
Java Microbenchmark Harness
(the lesser of two evils)

Aleksey Shipilev
aleksey.shipilev@oracle.com, @shipilev

The following is intended to outline our general product direction. It
is intended for information purposes only, and may not be
incorporated into any contract. It is not a commitment to deliver any
material, code, or functionality, and should not be relied upon in
making purchasing decisions. The development, release, and timing
of any features or functionality described for Oracle’s products
remains at the sole discretion of Oracle.

Slide 2/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Intro

Slide 3/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Intro: Why would we even listen to this guy?

ex-«Intel, Apache Harmony performance geek»
ex-«SPEC tech. representative for Oracle»
in-«Oracle/OpenJDK performance geek»
Guilty of:

1. Lots of shameful internal stuff
2. SPECjbb2013
3. Concurrency improvements (e.g. @Contended)
4. Java Concurrency Stress Tests (jcstress)
5. Java Microbenchmark Harness (jmh)

Slide 4/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Intro: Obligatory JVMLS reference

This talk was also well received at JVMLS 2013.

Slide 5/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Intro: Obligatory JVMLS reference

This talk was also well received at JVMLS 2013.

Slide 5/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Basics

Slide 6/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Basics: Benchmarks are experiments

Computer Science → Software Engineering
Build software to meet functional requirements
Mostly don’t care about HW and data specifics
Abstract and composable, «formal science»

Software Performance Engineering
«Real world strikes back!»
Exploring complex interactions between hardware, software, and data
Based on empirical evidence, i.e. «natural science»

Slide 7/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Basics: Experimental Control

Any experiment requires the control

Sometimes, just a few baseline measurements
Sometimes, vast web of support experiments

Software-specific: peek under the hood!

Experiments assume the hypothesis (model),
against which we do the control

Slide 8/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Basics: Experimental Control

Any experiment requires the control

Sometimes, just a few baseline measurements
Sometimes, vast web of support experiments
Software-specific: peek under the hood!

Experiments assume the hypothesis (model),
against which we do the control

Slide 8/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Basics: Experimental Control

Any experiment requires the control

Sometimes, just a few baseline measurements
Sometimes, vast web of support experiments
Software-specific: peek under the hood!

Experiments assume the hypothesis (model),
against which we do the control

Slide 8/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Basics: Common Wisdom

Microbenchmarks are bad

Slide 9/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Basics: Common Wisdom

Microbenchmarks are bad

Slide 10/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Basics: The Root Cause

«Premature optimization
is the root of all evil»

(Khuth, 1974)

Slide 11/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Basics: The Root Cause

«Premature Optimization
is the root of all evil»

(Shipilev, 2013)

Slide 12/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Basics: Evil Optimizations

Optimizations distort the performance models!
Applied in «common» (>50%) cases
Unclear interdependencies
«Black box» abstraction fails big time

Examples:
«new MyObject()»: allocated in TLAB? allocated in LOB?
scalarized? eliminated?

Slide 13/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Basics: Evil Optimizations

Optimizations distort the performance models!
Applied in «common» (>50%) cases
Unclear interdependencies
«Black box» abstraction fails big time

Examples:
«new MyObject()»

: allocated in TLAB? allocated in LOB?
scalarized? eliminated?

Slide 13/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Basics: Evil Optimizations

Optimizations distort the performance models!
Applied in «common» (>50%) cases
Unclear interdependencies
«Black box» abstraction fails big time

Examples:
«new MyObject()»: allocated in TLAB? allocated in LOB?
scalarized? eliminated?

