiiinniineennn.
3.1, AOLSEIVET .eeviiiiiiiiiiiiiieieceettt ettt et
3.2. Roxen and Caudiummccccoevviiieiiiiiiiieiiniiiiecneeee e
3.30 HREPA e
34, JEHY e
4. DPractical: installing a web server................cccccceieiiiiieiiiniieeenn.
4.1, EXEICISE .euvriiiiiiiiiiiiiiiiiiiitiiicccc
4.2, SOIUTION .eeiiiiiiiiiiiiiitee ettt

BiDHHOZIrapIY.....coooiiiiiiiiii ettt e st e e e

O 00 N N NN O o n

10
10
11
11
12
13
13
15
15
17
18

21
21
21
22
23

24
24
24

27

GNUFDL e PID_00148400 5 Server installation

1. Basic web server concepts

A web server is a program that deals with and responds to the diverse requests
performed by browsers, providing the requested resources through HTTP or
HTTPS protocol (the secure, encrypted and authenticated version of HTTP). A
basic web server has a very straightforward schema of operation that executes
the following loop infinitely:

1) It waits for requests on the assigned TCP port (the W3C recommendation
port for HTTP is 80).

2) It receives a request.

3) It looks for the resource in the request string.

4) It sends the resource by the same connection through which it received
the request.

5) It returns to step 2.

A web server following the above steps would meet the basic requirements of
HTTP servers but could only serve static files.

The above schema is the basis for the design and building of all existing HTTP
server programs, which vary only in the type of request (static pages, CGI,
Servlets etc.) that they can serve depending on whether they are multi-process,
multi-threaded, etc. We will now look in detail at some of the main features
of web servers, which obviously expand on the above schema.

1.1. Static file service

All web servers must at least be able to serve the static files located on a specific
part of the disc. One essential requirement is to be able to specify which part
of the disc will be served. We do not recommend having the server force you

to use a specific directory (although you can set up a default one).
Most web servers also allow you to add other directories to be served,
specifying the point of the virtual "file system" on the server where they will

be located.

For example, we can have the following situation:

Disc directory Web directory
/home/apache/html /
/home/company/docs /docs
/home/joseph/report /report-2003

GNUEFDL ¢ PID_00148400 6

In this case, the server should translate the following web addresses as:

URL Disc file

/index.html /home/apache/html/index.html
/docs/manuals/product.pdf /home/company/docs/manuals/product.pdf/
/company/who.html /home/apache/html/company/who.html
/report-2003/index.html /home/joseph/report/index.html

Some web servers also allow us to specify security directives (for instance, the
addresses, users, etc. for which a directory will be visible). Others allow us to
specify which files will be considered the directory index.

1.2. Security and authentication

Most modern web servers allow us to control security and user authentication
from the server program.

The simplest method of control is with the use of .htaccess files. This security
system is derived from one of the first web servers (NCSA httpd) and involves
placing a file called .htaccess in any web content directory to be served. In
this file, we indicate which users, machines, etc. have access to the files and
subdirectories of the directory in which the file is located. As the NCSA server
was the most widespread server for a long time, most modern servers allow

use of .htaccess files respecting the syntax of the NCSA server.

Others allow us to specify service rules for directories and files in the web
server configuration, specifying in the latter the users, machines, etc. that can

access the indicated resource.

As for authentication (validation of the username and password provided by
the client), web servers offer a wide variety of features. At the very least, most
allow us to provide the web server with a file containing the usernames and
passwords to validate those sent by the client. In all events, it is common for
servers to provide gateways allowing us to delegate the tasks of authentication
and validation to different software (such as RADIUS, LDAP etc). If we use an
operating system like Linux, which has an authentication infrastructure like
PAM (Pluggable Authentication Modules), we can use this feature as a way to
authenticate the web server. This enables us to use the many methods available
in PAM to authenticate against diverse security systems.

Server installation

GNUEFDL ¢ PID_00148400 7

1.3. Dynamic content

One of the most important aspects of the chosen web server is the level of
support offered for serving dynamic content. Since most served web content
is generated dynamically rather than coming from static pages, and this is a
spiralling trend, the web server's support for dynamic content is one of the
most critical factors to take into account when making your choice.

Most web servers offer CGI support (remember that CGIs are the oldest and
most straightforward method of generating dynamic content). Many offer
support for certain programming languages (basically interpreted), such as
PHP, JSP, ASP, Pike, etc. We strongly recommend that the web server you
use provides support for one of these languages (the most widespread being
PHP), without taking into account JSP, which usually requires external web
server software to work (such as a servlet container). There are many products
available in this area but one basic consideration to bear in mind when
choosing a server programming language is whether you want a very W3C
standardised language so that your application will not need to depend on a
specific web server or architecture, or whether portability is not a priority and,
in contrast, the features of a given programming language are.

1.4. Virtual servers

One feature that is fast gaining supporters and users, particularly among
Internet service providers and domain hosting companies, is the ability of
some web servers to provide multiple domains with a single IP address,
discriminating between the various hosted domains by the name of the
domain sent in the header of the HTTP request. This feature allows for a more

rational and economical administration of IP addresses, a resource in short

supply.

If we require several server names (perhaps because we offer hosting or for
some other reason), we need to make sure that the chosen web server provides
these features and that the virtual server support allows us to use a different
configuration for each server (directories, users, security etc). Ideally, each

server will behave as though it were a different computer.

1.5. Extra features

Web servers offer many extra features to set themselves apart from the
competition. Some are very useful and may influence our choice of web server.
However, be aware that if you use any of these characteristics or they become
essential for you, you could be forced to use a certain web server even though
you may wish to change at some point in the future.

Server installation

GNUEFDL ¢ PID_00148400 8

Some of the additional features of open source web servers include the

following.
Spelling (Apache), this feature of Apache is used to define an error page for
resources not found. It suggests similar names of resources to that requested

by users in case they made a typing error.

Status (Apache), displays a Web page generated by the server displaying its
operating status, response level, etc.

RXML Tags (Roxen), adds certain tags to HTML (HTML commands), improved
for programming and generating dynamic content.

SQL Tags (Roxen), adds Roxen extended HTML (RXML) commands for access
to SQL databases from the HTML pages.

Graphics (Roxen), adds Roxen extended HTML (RXML) commands to
generate graphics, titles, etc., thus omitting the need for graphic design work.

bfnsgd (AOLServer), mod_gd (Apache), enables graphics to be produced from
text and True Type fonts.

mod_mp3 (Apache) ICECAST, MPEG (Roxen), allows us to convert the web

server into a music server (with streaming etc).

Throttle (Roxen), mod_throttle (Apache), offers means for limiting HTTP
service speed, whether by the user, virtual server, etc.

nsxml (AOLServer), tDOM (AOLServer), mod_xslt (Apache), allows us to
transform XML files using XSL.

Kill Frame (Roxen), sends a code with each served web page to stop the web

from turning into a frameinside another web page.

1.6. Acting as representatives

Some web servers can be used as intermediate servers (proxy servers).

Intermediate servers can be used for a range of purposes:

¢ As browsing accelerators for our users (use as proxy cache).

e As front-end accelerators for a web server. Using several web servers
to replicate access to a master server (reverse proxy or HTTP server

acceleration).

e As frontals for a server or protocol.

Server installation

GNUEFDL ¢ PID_00148400 9

Some web servers can be used as intermediate servers for some of the
above uses. Nonetheless, for the first two (browser or front-end accelerators),
there are much more efficient specific free software programs, such as Squid
(http://www.squid-cache.org/) which is considered one of the best proxy

products available.

There are modules for diverse web servers that can be used as front-ends for
other servers specialising in another type of service. For instance, Tomcat
is an execution engine for servlets and JSP, and incorporates a small HTTP
server to deal with static content requests and to redirect the rest to the
servlet execution engine (web application development mechanisms, servlets
and JSPs), but besides including a web server, Apache is the web server par
excellence for use with Tomcat. Thus, there is an Apache module that links
up with Tomcat (this module is called mod_jk2).

1.7. Additional protocols

Besides dealing with and serving HTTP (and HTTPS) requests, some servers can
deal with and serve requests from other protocols or protocols implemented
on HTTP. Some of these can become basic requirements of our system. Hence,

their existence on the web server can be essential.

Server installation

GNUEFDL ¢ PID_00148400 10

2. Apache server

Apache is a robust, free software web server implemented through a
collaborative effort that offers equivalent features and functionality to
commercial servers. The project is supervised and led by a group of volunteers
from all over the world who use the Internet and web to communicate, plan
and develop the server and its related documentation. These volunteers are
known as Apache Group. In addition to Apache Group, hundreds of people
have contributed to the project with code, ideas and documentation.

2.1. The birth of Apache

In February 1995, the most popular Internet web server was a public domain
server developed at NCSA (National Center for Supercomputing Applications
of the University of Illinois). However, when Rob McCool (the main developer
of the server) left NCSA in 1994, the program's development was reduced
to virtually nothing. Development then passed into the hands of people in
charge of websites who gradually made improvements to their servers. A group
of these individuals, using e-mail as the basic tool for their coordination,
agreed to share these improvements (in the form of patches). Two of these
developers, Brian Behlendorf and Cliff Skolnick, set up a mailing list, a space
in which to share information and a server in California where the main
developers could work. At the start of the following year, eight programmers
formed what would become known as the Apache Group.

Using the NCSA 1.3 server as a basis for their work, they added all published
error corrections and the most valuable improvements that they came across.
They tested the result on their own servers and published what would be the
first official version of the Apache server (0.6.2, in April 1995). Coincidentally,
around the same time, NCSA resumed development of the NCSA server.

At this point in time, the development of Apache followed two parallel lines:
one by the group of developers working on 0.6.2 to produce the 0.7 series,
incorporate improvements, etc., and another where the code was completely
rewritten to create a new modular architecture. In July 1995, the existing
improvements for Apache 0.7 were migrated to this new architecture, which
was made public as Apache 0.8.

On 1 December 1995, Apache 1.0 appeared, which included documentation
and a number of improvements in the form of embedded modules. Shortly
afterwards, Apache surpassed the NCSA server as the most widely used on the
Internet, a position that it has maintained to this day. In 1999, the members of

Server installation

GNUEFDL ¢ PID_00148400 11

the Apache Group founded the Apache Software Foundation, which provides
legal and financial support to the development of the Apache server and the
offshoots of this project.

2.2. Installing Apache

There are two main ways to install Apache: we can either compile the source
code or we can install it from a binary package for our operating system.

2.2.1. Compiling from source
To compile Apache from source code, we must first obtain the latest version
from the Apache site (http://httpd.apache.org). After downloading, you will

need to follow these steps:

Decompress the file you have just downloaded, which will create a directory
in which the server sources will be located.

Once inside this directory, the steps are as follows:

e Configure the code for compilation, for which you will need to execute:

$./configure

There are a number of parameters for adjusting the compilation of Apache.

The most common important of these are:

Parameter Meaning

--prefix Directory where you wish to install Apache
- -enabl e- nodul es Modules to enable

=LI ST- MODULES Shared modules to be enabled
- -enabl e- nods- shar ed Dynamic cache

=LI ST- MODULES Dynamic cache on disc
--enabl e- cache Cache module in memory

- - enabl e- di sk-cache Automatic MIME detection
--enabl e-mem cache Monitoring of user session

- -enabl e- m me- magi ¢ Apache-proxy module
--enabl e-usertrack Apache-proxy module to CONNECT
- -enabl e- proxy Apache-proxy module for FTP
- -enabl e- proxy- connect |HTTP Apache-proxy module
--enabl e-proxy-ftp SSL/TLS support (mod_ssl)
--enabl e-proxy-http HTTP protocol handling
--enabl e- ssl WebDAV protocol handling
--enabl e-http Optimised CGI support

- -enabl e- dav CGl support
--disable-cgid CGl support

- -enabl e- cgi Optimised CGI support

- -di sabl e-cgi Virtual host support

--enabl e-cgi d

--enabl e-vhost -al i as

After configuring the source code, if no errors have been detected, it can now

be compiled. To do so, execute:

Server installation

GNUEFDL ¢ PID_00148400 12

$ make

Note that, at the very least, GNU Make and GNU CC are required to compile
Apache.

After compiling, we can install it in the directory designated as the destination
in the previous configuration with conf i gur e. This step is carried out using
one of the objectives already defined for make. Specifically, we will use:

$ make install
Once installed in its location, in the bin subdirectory of the installation
directory (the one we specified with prefi x), we will find a program called

apachect | , which we can use to control the server. To start it:

$cd <installation directory>/bin

$./apachect!| start

To stop it:

$cd <installation directory>/bin

$./ apachect| stop
2.2.2. Installation with binary packages
Most free software operating systems, particularly Linux distributions, include
Apache server. However, it is often necessary to install Apache (either because
we did not install it previously, we need a new version or because we need to

reinstall it due to problems with a file).

Instructions for installing Apache on some of the most well known Linux

distributions now follow.

Redhat/Fedora

Redhat and Fedora distributions have included Apache server for some time

now, so the installation process is very straightforward.

From the appropriate server (either redhat.com or fedora.us), download the
Apache binary package (in RPM format). Check that you are downloading the
latest version for your distribution because both Redhat and Fedora publish
updates to fix bugs or problems. Once you have the package, install it with:

rpm-ihv httpd-x.x.x.rpm

If it is already installed, you can upgrade with the command:

Server installation

GNUFDL e PID_00148400 13 Server installation

rpm - Uhv httpd-x.x.x.rpm

For Fedora, since this distribution uses an apt repository, Apache can be

updated or installed using:
apt-get install httpd
You will also need to install any additional modules, such as:
e mod_auth_*
e mod_python

e mod_jk2
e mod_perl

e mod_ssl
* php

e etc.
Debian

Installing Apache on Debian is very easy. You simply need to execute the

following command:

apt-get install apache

which will install Apache or, if it is already installed, update to the latest

version.

2.3. Configuring Apache

After installing the server, you will need to configure it. By default, Apache
comes with a minimum configuration to boot the server on the default
TCP service port (port 80) and serves all files from the folder specified
by the configuration directive Document Root . Apache's configuration file
is called httpd.conf, and is found in the conf subdirectory of the
installation directory. The htt pd. conf file is an ASCII file containing

Apache's configuration directives.

2.3.1. Configuration file structure

The httpd. conf file is divided into three basic sections, although the
directives of each section may seem mixed up and disorganised. These sections
are:

¢ Global parameters
e Operating directives
e Virtual hosts

GNUEFDL ¢ PID_00148400 14

Some parameters are general for the server while others can be configured
independently for all directories and/or files or for a specific virtual server.
In these cases, the parameters are located in sections indicating the scope of

application of the parameter.

The most important sections are:

<Di r ect or y>: the parameters located in this section will only be applied to
the specified directory and its subdirectories.

<Di r ect or yMat ch>: like Directory, but accepts regular expressions in the
name of the directory.

<Fi | es>: the configuration parameters control access to the files through
their name.

<Fi | esMat ch>: as for Files, but accepts regular expressions in the name of
the file.

<Locat i on>: controls file access through the URL.

<Locat i onMat ch>: as for Location, but accepts regular expressions in the
name of the file.

<Vi r t ual Host >: the parameters only apply to the requests directed to this
host (name of server or IP address or TCP port).

<Proxy>: the parameters only apply to the proxy requests (it therefore
requires mod_proxy to be installed) matching the URL specification.

<Pr oxyMat ch>: like Proxy, but accepts regular expressions in the specified
URL.

<| f Def i ne>: applied if a specific parameter is defined in the command line

(with the -D option) when booting the server.

<| f Modul e>: the parameters apply if the specified module is loaded (with
LoadModul e).

If there is a conflict between parameter specifications, the order of precedence
is as follows:

1) <Directory>and. htaccess

2) <DirectoryMatch>and <Di rectory>
3) <Files>and<Fil esMat ch>

4) <Location>and <Locati onMat ch>

Server installation

GNUEFDL ¢ PID_00148400 15

For <Vi r t ual Host >, these directives are always applied after applying the
general directives, so a Virtual Host can always overwrite the default

configuration.

A configuration example would be:

<Directory /hone/*/public_htm >
Opti ons | ndexes

</Directory>

<FilesMatch \.(?i:gif jpe?g png)$>
Order al |l ow, deny
Deny from al |

</ Fi | esMat ch>

2.3.2. Global configuration directives

Some configuration directives are never applied to any of the above sections
(directories, etc.); they are directives that affect all web servers. The main ones
are:

Ser ver Root : specifies the location of the root directory in which the web
server is located. From this directory, we can find the configuration files, etc.

If the server is correctly installed, this should never be changed.

KeepAl i ve: specifies whether persistent connections will be used to deal with
all requests from a user with the same TCP connection.

Li st en: specifies the port where requests will be dealt with. By default, TCP
port 80 is used. We can also specify which IP addresses will be used (if the

server has more than one); by default all of those available are used.

LoadMobdul e: with LoadMbdul e, we can load the additional Apache modules

on the server. The syntax is:
LoadModul e nodul e fil emodul e
We must have installed nod_so to be able to use it.
2.3.3. Main directives
There are some directives that are generally in the main configuration section,

rather than those mentioned above (some of these cannot be in any section
and must be in the main one). These are:

Server installation

GNUEFDL ¢ PID_00148400 16

Ser ver Admi n: used to specify the e-mail address of the administrator. This
address can appear as a contact address in error messages to allow users to

report an error to the administrator. It cannot be inside any section.

Ser ver Nane: specifies the name and TCP port that the server uses to identify
itself. These can be determined automatically but it is preferable to specify
them. If the server has no DNS name, it is best to enter the IP address. It cannot
be contained in a section. The syntax is:

Server Nane naneaddr ess: port asin:

Ser ver Nane www. uoc. edu: 80

Server Nane 192.168.1.1:80

Docunent Root : the root directory from which documents are served. By
default, this is the htdocs directory, located in the Apache installation folder.
It cannot be contained within any section except for Vi rt ual Host . It has a
<Di r ect or y> section in which the configuration parameters of this directory
are set.

Di r ect or yl ndex: specifies the file served by default for each directory if none
are specified in the URL. By default, this is index.html. So, if we were to type
www.uoc.edu in our browser, the server would send www.uoc.edu/index.html
by default. More than one file may be specified and the order in which this
name is indicated will determine the serving priority. The directive can be
located either inside or outside any section.

AccessFi | eNane: specifies the name of the configuration file if other than
.htaccess. For this configuration to work, the AllowOverride directive must
have the correct value. It cannot be inside any section. The default filename
is. ht access.

Er ror Docunent : this directive establishes the server configuration in the

event of an error. Four different configurations can be set:
e Display an error text

e Redirect to a file in the same directory

e Redirect to a file on our server

¢ Redirect to a file not on our server

The directive syntax is Err or Docunent errorcode acti on.

This directive can be located either in a section or in the global configuration,
for example:

Error Docunent 404 /notfound. htni .

Server installation

GNUFDL e PID_00148400 17 Server installation
In a file is not found, the file notfound.html will be displayed.

Alias: the Al'i as and Al i asMat ch directives are used to define access to

directories outside Docunent Root. The syntax is as follows: Alias wurl

directory

For example:

Ali as /docs /hone/ docunents

This will have a request served to http://www.uoc.edu/docs/manual from
/home/documents/manual.

User Di r: this directive is used to tell Apache that a subdirectory of the
working directory of the system users serves to store their personal page.

For example:

public UserDir

This will make the page stored in the user directory test, in the public
subdirectory, accessible as:

http://ww. uoc. edu/ ~t est/i ndex. ht m
2.3.4. Section directives
The configuration of most location sections (Di rect ory, Locati on, etc.)
includes a series of directives allowing us to control access to their contents.
These directives are supplied by the module nod_access.
Al | ow: allows us to specify who is authorised to access the resource. We can
specify IP addresses, computer names, parts of the name or address and even

variables of the request. We can use the keyword al | to indicate all clients.

Deny: allows us to specify who is not allowed to access the resource. The same

options are available as for Al | ow.

Or der : allows us to fine-tune the operation of the directives Al | owand Deny.
We have two options:

e Al ow, Deny. Access is denied by default and only clients that meet the
specifications of Allow and do not meet those of Deny are given access.

GNUFDL e PID_00148400 18 Server installation

e Deny, Al | ow. Access is allowed by default and only clients that do not
meet the specifications of Deny and do meet those of Allow are given

access.

2.3.5. Virtual servers

Apache supports the serving of a number of websites with a single server. For
this, it offers facilities for the creation of virtual domains based on diverse IP
addresses or IP names.

Apache was one of the first servers to support virtual servers without IP,
based on name instead. This considerably simplifies server administration
and generates significant savings in IP addresses, which are normally in short
supply. Virtual name servers are totally transparent for the client with the only
possible exception of very old browsers, which do not send the Host : header
with requests.

Virtual by IP address servers

To deal with several virtual servers, each with its own IP address, we need to
use the configuration section called Vi r t ual Host . In this section, we define
each of the servers with its own configuration and IP address. An example of
this would be:

<Virtual Host 192.168.1. 1>
Server Adnmi n webnast er @ioc. edu
Docunent Root /web/ uoc
Ser ver Nane www. uoc. edu
ErrorLog /web/logs/uoc_error_|og
TransferLog /web/| ogs/ uoc_access_| og
</ Vi rt ual Host >
<Virtual Host 192. 168. 254. 254>
Server Admi n webnast er @soci ados. uoc. edu
Docunent Root /web/ asoci ados
Server Nane asoci ados. uoc. edu
ErrorLog /web/| ogs/ asoci ados_error _| og
Transf erLog /web/| ogs/ asoci ados_access_| og

</ Vi r t ual Host >

As we can see, this example defines two web servers, each with a different IP
and name. Each has its own Docunent Root, etc.

To use virtual IP servers, the server system must have the different IP addresses
to be served configured in the operating system.

GNUEFDL ¢ PID_00148400 19

Virtual name servers

To deal with a number of servers all using the same IP address, we need
to use the section called Vi rtual Host, which will allow us to define the
parameters of each server. If our needs are the same as those in the example
of virtual IP address servers with a single address, we should use the following
configuration:

NameVi r t ual Host *: 80
<Vi rtual Host *: 80>
Server Adni n webnast er @oc. edu
Ser ver Name www. uoc. edu
Docunent Root /web/ uoc
ErrorLog /web/ | ogs/uoc_error_| og
TransferLog /web/logs/uoc_access_| og
</ Vi r t ual Host >
<Virtual Host *:80>
Server Adm n webmast er @uioc. edu
Ser ver Name asoci ados. uoc. edu
Docunent Root /web/ asoci ados
ErrorLog /web/| ogs/asoci ados_error_| og
TransferLog /web/| ogs/ asoci ados_access_| og

</ Vi rt ual Host >

We can use an IP address in place of * to assign, for example, a group of virtual
name servers to this IP and another group to another.

We require a special use of name server directives when our server has two IP
addresses but we have assigned the same name to both, for instance, when we
have an intranet and an Internet connection with the same name. In this case

we can serve the same contents as follows:

NarmeVi rt ual Host 192. 168.1. 1

NameVi rt ual Host 172. 20. 30. 40

<Vi rtual Host 192.168.1.1 172.20. 30. 40>
Docunent Root /ww/ server 1
Server Nane server. uoc. edu
Server Al i as server

</ Vi r t ual Host >

This configuration can be used to serve the same Web page to the intranet and
the Internet. Note the use of an alias for the server so that we do not have to
use domains in the intranet.

There is also a default virtual server specification _def aul t _ for requests not
served by another.

Server installation

GNUEFDL ¢ PID_00148400 20

<Virtual Host _default_>
Docunent Root /ww/ def aul t
</ Vi r t ual Host >

We can use _def aul t _ with a port number to specify different default servers

for each port.

Apache also allows much more complex configurations of virtual servers,
which is particularly useful for mass servers, etc. You will find an excellent
reference guide on the Apache project website, along with useful advice and
configuration recipes.

Server installation

GNUEFDL ¢ PID_00148400 21

3. Other free software web servers

There are many free software HTTP servers, the majority of which have been
eclipsed by the fame of Apache. Some of these have features making them
very interesting.

3.1. AOLServer

AOLserver is the free software web server developed by AOL (America Online,
the world's leading Internet provider). AOL uses AOLserver as the main web
server for one of the web environments with the biggest traffic and Internet
use. AOLserver is a multi-threaded TCL-based web server with many features
for use in large-scale environments or dynamic websites. All AOL domains
and web servers, more than two hundred, which give support to thousands of

users, millions of connections, etc., use AOLserver.

AOLserver has a wide user base, thanks in particular to its integration with
OpenACS, a very powerful free software content management system, initially
developed by a company called ArsDigita and subsequently released under the
GPL. The AOLserver-OpenACS tandem forms the infrastructure for complex
and powerful web projects such as dotLRN (a virtual open source university
campus).

3.2. Roxen and Caudium

Roxen is a web server published under GNU licence by a group of Swedish
developers that later set up the company Roxen Internet Services. The Roxen
server (previously Spinner and Spider) has always attracted attention for
the many functionalities it offers to users. This server, developed in Pike
programming language, offers hundreds of modules to users, allowing us to
easily develop very rich, dynamic websites, etc. with no tools other than the

Roxen server. The main features of Roxen are:

e Cross-platform, can run on a multitude of platforms: Windows, Linux,
Solaris, MAC OS X, etc.

e Free software.

e Avery rich and user-friendly web-based administration interface.

e Integrated graphic support that, with just a few RXML tags (Roxen HTML
extension), allows the generation of images, titles, graphics, etc.

Server installation

GNUFDL e PID_00148400 22 Server installation

e Access to integrated databases, allows access to PostgreSQL, Oracle,
MySQL, etc.

¢ Integrated MySQL database.

e Server programming with RXML, Java, Perl, PHP and CGIs.

e Excellent cryptographic support.

¢ Modular architecture allowing server extensions to be uploaded and
downloaded when in operation.

e DPlatform independence for modules developed by the user.

In mid-2000, following the appearance of Roxen version 2.0, which ended the
latter's compatibility with previous versions, particularly 1.3 (the most widely
used), a group of developers, including some of the founders of Roxen, began
a new project based on Roxen version 1.3 with the aim of developing a web
server that maintained compatibility with the latter. This web server is called
Caudium. At the present time, both Roxen and Caudium have a promising
future, good relations (their developers try to maintain compatibility between
the APIs of the two systems) and a loyal user base.

Roxen is one of the few examples of an excellent product that has always
featured among the fastest and most stable web servers with the most features
and facilities but which has not achieved success because it was always eclipsed
by Apache.

3.3. thttpd

thttpd is an extremely small, very fast, portable and secure HTTP server.
It offers the same features as conventional servers such as Apache but its

performance is far superior under extreme loads.

Its use as a general-purpose web server is rather less widespread, usually being
limited instead to acting as a rapid server of static content, often supporting
Apache servers for serving static binary content such as images, etc., leaving
the dynamic or more complex pages for the Apache server. As an auxiliary of
Apache for serving static content, it has managed to reduce the load of the
main server to a hundredth of its original load.

GNUEFDL ¢ PID_00148400 23

3.4. Jetty

Jetty is a web server written entirely in Java that also incorporates a servlets
container. It is small and high-performance, making it one of the most
preferred for developing embedded products that require a HTTP server.
Although Jetty servers are rarely found operating in isolation, we do often
come across them as web servers embedded in products. For example:

¢ Integrated with application servers such as JBoss and Jonas.

e Integrated into the JTXA project as the basis for HTTP transport.

¢ Integrated into products such as IBM Tivoli, Sonic MQ and Cisco SESM
as a HTTP server.

e On most demo CDs in books on Java, servlets, XML, etc.

¢ Running on multiple embedded systems and pocket PCs.

Server installation

GNUFDL e PID_00148400 24 Server installation

4. Practical: installing a web server

4.1. Exercise
2-1 Download the Apache server code from the Internet and install it in a
subdirectory of your user directory. Make sure you install the most recent

version and that you have correctly installed the following modules:

e mod_access
e mod_cgi

2-2 Configure the server you have installed to respond to HTTP requests on
port 1234.

2-3 Configure the web server to serve the documents located in the web
subdirectory of the user's working directory.

2-4 Configure the web server to run CGI programs from the cgi directory of
the user's working directory.

4.2. Solution
2-1 After obtaining the Apache source code, you need to decompress it:

[carl esm@ofh n2]$ tar xvzf httpd-2.0.48.tar.gz
ht t pd- 2. 0. 48/

htt pd- 2. 0. 48/ os/

htt pd- 2. 0. 48/ os/ 0s2/

htt pd- 2. 0. 48/ 0os/ 0s2/ 0s. h

htt pd- 2. 0. 48/ os/ 0s2/ cor e. nk

htt pd- 2. 0. 48/ os/ 0s2/ confi g. ™

htt pd- 2. 0. 48/ os/ 0s2/ Makefile.in

htt pd- 2. 0. 48/ os/ 0s2/ cor e_header . def
htt pd-2. 0. 48/ i ncl ude/ ap_rel ease. h
htt pd-2. 0. 48/incl ude/. i ndent. pro
httpd-2.0.48/include/util_cfgtree. h

htt pd- 2. 0. 48/ acconfig. h
[carl esm@of h nR2] $

GNUEFDL ¢ PID_00148400 25

Once you have the source code in your directory, you can configure it for
compilation. First of all, you need to tell Apache where to install it. In this

case, we chose the apache subdirectory of our working directory.

You also need to make sure that the required modules have been included.

[carl esm@ofh n2]$ cd httpd-2.0.48

[carl esm@ofh httpd-2.0.48]% ./configure \
--prefix=/hone/ carl esnf apache \
- - enabl e- cgi

checking for chosen |ayout... Apache

checking for working nkdir -p... yes

checking build systemtype... i686-pc-Iinux-gnu

checki ng host systemtype... i686-pc-Iinux-gnu

creating srclib/pcre/ Makefile

creating test/Mkefile

config.status: creating docs/conf/httpd-std. conf
config.status: creating docs/conf/ssl-std.conf
config.status: creating include/ap_config_|layout.h
config.status: creating support/apxs
config.status: creating support/apachect
config.status: creating support/dbmmanage
config.status: creating support/envvars-std
config.status: creating support/|og_server_status
config.status: creating support/| ogresol ve. pl
config.status: creating support/phf_abuse_| og. cgi
config.status: creating support/split-logfile
config.status: creating build/rules. nk
config.status: creating include/ap_config_auto.h
config.status: executing default conmmands

[carl esm@of h httpd-2.0.48]%

Then comes the moment to start compiling:

[carl esm@of h httpd-2.0.48]$ nmake
Making all in srclib
make[1]: Entering directory '/srcs/httpd-2.0.48/srclib’
Making all in apr
make[2]: Entering directory '/srcs/httpd-2.0.48/srclib/apr'
Making all in strings
make[1] : Leaving directory '/srcs/httpd-2.0. 48’

If compilation is successful, you will be able to install Apache in your chosen
directory:

[carl esm@of h httpd-2.0.48]$ nmake install

Server installation

GNUFDL e PID_00148400 26 Server installation

Making install in srclib

make[1]: Entering directory '/srcs/httpd-2.0.48/srclib'
Maki ng install in apr

make[2] : Entering directory '/srcs/httpd-2.0.48/srclib/apr'
Making all in strings

nkdi r /hone/ carl esnl apache/ man

nkdi r /hone/ carl esml apache/ man/ manl

nkdir /hone/ carl esnml apache/ man/ man8

nkdi r /hone/ carl esnl apache/ manual

Installing build systemfiles

make[1] : Leaving directory '/srcs/httpd-2.0. 48’
[carl esm@of h httpd-2.0.48]% cd /hone/carlesnm apache/
[carl esm@of h apache] $ |'s

bi n bui | d cgi-bin conf error ht docs
i cons i ncl ude lib | ogs man manual
nmodul es

[carl esm@of h apache] $

You must then configure Apache with the requested parameters. To do this,
edit the / honme/ carl esm apache/ conf/ httpd. conf file and change the

following parameters:

Li sten 1234
Server Adm n adni n@ioc. edu
Docunent Root "/ hone/ car | esm web"
<Directory "/home/carl esnm web">
Opti ons | ndexes Fol | owSynii nks
Al l owOverride None
Order al | ow, deny
Al ow from al |
</Directory>
ScriptAlias /cgi-bin/ "/hone/carlesnicgi/"
<Directory "/hone/carl esm cgi">
Al l owOverride None
Opti ons None
Order all ow, deny
Al ow fromall

</Directory>

GNUFDL « PID_00148400 27
Bibliography
Laurie, Ben; Laurie, Peter (2002). Apache: The Definitive Guide, 3rd Edition. O'Reilly.

Bowen, Rich; Lopez Ridruejo, Daniel; Liska, Allan (2002). Apache Administrator's
Handbook. SAMS.

Wainwright, Peter (2002). Professional Apache 2.0. Wrox Press.

Redding, Loren E. (2001). Linux Complete. Sybex.

Server installation

Web page design

Carles Mateu

PID_00148397

Universitat Oberta
de Catalunya

www.uoc.edu

GNUFDL e PID_00148397 Web page design

Copyright © 2010, FUOC. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation

License"

GNUEFDL ¢ PID_00148397

Web page design

Index
INErOAUCHION.........cooiiiiiiiiiiceeeeee e e e e e e s e e e e aaeeeaeeeeeees
1. Basic HTML........cccooiiiiiiiiiiiiiieececrteete e e e sarrere e e e e e e e e s e s e ennes
1.1. Structure of HTML documentsccccceurrrireieeeeeeererrnsssicinennens
1.1.1. COMIMENTS eeiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeteeereeeneeeeeeeseeaeas
1.2, BIOCKS Of tEXt .uvvviiiiiiiiiiriiiiiiiiiiiiiiieteee e e e e s e e eesseinrrreeeeeeeeeesesnnns
1.2.1. Paragraphs ..cccccceerieiiieiieeieeeeeeeee e
1.2.2. Line Dreaksccooeeeeviuiiiiiiiieeeeeeeeeeeereeeeee e
1.2.3. Horizontal Tulesccccceeiieieeeiiriiiiririiiireeeeeeeee e e e e
1.2.4. Quoted paragraphscccceeevereeiiiieeeenniiieee e
1.2.5. Dividing text into bIOCksccccceinviiiiiiiiiiniiiiniinnne,
1.2.6. Pre-formatted teXtuuvviuiiiiieiiiiiieiieeeeeeeeeeeee s
1.3, LOGICAl taZS ..vveeeiiriiiiieiiiiiiee ettt
T.4. FOMES ittt e e e ta s e e e e eea e s e e e eaaaeeeeeaaans
1.4. 1. HeEAdETS ..coeeeiiieieeeeeeeeeeeecree e eeeee e
1.4.2. FOM oiiiiiiiiiiiiie et s e e e e e e eeaas
1.4.3. FONt STYIES cirvoiiiiiiiiiiiiitee e
1.4.4. Character entitiescccceeviiiiiiiiiiiiiiiiiiiccceee e e
| T 011 01 < T UPPPPPPPPURUPPPRE
1.5.1. LINKS ciiriitiiiiiiiiiieee e cecceeecteeeeiesse e e e e s e e e e e e e e e e e ee e
1.5.2. DeStinationsc.ccviiiiiiiiiiiiiiiiiiiccceeeeee e eeeeeeeeeeeeeeeeees
L T 01] PR
1.6.1. Unordered LiStSccccceeeeeriiiiiiiiiiiiiiiiiiiiiicceseee e e e e eeeeeeens
1.6.2. Ordered (numbered) LisStscccceeeiiiiiiiiiiriiiiiiieee s
1.6.3. Lists of definitionsccccceeeeeeeereiieieeecrrreeeee e
1.7, IINAZES ettt e e e e e
R S O -1 o) (PP UPPPPPPPPURt
1.8.1. The <TABLE> tag.ccceeeiiiiiiiiiiieeeeeeeeee e
1.8.2. The <TR> tag. weeeeeeiiiiiiiiiiieeeeereeeeee e
1.8.3. The <TD> and <TH> tags ...cceeeervreeeerrniieeeeeniieeeee e
1.8.4. The <CAPTI ON> tag. ..eeceeeeerieeeeerniiieeeeeniieeeeeeeneneeeeennne
1.9, FOTIMS et s e e e e e e e et e et s e e s e e s e eeaaees
1.9.1. FOorm elementscccccevuverrereeeeeereeresisssinrrneeeeeeeeseesesennns
2. Advanced HTML.............ccccciiiiiiiiiiiiiiiirreeeeee e eeeeererereeeeee e s
2.1, Style SREELS ...eeeiiiiiiiieiiiitee et
2.1.1. Style sheet formatccccceeerriiiiieiiiiiiiieiieeec e,
2.1.2. The SPAN and DI V tagscccccceeerreiieeeeenniiieeneeeeeeennns
2.1.3. More important propertiesccceeeveevmueeerreeeeiiirnnnnnnnn.
2.1.4. TexXt PrOPEItiescceeiieiiiiiiiiiiiiiiiiiiiieieeeeeee s
2.1.5. BIOCK PIropertiescccceevveeeeienimeeeerieiiiieeeeieeee e

O© O O O 0 & 0

N NN DN DN DNDNNRER R PR B B R oo R R R B)) 1
AN W W W NN RE O O OV N NN RPN OO

31
31
31
32
33
33
34

Web page design

GNUEFDL ¢ PID_00148397
2.1.6. Other Propertiesccocceereriiiireiiiiiiieeeercieeeseeeeeeeenen
2.2, LAYEIS .eeiiiiiiiiiiiiiiiiiiiintticteee e

4. JavaSCriPl.........cccooiiiiiii e
4.1. First basiC PrOgramcccccervevvieiiiiiiiieeiiiiiiiee et
4.2. Basic elements of JavaSCriptcccoccevviiiiiiiiiiiiiieiiiece

4.2.1. COMMENTS ..ooviiiiiiiiiiiiiiiiiee et e e
4.2.2. LIteralsccoccooiiiiiiiiiiiiiiiiiicntcc e
4.3. Data types and variablesccccocceiiiiiiiiiiiiiiiiiiiie
4.3.1. Variablesccoovoiiiiiiiiiiiiin e
4.3.2. RefeIOIICES ...oeevriuriiiiiieeiere ettt
4.3.3. VECLOTS ..eeeviiiiiiiiiiiiiiittec ettt
4.3.4. OPEIALOTS ..eeeeeiiiiiieieeeiieeieieeereeeee e e e e e e e e seeerereeeeereeeens
4.4. Control STrUCtUIESccoovviiiiiiiiiiiiiiiiiiiice e,
4.4.1. Conditional forksc.cccoeviiimmiiiriiiiriieeeeeeeee
4.4.2. LOOPS teeeiiiiiiiiieieeeetreee et e e e e
4.4.3. Object handling Structuresccccccccceeereeiieeeerrnnneeeenn.
4.5, FUNCLIONS ..cooiiiiiiiiiiiiiiiiiiiiccee ettt ee e
4.6, ODJECES .eeeiiiiiiiiiieeieeetee ettt e
4.6.1. Defining objects in JavaScriptcccceeeveeerriiieeeerennneen.
4.6.2. INheritanceccccoecoeeeiiiiiiieiieieee e
4.6.3. Predefined ODJeCtSccceeeereeiiiiiiiiiiiieeeeeeee e
4.7, EVENES ittt

5. Practical: creating a complex web page using the

techniques described...............ccccooooiiiiiiiiiieee

Bibliography

35
35

37

41
41
43
43
43
44
44
45
45
46
46
46
47
47
48
48
48
49
49
50

52

61

GNUEFDL ¢ PID_00148397 5

Introduction

HTML (HyperText Markup Language) is used to create documents with a
hypertext structure. A hypertext document contains information that is
cross-referenced with other documents, allowing us to switch from the first
document to the cross-referenced one from the same application being used
to view it. HTML can also be used to create multimedia documents, i.e. those

containing information that is not merely textual. For example,

e Images
e Video
e Sound

e Active subprograms (plug-ins, applets)

HTML is not the only language available for creating hypertext documents;
there are languages that came before and after HTML (SGML, XML, etc.), but
HTML has become the W3C recommendation language for creating content

for the Internet.

Web page design

GNUFDL ¢ PID_00148397 7 Web page design

1. Basic HTML

HTML documents are created as plain text documents (with no special
formatting) in which all text formatting is specified using textual marks (called
tags) that delimit the content affected by the tag (start and end tags are used).

These tags are textual marks that begin with the character <, followed by the
name of the tag and any additional attributes, and end with the character >.
So, initial tags look like this:

<TAG>

End tags start with the character <, followed by the character /, followed by
the name of the tag and the character >. So, end tags look like this:

</ TAG

Tags are case-insensitive. Examples of HTML tags include:

<title>Nane of docunent</title>
<P>Exanpl e of the use of tags to mark text</P>

Bol d<I >l t al i cs</ | >Bol d</ B>

Tag attributes, which indicate additional tag parameters, are included in the
start tag as follows:

<TAG ATTRI BUTE ATTRI BUTE. . . >

The form of these attributes is either the name of the attribute or the name
of the attribute followed by =, followed by the value we want to assign it

(generally inside inverted commas). For example:

Li nk</ A>
<I MG SRC="i mage. j pg" BORDER=0 ALT="NAME">

In some cases, HTML can omit the end tag if it does not need to surround the
text that it affects (as is the case of | M5). Another important point to note is
that if the WWW client we use (the browser we are using) does not understand
a tag, it will be ignored along with all of the text affected by it.

GNUEFDL ¢ PID_00148397 8

1.1. Structure of HTML documents

All HTML documents have more or less the same structure. The whole
document needs to be contained within a HTM. tag and is split into two: the
header, contained in a HEAD tag and the body of the document (containing
the document information), which is contained within a tag called BODY. The
header contains some definitions of the document: its title, extra formatting
marks, keywords, etc.

One example might be:

<HTM_>
<HEAD>
<title>Document title</TITLE>
</ HEAD>
<BODY>
Text of docunent
</ BODY>
</ HTM.>

If we open a document with these contents in a browser, we will see that
the text inside the Tl TLE tag is not displayed in the document; instead the
browser displays it in the title bar of the window.

1.1.1. Comments

In HTML, we can enter comments on the page with the tags <! -- and --! >.
The content inside these two marks is ignored by the browser and is not
displayed to the user.

1.2. Blocks of text

There are several types of blocks of text in HTML:

e Paragraphs

e Line breaks

¢ Quoted blocks

e Divisions

e Pre-formatted text
¢ Centred text

Web page design

GNUEFDL ¢ PID_00148397 9

1.2.1. Paragraphs

The <P> tag is used to separate paragraphs. Since HTML ignores line breaks
entered in the original file and the entire text is continuous for HTML, we need
a mechanism to indicate the start and end of paragraphs; this mechanism is
provided by <P> and </ P>.

The P tag can also have an attribute, ALl GN, indicating the alignment of the
text in the paragraph. This can be one of the following values:

LEFT, aligned to the left; this is the default behaviour.
RI GHT, aligned to the right.
CENTER, centred text.

The end of paragraph mark, </ P>, is optional in W3C recommendation HTML
and can be omitted. If this is the case, the browser will take a new <P> to
indicate the end of the previous paragraph.

1.2.2. Line breaks

The
 tag indicates a line break. It can be used as an initial mark and does
not require an end tag. BR does not modify the parameters specified for the
paragraph in which we are located at this time.

1.2.3. Horizontal rules

HTML has a tag for including a horizontal rule on our page (a line drawn from
one side of the page to the other) with a variable width. This tag, HR, is used to
separate blocks of text. This element only has an initial label but comes with
several attributes for adapting its appearance:

e NOSHADE: eliminates the shadow effect of the bar.
e W DTH: defines the length of the line in relation to the page.
e S| ZE: defines the thickness of the line.

1.2.4. Quoted paragraphs

HTML has an element called the BLOCKQUOTE that allows us to represent
paragraphs quoted literally from another text. These are generally indented or
extended to the left and have a paragraph break before and after the quoted
paragraph. We should avoid using BLOCKQUOTE to indent text, reserving it for
literal quotations because the browser may represent this in other ways, e.g.
by not indenting.

Web page design

GNUFDL « PID_00148397 10 Web page design

1.2.5. Dividing text into blocks

The <Dl V> element is used to divide text into blocks by inserting a single line
between the blocks like BR, although it can have the same attributes as P, i.e.

we can define the alignment of the text for each DI V block.

The alignments supported by DI V with the ALI GN parameter are:

e LEFT, aligned to the left; this is the default behaviour.
e Rl GHT, aligned to the right.
e CENTER, centred text.

1.2.6. Pre-formatted text

The text inserted between the <PRE> and </ PRE> tags will be displayed by
the browser respecting the format of the line breaks and spaces used to enter
it. Browsers generally display this text with a fixed-width typeface similar to
that of a typewriter.

We can see some of these tags in the following example:

<HTM_>

<HEAD>

<TlI TLE>Docunent title</TlITLE>

</ HEAD>

<BODY>
<P ALI GN=LEFT>
In a village of La Mancha, the nane of which | have no desire to call to mind, there |ived not
I ong since one of those gentlenen that keep a lance in the |ance-rack, an old buckler, a |ean
hack, and a greyhound for coursing. An olla of rather nore beef than nmutton, a salad on nost
ni ghts, scraps on Saturdays, lentils on Fridays, and a pigeon or so extra on Sundays, nmade away
with three-quarters of his incone.
</ P>
<Dl V AL|I G\N=RI GHT>
In a village of La Mancha, the nanme of which | have no desire to call to mnd, there |ived not
| ong since one of those gentlenen that keep a lance in the |ance-rack, an old buckler, a |ean
hack, and a greyhound for coursing. An olla of rather nore beef than nmutton, a salad on nost
ni ghts, scraps on Saturdays, lentils on Fridays, and a pigeon or so extra on Sundays, nade away
with three-quarters of his incone.
</ DI V>
<Dl V AL|I GN=CENTER>
In a village of La Mancha, the nane of which | have no desire to call to mind, there |ived not
long since one of those gentlenmen that keep a lance in the |ance-rack, an old buckler, a |ean
hack, and a greyhound for coursing. An olla of rather nore beef than nmutton, a salad on nost
ni ghts, scraps on Saturdays, lentils on Fridays, and a pigeon or so extra on Sundays, nade away
with three-quarters of his incone.

</ Dl V>

GNUFDL « PID_00148397 11 Web page design

<PRE>
In a village of La Mancha,
the nane of which | have no desire to call to mind,
there lived not |ong since one of those gentlenen
that keep a lance in the |ance-rack, an ol d buckler,
a | ean hack, and a greyhound for coursing.

An ol la of rather nore beef than nutton,
</ PRE>
<ADDRESS>

M guel de Cervant es

Shakespeare Street, 23

09876, Madri d

</ ADDRESS>

<CENTER>

<P>
In a village of La Mancha, the nane of which | have no desire to call to mind, there |ived not
I ong since one of those gentlenmen that keep a |lance in the |ance-rack,
</ P>

</ CENTER>
</ BODY>
</ HTM.>

This HTML code will be displayed as follows:

i rerreap— L1 T w F] M | | ety s B wedou &, 1000 B

W Tl el ke ¢ Rl] - E

iW R ges G sl o
- o .f:_, Ul T e e e e ey e m =l r]
Sedia s ek Pkt d Hen i S el Do i
- JEDRE 0D G- - |- F- (WA R
O e Srugne e Cees sw s § vadsmes § vne Grne o Oy

En wi lugar & i Mancha, di ouys no@bee B quisens acsrdarsa, no b sucho esipo qie vivia o hidalgo do bos o lanz an
o adamg antigqua. rectn face ¥ galge cormedar. Una olla de alpo mds vaca que camers. salpicdn las mas noches. duelos
raning hm aibacos, lankbejes los visnes, adkpin palamiea de @ faaditors les domisgos, comomian las bres parias da so

En un kegsr e |8 Menchs, 28 coes nombee 0o quismn scordanme, me he macks Eemen e s an Badelgo de e de |snes #n
Al ern, iy n anligii, fecin Macs ¥ gelds eormedar. Ui odla de ales mill Wecl qie Shmanm, salpleon lin mbl techai, diislos
5 ipmebiantoe bos salvelos. nbejes (os vetnes, algin palomdno de afadiduce bos deodnges, cosssdinian ks Lres paries de s
rariEnile
En = lune-de (s Manca, de ceyo nombhme ne quisrs scoedarma, oo he mucho bempn gan vivis un bidsigo da kos de lssea an
arstilliers, adarga antigu o rou § galgo corrador, Una ofla de algo e vaca artern, salpicom Lo mds pochims, dueles
¥ el n b o sdbadis, Lintejas los wiernes, algian plomino 3 afaedidors s domangos, cosssamikan ks bred pearios de a

tacined

Ui b i L aiha
o SuNa rEshre re CENE KIPRNTEL.

= e msbe e piwie 1 hodal g
e i i Lande s dabhibene, mlkings
ambpomn, mmede lprs p omelge psreper

Urs oile do slge i sece g ceesare

Mlerre! s AT AL
CallrF Shacirsnsare, AT
0 P, el

En um ugar o ln Mancka de ouye nombine no quisre SoT0armas. na bl muchae tempo Qi vivk un bidalgo 8 los 0 |aRT 20
anlillaro

[

One of the utilities provided by some free software browsers like Mozilla or
Firebird is that they show the block elements that make up a web page; in this
case, our example would be seen as follows:

GNUEFDL ¢ PID_00148397 12

T s mmess oy (0 R - +* Y [[RS T e R e E T
¥ Tk el s s v - Hudeila F sl -
i [k ga= e Romsty Do e
e e AT \r ‘E_‘ L o S S STy R | al=

e T T e T e s L
- T I L e
ST T T el s D D Same g vavialer = Vme B o Dpimeae
o= En v lugar ¢ la Manchi, de upo sambor no quicrs e erdeiee, o ba mucho Uempo que vivea an bdalgs de b de lansa
r e e, sabanga antigqus, s Maone w gl go corred or. Cins ofle de algo mds vaca que camam, salploin ks mée soches
denlkss y quebiinlcs los sibades, lankbojax los viermo, algun pelominn do sSasdeur e domigos, conssnian lis bms pirios de

iu Bacienda.

it e dhe bos e lisora
o, an pdedn las e s renechess
oo, CTHINLELATy L Epes parias do

»u M i,
e Emoun legur de ls Masch, do coye nombre o quem acorsurme, no b meches Lemezo que wrva. 1= hidalgo de los o lanes

e il e, Silaigs ARLERIE, Padis flacs § gelgs commedar. Unk olla de &l s facs que carsens silpioon s s secled
rhasko v iquebiranbos 1o sibades, lantejae o viemas, alin pailominn doe afaasdidors ks dominges, cormembin las bres poirtses di
wa hacuereda

s En wn lugar 4 b ba
om astillenn, adarma ar

dualus v gupsean bow loy sal 1 2n ahaadurs los do

lasfgan ko viggmary, olgan paly

EEEEn = Leper &b Le Sercha,
L e T T

B b i Clesps g visls = bldales
e Lo dr Lerce o= eabiilere. sdarem
srcigen, ewdn e y goloe cErrossr.

e T T

st = o MRl SR R EHIES
Calle Yheckeapsare, AT
R TG, Mavirid

E= Bnooa lugar & bl Mancha de cuyo Bombe po QUESTO et ordarmees 2o B i o T po que vivia un s de b de Lases
my sl e,

1.3. Logical tags

HTML also has a group of tags for formatting the text not as we wish to show
it but by giving the format based on the semantics of this block of text, which
allows the browser to display the text in the most appropriate manner.

These tags are:

e <Cl TE>: literal quotation from a text or document.

e <ADDRESS>: address.

e <SAWP>: example of code or result.

e <CODE>: program code.

e <KBD>: data that needs to be typed in.

e <VAR>: variable definition.

e <DFN>: definition of text or a word (there is little browser support for this
option).

These tags will be formatted differently according to the browser and how we
have configured it. This example shows how they look in the Mozilla browser:

Web page design

GNUFDL e PID_00148397 13 Web page design
The C Programming Language, Ritchie, Dennis; Kernigahn, Ritchie, AT&T Bell Labs

Our address is:

10, Downing Street, London.

The files ending with the extension .jpg are image files.

printf (“Hello World\n”) ;

Once you have entered the system, type startx to boot...

We will define the variable neigh to save...

A Distributed-CSP is a problem the solution of the...

© 2003, Carles Mateu
The code that produced this result is:

<HTM_>

<HEAD>

<TlI TLE>Docunent title</TlITLE>

</ HEAD>

<BODY>
<P><Cl TE>The C Progranm ng Language</Cl TE>,
Ri tchie, Dennis; Kernighan, Ritchie. AT&T Bell Labs.
<P> Qur address is
<ADDRESS>
10, Downi ng Street
London
</ ADDRESS>
<pP>
Files ending in the extension
<SAMP>j pg</ SAMP> are image files.
<pP>
<CODE>printf("Hello Wrld\n"); </ CODE>
<P>After entering, type <KBD>startx</KBD> to boot...
<P>We will define the variabl e <VAR>nei gh</ VAR> to save. ..
<P>A <DFN>Di stri but ed- CSP</ DFN> i s a problem of...
<P><Cl TE>© 2003, Carles Mateu</Cl TE>

</ BODY>
</ HTM_>

1.4. Fonts

HTML includes tags for changing attributes of our texts such as font and
colour. HTML also has certain special tags called character entities that allow
us to enter special characters such as the copyright symbol, accents etc. where
these are not supported by our keyboard, text editor, character set, etc.

GNUEFDL ¢ PID_00148397 14

1.4.1. Headers

There is an element called <Hx> that we can use to define the parts of our text
that need to be considered as headers (section, chapter, etc.) The tag assigns
a larger text size to the characters (based on x, as we shall see), uses a bold

typeface for the header and inserts a paragraph break after this header.

The header size (or level or index of importance of the latter) can vary from 1
to 6, so there are six possible tags: H1, H2, H3, H4, H5 and H6.

