

Hadoop Essentials

Delve into the key concepts of Hadoop and get a
thorough understanding of the Hadoop ecosystem

Shiva Achari

BIRMINGHAM - MUMBAI

Hadoop Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2015

Production reference: 1240415

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-668-8

www.packtpub.com

www.packtpub.com

Credits

Author
Shiva Achari

Reviewers
Anindita Basak

Ralf Becher

Marius Danciu

Dmitry Spikhalskiy

Commissioning Editor
Sarah Crofton

Acquisition Editor
Subho Gupta

Content Development Editor
Rahul Nair

Technical Editor
Bharat Patil

Copy Editors
Hiral Bhat

Charlotte Carneiro

Puja Lalwani

Sonia Mathur

Kriti Sharma

Sameen Siddiqui

Project Coordinator
Leena Purkait

Proofreaders
Simran Bhogal

Safis Editing

Linda Morris

Indexer
Priya Sane

Graphics
Sheetal Aute

Jason Monteiro

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

About the Author

Shiva Achari has over 8 years of extensive industry experience and is currently
working as a Big Data Architect consultant with companies such as Oracle and
Teradata. Over the years, he has architected, designed, and developed multiple
innovative and high-performance large-scale solutions, such as distributed
systems, data centers, big data management tools, SaaS cloud applications,
Internet applications, and Data Analytics solutions.

He is also experienced in designing big data and analytics applications, such as
ingestion, cleansing, transformation, correlation of different sources, data mining,
and user experience in Hadoop, Cassandra, Solr, Storm, R, and Tableau.

He specializes in developing solutions for the big data domain and possesses sound
hands-on experience on projects migrating to the Hadoop world, new developments,
product consulting, and POC. He also has hands-on expertise in technologies such as
Hadoop, Yarn, Sqoop, Hive, Pig, Flume, Solr, Lucene, Elasticsearch, Zookeeper, Storm,
Redis, Cassandra, HBase, MongoDB, Talend, R, Mahout, Tableau, Java, and J2EE.

He has been involved in reviewing Mastering Hadoop, Packt Publishing.

Shiva has expertise in requirement analysis, estimations, technology evaluation,
and system architecture along with domain experience in telecoms, Internet
applications, document management, healthcare, and media.

Currently, he is supporting presales activities such as writing technical proposals
(RFP), providing technical consultation to customers, and managing deliveries of
big data practice groups in Teradata.

He is active on his LinkedIn page at http://in.linkedin.com/in/shivaachari/.

http://in.linkedin.com/in/shivaachari/

Acknowledgments

I would like to dedicate this book to my family, especially my father, mother, and
wife. My father is my role model and I cannot find words to thank him enough, and
I'm missing him as he passed away last year. My wife and mother have supported
me throughout my life. I'd also like to dedicate this book to a special one whom we
are expecting this July. Packt Publishing has been very kind and supportive, and I
would like to thank all the individuals who were involved in editing, reviewing, and
publishing this book. Some of the content was taken from my experiences, research,
studies, and from the audiences of some of my trainings. I would like to thank my
audience who found the book worth reading and hope that you gain the knowledge
and help and implement them in your projects.

About the Reviewers

Anindita Basak is working as a big data cloud consultant and trainer and is highly
enthusiastic about core Apache Hadoop, vendor-specific Hadoop distributions, and
the Hadoop open source ecosystem. She works as a specialist in a big data start-up in
the Bay area and with fortune brand clients across the U.S. She has been playing with
Hadoop on Azure from the days of its incubation (that is, www.hadooponazure.com).
Previously in her role, she has worked as a module lead for Alten Group Company
and in the Azure Pro Direct Delivery group for Microsoft. She has also worked as a
senior software engineer on the implementation and migration of various enterprise
applications on Azure Cloud in the healthcare, retail, and financial domain. She started
her journey with Microsoft Azure in the Microsoft Cloud Integration Engineering (CIE)
team and worked as a support engineer for Microsoft India (R&D) Pvt. Ltd.

With more than 7 years of experience with the Microsoft .NET, Java, and the Hadoop
technology stack, she is solely focused on the big data cloud and data science. She is
a technical speaker, active blogger, and conducts various training programs on the
Hortonworks and Cloudera developer/administrative certification programs. As an
MVB, she loves to share her technical experience and expertise through her blog at
http://anindita9.wordpress.com and http://anindita9.azurewebsites.net.
You can get a deeper insight into her professional life on her LinkedIn page, and you
can follow her on Twitter. Her Twitter handle is @imcuteani.

She recently worked as a technical reviewer for HDInsight Essentials (volume I and II)
and Microsoft Tabular Modeling Cookbook, both by Packt Publishing.

www.hadooponazure.com
http://anindita9.wordpress.com
http://anindita9.azurewebsites.net

Ralf Becher has worked as an IT system architect and data management consultant
for more than 15 years in the areas of banking, insurance, logistics, automotive,
and retail.

He is specialized in modern, quality-assured data management. He has been helping
customers process, evaluate, and maintain the quality of the company data by helping
them introduce, implement, and improve complex solutions in the fields of data
architecture, data integration, data migration, master data management, metadata
management, data warehousing, and business intelligence.

He started working with big data on Hadoop in 2012. He runs his BI and data
integration blog at http://irregular-bi.tumblr.com/.

Marius Danciu has over 15 years of experience in developing and architecting
Java platform server-side applications in the data synchronization and big data
analytics fields. He's very fond of the Scala programming language and functional
programming concepts and finding its applicability in everyday work. He is the
coauthor of The Definitive Guide to Lift, Apress.

Dmitry Spikhalskiy is currently holding the position of a software engineer
at the Russian social network, Odnoklassniki, and working on a search engine,
video recommendation system, and movie content analysis.

Previously, he took part in developing the Mind Labs' platform and its
infrastructure, and benchmarks for high load video conference and streaming
services, which got "The biggest online-training in the world" Guinness World
Record. More than 12,000 people participated in this competition. He also a mobile
social banking start-up called Instabank as its technical lead and architect. He has
also reviewed Learning Google Guice, PostgreSQL 9 Admin Cookbook, and Hadoop
MapReduce v2 Cookbook, all by Packt Publishing.

He graduated from Moscow State University with an MSc degree in computer
science, where he first got interested in parallel data processing, high load systems,
and databases.

http://irregular-bi.tumblr.com/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface vii
Chapter 1: Introduction to Big Data and Hadoop 1

V's of big data 2
Volume 2
Velocity 3
Variety 3

Understanding big data 3
NoSQL 4

Types of NoSQL databases 5
Analytical database 6

Who is creating big data? 6
Big data use cases 6

Big data use case patterns 8
Big data as a storage pattern 8
Big data as a data transformation pattern 9
Big data for a data analysis pattern 10
Big data for data in a real-time pattern 11
Big data for a low latency caching pattern 12

Hadoop 13
Hadoop history 14
Description 14
Advantages of Hadoop 15
Uses of Hadoop 16
Hadoop ecosystem 16
Apache Hadoop 17
Hadoop distributions 18

Pillars of Hadoop 19
Data access components 19

Table of Contents

[ii]

Data storage component 19
Data ingestion in Hadoop 20
Streaming and real-time analysis 20
Summary 20

Chapter 2: Hadoop Ecosystem 21
Traditional systems 21

Database trend 22
The Hadoop use cases 23
Hadoop's basic data flow 24
Hadoop integration 25
The Hadoop ecosystem 25
Distributed filesystem 26

HDFS 26
Distributed programming 27
NoSQL databases 28

Apache HBase 28
Data ingestion 28
Service programming 29

Apache YARN 29
Apache Zookeeper 30

Scheduling 30
Data analytics and machine learning 30
System management 31

Apache Ambari 31
Summary 31

Chapter 3: Pillars of Hadoop – HDFS, MapReduce, and YARN 33
HDFS 34

Features of HDFS 34
HDFS architecture 34

NameNode 35
DataNode 36
Checkpoint NameNode or Secondary NameNode 37
BackupNode 37

Data storage in HDFS 37
Read pipeline 38
Write pipeline 39

Rack awareness 40
Advantages of rack awareness in HDFS 40

HDFS federation 41
Limitations of HDFS 1.0 41
The benefit of HDFS federation 42

HDFS ports 42

Table of Contents

[iii]

HDFS commands 44
MapReduce 46

The MapReduce architecture 46
JobTracker 46
TaskTracker 47

Serialization data types 47
The Writable interface 47
WritableComparable interface 47

The MapReduce example 48
The MapReduce process 49

Mapper 50
Shuffle and sorting 51
Reducer 51

Speculative execution 51
FileFormats 52

InputFormats 52
RecordReader 53
OutputFormats 53
RecordWriter 54

Writing a MapReduce program 54
Mapper code 55
Reducer code 55
Driver code 56

Auxiliary steps 59
Combiner 60
Partitioner 60

YARN 61
YARN architecture 62

ResourceManager 63
NodeManager 63
ApplicationMaster 64

Applications powered by YARN 64
Summary 64

Chapter 4: Data Access Components – Hive and Pig 67
Need of a data processing tool on Hadoop 67
Pig 68

Pig data types 68
The Pig architecture 69

The logical plan 69
The physical plan 70
The MapReduce plan 70

Pig modes 70
Grunt shell 71

Input data 71
Loading data 72

Table of Contents

[iv]

Dump 73
Store 73
Filter 74
Group By 74
Limit 75
Aggregation 76
Cogroup 76
DESCRIBE 78
EXPLAIN 78
ILLUSTRATE 82

Hive 83
The Hive architecture 83

Metastore 84
The Query compiler 85
The Execution engine 85

Data types and schemas 85
Installing Hive 86
Starting Hive shell 87
HiveQL 87

DDL (Data Definition Language) operations 87
DML (Data Manipulation Language) operations 90
The SQL operation 91
Built-in functions 93
Custom UDF (User Defined Functions) 94

Managing tables – external versus managed 94
SerDe 95
Partitioning 97
Bucketing 98

Summary 98
Chapter 5: Storage Component – HBase 101

An Overview of HBase 101
Advantages of HBase 102
The Architecture of HBase 103

MasterServer 104
RegionServer 104

WAL 105
BlockCache 105
Regions 106
MemStore 106
Zookeeper 107

The HBase data model 107
Logical components of a data model 107
ACID properties 109
The CAP theorem 109

The Schema design 109

Table of Contents

[v]

The Write pipeline 110
The Read pipeline 111
Compaction 111

The Compaction policy 111
Minor compaction 112
Major compaction 112

Splitting 113
Pre-Splitting 113
Auto Splitting 114
Forced Splitting 114

Commands 114
help 114
Create 114
List 115
Put 115
Scan 115
Get 115
Disable 116
Drop 116

HBase Hive integration 116
Performance tuning 117

Compression 117
Filters 118
Counters 120
HBase coprocessors 121

Summary 122
Chapter 6: Data Ingestion in Hadoop – Sqoop and Flume 123

Data sources 123
Challenges in data ingestion 124
Sqoop 125
Connectors and drivers 125
Sqoop 1 architecture 125

Limitation of Sqoop 1 126
Sqoop 2 architecture 127
Imports 128
Exports 131
Apache Flume 132

Reliability 133
Flume architecture 134

Multitier topology 134
Flume master 135

Table of Contents

[vi]

Flume nodes 135
Components in Agent 136
Channels 138

Examples of configuring Flume 141
The Single agent example 141
Multiple flows in an agent 142

Configuring a multiagent setup 142
Summary 144

Chapter 7: Streaming and Real-time Analysis –
Storm and Spark 145

An introduction to Storm 145
Features of Storm 146
Physical architecture of Storm 146
Data architecture of Storm 147

Storm topology 148
Storm on YARN 149
Topology configuration example 149

Spouts 149
Bolts 150
Topology 152

An introduction to Spark 152
Features of Spark 153

Spark framework 153
Spark SQL 154
GraphX 154
MLib 154
Spark streaming 154

Spark architecture 155
Directed Acyclic Graph engine 155
Resilient Distributed Dataset 155
Physical architecture 157

Operations in Spark 157
Transformations 157
Actions 159

Spark example 160
Summary 161

Index 163

[vii]

Preface
Hadoop is quite a fascinating and interesting project that has seen quite a lot
of interest and contributions from the various organizations and institutions.
Hadoop has come a long way, from being a batch processing system to a data lake
and high-volume streaming analysis in low latency with the help of various Hadoop
ecosystem components, specifically YARN. This progress has been substantial and has
made Hadoop a powerful system, which can be designed as a storage, transformation,
batch processing, analytics, or streaming and real-time processing system.

Hadoop project as a data lake can be divided in multiple phases such as data ingestion,
data storage, data access, data processing, and data management. For each phase, we
have different sub-projects that are tools, utilities, or frameworks to help and accelerate
the process. The Hadoop ecosystem components are tested, configurable and proven
and to build similar utility on our own it would take a huge amount of time and
effort to achieve. The core of the Hadoop framework is complex for development and
optimization. The smart way to speed up and ease the process is to utilize different
Hadoop ecosystem components that are very useful, so that we can concentrate more
on the application flow design and integration with other systems.

With the emergence of many useful sub-projects in Hadoop and other tools within
the Hadoop ecosystem, the question that arises is which tool to use when and how
effectively. This book is intended to complete the jigsaw puzzle of when and how to
use the various ecosystem components, and to make you well aware of the Hadoop
ecosystem utilities and the cases and scenarios where they should be used.

Preface

[viii]

What this book covers
Chapter 1, Introduction to Big Data and Hadoop, covers an overview of big data and
Hadoop, plus different use case patterns with advantages and features of Hadoop.

Chapter 2, Hadoop Ecosystem, explores the different phases or layers of Hadoop
project development and some components that can be used in each layer.

Chapter 3, Pillars of Hadoop – HDFS, MapReduce, and YARN, is about the three key
basic components of Hadoop, which are HDFS, MapReduce, and YARN.

Chapter 4, Data Access Components – Hive and Pig, covers the data access components
Hive and Pig, which are abstract layers of the SQL-like and Pig Latin procedural
languages, respectively, on top of the MapReduce framework.

Chapter 5, Storage Components – HBase, is about the NoSQL component database
HBase in detail.

Chapter 6, Data Ingestion in Hadoop – Sqoop and Flume, covers the data ingestion
library tools Sqoop and Flume.

Chapter 7, Streaming and Real-time Analysis – Storm and Spark, is about the streaming
and real-time frameworks Storm and Spark built on top of YARN.

What you need for this book
A prerequisite for this book is good understanding of Java programming and basics
of distributed computing will be very helpful and an interest to understand about
Hadoop and its ecosystem components.

The code and syntax have been tested in Hadoop 2.4.1 and other
compatible ecosystem component versions, but may vary in the
newer version.

Who this book is for
If you are a system or application developer interested in learning how to solve
practical problems using the Hadoop framework, then this book is ideal for you.
This book is also meant for Hadoop professionals who want to find solutions to
the different challenges they come across in their Hadoop projects. It assumes a
familiarity with distributed storage and distributed applications.

Preface

[ix]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

public static class MyPartitioner extends org.apache.hadoop.
mapreduce.Partitioner<Text,Text>

{
 @Override
 public int getPartition(Text key, Text value, int numPartitions)
 {
 int count =Integer.parseInt(line[1]);
 if(count<=3)
 return 0;
 else
 return 1;
 }
}

And in Driver class
job.setPartitionerClass(MyPartitioner.class);

Any command-line input or output is written as follows:

hadoop fs -put /home/shiva/Samplefile.txt /user/shiva/dir3/

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[x]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xi]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring
you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Introduction to Big Data
and Hadoop

Hello big data enthusiast! By this time, I am sure you must have heard a lot
about big data, as big data is the hot IT buzzword and there is a lot of excitement
about big data. Let us try to understand the necessities of big data. There are
humungous amount of data, available on the Internet, at institutions, and with some
organizations, which have a lot of meaningful insights, which can be analyzed using
data science techniques and involves complex algorithms. Data science techniques
require a lot of processing time, intermediate data(s), and CPU power, that may
take roughly tens of hours on gigabytes of data and data science works on a trial
and error basis, to check if an algorithm can process the data better or not to get
such insights. Big data systems can process data analytics not only faster but also
efficiently for a large data and can enhance the scope of R&D analysis and can
yield more meaningful insights and faster than any other analytic or BI system.

Big data systems have emerged due to some issues and limitations in traditional
systems. The traditional systems are good for Online Transaction Processing
(OLTP) and Business Intelligence (BI), but are not easily scalable considering
cost, effort, and manageability aspect. Processing heavy computations are difficult
and prone to memory issues, or will be very slow, which hinders data analysis to
a greater extent. Traditional systems lack extensively in data science analysis and
make big data systems powerful and interesting. Some examples of big data use
cases are predictive analytics, fraud analytics, machine learning, identifying patterns,
data analytics, semi-structured, and unstructured data processing and analysis.

Introduction to Big Data and Hadoop

[2]

V's of big data
Typically, the problem that comes in the bracket of big data is defined by terms that
are often called as V's of big data. There are typically three V's, which are Volume,
Velocity, and variety, as shown in the following image:

Volume
According to the fifth annual survey by International Data Corporation (IDC),
1.8 zettabytes (1.8 trillion gigabytes) of information were created and replicated in
2011 alone, which is up from 800 GB in 2009, and the number is expected to more
than double every two years surpassing 35 zettabytes by 2020. Big data systems
are designed to store these amounts of data and even beyond that too with a fault
tolerant architecture, and as it is distributed and replicated across multiple nodes,
the underlying nodes can be average computing systems, which too need not be
high performing systems, which reduces the cost drastically.

The cost per terabyte storage in big data is very less than in other systems, and
this has made organizations interested to a greater extent, and even if the data
grows multiple times, it is easily scalable, and nodes can be added without much
maintenance effort.

Chapter 1

[3]

Velocity
Processing and analyzing the amount of data that we discussed earlier is one of the key
interest areas where big data is gaining popularity and has grown enormously. Not all
data to be processed has to be larger in volume initially, but as we process and execute
some complex algorithms, the data can grow massively. For processing most of the
algorithms, we would require intermediate or temporary data, which can be in GB
or TB for big data, so while processing, we would require some significant amount of
data, and processing also has to be faster. Big data systems can process huge complex
algorithms on huge data much quickly, as it leverages parallel processing across
distributed environment, which executes multiple processes in parallel at the same
time, and the job can be completed much faster.

For example, Yahoo created a world record in 2009 using Apache Hadoop for sorting
a petabyte in 16.25 hours and a terabyte in 62 seconds. MapR have achieved terabyte
data sorting in 55 seconds, which speaks volume for the processing power, especially
in analytics where we need to use a lot of intermediate data to perform heavy time
and memory intensive algorithms much faster.

Variety
Another big challenge for the traditional systems is to handle different variety of
semi-structured data or unstructured data such as e-mails, audio and video analysis,
image analysis, social media, gene, geospatial, 3D data, and so on. Big data can not
only help store, but also utilize and process such data using algorithms much more
quickly and also efficiently. Semi-structured and unstructured data processing is
complex, and big data can use the data with minimal or no preprocessing like other
systems and can save a lot of effort and help minimize loss of data.

Understanding big data
Actually, big data is a terminology which refers to challenges that we are facing
due to exponential growth of data in terms of V problems. The challenges can be
subdivided into the following phases:

• Capture
• Storage
• Search
• Sharing
• Analytics
• Visualization

Introduction to Big Data and Hadoop

[4]

Big data systems refer to technologies that can process and analyze data, which we
discussed as volume, velocity, and variety data problems. The technologies that can
solve big data problems should use the following architectural strategy:

• Distributed computing system
• Massively parallel processing (MPP)
• NoSQL (Not only SQL)
• Analytical database

The structure is as follows:

Big data systems use distributed computing and parallel processing to handle
big data problems. Apart from distributed computing and MPP, there are other
architectures that can solve big data problems that are toward database environment
based system, which are NoSQL and Advanced SQL.

NoSQL
A NoSQL database is a widely adapted technology due to the schema less design,
and its ability to scale up vertically and horizontally is fairly simple and in much less
effort. SQL and RDBMS have ruled for more than three decades, and it performs well
within the limits of the processing environment, and beyond that the RDBMS system
performance degrades, cost increases, and manageability decreases, we can say that
NoSQL provides an edge over RDBMS in these scenarios.

One important thing to mention is that NoSQLs do not support all
ACID properties and are highly scalable, provide availability, and
are also fault tolerant. NoSQL usually provides either consistency or
availability (availability of nodes for processing), depending upon the
architecture and design.

Chapter 1

[5]

Types of NoSQL databases
As the NoSQL databases are nonrelational they have different sets of possible
architecture and design. Broadly, there are four general types of NoSQL databases,
based on how the data is stored:

1. Key-value store: These databases are designed for storing data in a key-value
store. The key can be custom, can be synthetic, or can be autogenerated, and
the value can be complex objects such as XML, JSON, or BLOB. Key of data
is indexed for faster access to the data and improving the retrieval of value.
Some popular key-value type databases are DynamoDB, Azure Table Storage
(ATS), Riak, and BerkeleyDB.

2. Column store: These databases are designed for storing data as a group
of column families. Read/write operation is done using columns, rather
than rows. One of the advantages is the scope of compression, which can
efficiently save space and avoid memory scan of the column. Due to the
column design, not all files are required to be scanned, and each column
file can be compressed, especially if a column has many nulls and repeating
values. A column stores databases that are highly scalable and have very high
performance architecture. Some popular column store type databases are
HBase, BigTable, Cassandra, Vertica, and Hypertable.

3. Document database: These databases are designed for storing, retrieving, and
managing document-oriented information. A document database expands
on the idea of key-value stores where values or documents are stored using
some structure and are encoded in formats such as XML, YAML, or JSON, or
in binary forms such as BSON, PDF, Microsoft Office documents (MS Word,
Excel), and so on. The advantage in storing in an encoded format like XML or
JSON is that we can search with the key within the document of a data, and
it is quite useful in ad hoc querying and semi-structured data. Some popular
document-type databases are MongoDB and CouchDB.

4. Graph database: These databases are designed for data whose relations are
well represented as trees or a graph, and has elements, usually with nodes
and edges, which are interconnected. Relational databases are not so popular
in performing graph-based queries as they require a lot of complex joins, and
thus managing the interconnection becomes messy. Graph theoretic algorithms
are useful for prediction, user tracking, clickstream analysis, calculating the
shortest path, and so on, which will be processed by graph databases much
more efficiently as the algorithms themselves are complex. Some popular
graph-type databases are Neo4J and Polyglot.

Introduction to Big Data and Hadoop

[6]

Analytical database
An analytical database is a type of database built to store, manage, and consume
big data. Analytical databases are vendor-managed DBMS, which are optimized for
processing advanced analytics that involves highly complex queries on terabytes of
data and complex statistical processing, data mining, and NLP (natural language
processing). Examples of analytical databases are Vertica (acquired by HP), Aster
Data (acquired by Teradata), Greenplum (acquired by EMC), and so on.

Who is creating big data?
Data is growing exponentially, and comes from multiple sources that are emitting
data continuously and consistently. In some domains, we have to analyze the data
that are processed by machines, sensors, quality, equipment, data points, and so on.
A list of some sources that are creating big data is mentioned as follows:

• Monitoring sensors: Climate or ocean wave monitoring sensors generate
data consistently and in a good size, and there would be more than millions
of sensors that capture data.

• Posts to social media sites: Social media websites such as Facebook, Twitter,
and others have a huge amount of data in petabytes.

• Digital pictures and videos posted online: Websites such as YouTube,
Netflix, and others process a huge amount of digital videos and data that
can be petabytes.

• Transaction records of online purchases: E-commerce sites such as eBay,
Amazon, Flipkart, and others process thousands of transactions on a
single time.

• Server/application logs: Applications generate log data that grows
consistently, and analysis on these data becomes difficult.

• CDR (call data records): Roaming data and cell phone GPS signals to
name a few.

• Science, genomics, biogeochemical, biological, and other complex
and/or interdisciplinary scientific research.

Big data use cases
Let's look at the credit card issuer (use case demonstrated by MapR).

A credit card issuer client wants to improve the existing recommendation system that
is lagging and can have potentially huge profits if recommendations can be faster.

Chapter 1

[7]

The existing system is an Enterprise Data Warehouse (EDW), which is very costly
and slower in generating recommendations, which, in turn, impacts on potential
profits. As Hadoop is cheaper and faster, it will generate huge profits than the
existing system.

Usually, a credit card customer will have data like the following:

• Customer purchase history (big)
• Merchant designations
• Merchant special offers

Let's analyze a general comparison of existing EDW platforms with a big data
solution. The recommendation system is designed using Mahout (scalable
Machine Learning library API) and Solr/Lucene. Recommendation is based
on the co-occurrence matrix implemented as the search index.

The time improvement benchmarked was from 20 hours to just 3 hours, which is
unbelievably six times less, as shown in the following image:

In the web tier in the following image, we can see that the improvement is from 8
hours to 3 minutes:

Introduction to Big Data and Hadoop

[8]

So, eventually, we can say that time decreases, revenue increases, and Hadoop offers
a cost-effective solution, hence profit increases, as shown in the following image:

Big data use case patterns
There are many technological scenarios, and some of them are similar in pattern.
It is a good idea to map scenarios with architectural patterns. Once these patterns,
are understood, they become the fundamental building blocks of solutions. We will
discuss five types of patterns in the following section.

This solution is not always optimized, and it may depend on domain
data, type of data, or some other factors. These examples are to
visualize a problem and they can help to find a solution.

Big data as a storage pattern
Big data systems can be used as a storage pattern or as a data warehouse, where data
from multiple sources, even with different types of data, can be stored and can be
utilized later. The usage scenario and use case are as follows:

• Usage scenario:
 ° Data getting continuously generated in large volumes
 ° Need for preprocessing before getting loaded into the target system

• Use case:

 ° Machine data capture for subsequent cleansing can be merged
in multiple or single big file(s) and can be loaded in a Hadoop
to compute

 ° Unstructured data across multiple sources should be captured for
subsequent analysis on emerging patterns

Chapter 1

[9]

 ° Data loaded in Hadoop should be processed and filtered, and
depending on the data, we can have the storage as a data
warehouse, Hadoop, or any NoSQL system.

The storage pattern is shown in the following figure:

Big data as a data transformation pattern
Big data systems can be designed to perform transformation as the data loading
and cleansing activity, and many transformations can be done faster than
traditional systems due to parallelism. Transformation is one phase in the
Extract–Transform–Load of data ingestion and cleansing phase. The usage
scenario and use case are as follows:

• Usage scenario
 ° A large volume of raw data to be preprocessed
 ° Data type includes structured as well as non-structured data

• Use case

 ° Evolution of ETL (Extract–Transform–Load) tools to leverage big
data, for example, Pentaho, Talend, and so on. Also, in Hadoop,
ELT (Extract–Load–Transform) is also trending, as the loading
will be faster in Hadoop, and cleansing can run a parallel process
to clean and transform the input, which will be faster

Introduction to Big Data and Hadoop

[10]

The data transformation pattern is shown in the following figure:

Big data for a data analysis pattern
Data analytics is of wider interest in big data systems, where a huge amount of data
can be analyzed to generate statistical reports and insights about the data, which
can be useful in business and understanding of patterns. The usage scenario and
use case are as follows:

• Usage scenario
 ° Improved response time for detection of patterns
 ° Data analysis for non-structured data

• Use case

 ° Fast turnaround for machine data analysis (for example, analysis
of seismic data)

 ° Pattern detection across structured and non-structured data
(for example, fraud analysis)

Chapter 1

[11]

Big data for data in a real-time pattern
Big data systems integrating with some streaming libraries and systems are capable
of handling high scale real-time data processing. Real-time processing for a large and
complex requirement possesses a lot of challenges such as performance, scalability,
availability, resource management, low latency, and so on. Some streaming
technologies such as Storm and Spark Streaming can be integrated with YARN.
The usage scenario and use case are as follows:

• Usage scenario
 ° Managing the action to be taken based on continuously changing

data in real time

• Use case

 ° Automated process control based on real time from manufacturing
equipments

 ° Real-time changes to plant operations based on events from business
systems Enterprise Resource Planning (ERPs)

The data in a real-time pattern is shown in the following figure:

Introduction to Big Data and Hadoop

[12]

Big data for a low latency caching pattern
Big data systems can be tuned as a special case for a low latency system, where reads
are much higher and updates are low, which can fetch the data faster and can be
stored in memory, which can further improve the performance and avoid overheads.
The usage scenario and use case are as follows:

• Usage scenario
 ° Reads are far higher in ratio to writes
 ° Reads require very low latency and a guaranteed response
 ° Distributed location-based data caching

• Use case

 ° Order promising solutions
 ° Cloud-based identity and SSO
 ° Low latency real-time personalized offers on mobile

The low latency caching pattern is shown in the following pattern:

Some of the technology stacks that are widely used according to the layer and
framework are shown in the following image:

Chapter 1

[13]

Hadoop
In big data, the most widely used system is Hadoop. Hadoop is an open source
implementation of big data, which is widely accepted in the industry, and benchmarks
for Hadoop are impressive and, in some cases, incomparable to other systems.
Hadoop is used in the industry for large-scale, massively parallel, and distributed data
processing. Hadoop is highly fault tolerant and configurable to as many levels as we
need for the system to be fault tolerant, which has a direct impact to the number of
times the data is stored across.

As we have already touched upon big data systems, the architecture revolves around
two major components: distributed computing and parallel processing. In Hadoop,
the distributed computing is handled by HDFS, and parallel processing is handled
by MapReduce. In short, we can say that Hadoop is a combination of HDFS and
MapReduce, as shown in the following image:

We will cover the above mentioned two topics in detail in the next chapters.

Introduction to Big Data and Hadoop

[14]

Hadoop history
Hadoop began from a project called Nutch, an open source crawler-based search,
which processes on a distributed system. In 2003–2004, Google released Google
MapReduce and GFS papers. MapReduce was adapted on Nutch. Doug Cutting
and Mike Cafarella are the creators of Hadoop. When Doug Cutting joined Yahoo,
a new project was created along the similar lines of Nutch, which we call Hadoop,
and Nutch remained as a separate sub-project. Then, there were different releases,
and other separate sub-projects started integrating with Hadoop, which we call
a Hadoop ecosystem.