Slide 13/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Basics: Know Thy Optimizations

Understanding the performance model
is the road to awe

This is the endgame result for benchmarking
Benchmarking is for exploring the performance models (which
also helps to get better at benchmarking)
Every new optimization ⇒ new hassle for everyone

Slide 14/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Basics: Benchmarks vs. Optimization

Ground Rule

Benchmarking is the (endless) fight against the optimizations

Collorary

Benchmarking harness #1 priority: managing the optimizations

Slide 15/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Basics: JMH

Java Microbenchmark Harness:
http://openjdk.java.net/projects/code-tools/jmh/

Works around pitfalls common to HotSpot/OpenJDK
Bugs are fixed as VM evolves, or we discover more
We (perfteam) validate benches by rewriting them with JMH
Facilitates peer review

Slide 16/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

http://openjdk.java.net/projects/code-tools/jmh/

Basics: JMH API Sneak Peek

Let users declare the benchmark body:

@GenerateMicroBenchmark
public void helloWorld () {

// do something here
}

...then generate lots of supporting synthetic code around that body.

(At this point, simply generating the auxiliary subclass works fine,
but it is limiting for some cases)

Slide 17/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Basics: Getting the units right

*Benchmarks:

kilo: > 1000 s, Linpack
_____: 1...1000 s, SPECjvm2008, SPECjbb2013
milli: 1...1000 ms, SPECjvm98, SPECjbb2005

micro:

1...1000 us, single webapp request

nano: 1...1000 ns, single operations
pico: 1...1000 ps, pipelining

Slide 18/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Basics: Getting the units right

*Benchmarks:

kilo: > 1000 s, Linpack
_____: 1...1000 s, SPECjvm2008, SPECjbb2013
milli: 1...1000 ms, SPECjvm98, SPECjbb2005

micro: 1...1000 us, single webapp request

nano: 1...1000 ns, single operations
pico: 1...1000 ps, pipelining

Slide 18/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Basics: Getting the units right

*Benchmarks:

kilo: > 1000 s, Linpack
_____: 1...1000 s, SPECjvm2008, SPECjbb2013
milli: 1...1000 ms, SPECjvm98, SPECjbb2005

micro: 1...1000 us, single webapp request
nano: 1...1000 ns, single operations

pico: 1...1000 ps, pipelining

Slide 18/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Basics: Getting the units right

*Benchmarks:

kilo: > 1000 s, Linpack
_____: 1...1000 s, SPECjvm2008, SPECjbb2013

milli: 1...1000 ms, SPECjvm98, SPECjbb2005
micro: 1...1000 us, single webapp request
nano: 1...1000 ns, single operations

pico: 1...1000 ps, pipelining

Slide 18/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Basics: Getting the units right

*Benchmarks:

kilo: > 1000 s, Linpack

_____: 1...1000 s, SPECjvm2008, SPECjbb2013
milli: 1...1000 ms, SPECjvm98, SPECjbb2005
micro: 1...1000 us, single webapp request
nano: 1...1000 ns, single operations

pico: 1...1000 ps, pipelining

Slide 18/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Basics: Getting the units right

*Benchmarks:
kilo: > 1000 s, Linpack

_____: 1...1000 s, SPECjvm2008, SPECjbb2013
milli: 1...1000 ms, SPECjvm98, SPECjbb2005
micro: 1...1000 us, single webapp request
nano: 1...1000 ns, single operations

pico: 1...1000 ps, pipelining

Slide 18/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Basics: Getting the units right

*Benchmarks:
kilo: > 1000 s, Linpack

_____: 1...1000 s, SPECjvm2008, SPECjbb2013
milli: 1...1000 ms, SPECjvm98, SPECjbb2005
micro: 1...1000 us, single webapp request
nano: 1...1000 ns, single operations
pico: 1...1000 ps, pipelining

Slide 18/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Basics: ...increaseth sorrow

Benchmarks amplify all the effects
visible at the same scale.

Millibenchmarks are not really hard
Microbenchmarks are challenging, but OK
Nanobenchmarks are the damned beasts!
Picobenchmarks...

Slide 19/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Basics: Warmup

Definition

«Warmup» = waiting for the
transient responses to settle down

Every online optimization requires warmup
JIT compilation is NOT the only online optimization
Ok, «Watch -XX:+PrintCompilation»?

Slide 20/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Basics: Warmup

Definition

«Warmup» = waiting for the
transient responses to settle down

Every online optimization requires warmup
JIT compilation is NOT the only online optimization
Ok, «Watch -XX:+PrintCompilation»?

