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Preliminary Remarks

Necessity is the mother of invention,                                                  
and computer networks are the mother of modern cryptography

- Ronald L. Rivest (1997*)

* In: CRYPTOGRAPHY AS DUCT TAPE, 6/12/1997  http://people.csail.mit.edu/rivest/Ducttape.txt

http://people.csail.mit.edu/rivest/Ducttape.txt�
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Preliminary Remarks

Diffie-Hellman

ECDSA

Oracle model
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 Cryptography is an enabling technology (or tool) to secure the 
information infrastructure(s) we 
− build, 
− use, and 
− count on in daily life

 Computer scientists, electrical engineers, and applied 
mathematicians should care about (and be educated in) the 
principles and applications of cryptography

Preliminary Remarks
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 This seminar addresses only the materials that are available in 
public, i.e., no rumors or unverified claims

 There are tools to experiment with cryptographic systems 
 For example, CrypTool is publicly and freely available                           

( http://www.cryptool.org)
 A few exercises are included in the seminar (optional)

Preliminary Remarks

http://www.cryptool.org/�
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 The slides are relatively simple, down-to-earth, and not visually 
stimulating

 Mathematical fundamentals are not addressed
 Alice, Bob, Carol, Dave, Eve, and the rest of the gang are posted 

as missing

Preliminary Remarks
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 There are inherent limitations of cryptography ...

Preliminary Remarks

http://xkcd.com/538/
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 Please, interrupt and ask questions at will!

Questions
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1.1  Cryptology
1.2  Cryptographic Systems
1.3  Historical Background Information

1  Introduction
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 The term cryptology is derived from two Greek                                      
words
− kryptós ≈ hidden
− lógos ≈ word

 The meaning can be paraphrased as                                                
„hidden word“

 This refers to the original intent of cryptology                                        
(i.e., data confidentiality protection)

 Today, the term is more broadly used 
 It comprises other security-related purposes and applications (in 

addition to data confidentiality protection)

Introduction
1.1  Cryptology 

Kryptos is a sculpture by American ar-
tist Jim Sanborn (1990) located on the 
grounds of the Central Intelligence 
Agency (CIA) in Langley, Virginia



21 16/08/2011
Contemporary Cryptography

 Examples
− Data integrity protection
− Enitity authentication
− Data origin authentication
− Access control                                                                                           

(≈ conditional access, DRM, … )
− Nonrepudiation
− Accountability
− Anonymity 
− Pseudonymity

 Some purposes and applications may be contradictory or even 
mutually exclusive (e.g., e-voting)

Introduction
Cryptology 
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 Cryptology is a mathematical science that comprises two 
branches of study (cf. RFC 2828)
− Cryptography deals with transforming data to 

o render ist meaning unintelligible (i.e., hide its semantic content), 
o prevent its undetected alteration, or 
o prevent its unauthorized use

− Cryptanalysis deals with the analysis of a cryptographic system in 
order to gain the knowledge needed to break or circumvent the pro-
tection that the system is designed to provide

 The cryptanalyst is the (natural) antagonist of the cryptographer 
(there is an arms race going on)

 Cryptographic results are more openly discussed, but cryptanalyti-
cal results are more frequently reported in the media

Introduction
Cryptology 
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 In some literature, cryptology also comprises steganography
 Real-world examples of steganographic techniques

− Invisible ink
− Tatoos under hair
− ...

 Analogies (how to protect money)
− Hide money (steganography)
− Put money in a safe (cryptography)

 Cryptographic and steganographic techniques are ideally com-
bined (e.g., TrueCrypt hidden volumes)

Introduction
Cryptology 
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 In the digital world, there are many steganographic technqiues 
(i.e., techniques to hide the existence of information)

 Digital watermarking and fingerprinting employ similar techniques

− Watermarking Hide information about the data originator
− Fingerprinting Hide information about the data recipient

Introduction
Cryptology 

Cryptology

Cryptography Cryptanalysis Steganography
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 According to RFC 2828, a cryptographic system (or crypto-
system) is a set of algorithms together with the key management 
processes that support use of the algorithm in some application 
context 

 In some literature, a cryptographic system is also called a crypto-
graphic scheme (e.g., digital signature scheme)

 A distinction is made between an algorithm and a protocol
− An algorithm is a well-defined computational procedure that takes a 

variable input and generates a corresponding output
− A protocol is a distributed algorithm (i.e., an algorithm in which 

multiple entities take part)

 Hence, a protocol represents a distributed algorithm

Introduction
1.2  Cryptographic Systems  
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 Notation for protocols

Introduction
Cryptographic Systems  

A B
( input paramters )

( output paramters )

( input paramters )

( output paramters )

Computational step Computational step

Computational step Computational step
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 Classes of cryptosystems
− Unkeyed cryptosystem  no secret parameter
− Secret key cryptosystem (symmetric)  secret parameters are shared 

among the participating entities
− Public key cryptosystem (asymmetric)  secret parameters are not 

shared among the participating entities

 The goal of cryptography is to design, implement, and use crypto-
systems that are reasonably „secure“

 To make precise statements about the security of a (crypto)system, 
one must formally define the term security

 Anything can be claimed secure, unless its meaning is defined and 
precisely nailed down

Introduction
Cryptographic Systems  
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 A security definition must answer (at least) two questions 
− What is the adversary one has in mind and against whom one wants 

to protect oneself?
o How powerful is he or she?
o What are his or her capabilities?
o What attacks can he or she mount?
o What is his or her a priori knowledge?
o …

− What is the task the adversary must solve in order to be successful 
(i.e., to break the system)?

 Strong security definitions are obtained if 
− The adversary is assumed to be as strong as possible
− The task to be solved is assumed to be as simple as possible

Introduction
Cryptographic Systems  
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 Analogy: Security of a safe 

Introduction
Cryptographic Systems  

− Adversary

− Task to solve

o Open safe in 1 minute
o Open safe in 5 minutes
o Open safe in 15 minutes
o Open safe in 1 hour
o ...
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 Exercise 1-1: Security definitions
1. Consider a soccer game and decide in which case your team is 

better

a) Your team plays soccer against the world champion and he‘s not able to 
make a single goal

b) Your team plays soccer against a group of schoolboys and they are not 
able to win the game

Introduction
Cryptographic Systems  
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 A cryptosystem is secure if a specified adversary cannot or is not 
able to solve a specified task

 Notions of security 
− If the adversary cannot solve the task, then one is in the realm of 

unconditional or information-theoretic security ( probability 
and/or information theory)

− If the adversary can in principle but is not able to solve the task, then 
one is in the realm of conditional or computational security (
complexity theory)

 There are cryptosystems known to be secure in the strong sense 
(i.e., unconditionally secure), but there are no cryptosystems 
known to be secure in the weak sense (i.e., conditionally secure)

 Not even the existence of a conditionally secure cryptosystem has 
been proven so far (complexity theory deals with upper bounds)

Introduction
Cryptographic Systems  
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 In some literature, provable security is mentioned as (yet) 
another notion of security

 This goes back to the early days of public key cryptography, when 
Diffie and Hellman proposed the notion of a complexity-based 
security proof (aka reduction proof)

 The basic idea is to show that breaking a cryptosystem is compu-
tationally equivalent to solving a hard (mathematical) problem

 Two directions
− Hard problem can be solved ⇒ Cryptosystem can be broken
− Cryptosystem can be broken ⇒ Hard problem can be solved

 Diffie and Hellman showed only the first direction for their key 
exchange protocol

Introduction
Cryptographic Systems  
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 The notion of provable security has fueled a lot of research since 
the mid-1970s

 Many (public key) cryptosystems have been proven secure in this 
sense

 But a complexity-based security proof (or reduction proof) is not 
absolute

 It is only relative to the assumed intractability of the underlying 
(mathematical) problem

 Hence, provable security is a special form of conditional or 
computational security

 The condition is the intractability of the underlying mathematical 
problem

Introduction
Cryptographic Systems  
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 In addition to the intractability assumption, people sometimes 
make the assumption that a cryptographic system (typically a 
cryptographic hash function) behaves like a random function  
(i.e., a function chosen at random from all possible functions)

 This sometimes allows a proof to be given in the random oracle 
model (as opposed to the standard model)

 The usefulness and suitability of the random oracle model is 
discussed controversially within the community

Introduction
Cryptographic Systems  
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 There are people who try to improve the security of (cryptographic) 
systems by keeping secret their design and internal working prin-
ciples

 This approach (or state-of-mind) is known as security through 
obscurity 

 Many systems that depend on security through obscurity do not 
provide adequate security 

 Once their design and internal working principles get publicly 
known, they are broken rapidly

Introduction
Cryptographic Systems  
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 Kerckhoffs‘ principle states that a cryptographic system should 
be designed to be secure even when the adversary knows all the 
details of a system, except for the secret values (e.g., cryptogra-
phic keys)

 The Kerckhoffs‘ principle is an appropriate and generally accepted 
principle for the design of cryptographic systems

 It is in line with the recommendation to assume a very powerful 
adversary

 But the principle is not without controversy in some application 
contexts

Introduction
Cryptographic Systems  
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 An implementation of a (theoretically secure) cryptosystem need 
not be secure

 There are many attacks that can be mounted against a specific 
implementation of a (theoretically secure) cryptosystem 

 Also, there are a number of side channel attacks that are 
surprisingly powerful

− Timing attacks
− Differential fault analysis (DFA)
− Differential power analysis (DPA)
− …

 More recently, research has started to address the notion of 
leakage-resilient cryptography

Introduction
Cryptographic Systems  



38 16/08/2011
Contemporary Cryptography

 Exercise 1-2: Protection against timing attacks
1. What possibilities does one have to protect an implementation of a 

cryptosystem against timing attacks?

2. What advantages and disadvantages do these possibilities have? 

Introduction
Cryptographic Systems  
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 Until World War II, cryptography was considered to be an art and 
was primarily used in miltary and diplomacy

 Two developments and scientific achievements turned crypto-
graphy from an art into a science
− During World War II, Claude E. Shannon developed a mathematical 

theory of communication and a related theory of secrecy systems 
known as information theory

− In the 1970s, Whitfield Diffie and Martin Hellman (as well as Ralph 
Merkle) proposed the use of trapdoor (one-way) functions and came 
up with the notion of public key cryptography

Introduction
1.3  Historical Background Information
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 Since the early 1990s, we have seen a wide deployment and 
commercialization of cryptography

 Today, many companies develop, market, and deploy crypto-
graphic technologies and techniques, mechanisms, services, 
and/or products implemented in hardware and/or software

 There are many conferences (e.g., IACR conferences and work-
shops) and trade shows (e.g., RSA Security conferences) held on 
a regular basis

 Furthermore, the trade press is keen on publishing new crypt-
analytical results 

Introduction
Historical Background Information

http://www.rsaconference.com/index.htm�
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2.1  Unkeyed Cryptosystems
2.2  Secret Key Cryptosystems
2.3  Public Key Cryptosystems
2.4  Final Remarks

2  Cryptographic Systems (Overview)
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 One-Way Functions
 Cryptographic Hash Functions
 Random Bit Generators

Cryptographic Systems (Overview)
2.1  Unkeyed Cryptosystems
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 The notion of a one-way function plays a pivotal role in contem-
porary cryptography

 Informally speaking, a function f: X → Y is one-way if it is easy to 
compute but hard to invert

Cryptographic Systems (Overview)
Unkeyed Cryptosystems − One-Way Functions

Range YDomain X

x

y

easy

hard
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 According to (computational) complexity theory
− Easy means that the computation can be done efficiently
− Hard means that it is not known how to do the computation efficiently 

(i.e., no efficient algorithm is known to exist)

 A computation is efficient if the expected running time of an algo-
rithm that does the computation is bounded by a polynomial in the 
length of the input (i.e., T(n) = (ln n)c)

 A function f: X → Y is one-way if f(x) can be computed efficiently 
for x∈RX, but f-1(y) cannot be computed efficiently for y∈RY

 There are real-world examples of one-way functions
− Loooking up a phone number in a telephone book
− Smashing a bottle into pieces
− Time-dependent processes (e.g., aging)

Cryptographic Systems (Overview)
Unkeyed Cryptosystems − One-Way Functions
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 In mathematics, there are only a few functions assumed (conjec-
tured) to be one-way
− Discrete exponentiation (Exp): y = f(x) = gx (mod p)
− Modular power (RSA): y = f(x) = xe (mod n)
− Modular square (Square): y = f(x) = x2 (mod n)

 None of these functions has been proven to be one-way
 It is theoretically not even known whether one-way functions exist 

in the first place (i.e., a proof of existence is missing)

Cryptographic Systems (Overview)
Unkeyed Cryptosystems − One-Way Functions
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 In public key cryptography, one often employs trapdoor (one-way) 
functions

 A one-way function f: X → Y is a trapdoor (one-way) function if 
there exists some extra information (trapdoor) with which f can be 
inverted efficiently, i.e., f-1(y) can be computed efficiently for y∈RY

 The mechanical analog of a trapdoor function is a padlock (the key 
represents the trapdoor) 
− Everybody can lock the padlock without the key
− Nobody can open the padlock without the key

 One-way functions and trapdoor functions are the building blocks  
of public key cryptography

 To be mathematically precise (and apply complexity-theoretic argu-
ments), one has to consider families of such functions

Cryptographic Systems (Overview)
Unkeyed Cryptosystems − One-Way Functions
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 Hash functions are frequently used and have many applications in 
computer science

 Informally speaking, a hash function is an efficiently computable 
function that takes an arbitrarily sized input (string) and generates 
an output (string) of fixed size

 Formally speaking, a hash 
function is an efficiently 
computable function 
h: Σnmax → Σ*n, where Σ is 
the input alphabet and Σ*

is the output alphabet 
 Hence, h generates hash 

values of length n

Cryptographic Systems (Overview)
Unkeyed Cryptosystems − Cryptographic Hash Functions
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 In cryptography, one is interested in hash functions that are  

− Preimage resistent (≡ one way)
− Second-preimage resistent
− Collision resistent

 A cryptographic hash function is a hash function that is either 
preimage resistent and second-preimage resistent or preimage 
resistent and collision resistent (preferred case)

 The output of a cryptographic hash function is a characteristic 
representation of the input string (message) representing a
fingerprint or digest

Cryptographic Systems (Overview)
Unkeyed Cryptosystems − Cryptographic Hash Functions

This is a file that includes some inportant but 
long statements. Consequently, we may need a 
short representation of this file.

h

E4 23 AB 7D 17 67 D1 3E F6 EA EA 69 80 
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 The second-preimage and collision resistance properties ensure 
that it is computationally infeasible to find two (or more) messages 
that hash to the same value

 Exemplary cryptographic hash functions  
− MD5
− SHA-1, SHA-2 family
− SHA-3 (in progress)

 Finding collisions in cryptographic hash functions and finding 
functions that are inherently more collision resistent are active 
areas of research

Cryptographic Systems (Overview)
Unkeyed Cryptosystems − Cryptographic Hash Functions
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 Exercise 2-1: Cryptographic hash functions
1. Use CrypTool > Indiv. Procedures > Hash > Hash Demonstration… 

to visualize the effects of applying 
(a)  MD5                                                                                                        
(b) SHA-1                                                                                                                      
(c) RIPEMD-160                                                                                              
to a message of your choice

2. Apply minor modifications to the message and try to predict the 
output behavior of the cryptographic hash function in use

3. Explain your observation(s)

Cryptographic Systems (Overview)
Unkeyed Cryptosystems − Cryptographic Hash Functions
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 Randomness is a fundamental ingredient for cryptography (and 
hence security)

 The generation of secret and unpredictable random quantities (i.e., 
random bits or random numbers) is at the core of most practically 
relevant cryptosystems 

 A random bit generator is (an idealized model of) a device that 
has no input but outputs a sequence of statistically independent 
and unbiased bits

Cryptographic Systems (Overview)
Unkeyed Cryptosystems − Random Bit Generators

Random Bit 
Generator …010001110101010010101
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 There are statistical tests that can be used to evaluate the (ran-
domness) properties of a random bit generator (or the bit sequen-
ces that are generated, respectively)

 With regard to the design of a random bit generator, it is not un-
disputable whether randomness really exists

 Present knowledge in quantum physics suggests that randomness 
really exists

 But even if randomness exists, it is not immediately clear how to 
exploit it
− There is no deterministic (i.e., computational) realization or implemen-

tation of a random bit generator
− There are nondeterministic realizations and implementations of a ran-

dom bit generator that employ some physical events or phenomena

Cryptographic Systems (Overview)
Unkeyed Cryptosystems − Random Bit Generators
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 A (true) random bit generator requires a naturally occuring source 
of randomness

 Designing and implementing a device that exploits this source is 
an (engineering) challenge

Cryptographic Systems (Overview)
Unkeyed Cryptosystems − Random Bit Generators
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 Symmetric Encryption Systems
 Message Authentication Codes
 Pseudorandom Bit Generators (PRBGs)
 Pseudorandom Functions (PRFs)

Cryptographic Systems (Overview)
2.2  Secret Key Cryptosystems
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 A symmetric encryption system can be used to encrypt and 
decrypt data with a secret key k

− Encryption is the process that turns a plaintext message m into a 
ciphertext c

− Decryption is the reverse process that turns a ciphertext c into a 
plaintext message m

Cryptographic Systems (Overview)
Secret Key Cryptosystems – Symmetric Encryption ...

E Dm c m

k k
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 The use case is to transmit a secret message from A to B

 Examples
− DES, DESX, 3DES, ...
− RC2, RC4, RC5, RC6, ...
− IDEA
− AES
− ...

Cryptographic Systems (Overview)
Secret Key Cryptosystems – Symmetric Encryption ...

The adversary cannot retrieve the 
content of the secret message

http://upload.wikimedia.org/wikipedia/commons/5/5e/Bundesarchiv_Bild_146-2005-0152,_Geheimer_Funkmeldedienst_des_OKW.jpg�
http://upload.wikimedia.org/wikipedia/commons/5/5e/Bundesarchiv_Bild_146-2005-0152,_Geheimer_Funkmeldedienst_des_OKW.jpg�
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 To reasonably argue about the security of a symmetric encryption 
system, one must specify the adversary and the task he or she 
must solve
− Typically, the adversary is polynomially bounded and can mount 

specific attacks

o Ciphertext-only attack
o Known-plaintext attack
o (Adaptive) chosen-plaintext attack (CPA)
o (Adaptive) chosen-ciphertext attack (CCA / CCA2)

− The task is to decrypt a ciphertext or to determine plaintexts that are 
more probable than others

Cryptographic Systems (Overview)
Secret Key Cryptosystems – Symmetric Encryption ...
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 It is sometimes argued that encrypting messages also protects 
their authenticity and integrity (in addition to their confidentiality)

 This argument is flawed and confidentiality protection and 
authenticity and integrity protection are different pairs of shoes

 To protect the authenticity and integrity of a message, the sender 
can append an authentication tag to the message and the 
recipient can verify it 

Cryptographic Systems (Overview)
Secret Key Cryptosystems – Message Authentication ...

Message

Message Tag
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 The use case is to securely transmit a message (e.g., an online 
banking transaction) from A to B

 Possibilities to compute and verify authentication tags
− Public key cryptography ( digital signatures)
− Secret key cryptography ( message authentication codes)

Cryptographic Systems (Overview)
Secret Key Cryptosystems – Message Authentication ...
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 A message authentication code (MAC) is an authentication tag 
computed and verified with a secret parameter (i.e., secret key)

 A message authentication system is a system that can be used 
to compute and verify MACs 

 To reasonably argue about the security of a message authenti-
cation system, one must specify the adversary and the task he or 
she must solve

 Informally speaking, one wants to avoid an adversary being able 
to illegitimately generate a valid-looking MAC

 Many (unconditionally and conditionally secure) message authen-
tication systems have been proposed

 In practice, the HMAC construction is most frequently used 

Cryptographic Systems (Overview)
Secret Key Cryptosystems – Message Authentication ...
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Cryptographic Systems (Overview)
Secret Key Cryptosystems – PRBGs

 Remember that a random bit generator cannot be implemented 
deterministically

 A PRBG is an efficient deterministic algorithm that takes as input 
a random binary sequence of length k (seed) and generates as 
output another binary sequence (pseudorandom bit sequence) of 
possibly infinite length l >> k

 The use case is to generate randomly-looking but not predictable 
keying material from a relatively short seed

PRBG …010001110101010010101Seed
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Cryptographic Systems (Overview)
Secret Key Cryptosystems – PRBGs

 Unlike a random bit generator, a PRBG represents a deterministic 
algorithm and has an input (namely the seed)

 Hence, it must be implemented as a finite state machine (FSM) 
and it generates a bit sequence that is cyclic (potentially large cycle)

 One cannot require that the bits in a pseudorandomly generated bit 
sequence are truly random – only that they appear to be so (i.e., 
they cannot be told apart from truly randomly generated bits)

 Similar to the case of a random bit generator, statistical tests can be 
used to evaluate the randomness properties of the bit sequen-ces 
generated by a PRBG

 The bottom line is that a PRBG outputs bit sequences that have 
specific (randomness) properties
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Cryptographic Systems (Overview)
Secret Key Cryptosystems – PRFs

 A random function (or random oracle) is a function f: X → Y 
that is randomly chosen from the set of all possible mappings from 
domain X to range Y

 For x∈X, a random function outputs an arbitrarily chosen (but 
always the same) y = f(x) ∈ f(X) ⊆ Y

 A pseudorandom function (PRF) family is a collection of 
efficiently-computable functions that can be used to emulate a 
random function, i.e., no efficient algorithm can distinguish 
between a function chosen randomly from the PRF family and a 
true random function
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Cryptographic Systems (Overview)
Secret Key Cryptosystems – PRFs

 In spite of their different properties, PRBGs and PRF families are 
related to each other 
− A PRF family can be used to construct a PRBG
− A PRBG can be used to construct a PRF family

 Note that PRF families are mainly used in theory (in formal 
secuirty proofs), and that they are not intended to be implemen-
ted in practice

 This is in contrast to PRBGs that are frequently used in practice
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 Asymmetric Encryption Systems
 Digital Signature Systems (DSSs)
 Key Agreement

Cryptographic Systems (Overview)
2.3  Public Key Cryptosystems
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 In a public key cryptosystem, each entity holds a pair of mathe-
matically related keys (public key k and private key k-1)

 A necessary (but usually not sufficient) prerequisite for a public 
key cryptosystem to be secure is that it is computationally in-
feasible to compute k-1 from k

 As such, k can be published (e.g., in a directory)
 Public key cryptography is computationally much less efficient 

than secret key cryptography
 In practice, one combines public and secret key cryptography in 

hybrid systems (e.g., secure messaging)

Cryptographic Systems (Overview)
Public Key Cryptosystems

Message encrypted with a session key

Session key 
encrypted with the 
public key of the 
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 In public key cryptography, it is common to specifiy a system 
using a set of algorithms

 One algorithm typically refers to the generation of the key pairs
 The other algorithms depend on the system in use 

Cryptographic Systems (Overview)
Public Key Cryptosystems
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 Similar to a symmetric encryption system, an asymmetric encryp-
tion system can be used to encrypt and decrypt data (messages)

 It requires a (family of) trapdoor (one-way) functions
− The public key kB represents the one-way function
− The private key kB

-1 represents the trapdoor (to the one-way function)

Cryptographic Systems (Overview)
Public Key Cryptosystems – Asymmetric Encryption ...
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 The use case is slightly different than in the symmetric case, 
because an asymmetric encryption system allows the sender to 
secretly transmit a message the recipient without prior key 
agreement

 The sender just takes the public key of the recipient and subjects 
the message to the respective one-way function

 Noboday can retrieve the message without inverting the one-way 
function (and this is assumed to be computationally intractable)

Cryptographic Systems (Overview)
Public Key Cryptosystems – Asymmetric Encryption ...
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 An asymmetric encryption system consists of the following 3 
efficiently computable functions or algorithms

− Generate(1l) is a probabilistic key generation algorithm that ge-
nerates a public key pair (k,k-1) based on the security parameter l 
(≅ key length)

− Encrypt(k,m) is a deterministic or probabilistic encryption 
algorithm that generates a ciphertext c, i.e., c = Encrypt(k,m)

− Decrypt(k-1,c) is a deterministic decryption algorithm that is inverse 
to Encrypt(k,m) and generates the plaintext message, i.e., m = 
Decrypt(k-1,c)

Cryptographic Systems (Overview)
Public Key Cryptosystems – Asymmetric Encryption ...
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Cryptographic Systems (Overview)
Public Key Cryptosystems – Asymmetric Encryption ...
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 Discussing the security of asymmetric encryption is more involved 
than in the symmetric case

 This is because the encryption key is public and can be used to 
mount chosen plaintext attacks (CPAs) at will

 To defeat CPAs and various types of chosen ciphertext attacks 
(CCAs), different notions of security have been explored in the 
recent past
− Semantic security
− Indistinguishability of ciphertexts
− Nonmalleability
− …

Cryptographic Systems (Overview)
Public Key Cryptosystems – Asymmetric Encryption ...
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 Technically speaking, a digital signature is
− A value computed with a cryptographic algorithm and appended to a 

data object in such a way that any recipient of the data can use the 
signature to verify the data‘s origin and integrity (RFC 2828)

− Data appended to, or a cryptographic transformation of, a data unit 
that allows a recipient of the data unit to prove the source and 
integrity of the data unit and protect against forgery, e.g. by the 
recipient (ISO/IEC 7498-2)

 Digital signatures can be used to protect the authenticity and in-
tegrity of messages, and to provide nonrepudiation services

 With the proliferation of e-commerce, digital signatures and the 
legislation thereof have become important and timely topics

 Most countries have put in place a digital signature law

Cryptographic Systems (Overview)
Public Key Cryptosystems – DSSs
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 The use case of a DSS is similar to the one of a message 
authentication system

 But digital signatures are able to provide non-repudiation
 Types of digital signatures

− Digital signature with appendix  Digital signature is appended to 
the data unit (ISO/IEC 14888)

− Digital signature giving message recovery  Data unit is crypto-
graphically transformed in a way that it represents both the data unit 
and the digital signature (ISO/IEC 9796)

Cryptographic Systems (Overview)
Public Key Cryptosystems – DSSs
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 Working principles

− The signatory A uses its private key kA
-1 to compute the signature s = 

DA(m)
− The verifier uses A‘s public key kA to verify the signature s (or to 

recover the message m, respectively)  public verifiability

Cryptographic Systems (Overview)
Public Key Cryptosystems – DSSs
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 A DSS with appendix consists of 3 efficiently computable 
functions or algorithms

− Generate(1l) is a probabilistic key generation algorithm
− Sign(k-1,m) is a deterministic or probabilistic signature generation 

algorithm that outputs a signature s = Sign(k-1,m)
− Verify(k,m,s) is a deterministic signature verification algorithm that 

yields valid iff s is a valid signature for m and k

Cryptographic Systems (Overview)
Public Key Cryptosystems – DSSs
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 A DSS giving message recovery consists of 3 efficiently 
computable functions or algorithms

− Generate(1l) is a probabilistic key generation algorithm
− Sign(k-1,m) is a deterministic or probabilistic signature generation 

algorithm that outputs a signature s giving message recovery
− Recover(k,s) is a deterministic message recovery algorithm that 

outputs either the message or a notification indicating that s is an 
invalid signature

Cryptographic Systems (Overview)
Public Key Cryptosystems – DSSs
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Cryptographic Systems (Overview)
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 Discussing the security of a DSS is involved 
 It must be computationally infeasible to forge a signature, i.e., 

illegitimatly generate a valid-looking signature
 There are, however, different attacks to consider and different 

ways to forge a signture (selective vs. existential forgeries)
 The bottom line is that there are different notions of security for 

DSSs
 Some of these notions are very strong, but they only exist in 

theory

Cryptographic Systems (Overview)
Public Key Cryptosystems – DSSs
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 If two (or more) entities want to make use of secret key cryptogra-
phy, then they must share a secret (key)

 In large systems, many keys must be generated, stored, managed, 
and destroyed in a secure way

 For n entities, there are 
n       n(n-1)    n2-n
2        1·2        1·2

keys (e.g., 499,500 keys for n = 1,000)
 The resulting (scalability) problem is known as the n2-problem

Cryptographic Systems (Overview)
Public Key Cryptosystems – Key Agreement
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 Approaches to solve the n2-problem
− Key distribution center (e.g., Kerberos)
− Key establishment protocol

 Types of key establishment protocols
− Key distribution protocols (e.g., SSL/TLS handshake with RSA-based 

session key establishment)
− Key agreement protocols (e.g., Diffie-Hellman key exchange)

 As mentioned before, the Diffie-Hellman key exchange protocol 
gave birth to public key cryptography

Cryptographic Systems (Overview)
Public Key Cryptosystems – Key Agreement
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 The cryptographic community is in a phase of consolidation
 A major theme is to better understand and formally define the 

notion of security, and to prove that particular cryptosystems 
aresecure in this sense

 In the remaining parts of this seminar, the cryptographic systems 
that we have overviewed are refined, more precisely defined, 
discussed, and put into perspective

 The aim is to provide a comprehensive overview and a better 
understanding of contemporary cryptography and the crypto-
systems in current use

Cryptographic Systems (Overview)
2.4  Final Remarks
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Secret Key Cryptography

3. Symmetric Encryption Systems

Module 2

4. Message Authentication

5. Pseudo and Pseudorandom Bit Generators

6. Pseudo and Pseudorandom Functions
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 Mathematically speaking, a symmetric encryption system (or 
cipher) consists of 5 components 

− Plaintext message space M
− Ciphertext space C
− Key space K
− Family E = {Ek: k∈K} of (probabilistic) encryption functions Ek: M → C
− Family D = {Dk: k∈K} of decryption functions Dk: C → M

 Dk and Ek must be inverse to each other, i.e., Dk(Ek(m)) = Ek(Dk(m)) 
= m (∀k∈K,m∈M)

 In a typical setting 

− M = C = Σ*
− K = Σl for some fixed key length l (e.g., l = 128)

Symmetric Encryption Systems 
3.1  Introduction
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 For Σ = {A,…,Z}, Σ* consists of all words that can be constructed 
with the capital letters A to Z

 These letters can be associated with Z26 = {0,…,25}
 There is a bijective map from {A,…,Z} to Z26 = {0,…,25}, i.e., 

{A,…,Z} ≅ Z26, and hence one can work with {A,…,Z} or Z26

 For Σ = {A,…,Z} ≅ Z26 and M = C = K = Σ*, the additive cipher can 
be defined as follows
− Encryption function Ek: M → C; m → m + k (mod 26) = c 
− Decryption function Dk: C → M; c → c - k (mod 26) = m

 For k = 3, the additive cipher is known as the                                 
Caesar cipher

Symmetric Encryption Systems 
Introduction
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 Exercise 3-1: Additive cipher
1. Work through the CrypTool animation of the Caesar cipher (CrypTool 

> Indiv. Procedures > Visualization of Algorithms > Caesar…)
2. Use CrypTool to encrypt a text file with an additive cipher using 

different keys (CrypTool > Crypt/Decrypt > Symmetric (classic) > 
Caesar / Rot-13…)

3. Discuss the advantages and disadvabtages, as well as the 
possibilities to break the cipher

4. Use CrypTool to actually break the cipher (CrypTool > Analysis > 
Symmetric Encryption (classic) > Ciphertext only > Caesar)

Symmetric Encryption Systems 
Introduction
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 Similar to the additive cipher, one can define a multiplicative cipher 
or combine an additive and a multiplicative cipher in an affine 
cipher

 In an affine cipher, K consists of all pairs (a,b)∈Z26
2 with  

gcd(a,26) = 1  K has Ф(26)·26 = 12·26 = 312 elements
− Encryption function Ek: M → C; m → am + b (mod 26) = c 
− Decryption function Dk: C → M; c → a-1(c – b) (mod 26) = m

 Toy example
− a = 3, b = 1, a-1 mod 26 = 9 (3·9 = 27 ≡ 1 (mod 26))
− Encryption of m = 2: c = am + b (mod 26) = 3·2 + 1 (mod 26)  = 7
− Decryption of c = 7: m = a-1(c – b) (mod 26) 