The following figure and description depicts the history with timelines and
milestones achieved in Hadoop:

2004-Google
MapReduce+
GFS Paper

2006-Hadoop
Project Born

Nov 2008-
Hadoop 0.19

Sep 2009-
Hadoop 0.20.1

Aug 2010-
Hadoop 0.21

Dec 2011-
Hadoop 1.0.0

Aug 2013-
Hadoop 1.2.1

2003-Nutch
Project started

2004-2006 Nutch
scaling on MapReduce
+ GFS concepts

2008-Hadoop
wins Terabyte
Sort Benchmark

April 2009-
Hadoop 0.20.0

Feb 2010-
Hadoop 0.20.2

Sep 2011-
Hadoop
0.20.203

Oct 2012-
Hadoop-2.0.
2-alpha

Oct 2013-
Hadoop-2.2.0

Description
• 2002.8: The Nutch Project was started
• 2003.2: The first MapReduce library was written at Google
• 2003.10: The Google File System paper was published
• 2004.12: The Google MapReduce paper was published
• 2005.7: Doug Cutting reported that Nutch now uses new

MapReduce implementation
• 2006.2: Hadoop code moved out of Nutch into a new Lucene sub-project

Chapter 1

[15]

• 2006.11: The Google Bigtable paper was published
• 2007.2: The first HBase code was dropped from Mike Cafarella
• 2007.4: Yahoo! Running Hadoop on 1000-node cluster
• 2008.1: Hadoop made an Apache Top Level Project
• 2008.7: Hadoop broke the Terabyte data sort Benchmark
• 2008.11: Hadoop 0.19 was released
• 2011.12: Hadoop 1.0 was released
• 2012.10: Hadoop 2.0 was alpha released
• 2013.10: Hadoop 2.2.0 was released
• 2014.10: Hadoop 2.6.0 was released

Advantages of Hadoop
Hadoop has a lot of advantages, and some of them are as follows:

• Low cost—Runs on commodity hardware: Hadoop can run on average
performing commodity hardware and doesn't require a high performance
system, which can help in controlling cost and achieve scalability and
performance. Adding or removing nodes from the cluster is simple, as an
when we require. The cost per terabyte is lower for storage and processing
in Hadoop.

• Storage flexibility: Hadoop can store data in raw format in a distributed
environment. Hadoop can process the unstructured data and semi-structured
data better than most of the available technologies. Hadoop gives full flexibility
to process the data and we will not have any loss of data.

• Open source community: Hadoop is open source and supported by many
contributors with a growing network of developers worldwide. Many
organizations such as Yahoo, Facebook, Hortonworks, and others have
contributed immensely toward the progress of Hadoop and other related
sub-projects.

• Fault tolerant: Hadoop is massively scalable and fault tolerant. Hadoop
is reliable in terms of data availability, and even if some nodes go
down, Hadoop can recover the data. Hadoop architecture assumes
that nodes can go down and the system should be able to process the data.

• Complex data analytics: With the emergence of big data, data science has
also grown leaps and bounds, and we have complex and heavy computation
intensive algorithms for data analysis. Hadoop can process such scalable
algorithms for a very large-scale data and can process the algorithms faster.

Introduction to Big Data and Hadoop

[16]

Uses of Hadoop
Some examples of use cases where Hadoop is used are as follows:

• Searching/text mining
• Log processing
• Recommendation systems
• Business intelligence/data warehousing
• Video and image analysis
• Archiving
• Graph creation and analysis
• Pattern recognition
• Risk assessment
• Sentiment analysis

Hadoop ecosystem
A Hadoop cluster can be of thousands of nodes, and it is complex and difficult
to manage manually, hence there are some components that assist configuration,
maintenance, and management of the whole Hadoop system. In this book, we
will touch base upon the following components in Chapter 2, Hadoop Ecosystem.

Layer Utility/Tool name
Distributed filesystem Apache HDFS
Distributed programming Apache MapReduce

Apache Hive
Apache Pig
Apache Spark

NoSQL databases Apache HBase
Data ingestion Apache Flume

Apache Sqoop
Apache Storm

Service programming Apache Zookeeper
Scheduling Apache Oozie
Machine learning Apache Mahout
System deployment Apache Ambari

All the components above are helpful in managing Hadoop tasks and jobs.

Chapter 1

[17]

Apache Hadoop
The open source Hadoop is maintained by the Apache Software Foundation. The
official website for Apache Hadoop is http://hadoop.apache.org/, where the
packages and other details are described elaborately. The current Apache Hadoop
project (version 2.6) includes the following modules:

• Hadoop common: The common utilities that support other Hadoop modules
• Hadoop Distributed File System (HDFS): A distributed filesystem that

provides high-throughput access to application data
• Hadoop YARN: A framework for job scheduling and cluster resource

management
• Hadoop MapReduce: A YARN-based system for parallel processing of

large datasets

Apache Hadoop can be deployed in the following three modes:

• Standalone: It is used for simple analysis or debugging.
• Pseudo distributed: It helps you to simulate a multi-node installation on a

single node. In pseudo-distributed mode, each of the component processes
runs in a separate JVM. Instead of installing Hadoop on different servers,
you can simulate it on a single server.

• Distributed: Cluster with multiple worker nodes in tens or hundreds or
thousands of nodes.

In a Hadoop ecosystem, along with Hadoop, there are many utility components
that are separate Apache projects such as Hive, Pig, HBase, Sqoop, Flume, Zookeper,
Mahout, and so on, which have to be configured separately. We have to be careful
with the compatibility of subprojects with Hadoop versions as not all versions are
inter-compatible.

Apache Hadoop is an open source project that has a lot of benefits as source code
can be updated, and also some contributions are done with some improvements.
One downside for being an open source project is that companies usually offer
support for their products, not for an open source project. Customers prefer
support and adapt Hadoop distributions supported by the vendors.

Let's look at some Hadoop distributions available.

http://hadoop.apache.org/

Introduction to Big Data and Hadoop

[18]

Hadoop distributions
Hadoop distributions are supported by the companies managing the distribution, and
some distributions have license costs also. Companies such as Cloudera, Hortonworks,
Amazon, MapR, and Pivotal have their respective Hadoop distribution in the market
that offers Hadoop with required sub-packages and projects, which are compatible and
provide commercial support. This greatly reduces efforts, not just for operations, but
also for deployment, monitoring, and tools and utility for easy and faster development
of the product or project.

For managing the Hadoop cluster, Hadoop distributions provide some graphical
web UI tooling for the deployment, administration, and monitoring of Hadoop
clusters, which can be used to set up, manage, and monitor complex clusters,
which reduce a lot of effort and time.

Some Hadoop distributions which are available are as follows:

• Cloudera: According to The Forrester Wave™: Big Data Hadoop Solutions, Q1
2014, this is the most widely used Hadoop distribution with the biggest
customer base as it provides good support and has some good utility
components such as Cloudera Manager, which can create, manage, and
maintain a cluster, and manage job processing, and Impala is developed
and contributed by Cloudera which has real-time processing capability.

• Hortonworks: Hortonworks' strategy is to drive all innovation through the
open source community and create an ecosystem of partners that accelerates
Hadoop adoption among enterprises. It uses an open source Hadoop project
and is a major contributor to Hadoop enhancement in Apache Hadoop.
Ambari was developed and contributed to Apache by Hortonworks.
Hortonworks offers a very good, easy-to-use sandbox for getting started.
Hortonworks contributed changes that made Apache Hadoop run natively
on the Microsoft Windows platforms including Windows Server and
Microsoft Azure.

• MapR: MapR distribution of Hadoop uses different concepts than plain
open source Hadoop and its competitors, especially support for a network
file system (NFS) instead of HDFS for better performance and ease of use.
In NFS, Native Unix commands can be used instead of Hadoop commands.
MapR have high availability features such as snapshots, mirroring, or
stateful failover.

• Amazon Elastic MapReduce (EMR): AWS's Elastic MapReduce (EMR)
leverages its comprehensive cloud services, such as Amazon EC2 for
compute, Amazon S3 for storage, and other services, to offer a very strong
Hadoop solution for customers who wish to implement Hadoop in the cloud.
EMR is much advisable to be used for infrequent big data processing. It
might save you a lot of money.

Chapter 1

[19]

Pillars of Hadoop
Hadoop is designed to be highly scalable, distributed, massively parallel processing,
fault tolerant and flexible and the key aspect of the design are HDFS, MapReduce
and YARN. HDFS and MapReduce can perform very large scale batch processing at
a much faster rate. Due to contributions from various organizations and institutions
Hadoop architecture has undergone a lot of improvements, and one of them is
YARN. YARN has overcome some limitations of Hadoop and allows Hadoop to
integrate with different applications and environments easily, especially in streaming
and real-time analysis. One such example that we are going to discuss are Storm and
Spark, they are well known in streaming and real-time analysis, both can integrate
with Hadoop via YARN.

We will cover the concept of HDFS, MapReduce, and YARN in greater detail in
Chapter 3, Pillars of Hadoop – HDFS, MapReduce, and YARN.

Data access components
MapReduce is a very powerful framework, but has a huge learning curve to master
and optimize a MapReduce job. For analyzing data in a MapReduce paradigm, a
lot of our time will be spent in coding. In big data, the users come from different
backgrounds such as programming, scripting, EDW, DBA, analytics, and so on, for
such users there are abstraction layers on top of MapReduce. Hive and Pig are two
such layers, Hive has a SQL query-like interface and Pig has Pig Latin procedural
language interface. Analyzing data on such layers becomes much easier.

We will cover the concept of Hive and Pig in greater detail in Chapter 4,
Data Access Component – Hive and Pig.

Data storage component
HBase is a column store-based NoSQL database solution. HBase's data model is
very similar to Google's BigTable framework. HBase can efficiently process random
and real-time access in a large volume of data, usually millions or billions of rows.
HBase's important advantage is that it supports updates on larger tables and faster
lookup. The HBase data store supports linear and modular scaling. HBase stores data
as a multidimensional map and is distributed. HBase operations are all MapReduce
tasks that run in a parallel manner.

We will cover the concept of HBase in greater detail in Chapter 5, Storage
Component—HBase.

Introduction to Big Data and Hadoop

[20]

Data ingestion in Hadoop
In Hadoop, storage is never an issue, but managing the data is the driven force around
which different solutions can be designed differently with different systems, hence
managing data becomes extremely critical. A better manageable system can help a lot
in terms of scalability, reusability, and even performance. In a Hadoop ecosystem, we
have two widely used tools: Sqoop and Flume, both can help manage the data and can
import and export data efficiently, with a good performance. Sqoop is usually used
for data integration with RDBMS systems, and Flume usually performs better with
streaming log data.

We will cover the concept of Sqoop and Flume in greater detail in Chapter 6, Data
Ingestion in Hadoop—Sqoop and Flume.

Streaming and real-time analysis
Storm and Spark are the two new fascinating components that can run on YARN
and have some amazing capabilities in terms of processing streaming and real-
time analysis. Both of these are used in scenarios where we have heavy continuous
streaming data and have to be processed in, or near, real-time cases. The example
which we discussed earlier for traffic analyzer is a good example for use cases of
Storm and Spark.

We will cover the concept of Storm and Spark in greater detail in Chapter 7, Streaming
and Real-time Analysis—Storm and Spark.

Summary
In this chapter, we spoke about the big data and its use case patterns. We explored a
bit about Hadoop history, finally migrating to the advantages and uses of Hadoop.

Hadoop systems are complex to monitor and manage, and we have separate
sub-projects' frameworks, tools, and utilities that integrate with Hadoop and help
in better management of tasks, which are called a Hadoop ecosystem, and which
we will be discussing in subsequent chapters.

[21]

Hadoop Ecosystem
Now that we have discussed and understood big data and Hadoop, we can move
on to understanding the Hadoop ecosystem. A Hadoop cluster may have hundreds
or thousands of nodes which are difficult to design, configure, and manage
manually. Due to this, there arises a need for tools and utilities to manage systems
and data easily and effectively. Along with Hadoop, we have separate sub-projects
which are contributed by some organizations and contributors, and are managed
mostly by Apache. The sub-projects integrate very well with Hadoop and can help
us concentrate more on design and development rather than maintenance and
monitoring, and can also help in the development and data management.

Before we understand different tools and technologies, let's understand a use
case and how it differs from traditional systems.

Traditional systems
Traditional systems are good for OLTP (online transaction processing) and some
basic Data Analysis and BI use cases. Within the scope, the traditional systems are
best in performance and management. The following figure shows a traditional
system on a high-level overview:

Transactional
Database

Batch
ETL Data

Warehouse

Business
Intelligence
Applications

Data Analysis
Application

1. Reporting
Applications

2. OBIEE
3. Standard Interface

like JDBC, ODBC

1. Excel
2. SAS/R/SPSS
3. Custom

Applications
4. Standard Interface

like JDBC, ODBC

Transactional
Database

Transactional
Database

Traditional systems with BIA

Hadoop Ecosystem

[22]

The steps for typical traditional systems are as follows:

1. Data resides in a database
2. ETL (Extract Transform Load) processes
3. Data moved into a data warehouse
4. Business Intelligence Applications can have some BI reporting
5. Data can be used by Data Analysis Application as well

When the data grows, traditional systems fail to process, or even store, the data;
and even if they do, it comes at a very high cost and effort because of the limitations
in the architecture, issue with scalability and resource constraints, incapability
or difficulty to scale horizontally.

Database trend
Database technologies have evolved over a period of time. We have RDBMS (relational
database), EDW (Enterprise data warehouse), and now Hadoop and NoSQL-based
database have emerged. Hadoop and NoSQL-based database are now the preferred
technology used for the big data problems, and some traditional systems are gradually
moving towards Hadoop and NoSQL, along with their existing systems. Some systems
have different technologies to process the data such as, Hadoop with RDBMS, Hadoop
with EDW, NoSQL with EDW, and NoSQL with Hadoop. The following figure depicts
the database trend according to Forrester Research:

RDBMS

NoSQL

Key-Value/
Column Store

OLAP/BI

Hadoop

1990

2010

OLAP/BI

RDBMS

Datawarehouse

2000
Operational

Data

RDBMS

Database trends

The figure depicts the design trends and the technology which was available and
adapted in a particular decade.

The 1990's decade was the RDBMS era which was designed for OLTP processing and
data processing was not so complex.

Chapter 2

[23]

The emergence and adaptation of data warehouse was in the 2000's, which is used
for OLAP processing and BI.

From 2010 big data systems, especially Hadoop, have been adapted by many
organizations to solve Big Data problems.

All these technologies can practically co-exist for a solution as each technology has
its pros and cons because not all problems can be solved by any one technology.

The Hadoop use cases
Hadoop can help in solving the big data problems that we discussed in Chapter 1,
Introduction to Big Data and Hadoop. Based on Data Velocity (Batch and Real time)
and Data Variety (Structured, Semi-structured and Unstructured), we have different
sets of use cases across different domains and industries. All these use cases are big
data use cases and Hadoop can effectively help in solving them. Some use cases are
depicted in the following figure:

Credit and Market Risk in Banks

Fraud Detection (Credit Card) and Financial Crimes (AML) in Banks
(including Social Network Analysis)

Event-based Marketing in Financial Services and Telecoms

Markdown Optimization in Retail

Claims and Tax Fraud in Public Sector

Video Surveillance/
Analysis

Predictive
Maintenance in

Aerospace

Social Media
Sentiment Analysis

Demand Forecasting
in Manufacturing

Disease Analysis
on Electronic Health

Records

Traditional Data
Warehousing Text Mining

Potential Use Cases for Big Data Analytics

Real time

Data
Velocity

Batch

Structured Semi-structured

Data Variety

Unstructured

Potential use case for Big Data Analytics

Hadoop Ecosystem

[24]

Hadoop's basic data flow
A basic data flow of the Hadoop system can be divided into four phases:

1. Capture Big Data : The sources can be extensive lists that are structured,
semi-structured, and unstructured, some streaming, real-time data sources,
sensors, devices, machine-captured data, and many other sources. For data
capturing and storage, we have different data integrators such as, Flume,
Sqoop, Storm, and so on in the Hadoop ecosystem, depending on the type
of data.

2. Process and Structure: We will be cleansing, filtering, and transforming the
data by using a MapReduce-based framework or some other frameworks
which can perform distributed programming in the Hadoop ecosystem. The
frameworks available currently are MapReduce, Hive, Pig, Spark and so on.

3. Distribute Results: The processed data can be used by the BI and
analytics system or the big data analytics system for performing analysis
or visualization.

4. Feedback and Retain: The data analyzed can be fed back to Hadoop and
used for improvements and audits.

The following figure shows the data captured and then processed in a Hadoop
platform, and the results used in a Business Transactions and Interactions system,
and a Business Intelligence and Analytics system:

Unstructured
Data

Log files

Exhaust Data

Social Media

Sensors,
devices

Enterprise
Hadoop
Platform

CRM, ERP
Web, Mobile
Point of sale

Classic Data
Integration and ETL

Dashboards,
Reports,
Visualization,...

Business
Transactions

and Interactions

Business
Intelligence

and Analytics

1 Capture Big Data 2 Process and Structure 3 Distribute Results 4 Feedback and Retain

DB data

Hadoop basic data flow

Chapter 2

[25]

Hadoop integration
Hadoop architecture is designed to be easily integrated with other systems.
Integration is very important because although we can process the data efficiently
in Hadoop, but we should also be able to send that result to another system to move
the data to another level. Data has to be integrated with other systems to achieve
interoperability and flexibility.

The following figure depicts the Hadoop system integrated with different systems
and with some implemented tools for reference:

Data
Warehouse
/RDBMS

Streaming
Data

BI/Analytics Tools

Data Import/Export

NoSQL
Data Integration Tools

Hadoop Integration with other systems

Systems that are usually integrated with Hadoop are:

• Data Integration tools such as, Sqoop, Flume, and others
• NoSQL tools such as, Cassandra, MongoDB, Couchbase, and others
• ETL tools such as, Pentaho, Informatica, Talend, and others
• Visualization tools such as, Tableau, Sas, R, and others

The Hadoop ecosystem
The Hadoop ecosystem comprises of a lot of sub-projects and we can configure these
projects as we need in a Hadoop cluster. As Hadoop is an open source software and
has become popular, we see a lot of contributions and improvements supporting
Hadoop by different organizations. All the utilities are absolutely useful and help
in managing the Hadoop system efficiently. For simplicity, we will understand
different tools by categorizing them.

Hadoop Ecosystem

[26]

The following figure depicts the layer, and the tools and utilities within that layer,
in the Hadoop ecosystem:

M
ah

ou
t

M
ac

hi
ne

 L
ea

rn
in

g

O
oz

ie
W

or
kf

lo
w

Machine
Learning Scheduling

System Deployment

S
ervice P

rogram
m

ing

Storm

Data Ingestion

Zo
ok

ee
pe

r
C

oo
rd

in
at

io
n

P
ig

S
cr

ip
tin

g

H
iv

e
S

Q
L

Q
ue

ry

Distributed Programming

NoSQL DatabaseMapReduce Framework-YARN

Hadoop core

Distributed Filesystem

Hadoop ecosystem

Distributed filesystem
In Hadoop, we know that data is stored in a distributed computing environment,
so the files are scattered across the cluster. We should have an efficient filesystem to
manage the files in Hadoop. The filesystem used in Hadoop is HDFS, elaborated as
Hadoop Distributed File System.

HDFS
HDFS is extremely scalable and fault tolerant. It is designed to efficiently process
parallel processing in a distributed environment in even commodity hardware.
HDFS has daemon processes in Hadoop, which manage the data. The processes
are NameNode, DataNode, BackupNode, and Checkpoint NameNode.

We will discuss HDFS elaborately in the next chapter.

Chapter 2

[27]

Distributed programming
To leverage the power of a distributed storage filesystem, Hadoop performs
distributed programming which can do massive parallel programming. Distributed
programming is the heart of any big data system, so it is extremely critical. The
following are the different frameworks that can be used for distributed programming:

• MapReduce
• Hive
• Pig
• Spark

The basic layer in Hadoop for distributed programming is MapReduce.
Let's introduce MapReduce:

• Hadoop MapReduce: MapReduce is the heart of the Hadoop system
distributed programming. MapReduce is a framework model designed as
parallel processing on a distributed environment. Hadoop MapReduce was
inspired by Google MapReduce whitepaper. Hadoop MapReduce is scalable
and massively parallel processing framework, which can work on huge data
and is designed to run, even in commodity hardware. Before Hadoop 2.x,
MapReduce was the only processing framework that could be performed,
and then some utility extended and created a wrapper to program easily for
faster development. We will discuss about Hadoop MapReduce in detail in
Chapter 3, Pillars of Hadoop – HDFS, MapReduce, and YARN.

• Apache Hive: Hive provides a data warehouse infrastructure system for
Hadoop, which creates a SQL-like wrapper interface called HiveQL, on top
of MapReduce. Hive can be used to run some ad hoc querying and basic
aggregation and summarization processing on the Hadoop data. HiveQL
is not SQL92 compliant. Hive was developed by Facebook and contributed
to Apache. Hive is designed on top of MapReduce, which means a HiveQL
query will run the MapReduce jobs for processing the query. We can even
extend HiveQL by using User Defined Functions (UDF).

• Apache Pig: Pig provides a scripting-like wrapper written in the Pig Latin
language to process the data with script-like syntax. Pig was developed by
Yahoo and contributed to Apache. Pig also translates the Pig Latin script
code to MapReduce and executes the job. Pig is usually used for analyzing
semi-structured and large data sets.

• Apache Spark: Spark provides a powerful alternative to Hadoop's
MapReduce. Apache Spark is a parallel data processing framework that
can run programs up to 100 times faster than Hadoop MapReduce in
memory, or 10 times faster on disk. Spark is used for real-time stream
processing and analysis of the data.

Hadoop Ecosystem

[28]

NoSQL databases
We have already discussed about NoSQL as one of the emerging and adopted
systems. Within Hadoop ecosystem, we have a NoSQL database called HBase.
HBase is one of the key component that provides a very flexible design and high
volume simultaneous reads and write in low latency hence it is widely adopted.

Apache HBase
HBase is inspired from Google's Big Table. HBase is a sorted map, which is sparse,
consistent, distributed, and multidimensional. HBase is a NoSQL, column oriented
database and a key/value store, which works on top of HDFS. HBase provides faster
lookup and also high volume inserts/updates of a random access request on a high
scale. The HBase schema is very flexible and actually variable, where the columns can
be added or removed at runtime. HBase supports low-latency and strongly consistent
read and write operations. It is suitable for high-speed counter aggregation.

Many organizations or companies use HBase, such as Yahoo, Adobe, Facebook,
Twitter, Stumbleupon, NGData, Infolinks, Trend Micro, and many more.

Data ingestion
Data management in big data is an important and critical aspect. We have to import
and export large scale data to do processing, which becomes unmanageable in the
production environment. In Hadoop, we deal with different set of sources such as
batch, streaming, real time, and also sources that are complex in data formats, as
some are semi-structured and unstructured too. Managing such data is very difficult,
therefore we have some tools for data management such as Flume, Sqoop, and
Storm, which are mentioned as follows:

• Apache Flume: Apache Flume is a widely used tool for efficiently collecting,
aggregating, and moving large amounts of log data from many different
sources to a centralized data store. Flume is a distributed, reliable, and
available system. It performs well if a source is streaming, for example,
log files.

• Apache Sqoop: Sqoop can be used to manage data between Hadoop
and relational databases, enterprise data warehouses, and NoSQL systems.
Sqoop has different connectors with respective data stores and using these
connectors, Sqoop can import and export data in MapReduce, and can
import and export data in parallel mode. Sqoop is also fault tolerant.

Chapter 2

[29]

• Apache Storm: Apache Storm provides a real-time, scalable, and distributed
solution for streaming data. Storm enables data-driven and automated
activities. Apache Storm can be used with any programming language
and it guarantees that data streams are processed without data loss.
Storm is datatype-agnostic, it processes data streams of any data type.

Service programming
Programming in a distributed environment is complex and care has to be taken,
otherwise it can become inefficient. To develop properly distributed applications
in Hadoop, we have some service programming tools which provide utilities that
take care of the distribution and resource management aspect. The tools that we
will be discussing are as follows:

• Apache YARN
• Apache Zookeeper

Apache YARN
Yet another Resource Negotiator (YARN) has been a revolution in the major release
of Hadoop 2.x version. YARN provides resource management and should be utilized
as a common platform for integrating different tools and utilities in a Hadoop cluster
and managing them. YARN is a resource manager that was created by separating
the processing engine and resource management capabilities of MapReduce. It
also provides the platform for processing frameworks other than MapReduce such
as, Storm, Spark, and so on. YARN has built-in support for multi-tenancy to share
cluster resource. YARN is responsible for managing and monitoring workloads
and managing high-availability features of Hadoop.

YARN has improved capabilities, so that it can also be tuned for streaming and
real-time analysis, which is a huge benefit and need in some scenarios. YARN is
also backward compatible for existing MapReduce apps.

Some applications powered by YARN are as follows:

• Apache Hadoop MapReduce
• Apache Spark
• Apache Storm
• Apache Tez
• Apache S4

Hadoop Ecosystem

[30]

Apache Zookeeper
ZooKeeper is a distributed, open source coordination service for distributed
applications. ZooKeeper exposes a simple set of primitives that distributed
applications can use for synchronization, configuration, maintenance, grouping
and naming resources for achieving co-ordination, high availability, and
synchronization. ZooKeeper runs in Java and has bindings for both Java and C.

HBase, Solr, Kata, Neo4j, and so on, are some tools which use Zookeeper to
coordinate activities.

Scheduling
The Hadoop system can have multiple jobs and these have to be scheduled many
times. Hadoop jobs' scheduling is complex and difficult to create, manage, and
monitor. We can use a system such as Oozie to coordinate and monitor Hadoop
jobs efficiently, as mentioned next:

• Apache Oozie: Oozie is a workflow and coordination service processing
system that lets the users manage multiple jobs as well as chain of jobs
written in MapReduce, Pig, and Hive, also java programs and shell sripts
too, and can link them to one another. Oozie is an extensible, scalable, and
data-aware service. Oozie can be used to set rules for beginning and ending
a workflow and it can also detect the completion of tasks.

Data analytics and machine learning
In Hadoop, and for general big data, analytics is the key interest area, as Hadoop is a
powerful tool to process complex programs and algorithms to improve the process and
business. Data analytics can identify deep insights and can help to optimize the process
and stay ahead in the competition. Due to the powerful processing nature of Hadoop,
machine learning has been in focus and a lot of development in the algorithms and
techniques have been adapted for Hadoop. Machine learning techniques are also used
in predictive analytics. Data analytics and machine learning is needed by competitive
organizations to stay ahead in the competition and by some researchers, especially
in life sciences, to process genes and medical records' patterns to generate much
important and useful insights and details that are quite necessary in the medical field.
This is also needed by researchers in the field of robotics to provide intelligence to
machines for performing and optimizing a task. RHadoop is a data analytics statistical
language integrated with Hadoop. Mahout is an open source machine learning API
used in Hadoop.

Chapter 2

[31]

• Apache Mahout: Mahout is a scalable machine learning API, which has a lot of
implemented machine learning libraries. Mahout is an isolated project which
can be used as a pure machine learning library, but the power of Mahout
enhances when it is integrated with Hadoop. Some of the algorithms which
are popularly used in Mahout are as follows;

 ° Recommendation
 ° Clustering
 ° Classification

System management
Deploying, provisioning, managing, and monitoring a Hadoop cluster requires
expert scripting knowledge and usually takes a good amount of effort and time
manually, but is repetitive. For performing such activities in Hadoop, we can use
tools such as Ambari.

Apache Ambari
Ambari can be used by application developers and system integrators for managing
most of the administration activities in a Hadoop cluster. Ambari is an open source
framework in the Hadoop ecosystem, which can be used for installing, provisioning,
deployment, managing, and monitoring a Hadoop cluster. Ambari's main motive is
to hide the complexity of the Hadoop cluster management and to provide a very easy
and intuitive web UI. One key feature of Ambari is that it provides RESTful APIs,
which can be used to integrate with other external tools for better management.

Summary
In this chapter, we explored the different layers, and some components which can
perform the layer functionality in the Hadoop ecosystem, and their usage.

We discussed the Hadoop system on a very high level, and we will be discussing
the Hadoop architecture in depth in Chapter 3, Pillars of Hadoop – HDFS, MapReduce,
and YARN.

[33]

Pillars of Hadoop – HDFS,
MapReduce, and YARN

We discussed in the last two chapters about big data, Hadoop, and the Hadoop
ecosystem. Now, let's discuss more technical aspects about Hadoop Architecture.
Hadoop Architecture is extremely flexible, scalable, and fault tolerant. The key to
the success of Hadoop is its architecture that allows the data to be loaded as it is and
stored in a distributed way, which has no data loss and no preprocessing is required.

We know that Hadoop is distributed computing and a parallel processing
environment. Hadoop architecture can be divided in two parts: storage and
processing. Storage in Hadoop is handled by Hadoop Distributed File System
 (HDFS), and processing is handled by MapReduce, as shown in the
following image:

Store Process

Hadoop = HDFS + MapReduce

In this chapter, we will cover the basics of HDFS concept, Architecture, some key
features, how Read and Write process happens, and some examples. MapReduce
is the heart of Hadoop, and we will cover the Architecture, Serialization Data
Types, MapReduce Steps or process, various file formats, and an example to write
MapReduce programs. After this, we will come to YARN, which is most promising
in Hadoop, and many applications have already adopted YARN, which has elevated
Hadoop's capability.

Pillars of Hadoop – HDFS, MapReduce, and YARN

[34]

HDFS
HDFS is the default storage filesystem in Hadoop, which is distributed, considerably
simple in design and extremely scalable, flexible, and with high fault tolerance
capability. HDFS architecture has a master-slave pattern due to which the slave
nodes can be better managed and utilized. HDFS can even run on commodity
hardware, and the architecture accepts that some nodes can be down and still data
has to be recovered and processed. HDFS has self-healing processes and speculative
execution, which make the system fault tolerant, and is flexible to add/remove nodes
and increases the scalability with reliability. HDFS is designed to be best suited for
MapReduce programming. One key assumption in HDFS is Moving Computation is
Cheaper than Moving Data.

Features of HDFS
The important features of HDFS are as follows:

• Scalability: HDFS is scalable to petabytes or even more. HDFS is flexible
enough to add or remove nodes, which can achieve scalability.

• Reliability and fault tolerance: HDFS replicates the data to a configurable
parameter, which gives flexibility of getting high reliability and increases the
fault tolerance of a system, as data will be stored in multiple nodes, and even
if a few nodes are down, data can be accessed from other available nodes.

• Data Coherency: HDFS has the WORM (write once, read many) model,
which simplifies the data coherency and gives high throughput.

• Hardware failure recovery: HDFS assumes some nodes in the cluster can
fail and has a good failure recovery processes which allows HDFS to run
even in commodity hardwares. HDFS has failover processes which can
recover the data and handle hardware failure recovery.

• Portability: HDFS is portable on different hardwares and softwares.
• Computation closer to data: HDFS moves the computation process

toward data instead of pulling data out for computation, which is
much faster, as data is distributed and ideal for the MapReduce process.

HDFS architecture
HDFS is managed by the daemon processes which are as follows:

• NameNode: Master process

Chapter 3

[35]

• DataNode: Slave process
• Checkpoint NameNode or Secondary NameNode: Checkpoint process
• BackupNode: Backup NameNode

The HDFS architecture is shown in the following screenshot:

Name Node
HDFS ARCHITECTURE

Data Node Data Node Data Node Data Node

Backup Node

NameNode
NameNode is the master process daemon server in HDFS that coordinates all the
operations related to storage in Hadoop, including the read and writes in HDFS.
NameNode manages the filesystem namespace. NameNode holds the metadata
above all the file blocks, and in which all nodes of data blocks are present in the
cluster. NameNode doesn't store any data. NameNode caches the data and stores
metadata in RAM for faster access, hence it requires a system with high RAM,
otherwise NameNode can become a bottleneck in the cluster processing.

