
The Checker Framework Manual:
Custom pluggable types for Java

http://checkerframework.org/

Version 1.9.4 (4 Aug 2015)

For the impatient: Section 1.3 (page 13) describes how to install and use pluggable type-checkers.

http://checkerframework.org/

Contents

1 Introduction 12
1.1 How to read this manual . 13
1.2 How it works: Pluggable types . 13
1.3 Installation . 13
1.4 Example use: detecting a null pointer bug . 14
1.5 What comes with the Checker Framework distribution . 14

2 Using a checker 16
2.1 Writing annotations . 16
2.2 Running a checker . 17

2.2.1 Distributing your annotated project . 17
2.2.2 Summary of command-line options . 18
2.2.3 Checker auto-discovery . 19
2.2.4 Shorthand for built-in checkers . 19

2.3 What the checker guarantees . 20
2.4 Tips about writing annotations . 20

2.4.1 How to get started annotating legacy code . 20
2.4.2 Do not annotate local variables unless necessary . 21
2.4.3 Annotations indicate normal behavior . 21
2.4.4 Subclasses must respect superclass annotations . 22
2.4.5 Annotations on constructor invocations . 22
2.4.6 What to do if a checker issues a warning about your code . 23

3 Nullness Checker 24
3.1 What the Nullness Checker checks . 24
3.2 Nullness annotations . 25

3.2.1 Nullness qualifiers . 25
3.2.2 Nullness method annotations . 26
3.2.3 Initialization qualifiers . 26
3.2.4 Map key qualifiers . 26

3.3 Writing nullness annotations . 27
3.3.1 Implicit qualifiers . 27
3.3.2 Default annotation . 27
3.3.3 Conditional nullness . 27
3.3.4 Nullness and arrays . 28
3.3.5 Run-time checks for nullness . 28
3.3.6 Additional details . 28
3.3.7 Inference of @NonNull and @Nullable annotations . 28

3.4 Suppressing nullness warnings . 29
3.4.1 Suppressing warnings with assertions and method calls . 29

3

3.5 Examples . 30
3.5.1 Tiny examples . 30
3.5.2 Example annotated source code . 30

3.6 Tips for getting started . 30
3.7 Other tools for nullness checking . 31

3.7.1 Which tool is right for you? . 32
3.7.2 Incompatibility note about FindBugs @Nullable . 32
3.7.3 Relationship to Optional<T> . 33

3.8 Initialization Checker . 33
3.8.1 Initialization qualifiers . 35
3.8.2 How an object becomes initialized . 36
3.8.3 Partial initialization . 36
3.8.4 How to handle warnings . 37
3.8.5 More details about initialization checking . 39
3.8.6 Rawness Initialization Checker . 39

4 Map Key Checker 44
4.1 Map key annotations . 44
4.2 Examples . 45
4.3 Inference of @KeyFor annotations . 45

5 Interning Checker 47
5.1 Interning annotations . 48
5.2 Annotating your code with @Interned . 48

5.2.1 Implicit qualifiers . 48
5.3 What the Interning Checker checks . 48

5.3.1 Limitations of the Interning Checker . 49
5.4 Examples . 49
5.5 Other interning annotations . 49

6 Lock Checker 50
6.1 Lock annotations . 50

6.1.1 Type annotations for objects protected by locks . 50
6.1.2 Lock method annotations . 50
6.1.3 Discussion of @Holding . 51

6.2 Examples . 52
6.2.1 Examples of @GuardedBy and @Holding . 52
6.2.2 Examples of @EnsuresLockHeld and @EnsuresLockHeldIf 52
6.2.3 Example of @LockingFree . 53

6.3 Other lock annotations . 54
6.3.1 Relationship to annotations in Java Concurrency in Practice 54

6.4 Possible extensions . 55
6.5 A note on Lock Checker internals . 55

7 Fake Enum Checker 56
7.1 Fake enum annotations . 56
7.2 What the Fenum Checker checks . 57
7.3 Running the Fenum Checker . 57
7.4 Suppressing warnings . 57
7.5 Example . 58
7.6 References . 58

4

8 Tainting Checker 59
8.1 Tainting annotations . 59
8.2 Tips on writing @Untainted annotations . 59
8.3 @Tainted and @Untainted can be used for many purposes . 60

8.3.1 Qualifier Parameters . 60

9 Regex Checker for regular expression syntax 61
9.1 Regex annotations . 61
9.2 Annotating your code with @Regex . 61

9.2.1 Implicit qualifiers . 61
9.2.2 Capturing groups . 62
9.2.3 Concatenation of partial regular expressions . 62
9.2.4 Testing whether a string is a regular expression . 63
9.2.5 Qualifier Parameters . 63
9.2.6 Suppressing warnings . 63

10 Format String Checker 65
10.1 Formatting terminology . 65
10.2 Format String Checker annotations . 65

10.2.1 Conversion Categories . 66
10.3 What the Format String Checker checks . 68

10.3.1 Possible false alarms . 68
10.3.2 Possible missed alarms . 69

10.4 Implicit qualifiers . 69
10.5 FormatMethod . 70
10.6 Testing whether a format string is valid . 70

11 Internationalization Format String Checker (I18n Format String Checker) 71
11.1 Internationalization Format String Checker annotations . 71
11.2 Conversion categories . 72
11.3 What the Internationalization Format String Checker checks . 73
11.4 Resource files . 74
11.5 Running the Internationalization Format Checker . 75
11.6 Testing whether a string has an i18n format type . 75
11.7 Examples of using the Internationalization Format Checker . 75

12 Property File Checker 77
12.1 General Property File Checker . 77
12.2 Internationalization Checker . 78

12.2.1 Internationalization annotations . 78
12.2.2 Running the Internationalization Checker . 78

12.3 Compiler Message Key Checker . 78

13 Signature Checker for string representations of types 80
13.1 Signature annotations . 80
13.2 What the Signature Checker checks . 81

14 GUI Effect Checker 82
14.1 GUI effect annotations . 83
14.2 What the GUI Effect Checker checks . 83
14.3 Running the GUI Effect Checker . 83
14.4 Annotation defaults . 83

5

14.5 Polymorphic effects . 84
14.5.1 Defining an effect-polymorphic type . 84
14.5.2 Using an effect-polymorphic type . 84
14.5.3 Subclassing a specific instantiation of an effect-polymorphic type 84
14.5.4 Subtyping with polymorphic effects . 85

14.6 References . 85

15 Units Checker 86
15.1 Units annotations . 86
15.2 Extending the Units Checker . 87
15.3 What the Units Checker checks . 87
15.4 Running the Units Checker . 88
15.5 Suppressing warnings . 88
15.6 References . 88

16 Constant Value Checker 89
16.1 Annotations . 89

16.1.1 Type Annotations . 89
16.1.2 Compile-time execution of expressions . 89

16.2 Warnings . 91

17 Aliasing Checker 92
17.1 Aliasing annotations . 92
17.2 Leaking contexts . 93
17.3 Restrictions on where @Unique may be written . 94
17.4 Aliasing type refinement . 94

18 Linear Checker for preventing aliasing 96
18.1 Linear annotations . 96
18.2 Limitations . 97

19 IGJ immutability checker 98
19.1 IGJ and mutability . 98
19.2 IGJ Annotations . 99
19.3 What the IGJ Checker checks . 99
19.4 Implicit and default qualifiers . 99
19.5 Annotation IGJ dialect . 100