= 9(7-1) = 9·6 = 54 (mod 26) = 2

Symmetric Encryption Systems 
Introduction
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 An affine cipher can be broken with a known plaintext attack and 
only 2 plaintext-ciphertext pairs (m,c)
− If an adversary knows (m1,c1) = (f,q) = (5,16) and (m2,c2) = (t,g) = 

(19,6), then he can set up and solve a system of two equivalences

a5 + b ≡ 16 (mod 26)
a19 + b ≡ 6 (mod 26) 

− The first equivalence can be rewritten as b ≡ 16 – 5a  (mod 26) and 
used in the second equivalence 

19a + b ≡ 6 (mod 26)
19a + 16 – 5a ≡ 6 (mod 26) 
14a + 16 ≡ 6 (mod 26) 

Symmetric Encryption Systems 
Introduction
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− Consequently,
14a ≡ -10 ≡ 16 (mod 26)
7a ≡ 8 (mod 13) 

− By multiplying either side with the multiplicative inverse element of 7 
modulo 13 (which is 2), one gets 

a ≡ 2·8 = 16 ≡ 3 (mod 13)

− Hence, a = 3 and b = 1 (since b ≡ 16 - 5a (mod 26))
− Similar to the legitimate recipient, the adversary can now compute 

D(a,b)

Symmetric Encryption Systems 
Introduction
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 Σ = {A,…,Z} ≅ Z26 is a good choice for human beings
 If computer systems are used for encryption and decryption, then it 

is better and more appropriate to use Σ = Z2 = {0,1}  ≅ GF(2)
 Additive, multiplicative, and affine ciphers represent mono-

alphabetic substitution ciphers (i.e., one single substitution alphabet 
is used)

 Such ciphers can be broken with frequency analyses
 Alternatives

− Homophonic substitution ciphers
− Polyalphabetic substitution ciphers (e.g., Vignère cipher)



Symmetric Encryption Systems 
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 Exercise 3-2: Homophonic substitution cipher 
1. Use CrypTool to encrypt an arbitrary text file with a homophonic 

substitution cipher (CrypTool > Crypt/Decrypt > Symmetric (classic) 
> Homophone…)

2. Discuss the advantages and disadvantages of  homophonic 
substitution ciphers  



Symmetric Encryption Systems 
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 Exercise 3-3: Polyalphabetic substitution cipher
1. Work through the CrypTool animation of the Vigenère cipher 

(CrypTool > Indiv. Procedures > Visualization of Algorithms > 
Vigenère)

2. Use CrypTool to encrypt an arbitrary text file with the Vigenère 
cipher (CrypTool > Crypt/Decrypt > Symmetric (classic) > 
Vigenère…)

3. Discuss the advantages and disadvantages of the Vigenère cipher  
4. Use CrypTool to break the Vigenère cipher (CrypTool > Analysis > 

Symmetric Encryption (classic) > Ciphertext only > Vigenère…)
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 Homophonic and polyalphabetic substitution ciphers can be broken 
with more sophisticated cryptanalytical methods

 For example, in the case of the Vigenère cipher, the number k of 
substitution alphabets (representing the key length) must be deter-
mined first

 Knwoing k, a given ciphertext can be divided up into k ciphertexts, 
each of them encrypted with a mono-alphabetic substitution cipher

 Statistical tests to determine k

− Kasiski test (Friedrich Wilhelm Kasiski, 1863)

− Friedman test aka index of coincidence (William F. Friedman, 1925)

Symmetric Encryption Systems 
Introduction
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 Similar techniques apply to iterated 
polyalphabetic substitution ciphers, 
such as rotor machines (e.g., Enig-
ma used in World War II)

 An Enigma Java applet is available 
at http://homepages.tesco.net/                                      
~andycarlson/enigma/enigma_j.htm
l

Symmetric Encryption Systems 
Introduction
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 Every practically relevant symmetric encryption system processes 
plaintext messages unit by unit

 A unit may be a bit, a block of bits (e.g., a byte), or a block of bytes
 The symmetric encryption system may be implemented as a finite 

state machine (FSM), i.e., the ith ciphertext unit depends on 

− ith plaintext unit
− Secret key
− Possibly some internal state (stream ciphers)

Symmetric Encryption Systems 
Introduction
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 Depending on the existence and use of internal state, block and 
stream ciphers are distinguished

− In a block cipher, the encrypting and decrypting devices have no 
internal state, i.e., the ith ciphertext unit only depends on the ith
plaintext unit and the secret key

− In a stream cipher, the encrypting and decrypting devices have 
internal state, i.e., the ith ciphertext unit depends on the ith plaintext 
unit, the secret key, and some internal state

Symmetric Encryption Systems 
Introduction
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 Classes of stream ciphers
− In a synchronous or additive stream cipher, the state does not depend 

on previously generated ciphertext units
− In a nonsynchronous or self-synchronizing stream cipher, the state 

also depends on some (or all) previously generated ciphertext units

 The distinction between block ciphers and stream ciphers is less 
precise than one might expect

 There are modes of operation that turn a block cipher into a stream 
cipher

Symmetric Encryption Systems 
Introduction
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 The most straightforward attack against a symmetric encryption 
system is a brute-force attack or exhaustive key search, i.e., an 
adversary tries to decrypt a ciphertext with every possible key k∈K

 On the average, half of the key space (i.e., |K|/2)must be searched 
through

 A brute-force attack requires that the adversary is able to decide 
whether he has found the correct plaintext message (or key)

− Adversary knows plaintext (i.e., known-plaintext attack)
− Plaintext message is written in a specific language
− More generally, plaintext messages contain enough redundancy to tell 

them apart from gibberish
 The plaintext message may be compressed or specifically en-

coded (e.g., Base-64) and only look like gibberish

Symmetric Encryption Systems 
Introduction
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 Shannon‘s evaluation criteria for symmetric encryption systems

− Amount of secrecy
− Size of key
− Complexity of enciphering and deciphering operations
− Propagation of errors
− Expansion of messages

Symmetric Encryption Systems 
Introduction
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 A block cipher maps plaintext message blocks of length n to 
ciphertext blocks of typically the same length (i.e., M = C = Σn)

 A block cipher then represents a family of permutations π∈K

− Encryption function Eπ: Σn → Σn (m → π(m)) 
− Decryption function  Dπ: Σn → Σn (c → π-1(c)) 

 The key space K comprises all permutations over Σn,                  
i.e., K = P(Σn))

 There are |P(Σn)| = (|Σ|n)! possible permutations that can be used 
as block ciphers (with block length n)

 For example, for Σ = {0,1} and block length n, there are (2n)! 
possible permutations 

 This functions grows tremendously  

Symmetric Encryption Systems 
3.2  Block Ciphers
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 For a typical block length of 64 bits, there are 
264! = 18,446,744, 073,709, 551,616!  

possible permutations (this number requires >269 bits) 
 Hence, if one wants to specify a particular permutation, then one 

has to number the permutations and use an index of >269 bits to 
serve as key

 This is impractical
 Block ciphers are designed to take a reasonably long key (e.g., 

rather 69 than 269  bits) and generate a mapping that looks ran-
dom to someone who does not know the key

 To study the security of a block cipher, one must analyze the 
algebraic properties of this mapping

Symmetric Encryption Systems 
Block Ciphers
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 In general, a (symmetric) encryption system is to provide a 
maximum level of confusion and diffusion

− Confusion is to make the relationship between the key and the 
ciphertext as complex as possible

− Diffusion is to spread the influence of a single plaintext bit over 
multiple ciphertext bits

 Confusion and diffusion are typically implemented with 
permutations and substitutions

 Symmetric encryption systems that combine permutations and 
substitutions in possibly multiple rounds are called substitution-
permutation ciphers (e.g., DES)

 Substitution-permutation ciphers may be vulnerable and 
susceptable to brute-force attacks

Symmetric Encryption Systems 
Block Ciphers
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 The Lucifer cipher was developed by IBM in the early 1970s
 With some modifications, the Lucifer cipher was adopted by the 

National Bureau of Standards (NBS) as the DES (FIPS PUB 46) 
in 1977

 The NIST (former NBS) reaffirmed the standard in 1983, 1988, 
1993, and 1999

 FIPS PUB 46-3 (1999) also specifies the Triple Data Encryption 
Algrotihm (TDEA)

 The DES was officially withdrawn as a standard in 2004

Symmetric Encryption Systems 
Block Ciphers – DES 
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 Structurally, DES is a substitution-permutation cipher that also 
represents a Feistel cipher (aka Feistel network)

− Σ = Z2 = {0,1}
− Block length 2t
− r rounds
− For every k∈K, r round 

keys k1,…,kr must be                                                             
generated (represen-
ting the key schedule)
and used on a per-
round basis

Symmetric Encryption Systems 
Block Ciphers – DES 
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 The encryption function Ek starts by splitting the plaintext message 
block m into two halves of t bits each, i.e., m = (L0,R0)

 A sequence of pairs (Li,Ri) for i=1,…,r is then recursively computed

(Li,Ri) = (Ri-1,Li-1⊕fki
(Ri-1))                              (1)

 (Lr,Rr) in reverse order represents the ciphertext block,i.e., c=(Rr,Lr) 
 Hence, c = Ek(m) = Ek(L0,R0) = (Rr,Lr) 
 Formula (1) can be written as (Li-1,Ri-1) = (Ri⊕fki 

(Li),Li)
 It is therefore possible to recursively compute Li-1 and Ri-1 from Li, 

Ri, and ki, and hence to determine m = (L0,R0) from c = (Rr,Lr) using 
the round keys in reverse order kr,…,k1

 DES is a Feistel cipher with block length 2t = 64 bits and r = 16 
rounds

Symmetric Encryption Systems 
Block Ciphers – DES 
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 DES keys are 64-bit strings with odd parity (where each byte is 
considered individually), i.e., K = {(k1,…,k64) ∈ {0,1}64 | Σj=1,…,8 k8i+j ≡
1 (mod 2) for i = 0,…,7}

 For example, F1DFBC9B79573413 is a valid DES key
− F1 = 11110001
− DF = 11011111
− BC = 10111100
− 9B = 01011011
− 79 = 01110101
− 57 = 01010111
− 34 = 00110100
− 13 = 00010011

Symmetric Encryption Systems 
Block Ciphers – DES 
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 To encrypt plaintext message block m 
using key k, the DES encryption algo-
rithm operates in 3 steps

1. An initial permutation (IP) is applied 
to m

2. A 16-round Feistel cipher is applied 
to IP(m) – this includes the final 
permutation of L16 and R16

3. The inverse initial permutation IP-1 is 
applied to the result of step 2

Symmetric Encryption Systems 
Block Ciphers – DES 



110 16/08/2011
Contemporary Cryptography

 DES uses a round function f that is 
iterated 16 times

 It takes as input a 32-bit R-Block and 
a 48-bit round key ki

 It generates as output a 32-bit value

Symmetric Encryption Systems 
Block Ciphers – DES 
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 The DES key schedule takes a 56- or 
64-bit DES key and generates 16 48-
bit round keys k1,k2,…,k16

 Permuted choice (PC) functions
− PC1: {0,1}64 → {0,1}28 x {0,1}28

− PC2: {0,1}28 x {0,1}28 → {0,1}64

Symmetric Encryption Systems 
Block Ciphers – DES 
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 Exercise 3-4: DES
1. Work through the CrypTool animation of the DES (CrypTool > Indiv. 

Procedures > Visualization of Algorithms > DES…)

2. Discuss the differences between the DES encryption and decryption 
algorithms

3. Discuss the efficiency of hardware and software implementations of 
the DES encryption and decryption algorithms

Symmetric Encryption Systems 
Block Ciphers – DES 
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 Since its standardization, the DES has been subject to a lot of 
public scrutiny

 There are 4 weak and 12 semiweak DES keys
− The DES key k is weak if DESk(DESk(m)) = m (∀m∈M) 
− The DES keys k1 and k2 are semiweak if DESk1

(DESk2
(m)) = m 

(∀m∈M)

 It is sometimes recommended to avoid weak and semiweak keys
 There are 16 = 24 such keys, so the probability of randomly 

generating one is only 24/256 = 2-52 ≈ 2.22·10-16

Symmetric Encryption Systems 
Block Ciphers – DES 
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 In theory, there are a few cryptanalytical attacks against DES
− Differential cryptanalysis (Biham and Shamir, late 1980s) requires 

247 chosen plaintexts

− Linear cryptanalysis (Matsui, 1993) requires 243 known plaintexts

 The designers of DES claimed that they had known differential 
cryptanalysis prior to its publication, and that providing protection 
against it had actually been a design goal

Symmetric Encryption Systems 
Block Ciphers – DES 
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 In practice, both cryptanalytical attacks are pointless (because the 
amount of chosen or known plaintext is so huge)

 But the attacks are theoretically interesting and yield principles 
and criteria for the design of block ciphers

 All new block ciphers are routinely shown to be resistant against 
differential and linear cryptanalysis

 From a practical viewpoint, the major weakness and vulnerability 
of DES remains its relatively small key length (56 bits) and key 
space (256 elements)

 An exhaustive key search is successful after 
− 256 tries in the worst case
− 256/2 = 255 tries in the average case

Symmetric Encryption Systems 
Block Ciphers – DES 
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 The complementation property 
DESk(m) = c ⇔ DESk(m) = c, i.e., DESk(m) = DESk(m) 

can be used in a known-plaintext attack to additionally halve the 
key space (to 254)

 Let the adversary know 2 plaintext-ciphertext pairs 

− (m,c1) with c1 = DESk(m)
− (m,c2) with c2 = DESk(m)

 For every key candidate k‘, he or she can compute c = DESk‘(m)
− If c = c1, then k‘ is the correct key
− If c = c2, then k‘ is the correct key
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 The feasibility of an exhaustive key search has been discussed 
since the standardization of DES in 1977

 An exhaustive key search needs a lot of time but almost no 
memory (simply try out all possible keys)

 On the other hand, if one has a lot of memory and is willing to 
precompute the ciphertext c for a known plaintext message m and 
all possible keys k∈K, then one can do an exhaustive key search 
almost instan-taneously (i.e., retrieve k from a table with (c,k)-
entries)

 There are time-memory tradeoffs
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 Many researchers have discussed the possibility to design and 
build a dedicated machine to do an exhaustive key search against 
DES

− In 1977, Diffie and Hellman estimated that a 20-million-USD-machine 
could find a key in one day

− In 1993, Michael J. Wiener estimated that a1-million-USD-machine 
could find a key in 3.5 hours 

− In 1997, Wiener estimated that a1-million-USD-machine could be 6 
times faster (i.e., find a key in 35 minutes) 

− In 1998, the Electronic Frontier Foundation (EFF) built                            
a massively parallel DES key search machine named                              
Deep Crack for USD 250,000 (the machine found a                              
DES key within 56 hours)

Symmetric Encryption Systems 
Block Ciphers – DES 



119 16/08/2011
Contemporary Cryptography

− In 2006, a group of German researchers (Ruhr University of Bochum 
and University of Kiel) built a DES key searching machine named 
Cost-Optimized Pralallel Code Breaker (COPACOBANA) for less 
than USD 10,000

 The machine found a DES key in 8.7 days
 It has been further improved (http://www.copacobana.org)
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 More interestingly, one can spend idle computing cycles of net-
worked computer systems to mount an exhaustive key search

 In 1991, Jean-Jacques Quisquater and Yvo Desmedt                                                        
coined the term Chinese lottery to refer to this idea                                
(documented in RFC 3607)

 If enough (networked) computer systems participate in an exhaus-
tive key search, then a DES key can be found without dedicated 
machines like Deep Crack or COPACOBANA (e.g., M4 Project to 
break 3 original Enigma-encrypted ciphertexts)

 In 1999, the participants of the Distributed.Net project (> 100,000 
computer systems) broke a DES key in only 23 hours

 Note that the participants of a key search need not be aware of 
this fact (due to active content)
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 If one goes to key lengths beyond 100 bits (e.g., 128 bits), then the 
resulting ciphers are resistant against exhaustive key search

 If one considers quantum computers, then one has to increase the 
key length to 200 bits and more ( post-quantum cryptography)

 Unfotunately, this does not mean that all ciphers with these key 
lengths and all respective implementations are secure under all 
circumstances
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 In practice, there are several possibilities to address the small key 
length problem of DES
− The way DES is used can be modified

o Prevention of known plaintext
o Complex key setup procedures
o Frequent key changes (e.g., on a per-packet basis)
o All-or-nothing transform (Rivest)

− DES can be modified in a way that compensates for ist relatively small 
key length (e.g., DESX)

− DES can be iterated multiple times (e.g., TDEA)
− An alternative symmetric encryption system with a larger key length 

may be used (e.g., AES) 
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 Rivest proposed to apply Merkle‘s key whitening technique to 
protect DES (only) against exhaustive key search

c = DESXk1,k,k2
(m) = k2 ⊕ DESk(m ⊕ k1)

 DESX requires 56 + 64 + 64 = 184 bits of keying material
 It is employed in Microsoft‘s Encrypted File System (EFS) 
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 Preliminary remarks regarding multiple iterations of a block cipher

− Multiple iterations should be done with different keys
− Multiple iterations with different keys only provide a security advan-

tage, if the encryption functions are not closed with regard to con-
catenation, i.e., they do not form a group (otherwise Ek3

(m) = 
Ek2

(Ek1
(m)))

 It was shown in the 1990s (by Wiener) that the DES encryption 
functions do not form a group, and hence that multiple iterations of 
DES may provide a security advantage

 The first (meaningful) possibility to iterate DES would be a double 
encryption with two different (and independent) keys

 But double DES is susceptible to a meet-in-the-middle attack
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 An adversary who knows a few plaintext-ciphertext pairs (mi,ci) –
where ci is derived from a double encryption of mi using k1 and k2 –
can mount a meet-in-the-middle attack

 He starts with (m1,c1) and builds 2 large tables (256 entries each)

 If ci = mj, then (ki,kj) is a possible key pair that can be verified with 
(m2,c2) or another plaintext-cipher-text-pair 

 The mere existence of the attack is reason enough to use TDEA
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 A DEA key consists of a key bundle k = (k1,k2,k3)
 FIPS PUB 46-3 specifies several options for the key bundle
 Encryption function c = Ek3

(Dk2
(Ek1

(m)))
 Decryption function m = Dk1

(Ek2
(Dk3

(m)))
 Iterating a block cipher multiple times can be done with any block 

cipher and there is nothing DES-specific about the TDEA 
construction

 The main disadvantage of TDEA is performance
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 From 1997 to 2000, the U.S. NIST carried out an open competition 
with the aim to standardize an Advanced Encryption Standard 
(AES) as the successor of the DES

 Contrary to the DES standardization effort, many parties from 
industry and academia participated in the AES competition

 5 finalists
− MARS (Coppersmith et al.)
− RC6 (Rivest)           
− Rijndael (Daemen and Rijmen)
− Serpent (Anderson, Biham, and Knudsen)
− Twofish (Schneier et al.)

 In 2000, the NIST proposed Rijndael as AES in FIPS PUB 197
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 Official AES versions

 The AES is byte-oriented
 A byte can be represented differently

− Binary representation 
− Hexadecimal representation
− Polynomial representation (i.e., the bits refer to the coefficients of the 

polynomial b7x7+b6x6+b5x5+b4x4+b3x3+b2x2+b1x+b0=Σi=0,…,7 bixi over Z2)
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Nb Nk Nr

AES-128 4 4 10

AES-192 4 6 12

AES-256 4 8 14

Nb = Block length (in 32-bit words) -
128 bits

Nk = Key length (in 32-bit words) -
128, 192, or 256 bits

Nr = Number of rounds - 10, 12, or 
14 rounds

10100011 

0xA3

x7+x5+x+1
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 With regard to the AES, the polynomial representation is needed 
(mainly for byte multiplication)

 To make sure that the degree of a resulting polynomial is not 
greater than 7, one must take the result modulo an irreducible 
polynomial of degree 8

 In the case of AES, this polynomial is f(x) = x8+x4+x3+x+1
 Because f(x) is an irreducible polynomial over Z2, Z2[x]f is actually 

a field
 This field is isomorph to GF(28), and hence this field is also known 

as the AES field
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 Internally, the the AES operates on a two-dimensional array (i.e., 
matrice) s of bytes (aka State or State array)

 More specifically, s consists of
− 4 rows
− 4 columns (Nb = 4 for all official versions of the AES)

 Consequently, the State represents a (4x4)-matrice and each entry 
sr,c or s[r,c] (0 ≤ r,c ≤ 4) comprises one byte
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in0 in4 in8 in12

in1 in5 in9 in13

in2 in6 in10 in14

in3 in7 In11 in15

s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15

out0 out4 out8 out12

out1 out5 out9 out13

out2 out6 out10 out14

out3 out7 out11 out15

Input bytes

State array

Output bytes
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(in)

s ← in
s ← AddRoundKey(s,w[0,Nb-1])
for r = 1 to (Nr-1) do

s ← SubBytes(s)
s ← ShiftRows(s)
s ← MixColumns(s)
s ← AddRoundKey(s,w[rNb,(r+1)Nb-1])

s ← SubBytes(s)
s ← ShiftRows(s)
s ← AddRoundKey(s,w[NrNb,(Nr+1)Nb-1])
out ← s

(out)
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 The SubBytes() transformation implements a nonlinear 
substitution cipher, i.e., each byte sr,c is substituted with another 
byte s‘r,c

 The substitution is specified in a substitution table (aka S-box)
 The S-box is a (16x16)-matrix of bytes 
 Contrary to the DES S-box, the AES S-box is generated in a 

mathematically structured and well-documented way
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| 0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f 
---|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
00 |63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76 
10 |ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0 
20 |b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15 
30 |04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75 
40 |09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84 
50 |53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf 
60 |d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8 
70 |51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2 
80 |cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73 
90 |60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db 
a0 |e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79 
b0 |e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08 
c0 |ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a 
d0 |70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e 
e0 |e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df 
f0 |8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

AES S-box
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 The ShiftRows() transformation implements a cyclic shift left 
(rotation) for the bytes in row r (0 ≤ r ≤ 3) for r positions

 s‘r,c = sr,c+shift(r,Nb) mod Nb

− shift(0,4) = 0
− shift(1,4) = 1
− shift(2,4) = 2
− shift(3,4) = 3 
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S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

s

S0,0 S0,1 S0,2 S0,3

S1,1 S1,2 S1,3 S1,0

S2,2 S2,3 S2,0 S2,1

S3,3 S3,0 S3,1 S3,2

s‘

s‘ = ShiftRows(s)
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 The MixColumns() transformation implements an invertible linear 
transformation for each column

 More specifically, each column c (0 ≤ c ≤ 3) is treated as a four-
term polynomial sc(x) over GF(28) 

sc(x) = s3,cx3 + s2,cx2 + s1,cx + s0,c

and multiplied modulo (x4 + 1) with the fixed polynomial
c(x) = {03}x3 + {01}x2 + {01}x + {02}

 Consequently, s‘c(x) = sc(x)c(x) (mod (x4 + 1))
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 Alternatively, the MixColumns() transformation transformation 
can be written as a matrix multiplication (with a specially crafted 
operator ⊗)

s‘(x) = c(x) ⊗ s(x)

s‘0,c
s‘1,c
s‘2,c
s‘3,c

s0,c
s1,c
s2,c
s3,c

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

= .
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 In the AddRoundKey() transformation, a word of the key 
schedule w is added modulo 2 to each column of the State

 For 0 ≤ c < Nb and 0 ≤ r ≤ Nr, 

[s‘0,c,s‘1,c,s‘2,c,s‘3,c] = [s0,c,s1,c,s2,c,s3,c] ⊕ w[rNb+c]

 Because the AddRoundKey() transformation only comprises of a 
bitwise addition modulo 2, it is its own inverse
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 The AES key expansion algorithm takes a key k and generates 
a key schedule w

 The key schedule, in turn, is Nb(Nr+1) words long (an inital set of 
Nb words and additional Nb words for each Nr rounds)

 Hence, w is actually an Nb(Nr+1)-long array of 4-byte words
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(in)

s ← in
s ← AddRoundKey(s,w[NrNb,(Nr+1)Nb-1])
for r = Nr-1 downto 1 do

s ← InvShiftRows(s)
s ← InvSubBytes(s)
s ← AddRoundKey(s,w[rNb,(r+1)Nb-1])
s ← InvMixColumns(s)

s ← InvShiftRows(s)
s ← InvSubBytes(s)
s ← AddRoundKey(s,w[0,Nb-1])
out ← s

(out)
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 Exercise 3-5: AES
1. Work through the CrypTool animation of the AES (CrypTool > Indiv. 

Procedures > Visualization of Algorithms > AES…)

2. Discuss the efficiency of hardware and software implementations of 
the AES encryption and decryption algorithms
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 In June 2003, the NSA announced that the AES may be used for 
the encryption of classified information
− The design and strength of all key lengths of the AES algorithm (i.e., 

128, 192 and 256) are sufficient to protect classified information up to 
the SECRET level. TOP SECRET information will require use of 
either the 192 or 256 key lengths.

 This announcement is remarkable, because it is the first time the 
public has access to a cipher for TOP SECRET information

 Due to the fact that the implemention is key to the security of a 
cryptographic system, the NSA further announced that 
− The implementation of AES in products intended to protect national 

security systems and/or information must be reviewed and certified by 
NSA prior to their acquisition and use.
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 Outside the NSA, the AES has been subject to a lot of public 
scrutiny (especially since its standardization in FIPS PUB 197) 
− The good news is that the AES is designed in a way that it is resistant 

against all known cryptanalytical attacks (e.g., differential and linear 
cryptanalysis)

− The bad news is that new cryptanalytical techniques that exploit the 
mathemtical structure of the AES have also been developed (and will 
continue to be refined) to eventually break the AES

 The AES and reduced-round versions thereof are popular targets 
for cryptanalytical attacks 
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 More recently, related key attacks have been successfully moun-
ted against AES-192 and AES-256 (surprisingly, AES-128 has 
remained unaffected)
− The full-round versions can be broken with a time complexity of 2176

(AES-192) or 2119 (AES-256) 

− The reduced-round versions can be broken with a time complexity of 
239 (AES-256 with 9 rounds), 245 (AES-256 with 10 rounds), or 270

(AES-256 with 11 rounds)  

 Resistance may be improved by increasing the number of rounds, 
e.g., AES-128: 10 → 16, AES-192: 12 → 20, and AES-256:14 →
28

 Future releases of the standard will likely take this into account
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 Confidentiality modes (NIST SP 800-38A,  http://csrc.nist.gov/ 
groups/ST/toolkit/BCM/)  
− Electronic code book (ECB)
− Cipherblock chaining (CBC)
− Cipher feedback (CFB)
− Output feedback (OFB)
− Counter (CTR)

 Authentication mode (NIST SP 800-38B)  
− Cipher-based MAC (CMAC)

 Authenticated encryption mode (NIST SP 800-38C)  
− Counter with CBC-MAC (CCM) mode

Symmetric Encryption Systems 
Block Ciphers – Modes of operation

Modes of operation that effectively turn a block cipher 
into a stream cipher (i.e., the block cipher is used to 
generate a sequence of pseudorandom bits that are 
added modulo 2 to the plaintext)
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 High-throughput authenticated encryption mode ( NIST SP 800-
38D)  
− Galois/counter mode (GCM)

 Future modes (work in progress)  
− AES Key Wrap (AESKW)
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 ECB mode  
− Encryption: ci = Ek(mi)
− Decryption: mi = Dk(ci)

 The ECB mode of operation is inappropriate for the encryption of 
highly structured data
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 CBC mode  
− Encryption: c0 = IV and ci = Ek(mi ⊕ ci-1) for i>0
− Decryption: c0 = IV and mi = Dk(ci) ⊕ ci-1 for i>0
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 CFB mode – nonsychronous (self-synchronizing) stream cipher 
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 OFB mode – sychronous (additive) stream cipher
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 In CTR mode, the block cipher is used to iteratively encrypt a 
counter

 The ciphertexts represent the key stream 
 The key stream is then added modulo 2 to the plaintext message
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 Stream ciphers used to play an important role in cryptography
 Many (proprietary) symmetric encryption systems used in military 

are stream ciphers
 Stream ciphers use internal state, i.e., the ith ciphertext unit 

depends on the ith plaintext unit, the secret key, and this state 
− Synchronous or additive stream ciphers (e.g., block ciphers in OFB or 

CTR mode, Vernam cipher, … )
− Nonsynchronous or self-synchronizing stream ciphers (e.g., block 

ciphers in CFB mode)

Symmetric Encryption Systems 
3.3  Stream Ciphers
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 Let Σ = Z2 = {0,1}, M = C = Σ*, and K = Σn

 To encrypt an l-bit plaintext message m = m1…ml ∈ M, a secret key 
k ∈ K must be expanded into an l-bit key stream k1…kl

 Encryption function (of an additive stream cipher)
Ek(m) = m1⊕k1, … ,ml⊕kl = c1,…,cl

 Decryption function
Dk(c) = c1⊕k1, … ,cl⊕kl = m1,…,ml

 With regard to the design of an additive stream cipher, the main 
question is how to expand k into a key stream (ki)i≥1

 Classes of additive stream ciphers
− LSFR-based stream ciphers
− Other stream ciphers
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 One possibility to generate a key stream (ki)i≥1 is to use a feedback 
shift register (FSR)

 The feedback function can be arbitrary
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 If the FSR operates in a field and the feedback function is linear 
over this field, then the FSR represents a linear feedback shift 
register (LFSR)

 In GF(2), the feedback function is linear iff it represents the addition 
modulo 2 of some register cells
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 Once the register is initialized with a seed, it operates deterministi-
cally, i.e., the sequence of the values generated is deterministic by 
the (current or previous) state of the register

 Because the register has a finite number of possible states, it must 
enter into a cycle

 LFSRs are well studied and understood 
 In particular, there is a mathematical theory to choose the linear 

feedback function so that the cycle is as long as possible, i.e., it 
cycles through all 2n-1 states for an n-bit regsiter

 LFSRs and LFSR-based stream ciphers can be efficiently 
implemented in hardware

 Consequently, there is room for other (preferrably additive) stream 
ciphers optimized for software implementations

Symmetric Encryption Systems 
Stream Ciphers – LFSR-based Stream Ciphers
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 RC4 is an additive stream cipher proposed by Rivest in 1987 (trade 
secret of RSA Security or EMC)

 It is deployed in many products and cryptographic seciroty 
protocols (e.g., SSL/TLS, WEP, WPA, … )

 In 1994, the source code of an RC4 implementation was 
anonymously posted to the Cypherpunks mailing list 

 Due to the trademark protection of RC4, this algorithm is referred to 
as ARCFOUR (Alleged-RC4)

Symmetric Encryption Systems 
Stream Ciphers – Other Stream Ciphers
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 RC4/ARCFOUR takes a variable-length key between 1 and 256 
bytes (8…2,048 bits) and generates a sequence of pseudoran-
domly generated bytes

 Each key byte is then added modulo 2 to a plaintext byte
 It employs an array S of 256 bytes of State information (S-box)
 The S-box bytes are labeled S[0], S[1], … , S[255]
 The S-box is initialized in 3 steps

1. S[i] = i for i = 0,1,…,255
2. An auxiliary array S2 of 256                                                          

bytes is allocated and filled                                                                
with the key, repeating bytes                                                                          
as necessary

3. The S-box is initialized                                                                            
as indicated on the right hand

Symmetric Encryption Systems 
Stream Ciphers – Other Stream Ciphers

(S)

j ← 0
for i = 0 to 255 do

j ← (j + S[i] + S2[i]) mod 256
S[i] ↔ S[j]

(S)
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 Afterwards, the algorithm to generate a key byte k from S is 
relatively simple and straightforward

 It may be executed multiple times
 i and j are global variables that are initially set to 0

Symmetric Encryption Systems 
Stream Ciphers – Other Stream Ciphers

(S)

i ← (i + 1) mod 256
j ← (j + S[i]) mod 256
S[i] ↔ S[j]
t ← (S[i] + S[j]) mod 256
k ← S[t]

(k)
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 Due to its wide deployment, RC4/ARCFOUR is a popular target to 
attack

 The randomness properties of the first bytes of the generated 
keystream are known to be poor