Slide 20/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Basics: Warmup

Definition

«Warmup» = waiting for the
transient responses to settle down

Every online optimization requires warmup

JIT compilation is NOT the only online optimization
Ok, «Watch -XX:+PrintCompilation»?

Slide 20/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Basics: Warmup

Definition

«Warmup» = waiting for the
transient responses to settle down

Every online optimization requires warmup
JIT compilation is NOT the only online optimization

Ok, «Watch -XX:+PrintCompilation»?

Slide 20/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Basics: Warmup

Definition

«Warmup» = waiting for the
transient responses to settle down

Every online optimization requires warmup
JIT compilation is NOT the only online optimization
Ok, «Watch -XX:+PrintCompilation»?

Slide 20/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Basics: Warmup plateaus

Slide 21/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Major pitfalls

Slide 22/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Major pitfalls: The Goal

The goal for this section is
to scare you away from:

(blindly) building the benchmark harnesses
(blindly) trusting the benchmark harnesses
(blindly) trusting the benchmarks
(blindly) being generally blind about benchmarks

Slide 23/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

System: Optimization Quiz (A)

Let us run the empty benchmark.
System reports 4 online CPUs.

Threads Ops/nsec Scale
1 3.06 ± 0.10
2 5.72 ± 0.10 1.87 ± 0.03
4 5.87 ± 0.02 1.91 ± 0.03

Question 1: Why no change for 2 → 4 threads?
Question 2: Why only 1.87x change for 1 → 2 threads?

Slide 24/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

System: Optimization Quiz (A)

Let us run the empty benchmark.
System reports 4 online CPUs.

Threads Ops/nsec Scale
1 3.06 ± 0.10
2 5.72 ± 0.10 1.87 ± 0.03
4 5.87 ± 0.02 1.91 ± 0.03

Question 1: Why no change for 2 → 4 threads?

Question 2: Why only 1.87x change for 1 → 2 threads?

Slide 24/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

System: Optimization Quiz (A)

Let us run the empty benchmark.
System reports 4 online CPUs.

Threads Ops/nsec Scale
1 3.06 ± 0.10
2 5.72 ± 0.10 1.87 ± 0.03
4 5.87 ± 0.02 1.91 ± 0.03

Question 1: Why no change for 2 → 4 threads?
Question 2: Why only 1.87x change for 1 → 2 threads?

Slide 24/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

System: Power management

Running dummy benchmark,
+ Down-clocking to 2.0 GHz

Threads Ops/nsec Scale
1 1.97 ± 0.02
2 3.94 ± 0.05 2.00 ± 0.02
4 4.03 ± 0.04 2.04 ± 0.02

Slide 25/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

System: Power management

Many subsystems balance power-vs-performance

(Ex.: cpufreq, SpeedStep, Cool&Quiet, TurboBoost)

Downside: breaks the homogeneity of time
Remedy: disable power management, fix CPU clock frequency
JMH Remedy: run longer, do not park threads

Slide 26/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

System: OS Schedulers

OS schedulers balance affinity-vs-power

(Ex.: Solaris schedulers, Linux power-efficient taskqueues)

Downside: breaks the processing symmetry
Remedy: tight up scheduling policies
JMH Remedy: run longer, do not park threads

Slide 27/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

System: Time Sharing

Time sharing systems balance utilization

(Ex.: everywhere)

Downside: thread start/stop is not instantaneous, thread run
time is non-deterministic, the load is non-uniform
Remedy: make sure everything runs before measuring
JMH Remedy: «bogus iterations»

Slide 28/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

System: Time Sharing, #2

JMH provides the remedy – bogus iterations:

Slide 29/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

System: Time Sharing, Quiz (B)

public void measure () {
long startTime = System.nanoTime ();
while(! isDone) {

work ();
}
println(System.nanoTime () - startTime);

}

Slide 30/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

System: Time Sharing, Quiz (B)

«Is there a problem, officer?»
public void measure () {

long realTime = 0;
while(! isDone) {

setup (); // skip this
long time = System.nanoTime ();

work ();
realTime += (System.nanoTime () - time);

}
println(realTime);

}

Slide 31/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

System: Time Sharing, Quiz (B)

Measuring the reciprocal throughput via total/iteration time:

0

200

400

600

0 10 20 30
Threads

th
ro

u
g
h
p
u
t,
 o

p
s
/u

s

Timing the entire loop Timing the sum[iterations]

The throughput grows past the CPU count – WTF?!