19.5.1 Semantic Changes . 100
19.5.2 Syntax Changes . 100
19.5.3 Templating over immutability: @I . 100

19.6 Iterators and their abstract state . 101
19.7 Examples . 101

20 Javari immutability checker 102
20.1 Javari annotations . 102
20.2 Writing Javari annotations . 103

20.2.1 Implicit qualifiers . 103
20.2.2 Inference of Javari annotations . 103

20.3 What the Javari Checker checks . 103
20.4 Iterators and their abstract state . 103
20.5 Examples . 103

6

21 Reflection resolution 104
21.1 MethodVal and ClassVal Checkers . 104

21.1.1 ClassVal Checker . 104
21.1.2 MethodVal Checker . 105
21.1.3 MethodVal and ClassVal inference . 106

21.2 Reflection resolution example . 107

22 Subtyping Checker 108
22.1 Using the Subtyping Checker . 108
22.2 Subtyping Checker example . 109

23 Third-party checkers 111
23.1 Typestate checkers . 111

23.1.1 Comparison to flow-sensitive type refinement . 111
23.2 Units and dimensions checker . 112
23.3 Thread locality checker . 112
23.4 Safety-Critical Java checker . 112
23.5 Generic Universe Types checker . 112
23.6 EnerJ checker . 112
23.7 CheckLT taint checker . 112
23.8 SPARTA information flow type-checker for Android . 112

24 Generics and polymorphism 113
24.1 Generics (parametric polymorphism or type polymorphism) . 113

24.1.1 Raw types . 113
24.1.2 Restricting instantiation of a generic class . 113
24.1.3 Type annotations on a use of a generic type variable . 115
24.1.4 Annotations on wildcards . 115
24.1.5 Examples of qualifiers on a type parameter . 116
24.1.6 Covariant type parameters . 116
24.1.7 Method type argument inference and type qualifiers . 117

24.2 Qualifier polymorphism . 117
24.2.1 Examples of using polymorphic qualifiers . 117
24.2.2 Relationship to subtyping and generics . 118
24.2.3 Using multiple polymorphic qualifiers in a method signature 118
24.2.4 Using a single polymorphic qualifier on an element type . 119
24.2.5 The @PolyAll qualifier applies to every type system . 119

24.3 Qualifier parameters . 120
24.3.1 Motivation for qualifier parameters . 121
24.3.2 Overview of qualifier parameters . 121
24.3.3 Qualifier parameter wildcards . 122
24.3.4 Syntax of qualifier parameters . 122
24.3.5 Primary qualifiers . 126

25 Advanced type system features 127
25.1 Invariant array types . 127
25.2 Context-sensitive type inference for array constructors . 127
25.3 The effective qualifier on a type (defaults and inference) . 128

25.3.1 Default qualifier for unannotated types . 129
25.3.2 Defaulting rules and CLIMB-to-top . 130
25.3.3 Inherited defaults . 131
25.3.4 Inherited wildcard annotations . 131

7

25.3.5 Default qualifiers for .class files (conservative library defaults) 132
25.4 Automatic type refinement (flow-sensitive type qualifier inference) 132

25.4.1 Run-time tests and type refinement . 134
25.4.2 Fields and flow-sensitive analysis . 135
25.4.3 Side effects, determinism, purity, and flow-sensitive analysis 135
25.4.4 Assertions . 137

25.5 Writing Java expressions as annotation arguments . 138
25.6 Unused fields . 138

25.6.1 @Unused annotation . 139

26 Suppressing warnings 140
26.1 @SuppressWarnings annotation . 140

26.1.1 @SuppressWarnings syntax . 141
26.1.2 Where @SuppressWarnings can be written . 141
26.1.3 Good practices when suppressing warnings . 141

26.2 @AssumeAssertion string in an assert message . 142
26.2.1 Suppressing warnings and defensive programming . 142

26.3 -AsuppressWarnings command-line option . 143
26.4 -AskipUses and -AonlyUses command-line options . 143
26.5 -AskipDefs and -AonlyDefs command-line options . 144
26.6 -Alint command-line option . 144
26.7 No -processor command-line option . 144
26.8 Checker-specific mechanisms . 145

27 Handling legacy code 146
27.1 Checking partially-annotated programs: handling unannotated code 146
27.2 Backward compatibility with earlier versions of Java . 146

27.2.1 Annotations in comments . 147
27.2.2 Import statements and receiver parameters in comments . 147
27.2.3 Migrating away from annotations in comments . 148
27.2.4 No modular type-checking when targeting Java 5/6/7 . 148
27.2.5 Distributing declaration annotations instead of type annotations 149

28 Annotating libraries 151
28.1 Compiling partially-annotated libraries . 152

28.1.1 The -AuseSafeDefaultsForUnannotatedSourceCode command-line argument 152
28.1.2 Workflow for creating or augmenting a partially-annotated library 152

28.2 Using stub classes . 153
28.2.1 Using a stub file . 153
28.2.2 Stub file format . 153
28.2.3 Creating a stub file . 154
28.2.4 Troubleshooting stub libraries . 155
28.2.5 Limitations . 155

28.3 Troubleshooting/debugging annotated libraries . 156

29 How to create a new checker 157
29.1 Relationship of the Checker Framework to other tools . 157
29.2 The parts of a checker . 158
29.3 Annotations: Type qualifiers and hierarchy . 158

29.3.1 Defining the type qualifiers . 158
29.3.2 Declaratively defining the qualifier hierarchy . 159
29.3.3 Procedurally defining the qualifier hierarchy . 159

8

29.3.4 Defining a default annotation . 160
29.3.5 Completeness of the type hierarchy . 160

29.4 Type factory: Implicit annotations . 161
29.4.1 Declaratively specifying implicit annotations . 161
29.4.2 Procedurally specifying implicit annotations . 162

29.5 Dataflow: enhancing flow-sensitive type qualifier inference . 162
29.5.1 Create required classes and configure their use . 163
29.5.2 Override methods that handle Nodes of interest . 163
29.5.3 Determine the expressions to refine the types of . 164
29.5.4 Implement the refinement . 164

29.6 Visitor: Type rules . 165
29.6.1 AST traversal . 166
29.6.2 Avoid hardcoding . 166

29.7 The checker class: Compiler interface . 166
29.7.1 Bundling multiple checkers . 167
29.7.2 Providing command-line options . 168

29.8 Testing framework . 168
29.9 Debugging options . 169

29.9.1 Amount of detail in messages . 169
29.9.2 Stub and JDK libraries . 169
29.9.3 Progress tracing . 169
29.9.4 Saving the command-line arguments to a file . 169
29.9.5 Miscellaneous debugging options . 169
29.9.6 Examples . 169

29.10Documenting the checker . 170
29.11javac implementation survival guide . 171

29.11.1 Checker access to compiler information . 171
29.11.2 How a checker fits in the compiler as an annotation processor 172

29.12Integrating a checker with the Checker Framework . 172

30 Integration with external tools 173
30.1 Javac compiler . 173
30.2 Ant task . 174

30.2.1 Explanation . 175
30.3 Maven . 175

30.3.1 Debugging the Maven compiler command-line arguments 176
30.4 Gradle . 176
30.5 IntelliJ IDEA . 177
30.6 Eclipse . 177

30.6.1 Using an Ant task . 177
30.6.2 Eclipse plugin for the Checker Framework . 178

30.7 tIDE . 178
30.8 Type inference tools . 178

30.8.1 Varieties of type inference . 178
30.8.2 Type inference to annotate a program . 179

31 Frequently Asked Questions (FAQs) 180
31.1 Motivation for pluggable type-checking . 181

31.1.1 I don’t make type errors, so would pluggable type-checking help me? 181
31.1.2 When should I use type qualifiers, and when should I use subclasses? 181

31.2 Getting started . 181
31.2.1 How do I get started annotating an existing program? . 181

9

31.2.2 Which checker should I start with? . 182
31.2.3 Should I use pluggable types or Java subtypes? . 182

31.3 Usability of pluggable type-checking . 183
31.3.1 Are type annotations easy to read and write? . 183
31.3.2 Will my code become cluttered with type annotations? . 183
31.3.3 Will using the Checker Framework slow down my program? Will it slow down the compiler? 184
31.3.4 How do I shorten the command line when invoking a checker? 184