1.4.2. Font

HTML has a tag for dealing with typetaces. This tag, FONT, is obsolete in HTML
4.01, so you should avoid using it and try to use style sheets (CSS) instead.
FONT this is used to specify:

e Measurements, with the Sl ZE attribute
e Colours, with the COLOR attribute
e Typefaces, with the FACE attribute

Be cautious about using this tag to specify typefaces because your client may
not have this particular typeface installed and the page will not be viewed as
you had planned.

The attributes supported by FONT, used to define font characteristics, are:

e S| ZE: character size, with values from 1 to 7 or relative values (-7 to +7).
e COLOR: colour of the characters.
e FACE: typeface to use; you can indicate more than one, separated by

commas.

The Sl ZE attribute defines the size of font in relation to the default document
size, which is defined using BASEFONT. BASEFONT has just one parameter,

S| ZE, used to set the base size for the document.

1.4.3. Font styles

HTML has a set of tags that can be used to define different letter styles for the
text inside the tags. The available tags are:

B (bold).

| (italics).

U (underlined).

STRI KE (strikethrough).
SUP (superscript).

SUB (subscript).

BLI NK (blinking).

Web page design

GNUEFDL ¢ PID_00148397 15

TT (teletype).
Bl G (big).
SMALL (small).

Besides these physical typefaces, there are also some logical typefaces, which

browsers may prefer to represent in another way:

EM(emphasised).
STRONG (highlighted).
CODE (program code).
Cl TE (quotation).

KBD (keyboard entry).
SAMP (example).

VAR (program variable).

Some of these logical styles also introduce a paragraph style, which we saw
earlier.

With HTML, we can mix different styles such as bold and italics, etc. In this
case, the corresponding HTML tags are nested:

<I>Bol d and italics</I|>

We can see how these typefaces and colours look on the next page:

Heading H1
Heading H2

Heading H3
Heading H4
Heading H5
Heading H6
Letter size

1234567654321

Colours LET'E COLO RS

Bold
Italics
Underlined

A Superscript
s Subscript

Typewriter (Teletype)
Large text
Small text

The HTML code that produced this result is:

<HTM_>

Web page design

GNUEFDL ¢ PID_00148397 16

<HEAD>
<TI TLE>Docunent title</TITLE>
</ HEAD>
<BODY>

<hl>Header Hil</h1l>
<h2>Header H2</h2>
<h3>Header H3</h3>
<h4>Header H4</h4>
<h5>Header H5</h5>
<h6>Header H6</ h6>

Font si ze

1 2

3 4

5 6

7 6

5 4

3 2

1

<pP>

Col our s</ b>

C</f ont ><f ont COLOR=#000080>0O</f ont >

<f ont COLOR=#000080>L</f ont ><f ont COLOR=#008000>0</ f ont >
R</f ont ><f ont COLOR=#FF0000>E</f ont >
S . D</f ont >
E . L
E</ f ont ><f ont COLOR=#FFOOFF>T</ f ont >
R</ f ont ><f ont COLOR=#808000>A</ f ont >
S </ f ont >

<P> Bol d</ b>
 <i>Italics</i>
 <u>Under| i ned</ u>

<strike>Stri ket hrough</strike>
 A<sup>Super scri pt </ sup>

B<sub>Subscri pt </ sub>
 <bl i nk>BI i nki ng</ bl i nk>

<tt>Typewriter(Tel etype)</tt>
 <bhig>Big

text</big>
 <small>Small text</small>

</ BODY>
</ HTM.>

1.4.4. Character entities

HTML has a series of special codes called character entities, used to type
characters that cannot be entered with the keyboard, such as accents,
circumflexes, special symbols, etc. We can also use special character entities
to type any character from the ISO-Latinl character table.

Web page design

GNUFDL ¢ PID_00148397 17 Web page design

Code Result

á, Á, é, É, ... a,AGE,..

¿ i

¡ i

º o

ª a

™ or ™ Trademark symbol
© Copyright symbol
® Registered symbol
 (non-breaking space)
< <

&at; >

& &

" "

1.5. Links

One of the key features of the Web that has had the greatest impact on
its success is its hypertextual nature, i.e. the possibility of intuitively and
transparently linking documents that may be located on different servers.
Links can be made to images, audio, video, etc. as well as to web pages.

We can create links using a tag called A and its set of attributes, NAME, HREF,
TARGCET, affording us total control over link creation in documents.

There are four types of main link:

e Links within a page

e Links to other pages on our system

e Links to pages from other system

¢ Links to documents consulted through other protocols (e-mail, etc.)

1.5.1. Links

To create a link, we need to use the A tag with the attribute HREF. The value
of this attribute will be the destination of the link:

Text or image
The contents of the tag are given special consideration and displayed
differently by the browser (generally by underlining). When we click on this
text, we will be taken to the destination indicated by the value of the HREF
attribute, which must be a URL.

1.5.2. Destinations

A destination is a URL address indicating a service we wish to obtain or a
resource we wish to access. The format for URLs is as follows:

GNUFDL « PID_00148397 18 Web page design

service://user:password@server:port/resourcepath

Several services can be indicated in the URL and these will be accepted by

most browsers:

http: indicates the web page transfer service and is in everyday use.

https: indicates a secure and encrypted HTTP service.

ftp: indicates that we need to use the file transfer protocol, FTP. If we do not
enter a username and password, anonymous transfer will be attempted. If this
fails, we will be asked for the username and password.

mailto: indicates that an e-mail should be sent to the specified address.
news: access to the USENET news service.

Examples of URLs include:

http://www.uoc.edu
https://www.personales.co/usuarios/carles/indice.html
ftp://user:secret@ftp.cesca.es/pub/linux
mailto:destination@e.mail.co
news://noticias.uoc.edu/es.comp.os.linux

Destinations within a page
One of the possibilities of HTML is that of jumping to destinations within the
same page. To do this, we need to define the destinations on the page, called
anchors with a name. To do so, we can use the NAME attribute of the A tag.
For example:

Once we have defined the anchors in our documents, we can either browse
through or go directly to them. To browse these anchors, we will use a URL
extension such as:
Li nk</ A>
If we create this link on the same page, we can abbreviate the address to:
Li nk</ A>
1.6. Lists
In HTML we can define three main types of lists and numberings:
¢ Unordered lists

e Ordered (numbered) lists
e Lists of definitions

GNUEFDL ¢ PID_00148397 19

1.6.1. Unordered lists

To enter unordered lists, we can use the tag to indicate the start of the
list, the </ UL> tag to indicate the end of the list and to indicate each

of the items in the list.

We can also use the TYPE attribute to indicate the marker to use to highlight
the various items: DI SC, Cl RCLE, SQUARE.

All of the items must be entered between <L| > and </ LI >.

1.6.2. Ordered (numbered) lists

Ordered lists are used in a very similar way to unordered lists. This time, we
can use the tag to indicate the start of the list, the </ OL> tag to indicate
the end of the list and to indicate each of the items in the list.

We can also use the TYPE attribute to indicate the marker to use to number

the various items:

TYPE=1 Numbers (the default option).
TYPE=A Upper-case letters.
TYPE=a Lower-case letters.
TYPE=| Upper-case Roman numerals.
TYPE=i Lower-case Roman numerals.

We can also use the START attribute to indicate the point at which line
numbering should begin. The TYPE attribute can be used in the individual

items too.

All of the items must be entered between <L| > and </ LI >.

1.6.3. Lists of definitions

A list of definitions is a non-numbered list that allows us to give a description
or definition of each element. The descriptive lists are formed with the tags:
<DL> and </ DL> to define the list, <DT> to indicate the term to be defined
and DD to indicate the definition.

For DL, we can use the COMPACT attribute, which tells the browser to display
the list in the most compact way possible by putting the term and its

definition on the same line.

The different examples of HTML lists can be seen in this diagram:

Web page design

GNUFDL « PID_00148397 20 Web page design

« First element
« Second element
e Third element

1. First element
2. Second element
C. Third element

ASCII
7-bit character set. Only 127 characters are allowed.
EPS
Encapsulated PostScript format
PNG
Portable Network Graphics, highly efficient graphic format.

The HTML code that produced this result is:

<HTM.>
<HEAD>
<TlI TLE>Docunent title</TlITLE>
</ HEAD>
<BODY>

<Ll >Fi rst el ement
<Ll >Second el enent
Third el ement
</ UL>

<pP>

Fi rst el ement

<Ll >Second el enent

<Ll TYPE=A>Third el enent
</ OL>

<p>

<dl conpact >
<dt >ASCl | <dd>
7-bit character set.
Only 127 characters all owed.
<dt >EPS <dd>
Encapsul at ed Post Scri pt For mat.
<dt >PNG<dd> Port abl e Network G aphics,
hi gh efficiency graphics format.
</dl >

</ BODY>
</ HTM.>

GNUEFDL ¢ PID_00148397 21

1.7. Images
A single tag is used to include graphics and images on our pages: <I MG>.

<I M> has several attributes for specifying the image file to use, its

measurements, etc.

The attribute for specifying the image to display is SRC. With this tag, we can
specify a URL for the image file that will be requested from the server by the
browser in order to display it.

The images referenced with the SRC attribute can be located in any directory
on the server, on other servers, etc. The value we enter for SRC must be a URL.

We can also use the ALT attribute to assign an alternative text to the image
if the browser cannot show it. In this case, the browser will display this
alternative text to the user.

In addition, there are several attributes allowing us to specify the image
measurements, width and height, WDTH and HElI GHT. If these are not
specified, the browser will display the image at the size of the actual image file.
If we specify the measurements, the browser resizes the image to suit. Using
image measurement parameters allows the browser to leave the space taken
up by the image and display the rest of the page while the images are loading.

Images are commonly used as buttons for links. In this case, the browser will
generally add a border to distinguish it from the rest of the text. You can
prevent this effect by adding a further attribute, BORDER, which is used to
specify the thickness of this border. To remove it, change the value to zero.

-

J U

IMAGE DOES NOT EXIST

The HTML code that produced this screen is:

<HTM_>
<HEAD>
<TI TLE>Docunent title</TI TLE>
</ HEAD>
<BCDY>

<I MG SRC="10go. gi f"> <P>

Web page design

GNUEFDL ¢ PID_00148397 22

<| MG SRC="nol ogo. gi f" ALT="I| MAGE DCES NOT EXI ST"><P>

</ BODY>
</ HTM_>

1.8. Tables

HTML has a group of tags that can be used to enter text in table form. The
tags for this feature are:

e TABLE: marks the start and end of the table.
e TR marks the start and end of a row.

e TH: marks the start and end of a header cell.
e TD: marks the start and end of a cell.

e CAPTI ON: used to insert titles in tables.

The code for a simple table might be:

<TABLE>
<TR><TH>Header 1</ TH>...<TH>Header n</ TH></ TR>
<TR><TD>Cel | 1. 1</ TD>...<TD>Cel |l n</TD></ TR>

<TR><TD>Cel | 1. 1</TD>...<TD>Cel|l n</TD></ TR>
<CAPTI ON>Ti t | e</ CAPTI ON>
</ TABLE>

As we can see, the table is enclosed by TABLE t ags. Each table row needs
to be contained between the <TR> and </ TR> tags. We have two options for
displaying cells in individual rows: we can either enclose them in <TH> tags
or in <TD> tags. The difference is that the first option selects a bold typeface

and centres the column.

1.8.1. The <TABLE> tag.

The TABLE tag has some attributes that can be used to specify the exact format
to give to the table.

¢ BORDER: indicates the size of the cell borders.

¢ CELLSPACI NG indicates the size in points of the space between cells.

e CELLPADDI NG indicates the distance in points between the contents of a
cell and its borders.

e W DTH: specifies the width of the table. This can be in points or in relation
to the percentage of the total available width. For example, 100% indicates
the entire browser window.

Web page design

GNUEFDL ¢ PID_00148397 23

e ALl G\: aligns the table in relation to the page, to the left (LEFT), right
(RI GHT) or middle (CENTER).
e BGCOLOR: specifies the background colour of the table.

1.8.2. The <TR> tag.

The TR tag can be used to enter the rows making up the table. TR has the
following attributes:

e ALI G\: aligns the content of the cells in a row horizontally to the left
(LEFT), right (Rl GHT) or middle (CENTER).

e VALI G\: aligns the content of the cells in a row vertically along the top
(TOP), bottom (BOTTOM or middle (M DDLE).

e BGCOLOR: specifies the background colour of the row.

1.8.3. The <TD> and <TH> tags

The TDand TH tags are used to add the cells that will make up the row where
they are located. The main difference between the two is that THhorizontally
centres the cell contents and displays them in bold. Both tags can have the
following attributes:

e ALI G\: aligns the content of the cells in a row horizontally to the left
(LEFT), right (RI GHT) or middle (CENTER).

e VALI G\: aligns the content of the cells in a row vertically along the top
(TOP), bottom (BOTTOM) or middle (M DDLE).

e BGCOLOR: specifies the background colour of the cell.

e W DTH: specifies the width of the cell in points or as a percentage; in the
latter case, remember that this is the width of the table rather than the
window.

e NOWRAP: stops the line inside cells from being divided by spaces.

¢ COLSPAN: indicates how many cells to the right including the current one
will be merged to form a single one. If COLSPAN is zero, all cells to the
right will be merged.

¢ ROWSPAN: indicates the number of column cells below the current one will
be merged with the latter.

1.8.4. The <CAPTI ON> tag.

This is used to add a centred legend or title above or below a table. It has just
one attribute:

Web page design

GNUFDL ¢ PID_00148397 24 Web page design

ALI GN: this indicates where the CAPTI ON tag will be located in relation to

the table. The possible values are: TOP, places it above the table, and BOTTOV
which places it below.

Two HTML tables can be seen in the image:

1,1v1,2
2,2(2,3
3,2(3,3
Simple Table

m April May June July

Vehicles ' 22 23 3 29
Visitors 11234 1537 7 1930
Inome 111000 13000 G0N

The HTML code that produced this result is:

2,1y3.1;

<HTM.>
<HEAD>
<TI TLE>Docunent title</TITLE>
</ HEAD>
<BODY>

<TABLE BORDER=1>
<TR>
<TD COLSPAN=2>1.1 and 1.2</TD>
<TD>1. 3</ TD>
</ TR>
<TR>
<TD ROABPAN=2>2.1 and 3. 1</ TD>
<TD>2. 2</ TD>
<TD>2. 3</ TD>
</ TR>
<TR>
<TD>3. 2</ TD>
<TD>3. 3</ TD>
</ TR>
<CAPTI ON ALI G\=bot t on>Si npl e Tabl e</ CAPTI ON>
</ TABLE>

<HR>

GNUEFDL ¢ PID_00148397 25

<TABLE BORDER=0 CELLSPACI NG=0 BGCOLOR=#0000FF>
<TR><TD>
<TABLE BORDER=0 CELLSPACI NG=1 CELLPADDI NG=2
W DTH=400 BGCOLOR=#FFFFFF>
<TR>
<TH><I MG SRC="1 ogo. gi f"></ TH>
<TH>Apri | </ TH>
<TH>May</ TH>
<TH>June</ TH>
<TH>Jul y</ TH>
</ TR>
<TR>
<TD BGCOLOR=-#A0AO0A0>Vehi cl es</ TD>
<TD>22</ TD>
<TD>23</ TD>
<TD>3</ TD>
<TD>29</ TD>
</ TR>
<TR>
<TD BGCOLOR=#A0AOAO0>Vi si t or s</ TD>
<TD>1234</ TD>
<TD>1537</ TD>
<TD BGCOLOR=#FFa0a0>7</ TD>
<TD>1930</ TD>
</ TR>
<TR>
<TD BGCOLOR=#A0AOAO0>| ncone</ TD>
<TD>11000</ TD>
<TD>13000</ TD>
<TD BGCOLOR=#FF4040>- 500</ TD>
<TD BGCOLOR=#a0a0OFF>60930</ TD>
</ TR>
</ TABLE>
</ TD></ TR>
</ TABLE>
</ BODY>
</ HTM_>

1.9. Forms

Forms are HTML elements used to collect user information. A variety of form
elements are available, allowing for rich and efficient interaction with users.
In all events, forms do not process the information entered by users. We will
need to process this ourselves later through other means (CGI, JSP, Servlets

etc).

Web page design

GNUEFDL ¢ PID_00148397 26

One way to create a form is as follows:
<FORM ACTI ON="ur| process" METHOD="PCST">
El ement s
</ FORV>

The FORMtag provides us with certain attributes:

e ACTI ON: this attribute is used to specify the URL where the data that the
user types into the form will be sent. An e-mail address can be used as the
URL, for example:

mai | t o: address@. nui |

or we can enter a HTTP URL (the most common method for sending data to
CGI programs):

http://wwmw. uoc. edu/ proceso. cgi

e METHOD: the method specifies the way in which the data is sent. We are
offered two options: GET and POST. We will look at these options in detail
later when we discuss CGI programming.

e ENCTYPE: specifies the type of encoding used. It is generally only used
when the form result is sent by e-mail and changes the encoding to
text/plain.

e NAME: used to assign a name to the form, which will be necessary later for
using with JavaScript.

1.9.1. Form elements

HTML provides us with a wide variety of input elements for forms. These can

be used to carry out a range of functions, including typing in text and sending

files.

The <I NPUT> Elements

The | NPUT element is perhaps the most widely known and used of form

elements and is used as an input field. There are different types of | NPUT
element, depending on the value of the TYPE attribute:

Web page design

GNUEFDL ¢ PID_00148397 27

TYPE=RADI O allows us to choose from a range of options but only one

from those of the same name.

TYPE=RESET: clears the entire form.

TYPE=TEXT: allows the user to enter a line of text.

TYPE=PASSWORD: allows the user to enter a line of text, displaying
characters such as "*" instead of the text. This is generally used where
passwords must be typed in.

TYPE=CHECKBOX: allows us to choose from one or more options.

TYPE=SUBM T: accepts the data entered in the form and carries out the
specified action.

TYPE=HI DDEN: text field not visible to the user. Used to store values.

The | NPUT element also has some optional attributes:

NAME: names the field. This is important for subsequent processing with
our programs.

VALUE: assigns an initial value to the field.

Sl ZE: size of fields, where applicable. TEXT and PASSWORD.

MAXLENGTH: maximum length allowed for user input TEXT and PASSWORD
fields).

CHECKED: for RADI O or CHECKBOX, indicates whether they are marked or
unmarked by default.

The SELECT Elements

The SELECT element is used to select one or more of the available options. An

example of a SELECT element would be:

<SELECT nane="desti nation">
<option> Africa
<option> Antarctica
<option> Anerica
<option> Asia
<opti on> Europe
<option> Cceani a

</ SELECT>

The attributes of the SELECT element are:

Web page design

GNUFDL « PID_00148397 28 Web page design

e Sl ZE: the on-screen size of the SELECT element If 1, only one option will
be displayed and SELECT will operate as a drop-down list. If greater than

1, the user will be presented with a selection list.
e MJLTI PLE: users can choose more than one option if this is selected.
The OPTI ON element has two attributes:
e VALUE: the value that will be assigned to the variable when this option
is selected.
e SELECTED: this option will be selected by default.

The TEXTAREA element

The TEXTAREA element is used to obtain multiple-line text elements from the
user. The format is as follows:

<TEXTAREA nane="conmments" col s=30 r ows=6>
Ent er comments about the page

</ TEXTAREA>

Note that the contents enclosed by <TEXTAREA> and </ TEXTAREA> are
considered to be the initial value of the field. The attributes for TEXTAREA are:

e ROWS: the rows that will be taken up by the text box.
e CALS: the columns that will be taken up by the text box.

We will now look at an example of this basic form, built with the above

elements.

GNUFDL « PID_00148397 29 Web page design

Test form

_—
Marme: | Joseph

Surname: | Test

Keg,r:[-
Se
= Male " Female
Hobbies
[Spart [+ Music ™ Reading
Crigin:

Africa |

On li agradaria wiatjar:

Y our opinion::

Tell us what you think!

Submit Query | Reset |

The HTML code that produced this result is:

<HTM_>
<HEAD>
<TI TLE>Docunent title</TlITLE>
</ HEAD>
<BCODY>

<H1>For m t est </ H1>

<FORM METHOD=GET>

Nane: <I NPUT TYPE=TEXT NAME=NAME S| ZE=10>

Sur name: <I NPUT TYPE=TEXT NAME=SURNAME S| ZE=30>

Passwor d: <I NPUT TYPE=PASSWORD NAME=PASS S| ZE=8>

<HR>

Gender:

<I NPUT TYPE="RADI O' NAME="Gender">Mal e

<I NPUT TYPE="RADI O' NAME="SEXO'>Fenul e

GNUFDL « PID_00148397 30 Web page design

Hobbi es:

<I NPUT TYPE=" CHECKBOX" NAME="SPORT">Spor t
<I NPUT TYPE=" CHECKBOX" NAME="MUJSI CA">Muisi c
<I NPUT TYPE="CHECKBOX" NAME="LECTURA"'>Readi ng

Ori gi n:

<SELECT nane="ORI G N'>
<option> Africa
<option> Antarctica
<option> Anerica
<option> Asia
<opti on> Europe
<option> Cceani a
</ SELECT>
<HR>
Where woul d you like to travel:

<SELECT nane="destination" MJLTI PLE S| ZE=4>
<option> Africa
<option> Antarctica
<option> Anerica
<option> Asia
<opti on> Europe
<option> Cceani a
</ SELECT>

Your opi ni on:

<TEXTAREA COLS=25 ROA5=10 NAME="YOUR OPI NI ON'>
Tel | us what you think!
</ TEXTAREA>
<HR>
<I NPUT TYPE=SUBM T> <I| NPUT TYPE=RESET>
</ FORW>
</ BODY>
</ HTM>

GNUFDL « PID_00148397 31 Web page design

2. Advanced HTML

2.1. Style sheets
Style sheets are a mechanism for separating the format for representing and
presenting contents. This is done by associating presentation attributes to
each HTML tag or its subclasses.
For example, if we want all of the paragraphs in our document (defined
by <P></ P>) to have a red background and yellow text, we would use the
following definition:
<STYLE TYPE="text/css"> P {color: red; background:yellow } </STYLE>
To indicate which styles we need to use on a page, the STYLE tag can be used
to specify them in situ, while the LI NK tag allows us to indicate an external
file containing our styles.
The STYLE tag must be located in the page header. The TYPE setting is used to
indicate the syntax we will use to define the styles, which, in our case, will be
t ext/ css. The LI NKtag, used to define an external style sheet, looks like this:
<LI NK REL="styl esheet" HREF="mi web. css" TYPE="text/css">
In fact, use of the LI NK tag is highly recommended when defining the style
sheets associated with a page as this will facilitate maintenance because all the
styles of a site will be concentrated into a single file instead of being repeated
on each page.
2.1.1. Style sheet format
As we saw in the previous examples, the format of style sheets is as follows:
<el enent >{ <f or mat >}
For example:

P {color: red; background:yell ow}

Please,note that CSS syntax is case sensitive.

GNUEFDL ¢ PID_00148397 32

This syntax will allow us to define the format we would like for the paragraphs
in our website. There is an extension for this syntax used to define a style
that will only be applied to parts of the document. Specifically, it allows us to
define cl asses of elements to which the style will be applied. For example,
to define a paragraph class that we will call highlighted:

P. hi ghlighted {color: red; background:yellow }

We can then use the CLASS attribute that HTML 4.0 added to HTML to define
the class of each paragraph:

<P CLASS="hi ghl i ght ed">A hi ghl i ght ed paragraph</ P>

<P>A normal paragraph</P>

<P CLASS="hi ghl i ght ed" >Anot her hi ghl i ght ed one</P>
There is also a method for assigning a style to individual paragraphs, thus
offering more granularity to the class concept. For this, we need to define the
style of an individual HTML element with CSS using the following syntax:

#par agraphl {col or: green; background: yel | ow; }

We can then assign this identity to an HTML element using the | D attribute:

<p CLASS="dest acado">A hi ghli ghted paragraph</P>

<P>A normal paragraph</P>

<P CLASS="hi ghl i ght ed" | D="paragraphl”>Anot her highlighted one but but the col our here

is assigned by its identity</P>

2.1.2. The SPANand DI V tags

Earlier, we saw how to assign styles to HTML elements (paragraphs, etc.),
but we sometimes need to assign styles to sections of text or content that
do not form part of an HTML block. For example, we may want to define a
style that would allow us to mark specific words of text (to indicate changes,
for instance). Obviously, we cannot define a new HTML tag as the existing
browsers, which would not be familiar with our tag, would ignore this content.
The solution comes in the form of the DI V tag, which we saw earlier, and SPAN

tag.

If we want to mark a section of content as belonging to a specific class in order
to define a style for it or to assign individual identification to it, we will need
to wrap this content inside SPAN or DI V. The difference between them is that
DI V ensures that there is a line break at the start and end of the section. This
allows us to define blocks of text without having to enclose them in tags that
would modify their format (such as P).

Web page design

GNUEFDL ¢ PID_00148397 33

For example, we could define:
al |l .unsure{color: red; } all.revised { color:blue; }
and then use it in our HTML document:
<P>Thi s l ong</ SPAN> par agr aph nust be
revi ewed by the CEO</ SPAN>
</ P>
2.1.3. More important properties
We will now look at the more important properties that can be defined using
CSS. Given the incompatibilities between different browsers, we recommend
testing your pages with different browsers and different versions to make sure
that they display properly.
Typetace properties
The properties allowing us to define the appearance (typeface) of the text are:
e font-fan|y:font (which can be generic from among: seri f, cursi ve,
sans-serif, fant asy and nonospace). We can specify single fonts or a
list of fonts, whether generic or otherwise, separated by commas. Be aware
when specifying fonts that they may not be installed on the computer of

the user visiting your page.

e font-size:size of the font. xx-snal | ,x-smal | ,smal |, medi um | ar ge,
x- | ar ge, xx- | ar ge and the numerical relative or absolute size values.

e font-weight: thickness of the font. The possible values are: normal ,
bol d, bol der, | i ght er and numerical values from 100 to 900 (where
900 is the thickest bold font).

e font-styl e: style of font. We can use normal ,italic,italic small
caps, obl i que, obl i que small caps and smal | caps.

2.1.4. Text properties

There is also a group of properties used to alter the text on the page and its
format.

e [|ine height:line spacing as a numerical or percentage value.

Web page design

GNUFDL ¢ PID_00148397 34 Web page design

e text decoration:decoration of the text: none, under |l i ne, overl i ne,
I i ne-through and bl i nk.

e vertical -align: vertical alignment of the text. This can be: basel i ne
(normal), sub (subscript), super (superscript), t op, t ext-top, ni ddl e,
bot t om t ext - bot t omor a percentage.

e text-transform text modification: capi t al i ze (initial in upper case),
upper case (converts the text to upper case), | ower case (converts it to

lower case) or none.

e text-align: horizontal alignment of the text: | eft, ri ght, center or
justify

e text-indent: indentation of the first line of text in absolute or
percentage values.

2.1.5. Block properties

The following properties affect blocks of text (paragraphs etc).

e margin-top, margin-right, margin-bottom nmargin-left:
minimum distance between a block and the adjacent elements. Possible
values: size, percentage or aut o.

e paddi ng-top, paddi ng-ri ght, paddi ng- bot t om paddi ng- | ef t : fills
in the space between the border and contents of the block. Possible values:

size as an absolute value, percentage or aut o.

e border-top-wi dth, border-right-w dth, border-bottomw dth,
border -1 eft-w dt h: width of the block border in numerical values.

e Dborder-styl e: style of the block border. none, sol i d or 3D.

e border-col or: colour of the block border.

e width, hei ght: measurements of the block. Values as a percentage,

absolute values or aut o.

e fl oat: justification of a block's content. Values: | eft, ri ght or none.

e cl ear: the other elements are positioned in relation to the current one.
Possible values: | ef t, ri ght, bot h or none.

GNUFDL ¢ PID_00148397 35 Web page design

2.1.6. Other properties

There are other style sheet properties that can be used to change other aspects:

e col or: text colour.

backgr ound: background colour or image. Values, a colour or a URL of
the image file.

background: url (ni cebackground. gif); URLs in CSS

In CSS, the format for URLs is

e di spl ay: decides whether or not an element has a block character. This as follows: url(address)

can be: i nl i ne (such as <l > or), bl ock such as <P>, | i st such as
 or none, which disables the element.

e |ist-style: style of marker of an element of a list (allowing us to use
graphics as markers). Possible values: di sc, ci rcl e, squar e, deci nal ,
| ower - roman, upper - ronan, | ower - al pha, upper - al pha, none or a
URL of an image.

e white-space: indicates how blank spaces should be treated, whether as
usual or whether they should be respected as in the block <PRE>. Values:
nor mal and pre.

2.2. Layers

HTML 4.0 introduced a new concept to increase our control over the
positioning of elements on our pages. We can now define layers as pages
embedded within other pages.

We can specify the attributes of these layers (position, visibility, etc.) using
style sheets, just like other HTML elements. Layers, which can be controlled
with programming languages like JavaScript, are the basis of what we now
know as dynamic HTML. Unfortunately, the implementations of the different
browsers are incompatible between each other, so we either need to use huge
volumes of program code to cover all possibilities or to limit ourselves to using
only the common minimums. One of the few options we have to make layers

work in the majority of browsers is to define them using CSS style sheets.

The following example shows how to add a layer that we will call t hel ayer
using the I D attri bute.

<STYLE TYPE="t ext/css">
#t hel ayer {position:absolute; top:50px; |eft:50px;}
</ STYLE>

GNUFDL « PID_00148397 36 Web page design

In this example, t hel ayer would be placed 50 points from the upper
left-hand corner of the page. To define the layer, in this case, we will use a
SPAN tag.

Content of the |ayer
</ SPAN>

In this example, we positioned the previous layer in a specific position on the

page; we can also place layers in relative positions in relation to the position

that the text would occupy on the page where they are written.

The definition for this is as follows:
<STYLE TYPE="text/css"> #flotlayer {position: relative; left: 20px; top: |OOpx;} </STYLE>

There are several specific layer properties that can be easily modified:

e |eft,top: these are used to indicate the position of the upper left-hand
corner of the layer in relation to the layer where it is located. The whole
document is considered a layer.

e hei ght, w dt h: indicate the height and width of the layer.

e cli p:allows us to define a clipped area inside the layer.

e z-index: indicates the depth in the stack of layers. The greater the
z-index, the shallower the depth and the greater the visibility (they
will be superimposed on those with smaller z- i ndexes). By default, the
z-i ndex is assigned by order of definition in the HTML file.

e visibility:specifies whether the layer should be visible or hidden. The
possible values are vi si bl e, hi dden or i nherit (inherits the visibility

of the parent layer).

e Dbackground-i mage: Image that will be used as the background of the
layer.

e background-col or, | ayer - backgr ound- col or: defines the
background colour of the layer for Internet Explorer and
Mozilla/Netscape, respectively.

GNUFDL ¢ PID_00148397 37 Web page design

3. Dynamic HTML

Dynamic HTML (DHTML) is not a recommendation defined by the W3C;
it is a marketing term used by Netscape and Microsoft to refer to new Web
technologies as a whole. These include:

e HTML, particularly HTML 4.0
e Style sheets (CSS)
e JavaScript

These technologies are generally known as DHTML, especially where they
work together to add to the user's web experience. Among other things, this
combination of technologies offers much richer and more complex graphic
user interfaces, the possibility of controlling forms more efficiently (JavaScript
code is executed on the client, resulting in enhanced performance), etc.

One of the key features of DHTML is DOM (Document Object Model), which
defines a hierarchy of objects accessible through JavaScript (a tree in fact)
representing each and every element in the HTML document. The tree used
in DOM is as follows:

Frames | self | top| parent

location document history

link anchor form applet image area

B

We will now look at an example of how to define a form in HTML that uses
controls directed by JavaScript and DOM to handle a TEXTAREA element.

<htn >
<head>
<nmeta http-equi v="_Cont ent - Type"
content="text/htm ; charset=l SO 8859-1">

GNUFDL « PID_00148397 38 Web page design

<title>Textarea</title>
<neta nanme="Aut hor" content="Shi nSoft">
<nmeta http-equi v="Content-Script-Type" content="text/javascript">
<nmeta http-equi v="Content-Styl e-Type" content="text/css">
<style type="text/css">
<l--
t abl e{ background-col or: #99ff 99; border: 2px solid #66cc66; }
td textarea { background-col or: #ffffff; border:2px inset #66cc66; w dth:100 % }
td input[type="button"]{ background-col or:#ccccff; border:2px outset #9999ff; }
td input[type="text"] { background-col or: #ffffee; border:2px solid #ff9999; text-align:right; }
[readonl y] { col or: #999966; }
dt { font-weight:bold; font-famly:fantasy; }
#t { background-col or: #ffffee; border:2px solid #ff9999; }
-->

</styl e>

<script |anguage="JavaScri pt">
<l--
function not Supported(){ alert(' No browser support.'); }
function setSel (){
var f=docunent.f;
var t=f.ta;
if(t.setSelectionRange) {
var start=parselnt(f.start.val ue);
var end =parselnt(f.end .val ue);
t.set Sel ecti onRange(start, end);
t.focus();
f.t.value = t.value.substr(t.selectionStart, t.selectionEnd-t.selectionStart);
} el se not Supported();
} function setProp(id){
var f=docunent.f;
var t=f.ta;
if(id==0) t.selectionStart = parselnt(f.start.value);
if(id==1) t.selectionEnd = parselnt(f.end .value);
f.t.value = t.val ue.substr(t.selectionStart,
t.sel ectionEnd-t.selectionStart);
t.focus();
}
function getProp(id){
var f=docunent.f; var t=f.ta; if(id==0) f.start.value = t.selectionStart;
i f(id==1)
f.end.value = t.sel ecti onEnd;
i f(id==2)
f.txl.value = t.textLength;
f.t.value = t.value.substr(t.selectionStart,
t.sel ecti onEnd-t.sel ectionStart);

t.focus();

GNUEFDL ¢ PID_00148397 39

}
function init(){
var f=docunent.f;
var t=f.ta;
if(t.setSelectionRange){
f.start.value = t.selectionStart
f.end .value = t.sel ectionEnd;
f.txl .value = t.textLength;
} el se not Supported();
}
Il -->
</ script>
</ head>
<body bgcolor="#ffffff" text="#000000"
| i nk="#cc6666" al i nk="#ff0000" vlink="cc6666"
onload="init();">
<h2>Text ar ea El ement </ h2>
<f orm name="f">
<t abl e border=0 cel | spaci ng=1>
<tr>
<th>Start of selection</th>
<td>
<i nput type="text" name="start" size=4 val ue="0">
<i nput type="button" val ue="obtain" onC ick="getProp(0);">
<i nput type="button" val ue="place" onC ick="setProp(0);">
</td>
<td rowspan=2>
<i nput type="button" val ue="Sel ect" onClick="setSel ();">
</td>
</[tr>
<tr>
<t h>End of sel ection</th>
<t d>
<input type="text" nane="end" size=4 val ue="1">
<i nput type="button" val ue="obtain" onC ick="getProp(1);">
<i nput type="button" val ue="place" ond ick="setProp(1);">
</td>
</[tr>
<tr>
<th>Length of text</th>
<t d>

<input type="text" name="txl|" id="txl" size=4 value="" readonly>

<i nput type="button" val ue="obtain" onC ick="getProp(2);">
</td>
</tr>
<tr>

<t h>Text Area El enent </t h>

Web page design

GNUFDL ¢ PID_00148397 40 Web page design

<td col span=2>
<textarea name="ta" id="ta" col s=30 rows=5>
We can select parts of this text
</textarea></td></tr>
<tr>
<t h>sel ected string</th>
<td col span=2>
<textarea name="t" id="t" readonl y></textarea>
</td>
</tr>
</t abl e>

</forne

<dl >

<dt >Pl ace button: </dt>

<dd>Assi gn the val ue according to the Textarea contents. </ dd>
<dt >Sel ect button: </ dt>

<dd>Use the values to select text.</dd>

<dt >Obt ai n button: </ dt>
<dd>Obtai n the val ues according to what has been sel ected. </ dd>

</dl >
</ body></ ht m >
The result that will appear in the browser is as follows:

Text Element

Start of selection 41 _obtain | _place |
I
End of selection 41 _obtain | place]se—ect]

Length of text 41 obtain
You can select parts of this text

TextArea Element

Place button:

Assign the value according to the Textarea contents..
Select button:

Use the values to select text.
Obtain button:
Obtain the values according to what has been selected.

GNUFDL ¢ PID_00148397 41 Web page design

4. JavaScript

JavaScript is an interpreted programming language (a script language).
Although there are interpreters that do not depend on a given browser, it
is a script language usually linked to web pages. JavaScript and Java are two
different programming languages with very different philosophies. The only
thing they have in common is their syntax, since Netscape based its design of
JavaScript on the syntax of Java.

4.1. First basic program

As is now the norm when demonstrating programming languages, our first
contact with JavaScript will be to create our first program displaying the
typical "Hello world" message. Since JavaScript is a language that is generally
linked to a web page, the following code will be a HTML file that we will need
to display in a browser.

<HTM_>
<HEAD>
<SCRI PT LANGUACE="Javascri pt">
function Geeting()
{
alert("Hello world");
}
</ SCRI PT>
</ HEAD>
<BCDY>
<FORM>
<I NPUT TYPE="button" NAME="Button"
VALUE="Press" onCick="Geeting()">
</ FORW>
</ BODY>
</ HTM_>

This JavaScript program paints a button on our screen; this button opens a

window with a message when we click on it. The program looks like this:

GNUEFDL ¢ PID_00148397 42

Back Foward Rebad Stop '™
Press r,]
JavaScript Application|
; Hello world
A
W OK

We will now discuss the above code so that we can introduce the diverse
elements of JavaScript.

As we can see, the JavaScript code is wrapped by <SCRI PT> tags. These tags
can appear at whichever point in the document we wish; they do not have
to appear in the header.
Browsers that do not offer JavaScript support will ignore the content of
the tags. Optionally, we may require our users to have a specific version of
JavaScript if we use tags like:

<SCRI PT LANGUAGE="Javascriptl.1">

</ SCRI PT>

An easy way to use the <SCRI PT> tags is to put them in the page header, as
this makes for a more legible HTML code.

The <SCRI PT> tag contains the JavaScript code. In this case, it only has one
function, but it could have more.

Our code:

function Geeting() { alert("Hello world"); }
defines a function called Greeting. As we can see, in contrast to Java,
this function does not belong to an object. Despite being object-oriented,

JavaScript allows functions to exist outside of objects (like C++).

We will see that the only code contained by this function is a call to function,
al ert (a window obj ect met hod).

The following block of JavaScript code is inside the HTML definition of the

form.

<FORW>
<I NPUT TYPE="button" NAME="Button"

Web page design

GNUEFDL ¢ PID_00148397 43

VALUE="Press" onCick="Geeting()">
</ FORW>

In this case, the JavaScript code declares an event manager, specifically for the
onCl i ck event, for the object button. An event is an occurrence of something
(in this case a mouse click by the user). When the JavaScript event takes place,
it executes the code indicated in the ond i ck event manager. This code is a
call to a function, Gr eet i ng.

4.2. Basic elements of JavaScript

JavaScript sentences end in ; (like C and Java) and can be grouped into blocks
delimited by { and }.

Another point to bear in mind is that symbols (names of variables, functions,
etc.) are case-sensitive.

4.2.1. Comments
There are two options for adding comments to the program:
/'l Single-line comrent
/ *
comment that takes
up several |ines
*/
As you can see, the format of comments is identical to Java.

4.2.2. Literals

JavaScript follows the same mechanism as Java and C for defining literals, i.e.

it has the following literals:

e Integers 123

¢ Real 0.034

e Boolean true, false

e Strings "Text string"

JavaScript also offers vector support:

seasons = ["Autum"," Wnter"," Spring"," Summer"];

Special characters

Web page design

GNUEFDL ¢ PID_00148397 44

Like Java, JavaScript uses certain character sequences for inserting special

characters in our string constants.

Within these strings, we can indicate several special characters with special

meanings. The most widely-used are:

Character Meaning
\n New line
\ t Tab
\! Inverted comma
\ " Quotation marks
\\ Backslash
\ XXX The ASCII number (Latin-1 code) of the hexadecimal character

4.3. Data types and variables

In JavaScript, data types are dynamically assigned as we assign values to the
different variables. These can be:

e character strings

* integers

e real
e Boolean
e vectors

e matrices
e references

e objects

4.3.1. Variables

In JavaScript, the names of variables begin with an alphabetical character or

the character '_', and may be formed by alphanumeric characters and the

character ' .

There is no need for an explicit declaration of variables as they are global.
If you want a local variable, however, you will need to declare it using
the reserved word var and do so in the body of a function. In a variable
declaration with var we can declare several variables by separating their
names with, .

The variables will take the data type from the type of data object we assign
to them.

Web page design

GNUEFDL ¢ PID_00148397 45

4.3.2. References

JavaScript eliminates pointers to memory from the language, but maintains
the use of references. References work in a very similar way to pointers
to memory, except that they skip out memory management tasks for

programmers, which make pointers so prone to errors in other languages.

JavaScript allows references to objects and to functions. This ability to
reference functions will be very useful when using functions that hide
differences between browsers.

function onl yExpl orer ()

{
}

function onl yMzill a()

{

function all ()

{
var function;
i f(browserMozill a)
functi on=onl yMzil | a;
el se
functi on=onl yExpl orer
function();
}

4.3.3. Vectors

Javascript has a type of data for handling collections of data. The elements in

these ar r ays can vary.

As we can see in the code below, JavaScript ar r ays are objects (arr ay type)
whose index of access may be a non-numerical value for which we should not
initially declare the measurements. We do not have an n-dimensional type of

vector, so we can use vectors of vectors for this.

//we dimension a vector of 20

vector el ements = new Array(20);

//the vector grows to house the 30

myWonder f ul Vector el ements [30] = "contai ned";

Web page design

GNUEFDL ¢ PID_00148397 46

//we dinension a capitals

vector = new Array ();

//we can use strings as capital indices

vector["France"] = "Paris";

4.3.4. Operators

Javascript has the same operators as Java and C, and behaves in the same way
as these languages usually do:

e Arithmetical operators: the usual arithmetical operators are available (+,
-, *, 1, %, etc.), as well as increment (+ +) and decrement (-) operators.

e Comparison operators: we can use the following:
— Equality ==
— Inequality =
- Strict equality ===
— Strict inequality !==
— Less than <
- Greater than >
— Less than or equal to <=
— Greater than or equal to <=

¢ Logical operators: JavaScript has the following logical operators:
— Not!
- and &&

- or]
¢ Object operators: for object handling we also have:
— Create an object new

— Delete an object del et e
- Reference to the current object t hi s

4.4. Control structures
Like all programming languages, JavaScript has some control structures.
4.4.1. Conditional forks
JavaScript offers the two best-known control structures:
if (condition)
<code>

el se

<code>

Web page design

GNUFDL e« PID_00148397 47 Web page design

swi t ch(val ue)

{

case val uetestl
<code>
br eak;

case val uetest2
<code>

br eak;

defaul t:

<code>

4.4.2. Loops

There are three loops, whi | e and do, whi | e, and thefor | oop.

whi | e(condi ti on)

<code>

do
{

<code>

} while(condition);

for(start; condition; increase)

<code>
4.4.3. Object handling structures
There are two very specific structures for object handling. Firstly, we have the
for..in loop, which allows us to cycle through the properties of an object

(generally in vectors):

for (<variable> in <object)

<code>

Secondly, we havewi t h, which is very convenient when dealing with multiple

properties of a single object. We can write:

with (object)
{

propertyl = ..

property2

GNUEFDL ¢ PID_00148397 48

Instead of:

obj ect. propertyl=...
obj ect. property2=...

4.5. Functions

JavaScript incorporates the necessary constructions for defining functions.
The syntax is as follows:

function nanme(argunentl, argunment2,..., argunent n)
{

code
}

The parameters are passed by value.

4.6. Objects

In JavaScript, an object is a data structure that contains both variables
(object properties) and functions for handling the object (methods). The
object-oriented programming model used by Javascript is a lot simpler than
that of Java or C++. JavaScript does not distinguish between objects and object

instances.

The mechanism for accessing the properties or methods of an object is as
follows:

obj ect. property

val ue=obj ect . net hod(par aneter1, paraneter2, ...)
4.6.1. Defining objects in JavaScript
To define an object in JavaScript, we must first define a special function whose
purpose is to build the object. We need to assign the same name to this
function, called constructor, as we did to the Object.
function MyQbject(attrl, attr2)
{
this.attrl=attr1;
this.attr2=attr?2;

From now on we can create objects of the type MyCbj ect

obj ect =new MyQbj ect(....)

Web page design

GNUEFDL ¢ PID_00148397 49

obj ect. attrl=a;

To add methods to an object we must first define these methods as a normal

function:

function Methodl(attrl, attr2)
{

/| code

/! we have the object in this

To assign this method to an object method, type:

obj ect . met hod1=Met hod1;

From now on, we can enter the following:

obj ect. met hod1(....);

4.6.2. Inheritance

In object-oriented programming, inheritance allows us to create new objects
with the methods and properties of objects that are called parents. This allows
us to create derived objects, thus moving from generic implementations to

increasingly specific implementations.

The syntax for creating an object derived from another, such as a
Chi | dQoj ect derived from a Par ent Obj ect that had two arguments (ar g1
and ar g2) will be:

function ChildQbject(argl, arg2, arg3)
{
t hi s. base=Par ent Obj ect ;

thi s. base(argl, arg2);

At this point, we can obtain access through a Chi | dCbj ect to both the

methods and properties of the child and parent objects.

4.6.3. Predefined objects

The existing JavaScript implementations incorporate a series of predefined
objects:

e Arrays Vectors.
¢ Date For storing and handling dates.
¢ Math Mathematical methods and constants.

Web page design

GNUEFDL ¢ PID_00148397 50

¢ Number Some constants.

e String String handling.

¢ RegExp Regular expression handling.
¢ Boolean Boolean values.

¢ Function Functions.
4.7. Events
One of the most important aspects of JavaScript is its browser interaction. For

this, it incorporates a series of events triggered just as the user carries out an
action on the web page.

Event Description

onLoad Page loading finishes. Available in: <BODY>

onUnLoad A page is left. Available in: <BODY>

onMouseOver | The mouse is hovered over. Available in: <A>, <AREA>,..

onMbuseQut | The mouse stops hovering over an element.

onSubmi t A form is sent. Available in: <FORM>

ond i ck An element is clicked. Available in: <I NPUT>

onBl ur The cursor is lost. Available in: <I NPUT>, <TEXTAREA>

onChange Content is changed. Available in: <I NPUT>, <TEXTAREA>

onFocus The cursor is found. Available in: <I NPUT>, <TEXTAREA>

onSel ect Text is selected. Available in: <I NPUT TYPE="t ext " >, <TEXTAREA>

There are two mechanisms for indicating the function to handle an event:

<HTM.>
<HEAD>
<SCRI PT LANGUAGE="Javascri pt">
function Alarn() {
alert("Hello World");
}
</ SCRI PT>
</ HEAD>
<BODY onLoad="Gr eeting()">

</ BODY>
</ HTML>

<HTM>
<HEAD>
<SCRI PT LANGUAGE="Javascri pt">

Web page design

GNUFDL ¢ PID_00148397 51 Web page design

GNUFDL ¢ PID_00148397 52 Web page design

5. Practical: creating a complex web page using the
techniques described.

We will now create a web page using all of the techniques seen up to this
point. The result will be a page like this:

Ele Edt Yiew Go pookmarks Jook Help oy
. l:l'fnd HD;’;“_ L3 e /imome/canesmyglasndex,htmi] &
| Fedora Linux _]Mozilla Feebird Help | | Mozille Firebird Disc...] Plug-in FAQ
M Disablew AfForms» [Siimages+ Vinformations o' Outinew EJResizew o Valdationw &) View Source -« Optionse
C X Site map Contact = Help [=]
Products Soldions Stora Custamer care Akaut Company X
Contents
|
Fory— Welcome to Company X! —
(el This is the website of Company X, a fictitious company that
Our migsion develeps free-software-based software, 10ct 03
Our clients Launch of
‘aporWare 1.0!
The future _) Following years
Company X Notes on this design of evaluation versions,
VaporWare 1.0 is
i Compliance with standards ekt
. We have used the 1.0 Strict and CSS 2 XHTML standards i
South America for display with most browsers. 15 Mai 03
. : a
AsialPacific The new offices
Design without tables of the R&D
FREHGE Wil Ithas been designed without the use of tables, for grealer gopiuoo o o
Search clarity and speed of representation. been inaugurated in
i Sant Bartomeu
Go Javascript+DOM del Grau.
We have used JavaScript+DOM for the animation so that it is
represented correctly on all browsers IOPE WS, .
Two style sheets
A separate style sheel has been used for the colour scheme. Downias
H=Linux
data -ﬂ
Done

To build this page, we are not going to use any tables or frames). We are only
going to use separators like DI V, P, etc. and CSS positioning.

We will also incorporate an animation effect in the title of the business, for
which we will not use any components that are not DHTML. This will also
allow the animation to work properly in Mozilla/Netscape browsers, such as
Opera, and in Internet Explorer, etc.

Another of the principles for the design of this page will be that we will use
two different files to maintain the style sheets, one containing the colours and
the other containing the styles per se. This will make it easier to make any
changes in style, etc.

We will now show the same page as before, indicating the type of element in

each of the blocks that make up the page:

GNUEFDL ¢ PID_00148397 53

[eev] Site map Contact

amCompany X

= Prock

Store C Care Contact us

Ed<IContents e
o B Welcome to Company X! Fi-lNews
Our mission 2= This is the wehsite of Company X, & ficttious company tht [+510ct 03
TS develops free-software-based software, Launch of
Uncllens YaporMare 1.00
The future Following years
of evaluation
k4. Company X | Ei3Notes on this design versions,)
e Vaporiare 1.0 s
WS TE| launched.
South America Compliance with standards
Asia/Pacific Wie have used the 1.0 Strict and €SS 2 XHTML standards
for display with most brovwsers. |
Rest of the world [£5515 Mai 03
Design without tables -;:_1::"12 ?q\f-é%fﬁ ces
EddSearch t has been designed without the use of tables, for grester
| clarity and speed of representation, department have
been inaugurated in
| Sant Bartomeu
del Grau.
Go
Javascript+DOM

VW have uged JavaScript+DOM for the animsation so
thet it iz represented correctly on all brovwsers

' |'~u_-'-]ir'r'u:-'re news...
This is the code for the style sheet indicating the format, which, in our
example, is called styl e. css

[* ####HH Body #itH##H#E */

Body {
font-famly: verdana, tahonm, helvetica, arial, sans-serif;
font-size: 94%

mar gi n: 0;

hl, h2, h3 {
font-famly: arial, verdana, tahoma, sans-serif;

}

hi {
font-size: 164%
font-wei ght: bold;
font-style: italic;
paddi ng-top: |em
border-top-style: solid;
border-top-w dth: 1px;

} P{
paddi ng- bottom | ex;

} inmg {

bor der: none;

code {
font-fam ly: "lucida consol e", npnospace;

font-size: 95% }

Web page design

We will now show col ors. css:

GNUFDL ¢ PID_00148397 58 Web page design

.leftBar .leftBarTitle, .rightBar
leftBarTitle
{ background-col or: #e6dfcf; }

| * #it### Border col ours ###### */

hl, #textBody, .rightBar
{ border-color: #e6dfcf; }

We will now reveal the code for the website of Company X, our fictitious
company:

<! DOCTYPE htm PUBLIC "-//WBC//DTD XHTM. 1.0 Strict//EN'
"http://ww. w3. org/ TR/ xht ml 1/ DTD/ xht ml 1-strict. dtd">

<htm xm ns="http://ww. w3. org/ 1999/ xhtm " xm : | ang="en" >
<head>
<meta http-equiv="content-type" content="application/xhtm +xm ; charset=i so8859-1" />
<meta nanme="aut hor" content="haran" />
<met a name="generator" content="W ndows Notepad" />
<link rel ="styl esheet" type="text/css" href="style.css" />

<link rel ="styl esheet" type="text/css" href="col ours.css"/>

<title>Denp</title>
<style type="text/css"> .textoexp {
font-famly: Arial;
col or: bl ack;
font-size: 30pt;
text-align: left;
| etter-spacing: -20px;
} </style>
<script type="text/javascript"> function
expandText (start, end, step, speed){
if (start < end){
docunent . get El enent Byl d("t ext oexpand").style.letterSpacing = start+"px";
start=start +step;

set Ti meout (" expandText ("+start+", " +end+", " +st ep+", " +speed+") ", speed) ;

}

</script>

</ head>

<body onLoad="expandText (-20, 30,1,5);">

<div id="top"></div>

<! - - #####H## Header #H##H#H#HH -->

<di v id="header">

GNUFDL ¢ PID_00148397 59 Web page design

Conpany X</ span>
<di v cl ass="header Li nks">

Site Map

Cont act </ a>

Hel p
</ di v>

</ di v>

<di v cl ass="menuBar">
Product s</ a>
Sol uti ons</ a>
Store
Customer car
Contact us
About Conpany X

</ di v>

<l - - ###H#H#H#H Lef t #H#H#H#HH -->

<div class="|eftBar">
<div class="leftBarTitle">Content</div>
Wel cone</ a>
Qur mi ssion
Qur clients
The future
<div class="leftBarTitle">Conpany X</div>
Eur ope</ a>
South Anerica
Asi a/ Paci fi c</ a>
Rest of the world
<div class="leftBarTitle">Search</div>
<f or m net hod=" GET" >
<l nput type=text size=13 nanme="text"><i nput type=subm t
nanme="Go" val ue="Go" ></f or n></ span>

</ di v>

<l - - #####H R ght #####H#H -->

<div class="rightBar">
<div class="leftBarTitle">News</div>
<di v class="textBar">1 Oct 03

Launch of VaporWare 1.0! Fol |l owi ng years of eval uation versions,
VaporWare 1.0 is |aunched.
</ di v>
</ di v>

<di v cl ass="textBar">15 May 03

GNUFDL « PID_00148397 60 Web page design

The new offices of the R&anp; D departnent have been i naugurated
in Sant Bartonmeu del Gau. </div>
<div class="textBar">nore news...</div>
<div class="leftBarTitle">Downl oads</di v>
<di v cl ass="t ext Bar">X- Li nux</ strong>

data ; downl oad</ a></ di v>
<di v cl ass="t ext Bar " >Vapor War e</ strong>

data ; downl oad</ a></ di v>

</ di v>

<I-- #H##HH Text #H#H##H -->
<di v id="text Body" >
<hl id="Wel cone"
styl e="border-top: none;
paddi ng-top: 0;">Wel cone to Conpany X! </hl>
<p>This is the website of Conpany X, a fictitious conpany
t hat devel ops software based on free software.
<hl i d="Notes">Notes on this design</hl>
<dl >
<dt >Conpl i ance wi th standards</dt>
<dd>We have used the 1.0 Strict and CSS 2 XHTM. st andards
for display with nost browsers. </dd>
<dt >Desi gn wi t hout tabl es</dt>
<dd>lt has been designed w thout the use of tables, for
greater clarity and speed of rendering.</dd>
<dt >Javascri pt +DOWK/ dt >
<dd>We have used JavaScri pt +DOM for the ani mati on so t hat
it is rendered correctly on all browsers. </dd>
<dt >Two styl e sheets</dt> <dd>A separate style sheet has
been used for the col our schene. </ dd>
</dl >
</di v>
</ body>
</htm >

GNUFDL « PID_00148397 61 Web page design
Bibliography

Musciano, Chuck; Kennedy, Bill (2000). HTML & XHTML: The Definitive Guide. 4th
Edition. O'Reilly.