Slide 32/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

System: Time Sharing, Quiz (B)

public void measure () {
long startTime = System.nanoTime ();
long realTime = 0;
while(! isDone) {

setup (); // skip this
long time = System.nanoTime ();

work ();
realTime += (System.nanoTime () - time);
...WHOOPS, WE DE-SCHEDULE HERE...

}
println(realTime);
println(System.nanoTime () - startTime);

}

Slide 33/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

System: Time Sharing

Time sharing gives the illusion of running
multiple threads simultaneously

Downside: this illusion is broken for performance
Remedy: do NOT overload the system!
JMH Remedy: big red warning sign

Slide 34/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

VM: Optimization Quiz (C)

@GenerateMicroBenchmark
public void baseline () {
}

0.5 ± 0.1 ns

@GenerateMicroBenchmark
public void measureWrong () {

Math.log(x);
}

0.5 ± 0.1 ns

@GenerateMicroBenchmark
public double measureRight () {

return Math.log(x);
}

34.0 ± 1.0 ns

Slide 35/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

VM: Dead-code elimination

Compilers are good at eliminating the redundant code.

Downside: can remove (parts of) the benchmarked code
Remedy: consume the results, depend on the results, provide
the side effect
JMH Remedy: API support

Slide 36/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

VM: Avoiding dead-code elimination

DCE is somewhat easy to avoid for primitives:
Primitives have binary combinators!
Caveat #1: Combinator cost?
Caveat #2: Low-range primitives enable speculation (boolean)

int sum = 0;
for (int i = 0; i < 100; i++) {

sum += op(i);
}
return sum; // consume in caller

Slide 37/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

VM: Avoiding dead-code elimination

DCE is hard to avoid for references:
Caveat #1: Fast object combinator, anyone?
Caveat #2: Need to escape object to limit thread-local
optimizations.
Caveat #3: Publishing the object ⇒ reference heap write ⇒
store barrier

Slide 38/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

VM: DCE, Blackholes

JMH provides «Blackholes».
Blackhole consumes the value.

class Blackhole {
void consume(int v) { doMagic(v); }
void consume(Object o) { doMagic(o); }

}

Returns are implicitly fed into the blackhole
User can request additional blackhole ⇒ heap writes again,
dammit!

Slide 39/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

VM: Avoiding dead-code elimination, Blackholes

Relatively easy for primitives:

class Blackhole {
static volatile Wrapper NULL;
volatile int g1 = 1, g2 = 2;

void consume(int v) {
if (v == g1 & v == g2) {

NULL.field = 0; // implicit NPE
}

}
}

Slide 40/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

VM: DCE, Blackholes

Harder for references:
class Blackhole {

Object sink;
int prngState;
int prngMask;

void consume(Object v) {
if ((next(prngState) & prngMask) == 0) {

sink = v; // store barrier here
prngMask = (prngMask << 1) + 1;

}
}

}

Slide 41/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

VM: Optimization Quiz (D)
@GenerateMicroBenchmark
public void baseline () {
}

0.5 ± 0.1 ns

@GenerateMicroBenchmark
public double measureWrong () {

return Math.log (42);
}

1.0 ± 0.1 ns

private double x = 42;
@GenerateMicroBenchmark
public double measureRight () {

return Math.log(x);
}

34.0 ± 1.0 ns

Slide 42/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

VM: Constant folding, etc.