 This vulnerability has been exploited in attacks against WEP (key 
exposure in less than 1 minute)

 These attacks have disturbed users of wireless networks
 The attacks can be defeated by ignoring (and not using) the first 

bytes

Symmetric Encryption Systems 
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 The field of perfectly (i.e., information-theoretically) secure encryp-
tion was pioneered by Shannon in the late 1940s

 The aim was to design an encryption system that makes it im-
possible (even for a very powerful and skilled adversary) to derive 
information about a plaintext message from a ciphertext

 It is not obvious that such an absolute notion of security can be 
achieved in the first place

Symmetric Encryption Systems 
3.4  Perfectly Secure Encryption
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 Shannon‘s model of a symmetric encryption system

 The model can be extended to comprise probabilistic or 
randomized encryption

Symmetric Encryption Systems 
Perfectly Secure Encryption
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 Formally, an encryption (process) that takes place in a symmetric 
encryption system (M,C,K,E,D) can be viewed as a discrete 
random experiment

 M and K represent independent real-valued random variables with 
probability distributions PM: M → R+ and PK: K → R+

− PM typically depends on the plaintext message language in use
− PK is uniformly distributed over all possible keys, i.e., all keys are 

ideally equiprobable

 In such a setting, there is a third random variable C (modelling the 
ciphertext) distributed according to PC: C → R+

 The probability distribution PC is completely determined by PM and 
PK 

Symmetric Encryption Systems 
Perfectly Secure Encryption
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 The random variable C is the one that a (passive) adversary can 
observe and analyze to derive information about M or K (i.e., he 
tries to find messages or keys that are more probable than others)

 Perfect secrecy can be achieved if the ability to observe and 
analyze C does not yield any additional information about M or K 

 This means that observing the ciphertext does not help the 
adversary

 Alternatively speaking, the a posteriori probabilities of the plaintext 
messages (i.e., the probabilities that can be assigned after having 
observed the ciphertext) are equal to the respective a priori pro-
babilities (i.e., the probabilities that can be assigned without 
having observed the ciphertext) 

Symmetric Encryption Systems 
Perfectly Secure Encryption
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 In information theory, the entropy H of a random variable 
measures its incertainty (i.e., the incertainty about its outcome)

 A symmetric encryption system (M,C,K,E,D) is perfectly secure if 
H(M|C) = H(M) for every probability distribution PM

 Shannon showed that H(K) ≥ H(M) must hold for a perfectly se-
cure symmetric encryption system

 Hence, the encryption key must be at least as long as the plain-
text message (this is impractical)

Symmetric Encryption Systems 
Perfectly Secure Encryption
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 In the 1910s, Gilbert S. Vernam and Joseph O. Mauborgne                  
proposed a simple device that implements the one-time pad

 Due to a U.S. patent that was granted to Vernam in 1919, the                      
one-time pad is also known as Vernam cipher

 It can be proven to be perfectly secure
 In 2011, it  was discovered by Steven M. Bellovin                                  

that the one-time pad had been known almost 35                                   
years earlier to Frank Miller who published a book                                  
entitled “Telegraphic Code to Insure Privacy and                                   
Secrecy in the Transmission of Telegrams” in 1882

Symmetric Encryption Systems 
Perfectly Secure Encryption
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 The symmetric encryption systems in use today are similar in the 
sense that they all employ a mixture of more or less complex 
functions that are iterated multiple times

 The result is something that is inherently difficult to analyze
 There are details that sometimes look mysterious or arbitrary to 

outsiders (e.g., S-boxes of DES)
 This sometimes misleads people to believe that they can design a 

new cipher on their own (this is dangerous)
 Unless one enters the field of information-theoretically secure 

encryption systems, the level of security (and assurance) an 
encryption system provides is difficult to determine and quantify

 One reason is that it is difficult to exhaustively say what cryptanaly-
tical attacks are feasible or discovered in the future

Symmetric Encryption Systems 
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 The bottom line is that fairly little is known about the real security 
of (symmetric) encryption systems used in the field

 It is therefore simple to put in place rumors about weaknesses 
and potential vulnerabilities of (possibly competing) systems

 The media play an important role

Symmetric Encryption Systems 
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 Message authentication

− Public key cryptography → Digital signatures
− Secret key cryptography → Message authentication codes (MACs)

 A MAC is an authentication tag that is computed and verified with 
a secret key (it is not qualified to provide nonrepudiation services)

Message Authentication 
4.1  Introduction
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 A message authentication system consists of 5 components 
− Message space M
− Tag space T
− Key space K
− Family A = {Ak: k∈K} of authentication functions Ak: M → T
− Family V = {Vk: k∈K} of verification functions Vk: M x T → {valid,invalid}

 Vk(m,t) must yield valid iff t is a valid authentication tag for m and k 
(i.e., t = Ak(m))

 Alternatively speaking, Vk(m,Ak(m)) must yield valid (∀k∈K, m∈M)
 Typiaclly, M = {0,1}*, T = {0,1}ltag for some fixed tag length ltag, and  

K = {0,1}lkey for some fixed key length lkey (e.g., ltag = lkey = 128)

Message Authentication 
Introduction
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 Informally speaking, a message authentication system is secure if 
an adversary has no better possibility to generate a valid MAC 
than to guess

 The probability of correctly guessing a valid MAC is 1/2ltag

 More formally speaking, one must define 
− The adversary one has in mind (including, for example, the types of 

attacks he or she is able to mount)
− The task he or she must solve in order to be successful, i.e., to break 

the security of the system

Message Authentication 
Introduction
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 Types of attacks 
− Known-message attack, i.e., adversary knows (mi,ti) for i = 1,…,n
− Chosen-message attack, i.e., adversary can choose m1,…,mn

o Adaptive chosen-message attack
o Nonadaptive chosen-message attack

A tag-only attack does not make sense (because the message is 
always transmitted together with the tag) 

 Tasks to solve 

− Total break (retrieve the secret key)
− Selective forgery
− Existential forgery 

Message Authentication 
Introduction
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 Strong security definition 
− Even for an adversary who is able to mount an adaptive chosen-

message attack, it is impossible or computationally infeasible to 
selectively (or existentially) forge a MAC with a success probability 
that is substantially greater than guessing

o Impossible → the message authentication system is information-
theoretically or unconditionally secure

o Computationally infeasible → the message authentication system is 
computationally or conditionally secure

Message Authentication 
Introduction
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 Constructions
− MACs using symmetric encryption systems
− MACs using keyed hash functions
− MACs using PRFs
− MACs based on universal hashing

 There are a few outdated standards, such as the message 
authenticator algorithm (MAA) specified in ISO 8731-2 

 The MAA generates MACs that are only 32 bits long (too short to 
be secure)

Message Authentication 
4.2  Computationally Secure MACs
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 If a block cipher is used in CBC (or OFB) mode, then the last 
ciphertext block (functionally) depends on all previous blocks

 This implies that the last ciphertext block may also serve as MAC 
(CBC residue or CBC-MAC)

 The length of a CBC-MAC depends on the block cipher in use 
(e.g., 64 bits for DES or 3DES, 128 bits for AES, … )

 Relevant standardization bodies and standards in this area
− ANSI (e.g., ANSI X9.9, ANSI X9.19, … )
− NIST (e.g., FIPS PUB 113)
− ISO (e.g., ISO 8730/8731, ISO/IEC 9797, … )

 More recently, the NIST has specified the cipher-based MAC 
(CMAC) as a block cipher mode of operation for authentication 
(NIST SP 800-38B, IETF Informational RFC 4493, … )

Message Authentication
Computationally Secure MACs – MACs Using 
Symmetric Encryption Systems
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 The idea of using cryptographic hash functions to protect the 
authenticity and integrity of data and/or program files dates back 
to the late 1980s (in the context of virus protection)

 In the early 1990s, people started to think more seriously about 
the use of such functions to authenticate messages

 Advantages are related to simplicity, efficiency, and exportability
 Initially, there were 3 methods to authenticate a message m∈M

using a cryptographic hash function h (with compression function 
f) and a secret key k∈K (or a pair of keys (k1,k2)∈K, respectively) 
− Secret prefix method  MACk(m) = h(k║m)
− Secret suffix method  MACk(m) = h(m║k)
− Envelope method  MACk1,k2

(m) = h(k1║m║k2)
 All methods are vulnerable or have structural weaknesses

Message Authentication
Computationally Secure MACs – MACs Using 
Keyed Hash Functions
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 The secret prefix method 
MACk(m) = h(k║m)

is vulnerable to a message extension or padding attack
 If an adversary knows a message-MAC-pair (m, h(k║m)) with m = 

m1║m2║…║mi, then he or she can selectively forge a MAC for a 
message m‘ with an additional block mi+1 of data, i.e., m‘ = m║mi+1

MACk(m‘) = f(MACk(m)║mi+1)

 The adversary can therefore forge a valid MAC without having to 
know either k or how to otherwise compute MACk(m‘)

 The attack can be repeated for multiple message blocks

Message Authentication
Computationally Secure MACs – MACs Using 
Keyed Hash Functions
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 There are several possibilities to protect against the message 
extension or padding attack

− Only part of the hash value is taken as output (e.g., 64 bits)
− The messages to be hashed are of fixed length
− An explicit length field is included at the beginning of the message that 

is authenticated

 All possibilities have disadvatages in practical use

Message Authentication
Computationally Secure MACs – MACs Using 
Keyed Hash Functions
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 The secret suffix method 
MACk(m) = h(m║k)

has a structural weakness
 MACk(m) refers to

f(f(f(…f(f(m1)║m2)║…)║mi)║k)

h*(m)

where h*(m) represents the hashed message m (without initiali-
zation and padding)

Message Authentication
Computationally Secure MACs – MACs Using 
Keyed Hash Functions
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 Note that h*(m) does not depend on k, and hence anybody can 
determine this value for a given m

 This possibility can be turned into a (partly) known-message attack
 Whether this poses a problem depends on the compression 

function f in use
 The compression functions of the deployed cryptographic hash 

functions seem to be resistant
 But one need not take the risk

Message Authentication
Computationally Secure MACs – MACs Using 
Keyed Hash Functions
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 The envelope method 

MACk1,k2
(m) = h(k1║m║k2)

combines the prefix and suffix methods
 For quite a long time, the envelope method was assumed to be 

secure (in the sense that breaking it requires a simultaneous 
exhaustive key search for k1 and k2)

 In 1995, it was shown that there are more efficient attacks and 
alternative constructions were proposed

Message Authentication
Computationally Secure MACs – MACs Using 
Keyed Hash Functions
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 Most importantly, the hashed MAC (HMAC) construction specified 
in RFC 2104 is important and widely deployed today

HMACk(m) = h(k ⊕ opad║h(k ⊕ ipad║m)

 ipad and opad are (inner and outer) padding values
− ipad consists of byte 0x36 (i.e., {00110110}) repeated 64 times
− opad consists of byte 0x5C (i.e., {01011100}) repeated 64 times

 Consequently, ipad and opad comprise 64·8 = 512 bits
 To improve the efficiency of an HMAC implementation, (k ⊕ opad) 

and (k ⊕ ipad) can be precomputed
 Also, the output can be truncated to a shorter value (e.g., HMAC-

MD5-96 as used for IPsec)

Message Authentication
Computationally Secure MACs – MACs Using 
Keyed Hash Functions
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 Exercise 4-1: Message authentication
1. Use CrypTool to visualize the generation of MACs (CrypTool > 

Indiv. Procedures > Hash > Generation of MACs…)
2. Try to match the CrypTool MAC variants to the  method discussed 

so far

Message Authentication
Computationally Secure MACs – MACs Using 
Keyed Hash Functions
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 MACs using keyed hash functions have the structural weakness 
that they cannot be computed and verified in parallel (i.e., they 
must be computed and verified sequentially)

 In 1995, it was proposed to replace iterated hash functions with a 
family F of PRFs fk to compute and verify MACs in parallel

 Such a family F can, for example, be constructed with a block 
cipher (e.g., DES)

 Each encryption function DESk(·) represents a function fk from the 
PRF family F

 The basic idea of the XOR MAC construction is to apply a PRF fk to 
each block of a message m = m1║m2║…║mn in parallel, and then 
to add all images fk(m1), fk(m2), …, fk(mn) modulo 2

XOR MACk(m) = fk(m1) ⊕ fk(m2) ⊕ … ⊕ fk(mn) 

Message Authentication
Computationally Secure MACs –
MACs Using PRFs
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 Universal hashing provides a general design paradigm for MACs 
and message authentication systems

 Its main advantages are efficiency and provability
 In universal hashing, one considers classes (or families) of hash 

functions h: X → Y 
 A class (or family) H of hash functions h: X → Y is universal (or 

two-universal, respectively) if for every x,y ∈ X with x ≠ y 

Prh∈H[h(x) = h(y)] ≤ 1/|Y|

 In some sense, the hash functions of H are as collision-resistent as 
possible (given the cardinality of Y).

Message Authentication
Computationally Secure MACs –
MACs Based on Universal Hashing
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 The basic idea of a MAC based on universal hashing – aka 
universal MAC (UMAC) – is to
− Randomly choose a hash function from a two-universal class (or 

family) H of hash functions
− Apply this hash function to the message
− Encrypt the resulting hash value (of the message)

 The encryption algorithm may be the addition modulo 2, where the 
key stream is derived from a nonce r using a PRF F

 The UMAC construction employs 2 keys k1 and k2, as well as a 
fresh (but not secret) nonce r to authenticate message m

UMACk1,k2
(m) = hk1

(m) ⊕ fk2
(r)

Message Authentication
Computationally Secure MACs –
MACs Based on Universal Hashing
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 There are MACs and message authentication systems that are 
information-theoretically secure

 This means that no matter how much computational power the 
adversary has, he or she is not able to forge a valid MAC with a 
success probability substantially better than guessing

 But information-theoretically secure MACs require a new key for 
every message to be authenticated (similar to information-
theoretically secure symmetric encryption systems)

 If one employs a (cryptographically strong) PRBG to generate the 
keys, then the resulting MACs are only computationally secure 
(again, this is similar to the one-time pad)

 The bottom line is that information-theoretically secure MACs are 
theoretically interesting but not very useful in practice

Message Authentication 
4.3  Information-theoretically Secure MACs
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 Computationally secure MACs are widely deployed in practice
 Most applications and standards employ MACs using keyed hash 

functions
 Most importantly, the HMAC construction is part of most Internet 

security protocols (e.g., IPsec, SSL/TLS, ... )
 The fact that the HMAC construction is based on iterated (crypto-

graphic) hash functions may lead to performance problems –
especially in high-speed networks

 MAC constructions that can be parallelized (e.g., XOR MAC) 
provide alternatives

 MACs based on universal hashing (e.g., UMAC) are promising 
because they are highly efficient and their security properties can 
be proven

Message Authentication 
4.4  Final Remarks
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 Donald E. Knuth 
− Random numbers should not be generated with a method cho-

sen at random

 John von Neumann (1903 – 1957)
− Anyone who considers arithmetical methods of producing ran-

dom digits is, of course, in a state of sin
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 The term randomness refers to nondeterminism
 We say that something is random, if its outcome is non-

deterministic, meaning that it cannot be predicted in some 
meaningful way

 Whether randomness really exists is a philosophical question
 According to present knowledge in quantum physics, we believe 

that randomness exists
 Even if randomness exists, it is not clear how to measure it

Random and Pseudorandom Bit Generators 
5.1  Introduction
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 For a finite sequence of values, the Kolmogorov complexity 
measures its randomness (i.e., it measures the minimal length of 
a program for a Turing machine that is able to generate the 
sequence)

 The Kolmogorov complexity is a purely theoretical measure (it is 
not known how to compute it)

 If a (pseudorandom) bit sequence is generated with a LFSR, then 
the linear complexity measures its randomness (i.e., it measures 
the size of the shortest LFSR that generates the bit sequence)

 The Berlekamp-Massey algorithm can be used to compute the 
linear complexity (and hence the randomness) of a bit sequence

Random and Pseudorandom Bit Generators 
Introduction
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 Remember that a random bit generator is a(n idealized model of 
a) device or algorithm that has no input, and that outputs a se-
quence of statistically independent and unbiased bits  binary 
symmetric source (BSS)

 This means that for k ≥ 1, all 2k k-tuples of bits occur with the 
same probability 1/2k

 If one can generate random bits bi (i = 1,2,…), then one can also 
construct n-bit random numbers

a = Σ bi2i-1 ∈ [0,2n)

Random and Pseudorandom Bit Generators 
Introduction
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 Also remember that a PRBG is an efficient deterministic algorithm 
that, given as input a truly random binary sequence of length k 
(seed), generates and outputs a (pseudorandom) bit sequence of 
length l >> k that appears to be random 

 Hence, the PRBG acts as a „randomness expander“ for the seed 
(it must still be given a truly random value to start with)

 In practice, most additive stream ciphers (e.g., RC4/ARCFOUR) 
implement a PRBG, and hence designing an additive stream 
cipher and designing a PRBG refer to the same problem

Random and Pseudorandom Bit Generators 
Introduction
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 It is not known how to directly test the randomness of a binary (bit) 
sequence

 It is only known how to indirectly test it by trying to detect certain 
kinds of defects (using statistical randomness tests)

 If a bit sequence passes a certain set of statistical randomness 
tests, then the respective generator is accepted as being random 
(or not rejected as being nonrandom)

 There are several sets of statistical randomness tests
− Maurice George Kendell and Bernard Babington Smith (1938)
− George Marsaglia‘s Diehard tests (1995)
− Pierre L‘Ecuyer and Richard Simard‘s TestU01 (2007)
− NIST test suite (2010)  comprises Ueli Maurer‘s                       

universal statistical test (1992)

Random and Pseudorandom Bit Generators 
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 The design and implementation of a random bit generator is highly 
involved

 It is generally recommended to use special hardware to generate 
truly random bits (e.g., RFC 4086 ≡ BCP 106)

 But there are situations in which special                                                 
hardware is not available and software                                               
must be used to generate random bits

 Hence, there is room for hardware-based                                           
and software-based random bit generators

Random and Pseudorandom Bit Generators 
5.3  Random Bit Generators
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 Hardware-based random bit generators exploit the randomness 
that occurs in physical processes and/or phenomena

 Examples
− Elapsed time between emission of particles during radioactive decay
− Frequency instability of a free-running oscillator
− Amount a metal-insulator-semiconductor capacitor is charged during a 

fixed period of time
− Air turbulence within a sealed disk                                                        

drive that causes random fluctuations                                                        
in disk drive sector read latency time

− ...

Random and Pseudorandom Bit Generators 
Random Bit Generators
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 The design of software-based random bit generators is a difficult 
and challenging (engigeering) task

 There are (internal) states that may be used by a software-based 
random bit generator

− System clock (especially in the milliseconds range)
− Elapsed time between keystrokes and/or mouse movements
− Contents of I/O buffers
− Input provided by the user
− Values of operating system variables
− ...

 If one does not have one single random source but several 
uncorrelated sources, then one can use a strong mixing function

Random and Pseudorandom Bit Generators 
Random Bit Generators
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 Any source of random bits can be defective, i.e., the output bits 
are biased and/or correlated

 There are deskewing techniques for generating truly random bit 
sequences from the output of a defective random bit generator

 Simple deskrewing technique (John von Neumann)

− Group the output sequence into pairs of bits
− Transform 10 to 1 and 01 to 0 (discard 00 and 11)

 For example, 0110001101110101011010 is transformed to           
01--0-00011

Random and Pseudorandom Bit Generators 
Random Bit Generators
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 Exercise 5-1: Von Neumann‘s deskewing technique
1. Apply von Neumann‘s deskewing technique to the following output 

of a (possibly defective) random bit generator

1001001001001000100111101011010001010110000101

0110100100011111011010011101010010111101010000

1101001010010100101110101010011010000101110101

Random and Pseudorandom Bit Generators 
Random Bit Generators
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 A PRBG is deterministic and has no other input value than the seed
 A PRBG therefore represents and can be modeled as a finite state 

machine (FSM)
 Components of an FSM

− State register (initialized with seed s0)
− State transition or next-state function f that operates on the state 

register, i.e., si+1 = f(si)
− Output function g that computes an output value xi (typically a bit or 

series of bits) from si

 The PRBG generates a binary                                                      
sequence (xi)i≥1 = x1, x2, x3, …                                                             
that is cyclic (with a potentially                                                                            
very long cycle)

Random and Pseudorandom Bit Generators 
5.4  Pseudorandom Bit Generators

si

si+1

f

gState register



202 16/08/2011
Contemporary Cryptography

 If si is known, then (xj)j≥i is predicatble (this is due to the deter-
minsitic nature of the PRBG representing an FSM)

 Hence, some PRBGs used in practice deviate from the idealized 
model by allowing the state to be reseeded periodically

 This can be modeled by having and taking into account an 
additional source of randomness

 The bottom line is that the distinction between a true random bit 
generator and a PRBG is fuzzy in practice

Random and Pseudorandom Bit Generators 
Pseudorandom Bit Generators
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 There are several security requirements for PRBGs
 For example, an obvious (and minimal) security requirement is that 

the length of s0 must be so large that an exhaustive search over all 
2|s0| possible seed values is computationally infeasible

 Also, the bit sequence generated by the PRBG must pass all rele-
vant statistical randomness tests (necessary but not sufficient)

 But there are PRBGs that pass all relevant statistical randomness 
tests but are still not sufficiently secure for cryptographic purposes
− PRBGs that employ the binary expansion of algebraic numbers, such 

as SQRT(3), SQRT(5), …
− Linear congruential generators that generate (xi)i≥1 using the linear re-

currence xi ≡ axi-1+b (mod n) for seed x0 = s0 and integers a, b, and n

Random and Pseudorandom Bit Generators 
Pseudorandom Bit Generators
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 In general, PRBGs that employ a LFSR are not sufficiently secure
 But there are LFSR-based PRBGs that are sufficiently secure and 

that can be used for cryptographic purposes and applications
− Shrinking generator

− Self-shrinking generator

Random and Pseudorandom Bit Generators 
Pseudorandom Bit Generators

S       (si) =   0   1   1   0   1   1   0   0   1   1   0   1

Output =        0   1        0   1             0   1         0

A       (ai) =   1   0   1   1   0   1   1   1   0   1   0   0

In each cycle i, 
the shrinking 
generator out-
puts ai iff si = 1 
(otherwise ai is 
discarded) 

A       (ai) =   1 0   1 1   0 1   1 1   0 1   0 0

Output =         0        1                  1

In each cycle i, 
the self-shrinking 
generator outputs 
a2i+1 iff a2i = 1 
(otherwise a2i+1 is 
is discarded)



 There are alternative PRBGs (not based on LFSRs)
 For example, the ANSI X9.17 PRBG is frequently used in practice

Random and Pseudorandom Bit Generators 
Pseudorandom Bit Generators

(s,k,n)

I ← Ek(D)
For i = 1 to n do

xi ← Ek(I ⊕ s)
s ← Ek(I ⊕ xi)
output xi

(x1,x2,…,xn)

− Ek denotes 3DES encryption with 2 keys
− D is an internally used 64-bit representation 

of date/time
− I is an intermediate value
− The output is a sequence of n pseudo-

random 64-bit strings
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 Little is known about the cryptographical strength of the PRBGs 
used in practice

 For example, many PRBGs (including the ANSI X9.17 PRBG) have 
the property that once the internal state is compromised, an adver-
sary can forever after predict the output sequence
− From a theoretical viewpoint, this is a minor concern that does not 

disturb the security of the PRBG (because one assumes that the 
adversary is not able to read out internal state in the first place)

− From a prcatical viewpoint, this is a major concern that requires to 
reseed the PRBG periodically

 PRBGs that are resistant against known attacks are sometimes 
called practically strong

 They are usually very efficient (even when implemented in software)

Random and Pseudorandom Bit Generators 
Pseudorandom Bit Generators
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 The notion of a cryptographically secure PRBG was introduced and for-
malized by Manuel Blum (ACM Turing Award 1995), Silvio Micali, and 
Andrew Yao (ACM Turing Award 2000)                                                       
in the early 1980s

 A PRBG is cryptographically secure if it                                                     
passes the next-bit test, i.e., an adversary                                                     
cannot predict the next bit in a bit sequence                                                       
with a probability substantially better than guessing

 A PRBG that passes the next-bit test is perfect in the sense that no pro-
babilistic polynomial-time (PPT) algorithm can guess with a probability 
significantly greater than ½ whether an input k-bit string was randomly 
selected from {0,1}k or pseudorandomly generated with the PRBG 

Random and Pseudorandom Bit Generators 
Pseudorandom Bit Generators

PRBGSeed ?…0100011101
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 To construct a cryptographically secure PRBG, one needs a one-
way function f: X  Y with hard-core predicate B, i.e., it is compu-
tationally infeasible to compute B(x) from f(x)

 Starting with a seed s0, a cryptographically secure PRBG G (with 
stretching function l) can be constructed as 

G(s0) = B(f(s0)),B(f2(s0)),…,B(fl(|s0|)(s0)) 

 There are many instantiations of this construction idea (using 
different one-way functions and respective hard-core predicates)

Random and Pseudorandom Bit Generators 
Pseudorandom Bit Generators
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Range Y
Domain X

x y = f(x)

?

B(x)



Random and Pseudorandom Bit Generators 
Pseudorandom Bit Generators

(p,g)

x0 ∈R Zp
*

for i = 1 to ∞ do
xi ← gxi-1 (mod p)
bi ← msb(xi)
output bi

(bi)i≥1

Blum-Micali PRBG

(n,e)

x0 ∈R Zn
*

for i = 1 to ∞ do
xi ← xi-1

e (mod n)
bi ← lsb(xi)
output bi

(bi)i≥1

RSA PRBG

(n)

x0 ∈R Zn
*

for i = 1 to ∞ do
xi ← xi-1

2 (mod n)
bi ← lsb(xi)
output bi

(bi)i≥1

Blum-Blum-Shub 
(BBS) PRBG
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 (Hardware- or software-based) random bit generators are at the 
core of many cryptographic systems and applications
− Deskewing techniques may be used to correct any defectiveness
− Statistical randomness testing may be used to evaluate the quality of 

the output

 In practice, it is often required that a random bit generator conforms 
to a security level specified in FIPS PUB 140-2

 From an application viewpoint, random bit generators are used to 
seed PRBGs, and PRBGs are then used to generate (potentially 
infinite) sequences of pseudorandom bits

 The underlying assumption is that a cryptographic system that is 
secure when a true random bit generator is used remains secure 
when „only“ a (reasonably strong or secure) PRBG is used

Random and Pseudorandom Bit Generators 
5.5  Final Remarks
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Random and Pseudorandom Functions
6.1  Introduction

 Before one can meaningfully introduce and discuss the notion 
pseudorandom functions, one must introduce the notion of a 
random function

 In short, a random function (aka random oracle) f is an arbitrary 
mapping from domain X to range Y, i.e., f: X → Y

 This suggests that f maps an input value x∈X to an arbitrary output 
value f(x)∈Y 

 The only requirement is that the same input value x is always 
mapped to the same output value f(x)

fx f(x)

16/08/2011
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Random and Pseudorandom Functions
Introduction

 Another way to think about a random function f is a large random 
table T with randomly assigned entries T[x] = (x,f(x))

 Note that the term „random function“ is somehow misleading, and 
that the attribute „random“ does not  refer to the output of the 
function but rather to the way it is chosen

 Also note that a random function is only a conceptual and  
theoretical construct (i.e., it is not intended to be implemented in 
practice)

x f(x)
x1 f(x1)
x2 f(x2)
... ...