Meyer, Eric A. (2000). Cascading Style Sheets: The Definitive Guide. O'Reilly.
Flanagan, David (2001). JavaScript: The Definitive Guide. O'Reilly.

Goodman, Danny (2002). Dynamic HTML: The Definitive Reference. O'Reilly.

Text structured
format: XML

Carles Mateu

319

U0

GNUEFDL ¢ PID_00148402 Text structured format: XML

Copyright © 2010, FUOC. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation

License"

GNUEFDL ¢ PID_00148402

Text structured format: XML

Index
1. Introduction t0 XML...........ccccooiiiiiiiiiiiieieee e eeeee e
2. XML s
2.1. Well-formed dOCUMENtccccuuieiiriiiiiieeiiiiieeee e eeeeee e
2.2. Well-formed is equivalent to analysableccccoeeeuveeernnnneen.
2.3, NAIMESPACES ..evvrrririreeiiiiiiiiiiiiirrttereee et e e e e seeerrrreateeeeeeeseesessnnes
2.3.1. USING NAMESPACES ...uuvmrrrrrrrreeeeeierieriiiiinrirerreereeeeeeeseenanns
3. Validation: DTD and XML Schema............ccccccccceeiiniiiiiinnnnneennn.
3.1, DTD it
3.1.1. Syntactic conventions of DTDcccceviiiiiiniieceennne
3.1.2. ELEMENT elementccccooeviiieiiiiiiieeenniiieeeieeeeeene
3.1.3. ATTLIST elemMentccceeereerererriiiiiiiieeeeeeeeeeeeee e
3.1.4. Linking documents to a DTDcccccceerviiiiciiiniinneennn.
3.2, XML SCREIMA ..ottt e e e
3.2.1. The <schema> elementccceeevumrriiieiieieeeierieneneene
3.2.2. Simple elementsccccoeveiiiieiiiiiiiieiieeeee e
3.2.3. AIIDULES .eeeeeeiiiiiiiiie e
3.2.4. Content restriCtionscccceviiieiiiiiiiiiiiiiiceceeee e
3.2.5. Complex elements in XSDcccccceiiriiiiieiiniineeeninnneee.
3.2.6. Indicators for complex typescccceveviieiiiiiiieeiniinneen.
4. Transformations: XSLT.........cccooiiiiiiiie e
4.1. Simple transformationcc.ccccoeeveerireeinrennieeee e
4.2. The xsl:tenplate el ement ...ccccceeeereeiiiiiiiiiiiiieceee e,
4.3. The val ue- of elementccceeeveiiiiiiiiiiiiieeee e,
4.4. The xsl:for-each elementcccooeeviiiiiiiiiiiiiniiniieiinneee,
4.5. Sorting information: XSI : SOt .cceeeeiiiiiiiiiiiiiieeee e
4.6. Conditions in XSL ..ocoiiiiiiiieeeee e
4.6.1. The xsl:if elementcccceereiiiiiiiiiiiiiien e,
4.6.2. The xsl:choose el enmentccccccevviiiiiiiiiiniiinicinnnnn,
4.7. The xsl : appl y-tenpl at es elementccccceeeeeeeecnvneerneeenennn.
4.8. Introduction to XPathcccceeiiiiiiiiiiiiiiii e,
4.8.1. Selecting unknown elementscccceccvueeeerinineeeeennnnne
4.8.2. Selecting branches of the treec.ccccccerriiiieennnnneen.
4.8.3. Selecting multiple branchesc.ccccceveiiiiiiiiiieennne.
4.8.4. Selecting attributesccccccceeeiriiiiiiiiiiiiiiiee e
4.8.5. Functions lIDrarycccccccceeemiiieeeniiiieee e

5. Practical: creating an XML document with its

corresponding XML Schema and transformations with

10
11
12
13

15
15
16
17
19
21
23
25
26
27
28
33
38

42
43
45
46
46
47
48
48
49
50
51
52
53
53
54
54

55

GNUEFDL ¢ PID_00148402 Text structured format: XML

BibLHOZIapIYccooiiiiiiiiiiiie e 65

GNUEFDL ¢ PID_00148402 5

1. Introduction to XML

XML is the abbreviation of Extensible Markup Language. It is a World Wide
Web Consortium recommendation (ht t p: / / www. w3. or g is a basic reference
for XML), whose original aim was to rise to the challenge of the electronic
publication of documents on a large scale. XML is becoming increasingly
important in the exchange of a wide variety of information on the Web and
in other contexts.

XML derives from a markup language called SGML (an ISO standard,
specifically ISO-8879) and it is a subset of SGML whose aim is to be served,
received and processed on the Web like HTML. XML was designed for
simplicity of implementation and interoperability with SGML and HTML, and
for use in the design of data-based applications.

XML was developed in 1996 by a group under the auspices of W3C, originally
known as the SGML working group, with the following goals, as set down in
the standard definition document:

1) XML shall be straightforwardly usable over the Internet.

2) XML shall support a wide variety of applications.

3) XML shall be compatible with SGML.

4) It shall be easy to write programs which process XML documents.

5) The number of optional features in XML is to be kept to the absolute
minimum, ideally zero.

6) XML documents should be human-legible and reasonably clear.

7) The XML design should be prepared quickly.

8) The design of XML shall be formal and concise.

9) XML documents shall be easy to create.

10) Brevity in XML markup is of minimal importance.

Another area of the recommendation refers to other related standards
that, together with the definition of XML, are absolutely essential for
understanding XML:

Text structured format: XML

GNUEFDL ¢ PID_00148402 6

This specification, together with associated standards (Unicode and
ISO/IEC 10646 for characters, Internet RFC 1766 for language
identification tags, ISO 639 for language name codes, and ISO 3166
for country name codes), provides all the information necessary to
understand XML Version 1.0 and construct computer programs to

process it.

You may wonder why W3C saw the need to develop a new language for the
Web when we already had HTML. By 1996, HTML had already revealed some

of its most serious deficiencies:

e HTML was optimised to be easy to learn, not to be easy to process:
— Asingle set of tags (regardless of applications).
— DPredefined semantics for each tag.
- Predefined data structures.

e HTML sacrifices power for ease of use.
e HTML is fine for straightforward applications but not so good for complex
applications:
— Complex data sets.
- Data that needs to be handled in different ways.
- Data for controlling programs.
— No possibility of formal validation.

In the light of this, the W3C developed a new language (XML) providing:

Extensibility: new tags and attributes can be defined as needed.

Structure: any type of hierarchically organised data can be modelled.
Validity: data can be automatically validated (structurally).

Media independence: the same content can be published on a range of

media.

XML can be characterised as follows:

XML is a simplified version of SGML that is very easy to implement.
It is a metalanguage, rather than a language, designed for defining
an unlimited number of languages for specific purposes which can be
processed using the same tools regardless of the purpose for which they
were built.

As this definition indicates, XML is not a language, it is a metalanguage
that allows us to define a multitude of languages for specific purposes. The
following chapters will explain how to define these languages and how to

Text structured format: XML

GNUEFDL ¢ PID_00148402 7

define rules for the structural validation of the languages. These definitions
and even the definition of programs to translate and transform XML files are
in XML, which gives us a clue as to the power of XML. Many languages
have been defined in XML; the configuration files of some of the Web's most
widely-used programs (Tomcat, Roxen, etc.) are defined with XML and many
data files and documents, among others, also use it for their definition. The
most well-known languages defined with XML include:

* SVG (Scalable Vector Graphics)

e DocBook XML (Docbook-XML)

e XMI (XML Metadata Interface Format)

¢ WML (WAP Markup Language)

¢ MathML (Mathematical Markup Language)
e XHTML (XML HyperText Markup Language)

Here is an example of an XML document that we have defined:

<?xm version="|.0" encodi ng="i so-8859-1"7?>
<library>

<book | anguage="Engl i sh">
<title>The Hobbit</title>
<author>J. R R Tol ki en</aut hor >
<publ i sher>Al | en and Unwi n</ publ i sher>

</ book>

<book | anguage="Spani sh">
<title>El Quijote</title>
<aut hor >M guel de Cervant es</ aut hor >
<publ i sher >Al f aguar a</ publ i sher >

</ book>

</library>

This sample document contains some of the features of XML already
mentioned, such as a hierarchical structure, legibility, designed for a specific
use (the storage of books in our library). The example also demonstrates the
differences between XML and HTML that justified the introduction of XML.

We will now write a similar document in HTML:

<HTM_>

<HEAD>
<title>Library</TITLE>

</ HEAD>

<BODY>
<H >The Hobbit</H >
<P>Aut hor: J. R R Tol ki en</ P>
Publ i sher </ B>Al | en and Unw n</ P>

<HI>El Quijote</H >

Text structured format: XML

GNUEFDL ¢ PID_00148402 8

<P>Aut hor: </ B>M guel de Cervantes</P>
<P>Publ i sher </ B>Al f aguar a</ P>
</ BODY>
</ HTM_>

As we can see, HTML offers us ways of representing the display format (,
<I> etc. represent the format: bold, italic etc.), but these do not give us any
information on the semantics of the data they contain. In XML, we have
tags that tell us about the semantics of the data: <author> indicates that the
data contained corresponds to the author etc. No information is given on the
display format; we are not told how the name of the author will be visualised
on screen (bold, italics, etc). XML has other tools for specifying this and for
changing the format of representation according to where it is to be displayed
(to adapt it to a specific web browser, mobile telephone etc).

Text structured format: XML

GNUEFDL ¢ PID_00148402 9

2. XML

An XML object (or XML document) is defined as a document formed by tags
and values that meets the XML specification and is well formed.

We will begin our study of XML with a sample XML document to see how it is
made. To do so, we will design an XML format to represent kitchen recipes. We
will save our recipes in this XML format (generally called XML application),
which we call RecipeXML.

<?xm version="1.0"?>
<Reci pe>
<Nane>Spani sh onel ett e</ Nanme>
<Descri pti on>
The traditional, typical Spanish onelette
just like our nothers make it.
</ Descri pti on>
<l ngr edi ent s>
<l ngr edi ent >
<Quantity unit="piece">3</Quantity>
<l t en>Pot at oes</ | t en>
</ I ngredi ent >
<l ngr edi ent >
<Quantity unit="piece">2</ Quantity>
<i t empEggs</ | ten> </I|ngredient>
<l ngr edi ent >
<Quantity unit="litre">0.1</ Quantity>
<ltemrQ | </Itenp
</l ngredi ent >
</l ngr edi ent s>
<l nstructions>
<St ep>
Peel and slice the potatoes
</ St ep>
<St ep>
Add sone oil to a frying pan
</ St ep>
<!-- And continue in this way... -->
</ I nstructions>

</ Reci pe>

Recipe written in RecipeXML

Text structured format: XML

XML specification

The XML specification is
available from the W3C
website: http://www.w3c.org

GNUEFDL ¢ PID_00148402 10

This document is an XML document. All well-formed XML documents must

begin with a line like this:

<?xm version="1.0"?>

, telling us the version of the XML specification used and that it is
an XML document. It must also be made up exclusively of XML tags
organised hierarchically. We can quickly see that XML does not store how
the information should be represented or displayed; instead, it stores the
semantics of this. Our document shows how this information is organised:

Recipes are made up of a list of ingredients and instructions. The list of ingredients
is a series of ingredients each with its name, quantity etc.

Start label
A_
r<Label Attribute = “Value™ A
Name of Name of Value of
label attribute attribute
|\ J
Y
Attribute

</Label>

Final label

As in our recipe, all XML tags follow the format shown.

2.1. Well-formed document

The well-formed concept is taken from mathematics, in which it is plausible

to write an expression containing mathematical symbols such as:

D1--5(+=)4<3

which, although formed by mathematical symbols, means nothing because
it does not follow the rules and conventions of writing mathematical

expressions. This mathematical expression is not well formed.

In XML, a well-formed document must follow these rules:

All tags closed: in HTML, we can be quite lax about syntactical rules,
leaving tags (like , for example) open for the whole of a document
or indiscriminately using tags like <P> without closing them with their
corresponding </P>. XML does not permit such laxness. All open tags

Text structured format: XML

GNUEFDL ¢ PID_00148402 11

must have their corresponding closing tags. This is because tags in XML
represent hierarchical information showing how the different elements relate
to one another. If we do not close the tags, we create ambiguities in this

representation that will inhibit automatic processing.

Tags cannot overlap: a tag opened inside another tag must be closed before
the tag that contains it is closed. The example:

<Book>Pl atero y Yo<Author>J. R Ji ménez</Book></ Aut hor >

is not well formed because Author is not closed inside Book, where it should
be. The correct sentence should read:

<Book>Pl atero y Yo<Author>J. R Jinménez</ Aut hor ></ Book>

In other words, the structure of the document must be strictly hierarchical.

The values of attributes must appear inside quotation marks: unlike HTML,
where we can indicate attributes without quotation marks, for example:

<| MAGE SRC=i ng. j pg SI ZE=10>

in XML, all attributes must be enclosed by quotation marks. The above
attributes would therefore be written as:

<I MAGE SRC="i ng. j pg" SI ZE="10">.

The characters <, > and " are always represented by character entities: to
represent these characters (in the text, rather than as tag marks), we must
always use special character entities: <, > and ". These characters
are specific to XML.

2.2. Well-formed is equivalent to analysable

The importance of whether or not a document is well formed in XML lies
in the fact that a well-formed document can be subject to syntactic analysis
or parsing (i.e. it can be automatically processed). There are many parsers
(analysers) in many programming languages enabling us to work with XML
documents. XML parsers can detect structural errors in XML documents (i.e.
whether they are well formed) and report them to the program. This feature
is very important for programmers because it releases them from the task of
having to detect errors by assigning it to a program (the parser), which does
it automatically.

Text structured format: XML

GNUEFDL ¢ PID_00148402 12

Some parsers go beyond simply detecting whether the document is well
formed and can even detect whether it is valid, which means that the structure,
position and number of tags is correct and makes sense. Let's take the

following excerpt from our recipe document:

<l ngr edi ent >
<Quantity unit="piece">3</Quantity>
<Quantity unit="litre">4</Quantity>
<l t en>Pot at oes</ | t en>

</'I ngr edi ent >

This XML is well formed and meets all the criteria for this but it does not make
sense. What does it mean? We have potatoes in our recipe, but how many
do we need? In this case, the problem is that we have a well-formed XML
document but it is useless because it makes no sense. We need some sort of
way to ensure that our document makes sense. In this case, we need to specify
that each ingredient will only have a quantity type tag, that this will have an
optional attribute and that it will not contain nested tags. To do this, XML
has two document structure specification languages, XML Schema and DTD,
which we will see later.

2.3. Namespaces
XML is a standard designed for the sharing of information. What happens
when we take information from two different sources and combine it in XML
to send it to somebody else? We may have some sort of conflict arising from
coincidences in the names of tags.
Imagine this scenario: an Internet provider saves all of its data in XML. The
sales division stores the home address of clients in a field called <addr ess>.
The client helpdesk uses <addr ess> to store the client's e-mail address and,
lastly, the network control centre uses <addr ess> to store the IP address of the
client's computer. If we combine the information from the three departments
of the company in a single file, we could end up with:
<client>
<addr ess>Royal Street</address>
<addr ess>sal es@l i ent . conx/ addr ess>

<addr ess>192. 168. 168. 192</ addr ess>

</client>

Text structured format: XML

GNUFDL e PID_00148402 13 Text structured format: XML

Clearly, we would have a problem in this case because we would be unable to

work out the meaning of <addr ess> in each case.

Therefore, in 1999, the W3C defined an XML extension called namespaces,

which can resolve many conflicts and ambiguities of this nature.

2.3.1. Using namespaces

Namespaces are a prefix added to XML tags to indicate the context of the tag
in question. In the above example, we could define:

<net wor k: addr ess>: for use by the network control centre.
<hel p: addr ess>: for use by the client helpdesk.
<sal es: addr ess>: for use by the sales department.
Our combined document would thus look like this:
<client>
<sal es: addr ess>Royal Street</sal es: addr ess>
<hel p: addr ess>sal es@l! i ent . conx/ hel p: addr ess>
<net wor k: addr ess>192. 168. 168. 192</ net wor k: addr ess>

</client>

In order to use a namespace in a document we must first declare it. This can

be done in the root element of the document as shown:

<?xm version="1.0" encodi ng="i so-8859-1"?>
<clientportfolio

xm ns: sal es="htt p: //ww. conpany. conf sal es"

xm ns: hel p="htt p: // ww. conpany. cont hel p"

xm ns: net wor k="htt p: // ww. conpany. conl net wor k" >

<client>

<sal es: addr ess>Royal Street</sal es: addr ess>

<hel p: addr ess>sal es@]! i ent. conx/ hel p: addr ess>

<net wor k: addr ess>192. 168. 168. 192</ net wor k: addr ess>

</client>

</clientportfolio>

GNUFDL e PID_00148402 14 Text structured format: XML

The definition has xm ns attributes(XML namespace) where we indicate the
prefix that we will use for the namespace and a URI (Uniform Resource

Identifier) that will act as the unique namespace identifier.

GNUFDL e PID_00148402 15 Text structured format: XML

3. Validation: DTD and XML Schema

As we have seen, XML allows us to check a document's form automatically, but
without additional information it is impossible to check the validity of this
form based on the document. As a result, W3C has developed XML standards
to validate documents with a formal specification of how they should be.
These standards are called DTD and XSchema.

DTD is an old standard derived from SGML that has some major weaknesses,
the biggest being that it is not written in XML. XSchema, on the other hand,
is a relatively modern, very powerful and extensible standard that is written
entirely in XML.

3.1. DTD

DTD (Document Type Definition) is a standard allowing us to define a
grammar that our XML documents must follow in order to be considered valid.
A DTD definition for n XML documents specifies which elements can exist
in an XML document, the attributes that these can have and which elements

can or must be contained within other elements and their order.

XML parsers that can validate documents with DTDs read these documents
and the associated DTD. If the XML document does not meet the requirements
set down in the DTD, the parsers report the error and do not validate the

document.

With DTDs, we define our XML dialect (remember that we define which tags
we will use in our documents, the meaning we give to them etc). This ability
to define a specific XML dialect is what gives the latter its extensible character.
Although the DTD standard should have been replaced by XML Schema, it
is still commonplace, easier to use and more compact than XML Schema.
In addition, most users do not need the improvements introduced by XML
Schema. A variety of XML dialects have been defined with DTD that are widely
used on the Internet, such as RDF for semantic web, MathML for mathematical
documents, XML/EDI for electronic data interchange in business, Voice XML
for applications operated by voice or which use voice, WML to represent
documents for browsers on mobile devices such as telephones, etc.

Here is a possible DTD for our sample recipe that will define the way in which
our recipes should be written in RecipeXML:

<!- Sanpl e DID for Reci peXM. ->;
<! ELEMENT Reci pe (Nanme, Description?,

I ngredients?, Instructions?)>;

GNUEFDL ¢ PID_00148402 16

<! ELEMENT Nane (#PCDATA) >;
<! ELEMENT Descri pti on (#PCDATA) >;
<! ELEMENT | ngredi ents (Ingredient*)>;
<l ELEMENT | ngredient (Quantity, ltem>;
<! ELEMENT Quantity (#PCDATA)>;
<I ATTLI ST Quantity unit CDATA #REQUl RED>;
<! ELEMENT |t em (#PCDATA) >;
<! ATTLI ST Optional item CDATA "0"
veget ari an CDATA "yes">;
<! ELEMENT | nstructions (Step)+>;
<! ELEMENT Step (#PCDATA)>;

We can work out the validity rules from this DTD document and produce a
more legible description:

e A recipe consists of a name (compulsory), description (optional),
ingredients (optional) and instructions (optional).

¢ The name and description can contain alphanumeric characters (PCDATA
means Parsed Character Data).

e The ingredients are a list of ingredient elements.

e An ingredient consists of an item and the quantity.

e The quantity is an alphanumeric value and the tag has an attribute, the
unit, which describes the unit of measurement being used.

e Arecipe item consists of the name (an alphanumeric value) and can have
two attributes: optional (whether the ingredient is compulsory or not) and
vegetarian (whether the ingredient is suitable for vegetarians).

¢ The instructions for preparation are a list of steps.

e A step consists of an alphanumeric text describing the step.

We will now look at DTD syntax in order to define XML dialects.

3.1.1. Syntactic conventions of DTD

As we have seen, the syntax of DTD is not very clear at first sight; however, it

is not too complicated. The first step towards understanding it is to know the
definitions and uses of the symbols used, which can be seen in Table

Text structured format: XML

GNUEFDL ¢ PID_00148402 17

Symbol Description

0 Parentheses are used to group subtags
<I ELEMENT I ngredient (Quantity,ltem>

, Exact order of the elements
(Narme, Description?, Ingredients?, Instructions?)

Just one of the elements indicated
(Boil | Fry)

If we do not indicate anything, the elements only appear once

(Quantity, Item

+ Once or more
St ep+
? Optional element

I nstructions?

* Zero times or more
I ngredi ent *

#PCDATA | Parsed Character Data
<I ELEMENT |tem (#PCDATA) >

Syntactic elements of DTD

3.1.2. ELEMENT element

The DTD elements called ELEMENT define a tag in our XML dialect. For
example:

<! ELEMENT Reci pe (Name, Description?, |ngredients?, |Instructions?)>
defines the Recipe tag, specifying that it contains the subtags: Name,
Description, Ingredients and Instructions, and that the last three are optional
(indicated by the ? symbol).

The definition of ELEMENT is as follows:

<I ELEMENT name category>
<! ELEMENT nane (content)>

Empty elements

Empty elements are declared with the EMPTY category.

<! ELEMENT nane EMPTY>

In XML, this name element would be used like this:

<nane />

Text structured format: XML

GNUFDL e PID_00148402 18 Text structured format: XML

Character-only elements

Elements that only contain alphanumeric data are declared using #PCDATA

inside parentheses.

<! ELEMENT name (#PCDATA) >

Elements with any content

The elements we declare using ANY as an indicator of content can contain
any combination of parseable data:

<! ELEMENT nanme ANY>

Elements with subelements (sequences)

Elements with one or more child elements are defined with the name of the
child elements inside parentheses:

<! ELEMENT nanme (chil d1)>
<I ELEMENT nanme (childl, child2,)>

For example:

<! ELEMENT car (make, nunber plate, col our)>
Children declared in a sequence of elements separated by commas must
appear in the same order in the document. Child elements must also be
declared in the DTD document. These child elements can also have children
themselves.
The full declaration of car is therefore:

<! ELEMENT car (make, nunber plate, col our)>

<! ELEMENT nmke (#PCDATA) >

<! ELEMENT nunber plate (#PCDATA)) >

<! ELEMENT col our (#PCDATA) >

Cardinality of element occurrences

The following declaration indicates that the child element can only occur
inside the parent element:

<! ELEMENT nane (child)>

If we want the child element to appear more than once and at least once:

GNUEFDL ¢ PID_00148402 19

<! ELEMENT nane (child+)>

If we want it to appear any number of times (including the possibility that it

does not appear at all):

<! ELEMENT nanme (child*)>

If we only want to allow it to appear once but do not want this to be
compulsory:

<! ELEMENT nane (chil d?)>

Mixed content elements.

We can declare elements containing other child elements and/or
alphanumeric data.

<! ELEMENT nane (#PCDATA child chil d2)*>
3.1.3. ATTLIST element
As we have seen, elements can have attributes in XML. Obviously, DTD has a
mechanism for indicating which attributes an ELEMENT can have, the type,
whether they are compulsory, etc. We use the ATTLIST element for this, whose
syntax is:

<I ATTLI ST el ement attribute type-attribute val ue-defaul t > ;
An example of its use would be:

<! ATTLI ST paynent nethod CDATA "cash on delivery" >
And its use in XML:

<paynent nethod="cash on delivery" />

The attribute type must be one taken from the following list:

Text structured format: XML

GNUFDL * PID_00148402 20
Value Description
CDATA The value is character data

(V1/V2/...) | The value must be one from an enumerated list
ID The value is a unique ID
IDREF The value is the ID of another element
IDREFS The value is a list of other IDs
NMTOKEN The value is a valid XML name
NMTOKENS | The value is a list of valid XML names
ENTITY The value is an entity
ENTITIES The value is a list of entities
NOTATION [The value is a name of a notation
xml: The value is a predefined XML value

The default value can be one of the following:

Value Description
value The default value of the attribute
#REQUIRED The value of the attribute must appear in the element
#IMPLIED The attribute does not need to be included value
#FIXED value The value of the attribute is fixed

Default value

This example:

<! ELEMENT paynent

the following XML is considered valid:

<paynent />

In this case, since we have not specified a value for method, it will contain

the default value, cash on delivery.

Syntax of #IMPLIED

This example:

<! ELEMENT
<! ATTLI ST

paynment EMPTY>
paynent met hod CDATA #| MPLI ED >

will validate the following XML correctly:

<paynent nethod="card" />

<paynent

/>

EMPTY><! ATTLI ST paynent net hod CDATA "cash on delivery" >

Text structured format: XML

GNUFDL e PID_00148402 21 Text structured format: XML

Thus, we use #IMPLIED when we do not want to force the user to use an

attribute but where we cannot enter default values.

Syntax of #REQUIRED

This example:

<! ELEMENT paynment EMPTY>
<! ATTLI ST paynent met hod CDATA #REQUI RED >

will validate the following XML correctly:

<paynent net hod="card" />

but it will not validate:

<paynent />

We use #REQUIRED when we cannot supply a default value but we want the
attribute to appear and have a value assigned to it.

3.1.4. Linking documents to a DTD

There are two ways to link an XML document to a DTD: either include the
DTD in the XML document or use an external reference to the DTD.

The first option is the easiest but has the most disadvantages because it
increases the size of the XML documents and complicates their maintenance,
since a change in the DTD will require revising every document that included
it.

The format of an XML document in which it is included would look like this:

<?xm version="1.0"?>
<! DOCTYPE Reci pe [
<! ELEMENT Reci pe (Nane, Description?,
I ngredi ents?, Instructions?)>
<! ELEMENT Name (#PCDATA) >
<! ELEMENT Descri ption (#PCDATA) >
<! ELEMENT I ngredi ents (Ingredient)*>
<! ELEMENT Ingredient (Quantity, ltem>
< ELEMENT Quantity (#PCDATA)>
<I ATTLI ST Quantity unit CDATA #REQUI RED>
<! ELEMENT |t em (#PCDATA) >
<! ATTLI ST Optional item CDATA "0"
veget ari an CDATA "yes">
<! ELEMENT I nstructions (Step)+>

GNUEFDL ¢ PID_00148402 22

<! ELEMENT Step (#PCDATA) >
1>
<Reci pe>
<Nane>Spani sh onel et t e</ NAVE>
<Descri pti on>
The traditional, typical Spanish onelette,
just like our nothers make it.
</ Descri ption>
<l ngr edi ent s>
<l ngr edi ent >
<Quantity unit="piece">3</Quantity>
<l t en>Pot at oes</ | t en>
</ I ngredi ent >
<l ngr edi ent >
<Quantity unit="piece">2</ Quantity>
<| t enrEggs</ |t enr
</ I ngredi ent >
<l ngr edi ent >
<Quantity unit="litre">0.1</Quantity>
<ltemrQ | </Itemnmr
</ I ngredi ent >
</ I ngr edi ent s>
<l nstructions>
<Step> Peel and slice the potatoes </Step>
<Step> Add sone oil to a frying pan </ Step>
<l-- -=->
</l nstructions>

</ Reci pe>

We can reference an external DTD to the XML document using two possible

types of reference: public or private.
This is an example of a private reference:
<?xm version="1.0""?>

<! DOCTYPE Reci pe SYSTEM " Reci pe. dtd">

<Reci pe>

While the following example uses a public external reference:

<?xm version="1.0"?>
<! DOCTYPE Reci pe
PUBLIC "-//WBC// DTD XHTML 1.0 STRI CT/ EN

"http://ww. w3. org/ TR/ xht ml 1/ DTD/ xht ml 1-strict. dtd">

<Reci pe>

Text structured format: XML

GNUFDL e PID_00148402 23 Text structured format: XML

3.2. XML Schema

XML Schema was launched in 2001 as part of W3C's efforts to redress the
obvious failures of DTD:

¢ We do not have significant control over what is considered valid.
¢ We have no control over data types (integers etc).

e Itis not defined as XML.

¢ The syntax can sometimes be complicated.

XML Schema has certain features making it far more powerful than DTD:

e It is defined in XML, which means that it is possible to validate XML
Schema documents too.

e [t enables control over data types (integers etc).

e [t allows us to define new data types.

e It allows us to describe the content of documents.

e [t is easy to validate correct data.

e [t is easy to define data patterns (formats).

Despite its many advantages, DTD is still the most common mechanism for
defining the structure of XML documents.

Extensibility

XML Schema is extensible because it allows definitions from a schema can be
reused in another schema. It can also be used to define data types from the
data types in the standard and other schemas, and allows a single document

to use several schemas.

We will introduce XML Schema (also known as XSD, XML Schema Definition)
by comparing it to the now-familiar DTD. We will do this using an XML

document, our RecipeXML.

<?xm version="1.0""?>
<Reci pe>
<Nane>Spani sh onel ett e</ Nanme>
<Descri pti on>
The traditional, typical Spanish onelette,
just like our nothers make it.
</ Descri ption>
<l ngr edi ent s>
<l ngr edi ent >
<Quantity unit="piece">3</Quantity>

<l t en>Pot at oes</ | t en>

GNUFDL e PID_00148402 24 Text structured format: XML

</ I ngr edi ent >
<l ngr edi ent >
<Quantity unit="piece">2</ Quantity>
<i t enpEggs</|ten>
</'| ngr edi ent >
<l ngr edi ent >
<Quantity unit="litre">0.1</ Quantity>
<ItemrQ | </I|ten>
</l ngr edi ent >
</l ngr edi ent s>
<l nstructions>
<Step> Peel and slice the potatoes </Step>
<Step> Add sone oil to a frying pan </ Step>
<l-- And continue in this way... -->
</Instructions>

</ Reci pe>

This time, instead of showing the DTD associated with it as we saw in the
previous section, we will define an XSD for the document in RecipeXML.

<?xm version="1.0"?>
<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"
el ement For nDef aul t =" qual i fi ed" >
<xs: el ement name="Quantity">
<xs: conpl exType>
<xs: si npl eCont ent >
<xs: ext ensi on base="xs: deci mal ">
<xs:attribute name="unit"
type="xs:string" use="required"/>
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>
</ xs: el enent >
<xs: el ement nane="Description" type="xs:string"/>
<xs: el enent nanme="1ngredi ent ">
<xs: conpl exType>
<Xs: sequence>
<xs: el ement ref="Quantity"/>
<xs:element ref="Iteni/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >
<xs: el ement nanme="1ngredi ents" >
<xs: conpl exType>
<xs: sequence>
<xs:elenment ref="Ingredient"

maxQccur s=" unbounded"/ >

GNUEFDL ¢ PID_00148402 25

</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="|nstructions">
<xs: conpl exType>
<Xs:sequence>
<xs: el ement ref="Step"
maxCccur s="unbounded"
m nCccurs="1"/>
</ xs: sequence>
</ xs: conpl exType>

</ xs: el enent >

<xs: el ement name="I|tenl' type="xs:string" />

<xs: el ement name="Nanme" type="xs:string"/>
<xs: el ement name="Step" type="xs:string"/>
<xs: el ement name="Reci pe" >
<xs: conpl exType>
<Xs: sequence>
<xs: el ement ref="Name"/>
<xs: el ement ref="Description"/>
<xs: el ement ref="Ingredients"/>
<xs:el ement ref="Instructions"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >

</ xs: schema>

3.2.1. The <schema> element

The <schenma> element is the root element of all XSDs:

<?xm version="1.0"?>

<xs: schema>

</ xs: schema>

This element can have some attributes and generally looks similar to this:

<?xm version="1.0"?>
<xs:schenma
xm ns: xs="http://wwmw. w3. or g/ 2001/ XM_Scherma"
t ar get Nanespace="htt p: / / ww. conpany. conf
xm ns="htt p: //ww. conpany. cont

el enent For nDef aul t =" qual i fi ed" >

</ xs: schema>

Text structured format: XML

GNUEFDL ¢ PID_00148402 26

The following fragment:

xm ns: xs="http://ww. w3. org/ 2001/ XM_Schema"

indicates that the elements and data types used in our schema, el enent etc.
come from the namespace defined in http://www.w3.01g/-2001/XMLSchema.
It also assigns a prefix to this namespace, in this case, xs.

This fragment t ar get Namespace="ht t p: / / ww. conpany. coni' indicates
that the elements defined by this schema (Ingredient, etc.) come from the
"http://www.company.com" namespace.

This one: xm ns="htt p://ww. conpany. conf, indicates that the default
namespace is http://www.company.com, which means that we can assign tags
without a prefix to this namespace.

This one: el enent For nDef aul t ="qual i fi ed" indicates that all of the
elements used in the XML document declared in this schema must be qualified

in the namespace.

3.2.2. Simple elements

A simple element is an XML element that can only contain text. It cannot
contain other elements or attributes. Nonetheless, the text it contains can be
of any type included in the XSD definition (Boolean, integers, string, etc.) or
it can be a type defined by us. We can also add restrictions to limit the content
or require the data it contains to follow a given pattern.

The syntax for defining a simple element is:

<xs: el ement nanme="nane" type="type"/>

where name is the name of the element and type is the data type of the element.

Some examples of declarations might be:
<xs: el ement nanme="I|tenl' type="xs:string" />
<xs: el ement nanme="Age" type="xs:integer"/>
<xs: el ement nane="Date" type="xs:date"/>
The following are XML elements that meet the above restrictions:
<l t en>Pot at oes</ | t en>
<Age>34</ Age>

<Dat e>1714- 09- 11</ Dat e>

XSD offers the following data types:

Text structured format: XML

GNUEFDL ¢ PID_00148402 27

e Xxs:string

e xs:decimal
e Xxs:integer
e xs:boolean
e xs:date

e Xxs:time

Fixed and default values

Simple elements can have a default or fixed value. A default value is
automatically assigned to the element when we do not specify a value. This

example assigns Oil as the default value.

<xs:el ement nanme="I|teni' type="xs:string"

default="Q1"/>

An element with a fixed value always has the same value and we cannot assign
another one to it.

<xs: el ement name="Item' type="xs:string"

fixed="Qls"/>
3.2.3. Attributes
Simple elements cannot have attributes. If an element has attributes it is
considered a complex type. The attribute, however, is always declared as a
simple type. We have the same basic data types for attributes as we do for
elements.
The syntax for defining an attribute is

<xs:attribute name="nanme" type="type"/>

where name is the name of the attribute and type is the data type of the
attribute. One XML element with RecipeXML attributes is:

<Quantity unit="piece">3</Quantity>

and the corresponding XSD for this definition is:

<xs:attribute nane="unit" type="xs:string"

use="required"/ >

Fixed and default values

Text structured format: XML

GNUEFDL ¢ PID_00148402 28

The declaration of attributes with fixed and default values uses the same

schema as elements:

<xs:attribute nane="unit" type="xs:string"
def aul t ="grans"/>
<xs:attribute nane="unit" type="xs:string"

fixed="grans"/>

Optional and required attributes

Attributes are optional by default. Nonetheless, we can openly specify that an
attribute is optional:

<xs:attribute name="unit" type="xs:string"

use="optional "/ >

To specify that it is required:

<xs:attribute nane="unit" type="xs:string"

use="required"/>

3.2.4. Content restrictions

With XSD, we can extend the content restrictions of XSD data types (integers,
etc.) with restrictions designed by ourselves (facets). For example, in the
following code, we specify an element, age, which must have a whole value
between 1 and 120.

<xs: el ement nane="age">
<xs: si npl eType>
<xs:restriction base="xs:integer">
<xs: m nl ncl usi ve val ue="1"/>
<xs: max| ncl usi ve val ue="120"/>
</xs:restriction>
</ xs: si npl eType>

</ xs: el ement >

Restrictions on a set of values

With XSD, we can limit the content of an XML element so that it can only
contain a value from a set of acceptable elements. To do this, we use the
enumeration restriction). For example, we can define an element called wine
by specifying the possible values:

<xs: el ement name="w ne" >
<xs: si npl eType>

<xs:restriction base="xs:string">

Text structured format: XML

GNUEFDL ¢ PID_00148402 29

<xs:enuneration val ue="Wite"/>
<xs:enuneration val ue="Rosé"/>
<xs:enuneration val ue="Red"/>
</xs:restriction>
</ xs: si npl eType>

</ xs: el enent >

The wine element is a simple data type with restrictions. Its acceptable values
are: Red, Rosé and White. We could also have defined it like so:

<xs: el ement name="w ne" type="w neType"/>
<xs: si npl eType nanme="w neType" >
<xs:restriction base="xs:string">
<xs:enuneration val ue="\Wite"/>
<xs: enuneration val ue="Rosé"/ >
<xs:enuneration val ue="Red"/>
</xs:restriction>

</ xs: si npl eType>

In this case, we could also use the wi neType data type for other elements
because it is not part of the definition of wi ne.

Restrictions on a series of values

We can use patterns to define elements containing a specific series of numbers
or letters. For example:

<xs: el ement nanme="letter">
<xs: si npl eType>
<xs:restriction base="xs:string">
<xs:pattern value="[a-z]"/>
</xs:restriction>
</ xs: si npl eType>

</ xs: el ement >

The letter element is a simple type with a restriction whose only acceptable

value is ONE of the lowercase letters.

For example, the following element:
<xs: el ement nanme="product code" >
<xs: si npl eType>

<xs:restriction base="xs:integer">

<xs:pattern value="[0-9][0-9][0-9][0-9][0-9]"/>

Text structured format: XML

GNUFDL e PID_00148402 30 Text structured format: XML

</ xs:restriction>

</ xs: si npl eType>

</ xs: el enent >

defines a productcode formed by precisely five digits from O to 9.

The following code defines a letters type:

<xs: el ement name="letters">
<xs: si npl eType>
<xs:restriction base="xs:string">
<xs:pattern value="([a-2])*"/>
</ xs:restriction>
</ xs: si npl eType>

</ xs: el enent >

that can take the value of any lowercase letter that appears zero or more times,

i.e. it can have a null value. However, in:

<xs: el enrent nane="letters">

<xs: si mpl eType>
<xs:restriction base="xs:string">
<xs:pattern value="([a-z][A-Z])+"/>
</xs:restriction>

</ xs: si npl eType>

</ xs: el ement >

, the element can contain lowercase letters but it must contain at least one

letter.

Patterns allow the same type of definitions as restrictions on a set of elements.

For example:

<xs: el ement nane="gender" >

<xs: si npl eType>
<xs:restriction base="xs:string">
<xs:pattern value="male female"/>
</xs:restriction>

</ xs: si npl eType>

</ xs: el enent >

GNUFDL e PID_00148402 31 Text structured format: XML

defines a gender element whose value can be: male or female. We can also

define more complex types using patterns such as:
<xs: el enent nanme="password">

<xs: si npl eType>
<xs:restriction base="xs:string">
<xs:pattern val ue="[a-zA-ZO 9]{8}"/>
</xs:restriction>

</ xs: si npl eType>
</ xs: el ement >

which defines a password element made up of eight characters, either letters
or numbers.

Restrictions on whitespace characters

XSD has a restriction for specifying how to handle whitespaces. This is called
the whiteSpace restriction. For example:

<xs: el enent nane="address" >

<xs: si mpl eType>
<xs:restriction base="xs:string">
<xs:whi t eSpace val ue="preserve"/>
</xs:restriction>

</ xs: si npl eType>
</ xs: el ement >

allows us to define an element called address where we tell the XML processor
that we do not want it to remove any whitespaces. However, the following
definition:

<xs: el enent nane="address" >

<xs: si npl eType>
<xs:restriction base="xs:string">
<xs: whi t eSpace val ue="repl ace"/ >
</xs:restriction>

</ xs: si npl eType>

</ xs: el enent >

GNUEFDL ¢ PID_00148402 32

tells the XML processor that we want it to replace whitespace characters (tabs,
line breaks, etc.) with spaces. The collapse option will also replace whitespace
characters with spaces and reduce consecutive multiple spaces and characters

at the start or end of a line to a single space.
Length restrictions

To restrict the length of a value in an element, the following constraints are
available: length, maxLength and minLength. We will define an element called
password:

<xs: el ement name="password">

<xs: si npl eType>
<xs:restriction base="xs:string">
<xs:length val ue="8"/>
</xs:restriction>

</ xs: si npl eType>
</ xs: el ement >

to have a compulsory length of 8. We can also set it to have a variable length
of 5 to 8:

<xs: el ement nane="password">

<xs: si npl eType>
<xs:restriction base="xs:string">
<xs: m nLength val ue="5"/>
<xs: maxLength val ue="8"/>
</xs:restriction>

</ xs: si npl eType>
</ xs: el ement >

The following table summarises the restrictions that can be applied to data

types:

Restriction Description
enumeration Defines a list of acceptable values
fractionDigits Specifies the maximum number of permitted decimal digits. This must be

greater than or equal to zero.

length Specifies the exact required size. It must be greater than or equal to zero.

maxExclusive Specifies the upper limit for numerical values (the value must be less than
this number).

Text structured format: XML

GNUFDL e PID_00148402 33 Text structured format: XML

Restriction Description

maxInclusive Specifies the upper limit for numerical values (the value must be less than
or equal to this number).

maxLength Specifies the maximum permitted size. This must be greater than or equal
to zero.
minExclusive Specifies the lower limit for numerical values (the value must be greater

than this number).

minlinclusive Specifies the lower limit for numerical values (the value must be greater
than or equal to this number).

minLength Specifies the minimum required size. This must be greater than or equal
to zero.

pattern Specifies the pattern defining the exact string of permitted characters.

totalDigits Specifies the exact number of permitted digits. It must be greater than
zero.

whiteSpace Specifies how whitespace characters (spaces, tabs, etc.) should be dealt
with.

3.2.5. Complex elements in XSD

A complex element is an XML element that contains other elements and/or
attributes. We can divide complex elements into four main classes:

e Empty elements
¢ Elements that only contain other elements
e Elements that contain text only
¢ Elements that contain other elements and text
All complex elements can also contain attributes.
The following are complex elements of each type:
An empty product element:
<product id="1345"/>
A student element that contains other elements:
<st udent >
<nanme>John</ nane>
<sur nane>Sm t h</ sur nane>
</ st udent >

An accommodation element that contains only text:

<accommpdati on type="hotel ">

Sout h Coast |nn

GNUEFDL ¢ PID_00148402 34

</ acconmpbdat i on>

An expedition element containing both text and elements:

<expedition destination="Fitz Roy">
We arrive at Chaltén in Patagonia on
<dat e>22. 08. 2003</date>

</ expedi ti on>

Defining complex elements

Let's look at the student element that contains other elements:

<st udent >
<nanme>John</ nane>
<sur nanme>Smi t h</ sur name>

</ st udent >

We can define this XML element in different ways:

1)We can openly declare the student element:

<xs: el ement nanme="student ">
<xs:conpl exType>
<Xs: sequence>
<xs: el ement name="nane" type="xs:string"/>
<xs: el ement nanme="surnane" type="xs:string"/>
</ xs: sequence>
</ xs: conpl exType>

</ xs: el ement >

Thus, only the student element may use the complex type defined. Note that
the elements contained in student (name and surname) are contained in a
sequence command, which means that they must appear in the same order

in the element.

2)The student element may have a type attribute referring to the complex

type to be used:

<xs: el ement nanme="student" type="personinfo"/>

<xs: conpl exType nane="personi nfo">
<Xs:sequence>
<xs: el ement nanme="nanme" type="xs:string"/>
<xs: el ement name="surname" type="xs:string"/>

</ xs: sequence>

Text structured format: XML

GNUFDL e PID_00148402 35 Text structured format: XML

</ xs: conpl exType>

With this technique, multiple elements can refer to the same complex type.
Thus:

<xs: el ement nane="student" type="personinfo"/>
<xs: el ement nane="teacher" type="personinfo"/>

<xs: el ement nanme="staff" type="personinfo"/>

<xs: conpl exType nanme="personi nfo">
<Xs:sequence>
<xs: el ement nanme="nanme" type="xs:string"/>

<xs: el ement nanme="surname" type="xs:string"/>

</ xs: sequence>

</ xs: conpl exType>

We can also use a complex type as a base for building more elaborate complex
types:

<xs: el ement nanme="student" type="personinfo"/>

<xs:conpl exType nanme="person">
<XS: sequence>
<xs: el ement name="nane" type="xs:string"/>
<xs: el ement nanme="surnane" type="xs:string"/>
</ xs: sequence>

</ xs: conpl exType>

<xs: conpl exType nane="personi nfo">
<xs: conpl exCont ent >
<xs: ext ensi on base="person">
<xs: sequence>
<xs: el ement nane="address" type="xs:string"/>
<xs: el enent nane="city" type="xs:string"/>
<xs: el ement nane="country" type="xs:string"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >

</ xs: conpl exType>
Empty elements
Take the following XML element:

<product id="1345"/>

GNUEFDL ¢ PID_00148402 36

It is an XML element that contains neither text nor XML elements. To define
it, we need to define a type that only allows elements in its content but we

must not declare any elements. So:

<xs: el ement nanme="product">
<xs: conpl exType>
<xs: conpl exCont ent >
<xs:restriction base="xs:integer">
<xs:attribute nane="id" type="xs:positivelnteger"/>
</ xs:restriction>
</ xs: conpl exCont ent >
</ xs: conpl exType>

</ xs: el enent >

Here, we define a complex type that only contains elements (with
conpl exCont ent). This directive indicates that we want to derive the content
from a complex type but do not enter content. We also have a restriction that
adds a whole attribute. We can define the declaration more compactly:

<xs: el ement nanme="product">
<xs: conpl exType>
<xs:attribute nane="id" type="xs:positivelnteger"/>
</ xs: conpl exType>

</ xs: el enent >

or define it as a name type to use in the definition of other elements:

<xs: el ement nanme="product" type="producttype"/>
<xs: conpl exType nane="producttype">
<xs:attribute name="id" type="xs:positivelnteger"/>

</ xs: conpl exType>

Defining complex types that contain elements only

Study the following element, which only contains other elements:

<st udent >
<nane>John</ nane>
<sur nane>Sm t h</ sur name>

</ st udent >

We can define this element in XSD as follows:

<xs: el ement nanme="student">
<xs: conpl exType>
<XSs: sequence>

<xs: el ement name="nanme" type="xs:string"/>

Text structured format: XML

GNUEFDL ¢ PID_00148402 37

<xs: el ement nanme="surnane" type="xs:string"/>
</ xs: sequence>
</ xs: conpl exType>

</ xs: el enent >

As before, we can define it as a name type for use in multiple elements:

<xs: el ement nanme="student" tipo="person">
<xs: conpl exType nanme="person">
<Xxs: sequence>
<xs: el ement nanme="nanme" type="xs:string"/>
<xs: el ement nanme="surname" type="xs:string"/>
</ xs: sequence>

</ xs: conpl exType>

Note the use of sequence, indicating that the elements (name and surname)
must appear inside the element in this order.

Elements containing text only

To define elements that only contain text, we can define an extension or

restriction inside a si npl eCont ent element like so:

<xs: el ement nanme="el erent ">
<xs: conpl exType>
<xs: si npl eCont ent >

<xs: ext ensi on base="type">

</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>

</ xs: el ement >

or, as a restriction:

<xs: el ement nane="el enent ">
<xs: conpl exType>
<xs: si npl eCont ent >

<xs:restriction base="type">

</ xs:restriction>
</ xs: si npl eCont ent >
</ xs: conpl exType>

</ xs: el enent >

Look at the following example of an element containing text only:

Text structured format: XML

GNUEFDL ¢ PID_00148402 38

<acconmbdat i on type="hotel "> South Coast |nn</accomobdation>

One possible definition would be:

<xs: el ement nane="accommmodati on" type="acctype"/>

<xs: conpl exType nane="acctype">
<xs: si npl eCont ent >
<xs: extensi on base="xs:string">
<xs:attribute nane="type" type="xs:string" />
</ xs: ext ensi on>
</ xs: si npl eCont ent >

</ xs: conpl exType>

Defining types containing text and elements

Study the following element, which only contains both text and elements:

<expedi ti on>
We arrive at Chaltén in Patagonia on
<dat e>22. 08. 2003</date>

</ expedi ti on>

The date element is a child element of expedition. One possible definition
might be:

<xs: el ement name="expedition">
<xs: conpl exType mi xed="true">
<Xs:sequence>
<xs: el ement nane="date" type="xs:string"/>
</ xs: sequence>
</ xs: conpl exType>

</ xs: el ement >

To include text as well as elements in the content of expedition we need to
change the mi xed attri but e to true. We can obviously also define the type

with a name and use it to define other elements or types.

3.2.6. Indicators for complex types

XSD indicators are used to control how we use elements in complex types.
There are seven indicators:

e Order indicators:
- Al
— Choice

Text structured format: XML

GNUFDL e PID_00148402 39
— Sequence
e QOccurrence indicators:
— maxOccurs
— minQOccurs
e Group indicators:
- Group
— attributeGroup
Order indicators

Order indicators are used to define how elements occur.

Alli ndi cat or

Theal I indicator specifies that each child element must appear only once

and in any order

<xs: conpl exType nanme="person">
<xs:al | >

<xs: el ement nanme="nane" type="xs:string"/>

<xs: el ement nanme="surnanme" type="xs:string"/>

</xs:all>

</ xs: conpl exType>

If we use this indicator, we can use the mi nCccurs set at O or 1, and
maxCccur s set only at 1 (we will describe these two indicators later on).

TheChoi ce i ndi cat or

This indicator specifies that only one of the children may appear.

<xs: conpl exType nanme="person">

<xs: choi ce>

<xs: el ement nanme="|dent docunen" type="xs:string"/>

<xs: el ement nane="passport" type="xs:string"/>

</ xs: choi ce>

</ xs: conpl exType>

TheSequence i ndi cat or

This indicator specifies that the children must appear in a specific order:

<xs: conpl exType nanme="person">

<XS:sequence>

Text structured format: XML

GNUFDL e PID_00148402 40 Text structured format: XML

<xs: el ement nanme="nane" type="xs:string"/>
<xs: el ement nanme="surnanme" type="xs:string"/>
</ xs: sequence>
</ xs: conpl exType>
Occurrence indicators

Occurrence indicators are used to define how often an element can occur.

For all order and group indicators (any, all, choice, sequence, group) the
default value of maxQccur s and mi nCccur s is 1.

maxQOccurs indicator

The maxOccurs indicator specifies the maximum number of times that an
element can occur.

For an element to appear an unlimited number of times, we need to assign
maxCOccur s="unbounded" .

minOccurs indicator

This indicator defines the minimum number of times that an element must

appear.

<xs: el enent nane="student">
<xs: conpl exType>
<xs: sequence>
<xs: el ement nanme="nane" type="xs:string"/>
<xs: el ement nanme="subject" type="xs:string" maxOccurs="10" m nCccurs="0"/>
</ xs: sequence>
</ xs: conpl exType>

</ xs: el ement >

This example shows how to use mi nCccurs and maxCccur s to limit the

appearance of the subject between 0 and 10 times.

Group indicators

Group indicators are used to define groups of related elements.