Compilers are good at partial evaluation1

Downside: can remove (parts of) the benchmarked code
Remedy: make the sources unpredictable
JMH Remedy: API support

1All right, all right! It is not really the PE.
Slide 43/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

VM: CSE

JMH prevents load commoning across @GMB calls

double x;

@GenerateMicroBenchmark
double doWork () {

doStuff(x);
}

volatile boolean done;
void doMeasure () {

while (!done) {
doWork ();

}
}

(i.e. read everything from heap ⇒ you are good!)

Slide 44/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

VM: DCE, CSE... Same thing!

Losing either a source or a sink loses the part of the benchmark.
Silently.

Slide 45/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

VM: DCE, CSE... Same thing!

Losing either a source or a sink loses the part of the benchmark.
Silently.

Slide 45/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

VM: DCE, CSE... Same thing!

Losing either a source or a sink loses the part of the benchmark.
Silently.

Slide 45/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

VM: Optimization Quiz (E)
// changing N, will performance differ?
static int N = 100;

@GenerateMicroBenchmark
public int test() { return doWork(N); }

int x = 1, y = 2;

private int doWork(int reps) {
int s = 0;
for (int i = 0; i < reps; i++)

s += (x + y);
return s;

}
Slide 46/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

VM: Optimization Quiz (E), #2

N ns/call ns/add
1 1.5 ± 0.1 1.5 ± 0.1

10 2.0 ± 0.1 0.1 ± 0.01
100 2.7 ± 0.2 0.05 ± 0.02

1000 68.8 ± 0.9 0.07 ± 0.01
10000 410.3 ± 2.1 0.04 ± 0.01

100000 3836.1 ± 40.6 0.04 ± 0.01

Which one to believe?
0.04 ns/add ⇒ 25 adds/ns ⇒ GTFO!

Slide 47/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

VM: Optimization Quiz (E), #2

N ns/call ns/add
1 1.5 ± 0.1 1.5 ± 0.1

10 2.0 ± 0.1 0.1 ± 0.01
100 2.7 ± 0.2 0.05 ± 0.02

1000 68.8 ± 0.9 0.07 ± 0.01
10000 410.3 ± 2.1 0.04 ± 0.01

100000 3836.1 ± 40.6 0.04 ± 0.01

Which one to believe?
0.04 ns/add ⇒ 25 adds/ns ⇒ GTFO!

Slide 47/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

VM: Loop unrolling

Loop unrolling greatly expands
the scope of optimizations

Downside: assume the single loop iteration is 𝑀 ns. After
unrolling the effective cost is 𝛼𝑀 ns, where 𝛼 ∈ [0; +∞)

Remedy: avoid unrollable loops, limit the effect of unrolling
JMH Remedy: proper handling for CSE/DCE nils loop
unrolling effects

Slide 48/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

VM: Optimization Quiz (F)

interface M {
void inc();

}

abstract class AM implements M {
int c;
void inc() {

c++;
}

}

class M1 extends AM {}
class M2 extends AM {}

Slide 49/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

VM: Optimization Quiz (F), #2

M m1 = new M1();
M m2 = new M2();

@GenerateMicroBenchmark
public void testM1 () { test(m1); }

@GenerateMicroBenchmark
public void testM2 () { test(m2); }

void test(M m) {
for (int i = 0; i < 100; i++)

m.inc();
}

Slide 50/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

VM: Optimization Quiz (F), #3

test ns/op
testM1 4.6 ± 0.1
testM2 36.0 ± 0.4

repeat testM1 35.8 ± 0.4
forked testM1 4.5 ± 0.1
forked testM2 4.5 ± 0.1

Slide 51/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

VM: Optimization Quiz (F), #3

test ns/op
testM1 4.6 ± 0.1
testM2 36.0 ± 0.4

repeat testM1 35.8 ± 0.4

forked testM1 4.5 ± 0.1
forked testM2 4.5 ± 0.1

Slide 51/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

VM: Optimization Quiz (F), #3

test ns/op
testM1 4.6 ± 0.1
testM2 36.0 ± 0.4

repeat testM1 35.8 ± 0.4
forked testM1 4.5 ± 0.1
forked testM2 4.5 ± 0.1

Slide 51/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

VM: Profile feedback

Dynamic optimizations
can use runtime information

(Ex.: call profile, type profile, CHA info)

Downside: Big difference in running multiple benchmarks, or a
single benchmark in the VM
Remedy: Warmup all benchmarks together; OR fork the JVMs
JMH Remedy: Bulk warmup support; forking

Slide 52/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

VM: Optimization Quiz (G)

Slide 53/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

VM: Optimization Quiz (G), #2

Slide 54/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

VM: Run-to-run variance

Many scalable algos are inherently non-deterministic!