16/08/2011
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Random and Pseudorandom Functions
Introduction

 A pseudorandom function (PRF) is a function that behaves like a 
random function

 This means that there is a family F = {fs | s∈N} of PRFs, and that 
each seed value s∈N selects and determines a particular PRF 
from F

 Without knowing s, fs looks like a function that is randomly chosen 
from F

16/08/2011
Contemporary Cryptography



215

Random and Pseudorandom Functions
6.2  Constructions

 PRF families and PRBGs are related in the sense that a PRF 
family can be used to construct a PRBG and a PRBG can be used 
to construct a PRF family

 Given a PRF family F = {fs|s∈N}, a PRF-based PRBG G can, for 
example, be constructed as G(s) = (fs(i))i≥0 = fs(0),fs(1),fs(2)

 Given a PRBG G(s), the construction of a PRBG-based PRF 
family is not obvious 

 A respective construction is due to Oded Goldreich, Shafi Gold-
wasser, and Silvio Micali
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Random and Pseudorandom Functions
Constructions

 Preliminaries
− X = Y = {0,1}n

− x = σn···σ2σ1 is the bitwise 
representation of x

− G(s) is a PRBG with stretching 
function l(n) = 2n

− G0(s) refers to the first n bits of 
G(s) for s∈{0,1}n

− G1(s) refers to the last n bits of 
G(s) for s∈{0,1}n

 A PRBG-based PRF fs(x) can 
be defined as fs(x) = fs(σn···σ2σ1) 
= Gσn

(···Gσ2
(Gσ1

(s))···)

16/08/2011
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 Example
− n = 2
− PRBG G(s)

o G(00) = 1001
o G(01) = 0011
o G(10) = 1110
o G(11) = 0100

− For s = 10 and x = 01, fs(x) = 
f10(01) = G0(G1(10)) = G0(10) = 
11

− Note that G1(10) = G1(1110) = 
10 and G0(10) = G0(1110) = 11
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Random and Pseudorandom Functions
6.3  Random Oracle Model

 The random oracle methodology was proposed by Mihir Bellare 
and Phil Rogaway in the 1990s to prove the security properties of 
cryptographic systems (mainly cryptographic                               
protocols)

 Methodology
1. A publicly known random function is used to design an ideal system
2. The security of the ideal system is formally shown
3. The random function is replaced with a publicly known family of PRFs 

(typically a cryptographic hash function)

 The result is a real-world implementation of the ideal system
 It is hoped that the security of the ideal system is maintained in the 

real world
16/08/2011
Contemporary Cryptography



218

Random and Pseudorandom Functions
Random Oracle Model

 A formal analysis in the random oracle model is not a security 
proof (because of the ideality assumption)

 But the analysis provides some evidence for the security of the 
cryptographic system in question

 In 1998, Ran Canetti, Oded Goldreich and Shai Halevi presented 
an artificially crafted DSS that is yet secure in the random oracle 
model, but that gets totally insecure when the random oracle is 
implemented by any (family of) cryptographic hash function(s)

 Since then, researchers think contraversially about the usefulness 
of the random oracle methodology and model 
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6.4  Final Remarks

 Random functions and (families of) PRFs are theoretical constructs
 (Families of) PRFs can, for example, be associated with symmetric 

encryption systems (e.g., DES represents a family of PRFs - each 
key selects a particular encryption function from the family)

 Families of PRFs are conceptually related to PRBGs (if you can 
contruct one, you can also contruct the other)

 The random oracle methodolgy can be used to design and argue 
about the security of cryptographic systems (typically cryptographic 
protocols)

 Due to its limitations and shortcomings, researchers nowadays try 
to avoid the random oracle model when they prove (or analyze) the 
security of a cryptographic system

16/08/2011
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7.1  Introduction
7.2  Candidate One-Way Functions
7.3  Integer Factorization Algorithms
7.4  Algorithms for Computing Discrete Logarithms
7.5  Final Remarks

7  One-Way Functions
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One-Way Functions
7.1  Introduction

 Remember that a function f: X → Y is one-way if f(x) can be com-
puted efficiently for x∈RX, but f-1(y) cannot be computed efficiently 
for y∈RY

 The function can be computed efficiently, if a respective probabi-
listic polynomial-time (PPT) algorithm is known

 More formally, a function f: X → Y is one-way if the following two 
conditions are fulfilled
− f is easy to compute, i.e., f(x) can be computed efficiently ∀x∈X ⇒ ∃

PPT algorithm A that outputs A(x) = f(x) ∀x∈X
− f is hard to invert, i.e., it is not known how to efficiently compute f-1(f(x)) 
∀x∈X or f-1(y) for y∈RY ⇒ ¬ ∃ PPT algorithm A that outputs A(f(x)) =     
f-1(f(x)) ∀x∈X or A(y) = f-1(y) for y∈RY

16/08/2011
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In either case, A is not required to find the correct x –
it must only find some inverse of y = f(x)
If f is injective, then x is the only inverse of y = f(x)
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One-Way Functions
Introduction

 Alternative ways of speaking (or formalizations)
− Any PPT algorithm A attempting to invert f on an element of its range 

can only succeed with a probability that is negligible, i.e.,

Pr[A(f(x),1n)] ∈ f-1(f(x))] ≤ 1/p(n) 

for every PPT algorithm A, x∈X, polynomial p, and sufficiently large n 
(representing the binary length of x)

− If x is selected uniformly from {0,1}n, y is assigned f(x), and z is 
assigned A(y,1n), then the probability that f(z) equals y is negligible

Pr[f(z) = y : x ←{0,1}n; y ← f(x); z ← A(y,1n)] ≤ 1/p(n) 

16/08/2011
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One-Way Functions
Introduction

 A one-way function f: X → X (i.e., Y=X) is a one-way 
permutation

 A one-way function f: X → Y is a trapdoor function or trapdoor 
one-way function, if there is a trapdoor information t and a PPT 
algorithm I that can be used to efficiently compute x‘ = I(f(x),t) 
with f(x‘) = f(x)

16/08/2011
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One-Way Functions
Introduction

 Many cryptographic functions required to be one way map input 
bitstrings of maximum length to output bitstrings of fixed size (e.g., 
cryptographic hash function)

 Given such a function, one may ask how expensive it is to invert it
 If the maximum allowable length is n, then 2n tries are probably 

sufficient to find a preimage for a given value
 Because 2n is constant for n∈N, the computational complexity to 

invert the function is still O(1)
 Hence, if one wants to use complexity-theoretic arguments, then 

one cannot work with a fixed (and constant) value of n 
 Instead, it must be possible to let n grow arbitrarily large
 Hence, one must consider families of (one-way) functions and there 

must be at least one function for every n∈N
16/08/2011
Contemporary Cryptography
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One-Way Functions
Introduction

 A family of functions F = {fi: Xi → Yi}i∈I represents a family of one-
way functions if the following three conditions are fulfilled
− I is an infinite index set
− Every i∈I selects a function fi: Xi → Yi from the family F
− Every function fi is one way 

 A family of one-way functions F = {fi: Xi → Yi}i∈I is a family of one-
way permutations if every fi is a one-way permutation (i.e., Xi=Yi)

 A family of one-way functions F = {fi: Xi → Yi}i∈I is a family of trap-
door (one-way) functions if every fi is a trapdoor (one-way) func-
tion with trapdoor information ti

 A family of one-way functions F = {fi: Xi → Yi}i∈I is a family of trap-
door (one-way) permutations if every fi is a trapdoor (one-way) 
permutation over Xi (i.e., Xi=Yi) with trapdoor information ti

16/08/2011
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 Pro memoria: Functions that are assumed (or conjectured) to be 
one-way

− Discrete exponentiation (Exp): y = f(x) = gx (mod p)
− Modular power (RSA): y = f(x) = xe (mod n)
− Modular square (Square): y = f(x) = x2 (mod n)

 Remember that none of these functions has been proven to be 
one-way

 Also remember that it is theoretically not even known whether 
one-way functions exist (i.e., a proof of existence is still missing)

One-Way Functions
7.2  Candidate One-Way Functions
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 If p is a prime and g is a generator (primitive root) of Zp
*, then 

Expp,g: Zp-1 → Zp
*

x → gx (mod p)

is the discrete exponentiation function to the base g
 Expp,g defines a group isomorphism from <Zp-1,+> to <Zp

*,·>

Expp,g(x+y) = Expp,g(x)·Expp,g(y)
gx+y ≡ gx∙gy (mod p)

 Because Expp,g is a bijective function, it must have an inverse 
function

One-Way Functions
Candidate One-Way Functions – Exp 
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 The inverse function
Logp,g: Zp

* → Zp-1

x → loggx

is the discrete logarithm function to the base g
 The value loggx refers to the discrete logarithm of x to the base g
 Contrary to Expp,g, no efficient algorithm is known to compute 

Logp,g for sufficiently large p (i.e., the best known algorithms have 
super-polynomial running time)

 To use complexity-theoretic arguments, one must consider a 
family of one-way functions

One-Way Functions
Candidate One-Way Functions – Exp 



230 16/08/2011
Contemporary Cryptography

 All possible pairs (p,g) define an index set I 

I := {(p,g) | p is prime and g is a generator of Zp
*}

 A family of discrete exponentiation functions can be defined as 
follows:

Exp := {Expp,g: Zp-1 → Zp
*, x → gx (mod p)}(p,g)∈I

 A respective family of discrete logarithms functions can be defined 
as follows

Log := {Logp,g: Zp
* → Zp-1, x → loggx}(p,g)∈I 

 Exp represents a family of one-way functions (with no known 
trapdoor) 

One-Way Functions
Candidate One-Way Functions – Exp 
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 The one-way property of Exp is based on the discrete logarithm 
assumption (DLA)

 The DLA suggests that there is no known algorithm to efficiently 
compute Logp,g for appropriately chosen p and g

 Problems related to the DLA
− Discrete logarithm problem (DLP)
− (Computational) Diffie-Hellman problem (DHP)
− Decisional Diffie-Hellman problem (DDHP)

 To specify the problems, it is appropriate to abstractly consider a 
cyclic group G with generator g (i.e., ‹g› = G)

 To give examples, it is more appropriate to employ a specific group, 
such as Z7

* = {1,2,3,4,5,6}, and a specific generator, such as g = 5

One-Way Functions
Candidate One-Way Functions – Exp 
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 Let G be a cyclic group, g a generator of G, and h an arbitrary 
element of G

 The discrete logarithm problem (DLP) is to determine an x∈N
such that gx = h
− Input: p, g, h
− Output: x such that gx (mod p) = h

 Example
− Solve the DLP for p = 7, g = 5, and h = 4, i.e., find an x∈N such that 

5x (mod 7) ≡ 4 
− The solution is 2 (note that 52 (mod 7) ≡ 25 (mod 7) ≡ 4)

One-Way Functions
Candidate One-Way Functions – Exp 
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 Let G be a cyclic group, g a generator of G, and x and y arbitrary 
elements of G 

 The (computational) Diffie-Hellman problem (DHP) is to 
determine gxy from gx and gy

− Input: p, g, gx, gy

− Output: gxy

 Example
− Solve the DHP for p = 7, g = 5, gx = 6 (x = 3), and gy = 2 (y = 4) 
− The solution is 1 (note that 53·4 (mod 7) ≡ 512 (mod 7) ≡ 244,140,625 

(mod 7) ≡ 4)

 As its name suggests, the DHP is at the core of the Diffie-Hellman 
key exchange protocol

One-Way Functions
Candidate One-Way Functions – Exp 
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 Let G be a cyclic group, g a generator of G, and x, y, and z 
arbitrary elements of G 

 The decisional Diffie-Hellman problem (DDHP) is to determine 
whether gxy or gz solves the DHP for gx and gy

 Alternatively speaking, the DDHP is to distinguish ‹gx,gy,gxy› and 
‹gx,gy,gz›
− Input: p, g, gx, gy, gxy, gz

− Output: gxy or gz

 Example
− Solve the DDHP for p = 7, g = 5, gx = 6 (x = 3), gy = 2 (y = 4), gxy = 1 

(see above), and gz = 3 (z = 5) 
− The solution is gxy = 1 

One-Way Functions
Candidate One-Way Functions – Exp 

Is gxy or gz a solution for the DHP with 
input parameters p, g, gx, and gy?
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 If one can solve the DLP, then one can also solve the DHP and 
the DDHP (i.e., the DLP is the hardest DLA-based problem)

 More generally, it is known that 

DDHP ≤P DHP ≤P DLP

 The exact relationships depend on the cyclic group in use

One-Way Functions
Candidate One-Way Functions – Exp 

In many groups, the DHP and DLP are known to be 
computationally equivalent, i.e., DHP ≡P DLP

In some groups, the DHP is known to be more difficult to solve than the DDHP, 
i.e., the DDHP can be solved in polynomial time, whereas the DHP still requires 
subexponential time
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 If n is the product of 2 distinct primes (i.e., n = pq) and e is 
relatively prime to φ(n), then 

RSAn,e: Zn
* → Zn

*

x → xe (mod n)

is the RSA function (permutation over Zn
*)

 If d is the multiplicative inverse of e modulo φ(n), then 

RSAn,d: Zn
* → Zn

*

x → xd (mod n)

is the inverse RSA function of RSAn,e

One-Way Functions
Candidate One-Way Functions – RSA
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 Again, to use complexity-theoretic arguments, one must consider 
families of such functions

 The index set I is defined as follows:
I := {(n,e) | n = pq; p and q prime; p ≠ q; 0<e<φ(n); (e,φ(n))=1} 

 The RSA family comprises all RSA functions referring to I:
RSA := {RSAn,e: Zn

* → Zn
*, x → xe (mod n)}(n,e)∈I

 Since RSAn,e is a permutation over Zn
*, RSA represents a family of 

trapdoor (one-way) permutations
 There are multiple trapdoors 

− d
− (p,q)
− φ(n)

One-Way Functions
Candidate One-Way Functions – RSA
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 The one-way property of RSA is based on the RSA assumption
 The RSA assumption suggests that the probability that the RSA 

function can be inverted without knowing a trapdoor is negligible
 This also suggests that the RSA problem is intractable
 The RSA problem (RSAP) is to determine m from n, e, and              

c ≡ me (mod n)
 Hence, the RSAP is to compute the eth root of c modulo n (without 

knowing a trapdoor)
 Because the prime factors of n (i.e., p and q) represent a trapdoor 

for RSAn,e, somebody who is able to factorize n can trivially com-
pute RSAn,d and invert RSAn,e accordingly 

 One must make the integer factoring assumption (IFA), i.e., for a 
sufficiently large n it is computationally infeasible to factorize it

One-Way Functions
Candidate One-Way Functions – RSA
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 The IFA suggests that the integer factoring problem (IFP) is in-
tractable

 The IFP is to determine the prime factors of n, i.e., determine 
p1,...,pk and e1,...,ek∈N such that n = p1

e1... pk
ek

 It is known that RSAP ≤P IFP
 Hence, anybody who can solve the IFP can solve the RSAP (and 

invert the RSA function accordingly)
 The converse is not known to be true, i.e., it is not known whether 

there exists a simpler way to invert the RSA function than to solve 
the IFP

 This means that somebody may break RSA without necessarily be 
able to factorize the modulus n (this may be worrisome)

One-Way Functions
Candidate One-Way Functions – RSA
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 The modular square function (Square) looks similar to the RSA 
function (with e = 2)

 Modular square roots can be computed efficiently iff the prime 
factorization of n is known

 This means that computing square roots in Zn
* and factoring n are 

computationally equivalent (this is in contrast to computing eth roots 
in Zn

*)
 The modular square function is bijective if the domain and range 

are restricted to QRn, where n is a Blum integer, i.e., n = pq with p 
and q distinct primes and p ≡ q ≡ 3 (mod 4)

One-Way Functions
Candidate One-Way Functions – Square
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 Hence,

Squaren: QRn → QRn

x → x2 (mod n)

is the square function, and 

Sqrtn: QRn → QRn

x → x1/2 (mod n)

is the square root function
 Both Squaren and Sqrtn represent permutations over QRn

 Once again, to use complexity-theoretic arguments, one must 
consider families of such functions

One-Way Functions
Candidate One-Way Functions – Square
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 The index set I can be defined as follows:

I := {n | n = pq; p and q prime; p ≠ q; |p| = |q|; p,q ≡ 3 (mod 4)} 

 The Square family comprises all Square functions referring to I:

Square := {Squaren: QRn → QRn, x → x2 (mod n)}(n,e)∈I

 Similarly, the Sqrt family comprises all Sqrt functions referring to I:

Sqrt := {Sqrtn: QRn → QRn, x → x1/2 (mod n)}(n,e)∈I

 The Square family is a family of trapdoor (one-way) permuatations 
that is used by some public key cryptosystems (e.g., Rabin)

 The respective cryptosystems, however, have some severe 
drawbacks in practical use

One-Way Functions
Candidate One-Way Functions – Square
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 Integer factorization algorithms are to solve the IFP
 The IFA suggests that there is no efficient integer factorization 

algorithm
 Integer factorization algorithms

− Special-purpose algorithms depend upon and take advantage of 
special properties of n
o Trial division
o P-1 algorithm (John Pollard, 1974)

− P+1 algorithm (Hugh Williams, 1982)
− Elliptic curve method (Hendrik Lenstra, 1987)

o Pollard Rho (John Pollard, 1975)

One-Way Functions
7.3  Integer Factorization Algorithms
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− General-purpose algorithms depend on nothing and work equally 
well for all n
o Continued fraction
o Quadratic sieve (QS, John Dixon, 1981, and Carl Pomerance, 1984)
o Number field sieve (NFS, Hendrik and Arjen Lenstra, 1993)

− Special number field sieve (SNFS)
− General number field sieve (GNFS)

 Many general-purpose algorithms consist of two steps, of which 
one can be parallelized and optimized by specific hardware
− The Weizmann Institute Key-Locating Engine (TWINKLE)
− The Weizmann Institute Relation Locator (TWIRL)
− SHARK
− Yet Another Sieving Device (YASD)

One-Way Functions
Integer Factorization Algorithms
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 The RSA public key cryptosystem was published in the August 
1977 issue of Scientific American

 As a challenge, USD 100 were offered to anyone who could de-
crypt a message that was encrypted using a 129-digit modulus 
(RSA-129)

 RSA-129 was factored in 1994 with a distributed QS algorithm

One-Way Functions
Integer Factorization Algorithms

1143816257578888676692357799761466120102182967212423625625618429357
06935245733897830597123563958705058989075147599290026879543541 
= 
3490529510847650949147849619903898133417764638493387843990820577 
×
32769132993266709549961988190834461413177642967992942539798288533 
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 Until 2007, RSA Laboratories sponsored                                                    
the RSA Factoring Challenge to learn                                                 
more about the state of the art in integer factorization
− In 1999, RSA-512 (155 digits) was factored
− In 2003, RSA-576 (174 digits) was factored
− In 2004, a 663-bit number (200 digits) was factored
− In 2005, RSA-640 (193 digits) was factored
− In 2010, RSA-768 was factored
− ...

 The next numbers to factor (in the RSA Factoring Challenge) would 
have been 896, 1024, 1536, and 2048 bits long

One-Way Functions
Integer Factorization Algorithms

http://www.rsa.com/rsalabs/�
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 The DLA suggests that there is no efficient algorithm for computing 
discrete logarithms

 Algorithms for computing discrete logarithms
− Generic algorithms work in any group

o Brute-force search
o Baby-step giant-step algorithm (Daniel Shanks, 1974)
o Pollard Rho (John Pollard)

− Nongeneric (special-purpose) algorithms attempt to exploit special 
properties of the group (e.g., Zp

*)

o Index-calculus algorithm
o NFS

One-Way Functions
7.4  Algorithms for Computing Discrete Logarithms

It has been shown by Victor 
Shoup that O(|G|1/2) is a 
lower bound for the expected 
running time of any generic 
algorithm that computes 
discrete logarithms in a cyclic 
group, and that improve-
ments are possible only if the 
factorization of |G| is known
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 Due to the existence of the NFS, the state of the art in computing 
discrete logarithms in Zp

* is comparable to the state of the art in 
factoring integers

 One must work with prime numbers of at least 1,024 bits
 Also, care must be taken that p-1 does not have only small prime 

factors (otherwise the Pohlig-Hellman algorithm can be invoked)
 If one is not working in Zp

*, then the nongeneric (special-purpose) 
algorithms do not work, and the state of the art in computing dis-
crete logarithms is worse than the state of the art in factoring 
integers

 In this case, one must invoke generic algorithms
 This fact is, for example, exploited by elliptic curve cryptography 

(ECC)

One-Way Functions
Algorithms for Computing Discrete Logarithms
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 In spite of their importance for public key cryptography, there are 
only a few functions – Exp, RSA, and Square – conjectured to be 
one way

 To use complexity-theoretic arguments, one must consider families 
of such functions

 RSA and Square have known trapdoors, whereas Exp is not known 
to have any trapdoor

 Surprisingly, factoring integer n and computing discrete logarithms 
in Zp

* have the same difficulty (or computational complexity, res-
pectively)

 In practice, it is sometimes recommended to combine cryptosys-
tems that employ different candidate one-way functions (to make 
them more resilient)

One-Way Functions
7.5  Final Remarks
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 Remember that an asymmetric encryption system consists of 3 
efficiently computable functions or algorithms

− Generate(1l) is a probabilistic key generation algorithm that generates 
a public key pair (k,k-1) based on the security parameter l (≅ key length)

− Encrypt(k,m) is a deterministic or probabilistic encryption algorithm 
that generates a ciphertext c, i.e., c = Encrypt(k,m)

− Decrypt(k-1,c) is a deterministic decryption algorithm that is inverse to 
Encrypt(k,m) and generates the original plaintext message, i.e.,           
m = Decrypt(k-1,c)

 For every public key pair (k,k-1) and plaintext message m, En-
crypt(k,m) and Decrypt (k-1,c) must be inverse to each other, i.e., 
Decrypt (k-1,Encrypt(k,m) ) = m 

Asymmetric Encryption Systems 
8.1  Introduction
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 If kB and kB
-1 do not correspond to each other, then c must decrypt 

to gibberish
 Long messages must be split into a sequence of message blocks 

and each block must be encrypted and decrypted individually
 Again, there are modes of operation that can used

Asymmetric Encryption Systems 
Introduction

E Dm c m

k B k B
-1
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 When discussing the security of an asymmetric encryption system, 
the first observation is that the notion of information-theoretic or 
perfect security (according to Shannon) does not make sense 

 This is because the Encrypt algorithm employs a public key k, i.e.,
an adversary who knows c and k can always mount an exhaustive 
search to find m

 Consequently, the best one can achieve is (some possibly strong 
form of) conditional or computational security

 To elaborate on the (computational) security of an asymmetric 
encryption system, one must specify the adversary‘s capabilities 
and the task required to solve

Asymmetric Encryption Systems 
Introduction
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− With regard to the adversary‘s capabilities, one typically ssumes a 
polynomially bounded adversary who can mount specific attacks           
(with increasing sophistication and power)

o Ciphertext-only attack
o Known-plaintext attack
o (Adaptive) chosen-plaintext attack (CPA)
o Chosen-ciphertext attacks (CCA)
o Adaptive chosen-ciphertext attack (CCA2)

Asymmetric Encryption Systems 
Introduction

Always possible
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− With regard to the task required to solve, there are many possibilities  
(in addition to simply decrypting a ciphertext)

− The possibilities lead to different notions of security

o Semantic security
 It is computationally infeasible for a passive adversary to derive 
significant information about a plaintext message from an observed 
ciphertext and a respective public (encryption) key

o Indistinguishability of ciphertexts (aka ciphertext indistinguishability)

 It is computationally infeasible for an adversary given the encryption of a 
message randomly chosen from a 2-element message space to identify the 
message choice with a probability significantly better than guessing (½) 

− … under CPA (IND-CPA) ⇔ Semantic security
− … under CCA (IND-CCA)
− … under CCA2 (IND-CCA2)

Asymmetric Encryption Systems 
Introduction
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Asymmetric Encryption Systems 
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o Nonmalleability (NM)

 It is computationally infeasible for an adversary to transform a ciphertext 
into another ciphertext which decrypts to a related plaintext, i.e., given a 
ciphertext c that is an encryption of some plaintext message m, it is 
infeasible to generate another ciphertext c’ that decrypts to f(m), for a 
known function f, without necessarily knowing or learning m

− … under CPA (NM-CPA)
− … under CCA (NM-CCA)
− … under CCA2 (NM-CCA2)

It is known that NM-CPA ⇒ IND-CPA (semantic security) and                     
NM-CCA2 ⇔ IND-CCA2

 IND-CCA2 (or NM-CCA2) is the preferred notion of security in the 
realm of asymmetric encryption

Asymmetric Encryption Systems 
Introduction
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 RSA
 Rabin
 Elgamal

Asymmetric Encryption Systems 
8.2  Basic Systems
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 Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman (MIT, 1977)

 Published in the Communications of the ACM (February 1978)
 U.S. patent 4,405,829 entitled „Cryptographic communications sys-

tem and method” (filed on 12/14/1977, granted on 9/20/1983, and 
released to the public on 9/6/2000 – 2 weeks prior to expiration)

 The Scientific American publication of August 1977 (cf. RSA func-
tion) inhibited patents in almost all other countries

Asymmetric Encryption Systems 
Basic Systems – RSA 
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 In 1997, it was publicly released that non-secret encryption had 
been proposed in an internal note at the British Government Com-
munications Headquarter (GCHQ) in the early 1970s

 Non-secret encryption is similar to RSA (and Diffie-Hellman)
 The main inventor was Clifford Cocks                                                      

(together with James H. Ellis and                                              
Malcolm J. Williamson)

Asymmetric Encryption Systems 
Basic Systems – RSA 
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 The RSA public key cryptosystem is based on the RSA family of 
trapdoor permutations

 It yields an asymmetric encryption and a DSS
− If the recipient‘s public key is used to encrypt a plaintext message, 

then RSA yields an asymmetric encryption system                              
 the recipient‘s private key must be used to decrypt the ciphertext

− If the sender‘s private key is used to encrypt a plaintext message (or 
hash value thereof), then RSA yields a DSS                                         
 the sender‘s public key must be used to verify the digital signature

Asymmetric Encryption Systems 
Basic Systems – RSA 
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 The RSA Key Generation Algorithm Generate(1l) is probabilistic 
and outputs a public key pair ((n,e),d)

 The algorithm operates in 2 steps
− It randomly selects two l/2-bit prime numbers p and q, and computes 

the RSA modulus n = pq
− It randomly selects an integer 1<e<φ(n) with gcd(e,φ(n)) = 1, and 

computes another integer 1<d<φ(n) with de ≡ 1 (mod φ(n)), using, for 
example, the extended Euclid algorithm, i.e., d represents the 
multiplicative inverse of e modulo φ(n)

 Toy example
− p = 11, q = 23  n = 11 ∙23 = 253, φ(n) = φ(253) = 10∙22 = 220
− e = 3 (note that gcd(3,220) = 1)  d = 147 (note that 3∙147 = 441 ≡ 1 

(mod 220))

Asymmetric Encryption Systems 
Basic Systems – RSA 
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 The RSA Encryption Algorithm Encrypt(k,m) is deterministic 
 It takes as input a public key k = (n,e) and a plaintext message 

m∈Zn, and it generates as output the ciphertext

c = RSAn,e(m) ≡ me (mod n)

 Toy example
− m = 26
− c = 263 (mod 253) ≡ 17,576 (mod 253) = 119

Asymmetric Encryption Systems 
Basic Systems – RSA 
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 The RSA Decryption Algorithm Decrypt(k-1,c) is deterministic 
 It takes as input a private key k-1 = d and a ciphertext c, and it 

generates as output the original plaintext message

m = RSAn,d(c) ≡ cd (mod n)

 Toy example
− c = 119
− m = 119147 (mod 253) = 26

 The efficiency of the RSA decryption algorithm can be improved 
using the Chinese Reminder Theorem (CRT)

 This requires the knowledge of the prime factorization of n (i.e., p 
and q)

Asymmetric Encryption Systems 
Basic Systems – RSA 
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 The RSA asymmetric encryption system is correct (for all messa-
ges m with gcd(m,n) = 1)

m = RSAn,d(c) ≡ cd (mod n)
≡ (me)d (mod n)
≡ med (mod n)
≡ mk·φ(n)+1 (mod n)
≡ mφ(n)·...·mφ(n)·m (mod n)

≡ 1·...·1·m (mod n)

≡ m (mod n)

 If gcd(m,n) ≠ 1, then the cottectness proof is more involved

Asymmetric Encryption Systems 
Basic Systems – RSA 

k times

k times

Fermat‘s Little Theorem (1607-1665):
p prime, a∈Z ⇒ ap-1 ≡ 1 (mod p)

Euler‘s Theorem (1707-1783):
a,n∈Z with gcd(a,n) = 1 ⇒ aφ(n) ≡ 1 (mod n)

ed ≡ 1 (mod φ(n)) ⇒ ed ≡ k·φ(n)+1 
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 Since its invention, the security of the RSA public key cryptosystem 
has been subject to a lot of public scrutiny

 It is known that RSAP ≤P IFP 
 The converse is not known to be true (in the general case) and 

represents an open problem
 Problems that are computationally equivalent to the IFP

− Compute φ(n) from n
− Determine d from n and e (find the multiplicative inverse of e modulo n)

 The modulus n must be at least as large as to make it computa-
tionally infeasible to factorize it (≥ 2,048 bits)

 Models and predictions about the future development of keylengths 
can be found at http://www.keylength.com

Asymmetric Encryption Systems 
Basic Systems – RSA 
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 With regard to security, there are different criteria for public and 
private exponents
− The public exponent can be arbitrarily small, e.g., e = 216 + 1 = 65,537
− The private exponent should not be too small, i.e., d ≥ n0.292 which is 

about 300 bits for an 1,024-bit modulus

 Also, the RSA asymmetric encryption system has the bit security 
property (i.e., an efficient algorithm for solving the RSAP can be 
constructed from an algorithm for predicting one single plaintext 
message bit)

 The bit security property is a double-edged sword
− It provides evidence that all plaintext message bits are equally well 

protected
− But it also provides a possibility to attack a „leaky“ implementation

Asymmetric Encryption Systems 
Basic Systems – RSA 
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 Several attacks are known and must be considered with care (in 
addition to side-channel attacks)
− Common modulus attack (if n is reused)
− CCA2 that exploit the multiplicative structure of the RSA function (i.e., 

the function is multiplicatively homomorphic)
o To decrypt c, the adversary has the victim decrypt c‘ ≡ cre (mod n) for some 

randomly chosen r
o The victim computes m‘≡ c‘d ≡ (cre)d ≡ mr (mod n) 
o The adversary computes m ≡ m‘/r (mod n)

− Low exponent attacks (if me < n)

 The RSA asymmetric encryption system should not be used natively
 Instead, messages should be preprocessed and encoded prior to 

applying the RSA function (e.g., OAEP)

Asymmetric Encryption Systems 
Basic Systems – RSA 
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 The RSAP is not known to be computationally equivalent to the 
IFP

 It is therefore theoretically possible to break the RSA public key 
cryptosystem without solving the IFP

 This possibility is worrisome, and – since the beginning of public 
key cryptography and the invention of RSA – people have been 
looking for public key cryptosystems for which breaking it is com-
putationally equivalent to the IFP

 The first proposal was                                                                         
made in 1979 by Michael                                                                        
O. Rabin (1976 Turing                                                                       
Award) 

Asymmetric Encryption Systems 
Basic Systems – Rabin 
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 The Rabin asymmetric encryption system is based on the Square 
family of trapdoor (one-way) functions 

 If the functions are restricted to QRn, then the functions represent 
or permutations

 Breaking the Rabin system is computationally equivalent to solving 
the IFP

 This means
− If somebody can solve the IFP (i.e., factorize n), then this person can 

break the Rabin system (the prime factors represent the private key)
− If somebody can break the Rabin system, then this person can solve 

the IFP

Asymmetric Encryption Systems 
Basic Systems – Rabin 
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 The Rabin Key Generation Algorithm Generate(1l) takes as input a 
security parameter l (or 1l, respectively) and generates as output a 
Blum integer n of this bit length

 More specifically, the Generate algorithm randomly selects two l/2-
bit primes p and q (both equivalent to 3 modulo 4), and computes    
n = pq
− n is the public key
− (p,q) is the private key

 Toy example
− p = 11, q = 23 (note that 11 ≡ 23 ≡ 3 (mod 4))
− n = pq = 11·23 = 253

Asymmetric Encryption Systems 
Basic Systems – Rabin 
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 Similar to the RSA asymmetric encryption system, the Rabin 
system can be used to encrypt and decrypt plaintext messages

 In the general case, these messages represent numbers and 
elements of Zn = {0,1,…,n-1} 

 The Rabin Encryption Algorithm Encrypt(k,m) is deterministic
 It takes as input a public key k = n and a plaintext message             

m∈ Zn, and it generates as output the ciphertext
c = Squaren(m) ≡ m2 (mod n)

 Toy example
− m = 158
− c ≡ 1582 (mod 253) = 170

Asymmetric Encryption Systems 
Basic Systems – Rabin 
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 The Rabin Decryption Algorithm Decrypt(k-1,c) is deterministic
 It takes as input a private key k-1 = (p,q) and a ciphertext c, and it 

generates as output the square root of c modulo n representing m

m = Sqrtn(c) ≡ c1/2 (mod n)

 Note that the recipient can find a square root of c modulo n iff he 
knows the prime factors of n (i.e., p and q)

 Also note that in the general case there is no single square root of 
c modulo n, but there are 4 of them (i.e., m1,m2,m3, and m4)

 The recipient must decide which mi (1 ≤ i ≤ 4) represents the 
correct plaintext message (this ambiguity is a major disadvantage)

 In the toy example, the square roots of c = 170 modulo 253 are 26, 
95, 158, and 227

Asymmetric Encryption Systems 
Basic Systems – Rabin 
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 In 1984, Taher Elgamal found                                                           
a way to turn the Diffie-Hellman                                                        
key exchange protocol into a                                                                            
full-fledged public key crypto-
system (i.e., there is an Elgamal                                                                       
asymmetric encryption system                                                                                      
and an Elgamal DSS)

 Conceptually, the Elgamal public key cryptosystem works in any 
cyclic group in which the DLP is intractable (e.g., Zp

*)
 Breaking the Elgamal asymmetric encryption system can be 

shown to be computationally equivalent to solving the DHP

Asymmetric Encryption Systems 
Basic Systems – Elgamal
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 The Elgamal Key Generation Algorithm Generate(1l) is the same 
as the one employed by the Diffie-Hellman key exchange protocol

 In the case of Zp
*, it generates an l-bit prime p and a generator g of 

Zp
*, i.e., ‹g› = Zp

* (p and g can be same for all users)
 For each user, the algorithm then randomly selects a private key   

x∈Zp
* and computes the respective public key y ≡ gx (mod p)

 Toy example
− p = 17, g = 7 (note that ‹7› = Z17

*, since 71 = 7, 72 = 15, 73 = 3, 74 = 4, 
75 = 11, 76 = 9, 77 = 12, 78 = 16, 79 = 10, 710 = 2, 711 = 14, 712 = 13, 713

= 6, 714 = 8, 715 = 5, and 716 = 1) 
− Private key is x = 6
− Public key is y ≡ 76 (mod 17) ≡ 117,649 (mod 17) = 9

Asymmetric Encryption Systems 
Basic Systems – Elgamal
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 The Elgamal Encryption Algorithm Encrypt(k,m) is probabilistic
 It takes as input a public key k = (p,g,y) and a plaintext message             

m ∈ Zp, and it generates as output the ciphertext c = (c1,c2) that is 
computed as follows:

Asymmetric Encryption Systems 
Basic Systems – Elgamal

(p,g,y,m)

r ∈R Zp
*

K ≡ yr (mod p)
c1 ≡ gr (mod p)
c2 ≡ Km (mod p)

(c1,c2)

k
 Toy example (m = 7)

− r = 3
− K ≡ 93 (mod 17) = 15
− c1 ≡ 73 (mod 17) = 3
− c2 ≡ 15·7 (mod 17) = 3

 Hence, 7 is encrypted as (3,3)
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 The Elgamal Decryption Algorithm Decrypt(k-1,c) is deterministic
 It takes as input a private key k-1 = (p,q) and a ciphertext c, and it 

generates as output the original plaintext message that is 
computed as follows:

 Note that c1
x ≡ (gr)x ≡ (gx)r ≡ yr ≡ K (mod p) 

Asymmetric Encryption Systems 
Basic Systems – Elgamal

(x,c)

K ≡ c1
x (mod p)

m ≡ c2/K ≡ c2K-1 (mod p)

(m)

k-1  Toy example (c1,c2) = (3,3))