31.4 How to handle warnings and errors . 184
31.4.1 What should I do if a checker issues a warning about my code? 184
31.4.2 What does a certain Checker Framework warning message mean? 184
31.4.3 Can a pluggable type-checker guarantee that my code is correct? 184
31.4.4 What guarantee does the Checker Framework give for concurrent code? 185
31.4.5 How do I make compilation succeed even if a checker issues errors? 185
31.4.6 Why does the checker always say there are 100 errors or warnings? 185
31.4.7 Why does the Checker Framework report an error regarding a type I have not written in my

program? . 185
31.4.8 How can I do run-time monitoring of properties that were not statically checked? 185

31.5 Syntax of type annotations . 186
31.5.1 What is a “receiver”? . 186
31.5.2 What is the meaning of an annotation after a type, such as @NonNull Object @Nullable? . 186
31.5.3 What is the meaning of array annotations such as @NonNull Object @Nullable []? 186
31.5.4 What is the meaning of a type qualifier at a class declaration? 187
31.5.5 Why shouldn’t a qualifier apply to both types and declarations? 187

31.6 Semantics of type annotations . 187
31.6.1 Why are the type parameters to List and Map annotated as @NonNull? 187
31.6.2 How can I handle typestate, or phases of my program with different data properties? 189
31.6.3 Why are explicit and implicit bounds defaulted differently? 189

31.7 Creating a new checker . 190
31.7.1 How do I create a new checker? . 190
31.7.2 Why is there no declarative syntax for writing type rules? . 190

31.8 Relationship to other tools . 190
31.8.1 Why not just use a bug detector (like FindBugs)? . 190
31.8.2 How does the Checker Framework compare with Eclipse’s null analysis? 191
31.8.3 How does pluggable type-checking compare with JML? . 191
31.8.4 Is the Checker Framework an official part of Java? . 191
31.8.5 What is the relationship between the Checker Framework and JSR 305? 192
31.8.6 What is the relationship between the Checker Framework and JSR 308? 192

32 Troubleshooting and getting help 193
32.1 Common problems and solutions . 193

32.1.1 Unable to run the checker, or checker crashes . 193
32.1.2 Unexpected type-checking results . 195
32.1.3 Unable to build the checker, or to run programs . 197
32.1.4 Classfile version warning . 198

32.2 How to report problems (bug reporting) . 198
32.3 Building from source . 198

32.3.1 Obtain the source . 198
32.3.2 Build the Type Annotations compiler . 199
32.3.3 Build the Annotation File Utilities . 199
32.3.4 Build the Checker Framework . 199
32.3.5 Build the Checker Framework Manual (this document) . 200

32.4 Publications . 200

10

32.5 Comparison to other tools . 201
32.6 Credits, changelog, and license . 202

11

Chapter 1

Introduction

The Checker Framework enhances Java’s type system to make it more powerful and useful. This lets software developers
detect and prevent errors in their Java programs.

A “checker” is a tool that warns you about certain errors or gives you a guarantee that those errors do not occur.
The Checker Framework comes with checkers for specific types of errors:

1. Nullness Checker for null pointer errors (see Chapter 3, page 24)
2. Initialization Checker to ensure all fields are set in the constructor (see Chapter 3.8, page 33)
3. Map Key Checker to track which values are keys in a map (see Chapter 4, page 44)
4. Interning Checker for errors in equality testing and interning (see Chapter 5, page 47)
5. Lock Checker for concurrency and lock errors (see Chapter 6, page 50)
6. Fake Enum Checker to allow type-safe fake enum patterns (see Chapter 7, page 56)
7. Tainting Checker for trust and security errors (see Chapter 8, page 59)
8. Regex Checker to prevent use of syntactically invalid regular expressions (see Chapter 9, page 61)
9. Format String Checker to ensure that format strings have the right number and type of % directives (see Chapter 10,

page 65)
10. Internationalization Format String Checker to ensure that i18n format strings have the right number and type of

{} directives (see Chapter 11, page 71)
11. Property File Checker to ensure that valid keys are used for property files and resource bundles (see Chapter 12,

page 77)
12. Internationalization Checker to ensure that code is properly internationalized (see Chapter 12.2, page 78)
13. Signature String Checker to ensure that the string representation of a type is properly used, for example in

Class.forName (see Chapter 13, page 80)
14. GUI Effect Checker to ensure that non-GUI threads do not access the UI, which would crash the application (see

Chapter 14, page 82)
15. Units Checker to ensure operations are performed on correct units of measurement (see Chapter 15, page 86)
16. Constant Value Checker to determine whether an expression’s value can be known at compile time (see Chapter 16,

page 89)
17. Aliasing Checker to identify whether expressions have aliases (see Chapter 17, page 92)
18. Linear Checker to control aliasing and prevent re-use (see Chapter 18, page 96)
19. IGJ Checker for mutation errors (incorrect side effects), based on the IGJ type system (see Chapter 19, page 98)
20. Javari Checker for mutation errors (incorrect side effects), based on the Javari type system (see Chapter 20,

page 102)
21. Subtyping Checker for customized checking without writing any code (see Chapter 22, page 108)
22. Third-party checkers that are distributed separately from the Checker Framework (see Chapter 23, page 111)

These checkers are easy to use and are invoked as arguments to javac.
The Checker Framework also enables you to write new checkers of your own; see Chapters 22 and 29.

12

1.1 How to read this manual
If you wish to get started using some particular type system from the list above, then the most effective way to read this
manual is:

• Read all of the introductory material (Chapters 1–2).
• Read just one of the descriptions of a particular type system and its checker (Chapters 3–23).
• Skim the advanced material that will enable you to make more effective use of a type system (Chapters 24–32),

so that you will know what is available and can find it later. Skip Chapter 29 on creating a new checker.

1.2 How it works: Pluggable types
The Checker Framework supports adding pluggable type systems to the Java language in a backward-compatible way.
Java’s built-in type-checker finds and prevents many errors — but it doesn’t find and prevent enough errors. The Checker
Framework lets you run an additional type-checker as a plug-in to the javac compiler. Your code stays completely
backward-compatible: your code compiles with any Java compiler, it runs on any JVM, and your coworkers don’t have
to use the enhanced type system if they don’t want to. You can check only part of your program. Type inference tools
exist to help you annotate your code.

A type system designer uses the Checker Framework to define type qualifiers and their semantics, and a compiler
plug-in (a “checker”) enforces the semantics. Programmers can write the type qualifiers in their programs and use the
plug-in to detect or prevent errors. The Checker Framework is useful both to programmers who wish to write error-free
code, and to type system designers who wish to evaluate and deploy their type systems.

This document uses the terms “checker”, “checker plugin”, “type-checking compiler plugin”, and “annotation
processor” as synonyms.

1.3 Installation
This section describes how to install the Checker Framework. (If you wish to use the Checker Framework from Eclipse,
see the Checker Framework Eclipse Plugin webpage instead: http://types.cs.washington.edu/checker-framework/
eclipse/.)

The Checker Framework release contains everything that you need, both to run checkers and to write your own
checkers. As an alternative, you can build the latest development version from source (Section 32.3, page 198).

Requirement: You must have JDK 7 or later installed. You can get JDK 7 from Oracle or elsewhere. If you are
using Apple Mac OS X, you can use Apple’s implementation, SoyLatte, or the OpenJDK.

The installation process is simple! It has two required steps and one optional step.

1. Download the Checker Framework distribution:
http://types.cs.washington.edu/checker-framework/current/checker-framework.zip

2. Unzip it to create a checker-framework directory.
3. Configure your IDE, build system, or command shell to use the Checker Framework compiler. Choose the

appropriate section of Chapter 30 for javac (Section 30.1), Ant (Section 30.2), Maven (Section 30.3), Gradle
(Section 30.4), IntelliJ IDEA (Section 30.5), Eclipse (Section 30.6), or tIDE (Section 30.7).

That’s all there is to it! Now you are ready to start using the checkers.
We recommend that you work through the Checker Framework tutorial (http://types.cs.washington.edu/

checker-framework/tutorial/), which walks you through how to use the Checker Framework in Eclipse or on the
command line.