Element groups

Element groups are defined as follows:

<XS:group name="groupnane">

GNUFDL e PID_00148402 41 Text structured format: XML

</ xs: gr oup>

We must use an order indicator in our definition. For example:

<Xs:group name="personG& oup">
<Xs: sequence>
<xs: el ement nanme="nanme" type="xs:string"/>
<xs: el ement nanme="surnane" type="xs:string"/>
<xs: el ement nanme="surnanme2" type="xs:string"/>
<xs: el ement name="DOB" type="xs:date"/>
</ xs: sequence>

</ xs: group>

We can now use this group to define a type, element, etc. For example:

<xs:conpl exType nanme="student|nfo"> <xs:sequence> <xs:group ref="personG oup"/> <xs:elenment name="departnen

Attribute groups

Attribute groups behave in a similar way to element groups and are defined
with at t ri but eGr oup like this:

<xs:attributeG oup name="nane">

</ xs:attributeG oup>

For example:

<xs:attributeG oup nane="personAttG oup">
<xs:attribute name="nane" type="xs:string"/>
<xs:attribute name="surnanme" type="xs:string"/>
<xs:attribute name="surnanme2" type="xs:string"/>
<xs:attribute name="DOB" type="xs:date"/>

</ xs:attributeG oup>

It can then be used like this:

<xs: el ement nanme="student">
<xs: conpl exType>
<xs:attributeGoup ref="personAttG oup"/>
</ xs: conpl exType>

</ xs: el enent >

GNUEFDL ¢ PID_00148402 42

4. Transformations: XSLT

XSL (eXtensible Stylesheet Languageis an XML language for expressing
style sheets (how a specific XML language should be represented). It has
three main components: XSLT (XSL Transformations), XPath and XSL-FO
(XSL-Formatting Objects).

In contrast to HTML, where the meaning of each tag is clearly defined
(paragraph break, line break, header, bold) and assigning styles (fonts, sizes,
colours, etc.) to these tags is a simple task, tags are not defined in XML. Instead,
the user defines them. In XML, the t abl e tag can represent either an HTML
table or the measurements for a wooden table, so browsers do not know how
to represent the tags. As a result, the presentation language of style sheets must
describe how to display an XML document more clearly.

The XML style language, XSL, has three main components:

e XSLT, a document transformation language.
e XPath, a language for referencing parts of XML documents.
e XSL-FO, an XML document formatting language.

With these three components, XSL can:

e Transform XML into XML, such as XHTML or WML.

e Filter and/or sort XML data.

¢ Define parts of an XML document.

e Format an XML document based on the values of stored data.
e Extract XML data to XSL-FO to generate files like PDFs.

XSL is a standard W3C language that was standardised in two stages. The
first, in November 1999, included XSLT and XPath, while the second was
completed in October 2001 and included XSL-FO.

XSLT is the part of the XML standard used to transform XML documents into
other XML documents (for example, XHTML, WML etc).

Normally, XSLT does this by transforming each XML element into another
XML element. XSLT can also add other XML elements on output and it can
remove elements. It can resort and reposition elements and check and make
decisions on which elements to display.

Text structured format: XML

GNUEFDL ¢ PID_00148402 43

During transformation, XSLT uses XPath to specify or reference parts of
the document that follow one or more defined patterns. When it comes
across a matching pattern, XSLT transforms the matching part of the
original document into the result document. The non-matching parts are not

transformed and remain unchanged in the result document.

4.1. Simple transformation

Like virtually all W3C recommendations, XSLT is essentially an XML language
and must start with a root element. This root element is of the

xsl :styl esheet or xsl:transformtype (the two are equivalent). The
correct way to use them is:

<xsl : styl esheet version="1.0"

xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or mi' >

This declaration identifies the namespace recommended by the W3C. If we
use this namespace, we must also include the ver si on attribute with the value
1.0.

Incorrect declaration

In draft versions of the standard, the correct declaration of a style sheet was:

<xsl : styl esheet version="1.0"

xm ns: xsl ="http://ww. w3. or g/ TR/ WD- xs| " >

This declaration is now obsolete but if you use the IE-5 browser, then you

must use it.

The example XML file that we will be transforming is the following one:

<?xm version="1.0" encodi ng="1S0O 8859-1"?>
<student report="Linus Torval ds">
<subj ect id="1">
<name>
Basi ¢ Programm ng
</ name>
<gr ade>
Good
</ grade>
</ subj ect >
<subj ect id="2">
<name>
Operating systens

</ nane>

Text structured format: XML

GNUFDL e PID_00148402 44 Text structured format: XML

<gr ade>

Excel | ent

</ gr ade>
</ subj ect >

<subj ect >

This XML document is an academic report on a university student. It is a very
basic document but perfectly valid for our needs.

The XSL document for converting this XML document to another XHTML
document is:

<?xm version="1.0" encodi ng="1SO 8859- 1" ?>

<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or nmi' >

<xsl :tenplate match="/">

<htm >
<body>
<h2>Acadeni ¢ Report </ h2>
<t abl e border="1">
<tr bgcol or="#9acd32" >
<th align="Ieft">Subject</th>
<th align="left">G ade</t h>
</tr>
<xsl :for-each sel ect="report/subject">
<tr>
<t d><xsl : val ue- of sel ect="nane"/x</td>
<t d><xsl : val ue- of sel ect="grade"/></td>
</[tr>
</ xsl : for-each>
</t abl e>
</ body>
</htm >

</ xsl : t enpl at e>

</ xsl : styl esheet >

If we name the XSL document report. xsl we can link it to our XML by
adding a reference to the style sheet at the start of the XML, as follows:

<?xm version="1.0" encodi ng="| SO 8859-1"?>
<?xm - styl esheet type="text/xsl" href="report.xsl"?>
<student report="Linus Torval ds">

<subj ect id="1">

GNUEFDL ¢ PID_00148402 45

<name>

Basi ¢ Programm ng
</ name>

<gr ade>

Good

</ grade>

</ subj ect >

If you use a browser with XSL support (Mozilla 1.2 or higher), when opening
the XML document, the browser will use the XSL document to transform it
into XHTML.

4.2. The xsl :tenpl ate el ement

An XSL style sheet consists of a series of transformationtemplates. Each
xsl:tenpl ate el enent contains the XSL transformations that must be
applied if the template specified in the element matches that found in the
XML document.

To specify the XML element to which we must apply the template, we use the
mat ch attribute (we can also apply the template to the entire XML document
by specifying mat ch="/"). The values that we can give the mat ch attribute
are specified by the XPath standard.

For example, the following XSL transformation returns a specific XHTML code
when processing the document with the student report.

<?xm version="1.0" encodi ng="| SO 8859-1"?>

<xsl : styl esheet version="1.0"

xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or n{' >

<xsl :tenpl ate match="/">
<ht m >
<body>
<h2>Acadeni ¢ Report </ h2>
<tabl e border="1">
<tr bgcol or ="#9acd32" >
<th align="1Ieft">Subject</th>
<th align="left">G ade</th>
</tr>
</t abl e>
</ body>
</htm >

</ xsl : t enpl at e>

Text structured format: XML

GNUEFDL ¢ PID_00148402 46

</ xsl : styl esheet >

As we will see if we test this XSL document, it only produces a page header.
If we analyse the XSL document, we see that it has a template that is applied
when it matches the root element of the document (mat ch="/") and prints

the contents of this tag in the result.

4.3. The val ue- of element

The val ue- of element is used to select and add the value of the selected XML
element to the output stream.

For example, if we add the following code to our previous example:

<?xm version="1.0" encodi ng="1SO 8859- 1" ?>
<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or nmi' >
<xsl :tenplate match="/">
<htm >
<body>
<h2>Acadeni ¢ Report </ h2>
<t abl e border="1">
<tr bgcol or="#9acd32" >
<th align="Ieft">Subject</th>
<th align="left">G ade</t h>
</tr>
<tr>
<t d><xsl : val ue- of
sel ect ="report/subj ect/ nane"/></td>
<t d><xsl : val ue- of
sel ect ="report/subj ect/grade"/></td>
</[tr>
</t abl e>
</ body>
</htm >
</ xsl : t enpl at e>

</ xsl : styl esheet >
we see that the first grade of the report appears in the result. This is because the
val ue- of tags select the value of the first element that matches the specified
pattern.

4.4. The xsl : for-each element

The xsl : f or - each element in XSL can be used to select each of the elements
of the XML document belonging to a given set.

Text structured format: XML

GNUFDL e PID_00148402 47 Text structured format: XML

In the above example, where only the first grade of the report appeared, we

can add an xsl : f or - each that will run through the entire report as follows:

<?xm version="1.0" encodi ng="| SO 8859-1"?>
<xsl : styl esheet version="1.0"

xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or n{' >

<xsl:tenplate match="/">
<ht m >
<body>
<h2>Acadeni ¢ Report </ h2>
<t abl e border="1">
<tr bgcol or ="#9acd32" >
<th align="Ieft">Subject</th>
<th align="left">G ade</th>
</tr>
<xsl : for-each sel ect="report/subject">
<tr>
<t d><xsl : val ue- of sel ect ="name"/></td>
<t d><xsl : val ue- of sel ect="grade"/></td>
</tr>
</ xsl : f or-each>
</t abl e>
</ body>
</htm >

</ xsl : t enpl at e>

</ xsl : styl esheet >

This will give us a list of all grades for all subjects.

4.5. Sorting information: xsl : sort

To sort our output, we simply need to add an xsl:sort element to the

xsl : f or - each element in our XSL file:

<?xm version="1.0" encodi ng="| SO 8859-1"?>
<xsl : styl esheet version="1.0"

xm ns: xsl ="http://www. w3. or g/ 1999/ XSL/ Tr ansf or n{' >

<xsl:tenplate match="/">
<htm >
<body>
<h2>Acadeni ¢ Report </ h2>
<t abl e border="1">
<tr bgcol or ="#9acd32" >

<th align="1Ieft">Subject</th>

GNUFDL e PID_00148402 48 Text structured format: XML

<th align="left">G ade</t h>
</[tr>
<xsl : for-each sel ect ="report/subject">
<xsl :sort sel ect="name"/>
<tr>
<t d><xsl : val ue- of sel ect ="nanme"/x/td>
<t d><xsl : val ue- of sel ect ="grade"/></td>
</tr>
</ xsl : for-each>
</t abl e>
</ body>
</htm >

</ xsl : t enpl at e>

</ xsl : styl esheet >

The sel ect attribute is used to indicate the element that we will use to base
sorting on; in this case, the name of the subject.

4.6. Conditions in XSL

There are two XSL elements for implementing conditions in our

transformations. These are xsl : i f and xsl : choose.

4.6.1. The xsl:if element

Thexsl : i f element allows us to use a template only if the specified condition

is met (it is true).

An example of xsl : i f format is:

<xsl:if test="grade &t; 5">

..... it will only appear with grades of less than 5.....

We can modify the above code to show only grades above 5, for example.

<?xm version="1.0" encodi ng="| SO 8859- 1" ?>
<xsl :styl esheet version="1.0"

xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or ni' >

<xsl:tenplate match="/">
<htm >
<body>
<h2>Acadeni ¢ Report </ h2>
<t abl e border="1">

<tr bgcol or="#9acd32" >

GNUEFDL ¢ PID_00148402 49

<th align="Ieft">Subject</th>
<th align="left">G ade</t h>
</[tr>
<xsl : for-each sel ect ="report/subject">
<xsl:if test="grade > 5">
<tr>
<t d><xsl : val ue- of sel ect="nane"/></td>
<t d><xsl : val ue- of sel ect="grade"/></td>
</tr>
</xsl:if>
</ xsl : for-each>
</t abl e>
</ body>
</htm >

</ xsl : t enpl at e>

</ xsl : styl esheet >

4.6.2. The xsl : choose el enent

The xsl : choose el ement (together with xsl : when and xsl : ot herwi se)
is used to express multiple conditional tests. In other words, using a multiple
condition (with multiple possible values), we can obtain diverse results.

An example of dexsl : choose format is:

<xsl : choose>

<xsl :when test="grade &t; 5">
cadigo (fail)

</ xsl : when>

<xsl :when test="grade &t; 9">
code (nornmal)

</ xsl : when>

<xsl : ot her w se>
code (excellent)

</ xsl : ot herw se>

</ xsl : choose>

We can modify the above example so that grades under 5 appear in red:

<?xm version="1.0" encodi ng="| SO 8859- 1" ?>
<xsl : styl esheet version="1.0"

xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or ni' >

<xsl:tenplate match="/">
<htm >
<body>

Text structured format: XML

GNUEFDL ¢ PID_00148402 50

<h2>Acadeni ¢ Report </ h2>
<tabl e border="1">
<tr bgcol or ="#9acd32" >
<th align="1Ieft">Subject</th>
<th align="left">G ade</th>
</[tr>
<xsl : for-each sel ect="report/subject">
<tr>
<t d><xsl : val ue- of sel ect="nane"/></td>
<t d>
<xsl : choose>
<xsl :when test="grade &t; 5">

<xsl : val ue- of sel ect="grade"/>

</ xsl : when>
<xsl : ot herw se>
<xsl : val ue- of sel ect="grade"/>
</ xsl : ot herw se>
</ xsl : choose>
</td>
</tr>
</xsl:if>
</ xsl : for-each>
</t abl e>
</ body>
</htm >

</ xsl : tenpl at e>

</ xsl : styl esheet >

4.7. The xsl : appl y-t enpl at es element

appl y-tenpl at es applies a template to the current element or child
elements of the current element. The sel ect attribute is used to process only

the child elements that we specify and the order in which they are processed.

For example:

<?xm version="1.0" encodi ng="| SO 8859- 1" ?>
<xsl :styl esheet version="1.0"

xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or n{' >

<xsl:tenplate match="/">
<htm >
<body>
<h2>Academni ¢ Report </ h2>

Text structured format: XML

GNUEFDL ¢ PID_00148402 51

<xsl : appl y-tenpl ates />
</ body>
</htm >

</ xsl : t enpl at e>

<xsl :tenpl ate match="report">
<xsl : appl y-tenpl at es sel ect ="subject"/>

</ xsl : t enpl at e>

<xsl:tenpl ate match="subject">
<p>
<xsl : appl y-tenpl ates sel ect ="nanme"/>
<xsl : appl y-tenpl ates sel ect ="grade"/>
</ p>

</ xsl : t enpl at e>

<xsl : tenpl at e mat ch="nane" >
Name: <xsl:val ue-of select="."/>

</ xsl : t enpl at e>

<xsl :tenpl at e mat ch="grade" >
G ade: <xsl:val ue-of select="."/>

</ xsl : tenpl at e>

</ xsl : styl esheet >

As we can see, this organisation is much more modular and allows for better

maintenance and revision of the style sheet.

4.8. Introduction to XPath

XPath is a W3C recommendation that defines a set of rules for referencing
parts of an XML document. Based on W3C's definition, we can define XPath

as:

e XPath is a definition of syntax for referencing parts of an XML document.
e XPath uses "paths" to define XML elements.

e XPath defines a library of functions.

e XPath is a basic element of XSL.

e XPath is not defined in XML.

e XPath is a W3C recommendation.

XPath uses expressions similar to the "paths" of files in operating systems (e.g.
/ honme/ user/file.txt).

Text structured format: XML

GNUEFDL ¢ PID_00148402 52

Let's take the following XML file:

<?xm version="1.0" encodi ng="1S0O 8859- 1" ?>
<student report="Linus Torval ds">
<subj ect id="1">
<name>
Basi ¢ Programm ng
</ name>
<gr ade>
Good
</ grade>
</ subj ect >
<subj ect id="2">
<nane>
Operating systens
</ name>
<gr ade>
Excel | ent
</ grade>
</ subj ect >

<subj ect >

The following XPath expression selects the root report element:

/ report

This expression selects all subject elements of the report element:

/ report/subj ect

This one selects all grade elements of all subject elements of the report

element:

/ report/subject/grade

4.8.1. Selecting unknown elements

As with all file systems, we can use special characters (*) to indicate unknown
elements.

The following expression selects all child elements of all subject elements of
the report element:

/report/subject/*

Text structured format: XML

Supplementary content

Like file systems, if an element
begins with / this indicates an
absolute path to an element.

Supplementary content

If an element begins with //
all elements matching the
criterion will be selected,
regardless of their location in
the XML tree.

GNUEFDL ¢ PID_00148402 53

This expression selects all name elements descended from the report element

regardless of the parent element:

/report/*/ nane

This expression selects all elements in the document:

[1*

4.8.2. Selecting branches of the tree

We can specify which parts of the node tree we wish to select using square
brackets ([]) in XPath expressions.

For example, we can select the first subject element of the report element

/ report/subject[1]

This expression selects the last child subject element of the report element:

/report/subject[last()]

This expression selects all child subject elements of the report element

containing a grade element:

/ report/subject[grade]

This one also forces the grade element to have a specific value:

/report/subject[grade>5]

This expression selects the names of subjects with a grade element of a specific

value:

/ report/subject[grade>5]/nane

4.8.3. Selecting multiple branches

We can use the | operator in XPath expressions to select multiple paths.

For example, the following expression selects all grade and name elements of
the subject element of the report element:

/ report/subject/nane/ report/subject/grade

This expression selects all name and grade elements in the document:

Text structured format: XML

GNUEFDL ¢ PID_00148402

/I nanme// not e

54 Text structured format: XML

4.8.4. Selecting attributes

In XPath, attributes are specified with the prefix @.

This XPath expression selects all attributes called id:

/l@d

The following expression selects all subject elements with an id attribute of

a specific value:

/I subj ect [@ d=1]

The following expression selects all subject elements with any attribute:

//subject] @]

4.8.5. Functions library

XPath has a functions library that can be used in XPath predicates to fine-tune

our selection. Included in this library is | ast () the function we saw earlier.

Some of the most important functions include:

Name Syntax Description
count() | n=count(nodes) [Returns the number of nodes in the set provided
id() nodes=id(value) | Selects nodes for their unique ID
last() n=last() Returns the position of the last node in the list of nodes to be
processed.
name() |cad=name() Returns the name of the node
sum() n=sum(nodes) Returns the value of the sum of the specified set of nodes

There are also several functions for handling strings, numbers, etc.

GNUEFDL ¢ PID_00148402 55

5. Practical: creating an XML document with its
corresponding XML Schema and transformations
with XSLT

We are going to create an XML document to store hotel information. To do
so, we must first design the XML Schema file we are going to use. This will
allow us to validate our design as we add the different parts to it.

The XML Schema produced by our design will be:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<xs:schema
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schena"
el ement For nDef aul t =" qual i fi ed" attri buteFornDef aul t ="unqual i fied">
<xs: el ement name="Accommopdati on" >
<xs:annot ati on>
<xs: document ati on>Hot el i nformati on</xs: docunent ati on>
</ xs: annot at i on>
<xs: conpl exType>
<xs:all>
<xs: el ement name="Hot el s">
<xs: conpl exType>
<XS: sequence>
<xs: el ement name="Hotel" maxCccur s="unbounded" >
<xs: conpl exType>
<xs:al |l >
<xs: el ement nanme="Nane" type="xs:string"/>
<xs: el ement nanme="Locati on"
type="Locati onType"/>
<xs: el ement nane="Roons">
<xs: conpl exType>
<xs:al | >
<xs: el ement nanme="Doubl es" >
<xs: conpl exType>
<XS: sequence>
<xs: el ement
nanme="Nunmber" type="xs:int"/>
<xs: el ement
nanme="Price" type="xs:float"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement name="Si ngl es" >

<xs: conpl exType>

Text structured format: XML

GNUFDL e PID_00148402 56 Text structured format: XML

<XS: sequence>
<xs: el ement
nanme="Nunber" type="xs:int"/>
<xs: el ement
nanme="Price" type="xs:float"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
</xs:all>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement name="Pool " type="xs:bool ean"/>
<xs: el ement name="Category" type="xs:int"/>
</xs:all>
</ xs: conpl exType>
</ xs: el ement >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="Chai ns" m nCccurs="0">
<xs: conpl exType>
<XSs: sequence>
<xs: el ement nanme="Chai n" maxCccur s="unbounded" >
<xs:conpl exType>
<XSs: sequence>
<xs: el ement nanme="Nane"/>
<xs: el ement name="Location"
type="Locati onType"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
</xs:all>
</ xs: conpl exType>
</ xs: el ement >
<xs: conpl exType nane="Locati onType">
<xs:all >
<xs: el ement nanme="Country"/>
<xs:el ement name="City"/>
<xs: el ement name="Regi on" m nCccurs="0"/>
</xs:all>
</ xs: conpl exType>

</ xs: schema>

GNUEFDL ¢ PID_00148402 57

The design we have chosen for our XML is:

Location Type

1

1

1

i Country
H__Location 1 City

Accommodation [fH-E3-H

Hotel information

We will now create a document based on the schema we have designed. With
the use of test data, this document will be:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<?xm -styl esheet type="text/xsl" href="Hotels.xslt"?>
<Acconmmodat i on
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xsi : noNamespaceSchenmalLocat i on="hot el s. xsd" >
<Hot el s>
<Hot el >
<Narme>Hot el Port Aventura</ Nane>
<Locati on>
<Count r y>Spai n</ Count ry>
<Ci ty>Sal ou</ Ci ty>
<Regi on>Cost a Dor ada</ Regi on>
</ Locati on>
<Roons>
<Doubl es>
<Nunber >50</ Nunber >
<Price>133</Price>
</ Doubl es>
<Si ngl es>
<Nunber >10</ Nunber >
<Price>61</Price>
</ Si ngl es>
</ Roomnrs>
<Pool >f al se</ Pool >
<Cat egor y>3</ Cat egor y>
</ Hot el >
<Hot el >
<Nanme>Hot el Art s</ Name>

Text structured format: XML

GNUEFDL ¢ PID_00148402 58

<Locati on>
<Count r y>Spai n</ Count ry>
<C ty>Barcel ona</Ci ty>
</ Locati on>
<Roons>
<Doubl es>
<Nunber >250</ Nunber >
<Price>750</Pri ce>
</ Doubl es>
<Si ngl es>
<Nunber >50</ Nunber >
<Price>310</Pri ce>
</ Si ngl es>
</ Roomns>
<Pool >t r ue</ Pool >
<Cat egor y>5</ Cat egor y>
</ Hot el >
<Hot el >
<Nane>Par ador Seu d' Urgel | </ Nane>
<Locati on>
<Count r y>Spai n</ Count r y>
<City>Seu d' Urgell</Cty>
<r egi on>Pyr enees</ Regi on>
</ Locati on>
<Roons>
<Doubl es>
<Nunber >40</ Nunber >
<Price>91. 5</Price>
</ Doubl es>
<Si ngl es>
<Nunber >2</ Nunber >
<Price>44.4</Price>
</ Si ngl es>
</ Roons>
<Pool >t r ue</ Pool >
<Cat egor y>4</ Cat egor y>
</ Hot el >
</ Hot el s>
<Chai ns>
<Chai n>
<Nane>HUSA</ Nane>
<Locati on>
<Count r y>Spai n</ Count ry>
<Ci ty>Barcel ona</Ci ty>
</ Locati on>
</ Chai n>

<Chai n>

Text structured format: XML

GNUEFDL ¢ PID_00148402 59

<Name>NH Hot el es</ Nane>
<Locati on>
<Count r y>Spai n</ Count ry>
<C ty>Panpl ona</ G ty>
</ Locati on>
</ Chai n>
<Chai n>
<Name>Par ador es de Turi sno</ Name>
<Locati on>
<Count r y>Spai n</ Count ry>
<Ci ty>Madri d</City>
</ Locati on>
</ Chai n>
</ Chai ns>

</ Accommpdat i on>

We will now use the following XSLT document:

<?xm version="1.0" encodi ng="UTF- 8" ?>

<xsl : styl esheet version="1.0"

xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or mi' >

<xsl : out put met hod="xm " version="1.0"

encodi ng="UTF- 8" indent="yes"/>

<xsl :tenpl ate mat ch="Locati on">
<xsl :val ue-of select="City" [>,
<xsl : val ue-of sel ect="Country" />

<xsl:if test="Region ">

<i >(<xsl : val ue- of sel ect="Region" [>)</i>

</xsl:if>

</ xsl : tenpl at e>

<xsl:tenpl ate match="Hot el s">
<hl >Li st of hotel s</hl>
<xsl :for-each select=".">
<xsl : appl y-tenpl ates sel ect="Hotel" />
</ xsl : for-each>

</ xsl : t enpl at e>

<xsl : tenpl at e mat ch=""Pool ">
<xsl : choose>
<xsl : when test="node() = "true' ">
Yes</ b>
</ xsl : when>
<xsl : ot herw se>
No</ b>

</ xsl : ot her wi se>

Text structured format: XML

GNUEFDL ¢ PID_00148402 60

</ xsl : choose>

</ xsl : t enpl at e>

<xsl :tenpl at e mat ch="Hot el ">
<h2>Hot el </ h2>
Nanme: <xsl:val ue-of sel ect="Nane" /> (Stars:
<xsl : val ue- of sel ect="Category" /[>)

Location: <xsl:apply-tenpl ates sel ect="Location" /xbr />
Pool : <xsl : appl y-tenpl ates sel ect ="Pool " />

<h3>Roons</ h3>

<t abl e>
<t body>

<tr>
<t h>Type</t h>
<t h>Nunber </ t h>
<t h>Price</th>

</tr>

<tr>
<t d>Si ngl es</t d>
<t d><xsl : val ue- of

sel ect =" Roons/ Si ngl es/ Nunber " /></td>

<t d><xsl : val ue- of sel ect =" Roons/ Si ngl es/ Price" /></td>

</tr>

<tr>
<t d>Doubl es</t d>
<t d><xsl : val ue- of sel ect =" Roons/ Doubl es/ Nunber " /></td>
<t d><xsl : val ue- of sel ect =" Roons/ Doubl es/ Price" /></td>

</[tr>

</t body>
</t abl e>

</ xsl : tenpl at e>

<xsl : tenpl at e mat ch="Chai n">
<h2>Chai n</ h2>
Name: <xsl :val ue-of sel ect="Name" />

Location: <xsl:apply-tenpl ates sel ect="Location" />

</ xsl : t enpl at e>

<xsl:tenpl ate mat ch="Chai ns">
<hl >Li st of hotel chains</hl>
<xsl:for-each select=".">
<xsl : appl y-tenpl at es sel ect =" Chai n" />
</ xsl : for-each>

</ xsl : t enpl at e>

<xsl:tenplate match="/">

Text structured format: XML

GNUFDL e PID_00148402 61 Text structured format: XML

<htm >
<head>
<title>Hotel information</title>
</ head>
<body>

<xsl:apply-tenplates />

</ body>

</htm >

</ xsl : t enpl at e>

</ xsl : styl esheet >

To obtain a list of the hotels in HTML:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<htm >

<head>
<title>Hotel information</title>

</ head>

<body>
<hl>Li st of hotel s</hl>
<h2>Hot el </ h2>
Name: Hotel Port Aventura (Stars: 3)

Locati on: Sal ou, Spain<i> (Costa Dorada)</i>

Pool : No</ b><br/ ><br/ ><h3>Roons</ h3>

<t abl e>
<t body>

<tr>
<t h>Type</t h>
<t h>Nunber </ t h>
<th>Price</th>

</[tr>

<tr>
<t d>Si ngl es</td>
<td>10</td>
<td>61</td>

</[tr>

<tr>

<t d>Doubl es</t d>
<t d>50</t d>
<t d>133</td>
</tr>
</t body>
</t abl e>
<h2>Hot el </ h2>
Nane: Hotel Arts (Stars: 5)

Location: Barcel ona, Spain

Pool : Yes</ b><br/ >

GNUFDL ¢ PID_00148402 Text structured format: XML

GNUFDL ¢ PID_00148402 63 Text structured format: XML

GNUFDL e PID_00148402 65 Text structured format: XML
Bibliography

Rusty Harold, Elliotte; Means, W. Scott (2002). XML in a Nutshell, 2nd Edition. O'Reilly.

Tidwell, Doug (2001). XSLT. O'Reilly.

van der Vlist, Eric (2001). XML Schema. O'Reilly.

Ray, Eric T. (2001). Learning XML. O'Reilly.

Dynamic content

David Megias Jiménez (coordinator)
Jordi Mas (coordinator)
Carles Mateu

PID_00148398

Universitat Oberta
de Catalunya

www.uoc.edu

GNUFDL ¢ PID_00148398 Dynamic content

Copyright © 2010, FUOC. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation

License"

GNUEFDL ¢ PID_00148398

Dynamic content

Index
Lo GBIttt s s
1.1. Introduction tO CGIS ...ccoeeviiiiiiriiiiieeieieee et
1.2. Communicating with CGIScccceeeiiiiiiiiiiiiiiiieeeeeeeeee e
1.3, CGI TESPOTISE ..eeeiiiiiiiiiiiieiiiiiiieeeeetee et e e e
1.3.1. Decoding of the QUERY_STRINGcccccevvvrririnicrnnneen.
1.4. RedireCtiOnscccccviviiiriiiiiiiiiiiiicceceece e
2. PHP......ooiiiiii ettt
2.1. The workings of PHPcccccceiiiiiiiiiiiiiiieceieeee e
2.2, PHP SYNtAX .icoiiiiiiiiiiiiiiiiitiiiciecienrrrttcreeee e
2.3, Variablescccccciiiiiiiiiiii s
2.4, OPETALOTS ..ociiiiiiiiiiiiiiiiiiiiiiicteeee e
2.5, CoNtrol StIUCLUTESceeeiriiiiiiiiriiiiiiiiiteteeee et e eeerereeeeeeee e
2.5.1. Conditionalscccceeeeeiiiiiiirriiiiiiiiieeeeee e
2.5.2. LOOPS oiieeeiitiiiiieiiiieiii e
2.6, FUNCLIONS ..ooiiiiiiiiiiiiiiietieee ettt e e e e eeeeee
2.7. Using PHP for web applicationscccccccceeerviineieiiriineeeeiennneeen.
2.7.1. Displaying informationcccccoevevieiiiniinieciiiinneeenen.
2.7.2. Collecting user informationccccecceeeviriiiiiinnnnnnen.
2.8, String functionsccccovvieiiiiiiiiiiiine e
2.9, File ACCESS eoireuiriiiiiiiiiiei ittt
2.10. Database ACCESScccocerurieiriiiiiiiiiiiiiiiet it et e e
2.10.1. Access to mySQL from PHPccccccoviiiiiiiiiiiiniiniiennnn.
2.10.2. Access to PostgreSQL from PHPccccovveeiriieirieennne
2.11. More INformationccceceeerereeiriieenieee e
3. Java servlets and JSP...........oiiiiiiiiiiiiii e e e
3.1. Introduction to Java servletscccccoevmriiiiiiiiiiiiieeeeeeeeceee e,
3.1.1. EffiCIENCY weeerieiiiieiieiieiee ettt e e
3.1.2. ES@ Of USE ireeiiriiiiiiieieiee ettt
3.1.3. POWET .iiiiiiiiniiiiicittic et
3.1.4. Portability ..cccooeeoiieiiiiieeeee e
3.2. Introduction to Java Server Pages Or JSPccccecoveiiiriiiiieeennnnnne
3.3, The Servlets/JSP SEIVETcuuveeiiiireeiieeeeeeiiiieeeeeeeeieeeeeeeereeeeereananes
3.4, A SIMPIE SEIVIEL ..oeeiiiiiiiiiiiiieeeeeeee e
3.5. Compiling and executing Servletsccccceeevveeeerreneeeeenenneeen.
3.6. Generating content from servletsccccoeevvieeiiiiiiiieeniiiieeeenn.
3.7. Handling form datacccoeevoiiiiimiiniieeieeeeeeeeeee e
3.8. The HTTP request: HttpRequestccccveeerrriieieeriniiiieeeieeee,
3.9. Additional request informationcccceeeeeeeiiiiiieeiniiieeeeee
3.10. Status and reSPONSe COUEScccoevrrreeririreeeerreiirrreeeraieeeeeseeeneees

3.10.1. StatUus COUES .uuuuiiiirririeeeeiieiieeeeeeeiiieeeeeeeereeeeeeeeraeeeeerenaanes

O 0 O L1 L1

10
10
11
12
14
15
15
17
19
20
20
21
22
23
23
24
25
26

27
27
27
27
28
28
28
29
30
31
31
33
37
38
39
39

GNUEFDL ¢ PID_00148398

Dynamic content

3.11.

3.10.2. Return Neaderscccceeveeeuiiiiiniiiiieiiiie et eeniaes

Session MONItOringccccovvvvviiiiiiiiiiiiiii

3.11.1. Obtaining the session associated with the request

3.11.2. Accessing the associated informationcc.cccceveunnnee
3.12. Java Server Pages: JSPccccooviiiiiiiiii
3.12.1. Script €lements.........cccoovvuvieiirioieieiiiiiiieeeenciitee e
3.12.2. JSP dir€CtiVescceeevuuiieeieiiiieeeeeeeicee e e et eeeeaaae
3.12.3. Predefined variablesccccoooiiiiiiiiiiiiiiniiiieiiieeee
3.12.4. ACHONS .eevviiiiiiiiiieiiiiiiec ettt

4. Other dynamic content options....................cccovviiiiiininnnnn.

5. Practical: creation of a simple application with the

techniques described..................ccooooiiiiiiiiiiini e
S CGI i
IV F v TN <) .74 U] N

39
40
41
41
42
43
45
48
49

54

56

56
57

GNUEFDL ¢ PID_00148398 5

1. CGI

One of the first mechanisms for generating dynamic content for the web
was the API called CGI (the acronym of Common Gateway Interface). This
very simple mechanism allows a web server to run a program written in any
programming language (whether in response to a HTML form, from a link,
etc.), that can pass certain parameters to it (either from the user, via forms,
or through server configuration parameters, execution environment, etc.) and
lastly, it makes it possible to send the result of the execution of this program
to the user as a web page or any other type of content (graphic, etc).

With this simple mechanism, web pages that had static and unmovable
content,—until the appearance of CGlIs,are generated dynamically in response
to specific requests. This opens up a whole new world for web application
programmers. We will now look at the API of CGIs, often relegated to a
secondary role because of the many problems it suffers, the main one being

performance issues.

1.1. Introduction to CGIs

Unlike with servlets, etc., there are no restrictions on the programming
language we can use to write a CGI. We can use those scripts written in the
shell language of the operating system, programs written in the assembler and
the broad range of programming languages currently available: C, C++, Perl,
Python, etc. Until now, the most popular language for writing CGIs has been
Perl, as it offers utilities to the programmer that greatly simplify the task of
writing CGI programs.

1.2. Communicating with CGIs

The first thing to bear in mind when writing programs like CGIs is the
mechanism of communication provided by the web server. We have two
options for sending data to a CGI (the data generally come from a user, usually

via a form):

¢ GET method. The GET method passes all information (except for files) to
the CGI in the address line of the HTTP request.

¢ POST method. The POST method passes all information to the CGI in the
standard entrance, including files.

Dynamic content

GNUFDL » PID_00148398 6 Dynamic content

Once it receives a request that it needs to direct to a CGI file, the server
executes this program, the CGI, and sends it the information through
environment variables (or through the standard entrance, if applicable). Some

of the environment variables defined by the CGI standard are:

SERVER _NAME Name of the server.

SERVER_PROTOCOL Protocol used by the request.

REQUEST _METHOD Method used for invocation (GET or POST).

PATH_I NFOInformation on the path specified in the request.

PATH_TRANSLATED Physical path to the location of the CGI on the server.

SCRI PT_NAME Name of the CGI.

REMOTE_ADDR IP address of the computer making the request.

REMOTE_HOST Name of the computer making the request.

REMOTE_USER User making the request.

AUTH_TYPE Type of authentication.

CONTENT_TYPE MIME type of the request content, particularly useful in POST
requests.

CONTENT_LENGTH Size of the content, particularly useful in POST requests.

Most web servers also provide the QUERY_STRI NG, which contains the data of
the request if it is GET type or if data has been added to the URL. Some web
servers add extra data to the environment. Most of these additional variables

begin with HTTP_ to avoid conflicts with later versions of the standard.

For example, the Roxen web server adds a variable called QUERY_ which is a parameter
for each parameter of a form.

1.3. CGI response

CGIs respond to requests by constructing part of the HTTP response that will
be received by the clients themselves. Firstly, they must indicate the MIME
type of the served content. They can then add extra fields (those specified in
the HTTP standard). The content must appear after a blank line of separation.

GNUEFDL ¢ PID_00148398 7

The simplest possible CGI, written here in shell script and enumerating the

environment variables commented above, is:
#! / bi n/ sh

echo Content-type: text/plain

echo

echo

echo SERVER NAME=$SERVER NANE

echo SERVER PROTOCOL=$SERVER_PROTOCOL
echo REQUEST METHOD=$REQUEST METHOD
echo PATH_| NFO=$PATH_I NFO

echo PATH TRANSLATED=$PATH_TRANSLATED
echo SCRI PT_NAME=$SCRI PT_NAME

echo REMOTE_ADDR=$REMOTE_ADDR

echo REMOTE_HOST=$REMOTE_HOST

echo REMOTE_USER=$REMOTE_USER

echo AUTH_TYPE=$AUTH_TYPE

echo CONTENT_TYPE=$CONTENT_TYPE

echo CONTENT_LENGTH=$CONTENT LENGTH
echo QUERY_STRI NG=$QUERY_STRI NG

As we can see in this example (the shell script syntax used is very simple), to
list the environment variables received, we send the type of content, followed
by a compulsory blank line and all of the environment variables mentioned.

If we execute this server with no additional parameters, we end up with:

Figure 17.

"% Mozilla {Build ID: 2003071814}

ﬂﬁile Edit View Go Bookmarks Tools Window Help Debug QA

- -

Back

T

®
Reload Y I\'& http:/fbofh.udl.esfcai-binfa.cai

SERVER _NAME=hofh.udl.es
SERVER_PROTOCOL=HTTP/1.1
REQUEST METHOD=GET

PATH INFO=

PATH TRANSLATED=

SCRIPT NAME=/cgi-bin/a.cgi
REMOTE ADDR=80.58.51.172
REMOTE_HOST=
REMOTE_USER=

AUTH_TYPE=

CONTENT_TYPE=
CONTENT_LENGTH=

QUERY STRING=

Dynamic content

GNUEFDL ¢ PID_00148398 8

As we can see, if we simply call the CGI without parameters and it does not
activate a form, it will have few variables with values. However, if we call the
CGI by passing parameters and an extra PATH (note the directory after the

name of the CGI), the result is as follows:

Figure 18.

% Mozilla {Build ID: 2003071814}
" File Edit Wew Go Bookmarks Tools Window Help Debug QA

_ Rlad ‘§§ I\i& http:/fbofh.udl.esfcgi-binfa.caiftest?items=1&test=carles+mateu
Forward eloa Stof

SERVER_NAME=bofh.udl.es
SERVER_PROTOCOL=HTTP/1.1

REQUEST METHOD=GET

PATH_INFO=/test
PATH_TRANSLATED=/var/www/html/test
SCRIPT _NAME=/cgi-bin/a.cgi
REMOTE_ADDR=80.58.51.172
REMOTE_HOST=

REMOTE_USER=

AUTH_TYPE=

CONTENT_TYPE=

CONTENT _LENGTH=
QUERY_STRING=items=1l&test=carles+mateu

1.3.1. Decoding of the QUERY_STRING

As we have seen in the examples above, the parameters sent to our CGI used
a specific and very special coding. One of the disadvantages of using CGI
compared to more modern alternatives like servlets is that we need to decode
and analyse this string manually. Fortunately, there are libraries for almost
every programming language that make this task easier.

The coding rules are as follows:

e We separate the list of parameters from the rest of the URL address with
the character?

e We separate parameters (which are always in name, value pairs) using the
character &. In some cases, the character ; is accepted as a substitute for
separation.

e The names of parameters are separated from the values with the character

¢ The special characters are replaced according to the following table:
— The'' character (blank space) is changed to +.

— Non-alphanumeric characters and special characters, like those used
for coding (+, etc.), are represented as %1H, where HH represents the
hex value of the ASCII code of the character.

Dynamic content

GNUEFDL ¢ PID_00148398 9

— Line breaks are represented as ¥9D %0A.

1.4. Redirections

We can redirect the client to a different page from a CGI program. To do so,
we must not return the standard HTML code preceded by Cont ent - t ype.
Instead, we must return a status code field followed by the location of the new
page, as in the example:

#i ncl ude <stdi o. h>

int main()

{
printf("Status: 302\r\n");
printf("Location: new htm\r\n");

exit(1);

Dynamic content

GNUEFDL ¢ PID_00148398 10

2. PHP

PHP (a recursive acronym of hypertext preprocessor), is a simple language
with an easy syntax similar to that of languages like Perl, C y C++. It is
fast, interpreted, object-oriented and cross-platform, and there are many
libraries available for it. PHP is an ideal language for learning to develop
web applications and for developing complex web applications. On top of
this, PHP has the advantage that the PHP interpreter, the range of modules
and the number of libraries developed for PHP are free software, so the PHP
programmer has recourse to an astonishing arsenal of free software tools with
which to develop applications.

PHP is usually used with Perl, Apache, MySQL or PostgreSQL in Linux system:s,
forming an economical (all of the components are free software), powerful
and versatile combination. The expansion of this combination has been so
great that it has even been christened with the name LAMP (formed by the
initials of each of the products).

Apache, like other web servers, including Roxen, can incorporate PHP as a
module of the server itself. This means that applications written in PHP are
much faster than normal CGI applications.
2.1. The workings of PHP
If we request a PHP page from our server, the latter sends the page to the PHP
interpreter that executes it (in fact, it is simply a program) and returns the
result (generally HTML) to the web server, which, in turn, sends it to the client.
Let's suppose we have a PHP page with the following content:

<?php echo "<hl>Hell o world!</h1>"; ?>
If we have this code in a file with the extension . php, the server will send
the page to the PHP interpreter, which will then execute the page and obtain
the following result:

<hl>Hel | 0 worl d! </ h1>

The server will send it to the client browser that requested the page and the
message will appear on the latter's screen. We will see how PHP allows HTML
and PHP to be combined on the same page, which means that working with

Dynamic content

GNUEFDL ¢ PID_00148398 11

the latter is considerably easier. However, this can also be a hidden danger
because it complicates matters if web designers and programmers are working

together on the site.

In systems where PHP is installed, we have a global PHP configuration file
called php. i ni, which can help us to configure certain global settings. It is a
good idea to check this file because, although the default values are usually
correct, we may wish to make certain changes.

2.2. PHP syntax

To introduce the syntax of the language, we will analyse a basic PHP program:

<?php
SMYVAR = "1234";
$nyvar = "4321";
echo $MYVAR "
\n";
echo $myvar."
\n";

2>

If we run this program (display it in a browser), the result will be as follows:

1234

4321

The first point we need to make is that PHP code blocks are delimited in HTML
by <?php and ?>. We can therefore write an HTML page including several PHP
instruction blocks:

<HTM_>

<HEAD>

<TlI TLE>Docunent title</TlITLE>

</ HEAD>
<BCDY>

<hl>Header Hl</hl>

<?php echo "Hello" ?>
<h1>Second header Hl</hl>
<?php

$SMYVAR = 1234;

$nyvar = 4321;

echo $MYVAR. "
";

echo $myvar. "
";

/1 This program di spl ays sone nunbers on the screen
2>

</ BODY>

</ HTM_>

Dynamic content

GNUEFDL ¢ PID_00148398 12

The second point worth mentioning is that the names of variables are
distinguishable because they always begin with § and, as in C/C++, they are
case-sensitive, meaning that we differentiate between capital and lower-case
letters. Note also that to concatenate text (variables and "
"), we use the

full stop character "." and that all statements end in ";".

You should also be aware that although variables are numerical, they can be
concatenated with a text ("
"). In this case, the interpreter converts the
numerical value of the variable into text to perform concatenation.

You will see that there is a comment inside the code. This comment will not
affect the program in any way nor will it be sent to the client browser (in
fact, the client browser never receives PHP code). There are two options for
inserting comments in our code:

/'l Single-line comrent
/* This comment takes up several |ines.
So we use this other marker

to indicate the start and end of the coment */

2.3. Variables

In PHP, we do not need to declare a priori the variable or type of variable that
we are going to use. PHP will declare the variable and assign the correct type
of data to it when we use it for the first time:

<?php $string = "Hello World"
$nunmber = 100;
$deci mal = 8.5;

?>

As we can see, the three variables were defined when they were assigned a
value and we did not need to define types.

In PHP, variables can basically have two scopes: global, where they can be
accessed from the entire code, and local, where they are only accessible from
the function in which we create them. To assign a global scope to a variable,
simply declare it (in this case, you must make a variable declaration) and use

the reserved word gl obal in the declaration:

<?php
gl obal $test;

7>

The scope of variables that we do not qualify as global but which are defined
outside a function, will be global.

Dynamic content

GNUEFDL ¢ PID_00148398 13

We simply need to define a variable within a function. In this case, the scope

will be restricted to the function where we declare it.

<?php
gl obal $variable; // G obal variable
$a=1; // Inplicit global variable
Add function()
{

$b=1; // b is a local variable

$res=$a+$b; // res is a local variable

?>

We can see that both a and vari abl e are gl obal vari abl es while b and
r es are local variables.

In PHP, we also have arrays. These are variables that can contain lists of
elements, which we access through an index.

<?php

$seas = array(); //with array() we declare an array
$seas[0] = "Medi terranean”;

$seas[1] = "Aral ";

$seas[2] = "Dead";

?>

As you can see, we have declared the seas variable with a call to array().
This tells PHP that the variable is an elements array.

To access the individual elements of the array, we will need to use the name
of the vector and indicate the position of the element we wish to access in
square brackets. In PHP, array numbering starts at 0.

As well as arrays with numerical indices, PHP also supports arrays with text
string indices:

<?php

$nount ai ns=array(); //with array() we declare an array
$nount ai ns[" Everest"] = "Hi mal aya";

$nmountains["Fitz Roy"] = "Andes";

$nount ai ns[" Mont bl anc"] = "Al ps";

echo $nount ai ns["Everest"]; // WIIl print H nmal aya

?>

Dynamic content

GNUFDL » PID_00148398 14 Dynamic content

2.4. Operators

Operators are symbols that are used to perform both mathematical operations

and comparisons or logical operations.

The most common ones in PHP are:

¢ Mathematical operators:
a) + Adds several numbers: 5 + 4 = 9.

1
[N

b) - Subtracts several numbers: 5 - 4

[
©

c) *Performs a multiplication: 3 * 3 =
d) / Performs a division: 10/ 2 = 5.
e) % Returns the remainder of a division: 10 % 3 = 1.
f) ++ Increments by 1: $v++ (I ncrements $v by 1).
g) -- Decrements by 1: $v-- (Decrenents $v by 1).

e Comparison operators:
a) == Evaluates as true if the condition for equality is met:

2 == 2 (True).

b) ! = Evaluates as true if the condition for equality is not met:
2 1= 2 (False).

c) < Evaluates as true if a number is less than another
2 <5 (True).

d) > Evaluates as true if a number is greater than another
6 >4 (True).

e) <=Evaluates as true if a number is less than or equal to another
2 <=5 (True).

>=FEvaluates as true if a number is greater than or equal to another
g q
6 >= 4 (True).

e Logical operators:
a) && Evaluates as true if the two operators are true.

b) || Evaluates as true if one of the operators is true.

GNUEFDL ¢ PID_00148398 15

c) And Evaluates as true if the operators are true.

d) O Evaluates as true if one of the operators is true.

e) Xor Evaluates as true if one operator or another is true.

f) ! Reverses the true value of the operator.

This example indicates the most common mathematical operators:

<?php
$a = 5;
$b = 10;

$c = ($a + $b); //$c is equal to 15
$d = ($b - $a); //$d is equal to 5
$e = ($a * $b); //$e is equal to 50
$f = ($b / $a); //$f is equal to 2
$g = ($b % $a); //$g is equal to O

2>

2.5. Control structures

PHP control structures allow us to control the flow of operation of our
program, ensuring that portions of code are executed at all times in line with

certain conditions.

2.5.1. Conditionals

Conditionals are structures that allow us to perform certain operations only
if a given condition is met. They are usually called forks because they allow
us to divide the execution flow of the program according to the true value of

a statement or condition.

In PHP, we have two main conditionals, the i f/ el se conditional and the

swi tch.

The i f conditional is used to choose between code blocks, according to

whether or not a condition is met.

<?php

$a = 0,

$b = 1;

i f(%$a == $b)
{

echo "It turns out that 0 is equal to 1";

el se

Dynamic content

GNUFDL « PID_00148398 16 Dynamic content

echo "Everything is as it was. 0 is not equal to 1";

?>

If we follow the execution flow of this program, we see that two variables are
created initially, a and b, to which we assign two different numerical values.
We then come to the conditional statement i f. This confirms the truth or
compliance of a specified condition. In this case, we have an == equality
operator returning that the comparison is false; hence, the i f statement does
not execute the first code block, the one it would have executed had the
condition been met. Instead, it executes the second, the one preceded by
el se.

We can therefore define the structure of i f/ el se as:

i f(condition)

{
code executed if the condition is true
}
el se
{
code executed if the condition is false
}

We can check more than one condition by chaining several i f/ el se:

if(conditionl)
if(condition2)
{

code executed if condition2 is true

and conditionl is true

el se

code executed if condition2 is fal se

and conditionl is true

el se

code executed if conditionl is fal se

An advanced case of i f/ el se chaining is that corresponding to events where

we need to execute a different code depending on the value of a variable.
Although we can carry out i f/ el se chaining by checking the value of this

GNUFDL » PID_00148398 17 Dynamic content

variable, if we need to check a number of values, the code can be rather
cumbersome. PHP therefore offers a more ideal conditional construction

called swi t ch.

<?php

$a=1;

swi t ch($a)

{
case 1:
case 2: echo "Ais 1 or 2"; break;
case 3: echo "Ais 3"; break;
case 4: echo "Ais 4"; break;
case 5: echo "Ais 5"; break;

case 6: echo "Ais 6"; break;

default: echo "A is another val ue";

Executing swi t ch is a rather complex task.. I fact, it is very similar to C. The
swi t ch statement is executed line by line. Initially, no codes or any lines are
executed. When it comes to a case with a value that matches the value of the
sw t ch variable, PHP begins to execute the statements. This continues until
the end of swi t ch or until it comes to a br eak. So, in our example, if the
variable has a value or 1 or a value of 2, the same code block is executed.

There is also a special value, def aul t, which always matches the value of
the variable.

2.5.2. Loops

Loops are another important control structure. These are used to execute a
code block repeatedly in accordance with a condition.

PHP has three main loops: f or, whi | e and f or each.

The whil e | oop

The whi | e | oop is the simplest of the three but, even so, it is probably the
most common one. The loop is executed while the condition we have passed
to it is true:

<?php

$a = 1;
whi | e($a < 4)
{

echo "a=$a
";

$a++;

GNUEFDL ¢ PID_00148398 18

?>

In this case, the loop will be executed four times. Each time it is executed,
we will increment the value of a and print a message. Each time the code
is executed, the whi | e | oop checks the condition and, if met, executes the
code again. The fourth time that it is executed, since a will have the value
of four, the condition specified will not be met and the loop will no longer
be executed.

The for | oop

For the above type of loop, where the condition for continuing is that
a variable increases or decreases with each iteration, we can use a more

appropriate type of loop: f or .

Using f or the above code would end up as follows:

<?php
for($a=1; $a < 4; S$a+tt)
{
echo "a=$a
";
}
>

As we can see, in the case of the f or loop, in the same statement we declare
the variable over which we will be iterating, the condition for ending and
condition for incrementing or continuing.

f oreach

When we want our loop to run through the elements of an array, we can use
a statement to simplify this: f or each.

<?php

$a = array (1, 2, 3, 17);

foreach ($a as $v

{

print "Value: $v.\n";

}

?>

As we can see, in its simplest form, f or each assigns a variable v to each of
the values of an array a, one by one.

Dynamic content

GNUEFDL ¢ PID_00148398 19

2.6. Functions

Another key point about PHP are functions. In PHP, functions may or may
not receive parameters and can always return a value. Functions are used to
give greater modularity to the code, thus avoiding code repetition, allowing

us to re-use code in other projects, etc.

One function schema is as follows:

<?php
exanp function ($arg_1, $arg 2, ..., $arg_n)

{
/1 Code of the function

return $return;

}

?>

We can call the functions from the main code or from other functions:

<?php
sum function ($al, $a2)

{
$ret ur n=$al+$a2;

return $return;

summati on function ($bl, $b2, $b3)

{
for($i =$bl; $i <$b2; $i ++)
{
$res=sumn($res, $b3) ;
}
return $res;
}

echo summation(1,3,2);

2>

The result of executing this program will be to print the number six.

In PHP, functions usually receive parameters by value, i.e. the variable passed
as the parameter in the code called is not modified if the parameter of the
function is modified. Nonetheless, we can pass parameters by reference (in a
similar way to pointers in other programming languages):

<?php
nodi fi function ($&al, $a2)
{

Dynamic content

GNUFDL « PID_00148398 20 Dynamic content

$al=0;
$a2=0;
}
$b1=1;
$b2=1;
nodi fi ($b1, $b2);
echo $b1." ".$b2;

7>

In this case, the result of the program will be:

10

2.7. Using PHP for web applications

To use PHP as a web application development language, the first thing we
need to do is know how PHP will interact with our web user. We can divide
this interaction in two parts, displaying information to the user and collecting

information from the latter.

2.7.1. Displaying information

PHP can display information to users in two ways: it can write current HTML
pages, inserting only the PHP code we require in the middle of the HTML
code. For example:

<HTM_>
<HEAD>
<TI TLE>Docurnent title</TI TLE>

</ HEAD>

<BCDY>

<hl>Header Hl</hl>

<?php $a=1; ?>

<h1>Second header Hl</hl>
<?php $b=1; ?>

</ BODY>
</ HTM_>

Alternatively, we can use PHP to generate dynamic content. To do this, we
need to use the PHP data output instructions, the most important being echo.

<HTM_>
<HEAD>
<TI TLE>Docurent title</TI TLE>
</ HEAD>
<BODY>
<hl>Header Hil</h1>

GNUFDL « PID_00148398 21 Dynamic content

<?php echo "Content of page"; ?>
<h1>Second header Hl</h1>

</ BODY>

</ HTM_>

2.7.2. Collecting user information

To collect user information, we can use HTML forms, using our PHP programs
as the ACTI ON of these forms. Because PHP was designed to create web
applications, access to the values entered by users in the form fields is
extremely easy in PHP as it defines an array called REQUEST accessible with
the name of the field as the index and which contains the value inside the
latter when the PHP program is executed.