NameNode is a very critical process in HDFS and is a single point of failure,
but HDFS can be configured as HDFS HA (high availability), which allows two
NameNodes, only one of them can be active at a point of time and the other will
be in standby. Standby NameNode will be getting the updates and the DataNode
status, which makes Standby NameNode ready to take over and recover, if the
active node of NameNode fails.

Pillars of Hadoop – HDFS, MapReduce, and YARN

[36]

NameNode maintains the following two metadata files:

• Fsimage file: This holds the entire filesystem namespace, including the
mapping of blocks to files and filesystem properties

• Editlog file: This holds every change that occurs to the filesystem metadata

When NameNode starts up, it reads FsImage and EditLog files from disk, merges
all the transactions present in the EditLog to the FsImage, and flushes out this new
version into a new FsImage on disk. It can then truncate the old EditLog because its
transactions have been applied to the persistent FsImage.

DataNode
DataNode holds the actual data in HDFS and is also responsible for creating,
deleting, and replicating data blocks, as assigned by NameNode. DataNode sends
messages to NameNode, which are called as heartbeat in a periodic interval. If a
DataNode fails to send the heartbeat message, then NameNode will mark it as a
dead node. If the file data present in the DataNode becomes less than the
replication factor, then NameNode replicates the file data to other DataNodes.

Data Node Data Node Data Node Data Node Data Node

FS/namespace/meta ops

namespace backup

Heartbeats, balancing, replication etc..

Secondary
NameNode

HDFS
Client

NameNode

Data serving

Node write to local disk

Image source: http://yoyoclouds.files.wordpress.com/2011/12/hadoop_
arch.png.

http://yoyoclouds.files.wordpress.com/2011/12/hadoop_arch.png
http://yoyoclouds.files.wordpress.com/2011/12/hadoop_arch.png

Chapter 3

[37]

Checkpoint NameNode or Secondary NameNode
Checkpoint NameNode , earlier known as Secondary NameNode, is a node that has
frequent data check points of FsImage and EditLog files merged and available for
NameNode in case of any NameNode failure. Checkpoint NameNode collects and
stores the latest checkpoint. After storing, it merges the changes in the metadata
to make it available for NameNode. Checkpoint NameNode usually has to be a
separate node, and it requires a similar configuration machine as for NameNode,
as memory requirement is the same as NameNode.

BackupNode
BackupNode is similar to Checkpoint NameNode, but it keeps the updated
copy of FsImage in RAM memory and is always synchronized with NameNode.
BackupNode has the same RAM requirement as NameNode. In high availability,
BackupNode can be configured as Hot standby Node, and Zookeeper coordinates
to make BackupNode as a failover NameNode.

Data storage in HDFS
In HDFS, files are divided in blocks, are stored in multiple DataNodes, and their
metadata is stored in NameNode. For understanding how HDFS works, we need
to understand some parameters and why it is used. The parameters are as follows:

• Block: Files are divided in multiple blocks. Blocks are configurable
parameters in HDFS, where we can set the value, and files will be divided
in block size: the default block size is 64 MB in the version prior to 2.2.0 and
128 MB since Hadoop 2.2.0 version. Block size is high to minimize the cost
of disk seek time (which is slower), leverage transfer rate (which can be
high), and reduce the metadata size in NameNode for a file.

• Replication: Each block of files divided earlier is stored in multiple
DataNodes, and we can configure the number of replication factors.
The default value is 3. The replication factor is the key to achieve fault
tolerance. The higher the number of the replication factor, the system
will be highly fault tolerant and will occupy that many numbers of time
the file is saved, and also increase the metadata in NameNode. We have
to balance the replication factor, not too high and not too low.

Pillars of Hadoop – HDFS, MapReduce, and YARN

[38]

Read pipeline
The HDFS read process can be depicted in the following image:

datanode

DataNode

namenode

NameNode

datanode

DataNode

Distributed
FileSystem

FSData
InputStream

HDFS
client

1: open

3: read

6: close

client JVM

datanode

DataNode

4: read

5: read

2: get block locations

client node

The HDFS read process involves the following six steps:

1. The client using a Distributed FileSystem object of Hadoop client API
calls open() which initiate the read request.

2. Distributed FileSystem connects with NameNode. NameNode identifies
the block locations of the file to be read and in which DataNodes the block
is located. NameNode then sends the list of DataNodes in order of nearest
DataNodes from the client.

3. Distributed FileSystem then creates FSDataInputStream objects, which,
in turn, wrap a DFSInputStream, which can connect to the DataNodes
selected and get the block, and return to the client. The client initiates the
transfer by calling the read() of FSDataInputStream.

4. FSDataInputStream repeatedly calls the read() method to get the
block data.

5. When the end of the block is reached, DFSInputStream closes the connection
from the DataNode and identifies the best DataNode for the next block.

6. When the client has finished reading, it will call close() on
FSDataInputStream to close the connection.

Chapter 3

[39]

Write pipeline
The HDFS write pipeline process flow is summarized in the following image:

datanode

DataNode

datanode

DataNode

namenode

NameNodeDistributed
FileSystem

FSData
InputStream

HDFS
client

1: create

3: write

6: close

client JVM

datanode

DataNode

4: write packet 5: ack packet

2: Create

7: complete

Pipeline of
datanodes

4

5

4

5

client node

The HDFS write pipeline process flow is described in the following seven steps:

1. The client, using a Distributed FileSystem object of Hadoop client API,
calls create(), which initiates the write request.

2. Distributed FileSystem connects with NameNode. NameNode
initiates a new file creation, and creates a new record in metadata and
initiates an output stream of type FSDataOutputStream, which wraps
DFSOutputStream and returns it to the client. Before initiating the file
creation, NameNode checks if a file already exists and whether the client
has permissions to create a new file and if any of the condition is true then
an IOException is thrown to the client.

3. The client uses the FSDataOutputStream object to write the data and
calls the write() method. The FSDataOutputStream object, which is
DFSOutputStream, handles the communication with the DataNodes
and NameNode.

4. DFSOutputStream splits files to blocks and coordinates with NameNode
to identify the DataNode and the replica DataNodes. The number of the
replication factor will be the number of DataNodes identified. Data will
be sent to a DataNode in packets, and that DataNode will send the same
packet to the second DataNode, the second DataNode will send it to the
third, and so on, until the number of DataNodes is identified.

Pillars of Hadoop – HDFS, MapReduce, and YARN

[40]

5. When all the packets are received and written, DataNodes send an
acknowledgement packet to the sender DataNode, to the client.
DFSOutputStream maintains a queue internally to check if the packets are
successfully written by DataNode. DFSOutputStream also handles if the
acknowledgment is not received or DataNode fails while writing.

6. If all the packets have been successfully written, then the client closes
the stream.

7. If the process is completed, then the Distributed FileSystem object notifies
the NameNode of the status.

HDFS has some important concepts which make the architecture fault tolerant
and highly available.

Rack awareness
HDFS is fault tolerant, which can be enhanced by configuring rack awareness across
the nodes. In a large Hadoop cluster system, DataNodes will be spanned across
multiple racks, which can be configured in HDFS to identify rack information of a
DataNode. In a simplest form, HDFS can be made rack aware by using a script that
can return a rack address for an IP address of nodes. To set the rack mapping script,
specify the key topology.script.file.name in conf/hadoop-site.xml, it must
be an executable script or program, which should provide a command to run
to return a rack ID.

Rack IDs in Hadoop are hierarchical and look like path names. By default, every
node has a rack ID of/default-rack. You can set rack IDs for nodes to any arbitrary
path, for example, /foo/bar-rack. Path elements further to the left are higher up
the tree. Thus, a reasonable structure for a large installation may be /top-switch-
name/rack-name. The Hadoop rack IDs will be used to find near and far nodes for
replica placement.

Advantages of rack awareness in HDFS
Rack awareness can be used to prevent losing data when an entire rack fails and to
identify a nearest node where a block is present when reading a file. For efficient rack
awareness, a node cannot have two copies of the same block, and in a rack, a block
can be present in a maximum of two nodes. The number of racks used for block
replication should be always less than the total number of block replicas.

Chapter 3

[41]

Consider the following scenarios:

• Writing a block: When a new block is created, the first replica is placed on
the local node, the second one is placed at a different rack, and the third one
is placed on a different node at the local rack

• Reading a block: For a read request, as in the case of a normal read process,
NameNode sends the list of DataNodes in order of DataNodes that are closer
from the client and hence gives preference to the DataNodes of the same rack

To verify if a data block is corrupt, HDFS does block scanning. Every DataNode
checks the block present in it and verifies with the stored checksum, which is
generated during the block creation. Checksum is also verified after an HDFS
client reads a block and DataNode gets intimated with the result. Block Scanner
is scheduled for three weeks and can also be configured.

In case block corruption is identified, NameNode is informed, and NameNode
marks the block in the DataNode as corrupt and initiates a replication of the block,
and once a good copy is created and verified with checksum, the block from that
DataNode is deleted.

HDFS federation
We have already discussed that NameNode is tightly coupled with DataNodes
and is a SPOF (Single Point of Failure) in Hadoop 1.x. Let's try to understand the
limitations of HDFS 1.0 to understand the necessity of HDFS Federation.

Limitations of HDFS 1.0
The following are the limitations:

• Limitation to number of files: Even though HDFS can have hundreds and
thousands of nodes, as NameNode keeps the metadata in memory, the
number of files that can be stored gets limited, depending upon the map
heap memory allocated to the NameNode. The limitation arises because
of a single NameNode.

• Single namespace: Due to a single namespace, the NameNode cannot
delegate any workload and can be a bottleneck.

• SPOF: NameNode is a single point of failure as it is critical, and too much
workload can be there with NameNode.

• Cannot run non MapReduce applications: HDFS is only designed to run
applications that are MapReduce process or applications that are based on
the MapReduce framework.

Pillars of Hadoop – HDFS, MapReduce, and YARN

[42]

NameNode has single namespace and is tightly coupled with DataNodes, as all the
requests have to coordinate with NameNode to get the blocks' location, and due
to which it can become a bottleneck. NameNode has to be highly available or else
the request will not be serviced. HDFS Federation is a feature that enables Hadoop
to have independent multiple namespaces that overcome the limitations that we
discussed. Lets have a look at the following image:

Block Pools

NN-1

Pool 1

NN-k

NS k

Pool k

NN-n

NS 1 NS n

Pool n

... ...

B
lo

ck
 S

to
ra

ge
N

am
es

pa
ce

Common Storage

Datanode 2
...

Datanode 1
...

Datanode 3
...

With multiple independent namespace hierarchy, the responsibility of NameNode
is shared across multiple namespaces, which are federated but share the DataNodes
of the cluster. Due to the Federation of NameNode, some requests can get load
balanced among the NameNodes. Federated NameNodes work in multi-tenant
architecture to provide isolation.

The benefit of HDFS federation
Read and write process is faster due to multiple NameNodes by avoiding
bottleneck in case of a single NameNode process.

Horizontal scalability is achieved by HDFS Federation, which has a huge
advantage of being a highly available process and can also act as a load balancer.

HDFS ports
In the Hadoop ecosystem, components have different ports and communication
happens by their respective ports. Usually, the port number will be hard to remember.

Chapter 3

[43]

The default HDFS web UI ports are as summarized in Hortonworks docs at
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.2.0/bk_reference/
content/reference_chap2_1.html.

Service Servers Default
Ports Used

Protocol Description Need
End User
Access?

Configuration
Parameters

NameNode
WebUI

Master Nodes
(NameNode
and any
back-up
NameNodes)

50070 http Web UI
to look at
current
status of
HDFS,
explore
filesystem

Yes
(Typically
admins,
Dev/
Support
teams)

dfs.http.address

50470 https Secure http
service

dfs.https.
address

NameNode
metadata
service

Master Nodes
(NameNode
and any
back-up
NameNodes)

8020/9000 IPC Filesystem
metadata
operations

Yes (All
clients
who
directly
need to
interact
with
HDFS)

Embedded in
URI specified
by fs.default.
name

DataNode All Slave
Nodes

50075 http DataNode
WebUI to
access the
status, logs
etc.

Yes
(Typically
admins,
Dev/
Support
teams)

dfs.datanode.
http.address

50475 https Secure http
service

dfs.datanode.
https.address

50010 Data
transfer

dfs.datanode.
address

50020 IPC Metadata
operations

No dfs.datanode.
ipc.address

Checkpoint
NameNode
or
Secondary
NameNode

Secondary
NameNode
and any
backup
Secondary
NameNode

50090 http Checkpoint
for
NameNode
metadata

No dfs.secondary.
http.address

http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.2.0/bk_reference/content/reference_chap2_1.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.2.0/bk_reference/content/reference_chap2_1.html

Pillars of Hadoop – HDFS, MapReduce, and YARN

[44]

HDFS commands
The Hadoop command line environment is Linux-like. The Hadoop filesystem (fs)
provides various shell commands to perform file operations such as copying file,
viewing the contents of the file, changing ownership of files, changing permissions,
creating directories, and so on.

The syntax of Hadoop fs shell command is as follows:

hadoop fs <args>

1. Create a directory in HDFS at the given path(s):
 ° Usage:

hadoop fs -mkdir <paths>

 ° Example:

hadoop fs -mkdir /user/shiva/dir1 /user/shiva/dir2

2. List the contents of a directory:
 ° Usage:

hadoop fs -ls <args>

 ° Example:

hadoop fs -ls /user/shiva

3. Put and Get a file in HDFS:
 ° Usage(Put):

hadoop fs -put <localsrc> ... <HDFS_dest_Path>

 ° Example:
hadoop fs -put /home/shiva/Samplefile.txt /user/shiva/dir3/

 ° Usage(Get):
hadoop fs -get <hdfs_src> <localdst>

 ° Example:

hadoop fs -get /user/shiva/dir3/Samplefile.txt /home/

4. See contents of a file:
 ° Usage:

hadoop fs -cat <path[filename]>

Chapter 3

[45]

 ° Example:
hadoop fs -cat /user/shiva/dir1/abc.txt

5. Copy a file from source to destination:
 ° Usage:

hadoop fs -cp <source> <dest>

 ° Example:

hadoop fs -cp /user/shiva/dir1/abc.txt /user/shiva/dir2

6. Copy a file from/To Local filesystem to HDFS:
 ° Usage of copyFromLocal:

hadoop fs -copyFromLocal <localsrc> URI

 ° Example:
hadoop fs -copyFromLocal /home/shiva/abc.txt
/user/shiva/abc.txt

 ° Usage of copyToLocal

hadoop fs -copyToLocal [-ignorecrc] [-crc] URI <localdst>

7. Move file from source to destination:
 ° Usage:

hadoop fs -mv <src> <dest>

 ° Example:

hadoop fs -mv /user/shiva/dir1/abc.txt /user/shiva/dir2

8. Remove a file or directory in HDFS:
 ° Usage:

hadoop fs -rm <arg>

 ° Example:
hadoop fs -rm /user/shiva/dir1/abc.txt

 ° Usage of the recursive version of delete:
hadoop fs -rmr <arg>

 ° Example:

hadoop fs -rmr /user/shiva/

Pillars of Hadoop – HDFS, MapReduce, and YARN

[46]

9. Display the last few lines of a file:

 ° Usage:
hadoop fs -tail <path[filename]>

 ° Example:

hadoop fs -tail /user/shiva/dir1/abc.txt

MapReduce
MapReduce is a massive parallel processing framework that processes faster,
scalable, and fault tolerant data of a distributed environment. Similar to HDFS,
Hadoop MapReduce can also be executed even in commodity hardware, and
assumes that nodes can fail anytime and still process the job. MapReduce can
process a large volume of data in parallel, by dividing a task into independent
sub-tasks. MapReduce also has a master-slave architecture.

The input and output, even the intermediary output in a MapReduce job, are in
the form of <Key, Value> pair. Key and Value have to be serializable and do not
use the Java serialization package, but have an interface, which has to be
implemented, and which can be efficiently serialized, as the data process has
to move from one node to another. Key has to be a class that implements a
WritableComparable interface, which is necessary for sorting the key, and
Value has to be a class that implements a Writable interface.

The MapReduce architecture
MapReduce architecture has the following two daemon processes:

• JobTracker: Master process
• TaskTracker: Slave process

JobTracker
JobTracker is the master coordinator daemon process that is responsible for
coordinating and completing a MapReduce job in Hadoop. The primary functions
of JobTracker are resource management, tracking resource availability, and task
process cycle. JobTracker identifies the TaskTracker to perform certain tasks and
monitors the progress and status of a task. JobTracker is a single point of failure
for the MapReduce process.

Chapter 3

[47]

TaskTracker
TaskTracker is the slave daemon process that performs a task assigned by
JobTracker. TaskTracker sends heartbeat messages to JobTracker periodically
to notify about the free slots and sends the status to JobTracker about the task
and checks if any task has to be performed.

Serialization data types
Serialization in MapReduce is extremely important as the data and intermediate
data have to move from one TaskTracker to another on a very large scale. Java
serialization is not optimized, as even for a smaller value, the object serializer
will have higher size, which could be a bottleneck in Hadoop's performance as
Hadoop processing requires a lot of data transfer. Hence, Hadoop doesn't use
the Java serialization package and uses the Writable interface.

For serialization, Hadoop uses the following two interfaces:

• Writable interface (for values)
• WritableComparable interface (for key)

The Writable interface
The Writable interface is used for values for serialization and deserialization.
Some of the classes that implement the Writable interface are ArrayWritable,
BooleanWritable, ByteWritable, DoubleWritable, FloatWritable, IntWritable,
LongWritable, MapWritable, NullWritable, ObjectWritable, ShortWritable,
TupleWritable, VIntWritable, and VLongWritable.

We can create our own custom Writable class that can be used in MapReduce.
For creating a class, we have to implement the Writable class and implement the
following two methods:

• void write (DataOutput out): This serializes the object
• void readFields (DataInput in): This reads the input stream and

converts it to an object

WritableComparable interface
WritableComparable is used for keys, which is inherited from the Writable interface
and implements a comparable interface to provide comparison of value Objects.
Some of the implementations are BooleanWritable, BytesWritable, ByteWritable,
DoubleWritable, FloatWritable, IntWritable, LongWritable, NullWritable,
ShortWritable, Text, VIntWritable, and VLongWritable.

Pillars of Hadoop – HDFS, MapReduce, and YARN

[48]

We can create our own custom WritableComparable class that can be used in
MapReduce. For creating a class, we have to implement WritableComparable
class and implement the following three methods:

• void write (DataPutput out): This serializes the object
• void readFields (DataInput in): This reads the input stream and

converts it to an object
• Int compareTo (Object obj): Compare the values required to sort the key

The MapReduce example
MapReduce is tricky to understand initially, so we will try to understand it with
a simple example. Let's assume we have a file that has some words and the file is
divided into blocks in HDFS, and we have to count the number of occurrences of
a word in the file. We will go step by step to achieve the result using MapReduce
functionality. The whole process is illustrated in the following diagram:

Input Files

Each line passed to
individual mapper

instances

Map Key Value
Splitting

Sort and
Shuffle Reduce Key

Value Pairs

Final Output
Apple Orange Mango
Orange Grapes Plum

Apple Plum Mango
Apple Apple Plum

Apple Apple Plum

Apple Plum Mango

Orange Grapes Plum

Apple Orange Mango
Apple, 1
Orange, 1
Mango, 1

Orange, 1
Grapes, 1
Plum, 1

Apple, 1
Plum, 1
Mango, 1

Apple, 1
Apple, 1
Plum, 1

Apple, 1
Apple, 1
Apple, 1
Apple, 1

Grapes, 1 Grapes, 1

Mango, 1
Mango, 1

Plum, 3

Mango, 2

Orange, 2Orange, 1
Orange, 1

plum, 1
Plum, 1
Plum, 1

Apple, 4

Apple, 4
Grapes, 1
Mango, 2
Orange, 2
Plum, 3

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the
files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Chapter 3

[49]

The following is the description of the preceding image:

1. Each block will be processed. Each line in the block will be sent as an input to
the process. This process is called as Mapper.
Mapper parses the line, gets a word and sets <<word>, 1> for each word.
In this example, the output of Mapper for a line Apple Orange Mango will
be <Apple, 1>, <Orange, 1>, and <Mango, 1>. All Mappers will have key as
word and value as 1.

2. The next phase is where the output of Mapper, which has the same key will
be consolidated. So key with Apple, Orange, Mango, and others will be
consolidated, and values will be appended as a list, in this case
<Apple, List<1, 1, 1, 1>>, <Grapes, List<1>>, <Mango, List<1,
1>>, and so on.
The key produced by Mappers will be compared and sorted. This step is
called shuffle and sort. The key and list of values will be sent to the next
step in the sorted sequence of the key.

3. The next phase will get <key, List<>> as input, and will just count the
number of 1s in the list and will set the count value as output. This step
is called as Reducer, for example, the output for the certain steps are
given as follows:

 ° <Apple, List<1, 1, 1, 1>> will be <Apple, 4>

 ° <Grapes, List<1>> will be < Grapes, 1>

 ° <Mango, List<1, 1>> will be <Mango, 2>

4. The Reducer output will be consolidated to a file and will be saved in
HDFS as the final output.

The MapReduce process
MapReduce frameworks have multiple steps and processes or tasks. For
programmers, MapReduce abstracts most of them and, in many of the cases,
only have to care about two processes; Map and Reduce and to coordinate the
process, a Driver class program has to be written. In the Driver class, we can set
various parameters to run a MapReduce job from input, Mapper class, Reducer
class, output, and other parameters required for a MapReduce job to execute.

Pillars of Hadoop – HDFS, MapReduce, and YARN

[50]

MapReduce jobs are complex and involve multiple steps; some steps are performed
by Hadoop with default behavior and can be overridden if needed. The following
are the mandatory steps performed in MapReduce in sequence:

1. Mapper
2. Shuffle and sorting
3. Reducer

The preceding process is explained in the following figure:

Values exchanged
by shuffle process

Intermediate data
from mappers

Pre-loaded local
input data

Reducing process
generates output

Outputs stored
locally

Node 3

Mapping process

Node 2

Mapping process

Node 1

Mapping process

Reducing process

Node 3

Reducing process

Node 2

Reducing process

Node 1

Image source: Hadoop Tutorial from Yahoo!

Mapper
In MapReduce, the parallelism will be achieved by Mapper, where the Mapper
function will be present in TaskTracker, which will process a Mapper. Mapper code
should have a logic, which can be independent of other block data. Mapper logic
should leverage all the parallel steps possible in the algorithm. Input to Mapper is
set in the Driver program of a particular InputFormat type and file(s) on which the
Mapper process has to run. The output of Mapper will be a map <key, value>, key
and value set in Mapper output is not saved in HDFS, but an intermediate file is
created in the OS space path and that file is read and shuffle and sorting takes place.

Chapter 3

[51]

Shuffle and sorting
Shuffle and sort are intermediate steps in MapReduce between Mapper and Reducer,
which is handled by Hadoop and can be overridden if required. The Shuffle process
aggregates all the Mapper output by grouping key values of the Mapper output and
the value will be appended in a list of values. So, the Shuffle output format will be
a map <key, List<list of values>>. The key from the Mapper output will be
consolidated and sorted. The Mapper output will be sent to Reducer using the sorted
key sequence by default a HashPartitioner, which will send the Mapper result in a
round robin style of the sequence of number of reducers with the sorted sequence.

Reducer
In MapReduce, Reducer is the aggregator process where data after shuffle and sort,
is sent to Reducer where we have <key, List<list of values >>, and Reducer
will process on the list of values. Each key could be sent to a different Reducer.
Reducer can set the value, and that will be consolidated in the final output of a
MapReduce job and the value will be saved in HDFS as the final output.

Speculative execution
As we discussed, MapReduce jobs are broken into multiple Mapper and Reducer
processes, and some intermediate tasks, so that a job can produce hundreds or
thousands of tasks, and some tasks or nodes can take a long time to complete a task.
Hadoop monitors and detects when a task is running slower than expectation, and
if the node has a history of performing the task slower, then it starts the same task in
another node as a backup, and this is called as speculative execution of tasks. Hadoop
doesn't try to fix or diagnose the node or process, since the process is not giving
an error, but it is slow, and slowness can occur because of hardware degradation,
software misconfiguration, network congestion, and so on. For speculative execution,
JobTracker monitors the tasks after all the tasks have been initiated and identifies slow
performing tasks monitoring other running tasks. Once the slow performing task has
been marked, JobTracker initiates the task in a different node and takes the result of the
task that completes first and kills the other tasks and makes a note of the situation. If a
node is consistently lagging behind, then JobTracker gives less preference to that node.

Speculative execution can be enabled or disabled, and by default it is turned on, as it
is a useful process. Speculative execution has to monitor every task in some cases can
affect the performance and resources. Speculation Execution is not advised in jobs
where a task especially reducer can get millions of values due to skewness in data on a
specific reducer which will take longer time than other tasks and starting another task
will not help. Another case could be of a Sqoop process where a task imports the data
and if it takes more than the usual time it can start same task in another node and will
import the same data which will result in duplicate records.

Pillars of Hadoop – HDFS, MapReduce, and YARN

[52]

FileFormats
FileFormats controls the input and output in MapReduce programs. Some
FileFormats can be considered as data structures. Hadoop provides some
implemented FileFormats, and we can write our own custom FileFormats too.
We will have a look at them in the upcoming section.

InputFormats
The Mapper process steps provide the parallelism, and for faster processing, Mapper
has to be designed optimally. For performing the data independently, Input data to
Mapper is split into chunks called as InputSplit. InputSplit can be considered as a part
of input data, where data can be processed independently. A Mapper processes on an
InputSplit of data. Input to a MapReduce job has to be defined as a class implementing
the InputFormat interface and RecordReader is sometimes necessary to read data
between splits to identify independent chunks of data from the input data file.

Hadoop already has different types of InputFormat for the interpretation of various
types of input data and reading the data from the input file. InputFormat splits the
input file in fragments that are input to the map task. Examples of InputFormat
classes implemented are as follows:

• TextInputFormat is used to read text files line by line
• SequenceFileInputFormat is used to read binary file formats
• DBInputFormat subclass is a class that can be used to read data from

a SQL database
• CombineFileInputFormat is the abstract subclass of the FileInputFormat

class that can be used to combine multiple files into a single split

We can create our own custom InputFormat classes by implementing the InputFormat
interface or extending any class that implements InputFormats. Extending the class is
preferred as many of the functions written are reusable, which helps in maintainability
and reusability of a code. The class would have to override the following
two functions:

• public RecordReader createRecordReader(InputSplit
split, TaskAttemptContext context) throws IOException,
InterruptedException

• protected boolean isSplitable(JobContext context, Path file)

Chapter 3

[53]

RecordReader
InputFormat splits the data, but splits do not always end neatly at the end of a line.
The RecordReader can allow data even if the line crosses the end of the split or else
chances are of missing records that might have crossed the InputSplit boundaries.

The following figure explains the concept of RecordReader where the block size is
128 MB and the split size is 50 MB:

Block1 Block2 Block3

128Mb0Mb 256Mb 384Mb

Line1
Line2
Line3
Line4
Line5
Line6

50Mb
50Mb

50Mb
50Mb

50Mb
50Mb

We can see that there are overlaps of data split between different blocks. Splits 1 and
2 can be read from Block1, but for split 3, RecordReader has to read locally from 101
MB to 128 MB and from 129 MB to 150 MB has to be read remotely from Block 2 and
the merged data will be sent as an input to Mapper.

OutputFormats
OutputFormat implementation classes are responsible for writing the output and
results of a MapReduce job, it gives control of how you want to write the record
efficiently to optimize the result, and can be used to write the format of the data for
inter-operability with other systems. The default OutputFormat is TextOutputFormat
(we used this as an output to our WordCount example), which is key–value pair
line separated and tab delimited. TextOutputFormat can be used in many use cases,
but not in an optimized or efficient way, as it can waste space and can make the
output size larger and increase the resource utilization. Hence, we can reuse some
OutputFormats provided by Hadoop or can even write custom OutputFormats.

Pillars of Hadoop – HDFS, MapReduce, and YARN

[54]

Some available OutputFormats that are widely used, are as follows:

1. FileOutputFormat (implements the interface OutputFormat) base class for
all OutputFormats

 ° MapFileOutputFormat
 ° SequenceFileOutputFormat

SequenceFileAsBinaryOutputFormat

 ° TextOutputFormat
 ° MultipleOutputFormat

MultipleTextOutputFormat
MultipleSequenceFileOutputFormat

2. SequenceOutputFormat can be used for binary representation of the
object, which it compresses and writes as an output. OutputFormats
use the implementation of RecordWriter to actually write the data.

RecordWriter
RecordWriter interface provides more control to write the data as we want.
RecordWriter takes the input as key-value pair and can translate the format
of the data to write.

RecordWriter is an abstract class, which has two methods to be implemented,
as shown in the following:

abstract void write(K key, V value)
 Writes a key/value pair.
abstract void close(TaskAttemptContext context)
 Close this RecordWriter to future operations.

The default RecordWriter is LineRecordWriter.

Writing a MapReduce program
A MapReduce job class will have the following three mandatory classes or tasks:

• Mapper: In the Mapper class, the actual independent steps are written,
which are parallelized to run in independent sub-tasks

• Reducer: In the Reducer class, the aggregation of the Mapper output
takes place and the output is written in HDFS

Chapter 3

[55]

• Driver: In the Driver class, we can set various parameters to run a
MapReduce job from input, Mapper class, Reducer class, output,
and other parameters required for a MapReduce job to execute

We have already seen the logic of a simple WordCount example to illustrate how
MapReduce works. Now, we will see how to code it in the Java MapReduce program.

Mapper code
A Mapper class has to extend

org.apache.hadoop.mapreduce.Mapper<KEYIN,VALUEIN,KEYOUT,VALUEOUT>.

The following is the snippet of the Mapper class code:

// And override
public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException
public static class WordCountMapper extends
 Mapper<Object, Text, Text, IntWritable> {

 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();

 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {
 StringTokenizer token = new
 StringTokenizer(value.toString());
 while (token.hasMoreTokens()) {
 word.set(token.nextToken());
 context.write(word, one);
 }
 }
 }

In a map function, the input value (Apple, Orange, Mango) has to be tokenized, and
the tokenized word will be written as Mapper key and value as 1. Note that value 1
is IntWritable.

Reducer code
A Reducer class has to extend

org.apache.hadoop.mapreduce.Reducer<KEYIN,VALUEIN,KEYOUT,VALUEOUT>.

Pillars of Hadoop – HDFS, MapReduce, and YARN

[56]

The following is the code for WordCountReducer:

 // and override reduce function
protected void reduce(KEYIN key, Iterable<VALUEIN> values,
org.apache.hadoop.mapreduce.Reducer.Context context)
throws IOException, InterruptedException
public static class WordCountReducer
 extends Reducer<Text,IntWritable,Text,IntWritable> {
 private IntWritable count = new IntWritable();

 public void reduce(Text key, Iterable<IntWritable> values,
 Context context
) throws IOException, InterruptedException {
 int sum = 0;
 for (IntWritable val : values) {
 sum += val.get();
 }
 count.set(sum);
 context.write(key, count);
 }
 }

Reducer input will be <word, List<1,1,…>> for WordCount Reducer has to sum
the list of values and write the value. Reducer output will be the key as word and
value as count.