Section 1.4 walks you through a simple example. More detailed instructions for using a checker appear in Chapter 2.

13

http://types.cs.washington.edu/checker-framework/eclipse/
http://types.cs.washington.edu/checker-framework/eclipse/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://developer.apple.com/search/index.php?q=java
http://landonf.bikemonkey.org/static/soylatte/
http://openjdk.java.net/
http://types.cs.washington.edu/checker-framework/current/checker-framework.zip
http://types.cs.washington.edu/checker-framework/tutorial/
http://types.cs.washington.edu/checker-framework/tutorial/

1.4 Example use: detecting a null pointer bug
This section gives a very simple example of running the Checker Framework. There is also a tutorial (http://types.
cs.washington.edu/checker-framework/tutorial/) that gives more extensive instructions for using the Checker
Framework in Eclipse or on the command line.

1. Let’s consider this very simple Java class. The local variable ref’s type is annotated as @NonNull, indicating that
ref must be a reference to a non-null object. Save the file as GetStarted.java.

import org.checkerframework.checker.nullness.qual.*;

public class GetStarted {
void sample() {

@NonNull Object ref = new Object();
}

}

2. Run the Nullness Checker on the class. You can do that from the command line or from an IDE:

(a) From the command line, run this command:
javac -processor org.checkerframework.checker.nullness.NullnessChecker GetStarted.java

where the javac command refers to the Checker Framework compiler (see Section 30.1).
(b) To compile within your IDE, you must have customized it to use the Checker Framework compiler and to

pass the extra arguments (see Chapter 30).

The compilation should complete without any errors.
3. Let’s introduce an error now. Modify ref’s assignment to:

@NonNull Object ref = null;
4. Run the Nullness Checker again, just as before. This run should emit the following error:

GetStarted.java:5: incompatible types.
found : @Nullable <nulltype>
required: @NonNull Object

@NonNull Object ref = null;
^

1 error

The type qualifiers (e.g., @NonNull) are permitted anywhere that you can write a type, including generics and casts;
see Section 2.1. Here are some examples:

@Interned String intern() { ... } // return value
int compareTo(@NonNull String other) { ... } // parameter
@NonNull List<@Interned String> messages; // non-null list of interned Strings

1.5 What comes with the Checker Framework distribution
The Checker Framework distribution contains the following notable directories and files:

• changelog.txt The changelog.
• checker/bin/javac A replacement for the javac compiler that enables use of the Checker Framework.
• checker/manual/ A local copy of this manual in PDF and HTML formats.
• tutorial/ The Checker Framework tutorial.
• checker/dist/ Contains jar files for use by advanced users:

– javac.jar A Java 9 javac with additional support for Checker Framework extensions.

14

http://types.cs.washington.edu/checker-framework/tutorial/
http://types.cs.washington.edu/checker-framework/tutorial/
api/org/checkerframework/checker/nullness/qual/NonNull.html

– checker.jar The Checker Framework classes.
– jdk7.jar and jdk8.jar Annotations for the JDK classes for Java 7 and Java 8 (but no class bodies).
– checker-qual.jar The annotation types defined by the Checker Framework. This jar file is useful to

distribute with code that uses Checker Framework annotations. See Section 2.2.1.
– checker-source.jar The Checker Framework source code for use by IDEs.
– checker-javadoc.jar The Checker Framework Javadoc for use by IDEs.

15

Chapter 2

Using a checker

A pluggable type-checker enables you to detect certain bugs in your code, or to prove that they are not present. The
verification happens at compile time.

Finding bugs, or verifying their absence, with a checker plugin is a two-step process, whose steps are described in
Sections 2.1 and 2.2.

1. The programmer writes annotations, such as @NonNull and @Interned, that specify additional information
about Java types. (Or, the programmer uses an inference tool to automatically insert annotations in his code: see
Sections 3.3.7 and 20.2.2.) It is possible to annotate only part of your code: see Section 27.1.

2. The checker reports whether the program contains any erroneous code — that is, code that is inconsistent with
the annotations.

This chapter is structured as follows:

• Section 2.1: How to write annotations
• Section 2.2: How to run a checker
• Section 2.3: What the checker guarantees
• Section 2.4: Tips about writing annotations

Additional topics that apply to all checkers are covered later in the manual:

• Chapter 25: Advanced type system features
• Chapter 26: Suppressing warnings
• Chapter 27: Handling legacy code
• Chapter 28: Annotating libraries
• Chapter 29: How to create a new checker
• Chapter 30: Integration with external tools

Finally, there is a tutorial (http://types.cs.washington.edu/checker-framework/tutorial/) that walks
you through using the Checker Framework in Eclipse or on the command line.

2.1 Writing annotations
The syntax of type annotations in Java is specified by the Java Language Specification (Java SE 8 edition). Java 5
permitted annotations on declarations. Java 8 also permits annotations anywhere that you would write a type, including
generics and casts. You can also write annotations to indicate type qualifiers for array levels and receivers. Here are a
few examples:

@Interned String intern() { ... } // return value

16

api/org/checkerframework/checker/nullness/qual/NonNull.html
api/org/checkerframework/checker/interning/qual/Interned.html
http://types.cs.washington.edu/checker-framework/tutorial/

int compareTo(@NonNull String other) { ... } // parameter
String toString(@ReadOnly MyClass this) { ... } // receiver ("this" parameter)
@NonNull List<@Interned String> messages; // generics: non-null list of interned Strings
@Interned String @NonNull [] messages; // arrays: non-null array of interned Strings
myDate = (@ReadOnly Date) readonlyObject; // cast

You can also write the annotations within comments, as in List</*@NonNull*/ String>. The Checker Framework
compiler, which is distributed with the Checker Framework, will still process the annotations. However, your code will
remain compilable by people who are not using the Checker Framework compiler. For more details, see Section 27.2.1.

2.2 Running a checker
To run a checker plugin, run the compiler javac as usual, but pass the -processor plugin_class command-line
option. (You can run a checker from within your favorite IDE or build system. See Chapter 30 for details about Ant
(Section 30.2), Maven (Section 30.3), Gradle (Section 30.4), IntelliJ IDEA (Section 30.5), Eclipse (Section 30.6), and
tIDE (Section 30.7), and about customizing other IDEs and build tools.) Remember that you must be using the Type
Annotations version of javac, which you already installed (see Section 1.3).

A concrete example (using the Nullness Checker) is:
javac -processor org.checkerframework.checker.nullness.NullnessChecker MyFile.java

Since the -processor expects a fully-qualified class name, its argument can often be verbose. There is shorthand
for invoking checkers that are built into the Checker Framework. See Section 2.2.4.

The checker is run on only the Java files that javac compiles. This includes all Java files specified on the command
line (or created by another annotation processor). It may also include other of your Java files (but not if a more recent
.class file exists). Even when the checker does not analyze a class (say, the class was already compiled, or source
code is not available), it does check the uses of those classes in the source code being compiled.

You can always compile the code without the -processor command-line option, but in that case no checking of the
type annotations is performed. Furthermore, only explicitly-written annotations are written to the .class file; defaulted
annotations are not, and this will interfere with type-checking of clients that use your code. Therefore, it is strongly
recommended that whenever you are creating .class files that will be distributed or compiled against, you run the
type-checkers for all the annotations that your have written.

2.2.1 Distributing your annotated project
You have two main options for distributing your compiled code (.jar files).

• Option 1: no annotations appear in the .jar files. There is no run-time dependence on the Checker Framework,
and the distributed .jar files are not useful for pluggable type-checking of client code.
Write annotations in comments (see Section 27.2.1). Developers perform pluggable type-checking in-house to
detect errors and verify their absence. To create the distributed .jar files, use a normal Java compiler, which
ignores the annotations.