If we have this form:

<HTM_>
<HEAD>
<TlI TLE>Docunent title</TlITLE>
</ HEAD>
<BODY>
<FORM ACTI ON=" pr ogr am php" METHOD=CET>
Type in the nane: <INPUT TYPE=TEXT NAME="nanme">
<I NPUT TYPE=submi t >
</ FORM>
</ BODY>
</ HTM>

And we define the following PHP program as program php in order to
respond to the form:

<HTM_>
<HEAD>
<TI TLE>Docurnent title</TI TLE>
</ HEAD>
<BODY>
<?php
echo "Hel | 0". $REQUEST["nane"] ;
?>
</ BODY>
</ HTM_>

This program will pick up the name entered by the user and display it to us
on the screen.

GNUFDL « PID_00148398 22 Dynamic content

2.8. String functions

PHP has a very interesting series of functions for working with text strings.

Some of the most important of these are:

st rl en Returns the length of a string.

expl ode Divides a string with a separating character and returns an array with
each of the parts of the string.

i mpl ode Does the opposite to expl ode by joining several strings of an array
with a joining character.

st r cnp Compares two strings at binary level.

strtol ower Converts a string to lower-case.

st rtoupper Converts a string to upper-case.

chop Deletes the last character of a string, useful for deleting line breaks or
trailing white spaces.

st rpos Searches inside a string for another specified string and returns its
position.

str_repl ace Replaces an appearance of a substring inside a string with
another substring.

The following example shows how some of these functions work:

<?php
$stringl = "hel lo";
$string2 = "pear, appl e, strawberry";

$length = str_len($stringl); //I|ength=4

$parts = expl ode(",", $string2);
//generates the array $parts with $parts[0] ="pear",

/] $parts[1] ="appl e"; and $parts[2] ="strawberry";

$chop = chop($string); // chop deletes the "a"

$string3 = str_replace(",",";", $ot herstring);
/1 $string3 contains: pear-apple-strawberry
//\We change the , for -

?2>

GNUFDL « PID_00148398 23 Dynamic content

2.9. File access

PHP offers a wide range of methods for accessing files. Here, we will look at the
most practical and straightforward of these, ideal if the files we are accessing

are small.

The code we will use is:

<?php
$file = file("input.txt");

$linnum = count ($file);

for($i=0; $i < $linnum $i++)

{
echo $file[$i];

?>

In this example, we read a file called i nput . t xt and display it as output. The
first step is to declare the f i | e variable, which will generate an array in which
PHP will place all of the lines in the file. For this we will use the library called
file. The next step involves finding out how many elements are in fil e.
To do this, we will use the count function, which returns the size of an array
- in this case, the array we generated on reading the file. Lastly, we can write
a loop that will run the array, processing each line of the file.

PHP offers many more file-processing functions. For example, we have the
f open function, which allows us to open files or resources without fully

reading them in memory. It can open files as follows:

<?php

$resource = fopen ("input.txt", "r");

$resource = fopen ("output.gif", "w");

$resource = fopen ("http://ww:. uoc.edu/", "r");

$resource = fopen ("ftp://user: password@oc. edu/ out put.txt", "w');
2>

Here we can see how to open a file for reading (' ' r' '), writing in binary
(' "wb''), a web page to read it as though it were a file and a file via FIP to
write it, respectively.

2.10. Database access
PHP offers methods for accessing a large number of database systems (mySQL,

PostgreSQL, Oracle, ODBC, etc). This feature is essential in the development
of complex web applications.

GNUEFDL ¢ PID_00148398 24

2.10.1. Access to mySQL from PHP

mySQL is one of the most popular database systems for the development of
light web applications because of its high performance when working with
simple databases. Many query web applications, etc. are developed with the
PHP-mySQL tandem. Hence, PHP's mySQL access API is highly developed.

We will now look at an example of access to the database from PHP to show
how easily we can use databases in our web applications:

<?php

$connect i on=nysql _connect ($server, $user, $password) ;
i f(!$connection)
{
exit();
}
if(!(nysqgl_sel ect_db($dat abase, $connection)))
{
exit();
}
$quer y=nysql _query(
"sel ect nane, t el ephonef roncont act sor der bynane",
$connecti on);

whi |l e($row = nysqgl _fetch_array($query))

{
$name = $rowf "nanme"];
$t el ephone = $rowf "t el ephone"] ;
echo "$nane: $tel ephone\ n
";
}

nysql _free_resul t ($query);
nysql _cl ose($connection);

?>

We can see that the first step in accessing the database is to open a connection
with it. For this we will need the address of the computer containing the
database, the user with whom we will connect and the word to access the
database. Once connected to the mySQL server, we will need to select one
of the multiple databases that the server we want to work with can have.
Following this connection sequence, we will have the mySQL connection data
in the connection variable. We must pass this variable to all PHP functions that
access the database. This means that we can have a number of connections
to different databases open at the same time and work simultaneously with
them.

Dynamic content

GNUEFDL ¢ PID_00148398 25

The next step will be to execute a database query statement in our database
language, SQL in this case. For this we will use the PHP function called
nysql _query, which will return the result of the query, which we will then
save in the query variable. This specific quer y enumerates the content of a
table in the database called agenda, which contains two columns called nane
andt el ephone.

We can then execute a loop that will run through all of the records to return
our query to the database, accessing them one by one in order to display the
results.

After completing access to the database, we need to free up the memory and
resources used in the query. To do this, we will use the nmysql _free_resul t
function and then close the connection to mySQL.

2.10.2. Access to PostgreSQL from PHP

We can access databases on PostgreSQL servers in much the same way as we
access mySQL. As in the previous section, we will use a code to enumerate the
content of our table called agenda.

<?php
[/ connecting to the database

/] $connecti on = pg_connect (" dbnane=". $dat abase) ;

/'l connecting to the server database port "5432"

/] $connecti on = pg_connect (

/1 "host=%$port server=5432 dbnane=$dat abase");

/'l connecting to the server database port "5432"

//with user and password

$connecti on = pg_connect ("host =$port server=5432 "
"dbnanme=%user dat abase=%user passwor d=$passwor d")

or di e "Does not connect";

$result = pg_query($connecti on,

"sel ect nane, tel ephone fromcontacts order by nane");

whi | e($row = pg_fetch_array($result))
{
$nane = $rowf "nane"];
$t el ephone = $rowf "t el ephone"];
echo "$nane: $tel ephone\ n
";
}
pg_cl ose($dbconn) ;

2>

Dynamic content

GNUEFDL ¢ PID_00148398 26

As we can see if we compare this example with the mySQL one above, the two
codes are very similar. Yet, despite the similarities, PostgreSQL's API for PHP
has some differences with regards mySQL. On the one hand, it offers greater
flexibility for connections and, on the other, it provides support for working
with large objects, etc., demonstrating that PostgreSQL is more powerful than
mySQL. A controversial point of PostgreSQL's API is that it totally isolates us
from the PostgreSQL system of transactions, which is perfectly acceptable in
most situations but we may sometimes want greater control over these.

2.11. More information

One of the strong points and, indeed, keys to the success of PHP as a web
application programming language are the many libraries, modules, etc.,
that have been developed for it. PHP is offering an increasing number of
APIs, functions, modules, classes (remember that PHP is gradually becoming
an object-oriented programming language), allowing us to operate with the
increasing complexity of web applications. This diversity of support includes:

e Session control.

e User identity control.

e HTML templates.

e Shopping carts.

¢ Dynamic HTML creation.

e Dynamic creation of images.

e Handling of cookies.

e File transfer.

e Handling of XML, XSLT, etc.

e Multiple communication protocols: HTTP, FTP, etc.
e Creation of PDF files.

e Access to LDAP directories.

¢ Interfaces with a wide range of databases: Oracle, Sybase, etc.
e Regular expressions.

e Network equipment handling: SNMP.

e Web services: XMLRPC, SOAP.

¢ Handling of Flash content.

Besides its usefulness as a web application programming language, PHP is
being increasingly employed as a general purpose programming language,
including in its arsenal of functions interfaces with the libraries of more
common graphic interfaces (Win32 or GTK, among others), direct access to
operating system functions, etc.

Hence, if you want to use PHP to develop a project, we strongly recommend
you to visit the project's website (http://www.php.net), since you may well
find a number of tools to make the job a whole lot easier. We also have PEAR,
a PHP repository that will provide us with most of the tools we could need.

Dynamic content

GNUFDL » PID_00148398 27 Dynamic content

3. Java servlets and JSP

3.1. Introduction to Java servlets

Java servlets are the Java technology proposal for the development of web
applications. A servlet is a program that runs on a web server and builds a
web page that is returned to the user. This page is built dynamically and may
contain information from databases, be a response to data entered by the user,
etc.

Java servlets offer a series of advantages over CGIs, the traditional method of
web application development. These are more portable, more powerful, much
more efficient, more user-friendly, more scalable, etc.

3.1.1. Efficiency

With the traditional CGI model, each request that reaches the server triggers
the execution of a new process. If the lifetime of the CGI (the time it takes
to be executed) is short, the instantiation time (the time taken to launch a
process) can exceed that of execution. With the servlets model, the Virtual Java
Machine, the environment from which they are run, starts up when the server
starts and remains in operation throughout execution of the same. To deal
with each request, instead of launching a new process, a thread, a light-weight
Java process, is started which is much faster (it is actually instantaneous).
Moreover, if we have x simultaneous requests from a CGI, we will have x
simultaneous processes in memory, thus consuming x times the space of a CGI
(which, if interpreted, is usually the case, consumes x times the interpreter).
With servlets, there is a certain number of threads, but there is only one copy
of the Virtual Machine and its classes.

The servlets standard offers additional alternatives to CGls for optimisation:

caches of previous calculations, pool s of database connections, etc.
3.1.2. Ease of use

The servlets standard provides a wonderful web application development
infrastructure, with methods for the automatic analysis and decoding of
HTML form data, access to HTTP request headers, handling of cooki es,
monitoring, control and management of sessions, among many other
features.

GNUEFDL ¢ PID_00148398 28

3.1.3. Power

Java servlets can be used for many things that are difficult or impossible to do
with traditional CGIs. Servlets can share data with each other, which means
that they can share data, database connections etc. They can also maintain
information request after request, facilitating tasks such as the monitoring of

user sessions, etc.

3.1.4. Portability

Servlets are written in Java and use a well documented, standard API. As a
result, servlets can be run on all platforms with Java servlet support without
the need for recompilation, modification etc., regardless of the platform
(Apache, iPlanet, IIS, etc.) and operating system, architecture hardware, etc.

3.2. Introduction to Java Server Pages or JSP

Java Server Pages (JSP) are a technology that allows us to mix static HTML with
HTML generated dynamically using Java code embedded on pages. When we
program web applications with CGIs, the bulk of the page generated by the
CGls is static and does not vary from execution to execution. The variable part
of the page is truly dynamic and very small. Both CGIs and servlets require
us to generate the page fully from our program code, which makes it more
difficult for maintenance, graphic design, code comprehension, etc. With JSP,

however, we can easily create pages.

<! DOCTYPE HTM. PUBLIC "-//WBC//DTD HTM- 4.0 Transitional //EN'>
<HTM_>
<HEAD>
<TI TLE>Store. Wl cone. </ Tl TLE>
</ HEAD>
<BCDY>
<H1>Weél cone to our store</Hl>
<SMALL>Wé| cone,
< %out.println(Tool s. readNameOr Cooki e(request)); %
</ SMALL>
</ BODY>
</ HTM_>

As this example shows, a JSP page is nothing more than a HTML page where
the special tags < %and % allow us to include Java code.

This gives us a series of obvious advantages: firstly, we have practically the
same advantages as we do when using Java servlets; in fact, JSP servers
"translate" these to servlets before executing them. Secondly, JSPs offer

Dynamic content

Example

The parts of the page that do
not vary from execution to
execution are headers, menus,
decorations, etc.

GNUEFDL ¢ PID_00148398 29

considerable simplicity and ease of development. It is much easier to write
the example page than to write a servlet or CGI that prints each of the lines

in the above page.

However, this simplicity is also one of the disadvantages of JSP. With complex
applications containing numerous calculations, database accesses, etc., JSP
syntax embedded inside HTML becomes tedious. Thus, JSPs and servlets do
not usually compete, but rather they complement one another since the
standards include capabilities for communication between them.

3.3. The servlets/JSP server

To use both servlets and JSP on our web server, we generally need to
complement it with a servlets/JSP server (usually called a servlets container).
There are many free software and proprietary containers. Sun, the inventors
of Java, keep an updated list of servlet containers at:

http://java. sun. conf products/servlet/industry. htm

e Apache Tomcat. Tomcat is the official implementation of reference for
servlet and JSP specifications after versions 2.2 and 1.1, respectively.
Tomcat is a very robust, highly efficient product and one of the
most powerful servlet containers available. Its only weakness is that
it is complicated to configure because there are many options to
choose from. For more details, visit the official Tomcat website:
http://jakarta.apache.org/.

e JavaServer Web Development Kit (JSWDK). JSWDK was the official
reference implementation for specifications Servlet 2.1 and JSP 1.0. It
was used as a small server to test servlets and JSP pages in development.
However, it has now been abandoned in favour of Tomcat. Its website is:
http://java. sun. com product s/ servl et/ downl oad. htm .

e Enhydra. Enhydra is an applications server whose many
functionalities include a very powerful servlet/JSP container. Enhydra
(htt p: // www. enhydr a. or g) is a very powerful tool for developing web
services and applications, including tools for the control of databases,

templates, etc.

e Jetty. This is a very lightweight web server/servlet container
written entirely in Java that supports the Servlet 2.3 and JSP
1.2 specifications. It is the ideal server for development because
it is small and takes wup little memory. Its web page is:
http://jetty. nortbay.org/jetty/index. htm.

Dynamic content

GNUEFDL ¢ PID_00148398 30

3.4. A simple servlet

The following example shows the basic structure of a simple servlet that
handles HTTP GET requests (servlets can also handle POST requests).

inmport java.io.?*;
import javax.servlet.*;

import javax.servlet.http.*;

public class BasicServlet extends HttpServl et

{

public void doGet(HttpServl et Request request, H tpServl et Response response)

throws Servl et Exception, | CException {

/1l W can use request to access the data of the
/'l HTTP request.
// W can use response to nodify the HTTP response

/'l that the servliet will generate.

PrintWiter out = response.getWiter();
/1 We can use out to return data to the user

out.println("jHello!'\n");

To write a servlet, we must write a Java class that extends (by inheritance)
the Ht t pSer vl et class (or the most generic servl et cl ass) and overwrites
the servi ce method or one of the more specific request methods (doCet ,
doPost etc).

Service methods (servi ce, doPost, doGet, etc.) have two arguments: a
Ht t pSer vl et Request and a Ht t pSer vl et Response.

The Htt pServl et Request gives us the methods for reading incoming
information such as the data from a HTML form (FORM), HTTP request
headers or the cookies of the request, etc. In contrast, Ht t pSer vl et Response
has methods for specifying the HTTP response codes (200, 404, etc.), response
headers (Cont ent - Type, Set - Cooki e etc). Most importantly, they allow us
to obtain a Print Wit er (a Java class representing an output "file") used to
generate the output data that will be returned to the client. For simple servlets,
the bulk of the code is used to work with this PrintWiter in println
statements that generate the desired page.

Dynamic content

GNUEFDL ¢ PID_00148398 31

3.5. Compiling and executing servlets

The servlet compilation process is very similar regardless of the web server
or servlet container used. If using Sun's Java development programming, the
official JDK, we need to make sure that our CLASSPATH, the list of libraries and
directories where the classes we use in our programs are searched, contains
the Java servlets API libraries. The name of this library varies from version
to version of the Java API but it is usually: servl et -version.jar. Once
the servlets library is in our CLASSPATH, the servlet compilation process is as
follows:

javac BasicServlet.java

We must locate the resulting cl ass file in the directory that our servlet
container requires to execute the servlet. To then test it, we need to direct the
browser to the URL of our servlet, formed, on the one hand, by the directory
where our servlet container displays the servlets (for example, / servl et s)
and, on the other, by the name of the servlet.

For example, in JWS, Sun's test server, servl ets are located in a servlets
subdirectory of the JWS installation directory and the URL is formed thus:

http://server/servl et/ Basi cServl et

In Tomcat, servlets are located in a directory indicating the web application
under development, in the WEB- | NF subdirectory, inside the subdirectory
cl asses. Then, if the web application were called t est for example, the
resulting URL would be:

http://server/test/servlets/BasicServl et

3.6. Generating content from servlets

As we have seen, the API gives us a class called Pri nt Wi ter to which we
can send all of our results. However, this is not enough to make our servlet
return HTML to the client.

The first step for building a servlet that returns HTML to the client is to tell the
servlet container that the return of our servlet is HTML. Remember that HTTP
includes the transfer of multiple data types by sending the MIME type marker
tag: Cont ent - Type. To do this, we have a method for indicating the type
returned, set Cont ent Type. So, before any interaction with the response, we
need to mark the content type.

inmport java.io.?*;
import javax.servlet.*;

import javax.servlet.http.*;

Dynamic content

GNUEFDL ¢ PID_00148398 32

public class Hell oweb extends HttpServl et
{
public void doGet(HttpServl et Request request,
Ht t pSer vl et Response response)

throws Servl et Exception, | CException

response. set Cont ent Type("“text/htm ");
PrintWiter out = response.getWiter();
out. println(
"< DOCTYPE HTML PUBLIC \"-//WBC//DTD HTML 4.0 " +
"Transitional //EN\">\n" +
"<HTML>\ n" +
" <HEAD><TI TLE>Hel | o</ Tl TLE></ HEAD>\ n" +
"<BODY>\ n" +
"<Hl>Hel | o web</H1>\n" +
"</ BODY></ HTML>") ;

As we can see, generating the result in HTML is a very tedious task, especially
if we consider that part of this HTML does not change from servlet to servlet
or execution to execution. The solution to this type of problem is to use JSP
instead of servlets. However, if you really must use servlets, there are a number
of time-saving tricks. The main solution is to declare methods that really
return these common HTML parts: the DOCTYPE line, t e header and even a
common header and footer for the company's whole website.

To do this, we need to build a class containing a series of utilities that we can
use in our web application project.

public class Utilities

{

public static final String DOCTYPE =
" <! DOCTYPE HTM. PUBLIC \"-//WBC//DTD" +
" HTM. 4.0 Transitional //EN">";

public static String titleHeader(Title string) {
return(DOCTYPE + "\n" +
"<HTML>\ n" +
"<HEAD><TI TLE>" + title + "</ TI TLE></ HEAD>\ n");
}
I/l Here, we will add sone utilities

}

Dynamic content

GNUEFDL ¢ PID_00148398 33

3.7. Handling form data

Obtaining data sent by a user from a form is one of the most complex and
monotonous tasks of CGI programming. Since we have two methods for
passing values, CET and POST, which behave differently, we need to develop
two methods to read these values. We must also analyse, parse and decode the
strings containing coded values and variables.

One of the advantages of using servlets is that the servlets API solves
all of these problems. This task is automatic and the values are made
available to the servlet through the get Par anet er method of the class called
Ht t pSer vl et Request . This parameter passing system is independent of the
method used by the form to pass parameters to the servlet (GET or POST).
There are also other methods to help us collect the parameters sent by the
form. Firstly, we have a version of get Par armet er called get Par anet er s that
we need to use if the parameter we are looking for can have more than one
value. We also have get Par anet er Nanes, which returns the name of the
parameters passed.

import java.io.*;
import javax.servlet.*;
inmport javax.servlet.http.*;
inmport java.util.*;
public class BasicServlet extends HttpServlet
{
public void doGet (HttpServl et Request request,
Ht t pSer vl et Response response)
throws Servl et Exception, | CException

{
response. set Cont ent Type(“"text/htm ");
PrintWiter out = response.getWiter();
String tit= "Reading 2 Paraneters";
out.println(Uilities.titleHeader(tit) +
"<BODY>\ n" +
"<H1 ALI GN=CENTER>" + tit + "</Hl>\n" +
"\n" +
" <Ll >parant: "
+ request. get Paraneter ("paranl") + "\n" +
" <Ll >paran®: "
+ request.get Paranet er ("paranR") + "\n" +
"\n" +
" </ BODY></ HTML>") ;
}

public void doPost(HtpServl et Request request,
Ht t pSer vl et Response response)

throws Servl et Exception, | CException

Dynamic content

GNUEFDL ¢ PID_00148398 34

doGet (request, response);

This example of a servlet reads two parameters called par aml, par an2 and
displays their values in a HTML list. We can see how get Par anet er is used
and how, by making doPost call doGet, the application is made to respond
to the two methods. If required, we have methods for reading the standard
input, as in CGI programming.

We will now look at a more complex example to illustrate the full potential
of the servlets APIL. This example receives data from a form, searches for the
names of the parameters and prints them, indicating those with the value of
zero and those with multiple values.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

inmport java.util.*;

public class Paraneters extends HttpServlet
{
public void doGet(HttpServl et Request request,
Ht t pSer vl et Response response)

throws Servl et Exception, | CException

response. set Cont ent Type(“"text/htm ");

PrintWiter out = response.getWiter();

String tit= "Readi ng Paraneters";

out.println(Uilities.titleHeader(tit) +
"<body BGCOLOR=\"#FDF5E6\">\n" +
"<HL ALI GN=CENTER>" + tit + "</HL>\n" +
"<TABLE BORDER=1 ALI GN=CENTER>\ n" +
"<TR BGCOLOR=\"#FFADOO\ ">\ n" +

" <TH>Par anet er Nane<TH>Par aneter (s) Val ue");

/! Reading the nanmes of the paraneters

Enunerati on parans = request. get Paranet er Names() ;

/! Going through the nanes array
whi | e(par ans. hasMor eEl ement s())
{

/'l Reading the nane

String param = (String)parans. next El ement ();

Dynamic content

GNUFDL » PID_00148398 35 Dynamic content

/! Printing the nane

out.println("<TR><TD>" + paranmNane + "\n<TD>");

/! Reading the values array of the paraneter

String[] values = request. get Paranet er Val ues(paranj;

if (values.length == 1)
{
/1l Only one enpty val ue

String val ue = val ues[0];

/'l Enpty val ue.
if (value.length() == 0)
out.print("Empty");
el se
out . print(val ue);

}

el se

/1 Multiple val ues
out.println("");

for(int i=0; i<values.length; i++)

{
out.println("" + values[i]);
}
out.println("");
}
}
out. println("</TABLE>\ n</ BODY>\ n</ HTML>") ;
}

public void doPost (HttpServl et Request request,
Ht t pSer vl et Response response)

t hrows Servl et Exception, | OException

doGet (request, response);

We first look for the names of all parameters using the method
get Par anet er Nanes. This returns an enumerati on. We then use the
standard method to run enureration (using hasMoreEl ements to
determine when to stop and next El ement to obtain each input). Since
next El ement returns an obj ect object, we convert the result to St ri ng and
we use them with get Par anet er Val ues to obtain a St ri ng. If this array
only has one entry and contains only one empty St ri ng, the parameter has

GNUEFDL ¢ PID_00148398 36

no values and the servlet will generate an "empty" entry in italics. If the array
contains more than one entry, the parameter has multiple values, which are

displayed in an unsorted list. Otherwise, the only value is displayed.

This is an HTML form that will be used to test the servlet, as it sends a group
of parameters to it. Since the form contains a PASSWORD type field, we will use
the POST method to send the values.

<! DOCTYPE HTM. PUBLIC "-//WBC//DTD HTM. 4.0 Transitional//EN'>
<HTM_> <HEAD>
<TI TLE>Form wi t h POST</ Tl TLE>

</ head>

<BCDY BGCOLOR="#FDF5EG" >
<Hl AL| G\="CENTER'>Form wi t h POST</ H1>

<FORM ACTI ON="/ exanpl es/ ser vl et s/ Par anet ers" METHOD="POST" >
Code: <INPUT TYPE="TEXT" NAME="code">

Quantity: <INPUT TYPE="TEXT" NAME="quantity">

Price: <INPUT TYPE="TEXT" NAME="price" VALUE="\$">

<HR>
Name:
<I NPUT TYPE="TEXT" NAME="Nane">

Sur narne:

<I NPUT TYPE="TEXT" NAME="Sur name" >

Addr ess:
<TEXTAREA NAME="addr ess" RONS=3 COLS=40></ TEXTAREA>

Credit card:

<I NPUT TYPE="RADI O' NAME="cred"
VALUE=" Vi sa" >Vi sa

<I NPUT TYPE="RADI O' NAME="cred"
VALUE=" Mast er Car d" >Mast er Car d

<I NPUT TYPE="RADI O' NAME="cred"
VALUE=" Anex" >Aneri can Expr ess

<| NPUT TYPE="RADI O' NAME="cred"
VALUE=" Maest r 0" >Maest r o

Card nunber:
<I NPUT TYPE="PASSWORD' NAME="car dno" >

Re-enter card nunber:
<I NPUT TYPE="PASSWORD' NAME="car dno" >

<CENTER>
<I NPUT TYPE="SUBM T" VALUE="PIl ace order">
</ CENTER>
</ FORM>

Dynamic content

GNUEFDL ¢ PID_00148398 37

</ BODY>
</ HTM.>

3.8. The HTTP request: HttpRequest

When an HTTP client (the browser) sends a request, it can send a specific
number of optional headers, except for Content-Length, which is required
in POST requests. These headers provide additional information to the web
server, which can use them to adapt its response to suit the browser request.
Some of the most common and useful headers are:

e Accept. The MIME types preferred by the browser.

e Accept-Charset. The character set accepted by the browser.

e Accept-Encoding. The types of data encoding accepted by the browser. For
example, it can indicate that the browser accepts compressed pages, etc.

e Accept-Language. The language preferred by the browser.

e Authorization. Authorisation information, usually in response to a server

request.

e Cookie. XML cooki es stored in the browser that correspond to the server.

e Host. Server and port of the original request.

e If-Modified-Since. Send only if it has been modified since the specified
date.

e Referrer. The URL of the page containing the link followed by the user to
obtain the current page.

e User-Agent. Type and brand of browser, useful for adapting the response

to specific browsers.

To read the headers, we simply need to call the method get Header of
Ht t pSer vl et Request . This will return a Stri ng, if the indicated header
was sent in the request, and nul | if it was not.

Some header fields are used so often that they have their own methods.
The get Cooki es method is used to access cookies sent with the HTTP
request, analysing and storing them in a cooki e. The get Aut hType and
get Renot eUser methods allow access to each of the components of the

Dynamic content

GNUEFDL ¢ PID_00148398 38

Aut hori zat i on field in the header. The get Dat eHeader and get | nt Header
methods read the specific header and convert it to the values Dat e and i nt,

respectively.

Instead of searching for a specific header, we can use get Header Nanes to
obtain an enumer at i on of all the header names of a specific request. If this
is the case, we can run through this list of headers, etc.

Lastly, as well as accessing the header fields of the request, we can obtain
information about the request itself. The get Met hod returns the method
used for the request (usually GET or POST, but HTTP has other, less common
methods, such as HEAD, PUT and DELETE). The get Request URI method
returns the URI (the part of the URL that appears after the name of the
server and port but before the form data). The get Request Pr ot ocol method
returns the protocol used, generally "HTTP/ 1. 0" or "HTTP/ 1. 1".

3.9. Additional request information

Besides the headers of the HTTP request, we can obtain a series of values that
will provide us with further information about the request. Some of these
values are available for CGI programming as environment variables. They are

all available as Ht t pRequest .

getAuthType (). If an Aut hori zat i on header s supplied, this is the specified
schema (basi ¢ or di gest). CGI variable: AUTH_TYPE.

getContentLength (). Only for POST requests, the number of bytes sent.

getContentType (). The MIME type of the attached data, if specified. CGI
variable: CONTENT_TYPE.

getPathInfo (). Information on the path attached to the URL. CGI variable:
PATH_I NFQ.

getQueryString (). For GET requests; these are the data sent as a single string
with encoded values. They are not generally used in servlets, since direct access
to the decoded parameters is available. CGI variable: QUERY_STRI NG

getRemoteAddr (). The IP address of the client. CGI variable: REMOTE_ ADDR.

getRemoteUser (). If an Authorization header is supplied, the user part. CGI
variable: REMOTE_USER.

getMethod (). The request type is normally GET or POST, but it can also be
HEAD, PUT, DELETE, OPTIONS or TRACE. CGI variable: REQUEST_METHOD.

Dynamic content

GNUEFDL ¢ PID_00148398 39

3.10. Status and response codes

When a browser's web request is processed, the response usually contains a
numerical code that tells the browser whether the request has been fulfilled
and, where applicable, the reasons why this is not the case. It also includes
some headers to give the browser further information about the response.
Servlets can be used to indicate the HTTP return code and the value of some
of these headers. This means that we can redirect the user to another page,
indicate the type of response content, request a password from the user, etc.

3.10.1. Status codes

To return a specific status code, our servlets can use the set St at us. which
tells the web server and servlet container the status that they should return
to the client. In the Ht t pSer vl et Response class, the servlets API provides a
table of constants to facilitate the use of response codes. These constants have
names that are easy to remember and use.

For example, the constant for code 404 (qualified in standard HTTP as not found), is
SC_NOT_FOUND.

If the code we return is not the default one (200, SC OK), we will need
to call set St at us before using Pri nt Wi ter to return the client content.
We can also use set St at us to return error codes for two more specialised
methods: sendEr ror to return errors (code 404), which allows us to add a
HTML message to the numerical code, and sendRedi r ect (code 302), which
is used to specify the address to which the client is redirected.

3.10.2. Return headers

Besides including a numerical code when responding to the http request, the
server can add a series of values in response headers. These headers tell the
browser about the expiry of the information sent (Expi r es), that it must
refresh the information after a specific time (Ref r esh), etc. We can modify
the value of these headers or add new ones from our servlets. To do so, we
can use the set Header method of the class called Ht t pSer vl et Response
class, hich allows us to assign random values to the headers we return to
the client. As with return codes, we must select the headers before sending a
value to the client. There are two auxiliary methods for set Header for times
when we want to send headers containing dates or integers. These methods,
set Dat eHeader and set | nt Header, do not rule out the need for converting
dates and integers to St ri ng, the parameter accepted by set Header .

There are also specialised methods for some of the more common headers:

Dynamic content

GNUFDL » PID_00148398 40 Dynamic content

Set Cont ent Type. Provides a value for the Cont ent - Type header and must

be used in most servlets.

Set Cont ent Lengt h. Allows us to assign a value to the Cont ent - Lengt h.

AddCooki e. Assigns a cookie to the response.

SendRedi r ect . As well as assigning status code 302, as we saw, it assigns the
address to which the user is redirected in the header Locat i on.

3.11. Session monitoring

HTTP is a stateless protocol, which means that each request is totally
independent of the previous one. This means that we cannot link two
consecutive requests, which is disastrous if we want to use the web for
something more than simply viewing documents. If we are developing an
e-commerce application such as an on-line store, we need control over the
products that our client has selected to ensure that we have the correct
shopping list when the client reaches the order page. How can we obtain the
list of objects selected for purchase when this screen is reached?

There are three possible solutions to this problem:

1) Use cookies. Cookies are small pieces of information sent by the server to
the browser, which the latter resends every time it accesses the website.
Despite excellent support from cookies, using this technique to monitor a
session is still an arduous task:

e Control the cookie containing the session identifier.
e Control expiry of the latter.
e Associate the contents of the cookie with information from a session.

2) Rewrite the URL. We can use the URL to add further information to
identify the session. This solution has the advantage that it works with
browsers that have no cookies support or where it is disabled. However, it
is still a tedious method:

e We need to ensure that all URLs reaching the user have the right

session information.

e It causes problems for users trying to add addresses to their bookmarks,
because these contain expired session information.

3) Hidden fields in forms. We can use the HlI DDEN fields of HTML forms
to spread information in our interest. Clearly, this suffers from the same
problems as the above solutions.

GNUEFDL ¢ PID_00148398 41

Fortunately, the servlets API has a solution to this problem. Servlets have a
high-level API, Ht t pSessi on, for session management, which is carried out
using cookies and URL rewriting. This API isolates the author from the servlets

of the details of session management.

3.11.1. Obtaining the session associated with the request

To obtain the session associated with the HTTP request in course, we can use
a get Sessi on method of the class called Ht t pSer vl et Request . If a session
exists, this method will return a Ht t pSessi on. If it does not exist, it will
return nul | . We can call get Sessi on using an additional parameter that will
create the session automatically if it does not exist.

Ht t pSessi on sessi on = request. get Sessi on(true);

3.11.2. Accessing the associated information

The Ht t pSessi on objects representing the information associated with a
session allow us to store a series of named values inside. To read these values,
we can use get At t ri but e, and to modify them, we have set Attri but e.

One schema for accessing this session data might be:

Ht t pSessi on session = request. get Sessi on(true);

Languagestri ng=(String) session. get Attri bute("| anguage");
if (language == null)
{
| anguage=new Stri ng("Spani sh");
response. set Attri bute("l anguage", | anguage) ;
}
/1 we can now display the data in the |anguage

/I preferred by the user
There are methods for accessing the list of attributes saved in the session,
such as get At t ri but eNanes, which returns an enuner at i on, similar to the
get Header s and get Par anet er Nanes methods of Ht t pSer vl et Request .
There are also some useful functions for accessing session information:

getld returns a unique identifier generated for each session.

isNew returns frue if the client has never seen the session because it has just
been created.

Dynamic content

Note

In versions prior to 2.2 of the
servlets API, the functions for
accessing information were:
get Val ue and set Val ue.

Note

In versions prior to 2.2 of
the servlets API, the list of
value names function was
get Val ueNanes.

GNUEFDL ¢ PID_00148398 42

getCreationTime returns the time in milliseconds since 1970, the year in

which the session was created.

getLastAccessedTime returns the time in milliseconds since 1970, the year in

which the session was sent to the client for the last time.

3.12. Java Server Pages: JSP

Java Server Pages, or JSP, are a HTML extension developed by Sun used to
embed Java instructions (scriptlets) in the HTML code. This simplifies matters
when it comes to designing dynamic websites. We can use any of the many
HTML editors to create our web or we can leave this to the designers, focusing
instead on the development of the Java code that will generate the dynamic
parts of the page so that we can subsequently embed this code in the page.

An example of a basic JSP page that will introduce us to some of the main
concepts of the standard is as follows:

<HTM_>
<BODY>
<H1>Weél cone. Date: < % date % </hl>

< %if(name==nul |)
out. println("New user");
el se
out. println("Wel come back");
%
</ b>
</ BODY>
</ HTM>

JSP pages normally have the extension .j sp and are located in the same
directory as HTML files. As we can see, a . j Sp page is simply a HTML page in
which we embed pieces of Java code, delimited by < %and % . Constructions

delimited by < %and % can be of three types:

e Script elements allowing us to enter a code that will form part of servlet
resulting from translation of the page.

e Directives, used to tell the servlet container how we want the servlet to
be generated.

e Actions allow us to specify components that should be used.

When the server/servlet container processes a JSP page, it converts this into a
servlet in which all of the HTML that we have entered in the JSP page is printed
on output and subsequently used for compiling this servlet and passing the

Dynamic content

GNUEFDL ¢ PID_00148398 43

request to it. This conversion/compilation step is generally only carried out
the first time we access the page or if the JSP file has been modified since the

last time it was compiled.

3.12.1. Script elements

Script elements allow us to insert Java code inside a servlet produced by
the compilation of our JSP page. There are three options when it comes to
inserting code:

e Expressions of the type < % expressi on % which are evaluated and
inserted in the output.

e Scriptlets of the type < % code % that are inserted within the servlet's
Service method.

e Declarations of the type < 9% code % that are inserted in the body of
the servlet class, outside any existing method.

Expressions

JSP expressions are used to insert a Java value directly in the output. Their

syntax is:

< % expression %
The expression is evaluated and produces a result that is converted into a
string, which is inserted in the resulting page. The evaluation is carried out
in execution time, when the page is requested. Hence, expressions can access

HTTP request data. For example,

< % request. get Renot eUser () > | ogged on on

< % new java.util.Date() >

This code will display the remote user (if authenticated) and the date on which
the page was requested.

We can see in our example that we are using a variable, r equest, which
represents the HTTP request. This predefined variable belongs to a series of
predefined variables that we can use:

e request:the H t pServl et Request

e response: the Ht t pSer vl et Response

e session: the Ht t pSessi on associated with r equest (if it exists)

Dynamic content

GNUFDL « PID_00148398 44 Dynamic content

e out:thePrintWiter used to send the output to the client

There is an alternative syntax for entering expressions. This syntax was
introduced to make JSP compatible with XML editors, parsers, etc. It is based

on the concept of tagActions. The syntax for an expression is:

<j sp: expr essi on> expr essi on</j sp: expr essi on>

Scriptlets

XML scriptlets are used to insert random Java code in the servlet that will result
from compilation of the JSP page. A scriptlet 1o0ks like this:

< % code %

In a scriptlet we can access the same predefined variables as in an expression.

For example:

< %

String user = request.get RenoteUser();
out.println("User: " + user);

%

XML scriptlets are inserted in the resulting servlet as they are written, while
the HTML code entered is converted into pri nt| n. This means that we can
create constructions such as:

<% if (obtainTenperature() < 20) { %
Wap up! It's cold!
<%} else { %
Have a ni ce day! </ B>

< %} %

In this example, we see that the Java code blocks can affect and include the
HTML defined on the JSP pages. Once the page has been compiled and the
servlet generated, the above code will look something like this:

if (obtainTenperature() < 20) {
out.println("Wap up! It's cold! ");
} else {
out.println("Have a nice day!");

The XML equivalent for scriptlets is:

<jsp:scriptlet> code </jsp:scriptlet>

GNUFDL « PID_00148398 45 Dynamic content

JSP declarations

Declarations are used to define methods or fields that are subsequently
inserted in the servlet outside the ser vi ce. They look similar to this:

< 9% code %

Declarations do not generate output. As a result, they are usually used to define
global variables, etc. For example, the following code adds a counter to our

page:

< 9% private int visits = 1; %

Visits to the page while server is running:

< % visits++ %
This counter is restored to one each time the servlet container is restarted or
each time we modify the servlet or JSP file (which requires the server to reload
it). The equivalent to declarations for XML is:

<j sp: decl arati on> code </jsp:decl arati on>
3.12.2.]JSP directives

Directives affect the general structure of the servlet class. They look like this:

< Y%@attribute directivel="val uel"

attri but e2="val ue2"

%

There are three main directives:

page allowing us to modify compilation of the JSP page to the servlet. Example

For example, we can import
classes, modify the servlet

inserted when translating JSP to servlet). class, etc.

i ncl ude which allows us to insert another file in the resulting servlet (this is

t agl i b which is used to indicate which tag libraries we wish to use. JSP allows
us to define our own tag libraries.

The page directive

We can define the following attributes using the page directive, which will
modify translation of JSP to servlet:

e inmport="package.class" or inport="package.classl,
, package. cl assN'. | nport allows us to specify the packets and classes

GNUEFDL ¢ PID_00148398 46

that need to be imported by Java to compile the resulting servlet. This

attribute can appear several times in each JSP. For example:

< %@ page inport="java.util.*" %
< %@ page i nport="edu. uoc. canpus. *" %

cont ent Type="M ME- Type" or cont ent Type="M ME- Type;
char set =Char act er - Set " This directive is used to specify the resulting

MIME type of the page. The default value is t ext / ht n1 . For example:

< %@ page content Type="text/plain" %

This is equivalent to using the scriptiet:

< %response. set Cont ent Type(“text/plain"); %

i sThreadSaf e="true|fal se". A true value (the default wvalue)
indicates that the resulting servlet will be a normal servlet, in which
multiple requests can be processed simultaneously, assuming that the
instance variables shared between threads will be synchronised by the
author. A fal se value indicates that the servlet must implement a
Si ngl eThr eadMbodel .

session="true|fal se". Atrue value (the default value) indicates that
there must be a predefined sessi on variable (of the type Ht t psessi on)
with the session or, if there is no session, one must be created. A f al se
value indicates that sessions will not be used and attempts to access them

will result in errors when it comes to translating to servlet.

ext ends="package. cl ass". This indicates that the servlet generated
must extend a different superclass. It must be used with extreme caution,
since the servlet container we use may require the use of a specific

superclass.

er ror Page="URL" . Specifies which JSP will be processed if an exception
is launched (an object of the type Thr owabl e) and it is not captured on

the current page.

i sErrorPage="true|fal se". Indicates whether the current page is an

error processing page.

The equivalent XML syntax is:

<jsp:directive.Directive attribute=val ue />

For example, the following two lines are equivalents:

Dynamic content

GNUFDL « PID_00148398 47 Dynamic content

< %@ page inport="java.util.*" %

<jsp:directive.page inport="java.util.*" />
The i ncl ude directive

The i ncl ude directive is used to include files in the JSP page when translated
to servlet. The syntax is as follows:

< 9Y%@include file="file to be included" %

The file to be included can be relative to the position of the JSP on the
server, for example, exanpl es/ exanpl el.jsp or absolute, for example,
/ gener al / header . j sp. and it can contain any JSP construction: html,
scriptlets, directives, actions, etc.

The i ncl ude directive can save us a lot of work because it allows us to write
elements like the menus of our website on a single page, which means that

we only need to include them in each JSP we use.

1.
<! DOCTYPE HTM. PUBLI C "-//WBC//DTD HTM. 4.0 Transitional //EN'>
<HTM_>
<HEAD>
<TlI TLE>Websi t e</ Tl TLE>
<META NAME="aut hor" CONTENT="car| esm@si c. udl . es">
<META NAME="keywor ds" CONTENT="JSP, Servlets">
<meta NAME="descri ption" CONTENT="One page">
<LI NK REL=STYLESHEET HREF="styl e.css" TYPE="text/css">
</ HEAD>
<body>
2.
<HR>

<CENTER><snul | >© Wb devel oper, 2003. All

rights reserved</ SMALL></ cent er >

</ BODY> </ html >

3.

< %@include file="/header.htm" %
<I-- JSP page -->

< Y%@include file="/footer.htm" %

GNUEFDL ¢ PID_00148398 48

In this example, we have three files: header. htnl, footer. htm anda]JSP
page of the website, respectively. As we can see, having a fragment of the page
content in separate files considerably simplifies the writing and maintenance

of JSP pages.

One thing to bear in mind is that it is included when the JSP page is translated
to servlet. If we change anything in the files included, we will need to force
re-translation of the entire site. Although this may seem a problem, it is greatly
compensated by the benefits gained by the efficiency of only having to include
the files once.

If we want them to be included in each request, we have an alternative in the
XML version of the directive:

<jsp:include file="/header.htm ">

<l-- JSP page -->

<jsp:include file="/header.htm ">

In this case, the inclusion is made when the page is served. However, we
cannot include any JSPs in the file we are going to include; it can only be in
HTML.

3.12.3. Predefined variables

In JSPs, we have a group of defined variables to make code development easier.

e request.The H t pServl et Request object associated with the request.
This allows access to the request parameters (through get Par anet er), the
type of request and the HTTP headers (cookies, r ef err er etc).

e response. This is the Ht t pSer vl et Response object associated with the
servlet response. Since the stream output object (the out variable defined

later) has a buffer, we can select the status codes and response headers.

e out.ThisisthePri nt Wit er object used to send the output to the client.

e session. This is the H t pSessi on object associated with the request.
Sessions are created automatically by default. This variable exists even if
there is no reference session. The only exception is if we use the sessi on
attribute of the page directive.

e application. This is the Servl et Cont ext object obtained through
get Servl et Confi g(). get Context().

Dynamic content

GNUFDL » PID_00148398 49 Dynamic content

e config. The Servl et Confi g object for this page.

3.12.4. Actions

JSP actions use constructions with a valid XML syntax to control the behaviour
of the servlet container. These actions are used to insert files dynamically, use
JavaBeans components, resend another page to the user, etc.

j sp:include

This action is used to insert files into the page being generated. The syntax is:

<j sp:include page="relative URL" flush="true" />

Unlike the i ncl ude directi e, which inserts the file when the JSP page is being
converted to servlet, this action inserts the file when the page is requested. On
the one hand, this results is less efficiency and means that the included page
cannot contain JSP code. On the other hand, however, it increases flexibility

because we can change the inserted files without having to recompile the

pages.

Here is an example of a page that inserts a news file into a website. Each time we want
to change the news, we simply need to change the file included. This is a job that can
be left with the copywriters without the need to recompile the JSP files.

< %@include file="/header.htm" %
Lat est news:
<j sp:include page="news/news. htm" />

< %@include file="/footer.htm" %

j Sp: useBean

This action can be used to load a JavaBean on the JSP page so that we can
use it. It is a very useful capability because it allows us to make use of the
reusability of Java classes. The simplest way of specifying the use of a bean is:

<j sp: useBean i d="nane" cl ass="package. cl ass" />

The meaning of this code is: it instances an object of the cl ass specified by Note

class and assigns it to the variable called i d. We can also add a scope attribute,
Remember JavaBeans. A
property X of the type Y of

a Bean means: aget X ()
method that returns an object
Once we have the Bean instanced, we can access its properties. It is possible of the type Y and a set X (Y).

indicating that the Bean must be associated to more than one page.

to do this from a scriptlet or with one of the following two actions:
j sp:setProperty andj sp: get Property.

GNUEFDL ¢ PID_00148398 50

We will describe these actions, j sp: set Property andj sp: get Property,in
detail later. For now, you simply need to be aware that they have an attribute,

par amto specify which property we want.

Here is a small example of how Beans are used on JSP pages:

< %@include file="/header.htm" %

Lat est news:

<j sp: useBean i d="ness" cl ass="MessageBean" />
<j sp: set Property nanme="ness"
property="text"
val ue="Hel l 0" />
<Hl>Message: <I>
<j sp: get Property name="ness" property="text" />

</1></h1>
< %@include file="/footer.htm" %
The Bean code used for the example is as follows:
public class MessageBean

{
private String text = "No text";

public String getText ()

{
return(text);
}
public void setText(String text)
{
this.text = text;
}
}

The j sp: useBean action includes other facilities for working with Beans. If
we wish to execute a specific code when the Bean is instanced (in other words,

when it is first loaded), we can use the following construction:

<j sp: useBean ...>
code

</j sp: useBean>

Note that Bean can be shared among different pages. However, not all uses of
j sp: useBean result in the instantiation of a new object. For example:

<j sp: useBean i d="ness" cl ass="MessageBean" >

<j sp: set Property name="ness"

Dynamic content

Note

Location of beans.

To ensure correct loading of
beans, we need to ensure that
the servlet container will find
them. To do this, check the
documentation to find out
where they should be placed.

GNUEFDL ¢ PID_00148398 51

property="text"
val ue="Hel | 0" />

</ j sp: useBean>

Besides those mentioned, useBean has some other, less used attributes. These

are now listed:

e i d. Gives a name to the variable to which we will assign the bean. It will
instance a new object if we cannot find one with the same i d and scope.
In this case, the existing one will be used.

e cl ass. Designates the full name of the Bean package.

e scope. Indicates the context in which the Bean will be available. There
are four possible scopes:
— page directive: indicates that the Bean will only be available for
the current page. This means that it will be stored in the PageCont ext
of the current page.

— request : the bean will only be available for the current client request,
stored in Ser vl et Request .

— session: tells us that the object is available for all pages for the
lifetime of the current Ht t pSessi on .

— application:indicates that it is available for all pages that share the
same Ser vl et Cont ext .

The importance of scope lies in the fact that a j sp: useBean entry will
only result in a new object if no previous objects exist with the same i d
and scope.

e escribir. Specifies the type of variable to which the object will refer.
This must match the name of the class or superclass or an interface
that implements the class. Remember that the name of the variable is
designated with the attribute i d.

¢ DbeanNane. Gives the name of the Bean as we would supply it in the bn
instantiate method. We can supply a type and BeanName, and ignore the

attribute cl ass.

j sSp: getProperty

This action records the value of a ban property, converts it into a string and
inserts this value in the output. It has two required attributes, which are:

e nane: the name of a Bean loaded previous with j sp: useBean.

Dynamic content

GNUEFDL ¢ PID_00148398 52

e property: the property of the Bean whose value we wish to obtain.
The following code reveals the operation of j sp: get Property.

<j sp: useBean i d="bean" ... />

<Ll >Quantity:
<j sp: get Property nanme="bean" property="quantity" />
Price

<j sp: get Property nanme="bean" property="price" />
</ UL>

j Sp: setProperty

Thej sp: set Property action is used to assign values to Bean properties that
have already been loaded. There are two options for assigning these values:

e At the time of instantiation. We can use j sp: set Property when we are

instantiating a bean. As a result, the values will only be assigned once
during the lifetime of the Bean:

<j sp: useBean i d="nens" cl ass="MessageBean" >
<j sp: set Property nane="ness"

property="text"

val ue="Hel | 0" />

</j sp: useBean>

At some point in our code, if we use j sp:setProperty outside a
j sp: useBean context, the value will be assigned to the property,
regardless of whether it is the first instantiation or if the Bean had
previously been instantiated.

<j sp: useBean i d="nens" cl ass="MessageBean" />

<j sp: set Property nanme="ness"
property="text"

val ue="Hel | 0" />
<j sp: set Property nanme="ness"
property="text"
val ue="Bye" />

The j sp: set Property action has four possible attributes:

e nane. This attribute designates the Bean whose property is to be modified.

Dynamic content

GNUEFDL ¢ PID_00148398 53

e property. This attribute indicates the property we wish to operate on.
There is a special case: a value of " *" means that all of the parameters of
the HTTP request whose names match the names of the Bean's properties

will be passed to the appropriate selection methods.

¢ val ue. This optional attribute specifies the value for the property. Values
are automatically converted with the standard method val ueX in the
source or enclosing class. We cannot use val ue and par amtogether, but
we can ignore both.

e param This optional parameter indicates that a parameter of the HTTP
request will be used to give a value to the property. If the HTTP request does
not have this parameter, the system does not call the set X bean property
method.

Where it exists, the following code passes the value of the nunmitens
parameter to the Bean for the latter to assign it to its property, nunber |t ens.

<j sp: set Property nanme="order"
property="nunberltens"

paran¥"num tens" />

Ifin thej sp: set Property action we ignore val ue and par am the container
will assign the value of the HTTP request parameter with an identical
name to the specified property. Using the capability of not specifying the
property being assigned (by using "*"), we can easily assign all properties
corresponding to HTTP request parameters to a Bean.

<j sp: set Property nane="order"

property="*" />
j sp: forward

This action is used to resend the request made to another page. It has only one
parameter, page, which will contain the target URL. We can use static values
or use a value generated dynamically.

<j sp: forward page="/underconstruction.jsp" />

<jsp:forward page="< % url Destination %" />

j sp:plugin

This action is used to insert a specific OBJECT or EMBED element of the
browser to specify that the browser must execute an applet using the Java

plug-in.

Dynamic content

GNUFDL « PID_00148398 54 Dynamic content

4. Other dynamic content options

In addition to the technologies we have seen so far, there are other systems,
technologies and languages designed for the development of dynamic web
content.

One of the preferred systems, as an alternative to the ones we have seen, is
nod_per |, an Apache server module that can be used to write web pages in
Per]l programming language in a similar way to how PHP is used. This module
offers a series of obvious advantages over writing CGIs in Perl:

¢ Enhanced memory use. It behaves in a similar way to PHP, since the Perl
module is only launched once when the web server is booted and remains
in the memory from this point on. This avoids the problem of having to
start Perl for each CGI.

e TFaster response. When a module is preloaded, the response is more agile,
which is the case of precompiled Perl programs (Perl precompiles the code
to an intermediate code which then interprets it).

e It gives programs more direct access to server information. The module
provides a richer and more efficient gateway than that facilitated by the

CGI environment variables.
e It allows server extensions to be written entirely in Perl.

Two of the main advantages of nod_per| are the substantial increase in
program performance and speed on the one hand, and the fact that a CGI
program written in Perl needs only minimal attention to convert it into one
in nod_per | . These two advantages make it a very valid option in situations
where we already have several CGI programs written in Perl. One of the
disadvantages of nod_per | is that it is only available for Apache servers, so it

will not be a valid alternative if we cannot use Apache for our work.

Many web servers, including some of the ones we have seen, like Roxen,
offer programming mechanisms with a similar philosophy to JSP. Roxen
in particular, perhaps one of those with the greatest wealth of options for
application development, offers us the possibility of extending our HTML
pages with:

¢ RXML code, a Roxen HTML extension that incorporates all the elements
of a programming language: conditionals, loops etc., and a rich

GNUEFDL ¢ PID_00148398 55

function library that includes elements like access to databases, LDAP,

communications, graphics, string handling, etc.

¢ Code written in Pike, the object-oriented language in which Roxen was

developed.

e PHP code, equalling the features of Apache in this case.

e Perl code, which does not offer the same features as nod_per |, but does
have a wide range of options.

Like Roxen, both AOLServer and Apache can be used to develop server
extension modules that would allow the handling of new HTML tags, new
requests or communication protocols etc. Some of these systems can be used to
develop programming extensions, such as template languages, with a similar
philosophy to JSP. This is the case of Mason, DTL, etc.

Other options include the use of a "complex" server incorporating extension
mechanisms (with an own language and another for general use), mechanisms
for developing dynamic content and dynamic pages, all in a single product.
One of the best known of these is Zope, based on Python programming
language, which is a free software applications server for building portals,
web applications, content managers, etc. It offers programmers a wide range
of development features with a rich and powerful API for processing HTTP
requests, database access, etc.

Lastly, there are some top-level options, many based on one of the above
products and designed for the development of complex web applications.
Some of these, like Enhydra (http://www.enhydra.org), are based on
JSP/Servlets (Enhydra is also an excellent servlet container). Others, like
OpenACS, are applications very much oriented to a specific type of website.