(Ex.: memory allocators, profiler counters, non-fair locks, concurrent
data structures, some other intelligent tricks up our sleeve...)

Downside: (potentially) (devastatingly) large run-to-run
variance
Remedy: replays withing every subsystem, multiple JVM runs
JMH Remedy: multiple forks

Slide 55/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

VM: Inlining budgets

Inlining is the über-optimization

Downside: You can not inline everything ⇒ subtle inlining
budget considerations
Remedy: Smaller methods, smaller loops, examining
-XX:+PrintInlining, forcing inlining
JMH Remedy: Generated code peels potentially hot loops,
user-friendly @CompileControl

Slide 56/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

VM: Inlining example

Small hot method: inlining budget starts here.

public void testLong_loop
(Loop loop , Result r, MyBenchmark bench) {

long ops = 0;
r.start = System.nanoTime ();
do {

bench.testLong (); // @GenerateMicroBenchmark
ops ++;

} while (!loop.isDone);
r.end = System.nanoTime ();
r.ops = ops;

}

Slide 57/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

CPU: Optimization Quiz (H)
@State
public class TreeMapBench {

Map <String , String > map = new TreeMap <>();

@Setup
public void setup() { populate(map); }

@GenerateMicroBenchmark
public void test(BlackHole bh) {

for(String key : map.keySet ()) {
String value = map.get(key);
bh.consume(value);

}
}

}Slide 58/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

CPU: Optimization Quiz (H), #2
@GenerateMicroBenchmark
public void test(BlackHole bh) {

for(String key : map.keySet ()) {
String value = map.get(key);
bh.consume(value);

}
}

Exclusive Shared
Throughput, op/sec 615 ± 12 828 ± 21

Threads 4 4
Maps 4 1

Footprint, Kb 1024 256

Slide 59/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

CPU: Optimization Quiz (H), #2
@GenerateMicroBenchmark
public void test(BlackHole bh) {

for(String key : map.keySet ()) {
String value = map.get(key);
bh.consume(value);

}
}

Exclusive Shared
Throughput, op/sec 615 ± 12 828 ± 21

Threads 4 4

Maps 4 1
Footprint, Kb 1024 256

Slide 59/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

CPU: Optimization Quiz (H), #2
@GenerateMicroBenchmark
public void test(BlackHole bh) {

for(String key : map.keySet ()) {
String value = map.get(key);
bh.consume(value);

}
}

Exclusive Shared
Throughput, op/sec 615 ± 12 828 ± 21

Threads 4 4
Maps 4 1

Footprint, Kb 1024 256

Slide 59/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

CPU: Optimization Quiz (H), #2
@GenerateMicroBenchmark
public void test(BlackHole bh) {

for(String key : map.keySet ()) {
String value = map.get(key);
bh.consume(value);

}
}

Exclusive Shared
Throughput, op/sec 615 ± 12 828 ± 21

Threads 4 4
Maps 4 1

Footprint, Kb 1024 256
Slide 59/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

CPU: Cache capacity

DRAM memory is too far and too slow.
Cache the hottest stuff on-die SRAM cache!