• Option 2: annotations appear in the .jar files. The distributed .jar files can be used for pluggable type-
checking of client code. The .jar files are only compatible with a Java 8 JVM, unless you do extra work (see
Section 27.2.5).
Write annotations in comments or not in comments (it doesn’t matter which). Developers perform pluggable
type-checking in-house to detect errors and verify their absence. When you create .class files, use the Checker
Framework compiler (Section 30) and running each relevant type system. Create the distributed .jar files from
those .class files, and also include the contents of checker-framework/checker/dist/checker-qual.jar
from the Checker Framework distribution, to define the annotations.

17

2.2.2 Summary of command-line options
You can pass command-line arguments to a checker via javac’s standard -A option (“A” stands for “annotation”). All of
the distributed checkers support the following command-line options.

Unsound checking: ignore some errors

• -AskipUses, -AonlyUses Suppress all errors and warnings at all uses of a given class — or at all uses except
those of a given class. See Section 26.4

• -AskipDefs, -AonlyDefs Suppress all errors and warnings within the definition of a given class — or everywhere
except within the definition of a given class. See Section 26.5

• -AsuppressWarnings Suppress all warnings matching the given key; see Section 26.3
• -AignoreRawTypeArguments Ignore subtype tests for type arguments that were inferred for a raw type. If

possible, it is better to write the type arguments. See Section 24.1.1.
• -AassumeSideEffectFree Unsoundly assume that every method is side-effect-free; see Section 25.4.3.
• -AassumeAssertionsAreEnabled, -AassumeAssertionsAreDisabled Whether to assume that assertions are

enabled or disabled; see Section 25.4.4.
• -AsafeDefaultsForUnannotatedBytecode Whether the checker should use conservative defaults for unanno-

tated bytecode; see Section 25.3.5.
• -AuseSafeDefaultsForUnannotatedSourceCode Outside the scope of any relevant @AnnotatedFor annota-

tion, use conservative default annotations and suppress all type-checking warnings; see Section 28.1.

More sound (strict) checking: enable errors that are disabled by default

• -AcheckPurityAnnotations Check the bodies of methods marked @SideEffectFree, @Deterministic, and
@Pure to ensure the method satisfies the annotation. By default, the Checker Framework unsoundly trusts the
method annotation. See Section 25.4.3.

• -AinvariantArrays Make array subtyping invariant; that is, two arrays are subtypes of one another only if
they have exactly the same element type. By default, the Checker Framework unsoundly permits covariant array
subtyping, just as Java does. See Section 25.1.

• -AconcurrentSemantics Whether to assume concurrent semantics (field values may change at any time) or
sequential semantics; see Section 31.4.4.

Type-checking modes: enable/disable functionality

• -Alint Enable or disable optional checks; see Section 26.6.
• -AshowSuppressWarningKeys With each warning, show all possible keys to suppress that warning; see Sec-

tion 26.3
• -AsuggestPureMethods Suggest methods that could be marked @SideEffectFree, @Deterministic, or
@Pure; see Section 25.4.3.
• -AcheckCastElementType In a cast, require that parameterized type arguments and array elements are the same.

By default, the Checker Framework unsoundly permits them to differ, just as Java does. See Section 24.1.6 and
Section 25.1.

• -Awarns Treat checker errors as warnings. If you use this, you may wish to also supply -Xmaxwarns 10000,
because by default javac prints at most 100 warnings.

Partially-annotated libraries

• -Astubs List of stub files or directories; see Section 28.2.1.
• -AstubWarnIfNotFound Warn if a stub file entry could not be found; see Section 28.2.1.
• -AuseSafeDefaultsForUnannotatedSourceCode Outside the scope of any relevant @AnnotatedFor annota-

tion, use conservative default annotations and suppress all type-checking warnings; see Section 28.1.

Debugging

• -AprintAllQualifiers, -Adetailedmsgtext, -AprintErrorStack, -Anomsgtext Amount of detail in mes-
sages; see Section 29.9.1.

18

api/org/checkerframework/framework/qual/AnnotatedFor.html
api/org/checkerframework/dataflow/qual/SideEffectFree.html
api/org/checkerframework/dataflow/qual/Deterministic.html
api/org/checkerframework/dataflow/qual/Pure.html
api/org/checkerframework/dataflow/qual/SideEffectFree.html
api/org/checkerframework/dataflow/qual/Deterministic.html
api/org/checkerframework/dataflow/qual/Pure.html
api/org/checkerframework/framework/qual/AnnotatedFor.html

• -Aignorejdkastub, -Anocheckjdk -AstubDebug, Stub and JDK libraries; see Section 29.9.2
• -Afilenames, -Ashowchecks Progress tracing; see Section 29.9.3
• -AoutputArgsToFile Output the compiler command-line arguments to a file. Useful when this is not fully in

your control, such as when the Checker Framework is run from Maven. See Section 29.9.4
• -Aflowdotdir, -AresourceStats Miscellaneous debugging options; see Section 29.9.5

Some checkers support additional options, which are described in that checker’s manual section. For example, -Aquals
tells the Subtyping Checker (see Chapter 22) and the Fenum Checker (see Chapter 7) which annotations to check.

Here are some standard javac command-line options that you may find useful. Many of them contain the word
“processor”, because in javac jargon, a checker is a type of “annotation processor”.

• -processor Names the checker to be run; see Section 2.2
• -processorpath Indicates where to search for the checker; should also contain any qualifiers used by the

Subtyping Checker; see Section 22.2
• -proc:{none,only} Controls whether checking happens; -proc:none means to skip checking; -proc:only

means to do only checking, without any subsequent compilation; see Section 2.2.3
• -implicit:class Suppresses warnings about implicitly compiled files (not named on the command line); see

Section 30.2
• -XDTA:noannotationsincomments and -XDTA:spacesincomments to turn off parsing annotation comments

and to turn on parsing annotation comments even when they contain spaces; applicable only to the Checker
Framework compiler; see Section 27.2.1

• -J Supply an argument to the JVM that is running javac
• -doe To “dump on error”, that is, output a stack trace whenever a compiler warning/error is produced. Useful

when debugging the compiler or a checker.

2.2.3 Checker auto-discovery
“Auto-discovery” makes the javac compiler always run a checker plugin, even if you do not explicitly pass the
-processor command-line option. This can make your command line shorter, and ensures that your code is checked
even if you forget the command-line option.

To enable auto-discovery, place a configuration file named META-INF/services/javax.annotation.processing.Processor
in your classpath. The file contains the names of the checker plugins to be used, listed one per line. For instance, to run
the Nullness Checker and the Interning Checker automatically, the configuration file should contain:
org.checkerframework.checker.nullness.NullnessChecker
org.checkerframework.checker.interning.InterningChecker

You can disable this auto-discovery mechanism by passing the -proc:none command-line option to javac, which
disables all annotation processing including all pluggable type-checking.

2.2.4 Shorthand for built-in checkers
The -processor flag expects fully-qualified class names. For checkers that are packaged with the Checker Framework,
the fully-qualified name can be quite long. Therefore, when running a built-in checker, you may omit the package name
and the Checker suffix. The following three commands are equivalent:

javac -processor org.checkerframework.checker.nullness.NullnessChecker MyFile.java
javac -processor NullnessChecker MyFile.java
javac -processor nullness MyFile.java

This feature will work when multiple checkers are specified. For example:

javac -processor NullnessChecker,RegexChecker MyFile.java
javac -processor nullness,regex MyFile.java

This feature does not apply to Javac @argfiles.

19

https://docs.oracle.com/javase/7/docs/technotes/tools/windows/javac.html#commandlineargfile

2.3 What the checker guarantees
A checker can guarantee that a particular property holds throughout the code. For example, the Nullness Checker
(Chapter 3) guarantees that every expression whose type is a @NonNull type never evaluates to null. The Interning
Checker (Chapter 5) guarantees that every expression whose type is an @Interned type evaluates to an interned value.
The checker makes its guarantee by examining every part of your program and verifying that no part of the program
violates the guarantee.

There are some limitations to the guarantee.