One of the weaknesses of OpenACS is that it depends on AOLServer and TCL.
This is a common feature of very high level packages, which are usually very
closely linked to a specific web server. On the other hand, OpenACS offers a

wide range of modules and features for creating websites.

It also has a wide variety of CMS (Content Management Systems) products
for most free software web servers and servlet containers, with sufficient
features for modifying, adapting and programming some of the more complex
projects. In this cases, the complexity linked to the full development of a web
application is not needed.

Dynamic content

Example

OpenACS, for example, was
designed to develop websites
for communities, portals, etc.

GNUFDL » PID_00148398 56 Dynamic content

5. Practical: creation of a simple application with the
techniques described

We are going to create a form that collects greetings and displays them on
the screen. To do this, we will use two of the techniques described: CGI and

servlets.
5.1. CGI

We have chosen Perl programming language to write our CGI program. The
program code is:

#!/ usr/ bi n/ perl

print "Content-type: text/htm \n\n\n";
print "<htm >\ n";
print "<body>\n";

$QS=$ENV{ " QUERY_STRI NG'};
if ($QS ne "")
{

@arans=split /&, $C5;

foreach $param (@ar ans)

{
($nom $val)=split /=/, $param
$val =˜s/\+/ /g;
$val =˜ s/ Y%[0-9a-fA-F]{2})/chr(hex(%$1))/ge;
i f($nam eq "greeting")
{
open FIT,">>list";
print FIT "$val\n";
close FIT,;
}
}
}
open FIT,"<list";
whi | e(<FI T>)
{
print "$_\n<HR>\n";
}
close FIT,

print << "EOF";

GNUFDL « PID_00148398 57 Dynamic content

<FORM METHOD=GET ACTI ON="visit.cgi">

G eeting: <INPUT TYPE=Text NAME="greeting" SIZE=40>

<I NPUT TYPE="subm t" NAME="SEND' VALUE="SEND'>

</ FORW>

</ BODY>

</ HTM_>

EOF

As we can see, in this case, we need to manually process the environment
variable containing the parameters.

5.2. Java Servlet

We will now look at an equivalent implementation using Java Servlets:

inmport java.io.*; inport java.text.*; inport java.util.*; inport
javax.servlet.*; inport javax.servlet.http.?*;
/**
* Form processi ng
*
* @ut hor Carl es Mateu
*/
public class Form extends HttpServlet {
G eetings vector;
public void init(ServletConfig sc)

throws Servl et Exception

greetings=new Vector();

void listGeetings(PrintWiter out)

{
for (Enuneration e = greetings.elenents() ; e.hasMreEl enents() ;)
{
out. println(e.nextEl enent () +"<HR>");
)
}

public void doGet(HttpServl et Request request,
Ht t pSer vl et Response response)

throws | CException, ServletException

response. set Cont ent Type("text/htm ");
PrintWiter out = response.getWiter();

String greeting=request.getParaneter("greeting");

GNUFDL PID_00148398 58 Dynamic content

In this case, the persistence of the data is only for the servlet, since the data

are saved to the memory.

Database access:
JDBC

David Megias Jiménez (coordinator)
Jordi Mas (coordinator)
Carles Mateu

PID_00148405

Universitat Oberta
de Catalunya

www.uoc.edu

GNUFDL e PID_00148405 Database access: |DBC

Copyright © 2010, FUOC. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation

License"

GNUEFDL ¢ PID_00148405

Database access: |DBC

Index

0118 000 1 T 003 1 DRt

1. Introduction to databases.............cccccoooeiiiimiiiiiiiiiiiiiiiieiirieeeeeeeennan.
1.1, POSEGIreSQL ..oevviiiiiiiiiiiiiiee e
1.2 MYSQL ettt ettt st ettt s aae s
1.3, SAP DB et e e e e e e e e e e
1.4, FirebirdSQLoiiiiiiieiiieeiieee et e e et eeeraareee s

2. Controllers and addresses
2.1. JDBC controllers
2.2. Loading the Java driver

7. Practical: database access

2.3. Database addressesccceeereieiiiiiiiieiiiiiiieeeeeeee et

2.4. Connecting to the databasecccccoeoviiiiiiiiiiiiiiiiiiieniieeeee,

3. Basic database acCCess............occcceeiiiiiiiiiiiiiiiii
3.1. Basic statementscccccceiiiiiiiiiiiiii
3.1.1. Multiple reSultscccoeeiiiiiiiiiiiiiiieeee e

3.2, RESUILS it e
3.2.1. Processing Mull.........cccccceevvvvuviiiiiiiiiieeiniiiieeiieieeeeeeee

3.2.2. Large data typesccccooveviiiiiiiiiiiiiiiee e

3.3, Bug Managementccccceiiiiiiiiiiiiiiiieeee e
3.3. 1. SQL WATRNGS..ceeetiiiiaiieiaieeeiaeeeeeeeeee e e e e eeees

4. Prepared statements and stored procedures..............................
4.1. Prepared StatemMentsccccccceeviiiiiiieiiiiiiiiien e
4.2, Stored ProCeAUIEScccceeiriiiiiiiiiiiiicenire e

5. TranSaACHIONS...........ccccooiiiiiiiiiiiie e
6. Metadata.. ..ot e
6.1. Database metadatacc.cccceevvureriiiiiiiiineeeeeee
6.1.1. Information on the DBMSccccoiiiiiiiiiniienicee

6.1.2. Information on the JDBC driver usedcccccveeeeeennnnn.

6.1.3. Information on the operating limits of the DBMS

6.1.4. Information on the database schemaccccccceceenee

6.2. Results metadataccooevueiiiiiiiiiiiiiiiiii e

O 00 00 N

10
10
11
11
12

13
13
14
15
17
17
18
19

20
20
21

23

25

25

25

26

27
27

28

GNUFDL e PID_00148405 5 Database access: |DBC

Introduction

One of the most basic needs we face when developing applications for the
Internet with Java, and for many other applications, is to have a powerful,
robust, fast and easily accessible data store. There are several free software
database management systems (DBMS). We will look at some of these in
the following sections before introducing a technology from Java for DBMS
access, particularly relational databases, called JDBC (sometimes incorrectly
expanded as Java database connectivity).

GNUEFDL ¢ PID_00148405 7

1. Introduction to databases

One of the keys to the development of web applications is the choice of DBMS
to use. There are currently several free software DBMS available, many of a
similar quality to the more well-known commercial DBMS.

Most free software DBMS come from two main sources: either from projects
that started out as free software projects (research projects, etc.) or DBMS that
belonged to proprietary software companies whose main business was not
DBMS. These companies subsequently opted to release the product under a
free software licence, thus opening up its development to the community. We
will now look at some of the most emblematic free software DBMS.

1.1. PostgreSQL

PostgreSQL (or Postgres) is one of the most well-known and long-standing
DBMS in the free software community. It was launched in the mid-1980s at
the University of Berkeley with the name Postgres following research on the
group of Berkeley databases (particularly by Michael Stonebraker). Postgres
continued to evolve until Postgres 4.2 in 1994. Postgres did not use SQL as
a query language; it had its own language called Postquel. In 1995, Andrew
Yu and Jolly Chen added an SQL interpreter to Postgres 4.2, giving rise to
the birth of Postgres95, a product released under a free software licence that
left the confines of Berkeley to become an Internet development. In 1996, a
new name was chosen that would withstand the passing of time and reflect
the project's relationship with the original Postgres (still available) and new
differences (basically the use of SQL). Hence, PostgreSQL was born.

PostgreSQL has since become one of the databases of choice in numerous
projects, offering users features of the level of commercial database

management systems such as Informix and Oracle.

The most significant features of PostgreSQL are:

e Transaction support.

e Subqueries.

e Viewing support.

¢ Referential integrity.

¢ Table inheritance.

e User-defined types.

e Columns as arrays that can store more than one value.

e Addition of fields to tables at runtime.

e User-definable aggregation functions (like sum() and count()).

e Triggers, SQL commands that need to be executed when acting on a table.

Database access: |DBC

GNUEFDL ¢ PID_00148405 8

e System tables that can be queried to obtain information on tables, the
database and the database engine.

e Support for large binary objects (over 64 KB).

1.2. MySQL

MySQL and PostgreSQL are currently fighting it out for the title of most
well-known and widely-used free software DBMS. MySQL is a DBMS developed
by MySQL AB, a Swedish company that develops it under a free software
licence (specifically GPL), although it can also be purchased with a commercial
licence if required, to be included in projects that are not free software.

MySQL is an extremely fast database management system. While lacking the
capabilities and features of many other databases, it offsets this lack of features
with an excellent performance that makes it the database of choice when we
only need basic capabilities.

The most significant functionalities of MySQL are:

e Transaction support (new in MySQL 4.0 if InnoDB is used as the storage
engine).

e Replication support (with a master updating multiple slaves).

e Library for embedded use.

e Text search.

e Search cache (for enhanced performance).

1.3. SAP DB

SAP DB is nothing more than the DBMS of the business management software
giant SAP (authors of the famous SAP/R3). For a long time, this company's
product portfolio included a relational DBMS called SAP DB. In April 2001, the
company decided to make it available to the world under a new licence, GPL.
From this point on, SAP DB has been developed under a free software licence.

SAP DB is a very powerful database which originated from a very specialised
environment, SAP applications, and has thus not spread very well among
the free software community. Nonetheless, SAP DB has some very powerful
features which, combined with the prestige of the company that created it,
make it a serious candidate to become the database of choice for some of our
free software projects.

e Support for outer joins.

e Support for user roles.

e Updatable views.

e Implicit transactions and locks.
¢ Scrollable cursors.

Database access: |DBC

GNUEFDL ¢ PID_00148405 9

e Stored procedures.

1.4. FirebirdSQL

FirebirdSQL is a free software database originating from the free software
version of Interbase that Borland/Inprise released in the summer of 2000.
Since the licence used to release this version and the way that Borland planned
to work were not very clear, a group of developers started their own version
of Interbase, which they called FirebirdSQL.

The first aim of the developers of FirebirdSQL was to stabilise the code and
eliminate the many bugs as well as to increase the number of platforms on
which the database could work. Since then, both the features of the database
and the number and quality of the functions it offers have been gradually
developed. Some of its most important functionalities currently include:

e Version architecture to avoid readers/writers locks.
e Events alert to react to database changes.

e Very rich data types (BLOBS etc).

e Stored procedures and triggers.

e ANSI SQL-92 compatibility.

e Referential integrity.

e Transactions.

e Support for multiple interconnected databases.

Database access: |DBC

GNUFDL e PID_00148405 10 Database access: JDBC

2. Controllers and addresses

2.1. JDBC controllers

Despite the many similarities between the different DBMS, their languages,
features, etc., the communication protocols that need to be used to access
them vary substantially from one to the next. Hence, to communicate with
the different DBMS from JDBC, we need to use a driver to isolate the specific
features of the DBMS and its communication protocol.

There are several different types of JDBC drivers, which we can classify as
follows:

e Type 1 drivers. Bridging drivers. These drivers translate JDBC calls to calls
from another DBMS access language (such as ODBC). They are used
when there is no more appropriate JDBC driver. It involves installing the
driver on the client machine in order to translate JDBC calls. The most
well-known is the JDBC-ODBC driver, which acts as a bridge between JDBC
and ODBC.

e Type 2 drivers. Native API Partly Java Drivers. These drivers use the Java
JNI (Java native interface) API to present a Java interface to a native binary
DBMS driver. As with type 1 drivers, these require the native driver to be
installed on the client machine. Their performance is usually superior to
drivers written entirely in Java, although an operating error in the native

part of the driver can cause problems in the Java Virtual Machine.

e Type 3 drivers. Net-protocol All-Java Drivers. Controllers written in Java
defining a communication protocol that interacts with a middleware
program that, in turn, interacts with a DBMS. The communication
protocol with the middleware is a network protocol independent of the
DBMS and the middleware program must be able to communicate the
clients with the diverse databases. The disadvantage of this option is
that we need another level of communication and another program (the

middleware).

e Type 4 drivers. Native-protocol All-Java Drivers. These are the most
widely-used drivers in intranet accesses (those generally used in web
applications). They are written entirely in Java and translate JDBC calls
to the DBMS's own communication protocol. They do not require further
installation or extra programs.

GNUEFDL ¢ PID_00148405 11

Almost all modern DBMS already have a JDBC driver (especially type 4).

2.2. Loading the Java driver

To use a JDBC driver, we must first register it in the JDBC Dri ver Manager .
This is usually done by loading the driver class using the f or Name method of
the class called d ass. The usual construction is:

try
{

Cl ass. for Name("org. postgresql.Driver");

}
cat ch(Cl assNot FoundExcepti on e)

{

2.3. Database addresses

To identify a given connection to a database, DBMS use a URL (Universal
Resource Locator) address format. This address usually takes the form:

jdbc: dri ver: dat abase

In actual fact, the format is very flexible as manufacturers have complete
freedom to define it.

Some of the most common formats are:

Table 10. Formats

PostgreSQL | jdbc:postgresql://127.0.0.1:5432/database

Oracle jdbc:oracle:oci8:@DBHOST

JDBC-ODBC | jdbc:odbc:dsn;optionsodbc

MySQL jdbc:mysql://localhost/database?user=joseph&password=joe

SAP DB jdbc:sapdb://localhost/database

We can see that PostgreSQL specifies the IP address of the server and the port
(5432) and the name of the database. Oracle, on the other hand, specifies
a subdriver (oci8) and a database name base in the line of those defined by
Oracle TNS. The examples of connection addresses reveal that, while different,
they all follow a very similar pattern (particularly PostgreSQL, MySQL and SAP
DB).

Database access: |DBC

Note

For a list of existing drivers,
visit http://java.sun.com/
products/jdbc/
jdbc.drivers.html

GNUEFDL ¢ PID_00148405 12

2.4. Connecting to the database

The simple method of connecting to a database will provide us with a
Connecti on type object that will encapsulate a simple connection. In each
application, we can have as many connections as system resources will allow

(especially those of the DBMS) and maintain connections to different DBMS.

To obtain a Connecti on we will use the
Dri ver Manager . get Connecti on() . Never instantiate a Connect i on type
object directly.

Connection with =

Dri ver Manager . get Connection ("url", "user", "password");

We pass three parameters to get Connect i on: the address of the database in
the format seen above, the user and the password. For databases that do not
require a user and password, leave these blank. When we call this method
JDBC will ask each registered driver if it supports the URL we have passed and,
if so, it returns a Connect i on.

When a Connect i on is no longer going to be used, we must close it explicitly
with cl ose() so as not to use up resources. It is particularly important to free
database connections as they are a very costly resource.

Version 2.0 onwards of JDBC also has a mechanism for pooling connections,
allowing us to use a block of preset connections that are used again and again.

Database access: |DBC

GNUFDL e PID_00148405 13 Database access: JDBC

3. Basic database access

Once we have a Connecti on object, we can start to use it to execute SQL
commands in the database. There are three basic types of SQL statement in
JDBC:

St at ement s. This is a basic SQL statement, whether for querying (SELECT)
or handling data (INSERT, UPDATE etc).

Pr epar edSt at ement . Represents a precompiled SQL statement with better
features than basic statements.

Cal | abl eSt at enent . Represents a call to a stored SQL procedure.

3.1. Basic statements

To obtain a St at enent object, we use the cr eat eSt at enent method of the
Connecti on:

St at ement sent =con. creat eSt at enent () ;

Once we have created the St at ement object, we can use it to execute SQL
commands in the database. SQL commands may or may not return results.
If they return results in table form (for example, with a SELECT type SQL
command) we use the execut eQuer y method of St at enent to execute them:

Resul t Set rs=sent. execut eQuery("SELECT * FROM CLI ENTS");

We will study Resul t Set in detail later. In this code, we have used
executeQuery to execute a data query. There is another method,
execut eUpdat e, for executing statements that do not return results, such
as UPDATE or DELETE. execut eUpdat e returns an integer that tells us the

number of rows affected by the SQL command sent.

int col ums=sent . execut eUpdat e(" UPDATE CLI ENTS SET BALANCE=0");

Where we do not know a priori if a statement will return a table of results
(like execut eQuer y) or a number of rows affected (like execut eUpdat e), we
have a more generic method, execut e. execut e returns t r ue if there is a
Resul t Set associated with a statement and f al se if this statement returns
an integer. In the first case, we can record the resulting Resul t Set with
get Resul t Set, while in the second, using get Updat eCount we can record
the number of rows affected.

GNUEFDL ¢ PID_00148405 14

St at enent sent =con. creat eSt at enent () ;
i f(sent.execute(SQstatenent))
{
Resul t Set rs=sent.get Resul t Set () ;
/1 show results
}
el se
{
int affected=sent.getUpdat eCount ();
}

Note that a St at enent represents a single SQL statement, so if we make a call
to execut e, execut eQuery or execut eUpdat e the Resul t Set associated
with this St at enent will be closed and released. It is therefore very important
to have finished processing the Resul t Set before launching any other SQL
command.

To close a St at ement, we can use the cl ose. Although when we close the
Connect i on we also close the St at ement associated with it, it is much better
to close them explicitly in order to free up occupied resources first.

3.1.1. Multiple results

It is possible for a St at ement to return more than one Resul t Set or more
than one number of affected rows. St at ement supports multiple returns
with the get MbreResul ts. This method returns t rue if there are more
Resul t Set waiting. The method returns f al se if the next return is a number
of affected rows, even though there could be more Resul t Set after the
number. In this case, we will know whether we have processed all of the results
if get Updat eCount returns -1.

Thus, we can modify the above code to support multiple results:

St at enent sent =con. creat eSt at enent () ;
sent . execut e(SQLst at enent) ;
whi | e(true)
{

rs=sent. get Resul t Set ();

if(rs!=null)

{

/1 show results

}

el se

{

/1 show nunber

}

/1 Next or |ast

Database access: |DBC

Note

Whether or not an SQL
statement can return more
than one result or modified
column count will depend on
the DBMS, generally as a result
of stored procedures.

GNUEFDL ¢ PID_00148405 15

if((sent.getMreResults()==fal se) &&
(sent. get Updat eCount () ==-1))

br eak;

3.2. Results

The execution of any SQL query statement (SELECT) produces a table (a
pseudo-table, in fact) containing the data that meet the established criteria.
JDBC uses a Resul t Set class to encapsulate these results and offer methods
for accessing them.

We can imagine Resul t Set as a series of data reaching us from the DBMS. We
cannot go backwards in it, so we need to process them as we move through
the series. In JDBC 2.0, scrollable cursors allow us to move freely through the
results.

The following is an example of code that will allow us to process the results
of a Resul t Set is:

St at ement sent =con. creat eSt at enent () ;
Resul t Set rs=sent.execut eQuery("SELECT * FROM CLI ENTS");
whi | e(rs. next())

{
System out. println("Nanme: "+rs. get String("NAVE");
Systemout.printin("City:"+rs.getString("ClTY");
}
rs.close();

sent. cl ose();

This code runs through the series of (Resul t Set) results, iterating through
each row with the next . Initially, once Resul t Set has bee obtained, JBDC
positions us before the first element of the list. Hence, to access the first
element, we need to call next . To read the second row, we need to call next .

If there are no more rows to read, next returns f al se.

Once we are positioned in the row we wish to read, we can use the get XXXX
methods to obtain the specific column we wish to display. There are several
get XXXX methods one for each data type that we can read from the DBMS.
The get XXXX methods take as their parameter a string that must be the name
of the field or a numerical parameter that indicates the column by position,
bearing in mind that numbering begins at 1, not 0, as is usually the case in
arrays, etc.

Another useful method is get Obj ect, which returns a Java object.

Database access: |DBC

GNUEFDL ¢ PID_00148405 16

For example, if we use get Cbj ect with an entire column, it will return an | nt eger
object ype, whereas if we use get | nt, it will return an i nt.

The table below contains SQL data types together with the object types
returned by JDBC and the specific method for the type. If the type returned
by the method is different to the Java object, this type will be displayed in
parentheses.

A useful option in a number of situations is get St r i ng which can be used for
all types, since JDBC converts most SQL type characters to strings. As many
web applications display data in a simple way, this is a very interesting option.

Table 11. SQL data types and JDBC returns

SQL type Java type getXXXX method
CHAR String getString()
VARCHAR String getString()
NUMERIC java.math.BigDecimal getBigDecimal()
DECIMAL java.math.BigDecimal getBigDecimal()
BIT Boolean (boolean) getBoolean()
TINYINT Integer (byte) getByte()
SMALLINT Integer (short) getShort()
INTEGER Integer (int) getint()

BIGINT Long (long) getLong()

REAL Float (float) getFloat()
FLOAT Double (double) getDouble()
DOUBLE Double (double) getDouble()
BINARY byte[] getBytes()
VARBINARY byte[] getBytes()
LONGVARBINARY | byte[] getBytes()
DATE java.sql.Date getDate()

TIME java.sgl.Time getTime()
TIMESTAMP java.sgl.Timestamp getTimestamp()

Database access: |DBC

GNUEFDL ¢ PID_00148405 17

3.2.1. Processing null

In some databases, certain columns can have null). The processing of these
columns in JDBC is complicated because some drivers do not do it correctly.
Some methods that return objects return nul | in this case, but those that are
particularly vulnerable to error are those that do not return objects such as
getint.getlnt.

For example, if -1 is returned when a null value is found in a column, we obviously
cannot tell whether -1 was the value or whether the column was null.

There is a method for working out whether the last result obtained was null:
wasNul I .

int quantity=rs.getlnt("QUANTITY");
if(rs.wasNull())

System out.println("The result was null");
el se

System out. println("Bal ance: "+quantity);

Remember that wasNul | refers to the last column read.

3.2.2. Large data types

We can obtain Java streams to access columns containing large data types,
such as images, text, documents, etc. The JDBC methods for this are
get Ascii Stream get Bi naryStream and get Char act er Stream These
methods return an object of the type | nput St r eam The following example
reads an object of this type from the database and writes it in an
Qut put St r eamthat could correspond to the output of a servlet for displaying

an image.

Resul t Set res=
sent . execut eQuer y(" SELECT PHOTO FROM PECPLE" +
" WHERE ID NO. ='""+id+""'");
if(res.next())
{
Buf f er edl nput St r eam i mage=
new Buf f er edl nput St r eam
(res. getBi naryStream " PHOTO"));
byte[] buf=new byte[4096]; // Buffer of 4 kbytes
int |lengt;
whi | e((| engt =i nage. r ead(buf, O, buf . | ength))!=-1)
{

outstream wite(buf, 0,1 en);

Database access: |DBC

GNUFDL e PID_00148405 18 Database access: JDBC

JDBC 2.0 also has two specific objects for processing large objects (BLOB,
Binary Large Objects and CLOB, Character Large Objects), called Bl ob and Cl ob,

respectively.
We can access these two objects as st r eans or directly, with methods such as
get Byt es. There are also methods for passing Bl obs and Cl obs to prepared

statements.

3.3. Bug management

If a serious error is found during execution of a JDBC object preventing it from Example

continuing, an exception is usually launched, specifically SQLExcept i on.
These can be caused by wrong
URLs, security problems, etc.

SQLExcept i on extends Excepti on and defines several additional methods.
One of these is get Next Except i on. This method strings several exceptions
into one if JDBC finds more than one serious error.

SQLExcepti on also defines other methods for obtaining more information
on the type and nature of the error: get SQLSt at e and get Err or Code.
Get SQLSt at e returns a status/error code from the database in line with the
table of codes defined by ANSI-92 SQL. get Er r or Code returns an error code
from the DBMS manufacturer.

An example of complete code of a cat ch managing all possible exceptions
might be:

try
{
/] actions on the database
}
cat ch(SQLExcepti on e)
{
whi | e(el =nul I')
{
System out . print| n(
"Exception: "+e.getMessage());
System out . printl n(
"ANSI| -92 SQ. code: "+e.getSQ.State());
System out . print| n(
"Manuf acturer's code: " +e. get Error Code());

e=e. get Next Excepti on();

GNUEFDL ¢ PID_00148405 19

3.3.1. SQL warnings

Besides being able to launch exceptions in the event of errors, JDBC can
generate a series of warnings about conditions that are wrong but not serious
(allowing it to continue). The types of error generating a warning rather
than an error are decided by the database manufacturer and vary. To access
these warnings, we can use the SQLWAr ni ng object, used in a similar way
to SQLExcept i on with the difference that we cannot use itin atry-catch
block; nstead, we must interrogate JDBC if there are SQLWar ni ngs after each
operation.

During debugging K or operation K we can use the following trick to capture
all SQLWar ni ngs:

voi d i npWar ni ngs(SQLWAr ni ng w)

{
whi | e(w =nul |')
{
System out. println("\'n SQLWarning: ");
System out . printl n(w get Message());
System out. println("ANSI-92 SQL State:
+w. get SQLSt ate());
System out . printl n(" Manuf acturer Code:
+w. get Er r or Code()) ;
w=w. get Next War ni ng() ;
}
}

We can encompass all JDBC calls with our i npWar ni ngs method to capture
all possible SQLVar ni ngs. It can be used as follows:

Resul t Set r=sent . execut eQuery("SELECT * FROM SUPPLI ERS") ;
i mpWar ni ngs(sent. get Warni ngs());
i mpWar ni ngs(r. get Warni ngs());

Database access: |DBC

GNUFDL e PID_00148405 20 Database access: JDBC

4. Prepared statements and stored procedures

The statements we have studied thus far can be used to execute all SQL orders
in the database (insertion, query, elimination, etc.), albeit in a primitive way.
To accelerate and enhance performance or to execute procedures that we may
have in the database, we need to use other mechanisms.

4.1. Prepared statements

One of the most difficult steps in the execution of SQL statements is the
compilation and planning of statement execution. In other words, decisions
about which tables to consult first, how to access them, in which order, etc.
A very widespread technique for getting round these difficulties is to use
compiled or prepared statements. Prepared statements are SQL statements sent
to the DBMS for the latter to prepare before executing them, which we will
then use repeatedly, changing certain parameters while reusing the planning

of an execution for the next one.

A PreparedSt at ement object is created, like St at ement, from a database

connection:

Pr epar edSt at enent sp=con. pr epar eSt at enent (

"I NSERT | NTO CLI ENTS (I D, NAVE) VALUES (?2,2)"):

As the purpose of the PreparedStatenment is to execute a statement
repeatedly, we do not specify the values that need to be inserted. Instead, we
add special markers that we will later replace with the values we actually want

to insert:

sp. cl ear Paranet ers() ;

sp.set String(1,"0298392");
sp.setString(2,"JIMNY CRI CKET");
sp. execut eUpdat e() ;

Before assigning values to the markers, we need to clear the current
assignation. To do so, we have a set of set XXXX calls, imilar to the get XXXX
method of Resul t Set, for assigning these values. The values are referenced
positionally, beginning with 1. The set Cbj ect call is used to assign Java
objects to markers, while JDBC converts the format. There are three options
for calling set Qbj ect :

set Obj ect (i nt index, Object ob, int SQtype, int scale);
set Obj ect (i nt index, Object ob, int SQtype);

GNUEFDL ¢ PID_00148405 21

set Ooj ect (i nt index, Object ob);

In these calls, SQLType is a numerical reference to one of the SQL type

constants defined in the class j ava. sql . Types.

To insert a null value in the database, we can use the set Nul | call or we can
use set Cbj ect with a nul | paramet r, specifying the SQL type we want.

4.2. Stored procedures

Many modern databases come with their own programming language for
developing procedures and functions executed by the DBMS itself. There are
several advantages to this. Firstly, we have a code that is independent of
the applications and can be used in many programs developed in numerous
programming languages. Secondly, this code isolates design applications from
the database, providing an interface that is independent of the form of the
tables for certain operations, which means that we can modify these and only
need to modify the stored procedures. Moreover, in some cases, this approach
offers substantial performance improvements because not only do the data
not have to travel through the network for processing, but the entire process
is carried out locally in the DBMS and only the results have to travel.

This is an example of a stored procedure written in PL/PGSQL, one of the PostgreSQL
programming languages; in other DBMS, the language and syntax would be totally
different.

CREATE OR REPLACE FUNCTI ON pr oNewCl i ent
(VARCHAR) RETURNS | NTEGER AS '
DECLARE
name ALIAS FOR $1;
i den integer;
BEG N
SELECT max(id) |NTO iden
FROM CLI ENTS;
i den: =i den+1;
| NSERTI NTOCLI ENTS(| D, NAME) VALUES(i den, nane) ;
RETURN i den;
END
' LANGUAGE ' pl pgsql ' ;

This example receives a parameter, a string with the name of the client. It then

inserts it and returns the identifier assigned to this client.

To call it, JDBC gives us the Cal | abl eSt at enent . Since each DBMS has its
own syntax for calls to functions and stored procedures, JDBC provides a
standard syntax for these.

Database access: |DBC

GNUEFDL ¢ PID_00148405 22

If the stored procedure does not return values, the syntax of the call is:
{call procedurenane [(?[,?...])]}

If the procedure returns values (as is the case of the function we have defined),

the syntax will then be:
{? = call procedurenane [(?[,?...])]}

Parameters are optional and represented by ?, as in prepared statements. The
JDBC driver will translate these calls to those corresponding to the DBMS. The
Java code that would call the function we have defined here would be:

Cal | abl eSt at ement proc=

con. prepareCal | ("{?=call proNewClient(?)}");
proc. regi st er Qut Par anet er (1, Types. | NTEGER) ;
proc. setlnt (2, "Name");
proc. execute();

System out. println("Result:"+proc. getlnteger(1));

It is only necessary to use Cal | abl eSt at ement with stored procedures that
return values. We can call the stored procedures that do not return values

through the previous statement objects.

Database access: |DBC

GNUFDL e PID_00148405 23 Database access: JDBC

5. Transactions

One of the most important aspects and functionalities of modern DBMS is the
possibility of carrying out transactions.

A transaction is a series of database operations carried out atomically,
that is, as if they were an indivisible operation. This allows us to
combine several SQL statements to perform operations to take us to a
specific point.

For example, if inserting a student in an academic database requires inserting him or her
in the students table, creating an academic record entry, creating an e-mail entry, etc., it
is a good idea to ensure that these operations are executed as a single, atomic whole.

The steps for working with transactions are: begin the transaction, execute
the operations and, lastly, if the transaction is correct, validate it and save
the changes in the database; if it is not correct or a problem has occurred, we
need to undo the changes. This ability to undo changes is key to the operation
of transactions, meaning that if any of the operations in the transaction is
incorrect, we can undo all changes and leave the database as if none of the
operations had taken place. Thus, in our case, it will be impossible for us to
end up in a situation where we have an entry in the student table but do not
have the corresponding academic record or e-mail address entry.

Another feature of transactions is the possibility of choosing when the
transaction data are visible to the rest of the applications. For example, we
can choose to make the student data visible only when the transaction is
completely finished, so the academic record cannot be read until the entire
transaction has been performed.

In JDBC, transactions are managed by the Connecti on obj ect . By default,
JDBC operates in auto-transaction mode, in other words, each SQL operation
is within a transaction that is immediately validated. To perform multiple
operations in a transaction, we must first disable automatic validation. To
do so, we can use set Aut oConmi t . Transactions can now be validated with
commi t and invalidated with r ol | back.

try
{

/! Disable automatic validation

con. set Aut oCommi t (f al se);

sent . execut eUpdat e(" | NSERT

GNUEFDL ¢ PID_00148405 24

sent . execut eUpdate("I NSERT");
con.comm t();

}

cat ch(SQLException e)

{
/1 |f an error occurs, invalidate

con. rol | back();

}

JDBC also supports several transaction isolation modes, used to control how

the database resolves conflicts between transactions. JDBC has five transaction

resolution modes, which may not be supported by the DBMS. The default

mode, which will be enabled if we do not specify another, will depend on the

DBMS. As we increase the level of transaction isolation, performance drops.

The five modes defined in Connect i on are:

TRANSACTI ON_NONE. Transactions disabled or not supported.

TRANSACTI ON_READ_UNCOWM TTED. Minimum transactions allowing
dirty reads. The other transactions can see the results of the operations
of transactions in progress. If these transactions subsequently invalidate
operations, the other transactions would end up as invalid data.

TRANSACTI ON_READ COWM TTED. The other transactions cannot see the
non-validated data (dirty reads not allowed).

TRANSACTI ON_REPEATABLE_READ. Allows repeatable reads. If a
transaction reads data that is subsequently altered by another (and the
modification is validated), if the first transaction reads the data again,
the result obtained will be no different to the first one. Only when the

transaction is validated and we start it again will we obtain different data.

TRANSACTI ON_SERI ALI ZABLE. Adds insertion protection to the
behaviour of TRANSACTI ON_REPEATABLE_READ. If a transaction reads
from a table and another transaction adds (and validates) data in the table,
the first transaction will obtain the same data if they are re-read. This forces

the DBMS to treat the transactions as if they were a series.

Database access: |DBC

GNUEFDL ¢ PID_00148405 25

6. Metadata

Until now, we have accessed data inside the database. But we can also access
another type of data, metadata, which are simply data on data. These metadata
will provide us with information on the form of the data we are working with
and information on the features of the database.

6.1. Database metadata

The metadata of the database will provide us with information on the basic
features of the DBMS we are using, together with information on certain
features of the JDBC driver we are using. To give us this access, Java offers a
class (Dat abaseMet aDat a) that will encompass all of this information.

We will obtain a Dat abaseMet aDat a object type from a Connecti on.
This means that, to obtain these metadata, we need to have established a
connection to the database.

Dat abaseMet aDat a dbnd= con. get Met aDat a() ;

Once we have obtained the DatabaseMetaData instance that will represent the
metadata of the database, we can use the methods provided by the latter to
access diverse types of information on the database, the DBMS and the JDBC
driver. We can divide the information provided by JDBC into the following
categories:

e Those that obtain information on the DBMS.
e Those that obtain information on the JDBC driver used.
¢ Those that obtain information on the operating limits of the DBMS.

e Those that obtain information on the database schema.

6.1.1. Information on the DBMS

There are methods that provide certain informative data on the data engine
(versions, manufacturer, etc.), and certain information that can be useful for

making our programs react better to possible changes in the DBMS.

These methods include:

Table 12. Methods

Name Description

get Dat abasePr oduct Nane Name of the DBMS

Database access: |DBC

GNUFDL e PID_00148405 26 Database access: JDBC

Name Description
get Dat abasePr oduct Ver si on Version of the DBMS
support SANSI 92SQLEnt ryLevel SQL EL-ANSI-92 support
support SANSI 92Ful | SQL ANSI-92 support
suppor t sG oupBy GROUP BY support
supportsMil ti pl eResul t Set's Support for multiple results
support sSt or edPr ocedur es Support for stored procedures
suppor t sTransacti ons Transaction support

For a full list, see the documentation on JDK (Java Development Kit).
6.1.2. Information on the JDBC driver used
Just as we can obtain information on the DBMS, we can also obtain certain

information on the JDBC driver. The basic information we can obtain are

name and version number.

Table 13.
Name Description
get Dri ver Nane Driver name
get Dri ver Versi on Driver version
get Dri ver Maj or Ver si on Major part of the driver version
get Dri ver M nor Ver si on Minor part of the driver version

6.1.3. Information on the operating limits of the DBMS

These provide information on the limits of the specific DBMS, the maximum Note

field measurement, etc. They are very useful for adapting the application to

operate independently of the DBMS. Some of the most important of these are: f:eTﬁ Oasttigisae xg;atlztarti?] gs
as parameters accept special
characters for queries, % to

Table 14. represent any character group

and to represent a character.
Name Description

get MaxCol umms| nSel ectMaximum number of columns in a query

get MaxRowSi ze Maximum measurement in a row permitted by the DBMS

get MaxTabl esl nSel ect | Maximum number of tables in a query.

GNUFDL e PID_00148405 27 Database access: |DBC

6.1.4. Information on the database schema

We can obtain information on the schema (tables, indexes, columns, etc.)
from the database. This allows us to "explore" databases to reveal the database

structure. Some of these methods include:

Table 15.

Name Description

get Col utms Provides the columns of a table

get Pri maryKeys Provides the keys of a table

get Tabl es Provides the tables of a database

get Schemas Provides the schemas of the database

6.2. Results metadata

Not only can we obtain data on the DBMS (Dat abaseMet aDat a), it is also
possible to obtain data on the results of a query, which means that we can
obtain information on the structure of a Resul t Set . Thus, we can find out
the number of columns, the type of column and its name, as well as additional
information (whether nulls are supported etc). Some of the most relevant
methods of Resul t Set Met aDat a are:

Table 16. Methods Resul t Set Met aDat a

Name Description
get Col umCount Number of columns of Resul t Set
get Col utmLabel Name of a column
get Col umTypeNane Name of a column type
i sNul | abl e Supports nulls
i sReadOnl y Is modifiable

The following is an example of code displaying the form of a table:

Resul t Set r s=sent . execut eQuer y(" SELECT* FROM' +t abl e=) ;

Resul t Set Met aDat a ndr =rs. get Met aDat a() ;

i nt nunctol ums=ndr =get Col utmCount () ;

for(int col =1; col <nuntol ums; col ++)

{
System out . print (nmdr. get Col unmLabel (col) +":");
System out . printl n(ndr. get Col umTypeNane(col));

}

GNUFDL e PID_00148405 28 Database access: JDBC

7. Practical: database access

We will now create some simple programs allowing us to access databases from
Java.

The first will perform the simplest function, a query:
/1 Sinple exanpl e of JDBC.
/'l Selects the database

Il

/1

import java.sql.*;

public class SelectSinple {

public static void main(java.lang.String[] args)

{
// Initial driver |oading
try
{
/'l Choose the appropriate driver for
/'l your database
Cl ass. for Nane("org. postgresql . Driver");
}
catch (C assNot FoundException e)
{
Systemout.println("Driver not |oaded");
return;
}

/1 Al JDBC operations nust process SQL
/| exceptions.
try
{
/1 Connect
Connection with = DriverManager. get Connecti on
("jdbc: postgresql :test", "user", "password");
/Il Create and execute an SQ st atenent
Statenment stnt = con.createStatenent();
Result Set rs = stnt.executeQuery
("SELECT * FROM students");

// Display results
while(rs.next()) {

System out . print| n(

GNUEFDL ¢ PID_00148405 29

rs.getString("nane") + " "+
rs.getString("surnanel"));
}
/1 Cl ose database resources
rs.close();
stnt.close();

con. cl ose();

}

catch (SQLException se)

{
/] Print errors
System out. println("SQ. Exception: " + se.getMessage());
se. printStackTrace(System out);

}

}

The second program makes an insertion in the database:

/1
/'l Exanpl e of updating
/1

import java.sql.*;

public class UpdateSinple {
public static void main(String args[])
{
Connection con=nul | ;

/1 driver | oading.

try
{
/Il Choose the appropriate driver
Cl ass. for Nane("org. postgresqgl.Driver");
}
catch (d assNot FoundExcepti on e)
{
Systemout.printin("Error in driver");
return;
}
try

{
/1 Connect to the database
with = Driver Manager . get Connecti on

("jdbc: postgresql :test", "user", "password");

Statement s = con.createStatenent();

Database access: |DBC

GNUFDL e PID_00148405 30 Database access: JDBC

String | D no= new String("00000000");
String name= new String("Carles");
String surl= new String("Mteu");

int update_count = s.executeUpdate

("I NSERT I NTO students (ID no, name, surl) " +

"VALUES('" + ID no+ "','" + name+ "','" + surl+ "')");
System out. println(update_count + " inserted colums.");
s.close();
}
catch(Exception e)
{
e.printStackTrace();
}
finally
{
if(con!=null)
try { con.close(); }
catch(SQLException e) { e.printStackTrace(); }
}

And finally, a program that makes the query using prepared statements:

/| Exanpl e of a prepared statenment

/1

/1
import java.sql.*;

public class Sel ectPrepared {

public static void main(java.lang.String[] args)
{
if(args.|ength!=1)
{
Systemerr.println("Argunent: |ID no of student");
Systemexit(1);
}
/1 Driver |oading
try
{
Cl ass. for Name("org. postgresql.Driver");
}
cat ch (Cl assNot FoundException e)
{
Systemout.println("Problems with driver");

return;

Web services

David Megias Jiménez (coordinator)
Jordi Mas (coordinator)
Carles Mateu

PID_00148399

Universitat Oberta
de Catalunya

www.uoc.edu

GNUEFDL ¢ PID_00148399 Web services

Copyright © 2010, FUOC. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation

License"

GNUEFDL ¢ PID_00148399 Web services

Index
1. Introduction to web Services...........ccccccoiviiiiiiiiniiiiiiicinceee, S
2. XML-RPC........oiiiiiiiiiiiitteette ettt 6
2.1. XML-RPC request fOrmatccccoecveeeeriiiiiieeeniiieeeeeeieeee e 6
2.2, XML-RPC response formatcccceeeeceeeeereciieeeeenniieeeeneeeeeeenns 8
2.3. Development of applications with XML-RPCcccccceuvreernnne 10
Be SOAP.... e 12
3. 1. SOAP IMESSAZES ...ueeniininiiiieieeeetieiierierertte e e e e e e e sasaaaaaees 12
3.2. Development of SOAP applicationsccccccccceerreieieeeiniiieeeennnnne 14
4. WSDL and UDDL............cccooiiiiiiiiiiiiiiintc e 18
4.1. Structure of a WSDL documentccccoeeeveeeiiiiiieeeiniinneeennnnne 18
4.1.1. WSDL POItS .ooiiiiiiiiiiiiiiiiiiiiee e 19
4.1.2. WSDL mMeSSAZESuvvvrrririiiiiiiiiiiiiiiiiiiiriicceeee e 19
4.1.3. Data types in WSDLcccccccciiiiiiiiniiiinini, 19
4.1.4. Links in WSDL ..ottt 19
4.2, POILS coiiiiiiiiiiiiii 20
4.2.1. Operation typescccccccviiiiiiiiiiiiiiiiiiiiins 20
4.2.2. One-way Operationscccccceeeeiiiiiiiiiiiiinininiiiiecnennnn, 20
4.2.3. Request-response Operationscccceevveeeririiiereerinnnee 21
4.3, LINKS ittt 21
4.4, UDDI oottt ettt s 22
4.4.1. Using UDDI ...cooiiiiiiiiiieeieeeeeeeee e 23
4.4.2. Programming in UDDIcccccevniiiiiniiiiiiiiiiiiiecinnne 23
5. SCCUIILY ..o e 26
5.1. Incorporating security mechanisms in XMLcccceeeiiiininnnnee 26
5.1.1. Digital signaturecccceccceeeiiiiiieeiiiniieee e 27

5.1.2. Data encryptionccceceeeeeeiiirieiiiiieereeeeereeeee e eeeeeeneeeeee 29

GNUEFDL ¢ PID_00148399 5 Web services

1. Introduction to web services

Web services are software components that have the following distinctive
features for programmers:

e They are accessible via SOAP (Simple Object Access Protocol).
e Their interface is described with a WSDL (Web Services Description
Language).

We will now look in detail at the meaning of these protocol names
and formats. SOAP is a communication protocol using XML messages
that is the basis for web services. SOAP allows applications to send XML
messages to other applications. SOAP messages are unidirectional, although
all applications can participate indiscriminately as senders or receivers. SOAP
messages can serve for a number of purposes: request/response, asynchronous

messaging, notification, etc.

SOAP is a high-level protocol that only defines the message structure
and some basic processing rules for this. It is completely independent
of the transport protocol. This means that SOAP messages can be
exchanged through HTTP, SMTP, JMS, etc., although HTTP is the most
common at present.

WSDL is a web services description standard based on an XML document.
This document provides applications with all of the necessary information
for accessing a web service. The document describes the purpose of the web

service, its communication mechanisms, where it is located etc.

Another web services component is UDDI (Universal Description, Discovery and
Integration). This is a web services registry service that stores the latter by their
name, the URL of their WSDL, a text description of the service, etc. Interested
applications can use SOAP to see which services are registered in UDDI, look

up a service, etc.

GNUEFDL ¢ PID_00148399 6 Web services

2. XML-RPC

XML-RPC is a remote procedure call protocol that runs on the Internet. It
is a much more straightforward protocol than SOAP and much easier to
implement. XML-RPC works through the exchange of messages between the
client of the service and the server, using HTTP to carry these messages. More
specifically, XML-RPC uses HTTP POST requests to send a message in XML
format, indicating:

e Procedure to be executed on the server
e Parameters

The server will return the result in XML format.

2.1. XML-RPC request format

We will now look at the format of an XML-RPC request. To do so, we will use
an example request such as this:

POST /RPC2 HTTP/ 1.1
User - Agent: Frontier/5.1.2
Host: carl esm com

Cont ent - Type: text/xm

Cont ent - Lengt h: 186

<?xm version="1.0"?>
<met hodCal | >
<met hodNane>exanpl e. Met hod</ net hodNane>
<par ams>
<par an>
<val ue><i 4>51</ i 4></ val ue>
</ par an>
</ par ans>

</ net hodCal | >

We will now analyse this request line by line. First, the message header:

¢ The URl we first observe, RPC2, is not defined by the standard. This means
that if the server responds to diverse types of request, we can use this URI

to route them.

e The fields User - Agent and host are compulsory and the value must be
valid.

GNUEFDL ¢ PID_00148399 7

¢ The Cont ent - Type field will always be t ext / xni .

¢ The value of Cont ent - Lengt h must always be present and must be a

correct value.

Then comes the body:

¢ The message contains a single element <net hodCal | > containing the
sub-elements

e <met hodNane> which contains the string with the name of the method
to invoke.

e If the method has parameters, it must have a <par ans>.

e With as many <par an® as the method has parameters.

e Fach of which has a <val ue>.

To specify the possible values of the parameters, we can use the following
marks, which allow us to specify scalars:

Table 17. Marks

mark type
<i 4> or <int> 4-byte integer with sign
<bool ean> 0 (false) or 1(true)
<string> string ASCI |
<doubl e> floating point with sign and double precision
<dat eTi ne. i s08601> |date/time formati so8601
<base64> binary encoded in base- 64

If no type is specified, a <st ri ng> type will be assigned by default.

We can also use complex types. To do so, we can use a <st r uct >type, whose
structure is as follows:

e [t contains a series of <menber >.

e Fach of these has a <name> and <val ue> of one of the basic types.

For example, a <st r uct > type parameter would be:

<struct>

<menber >

Web services

GNUEFDL ¢ PID_00148399 8 Web services

<nane>nane</ nane>

<val ue><string>Juan Manuel </ stri ng></val ue>
</ menber >
<menber >

<nane>Passport </ nane>

<val ue><i 4>67821456</ i 4></ val ue>
</ menber >

</ struct >

There is also a mechanism for passing list type values (arrays) to the methods
called:

e [t contains a single <dat a>.

e This can contain any number of <val ue> subel enents.

For example:

<array>
<dat a>
<val ue><i nt >15</i nt ></ val ue>
<val ue><string>Hel | o</ stri ng></val ue>
<val ue><bool ean>1</ bool ean></ val ue>
<val ue><i nt >56</i nt ></ val ue>
</ dat a>

<array>
2.2. XML-RPC response format
The XML-RPC response will be a 200 type HTTP response (OK) provided that
there have been no low-level errors. XML-RPC errors are returned as correct
HTTP messages and the errors are reported in the message contents.
The format of the response is as follows:
1) The Cont ent - Type must be t ext / xm .
2) The Cont ent - Lengt h field is compulsory and must be correct.
3) The body of the response must contain a single <met hodResponse> in
the following format:
a) If the process is correct:

— It will contain a single <par ans>, which

- will contain a single <par an® field, which, in turn,

GNUEFDL ¢ PID_00148399 9

— will contain a single <val ue> fiel d.

b) If an error occurs,

¢ it will contain a single <f aul t >, which

¢ will contain a single <val ue> which is a <st r uct > with the fields
- faul t Code which is <i nt > and

— faultString whichis<string>.

The following is an example of a correct response:

HTTP/ 1.1 200 OK

Connection: close

Content - Lengt h: 172

Cont ent - Type: text/xm

Date: Fri, 24 Jul 1998 17:26:42 GVI
Server: UserlLand Frontier/5.1.2

<?xm version="1.0"?> <net hodResponse>
<par ans>
<par an>
<val ue><string>Hel | o<stri ng></val ue>
</ par an>
</ par ans>

</ met hodResponse>

While an incorrect response would look something like this:

HTTP/ 1.1 200 OK

Connection: close

Cont ent - Lengt h: 444

Cont ent - Type: text/xn

Date: Fri, 24 Jul 1998 17:26:42 GMI
Server: UserlLand Frontier/5.1.2

<?xm version="1.0"?> <nmet hodResponse>
<fault>
<val ue>
<struct>

<menber >
<nane>Faul t Code</ nanme>
<val ue><i nt >4</i nt ></ val ue>

</ menber >

<menber >
<nanme>Faul t St ri ng</ name>

<val ue><i nt >Too many paranet ers</int ></val ue>

Web services

GNUEFDL ¢ PID_00148399 10

</ menmber >
</ struct>
</ val ue>
</faul t>

</ met hodResponse>
2.3. Development of applications with XML-RPC

In the java development kit (JDK) version 1.4.2, there is no support for
the development of XML-RPC applications. We therefore need to use an
additional class library. In this example, we will use the class library of the
Apache project, available from: htt p: / / ws. apache. or g/ xm r pc/ .

This is our example server code:

import java.util.Hashtable;
i mport org.apache. xm rpc. WebSer ver;

public class JavaServer {

publ i ¢ Hasht abl e sumAndDi fference(int x, int y) {
Hasht abl e result = new Hashtabl e();
result. put("sunf, new Integer(x + vy));
result.put("difference", new Integer(x - y));
return result;

}

public static void main(String[] args) {
try {
WebServer server =new WebServer (9090);
server. addHandl er ("sanpl e", new JavaServer());
} catch (Exception exception) {

Systemerr.println("JavaServer:" + exception.toString());

As we can see, this server provides us with a method called:

sanpl e. sumAndDi f f erence.
The client code for the previous service would be:
Xm Rpcd i ent server = new Xml Rpcdient("192.168. 100. 1", 9090);
Vector paranms = new Vector();

par ans. addEl ement (new | nt eger(5));

par ans. addEl ement (new | nt eger(3));

Web services

GNUFDL e PID_00148399 11 Web services

GNUEFDL ¢ PID_00148399 12

3.SOAP

SOAP standardises the exchange of messages between applications. Hence, the
basic function of SOAP is to define a standard message format (based on XML)
that will encapsulate communication between applications.

3.1. SOAP messages

The general form of a SOAP message is:

<ENVELOPE atri bs>
<HEADER atri bs>
<directives />
</ HEADER>
<BODY attribs>
<body />
</ BODY>
<FAULT attribs>
<errors />
</ FAULT>
</ ENVELOPE>

The meaning of each part is:

Envel ope: this is the root element of the SOAP format.

e Header: this is an optional element, used to extend the basic
functionalities of SOAP (security etc).

e Body: thisis the element containing the message data. It is compulsory.

e Faul t: in the event of error, this section will contain information on the

nature of the error.

There is an extended SOAP specification called SWA (SOAP with Attachments)
that uses MIME encoding to transport binary information.

SOAP messages have the following form, as we can see in this message of a
call to a weather information web service:

<?xm version='"1.0" encodi ng=' UTF-8' ?>

<SOAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / www. W3. or g/ 2001/ 09/ soap- envel ope"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

Web services

GNUEFDL ¢ PID_00148399 13

xm ns: xsd="ht t p: / / www. w3. or g/ 2001/ XM_Schema" >
<SOAP- ENV: Body>.
<nsl: get Weat her
xm ns: ns1="http://wwm. uoc. edu/ soap- weat her"
SOAP- ENV: encodi ngStyl e
=" http://ww. w3. org/ 2001/ 09/ soap- encodi ng"
<post code xsi:type="xsd:string">
25001
</ post code>
</ nsl: get Weat her >
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

In this case, the message is a service request (the example uses a JavaBeans
method called get Weat her). In the message, we can distinguish a part called
ENVELOPE, which contains a part called Body.

If we look closely at the message, we can see that we are defining a call to a
method, called get Weat her . By studying the format of the call:

<nsl: get Weat her
xm ns: ns1="http://ww. uoc. edu/ soap- weat her"
SQOAP- ENV: encodi ngSt yl e=
"http://ww.w3. org/ 2001/ 09/ soap- encodi ng"
<post code xsi:type="xsd:string">
25001
</ post code>

</ ns1: get W\eat her >

We can see that the method receives a parameter called post code which is a
string type. SOAP allows us to define parameters for all of the types defined
by XSchema and provides some of its own (such as SOAP: Arr ay) as well as

allowing us to define new types.

Similarly, the get Weat her method will respond with a message, also encoded

in SOAP. The response message will look something like this:

<?xm version='"1.0" encodi ng=' UTF- 8" ?>
<SOAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / www. W3. or g/ 2001/ 09/ soap- envel ope"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: xsd="ht t p: / / www. w3. or g/ 2001/ XM_Schena" >
<SOAP- ENV: Body>
<nsl: get Weat her Response

xm ns: ns1="http://ww:. uoc. edu/ soap- weat her"

SOAP- ENV: encodi ngStyl e=" http://ww. w3. or g/ 2001/ 09/ soap- encodi ng

<weat her Response xsi:type="xsd: string">10</weat her Response>

Web services

GNUEFDL ¢ PID_00148399 14

</ ns1: get Weat her Response>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

We can see in:

<nsl: get Weat her Response
xm ns: ns1="htt p://wwmv. uoc. edu/ soap- weat her"
SOAP- ENV: encodi ngStyl e=" http://ww. w3. or g/ 2001/ 09/ soap- encodi ng
<weat her Response xsi:type="xsd: string">10</weat her Response>

</ nsl: get Weat her Response>

The service is responding to our weather request with the temperature value.
It is common, in fact, it is a de facto standard that the structure containing
the response is called the same as the structure containing the call, with the
addition of the response In our case, get Weat her the response comes in a
get W\eat her Response. Besides the message in XML format, SOAP defines a
HTTP extension consisting of a new header for the service request. This header
will be optional from version 1.2 of SOAP.