Driver code
Driver code in MapReduce will be mostly boiler plate code with just changes in the
parameters, and may need to set some Auxiliary class, as shown in the following:

public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 Job job = Job.getInstance(conf, "word count");
 job.setJarByClass(WordCount.class);
 job.setMapperClass(WordCountMapper.class);
 job.setReducerClass(WordCountReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);
}

Chapter 3

[57]

Driver code has to create an instance of the Configuration object, which is used to
get an instance of Job class. In Job class, we can set the following:

• MapperClass
• ReducerClass
• OutputKeyClass
• OutputValueClass
• InputFormat
• OutputFormat
• JarByClass

The whole program of WordCount is as follows:

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount {

 public static class WordCountMapper
 extends Mapper<Object, Text, Text, IntWritable>{

 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();

 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {
 StringTokenizer token = new
 StringTokenizer(value.toString());

Pillars of Hadoop – HDFS, MapReduce, and YARN

[58]

 while (token.hasMoreTokens()) {
 word.set(token.nextToken());
 context.write(word, one);
 }
 }
 }

 public static class WordCountReducer extends
 Reducer<Text,IntWritable,Text,IntWritable> {
 private IntWritable count = new IntWritable();

 public void reduce(Text key, Iterable<IntWritable> values,
 Context context) throws IOException, InterruptedException {
 int sum = 0;
 for (IntWritable val : values) {
 sum += val.get();
 }
 count.set(sum);
 context.write(key, count);
 }
 }

 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 Job job = Job.getInstance(conf, "word count");
 job.setJarByClass(WordCount.class);
 job.setMapperClass(WordCountMapper.class);
 job.setReducerClass(WordCountReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);
 }
}

Chapter 3

[59]

Compile WordCount.java and create a jar.

Run the application:

$ bin/hadoop jar wc.jar WordCount /input /user/shiva/wordcount/output

Output:

$ bin/hdfs dfs -cat /user/shiva/wordcount/output/part-r-00000

Auxiliary steps
Along with Mapper, shuffle and sort, and Reducer, there are other auxiliary steps in
MapReduce that can be set, or a default implementation can be overridden to process
the MapReduce job. The following are some processes which we will discuss:

• Combiner
• Partitioner

The preceding points are discussed in the following figure:

The MapReduce Pipeline

A mapper receives (Key, Value) & outputs (Key, Value)
A reducer receives (Key, Iterable[Value]) and outputs (Key, Value)

Partitioning/ Sorting/ Grouping provides the Iterable [Value] & Scaling

Mappers=> KV

Mapper

Mapper

Mapper

Mapper

K%#Partitions
Sort

Sort

Sort

Grouping

Grouping

Grouping

Reducer

Reducer

Reducer

Reducers => K,V

partitioning

partitioning

partitioning

partitioning

H

D

F

S

H

D

F

S

Pillars of Hadoop – HDFS, MapReduce, and YARN

[60]

Combiner
Combiners are node-local reducers. Combiners are used to reduce the number of
key values set by Mapper, and we can reduce the number of data sent for shuffling.
Many programs would have Reducer as the Combiner class and can have a different
implementation from Reducer if needed, The combiner is specified for a job using
job.setCombinerClass(CombinerClassName).

Combiner should have the same input/output key and value types as the output
types of your Mapper. Combiners can only be used on the functions that are
commutative (a.b = b.a) and associative {a. (b.c) = (a.b).c}.

In the WordCount example, we can use a combiner, which can be the same as the
Reducer class and will improve the performance of the job.

Combiner will not always be processed by JobTracker. If the data in Mapper spills
out then Combiner will surely be called.

Partitioner
Partitioner is responsible for sending specific key-value pairs to specific reducers.
HashPartitioner is the default Partitioner, which hashes a record's key to
determine which partition the record belongs to, in a round robin fashion, according
to the number of Reducers, if specified, or the number of partitions is then equal to
the number of reduce tasks for the job. Partitioning is sometimes required to control
the key-value pairs from Mapper to move to particular Reducers. Partitioning has
a direct impact on the overall performance of the job we want to run.

Custom partitioner
Suppose we want to sort the output of the WordCount on the basis of the number
of occurrences of tokens. Assume that our job will be handled by two reducers, as
shown in the following:

Setting Number of Reducer: We can specify that by using job.setNumReduceTasks(
#NoOfReducucer).

If we run our job without using any user defined Partitioner, we will get output
like the following:

Count Word Count Word
1 The 2 a
3 Is 4 because
6 As 5 of
Reducer 1 Reducer 2

Chapter 3

[61]

This is a partial sort, which is the default behavior of HashPartitioner. If we
use the correct partitioning function, we can send a count less than, or equal to, 3 to
a reducer and higher to another, and we have to set setNumReduceTasks as 2.
We will get the total order on the number of occurrences.

The output would look like the following:

Count Word Count Word
1 The 4 because
2 A 5 as
3 Is 6 of
Reducer 1 Reducer 2

Let's look at how can we write a custom Partitioner class, as shown in the following:

public static class MyPartitioner extends org.apache.hadoop.
mapreduce.Partitioner<Text,Text>

{
 @Override
 public int getPartition(Text key, Text value, int numPartitions)
 {
 int count =Integer.parseInt(line[1]);
 if(count<=3)
 return 0;
 else
 return 1;
 }
}

And in Driver class
job.setPartitionerClass(MyPartitioner.class);

YARN
YARN is Yet Another Resource Negotiator, the next generation compute and
cluster management technology. YARN provides a platform to build/run multiple
distributed applications in Hadoop. YARN was released in the Hadoop 2.0 version
in 2012, marking a major change in Hadoop architecture. YARN took around 5 years
to develop in an open community.

Pillars of Hadoop – HDFS, MapReduce, and YARN

[62]

We discussed JobTracker being a single point of failure for MapReduce, and
considering Hadoop is designed to run even in commodity servers, there is a
good probability that the JobTracker can fail. JobTracker has two important
functions: resource management, and job scheduling and monitoring.

YARN delegates and splits up the responsibility into separate daemons and
achieves better performance and fault tolerance. Because of YARN, Hadoop,
which could work only as a batch process, can now be designed to process
interactive and real-time processing systems. This is a huge advantage as many
systems, machines, sensors, and other sources generate huge data continuously
streaming and YARN can process this data, as depicted in the following figure:

Hadoop 2 w/YARN

Multiple Engines, Single Data Set
Batch, Interactive & Real-Time

Hadoop 1

Silos & Largely batch
Single Processing engine

HDFS
(Hadoop Distributed File Stystem)

YARN: Data Operating System
(Cluster Resource Management)

Interactive
Others

Real-Time
Others

Batch
Map Reduce

MapReduce
(Cluster Resource Management

& Batch Data Processing)

HDFS
(Hadoop Distributed File Stystem)

Image source: http://hortonworks.com/labs/yarn/

YARN architecture
YARN architecture is extremely scalable, fault tolerant, and processes data faster as
compared to MapReduce 1.x. YARN focuses on high availability and utilization of
resources in the cluster. YARN architecture has the following three components:

• ResourceManager (RM)
• NodeManager (NM)
• ApplicationMaster (AM)

http://hortonworks.com/labs/yarn/

Chapter 3

[63]

YARN architecture is illustrated in the following image:

Container App Mstr

Node
Manager

ContainerApp Mstr

Node
ManagerResource

Manager

Container Container

Node
Manager

MapReduce Status

Node Status

Job Submission

Resource Request

Client

Client

Image source: http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-
yarn-site/YARN.html.

ResourceManager
In YARN, ResourceManager is the master process manager responsible for
resource management among the applications in the system. ResourceManager
has a scheduler, which only allocates the resources to the applications and resource
availability which ResourceManager gets from containers that provide information
such as memory, disk, CPU, network, and so on.

NodeManager
In YARN, NodeManager is present in all the nodes, which is responsible for
containers, authentication, monitoring resource usage, and reports the information
to ResourceManager. Similar to TaskTracker, NodeManager sends heartbeats to
ResourceManager.

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

Pillars of Hadoop – HDFS, MapReduce, and YARN

[64]

ApplicationMaster
ApplicationMaster is present for each application, responsible for managing each and
every instance of applications that run within YARN. ApplicationMaster coordinates
with ResourceManager for the negotiation of the resources and coordinates with the
NodeManager to monitor the execution and resource consumption of containers, such
as resource allocations of CPU, memory, and so on.

Applications powered by YARN
Below are some of the applications that have adapted YARN to leverage its features
and achieve high availability:

• Apache Giraph: Graph processing
• Apache Hama: Advanced Analytics
• Apache Hadoop MapReduce: Batch processing
• Apache Tez: Interactive/Batch on top of Hive
• Apache S4: Stream processing
• Apache Samza: Stream processing
• Apache Storm: Stream processing
• Apache Spark: Realtime Iterative processing
• Hoya: Hbase on YARN

Summary
In this chapter, we have discussed HDFS, MapReduce, and YARN in detail.

HDFS is highly scalable, fault tolerant, reliable, and portable, and is designed
to work even on commodity hardwares. HDFS architecture has four daemon
processes, which are NameNode, DataNode, Checkpoint NameNode, and Backup
Node. HDFS has a lot of complex design challenges, which are managed by different
techniques such as Replication, Heartbeat, Block concept, Rack Awareness, and Block
Scanner, and HDFS Federation makes HDFS highly available and fault tolerant.

Chapter 3

[65]

Hadoop MapReduce is also highly scalable, fault tolerant, and designed to work
even in commodity hardwares. MapReduce architecture has a master JobTracker
and multiple worker TaskTracker processes in the Nodes. MapReduce jobs are
broken into multistep processes, which are Mapper, Shuffle, Sort, Reducer, and
auxiliary Combiner and Partitioner. MapReduce jobs needs a lot of data transfer,
for which Hadoop uses Writable and WritableComparable interfaces. MapReduce
FileFormats has an InputFormat interface, RecordReader, OutputFormat, and
RecordWriter to improve the processing and efficiency.

YARN is a distributed resource manager to manage and run different applications
on top of Hadoop, and provides much needed enhancements to the MapReduce
framework, that can make Hadoop much more available, scalable, and integrable.
YARN Architecture has the following components: ResourceManager, NodeManager,
and ApplicationMaster. Many applications are built on top of YARN, which has
made Hadoop much more stable and integrable with other applications.

In the next chapter, we will cover Data Access component technologies,
which are used in the Hadoop ecosystem, such as Hive and Pig, as it helps to
ease the programming model and makes it faster and more maintainable.

[67]

Data Access Components –
Hive and Pig

Hadoop can usually hold terabytes or petabytes of data to process; hence Data
Access is an extremely important aspect in any project or product, especially with
Hadoop. As we deal with Big Data for processing data, we will have to perform
some ad hoc processing to get insights of data and design strategies. Hadoop's
basic processing layer is MapReduce, which as we discussed earlier, is a massively
parallel processing framework that is scalable, faster, adaptable, and fault tolerant.

We will look at some limitations of MapReduce programming and some
programming abstraction layers such as Hive and Pig in detail, which can execute
MapReduce using a user friendly language for faster development and management.
Hive and Pig are quite useful and handy when it comes to easily do some ad hoc
analysis and some not very complex analysis.

Need of a data processing tool on
Hadoop
MapReduce is the key to perform processing on Big Data, but it is complex to
understand, design, code, and optimize. MapReduce has a high learning curve,
which requires good programming skills to master. Usually Big Data users come
from different backgrounds such as Programming, Database administrators,
scripting, Analyst, Data science, Data Managers, and so on, and not all users
can adapt to the programming model of MapReduce. Hence we have different
abstractions for the data access components for Hadoop.

Data Access Components – Hive and Pig

[68]

The data access components are very useful for developers as they may not need
to learn MapReduce programming in detail and can still utilize the MapReduce
framework in an interface in which they can be much more comfortable and can help
in faster development and better manageability of the code. Abstractions can help ad
hoc processing on data quickly and concentrate on the business logic.

The two widely used data access components in the Hadoop ecosystem are:

• Pig
• Hive

Let us discuss each of these in detail with some examples.

Pig
Pig is a component which has the abstraction wrapper of Pig Latin language on top
of MapReduce. Pig was developed by Yahoo! around 2006 and was contributed to
Apache as an open source project. Pig Latin is a data flow language that is more
comfortable for a procedural language developer or user. Pig can help manage the
data in a flow which is ideal for the data flow process, ETL (Extract Transform Load),
or the ELT (Extract Load Transform) process ad hoc data analysis.

Pig can be used in a much easier way for structured and semi-structured data
analysis. Pig was developed based on a philosophy, which is that Pigs can eat
anything, live anywhere, can be easily controlled and modified by the user,
and it is important to process data quickly.

Pig data types
Pig has a collection of primitive data types, as well as complex data types. Inputs
and outputs to Pig's relational operators are specified using these data types:

• Primitive: int, long, float, double, chararray, and bytearray
• Map: Map is an associative array data type that stores a chararray key

and its associated value. The data type of a value in a map can be a complex
type. If the type of the value cannot be determined, Pig defaults to the
bytearray data type. The key and value association is specified as the #
symbol. The key values within a map have to be unique.
Syntax: [key#value, key1#value1…]

Chapter 4

[69]

• Tuple: A tuple data type is a collection of data values. They are of fixed
length and ordered. Tuple is similar to a record in a SQL table, without
restrictions on the column types. Each data value is called a field. Ordering
of values offers the capability to randomly access a value within a tuple.
Syntax: (value1, value2, value3…)

• Bag: A bag data type is a container for tuples and other bags. They are
unordered, that is, a tuple or a bag within a bag cannot be accessed randomly.
There are no constraints on the structure of the tuples contained in a bag.
Duplicate tuples or bags are allowed within a bag.

Syntax: {(tuple1), (tuple2)…}

Pig allows nesting of complex data structures where you can nest a tuple inside a
tuple, a bag, and a Map. Pig Latin statements work with relations, which can be
thought of as:

• A relation (similar to, database table) is a bag
• A bag is a collection of tuples
• A tuple (similar to, database row) is an ordered set of fields
• A field is a piece of data

The Pig architecture
The Pig data flow architecture is layered for transforming Pig Latin statements to
MapReduce steps. There are three main phases in compiling and executing a Pig
script, which are as follows:

• Logical plan
• Physical plan
• MapReduce plan

The logical plan
In the logical plan, the Pig statements are parsed for syntax errors and validation
of the input files and input data structures. A logical plan, a DAG (Directed
Acyclic Graph) of operators as nodes, and data flow as edges are then prepared.
Optimizations based on in-built rules happen at this stage. The logical plan has a
one-to-one correspondence with the operators.

Data Access Components – Hive and Pig

[70]

The physical plan
A translation of each operator into the physical form of execution happens during
this stage. For the MapReduce platform, except for a few, most operators have a
one-to-one correspondence with the physical plan. In addition to the logical
operators, there are a few physical operators too. They are as follows:

• Local Rearrange (LR)
• Global Rearrange (GR)
• Package (P)

Logical operators like GROUP, COGROUP, or JOIN are translated into a sequence of
LR, GR, and P operators. The LR operator corresponds to the shuffle preparation
stage, where partitioning happens based on the key. The GR corresponds to the
actual shuffle between the Map and Reduce tasks. The P operator is the partitioning
operator on the Reduce side.

The MapReduce plan
The final stage of Pig compilation is to compile the physical plan to actual
MapReduce jobs. A Reduce task is required wherever a LR, GR, and P sequence is
present in the physical plan. The compiler also looks for opportunities to put in
Combiners wherever possible. The MapReduce plan for the physical plan in the
previous image has two MapReduce jobs, one corresponding to the JOIN and the
other to the GROUP in the logical plan. The MapReduce task corresponding to the
GROUP operator has a Combiner as well. It must be noted that the GROUP operation
happens in the Map task.

Pig modes
The user can run Pig in two modes:

• Local Mode: With access to a single machine, all files are installed
and run using a localhost and filesystem.

• MapReduce Mode: This is the default mode, which requires access
to a Hadoop cluster.

In Pig, there are three modes of execution:

• Interactive mode or grunt mode
• Batch mode or script mode
• Embedded mode: Embed Pig commands in a host language such as

Python or JavaScript and run the program

Chapter 4

[71]

These modes of execution can be either executed in the Local mode or in the
MapReduce mode.

Grunt shell
Grunt is Pig's interactive shell. It can be used to enter Pig Latin interactively
and provides a shell for users to interact with HDFS.

For Local mode:

Specify local mode using the -x flag:

$ pig –x local

For MapReduce mode:

Point Pig to a remote cluster by placing HADOOP_CONF_DIR on PIG_CLASSPATH.

HADOOP_CONF_DIR is the directory containing the hadoop-site.
xml, hdfs-site.xml, and mapred-site.xml files
Example: $ export PIG_CLASSPATH=<path_to_hadoop_conf_
dir>

This is given here:

$ pig

grunt>

Input data
We will be using the movies_data.csv file as a dataset for exploring Pig. The input
file has the following fields and sample data:

ID Name Year Rating Duration in sec
40146 Oscar's Oasis: Chicken Charmer

Top Gun Lizard: Wanted Power
of Love

2011 1601

40147 Transformers: Rescue Bots: Season
1: Return of the Dino Bot

2011 1324

40148 Plankton Invasion: Operation
Winkle Zone Operation Cod-
Tagion Operation Hardshell

2012 1262

Data Access Components – Hive and Pig

[72]

ID Name Year Rating Duration in sec
40149 Transformers: Rescue Bots: Season

1: Deep Trouble
2011 1324

40150 Trailer: Lift the Veil 2012 3.6 69
40151 Trailer: Pain 2012 3.6 52
40152 Todd and the Book of Pure Evil 2010 3.9
40153 Trailer: House of Cards 2012 3.7 148

Loading data
For loading your data in Pig, we use the LOAD command and map it to an alias of
relation (as movies in this example), which can read data from the filesystem or
HDFS and load it for processing within Pig. Different storage handlers are available
in Pig for handling different types of records by mentioning USING and the storage
handler function; few of the frequently used storage handler functions are:

• PigStorage which is used for structured text files with a delimiter that can be
specified and is the default storage handler

• HBaseStorage which is used for handling data from HBase tables
• BinStorage which is used for binary and machine readable formats
• JSONStorage which is used for handling JSON data and a schema that

should be specified
• TextLoader which is used for unstructured data in UTF-8

If we do not mention any handler by default, PigStorage will be used by default, and
PigStorage and TextStorage will support the compression files gzip and bzip.

Example:

grunt> movies = LOAD '/user/biadmin/shiva/movies_data.csv' USING
 PigStorage(',') as (id,name,year,rating,duration);

We can use schemas to assign types to fields:

A = LOAD 'data' AS (name, age, gpa);
 // name, age, gpa default to bytearrays

A = LOAD 'data' AS (name:chararray, age:int, gpa:float);
 // name is now a String (chararray), age is integer and gpa is
 float

Chapter 4

[73]

Dump
The dump command is very useful to interactively view the values stored in the
relation and writes the output to the console. DUMP doesn't save the data:

Example:

grunt> DUMP movies;

INFO [JobControl] org.apache.hadoop.mapreduce.lib.input.FileInputFormat
- Total input paths to process : 1

INFO [main] org.apache.hadoop.mapreduce.lib.input.FileInputFormat -
Total input paths to process : 1

(1,The Nightmare Before Christmas,1993,3.9,4568)

(2,The Mummy,1932,3.5,4388)

(3,Orphans of the Storm,1921,3.2,9062)

(4,The Object of Beauty,1991,2.8,6150)

(5,Night Tide,1963,2.8,5126)

(6,One Magic Christmas,1985,3.8,5333)

(7,Muriel's Wedding,1994,3.5,6323)

Store
The store command is used to write or continue with the data. Pig starts a job only
when a DUMP or STORE is encountered. We can use the handlers mentioned in LOAD
with STORE too.

Example:

grunt> STORE movies INTO '/temp' USING PigStorage(','); //This will
 write contents of movies to HDFS in /temp location

FOREACH generate
A FOREACH operation is used to apply a column-level expression in each record of the
relation. It is quite powerful to even allow some columns from the relation, and we
can use UDF as an expression in FOREACH.

Example:

grunt> movie_duration = FOREACH movies GENERATE name,
 (double)(duration/60);

Data Access Components – Hive and Pig

[74]

Filter
Filter is used to get rows matching the expression criteria.

Example:

grunt> movies_greater_than_four = FILTER movies BY (float)rating>4.0;

grunt> DUMP movies_greater_than_four;

We can use multiple conditions with filters and Boolean operators (AND, OR, NOT):

grunt> movies_greater_than_four_and_2012 = FILTER movies BY (float)
rating>4.0 AND year > 2012;

grunt> DUMP movies_greater_than_four_and_2012;

INFO [JobControl] org.apache.hadoop.mapreduce.lib.input.FileInputFormat
- Total input paths to process : 1

WARN [main] org.apache.pig.data.SchemaTupleBackend -
SchemaTupleBackend has already been initialized

INFO [main] org.apache.hadoop.mapreduce.lib.input.FileInputFormat -
Total input paths to process : 1

(22148,House of Cards: Season 1,2013,4.4,)

(22403,House of Cards,2013,4.4,)

(37138,Orange Is the New Black: Season 1,2013,4.5,)

(37141,Orange Is the New Black,2013,4.5,)

(37174,The Following: Season 1,2013,4.1,)

(37239,The Following,2013,4.1,)

(37318,The Carrie Diaries,2013,4.3,)

(37320,The Carrie Diaries: Season 1,2013,4.3,)

(37589,Safe Haven,2013,4.2,6936)

Group By
The Group By command is used to create groups of records with a key. Group By
relations are used to work with the aggregation functions on the grouped data.

The syntax for Group By is as follows:

alias = GROUP alias { ALL | BY expression} [, alias ALL | BY
expression …] [PARALLEL n];

Chapter 4

[75]

For example:

• To Group By (employee start year at Salesforce)
grunt> grouped_by_year = group movies by year;

• Or Group By multiple fields:

B = GROUP A BY (age, employeesince);

Limit
The Limit command limits the number of output tuples in a relation, but the tuples
return can change in a different execution of the command. For a specific tuple, we
have to use ORDER along with LIMIT, which will return the ordered set of tuples.

Example:

grunt> movies_limit_10 = LIMIT movies 10;

grunt> DUMP movies_limit_10;

INFO [JobControl] org.apache.hadoop.mapreduce.lib.input.FileInputFormat
- Total input paths to process : 1

INFO [JobControl] org.apache.hadoop.mapreduce.lib.input.FileInputFormat
- Total input paths to process : 1

WARN [main] org.apache.pig.data.SchemaTupleBackend -
SchemaTupleBackend has already been initialized

INFO [main] org.apache.hadoop.mapreduce.lib.input.FileInputFormat -
Total input paths to process : 1

(1,The Nightmare Before Christmas,1993,3.9,4568)

(2,The Mummy,1932,3.5,4388)

(3,Orphans of the Storm,1921,3.2,9062)

(4,The Object of Beauty,1991,2.8,6150)

(5,Night Tide,1963,2.8,5126)

(6,One Magic Christmas,1985,3.8,5333)

(7,Muriel's Wedding,1994,3.5,6323)

(8,Mother's Boys,1994,3.4,5733)

(9,Nosferatu: Original Version,1929,3.5,5651)

(10,Nick of Time,1995,3.4,5333)

Data Access Components – Hive and Pig

[76]

Aggregation
Pig provides a bunch of aggregation functions such as:

• AVG
• COUNT
• COUNT_STAR
• SUM
• MAX
• MIN

Example:

grunt> count_by_year = FOREACH grouped_by_year GENERATE group,
COUNT(movies);

grunt> DUMP count_by_year;

INFO [JobControl] org.apache.hadoop.mapreduce.lib.input.FileInputFormat
- Total input paths to process : 1

INFO [main] org.apache.hadoop.mapreduce.lib.input.FileInputFormat -
Total input paths to process : 1

(1913,3)

(1914,20)

.

.

 (2009,4451)

(2010,5107)

(2011,5511)

(2012,4339)

(2013,981)

(2014,1)

Cogroup
Cogroup is a generalization of group. Instead of collecting records of one input based
on a key, it collects records of n inputs based on a key. The result is a record with a
key and a bag for each input. Each bag contains all records from that input that have
the given value for the key:

$ cat > owners.csv

adam,cat

Chapter 4

[77]

adam,dog

alex,fish

alice,cat

steve,dog

$ cat > pets.csv

nemo,fish

fido,dog

rex,dog

paws,cat

wiskers,cat

grunt> owners = LOAD 'owners.csv'

>> USING PigStorage(',')

>> AS (owner:chararray,animal:chararray);

grunt> pets = LOAD 'pets.csv'

>> USING PigStorage(',')

>> AS (name:chararray,animal:chararray);

grunt> grouped = COGROUP owners BY animal, pets by animal;

grunt> DUMP grouped;

This will group each table based on the animal column. For each animal, it will
create a bag of matching rows from both tables. For this example, we get the results,
as shown in the following table:

group owners pets

cat {(adam,cat),(alice,cat)} {(paws,cat),(wiskers,cat)}

dog {(adam,dog),(steve,dog)} {(fido,dog),(rex,dog)}

fish {(alex,fish)} {(nemo,fish)}

Data Access Components – Hive and Pig

[78]

DESCRIBE
The DESCRIBE command gives the schema of a relation, as shown here:

grunt> Describe grouped;

grouped: {group: chararray,owners: {(owner: chararray,animal:
 chararray)},pets: {(name: chararray,animal: chararray)}}

EXPLAIN
The EXPLAIN command on a relation shows how the Pig script is going to get
executed. It shows the Logical plan, the Physical plan, and the MapReduce plan of
the relation. We can use the EXPLAIN command to study the optimizations that have
gone into the plans. This command can be used to optimize the script further:

grunt> explain grouped;

#---

New Logical Plan:

#---

grouped: (Name: LOStore Schema: group#107:chararray,owners#108:bag{#118:t
uple(owner#94:chararray,animal#95:chararray)},pets#110:bag{#119:tuple(nam
e#96:chararray,animal#97:chararray)})

|

|---grouped: (Name: LOCogroup Schema: group#107:chararray,owners#108:bag{
#118:tuple(owner#94:chararray,animal#95:chararray)},pets#110:bag{#119:tup
le(name#96:chararray,animal#97:chararray)})

 | |

 | animal:(Name: Project Type: chararray Uid: 95 Input: 0 Column: 1)

 | |

 | animal:(Name: Project Type: chararray Uid: 97 Input: 1 Column: 1)

 |

 |---owners: (Name: LOForEach Schema: owner#94:chararray,animal#95:cha
rarray)

 | | |

 | | (Name: LOGenerate[false,false] Schema: owner#94:
chararray,animal#95:chararray)ColumnPrune:InputUids=[95, 94]
ColumnPrune:OutputUids=[95, 94]

 | | | |

 | | | (Name: Cast Type: chararray Uid: 94)

 | | | |

 | | | |---owner:(Name: Project Type: bytearray Uid: 94 Input: 0
Column: (*))

Chapter 4

[79]

 | | | |

 | | | (Name: Cast Type: chararray Uid: 95)

 | | | |

 | | | |---animal:(Name: Project Type: bytearray Uid: 95 Input:
1 Column: (*))

 | | |

 | | |---(Name: LOInnerLoad[0] Schema: owner#94:bytearray)

 | | |

 | | |---(Name: LOInnerLoad[1] Schema: animal#95:bytearray)

 | |

 | |---owners: (Name: LOLoad Schema: owner#94:bytearray,animal#95:by
tearray)RequiredFields:null

 |

 |---pets: (Name: LOForEach Schema: name#96:chararray,animal#97:charar
ray)

 | |

 | (Name: LOGenerate[false,false] Schema: name#96:chararray,anim
al#97:chararray)ColumnPrune:InputUids=[96, 97]ColumnPrune:OutputUids=[96,
97]

 | | |

 | | (Name: Cast Type: chararray Uid: 96)

 | | |

 | | |---name:(Name: Project Type: bytearray Uid: 96 Input: 0
Column: (*))

 | | |

 | | (Name: Cast Type: chararray Uid: 97)

 | | |

 | | |---animal:(Name: Project Type: bytearray Uid: 97 Input:
1 Column: (*))

 | |

 | |---(Name: LOInnerLoad[0] Schema: name#96:bytearray)

 | |

 | |---(Name: LOInnerLoad[1] Schema: animal#97:bytearray)

 |

 |---pets: (Name: LOLoad Schema: name#96:bytearray,animal#97:bytea
rray)RequiredFields:null

#---

Data Access Components – Hive and Pig

[80]

Physical Plan:

#---

grouped: Store(fakefile:org.apache.pig.builtin.PigStorage) - scope-76

|

|---grouped: Package[tuple]{chararray} - scope-71

 |

 |---grouped: Global Rearrange[tuple] - scope-70

 |

 |---grouped: Local Rearrange[tuple]{chararray}(false) - scope-72

 | | |

 | | Project[chararray][1] - scope-73

 | |

 | |---owners: New For Each(false,false)[bag] - scope-61

 | | |

 | | Cast[chararray] - scope-56

 | | |

 | | |---Project[bytearray][0] - scope-55

 | | |

 | | Cast[chararray] - scope-59

 | | |

 | | |---Project[bytearray][1] - scope-58

 | |

 | |---owners: Load(file:///home/opt/pig/bin/owners.
csv:PigStorage(',')) - scope-54

 |

 |---grouped: Local Rearrange[tuple]{chararray}(false) - scope-74

 | |

 | Project[chararray][1] - scope-75

 |

 |---pets: New For Each(false,false)[bag] - scope-69

 | |

 | Cast[chararray] - scope-64

 | |

 | |---Project[bytearray][0] - scope-63

 | |

 | Cast[chararray] - scope-67

Chapter 4

[81]

 | |

 | |---Project[bytearray][1] - scope-66

 |

 |---pets: Load(file:///home/opt/pig/bin/pets.
csv:PigStorage(',')) - scope-62

#--

Map Reduce Plan

#--

MapReduce node scope-79

Map Plan

Union[tuple] - scope-80

|

|---grouped: Local Rearrange[tuple]{chararray}(false) - scope-72

| | |

| | Project[chararray][1] - scope-73

| |

| |---owners: New For Each(false,false)[bag] - scope-61

| | |

| | Cast[chararray] - scope-56

| | |

| | |---Project[bytearray][0] - scope-55

| | |

| | Cast[chararray] - scope-59

| | |

| | |---Project[bytearray][1] - scope-58

| |

| |---owners: Load(file:///home/opt/pig/bin/owners.
csv:PigStorage(',')) - scope-54

|

|---grouped: Local Rearrange[tuple]{chararray}(false) - scope-74

 | |

 | Project[chararray][1] - scope-75

 |

 |---pets: New For Each(false,false)[bag] - scope-69

 | |

Data Access Components – Hive and Pig

[82]

 | Cast[chararray] - scope-64

 | |

 | |---Project[bytearray][0] - scope-63

 | |

 | Cast[chararray] - scope-67

 | |

 | |---Project[bytearray][1] - scope-66

 |

 |---pets: Load(file:///home/opt/pig/bin/pets.csv:PigStorage(','))
- scope-62--------

Reduce Plan

grouped: Store(fakefile:org.apache.pig.builtin.PigStorage) - scope-76

|

|---grouped: Package[tuple]{chararray} - scope-71--------

Global sort: false

ILLUSTRATE
The ILLUSTRATE command is perhaps the most important development aid.
ILLUSTRATE on a relation samples the data and applies the query on it. This can
save a lot of time during the debugging process. The sample is significantly smaller
than the data making the code, test, and, debug cycle very fast. In many situations,
JOIN or FILTER operators may not yield any output on a sample of the data. In such
cases, ILLUSTRATE manufactures records that pass through these operators and
inserts them into the sample dataset:

grunt> illustrate grouped;

| owners | owner:chararray | animal:chararray |

| | steve | dog |

| | adam | dog |

--

| pets | name:chararray | animal:chararray |

--

| | fido | dog |

| | rex | dog |

Chapter 4

[83]

--

| grouped | group:chararray | owners:bag{:tuple(owner:chararray,a
nimal:chararray)} | pets:bag{:tuple(name:chararray,animal
:chararray)} |

| | dog | {(steve, dog), (adam, dog)}
| {(fido, dog), (rex, dog)} |

Pig is widely used in data flows and ETL, hence scripting like Pig Latin languages
helps to design the flow easily.