• A compiler plugin can check only those parts of your program that you run it on. If you compile some parts of
your program without running the checker, then there is no guarantee that the entire program satisfies the property
being checked. Some examples of un-checked code are:

– Code compiled without the -processor switch, including any external library supplied as a .class file.
– Code compiled with the -AskipUses, -AonlyUses, -AskipDefs or -AonlyDefs properties (see Sec-

tion 26).
– Suppression of warnings, such as via the @SuppressWarnings annotation (see Section 26).
– Native methods (because the implementation is not Java code, it cannot be checked).

In each of these cases, any use of the code is checked — for example, a call to a native method must be compatible
with any annotations on the native method’s signature. However, the annotations on the un-checked code are
trusted; there is no verification that the implementation of the native method satisfies the annotations.

• The Checker Framework is, by default, unsound in a few places where a conservative analysis would issue too
many false positive warnings. These are listed in Section 2.2.2. You can supply a command-line argument to
make the Checker Framework sound for each of these cases.

• Specific checkers may have other limitations; see their documentation for details.

A checker can be useful in finding bugs or in verifying part of a program, even if the checker is unable to verify the
correctness of an entire program.

In order to avoid a flood of unhelpful warnings, many of the checkers avoid issuing the same warning multiple
times. For example, in this code:

@Nullable Object x = ...;
x.toString(); // warning
x.toString(); // no warning

In this case, the second call to toString cannot possibly throw a null pointer warning — x is non-null if control flows
to the second statement. In other cases, a checker avoids issuing later warnings with the same cause even when later
code in a method might also fail. This does not affect the soundness guarantee, but a user may need to examine more
warnings after fixing the first ones identified. (More often, at least in our experience to date, a single fix corrects all the
warnings.)

If you find that a checker fails to issue a warning that it should, then please report a bug (see Section 32.2).

2.4 Tips about writing annotations

2.4.1 How to get started annotating legacy code
Annotating an entire existing program may seem like a daunting task. But, if you approach it systematically and do a
little bit at a time, you will find that it is manageable.

Start small, focusing on some specific property that matters to you and on the most mission-critical or error-prone
part of your code. It is easiest to add annotations if you know the code or the code contains documentation; you will find
that you spend most of your time understanding the code, and very little time actually writing annotations or running
the checker.

20

api/org/checkerframework/checker/nullness/qual/NonNull.html
api/org/checkerframework/checker/interning/qual/Interned.html

Start by annotating just part of your program. Be systematic, such as annotating an entire class at a time (not just
some of the methods) so that you don’t lose track of your work. You may find it helpful to start annotating the leaves of
the call tree — that is, start with methods/classes/packages that have few dependencies on other code or, equivalently,
start with code that a lot of your other code depends on. The reason for this is that it is easiest to annotate a class if the
code it calls has already been annotated.

For each class, read its Javadoc. For instance, if you are adding annotations for the Nullness Checker (Section 3),
then you can search the documentation for “null” and then add @Nullable anywhere appropriate. Then annotate
signatures and fields; there is no need to annotate method bodies. The only reason to even read the method bodies yet is
to determine signature annotations for undocumented methods — for example, if the method returns null, you know its
return type should be annotated @Nullable, and a parameter that is compared against null may need to be annotated
@Nullable.

After you have annotated all the signatures, run the checker. Then, fix bugs in code and add/modify annotations
as necessary. Don’t get discouraged if you see many type-checker warnings at first. Often, adding just a few missing
annotations will eliminate many warnings, and you’ll be surprised how fast the process goes overall.

You may wonder about the effect of adding a given annotation — how many other annotations it will require, or
whether it conflicts with other code. Suppose you have added an annotation to a method parameter. You could manually
examine all callees. A better way can be to save the checker output before adding the annotation, and to compare it to
the checker output after adding the annotation. This helps you to focus on the specific consequences of your change.

Also see Chapter 26, which tells you what to do when you are unable to eliminate checker warnings, and Chapter 28,
which tells you how to annotate libraries that your code uses.

2.4.2 Do not annotate local variables unless necessary
The checker infers annotations for local variables (see Section 25.4). Usually, you only need to annotate fields and
method signatures. After doing those, you can add annotations inside method bodies if the checker is unable to infer the
correct annotation, if you need to suppress a warning (see Section 26), etc.

2.4.3 Annotations indicate normal behavior
You should use annotations to specify normal behavior. The annotations indicate all the values that you want to flow to
a reference — not every value that might possibly flow there if your program has a bug.

Many methods are guaranteed to throw an exception if they are passed null as an argument. Examples include

java.lang.Double.valueOf(String)
java.lang.String.contains(CharSequence)
org.junit.Assert.assertNotNull(Object)
com.google.common.base.Preconditions.checkNotNull(Object)

@Nullable (see Section 3.2) might seem like a reasonable annotation for the parameter, for two reasons. First,
null is a legal argument with a well-defined semantics: throw an exception. Second, @Nullable describes a possible
program execution: it might be possible for null to flow there, if your program has a bug.

However, it is never useful for a programmer to pass null. It is the programmer’s intention that null never flows
there. If null does flow there, the program will not continue normally (whether or not it throws a NullPointerException).

Therefore, you should mark such parameters as @NonNull, indicating the intended use of the method. When you
use the @NonNull annotation, the checker is able to issue compile-time warnings about possible run-time exceptions,
which is its purpose. Marking the parameter as @Nullable would suppress such warnings, which is undesirable.

If a method can possibly throw exception because its parameter is null, then that parameter’s type should be
@NonNull, which guarantees that the type-checker will issue a warning for every client use that has the potential to
cause an exception. Don’t write @Nullable on the parameter just because there exist some executions that don’t
necessarily throw an exception.

21

api/org/checkerframework/checker/nullness/qual/Nullable.html
api/org/checkerframework/checker/nullness/qual/NonNull.html

2.4.4 Subclasses must respect superclass annotations
An annotation indicates a guarantee that a client can depend upon. A subclass is not permitted to weaken the contract;
for example, if a method accepts null as an argument, then every overriding definition must also accept null. A
subclass is permitted to strengthen the contract; for example, if a method does not accept null as an argument, then an
overriding definition is permitted to accept null.

As a bad example, consider an erroneous @Nullable annotation at line 141 of
com/google/common/collect/Multiset.java, version r78:

101 public interface Multiset<E> extends Collection<E> {
...
122 /**
123 * Adds a number of occurrences of an element to this multiset.
...
129 * @param element the element to add occurrences of; may be {@code null} only
130 * if explicitly allowed by the implementation
...
137 * @throws NullPointerException if {@code element} is null and this
138 * implementation does not permit null elements. Note that if {@code
139 * occurrences} is zero, the implementation may opt to return normally.
140 */
141 int add(@Nullable E element, int occurrences);

There exist implementations of Multiset that permit null elements, and implementations of Multiset that do not
permit null elements. A client with a variable Multiset ms does not know which variety of Multiset ms refers to.
However, the @Nullable annotation promises that ms.add(null, 1) is permissible. (Recall from Section 2.4.3 that
annotations should indicate normal behavior.)

If parameter element on line 141 were to be annotated, the correct annotation would be @NonNull. Suppose a
client has a reference to same Multiset ms. The only way the client can be sure not to throw an exception is to pass only
non-null elements to ms.add(). A particular class that implements Multiset could declare add to take a @Nullable
parameter. That still satisfies the original contract. It strengthens the contract by promising even more: a client with
such a reference can pass any non-null value to add(), and may also pass null.

However, the best annotation for line 141 is no annotation at all. The reason is that each implementation of the
Multiset interface should specify its own nullness properties when it specifies the type parameter for Multiset. For
example, two clients could be written as

class MyNullPermittingMultiset implements Multiset<@Nullable Object> { ... }
class MyNullProhibitingMultiset implements Multiset<@NonNull Object> { ... }

or, more generally, as

class MyNullPermittingMultiset<E extends @Nullable Object> implements Multiset<E> { ... }
class MyNullProhibitingMultiset<E extends @NonNull Object> implements Multiset<E> { ... }

Then, the specification is more informative, and the Checker Framework is able to do more precise checking, than if
line 141 has an annotation.