3.2. Development of SOAP applications

SOAP does not define a standard library allowing us to program applications;
in fact, it only defines the message format that the applications must use,
together with certain directives for communication. To demonstrate the
development of a small web service, we will use one of the available SOAP
libraries, Apache AXIS.

The Apache AXIS library started life as IBM's Alphaworks product. Once the
work and library list were completed, IBM donated it to Apache Foundation,
which continued its development under the Apache licence. To use the
Apache AXIS library, you will also need Tomcat (Apache's servlet container)
and Xerces (Apache's XML analyser).

We will now develop a small web service using Apache AXIS. We will use
names of methods and parameters that match those of a real method that
XMet hods (htt p: // www. xret hods. con) hosts on its server and can be freely

accessed.
We will first define a Java interface:
public interface | Exchange

{
float getRate(String countryl, String country2);

Web services

GNUEFDL ¢ PID_00148399 15

As we can see, the interface (I Exchange) is used to calculate the exchange rate
between the two currencies of two countries. It is not necessary to implement
the interface with AXIS, but the use of interfaces may be necessary for other
SOAP APIs.

We will now look at a "fictitious" implementation of this interface:

public class Exchange inpl enents | Exchange

{
publ i cfl oat get Rat e(Stri ngcountryl, String country?2)
{
Systemout.printlin("getRate("+ countryl +
"+ country2 + ")");
return 0. 8551F;
}

We can now deploy the service on Apache AXIS, which we are running. The
form of deployment will depend on the libraries we use, so we need to query
these. Generally, no further steps are required as these libraries are usually
charged with generating the WSDL file, directory publishing, etc.

We will now look at the code required to invoke this service:

import java.net.*;

inmport java.util.*;

/'l dasses related to the nessage
i mport org. apache. soap. *;
/l Classes related to the calls

i mport org. apache. soap. rpc. *;

public class Client
{
public static void main(String[] args) throws Exception
{
/1 Address of Apache SOAP service
URL url = new URL(
"http://nyserver: 8080/ soap/servl et/rpcrouter”);

/] Service identifier. W have given it
/1 on deploying this

String urn = "urn: deno: change";

/! Prepare service invocation
Call call = new Call();
cal |l .set Target Gbj ect URI(urn);

Web services

GNUEFDL ¢ PID_00148399 16 Web services

cal |l . set Met hodNane("get Rate");
cal |l . set Encodi ngStyl eURI (Constants. NS _URI _SOAP_ENC);

/] Paraneters
Vector parans = new Vector();
par ans. addEl enent (
new Paraneter("countryl",
String.class, "USA", null));
par ans. addEl enent (
new Paraneter("country2",
String.class, "EUR', null));
call.setParans(parans);
try
{
System out . printl n(
"invoke service\n"
+ " URL=" + url
+ "\'n URN ="

+ urn);

/1 invoke
Response response = call.invoke(url, "");
/1 Fault?

if(!response. generatedFaul t())

{
/1 NO FAULT
Parameter result = response. get Ret urnVal ue();
Systemout.printin("Result=" + result.getValue());
}
el se
{
/1 FAULT

Fault f = response. get Fault();
Systemerr.println("Fault="
+ f.getFaul tCode() + ", "

+ f.getFaultString());
}

}
/1 The call has had probl ens

cat ch(SOAPException e)
{
Systemerr.println(
" SOAPException= " + e.get Faul t Code()
+ ", " + e.getMessage());

GNUEFDL ¢ PID_00148399 17 Web services

We will now change our program to connect to an existing web service. If
we visit the Xmethods web, we will see a service called Currency Exchange
Rat e. We note down the connection details:

Figure 19.

X METHODS

RPC Profile for Service ""Currency Exchange Rate''

&5 a convenience for those who need to manually configure basic SOAP RPC calls, we provide this page
which sunumatizes all the necessary parameters need to configure a SOAP RPC call.

This information is detived automatically from the service WSDL file. Itis a subset of what can be found
it the more comprehensive WEDL Analyzer available from the service detail page.

|Metllod Name |getRate

|Endpoint URL |http::‘f services xmethods net:80/soap
|SOAPAction
IMethod Namespace URI Ium:xmetho ds-CurrencyExchange
couniryl string
tP te
Iput Parameters couniry2 string
Ouiput Parameters Result float

We will now modify the URL and URN appropriately in our code. We will now
be able to use the web service, which is being executed on the computers of
XMet hods. If we wish to carry out more tests on the Xmethods web, we can
use a list of services made public by the Internet community.

GNUEFDL ¢ PID_00148399 18

4. WSDL and UDDI

WSDL is an acronym of Web Ser vi ces Descri ption Language, alanguage
based on XML that lets us describe the web services we deploy. WSDL is also
used to locate these web services on the Internet.

A WSDL document is actually an XML document that describes some features
of a web service, its location and the methods and parameters it supports.

4.1. Structure of a WSDL document

A WSDL document defines a web service using the following XML elements:

Table 18. XML elements

The Meaning

<port Type> | Operations provided by the web service

<nessage> |Messages used by the web service

<types> The data types used by the web service

<bi ndi ng> | The communication protocols used by the web service

A WSDL document therefore has a similar structure to this:

<definitions>
<types>
data types...
</types>
<message>
nmessage definitions...
</ message>
<port Type>
operation definitions...
</ port Type>
<bi ndi ng>
protocol definitions...
</ bi ndi ng>

</ definitions>

A WSDL document can also contain other elements, such as extensions, and a
service element that makes it possible to group different definitions of various
web services in a single WSDL document.

Web services

GNUEFDL ¢ PID_00148399 19

4.1.1. WSDL ports

The <port Type> is the XML element of WSDL that defines a web service,
the operations that can be performed through this service and the messages
involved. The <por t Type> element is similar to a library function in classical

programming (or to an object-oriented programming class).

4.1.2. WSDL messages

The nessage element defines the data that take part in each operation.
Each message can consist of one or more parts and each part can
be considered similar to the parameters of a method or function call
in traditional programming languages or object-oriented programming
language, respectively.

4.1.3. Data types in WSDL

WSDL uses the <t ypes> element to define the data types we will use in the
web service. WSDL uses XML Schema for these definitions.

4.1.4. Links in WSDL

The <bi ndi ng> element defines the message format and protocol details for
each port.

This is a schematic example of what a WSDL document looks like:

<nmessage nane="obt ReqTer ni' >
<part nane="parani type="xs:string"/>
</ message>
<message nane="obt ReqTer ni' >
<part nane="val ue" type="xs:string"/>
</ message>
<port Type nane="di cti onaryTerns">
<oper ati on nanme="obt Ter ni' >
<i nput nessage="obt ReqTerni'/ >
<out put nessage="obt ReqTer ni'/ >
</ oper ati on>

</ port Type>

In this example, the port Type element defines di cti onaryTer s as the
name of a port and obt Ter mas the name of an operation. This operation
has an incoming message (parameter) called obt Ter nReq and an outgoing
message (result) called obt Ter nResp. The two message elements define the
data types associated with the messages.

Web services

GNUEFDL ¢ PID_00148399 20

di cti onaryTer ns is the equivalent in classical programming of a function
library, obt Term is the equivalent of a function and obt Ter nReq and
obt Ter mResp are equivalent to the incoming and outgoing parameters,

respectively.

4.2. Ports

The port defines the point of connection to a web service. It can be defined
as a function library or a class in classical or object-oriented programming.
Each operation defined for a port can be compared to a function in traditional
programming language.

4.2.1. Operation types

There are several types of operation in WSDL. The most common is
request-response, though we also have:

Table 19. Types of operation in WSDL

Type Description

One-way The operation receives messages but does not return responses
Request-response The operation receives a request and returns a response
Request-response The operation can send a request and will wait for the response
Notification The operation can send a message but does not expect a response

4.2.2. One-way operations

Here is an example of a one-way operation:

<message nane="newVal ue">
<part name="ternl' type="xs:string"/>
<part nane="val ue" type="xs:string"/>
</ message>
<port Type nane="di cti onaryTerns">
<oper ati on nanme="newTer ni' >
<i nput nane="newTer ni' nessage="newal ue"/ >
</ operati on>

</ port Type >

As we can see, a one-way operation has been defined in this example called
newTer m This operation can be used to enter new terms in our dictionary. To
do this, we use an incoming message called newval ue with the parameters
t er mand val ue. However, we have not defined an output for the operation.

Web services

GNUEFDL ¢ PID_00148399 21 Web services

4.2.3. Request-response operations

We will now look at an example of a request-response operation:

<nmessage nane="obt ReqTer ni' >
<part nanme="parani' type="xs:string"/>
</ message>
<nmessage nane="obt ReqTer ni' >
<part nanme="val ue" type="xs:string"/>
</ message>
<port Type nanme="dicti onaryTerns" >
<operati on nanme="obt Terni >
<i nput nessage="obt ReqTer ni'/ >
<out put nessage="obt ReqTer ni'/ >
</ oper ati on>

</ port Type>

In this example, as we saw earlier, we can see that two messages are defined,

one incoming and one outgoing, for the obt Ter m

4.3. Links

WSDL links (bindings) allow us to define message and protocol formats for
web services. An example of a link for a request-response operation for SOAP
might be:

<nmessage nane="obt ReqTer ni >
<part nane="parani type="xs:string"/>

</ message>

<message nane="obt ReqTer ni' >
<part nanme="val ue" type="xs:string"/>

</ message>

<port Type nane="dicti onaryTerns" >
<operati on nane="obt Terni >
<i nput nessage="obt ReqTer ni'/ >
<out put nessage="obt ReqTer n'/ >
</ oper ati on>

</ port Type>

<bi ndi ng type="di ctionaryTerns" nanme="tD'>
<soap: bi ndi ng styl e="docunent"
transport="http://schemas. xnl soap. or g/ soap/ http" />
<operati on>
<soap: operati on

soapActi on="http://uoc. edu/ obt Terni/ >

GNUEFDL ¢ PID_00148399 22

<i nput >

<soap: body use="literal"/>
</i nput >
<out put >

<soap: body use="literal"/>
</ out put >
</ oper ati on>

</ bi ndi ng>

The <bi ndi ng> has two attributes: the attribute nanme and the attribute t ype.
With the nane attribute (we can use any name, it does not necessarily need to
have anything to do with the name used in the definition of port), we define
the name of the link and the attribute t ype indicates the port of the link; in
this case, the port is di cti onaryTer ns.

The soap: bi ndi ng element has two attributes st yl e and t ransport.

The st yl e attribute can be r pc or docunent . Our example used docunent .
The transport attribute defines which protocol SOAP to use; in this case,
HTTP.

The oper ati on element defines each of the operations provided by the port.
For each one, we need to specify the corresponding SOAP action. We must
also specify how to encode the i nput and out put). In our case, the encoding
is"literal".

4.4. UDDI

UDDI is the acronym of Universal Description, Discovery and Integration, a
directory service where companies and users can publish and search for web
services. UDDI is a standard and independent platform structure for describing

these web services, searching services, etc.

UDDI is built on the Internet standards of the W3C and the IETF (Internet
Engineering Task Force), like XML, HTTP, etc. To describe the interfaces to
the web services, it uses the WSDL language described above and for its
cross-platform programming needs, it uses SOAP, which allows for full

interoperability.

UDDI is a major breakthrough for the development of the Internet as a
platform for information technology business. Before its development, there
was no standard that allowed the location or publicising of information
processing services. Nor was there a method that could integrate the diverse
information systems of companies.

Some of the benefits of using UDDI are:

Web services

GNUEFDL ¢ PID_00148399 23

e It allows us to discover the right business (or service) from the thousands
currently registered on some servers via the Internet.

e [t defines how to interact with the chosen service, once located.

e It allows us to reach new customers and facilitates and simplifies access
to existing customers.

e It extends the potential market of users of our business methods and
services.

e It automatically describes the services and components or business
methods (or it is automatable) in a secure, open and simple environment.

4.4.1. Using UDDI

We will look at a possible example of how UDDI could be used to solve a
hypothetical case that will clearly demonstrate the advantages of UDDI.

If the hotel industry published an UDDI standard for room booking, the different hotel
chains could register their services in an UDDI directory. Travel agencies could then
search the UDDI directory to find the reservations interface of the hotel chain. Once it
found the interface, the travel agency could then make the booking, since this interface
would be described in a known standard.

4.4.2. Programming in UDDI

There are two APIs for developing applications with
UDDI. Most existing implementations for developing in
UDDI are commercial but there are two free software
implementations: pUDDing (ht t p: / / www. opensor cer er. or g/) and jUDDI
(http://ws. apache. org/j uddi /). The two APIs mentioned are the query
API (inquiry) and the publication API (publish). The inquiry API searches for
information on the services offered by a company, the specification of the
latter and information on what to do in the event of an error. All read accesses
to UDDI records use APl inquiry. This does not require authentication, so HTTP
is used for access.

The other API, publication, is used for the creation, registration, updating,
etc., of information located in an UDDI record. All of the functions in this
API require authenticated access to an UDDI record, so HTTPS is used instead
of HTTP.

Both APIs were designed to be straightforward. All operations are synchronous
and stateless.

To aid understanding of the structure of APIs, the following schema
demonstrates the relationship between the diverse UDDI data structures.

We can see a simple example of how a client might send an UDDI request to
find a business.

Web services

GNUEFDL ¢ PID_00148399 24

Figure 20.
<businessEntity> <publisherAssertion>
e Name, contact, description o Relationship between
e |dentifiers and categories two companies

<businessService>

e Grouping of logical services

<bindingTemplate> <tModel>
e Technical information of a e Specification implemented
web service by the web service
e URL addresses of access o URL addresses of access
to service to specifications

The request we would send to search for the business would be:

<uddi : fi nd_busi ness generic="2.0" maxRows="10">
<uddi : nane>

Sof t war e conpany
</ uddi : name>

</ uddi : fi nd_busi ness>

As we can see, the message we send is very simple and only indicates the name

of the business. The response we would receive to such a request would be:

Note

UUID.

The instances of data structures are identified by a universally unique identifier known
as UUID. UUIDs are assigned the first time that the structure is inserted in the record.
They are hex strings structured according to the ISO/IEC 11578:1996 standard, meaning
that their uniqueness is guaranteed.
<?xm version="1.0" encodi ng="UTF-8"?>
<SOAP- ENV: Envel ope
xm ns: SOAP- ENV="htt p: / / schenmas. xm soap. or g/ soap/ envel ope/ " >
<SOAP- ENV: Body>
<busi nessLi st xm ns="urn: uddi - org: api _v2"
generic="2.0" operator="SYSTI NET" >
<busi nessl nf os>
<busi nessl nf o
busi nessKey="132bef d0- d09a- b788- ad82- 987878dead98" >
<nane xml :|ang="en">
Sof t war e conpany
</ name>
<descri ption xm : | ang="en">

A conpany that devel ops web services software

Web services

GNUFDL e PID_00148399 25 Web services

GNUEFDL ¢ PID_00148399 26 Web services

5. Security

The emergence of web services has given rise to certain issues that
had previously not been taken into consideration. The high degree of
interoperability and ease of connection and data exchange have meant that
web services have encouraged the appearance of new data security risks that
had not previously existed:

The clarity of XML encoding (allowing it to be easily understood) makes
light work of hacking, etc.

e Wenow need a standard for interoperability, since the various participants
in a transaction using web services may not all use the same software.

e The very nature of SOAP/WS, which facilitates the appearance of sporadic
connections between machines, the appearance of intermediaries (proxies,

etc.), makes it difficult to control who has access to the data sent.

e Applications are now available to everybody; with common protocols like
http, we have universalised access to our applications. Even with standards
such as WSDL and UDD], there are application directories where anybody
can discover the applications published, their methods, etc.

As a result, the definition of security mechanisms designed specifically for
web services that go beyond SSL is becoming increasingly important in the

definition of web services.

5.1. Incorporating security mechanisms in XML

Current standards, still in development at the time of writing, afford some

basic security features:

¢ Digital signature, used to check the identity of the sender of a message
and the integrity of the latter.

¢ Authentication, allowing us to check identities.

¢ No repudiation, used to prevent a sender from denying that it is the origin
of the message.

For this, we will need to have an operative public key infrastructure (PKI).

GNUEFDL ¢ PID_00148399 27 Web services

5.1.1. Digital signature

A digital signature is the mathematical equivalent of a handwritten signature.
It consists of a code added to a block of information that can be used to check

the origin and integrity of the latter.

The XML digital signature specification defines an optional element that
facilitates the inclusion of a digital signature in an XML document.

An example of a document signed with XML is:

<G ades xml ns="urn: uocedu" >
<student id="1293">
<nanme>Joan Or o</ name>
<ci ty>Ll ei da</city>
</ st udent >
<gr ades>
<grade i d="MOLBI O'>
<subj ect >Mbl ecul ar Bi ol ogy</ subj ect >
<scor e>9. 56</ scor e>
<conmment >Excel | ent wor k</ comrent >
</ grade>
</ gr ades>
<Si gnat ure |d="Envel opedSi g"
xm ns="http://ww. w3. or g/ 2000/ 09/ xni dsi g#" >
<Si gnedl nf o | d="Envel opedSi g. Si gl nf 0" >
<Canoni cal i zat i onMet hod
Al gori t hne"htt p: //ww. w3. or g/ TR/ 2001/ REC- xni - c14n- 20010315"/ >
<Si gnat ur eMet hod
Al gori t hne"htt p: //ww. w3. or g/ 2000/ 09/ xni dsi g#r sa- shal"/ >
<Ref erence | d="Envel opedSi g. Ref" URI ="">
<Tr ansf or ns>
<Transform
Al gorithm="http://ww. w3. or g/ 2000/ 09/ xni dsi g#envel oped- si gnat ure"/ >
</ Tr ansf or ns>
<Di gest Met hod
Al gorit hne"http://ww. w3. or g/ 2000/ 09/ xni dsi g#shal"/ >
<Di gest Val ue>
yHl sORnXxE3nACbbj MKVo1gEbToQ=
</ Di gest Val ue>
</ Ref erence>
</ Si gnedI nf 0>
<Si gnat ur eVal ue | d="Envel opedSi g. Si gVal ue" >
GqWAMNz BCXr ogn0Bl C2VJ YA8CS7gu9xH XVWFa08e Y9HqVnr
f UBEh5I géwl cvj 4Rr pxnNkl BnQuvvJICKql | Qy4e76Tduvg/ N
8kVdOSkYf 2QZAC+j 11 qUPFQe8CNAOCK Ur HZdi S4TDDW4sf 0
V1c6UBj 7zT7| eCQxAdgpQy/ 2Cxc=

GNUEFDL ¢ PID_00148399 28

</ Si gnat ur eVal ue>
<Keyl nf o | d="Envel opedSi g. Keyl nf 0" >
<KeyVal ue>
<RSAKeyVal ue>
<Modul us>
Al vPY8i 2eRs9C5FRc61PAC: Q6f M-g3R1Yr 6mJVd5zFr RRr Jz B/
awFLXb73k Sl WiHao+3nxuF38r Rkqi QOHmMgsoKgWChXmu
QBRgKJi 1gxOGHWTvdYY/ KB2q9nTDj 0X8+0G kSCZPRTkG K
j D7r wvAWm 7nKl gWj/ NnCLWCQFWZ
</ Modul us>
<Exponent >
AQAB
</ Exponent >
</ RSAKeyVal ue>
</ KeyVal ue>
</ Keyl nf 0>
</ Si gnat ur e>

</ Not as>

As this example illustrates, the digital signature is applied by encrypting a
digest of the XML message with a private key. The digest is usually the result of
applying a mathematical function called hash to the XML document we wish
to sign. This encrypted digest is included along with a key to be able to verify
the operation with the XML message. As we are the only ones with the key to
encrypt it, we are clearly the only senders of the message. Moreover, since the
result of the digest depends on every single byte composing the message, it is
clear that the latter cannot have been altered on its way.

With XML, given its particular nature and the processing usually undergone
by a web service message during its existence and taking into account the
parsing, etc., that can alter its form (changing a single space can produce a
different digest), implementation of the digest needs to take into account
these valid alterations. Therefore, before calculating the digest we need to
perform a process to ensure that none of the possible changes that our
XML may undergo, which do not really affect the content (deleting spaces,
summarising tags without content, etc.) do not cause non-validation of the
digest. This process, called W3C-XML-Canonicalization (xml-c14n), includes

the following rules, which a document must comply with before the digest:

¢ Encoding must be UTE-8.

e Standardisation of line breaks (to ASCII 10).

¢ Standardisation of attributes.

¢ Empty elements converted into start-end pairs.

e Standardisation of meaningless spaces.

e Elimination of superfluous namespace declarations.
e Default attributes are listed.

Web services

GNUEFDL ¢ PID_00148399 29 Web services

¢ Lexicographic reordering of declarations and attributes.

5.1.2. Data encryption

Besides their digital signature capabilities, the new security standards of XML
have encrypting features that can be used to hide parts or all of the XML
document from the elements of the intermediate process.

An example will illustrate how the previous document would look if we
encrypted the data on student grades as well as signing it.

<G ades xml ns="urn: uocedu" >
<student id="1293">
<nanme>Joan Or o</ name>
<ci ty>Ll ei da</city>
</ st udent >
<gr ades>
<Encrypt edData | d="ED' Nonce="16"
Type=ht t p: / / www. w3. or g/ 2001/ 04/ xm enc#Cont ent
xm ns="http://ww. w3. or g/ 2001/ 04/ xm enc#"
xm ns: ds="http://wwmw. w3. or g/ 2000/ 09/ xm dsi g#" >
<Encrypti onMet hod
Al gorithm ="http://ww.w3. org/ 2001/ 04/ xm enc#aes128-cbc"/ >
<ds: Keyl nf 0>
<ds: KeyNane>uoc</ ds: KeyName>
</ ds: Keyl nf 0>
<Ci pher Dat a>
<Ci pher Val ue>
dRDAY] Ys11j WBEDyOI ucPkVs BBANTKOAFNXVFj f e UKx P75
cx7KPOPB3Bj XPg14kJv74i 7FO0XZ5WhqOl Sswl kdN/ pl Ve
gqRZWIOV] FA8i zR6wgOh7UCpH+weo G OUFCEK I DGhenm23e
u8120Ch5eYVL8n/ Dt B1ChYeCXksSM3UZi UNj / t f BCAj vgG
2j | sl Qvbn4j J3QNaR4+B2Ri sOD6Ln+x2Ut Nu2J7w Y Ue
7nBgZi J5eHynBEpkE4vj nt 20CVWWTUu91xcayZt bEpOFVFs
6A==
</ G pher Val ue>
</ G pher Dat a>
</ Encr ypt edDat a>
</ gr ades>
<Si gnature |d="Envel opedSi g"
xm ns="http://ww. w3. or g/ 2000/ 09/ xni dsi g#" >
</ Si gnat ur e>

</ Not as>

Use and
maintenance

David Megias Jiménez (coordinator)
Jordi Mas (coordinator)
Carles Mateu

PID_00148403

Universitat Oberta
de Catalunya

www.uoc.edu

GNUFDL » PID_00148403 Use and maintenance

Copyright © 2010, FUOC. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation

License"

GNUEFDL ¢ PID_00148403

Use and maintenance

Index
1. Configuring security options...............cccccciiiiiiiiiiiiiiiiiiieeeeee
1.1. User authenticationccccccooeviiiiniiiniiiiiiiciieeee e
1.1.1. Other authentication modulescccccceervvvrirnurernneen.
1.2, Communications SeCUTItYcccccovvrveiimiiiiiiiieiieiiiiiieeeeeeee
2. Configuring load balancing..............c.cccccccceiviiiiiiiiniiiciniieeeene
2.1. DNS DalancCingccccccveeeririiiieeeiiiiteeee et e s e e
2.2. Proxy balancCingcccccceeeriiiiieiiniiiieeeeeceteee e
2.3. mod_backhand balancingcccccccccceeiriimiiiiiiiiiiieenieieceeeee,
2.4. Balancing with LVS ...
2.5. Other load balancing sOIUtiONScccceeeiiriiieeeeiieieieeeneeeee,
2.5.1. OpenMOSIX or balancing and migration of
PIOCESSES ..ceeeveeerneeeraureeenreeesarteesameeesereessareeesaseeesaneeesnees
2.5.2. Handling URLs and linkscccceeceieiiiiiiiiiiiniiieeinnnnne
2.5.3. Manual load distributioncccceeeeeiiiniiniiiiiniinieenne.
3. Configuring a caching proxy with Apache..................................
3.1. Introduction to the proxy......ccccccccciiiiiiiiiiniiniciiiniieeccieeeeen,
3.1.1. The forward ProxXy......cccccccceevevvvieiiniineieeieniiiieeeieeeeeeenn.
3.1.2. TR 1eVerse ProxXy....ccccccovceeivvevuieeiiriiieeeeiniiiieeeeeneieneeenenns
3.2. Configuring a forward ProXy.......cccecccceveevveeeeinicniieeiiniineeeeenesnneee
3.3. Configuring a reverse ProXy.......ccocccceeeveersveernieereseeeeneeeeseeesnanes
3.4. Other configuration direCtivesccceccceeririeeriieeersereriieenineenne
3.4.1. ProxyRemote/ProxyRemoteMatch directive
3.4.2. ProxyPreserveHost direCtiveccccovvvuiiiiiiiiinieiinnnnnns
3.4.3. NOProxy directiveccccccvvvvmiiiiiiiiiiieniniiiiiccineee,
4. Other Apache modules...................cccciiiiiiiiiiiiiiieeeee e,
4. 1. MOd_ACtiONS ...eviiiiiiiiiiiiiiiiect
4.2, MOd_alIaS ...oviiiiiiiiiiiiiii e
4.3. mod_auth, mod_auth_dbm, mod_auth_digest,
mMOd_auth_1dap ...ccceeeeeiiiiieiee e
4.4, mMOd_autOINdeX ...cccceeiriiiiriiiiiiiiieeit e
4.5, MOA_CZL weveeereeiiiieeiieiitee ettt e et e s e e e st e e e enneeeas
4.6. mod_dav y mod_dav_fscccceeiiiiiiiiiiiieeeee e
4.7. mod_deflatecccovviiiiiiiiiiie e
4.8, MOA_dII ..oiiiiiiiiiiiiiiiiii e
4.9, MOA_EIIV ..ooiiiiiiiiiiiiiiieiite ettt
4.10. MOA_EXPITS tereeuereeeeeriiriteereriiteeeeseirteeeeeerreeeeseenreeeeesenmeereesesnnee
4.11. MO _LAAP eveiieiiiiiieieieeiee et e e
4.12. MOd_IMNIME ...ccoviiiiiiiiiiiiiiiciiicrtr e
4.13. MOd_SPEING ..evereireiiiiiiieiiiiet et

AN O L »n

o2

10
11
13

14
14
15

16
16
16
17
17
19
19
19
20
20

21
21
21

21
22
22
22
22
22
23
23
23
23
23

GNUEFDL ¢ PID_00148403

Use and maintenance

4.14.
4.15.
4.16.
4.17.

TTIOMA_ STATUS tentieniiniin ittt eee et et e et e ete et et stansenestansenseansenneennns

mod_unique-id

faaLoYe B U RIS (6 b1 TR

mod_usertrack

24
25
25
26

GNUFDL e PID_00148403 5 Use and maintenance

1. Configuring security options

1.1. User authentication

User authentication is used in Apache to ensure that the people viewing Note

or accessing certain resources are the people we want them to be or who
Authentication. The weakness

. - . . .
know a certain access "key". In Apache, we can define which resources require of authentication is always the

authentication of the user accessing them and we can identify the mechanism human factor. We commonly
"lend" our usernames and

used to authenticate this user. passwords to friends to make
life easier.

The names of user authentication modules usually begin with nod_aut h_
followed by an abbreviation of the search mechanism and user verification,
such as | dap, nd5, etc.

We will now explain how to configure Apache to require user authentication

for accessing a given directory:

<Directory /web/ww. uoc. edu/ docs/ secret >
Aut hType Basic
Aut hNane "Restri cted"
Aut hUser Fi | e / hone/ car | esml apache/ passwd/ passwor ds
Require user carlesm

</Directory>

With this configuration, we are telling Apache to only display the specified
content to the user car | esmafter verifying his identity with a password. The
file containing the usernames and passwords is specified with Aut hUser Fi | e.

This configuration uses the nod_auth module, which provides basic
authentication based on the use of a plain text file in which we will store a list
of users and encrypted access words (passwor ds). Apache also has a tool for
administrating this password file (ht passwd). To create a file like this, which

will give a password to our user, we need to execute:

htpasswd -c /hone/carl esml apache/ passwd/ passwor ds carl esm
New password: <password>
Re-type new password: <password>

Addi ng password for user carlesm

Where we see <passwor d> we need to enter our password.

GNUEFDL ¢ PID_00148403 6

Staying with the configuration we used to illustrate authentication, we can
see that, besides the required password file, we tell Apache the name of the
authentication field; in our case, "Restricted". The client browser will now
always send the password that we provide to requests that are identified (the
identification is known as Real m) as "Restricted". This allows us to share
passwords among several resources, doing away with the need to type in
countless passwords.

1.1.1. Other authentication modules

There are several authentication modules for Apache. These modules are used
to select multiple sources to verify users and passwords. In our example, we
used the basic nod_aut h module, which produces a plain text file of users and
their passwords using the directive Aut hUser Fi | e to indicate the file.

We also have the following modules:

e nod_aut h_dbm allows the use of Berkeley type databases (DBM) to store

usernames and passwords.

e nod_auth_di gest: similar to nod_auth, but it allows the use of
DigestMDS5 to encrypt passwords.

e nod_aut h_| dap: allows us to use an LDAP directory to store usernames
and passwords.

e nod_aut h_sanba: allows us to use a Samba domain server (SMB/-CIFS)

for user verification.

e nod_aut h_mysql and nod_aut h_pgsql : used to store usernames and
passwords in an SQL database such as nmysql or post gresql .

e nod_aut h_radi us: allows us to use a RADIUS server to verify usernames

and passwords.

1.2. Communications security

Another of Apache's features is the use of tight cryptography to encrypt and
sign communications. For this, it has a module called nod_ssl that se ves as
an interface to the cryptographic library OpenSSL, thus providing Apache with
the mechanisms for using secure connections based on the SSL/TLS protocol.

Use and maintenance

GNUFDL e PID_00148403 7 Use and maintenance

To use the cryptographic module, we need to install nod_ssl (we will need
OpenSSL installed on our system). Once installed, we need to go to the Apache
configuration file to configure the operation of nod_ssl| . To do so, we will

specify the SSL requirements on a virtual server or in a directory:

Enabl e SSL

SSLEngi ne on

Specify Protocol

SSLProt ocol all -SSLv3

Specify cryptographic al gorithns

SSLGi pher Suite ALL:! ADH: ! EXPORT56: RCA+RSA: +HI GH: +MEDI UM +LOW +SSLv2: +EXP: +eNULL
Password files and certificates

SSLCertificateFile /etc/httpd/ssl.key/server.crt

SSLCertificateKeyFile /etc/httpd/ssl.key/server. key

As we can see, to enable a secure server with SSL, we need a pair of
public/private keys and a digital certificate. We can use the programs provided
with the OpenSSL library to create certificates and key pairs.

GNUFDL e PID_00148403 8 Use and maintenance

2. Configuring load balancing

Apache has several options for the use of load balancing solutions. The
complexity of the solutions varies greatly and they have very wide-ranging
features, which means that the situations they are designed for are very
different.

2.1. DNS balancing

The simplest load balancing solution is to install a group of systems with Note

web servers and ensure that they all have access to the files that make up
The DNS (Domain Name

our website. We can then programme the name server (the DNS) to return a Server) is the service that

different address (from one of the machines) each time it is prompted for the ‘resolves” (converts) the
names of servers to IP
name of our web server. addresses at the request of

the clients. For example,

the DNS is in charge of

We have seven computers to configure our web server (www.uoc.edu). To each, we assign converting ww. uoc. edu to
an IP address and a name (we are showing the data here in BIND format, the most 213.73.40.217.

common DNS software):

wwO I'N A 1.2.3.1
Wl I'N A 1.2.3.2
W2 I'N A 1.2.3.3
ww3 I'N A 1.2.3.4
ww4 I'N A 1.2.3.5
WWWS I'N A 1.2.3.6
W6 I'N A 1.2.3.7

We will also add the following entry:

VWY I'N CNAME ww\O. uoc. edu.

I'N CNAME wwwl. uoc. edu.

I'N CNAME WWW2. uoc. edu.

IN CNAMVE wWww3. uoc. edu.

I'N CNAME www4. uoc. edu.

I'N CNAME ww5. uoc. edu.

I'N CNAMVE WW\6. uoc. edu.

GNUEFDL ¢ PID_00148403 9

If we now ask the name server to tell us the address of ww. uoc. edu, it will
respond each time with all of the addresses of the seven machines, but in a
different order. This means that the client requests will be alternated between

the different server machines.

However, this balancing schema is not ideal. On the one hand, it does not
take into account whether any of the machines are down. On the other, the
global DNS system requires DNS servers, such as that of our Internet provider,
to create a cache of the addresses, so some DNS servers will "learn" one of the
addresses and always resolve this same address. In the long run, however, this
is not a problem because the total queries are split among the different servers.

There are other DNS server programs that offer more effective solutions for
real load balancing between servers as they use auxiliary tools to check the
status of the different servers.

2.2. Proxy balancing

Another balancing option in Apache is to use a module called nod_rewrite
which redistributes requests among the different servers.

To do this, we must modify the name server so that our website, called
www. uoc. edu, corresponds to just one of the machines (wwv. uoc. edu).

VWMWY I'N CNAME wwO. uoc. edu.

We will then convert wwO. uoc. edu into a dedicated proxy server. This
machine will then resend all of the requests it receives to one of the other five
machines. To do this, we will need to configure the nod_r ewr i t e module
to redirect the balanced requests to the other machines. We use a program
(written in Perl this time) providing nod_r ewr i t e with the server to which
the request needs to be redirected.

Rewr i t eEngi ne on
Rewr i t eMap I'b prg:/ prograns/|b. pl
Rewr it eRul e M(.+H)$ ${1 b $1} [P, L]

This program is as follows:

#!/ usr/ bi n/ perl

##t

| b.pl -- Load bal anci ng
##t

Use and maintenance

GNUEFDL ¢ PID_00148403 10

$name = "vww'; # Name base

$first = 1; # First server (we will begin with wwi)
$l ast = 5; # Last server (wwb).

$domai n = "uoc. edu”; # Domain

$cnt = 0;

whi | e (<STDI N>)

{

$cnt = (($cnt+1) % ($ult+1-$prim);
$server = sprintf(" % %. %", $name, $qnt+$first, S$donmin);

print "http://$server/$_";

This solution has the slight disadvantage that all requests pass through
one machine (ww0. uoc. edu). Although this machine does not perform
heavyweight processes (CGI, etc.) and only redirects requests (much faster
and more lightweight), in the event of overloading, the machine can become
saturated. To solve this, we can use hardware solutions that carry out the same
tasks as the option we have described here with nod_r ewr i t e. These hardware

solutions, however, are usually very expensive.

2.3. mod_backhand balancing

When DNS balancing or balancing based on a hardware resource is insufficient,
we can use a much more sophisticated resource allocation mechanism. This

consists of an Apache module called nod_backhand used to redirect requests.

HTTP from one web server to another, depending on the load and use of

resources on the servers.

nmod_backhand has a major disadvantage: at the time of writing, the version
for Apache 2 was still unavailable, so it could only be used with Apache 1.2/1.3.

The configuration of nod_backhand is extremely straightforward. The
module needs to be installed on each of the Apache servers in the machine
cluster. We must then configure the different Apache servers to communicate
with one another for synchronising purposes. We will use a multicast address

(239.255.221.20) to communicate. The configuration will be similar to this:

<| f Modul e npd_backhand. c>
Working directory of nod_backhand. Make sure

that the permissions allowing us to wite.Uni xSocket Dir /var/backhand/ backhand

We will use IP Multicast with TTL=1 to report statistics
W could use Broadcast.

Mil ticast Stats 239.255. 221. 20: 4445, 1
We will accept notifications fromour servers:

Accept Stats 1.2.3.0/24

Use and maintenance

GNUEFDL ¢ PID_00148403 11

</ | f Modul e>

We can configure nod_backhand to display the operating status on a page:

<Locati on "/backhand/" >
Set Handl er backhand- handl er

</ Locati on>

To enable mod_backhand for a directory, we can configure it inside an Apache
di rect ory module. We must then indicate that the cgi - bi n directo y
containing the shared CGI files, those with the biggest system requirements,
is distributed among the cluster machines:

<Di rectory "/var/backhand/ cgi - bi n">
Al | owOverri de None
Opti ons None
Or der all ow, deny
Allow fromal |
Backhand byAge
Backhand byRandom
Backhand byLogW ndow
Backhand byLoad

</Directory>

As we can see, nmod_backhand is configured with Backhand directives
that we shall call candidate functions. The operation of nmod_backhand
is: when we need to serve a resource from the specified directory,
[var/ backhand/ cgi - bi n, we pass nmod_backhand the list of candidate
servers (initially all those configured with nod_backhand). This passes
through each of the specified candidate functions (byAge, byRandom etc).
These functions eliminate the servers they do not consider appropriate from
the list or they rearrange the list using the corresponding criterion.

Then, after evaluating all of the candidate functions, nod_backhand resends

the request to the server that tops the list of candidates.

nod_backhand has numerous default candidate functions and also includes

the tools so that we can build new functions ourselves.

2.4. Balancing with LVS

Linux servers have a high-performance tool for load balancing and high
availability configurations. This tool, or group of tools, is based on the LVS
project (Linux Virtual Server) and uses NAT (Network Address Takeover) and
IP/Port forwarding mechanisms.

Use and maintenance

Example

Example of a criterion for
re-sorting: by least CPU load.

GNUFDL e PID_00148403 12 Use and maintenance

Configurations based on LVS are usually complex and expensive. They usually
involve several servers because they are normally aimed more at generating
high availability than at facilitating high performance (load balancing) and

require at least a system for load balancing.

The minimum configuration of a system with LVS is similar to this:

Figure 21.

Client PC

Load balancer Web server

O Ethernet)

Web server Web server

The main difference between this approach and the use of nod_rewr i t e for
load balancing is that in this case balancing is done at IP level; in other words,
the balancer does not have a copy of Apache running to receive requests and
resend them. Instead, they are resent at IP level, generating a performance
hundreds of times superior.

LVS is very similar, in fact it is virtually identical, to hardware solutions such as
Cisco, etc. The advantage of using LVS is that, because it is based on Linux, we
can use standard (cheaper) computers and even "reuse" obsolete computers,
servers, etc. The performance of a system configured to perform balancing
tasks is so high that a Pentium III 1Ghz computer can be used to saturate links
of 100 Mbps. This allows us to reduce the costs of our clusters and extend the

useful life of our systems.

Solutions based on LVS can also be used in two ways: as load balancing
solutions for increasing the efficiency of our web servers and as systems with
high availability and resistance to failure. A typical configuration of this type
would be:

GNUEFDL ¢ PID_00148403 13

Figure 22.

Client PC

Load balancer Web server

Web server Web server Web server

In this configuration, the two balancing systems would monitor each other,
so that if the one acting as the primary system failed, the other would adopt
this role. They would also distribute the load among different web servers in
the cluster, monitoring their operation and, if failures were detected in one,

they would divert the requests to the other servers.

Something to take into account when implementing a balancing solution is
session management. If the web servers or a servlet container serving these
web servers has a session management system, database connections, etc., we
need to be very cautious about implementing a load balancing solution. We
need to study our application to ensure that requests from a single client to
our application (an on-line store, for instance) do not become problematic if
these requests are attended alternately by different web servers.

Many of these solutions, like LVS, offer methods for ensuring a minimum
of persistence in connections, i.e. that all requests from the same client
are assigned to the same server for the approximate duration of a session.
These mechanisms, however, are not infallible because they are only network
mechanisms, i.e. mechanisms operating at IP level.

2.5. Other load balancing solutions

There are other approaches to load balancing on Apache servers that are not
general but they may represent the perfect solution for a specific problem.

Use and maintenance

GNUEFDL ¢ PID_00148403 14

2.5.1. OpenMOSIX or balancing and migration of processes

For Linux servers, there is a tool called OpenMOSIX, which consists of a series
of modifications in the operating system kernel, allowing us to distribute the
execution of certain processes among several machines in a group configured
for this purpose (to the machine with the least load at this time).

This solution does not really balance the load because the processes are simply
"migrated" rather than being distributed. Moreover, each process is executed
on a single machine. However, it has been shown to be a good solution when
the performance problems of the web application are not caused by Apache
but by the length of time needed to execute a CGI or external program. In
these cases, a solution like OpenMOSIX, which migrates the specific process
taking too long to a machine with a lighter load, thus unloading the main
server, could be a very valid one. Its advantages include the fact that it has
none of the disadvantages of other solutions seen previously (persistence
control etc).

2.5.2. Handling URLs and links

There is an experimental solution, available only for Apache 1.2/1.3, that can
be used for efficiently scaling services between machines.

This solution is based on a hypothesis that is usually verified in most cases,
indicating that users usually enter web servers by means of a set series of entry
points.

The solution, then, can handle the links that appear in the documents,
rewriting them to point to one of the cluster servers. It can also replicate the
document by sending it to the latter.

This module, called DC-Apache (Distributed Cooperative Apache Web Server,
http://www.cs.arizona.edu/dc-apache/), allows us to add to our web server
a series of machines to facilitate the subsequent diversion of most of our

requests to these secondary machines.

In our example, we would configure the main server as follows:

Docunent Root "/ web/ ww. uoc. edu/ docs/ "

<I| f Modul e npd_dca. c>
Set Handl er DCA- handl er
Directory to collect replicated docunents

I mport Pat h "/ home/ ww/ ˜ m gr at e"

Directory with the docunents we want

Use and maintenance

GNUEFDL ¢ PID_00148403 15

to distribute in the cluster

Export Path "/ web/ ww. uoc. edu/ docs/ "

Support servers

Backend 1.2.3.2:80

Backend 1. 2. 3. 3:80

Backend 1. 2. 3.4:80

Backend 1.2.3.5:80

Backend 1.2.3.6:80

Backend 1.2.3.7:80
</| f Modul e>

For secondary servers, if they do not have a local document to share in the
cluster, the configuration would be:

<I| f Modul e npd_dca. c>
Set Handl er dca- handl er
I mport Pat h /var/dcam grat ed
Disk quota available for mgrating
e.g. 250 MB
Di skQuota 250000000
</'| f Modul e>

2.5.3. Manual load distribution

There is obviously a manual solution for load balancing which, due to its
simplicity and surprisingly good results, is one of the most used. It consists
of manually dividing the contents of our website among several servers and

adapting the URLs of our website to match.

For example, we can put all of the web images on a separate server to the one with the
documents and CGIs, and use the following on all pages like | M5_SRC:

<I MG SRC="http://i mages. uoc. edu/ | ogos/ | ogo. gi f">

This will divert the required traffic for logos, etc., to a specific server, releasing
the main server from these tasks.

Use and maintenance

GNUFDL e PID_00148403 16 Use and maintenance

3. Configuring a caching proxy with Apache

One of the possible uses of Apache is to operate it as a caching proxy. The server
can operate both as a forward proxy and a reverse proxy, with proxy capabilities
for both HTTP (protocol versions 0.9, 1.0 and 1.1) and for FTP and CONNECT
(necessary for SSL). The module that implements the proxy functionalities for
Apache is very straightforward because it offloads part of its capabilities on
other modules.

For example, the storage capacity (the cache) is delegated to the nod_cache, etc.

3.1. Introduction to the proxy

A proxy is a representative server located between the client making the request
and the server that must resolve it. There are countless situations advising the
use of proxy servers between our clients and the servers that need to attend
the requests.

For example, the use of proxy is recommended to speed up browsing (this is the case of
forward proxy caches) to control which addresses are accessed (forward proxy) to accelerate
the response of a web server (reverse proxy), etc.

3.1.1. The forward proxy

A forward proxy is an intermediate server that sits between the client and the

servers that need to attend to the request.

For a client to receive content from a server, it must make the request to the
proxy server, telling it that it wants to obtain the content and the request that
it wants to be met. Then, the proxy makes the request on behalf of the client
and, once resolved, delivers the results to the latter. In the case of forward
proxy, clients must generally be specifically configured to use the services of
the proxy.

A typical use of forward proxy is to provide Internet access to the clients of an
internal network isolated from the latter for security reasons and only allowing
access through the proxy, which is easier to secure. Another very common use
is to cache pages. This time, the proxy server builds up the pages visited by
clients locally. If a client requests a visited page, the proxy server can serve it
directly from its local store, thus saving on bandwidth and reducing the time
to access pages that are visited frequently (clearly, caching proxy must have an
information storage/discarding policy).

GNUEFDL ¢ PID_00148403 17

One effect of the use of a proxy is that, for the servers, access to resources
will appear to come from our proxy system rather than from the client's real
address. It is therefore essential to configure proxy servers very securely before
connecting them to the Internet, as they could be used as a hiding system by
malicious users.

3.1.2. The reverse proxy

A reverse proxy, unlike forward proxy, are located in front of a server and only
control access to this server. For clients, the reverse proxy will look like a normal
web server and will not require any specific configuration.

The client makes its requests to the reverse proxy server, which decides where
to redirect these requests and, once resolved, returns the result as if the reverse
proxy had been the source of the content.

One typical use of a reverse proxy is to filter and control access by Internet users
to a server that we want to remain very isolated. Other uses of reverse proxy
include balancing loads between servers and providing cache mechanisms for
slower servers. They can also be used to unify the URL addresses of different
servers under a single URL namespace: that of the proxy server.

3.2. Configuring a forward proxy

To configure a forward proxy we must first tell Apache that it needs to use
certain modules. These are:

e nod_proxy: the module that will provide the proxy.

e nod_proxy_http: services for HTTP protocols proxy.

e nod_proxy_ftp: services for FTP protocol proxy.

e nod_proxy_connect: services for SSL proxy.

e nod_cache: cache module.

e nod_di sk_cache: auxiliary disk cache module.

e nod_mem cache: auxiliary memory cache module.

e nod_ssl: auxiliary SSL connections module.

After loading the necessary modules, we will configure the proxy. The first
configuration requires us to indicate that Apache will act as a forward proxy.

LoadModul e proxy_nodul e nodul es/ nod_pr oxy. so

Use and maintenance

GNUEFDL ¢ PID_00148403 18

<| f Modul e nod_pr oxy. c>
LoadModul e http_proxy_nodul e nodul es/ nod_proxy_http. so
ProxyRequests On
ProxyVia On

<Proxy *>

Order deny, al | ow

Deny from al |

Al ow from 172. 16. 0. 0/ 16
</ Pr oxy>

</ | f Modul e>

This example shows how easy it is to configure the nod_pr oxy. We must
tirst enable the handling of proxy requests by Apache. The Pr oxyRequest s
directive, when enabled, indicates that Apache must act as a forward proxy. The
second directive, Pr oxyVi a tells the module that it must mark the requests
made with the field Vi a: aimed at controlling the flow of requests in a chain

of proxies.

The Pr oxy block is used to configure the security restrictions of the proxy. In
this case, we only allow use of the proxy server by all of the machines in our
internal network (172.16.0.0). Here, we can use all of Apache's access control

directives.

After configuring the proxy server, we will need to configure the Apache cache
module. To do so, we need to define a disk storage of 256 Mbytes:

Sanpl e httpd. conf
#
Sanpl e cache Configuration
#
LoadModul e cache_nodul e nodul es/ nbd_cache. so
<| f Modul e nod_cache. c>
LoadModul e di sk_cache_nodul e nodul es/ nod_di sk_cache. so
<| f Modul e nod_di sk_cache. c>
CacheRoot /var/cache
CacheSi ze 256
CacheEnabl e di sk /
CacheDirLevel s 5
CacheDirLength 3
</ | f Modul e>
</ | f Modul e>

Use and maintenance

GNUEFDL ¢ PID_00148403 19

3.3. Configuring a reverse proxy

To configure Apache as a reverse proxy, we need to load the same modules as
for when we use it as a forward proxy. One difference, however, will be that the
configuration of the security directives will be much less critical, as we will

explicitly tell the proxy which servers it can access.

The configuration of a reverse proxy for accessing an internal server we have on
another TCP port and mapping it to a subdirectory of our web space would be:

ProxyRequests O f
<Proxy *>
Order deny, al | ow

Allow fromall

</ Pr oxy>
ProxyPass /i nt ernal http://internal.uoc. edu: 8181/
ProxyPassReverse /i nternal http://internal.uoc. edu: 8181/

The Pr oxyPass directive tells Apache that all of the requests addressed to
the specified URL (/ i nt er nal) must be converted internally into requests to
the specified target server. The Pr oxyPassRever se directive also indicates
that the response received from the specified target server will be rewritten
as coming from the reverse proxies server and originating from the URL space
indicated (/i nt er nal).

As part of the configuration of reverse proxies, we can add the features of
nod_cache to store requests locally, just as we would for a forward proxy.

3.4. Other configuration directives

The nod_pr oxy module also has other configuration directives that we can
use to adapt the server operation.

3.4.1. ProxyRemote/ProxyRemoteMatch directive

The Pr oxyRenot e directive is used to take received requests and redirect them

to other proxy servers, such as

ProxyRenot e http://ww. uoc. edu/ manual s/ http:// manual s. uoc. edu: 8000

ProxyRenpte * http://fastserver.com

These two configurations will redirect all requests matching
http://ww. uoc. edu/ manual s/ to another server and all other requests to
a specific server.

Use and maintenance

GNUEFDL ¢ PID_00148403 20

There is a variant of Pr oxyRenot e called Pr oxyRenot eMat ch that allows the

use of regular expressions to indicate the URL to be checked.

3.4.2. ProxyPreserveHost directive

This directive is used to tell Apache that the requests must maintain the
host field instead of replacing it with that indicated in the configuration of
ProxyPass. This is only necessary when the server hidden by a reverse proxy
is a name-based virtual host .

3.4.3. NoProxy directive

This directive is used to exclude from nbd_pr oxy processing any computer,
domain, address, etc., we do not require.

Use and maintenance

GNUFDL e PID_00148403 21 Use and maintenance

4. Other Apache modules

Apache has many additional modules that can be included on our server.
Some of these modules are distributed with the official Apache package. To
use them, simply check that they are on the server and enable them in the
configuration files. Other modules contributed by hundreds of developers are
not supplied officially and will need to be downloaded separately and installed
on the server.

4.1. mod_actions

This module incorporates methods for executing actions based on the file type
requested. A simple configuration for this is:

Action image/gif/cgi-bin/inages.cgi

Bear in mind that the URL and file name requested are passed to the program
that provides the actions through environment variables: CGI PATH_INFO
and PATH_TRANSLATED.

4.2. mod_alias

This is used to define URL areas that are located on the server disk outside the
area defined by Docunent Root . It provides a number of directives, including
Al'i as, for defining new directories, Redi r ect for defining redirections and
Scri pt Al'i as for defining new directories containing CGIs.

Alias /inmages /web/inages
<Directory /web/i mages>
Order al | ow, deny
Al ow from al |

</Directory>

Redi rect pernmanent /nmanual s http://manual s. uoc. edu/

Redi rect 303 /docunent http://ww. uoc. edu/ underway. ht m .

4.3. mod_auth, mod_auth_dbm, mod_auth_digest,
mod_auth_ldap

Together with other modules not distributed as standard, these allow us to use
different sources of data to authenticate our users.

GNUEFDL ¢ PID_00148403 22

4.4. mod_autoindex

This allows us to control how Apache will generate file lists for directories
without an index file, how to define formats, columns, orders, whether all

files will be visible, etc.

4.5. mod_cgi

This is the main driver allowing Apache to serve CGI type files.

4.6. mod_dav y mod_dav_fs

This provides the functionalities of classes 1 and 2 of the WebDAYV standard,
a system that allows web content handling way beyond that specified by the
HTTP standard. WebDAYV converts the web server into a virtual disk server with
the same features as a normal disk server: copying, reading, moving, deleting,
etc.

4.7. mod_deflate

This is used to compress contents before sending them to the client, thus
increasing the capacity of our communication lines. Note that not all browsers
support compression, so it is a good idea to check the documentation of
this module as you will obtain some very useful tips for detecting and
avoiding problems with certain browsers. One configuration that avoids

certain problems is:

<Location />
Enable filter
Set Qut put Fi | t er DEFLATE
Probl em Netscape 4.x
Browser Mat ch ˆ Mozi |l | a/ 4 gzi p-onl y-text/htm
Probl em Netscape 4.06-4.08
Browser Mat ch ˆ Mbzi |l | a/ 4\.0[678] no-gzi p
M| E
Browser Mat ch \ bMSI E ! no-gzi p ! gzi p-onl y-text/htm
Do not conpress inages
Set Envl f NoCase Request URI.(?:gif jpe?g png)$ no-gzip dont-vary.
Avoid nodifications by proxies
Header append Vary User-Agent env=!dont-vary

</ Locati on>

4.8. mod_dir

Provides the necessary support for serving directories such as URLs by
performing the right redirects and serving the index files.

Use and maintenance

Note

WebDAV is a HTTP extension
for advanced content handling
and authoring features.

GNUEFDL ¢ PID_00148403 23

4.9. mod_env

This is used to define new environment variables to pass to the CGI programs.

It provides two directives: Set Env and Unset Env.