Hive
Hive provides a data warehouse environment in Hadoop with a SQL-like wrapper and
also translates the SQL commands in MapReduce jobs for processing. SQL commands
in Hive are called as HiveQL, which doesn't support the SQL 92 dialect and should not
be assumed to support all the keywords, as the whole idea is to hide the complexity of
MapReduce programming and perform analysis on the data.

Hive can also act as an analytical interface with other systems as most of the systems
integrate well with Hive. Hive cannot be used for handling transactions, as it doesn't
provide row-level updates and real-time queries.

The Hive architecture
Hive architecture has different components such as:

• Driver: Driver manages the lifecycle of a HiveQL statement as it moves
through Hive and also maintains a session handle for session statistics.

• Metastore: Metastore stores the system catalog and metadata about
tables, columns, partitions, and so on.

• Query Compiler: It compiles HiveQL into a DAG of optimized
map/reduce tasks.

Data Access Components – Hive and Pig

[84]

• Execution Engine: It executes the tasks produced by the compiler in
a proper dependency order. The execution engine interacts with the
underlying Hadoop instance.

• HiveServer2: It provides a thrift interface and a JDBC/ODBC server and
provides a way of integrating Hive with other applications and supports
multi-client concurrency and authentication.

• Client components such as the Command Line Interface (CLI), the web UI,
and drivers. The drivers are the JDBC/ODBC drivers provided by vendors
and other appropriate drivers.

The process flow of HiveQL is described here:

• A HiveQL statement can be submitted from the CLI, the web UI, or an
external client using interfaces such as thrift, ODBC, or JDBC.

• The driver first passes the query to the compiler where it goes through
the typical parse, type check, and semantic analysis phases, using the
metadata stored in the Metastore.

• The compiler generates a logical plan which is then optimized through a
simple rule-based optimizer. Finally, an optimized plan in the form of a DAG
of MapReduce tasks and HDFS tasks is generated. The execution engine then
executes these tasks in the order of their dependencies by using Hadoop.

Let us check more details on the Metastore, the Query Compiler, and the
Execution Engine.

Metastore
The Metastore stores all the details about the tables, partitions, schemas, columns,
types, and so on. It acts as a system catalog for Hive. It can be called from clients
from different programming languages, as the details can be queried using Thrift.
Metastore is very critical for Hive without which the structure design details cannot
be retrieved and data cannot be accessed. Hence, Metastore is backed up regularly.

Metastore can become a bottleneck in Hive, so an isolated JVM process is advised
with a local JDBC database like MySQL. Hive ensures that Metastore is not directly
accessed by Mappers and Reducers of a job; instead it is passed through an xml plan
that is generated by the compiler and contains information that is needed at runtime.

Chapter 4

[85]

The Query compiler
The query compiler uses the metadata stored by Metastore to process the
HiveQL statements to generate an execution plan. The query compiler performs
the following steps:

• Parse: The query compiler parses the statement.
• Type checking and semantic analysis: In this phase, the compiler uses the

metadata to check the type compatibility in expressions and semantics of
the statement. After the checks are validated and no errors are found, the
compiler builds a logical plan for the statement.

• Optimization: The compiler optimizes the logical plan and creates a DAG
to pass the result of one chain to the next and tries to optimize the plan by
applying different rules, if possible, for logical steps.

The Execution engine
The execution engine executes the optimized plan. It executes the plan step by step,
considering the dependent task to complete for every task in the plan. The results of
tasks are stored in a temporary location and in the final step the data is moved to the
desired location.

Data types and schemas
Hive supports all the primitive numeric data types such as TINYINT, SMALLINT, INT,
BIGINT, FLOAT, DOUBLE, and DECIMAL. In addition to these primitive data types, Hive
also supports string types such as CHAR, VARCHAR, and STRING data types. Like SQL,
time indicator data types such as TIMESTAMP and DATE are present. The BOOLEAN and
BINARY miscellaneous types are available too.

A number of complex data types are also available. The complex types can be
composed from other primitive or complex types. The complex types available are:

• STRUCT: These are groupings of data elements similar to a C-struct. The
dot notation is used to dereference elements within a struct. A field within
column C defined as a STRUCT {x INT, y STRING} can be accessed as A.x
or A.y.
Syntax: STRUCT<field_name : data_type>

Data Access Components – Hive and Pig

[86]

• MAP: These are key value data types. Providing the key within square braces
can help access a value. A value of a map column M that maps from key x to
value y can be accessed by M[x].There is no restriction on the type stored by
the value, though the key needs to be of a primitive type.
Syntax: MAP<primitive_type, data_type>

• ARRAY: These are lists that can be randomly accessed through their
position. The syntax to access an array element is the same as a map. But
what goes into the square braces is a zero-based index of the element.
Syntax: ARRAY<data_type>

• UNION: There is a union type available in Hive. It can hold an element of
one of the data types specified in the union.

Syntax: UNIONTYPE<data_type1, data_type2…>

Installing Hive
Hive can be installed by downloading and unpacking a tarball, or you can download
the source code and build Hive using Maven (release 0.13 and later) or Ant (release
0.12 and earlier).

The Hive installation process has these requirements:

• Java 1.7 (preferred) or Java 1.6
• Hadoop 2.x (preferred) or 1.x. Hive versions up to 0.13 but it also supports

0.20.x or 0.23.x
• Hive is commonly used in production in Linux and Windows environments

Start by downloading the most recent stable release of Hive from one of the Apache
download mirrors (see Hive Releases).

Next, you need to unpack the tarball. This will result in the creation of a subdirectory
named hive-x.y.z (where x.y.z is the release number):

$ tar -xzvf hive-x.y.z.tar.gz

Set the environment variable HIVE_HOME to point to the installation directory:

 $ cd hive-x.y.z

 $ export HIVE_HOME={{pwd}}

Finally, add $HIVE_HOME/bin to your Path:

 $ export PATH=$HIVE_HOME/bin:$PATH

Chapter 4

[87]

Starting Hive shell
For using Hive shell, we should follow these steps:

1. The user must create /tmp and /user/hive/warehouse and set them as
chmod g+w in HDFS before a table can be created in Hive. The commands to
perform this setup are these:
 $HADOOP_HOME/bin$./hadoop dfs -mkdir /tmp

 $HADOOP_HOME/bin$./hadoop dfs -mkdir /user/hive/warehouse

 $HADOOP_HOME/bin$./hadoop dfs -chmod g+w /tmp

 $HADOOP_HOME/bin$./hadoop dfs -chmod g+w
 /user/hive/warehouse

2. To use the Hive command-line interface (cli) from the shell, use the
following script:

 $HIVE_HOME/bin$./hive

HiveQL
HiveQL has a wide range of Hive built-in operators, Hive built-in functions, Hive
built-in aggregate functions, UDF, and UDAF for user-defined functions.

DDL (Data Definition Language) operations
Let's start with the DDL operation commands which are:

• Create database: The Create database command is used for creating a
database in Hive. Example:
hive> Create database shiva;

OK

Time taken: 0.764 seconds

• Show database: The Show database command is used to list down all the
existing databases in Hive. Example:
hive> show databases;

OK

default

shiva

Time taken: 4.458 seconds, Fetched: 2 row(s)

Data Access Components – Hive and Pig

[88]

• Use database: The Use database command is used to select a database for
the session. Example:
hive> use shiva;

• Create table: The Create table is used to create a Hive table. In the create
table command, we can specify whether a table is Managed or External, if
it requires partitioning, bucketing, and other important features in the Hive
table. An example of a simple "create table" option is this:

hive> Create table person (name STRING , add STRING);

The Create table command has many options which we will see in the create
table section given next. The preceding command is the simplest form of table
creation in Hive.

The Create command has a lot of options for specific cases and its requirements are:

CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name

[(col_name data_type [COMMENT col_comment], ...)]

[COMMENT table_comment]

[PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]

[CLUSTERED BY (col_name, col_name, ...) [SORTED BY (col_name [ASC|DESC],
...)] INTO num_buckets BUCKETS]

[ROW FORMAT row_format] [STORED AS file_format]

[LOCATION hdfs_path]

[TBLPROPERTIES (property_name=property_value, ...)]

[AS select_statement]

• Create table: This command creates a table with the given table name and
the following options explained:

 ° IF NOT EXISTS: This command is used to skip the error if a table or
view with the same name already exists.

 ° The EXTERNAL keyword: As we discussed earlier, this command
allows us to create a table and we have to provide a LOCATION
for this.

 ° ROW FORMAT: We can use custom SerDe or native SerDe while
creating a table. A native SerDe is used if ROW FORMAT is not
specified or ROW FORMAT DELIMITED is specified. You can use
the DELIMITED clause to read delimited files.

Chapter 4

[89]

 ° STORED AS: We can use TEXTFILE if the data needs to be stored
as plain text files. Use STORED AS SEQUENCEFILE if the data
needs to be compressed.

 ° PARTITIONED BY: Partitioned tables can be created using the
PARTITIONED BY clause.

 ° CLUSTERED BY: Further, tables or partitions can be bucketed
using columns, and data can be sorted within that bucket via
SORT BY columns. This can improve the performance of certain
kinds of queries.

 ° TBLPROPERTIES: This clause allows you to tag the table definition
with your own metadata key/value pairs.

• Show tables: The Show tables command is used to list all the tables present
in the database:
hive>Show tables;

OK

person

Time taken: 0.057 seconds, Fetched: 1 row(s)

hive>Show tables '.*n';-- List all the table end that end with s.

OK

person

Time taken: 0.057 seconds, Fetched: 1 row(s)

• Describe table: The describe table command is used to get useful
information about the table and the columns.
hive> describe person;

OK

name string None

add string None

Time taken: 0.181 seconds, Fetched: 2 row(s)

• Alter table: The Alter table command is used to change table metadata
and to add partitioning or bucketing.
hive> Alter table person ADD COLUMNS (PNO INT);

OK

Time taken: 0.334 seconds

Data Access Components – Hive and Pig

[90]

• Drop table: The drop table command is used to remove the table from
Hive metadata; if the table is Hive-managed, then this command will also
remove the data, and if it's external then only the Hive metadata is removed.

hive>drop table person;

DML (Data Manipulation Language) operations
Now, let's look at the DML operation commands:

Load data: A file in Hive can be loaded from local, as well as from HDFS; by default
Hive will look in HDFS.

The input data we are using is simple personal data having Name, add, and pno; a
sample of this data is like this:

Name add pno
Alvin Joyner 678-8957 Nisi Avenue 1
Jasper G. Robertson 8336 Tincidunt Av. 2
Deirdre Fulton 624-9370 Nisl. Street 3
Hillary Craig Ap #198-3439 Id Av. 4
Blaze Carr Ap #283-9985 Purus Road 5

Look at the following command:

hive>LOAD DATA INPATH 'hdfs://localhost:9000/user/hive/shiva/PersonData.
csv' OVERWRITE INTO TABLE person;

Loading data to table shiva.person

OK

Time taken: 0.721 seconds

The preceding command will load data from an HDFS file/directory to the table,
and the process of loading data from HDFS will result in moving the file/directory.

For Local Data load, use the following code:

hive>LOAD DATA LOCAL INPATH './examples/shiva/file1.txt' OVERWRITE
 INTO TABLE person;

We can also load the data with PARTITION:

hive>LOAD DATA LOCAL INPATH './examples/ shiva /file2.txt'

 OVERWRITE INTO TABLE person PARTITION (date='26-02-2014');

Chapter 4

[91]

The SQL operation
Querying the data in Hive can be done as shown in the following sections:

SELECT: SELECT is the projection operator in SQL. The clauses used for this
function are:

• SELECT scans the table specified by the FROM clause
• WHERE gives the condition of what to filter
• GROUP BY gives a list of columns which then specify how to aggregate

the records
• CLUSTER BY, DISTRIBUTE BY, and SORT BY specify the sort order and

algorithm
• LIMIT specifies the # of records to retrieve:

SELECT [ALL | DISTINCT] select_expr, select_expr,

FROM table_reference

[WHERE where_condition]

[GROUP BY col_list]

[HAVING having_condition]

[CLUSTER BY col_list | [DISTRIBUTE BY col_list] [SORT BY
 col_list]]

[LIMIT number];

Example:

hive>select * from person where name = 'Alvin Joyner';

Total MapReduce jobs = 1

Launching Job 1 out of 1

Number of reduce tasks is set to 0 since there's no reduce operator

Starting Job = job_201503051113_2664, Tracking URL = http://machine76.
bigdatadomain.com:50030/jobdetails.jsp?jobid=job_201503051113_2664

Hadoop job information for Stage-1: number of mappers: 1; number of
reducers: 0

2015-03-24 14:52:54,541 Stage-1 map = 0%, reduce = 0%

2015-03-24 14:52:58,570 Stage-1 map = 100%, reduce = 0%, Cumulative CPU
2.57 sec

2015-03-24 14:52:59,579 Stage-1 map = 100%, reduce = 100%, Cumulative
CPU 2.57 sec

MapReduce Total cumulative CPU time: 2 seconds 570 msec

Data Access Components – Hive and Pig

[92]

Ended Job = job_201503051113_2664

MapReduce Jobs Launched:

Job 0: Map: 1 Cumulative CPU: 2.57 sec HDFS Read: 4502 HDFS Write: 0
SUCCESS

Total MapReduce CPU Time Spent: 2 seconds 570 msec

OK

Time taken: 12.53 seconds

Joins
HiveQL supports the following types of joins:

• JOIN
• LEFT OUTER JOIN
• RIGHT OUTER JOIN
• FULL OUTER JOIN

Only equi join is supported in HiveQL; non-equality condition joins cannot be
executed. The default join option in HiveQL is equi join, whereas in SQL the default
is inner join; one syntactic difference in also present which is we have to mention
LEFT OUTER JOIN and RIGHT OUTER JOIN whereas in SQL LEFT JOIN and RIGHT
JOIN works.

HiveQL is converted into MapReduce jobs, hence we have to design the query
keeping the MapReduce paradigm in mind. The joins are executed as Mapside join
or reduce side join depending on the parser and the optimization plan, hence the
thumb rule is to join the smaller tables earlier to avoid the huge amount of data
transfer or process and join the larger table at the last. The reason behind this, is
that in every MapReduce stage of the joint, the last table is streamlined through
the reducers; whereas the others are buffered.

Example:

Hive> SELECT a.val1, a.val2, b.val, c.val

 > FROM a

 > JOIN b ON (a.key = b.key)

 > LEFT OUTER JOIN c ON (a.key = c.key);

As mentioned in the Hive wiki, the following conditions are not supported:

• Union followed by a MapJoin
• Lateral View followed by a MapJoin

Chapter 4

[93]

• Reduce Sink (Group By/Join/Sort By/Cluster By/Distribute By) followed
by MapJoin

• MapJoin followed by Union
• MapJoin followed by Join
• MapJoin followed by MapJoin

Aggregations
HiveQL supports aggregations and also allows for multiple aggregations to be
done at the same time. The possible aggregators are:

• count(*), count(expr), count(DISTINCT expr[, expr_.])
• sum(col), sum(DISTINCT col)
• avg(col), avg(DISTINCT col)
• min(col)

• max(col)

Example:

hive> SELECT a, sum(b) FROM t1

 > GROUP BY a;

Hive also supports map-side aggregation for Group By for improving the
performance but would require more memory. If we set hive.map.aggr as true
(the default is false), then Hive will do the first-level aggregation directly in the
map task.

hive> set hive.map.aggr=true;

hive> SELECT COUNT(*) FROM table2;

Built-in functions
Hive has numerous built-in functions and some of its widely used functions are:

• concat(string A, string B,...)

• substr(string A, int start)

• round(double a)

• upper(string A), lower(string A)

• trim(string A)

• to_date(string timestamp)

• year(string date), month(string date), day(string date)

Data Access Components – Hive and Pig

[94]

Custom UDF (User Defined Functions)
We can create our own Custom UDF functions and use it in Hive queries. Hive
provides an interface for user-defined functions where custom functions can be
written in Java and deployed, which can be used as a function in HiveQL. The
steps to be performed for Custom UDF are these:

1. Create a new Java class that extends UDF with one or more methods
named evaluate:
import org.apache.hadoop.hive.ql.exec.UDF;
import org.apache.hadoop.io.Text;
public class LowerUDF extends UDF
{
 public Text evaluate(final Text s)
 {
 if (s == null) { return null; }
 return new Text(s.toString().toLowerCase());
 }
}

2. Now, compile the function and make jar.
3. Deploy jars for user-defined functions:

hive> add jar my_jar.jar;

Added my_jar.jar to class path

4. Once Hive has started with your jars in the classpath, the final step is to
register your function:
create temporary function my_lowerUDF as 'Lower';

5. Now, you can start using it.

hive> select my_lowerUDF(title), sum(freq) from titles group
 by my_lowerUDF(title);

Managing tables – external versus managed
Hive has the flexibility to manage only metadata or metadata along with the data.
In Hive the two types of data management are:

• Managed: Metadata along with data will be managed by Hive.
• External: Only metadata will be stored and managed by Hive.

The managed table in Hive should be used if we want Hive to manage the lifecycle
of the table, and data should be used in the case of a temporary table.

Chapter 4

[95]

The advantages of using an external table are:

• We can use a custom location like HBase, Cassandra, and so on.
• Data can be processed by the other system which can avoid locking,

while processing and improving the performance
• In the DROP table command, only the metadata will be deleted and the data

will not be deleted.

SerDe
One of the important benefits of using Hadoop is its flexibility to store and provide
interfaces to process semi-structured and unstructured data. Hive can also be
used for processing this data; Hive does it due to its complex data types and
SerDe properties. SerDe is a Serializer and Deserializer interface which can allow
marshalling and unmarshalling of string or binary data in Java objects, which can
be used by Hive for reading and writing in tables. Hive has some built-in SerDe
libraries such as Avro, ORC, RegEx, Thrift, Parquet, and CSV; it also has a third
party SerDe like that of JSON SerDe provided by Amazon.

We can also write our custom SerDe. For writing a custom SerDe class, we have to
override some methods:

• public void initialize (Configuration conf, Properties tbl)
throws SerDeException: The initialize() method is called only once
and we can get and set some commonly used information from the table
properties such as column types and names.

• public Writable serialize (Object obj, ObjectInspector oi)
throws SerDeException: The serialize() method should have the logic
of seralization that takes a Java object representing a row of data and
generates a writable interface object which can be serialized.

• public Class<? extends Writable> getSerializedClass ():
The getSerializedClass() returns the return type class of the
serialized object.

• public Object deserialize (Writable blob) throws
SerDeException: The deserialize() should have the deserialization logic.

• public ObjectInspector getObjectInspector () throws
SerDeException: The ObjectInspectors are Hive objects that are used
to describe and examine complex type hierarchies.

• public SerDeStats getSerDeStats(): They override to support
some statistics.

Data Access Components – Hive and Pig

[96]

Let's look at a code for implementing Custom SerDe:

public class CustomSerDe implements SerDe {

 private StructTypeInfo rowTypeInfo;
 private ObjectInspector rowOI;
 private List<String> colNames;
 Object[] outputFields;
 Text outputRowText;
 private List<Object> row = new ArrayList<Object>();

 @Override
 public void initialize(Configuration conf, Properties tbl)
 throws SerDeException {
 // Get a list of the table's column names.
 String colNamesStr = tbl.getProperty(Constants.LIST_COLUMNS);
 colNames = Arrays.asList(colNamesStr.split(","));

 // Get a list of TypeInfos for the columns. This list lines up
 with
 // the list of column names.
 String colTypesStr =
 tbl.getProperty(Constants.LIST_COLUMN_TYPES);
 List<TypeInfo> colTypes =
 TypeInfoUtils.getTypeInfosFromTypeString(colTypesStr);
 rowTypeInfo =
 (StructTypeInfo) TypeInfoFactory.getStructTypeInfo(colNames,
 colTypes);
 rowOI =
 TypeInfoUtils.getStandardJavaObjectInspectorFromTypeInfo
 (rowTypeInfo);
 }

 @Override
 public Object deserialize(Writable blob) throws SerDeException {
 row.clear();
 // Implement the logic of Deserialization
 return row;
 }

 @Override
 public ObjectInspector getObjectInspector() throws SerDeException {
 return rowOI;
 }

 @Override
 public SerDeStats getSerDeStats() {

Chapter 4

[97]

 return null;
 }

 @Override
 public Class<? extends Writable> getSerializedClass() {
 return Text.class;
 }

 @Override
 public Writable serialize(Object obj, ObjectInspector oi)
 throws SerDeException {
 // Implement Logic of Serialization
 return outputRowText;
 }
}

We have to create a jar file of the class and put it in the Hive server. We can then use
the SerDe while creating the table, as shown in the following code:

CREATE EXTERNAL TABLE IF NOT EXISTS my_table (
 field1 string, field2 int, field3 string, field4 double)
ROW FORMAT SERDE 'org.apache.hadoop.hive.contrib.serde2.
 CustomSerDe' LOCATION '/path-to/my_table/';

Partitioning
Hive supports partitioning of data, which can be used for distributing data
horizontally. For example, if we have a large transaction table which frequently
queries with respect to a year or range of months, then we can partition the table
with PARTITIONED BY (year INT, month INT) while creating one.

Hive manages the data by creating subdirectories as the structure of partition
fields such as:

/DB/Table/Year/Month/.

/db/table/2014/11/.

/db/table/2014/12/.

/db/table/2015/1/.

/db/table/2015/2/.

Data Access Components – Hive and Pig

[98]

Partitioning works on managed and external tables and is advised for very large
tables which can limit the files to be processed and provide a huge advantage to
improve the performance.

Partitioning should be done carefully as, it can have the following downsides:

• If partition columns are not selected properly, then it can unevenly divide
the data and query execution will not be optimized.

• If the partition hierarchy levels become high, then the recursively scanning
the directories will be more expensive than full data scan.

Bucketing
We just discussed the fact about partitioning that it can unevenly distribute the data,
but usually it is very less likely to get even distribution. But, we can achieve almost
even distributed data for processing using bucketing. Bucketing has a value of data
into a bucket due to which the same value records can be present in the same bucket,
and a bucket can have multiple groups of values. Bucketing provides control to a
number of files, as we have to mention the number of buckets while using bucketing
in create table using CLUSTERED BY (month) INTO #noofBuckets BUCKETS.

For even distribution of data, we should set hive.enforce.bucketing = true.
Bucketing is ideal for aiding map-side joins as due to the same value data present
in buckets, Merge Sort will be much faster and more efficient. It can be used with or
without partitioning.

Summary
In this chapter, we have explored two wrappers of MapReduce programming–Pig
and Hive.

MapReduce is very powerful but a very complex high learning curve. The difficult
part is to manage the MapReduce programs and the time taken for the development
and optimizations. For easier and faster development in MapReduce, we have
abstraction layers such as Pig, which is a wrapper of the Pig Latin procedural
language on top of MapReduce, and Hive which is a SQL-like HiveQL wrapper.

Pig is used in the data flow model, as it uses the DAG model to transform the
Pig Latin language to the MapReduce job. Pig does the transformation in three
plans, namely Logical to Physical to MapReduce, where each plan translates the
statements and produces an optimized plan of execution. Pig also has the grunt
mode for analyzing data interactively. Pig has very useful commands to filter,
group, aggregate, cogroup, and so on, and it also supports user-defined functions.

Chapter 4

[99]

Hive is used by users who are more comfortable in SQL-like development as it
has HiveQL. The Hive architecture contains Driver, Metastore, Query compiler,
Execution engine, and HiveServer. HiveQL has an exhaustive list of built-in
functions and commands to analyze the data. Hive has many in-built functions
and also supports user-defined functions.

In the next chapter, we will cover one of the most important components to know
in Hadoop. It is a non relational distributed database which gives a high throughput
and performance; we call it as HBase.

[101]

Storage Component – HBase
One of the most important components of the Hadoop ecosystem is HBase, which
utilizes HDFS very efficiently and can store, manage, and process data at a much
better performing scale. NoSQL is emerging, and there is a lot of attention towards
different implementations and solutions in Big Data problem solving space. HBase is
a NoSQL database which can process the data over and above HDFS to achieve very
good performance with optimization, scalability, and manageability. In Hadoop,
HDFS is very good as storage for the WORM (Write Once Read Many) paradigm
where data is not updated. In many scenarios, the requirements would be updating,
ad hoc analysis or random reads. In HDFS, processing these requirements is not very
efficient as updating a record in a file is not possible; HDFS has to delete and rewrite
the whole file which is resource, memory and I/O intensive. But HBase can manage
such processing efficiently in a huge volume of random read and writes with a near
optimal performance.

In this chapter, we will cover the needs and the necessity of HBase and its features,
architecture, and design. We will also delve into the data models and schema design,
the components of HBase, the read and write pipeline, and some examples.

An Overview of HBase
HBase is designed based on a Google white paper, Big Table: A Distributed
Storage System for Structured Data and defined as a sparse, distributed, persistent
multidimensional sorted map. HBase is a columnar and partition oriented database,
but is stored in key value pair of data. I know it's confusing and tricky, so let's look at
the terms again in detail.

• Sparse: HBase is columnar and partition oriented. Usually, a record may
have many columns and many of them may have null data, or the values
may be repeated. HBase can efficiently and effectively save the space in
sparse data.

Storage Component – HBase

[102]

• Distributed: Data is stored in multiple nodes, scattered across the cluster.
• Persistent: Data is written and saved in the cluster.
• Multidimensional: A row can have multiple versions or timestamps of

values.
• Map: Key-Value Pair links the data structure to store the data.
• Sorted: The Key in the structure is stored in a sorted order for faster read

and write optimization.

The HBase Data Model, as we will see, is very flexible and can be tuned for many
Big Data use cases. As with every technology, HBase performs very well in some
use cases, but may not be advised in others. The following are the cases where
HBase performs well:

• Need of real-time random read/write on a high scale
• Variable Schema: columns can be added or removed at runtime
• Many columns of the datasets are sparse
• Key based retrieval and auto sharding is required
• Need of consistency more than availability
• Data or tables have to be denormalized for better performance

Advantages of HBase
HBase has good number of benefits and is a good solution in many use cases.
Let us check some of the advantages of HBase:

• Random and consistent Reads/Writes access in high volume request
• Auto failover and reliability
• Flexible, column-based multidimensional map structure
• Variable Schema: columns can be added and removed dynamically
• Integration with Java client, Thrift and REST APIs
• MapReduce and Hive/Pig integration
• Auto Partitioning and sharding
• Low latency access to data
• BlockCache and Bloom filters for query optimization
• HBase allows data compression and is ideal for sparse data

Chapter 5

[103]

The Architecture of HBase
HBase is column-oriented by design, where HBase tables are stored in ColumnFamilies
and each ColumnFamily can have multiple columns. A ColumnFamily's data are
stored in multiple files in multiple Regions where a Region holds the data for a
particular range of row keys. To manage Regions, MasterServer assigns multiple
Regions to a RegionServer. The flexibility in the design of HBase is due to the flexible
RegionServers and Regions, and is controlled by a single MasterServer. HBase
Architecture uses Zookeeper to manage the coordination and resource management
aspects which are needed to be highly available in a distributed environment. Data
management in HBase is efficiently carried out by the splitting and compaction
processes carried out in Regions to optimize the data for high volume reading and
writing. For processing a high volume of write requests, we have two levels of Cache
WAL in RegionServer and MemStore in Regions. If the data for a particular range or
row key present in a Region grows larger than the threshold, then the Regions are split
to utilize the cluster. Data is merged and compacted using the compaction process.
Data recovery is managed using WAL as it holds all the non-persistent edit data.

The HBase architecture emphasizes on scalable concurrent reads and consistent
writes. The key to designing an HBase is based on providing high performing and
scalable reads and consistent multiple writes. HBase uses the following components
which we will discuss later:

• MasterServer
• RegionServer
• Region
• Zookeeper

Lets have a look at the following figure:

HDFS MapReduce

Zookeeper

HBase API

HMaster

HBase

Hadoop
Hadoop HBase Layout

HFile

Write ahead log (WAL)

MemStore

RegionServer

Storage Component – HBase

[104]

MasterServer
MasterServer is the administrator and at a point of time, there can be only one
Master in HBase. It is responsible for the following:

• Cluster monitoring and management
• Assigning Regions to RegionServers
• Failover and load balancing by re-assigning the Regions

RegionServer
RegionServers are identified by the MasterServer, which assigns Regions to a
RegionServer. RegionServer runs on a DataNode and performs the following activities:

• Managing the Regions in coordination with the master
• Data splitting in the Regions
• Coordinating and serving the read/write

Along with managing the Regions, RegionServer has the following components or
data structures:

HDFS

RegionServer

HLog
(WAL)

BlockCache

HFile

HRegion

HStore

StoreFile MemStore

... ...
...

...

HFile

HStore HStore HStore

HRegion

Chapter 5

[105]

WAL
The data for Write in HBase is first kept in WAL and then put in MemStore. MemStore
doesn't persist the data, so if a Region becomes unavailable, the data could get lost.
WAL is extremely important in case of any crash, or to recover the data present in
the MemStore of a Region which is not responding. WAL holds all the data present
in the MemStore of the Regions managed by the RegionServer. When the data is
flushed from MemStore and persisted as HFile, the data is removed from WAL too.
The acknowledgement of a successful Write is given to the client, only after the data is
written in WAL successfully.

BlockCache
HBase caches the data block in BlockCache in each RegionServer when it is read
from HDFS for future requests for the block, which optimizes random Reads in
HBase. BlockCache works as an in-memory distributed cache. It is an interface and
its default implementation is LruBlockCache which is based on the last recently
used algorithm cache. In a newer version of HBase, we can use SlabCache and
BucketCache implementations. We will discuss all the three implementations in
the upcoming sections.

LRUBlockCache
The data blocks are cached in a JVM heap which has three areas based on the
access request, that is, single, multi, and in-memory. If a block can be accessed for
the first time, then it is saved in single access space. If the block is accessed multiple
times, then it is promoted to multi-access. The in-memory area is reserved for blocks
loaded from the in-memory flagged column families. The non-frequently accessed
blocks are removed using the least recently used technique.