− K ≡ 36 (mod 17) = 15
− K-1 (mod 17) = 8 (15·8 = 120 
≡ 1 (mod 17))

− m ≡ 3·8 (mod 17) = 7 
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 The Elgamal asymmetric encryption system is semantically secure 
and provides IND-CPA

 But it is highly malleable and does not provide IND-CCA
 For example, given a ciphertext (c1,c2) of some (possibly unknown) 

plaintext message m, (c1,2c2) represents the ciphertext for the 
plaintext message 2m

 Whether this fact poses a problem depends on the application 
context

 Many other asymmetric encryption systems based on Elgamal 
have been proposed (e.g., Paillier, Cramer-Shoup, ... ) 

Asymmetric Encryption Systems 
Basic Systems – Elgamal
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 There are a few asymmetric encryption systems known to be 
semantically secure or to provide IND-CCA2
− Probablistic encryption is semantically secure (proof in the standard 

model)
− Optimal Asymmetric Encryption Padding (OAEP) provides IND-CCA2 

(proof in the random oracle model)
− Cramer-Shoup provides IND-CCA2 (proof in the standard model)

Asymmetric Encryption Systems 
8.3  Secure Systems
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 Probablistic encryption was proposed                                           
by Shafi Goldwasser and Silvio Micali in                                          
the early 1980s

 It is based on the Quadratic Residue Problem (QRP), i.e., for 
n∈N and x∈Zn

*, decide whether x is a square or quadratic residue 
(i.e., x∈QRn), where

QRn := {x∈Zn
* | ∃y∈Zn

*: y2 ≡ x (mod n)}
 Unless the factorization of n is known, it is not known how to 

efficiently solve the QRP
 It is widely believed that the QRP is computationally equivalent to 

the IFP (i.e., QRP ≡P IFP)

Asymmetric Encryption Systems 
Secure Systems – Probabilistic Encryption
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 Mathematical preliminaries
− For every integer x and odd prime p, the Legendre symbol (x|p) is 

defined as follows:          

0 if x ≡ 0 (mod p)
(x|p) =    +1 if x ∈ QRp

-1 if x ∈ QNRp

− It can be computed efficiently using (x|p) = x(p-1)/2 (mod p) 
− For every prime p, x∈QRp ⇔ (x|p) = 1
− This means that the Legendre symbol (x|p) is 1 iff x is a quadratic 

residue modulo p

Asymmetric Encryption Systems 
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− The Jacobi symbol (x|n) is a generalization of the Legendre symbol 
(for any composite integer n)

− If the prime factorization of n is known, then (x|n) can be computed 
efficiently (as the product of the Legendre symbols (x|p) of the res-
pective prime factors of n)

− Unlike (x|p), for every composite number n
x∈QRn ⇒ (x|n) = 1
x∈QRn ⇐ (x|n) = 1

− If x is a quadratic residue modulo n, then the Jacobi symbol (x|n) is 1
− The converse need not be true, i.e., if the Jacobi symbol (x|n) is 1, then 

x need not be a quadratic residue modulo n

Asymmetric Encryption Systems 
Secure Systems – Probabilistic Encryption
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− If (x|n) = -1, then x is a quadratic nonresidue modulo n, i.e., (x|n) = -1 
⇒ x∈QNRn

− Jn refers to the set of all elements of Zn
* with Jacobi symbol 1, i.e.,      

Jn = {x∈ Zn
* | (x|n) = 1}

− QRn = Jn \ QRn refers to the set of all pseudosquares modulo n
− For n = pq, |QRn| = |QRn| = (p-1)(q-1)/4
− Hence, half of the elements of Jn are squares and the other half are 

pseudosquares modulo n
− Example: Z21

* = {1,2,4,5,8,10,11,                                                                        
13,16,17,19,20} with |Z21

*| = 12,                                                                  
Jn = {1,4,516,17,20},                                                                             
QR21 = {1,4,16}, and                                                                                    
QR21 = {5,17,20} 

Asymmetric Encryption Systems 
Secure Systems – Probabilistic Encryption
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 Probabilistic encryption exploits the fact that for an arbitrary 
element of Jn it is computationally intractable to decide whether it is 
a quadratic residue (i.e., square) or a pseudosquare modulo n

 The Key Generation Algorithm Generate(1l) takes as input a 
security parameter l and generates as output two primes p and q 
and a modulus n = pq of l bits

 In addition, the algorithm selects a pseudosquare y∈QRn

 (n,y) is the public key and (p,q) is the private key

Asymmetric Encryption Systems 
Secure Systems – Probabilistic Encryption



285 16/08/2011
Contemporary Cryptography

 As its name suggests, the Encryption Algorithm Encrypt(k,m) is 
probabilistic 

 It takes as input a public key k = (n,y) and a message m, and it 
generates as output a ciphertext c

 For every message bit mi, the Encrypt algorithm chooses xi∈R Zn
*

and computes
xi

2 (mod n) if mi = 0
yxi

2 (mod n) if mi = 1

 Every message bit mi is encrypted with an element ci ∈ Zn
*

 Hence, the resulting ciphertext is the k-tuple c = (c1,…,ck) which is 
k·l bits (this is prohibitively inefficient)

Asymmetric Encryption Systems 
Secure Systems – Probabilistic Encryption

ci = 
ci is a square modulo n

ci is a pseudosquare 
modulo n
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 The Decryption Algorithm Decrypt(k-1,c) is deterministic 
 It takes as input a private key k-1 = (p,q) and a ciphertext c = 

(c1,…,ck), and it generates as output the k-bit plaintext message m
 Again, the algorithm proceeds sequentially on each ciphertext 

element ci (i = 1,…,k)
 If ci ∈ QRn, then mi = 0 (otherwise, ci ∈ QRn and mi = 1) 

0  if (ci|p) = 1
1  otherwise

 The plaintext message is m = m1…mk

Asymmetric Encryption Systems 
Secure Systems – Probabilistic Encryption

mi = 
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 OAEP was developed and proposed by Mihir                                         
Bellare und Phil Rogaway 

 It is basically a padding scheme used prior to                                
encryption to provide IND-CCA2 (e.g., RSA-
OAEP) − The proof is in the random oracle model

Asymmetric Encryption Systems 
Secure Systems – OAEP

OAEP(m) = (s,t) = m ⊕ g(r) || r ⊕ h(m ⊕ g(r))
s t
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 To decrypt a message encrypted with RSA-OAEP, the recipient 
must first decrypt the message (using the RSA Decrypt algorithm) 
to get OAEP(m) = (s,t)

 He or she must then extract m and r from (s,t)

t ⊕ h(s) = r ⊕ h(m ⊕ g(r)) ⊕ h(m ⊕ g(r)) 
= r

s ⊕ g(r) = m ⊕ g(r) ⊕ g(r)) 
= m

 RSA-OAEP is used in PKCS #1

Asymmetric Encryption Systems 
Secure Systems – OAEP
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 In 1998, Ronald Cramer and Victor Shoup proposed an asymmetric 
encryption system that provides IND-CCA2 (nonmalleable)

 The security proof is in the standard model
 The Cramer-Shoup asymmetric encryption system enhances the 

Elgamal asymmetric encryption system (its security is based on the 
DDHP)

 The distinguishing feature of the Cramer-Shoup asymmetric 
encryption system is its efficiency

Asymmetric Encryption Systems 
Secure Systems – Cramer-Shoup

http://images.google.ch/imgres?imgurl=http://homepages.cwi.nl/~cramer/CRAMER.JPG&imgrefurl=http://homepages.cwi.nl/~cramer/&usg=__lfpIAVY0fTz4s-Z_M-dIlnWVt9k=&h=2816&w=2112&sz=2787&hl=en&start=1&tbnid=YLzqPFP0mCtAXM:&tbnh=150&tbnw=113&prev=/images?q=ronald+cramer&gbv=2&hl=en&sa=G�


290 16/08/2011
Contemporary Cryptography

 The Cramer-Shoup Key Generation Algorithm Generate(1l) takes 
as input a security parameter l and generates as output a public 
key pair
− It selects a cyclic group G of order q (with bit-size l) and 2 generators 

g1 and g2, i.e., G = {0,…,q-1} (G, q, g1 and g2 are publicly known)
− It randomly selects 6 values (x1,x2,y1,y2,z1,z2) from G (this 6-tuple 

represents the private key)
− It computes d = g1

x1g2
x2

e = g1
y1g2

y2

f = g1
z1g2

z2

 (G,q, g1,g2,d,e,f) represents the public key

Asymmetric Encryption Systems 
Secure Systems – Cramer-Shoup
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 The Cramer-Shoup Encryption Algorithm Encrypt(k,m) is 
probabilistic

 It takes as input a public key k = (G,q, g1,g2,d,e,f) and a plaintext 
message m, and it generates as output a respective ciphertext c 

Asymmetric Encryption Systems 
Secure Systems – Cramer-Shoup

(G,q,g1,g2,d,e,f,m)

r ∈R {0,…,q-1}
u1 = g1

r

u2 = g2
r

w = frm
h = H(u1,u2,w) 
v = drerh

(u1,u2,w,v)

H refers to a cryptographic (i.e., 
collision-resistant) hash function
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 The Cramer-Shoup Encryption Decryption Decrypt(k-1,c) is 
deterministic

 It takes as input a private key k-1 = (x1,x2,y1,y2,z1,z2) and a cipher-
text c = (u1,u2,w,v), and it generates as output a respective plain-
text message m

Asymmetric Encryption Systems 
Secure Systems – Cramer-Shoup

(x1,x2,y1,y2,z1,z2,u1,u2,w,v)

h = H(u1,u2,w) 
If (u1

x1u2
x2(u1

y1u2
y2)h = v) then m = w/(u1

z1u2
z2)

else abort 

(m)
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 In asymmetric system, every user entity have a public key pair
 The public keys look arbitrary and random, hence one cannot 

easily assign a public key to a specific entity
 In 1978, Loren M. Kohnfelder (MIT) proposed the notion of a public 

key certificate to address the key assignment problem
 A public key certificate is a data structure that 

− is issued by a trusted (or trustworthy) entity – called certification 
authority (CA) or certification service provider (CSP)

− claims that a specific public key belongs to a specific entity
− is digitally signed by the certificate-issuing CA/CSP

 If there are multiple (mutually trusting) CAs in place, then one talks 
about a public key infrastructure (PKI)

Asymmetric Encryption Systems 
8.4  Identity-Based Encryption
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 In the early 1980s, Adi Shamir came up with the notion of identity-
based encryption (IBE)

 The public key uniquely identifies the key holder  one has no lon-
ger to care about the ownership of public keys, public key certifica-
tes, and PKIs

− The main advantage is that neither public key certificates nor 
mechanisms to distribute them (e.g., directory services) are needed

− The main disadvantage is that a trusted (central) authority is needed to 
generate public key pairs and distribute them to the appropriate entities

 In 2001, IBE systems were proposed by Dan Boneh and Matthew 
Franklin (based on bilinear pairings on elliptic curves) and Clifford 
Cocks (based on quadratic residues)

 The usefulness of IBE is controversially discussed

Asymmetric Encryption Systems 
Identity-Based Encryption
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 In 1978, Ron Rivest, Len Adleman, and Michael Dertouzos introdu-
ced the notion of a homomorphic encryp-
tion, i.e., to encrypt data in a way that allows                                               
computations to be done only on the cipher-
texts (i.e., without decryption)                                                    

 Homomorphic encryption has interesting                                    
applications in the realm of outsourcing and cloud computing 

Asymmetric Encryption Systems 
8.5  Homomorphic Encryption

m1,m2 m1 m2

E(m1),E(m2) E(m1)     E(m2)

E(m1 m2)=



 Many asymmetric encryption systems in use today are partially 
homomorphic (+ or ∙)
− (Unpadded) RSA ( ∙)
− Elgamal (∙), Paillier (+)
− Probabilistic encryption (∙)
− ...

 Until 2009, it was not clear whether fully homomorphic encryp-
tion (FHE) is feasible (+ and ∙)

 In 2009, Craig Gentry solved the problem and proposed a FHE 
system using latice-based cryptography

 This system has been improved and many researchers have started 
to work on FHE systems

Asymmetric Encryption Systems 
Homomorphic Encryption
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 In addition to the asymmetric encryption systems addressed so far, 
there are other systems that have been proposed in the past

 Some of these systems have been broken and become obsolete
 For example, the NP-complete subset sum problem has served as 

a basis for many public key cryptosystems (e.g., Merkle-Hellman)
 All knapsack-based public key cryptosystems have been broken, 

including the Chor-Rivest knapsack cryptosystem
 Knapsack-based cryptosystems illustrate that it is necessary but 

usually not sufficient that a public key cryptosystem is based on a 
mathematically hard problem

 Breaking a knapsack-based public key cryptosystem is possible 
without solving the subset sum problem 

Asymmetric Encryption Systems 
8.6  Final Remarks
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 There are still a few asymmetric encryption systems that have 
turned out to be resiatnt against cryptanalytical attacks (e.g., 
McEliece) 

 The assumption that public keys are published in certified form 
raises questions
− How does one ensure that all entities have public keys?
− How does one publish them?
− How does one certify them?
− How does one handle the revocation of public keys?
− ….

 The operation of a PKI is heavily involved 
 It represents the Achilles heel of public key cryptography

Asymmetric Encryption Systems 
Final Remarks
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 A hash function is an efficiently computable function h: Σin
* → Σout

n

(or h: Σin
nmax → Σout

n, repectively) 
 Σin and Σout are the input and output alphabets, typically the binary 

alphabet Σ = {0,1}
 As mentioned before, a cryptographic hash function must be 

− Preimage resistant (one-way)
− Second-preimage resistant (weakly collision resistant)
− Collision resistant (strongly collision resistant)

Cryptographic Hash Functions
9.1  Introduction
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 A hash function h is preimage resistant (or one-way) if it is com-
putationally infeasible to find an x ∈ Σin

* with h(x) = y for a y∈RΣout
n

 A hash function h is second-preimage resistant (or weakly 
collision resistant) if it is computationally infeasible to find an 
x‘∈Σin

* with x‘≠x and h(x‘) = h(x) for an x∈Σin
*

Cryptographic Hash Functions
Introduction

Σin
* Σout

n

y
x?

Σin
*

Σout
n

yx‘?

x
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 A hash function h is collision resistant (or strongly collision re-
sistant) if it is computationally infeasible to find x,x‘∈Σin

* with x‘≠x 
and h(x‘) = h(x)

Cryptographic Hash Functions
Introduction

Σout
nΣin

*

yx,x‘?
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 Exercise 9-1: Birthday paradox
1. How many persons are required (e.g., in a room) such that the pro-

bability that at least one person has a given birthday is at least ½?
2. How many persons are required such that the probability that at least 

two persons have the same birthday is at least ½?

Cryptographic Hash Functions
Introduction
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 Collision resistance is a stronger requirement than second-
preimage resistance (due to the birthday paradox)

 But preimage resistance is an inherently different requirement 
 A collision resistant hash function need not be preimage resistant
 For example, let g be a collision resistant hash function with an n-

bit output and h a pathological (n+1)-bit hash function

1 || x if |x|=n
0 || g(x) otherwise

 h is still collision resistant but not preimage resistant
 For all h(x) that begin with a 1, a primage can be trivially computed 

(by removing the 1) 

Cryptographic Hash Functions
Introduction

h(x) = 
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 Consequently, there are 2 types of cryptographic hash functions
− One-way hash functions (OWHFs)

o Preimage resistant
o Second-preimage resistant (weakly collision resistant)

− Collision resistant hash functions (CRHFs)

o Preimage resistant
o Collision resistant (strongly collision resistant)

Cryptographic Hash Functions
Introduction
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 Most cryptographic hash functions in use today follow a construc-
tion that was independently proposed by Ralph Merkle and Ivan 
Damgård in the late 1980s

 The Merkle-Damgård construction employs a collision resistant 
compression function

f: Σl+b → Σl   (with l,b∈N)

that is applied iteratively to successive b-bit blocks x1,…,xn of 
message x

Cryptographic Hash Functions
9.2  Merkle-Damgård Construction

f l bitsChaining value (l bits, e.g., l = 128)

Message block (b bits, e.g., b = 512)

http://www.merkle.com/merkleDir/merklePhotos.html�


 A cryptographic hash function that follows the Merkle-Damgård 
construction is also called iterated hash function

 An iterated hash function h inherits the collision resistance property 
from the underlying compression function f

Cryptographic Hash Functions
Merkle-Damgård Construction

fIV = H0

x1

f

x2

H1 f

xn

H2 Hn h(x)gHn-1

H0 = IV
Hi = f(Hi-1,xi) for i = 1,…,n
h(x) = g(Hn)
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 MD2 (RFC 1319, 1992)
 MD4 (RFC 1320, 1992)
 MD5 (RFC 1321, 1992)
 SHA-1 (FIPS PUB 180-1, 1995)
 SHA-2

− SHA-256, SHA-384, and SHA-512 (FIPS PUB 180-2, 2002)
− SHA-224 (FIPS PUB 180-2 change note, 2004)

 RIPEMD-128 and RIPEMD-160
 …

Cryptographic Hash Functions
9.3  Exemplary Hash Functions
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 MD4 implements a Merkle-Damgård construction with b = 512 and 
l = 128 

 It was designed (and optimized) for 32-bit processors with little-
endian architecture, i.e., a 4-byte word a1a2a3a4 is stored as 
a4a3a2a1, and hence it represents a4224a3216a228a1

Cryptographic Hash Functions
Exemplary Hash Functions – MD4

a1 a2 a3 a4

a4 a3 a2 a1

A4 21 7B 40

1010 
0100

Stored as

0010 
0001

0111 
1011

0100 
0000

40 7B 21 A4

1010 
0100

0010 
0001

0111 
1011

0100 
0000

Stored as
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 Let m = m0m1…ms-1 be an s-bit message to be hashed
 First, an array

M = M[0]M[1]…M[N-1]

is constructed, where M[i] for i = 0,…,N-1 represents a 32-bit word and 
N ≡ 0 mod 16  |M| is a multiple of 32·16 = 512 bits

 M is constructed in 2 steps
− The message m is padded so that its bit length is congruent to 448 

modulo 512, i.e., |m| ≡ 448 (mod 512)
− A 64-bit binary representation of s is appended to the message (little-

endian encoding)

Cryptographic Hash Functions
Exemplary Hash Functions – MD4

Multiple of 512 bits

Original message 10000000000000 (s)2

64 bits1- 512 bits
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 MD4 algorithm (overview)
 A, B, C, and D represent 32 bit                                                                                              

(4 byte) registers

Cryptographic Hash Functions
Exemplary Hash Functions – MD4

(m = m0m1…ms-1)

Construct M = M[0]M[1]…M[N-1]
A ← 0x67452301
B ← 0xEFCDAB89
C ← 0x98BADCFE
D ← 0x10325476
for i = 0 to N/16 do

for j = 0 to 15 do X[j] = M[i·16+j]
A‘ ← A
B‘ ← B 
C‘ ← C
D‘ ← D
Round 1
Round 2
Round 3
A  ← A + A‘ (addition is modulo 232)
B  ← B + B‘ 
C  ← C + C‘ 
D  ← D + D‘ 

(h(m) = A || B || C || D)

Iteration of the 
compression function 
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 Building blocks for the 3 round functions of MD4
− Boolean operations

o X ∧ Y AND (bitwise and of X and Y)
o X ∨ Y OR (bitwise or of X and Y)
o X ⊕ Y XOR (bitwise exclusive or of X and Y)
o X ¬ Y NOT (bitwise complement of X)
o X + Y Integer addition of X and Y modulo 232 
o X ↵ s Circular left shift of X by s positions (0 ≤ s ≤ 31)

− Functions
o f(X,Y,Z) = (X ∧ Y) ∨ ((¬X) ∧ Z)
o g(X,Y,Z) = (X ∧ Y) ∨ (X ∧ Z) ∨ (Y ∧ Z)
o h(X,Y,Z) = X ⊕ Y ⊕ Z

− Constants
o c1 = 230·21/2 = 0x5A827999
o c2 = 230·31/2 = 0x6ED9EBA1

Cryptographic Hash Functions
Exemplary Hash Functions – MD4
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1. A ← (A + f(B,C,D) + X[0]) ↵ 3
2. D ← (D + f(A,B,C) + X[1]) ↵ 7
3. C ← (C + f(D,A,B) + X[2]) ↵ 11
4. B ← (B + f(C,D,A) + X[3]) ↵ 19
5. A ← (A + f(B,C,D) + X[4]) ↵ 3
6. D ← (D + f(A,B,C) + X[5]) ↵ 7
7. C ← (C + f(D,A,B) + X[6]) ↵ 11
8. B ← (B + f(C,D,A) + X[7]) ↵ 19
9. A ← (A + f(B,C,D) + X[8]) ↵ 3

10. D ← (D + f(A,B,C) + X[9]) ↵ 7
11. C ← (C + f(D,A,B) + X[10]) ↵ 11
12. B ← (B + f(C,D,A) + X[11]) ↵ 19
13. A ← (A + f(B,C,D) + X[12]) ↵ 3
14. D ← (D + f(A,B,C) + X[13]) ↵ 7
15. C ← (C + f(D,A,B) + X[14]) ↵ 11
16. B ← (B + f(C,D,A) + X[15]) ↵ 19

1. A ← (A + g(B,C,D) + X[0] + c1) ↵ 3
2. D ← (D + g(A,B,C) + X[4] + c1) ↵ 5
3. C ← (C + g(D,A,B) + X[8] + c1) ↵ 9
4. B ← (B + g(C,D,A) + X[12] + c1) ↵ 13
5. A ← (A + g(B,C,D) + X[1] + c1) ↵ 3
6. D ← (D + g(A,B,C) + X[5] + c1) ↵ 5
7. C ← (C + g(D,A,B) + X[9] + c1) ↵ 9
8. B ← (B + g(C,D,A) + X[13] + c1) ↵ 13
9. A ← (A + g(B,C,D) + X[2] + c1) ↵ 3

10. D ← (D + g(A,B,C) + X[6] + c1) ↵ 5
11. C ← (C + g(D,A,B) + X[10] + c1) ↵ 9
12. B ← (B + g(C,D,A) + X[14] + c1) ↵ 13
13. A ← (A + g(B,C,D) + X[3] + c1) ↵ 3
14. D ← (D + g(A,B,C) + X[7] + c1) ↵ 5
15. C ← (C + g(D,A,B) + X[11] + c1) ↵ 9
16. B ← (B + g(C,D,A) + X[15] + c1) ↵ 13

Round 1 Round 2
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Round 3
1. A ← (A + h(B,C,D) + X[0] + c2) ↵ 3
2. D ← (D + h(A,B,C) + X[8] + c2) ↵ 9
3. C ← (C + h(D,A,B) + X[4] + c2) ↵ 11
4. B ← (B + h(C,D,A) + X[12] + c2) ↵ 15
5. A ← (A + h(B,C,D) + X[2] + c2) ↵ 3
6. D ← (D + h(A,B,C) + X[10] + c2) ↵ 9
7. C ← (C + h(D,A,B) + X[6] + c2) ↵ 11
8. B ← (B + h(C,D,A) + X[14] + c2) ↵ 15
9. A ← (A + h(B,C,D) + X[1] + c2) ↵ 3

10. D ← (D + h(A,B,C) + X[9] + c2) ↵ 9
11. C ← (C + h(D,A,B) + X[5] + c2) ↵ 11
12. B ← (B + h(C,D,A) + X[13] + c2) ↵ 15
13. A ← (A + h(B,C,D) + X[3] + c2) ↵ 3
14. D ← (D + h(A,B,C) + X[11] + c2) ↵ 9
15. C ← (C + h(D,A,B) + X[7] + c2) ↵ 11
16. B ← (B + h(C,D,A) + X[15] + c2) ↵ 15
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 MD5 is a strengthened version of MD4
 It is conceptually and structurally similar to MD4 (Merkle-Damgård 

construction with b = 512 and l = 128)

 Major differences

− 4 rounds (instead of 3) 
− Modified function g(X,Y,Z) = (X ∧ Z) ∨ (Y ∧ (¬Z))
− New function i(X,Y,Z) = Y ⊕ (X ∨ (¬Z))
− 64-element table T constructed from the sine function (where i is 

taken in radians)
T[i] = 4,294,967,296·|sin(i)| 

Cryptographic Hash Functions
Exemplary Hash Functions – MD5



(m = m0m1…ms-1)
Construct M = M[0]M[1]…M[N-1]
A ← 0x67452301
B ← 0xEFCDAB89
C ← 0x98BADCFE
D ← 0x10325476
for i = 0 to N/16 do

for j = 0 to 15 do X[j] = M[i·16+j]
A‘ ← A
B‘ ← B 
C‘ ← C
D‘ ← D
Round 1
Round 2
Round 3
Round 4
A  ← A + A‘ 
B  ← B + B‘ 
C  ← C + C‘ 
D  ← D + D‘ 

(h(m) = A || B || C || D)
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 MD5 algorithm (overview)

Cryptographic Hash Functions
Exemplary Hash Functions – MD5

Iteration of the 
compression function 
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Round 1 Round 2
1. A ← (A + f(B,C,D) + X[0] + T[1]) ↵ 7
2. D ← (D + f(A,B,C) + X[1] + T[2]) ↵ 12
3. C ← (C + f(D,A,B) + X[2] + T[3]) ↵ 17
4. B ← (B + f(C,D,A) + X[3] + T[4]) ↵ 22
5. A ← (A + f(B,C,D) + X[4] + T[5]) ↵ 7
6. D ← (D + f(A,B,C) + X[5] + T[6]) ↵ 12
7. C ← (C + f(D,A,B) + X[6] + T[7]) ↵ 17
8. B ← (B + f(C,D,A) + X[7] + T[8]) ↵ 22
9. A ← (A + f(B,C,D) + X[8] + T[9]) ↵ 7

10. D ← (D + f(A,B,C) + X[9] + T[10]) ↵ 12
11. C ← (C + f(D,A,B) + X[10] + T[11]) ↵ 17
12. B ← (B + f(C,D,A) + X[11] + T[12]) ↵ 22
13. A ← (A + f(B,C,D) + X[12] + T[13]) ↵ 7
14. D ← (D + f(A,B,C) + X[13] + T[14]) ↵ 12
15. C ← (C + f(D,A,B) + X[14] + T[15]) ↵ 17
16. B ← (B + f(C,D,A) + X[15] + T[16]) ↵ 22

1. A ← (A + g(B,C,D) + X[1] + T[17]) ↵ 5
2. D ← (D + g(A,B,C) + X[6] + T[18]) ↵ 9
3. C ← (C + g(D,A,B) + X[11] + T[19]) ↵ 14
4. B ← (B + g(C,D,A) + X[0] + T[20]) ↵ 20
5. A ← (A + g(B,C,D) + X[5] + T[21]) ↵ 5
6. D ← (D + g(A,B,C) + X[10] + T[22]) ↵ 9
7. C ← (C + g(D,A,B) + X[15] + T[23]) ↵ 14
8. B ← (B + g(C,D,A) + X[4] + T[24]) ↵ 20
9. A ← (A + g(B,C,D) + X[9] + T[25]) ↵ 5

10. D ← (D + g(A,B,C) + X[14] + T[26]) ↵ 9
11. C ← (C + g(D,A,B) + X[3] + T[27]) ↵ 14
12. B ← (B + g(C,D,A) + X[8] + T[28]) ↵ 20
13. A ← (A + g(B,C,D) + X[13] + T[29]) ↵ 5
14. D ← (D + g(A,B,C) + X[2] + T[30]) ↵ 9
15. C ← (C + g(D,A,B) + X[7] + T[31]) ↵ 14
16. B ← (B + g(C,D,A) + X[12] + T[32]) ↵ 20



318 16/08/2011
Contemporary Cryptography

Cryptographic Hash Functions
Exemplary Hash Functions – MD5

Round 3 Round 4
1. A ← (A + h(B,C,D) + X[5] + T[33]) ↵ 4
2. D ← (D + h(A,B,C) + X[8] + T[34]) ↵ 11
3. C ← (C + h(D,A,B) + X[11] + T[35]) ↵ 16
4. B ← (B + h(C,D,A) + X[14] + T[36]) ↵ 23
5. A ← (A + h(B,C,D) + X[1] + T[37]) ↵ 4
6. D ← (D + h(A,B,C) + X[4] + T[38]) ↵ 11
7. C ← (C + h(D,A,B) + X[7] + T[39]) ↵ 16
8. B ← (B + h(C,D,A) + X[10] + T[40]) ↵ 23
9. A ← (A + h(B,C,D) + X[13] + T[41]) ↵ 4

10. D ← (D + h(A,B,C) + X[0] + T[42]) ↵ 11
11. C ← (C + h(D,A,B) + X[3] + T[43]) ↵ 16
12. B ← (B + h(C,D,A) + X[6] + T[44]) ↵ 23
13. A ← (A + h(B,C,D) + X[9] + T[45]) ↵ 4
14. D ← (D + h(A,B,C) + X[12] + T[46]) ↵ 11
15. C ← (C + h(D,A,B) + X[15] + T[47]) ↵ 16
16. B ← (B + h(C,D,A) + X[2] + T[48]) ↵ 23

1. A ← (A + i(B,C,D) + X[0] + T[49]) ↵ 6
2. D ← (D + i(A,B,C) + X[7] + T[50]) ↵ 10
3. C ← (C + i(D,A,B) + X[14] + T[51]) ↵ 15
4. B ← (B + i(C,D,A) + X[5] + T[52]) ↵ 21
5. A ← (A + i(B,C,D) + X[12] + T[53]) ↵ 6
6. D ← (D + i(A,B,C) + X[3] + T[54]) ↵ 10
7. C ← (C + i(D,A,B) + X[10] + T[55]) ↵ 15
8. B ← (B + i(C,D,A) + X[1] + T[56]) ↵ 21
9. A ← (A + i(B,C,D) + X[8] + T[57]) ↵ 6

10. D ← (D + i(A,B,C) + X[15] + T[58]) ↵ 10
11. C ← (C + i(D,A,B) + X[6] + T[59]) ↵ 15
12. B ← (B + i(C,D,A) + X[13] + T[60]) ↵ 21
13. A ← (A + i(B,C,D) + X[4] + T[61]) ↵ 6
14. D ← (D + i(A,B,C) + X[11] + T[62]) ↵ 10
15. C ← (C + i(D,A,B) + X[2] + T[63]) ↵ 15
16. B ← (B + i(C,D,A) + X[9] + T[64]) ↵ 21
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 Until 2004, MD4 was considered to be insecure and MD5 was considered 
to be partially broken

− In 1993, Bert den Boer and Antoon Bosselaers found collisions for the 
compression function of MD5 (i.e., they found pairs of different 
message blocks and chaining values that compress to the same value

− In 1996, Hans Dobbertin found collisions for different                            
message blocks that employ the same chaining value                     (still 
different  from the true IV employed by MD5)

− In 2004, Xiaoyun Wang et al. (Shandong University, China) found 
collisions for MD4, MD5, and many other cryptographic hash functions

− Consequently, MD5 is broken today and should no longer be used

Cryptographic Hash Functions
Exemplary Hash Functions – MD5
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 SHA-1 is a cryptographic hash function developed and proposed by the 
National Institute of Standards and Technology

 It is conceptually and structurally similar to MD4 and MD5 (Merkle-
Damgård construction with b = 512 and l = 160)

 Major differences

− SHA-1 is designed and optimized for computer systems with a big-
endian architecture

− SHA-1 employs 5 registers (instead of 4)
− SHA-1 hash values are 5·32 = 160 bits long

 The preprocessing of message m and array M is the same as with 
MD4 and MD5 (but for a big-endian architecture)

Cryptographic Hash Functions
Exemplary Hash Functions – SHA-1

http://upload.wikimedia.org/wikipedia/commons/e/ee/NIST_logo.svg�
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 SHA-1 employs a sequence of 80 Boolean functions f0,f1,…,f79

0 ≤ t ≤ 19: Ch(X,Y,Z) = (X ∧ Y) ⊕ ((¬X) ∧ Z)
20 ≤ t ≤ 39: Parity(X,Y,Z) = X ⊕ Y ⊕ Z
40 ≤ t ≤ 59: Maj(X,Y,Z) = (X ∧ Y) ⊕ (X ∧ Z) ⊕ (Y ∧ Z)
60 ≤ t ≤ 79: Parity (X,Y,Z) = X ⊕ Y ⊕ Z