Set Env SPECI AL_VARI ABLE val ue
Unset Env LD LI BRARY_PATH

4.10. mod_expires

This allows us to generate HTTP headers indicating the expiry of content in
line with a criterion defined by us:

Enabl e the nodul e

Expi resActive On

expire images A F 1 nonths after nodification
Expi resByType i mage/gif "nodification plus 1 nonth"
HTM. docunents 1 week after nodification

Expi resByType text/htm "nodification plus 1 week"
The rest 1 nonth after the | ast access

Expi resDefault "access plus 1 nonth"

4.11. mod_ldap

Provides a pool of LDAP connections and makes a cache of the results for use
in other modules requiring LDAP. It is essential when using LDAP as a source
of authentication, etc., as it ensures that this does not cause a bottleneck.

4.12. mod_mime

This decides which type of MIME file (the standard that marks content types
on the web) is associated with each file served by Apache. Based on the file
extension, it can decide which Cont ent -t ype to associate with it and it can
even decide to take actions or send the file to special modules for processing.
It includes a nod_mi ne_magi ¢ module complementing nod_m me for files

where nod_ni e has been unable to determine their type.

4.13. mod_speling

This offers a mechanism for correcting addresses (URL) that users may have
entered incorrectly. If the requested resource is not found, Apache will try to

correct the error. For example, upper-case may have been mistakenly used, etc.

If more than one possible page is found, a list will be displayed to the user
from which to choose.

Use and maintenance

GNUFDL e PID_00148403 24 Use and maintenance

Note that this module has a substantial impact on performance.

4.14. mod_status

Displays information on server status, how busy it is and its activity level. The

information provided is:

¢ The number of child processes.

e The number of unoccupied child processes.

e The status of each child, the number of requests and bytes served by each
child.

e Number of total accesses and bytes served.

e When the server was booted and the time it has been running for.

e Average requests per second, bytes per second and bytes per request.

e Current CPU use per child and the total for Apache.

e Requests currently being processed.

Some of this information may be disabled during compilation of the server.

The following example shows how to enable this module:

<Locati on /status>
Set Handl er server- st at us
Order Deny, Al | ow
Deny from al |
Al ow from . uoc. edu

</ Locati on>

We can see part of the result of the module in the figure below:

GNUEFDL ¢ PID_00148403

Figure 23.

25 Use and maintenance

Current Time: Tuesday, 28-Oct-2003 14:20:22 CET
Restart Time: Tuesday, 28-Oct-2003 14:17.31 CET
Parent Server Generation: 0
Server uptime: 2 minutes 51 seconds

Total accesses: 11 - Total Traffic: 36 kB

CPU Usage: u.01 5.01 cul ¢s0 - .0117% CPU load
0643 requestsisec - 215 Bfsecond - 3351 Blrequest
1 requests currently being processed, 7 idle workers

--

Scoreboard Key:

" " Waiting for Connection, "s" Starting up, "R" Reading Request,
w" Sending Reply, "K" Keepalive (read), "p" DNS Lookup,
"¢" Closing connection, "L" Logging, "6" Gracefully finishing,

"1" Idle cleanup of worker, "." Open slot with no current process

Srv PID Acc M CPU SS Req Conn Child Slot Client VHost Request

0-0 293750/1/1_ 001 100 0.0 0.00 0.0080.58.51.172 both.udl.es GET /server-status HT TP/1.1
1-0 29376 0/1/1_ 0.00 100 0.0 0.00 0.0080.58.51.172 both.udl.es GET {server-status HTTP/1.1
2-0 29377 0/2/2 _ 000 100 0.0 001 0.0180.5851.172 bothudl.es GET /server-status HTTP/1.1
3-0 29378 0/1/1_ 001 100 0.0 0.00 0.0080.58.51.172 both.udl.es GET /server-status HTTP/1.1
4-0 29379 0/2/2_ 0009 0 0.0 001 0.0180.58.51.172 bothudl.es GET /server-status HTTP/1.1
5-0 29380 0/2/2_ 0003 0 0.0 000 0.0080.5851.172 bothudles GET /coursework HTTP/1.1
6-0 29381 0/1/1TWO0000 0 0.0 000 0.0080.5851.172 bothudl.es GET /server-status HTTP/1.1
7-0 29382 0/1/1 _ 000 110 0.0 0.00 0.0080.58.51.172 both.udl.es GET /server-status HTTP/1.1

4.15. mod_unique-id

This module provides an environment variable with a unique identifier for

each request, guaranteed to be unique to a machine cluster. The module does

not run under Windows. The environment variable provided is: UNI QUE_I D.

For this, it uses a value generated from (ip_server, process pid, time stamp,

counter16). The Count er 16 is a 16-bit counter that rotates to O every second.

4.16. mod_userdir

This allows us to offer personal pages to the users of our system. This module

has a basic functionality. It maps a subdirectory of the working directory of

our system users to a specific URL, generally: http://www.uoc.edu/ ~user/.

The most common configuration,

GNUFDL e PID_00148403 26 Use and maintenance

UserDir public_htm

would resolve requests to http://www.uoc.edu/ ~user/ from the contents of a

subdirectory publ i c_ht m in the working directory of user.

4.17. mod_usertrack

Provides a module that uses a cookie to monitor user activity over the web.

Monitoring and
analysis

David Megias Jiménez (coordinator)
Jordi Mas (coordinator)
Carles Mateu

PID_00148401

Universitat Oberta
de Catalunya

www.uoc.edu

GNUEFDL ¢ PID_00148401 Monitoring and analysis

Copyright © 2010, FUOC. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation

License"

GNUEFDL ¢ PID_00148401

Monitoring and analysis

Index

1. Analysis of HTTP server logs....................

1.1.

1.2.

1.3.

2. Statistics and counter tools

2.1.

2.2.

3. Performance analysis

3.1.

3.2.

3.3.

Format of the log

1.1.1.

Analysing the errors

1.2.1.

Log analysis programs

1.3.1.
1.3.2.
1.3.3.

The Extended Common Log Formatcccceeeuveeennnnns

Common log interpretation errors.......cccceceeeveereevveeennn.

ANalogoeeevviiiiiiiiiece,

Webalizerccooeeevevvvvnieeeeenennnnn..
AWSEAtS oo

COUNLETS .viviiiiiiiiiiiiiciiccc e
2.1.1. Using a CGI to generate the counterccceevvuienns
2.1.2. CoUNter SEIVICEScccciviiiiiiiiiiiiniirriiiieeeeeneeneneaineneeees

2.1.3.

Visitor statistics

Server extension (Roxen)

Obtaining performance information on Apache

3.1.1.

Obtaining information on system performance
CPU loadccocevvvvviiiiiiiiinniinnnns
Memory usecccccuviiiiiiieennnnn.

3.2.1.
3.2.2.
3.2.3.

Configuration improvements

3.3.1.
3.3.2.
3.3.3.
3.3.4.

MOd_Status ...oveenvevneeinieineeinrennnes

DisK aCCess ..ccvvuvivvevirineirinnnennnn.

DNS queriesccoceevveeeriineneennn.
Symbolic links and overrides ...

Memory mapping and sendfile
Creating processes and threads

— 0 0N O L n

[
wn

18
18
18
20
21
22

27
27
27
28
28
30
31
32
32
32
32
33

GNUFDL ¢ PID_00148401 5 Monitoring and analysis

1. Analysis of HTTP server logs

Web servers (and those of FTP, caching proxy, etc.), if configured for the task,
save files to the system where they record all events occurring during normal
operation of the service. These files are called log. Here, we can find the record
of failed operations, sometimes with the cause of the failure. We will also find
the record of anomalous operations and a record of all operations performed
correctly.

1.1. Format of the log
Web servers generally save logs in a format called Common Log Format. Servers

that do not use this format by default generally include an option for using
it. The Common Log Format is:

65. 61. 162. 188 - - [14/ Dec/2003: 04: 10: 38 +0100] "GET /exec/rss HITP/ 1.1" 200 9356

66. 150. 40. 79 - - [14/Dec/2003:04:18: 46 +0100] "HEAD / HTTP/1.1" 302 O

69. 28. 130. 229 - - [14/Dec/2003: 04: 36: 59 +0100] "GET /robots.txt HITP/1.1" 404 1110
69. 28.130. 229 - - [14/Dec/2003: 04:37: 00 +0100] "GET /space/start HITP/1.1" 200 17327
64.68.82.167 - - [14/Dec/2003: 05: 23: 32 +0100] "GET /robots.txt HTTP/1.0" 404 1110
64.68.82.167 - - [14/Dec/2003: 05:23: 32 +0100] "GET / HTTP/1.0" 304 0

66. 196. 90. 246 - - [14/Dec/2003: 05: 36: 14 +0100] "GET /robots.txt HTTP/1.0" 404 1110
66.196. 90. 63 - - [14/Dec/2003: 05: 36: 14 +0100] "GET /exec/authenticate HITP/1.0" 302 0
66.196. 90. 63 - - [14/Dec/2003: 05: 36: 19 +0100] "GET /space/start HITP/1.0" 200 17298
69. 28. 130. 222 - - [14/Dec/2003: 05: 50: 32 +0100] "GET /robots.txt HTTP/1.1" 404 1110
69. 28.130. 222 - - [14/Dec/2003: 05: 50: 33 +0100] "GET / HITP/1.1" 302 14

69. 28. 130. 222 - - [14/Dec/ 2003: 05: 50: 34 +0100] "GET /space/start HITP/1.1" 200 17327

As we can see, each line of the log file uses the following format:

Table 20.
Name Description

remote client IP address or name of the remote client that made the request

fc931 Remote user identifier, if defined [J if it has not been defined

user User identifier validated against our server O if it has not been defined
date Date of request

request Request (method and URL) sent by the client

status Numerical code of the result

bytes Size of the result in bytes (0 if not applicable)

GNUFDL ¢ PID_00148401 6 Monitoring and analysis

1.1.1. The Extended Common Log Format

There is an extended variant of the Common Log Format called Extended
Common Log Format, more commonly known as the Combined Log Format,

which adds two additional fields to the above format:

65.61. 162. 188 - - [14/Dec/2003: 04: 10: 38 +0100] "GET /exec/rss HITP/ 1. 1"
200 9356 "http://ww. googl e. coni’ Mozill a/ 4. 5[en]
66. 150. 40. 79 - - [14/Dec/2003:04:18: 46 +0100] "HEAD / HTTP/1.1"

302 0 "http://ww. al tavi sta. conm Mzilla/3.1[en]

The fields added by this extension are:

Table 21.

Name Description

referrer The address from which the client comes. If it has not been defined, we will use —

User agent The version of the browser software used by our client. If it cannot be determined, we will use —

1.2. Analysing the errors

The log files will provide us with some very useful information with important
data on the visitors to our website. However, we will be unable to find lots
of relevant data in our log, so we will need to estimate this based on the

information in these files.

The data we can find in log are:

¢ Number of requests received (hits).

¢ Total volume in bytes of data and files served.

¢ Number of requests by file type (e.g. HTML).

e Different client addresses attended and requests for each.
¢ Number of requests per domain (from the IP address).

¢ Number of requests per directory or file.

e Number of requests per HTTP return code.

e Source addresses (referrer).

e Browsers and the versions used.

Although we can obtain a lot of information from the analysis of log there are
some things that we cannot find out. Of these, the most important are:

e User identity, except where the user is identified by a server request.
e Number of users. Although we have the number of different IP addresses,

we cannot know for certain the number of users, particularly if we take
into account the existence of caching proxy. An IP address can represent:

GNUFDL ¢ PID_00148401 7 Monitoring and analysis

— A robot, spider or other automated browser program (such as those
used by browsers such as Google).
— An individual user with a browser on their computer.

— A caching proxy server that can be used by hundreds of users.

e (Qualitative data: user motivations, reactions to content, use of the data
obtained, etc.

e Unseen files.

e What the user visited after leaving our server. This data will be recorded
in the log of the server where the user went after leaving ours.

Other information is recorded but only partially, so we could interpret this
data incorrectly. Many of these inconsistencies come from the cache made by
browsers from that created by intermediate caching proxy servers, etc.

1.2.1. Common log interpretation errors

The information in log files does not allow us to obtain the following
information, although most programs that analyse log generally do it:

e XML hits are not the same as visits. A page can generate more than one hit,
because it contains images, style sheets, etc., that correspond to another
hit.

e User sessions are easy to isolate and count. If there is no specific
monitoring mechanism for sessions (cookies, etc.), they are normally
obtained by considering all accesses from the same address over a
consecutive period of time to be from the

e Same session. This does not take into account the existence of caching proxy
servers or the possibility that a user may pause for a time (while consulting

other sources of information, etc.).

¢ Data such as average pages per visit and lists of the most visited pages are
obtained from user sessions. Given the difficulties in calculating these, the
values obtained are not very reliable. Moreover, the existence of caching
proxy servers has a very negative effect on lists of most visited pages.
Precisely because they are the most visited, they are more likely to be
stored on cache.

e Itisdifficult to gauge the geographical location of users from IP addresses.
We will often locate an entire block of addresses in the city where the
Internet services provider of a user has its head offices, while the user may
be in a completely different place.

GNUEFDL ¢ PID_00148401 8

1.3. Log analysis programs

There are many free software programs available to analyse log that we can
use to obtain information on the logs of visits to our website. Most of these

generate their reports as web pages that can even be published on the site.

1.3.1. Webalizer

Webalizer is no doubt one of the most widespread. So much so that even some
Linux distributions include it preconfigured.

If Webalizer is not installed in our server system, it is not too difficult to
configure from the source code.

We first need to download the program from the website hosting it,
where we can also obtain further documentation and some contributions
(http://www. nruni x. net/ webal i zer). After downloading, we need to
decompress it:

[carl esm@of h k]$ tar xvzf webalizer-2.01-10-src.tgz
webal i zer-2. 01- 10/

webal i zer-2. 01- 10/ acl ocal . m4

webal i zer - 2. 01- 10/ CHANGES

webal i zer- 2. 01- 10/ webal i zer _| ang. h
webal i zer- 2. 01- 10/ confi gure

[...]

webal i zer - 2. 01- 10/ sanpl e. conf

webal i zer-2. 01- 10/ webal i zer. 1
webal i zer-2. 01- 10/ webal i zer. c
webal i zer-2. 01- 10/ webal i zer . h
webal i zer-2. 01- 10/ webal i zer . LSM

webal i zer-2. 01- 10/ webal i zer . png

After decompressing it, we can configure its compilation in the building

directory:

[carl esm@of h webal i zer-2.01-10]$./configure \
--w t h-1 anguage=spani sh --prefix=/hone/ carl esn web
creating cache ./config.cache
checking for gcc... gcc
[...]
creating Makefile
l'inking ./l ang/webalizer_| ang. spani sh to webalizer_|ang. h
[carl esm@of h webal i zer-2.01-10] $

Monitoring and analysis

GNUEFDL ¢ PID_00148401 9

There is one important option, wi t h-| anguage, which is used to specify
the language in which we want to build and install Webalizer. To choose the

language, look in the | ang subdirectory to see the available languages.

We now build the program as normal in these cases with the nake.

[carl esm@of h webal i zer-2.01-10] $ nmake

gcc -Wall -2 -DETCDIR=\"/etc\" -DHAVE GETOPT H=1

- DHAVE_MATH H=1 -c webal i zer.c

[...]

gcc -0 webal i zer webalizer.o hashtab.o linklist.o preserve.o
parser.o output.o dns_resolv.o graphs.o -l1gd -lpng -1z -Im

rm-f webazol ver

In -s webal i zer webazol ver

[carl esm@of h webal i zer-2.01-10] $

And, once built, we install it:

[carl esm@of h webal i zer-2.01-10] $ make install
lusr/bin/install -c webalizer /hone/carlesm web/ bin/webalizer
[...]
rm-f /home/carl esm web/ bi n/ webazol ver
I'n -s /home/carl esn web/ bi n/ webal i zer \

/ hone/ car | esm web/ bi n/ webazol ver

[carl esm@of h webal i zer-2.01-10] $

To generate a log report, we can run it by passing a log file as a parameter and
it will leave the files containing the report in the current directory.

[carl esm@of h | og] $ ˜/web/ bi n/ webal i zer access_| og
Webal i zer V2.01-10 (Linux 2.4.20-8) Spanish
Usi ng history access_log (clf)

Creating report in current directory

The machine nane in the report is 'bofh

H story file not found..

Generating report on Decenber 2003
CGenerating report sumary

Saving file information..

45 records in 0.03 seconds

[carl esm@ofh log]$ |Is

access_| og

ctry_usage_200312. png

dai | y_usage_200312. png
hourly_usage_200312. png

i ndex. ht m

usage_200312. ht ni

usage. png

Monitoring and analysis

GNUEFDL ¢ PID_00148401

webal i zer. hi st
[carl esm@of h | og] $

This will give us a usage report based on the log of our web server:

Figure 24.

Statistics of use for bofh

10

Period summarised: last 12 months
Generated on 12-Dec-200 3:14 CET

Monitoring and analysis

Summary of bofh use

45

Pages/Files/Accesses

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

Kbytes

30

46

Daily average

Accesses Files Visits

Dec 2003 9 0 4 3

Clients
30

Summary by months

Monthly totals

Visits

46

17

20

Files

Accesses
45

Totals

46

17

20

45

GNUEFDL ¢ PID_00148401 11

Figure 25.
(Daily statistics) (Statistics by hours) (URLSs) (Input) (Output)
(Clients) (Source links) (Search) (Browsers) (Countries)
Monthly statistics for December 2003

Total Accesses 45
Total Files 3
Total Pages 20
Total Visits 17
Total Kbytes 46
Total Clients 30
Total URLs 2
Total Source links 1
Total Browsers 6

Average Max.
Accesses per Hour 0 6
Accesses per Day 9 13
Files per Day 0 1
Pages per Day 4 5
Visits per Day 3 5
Kbytes per Day 9 14

Accesses by response code

200 - OK 3
400 — Wrong request 1
403 — Forbidden 2
404 — Not found 30
405 — Method not allowed 8
413 — Request entity too large 1

1.3.2. Awstats

AWstats is a log statistics and analysis program with a comprehensive list of
features and capabilities. Besides web server statistics, AWstats can generate

statistics on mail servers, file servers, etc.

This log analyser can operate both as a CGI module and from the command

line. The information it provides includes:

e Number of visits and visitors.

e Duration of visits.

e Authenticated users and visits.

¢ Time and date of the most traffic (pages, hits, bytes etc).

¢ Domains and countries of origin of the visits.

e Most visited pages and input/output pages.

e Types of files requested.

e Visitor bots (from search engines, etc.).

e Search engines for visitor origin, including the words and phrases used for
the search.

e HTTP return errors and codes.

e Browser features (Java, Flash, etc.) and screen size.

Monitoring and analysis

GNUEFDL ¢ PID_00148401 12

¢ Compression statistics (if used).
e Browsers used to visit us (browser versions, pages served for each browser,
bytes per browser, etc.).

e Operating systems used to visit us.

Note that all of these reports and statistics are obtained from the data in the
log file, for which we have already discussed the problems associated with the
use of proxy caches, etc.

If our system does not come with the program pre-installed, we can
install it so long as we have at least a Perl interpreter. We will begin
installation by downloading the program code from its web server
(http://awstat.sf.net).

e After downloading, decompress as usual with the t ar.

[carl esm@ofh aws] $ tar xvzf awstats-5.9.tgz
awst at s- 5. 9/

awst at s- 5. 9/ docs/

awst at s- 5. 9/ docs/ awst at s. ht m

[....]

awst at s- 5. 9/ wwww oot / i con/ ot her/ vv. png

awst at s- 5. 9/ wwwr oot / j s/

awst at s- 5. 9/ wwwr oot / j s/ awst at s_mi sc_tracker.js

[carl esm@of h aws] $

e The first step of installation is to configure the web server to use the log
format called NCSA combined/XLF/EL F. In the Apache configuration file,
for example, httpd.conf we need to change:
Custonlog /var/| og/ httpd/ access_| og conmon

to
Custonlog /var/ | og/ httpd/ access_| og conbi ned

e The next step is to copy the contents of the subdirectory
www oot / cgi - bi n/, including the subdirectories it contains, to the

directory where our web servers will find the CGI files.

¢ We must now copy the contents of www oot /i con to a subdirectory of
the directory where we store the contents of our web server.

e Copy the file awst ats. nodel . conf to another file that we will call
awst at s. servernane. conf and locate it in one of the following

Monitoring and analysis

GNUFDL » PID_00148401 13 Monitoring and analysis

directories: /et c/ awst ats, /etc/opt/awstats etc. or in the

directory where we find awst at s. pl .

e We will need to configure this file by editing at least the following
variables:
— LogFile: path to the log.
— LogType: type of log: W for web, M for mail, F for FTP, and O for other
cases.
— LogFormat: check that this is 1.
— Dirlcons: path to the directory where the icons are located.
- SiteDomain: name of the web server.

* Once the program is configured, we run AWStats from the command line,
from the cgi - bi n directo y, with:
awst at s. pl -confi g=servername -update

e We can now allow visits to our statistics from the following URL:
http://servernane/ cgi - bi n/ awst at s. pl
This will display the statistics generated dynamically. Another option is
to generate statistics as static HTML pages and to access these. To do this,
we need to execute:
awst at s. pl - conf i g=server nane- out put -staticlinks>
awstats. server. htnl
We should move the file generated (awstats.server.html) to a
directory that can be accessed by the web server and we can now access

it from a browser.

e Although we could use dynamic updating from the browser, we need to
programme the server to regularly update the statistics with the command
used previously to create them. To do so, we can use the cr on facilities of
our Linux systems, complementing them with | ogr ot at e, if we have it,
so that when the time comes to change | og files (to save disk space) these

will be incorporated into the statistics.

We can now see part of what the generated statistics look like:

GNUEFDL ¢ PID_00148401 14

Monitoring and analysis

Figure 26.
Hours
01 2 3 4 S 6 7 8 9 10 11 12 13 1 16 17 18 19 20 21 22 23
T NN IIIVOGLEGEE cNN 23N
Hours [INPEGEsMM Hits [TBandwidthl Hours [INFSGESMM nits DEERdwidthn
00 0 0 0 12 0 0 0
01 0 0 0 13 0 0 0
02 0 0 0 14 0 0 0
03 1) 0 0 15 0 1] 0
04 0 0 0 16 0 0 0
05 0 0 0 17 0 0 0
06 0 0 0 18 0 0 0
07 0 0 0 19 7 23 142.58 KB
08 0 0 0 20 8 11 346.93 KB
09 0 0 0 21 0 0 0
10 0 0 0 22 0 0 0
11 0 0 0 23 0 0 0
Visitors domains/countries (Top 10) - Full list
Domains/Countries Hits
9 Unknown | ip 15 34 80,50 KB | ———

Figure 27.

Pages-URL (Top 10) - Fulllist - Entry - Exit

23 different pages-url Entry
/cai-binfawstats.pl 10 66.24 KB 1
/manual/ 3 4.57 KB
/ 2 728 Bytes 1
/manual/mod/ 2 12,73 KB
Jindex.html.en 2 728 Bytes 1
/manual/de/new_features_2_0.html 1 14.67 KB
/manual/en/ 1 6.85 KB
/manual/sections.html 1 24.81 KB
ficons/ 1 18.65 KB
/manual/en/new_features_2_0.html 1 13.16 KB
Others 13 22.25 KB 1
Operating Systems (Top 10) - Full list/Versions - Unknown
Operating Systems Hits Percent
M windows 115 87.7 %
? |unknown 16 12.2 %
Browsers (Top 10) - Full list/Versions - Unknown
Browsers Grabber Hits Percent
Vi |Firebird No 70 53.4 %
& |Mozilla No 45 343 %
. |Lynx No 16 12.2 %

GNUFDL e PID_00148401 15
Figure 28.
Visitors domains/countries (Top 10) - Full list
Domains/Countries | Paiss Hits Bandwidth
2 |Unknown ip 37 131 1.14 MB

Hosts (Top 10) - Full list - Lastvisit - Unresolved IP Address

Hosts : 0 Known, 2 Unknown {unresolved ip) - 2 Unique visitors
10.0.0.2 21
10.69.1.3 16

Robots/Spiders visitors (Top 10) - Full list - Last visit
0 different robots

Visits duration

Mumber of visits: 4 - Average: 307 s

0s-30s
30s-2mn
2mn-Smn
Smn-15mn
1Smn-30mn
30mn-1h
1h+

1.3.3. Analog

Analog is perhaps the oldest and most widely-used free software log

analysis program. It is usually used in combination with another program,

ReportMagic, which complements the report display features of Analog.

To install it, go to the program website at: http://www.analog.cx. Here, you

will find precompiled versions for most platforms and versions with source

code. Download the source code version and install it.

Decompress the program code:

[carl esm@ofh I]$ tar vxzf anal og-5.91betal.tar.gz
anal og- 5. 91bet al/

anal og- 5. 91bet al/ docs/

anal og- 5. 91bet al/ docs/ Li ¢cBSD. t xt

[...]

anal og- 5. 91bet al/ anl gf or m pl

anal og-5. 91bet al/l ogfile. |l og

[carl esm@ofh |]$

Now enter the sr ¢ directory and edit the file called anl ghead. h. This file
defines certain configuration variables: server name, etc. We change the
values we require.

We compile it with make:

[carl esm@of h src]$ make
gcc -2 -DUNIX -c alias.c

Hits
115
16

Hits

Monitoring and analysis

Bandwidth Last visit
902.09 KB |24 Dec 2003 - 17:02
262,98 KB |24 Dec 2003 - 17:12
Bandwidth Last visit
Nurr_lb_er of Percent
visits

1 25 %

1 25 %

2 S0 %

GNUFDL » PID_00148401 16 Monitoring and analysis

gcc -2 -DUNI X -c anal og. c

[...]
bzi p2/ huf f man. o bzi p2/randtable.o -Im

* % %

*** | MPORTANT: You nust read the |icence before using anal og

* % %

[carl esm@of h src]$

e We can edit the anal og. cf g file to define the output format of Analog
and some of its operating parameters.

e When you are finished editing, execute Analog with anal og to generate
the statistics file.

The statistics generated will look like this:

Figure 29.

Status Code Report

(Go To: Top | General Summary | Monthly Report | Daily Summary | Hourly Summary | Domain Report | Organisation Report | Operating System Report | Status Code Report | File Size
Report | File Type Report | Directory Report | Request Report)

This report lists the HTTP status codes of all requests.

W 200 OK
B 304 Not modified since last retrieval
B 400 Bad request
404 Document not found
W 405 Hethod not allowed

The wedges are plotted by the number of requests,

Listing status codes, sorted numerically.

reqs status code
17 200 OK
6 304 Not modified since last retrieval
3 400 Bad request
68 404 Document not found
3 405 Method not allowed

GNUEFDL ¢ PID_00148401

Figure 30.

17

Monitoring and analysis

Organisation Report

(Go To: Top | General Summary | Monthly Report | Daily Summary | Hously Summary | Domain Report | Organisation Report | Operating System Report | Status Code Report | File Size

Report| File Type Report |

This report lists the organisations of the computers which requested files.

Directory Report | Request Report)

The wedges are plot

62,82
10
80,58
172,16
212,204
62,57
193,144

N EEEENE

ted by the number of requests,

Listing organisations, sorted by the number of requests.

reqs %bytes

organisation

17.65%
29.41%

17.65%
17.65%
11.76%

£ 0ons

2N W WAk LWL

Figure 31.

General Sum

62.82
10
80.58
172.16
212.204
62.57

1n2 144

mary

(Go To: Top | General Sununary | Monthly Report | Daily Summary | Hourly Summary | Domain Report | Organisation Report | Operating System Report | Status Code Report | File Size

Report| File Type Report|

Directory Report | Request Report)

This report contains overall statistics.

Successful requests:

23

Average successful requests per day: 3
Successful requests for pages: 23
Average successful requests for pages per day: 3

Failed requests: 74

Distinct files requested: 1

Distinct hosts served: 16

Data transferred: 4.67 kilobytes

Average data transferred per day: 816 bytes

Monthly Report

(Go To: Top | General Sununary | Monthly Report | Daily Summary | Hourly Summary | Domain Report | Organisation Report | Operating System Report | Status Code Report | File Size

Report | File Type Report|

Directory Report | Request Report)

This report lists the activity in each month.

Each unit (+) represents 1 request for a page.

month ' reqs

_pages.

Dec 2003 23

Busiest month: Dec 2003 (23 requests for pages).

GNUFDL » PID_00148401 18 Monitoring and analysis

2. Statistics and counter tools

2.1. Counters

Web counters are visual indications to visitors to our page of the number of
visits we have had. They are the visual indicator with the most aesthetic, as
opposed to useful, value, since many of these counters have no value other
than statistical, given that they only count hits (requests from the page to the
server, which do not always correspond to real visits).

There are a number of ways to add a counter to your site:

e Use a CGI or servlet to generate the counter (using images or references
to images).
e Use a counter service displaying the counter or references to the images.

e Use, where available, a server extension for the counter.

2.1.1. Using a CGI to generate the counter

To add a visitor counter to our site, we can use an external program such as a
CGI or servlet, which will count visits and generate the counter. We can use
one of the many counters available: Count .

To start with, we need to download Count from the website:

http://ww. muquit. conl muqui t/ sof t war e/ Count/ Count . ht m

Once downloaded, we can begin the installation.

e The first step is to decompress the program code. To do so, we need to

usetar:

[carl esm@ofh n]$ tar xvzf wwcount2.6.tar.gz
. [wwcount 2. 6/

./ wwcount 2. 6/ DI R/

[...1]

./ wwecount 2. 6/ uti | s/ rgbtxt2db/rgb. t xt

./ wwecount 2. 6/ uti | s/ rgbtxt 2db/ r gbt xt 2db. c
[carl esm@of h n] $

e We can now compile the program:

[carl esm@of h wwcount2.6]$./build \

GNUEFDL ¢ PID_00148401 19

--w th-cgi-bin-dir=/hone/ carl esn apache/ cgi -bin/ \

--prefix=/hone/ carl esn apache/ count er

The pr ef i x parameter indicates where we want Counter to save its files.

e After compiling, we can install with:

[carl esm@of h wwacount2.6]$./build --install

The program will allow us to confirm the installation directories before
copying the files.

e We need to configure Counter. To do this, we will edit the count. cfg
file located in the conf directory of Counter's installation; in our case:
/ hone/ car | esni apache/ count er.

e We can add the following HTML fragment, which references our counter
CGI to use Counter:

<ing src="/cgi-bin/Count.cgi" alt="Counter">
The counter will look like this:

Figure 32.

Elxlxlzsis
R B Bt RS BS 0

e We can use the many parameters of Counter to modify what and how it

is displayed:

Visits:

<inmg src="/cgi-bin/Count.cgi 2dd=C&f t =6&f r gb=f f 0000" al t="******">

Ti me:

Ti me since 1/1/2000:

<i ng
src="/cgi - bi n/ Count . cgi ?cdt =2000; 1; 1; 0; 0; 0&dd=cd&f t =2&f r gp=000000"

al t="Count ">

Monitoring and analysis

GNUEFDL ¢ PID_00148401

20

This graphic shows how the three counters look:

Figure 33.

Visits: 000001

Time: 12:33 PM

Time since 1/1/2000: - 1457 D: - 12 H: - 33 M: -41 S

2.1.2. Counter services

There are numerous commercial counter services, though many also have free

options that allow us to add a counter to our website without the need to

install additional programs on our server. Many of these counters also offer

statistical analysis of visits.

These services include:

Table 22. Counter services

Name

Address

123 Counter

http://www.123counter.com/

Admo Free Counters

http://www.admo.net/counter/

BeSeen: Hit Counter

http://www.beseen.com/hitcounter/

BoingDragon: AnimatedCounters

http://www.boingdragon.com/types.html

Dark Counter

http://www.lunamorena.net/counter/

Digits.com

http://www.digits.com/create.html

Easy Counter

http://www.easycounter.com/

i-Depth

http://www.i-depth.com/X/guru3#hcnt

LBInet Counters

http://www.Ibi.net/c50000/

LunaFly: Free Counter

http://www.freecount.co.uk/

MyComputer Counter

http://counter.mycomputer.com/

Spirit Counters

http://www thesitefights.com/userv/

We will now create a counter. To do so, we will use the service offered by

Digits.com. First, we need to visit their site and fill in the form requesting the

service.

After filling in the form, Digits.com will provide us with a fragment of HTML

code to include on our page. The code will look something like this:

Monitoring and analysis

GNUEFDL ¢ PID_00148401 21

<I MG SRC="http://counter.digits.com wc/-d/4/carl esnt

ALl GN=ni ddl e
W DTH=60 HEl GHT=20 BORDER=0 HSPACE=4 VSPACE=2>

The counter will look like this:

Figure
34.

Using the parameters passed to the URL, we can change the appearance of the

counter to obtain this:

Figure 35.

Visits: 0008

Visits: 000h

with the following HTML code:

<p>

Hits:

<I MG
SRC="http://counter.digits.comwe/-d/4/-z/-c/8/carl esn
ALl G\=m ddl e
W DTH=60 HElI GHT=20 BORDER=0 HSPACE=4 VSPACE=2>

</ p>

<p>

Hits:

<I MG
SRC="http://counter.digits.com w/-d/4/-z/-c/26/carl esnt
ALl G\=mi ddl e
W DTH=60 HElI GHT=20 BORDER=0 HSPACE=4 VSPACE=2>

</ p>

2.1.3. Server extension (Roxen)

The free software web server Roxen has a HTML extension that can be used

to implement a counter easily without the need to install additional software

on our system.

Monitoring and analysis

GNUEFDL ¢ PID_00148401 22

To do this, we have two new HTML tags: accessed and gt ext, used to
indicate the number of hits obtained by a page and to display text as graphics,

respectively.

An example of the use of this extension is the following code:

Vi sitas:
<gt ext 2bshadow=1bevel =2><accessed/ ></ gt ext ><br/ >
Hts:

<accessed / >

which produces the following result:

Figure 36.

Visits: 15

Visits: 15

2.2. Visitor statistics

Another option for monitoring the number of visitors to our website, where
they come from and other similar data, without using a log analysis program,
is to use one of the statistics and visitor counting services available, some free

of charge, on the Internet.

The following list details some of these services:

Table 23. Visitor counting services

Name Address
Counted http://www.counted.com
Cyber Stats http://www.pagetools.com/cyberstats/
Gold Stats http://www.goldstats.com
Hit Box http://www.websidestory.com
IPSTAT Il http://www.ipstat.com
NedStat http://www.nedstat.com
RealTracker http://www.showstat.com
Site-Stats http://www.site-stats.com
Site Tracker http://www.sitetracker.com
Stats 3D http://www.stats3d.com
Stat Trax http://www.stattrax.com
The-Counter.net http://www.the-counter.net

Monitoring and analysis

Note

The <count er >. To maintain
compatibility with previous
versions, in which there was

a specific tag for counters,
<count er >, Roxen still
provides this tag, now
implemented as a combination
of accessed and gt ext .

GNUEFDL ¢ PID_00148401

Name

23

Address

WebStat.com

http://www.webstat.com

WebTrends Live

http://www.webtrendslive.com/default.htm

WhozOnTop

http://world.icdirect.com/icdirect/hitTracker.asp

Most of these services work in much the same way. When we sign up (whether

for free of paid services), we will be given a HTML code to include on our pages.

This code generally references an image from the website of the statistics

service. Some of these services offer an image used as a counter.

An example of this code, in this case, for NedStat, is:

<!-- Begin Nedstat Basic code -->

<l-- Title:

Car | esm Honepage -->

<l-- URL: http://carlesm -->

<script | anguage="JavaScri pt"

src="http:// ml. nedst at basi c. net/ basic.js">

</script>

<script | anguage="JavaScript">

<l--

nedst at basi c(" AA7Thmnw77L/ vVx9280ONUhsG.j d6n)', 0);

Il -->
</script>

<noscri pt >

<a target=_bl ank
href="http://vl. nedst at basi c. net/ st at sS?AA7Thmv77L/ vVx9280ONUnhsGLj d6nmQ" >

<i ng

src="http:// ml. nedst at basi c. net/ n?i d=AA7Thmv77L/ vVx9280ONUnhsGLj d6nQ'

border =0 nosave w dt h=18 hei ght =18>

</ a>

</ noscri pt>

<!-- End Nedstat Basic code -->

Once we have included this code in our page, the statistics service will monitor

the times our page is visited. We can then display the statistics for our page,

as in these examples:

Monitoring and analysis

GNUEFDL ¢ PID_00148401

Figure 37.

TRAFFIC SUMMARY - www.tensa.net

This report page presents an overview of your site's activity during the period of

24

the report.
Page Views
40
30
20
10
0
5 5 & 3 2 < T
(2] = = = = (' w)
[srd Lurl (s [ard -4 -4 -4
< b=3 < < < < <
< < < < < < <
o~ o~ o~ o~ o~ o~ o~
© @ o <] o ©
o~ o~ (o] o« (=2 < <
[15 (< [2 =2 =
[i N i [[[
=2 = = =2 [[[
& = = = > > =
[N 'y N i (= = -
(5] (5] Q (5] T 03 T
L LY LT LY = — —)
[=] [=] [=] [=]
Total Page Views Total Visitor Sessions
Today: 39 Yesterday: 29 Today: 15 Yesterday: 18
This week: 39 Last week: 518 This week: 15 Last week: 105
This month: 2705 Last month: 3179 This month: 662 Last month: Tl
=+ Page Yiews in detail... -+ First Time Visitors in detail...
<& Daily Unigque Visitors... - Returning Yisitors in detail...
Last Visitor Details... & First Time vs Returning...
Figure 38.
Carlesm Homepage - (Pagina personales) 28 diciembre 2003 21:21

Medir desde ...

Namero total de visualizaciones de

pagina hasta el momento

16 mayo 2001 En promedio, un 87 por ciento de las
visitas diarias se realiza antes de las
6241 21:21. Sobre la base del nimero de

visitantes de 1 de hoy hasta el momento,

Dia de mayor actividad hasta el el nimero total de visualizaciones de

momento

T T de

22 enero 2002 pagina de hoy puede ascender a1 (+/- 0).

43

Uttimos 10 visitantes

1. 27 diciembre

2. 27 diciembre

3. 27 diciembre

4. 27 diciembre

5. 27 diciembre

6. 27 diciembre

7. 27 diciembre

8. 27 diciembre

9. 27 diciembre

10. 28 diciembre

12:44

12:46

15:40

20:05

20:08

20:11

21:08

21:10

21:38

19:40

RIMA Telefonica, Espaiia

RIMA Telefonica, Espaiia

Grupo Gallego de Cable, Espaiia
Uni2, Espaiia

Uni2, Espaiia

Uni2, Espaiia

COLT Internet, Espaia

COLT Internet, Espaia

RIMA Telefonica, Espaiia

Universitat de Lleida, Lleida, Espaiia

Monitoring and analysis

GNUFDL « PID_00148401 25 Monitoring and analysis

Figure 39.

5596
3730
1865
0 I
e e e Today
ll Page Views]
144420
Il Yisttors]
96280 Max [[144420 - 41652
o in |[7a385 - 13507
1089396 - 282732
0 Total [1307275 - 335278

an Feb Mar Apr May Jun Jul Aug Sep Oct MNov Dec

GNUEFDL « PID_00148401 26
Figure 40.

Source continent

@o&? Y

o

Source continent

Europe 4747 76.1%
South America 388 6.2%
USA and Canada 384 6.2%
Central America 267 4.3%

. Asia 108 1.7% Europe

.net and .org 19 0.3% South America

. Australia 18 0.3% USA and Canada

© N | Oo|hs WD =

Africa 16 0.2% Unknown

Central America

Asia

Ol@e|o0|e®@|® | O|O

.net and .org

Figure 41.

Account created on: Wed, 26 Mer 2003 8:36:09 GIf Paid membership started on: Sua, 20 Aor 2003 22:01:53 GMT-8
Total registered hits: P3id membership expires on:
Total unique visitors/IPs: §4.06¢ Total purchased hits: 350,000
Total returned unique visitors/IPs: Total paid hits registered so far:

Traffic by: Accesslog Pages Hour Day WeekDay Week Month Year

Referiing URLs Referring Domains Search Engines Keywords Country TimeZone Lanquage Browser Netscape Plugins Cookies Support Java Support JavaSeriptSupport
Platform Screen Size ColorDepth Intemet Access Technology Entry Point ExitPoint Time Spent Paths

Stats by:

Stats by based on the last 1000 registered hits
(report generated at Sun, 28 Dec 2003 10:21:52 GMT-8)
search engines / keywords hits % graph
1
2
3
4
5
]
7
8
9
10
11

® 2003 Genext Information Systems, LLC. All Rights Reserved.

Monitoring and analysis

GNUEFDL ¢ PID_00148401 27

3. Performance analysis

One of the keys to the success of a website is the level of comfort of our users,
that they have a pleasant visiting experience on our site, that they receive
a fluid response to their actions, without delayed responses, etc. Another of
these key points is the performance we obtain from our systems. The greater
the performance, the more we get out of our investment. Moreover, this often
translates into a smoother and more pleasant response for our users, with
reduced access times, etc.

3.1. Obtaining performance information on Apache

The first point offering information on how the web server is running is the
web server itself.

3.1.1. mod_status

As we have seen, Apache has a module called mod_st at us that di plays a page
of information on the performance of the web server at a given moment. This
page looked like this:

Figure 42.

Current Time: Tuesday, 28-Oct-2003 14:20:22 CET
Restart Timne: Tuesday, 28-Oct-2003 14:17:31 CET
Parent Server Generation: 0

Server uptime: 2 minutes 51 seconds

Total accesses: 11 - Total Traffic: 36 kB

CPU Usage: u.01 5.01 cul ¢s0 - .0117% CPT load
0643 requestsisec - 215 Bisecond - 3351 Birequest

1 requests currently being processed, 7 idle workers

Scoreboard Key:

" " Waiting for Connection, "s" Starting up, "R" Reading Request,
"w" Sending Reply, "K" Keepalive (read), "p" DINS Lookup,

"¢" Closing connection, "L" Logging, "6" Gracefully finishing,

"1" Idle cleanup of worker, "." Open slot with no current process

If we overload the server (we can use specialist programs or Apache's own ab
for this), we will see how the result of nod_st at us gets complicated:

Monitoring and analysis

GNUEFDL ¢ PID_00148401 28

Figure 43.

Current Time: Monday, 29-Dec-2003 18:30:12 CET
Restart Time: Sunday, 28-Dec-2003 04:02:17 CET
Parent Server Generation: 2

Server uptime: 1 day 14 hours 27 minutes 55 seconds
Total accesses: 82251 - Total Traffic: 12.7 GB

CPU Usage: ul2.04 56.11 cu0 cs0 - .0131% CPU load
.594 requestsfsec - 96.4 kB/second - 162.3 kB/request
101 requests currently being processed, 9 idle workers

WUW__WWITTTITTIVITITTIWY_CC. . WIWITTIVITWITY_WITUIyIey_vuoy_wwy
VIIWITITITTVITTIVITITTTWY_ U0 Wiy ioyoeye

Scoreboard Key:

" " Waiting for Connection, "s" Starting up, "R" Reading Request,
"w" Sending Reply, "K" Keepalive (read), "p" DNS Lookup,

"¢" Closing connection, "L" Logging, "6" Gracefully finishing,

1" Idle cleanup of worker, "." Open slot with no current process

In the information provided by nod_st at us, we can see what Apache calls
the scoreboard which represents all of the slots or request processors and their
status. From the information on the screen we can deduce that many of
these slots are busy sending information (those marked with W). In theory,
this indicates that our server is responding well to the requests it receives.
Note that this test was carried out by simultaneously sending a total of one
hundred requests to the server, until 100,000 requests were reached, and the
client machine of these requests was the server itself. We can also see in the
information displayed that the server will has some free slots in it. This tells us
that we can still receive more requests (it does not tell us that we can attend
to them at the desired speed).

3.2. Obtaining information on system performance

Another source of information on server performance is the operating system.
Operating systems generally come with a broad range of tools that we can use
to find out their status at any time. These tools tell us the level of CPU usage,
memory, etc.

For our analysis, we will use the tools usually available in Unix systems. If your
system does not have these tools, many can be found free on the Internet.
Similar tools are available for most operating systems.

3.2.1. CPU load

This term is used to indicate how busy the CPU or central processing unit
of our server system is. Web servers like Apache make considerable use of
the processor for their normal functions, and this increases when we use
dynamically generated pages, etc.

If, as is sometimes the case, the web server system provides services in addition
to web services (mail server, for example), we need to be very careful about

the level of processor used.

Monitoring and analysis

GNUFDL » PID_00148401 29 Monitoring and analysis

We can obtain a rough estimate of the use of our system with the command:

vnst at .

[carl esm@ofh carlesni$ vnstat 2

procs menory swaps io system cpu
r b w swpd free buf f cache | si SO bi bo in cs us | sy id
1 0 0 26364 | 46412 | 178360 | 206072 | O 0 4 13 29 41 7 0 46
0 0 0 26364 | 46412 | 178360 | 206072 | O 0 0 0 107 22 0 0 100
0 0 0 26364 | 46412 | 178360 | 206072 | O 0 0 0 108 22 0 0 100

In this example, we can observe the distribution of the CPU load with the
three values to the right, labelled us, sy and i d, which correspond to: user,
system and idle respectively. These values indicate the percentage of time that
the processor remains in each of these states:

e user: the processor remains in user space while executing programs.

e system: the processor is in this state while it executes code forming part of
the operating system kernel or while attending calls to the system, such
as those from communications drivers, etc.

e idle: is the time the processor is free, not busy.

A constantly high us value indicates intensive use of the processor. In this
case, the machine is reaching its response limit and we need to find a solution
to ensure that increased load does not result in a loss of responsiveness. These
solutions must be geared towards reducing processor consumption (rewriting
code, optimising code) or increasing processing capacity.

A high sy value indicates that the system is busy for long periods with system
kernel tasks. We should try to find out the causes of this (wrong or faulty
drivers, inadequate hardware, etc.) and solve them.

A high i d value (if we have performance problems) would indicate that the
problem does not lie with the processor and that we need to look at other
aspects.

Other important values revealed by virst at are the two columns:

e in (interrupts): the number of interruptions occurring per second
(including those for the system clock).

GNUEFDL ¢ PID_00148401 30

e Cs (context switches): the number of context switches (for processes or

active threads in the processor) occurring per second.
Too high a cs value usually indicates that there are too many system processes
running. If this excess is caused by the processes generated by the web server,
we need to lower this figure. Another possible cause might be a high and
poorly optimised level of inter-process communications (IPC), which could
lead to excessive context switches.
The first three columns indicate other values that we should also look at:
e r:number of processes ready to execute.
e b: number of blocked processes.

e w: number of processes passed to swaps memory but which are executable.

In load situations, these indicators on the number of processes can give us
an idea as to the contention level to enter in the processor that we need to

Monitoring and analysis

execute:
23 27328 7944 169696| 210932 480 116 13715 41 59 0
21 27336 7576 169624 211376 4 104 13724 43 57 0
17 27336 7096(169448| 211924 474 113 13726 40 60 0
13 27344 6624 | 169444 | 212296 4 105 13753 38 62 0

In this example, obtained at a point of heavy server load, we have a high
number of processes available for execution and a processor availability of
0. Since these data were taken from a uniprocessor machine, and given the
number of context switches made, we can conclude that it is executing too

many processes.

There are other tools, including top, ps, that provide the same or
complementary information. It is very important to know the tools we have
available in our operating system and their capacity.

3.2.2. Memory use

The same command, virst at also pr vides basic data on memory use. The
following columns contain information on memory use:

The columns swpd, free, buff and cache indicate, respectively:

e swpd: memory use swaps (Swap memory).

GNUFDL » PID_00148401 31 Monitoring and analysis

e free: the amount of free physical memory (RAM).

e buff:the amount of memory used as buffers.

e cache: the amount of memory used as cache.

We need to keep a close eye on these values when the web server is under
heavy loads. A very high swpd and a very low free, buff and cache would
suggest that our system does not have enough memory and has to resort to
using the virtual disk memory, which is much slower than RAM.

The two columns si and so tell us the amount of memory sent to the virtual
disk memory or the memory recovered from there in kB/s. Values other than
zero sustained over time would suggest that the system lacks memory and
thus has to continually discard and recover data from the disk.

3.2.3. Disk access

One of the points often overlooked when sizing up equipment for web servers
is disk access. We need to take into account that a web server constantly sends
data that it reads from the disk to remote clients (pages, images etc). Thus,
short disk access times and high transfer speeds could give the web server high

page-serving performance.

For an idea of how our disks are responding to requests, we can use the vnst at
command as well as a more specialised command: i ost at. The result of
executing i ost at is as follows:

avg-cpu: Yuser %i ce usys % dl e
67.50 0. 00 18. 50 14. 00
Devi ce: tps Bl k_read/s Blk_wrtn/s Blk_read Blk_wrtn
dev3-0 32.00 208.00 844.00 416 1688
In this result, we can see the number of disk access transactions that have Note

occurred, the number of blocks (sectors) read and written, and the total blocks
disk use can be motivated
either by access to data from
programs or by the use of
swaps. In the second case, the
Very high values would suggest high disk usage. We must therefore make best...

during the time measured.

sure that the system has fast disks with the lowest possible access time, the
highest transfer speed available and sufficient memory to perform disk cache
efficiently or to avoid excessive use of swaps.

GNUEFDL ¢ PID_00148401 32

3.3. Configuration improvements

We can make some improvements by adjusting the configuration of the web
server. Different versions of Apache incorporate these adjustments by default.
However, we will need to be clear on the values being used by the web server,

since changing these could have drastic effects on system performance.

3.3.1. DNS queries

One area that usually creates a bottleneck when processing requests is the
fact that, in certain circumstances, Apache sends queries to the DNS for each
access. This behaviour is disabled by default since version 2.0. However, there
is one case in which we should still make DNS queries for each request
received: when we are using access control directives, such as Al | ow. In this
case, wherever possible, it is advisable to use IP addresses instead of names.

3.3.2. Symbolic links and overrides

If we use the Fol | owSynili nks or Synli nksl f Oaer Mat ch options for each
request, Apache must check whether it is a link and if any of the parent
directories in the directory hierarchy is a symbolic link. This takes up a
considerable amount of time for each access. Thus, we need to disable these
options where possible or, if we need them on a specific disk space, limit their
scope using the Apache configuration directives (Di r ect ory etc).

Additionally, if we use Al | owOverri de type di ectives, for each file access,
Apache will look for a . ht access file in the directory hierarchy preceding
this file. As in the above case, we need to limit the scope of application of this
directive as much as possible.

3.3.3. Memory mapping and sendfile

If our platform allows, we must check that Apache is using the operating
system memory mapping capabilities to access file contents (nmap). This
will generally increase performance considerably. However, you will need to
consult the Apache documentation for your platform, as the performance of
some operating systems is reduced with the use of mmap. Remember also that
files accessible through units shared over a network (NFS for example) should

not be mapped to memory.

Another operating system capability that substantially increases Apache's
performance is use of the sendfi | e system all, which is a function provided
by some operating systems, characterised by delegating the task of sending a
file over the network to the operating system kernel. If we have this directive,

Monitoring and analysis

GNUEFDL ¢ PID_00148401 33

itis a good idea to check that Apache is using it in compilation time. However,
we need to take the same precautions as mmap, that is, check that our platform

is supported and that these files are not accessible from network disk drives.

3.3.4. Creating processes and threads

Another area where we can control performance of Apache is in the creation
and instantiation of processes. On start-up, Apache creates a series of processes
to attend requests. When a process has attended a certain number of requests,
it finalises and another starts in its place. We can adjust this behaviour with:

e M nSpareServers: minimum number of server processes we need to
have running.

e MaxSpar eSer ver s: maximum number of server processes not attending
a request that we can have running.

e Start Servers: number of server processes we can start.

e MaxRequest sPer Chi | d: maximum requests that a process can attend
before being recycled.

Another feature that can be used to control the operation of Apache is the
processing module (MPM). By default, Apache works with a processing module
based on system processes, called pr ef or k but we an change it for one called
wor ker , which also launches a series of threads for each system process. The
latter is a good choice for systems with high loads.

Monitoring and analysis

WiTH SUFFOCT FrOm THE

* * %
* %
* *
* *
Ay
Educatlon and Culture

Lifelong Learning Programme

THIS COUrsE BOOH STAdrts WTH 4dn
inTrooucTion TO THE iNTEFNET,
iNCLUDINE g BrriEF HSTOrFY OF THE TLCT!
IP ProToOCOL 4N WOrLpWwioE Weae. IT
DEFIMNES THE BdSiC COMNCEPTS FOC WEB
SErugrs d4dno STULES THE COsSE OF
AFPDJCHE, THE mMOST USED WEBSErUER
WHiLE OTHEr FIreeg SOFTWAre
WEBSErUErs dre noTt FOrsoTTen. THE
cCourse CONTiNnUES WiTH WEBFTEE
DESIEN FOCUSSIiNng an HTMmML gdro
JguasCcriPT. =ML SCHEMAS, THEIr
ugLibgaTion ano TransFOormaTion gre
COuBren d5 WeLL ds DHNamic
WERBPdEES BUILT WTH CGEl, PHRP O JASP
dnb Oa3TdBdsE dCCESS.

weBsSEruicES dre SOFTWAre
comPONEBATS THAET dre drCCeeESSiBLE
THrougH S0O0ARF gdrno HaUBE THEIr
iNMTErFAECE DESCriBED WiTH WSDL (WEB
SEruUiCE DESCriPTION Langugge). In THIS
SECTON THE =M=—-ARPC PrOTocCOL s
OiSCUSS5ED dmang OTHEr THiNgS.

THE L3dsT PartT OF THE COUrseE DeEdLS
WwiTH conFguraTion, mainTENINCE,
moniTaring ano SECUriTHd asPECTS.

- S1uoC
\) freeknowledgeinstitute poul ﬁ UNIVERSITETET | AGDER

www.uoc.edu