SlabCache
This cache is formed by a combination of the L1(JVM heap) and L2 cache (outside
JVM heap). L2 memory is allocated using DirectByteBuffers. The block size can be
configured to a higher size as required.

Storage Component – HBase

[106]

BucketCache
It uses buckets of areas for holding cached blocks. This cache is an extension of
SlabCache where, along with the L1 and L2 cache, there is one more level of cache
which is of file mode. The file mode is intended for low latency store either in an
in-memory filesystem, or in a SSD storage.

SlabCache or BucketCache are good if the system has to perform at a
low latency so that we can utilize the outside JVM heap memory, and
when the RAM memory of the RegionServer could be exhausted.

Regions
HBase manages the availability and data distribution with Regions. Regions hold
the key for HBase to perform high velocity reads and writes. Regions also manage
the row key ordering. It has separate stores per ColumnFamily of the table, and each
store has two components MemStore and multiple StoreFiles. HBase achieves auto-
sharding using Regions. When the data grows more than the configured maximum
size of the store, the files stored in Regions are split into two equal Regions, if auto-
splitting is enabled. In a Region, the splitting process maintains the data distribution
and the compaction process optimizes the StoreFiles.

A Region can have multiple StoreFiles or blocks that hold the data for HBase,
maintained in the HFile format. A StoreFile will hold the data for a ColumnFamily
in HBase. ColumnFamily is discussed in the HBase DataModel section.

MemStore
MemStore is an in-memory storage space for a Region which holds the data files,
called StoreFiles. We have already discussed that data for a write request is first
written to WAL of RegionServer, and then it is put into MemStore. One important
thing to note is that data is not persistent in MemStore only when the StoreFiles in
MemStore reach a threshold value, specifically, the value of the property hbase.
hregion.memstore.flush.size of hbase-site.xml file; the data is flushed as a
StoreFile in the Region. As the data has to be in a sorted row key order, it is first
written, and then it's sorted before the flush for achieving a faster write. As the data
for write is present in MemStore, it also acts as a cache of the data accessed for the
recently written block data.

Chapter 5

[107]

Zookeeper
HBase uses Zookeeper to monitor a RegionServer, and recover it if it is down. All
the RegionServers are monitored by ZooKeeper. The RegionServers send heartbeat
messages to ZooKeeper, and if within a period of timeout a heartbeat is not received,
the RegionServer is considered dead, and the Master starts the recovery process.
Zookeeper is also used to identify the active Master and for the election of an
active Master.

The HBase data model
Storage of data in HBase is column oriented, in the form of a multi-hierarchical
Key-Value map. The HBase Data Model is very flexible and its beauty is to add or
remove column data on the fly, without impacting the performance. HBase can be
used to process semi-structured data. It doesn't have any specific data types as the
data is stored in bytes.

Logical components of a data model
The HBase data model has some logical components which are as follows:

• Tables
• Rows
• Column Families/Columns
• Versions/Timestamp
• Cells

The HBase table is shown in the following figure:

Row Keys
Column Families and columns
CF -> Column family
C -> Column

HBase Table

Value n

Value 3

Value 2

Value 1

CF1

C1 C2 C3

CF2

C1 C1 C2

CF3

Cell Cell Cell

Cell Cell Cell

Row n

Row 1

Row 2

Row 3

Storage Component – HBase

[108]

Let's take a look at these components in detail:

• Tables: A Table in HBase is actually more logical than physical. An HBase
Table can be described as a collection of rows. The data of a Table is presented
in different, multiple Regions, and is distributed by the range of rowkey.

• Rows: A Row is just a logical representation in HBase. Physically, the data
is not stored in row, but in columns. Rows in HBase are combinations of
columns which can have multiple column families. Each row in HBase is
identified by a rowkey which is used as a primary key index. In a Table,
rowkey is unique. If a row to be written has an existing rowkey, then the
same row gets updated.

• Column Families/Columns: A Column Family is a group of columns which
are stored together. Column Families can be used for compression. Designing
Column Families is critical for the performance and the utilization of the
advantages of HBase. In HBase we store data in denormalization form to
create a file which will hold a particular dataset to avoid joins. Ideally, we
could have multiple column families in a table but it is not advisable.
One important thing to note is that it is not advisable for a table in HBase to
have more than two level Column Family hierarchies, especially if one family
has very high data and other has considerably low data. This is because
the smaller sized Column Family data will have to be spread across many
Regions and flushing and compaction will not be as efficient as a Region
impacts adjacent families too.
A Column can be accessed in HBase using the column family and
a column qualifier is used to access a column's data, for example,
columnfamily:columnname.

• Version/Timestamp: In HBase, a rowkey (row, column, version) holds a
cell and we can have the same row and column with a different version to
hold multiple cells. HBase stores the versions in descending order of versions
so that the recent cell values are found first. Prior to HBase 0.96, the default
number of versions kept was three, but in 0.96 and later, it has been changed
to one.

• Cell: A cell is where the values are written in HBase. A cell in HBase
can be defined by a combination of rowkey {row, column, version} in an
HBase Table. The data type will be byte[] and the data stored is called
value in HBase.

We can represent the relation of HBase components in the following manner:

(Table, RowKey, ColumnFamily, Column, Timestamp) → Value

Chapter 5

[109]

ACID properties
HBase does not follow all the attributes of ACID properties. Let's see here how
HBase does adhere to specific properties:

• Atomicity: An operation in HBase either completes entirely or not at all for
a row, but across nodes it is eventually consistent.

• Durability: An update in HBase will not be lost due to WAL and MemStore.
• Consistency and Isolation HBase is strongly consistent for a single row level

but not across levels.

For more details you can check the site http://hbase.apache.org/acid-
semantics.html.

The CAP theorem
CAP theorem is also known as Brewer's theorem. CAP stands for:

• Consistency
• Availability
• Partition tolerance

These are the key design properties of any distributed system. We will not get into the
details of CAP theorem here but in short, as per the CAP theorem, a distributed system
can guarantee only two of the above three properties. As the system is distributed, it
has to be Partition tolerant. This leads to two possibilities; either CP, or AP.

HBase has a master-slave architecture. The MasterServer process is single point
of failure (we can configure High Availability for the Master which can have a
backup Master readily available) while for the RegionServer, recovery from failure
is possible but data may be unavailable for some period of time. HBase is actually
considered eventually consistent (strongly row level consistent and not strong
across levels), and implements consistency and partition tolerance. Hence, HBase
is more towards CP than AP.

The Schema design
HBase schema is drastically different from RDBMS schema design as the requirement
and the constraints are different. HBase schema should be designed as required by the
application and the schema is recommended to be de-normalized. Data distribution
depends on the rowkey, which is selected to be uniform across the cluster. Rowkey
also has a good impact on the scan performance of the request.

http://hbase.apache.org/acid-semantics.html
http://hbase.apache.org/acid-semantics.html

Storage Component – HBase

[110]

Things to take care of in HBase schema design are as follows:

• Hotspotting: Hotspotting is when one or a few Regions have a huge
load of data and the data range is frequently written or accessed causing
performance degradation. To prevent hotspotting, we can hash a value of
rowkey or a particular column so that the probability of uniform distribution
is high and the read and write will be optimized.

• Monotonically increasing Rowkeys/Timeseries data: A problem arising
with multiple Regions is that a range of rowkeys could reach the threshold
of splitting and can lead to a period of timeout. To avoid this, we should
not have the increasing column value as the initial value of rowkey.

• Reverse Timestamp: If we have timestamp in rowkey, the newer data
is pushed at the end. If the timestamp is stored like Long.MAX_VALUE
timestamp, then the newer data will be present at the start and will be
faster and can be avoided, especially in case of a scan.

Let's look at some important concepts for designing schema in HBase:

• Rowkey: Rowkey is an extremely important design parameter in HBase
schema as the data is indexed using rowkey. Rowkey is immutable; the only
way to change a rowkey is to delete and re-insert it again. Rows are sorted by
Rowkeylexicographically, that is, if the rowkey is 1, 32, 001, 225, 060, 45 the
order in which the numbers will be sorted would be 001, 060, 1, 225, 32,
45. Table files are distributed across Regions by a range of Rowkey. Usually a
combination of sequential and random keys performs better in HBase.

• Column Families: Column Family provides good scalability and flexibility
but should be designed carefully. In the current architecture of HBase, no
more than two Column Families are advised.

• Denormalize data: As HBase doesn't provide Joins on its own, data should
be denormalized. The data will usually be sparse and repeated in many
columns, which HBase can take full advantage of.

The Write pipeline
Write pipeline in HBase is carried out by the following steps:

1. Client requests data to be written in HTable, the request comes to a
RegionServer.

2. The RegionServer writes the data first in WAL.
3. The RegionServer identifies the Region which will store the data and the

data will be saved in MemStore of that Region.

Chapter 5

[111]

4. MemStore holds the data in memory and does not persist it. When the
threshold value reaches in the MemStore, then the data is flushed as a
HFile in that region.

The Read pipeline
Read in HBase is performed in the following steps:

1. Client sends a read request. The request is received by the RegionServer
which identifies all the Regions where the HFiles are present.

2. First, the MemStore of the Region is queried; if the data is present, then
the request is serviced.

3. If the data is not present, the BlockCache is queried to check if it has the
data; if yes, the request is serviced.

4. If the data is not present in the BlockCache, then it is pulled from the Region
and serviced. Now the data is cached in MemStore and BlockCache..

Compaction
In HBase, the MemStore in Regions creates many HFiles for a Column Family.
This large number of files will require more time to read and hence, can impact
the read performance. To improve the performance, HBase performs compaction
to merge files in order to reduce their number and to keep the data manageable.
The compaction process identifies the StoreFiles to merge by running an algorithm
which is called compaction policy. There are two types of compactions: minor
compactions and major compactions.

The Compaction policy
Compaction policy is the algorithm which can be used to select the
StoreFiles for merging. Two policies are possible and the available ones are
ExploringCompactionPolicy and RatioBasedCompactionPolicy. To set the policy
algorithm, we have to set the value of the property hbase.hstore.defaultengine.
compactionpolicy.class of hbase-site.xml. RatioBasedCompactionPolicy
was available as the default policy prior to HBase 0.96 and is still available.
ExploringCompactionPolicy is the default algorithm from HBase 0.96 and
the later version. The difference in these algorithms, in short, is that the
RatioBasedCompactionPolicy selects the first set that matches the criteria while
the ExploringCompactionPolicy selects the best possible set of StoreFiles with
the least work and is better suited for bulk loading of data.

Storage Component – HBase

[112]

Minor compaction
Minor compaction merges or rewrites adjacent and smaller sized StoreFiles into
one StoreFile. Minor compaction will be faster as it creates a new StoreFile and
the StoreFiles selected for Compaction are immutable. Please note that Minor
compaction does not handle the deleted and expired versions. It occurs when a
number of StoreFiles reach a threshold value; to be very specific, the value of the
hbase.hstore.compaction.min property in the hbase-site.xml. The default
value of the property is 2 and Minor compaction simply merges the smaller file to
reduce the number of files. This will be faster as data is already sorted. Some more
configurable properties that influence Minor compaction are as follows:

• hbase.store.compaction.ratio: This value determines the balance
between the read cost and write cost, a higher value will have a very less
number of files having a high read speed and a high write cost. A lesser
value will have a lower write cost while the read cost will be comparatively
higher. The value recommended is between 1.0 to 1.4.

• hbase.hstore.compaction.min.size: This value indicates the minimum
size below which the StoreFiles will be included for compaction. The default
value is 128 MB.

• hbase.hstore.compaction.max.size: This value indicates the maximum
size above which the StoreFiles will not be included for compaction.
The default value is Long.MAX_VALUE.

• hbase.hstore.compaction.min: This value indicates the minimum
number of files below which the StoreFiles will be included for compaction.
The default value is 2.

• hbase.hstore.compaction.max.size: This value indicates the maximum
number of files above which the StoreFiles will not be included for
compaction. The default value is 10.

Major compaction
Major compaction consolidates all the StoreFiles of a Region into one StoreFile.
The Major Compaction process takes a lot of time as it actually removes the expired
versions and deleted data. The initiation of this process can be time triggered,
manual, and size triggered. By default, Major Compaction runs every 24 hours but
it is recommended to start it manually as it is a write intensive and a resource
intensive process, and can block write requests to prevent JVM heap exhaustion.
The configurable properties impacting Major Compaction are:

Chapter 5

[113]

• hbase.hregion.majorcompaction: This denotes the time, in milliseconds,
between two Major compactions. We can disable time triggered Major
compaction by setting the value of this property to 0. The default value is
604800000 milliseconds (7 days).

• hbase.hregion.majorcompaction.jitter: The actual time of Major
Compaction is calculated by this property value and multiplied by the
above property hbase.hregion.majorcompaction value. The smaller the
value, the more frequent the compaction will start. The default value is 0.5 f.

Splitting
As we discussed about the file and data management in HBase, along with
compaction, Splitting Regions also is an important process. The best performance
in HBase is achieved when the data is distributed evenly across the Regions and
RegionServers which can be achieved by Splitting the Region optimally. When a
table is first created with default options, only one Region is allocated to the table
as HBase will not have sufficient information to allocate the appropriate number
of Regions. We have three types of Splitting triggers which are Pre-Splitting, Auto
Splitting, and Forced Splitting.

Pre-Splitting
To aid the splitting of a Region while creating a table, we can use Pre-Splitting to let
HBase know initially the number of Regions to allocate to a table. For Pre-Splitting
we should know the distribution of the data and if we Pre-Split the Regions and we
have a data skew, then the distribution will be non-uniform and can limit the cluster
performance. We also have to calculate the split points for the table which can be done
using the RegionSplitter utility. RegionSplitter uses pluggable SplitAlgorithm and
two pre-defined algorithms available which are HexStringSplit and UniformSplit.
HexStringSplit can be used if the row keys have prefix for hexadecimal strings and
UniformSplit can be used assuming they are random byte arrays, or we can implement
and use our own custom SplitAlgorithm.

The following is an example of using Pre-Splitting:

$ hbase org.apache.hadoop.hbase.util.RegionSplitter
 pre_splitted_table HexStringSplit -c 10 -f f1

In this command, we use the RegionSplitter with table name pre_splitted_table,
with SplitAlgorithm HexStringSplit and 10 number of regions and f1 is the
ColumnFamily name. It creates a table called, pre_splitted_table with 10 regions.

Storage Component – HBase

[114]

Auto Splitting
HBase performs Auto Splitting when a Region size increases above a threshold
value, to be very precise, value of property hbase.hregion.max.filesize of
hbase-site.xml file which has a default value of 10 GB.

Forced Splitting
In many cases, the data distribution can be non-uniform after the data increases.
HBase allows the user to split all Regions of a table or a particular Region by
specifying a split key. The command to trigger Forced Splitting is as follows:

split 'tableName'

split 'tableName', 'splitKey'

split 'regionName', 'splitKey'

Commands
To enter in HBase shell mode, use the following:

$ ${HBASE_HOME}/bin/hbase shell

.

.

HBase Shell;

hbase>

You can use help to get a list of all commands.

help
hbase> help

HBASE SHELL COMMANDS:

Create
Used for creating a new table in HBase. For now we will stick to the simplest version
which is as follows:

hbase> create 'test', 'cf'

0 row(s) in 1.2200 seconds

Chapter 5

[115]

List
Use the list command to display the list of tables created, which is as follows:

hbase> list 'test'

TABLE

test

1 row(s) in 0.0350 seconds

=> ["test"]

Put
To put data into your table, use the put command:

hbase> put 'test', 'row1', 'cf:a', 'value1'

0 row(s) in 0.1770 seconds

hbase> put 'test', 'row2', 'cf:b', 'value2'

0 row(s) in 0.0160 seconds

hbase> put 'test', 'row3', 'cf:c', 'value3'

0 row(s) in 0.0260 seconds

Scan
The Scan command is used to scan the table for data. You can limit your scan, but for
now, all data is fetched:

hbase> scan 'test'

ROW COLUMN+CELL

 row1 column=cf:a, timestamp=1403759475114, value=value1

 row2 column=cf:b, timestamp=1403759492807, value=value2

 row3 column=cf:c, timestamp=1403759503155, value=value3

3 row(s) in 0.0440 seconds

Get
The Get command will retrieve a single row of data at a time, which is shown in the
following command:

hbase> get 'test', 'row1'

COLUMN CELL

Storage Component – HBase

[116]

 cf:a timestamp=1403759475114, value=value1

1 row(s) in 0.0230 seconds

Disable
To make any setting changes in a table, we have to disable a table using the disable
command, perform the action, and re-enable it. You can re-enable it using the enable
command. The disable command is explained in the following command:

hbase> disable 'test'

0 row(s) in 1.6270 seconds

hbase> enable 'test'

0 row(s) in 0.4500 seconds

Drop
The Drop command drops or deletes a table, which is shown as follows:

hbase> drop 'test'

0 row(s) in 0.2900 seconds

HBase Hive integration
Analysts usually prefer a Hive environment due to the comfort of SQL-like syntax.
HBase is well integrated with Hive, using the StorageHandler that Hive interfaces
with. The create table syntax in Hive will look like the following:

CREATE EXTERNAL TABLE hbase_table_1(key int, value string)
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES ("hbase.columns.mapping" =
":key,ColumnFamily:Column1, columnFalimy:column2")
TBLPROPERTIES ("hbase.table.name" = "xyz");

Let us understand the syntax and the keywords used for the table:

• EXTERNAL: This is used if the table in HBase exists already, or if the table in
HBase is new and you want Hive to manage only the metadata and not the
actual data.

• STORED BY: The HBaseStorageHandler has to be used to handle the input
and output from HBase.

Chapter 5

[117]

• SERDEPROPERTIES: Hive column to HBase ColumnFamily:Column mapping
has to be specified here. In this example, key maps as a rowkey and value
maps to val column of ColumnFamily cf1.

• TBLPROPERTIES: Maps the HBase table name.

Performance tuning
The HBase architecture provides the flexibility of using different optimizations
to help the system perform optimally, increase the scalability and efficiency, and
provide better performance. HBase is the most popular NoSQL technology due to
its flexible Data Model and its interface components.

The components that are very useful and widely used are:

• Compression
• Filters
• Counters
• HBase co-processors

Compression
HBase can utilize compression due to its column-oriented design which is ideal for
block compression on Column Families. HBase handles sparse data in an optimal
way as no reference or space is occupied for null values. Compressions can be
of different types and can be compared depending upon the compression ratio,
encoding time, and decoding time. By default, HBase doesn't apply or enable any
Compression; for using Compression, the Column Family has to be enabled.

Some compression types which are available to plugin are as follows:

• GZip: It provides a higher compression ratio, but encoding and decoding
is slow and space intensive. We can use GZip as compression for infrequent
data which needs high compression ratio.

• LZO: It provides faster encoding and decoding, but a lower compression
ratio compared to GZip. LZO is under GPL license, hence it's, not shipped
along with HBase.

• Snappy: Snappy is the ideal compression type and provides faster encoding
or decoding. Its compression ratio lies somewhere between that of LZO and
GZip. Snappy is under BSD license by Google.

Storage Component – HBase

[118]

The code for enabling Compression on a ColumnFamily of an Existing Table
using HBase Shell is as follows:

hbase> disable 'test'

hbase> alter 'test', {NAME => 'cf', COMPRESSION => 'GZ'}

hbase> enable 'test'

For creating a new table with compression on a ColumnFamily, the code is as
follows:

hbase> create 'test2', { NAME => 'cf2', COMPRESSION => 'SNAPPY' }

Filters
Filters in HBase can be used to filter data according to some condition. They are
very useful for reducing the volume of data to be processed, and especially helps
save the network bandwidth and the amount of data to process for the client. Filters
move the processing logic towards data in the nodes and the result is accumulated
and sent to the client. This enhances the performance with a manageable process
and code. Filters are powerful enough to be processed for a row, column, Column
Family, Qualifier, Value, Timestamp, and so on. Filters are preferred to be used as
a Java API, but can also be used from an HBase shell. Filters can be used to perform
some ad hoc analysis as well.

Some frequently used filters, like those listed next, are already available and are
quite useful:

• Column Value: The most widely used Filter types are Column Value as
HBase has a column-oriented architectural design. We will now take a look
at some popular Column Value oriented filters:

• SingleColumnValueFilter: A SingleColumnValueFilter filters the data on a
column value of an HBase table.
Syntax:

SingleColumnValueFilter ('<ColumnFamily>', '<qualifier>', <compare
operator>, '<comparator>'

[, <filterIfColumnMissing_boolean>][, <latest_version_boolean>])

Usage:

SingleColumnValueFilter ('ColFamilyA', 'Column1', <=, 'abc', true,
false)

SingleColumnValueFilter ('ColFamilyA', 'Column1', <=, 'abc')

Chapter 5

[119]

• SingleColumnValueExcludeFilter: the SingleColumnValueExcludeFilter is
useful to exclude values from a column value of an HBase table.
Syntax:

SingleColumnValueExcludeFilter (<ColumnFamily>, <qualifier>,
 <compare operators>, <comparator> [,
 <latest_version_boolean>][,
 <filterIfColumnMissing_boolean>])

Example:

SingleColumnValueExcludeFilter ('FamilyA', 'Column1', '<=',
 'abc', 'false', 'true')

SingleColumnValueExcludeFilter ('FamilyA', 'Column1', '<=',
 'abc')

• ColumnRangeFilter: The ColumnRangeFilter operates on the Column
for filtering the column based on minColumn, maxColumn, or both.
We can either enable or disable the minColumnValue constraint by
minColumnInclusive_bool Boolean parameter, and maxColumnValue
by maxColumnInclusive_bool.
Syntax:

ColumnRangeFilter ('<minColumn >', <minColumnInclusive_bool>,
'<maxColumn>', <maxColumnInclusive_bool>)

Example:

ColumnRangeFilter ('abc', true, 'xyz', false)

• KeyValue: Some filters operate on Key-Value data.
• FamilyFilter: It operates on Column Family and compares each family

name with the comparator; it returns all the key-values in that family if
the comparison returns true.
Syntax:

FamilyFilter (<compareOp>, '<family_comparator>')

• QualifierFilter: It operates on the qualifier and compares each qualifier
name with the comparator.
Syntax:

QualifierFilter (<compareOp>, '<qualifier_comparator>')

• RowKey: Filters can also work on row level comparison and filter data.
• RowFilter: Compares each row key with the comparator using the

compare operator.
Syntax:

RowFilter (<compareOp>, '<row_comparator>')

Storage Component – HBase

[120]

Example:

RowFilter (<=, 'binary:xyz)

• Multiple Filters: We can add a combination of Filters to a FilterList and scan
them. We can choose to have OR, or AND between the filters by using:

FilterList.Operator.MUST_PASS_ALL or
 FilterList.Operator.MUST_PASS_ONE.

FilterList list = new
 FilterList(FilterList.Operator.MUST_PASS_ONE);

// Use some filter and add it in the list.

list.add(filter1);

scan.setFilter(list);

We have many other useful filters which are available and if we need, then we can
also create a custom based filter.

Counters
Another useful feature of HBase is Counters. They can be used as a distributed
Counter to increment a column value, without the overhead of locking the
complete row and reducing the synchronization on Write, for incrementing a value.
Incrementing or counters are required in many scenarios, especially in many analytical
systems like digital marketing, click stream analysis, document index models, and
so on. HBase Counters can manage with very less overhead. Distributed Counter is
very useful but poses different challenges in a distributed environment as the counter
values will be present in multiple servers at the same time and the write and read
requests will be considerably high. Therefore, to be efficient, we have two types of
Counters present in HBase which are single and multiple counters. Multiple counters
can be designed to count in an individual hierarchical level according to rowkey
distribution and can be used by summing up the Counters to get the whole counter
value. The types of counter are explained as follows:

• Single Counter: Single Counters work on specified columns in the HTable,
row wise. The methods for Single Counters provided for an HTable, are
as follows:
long incrementColumnValue(byte[] row, byte[] family, byte[]
 qualifier,long amount) throws IOException
long incrementColumnValue(byte[] row, byte[] family, byte[]
 qualifier,long amount, boolean writeToWAL) throws
 IOException

Chapter 5

[121]

We should use the second method with writeToWAL to specify whether the
write-ahead log should be active or not.

• Multiple Counter: Multiple Counters will work qualifier-wise in the HTable.
The method for Multiple Counters provided for an HTable is as follows:

Increment addColumn(byte[] family, byte[] qualifier, long
 amount)

HBase coprocessors
Coprocessor is a framework which HBase provides to empower and execute some
custom code on RegionServers. Coprocessors move the computation much closer
to the data, specifically Region-wise. Coprocessors are quite useful for calculating
aggregators, secondary indexing, complex filtering, auditing, and authorization.

HBase has some useful coprocessors implemented and open for the extension and
custom implementation of a Coprocessor. Coprocessors can be designed based on
two strategies- Observer and Endpoint, which are as follows:

• Observer: As the name suggests, Observer coprocessors can be designed
to work as a callback or in case of some event. Observers can be thought of
as triggers in RDBMS and can be operated at Region, Master, or WAL
levels. Observers have the PreXXX and PostXXX conventions for methods
to override, before and after an event respectively. The following are the
types of Observer according to the different levels:

 ° RegionObserver: The Region Observers process Region level
data. These can be used for creating secondary indexes to aid
retrieval. For every HTable Region, we can have a RegionObserver.
RegionObserver provides hooks for data manipulation events,
such as Get, Put, Delete, Scan, and so on. Common example
include preGet and postGet for Get operation and prePut
and postPut for Put operation.

 ° MasterObserver: The MasterObserver operates at the Master
Level where the DDL-type operations like create, delete, and
modify table are processed. Extreme care should be taken to
utilize MasterObserver.

 ° WALObserver: This provides hooks around the WAL processing.
It has only two methods; preWALWrite() and postWALWrite().

Storage Component – HBase

[122]

• Endpoint: Endpoints are operations which can be called via a client interface
by directly invoking it. If Observers can be thought of as triggers, then
Endpoint can be thought of as Stored Procedures of RDBMS. HBase can have
tens of millions of rows or many more; if we need to compute an aggregate
function, like a sum on that HTable, we can write an Endpoint coprocessor
which will be executed within the Regions and will return the computed result
from a Region as in map side processing. Later from all Regions result can
perform the sum as in reduce side processing. The advantage of Endpoint is
that the processing will be closer to the data and the integration will be much
more efficient.

Summary
In this chapter, you have learned that HBase is a NoSQL, Column-oriented database
with flexible schema. It has the following components – MasterServer, RegionServer,
and Regions and utilizes Zookeeper to monitor them with two caches – WAL in
RegionServers and MemStore in Regions. We also saw how HBase manages the data
by performing RegionSplitting and Compaction. HBase provides partition tolerance
and much higher consistency levels as compared to availability from the CAP theorem.

The HBase Data Model is different from the traditional RDBMS as data is stored in a
column oriented database and in a multidimensional map of key-value pairs. Rows
are identified by rowkey and are distributed across clusters using a range of values
of rowkey. Rowkey is critical in designing schema for HBase for performance and
data management.

In a Hadoop project, data management is a very critical step. In the context of Big
Data, Hadoop has the benefit of the data management aspect. But managing it with
some scripts becomes difficult and poses many challenges. We will cover these in the
next chapter with tools that can help us in managing the data with Sqoop and Flume.

[123]

Data Ingestion in
Hadoop – Sqoop and Flume

Data ingestion is critical and should be emphasized for any big data project, as the
volume of data is usually in terabytes or petabytes, maybe exabytes. Handling huge
amounts of data is always a challenge and critical. As big data systems are popular
to process unstructured or semi-structured data, this brings in complex and many
data sources that have huge amount of data. With each data source, the complexity of
system increases. Many domains or data types such as social media, marketing, genes
in healthcare, video and audio systems, telecom CDR, and so on have diverse sources
of data. Many of these produce or send data consistently on a large scale. The key issue
is to manage the data consistency and how to leverage the resource available. Data
ingestion, in particular, is complex in Hadoop or generally big data as data sources and
processing are now in batch, stream, real-time. This also increases the complexity and
management.

In this chapter, we will look at some of the challenges in data ingestion in Hadoop
and possible solutions of using tools like Sqoop and Flume. We will cover Sqoop and
Flume in detail.

Data sources
Due to the capability of processing variety of data and volume of data, data sources for
Hadoop has increased and along with that the complexity has increased enormously.
We now see huge amount of batch and streaming and real-time analysis processed in
Hadoop, for which data ingestion can become a bottleneck or can break a system, if not
designed according to the requirement.

Data Ingestion in Hadoop – Sqoop and Flume

[124]

Let's look at some of the data sources, which can produce enormous volume of data
or consistent data continuously:

• Data sensors: These are thousands of sensors, producing data continuously.
• Machine Data: Produces data which should be processed in near real time

for avoiding huge loss.
• Telco Data: CDR data and other telecom data generates high volume of data.
• Healthcare system data: Genes, images, ECR records are unstructured and

complex to process.
• Social Media: Facebook, Twitter, Google Plus, YouTube, and others get a

huge volume of data.
• Geological Data: Semiconductors and other geological data produce huge

volumes of data.
• Maps: Maps have a huge volume of data, and processing data is also a

challenge in Maps.
• Aerospace: Flight details and runway management systems produce

high-volume data and processing in real time.
• Astronomy: Planets and other objects produce heavy images, which have

to be processed at a faster rate.
• Mobile Data: Mobile generates many events and a huge volume of data at a

high velocity rate.

These are just some domains or data sources that produce data in Terabytes or
Exabytes. Data ingestion is critical and can make or break a system.

Challenges in data ingestion
The following are the challenges in data source ingestion:

• Multiple source ingestion
• Streaming / real-time ingestion
• Scalability
• Parallel processing
• Data quality
• Machine data can be on a high scale in GB per minute

Chapter 6

[125]

Sqoop
Sqoop can process data transfer between traditional databases, Hadoop, and NoSQL
database like HBase and Cassandra efficiently. Sqoop helps by providing a utility to
import and export data in Hadoop from these data sources. Sqoop helps in executing
the process in parallel and therefore in much faster speed. Sqoop utilizes connectors
and drivers to connect with the underlying database source, and executes the import
and export in multiple Mapper process, in order to execute the data in parallel and
faster. Sqoop can process bulk data transfers on HDFS, Hive, or HBase.

Connectors and drivers
Sqoop utility needs drivers and connectors for data transfer between a database and
Hadoop. One of the important step in configuring Sqoop is to get the driver and
configure it with Sqoop. Drivers are required by Sqoop to connect with them and
should be the JDBC drivers for Sqoop 1 that are provided by the database vendor
for the respective database. Drivers are not shipped with Sqoop as some drivers
are licensed, hence we have to get the JDBC driver of the database and keep it in
the Sqoop library. Connectors are required to optimize the data transfer by getting
metadata information of the database. All RDBMS Databases use SQL, but some
commands and syntax vary with other databases. This makes it difficult to get the
metadata and optimize the data. Sqoop provides generic connectors that will work
with databases such as MySQL, Oracle, PostgreSQL, DB2, and SQL Server, but are
not optimal. For optimal performance, some vendors have released their connectors
that can be plugged with Sqoop, which is shown in the following figure:

Sqoop Database

Connector Driver

Sqoop 1 architecture
Sqoop1 architecture is a client-side tool, which is tightly coupled with the Hadoop
cluster. A Sqoop command initiated by the client fetches the metadata of the tables,
columns, and data types, according to the connectors and drivers interfaces. The
import or export is translated to a Map-only Job program to load the data in parallel
between the databases and Hadoop. Clients should have the appropriate connector
and driver for the execution of the process.