Downside: Remarkably different performance for memory
accesses, depending on your luck
Remedy: Track the memory footprint; multiple experiments
with different problem sizes; shared/distinct data for the worker
threads
JMH Remedy: @State scopes

Slide 60/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

CPU: Optimization Quiz (I)

How scalable is this?
@State(Scope.Benchmark) class Shared {

final int[] c = new int [64];
}

@State(Scope.Thread) class Local {
static final AtomicInteger COUNTER = ...;
final int index = COUNTER.incrementAndGet ();

}

@GenerateMicroBenchmark
void work(Shared s, Local l) {

s.c[l.index]++;
}

Slide 61/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

CPU: Optimization Quiz (I), #2

Threads Average ns/call Hit
1 2.0 ± 0.1
2 18.5 ± 2.4 9x
4 32.9 ± 6.2 16x
8 85.4 ± 13.4 42x

16 208.9 ± 52.1 104x
32 464.2 ± 46.1 232x

Why?

Slide 62/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

CPU: Bulk method transfers

Memory subsystem tracks data in cache-line quantums.
Cache lines are 32, 64, 128 bytes long.

Downside: the dense inter-thread accesses are hard on memory
subsystem (false sharing)
Remedy: padding, subclass juggling, @Contended
JMH Remedy: control structures are heavily padded,
auto-padding for @State

Slide 63/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

CPU: Optimization Quiz (J)2

Exhibit B. Exhibit P.
int sum = 0;
for (int x : a) {

if (x < 0) {
sum -= x;

} else {
sum += x;

}
}
return sum;

int sum = 0;
for (int x : a) {

sum += Math.abs(x);
}
return sum;

Which one is faster?
2Credits: Sergey Kuksenko (@kuksenk0)

Slide 64/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

CPU: Optimization Quiz (J)

E. Branched E. Predicated
L0: mov 0xc(%ecx ,%ebp ,4),%ebx

test %ebx,%ebx
jl L1
add %ebx ,%eax
jmp L2

L1: sub %ebx ,%eax
L2: inc %ebp

cmp %edx ,%ebp
jl L0

L0: mov 0xc(%ecx ,%ebp ,4),%ebx
mov %ebx ,%esi
neg %esi
test %ebx ,%ebx
cmovl %esi,%ebx
add %ebx ,%eax
inc %ebp
cmp %edx ,%ebp
jl Loop

Which one is faster?

Slide 65/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

CPU: Optimization Quiz (J)

Regular Pattern = (+, –)*

NHM Bldzr C-A93 SNB
branch_regular 0.9 0.8 5.0 0.5
branch_shuffled 6.2 2.8 9.4 1.0
branch_sorted 0.9 1.0 5.0 0.6
predicated_regular 2.0 1.0 5.3 0.8
predicated_shuffled 2.0 1.0 9.3 0.8
predicated_sorted 2.0 1.0 5.7 0.8

time, nsec/op

3Using client compiler
Slide 66/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

CPU: Branch Prediction

Out-of-Order engines speculate a lot.
Most of the time (99%+) correct!

Downside: Vastly different performance when speculation fails
Remedy: Realistic data! Multiple diverse datasets

Slide 67/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Conclusion

Slide 68/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Conclusion: not as simple as it sounds

You should be scared by now!

Resist the urge to:
believe the pleasant results
reject the unpleasant results
write the throw-away benchmarks
write the «generic» benchmark harnesses
believe the fancy reports and beautiful APIs
trust the code

Slide 69/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Conclusion: Benchmarking is serious

More rigor is never a bad thing!

The intuition is almost always wrong (unless you rock)
Never trust anything (unless checked before)
Ever challenge everything (especially these slides)
Embrace failure (especially your failures)
Grind your teeth, and redo the tests (especially yours)

Slide 70/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Conclusion: Things on list to do

JMH does one thing and does it right:
gets you less «back to square one» moments

Other things to improve usability:
Java API (in progress)
Bindings to reporters (in progress)
Bindings to the other JVM languages
@Param-eters

Slide 71/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Thanks!

Slide 72/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Conclusion: But wait...

Slide 73/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Conclusion: Alternative Evil

Don’t do any performance assessments at all

You should already know why it is far worse.
...right?

Slide 74/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

Thanks!

Slide 75/75. Copyright c○ 2013, Oracle and/or its affiliates. All rights reserved.

	Intro
	Basics
	Major pitfalls
	System
	VM
	CPU

	Conclusion