It is a pleasant feature of the Checker Framework that in many cases, no annotations at all are needed on type
parameters such as E in MultiSet.

2.4.5 Annotations on constructor invocations
In the checkers distributed with the Checker Framework, an annotation on a constructor invocation is equivalent to a
cast on a constructor result. That is, the following two expressions have identical semantics: one is just shorthand for
the other.

22

http://code.google.com/p/google-collections/source/browse/trunk/src/com/google/common/collect/Multiset.java

new @ReadOnly Date()
(@ReadOnly Date) new Date()

However, you should rarely have to use this. The Checker Framework will determine the qualifier on the result,
based on the “return value” annotation on the constructor definition. The “return value” annotation appears before the
constructor name, for example:

class MyClass {
@ReadOnly MyClass() { ... }

}

In general, you should only use an annotation on a constructor invocation when you know that the cast is guaranteed
to succeed. An example from the IGJ checker (Chapter 19) is new @Immutable MyClass() or new @Mutable
MyClass(), where you know that every other reference to the class is annotated @ReadOnly.

2.4.6 What to do if a checker issues a warning about your code
When you first run a type-checker on your code, it is likely to issue warnings or errors. For each warning, try to
understand why the checker issues it. (If you think the warning is wrong, then formulate an argument about why your
code is actually correct; also see Section 32.1.2.) For example, if you are using the Nullness Checker (Chapter 3,
page 24), try to understand why it cannot prove that no null pointer exception ever occurs. There are three general
reasons, listed below. You will need to examine your code, and possibly write test cases, to understand the reason.

1. There is a bug in your code, such as an actual possible null dereference. Fix your code to prevent that crash.
2. There is a weakness in the annotations. Improve the annotations. For example, continuing the Nullness Checker

example, if a particular variable is annotated as @Nullable but it actually never contains null at run time, then
change the annotation to @NonNull. The weakness might be in the annotations in your code, or in the annotations
in a library that your code calls. Another possible problem is that a library is unannotated (see Chapter 28,
page 151).

3. There is a weakness in the type-checker. Then your code is safe — it never suffers the error at run time — but the
checker cannot prove this fact. The checker is not omniscient, and some tricky coding paradigms are beyond its
analysis capabilities. In this case, you should suppress the warning; see Chapter 26, page 140. (Alternatively, if
the weakness is a bug in the checker, then please report the bug; see Chapter 32.2, page 198.)

If you have trouble understanding a Checker Framework warning message, you can search for its text in this manual.
Oftentimes there is an explanation of what to do.

Also see Chapter 32, Troubleshooting.

23

api/org/checkerframework/checker/nullness/qual/Nullable.html
api/org/checkerframework/checker/nullness/qual/NonNull.html

Chapter 3

Nullness Checker

If the Nullness Checker issues no warnings for a given program, then running that program will never throw a null
pointer exception. This guarantee enables a programmer to prevent errors from occurring when a program is run. See
Section 3.1 for more details about the guarantee and what is checked.

The most important annotations supported by the Nullness Checker are @NonNull and @Nullable. @NonNull is
rarely written, because it is the default. All of the annotations are explained in Section 3.2.

To run the Nullness Checker, supply the -processor org.checkerframework.checker.nullness.NullnessChecker
command-line option to javac. For examples, see Section 3.5.

The NullnessChecker is actually an ensemble of three pluggable type-checkers that work together: the Nullness
Checker proper (which is the main focus of this chapter), the Initialization Checker (Section 3.8), and the Map Key
Checker (Chapter 4, page 44). Their type hierarchies are completely independent, but they work together to provide
precise nullness checking.

3.1 What the Nullness Checker checks
The checker issues a warning in these cases:

1. When an expression of non-@NonNull type is dereferenced, because it might cause a null pointer exception.
Dereferences occur not only when a field is accessed, but when an array is indexed, an exception is thrown, a lock
is taken in a synchronized block, and more. For a complete description of all checks performed by the Nullness
Checker, see the Javadoc for NullnessVisitor.

2. When an expression of @NonNull type might become null, because it is a misuse of the type: the null value could
flow to a dereference that the checker does not warn about.
As a special case of an of @NonNull type becoming null, the checker also warns whenever a field of @NonNull
type is not initialized in a constructor. Also see the discussion of the -Alint=uninitialized command-line
option below.

This example illustrates the programming errors that the checker detects:

@Nullable Object obj; // might be null
@NonNull Object nnobj; // never null
...
obj.toString() // checker warning: dereference might cause null pointer exception
nnobj = obj; // checker warning: nnobj may become null
if (nnobj == null) // checker warning: redundant test

Parameter passing and return values are checked analogously to assignments.

24

api/org/checkerframework/checker/nullness/qual/NonNull.html
api/org/checkerframework/checker/nullness/qual/Nullable.html
api/org/checkerframework/checker/nullness/qual/NonNull.html
api/org/checkerframework/checker/nullness/qual/NonNull.html
api/org/checkerframework/checker/nullness/NullnessVisitor.html
api/org/checkerframework/checker/nullness/qual/NonNull.html
api/org/checkerframework/checker/nullness/qual/NonNull.html
api/org/checkerframework/checker/nullness/qual/NonNull.html

The Nullness Checker also checks the correctness, and correct use, of rawness annotations for checking initialization
(see Section 3.8.6) and of map key annotations (see Chapter 4, page 44).

The checker performs additional checks if certain -Alint command-line options are provided. (See Section 26.6
for more details about the -Alint command-line option.)

1. If you supply the -Alint=redundantNullComparison command-line option, then the checker warns when a
null check is performed against a value that is guaranteed to be non-null, as in ("m" == null). Such a check is
unnecessary and might indicate a programmer error or misunderstanding. The lint option is disabled by default
because sometimes such checks are part of ordinary defensive programming.

2. If you supply the -Alint=uninitialized command-line option, then the checker warns if a constructor fails
to initialize any field, including @Nullable types and primitive types. Such a warning is unrelated to whether
your code might throw a null pointer exception. However, you might want to enable this warning because it
is better code style to supply an explicit initializer, even if there is a default value such as 0 or false. This
command-line option does not affect the Nullness Checker’s tests that fields of @NonNull type are initialized —
such initialization is mandatory, not optional.

3. If you supply the -Alint=forbidnonnullarraycomponents command-line option, then the checker warns if it
encounters an array creation with a non-null component type. See Section 3.3.4 for a discussion.

3.2 Nullness annotations
The Nullness Checker uses three separate type hierarchies: one for nullness, one for rawness (Section 3.8.6), and one
for map keys (Chapter 4, page 44) The Nullness Checker has four varieties of annotations: nullness type qualifiers,
nullness method annotations, rawness type qualifiers, and map key type qualifiers.

3.2.1 Nullness qualifiers
The nullness hierarchy contains these qualifiers:

@Nullable indicates a type that includes the null value. For example, the type Boolean is nullable: a variable of
type Boolean always has one of the values TRUE, FALSE, or null.

@NonNull indicates a type that does not include the null value. The type boolean is non-null; a variable of type
boolean always has one of the values true or false. The type @NonNull Boolean is also non-null: a variable
of type @NonNull Boolean always has one of the values TRUE or FALSE — never null. Dereferencing an
expression of non-null type can never cause a null pointer exception.
The @NonNull annotation is rarely written in a program, because it is the default (see Section 3.3.2).