Data Ingestion in Hadoop – Sqoop and Flume

[126]

The Sqoop architecture is shown in the following figure:

Sqoop

HDFS/HBase/
Hive

Hadoop

Map Task

Enterprise
Data

Warehouse

Document
Based

Systems

Relational
Database

command

Limitation of Sqoop 1
Few limitations that were realized after a wide adaptation of Sqoop 1 for data
ingestion led to Sqoop 2, which were:

• Connectors have to support the serialization format, otherwise Sqoop
cannot transfer data in that format and connectors have to be JDBC
drivers. Some database vendors do not provide it.

• Not easy to configure and install.
• Monitoring and debugging is difficult.
• Security concerns as Sqoop 1 requires root access to install and configure it.
• Only the command line argument is supported.
• Connectors are only JDBC-based.

Chapter 6

[127]

Sqoop 2 architecture
Sqoop 2 architecture overcomes the limitations of Sqoop 1, which we discussed
earlier. The features of Sqoop 2 are:

• Sqoop 2 exposes REST API as a web service, which can be easily
integrated with other systems.

• The connectors and drivers are managed centrally in one place.
• Sqoop 2 is well configured and integrated with HBase, Hive, and Oozie

for interoperability and management.
• Connectors can be non-JDBC based.
• As a service-oriented design, Sqoop 2 can have role-based authentication

and audit trail logging to increase the security.

The following is an architecture of Sqoop 2:

HDFS/HBase/
Hive

Hadoop

Map Task

Enterprise
Data

Warehouse

Document
Based

Systems

Relational
Database

Reduce
Task

Metadata
Repository

Sqoop
Client

CLI

browser

Sqoop 2 Architecture

REST
UI

Sqoop
Server

Connectors

Metadata

Data Ingestion in Hadoop – Sqoop and Flume

[128]

Imports
Sqoop import is executed in two steps:

1. Gather metadata
2. Submit map only job

The following figure explains the import in to Sqoop:

(2) Submit Map-Only Job

(1) Gather
Metadata

ORDERS

Sqoop Import

HDFS Storage

Hadoop Cluster

Map

Map

Map

Map

Sqoop Job

Sqoop import provides the following options:

• Import an entire table:
sqoop import \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table cities

Chapter 6

[129]

• Import a subset of data:
sqoop import \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table cities \
--where "country = 'USA'"

• Change file format, by default the data will be saved in tab separated
csv format but Sqoop provides option for saving the data in Hadoop
SequenceFile, Avro binary format and Parquet file:
sqoop import \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table cities \
--as-sequencefile

sqoop import \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table cities \
--as-avrodatafile

• Compressing imported data:
sqoop import \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--table cities \
--compress \
--compression-codec org.apache.hadoop.io.compress.BZip2Codec

• Bulk import:
sqoop import \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--table cities \
--direct

Data Ingestion in Hadoop – Sqoop and Flume

[130]

• Importing all your table:
sqoop import-all-tables \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop

• Incremental import:
sqoop import \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table visits \
--incremental append \
--check-column id \
--last-value 1

• Free form query import:
sqoop import \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--query 'SELECT normcities.id, \
 countries.country, \
 normcities.city \
 FROM normcities \
 JOIN countries USING(country_id) \
 WHERE $CONDITIONS' \
--split-by id \
--target-dir cities

• Custom boundary query import:

sqoop import \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--query 'SELECT normcities.id, \
countries.country, \
normcities.city \
FROM normcities \
JOIN countries USING(country_id) \
WHERE $CONDITIONS' \
--split-by id \
--target-dir cities \
--boundary-query "select min(id), max(id) from normcities"

Chapter 6

[131]

Exports
Sqoop Export is also in a similar process, only the source will be HDFS. Export is
performed in two steps;

• Gather metadata
• Submit map-only job

The following figure explains the export into Sqoop:

(2) Submit Map-Only Job

(1) Gather
Metadata

ORDERS

Sqoop Export

HDFS Storage

Hadoop Cluster

Map

Map

Map

Map

Sqoop Job

Sqoop Export has following options:

• Exporting files from under the HDFS directory to a table:
sqoop export \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table cities \
--export-dir cities

Data Ingestion in Hadoop – Sqoop and Flume

[132]

• Batch inserts export:
sqoop export \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table cities \
--export-dir cities \
--batch

• Updating existing dataset:
sqoop export \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table cities \
--update-key id

• Upsert export:
sqoop export \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table cities \
--update-key id \
--update-mode allowinsert

• Column export:

sqoop export \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table cities \
--columns country,city

Apache Flume
Flume is extremely popular data ingestion system, which can be used to ingest
data from different multiple sources and can put it in multiple destinations.
Flume provides a framework to handle and process data on a larger scale,
and it is very reliable.

Chapter 6

[133]

Flume is usually described as distributed, reliable, scalable, manageable, and
customizable to ingest and process data from different multiple data sources to
multiple destinations.

As we already discussed about the different type of data sources. One thing which
makes the design more difficult is that data formats changes frequently in some cases
especially social media data in JSON, and usually a Big Data systems has multiple data
sources. Flume is extremely efficient in handling such scenarios and provides a greater
control over each data source and the processing layer. Flume can be configured in
three modes: single node, pseudo-distributed, and fully-distributed mode.

Flume is adapted due to its capability to be highly reliable, flexible, customizable,
extensible, and can work in a distributed manner in parallel to process big data.

Reliability
Reliability in distributed environment is difficult to design and achieve. Flume excels
in the reliability aspect. Flume handles the logical component dynamically to achieve
load balancing and reliability. It can guarantee the delivery of the message if the
agent node is active. As we mentioned, reliability is difficult to achieve, although
Flume can achieve it with some cost and can be resource intensive. According to the
requirement and need, Flume provides three levels of reliability, which are:

• End-to-end: The end-to-end level is the most reliable level and guarantees
the delivery of an event as long as the agent is alive. The durability is
achieved by writing the event in a Write Ahead Log (WAL) file that can
be used to recover the events, even in case of crash.

• Store on failure: The store on failure level relies on the confirmation
acknowledgement of sending events to sink. In case of acknowledgment
not received by the node, the data is stored in the local disk and waits till
the node recovers of another node is identified. This level is reliable, but

• can have data loss in case of silent failure.
• Best effort: The best effort level is the lowest in reliability and can have

data loss, but data processing will be faster. In best effort, no attempt will
be made to retry or confirm, hence data can be lost.

Data Ingestion in Hadoop – Sqoop and Flume

[134]

Flume architecture
Flume architecture is a very flexible and customizable composed agent that can be
configured as multitiered for a data flow process. The data flow design allows the
source or data to be transferred or processed from the source to the destination.
The components are wired together in chains and in different tiers called the logical
node's configuration. The logical nodes are configured in three tiers, namely,
Client, Collector, and Storage. The first tier is the Client that captures the data from
data source and forwards the it to the Collector, which consolidates the data after
processing and sends it to the Storage tier.

The Flume process and the logical components are controlled by the Flume
Master. The logical nodes are very flexible and can be added or deleted
dynamically by the Master.

Multitier topology
In Flume, Agents can be configured to be a Client, Collector, or Storage. A Client
Agent ingests the data from a data source and pushes it to another Agent, using an
Avro/Thrift or intermediatory storage area. A Collector Agent takes an input from
another Agent and acts as a source for the Storage Agent. A Storage Agent takes
an input from a collector Agent or another Agent and saves the data at the end
storage location. Each tier can have multiple independent Agents, which can act
as a load balancer. Tier Sink can forward the events to any of the available next
hop destination. The flume topology is shown in the following figure:

A Tiered Flume Topology

Application
(Flume Client)

Tier

Flume
Collector Tier

Flume
Storage Tier

Data
Tier

Flume Client
Application
Server 1

Flume Collector
Agent

Flume Storage
Agent

Flume Client
Application
Server 2

Flume Collector
Agent

Flume Storage
Agent

HDFS

(load balanced) (load balanced)

Flume physical has two components: Flume Master and Flume Nodes.

Chapter 6

[135]

Flume master
Flume Master, as we mentioned earlier, assigns and coordinates the physical and
dynamic logical layer, hence, Master is important in achieving the flexibility and
reliability. The logical nodes also check with Master for any updates in configuration.
For achieving high availability of Master, we can configure multiple Masters or use
Zookeeper to manage Master and Nodes.

Flume nodes
Flume Nodes are physical JVM processes, which run in each nodes. In Flume, each
machine has a single JVM process as a physical node that acts as a container for
multiple logical processes. Even though Agents and the Collectors are logically
separate processes, they can run in the same machine.

Logical components in Flume have two components, namely, Event and Agent.
We will discuss the following components:

• Events: Flume has a data flow model, where a unit of data in the flow is
called an Event. Events carry payload and an optional set of headers. Events
can be customized by implementing Event Interface or overriding existing
Event in Flume. Events flow through one or more Agents specifically from
Source to the Channel to the Sink component of Agent.

• Agent: An Agent in Flume provides the flexibility to Flume architecture, as
it runs on a separate JVM process. An Agent in Flume has three components:
Source, Channel, and Sink. Agent works on hop-by-hop flow. It receives
events from the Source and puts it in a Channel. It then stores or processes
the events and forwards them via Sink to the next hop destination. An
Agent can have multiple Sink to forward the events to multiple Agents.
The following figure explains the Agent's role:

Sink

Client

Source

Agent

Sink 1

Sink 2

Channel 2

Channel 1

Data Ingestion in Hadoop – Sqoop and Flume

[136]

Components in Agent
Let's look at the components of Agent, that is, Source and Sink in the
upcoming sections.

Source
Source only listens and receives events from the data source. It then translates it
into events and puts it in the Channels Queue. Flume is very well integrated with
various source types such as Avro, Thrift, HTTP, and others. For defining a source,
we have to set the values of property type. Some frequently used source types are:

Source Type value of property
Type

Mandatory property to set for the source type

Avro avro bind: hostname or IP address
port: Port # to bind to

Thrift thrift bind: hostname or IP address
port: Port # to bind to

Unix
command

exec command: unix command to execute like tail or cat

JMS source jms initialContextFactory: Example:
org.apache.activemq.jndi.
ActiveMQInitialContextFactory

connectionFactory: The JNDI name the
connection factory should appear as:
providerURL: The JMS provider URL
destinationName; Destination name
destinationType: Destination type (queue or
topic)

Spooling
directory
source

spooldir spoolDir: The directory from which to read
files from

Twitter org.apache.
flume.source.
twitter.
TwitterSource

P.S.: This source is highly experimental and may
change between minor versions of Flume. Use at
your own risk:
consumerKey: OAuth consumer key
consumerSecret: OAuth consumer secret
accessToken: OAuth access token
accessTokenSecret: OAuth token secret

Chapter 6

[137]

Source Type value of property
Type

Mandatory property to set for the source type

NetCat
source

netcat bind: hostname or IP address
port: Port # to bind to

Sequence
generator
source

seq Sequence generator starts with 0 and incremental
by 1 index.

HTTP source http port: Port # to bind to

For more details, we can check the Apache Flume user guide page
https://flume.apache.org/FlumeUserGuide.html#flume-sources.

Example: For creating a source of Agent that should get the updated data
of a log file, the mandatory parameter and value should be:

• type: exec
• command: tail –f log_file
• channels: <channel_name>

The preceding points are explained in the following command:

agent.sources.source_log-tail.type = exec

agent.sources.source_log-tail.command = tail -F /log/system.log

agent.sources.source_log-tail.channels = channel1

Sink
Sink collects the events from channels and forwards it to next hop destination as
an output of the Agent.

For defining a sink, we have to set values of property type. Some frequently used
sink types are:

Sink type value of property type Mandatory property to set for the
sink type

HDFS sink hdfs hdfs.path – HDFS directory path
Logger sink logger

Avro avro bind: hostname or IP address
port: Port # to bind to

Thrift thrift bind: hostname or IP address
port: Port # to bind to

https://flume.apache.org/FlumeUserGuide.html#flume-sources

Data Ingestion in Hadoop – Sqoop and Flume

[138]

Sink type value of property type Mandatory property to set for the
sink type

IRC sink irc hostname: hostname or IP address
nick: Nick name
chan: channel

File Roll Sink file_roll sink.directory: The directory where
files will be stored

Null Sink null

HBaseSinks hbase table: The name of the table in HBase
to write to.
columnFamily: The column family in
HBase to write to.

AsyncHBaseSink asynchbase table: The name of the table in Hbase to
write to.
columnFamily: The column family in
HBase to write to.

MorphlineSolrSink org.apache.
flume.sink.
solr.morphline.
MorphlineSolrSink

morphlineFile: The relative or
absolute path on the local file system
to the morphline configuration file.
Example: /etc/flume-ng/conf/
morphline.conf

ElasticSearchSink org.apache.
flume.sink.
elasticsearch.
ElasticSearchSink

hostNames: Comma separated list of
hostname:port, if the port is not present
the default port 9300 will be used

Example: For a sink that outputs to hdfs:

agent.sinks.log-hdfs.channel = channel1

agent.sinks.log-hdfs.type = hdfs

agent.sinks.log-hdfs.hdfs.path = hdfs://<server> /log/system.log/

Channels
Channels are temporary stores in an Agent, which can be used to hold the events
received from the source and transfer the events to sink. Channels are typically of
two forms:

• In-Memory Queues: These channels provides high throughput as data is
not persisted due to which if an Agent fails, events are not recovered.

Chapter 6

[139]

• Disk-based Queues: These channels provide full recovery even in case of
event failure, but are a little slower than In-Memory due to the persistence
of events.

Memory Channel, File Channel, and JDBC Channel are the three frequently used
Flume Channels. We'll discuss them in the upcoming sections.

Memory channel
Memory channel stores events in an In-memory heap space. Memory channels are
faster because of In-memory and as it won't persist the data to the disk. Memory
channel should not be used if data loss is a concern because data will not be recovered
if there is any crash in the process or machine. The properties that can be configured
for defining Memory channel are:

• type: The value of the property should be org.apache.flume.channel.
MemoryChannel.

• capacity: This is the maximum number of events the channel can hold.
The default value is 100.

• transactionCapacity: This is the maximum number of events that the source
can send the events to the channel per transaction. The default value is 100.

• keep-alive: This is the timeout period for adding and removing an event.
The default value is 3.

• byteCapacity: This is the maximum size of space allowed for the channel.
The default value is 80 percent of the total heap memory allocated to the JVM.

• byteCapacityBufferPercentage: This is the percent age of buffer between the
byte capacity of the channel and the total size of the bodies of all events
currently in the channel. The default value is 20.

File Channel
File channel persists the events on the disk and thus doesn't lose event data in case
of a crash. File channels are used where data loss is not acceptable and to achieve
reliability for processing. The configuration properties that can be set are:

• type: The value of the property should be file.
• capacity: The maximum number of events the channel can hold. The default

value is 1000000.
• transactionCapacity: The maximum number of events the source can

send the events to the channel per transaction. The default value is 10000.
• checkpointDir: The directory path where the checkpoint data should

be saved.

Data Ingestion in Hadoop – Sqoop and Flume

[140]

• dataDirs: The directory where the data should be saved. The directories can
be multiple and it can improve file channel performance.

• useDualCheckpoints: By default, the value of this property is false, which
means checkpoint directory will not be backed up. If true, the checkpoint
directory will be backed up.

• backupCheckpointDir: If useDualCheckpoints is true, the directory
where the checkpoint should be saved.

• checkpointInterval: The time between the checkpoints.
• maxFileSize: The maximum size of a single log file. The default value

is 2146435071.
• minimumRequiredSpace: The minimum size below which the channel

will stop operation to avoid data corruption. The default value is 524288000.
• keep-alive: The timeout period for adding and removing an event. The

default value is 3.

JDBC Channel
JDBC channel persists the events in a database, and currently only derby database
is supported. This channel can be used where the events should be recovered and
all event processing is of utmost importance. The configuration properties to be
set for JDBC channel are:

• type: The value of type should be jdbc.
• db.type: The type of database default to and currently only DERBY value

that can be set.
• driver.class: The class for vendor JDBC driver. The default value is org.

apache.derby.jdbc.EmbeddedDriver.
• driver.url: The connection url.
• db.username: The user ID of the database to connect.

Example:

db.password: password of the user id for database to connect.Example of a
Channel:agent.channels = c1

agent.channels.c1.type = memory

agent.channels.c1.capacity = 10000

agent.channels.c1.transactionCapacity = 10000

agent.channels.c1.byteCapacityBufferPercentage = 20

agent.channels.c1.byteCapacity = 800000

Chapter 6

[141]

A simple Flume configuration can be represented by the following figure:

log4j
appender

Tail-able
files such
as logs

(Apache,
syslog,...)

syslog
UDP/TCP

stdout of
launched

executable

Custom
data

sources

Agent Node

Collector Node

Master

HDFS

HBase

Flat files

Custom
data sinks

Agent Node

Agent Node

Agent Node

Agent Node

Collector Node

Master Master

Examples of configuring Flume
Flume can be configured as a Single Agent or Multi Agent; we will see the respective
examples in the upcoming sections.

The Single agent example
We will look at an example of the logger example and save it in HDFS and a memory
channel, using the following code:

Source of an Agent with tail
agent.source = source_log-tail
agent.sources.source_log-tail.type = exec
agent.sources.source_log-tail.command = tail -F /log/logger.log
agent.sources.source_log-tail.channels = memoryChannel

Sink of an Agent to save in HDFS
agent.sinks = log-hdfs
agent.sinks.log-hdfs.channel = memoryChannel
agent.sinks.log-hdfs.type = hdfs
agent.sinks.log-hdfs.hdfs.path = /log/logger.log

Channel of an Agent to store in memory

Data Ingestion in Hadoop – Sqoop and Flume

[142]

agent.channels = memoryChannel
agent.channels.memoryChannel.type = memory
agent.channels.memoryChannel.capacity = 10000
agent.channels.memoryChannel.transactionCapacity = 10000
agent.channels.memoryChannel.byteCapacityBufferPercentage = 20
agent.channels.memoryChannel.byteCapacity = 800000

Start the flume process, using the following command:

$ flume-ng agent -n agent -c conf -f conf/flume-conf.properties
 -Dflume.root.logger=INFO,console

Multiple flows in an agent
We can have multiple source, channel, and sink in an Agent configuration,
using the following command:

<Agent>.sources = <Source1> <Source2>

<Agent>.sinks = <Sink1> <Sink2>

<Agent>.channels = <Channel1> <Channel2>

We can define the corresponding sources, sinks, and channels in the
upcoming sections.

Configuring a multiagent setup
To configure a multi-agent setup, we have to link up the agents via an Avro/Thrift
where an Avro sink type of one Agent acts as an Avro source type of another Agent.
We should have two Agents. The first one will have a logger source and an Avro
sink, which is shown in the following code:

Source of an Agent with tail
agent1.source = source_log-tail
agent1.sources.source_log-tail.type = exec
agent1.sources.source_log-tail.command = tail -F /log/logger.log
agent1.sources.source_log-tail.channels = memoryChannel

agent1.sinks.avro-sink.type = avro
agent1.sinks.avro-sink.hostname = 192.168.0.1 #<hostname>
agent1.sinks.avro-sink.port = 1111

agent1.channels = memoryChannel

Chapter 6

[143]

agent1.channels.memoryChannel.type = memory
agent1.channels.memoryChannel.capacity = 10000
agent1.channels.memoryChannel.transactionCapacity = 10000
agent1.channels.memoryChannel.byteCapacityBufferPercentage = 20
agent1.channels.memoryChannel.byteCapacity = 800000

The second Agent will have the Avro source of the first Agent sink:

Source of an Agent with Avro source listening to sink of first Agent
agent2.source = avro-sink
agent2.sources.avro-sink.type = avro
agent2.sources.avro-sink.hostname = 192.168.0.1 #<hostname>
agent2.sources.avro-sink.port = 1111
agent2.sources.avro-sink.channels = memoryChannel

Sink of an Agent to save in HDFS
agent2.sinks = log-hdfs
agent2.sinks.log-hdfs.channel = memoryChannel
agent2.sinks.log-hdfs.type = hdfs
agent2.sinks.log-hdfs.hdfs.path = /log/logger.log

agent2.channels = memoryChannel
agent2.channels.memoryChannel.type = memory
agent2.channels.memoryChannel.capacity = 10000
agent2.channels.memoryChannel.transactionCapacity = 10000
agent2.channels.memoryChannel.byteCapacityBufferPercentage = 20
agent2.channels.memoryChannel.byteCapacity = 800000

Start the flume agents in different nodes.

Start Agent2 in node 1, using the following command:

$ flume-ng agent -n agent2 -c conf -f conf/flume-conf.properties
 -Dflume.root.logger=INFO,console

Start Agent1 in node 2, using the following command:

$ flume-ng agent -n agent1 -c conf -f conf/flume-conf.properties
 -Dflume.root.logger=INFO,console

Data Ingestion in Hadoop – Sqoop and Flume

[144]

Summary
One of the critical phases of big data project is Data Ingestion, which we discussed.
It is challenging and complex to develop and manage. Nowadays, data sources are
in different formats and produce data in high velocity. We explored Sqoop and
Flume architecture and its applications, in a nut shell.

We also learned how Sqoop provides a utility to import and export data between
Hadoop and databases using connectors and drivers. Sqoop 1 is only JDBC based,
and client-side responsibility and interoperability is limited code. Sqoop 2 is not
only JDBC based, but also exposes restful API web-based architecture which is
easily integrable.

Apache Flume is a reliable, flexible, customizable, and extensible framework to
ingest data from fan in and fan out process. Flume has multitier topology, in which
Agents can be configured to be used as Client, Collector, or Storage layer.

Hadoop was primarily a batch system, which has limited use cases and many big
data use cases required for streaming data analysis and real-time capability. For
processing real-time analysis, we will discuss Storm and Spark in the next chapter
to process data effectively.

[145]

Streaming and Real-time
Analysis – Storm and Spark

As we have already discussed about Hadoop being a Batch processing system and
some data source types that varies in their velocity or rate, volume of data. Many
system especially machines generates a lot of data consistently, they need to process
such high volume data to maintain quality and avoid heavy loss and thus the need
for Stream processing has emerged. To design systems that are built as Lambda
implementation, which are Batch as well as Stream processing systems, We should
have combination of different environment that can integrate with each other to
process the data and quite obviously which increases the complexity of designing the
system. Streaming data is complex to store, analyze, process, and maintain. Prior to
version 2.x, Hadoop was only a Batch processing system, and after the emergence of
YARN and other frameworks and the integration of those frameworks with YARN,
Hadoop can be designed for streaming and real-time analysis with better performance.
Various initiatives and contributions have elevated the capability of Hadoop with its
integration with systems such as Storm and Spark.

In this chapter, we will cover the paradigms of Storm and Spark frameworks, in
order to process streaming and conduct real-time analysis efficiently.

An introduction to Storm
Storm can process streaming data really fast (clocked at over one million messages
per second per node); it is scalable (thousands of worker nodes of cluster), fault
tolerant, and reliable (message processing is guaranteed). Storm is easy to use and
deploy, which also eases its maintainability. Hadoop is primarily designed for batch
processing and for Lambda Architecture systems. Storm is well-integrated with
Hadoop, in order to provide distributed real-time streaming analysis reliably with
good fault tolerance for big data.

Streaming and Real-time Analysis – Storm and Spark

[146]

Storm was developed by Twitter and later contributed to Apache. Storm's benchmark
results are quite outstanding at over a million sets of data called tuples processed per
second per node. Storm utilizes a Thrift interface; hence, the client can be written in
any language and even non-JVM language communicates over JSON-based protocol.
Considering the complexity of Storm, it is a fairly easy-to-use API.

Features of Storm
Some important features of Storm are as follows:

• Simple programming model
• Free and open source
• Can be used with any language
• Fault-tolerant
• Distributed and horizontally scalable—runs across a cluster of

machines in parallel
• Reliable—guaranteed message processing
• Fast—processes streaming data in real time
• Easy to deploy and operate

Physical architecture of Storm
Storm architecture is based on the master-slave model and utilizes Zookeeper for
coordination between the master and slaves. It is composed of four components:

• Nimbus: Master process that distributes processing across clusters
• Supervisor: Manages worker nodes
• Worker: Executes tasks assigned by Nimbus
• Zookeeper: Coordinates between Nimbus and Supervisors

Workers send heartbeats to Supervisors and Nimbus via Zookeeper. If a Worker
or Supervisor is not able to respond, then Nimbus reassigns the work to another
node in the cluster, which is shown in the following figure:

Chapter 7

[147]

Nimbus

ZooKeeper

ZooKeeper

ZooKeeper

Supervisor
Worker Worker

WorkerWorker

Supervisor
Worker Worker

WorkerWorker

Supervisor
Worker Worker

WorkerWorker

Data architecture of Storm
Storm data architecture has the following terminologies:

• Spout: Produces Stream or data source
• Bolt: Ingests the Spout tuples then processes it and produces output stream;

it can be used to filter, aggregate, or join data, or talk to databases
• Topology: A network graph between Spouts and Bolts

The following figure explains the preceding points:

Bolt1

Bolt3

Bolt4

Bolt5Bolt2

Bolt6

Spout1

Spout2

Streaming and Real-time Analysis – Storm and Spark

[148]

The data level abstractions in Storm are:

• Tuple: The basic unit of Storm data—a named list of values
• Stream: An unbounded sequence of tuples

The following figure shows the spouts producing streams and bolts processing
the tuples or streams to produce different streams:

Storm topology
Streams can be partitioned among bolts by using stream grouping, which allows the
streams to be routed towards a bolt. Storm provides the following built-in stream
groupings, and you can implement a custom stream grouping by implementing
the interface:

• Shuffle grouping: Each bolt is configured uniformly to get an almost
equal number of tuples

• Fields grouping: Grouping on a particular field is possible to consolidate
the tuples of the same field value and different value tuples to different bolts

• All grouping: Each tuple can be sent to all the bolts but can increase
the overhead

• Global grouping: All the tuples go to a single bolt
• Direct grouping: The producer can decide which tuples to be sent to

which bolt

Chapter 7

[149]

Storm on YARN
Storm integration on YARN was done in Yahoo and released as an open source.
Storm can be integrated with YARN to provide batch and real-time analysis
on the same cluster as Lambda architecture. Storm on YARN couples Storm's
event-processing framework with Hadoop to provide low latency processing.
Storm resources can be managed by YARN to provide all the benefits of stream
processing by Storm on Hadoop. Storm on YARN provides high availability,
optimization, and elasticity in resource utilization.

Topology configuration example
Storm topology can be configured by the TopologyBuilder class by creating
spouts and bolts, and then by submitting the topology.

Spouts
Some implementations of spouts are available in Storm, such as
BaseRichSpout, ClojureSpout, DRPCSpout, FeederSpout, FixedTupleSpout,
MasterBatchCoordinator, RichShellSpout, RichSpoutBatchTriggerer,
ShellSpout, SpoutTracker, TestPlannerSpout, TestWordSpout, and
TransactionalSpoutCoordinator.

We can write a custom bolts by extending any of the aforementioned classes
or implementing the ISpout interface:

public class NumberSpout extends BaseRichSpout
{
 private SpoutOutputCollector collector;

 private static int currentNumber = 1;

 @Override
 public void open(Map conf, TopologyContext context,
SpoutOutputCollector collector)
 {
 this.collector = collector;
 }

 @Override
 public void nextTuple()

Streaming and Real-time Analysis – Storm and Spark

[150]

 {

 // Emit the next number
 collector.emit(new Values(new Integer(currentNumber++))
);
 }

 @Override
 public void ack(Object id)
 {
 }

 @Override
 public void fail(Object id)
 {
 }

 @Override
 public void declareOutputFields(OutputFieldsDeclarer declarer)
 {
 declarer.declare(new Fields("number"));
 }
}

Bolts
Some implementations of bolts are available in Storm, such as BaseBasicBolt,
BatchProcessWord, BatchRepeatA, IdentityBolt, PrepareBatchBolt, PrepareRequest,
TestConfBolt, TestWordCounter, and TridentSpoutCoordinator.

We can write a custom bolt by extending any of the aforementioned classes
or implementing the IBasicBolt interface:

public class PrimeNumberBolt extends BaseRichBolt
{
 private OutputCollector collector;
 public void prepare(Map conf, TopologyContext context,
OutputCollector collector)
 {
 this.collector = collector;

Chapter 7

[151]

 }

 public void execute(Tuple tuple)
 {
 int number = tuple.getInteger(0);
 if(isPrime(number))
 {
 System.out.println(number);
 }
 collector.ack(tuple);
 }

 public void declareOutputFields(OutputFieldsDeclarer declarer)
 {
 declarer.declare(new Fields("number"));
 }

 private boolean isPrime(int n)
 {
 if(n == 1 || n == 2 || n == 3)
 {
 return true;
 }
 // Is n an even number?
 if(n % 2 == 0)
 {
 return false;
 }

 //if not, then just check the odds
 for(int i=3; i*i<=n; i+=2)
 {
 if(n % i == 0)
 {
 return false;
 }
 }
 return true;
 }
}

Streaming and Real-time Analysis – Storm and Spark

[152]

Topology
The TopologyBuilder class can be used to configure the spouts and bolts and to
submit the topology, as shown in this example:

public class PrimeNumberTopology
{
 public static void main(String[] args)
 {
 TopologyBuilder builder = new TopologyBuilder();
 builder.setSpout("spout", new NumberSpout());
 builder.setBolt("prime", new PrimeNumberBolt())
 .shuffleGrouping("spout");

 Config conf = new Config();
 LocalCluster cluster = new LocalCluster();
 cluster.submitTopology("test", conf,
 builder.createTopology());
 Utils.sleep(10000);
 cluster.killTopology("test");
 cluster.shutdown();
 }
}

An introduction to Spark
Spark is a cluster computing framework, which was developed in AMPLab at UC
Berkley and contributed as an open source project to Apache. Spark is an in-memory
based data processing framework, which makes it much faster in processing than
MapReduce. In MapReduce, intermediate data is stored in the disk and data access
and transfer makes it slower, whereas in Spark it is stored in-memory. Spark can be
thought of as an alternative to MapReduce due to the limitations and overheads of
the latter, but not as a replacement. Spark is widely used for streaming data analytics,
graph analytics, fast interactive queries, and machine learning. It has attracted the
attention of many contributors due to its in-memory nature and actually was one of
the top-level Apache projects in 2014 with over 200 contributors and 50+ organizations.
Spark utilizes multiple threads instead of multiple processes to achieve parallelism on
a single node.

Spark's main motive was to develop a processing system that would be faster
and easier to use and could be used for analytics. Its programming follows more of
the Directed Acyclic Graph (DAG) pattern, in which multi-step data flows and is
complex, which is explained in the following figure:

Chapter 7

[153]

Input

Input

HDFS
read

HDFS
write

HDFS
read

HDFS
write

iter. 1

iter. 1

iter. 2

iter. 2

Hadoop

Spark

.