 SHA-1 employs a sequence of 80 constant 32-bit words K0,K1,…,K79

23021/2 = 0x5A827999 0 ≤ t ≤ 19
23031/2 = 0x6ED9EBA1 20 ≤ t ≤ 39
23051/2 = 0x8F1BBCDC 40 ≤ t ≤ 59
230101/2 = 0xCA62C1D6 60 ≤ t ≤ 79

Cryptographic Hash Functions
Exemplary Hash Functions – SHA-1

ft(X,Y,Z) = 

Kt = 
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 Furthermore, SHA-1 also employs a message schedule W 
 The respective algorithm takes as input 16 32-bit words (i.e., 512 bits) 

from M and generates as ouput 80 32-bit words (i.e., 2,560 bits)

M[t] 0 ≤ t ≤ 19
(Wt-3 ⊕ Wt-8 ⊕ Wt-14 ⊕ Wt-16) 20 ≤ t ≤ 79

Cryptographic Hash Functions
Exemplary Hash Functions – SHA-1

Wt = 



(m = m0m1…ms-1)
Construct M = M[0]M[1]…M[N-1]
A ← 0x67452301; B ← 0xEFCDAB89
C ← 0x98BADCFE;D ← 0x10325476
E ← 0xC3D2E1F0
for i = 0 to N-1 do

Expand message schedule W from M[i]
A‘ ← A; B‘ ← B; C‘ ← C; D‘ ← D; E‘ ← E
for t = 0 to 79 do

T ← (A ↵ 5) + ft(B,C,D) + E + Kt + Wt
E ← D
D ← C
C ← B ↵ 30
B ← A
A ← T

A  ← A + A‘ 
B  ← B + B‘ 
C  ← C + C‘ 
D  ← D + D‘ 
E  ← E + E‘

(h(m) = A || B || C || D || E)
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 SHA-1 algorithm (overview)

Cryptographic Hash Functions
Exemplary Hash Functions – SHA-1

Each M[i] (i = 0,...,N-1) 
consists of 16 32-bit words
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 SHA-1 is conceptually and structurally similar to MD4 and MD5, and 
hence it appears to be vulnerable to the same attacks

 But a SHA-1 hash value is 32 bit longer than an MD5 hash value  it is 
potentially more collision resistant than MD5

 In 2005, Wang et al. found an attack against the collision resistance 
property of SHA-1 that requires 269 hash operations (instead of 280)

 The attack has been improved to 263

 People therefore move away from SHA-1 to SHA-2 and other crypto-
graphic hash functions (if possible)

Cryptographic Hash Functions
Exemplary Hash Functions – SHA-1
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 Most cryptographic hash functions in use today follow the Merkle-
Damgård construction 

 Finding collisions for such functions has become an active area of 
research

 Furthermore, the block chaining structure of iterative hash functions 
prevents parallelism  performance bottleneck

 It is a research challenge to design cryptographic hash functions 
that are inherently (and provably) more secure and qualified to 
support parallelism

 The NIST runs a competition for one (or several) standardized 
cryptographic hash function(s) until 2012                                                               
 http://csrc.nist.gov/groups/ST/hash/sha-3/

Cryptographic Hash Functions
9.4  Final Remarks

http://csrc.nist.gov/groups/ST/hash/sha-3/�
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 A  DSS with appendix consists of 3 efficiently computable 
algorithms
− Generate(1l)
− Sign(k-1,m)
− Verify(k,m,s)

 A  DSS giving message recovery consists of 3 efficiently 
computable algorithms
− Generate(1l)
− Sign(k-1,m)
− Recover(k,s)

Digital Signature Systems 
10.1  Introduction
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 Basic requirements for a DSS
− Correctness A valid signature must be accepted
− Security It must be impossible or computationally infeasible to 

forge (i.e., illegitimately generate) a valid signature

 There are different interpretations for the security requirement
 As usual, a precise security definition must specify 

− The adversary (including his or her capabilities)
− The task he or she must solve to be successful, i.e., break the security 

of the system

 The terminology most frequently used was proposed by Shafi 
Goldwasser, Silvio Micali, and Ron Rivest in the 1980s

Digital Signature Systems 
Introduction

http://images.google.ch/imgres?imgurl=http://www.cs.cornell.edu/Events/SaltonSeries/saltonseriesFall2005/goldwasser300.2x3.JPG&imgrefurl=http://www.cs.cornell.edu/Events/SaltonSeries/saltonseriesFall2005/index.htm&usg=__urpGY8f-CNIF6rf8Oj4Ij6KfK0s=&h=900&w=622&sz=553&hl=en&start=6&tbnid=URuhPHztEGidoM:&tbnh=146&tbnw=101&prev=/images?q=shafi+goldwasser&gbv=2&hl=en�
http://images.google.ch/imgres?imgurl=http://games.lids.mit.edu/invited_speakers_files/sp16.PNG&imgrefurl=http://games.lids.mit.edu/sp17.html&usg=__QQCllI5KRlBxBPJEh_FFE7WfLbU=&h=310&w=250&sz=89&hl=en&start=11&um=1&tbnid=2_zhm6XHVprIOM:&tbnh=117&tbnw=94&prev=/images?q=silvio+micali&hl=en&um=1�
http://images.google.com/imgres?imgurl=http://www.iacr.org/fellows/2004/RonRivest.jpg&imgrefurl=http://www.iacr.org/fellows/2004/rivest.html&usg=__Gz5FJCUHPHUUa9PIaOaOlr3m2L8=&h=278&w=192&sz=27&hl=en&start=2&um=1&tbnid=TZPy4HpuXJCYjM:&tbnh=114&tbnw=79&prev=/images?q=ron+rivest&um=1&hl=en&sa=N�
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 Adversary 
− Computing power is polynomially bounded (with respect to the length 

of the input string)
− Possible attacks

o Key-only attack
o Known message attack
o Chosen message attack

− Generic chosen message attack                                                          
 attack strategy does not depend on the public key

− Directed chosen message attack                                                               
 attack strategy depends on the public key

− Adaptive chosen message attack 

Digital Signature Systems 
Introduction
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 Task to solve
− Total break
− Universal forgery
− Selective forgery
− Existential forgery

 A DSS is provably secure if it can be shown that a polynomially 
bounded adversary who can mount adaptive chosen message 
attacks is not even able to existentially forge a signature

 Many deployed DSSs are not provably secure

Digital Signature Systems 
Introduction
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 RSA
 Elgamal
 Schnorr
 DSA

Digital Signature Systems 
10.2  Basic Systems
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 The RSA public key cryptosystem also yields a DSS
 The RSA key Generation Algorithm Generate(1l) is the same as for 

the RSA asymmetric encryption system
 It is probabilistic and outputs a public key pair (k,k-1) = ((n,e),d)
 Toy example

− p = 11 and q = 23  n = 253 and φ(n) = 10⋅22 = 220
− Public verification key is (n,e) = (253,3)
− Private signing key is d = 147

Digital Signature Systems 
Basic Systems – RSA 
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 The RSA Signature Generation Algorithm Sign(k-1,m) is determi-
nistic

 It takes as input a private signing key k-1 = d and a message 
m∈Zn, and it generates as output a digital signature s 

− If RSA is used as DSS giving message recovery, then m must be 
sufficiently small (i.e., m < n)

− If RSA is used as a DSS with appendix, then m must either be 
sufficiently small or hashed to a bit string of fixed size

s = RSAn,d(m) ≡ md (mod n) or h(m)d (mod n)

Digital Signature Systems 
Basic Systems – RSA 
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 In either case, it is necessary to expand m or h(m) to the size of the 
RSA modulus n

 This can be done by prepending zeros or using a message expan-
sion function (preferred choice)
− In theory, there are many message expansion functions to choose from
− In practice, there are only a few functions in widespread use

 Deterministic message expansion functions
− ANSI X9.31 

o hANSI X9.31(m) =  6B BB BB … BB BA || h(m) || 3x CC

− PKCS #1 

o hPKCS #1(m)    =  00 01 FF … FF 00 || hID || h(m)

Digital Signature Systems 
Basic Systems – RSA 

x = 1: RIPEMD-160
x = 3: SHA-1

There are so many FF bytes (representing 11111111 in binary 
notation or 255 in decimal notation) that the total bit length of 
hPKCS#1(m) equals the bit length of n

Identifier for the 
cryptographic hash 
function in use
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 Alternatively, there are probabilitic message expansion functions
 Most importantly, the probabilistic signature scheme (PSS) uses 

random values to expand h(m) to the bit length of n
 RSA-PSS is provably secure in the random oracle model

Digital Signature Systems 
Basic Systems – RSA 
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 If RSA is used as a DSS giving message recovery, then it is suffi-
cient to transmit s (i.e., m need not be transmitted)

 If RSA is used as a DSS with appendix, then s must be transmitted 
along with the message m

 Toy example (m or h(m) = 26∈ Z253)
− s ≡ md (mod n) ≡ 26147 (mod 253) = 104

 For the purpose of signature verification, one must distinguish 
whether the RSA DSS is used with appendix or giving message 
recovery

 In either case, the corresponding RSA Signature Verification 
Algorithm (i.e., Verify or Recover) is deterministic and efficient

 It requires one modular exponentiation and optionally the invocation 
of a cryptographic hash function

Digital Signature Systems 
Basic Systems – RSA 
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 If the RSA DSS is used with appendix, then Verify(k,m,s) takes as 
input a public verification key k = (n,e), a message m, and a signa-
ture s, and it generatesas output one bit indicating whether s is a 
valid signature for m with respect to k

 The algorithm comprises 2 steps
− It computes m‘ = RSAn,e(s) ≡ se (mod n)
− It compares m‘ with m or h(m)

 Toy example
− m‘ = RSA253,3(104) ≡ 1043 (mod 253) = 26
− Signature is valid (m = m‘)

Digital Signature Systems 
Basic Systems – RSA 
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 If the RSA DSS is used giving message recovery, then Reco-
ver(k,s) takes as input a public verification key k = (n,e), and a sig-
nature s, and it outputs the message m or a notification indicating 
that s is not a valid signature

 The algorithm comprises 2 steps
− It computes m = RSAn,e(s) ≡ se (mod n)
− It decides whether m is a valid message

 The second step is important
 If every message represented a valid message, then an adversary 

could trivially find a valid (i.e., existentially forged) RSA signature s 
by randomly selecting s∈Zn and claiming that it is a valid signature 
for m ≡ se (mod n)

Digital Signature Systems 
Basic Systems – RSA 

If yes, then the algorithm returns 
m
If no, then the algorithm returns 
a notification indicating that s is 
not a valid signature for m with 
respect to k
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 In the toy example, for example, the RSA Recover algorithm must 
compute

m = RSA253,3(104) ≡ 1043 (mod 253) = 26

and decide whether m = 26 is a valid message
 The decision depends on the system in use
 If all valid messages must be congruent to 6 modulo 20, then m = 

26 is a valid message

Digital Signature Systems 
Basic Systems – RSA 
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 Most security properties of the RSA asymmetric encryption system 
also apply for the RSA DSS

 The fact that the RSA function is multiplicatively homomorphic is 
particularly dangerous

 If m1 and m2 are two messages with signatures s1 and s2, then

s = s1s2 ≡ m1
dm2

d ≡ (m1m2)d (mod n) 

is also a valid signature for m ≡ m1m2 (mod n) 
 Best practices in security engineering must take care of this fact 

and protect against corresponding attacks
 One can either require that messages have a certain (non-

multiplicative) structure or randomly pad the messages prior to 
signing

Digital Signature Systems 
Basic Systems – RSA 
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 In many situations, RSA is used to encrypt and digitally sign a 
message

 Hence, it may be necessary to appliy both the RSA Encrypt and 
the RSA Sign algorithms

 The question is whether the order of the operations matters (i.e., 
Encrypt-then-sign or Sign-then-Encrypt)

 In the general case, the answer is not clear and it depends on the 
purpose of the cryptographic protection

 In many situations, however, Sign-then-encrypt is preferred (so the 
signer sees the message he or she is about to sign in the clear)

 In either case, one must be cautious about the relative sizes of the 
moduli  the message may need to be reblocked (reblocking 
problem)

Digital Signature Systems 
Basic Systems – RSA 
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 In summary, the RSA DSS is considered to be secure
 This is particularly true if the modulus n is sufficiently large (≥ 1,024 

bits)
 Because digital signatures are used to protect valuable data for 

potentially long periods of time, it is often recommended to use 
longer moduli, such as 2,048 or 4,096 bits

 It is also recommended to use RSA as a DSS with appendix with 
appropriately chosen hash and message expansion functions 
− SHA-1 
− PKCS #1 or PSS

Digital Signature Systems 
Basic Systems – RSA 
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 The Elgamal public key cryptosystem yields a DSS with appendix
 There are variations of Elgamal that yield DSSs giving message 

recovery (e.g., Nyberg-Rueppel)
 The Elgamal DSS is not as widely deployed as the RSA DSS

− Elgamal employs different algorithms for encryption / decryption and 
signature generation / verification

− Elgamal signatures are twice as long as RSA signatures 

 Again, the security of Elgamal is based on the DLP in a cyclic 
group (e.g., Zp

*)
 Any cyclic group (in which the DLP is intractable) can be used to 

instatiate the Elgamal DSS (e.g., group of points on an elliptic curve 
over a finite field) 

Digital Signature Systems 
Basic Systems – Elgamal
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 The Elgamal Key Generation Algorithm Generate(1l) is the same 
as for the Elgamal asymmetric encryption system

 The public (signature verification) key is (p,g,y), where p and g may 
be system parameters

 The private (signing) key is x with y ≡ gx (mod p)
 Toy example

− p = 17 and g = 7
− x = 6
− y ≡ 76 ≡ 117,649 (mod 17) = 9

Digital Signature Systems 
Basic Systems – Elgamal
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 The Elgamal Signature Generation Algorithm Sign(k-1,m) is 
probablistic and employs a cryptographic hash function h

Digital Signature Systems 
Basic Systems – Elgamal

(p,g,x,m)

r ∈R Zp
*

s1 ≡ gr (mod p)
s2 ≡ (r-1(h(m)-xs1)) (mod (p-1))

(s1,s2)

k-1

Note that r must be fresh and unique 
for every message that is signed
Also note that it must be kept secret 
and not leak the implementation –
otherwise the private key x may get 
compromised

 Toy example

− m with (h(m) = 6 and r = 3
− s1 ≡ gr (mod p) ≡ 73 (mod 17) = 3
− r-1 (mod p-1) ≡ 3-1 (mod 16) = 11
− s2 ≡ (r-1(h(m)-xs1))(mod p-1)

≡ (11(6 - 6·3))(mod 16) 
≡ (11(6 - 18))(mod 16) 
≡ (11(-12))(mod 16) 
≡ (-132)(mod 16) 
≡ (-4)(mod 16) = 12

− The Elgamal signature is (3,12)
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 The Elgamal Sign algorithm can be optimized using precomputation
 The signatory can select r∈RZp

* and precompute 
− s1 ≡ gr (mod p) 
− r-1 (mod p-1)

 It can then digitally sign message m by computing 
s2 ≡ (r-1(h(m)-xs1))(mod p-1) 

 The Elgamal signature for message m is (s1,s2) with s1,s2∈Zp
*

(twice as long as an RSA signature)

Digital Signature Systems 
Basic Systems – Elgamal
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 The Elgamal Signature Verification Algorithm Verify(k,m,s) is 
deterministic

 It must verify the relation

1 ≤ s1 ≤ p-1

and the equivalence

gh(m) ≡ ys1s1
s2 (mod p)

 The signature is valid iff both checks are positive (without the first 
check, it is possible to forge a new Elgamal signature from a given 
one)

 Toy example

1 ≤ 3 ≤ 16 and 76 (mod 17) ≡ 117,649 (mod 17) = 9
93312 (mod 17) ≡ 387,420,489 (mod 17) = 9

Digital Signature Systems 
Basic Systems – Elgamal

ys1s1
s2 ≡ gxs1grr-1(h(m)-xs1) (mod p)
≡ gxs1g(h(m)-xs1) (mod p)
≡ gxs1g-xs1gh(m) (mod p)
≡ gh(m) (mod p)
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 The security of the Elgamal DSS depends on the DLA and the 
assumed intractability of the DLP in the cyclic group in use

 If Zp
* is used, then 

− p should be at least 1,024 bits long
− p-1 should not have only small prime factors (otherwise the Pohlig-

Hellman algorithm can be used to efficiently solve the DLP)

Digital Signature Systems 
Basic Systems – Elgamal
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 In the late 1980s, Claus-Peter Schnorr proposed a modification of 
the Elgamal DSS

 The basic idea is to do the computations in a subgroup of Zp
*

(instead of Zp
*)

 The resulting Schnorr signatures are shorter and the computations 
can be done more efficiently

Digital Signature Systems 
Basic Systems – Schnorr
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 The Schnorr Key Generation Algorithm Generate(1l) is probabilistic 
− It randomly selects 2 large primes p and q with q | p-1 (typically, 

|p|=1024 and |q|=160)
− It selects a generator g of a q-element subgroup of Zp

*

− It randomly selects a private (signing) key 0 < x < q 
− It computes a corresponding public (signature verification) key               

y ≡ gx (mod p)

 Toy example
− p = 23, Z23

* = {1,2,…,22} with |Z23
*| = 22

− q = 11 (note that 11 | 23-1)
− g = 2 (‹2› = {1,2,3,4,6,8,9,12,13,16,18} and |‹2›| = 11)
− x = 5 and y ≡ 25 ≡ 32 (mod 23) = 9

Digital Signature Systems 
Basic Systems – Schnorr
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 The Schnorr Signature Generation Algorithm Sign(k-1,m) is proba-
bilistic and employs a cryptographic hash function h

Digital Signature Systems 
Basic Systems – Schnorr

(p,q,g,x,m)

r ∈R Zp
*

s ≡ gr (mod p)
s1 = h(m||s)
s2 ≡ xs1 + r (mod q)

(s1,s2)

k-1

 Toy example
− r = 7
− s ≡ 27 ≡ 128 (mod 23) = 13
− s1 = h(m||13) = 4 (assumption)
− s2 ≡ 5·4 + 7 ≡ 27 (mod 11) = 5
− The Schnorr signature is (s1,s2) = (4,5)
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 Schnorr Signature Verification Algorithm
− u ≡ gs2y-s1 (mod p)
− t = h(m||u)
− Signature (s1,s2) is valid ⇔ t = s1

− Note that u ≡ gs2y-s1 ≡ gs2y-xs1 ≡ gr ≡ s (mod p) and   t = h(m||u) = 
h(m||s) = s1

 Toy example 
− u ≡ 259-4 ≡ 2597 ≡ 32·4‘782‘969 ≡ 153‘055‘008 (mod 23) = 13
− t = h(m||13) = 4 = s1

Digital Signature Systems 
Basic Systems – Schnorr
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 The Schnorr DSS is a modified version of Elgamal 
 Its security is comparable 
 Unlike Elgamal, the Schnorr DSS relies on the DLP in a subgroup 

of Zp
* with prime order q 

 Solution requires a generic algorithm with a running time that is of 
the order of the square root of the order of the subgroup

 If the subgroup has order 2160, then the best known algorithm to 
compute discrete logaritms has a running time of order 2160/2 = 280

Digital Signature Systems 
Basic Systems – Schnorr
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 Based on the Elgamal and Schnorr DSSs, the U.S. NIST 
developed and proposed the Digital Signature Algorithm (DSA)

 In 1994, the correspondig Digital Signature Standard (DSS) was 
specified in FIPS PUB 186 (revised three times)

 The DSA employs SHA-1
 The acronym ECDSA refers to the elliptic curve version of the DSA 

(standardized by ANSI X9F1, IEEE P1363, … )

Digital Signature Systems 
Basic Systems – DSA
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 DSA Key Generation Algorithm Generate(1l) operates in 2 steps
− It determines 2 appropriately sized prime modulo p and q 

o p must be 512+64t bits long (t∈{0,...,8})
o q must be 160 bits long, i.e., 2159 < q < 2160, and divide p-1

q | p-1 ⇒ Zp
* has a subgroup of order q

The subgroup can be found by using h∈(1,p-1) with h(p-1)/q (mod p) > 1 
and computing the generator

g ≡ h(p-1)/q (mod p) 

− For every user, it randomly selects a private (signing) key x ∈ Zq and 
computes a public (signature verification) key y ≡ gx (mod p)

 p, q, and g may be system parameters
 Otherwise, they must be part of the public key

Digital Signature Systems 
Basic Systems – DSA
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 Toy example
− p = 23 
− q = 11 (note that 11 | 22)
− For h = 2, g ≡ 222/11 ≡ 22 (mod 23) = 4
− Private (signing) key x = 3
− Public (signature verification) key y ≡ 43 (mod 23) = 18

Digital Signature Systems 
Basic Systems – DSA
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 The DSA Signature Generation Algorithm Sign(k-1,m) is 
probablistic

Digital Signature Systems 
Basic Systems – DSA

(p,q,g,x,m)

r ∈R Zq
*

s1 ≡ (gr (mod p))(mod q)
s2 ≡ (r-1(h(m)+xs1)) (mod q)

(s1,s2)

k-1

s1 and s2 are 160-bit numbers ⇒
A DSA signature is 320 bits long

 Toy example (m with h(m) = 6)

− r = 7
− r-1 ≡ 7-1 (mod 11) = 8
− s1 ≡ (47 (mod 23))(mod 11) ≡ 8 

(mod 11) = 8 
− s2 ≡ (8(6+3·8))(mod 11) ≡ 8·30 

(mod 11) = 9
− Hence, (s1,s2) = (8,9) represents a 

DSA signature for h(m) = 6
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 The DSA Signature Verification Algorithm Verify(k,m,s) must first 
verify that 

0 < s1,s2 < q

and then compute 
w  ≡ s2

-1 (mod q)
u1 ≡ h(m)w (mod q)
u2 ≡ s1w (mod q)
v   ≡ (gu1yu2 (mod p))(mod q)

 The signature is valid ⇔ v = s1

Digital Signature Systems 
Basic Systems – DSA

 Toy example (m with h(m) = 6)

− 1 ≤ 8,9 ≤ 10
− w ≡ 9-1 (mod 11) = 5
− u1 ≡ 6·5 (mod 11) ≡ 30 (mod 11) = 8
− u2 ≡ 8·5 (mod 11) ≡ 40 (mod 11) = 7
− v ≡ (48187 (mod 23))(mod 11) ≡

(65,536·612,220,032 (mod 23)) 
(mod 11) ≡ (40,122,452,017,152 
(mod 23))(mod 11) ≡ 8 (mod 11) = 8

− Signature is valid (v = s1 = 8)
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 The notion of a (provably) secure DSS was introduced by Gold-
wasser, Micali, and Rivest in the 1980s

 Their construction is not efficient
 This is also partly true for a construction                                          

proposed by Cynthia Dwork and Moni Naor 
 Towards the end of the 1990s, a few cryptographic researchers 

proposed DSSs that are provably secure and efficient
− Bellare-Rogaway (1996)

o Probabilistic signature scheme (PSS)
o PSS with recovery (PSS-R)

− Cramer-Shoup (1999)
− Gennaro-Halevi-Rabin (1999)

Digital Signature Systems 
10.3  Secure Systems

PSS and PSS-R are provably secure in 
the random oracle model
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 PSS represents a DSS with appendix
 The basic idea is „random padding“, i.e., replace a deterministic 

message expansion function with a probabilistic one 
 The expanded message is then digitally signed with a conventional 

DSS (e.g., PSS-RSA) 
 In addition to k = log n, the PSS requires 2 additional parameters   

0 < k0,k1 < k (typically k0 = k1 = 128)
 The PSS employs 2 cryptographic hash functions

− Compressor h : {0,1}* → {0,1}k1

− Generator g : {0,1}k1 → {0,1}k-k1-1

o g1 is a function that on input w∈{0,1}k1 returns the first k0 bits of g(w)
o g2 is a function that on input w∈{0,1}k1 returns the remaining k-k0-k1-1 bits 

of g(w)

Digital Signature Systems 
Secure Systems – PSS
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 As its name suggests, the PSS-RSA Signature Generation 
Algorithm Sign(k-1,m) is probabilistic

Digital Signature Systems 
Secure Systems – PSS

(n,d,m)

r ∈R {0,1}k0

w ← h(m) || r
r* ← g1(w) ⊕ r 
y ← 0 || w || r* || g2(w) 
s ← yd (mod n)

(s)

k-1
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 The PSS-RSA Signature Verification Algorithm Verify(k,m,s) is 
deterministic

Digital Signature Systems 
Secure Systems – PSS

(n,e,m,s)

y ← se (mod n)
break up y as b || w || r* || γ
r ← r* ⊕ g1(w) 
B ← (b = 0 and h(m||r) = w and g2(w) = γ)

(B)

k

B is a Boolean predicate 

This is possible, because 
every component has a 

fixed length
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 PSS-R represents a DSS giving message recovery
 The functions h, g, g1, and g2 are identically defined
 If the message is sufficiently short, then one can fold the entire 

message into the signature
 More specifically, the messages to be signed have length              

km = k – k0 – k1 – 1
 Suggested choices 

− k = 1,024
− k0 = k1 = 128
− km = 767 bits

Digital Signature Systems 
Secure Systems – PSS-R
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 Again, the PSS-R-RSA Signature Generation Algorithm                               
Sign(k-1,m) is probabilistic

Digital Signature Systems 
Secure Systems – PSS-R

(n,d,m)

r ∈R {0,1}k0

w ← h(m) || r
r* ← g1(w) ⊕ r 
m* ← g2(w) ⊕ m 
y ← 0 || w || r* || m*

s ← yd (mod n)

(s)

k-1
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 The PSS-R-RSA Recover Algorithm Recover(k,s) is deterministic

Digital Signature Systems 
Secure Systems – PSS-R

(n,e,s)

y ← se (mod n)
break up y as b || w || r* || m*

r ← r* ⊕ g1(w) 
m ← m* ⊕ g2(w) 
If (b = 0 and h(m||r) = w) then output m                               

else output invalid)

(m | invalid)

k
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 A one-time signature system is a DSS in which a new key pair is 
required for every message that is signed
− The advantages are simplicity and efficiency
− The disadvantages are related to the size of the verification key(s) and 

the complexity of key management

 When combined with techniques to efficiently authenticate 
verification keys, one-time signature systems are practical

 In 1978, Rabin proposed the idea and the first (inefficient) one-time 
signature system

 In 1979, Leslie Lamport proposed the first one-time                       
signature system that is efficient and can actually be                                   
used in practice

Digital Signature Systems 
10.4  One-Time Signature Systems
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 The Lamport one-time signature system employs a one-way func-
tion f to digitally sign message m

 m is assumed to be at most n bits (e.g., n = 128 or 160 bits)
 If m is longer than n bits, then it must be hashed using a crypto-

graphic hash function h (e.g., SHA-1)
 The message can then be written as m = m1m2…mn, where each mi

(i = 1,…,n) represents a bit that is signed indivi-dually
 The signatory‘s private key comprises n pairs of randomly chosen 

preimages for f

[u10,u11],[u20,u21],…,[un0,un1]

 Each uij (i = 1,…,n; j = 0,1) may, for example, be a 64-bit string
 The 2n preimages can be generated with a PRBG (and a seed)

Digital Signature Systems 
One-Time Signature Systems
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 The public key comprises the images of the uij (i = 1,…,n; j = 0,1) 

[f(u10 ),f(u11 )],[f(u20 ),f(u21 )],…,[f(un0),f(un1)]

 Again, in an efficient implemen-
tation, the 2n images can be                                                             
hashed to a single value p
p = h([f(u10 ),f(u11 )],

[f(u20 ),f(u21 )],
…,
[f(un0),f(un1)]

Digital Signature Systems 
One-Time Signature Systems

p

Seed

u10 u11 u20 u21 un0 un1

f ………….

f(u10) f(un1)f(u11) f(u20) f(u21) f(un0)
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 To digitally sign message m, each message bit mi (i = 1,…,n) is 
signed individually using [ui0,ui1]

 More specifically, the signature for message bit mi is the preimage 
uimi 

− If mi = 0, then the bit is signed by ui0

− If mi = 1, then the bit is signed by ui1

 The resulting signature s consists of all uimi
for i = 1,…,n

 s can be verified by computing all images f(uij), hashing all values to 
p‘, and comparing p‘ with p

 For example, the Lamport one-time signature for  m = 0110 is 
[u10,u21,u31,u40] 

 There are many possibilities to generalize and improve the 
(efficiency of the) Lamport one-time signature system

Digital Signature Systems 
One-Time Signature Systems
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 There are many variations of „normal“ DSSs

− Blind signatures
− Undeniable signatures
− Group signatures
− Fail-stop signatures
− …

Digital Signature Systems 
10.5  Variations
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 In addition to RSA, Elgamal, Schnorr, DAS, PSS, and PSS-R, there 
are many other DSSs proposed in the literature

 There are also DSSs derived from zero-knowledge authentication 
protocols

 It is hoped that

− Digital signatures and DSSs provide the digital counterpart to hand-
written signatures

− They can provide nonrepudiation services

 Many countries have put forth legislation regarding digital 
signatures and their use in e-commerce

 Digital signature legislation has not been successful so far

Digital Signature Systems 
10.6  Final Remarks
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 Digital signature laws have not been challenged in the court, so 
their legal value remains unclear

 The fact that digital signatures are based on mathematical formulae 
intuitively makes us believe that the evidence they provide is strong

 This belief is seductive and sometimes wrong
 Digital signatures are digital objects, and as such they may be 

subject to multiple representations and interpretations

Digital Signature Systems 
Final Remarks

One representation (rendered by physics)

A few plausible interpretations

Many possible representations

Many possible interpretations

Real object Digital object

010011100101101101001
0100111110010101000...
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 The establishment of secret keys is the major problem (and 
Achilles‘ heel) for the large-scale deployment of secret key 
cryptography

 Approaches

− With a trusted party  Key distribution center (KDC)
− Without a trusted party  Key distribution and key agreement

Key Establishment 
11.1  Introduction 

A BKey distribution

A BKey agreement
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 In Greek mythology, Cerberos (or Kerberos) was the hound of 
Hades – a monstrous 3-headed dog (sometimes rumoured to have 
50 or 100 heads)

 In computer science, Kerberos is an                                            
anthentication and key distribution                                                              
system that was originally developed                                                                
at MIT as part of the Athena project

 Kerberos version 5 is specified in RFC                                           
4120 (2005) and is widely deployed

 A variant of Kerberos (specified in RFC                                                   
3244) is used to have users authenti-
cate to Windows domain controllers                                                          
(since Windows 2000)

Key Establishment 
11.2  Kerberos
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 Kerberos is based on the Needham-Schroeder protocols
 It makes use of a key distribution center (KDC) that consists of 2 

components
− Authentication server (AS)
− Ticket granting server (TGS)

 The KDC maintains a database of secret keys for principals
 Kerberos implements a ticketing system, i.e., clients use tickets to 

authenticate to servers (this is conceptually similar to the use of 
SAML tokens in contemporary identity management solutions)

 It represents a single sign-on (SSO) system
 Kerberos does not natively address authorization

Key Establishment 
Kerberos
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1) KRB_AS_REQ:    C  AS      : U,TGS,L1,N1

2) KRB_AS_REP:    AS  C      : U,TC,TGS,{TGS,K,Tstart,Texpire,N1}Ku

3) KRB_TGS_REQ: C  TGS   : S,L2,N2 ,TC,TGS,AC,TGS

4) KRB_TGS_REP:  TGS  C   : U,TC,S,{S,K',T'start,T'expire,N2}K
5) KRB_AP_REQ:    C  S        : TC,S,AC,S

6) KRB_AR_REP:    S  C        : {T'}K'

TC,TGS = {TGS,C,IPC,T,L,K}KTGS                 AC,TGS  = {C,IPC,T}K
TC,S = {S,C,IPC,T’,L’,K’}Ks AC,S = {C,IPC,T'}K'
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 Shortcomings and limitations
− Scalability problems with respect to interrealm authentication (n2-

problem at the KDC level)
− The use of timestamps requires synchronized clocks
− Kerberos is vulnerable to „verifiable password“ attacks (public key 

cryptography extensions)
− Users must unconditionally trust the (operators of the) KDC

Key Establishment 
Kerberos
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 Shamir‘s three-pass protocol
 Asymmetric encryption-based key distribution protocol

Key Establishment 
11.3  Key Distribution
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Key Distribution – Shamir’s three-pass protocol

A B

( KA )

( K )

K∈RK

( KB )

K1 = EKA
(K)

K3 = DKA
(K2)

( K )

K2 = EKB
(K1)
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Key Establishment 
Key Distribution – Shamir’s three-pass protocol

 Shamir‘s three-pass protocol requires a commutative encryption 
system

 It can, for example, be instantiated using modular exponentiation in 
Zp

* (Massey-Omura protocol)

K1 ≡ KeA (mod p)
K2 ≡ (KeA)eB (mod p) ≡ KeAeB (mod p)
K3 ≡ ((KeA)eB) dA (mod p) ≡ … ≡ KeB (mod p)

 Due to the use of modular exponentiation, there is no advantage 
compared to an asymmetric encryption-based key distribution 
protocol

B can use dB
to retrieve K 
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Key Establishment 
Key Distribution – Asymmetric encryption- ... protocol

 Asymmetric encryption-based key distribution protocols are simple 
and straightforward

 As such, they are frequently used on the Internet (e.g., SSL/TLS 
handshake protocol)

A

(kB)

(K)

K∈RK

EB(K)
K = DB(EB(K))

(K)

(kB
-1)

B
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11.4  Key Agreement

 Merkle‘s Puzzles
 Diffie-Hellman Key Exchange

 Exercise 11-1: Key Agreement
1. Given a public but authentic channel, is it possible for two entities 

that have no prior relationship to use this channel to agree on a 
shared secret? 
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Key Establishment 
Key Agreement – Merkle’s Puzzles

 In 1975, Merkle proposed a protocol that is conceptually related to 
public key cryptography

A
(n)

(Ki)

(n)

B

Generate puzzle Pi (i = 1,…,n)
Permute P1,…,Pn

Pπ(1),…,Pπ(n)

Randomly select Pi

Solve Pii

(Ki)

Pi may be (i,Ki) 
or („This is 
puzzle i“, Ki) 
encrypted with 
a random key
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Key Establishment 
Key Agreement – Diffie-Hellman Key Exchange

 In 1976, Diffie and Hellman published a landmark paper entitled 
„New Directions in Cryptography“

 The paper introduced the basic idea of public key cryptography 
and provided some evidence for its feasibility by proposing a key 
agreement protocol

 The Diffie-Hellman key exchange protocol yields an efficient 
solution for Exercise 11-1

 The protocol can be implemented in any cyclic group in which the 
DLP (or DHP, respectively) is intractable (e.g., Zp

*)
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Key Establishment 
Key Agreement – Diffie-Hellman Key Exchange

A

(p,g)

(KAB)

(p,g)

B

xA∈R Zp
*

(KBA)

xB∈RZp
*

yA ≡ gxA (mod p) yB ≡ gxB (mod p)

KAB ≡ yB
xA (mod p) KBA ≡ yA

xB (mod p)
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Key Establishment 
Key Agreement – Diffie-Hellman Key Exchange

 Toy example

− p = 17 and g = 3 
− A randomly selects xA = 7, computes yA ≡ 37 (mod 17) = 11, and 

sends this value to B
− B randomly selects xB = 4, computes yB ≡ 34 (mod 17) = 13, and 

sends this value to B
− A computes yB

xA ≡ 137 (mod 17) = 4
− B computes yA

xB ≡ 114 (mod 17) = 4
− K = 4 can be used as session key
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 Exercise 11-2: Diffie-Hellman key exchange protocol
1. Use CrypTool > Indiv. Procedures > Protocols > Diffie-Hellman 

Demonstration… to visualize the individual steps of the Diffie-
Hellman key exchange protocols and to compute a series of 
numerical examples

Key Establishment 
Key Agreement – Diffie-Hellman Key Exchange
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 An adversary eavesdropping on the communication channel learns 
p, g, yA, and yB, but he or she does neither see xA nor xB

 The problem of determining K ≡ gxAxB (mod p) from yA and yB 
(without knowing xA or xB) represents the DHP

 In most cyclic groups, the DHP is known to be as difficult to solve 
as the DLP 

 In its native form, the Diffie-Hellman key exchange protocol is vul-
nerability to man-in-the-middle (MITM) attacks

 It is therefore recommended to combine it with a mutual authen-
tication protocol  Authenticated key exchange protocol
− Station-to-Station (STS) protocol
− Internet Key Exchange (IKE) protocol
− SSL/TLS handshake protocol (if Diffie-Hellman is used)

Key Establishment 
Key Agreement – Diffie-Hellman Key Exchange
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 Key establishment is a major problem for the large-scale deploy-
ment of secret key cryptography

 It represents the Achilles‘ heel of cryptography
 In practice, either Kerberos or public key cryptographic techniques 

are used to establish keys
 The Diffie-Hellman key exchange protocol is widely deployed in 

many Internet security protocols

Key Establishment 
11.5  Final Remarks



393 16/08/2011
Contemporary Cryptography

 Public key cryptosystems inherit their security from the (assumed) 
intractability of inverting a one-way function 

 But inverting a one-way function is not equally difficult in all al-
gebraic structures or groups

 For example, there are subexponential algorithms to compute 
discrete logarithms in Zp

*

 The algorithms are nongeneric and do not work in all cyclic groups
 Elliptic curve cryptography (ECC) employs groups of points on 

elliptic curves defined over a finite field GF(n), where n is typically 
an odd prime of a power of 2

 The groups are cyclic, but the subexponential algorithms that can 
be used to compute discrete logarithms in Zp

* are not applicable 
( one can work with shorter keys)

12  Elliptic Curve Cryptography
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 Formally, an elliptic curve over Zpis defined as
y2 ≡ x3 + ax + b (mod p)

with a,b∈Zp
* and 4a3 + 27b2 ≡ 0 (mod p)

 For any a,b∈ Zp
*, this equivalence yields pairs of solutions                   

(x,y)∈Zp x Zp = Zp
2

 Each pair represents a point in the (x,y)-plane and refers to a point 
on the respective elliptic curve E(Zp)

E(Zp) = {(x,y) | x,y∈Zp and y2 ≡ x3 + ax + b (mod p) 
and 4a3 + 27b2 ≡ 0 (mod p)}

 In addition to the points on the curve, one usually considers a point 
at infinity (denoted by O)

Elliptic Curve Cryptography



395 16/08/2011
Contemporary Cryptography

 Example
− For p = 23 and the elliptic curve y2 ≡ x3 + x + 1 over Z23 (i.e., a = b = 1), 

E(Z23) consists of the following 28 points

(0,1) (0,22) (1,7) (1,16)
(3,10) (3,13) (4,0) (5,4)
(5,19) (6,4) (6,19) (7,11)
(7,12) (9,7) (9,16) (11,3)
(11,20) (12,4) (12, 19) (13,7)
(13,16) (17,3) (17,20) (18,3)
(18,20) (19,5) (19,18) O

Elliptic Curve Cryptography
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 To make use of an elliptic curve requires an associative operation 
(written as addition)

 Graphical representation on E(R)

Elliptic Curve Cryptography
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 Algebraic representation on E(Zp)
− P+O = O+P = P ∀P∈ E(Zp) ⇒ O represents the neutral element with 

respect to the operator +
− If P = (x,y) ∈ E(Zp), then (x,y) + (x,-y) = O ⇒ (x,-y) is denoted as -P and 

called the negative of P
− Let P = (x1,y1)∈E(Zp) and Q = (x2,y2)∈E(Zp) with P ≠ -Q, then P + Q = 

(x3,y3) where

x3 = λ2 – x1 – x2

y3 = λ(x1 – x3) – y1

and 
λ = 

Elliptic Curve Cryptography

y2 - y1

x2 - x1

3x1
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 For P = (3,10) and Q = (9,7) from E(Z23), P + Q = (x3,y3) is 
computed as follows
− λ = (7-10)/(9-3) = -3/6 = -1/2 = 11∈Z23

− x3 = 112 – 3 – 9 ≡ 17 (mod 23)
− y3 = 11(3 – 17) – 10 = 164 ≡ 20 (mod 23)

 Hence, P + Q = (3,10) + (9,7) = (17,20) ∈ E(Z23)
(0,1) (0,22) (1,7) (1,16)
(3,10) (3,13) (4,0) (5,4)
(5,19) (6,4) (6,19) (7,11)
(7,12) (9,7) (9,16) (11,3)
(11,20) (12,4) (12, 19) (13,7)
(13,16) (17,3) (17,20) (18,3)
(18,20) (19,5) (19,18) O

Elliptic Curve Cryptography
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 If one wants to add P = (3,10) to itself, one must compute P + P = 
2P = (x3,y3)
− λ = 3(3)2+1/20 = 5/20 = 1/4 = 6∈Z23

− x3 = 62 – 6 = 30 ≡ 7 (mod 23)
− y3 = 6(3 – 7) – 10 ≡ -11 ≡ 12 (mod 23)

 Hence, 2P = (7,12)
 This procedure can be applied to any muliple of P (i.e., 3P, 4P, …)
 For every elliptic curve E(Zp), the group of points on this curve to-

gether with the addition operation and the neutral element O form 
a group

Elliptic Curve Cryptography
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 Exercise 12-1: Elliptic curves
1. Use CrypTool to visualize the addition of two points on an elliptic 

curve over R (CrypTool > Indiv. Procedures > Number Theory -
Interactive > Point Addition on Elliptic Curves…)

2. Use CrypTool to visualize the addition of two points on an elliptic 
curve over Z23

3. Verify P + Q and 2P on E(Z23)

Elliptic Curve Cryptography
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 If E is an elliptic curve over a finite field, P is a point on E of order n, 
and Q is another point on E, then the elliptic curve discrete 
logarithm problem (ECDLP) is to determine an integer x with 
0≤x<n and Q = nP 

 The ECDLP is assumed to be intractable
 The special-purpose algorithms to compute discrete logarithms do 

not work in E, and one must work with a generic algorithm  one 
can work with shorter key sizes

 Based on the intractability assumption of the ECDLP, several 
cryptosystems have been proposed (e.g., ECDH, ECMQV, …)

 Each user may select a different elliptic curve E – even if all users 
employ the same finite field

 The field of ECC is well-populated with patents

Elliptic Curve Cryptography
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 According to RFC 2828, key management refers to 
The process of handling and controlling cryptographic keys and 
related material (such as initialization values) during their life cycle in 
a cryptographic system, including ordering, generating, distributing, 
storing, loading, escrowing, archiving, auditing, and destroying the 
material

 Key management is a process
 In almost every security system that employs cryptography, the key 

management process is the most important part  starting point for 
designing or attacking a system

 Because the key management process is so comprehensive and 
complex, there is no single standard

 There are many standards and the one to choose depends on the 
situation 

Key Management
13.1  Introduction 
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 There is a life cycle for every cryptographic key

 Key generation, distribution, and destruction refer to discrete points 
in time, whereas key storage refers to a period of time

 There are security-related questions for all phases

Key Management
13.2  Key Life Cycle

Key distribution

Key destruction

Key storage
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 It is sometimes useful to (be able to) split a secret value (e.g., cryp-
tographic key) into multiple parts and to have different parties hold 
and manage these parts

 If, for example, one wants to have n parties collectively share a 
secret value s, then one can randomly choose n-1 keys s1,…,sn-1, 
compute

sn = s ⊕ s1 ⊕ … ⊕ sn-1

and distribute s1,…,sn to the n parties
 In such a secret splitting system, s can be reconstructed iff all n 

parties provide their keys
 A secret splitting system requires that all parties are available, 

reliable, and behave honestly
 These are (too) strong assumptions in most situations

Key Management
13.3  Secret Sharing
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 In a secret sharing system, the reconstruction of s therefore only 
requires the keys of a well-defined subset of all parties

 More specifically, a secret sharing system allows a dealer to share 
a secret value s among a set P of n parties (aka players) P = 
{P1,…,Pn} such that only a qualified subset of P can reconstruct s 
from their shares

 A secret sharing system is perfect iff all nonqualified subsets of P 
get absolutely no information about s

 Formally, the set of all qualified subsets is a subset of the power set 
2P and forms an access structure Γ (if Γ = {{1,…,Pn}, then the secret 
sharing system is a secret splitting system)

 A k-out-of-n secret sharing system has access structure              
Γ = {M ⊆ 2P: |M| ≥ k}

Key Management
Secret Sharing
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 A k-out-of-n secret sharing system is perfect, if k-1 players who 
collaborate (i.e., pool their shares together) are not able to retrieve s 
or any meaningful information about it

 In 1979, Shamir proposed a perfect k-out-of-n secret sharing 
system based on polynomial interpolation

 It employs the fact that a polynomial f(x)                                                      
of degree k-1 can be uniquely interpola-
ted from k or more points

 For example, 3 points are required to                                                         
uniquely interpolate a polynomial of                                                      
degree 2 (quadratic parabola)

Key Management
Secret Sharing
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 If the polynomial

f(x) = r0+r1x+r2x2+ … +rk-1xk-1 = Σ rixi

passes through the k points (x1,f(x1) = y1), (x2,f(x2) = y2), …, (xk,f(xk) 
= yk), then the Lagrange interpolating polynomial P(x) is given 
by 

P(x) = Σ Pi(x)  where Pi(x) = yi   Π

 Consequently, one can compute P(0) iff one knows k points

Key Management
Secret Sharing
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 In Shamir‘s k-out-of-n secret sharing system, the secret (to be 
shared) can be represented as r0

 The dealer randomly selects k-1 coefficients r1,…,rk-1 to define a 
polynomial of degree k-1

 For every player Pi, the dealer assigns xi ≠ 0 and computes yi = f(xi)
 The pair (xi,yi) represents Pi‘s share
 Anybody who is given k shares can compute r0 by evaluating the 

Lagrange interpolating polynomial at point zero, i.e., P(0) = r0 = s
 Anybody who is given fewer than k shares cannot compute (and 

does not obtain any information about) the secret s 
 This means that Shamir‘s k-out-of-n secret sharing system is 

perfect

Key Management
Secret Sharing
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 (Perfect) K-out-of-n secret sharing systems are interesting from a 
theoretical viewpoint

 From a practical viewpoint, there are at least 2 problems 
− If a malicious player is not honest and provides a false share, then the 

secret that is reconstructed may also be false
− If the dealer is malicious or untrusted, then the players may want to 

have a guarantee that they can  put together the correct secret

 This is where verifiable secret sharing systems come into play
 They are used in many applications, such as e-cash, e- voting, and 

secure multi-party computation

Key Management
Secret Sharing
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 If one employs cryptographic techniques for data encryption, then 
one must be concerned about the fact that (encryption and de-
cryption) keys may get lost

 According to RFC 2828, the term key recovery refers to
− A process for learning the value of a cryptographic key that was 

previously used to perform some cryptographic operation
− Techniques that provide an intentional, alternate (i.e., secondary) 

means to access the key used for data confidentiality service

 Classes of key recovery techniques
− Key escrow („out-band key recovery“)
− Key encapsulation („in-band key recovery“)

Key Management
13.4  Key Recovery
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 Key recovery in general, and key escrow in particular, became 
hotly debated topics in the mid 1990s

 The discussion was intensified when the U.S. government pub-
lished the escrowed encryption standard (ESS) and released 
the Clipper chip

 The ESS was a secret splitting system with 2 govern-
mental bodies acting as escrow agents

 In the US, people were concerned about the possibi-
lity of having the government be able to illegitimately decrypt their 
communications (without temporal restriction)

 The controversy came to an end when it was shown                             
by Matt Blaze that the orginal design of the EES was                               
flawed (a data authentication field was too short)

Key Management
Key Recovery
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 Key management is a complex process that is the Achilles‘ heel of 
many deyploed cryptosystems

 The key life cycle includes key generation, distribution, storage, and 
destruction – all phases are important from a security perspective

 If there are keys that are so valuable that there is no single entity 
that is trustworthy enough to serve as a respository, then one can 
use secret splitting or sharing systems

 In particular, secret sharing systems are likely to become widely 
deployed in the field

 From a corporate perspective, key recovery is an important topic 
 Key escrow continues to be discussed controversially
 In the recent past, the crypto controversary has started to pop up 

again 

Key Management
13.5  Final Remarks
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Public Key Infrastructure
 The authenticity and integrity of public keys must be guaranteed 
 Approaches

− Public key certificates (Loren M. Kohnfelder, 1979)
− Identity-based cryptography (Adi Shamir, 1984)
− …

 Both approaches have advantages and disadvan-
tages

 Public key certificates are most widely deployed                                         
(X.509 or PGP)

 Most public key certificates conform to ITU-T                                           
X.509 version 3

 The ITU-T X.509 standard needs to be profiled                                       
(e.g., IETF PKIX WG)

v2

v3

v1
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 Exercise 14-1: PKI
1. Use CrypTool (Digital Signatures/PKI > PKI > Generate/Import 

Keys…) to generate an X.509 certificate  

2. Display and explain the certificate‘s field entries (Digital 
Signatures/PKI > PKI > Display/Export Keys…)

3. Export the certificate into a PKCS #12 file

4. Import the PKCS #12 file into the certificate store of the operating 
system

Public Key Infrastructure
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 The terms trust and security are frequently mixed up in security 
and PKI discussions

 Trust models
− Direct Trust                                                                                                    
 Each participant only trusts himself or herself

− Web of Trust (PGP)                                                                                       
 Each participant trusts a distinct set of participants (aka introducers)

− Hierarchical Trust (ITU-T X.509)                                                                     
 Each participant trusts one or several central authorities

Public Key Infrastructure
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 A PKI is an infrastructure for the issuance, manage-ment, and 
revocation of public key certificates

 According to RFC 2828, a PKI is …
A system of CAs that perform some set of certificate management, 
archive management, key management, and token management 
functions for a community of users in an application of asymmetric 
cryptography

Public Key Infrastructure
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Public Key Infrastructure
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 Approaches to provide certificate status information
− Certificate revocation lists (CRLs) 
− Delta-CRLs
− Online Certificate Status Protocol (OCSP)
− …

 Support of certificate revocation requires an online component 
 Support of certificate suspension would make the situation even 

more involved

Public Key Infrastructure
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 E-Commerce and e-business are about authorization (rather than 
authentication)

 Approaches to address authorization
− Encoding of authorization information                                                                 

in public key certificates
− Attribute certificates
− Authorization information in databases
− Electronic payment systems
− ...

Public Key Infrastructure

On the Internet, nobody 
cares you‘re a dog – unless 
you can‘t pay your debts.
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 Identity management

Public Key Infrastructure
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 In cryptography it is usually taken for granted that a communication 
channel can be eavesdropped and that transmitted data can be 
attacked passively

 In such a setting, Shannon‘s results apply and unconditional (i.e., 
information-theoretic) security can only be achieved if the entropy 
of the key is at least equal to the entropy of the plaintext message 
( the key must be at least as long as the plaintext message)

 This is usually too expensive and most practically relevant encryp-
tion systems are therefore „only“ computationally secure

 Against this background, quantum cryptography provides an 
alternative (to achieve unconditional security)

 Quantum cryptography employs quantum physics to make sure 
that eavesdropping cannot go undetected

Quantum Cryptography 
15.1  Introduction
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 More specifically, quantum cryptography employs the Heisenberg 
uncertainty principle of quantum physics to provide a secure 
channel (aka quantum channel)

 As long as quantum physics applies, a quantum channel remains 
unconditionally secure (even against the most powerful adversary)

 A quantum channel can be used to transmit secret information or to 
agree on a secret key

 Note, however, that the quantum channel can neither be used to 
implement digital signatures nor to provide nonrepudiation services

 Hence, quantum cryptography does not replace traditional 
cryptography

Quantum Cryptography 
Introduction
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 The field of quantum cryptography was pioneered by Stephen 
Wiesner suggesting quantum money in the early 1970s

 The field took off when Charles Bennett and                                       
Gilles Brassard proposed (and later prototy-
ped) a protocol for a quantum key exchange                                                
in the 1980s

 A sends out photons in one of 4 polarizations
− 0 degrees (   )
− 45 degrees (    )
− 90 degrees (   )
− 135 degrees (    )

 B measures the polarization of the photons he receives (using 
either the rectlinear or the diagonal polarizations‘ basis)

Quantum Cryptography 
15.2  Quantum Key Exchange
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 The rectlinear (+) or diagonal (x) polarizations‘ bases are conju-
cate, i.e., the measurement of the polarization in one basis 
randomizes the measure-ment of the polarization in the other

 This means that B can distinguish either between the rectlinear 
polarizations (i.e., 0 and 90 degrees) or between the diagonal 
polarizations (i.e., 45 and 135 degrees), but he cannot distinguish 
between both types of polarization simulataneously (unless the law 
of quantum physics hold)

Quantum Cryptography 
Quantum Key Exchange
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 The first apparatus that implemented the QKE protocol was able to 
overcome 30 cm

 Note that quantum transmissions are necessarily weak and that it is 
not known how to amplify them

 This severely limits the distance that can be overcome
 It is currently feasible to overcome 140 km
 Unless a major breakthrough is achieved, it is commonly believed 

that it is technically impossible to overcome more than 1000 km
 In addition to the QKE protocol, many quantum protocols have 

been proposed for 

− Oblivious transfer (OT)
− Bit committment
− … 

Quantum Cryptography 
Quantum Key Exchange
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 Quantum cryptography is hyped
 From a theoretical viewpoint, quantum cryptography is interesting, 

because it provides a possibility to exchange a cryptographic key 
in an unconditionally secure way

 From a practical viewpoint, quantum cryptography is not very 
useful (as long as traditional approaches for key exchange remain 
secure)

 Quantum cryptography may become relevant if public key crypto-
graphy and corresponding algorithms are broken (post-quantum 
cryptography)

 In the meantime, quantum cryptographic implementations are 
subject to many attacks

Quantum Cryptography 
15.3  Final Remarks
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 Entity identification is the process by which an entity (claimant 
or prover) claims to have a particular identity

 Entity authentication is the process by which another entity 
(verifier) verifies that a claimed identity really belongs to it (at the 
end, the verifier is assured of the claimed identity)

 Many entity authentication protocols can also be used to establish 
a secret key between the claimant and the verifier (authenti-
cation and key distribution or authenticated key distribution 
protocols)

 The major security objective of such a protocol is to make it im-
possible or computationally infeasible for an adversary to imper-
sonate the claimant (even if he or she has witnessed a large 
number of protocol executions)

Cryptographic Applications 
16.1  Entity Authentication
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 Categories of (entity) authentication technologies

− Something the claimant possesses (proof by possession)
− Something the claimant knows (proof by knowledge)
− Some biometric characteristics of the claimant (proof by property)
− Somewhere the claimant is located (proof by location)

 In practice, two or more technologies (of different categories) are 
usually combined

 Exemplary technologies to implement a proof by knowledge

− Password, PIN, passphrase, ...
− Transaction authentication number (TAN)
− Cryptographic key

Cryptographic Applications 
Entity Authentication

Secret information may 
be static or dynamic
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 Passwords are the most widely deployed authentication technology 
(because they are simple to use)

 Like any other static information, passwords have at least 2 
security problems

− Users tend to select low-entropy passwords that are easy to remember 
(and guess)

− The transmission of passwords is exposed to passive eavesdropping 
and replay attacks

Cryptographic Applications 
Entity Authentication
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 Strong authentication technologies are recommended
 Examples

− One-time password systems

o SecurID or SecOVID tokens
o Lamport-style systems (e.g., S/Key, OPIE, …)

− Challenge-response (C/R) protocols and systems 

o Racal tokens

 Some C/R protocols have the zero-knowledge property, meaning 
that they leak provably no information about the (sceret) authenti-
cation information

Cryptographic Applications 
Entity Authentication
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 The notion of an interactive zero-knowledge                                           
proof was originally proposed by Shafi Gold-
wasser, Silvio Micali, and Charles Rackoff in                                                                                
the 1980s

 Many zero-knowledge authentication protocols have been proposed
 For example, the Fiat-Shamir zero-knowledge authentication 

protocol takes its security from the fact that computing square 
roots and factoring the modulus are computationally equivalent 

 Similar to RSA, p and q are large prime numbers and n = pq
 The prover holds a private key x∈Zn

* and a respective public key             
y ≡ x2 (mod n)

 He or she then proves knowldge of x
 The proocol works in rounds

Cryptographic Applications 
Entity Authentication
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 The protocol is complete, because

s2 ≡ r2(xc)2 ≡ t(x2)c ≡ tyc (mod n)

 To show that the protocol is sound, one must look at the adversary 
and ask what he or she can do in every single round

 For example, the adversary can randomly select t and guess s in 
every round (the success probabi-lity is negligibly small)

 If the adversary is able to predict the challenge c, then he or she 
can prepare himself or herself to provide the correct response s
− If c = 0, then the protocol can be executed as normal, i.e., the adversary 

can randomly select r and send t ≡ r2 (mod n) and s = r to the verifier
− If c = 1, then the adversary can randomly select s∈Zn

*, compute                  
t ≡ s2/y (mod n), and send these values to the verifier

Cryptographic Applications 
Entity Authentication
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 In either case, it is not possible for the adversary to prepare him-
self or herself for both cases (c = 0 and c = 1)

 Otherwise, if the adversary can prepare s0 for c = 0 (i.e., s0 = r) 
and s1 for c = 1 (i.e., s1 = rx), then he or she can compute x = s1/s0

 Consequently, the adversary has a probability of ½ to cheat in 
every round of the protocol ⇒ The protocol must be executed in 
multiple rounds

 After k rounds, the cheating probability is 1/2k

 There are possibilities to improve the protocol

Cryptographic Applications 
Entity Authentication
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 In 1982, Andrew Yao posted the millionaire                                  
problem:

How can 2 millionaires find out which one is                                                  
richer without revealing the precise amount of                                      
their wealth?

− If a trusted party exists, then the problem can be solved trivially
− If a trusted party does not exists, then the problem is difficult to solve 

(and it is not immediately clear that it can be solved in the first place)

 The generalization of Yao‘s millionaire problem is known as 
multiparty computation (MPC)

How can multiple (mutually distrusting) parties compute a function f 
revealing their individual input values to each other and without 
depending on a trusted party?

Cryptographic Applications 
16.2  Secure Multi-party Computation
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 A MPC is secure if it introduces no new vulnerablity, i.e., no attack 
is feasible that is not feasible against the computation by a trusted 
party

 Setting
− P = {P1,…,Pn} st of n parties, players, or participants
− Every Pi (i = 1,…,n) inputs xi

− Output value y = f(x1,…,xn)

Cryptographic Applications 
Secure Multi-party Computation
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 Communication models
− P1,…,Pn communicate with each other over channels
− A channel can be 

o Secure, authentic, or insecure
o Synchronous or asynchronous

− The topology of the network is channels can be complete or incomplete

 Most frequently, the secure channels model is used (complete)
 Some MPC protocols require a broadcast channel (e.g., simulated 

with a Byzantine agreement protocol)
 An adversary model must state which players can be corrupted in 

which way

Cryptographic Applications 
Secure Multi-party Computation
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 Corruption types
− Passive corruption
− Active corruption
− Fail corruption

 For example, a passive t-adversary can passively corrupt up to t 
players (0 ≤ t ≤ n)

 The task that is required to solve is to attack the MPC protocol with 
a success probability that is substantially bigger than successfully 
attacking the protocol that employs a trusted party

Cryptographic Applications 
Secure Multi-party Computation
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 Notions of security
− If the adversary is computationally bounded, then the MPC protocol 

provides conditional or computational security
− If the adversary need not be computationally bounded, then the MPC 

protocol provides unconditional or perfect security (in an information-
theoretic sense)

 Perfect security is closely related to (verifiable) secret sharing, i.e., 
all perfectly secure MPC protocols that protect against active ad-
versaries employ verifiable secret sharing techniques

Cryptographic Applications 
Secure Multi-party Computation
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 Theoretical results (end of the 1980s)

− There is a computationally secure MPC protocol that allows n players 
to compute a function if an adversary can passively corrupt  t < n 
players or actively corrupt t < n/2 players

− There is a perfectly secure MPC protocol in the secure channel model 
(without broadcast channel) that allows n players to compute a func-
tion if an adversary can passively corrupt  t < n/2 players or actively 
corrupt t < n/3 players (t < n/2 with broadcast channel)

 Today, many researchers are working in the field
 In addition to Yao‘s millionaire problem, there are other 

applications and use cases for secure MPC

Cryptographic Applications 
Secure Multi-party Computation
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 Whenever n parties want to compute a function without revealing 
their individual input values to each other, a secure MPC protocol 
can be employed

 This is particularly true, if more than 2 parties are involved (e.g., e-
voting)

 There are problems that represent special cases of secure MPC, 
but can be solved more efficiently (e.g., contract signing, online 
auctions, … )

Cryptographic Applications 
Secure Multi-party Computation
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 In the history of mankind, many payment systems have been 
developed, proposed, implemented, and deployed (with more or 
less success)

 Most importantly, barter has been replaced with monetary 
payment systems

 Electronic payment systems are a consequence of the increasing 
importance of information technology

 There are many (partly competing) electronic payment systems
 Each one has advantages and disadvantages

Cryptographic Applications 
16.3  Electronic Payment Systems
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 An electronic payment system involves (at least) 3 parties

− Payer (customer)
− Payee (merchant)
− Bank

 Most electronic payment systems employ crypto-graphic 
techniques, mechanisms, and services

 Counterexamples
− Mail order telephone order (MOTO)
− E-mail-based payment system of the First Virtual Holding

Cryptographic Applications 
Electronic Payment Systems
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 In the real world, cash is still the most widely deployed payment 
system on the consumer market

 This is particularly true for small amounts of money
 Electronic cash represents the electronic analog of cash
 Distinguishing features of an electronic cash system

− Online / offline
− Anonymity

 In the offline case, the double-spending problem must be solved 
in one way or another

Cryptographic Applications 
Electronic Payment Systems
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 Online without anonymity

− Electronic cash (i.e., represented by a serial number) is digitally 
signed by the bank

− Payee verifies online that the cash has not yet been spent

 Online with anonymity
− Electronic cash (i.e., serial number) is blindly signed by the bank
− Payee verifies online that the cash has not yet been spent

 Offline without anonymity
− Electronic cash (i.e., represented by a public key) is digitally signed 

by the bank
− Payee proves knowledge of the corresponding private key
− Legal sanctions may prevent double-spending

Cryptographic Applications 
Electronic Payment Systems
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 Offline with anonymity

− Legal sanctions don‘t work (because of the anonymity requirement)
− Alternative approaches to solve the double-spending problem

o Hardware (trusted observer)
o Identity of the payer is encoded in a way that it is revealed if double-

spending occurs

Cryptographic Applications 
Electronic Payment Systems
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 The Secure Sockets Layer (SSL) and Transport Layer Security 
(TLS) protocols are omnipresent in e-* applications (also applies 
to Internet banking)

 The SSL (PCT) and TLS v1.0, v1.1, and v1.2 protocols are very 
similar

 The SSL/TLS protocol is typically used to authenticate the server 
and to cryptographically protect the communication channel 
between the client (browser) and the server

 It is seldom used for user authentication (user authentication is 
addressed once the SSL/TLS session is established)

 There are many technologies in use
 Client-side public key certificates are seldom used

Cryptographic Applications 
16.4  Internet Banking
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 Most user authentication mechanisms in use today are vulnerable 
to phishing, Web spoofing, and man-in-the-middle (MITM) attacks 

 These attacks are particularly powerful if visual spoofing is also 
employed

 There are only a few mechanisms that protect against MITM 
attacks

 For example, SSL/TLS session-aware user authen-tication (TLS-
SA) can be used

 In the future, we will see transaction authenticating systems 
replacing (or rather complementing) user authentication systems

 Also, we will see more dedicated software applications and more 
sophisticated heuristics

Cryptographic Applications 
Internet Banking
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 Voting is a fundamental democratic process
 Types of Internet-based e-voting

− Poll-site Internet voting
− Kiosk voting
− Remote Internet voting

 If a state supports absentee balloting, then remote Internet voting 
is the way to go

 If coercion were an issue, then the discussion would rather focus 
on poll-site Internet voting

 Among the security problems for remote Internet voting, the 
secure platform problem is particularly challenging

Cryptographic Applications 
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Observation 1: Whoever controls the user interface also 
controls the vote
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Client

Internet    
Banking 

Server

Server controlled by the adversary

(1) Exploit                   
(e.g., „Drive-by“ infection)

(2) Malware is 
requested (including 
configuration data)

(3) Malware is 
delivered

(4) „Normal“ SSL/TLS session 
with manipulated client

(5) Parallel control 
session

Observation 2: In many e-* applications, the adversary 
already controls the user interface 
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 John von Neumann

− It would appear that we have reached the limits of what is possible to 
achieve with computer technology, although one should be careful 
with such state-ments, as they tend to sound pretty silly in 5 years

17.1  Unkeyed Cryptosystems
17.2  Secret Key Cryptosystems
17.3  Public Key Cryptosystems
17.4  Theoretical Viewpoint
17.5  Practical Viewpoint

17  Conclusions and Outlook
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 Unkeyed cryptosystems play a fundamental role in contemporary 
cryptography

 They are used in many higher level cryptographic systems and 
applications

 Examples

− One-way functions and trapdoor functions
− Cryptographic hash functions
− Random bit generators

Conclusions and Outlook 
17.1  Unkeyed Cryptosystems
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 Secret key cryptosystems are the ones one usually thinks first 
when one talks about cryptography

 This is particularly true for symmetric encryption systems
 Other secret key cryptosystems

− Message authentication codes (MACs) and message authentication 
systems

− Pseudorandom bit generators (PRBGs)
− Pseudorandom functions (PRFs)

Conclusions and Outlook 
17.2  Secret Key Cryptosystems
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 Public key cryptosystems have been developed since the late 
1970s and are typically associated with modern cryptography

 Examples

− Asymmetric encryption systems
− Digital signature systems
− Cryptographic protocols

o Diffie-Hellman key exchange protocol
o Entity authentication protocols 
o Secure multi-party computation
o …

Conclusions and Outlook 
17.3  Public Key Cryptosystems
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 In practice, unkeyed, secret key, and public key cryptosystems 
are combined (hybrid systems)

 Public key cryptosystems are used for authentication and key 
distribution, whereas secret key cryptosys-tems are used for bulk 
data encryption and message authentication

 It is sometimes argued that public key cryptography is inherently 
more secure than secret key crypto-graphy 

 This argument is false (and there are secure and insecure 
cryptosystems on either side)

 If one has to decide what cryptosystem to use, then one should 
look at the requirements of the application(s) one has in mind

 This is not simple and it should be dealt with professionally

Conclusions and Outlook 
Public Key Cryptosystems



464 16/08/2011
Contemporary Cryptography

 A central theme in cryptographic research is provability
− How can one (formally) define security?
− How can one prove that a given cryptographic system is secure in 

exactly this sense?