.

Features of Spark
Spark has numerous features and capabilities worth mentioning, as follows:

• Runs 100 times faster than MapReduce when running in-memory
and 10 times faster when running on disk

• Can process iterative and interactive analytics
• Many functions and operators available for data analysis
• DAG framework to design functions easily
• In-memory based intermediate storage
• Easy to use and maintain
• Written in Scala and runs in JVM environment; applications using

Spark can be written in Scala, Java, Python, R, Clojure
• Runs in environments such as Hadoop and Mesos, or standalone, or in cloud

Spark framework
Spark contributors have utilized the core Spark framework and have developed
different libraries on top of Spark to enhance its capabilities. These libraries can
be plugged in to Spark as per the requirement:

Spark
SQL

GraphX
(graph)

MLIib
(machine
learning)

Spark
Streaming
(real-time)

Spark Core

Streaming and Real-time Analysis – Storm and Spark

[154]

Spark SQL
Spark SQL is a wrapper of SQL on top of Spark. It transforms SQL queries into
Spark jobs to produce results. Spark SQL can work with a variety of data sources,
such as Hive tables, Parquet files, and JSON files.

GraphX
GraphX, as the name suggests, enables working with graph-based algorithms. It has
a wide variety of graph-based algorithms already implemented and is still growing.
Some examples are PageRank, Connected components, Label propagation, SVD++,
strongly connected components, Triangle count, and so on.

MLib
MLib is a scalable machine learning library that works on top of Spark. It is
considerably easier to use and deploy, and its performance can be optimized to
be 100 times faster than MapReduce.

Spark streaming
Spark streaming is a library that enables Spark to perform scalable, fault-tolerant,
high throughput system to process streaming data in real time. Spark Streaming
is well integrated with many sources, such as Kinesis, HDFS, S3, Flume, Kafka,
Twitter, and so on, which is shown in the following figure:

Spark streaming can be integrated with MLib and GraphX to process their algorithms
or libraries in streaming data. Spark streaming ingests the input data from a source
and breaks it into batches. The batch is stored as an internal dataset (RDD—we will
look at it in detail) for processing, which is explained in the following figure:

input data
stream

batches of
input data

batches of
processed data

Spark
Engine

Spark
Streaming

Chapter 7

[155]

Spark architecture
Spark architecture is based on a DAG engine and its data model works on Resilient
Distributed Dataset (RDD), which is its USP with a large number of benefits in
terms of performance. In Spark the computations are performed lazily, which allows
the DAG engine to identify the step or computation that is not needed for the end
result and is not performed at all, thus improving performance.

Directed Acyclic Graph engine
Spark has an advanced DAG engine that manages the data flow. A job in Spark
is transformed in a DAG with task stages and the graph is then optimized. The
tasks identified are then analyzed to check if they can be processed in one stage or
multiple stages. Task locality is also analyzed to optimize the process.

Resilient Distributed Dataset
As per the white paper "Resilient Distributed Datasets, a Fault-Tolerant Abstraction
for In-Memory Cluster Computing." Matei Zaharia, Mosharaf Chowdhury,
Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin, Scott
Shenker, Ion Stoica on April 2012. This paper has also received Best Paper Award
and Honorable Mention for Community Award. An RDD is a read-only, partitioned
collection of records. RDDs can only be created through deterministic operations on
either (a) data in stable storage or (b) other RDDs.

RDDs are an 'immutable resilient distributed collection of records, which can be
stored in the volatile memory or in a persistent storage (HDFS, HBase, and so on)
and can be converted into another RDD through some transformations. An RDD
stores the data in-memory as long as possible. If the data grows larger than the
threshold, it spills into the disk. Due to this, the computation becomes faster.
On the other hand, if some node holding the data in memory fails, then that part
of computations has to be processed again. To avoid this, check pointing is
performed after some stages, which is shown in the following figure:

Partitions

RDD

Streaming and Real-time Analysis – Storm and Spark

[156]

RDDs are of two types:

• Parallelized collections: Created by invoking SparkContext's
parallelize method

• Hadoop datasets: Created from HDFS files

An RDD can perform either transformation or actions. Transformations can be
used for some filters or map functions. Actions can return a value after some
executions, such as reduce or count.

An RDD can have two types of dependencies: narrow and wide. Narrow dependencies
occur when a partition of an RDD is used by only one partition of the next RDD. Wide
dependencies occur when a partition of an RDD is used by multiple partitions in the
next RDD usually in groups and joins. The following figure shows the two types
of dependencies:

Narrow Dependencies:

map, filter

union

join with inputs
co-partitioned

Wide Dependencies:

groupByKey

join with inputs not
co-partitioned

The features of RDDs are as follows:

• Resilient and fault tolerant; in case of any failure they can be rebuilt
according to the data stored

• Distributed
• Datasets partitioned across cluster nodes
• Immutable
• Memory-intensive
• Caching levels configurable according to the environment

Chapter 7

[157]

Physical architecture
Spark's physical architecture components are composed of Spark Master and Spark
Worker, where as Hadoop Spark Worker sits on the data nodes. Spark Master
controls the workflow and it is highly available on top of YARN. We can configure a
backup Spark Master for easy failover. Spark Worker launches appropriate executors
for each task, which is shown in the following figure:

Spark Components

MasterSpark Driver

Worker Nodes

Tasks

Worker Node 1

RDD1-Block1

RDD1-Block2

RDD1-Block4

Cache

Tasks

Worker Node 2

RDD1-Block1

RDD1-Block3

RDD1-Block4

Cache

Tasks

Worker Node 3

RDD1-Block1

RDD1-Block3

RDD1-Block5

Cache

Tasks

Worker Node 4

RDD1-Block2

RDD1-Block3

RDD1-Block5

Cache

Tasks

Worker Node 5

RDD1-Block2

RDD1-Block4

RDD1-Block5

Cache

In deployment, one analytics node runs the Spark Master, and Spark Workers run on
each of the nodes.

Operations in Spark
RDDs support two types of operations:

• Transformations
• Actions

Transformations
The transformation operation performs some functions and creates another dataset.
Transformations are processed in the lazy mode and only those transformations
that are needed in the end result are processed. If any transformation is found
unnecessary, then Spark ignores it, and this improves the efficiency.

Streaming and Real-time Analysis – Storm and Spark

[158]

Transformations, which are available and mentioned in Spark Apache
docs at https://spark.apache.org/docs/latest/programming-guide.
html#transformations, are as follows:

Transformation Meaning
map (func) Return a new distributed dataset formed by

passing each element of the source through a
function func.

filter (func) Return a new dataset formed by selecting those
elements of the source on which func returns true.

flatMap (func) Similar to map, but each input item can be mapped
to 0 or more output items (so func should return a
Seq rather than a single item).

mapPartitions (func) Similar to map, but runs separately on each
partition (block) of the RDD, so func must be of
type Iterator[T] => Iterator[U] when
running on an RDD of type T.

mapPartitionsWithSplit
(func)

Similar to mapPartitions, but also provides
func with an integer value representing the
index of the split, so func must be of type (Int,
Iterator[T]) => Iterator[U] when
running on an RDD of type T.

Sample
(withReplacement,fraction,
seed)

Sample a fraction of the data, with or without
replacement, using a given random number
generator seed.

Union (otherDataset) Return a new dataset that contains the union of the
elements in the source dataset and the argument.

Distinct ([numTasks])) Return a new dataset that contains the distinct
elements of the source dataset.

groupByKey ([numTasks]) When called on a dataset of (K, V) pairs, returns a
dataset of (K, Seq[V]) pairs.
Note: By default, this uses only eight parallel
tasks to do the grouping. You can pass an optional
numTasks argument to set a different number of
tasks.

reduceByKey (func,
[numTasks])

When called on a dataset of (K, V) pairs, returns a
dataset of (K, V) pairs where the values of each key
are aggregated using the given reduce function.
Like in groupByKey, the number of reduce tasks
is configurable through an optional second
argument.

https://spark.apache.org/docs/latest/programming-guide.html#transformations
https://spark.apache.org/docs/latest/programming-guide.html#transformations

Chapter 7

[159]

Transformation Meaning
sortByKey ([ascending],
[numTasks])

When called on a dataset of (K, V) pairs where K
implements Ordered, returns a dataset of (K, V)
pairs, sorted by keys in ascending or descending
order, as specified in the Boolean ascending
argument.

Join (otherDataset,
[numTasks])

When called on datasets of type (K, V) and (K, W),
returns a dataset of (K, (V, W)) pairs with all pairs
of elements for each key.

Cogroup (otherDataset,
[numTasks])

When called on datasets of type (K, V) and (K,
W), returns a dataset of (K, Seq[V], Seq[W])
tuples. This operation is also called groupWith.

Cartesian (otherDataset) When called on datasets of types T and U, returns
a dataset of (T, U) pairs (all pairs of elements).

Actions
Action operations produce and return a result. An action's result is actually written
to an external storage system. Actions available and mentioned in Spark Apache
docs, mentioned at https://spark.apache.org/docs/latest/programming-
guide.html#actions are as follows:

Action Meaning
Reduce (func) Aggregate the elements of the dataset

using a function func (which takes two
arguments and returns one). The function
should be commutative and associative, so
that it can be computed correctly in parallel.

Collect () Return all the elements of the dataset as an
array at the driver program. This is usually
useful after a filter or other operation that
returns a sufficiently small subset of the
data.

Count () Return the number of elements in the
dataset.

First () Return the first element of the dataset
(similar to take(1)).

Take (n) Return an array with the first n elements
of the dataset. Note that this is currently
not executed in parallel. Instead, the driver
program computes all the elements.

https://spark.apache.org/docs/latest/programming-guide.html#actions
https://spark.apache.org/docs/latest/programming-guide.html#actions

Streaming and Real-time Analysis – Storm and Spark

[160]

Action Meaning
takeSample
(withReplacement,num, seed)

Return an array with a random sample
of num elements of the dataset, with or
without replacement, using the given
random number generator seed.

saveAsTextFile (path) Write the elements of the dataset as a text
file (or set of text files) in a given directory
in the local filesystem, HDFS, or any other
Hadoop-supported file system. Spark will
call toString on each element to convert it
to a line of text in the file.

saveAsSequenceFile (path) Write the elements of the dataset as a
Hadoop SequenceFile in a given path in
the local filesystem, HDFS, or any other
Hadoop-supported file system. This is
only available on RDDs of key-value pairs
that either implement Hadoop's Writable
interface or are implicitly convertible to
Writable (Spark includes conversions for
basic types like Int, Double, String, and so
on).

countByKey () Only available on RDDs of type (K, V).
Returns a Map of (K, Int) pairs with the
count of each key.

Foreach (func) Run a function func on each element of the
dataset. This is usually done for side effects
such as updating an accumulator variable
(see below) or interacting with external
storage systems.

Spark example
For simplicity, let's take Word count as an example in Spark.

In Scala:

val file = spark.textFile("hdfs://...")
val counts = file.flatMap(line => line.split(" "))
 .map(word => (word, 1))
 .reduceByKey(_ + _)
counts.saveAsTextFile("hdfs://...")

Chapter 7

[161]

In Java:

JavaRDD<String> file =
 spark.textFile("hdfs://...");JavaRDD<String> words =
 file.flatMap(new FlatMapFunction<String, String>() {
 public Iterable<String> call(String s) {
return Arrays.asList(s.split(" ")); }
});

JavaPairRDD<String, Integer> pairs = words.mapToPair(new
 PairFunction<String, String, Integer>() {
 public Tuple2<String, Integer> call(String s) {
return new Tuple2<String, Integer>(s, 1); }});

JavaPairRDD<String, Integer> counts = pairs.reduceByKey(new
 Function2<Integer, Integer>() {
 public Integer call(Integer a, Integer b) {
return a + b; }});
counts.saveAsTextFile("hdfs://...");

Summary
Streaming and real-time analysis are required in many systems in big data.
Batch processing is very well handled by Hadoop and integration of frameworks
like Storm and Spark elevates their streaming and real-time capability.

We discussed that Storm is an open source, fast, stream processing, scalable,
fault-tolerant, and reliable system that is easy to use and deploy. Storm's physical
architecture comprises Nimbus, Supervisor, Worker, and Zookeeper processes.
The data architecture of Storm comprises a spouts, bolts, and topology-based data
flow system.

Spark is an extremely popular framework which provides in-memory data
handling capability and makes it much faster than the MapReduce framework.
Spark frameworks have some libraries such as Spark SQL, GraphX, MLib, Spark
Streaming, and others to process specialized data and requirements. Spark
Architecture is based on RDDs and the DAG engine, which provides capability
of in-memory data processing and optimizes the processing, according to the
data flow effectively and efficiently. Spark RDD can perform numerous
transformations and actions.

Finally, we have come to the last chapter and have covered different sets of tools and
utilities within the Hadoop Ecosystem. I hope that the book will be useful to you and
give you a quick heads-up about the components and essential details, as well as
how to use them.

[163]

Index
A
ACID properties

about 109
atomicity 109
consistency 109
durability 109

action operations
about 159
Collect () 159
Count () 159
countByKey () 160
First () 159
Foreach (func) 160
Reduce (func) 159
saveAsSequenceFile (path) 160
saveAsTextFile (path) 160
Take (n) 159
takeSample (withReplacement,num,

seed) 160
Alter table command 89
Amazon Elastic MapReduce (EMR) 18
Ambari 31
analytic database 6
Apache Flume

about 132, 133
reliability 133

Apache Hadoop
about 17
URL 17

Apache Hadoop, modules
Hadoop common 17
Hadoop Distributed File System (HDFS) 17
Hadoop MapReduce 17
Hadoop YARN 17

Apple Orange Mango 49
architecture, HBase

about 103
MasterServer 104
RegionServer 104

architecture, HDFS
BackupNode 37
Checkpoint NameNode 37
DataNode 36
NameNode 35, 36
Secondary NameNode 37

architecture, Hive
execution engine 85
Metastore 84
query compiler 85

architecture, MapReduce
JobTracker 46
TaskTracker 47

architecture, Pig
about 69
logical plan 69
MapReduce plan 70
physical plan 70

architecture, YARN
ApplicationMaster 64
NodeManager 63
ResourceManager 63

auto splitting 114
auxiliary steps

about 59
Combiner 60
Partitioner 60

[164]

B
basic data flow, Hadoop 24
big data

about 1-4
necessities 1
sources 6
use cases 6-8

big data, use case patterns
about 8
data analysis pattern 10
data in real-time pattern 11
data transformation pattern 9, 10
low latency caching pattern 12
storage pattern 8

BlockCache
about 105
BucketCache 106
LRUBlockCache 105
SlabCache 105

bolts 150
bucketing 98
Business Intelligence (BI) 1

C
CAP theorem 109
channels

about 138
Disk-based queues 139
File channel 139, 140
In-Memory queues 138
JDBC channel 140
Memory channel 139

Cloudera 18
column store 5
commands

about 114
create 114
disable 116
drop 116
get 115
help 114
list 115
put 115
scan 115

compaction policy 111
compactions

about 111
compaction policy 111
major compaction 112
minor compaction 112

complex data types
ARRAY 86
MAP 86
STRUCT 85
UNION 86

components, Agent
about 136
sink 137, 138
source 136, 137

components, data model
cell 108
Column Families/Columns 108
Rows 108
Tables 108
Version/Timestamp 108

compression types
GZip 117
LZO 117
Snappy 117

connectors 125
counters

about 120
multiple counter 121
single counter 120

Create table command 88, 89
custom SerDe class

writing 95
Custom UDF

performing 94

D
DAG engine 155
data access component

about 68
Hive 19, 68
Pig 19, 68

data analysis pattern, big data 10
data analytics 30

[165]

data architecture, Storm
Bolt 147
Spout 147
Stream 148
Topology 147
Tuple 148

database trend 22
Data Definition Language. See

DDL operations
data ingestion

about 123
challenges 124

data ingestion, Hadoop
about 28
Flume 20, 28
Sqoop 20, 28
Storm 29

data in real-time pattern, big data 11
Data Manipulation Language. See

DML operations
data processing tool

on Hadoop 67, 68
data sources

about 123
aerospace 124
astronomy 124
data sensors 124
Geological Data 124
Healthcare system data 124
Machine Data 124
maps 124
Mobile Data 124
Social Media 124
Telco Data 124

data storage component
HBase 19

data storage, HDFS
about 37
blocks 37
parameters 37
read pipeline 38
replication 37
write pipeline 39

data transformation pattern, big data 9, 10

data types, Pig
bag 69
map 68
primitive 68
tuple 69

DDL operations 87-89
deployment modes, Hadoop

distributed 17
pseudo distributed 17
standalone 17

describe table command 89
Directed Acyclic Graph (DAG) pattern 152
Directed Acyclic Graph engine. See

DAG engine
Disk-based queues 139
distributed filesystem

about 26
HDFS 26

distributed programming 27
DML operations 90
document database 5
drivers 125
drop table command 90

E
Enterprise Data Warehouse (EDW) 7
execution engine 85
execution, Pig

modes 70
exports 131, 132
external table

advantages 95

F
File channel

about 139
properties 139, 140

File formats
about 52
InputFormats 52
OutputFormats 53, 54
RecordReader 53
RecordWriter 54

[166]

filters
about 118
ColumnRangeFilter 119
Column Value 118
FamilyFilter 119
KeyValue 119
Multiple Filters 120
QualifierFilter 119
RowFilter 119
RowKey 119
SingleColumnValueFilter 118

Flume
about 20, 28, 154
Agent 135
Events 135

Flume architecture
about 134
multitier topology 134

Flume configuration
examples 141-143
multiagent setup, configuring 142, 143
multiple flows, in agent 142
single agent example 141

Flume master 135
Flume nodes 135
frameworks, distributed programming

Hive 27
Pig 27
Spark 27

G
graph database 5
GraphX 154
groupWith 159
Grunt shell

about 71
aggregation functions 76
Cogroup 76, 77
data, loading 72
DESCRIBE command 78
dump command 73
EXPLAIN command 78
filter 74
Group By command 74

ILLUSTRATE command 82
input data 71
Limit command 75
store command 73

H
Hadoop

about 13
advantages 15
data flow 24
examples, of use cases 16
history 14
use cases 23

Hadoop Architecture 33
Hadoop common 17
Hadoop Distributed File System (HDFS) 33
Hadoop distributions

about 18
Amazon Elastic MapReduce (EMR) 18
Cloudera 18
Hortonworks 18
MapR 18

Hadoop ecosystem 16, 25, 26
Hadoop integration 25
Hadoop MapReduce 17
Hadoop YARN 17
HBase

about 19, 28, 101, 102
advantages 102

HBase coprocessors
about 121
Endpoint 122
Observer 121

HBase data model
about 107
ACID properties 109
CAP theorem 109
logical components 107, 108

HBase Hive integration
about 116
EXTERNAL 116
SERDEPROPERTIES 117
STORED BY 116
TBLPROPERTIES 117

[167]

HDFS
about 19, 26, 34, 154
architecture 34, 35
commands 44-46
data storage 37
features 34
HDFS federation 41
ports 42
rack awareness, configuring 40

HDFS 1.0
limitations 42

HDFS federation
benefits 42

HDFS web UI ports
URL 43

Hive
about 19, 27, 83
architecture 83, 84
bucketing 98
data types 85, 86
HiveQL 87
Hive shell, starting 87
installing 86
partitioning 97
schemas 85, 86
SerDe 95-97
tables, managing 94

HiveQL
about 27, 87
built-in functions 93
Custom UDF 94
DDL operations 87-89
DML operations 90
process flow 84
SQL operation 91

Hortonworks 18

I
imports 128-130
In-Memory queues 138
International Data Corporation (IDC) 2

J
JDBC channel

about 140
properties 140

K
Kafka 154
key-value store 5
Kinesis 154

L
low latency caching pattern, big data 12

M
machine learning 30
Mahout 31
major compaction

about 112
hbase.hregion.majorcompaction 113
hbase.hregion.majorcompaction.jitter 113

Mapper 49
MapR 18
MapReduce

about 19, 33, 46
architecture 46
auxiliary steps 59
example 48, 49
File formats 52
Mapper 50
process 49, 50
program, writing 54
Reducer 51
serialization data types 47
shuffle and sorting 51
speculative execution 51

MapReduce program
Driver code 56-59
Mapper code 55
Reducer code 56
writing 54

[168]

MasterServer 104
Memory channel

about 139
properties 139

Metastore 84
minor compaction

about 112
hbase.hstore.compaction.max.size 112
hbase.hstore.compaction.min 112
hbase.hstore.compaction.min.size 112
hbase.store.compaction.ratio 112

MLib 154
modes, Pig

Local Mode 70
MapReduce Mode 70

multiagent setup
configuring 142, 143

multiple counter 121
multitier topology

about 134
Flume master 135
Flume nodes 135

N
NameNode

Editlog file 36
Fsimage file 36

NoSQL database 4
NoSQL database, types

column store 5
document database 5
graph database 5
key-value store 5

Nutch 14

O
Observer types

MasterObserver 121
RegionObserver 121
WALObserver 121

Online Transaction Processing (OLTP) 1

P
Partitioner, auxiliary steps

custom partitioner 60
partitioning 97
performance tuning

about 117
compression 117
coprocessors 121
counters 120
filters 118-120

physical architecture 157
physical architecture, Storm

Nimbus 146
Supervisor 146
Worker 146
Zookeeper 146

Pig
about 19, 27, 68
architecture 69
data types 68, 69
Grunt shell 71
modes 70

pipeline
reading 111
writing 110, 111

pre-splitting 113

Q
query compiler 85

R
rack awareness

advantages 40
configuring 40

RDD
about 155, 156
features 156
Hadoop datasets 156
narrow dependencies 156
parallelized collections 156
wide dependencies 156

[169]

real-time analysis 20
Reducer 49
RegionServer

about 104
BlockCache 105
MemStore 106
regions 106
WAL 105
Zookeeper 107

reliability, Apache Flume
best effort level 133
end-to-end level 133
store on failure level 133

Resilient Distributed Dataset. See RDD

S
S3 154
scheduling 30
schema design 109, 110
SerDe 95-97
serialization data types, MapReduce

WritableComparable interface 47
Writable interface 47

service programming tools
about 29
YARN 29

Show tables command 89
single counter 120
sink types 137
sources types

about 136
URL 137

Spark
about 20, 27, 152
action operations 159
example 160
features 153
operations 157
transformation operation 157, 158

Spark Apache docs
URL 158, 159

Spark architecture
about 155
DAG engine 155

physical architecture 157
RDD 155

Spark framework
about 153
GraphX 154
MLib 154
Spark SQL 154
Spark streaming 154

Spark SQL 154
Spark streaming 154
speculative execution 51
splitting

about 113
auto splitting 114
forced splitting 114
pre-splitting 113

SPOF (Single Point of Failure) 41
spouts 149
SQL operation

about 91
aggregations 93
joins 92
SELECT 91

Sqoop 20, 28, 125
Sqoop 1

architecture 125
limitations 126

Sqoop 2
architecture 127

storage pattern, big data 8
store command

about 73
FOREACH generate 73

Storm
about 20, 29, 145, 146
data architecture 147, 148
features 146
integration, on YARN 149
physical architecture 146
topology 148

streaming 20
system management 31

[170]

T
tables

managing 94
topology configuration example

about 149
bolts 150
spouts 149
topology 152

topology, Storm
all grouping 148
direct grouping 148
fields grouping 148
global grouping 148
shuffle grouping 148

traditional systems
about 21
steps 22

transformation operation
about 157
Cartesian (otherDataset) 159
Cogroup (otherDataset, [numTasks]) 159
Distinct ([numTasks])) 158
filter (func) 158
flatMap (func) 158
groupByKey ([numTasks]) 158
Join (otherDataset, [numTasks]) 159
map (func) 158
mapPartitions (func) 158
mapPartitionsWithSplit (func) 158
reduceByKey (func, [numTasks]) 158
Sample (withReplacement,fraction,

seed) 158
sortByKey ([ascending], [numTasks]) 159
Union (otherDataset) 158

Twitter 154

U
use cases, Hadoop 23
User Defined Functions (UDF) 27

V
V's, of big data

about 2
variety 3
velocity 3
volume 2

W
WORM (write once, read many) 34
Write Ahead Log (WAL) 133

Y
YARN

about 19, 29, 61
applications 64
architecture 62

Thank you for buying
Hadoop Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Mastering Hadoop
ISBN: 978-1-78398-364-3 Paperback: 374 pages

Go beyond the basics and master the next generation
of Hadoop data processing platforms

1. Learn how to optimize Hadoop MapReduce,
Pig and Hive.

2. Dive into YARN and learn how it can
integrate Storm with Hadoop.

3. Understand how Hadoop can be deployed
on the cloud and gain insights into analytics
with Hadoop.

Building Hadoop Clusters [Video]
ISBN: 978-1-78328-403-0 Duration: 02:34 hrs

Deploy multi-node Hadoop clusters to harness the
Cloud for storage and large-scale data processing

1. Familiarize yourself with Hadoop and its
services, and how to configure them.

2. Deploy compute instances and set up a
three-node Hadoop cluster on Amazon.

3. Set up a Linux installation optimized
for Hadoop.

Please check www.PacktPub.com for information on our titles

Big Data Analytics with R
and Hadoop
ISBN: 978-1-78216-328-2 Paperback: 238 pages

Set up an integrated infrastructure of R and Hadoop
to turn your data analytics into Big Data analytics

1. Write Hadoop MapReduce within R.

2. Learn data analytics with R and the
Hadoop platform.

3. Handle HDFS data within R.

4. Understand Hadoop streaming with R.

Hadoop Beginner's Guide
ISBN: 978-1-84951-730-0 Paperback: 398 pages

Learn how to crunch big data to extract meaning
from the data avalanche

1. Learn tools and techniques that let you
approach big data with relish and not fear.

2. Shows how to build a complete infrastructure
to handle your needs as your data grows.

3. Hands-on examples in each chapter give the
big picture while also giving direct experience.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Big Data and Hadoop
	V's of big data
	Volume
	Velocity
	Variety

	Understanding big data
	NoSQL
	Types of NoSQL databases

	Analytical database

	Who is creating the big data?
	Big data use cases

	Big data use case patterns
	Big data as a storage pattern
	Big data as a data transformation pattern
	Big data for a data analysis pattern
	Big data for data in a real-time pattern
	Big data for a low latency caching pattern

	Hadoop
	Hadoop history
	Description
	Advantages of Hadoop
	Uses of Hadoop
	Hadoop ecosystem
	Apache Hadoop
	Hadoop distributions

	Pillars of Hadoop—HDFS, MapReduce, and YARN
	Data access components – Hive and Pig
	Data storage component – HBase
	Data ingestion in Hadoop– Sqoop and Flume
	Streaming and real-time analysis – Storm and Spark
	Summary

	Chapter 2: Hadoop Ecosystem
	Traditional systems
	Database trend

	Hadoop use cases
	Hadoop basic data flow
	Hadoop integration
	The Hadoop ecosystem
	Distributed filesystem
	HDFS

	Distributed programming
	NoSQL databases
	Apache HBase

	Data ingestion
	Service Programming
	Apache YARN
	Apache Zookeeper

	Scheduling
	Data analytics and machine learning
	System management
	Apache Ambari

	Summary

	Chapter 3: Pillars of Hadoop – HDFS, MapReduce, and YARN
	HDFS
	Features of HDFS
	HDFS Architecture
	NameNode
	DataNode
	Checkpoint NameNode or Secondary NameNode
	BackupNode

	Data storage in HDFS
	Read pipeline
	Write pipeline

	Rack awareness
	Advantages of rack awareness in HDFS

	HDFS Federation
	Limitations of HDFS 1.0
	The benefit of HDFS Federation

	HDFS ports
	HDFS commands

	MapReduce
	MapReduce architecture
	JobTracker
	TaskTracker

	Serialization data types
	Writable interface
	WritableComparable interface

	MapReduce example
	The MapReduce process
	Mapper
	Shuffle and sorting
	Reducer

	Speculative execution
	FileFormats
	InputFormats
	RecordReader
	OutputFormats
	RecordWriter

	Writing a MapReduce program
	Mapper code
	Reducer code
	Driver code

	Auxiliary steps
	Combiner
	Partitioner

	YARN
	YARN Architecture
	ResourceManager
	NodeManager
	ApplicationMaster

	Applications powered by YARN

	Summary

	Chapter 4: Data Access Components – Hive and Pig
	Need of a data processing tool on Hadoop
	Pig
	Pig data types
	Pig architecture
	The logical plan
	The physical plan
	The MapReduce plan

	Pig modes
	Grunt shell
	Input data
	Loading data
	Dump
	Store
	Filter
	Group By
	Limit
	Aggregation
	Cogroup
	DESCRIBE
	EXPLAIN
	ILLUSTRATE

	Hive
	Hive architecture
	Metastore
	Query compiler
	Execution engine

	Data types and schemas
	Installing Hive
	Starting Hive Shell
	HiveQL
	DDL (Data Definition Language) operations
	DML (Data Manipulation Language) operations
	SQL operation
	Built-in functions
	Custom UDF (User Defined Functions)

	Managing tables (external versus managed)
	SerDe
	Partitioning
	Bucketing

	Summary

	Chapter 5: Storage Component - HBase
	An Overview of HBase
	Advantages of HBase
	Architecture of HBase
	MasterServer
	RegionServer
	WAL
	BlockCache
	Regions
	MemStore
	Zookeeper

	HBase data model
	Logical components of data model
	ACID properties
	CAP theorem

	Schema design
	Write pipeline
	Read pipeline
	Compaction
	Compaction policy
	Minor compaction
	Major compaction

	Splitting
	Pre-Splitting
	Auto Splitting
	Forced Splitting

	Commands
	help
	Create
	List
	Put
	Scan
	Get
	Disable
	Drop

	HBase Hive integration
	Performance tuning
	Compression
	Filters
	Counters
	HBase co-processors

	Summary

	Chapter 6: Data Ingestion in Hadoop – Sqoop and Flume
	Data sources
	Challenges in data ingestion
	Sqoop
	Connectors and drivers
	Sqoop 1 architecture
	Limitation of Sqoop 1

	Sqoop 2 architecture
	Imports
	Exports
	Apache Flume
	Reliability

	Flume architecture
	Multitier topology
	Flume Master
	Flume Nodes
	Components in Agent
	Channels

	Examples of configuring Flume
	Single agent example
	Multiple flow in an agent
	Configuring a multi-agent setup

	Summary

	Chapter 7: Streaming and Real-time Analysis – Storm and Spark
	An introduction to Storm
	Features of Storm
	Physical architecture of Storm
	Data architecture of Storm

	Storm topology
	Storm on YARN
	Topology configuration example
	Spouts
	Bolts
	Topology

	An introduction to Spark
	Features of Spark

	Spark framework
	Spark SQL
	GraphX
	MLib
	Spark streaming

	Spark architecture
	Directed Acyclic Graph engine
	Resilient Distributed Dataset
	Physical architecture

	Operations in Spark
	Transformations
	Actions

	Spark example
	Summary

	Index