 Shannon introduced information theory to precisely define the 
notion of perfect secrecy for symmetric encryption systems

 Other researchers have done something similar to PRBGs, 
asymmetric encryption systems, DSSs, …

 In contemporary cryptography, one often assumes that a 
particular (mathematical) problem is intractable, and one then 
shows that a cryptographic sys-tem is secure as long as this 
intractability assumption holds

Conclusions and Outlook 
17.4  Theoretical Viewpoint
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 For example, assuming that the DHP is intractable, one can show 
that the Elgamal public key cryptosystem is secure

 It is sometimes also assumed that a cryptographic hash function 
behaves like a random function (in addition to the intractability 
assumption of the mathematical problem)

 One is then able to show that the cryptographic system is secure in 
the random oracle model

 There are many other ideas to define the notion of security with 
respect to a particular cryptographic system or classes of systems

 It is not possible to provide an absolute proof for the security 
(properties) of a cryptographic system

 The best one can achieveis to prove the security of the system 
relative to explicit or implicit assump-tions

Conclusions and Outlook 
17.4  Theoretical Viewpoint
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 From a practical viewpoint, standardization and profiling are 
important and will become even more important in the future (as 
the field matures)

 There are too many and too complex cryptographic systems and 
modes of operation to choose from

 Anybody not working in the field is likely to be overtaxed
 The DES and (probably) the AES are success stories for the 

NIST

Conclusions and Outlook 
17.5  Practical Viewpoint
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 In 2005, the NSA announced two sets of cryptographic algorithms
 Suite B

− Symmetric encryption: AES-128, AES-256
− Hash functions: SHA-256, SHA-384
− Key exchange: ECDH (256- or 384-bit prime moduli)
− Digital signature: ECDSA (256- or 384-bit prime moduli)

 Suite A
− ACCORDION, BATON, MEDLEY, SHILLELAGH, WALBURN

 There are many complementary standards, such as HMAC, OAEP, 
PSS, ...

Conclusions and Outlook 
Practical Viewpoint



468 16/08/2011
Contemporary Cryptography

 The complexity of the cryptographic systems should be hidden in 
the reference implementation and programming libraries that 
provide a cryptographic API (e.g., Microsoft‘s CryptoAPI)

 In addition to the U.S. NIST, there are several other (national and 
international) standardization bodies, forces, and working groups 
working on cryptography and cryptography-related topics (e.g., 
ANSI, IEEE, IETF, W3C, …)

 Unfortunately, many of these bodies have problems of their own, 
and hence international standardization is not in a very good shape

Conclusions and Outlook 
Practical Viewpoint
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Thank you for your attention!


	Contemporary Cryptography
	Terms of Use (Copyright)
	Instructor
	Module Overview 
	Module 1
	Module 2
	Module 3
	Module 4
	Reference Book
	Alternative Books
	Preliminary Remarks
	Preliminary Remarks
	Preliminary Remarks
	Preliminary Remarks
	Preliminary Remarks
	Preliminary Remarks
	Questions
	Module 1
	1  Introduction
	Introduction�1.1  Cryptology 
	Introduction�Cryptology 
	Introduction�Cryptology 
	Introduction�Cryptology 
	Introduction�Cryptology 
	Introduction�1.2  Cryptographic Systems  
	Introduction�Cryptographic Systems  
	Introduction�Cryptographic Systems  
	Introduction�Cryptographic Systems  
	Introduction�Cryptographic Systems  
	Introduction�Cryptographic Systems  
	Introduction�Cryptographic Systems  
	Introduction�Cryptographic Systems  
	Introduction�Cryptographic Systems  
	Introduction�Cryptographic Systems  
	Introduction�Cryptographic Systems  
	Introduction�Cryptographic Systems  
	Introduction�Cryptographic Systems  
	Introduction�Cryptographic Systems  
	Introduction�1.3  Historical Background Information
	Introduction�Historical Background Information
	2  Cryptographic Systems (Overview)
	Cryptographic Systems (Overview)�2.1  Unkeyed Cryptosystems
	Cryptographic Systems (Overview)�Unkeyed Cryptosystems − One-Way Functions
	Cryptographic Systems (Overview)�Unkeyed Cryptosystems − One-Way Functions
	Cryptographic Systems (Overview)�Unkeyed Cryptosystems − One-Way Functions
	Cryptographic Systems (Overview)�Unkeyed Cryptosystems − One-Way Functions
	Cryptographic Systems (Overview)�Unkeyed Cryptosystems − Cryptographic Hash Functions
	Cryptographic Systems (Overview)�Unkeyed Cryptosystems − Cryptographic Hash Functions
	Cryptographic Systems (Overview)�Unkeyed Cryptosystems − Cryptographic Hash Functions
	Cryptographic Systems (Overview)�Unkeyed Cryptosystems − Cryptographic Hash Functions
	Cryptographic Systems (Overview)�Unkeyed Cryptosystems − Random Bit Generators
	Cryptographic Systems (Overview)�Unkeyed Cryptosystems − Random Bit Generators
	Cryptographic Systems (Overview)�Unkeyed Cryptosystems − Random Bit Generators
	Cryptographic Systems (Overview)�2.2  Secret Key Cryptosystems
	Cryptographic Systems (Overview)�Secret Key Cryptosystems – Symmetric Encryption ...
	Cryptographic Systems (Overview)�Secret Key Cryptosystems – Symmetric Encryption ...
	Cryptographic Systems (Overview)�Secret Key Cryptosystems – Symmetric Encryption ...
	Cryptographic Systems (Overview)�Secret Key Cryptosystems – Message Authentication ...
	Cryptographic Systems (Overview)�Secret Key Cryptosystems – Message Authentication ...
	Cryptographic Systems (Overview)�Secret Key Cryptosystems – Message Authentication ...
	Cryptographic Systems (Overview)�Secret Key Cryptosystems – PRBGs
	Cryptographic Systems (Overview)�Secret Key Cryptosystems – PRBGs
	Cryptographic Systems (Overview)�Secret Key Cryptosystems – PRFs
	Cryptographic Systems (Overview)�Secret Key Cryptosystems – PRFs
	Cryptographic Systems (Overview)�2.3  Public Key Cryptosystems
	Cryptographic Systems (Overview)�Public Key Cryptosystems
	Cryptographic Systems (Overview)�Public Key Cryptosystems
	Cryptographic Systems (Overview)�Public Key Cryptosystems – Asymmetric Encryption ...
	Cryptographic Systems (Overview)�Public Key Cryptosystems – Asymmetric Encryption ...
	Cryptographic Systems (Overview)�Public Key Cryptosystems – Asymmetric Encryption ...
	Cryptographic Systems (Overview)�Public Key Cryptosystems – Asymmetric Encryption ...
	Cryptographic Systems (Overview)�Public Key Cryptosystems – Asymmetric Encryption ...
	Cryptographic Systems (Overview)�Public Key Cryptosystems – DSSs
	Cryptographic Systems (Overview)�Public Key Cryptosystems – DSSs
	Cryptographic Systems (Overview)�Public Key Cryptosystems – DSSs
	Cryptographic Systems (Overview)�Public Key Cryptosystems – DSSs
	Cryptographic Systems (Overview)�Public Key Cryptosystems – DSSs
	Cryptographic Systems (Overview)�Public Key Cryptosystems – DSSs
	Cryptographic Systems (Overview)�Public Key Cryptosystems – DSSs
	Cryptographic Systems (Overview)�Public Key Cryptosystems – DSSs
	Cryptographic Systems (Overview)�Public Key Cryptosystems – Key Agreement
	Cryptographic Systems (Overview)�Public Key Cryptosystems – Key Agreement
	Cryptographic Systems (Overview)�2.4  Final Remarks
	Module 2
	3  Symmetric Encryption Systems
	Symmetric Encryption Systems �3.1  Introduction
	Symmetric Encryption Systems �Introduction
	Symmetric Encryption Systems �Introduction
	Symmetric Encryption Systems �Introduction
	Symmetric Encryption Systems �Introduction
	Symmetric Encryption Systems �Introduction
	Symmetric Encryption Systems �Introduction
	Symmetric Encryption Systems �Introduction
	Symmetric Encryption Systems �Introduction
	Symmetric Encryption Systems �Introduction
	Symmetric Encryption Systems �Introduction
	Symmetric Encryption Systems �Introduction
	Symmetric Encryption Systems �Introduction
	Symmetric Encryption Systems �Introduction
	Symmetric Encryption Systems �Introduction
	Symmetric Encryption Systems �Introduction
	Symmetric Encryption Systems �3.2  Block Ciphers
	Symmetric Encryption Systems �Block Ciphers
	Symmetric Encryption Systems �Block Ciphers
	Symmetric Encryption Systems �Block Ciphers – DES 
	Symmetric Encryption Systems �Block Ciphers – DES 
	Symmetric Encryption Systems �Block Ciphers – DES 
	Symmetric Encryption Systems �Block Ciphers – DES 
	Symmetric Encryption Systems �Block Ciphers – DES 
	Symmetric Encryption Systems �Block Ciphers – DES 
	Symmetric Encryption Systems �Block Ciphers – DES 
	Symmetric Encryption Systems �Block Ciphers – DES 
	Symmetric Encryption Systems �Block Ciphers – DES 
	Symmetric Encryption Systems �Block Ciphers – DES 
	Symmetric Encryption Systems �Block Ciphers – DES 
	Symmetric Encryption Systems �Block Ciphers – DES 
	Symmetric Encryption Systems �Block Ciphers – DES 
	Symmetric Encryption Systems �Block Ciphers – DES 
	Symmetric Encryption Systems �Block Ciphers – DES 
	Symmetric Encryption Systems �Block Ciphers – DES 
	Symmetric Encryption Systems �Block Ciphers – DES 
	Symmetric Encryption Systems �Block Ciphers – DES 
	Symmetric Encryption Systems �Block Ciphers – DESX 
	Symmetric Encryption Systems �Block Ciphers – TDEA 
	Symmetric Encryption Systems �Block Ciphers – TDEA 
	Symmetric Encryption Systems �Block Ciphers – TDEA 
	Symmetric Encryption Systems �Block Ciphers – AES 
	Symmetric Encryption Systems �Block Ciphers – AES 
	Symmetric Encryption Systems �Block Ciphers – AES 
	Symmetric Encryption Systems �Block Ciphers – AES 
	Symmetric Encryption Systems �Block Ciphers – AES 
	Symmetric Encryption Systems �Block Ciphers – AES 
	Symmetric Encryption Systems �Block Ciphers – AES 
	Symmetric Encryption Systems �Block Ciphers – AES 
	Symmetric Encryption Systems �Block Ciphers – AES 
	Symmetric Encryption Systems �Block Ciphers – AES 
	Symmetric Encryption Systems �Block Ciphers – AES 
	Symmetric Encryption Systems �Block Ciphers – AES 
	Symmetric Encryption Systems �Block Ciphers – AES 
	Symmetric Encryption Systems �Block Ciphers – AES 
	Symmetric Encryption Systems �Block Ciphers – AES 
	Symmetric Encryption Systems �Block Ciphers – AES 
	Symmetric Encryption Systems �Block Ciphers – AES 
	Symmetric Encryption Systems �Block Ciphers – AES 
	Symmetric Encryption Systems �Block Ciphers – Modes of operation
	Symmetric Encryption Systems �Block Ciphers – Modes of operation
	Symmetric Encryption Systems �Block Ciphers – Modes of operation
	Symmetric Encryption Systems �Block Ciphers – Modes of operation
	Symmetric Encryption Systems �Block Ciphers – Modes of operation
	Symmetric Encryption Systems �Block Ciphers – Modes of operation
	Symmetric Encryption Systems �Block Ciphers – Modes of operation
	Symmetric Encryption Systems �3.3  Stream Ciphers
	Symmetric Encryption Systems �Stream Ciphers
	Symmetric Encryption Systems �Stream Ciphers
	Symmetric Encryption Systems �Stream Ciphers
	Symmetric Encryption Systems �Stream Ciphers – LFSR-based Stream Ciphers
	Symmetric Encryption Systems �Stream Ciphers – Other Stream Ciphers
	Symmetric Encryption Systems �Stream Ciphers – Other Stream Ciphers
	Symmetric Encryption Systems �Stream Ciphers – Other Stream Ciphers
	Symmetric Encryption Systems �Stream Ciphers – Other Stream Ciphers
	Symmetric Encryption Systems �3.4  Perfectly Secure Encryption
	Symmetric Encryption Systems �Perfectly Secure Encryption
	Symmetric Encryption Systems �Perfectly Secure Encryption
	Symmetric Encryption Systems �Perfectly Secure Encryption
	Symmetric Encryption Systems �Perfectly Secure Encryption
	Symmetric Encryption Systems �Perfectly Secure Encryption
	Symmetric Encryption Systems �3.5  Final Remarks
	Symmetric Encryption Systems �Final Remarks
	4  Message Authentication
	Message Authentication �4.1  Introduction
	Message Authentication �Introduction
	Message Authentication �Introduction
	Message Authentication �Introduction
	Message Authentication �Introduction
	Message Authentication �4.2  Computationally Secure MACs
	Message Authentication�
	Message Authentication�
	Message Authentication�
	Message Authentication�
	Message Authentication�
	Message Authentication�
	Message Authentication�
	Message Authentication�
	Message Authentication�
	Message Authentication�
	Message Authentication�
	Message Authentication�
	Message Authentication �4.3  Information-theoretically Secure MACs
	Message Authentication �4.4  Final Remarks
	5  Random and Pseudorandom Bit Generators
	Random and Pseudorandom Bit Generators �5.1  Introduction
	Random and Pseudorandom Bit Generators �Introduction
	Random and Pseudorandom Bit Generators �Introduction
	Random and Pseudorandom Bit Generators �Introduction
	Random and Pseudorandom Bit Generators �5.2  Statistical Randomness Testing
	Random and Pseudorandom Bit Generators �5.3  Random Bit Generators
	Random and Pseudorandom Bit Generators �Random Bit Generators
	Random and Pseudorandom Bit Generators �Random Bit Generators
	Random and Pseudorandom Bit Generators �Random Bit Generators
	Random and Pseudorandom Bit Generators �Random Bit Generators
	Random and Pseudorandom Bit Generators �5.4  Pseudorandom Bit Generators
	Random and Pseudorandom Bit Generators �Pseudorandom Bit Generators
	Random and Pseudorandom Bit Generators �Pseudorandom Bit Generators
	Random and Pseudorandom Bit Generators �Pseudorandom Bit Generators
	Random and Pseudorandom Bit Generators �Pseudorandom Bit Generators
	Random and Pseudorandom Bit Generators �Pseudorandom Bit Generators
	Random and Pseudorandom Bit Generators �Pseudorandom Bit Generators
	Random and Pseudorandom Bit Generators �Pseudorandom Bit Generators
	Random and Pseudorandom Bit Generators �Pseudorandom Bit Generators
	Random and Pseudorandom Bit Generators �5.5  Final Remarks
	6  Random and Pseudorandom Functions
	Random and Pseudorandom Functions�6.1  Introduction
	Random and Pseudorandom Functions�Introduction
	Random and Pseudorandom Functions�Introduction
	Random and Pseudorandom Functions�6.2  Constructions
	Random and Pseudorandom Functions�Constructions
	Random and Pseudorandom Functions�6.3  Random Oracle Model
	Random and Pseudorandom Functions�Random Oracle Model
	Random and Pseudorandom Functions�6.4  Final Remarks
	Module 3
	7  One-Way Functions
	One-Way Functions�7.1  Introduction
	One-Way Functions�Introduction
	One-Way Functions�Introduction
	One-Way Functions�Introduction
	One-Way Functions�Introduction
	One-Way Functions�7.2  Candidate One-Way Functions
	One-Way Functions�Candidate One-Way Functions – Exp 
	One-Way Functions�Candidate One-Way Functions – Exp 
	One-Way Functions�Candidate One-Way Functions – Exp 
	One-Way Functions�Candidate One-Way Functions – Exp 
	One-Way Functions�Candidate One-Way Functions – Exp 
	One-Way Functions�Candidate One-Way Functions – Exp 
	One-Way Functions�Candidate One-Way Functions – Exp 
	One-Way Functions�Candidate One-Way Functions – Exp 
	One-Way Functions�Candidate One-Way Functions – RSA
	One-Way Functions�Candidate One-Way Functions – RSA
	One-Way Functions�Candidate One-Way Functions – RSA
	One-Way Functions�Candidate One-Way Functions – RSA
	One-Way Functions�Candidate One-Way Functions – Square
	One-Way Functions�Candidate One-Way Functions – Square
	One-Way Functions�Candidate One-Way Functions – Square
	One-Way Functions�7.3  Integer Factorization Algorithms
	One-Way Functions�Integer Factorization Algorithms
	One-Way Functions�Integer Factorization Algorithms
	One-Way Functions�Integer Factorization Algorithms
	One-Way Functions�7.4  Algorithms for Computing Discrete Logarithms
	One-Way Functions�Algorithms for Computing Discrete Logarithms
	One-Way Functions�7.5  Final Remarks
	8  Asymmetric Encryption Systems
	Asymmetric Encryption Systems �8.1  Introduction
	Asymmetric Encryption Systems �Introduction
	Asymmetric Encryption Systems �Introduction
	Asymmetric Encryption Systems �Introduction
	Asymmetric Encryption Systems �Introduction
	Asymmetric Encryption Systems �Introduction
	Asymmetric Encryption Systems �Introduction
	Asymmetric Encryption Systems �8.2  Basic Systems
	Asymmetric Encryption Systems �Basic Systems – RSA 
	Asymmetric Encryption Systems �Basic Systems – RSA 
	Asymmetric Encryption Systems �Basic Systems – RSA 
	Asymmetric Encryption Systems �Basic Systems – RSA 
	Asymmetric Encryption Systems �Basic Systems – RSA 
	Asymmetric Encryption Systems �Basic Systems – RSA 
	Asymmetric Encryption Systems �Basic Systems – RSA 
	Asymmetric Encryption Systems �Basic Systems – RSA 
	Asymmetric Encryption Systems �Basic Systems – RSA 
	Asymmetric Encryption Systems �Basic Systems – RSA 
	Asymmetric Encryption Systems �Basic Systems – Rabin 
	Asymmetric Encryption Systems �Basic Systems – Rabin 
	Asymmetric Encryption Systems �Basic Systems – Rabin 
	Asymmetric Encryption Systems �Basic Systems – Rabin 
	Asymmetric Encryption Systems �Basic Systems – Rabin 
	Asymmetric Encryption Systems �Basic Systems – Elgamal
	Asymmetric Encryption Systems �Basic Systems – Elgamal
	Asymmetric Encryption Systems �Basic Systems – Elgamal
	Asymmetric Encryption Systems �Basic Systems – Elgamal
	Asymmetric Encryption Systems �Basic Systems – Elgamal
	Asymmetric Encryption Systems �8.3  Secure Systems
	Asymmetric Encryption Systems �Secure Systems – Probabilistic Encryption
	Asymmetric Encryption Systems �Secure Systems – Probabilistic Encryption
	Asymmetric Encryption Systems �Secure Systems – Probabilistic Encryption
	Asymmetric Encryption Systems �Secure Systems – Probabilistic Encryption
	Asymmetric Encryption Systems �Secure Systems – Probabilistic Encryption
	Asymmetric Encryption Systems �Secure Systems – Probabilistic Encryption
	Asymmetric Encryption Systems �Secure Systems – Probabilistic Encryption
	Asymmetric Encryption Systems �Secure Systems – OAEP
	Asymmetric Encryption Systems �Secure Systems – OAEP
	Asymmetric Encryption Systems �Secure Systems – Cramer-Shoup
	Asymmetric Encryption Systems �Secure Systems – Cramer-Shoup
	Asymmetric Encryption Systems �Secure Systems – Cramer-Shoup
	Asymmetric Encryption Systems �Secure Systems – Cramer-Shoup
	Asymmetric Encryption Systems �8.4  Identity-Based Encryption
	Asymmetric Encryption Systems �Identity-Based Encryption
	Asymmetric Encryption Systems �8.5  Homomorphic Encryption
	Asymmetric Encryption Systems �Homomorphic Encryption
	Asymmetric Encryption Systems �8.6  Final Remarks
	Asymmetric Encryption Systems �Final Remarks
	9  Cryptographic Hash Functions
	Cryptographic Hash Functions�9.1  Introduction
	Cryptographic Hash Functions�Introduction
	Cryptographic Hash Functions�Introduction
	Cryptographic Hash Functions�Introduction
	Cryptographic Hash Functions�Introduction
	Cryptographic Hash Functions�Introduction
	Cryptographic Hash Functions�9.2  Merkle-Damgård Construction
	Cryptographic Hash Functions�Merkle-Damgård Construction
	Cryptographic Hash Functions�9.3  Exemplary Hash Functions
	Cryptographic Hash Functions�Exemplary Hash Functions – MD4
	Cryptographic Hash Functions�Exemplary Hash Functions – MD4
	Cryptographic Hash Functions�Exemplary Hash Functions – MD4
	Cryptographic Hash Functions�Exemplary Hash Functions – MD4
	Cryptographic Hash Functions�Exemplary Hash Functions – MD4
	Cryptographic Hash Functions�Exemplary Hash Functions – MD4
	Cryptographic Hash Functions�Exemplary Hash Functions – MD5
	Cryptographic Hash Functions�Exemplary Hash Functions – MD5
	Cryptographic Hash Functions�Exemplary Hash Functions – MD5
	Cryptographic Hash Functions�Exemplary Hash Functions – MD5
	Cryptographic Hash Functions�Exemplary Hash Functions – MD5
	Cryptographic Hash Functions�Exemplary Hash Functions – SHA-1
	Cryptographic Hash Functions�Exemplary Hash Functions – SHA-1
	Cryptographic Hash Functions�Exemplary Hash Functions – SHA-1
	Cryptographic Hash Functions�Exemplary Hash Functions – SHA-1
	Cryptographic Hash Functions�Exemplary Hash Functions – SHA-1
	Cryptographic Hash Functions�9.4  Final Remarks
	10  Digital Signature Systems
	Digital Signature Systems �10.1  Introduction
	Digital Signature Systems �Introduction
	Digital Signature Systems �Introduction
	Digital Signature Systems �Introduction
	Digital Signature Systems �10.2  Basic Systems
	Digital Signature Systems �Basic Systems – RSA 
	Digital Signature Systems �Basic Systems – RSA 
	Digital Signature Systems �Basic Systems – RSA 
	Digital Signature Systems �Basic Systems – RSA 
	Digital Signature Systems �Basic Systems – RSA 
	Digital Signature Systems �Basic Systems – RSA 
	Digital Signature Systems �Basic Systems – RSA 
	Digital Signature Systems �Basic Systems – RSA 
	Digital Signature Systems �Basic Systems – RSA 
	Digital Signature Systems �Basic Systems – RSA 
	Digital Signature Systems �Basic Systems – RSA 
	Digital Signature Systems �Basic Systems – Elgamal
	Digital Signature Systems �Basic Systems – Elgamal
	Digital Signature Systems �Basic Systems – Elgamal
	Digital Signature Systems �Basic Systems – Elgamal
	Digital Signature Systems �Basic Systems – Elgamal
	Digital Signature Systems �Basic Systems – Elgamal
	Digital Signature Systems �Basic Systems – Schnorr
	Digital Signature Systems �Basic Systems – Schnorr
	Digital Signature Systems �Basic Systems – Schnorr
	Digital Signature Systems �Basic Systems – Schnorr
	Digital Signature Systems �Basic Systems – Schnorr
	Digital Signature Systems �Basic Systems – DSA
	Digital Signature Systems �Basic Systems – DSA
	Digital Signature Systems �Basic Systems – DSA
	Digital Signature Systems �Basic Systems – DSA
	Digital Signature Systems �Basic Systems – DSA
	Digital Signature Systems �10.3  Secure Systems
	Digital Signature Systems �Secure Systems – PSS�
	Digital Signature Systems �Secure Systems – PSS�
	Digital Signature Systems �Secure Systems – PSS�
	Digital Signature Systems �Secure Systems – PSS-R�
	Digital Signature Systems �Secure Systems – PSS-R�
	Digital Signature Systems �Secure Systems – PSS-R�
	Digital Signature Systems �10.4  One-Time Signature Systems
	Digital Signature Systems �One-Time Signature Systems
	Digital Signature Systems �One-Time Signature Systems
	Digital Signature Systems �One-Time Signature Systems
	Digital Signature Systems �10.5  Variations
	Digital Signature Systems �10.6  Final Remarks
	Digital Signature Systems �Final Remarks
	Digital Signature Systems �Final Remarks
	11  Key Establishment
	Key Establishment �11.1  Introduction 
	Key Establishment �11.2  Kerberos
	Key Establishment �Kerberos
	Key Establishment �Kerberos
	Key Establishment �Kerberos
	Key Establishment �Kerberos
	Key Establishment �11.3  Key Distribution
	Key Establishment �Key Distribution – Shamir’s three-pass protocol
	Key Establishment �Key Distribution – Shamir’s three-pass protocol
	Key Establishment �Key Distribution – Asymmetric encryption- ... protocol
	Key Establishment �11.4  Key Agreement
	Key Establishment �Key Agreement – Merkle’s Puzzles
	Key Establishment �Key Agreement – Diffie-Hellman Key Exchange
	Key Establishment �Key Agreement – Diffie-Hellman Key Exchange
	Key Establishment �Key Agreement – Diffie-Hellman Key Exchange
	Key Establishment �Key Agreement – Diffie-Hellman Key Exchange
	Key Establishment �Key Agreement – Diffie-Hellman Key Exchange
	Key Establishment �11.5  Final Remarks
	12  Elliptic Curve Cryptography
	Elliptic Curve Cryptography
	Elliptic Curve Cryptography
	Elliptic Curve Cryptography
	Elliptic Curve Cryptography
	Elliptic Curve Cryptography
	Elliptic Curve Cryptography
	Elliptic Curve Cryptography
	Elliptic Curve Cryptography
	Module 4
	13  Key Management
	Key Management�13.1  Introduction 
	Key Management�13.2  Key Life Cycle
	Key Management�13.3  Secret Sharing
	Key Management�Secret Sharing
	Key Management�Secret Sharing
	Key Management�Secret Sharing
	Key Management�Secret Sharing
	Key Management�Secret Sharing
	Key Management�13.4  Key Recovery
	Key Management�Key Recovery
	Key Management�13.5  Final Remarks
	14  Public Key Infrastructure
	Public Key Infrastructure
	Public Key Infrastructure
	Public Key Infrastructure
	Public Key Infrastructure
	Public Key Infrastructure
	Public Key Infrastructure
	Public Key Infrastructure
	Public Key Infrastructure
	Public Key Infrastructure
	15  Quantum Cryptography
	Quantum Cryptography �15.1  Introduction
	Quantum Cryptography �Introduction
	Quantum Cryptography �15.2  Quantum Key Exchange
	Quantum Cryptography �Quantum Key Exchange
	Quantum Cryptography �Quantum Key Exchange
	Quantum Cryptography �Quantum Key Exchange
	Quantum Cryptography �15.3  Final Remarks
	16  Cryptographic Applications
	Cryptographic Applications �16.1  Entity Authentication
	Cryptographic Applications �Entity Authentication
	Cryptographic Applications �Entity Authentication
	Cryptographic Applications �Entity Authentication
	Cryptographic Applications �Entity Authentication
	Cryptographic Applications �Entity Authentication
	Cryptographic Applications �Entity Authentication
	Cryptographic Applications �Entity Authentication
	Cryptographic Applications �16.2  Secure Multi-party Computation
	Cryptographic Applications �Secure Multi-party Computation
	Cryptographic Applications �Secure Multi-party Computation
	Cryptographic Applications �Secure Multi-party Computation
	Cryptographic Applications �Secure Multi-party Computation
	Cryptographic Applications �Secure Multi-party Computation
	Cryptographic Applications �Secure Multi-party Computation
	Cryptographic Applications �16.3  Electronic Payment Systems
	Cryptographic Applications �Electronic Payment Systems
	Cryptographic Applications �Electronic Payment Systems
	Cryptographic Applications �Electronic Payment Systems
	Cryptographic Applications �Electronic Payment Systems
	Cryptographic Applications �16.4  Internet Banking
	Cryptographic Applications �Internet Banking
	Cryptographic Applications �16.5  Remote Internet Voting
	Cryptographic Applications �Remote Internet Voting
	Cryptographic Applications �Remote Internet Voting
	17  Conclusions and Outlook
	Conclusions and Outlook �17.1  Unkeyed Cryptosystems
	Conclusions and Outlook �17.2  Secret Key Cryptosystems
	Conclusions and Outlook �17.3  Public Key Cryptosystems
	Conclusions and Outlook �Public Key Cryptosystems
	Conclusions and Outlook �17.4  Theoretical Viewpoint
	Conclusions and Outlook �17.4  Theoretical Viewpoint
	Conclusions and Outlook �17.5  Practical Viewpoint
	Conclusions and Outlook �Practical Viewpoint
	Conclusions and Outlook �Practical Viewpoint
	Thank you for your attention!