@PolyNull indicates qualifier polymorphism. For a description of @PolyNull, see Section 24.2.
@MonotonicNonNull indicates a reference that may be null, but if it ever becomes non-null, then it never

becomes null again. This is appropriate for lazily-initialized fields, among other uses. When the variable is read,
its type is treated as @Nullable, but when the variable is assigned, its type is treated as @NonNull.
Because the Nullness Checker works intraprocedurally (it analyzes one method at a time), when a MonotonicNonNull
field is first read within a method, the field cannot be assumed to be non-null. The benefit of MonotonicNonNull
over Nullable is its different interaction with flow-sensitive type qualifier refinement (Section 25.4). After a check
of a MonotonicNonNull field, all subsequent accesses within that method can be assumed to be NonNull, even
after arbitrary external method calls that have access to the given field.
It is permitted to initialize a MonotonicNonNull field to null, but the field may not be assigned to null any-
where else in the program. If you supply the noInitForMonotonicNonNull lint flag (for example, supply
-Alint=noInitForMonotonicNonNull on the command line), then @MonotonicNonNull fields are not allowed
to have initializers.
Use of @MonotonicNonNull on a static field is a code smell: it may indicate poor design. You should consider
whether it is possible to make the field a member field that is set in the constructor.

Figure 3.1 shows part of the type hierarchy for the Nullness type system. (The annotations exist only at compile
time; at run time, Java has no multiple inheritance.)

25

api/org/checkerframework/checker/nullness/qual/Nullable.html
api/org/checkerframework/checker/nullness/qual/NonNull.html
api/org/checkerframework/checker/nullness/qual/Nullable.html
api/org/checkerframework/checker/nullness/qual/NonNull.html
api/org/checkerframework/checker/nullness/qual/PolyNull.html
api/org/checkerframework/checker/nullness/qual/PolyNull.html
api/org/checkerframework/checker/nullness/qual/MonotonicNonNull.html
api/org/checkerframework/checker/nullness/qual/Nullable.html
api/org/checkerframework/checker/nullness/qual/NonNull.html

@NonNull Object @Nullable Date

@Nullable Object

@NonNull Date

Figure 3.1: Partial type hierarchy for the Nullness type system. Java’s Object is expressed as @Nullable Object.
Programmers can omit most type qualifiers, because the default annotation (Section 3.3.2) is usually correct. The
Nullness Checker verifies three type hierarchies: this one for nullness, one for initialization (Section 3.8), and one for
map keys (Chapter 4, page 44).

3.2.2 Nullness method annotations
The Nullness Checker supports several annotations that specify method behavior. These are declaration annotations, not
type annotations: they apply to the method itself rather than to some particular type.

@RequiresNonNull indicates a method precondition: The annotated method expects the specified variables
(typically field references) to be non-null when the method is invoked.

@EnsuresNonNull
@EnsuresNonNullIf indicates a method postcondition. With @EnsuresNonNull, the given expressions are

non-null after the method returns; this is useful for a method that initializes a field, for example. With
@EnsuresNonNullIf, if the annotated method returns the given boolean value (true or false), then the given
expressions are non-null. See Section 3.3.3 and the Javadoc for examples of their use.

3.2.3 Initialization qualifiers
The Nullness Checker invokes an Initialization Checker, whose annotations indicate whether an object is fully initialized
— that is, whether all of its fields have been assigned.

@Initialized
@UnknownInitialization
@UnderInitialization

Use of these annotations can help you to type-check more code. Figure 3.3 shows its type hierarchy. For details, see
Section 3.8.

A slightly simpler variant, called the Rawness Initialization Checker, is also available:

@Raw
@NonRaw
@PolyRaw

Figure 3.5 shows its type hierarchy. For details, see Section 3.8.6.

3.2.4 Map key qualifiers
@KeyFor

indicates that a value is a key for a given map — that is, indicates whether map.containsKey(value) would evaluate
to true.

This annotation is checked by a Map Key Checker (Chapter 4, page 44) that the Nullness Checker invokes. The
@KeyFor annotation enables the Nullness Checker to treat calls to Map.get precisely rather than assuming it may
always return null. In particular, a call mymap.get(mykey) returns a non-null value if two conditions are satisfied:

26

api/org/checkerframework/checker/nullness/qual/RequiresNonNull.html
api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html
api/org/checkerframework/checker/initialization/qual/Initialized.html
api/org/checkerframework/checker/initialization/qual/UnknownInitialization.html
api/org/checkerframework/checker/initialization/qual/UnderInitialization.html
api/org/checkerframework/checker/nullness/qual/Raw.html
api/org/checkerframework/checker/nullness/qual/NonRaw.html
api/org/checkerframework/checker/nullness/qual/PolyRaw.html
api/org/checkerframework/checker/nullness/qual/KeyFor.html
api/org/checkerframework/checker/nullness/qual/KeyFor.html
http://docs.oracle.com/javase/8/docs/api/java/util/Map.html#get-java.lang.Object-

1. mymap’s values are all non-null; that is, mymap was declared as Map<KeyType, @NonNull ValueType>.
Note that @NonNull is the default type, so it need not be written explicitly.

2. mykey is a key in mymap; that is, mymap.containsKey(mykey) returns true. You express this fact to the
Nullness Checker by declaring mykey as @KeyFor("mymap") KeyType mykey. For a local variable, you
generally do not need to write the @KeyFor("mymap") type qualifier, because it can be inferred.

If either of these two conditions is violated, then mymap.get(mykey) has the possibility of returning null.

3.3 Writing nullness annotations

3.3.1 Implicit qualifiers
As described in Section 25.3, the Nullness Checker adds implicit qualifiers, reducing the number of annotations that
must appear in your code. For example, enum types are implicitly non-null, so you never need to write @NonNull
MyEnumType.

For a complete description of all implicit nullness qualifiers, see the Javadoc for NullnessAnnotatedTypeFactory.

3.3.2 Default annotation
Unannotated references are treated as if they had a default annotation. The standard defaulting rule is CLIMB-to-top,
described in Section 25.3.2. Its effect is to default all types to @NonNull, except that @Nullable is used for casts,
locals, instanceof, and implicit bounds. A user can choose a different defaulting rule.

3.3.3 Conditional nullness
The Nullness Checker supports a form of conditional nullness types, via the @EnsuresNonNullIf method annotations.
The annotation on a method declares that some expressions are non-null, if the method returns true (false, respectively).

Consider java.lang.Class. Method Class.getComponentType() may return null, but it is specified to return a
non-null value if Class.isArray() is true. You could declare this relationship in the following way (this particular
example is already done for you in the annotated JDK that comes with the Checker Framework):

class Class {
@EnsuresNonNullIf(expression="getComponentType()", result=true)
public native boolean isArray();

public native @Nullable Class<?> getComponentType();
}

A client that checks that a Class reference is indeed that of an array, can then de-reference the result of
Class.getComponentType safely without any nullness check. The Checker Framework source code itself uses
such a pattern:

if (clazz.isArray()) {
// no possible null dereference on the following line
TypeMirror componentType = typeFromClass(clazz.getComponentType());
...

}

Another example is Queue.peek and Queue.poll, which return non-null if isEmpty returns false.
The argument to @EnsuresNonNullIf is a Java expression, including method calls (as shown above), method

formal parameters, fields, etc.; for details, see Section 25.5. More examples of the use of these annotations appear in the
Javadoc for @EnsuresNonNullIf.

27

api/org/checkerframework/checker/nullness/NullnessAnnotatedTypeFactory.html
api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Class.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#getComponentType--
http://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#isArray--
http://docs.oracle.com/javase/8/docs/api/java/util/Queue.html#peek--
http://docs.oracle.com/javase/8/docs/api/java/util/Queue.html#poll--
http://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#isEmpty--
api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html

3.3.4 Nullness and arrays
The components of a newly created object of reference type are all null. Only after initialization can the array actually
be considered to contain non-null components. Therefore, the following is not allowed:

@NonNull Object [] oa = new @NonNull Object[10]; // error

Instead, one creates a nullable or lazy-nonnull array, initializes each component, and then assigns the result to a
non-null array:

@MonotonicNonNull Object [] temp = new @MonotonicNonNull Object[10];
for (int i = 0; i < temp.length; ++i) {

temp[i] = new Object();
}
@SuppressWarnings("nullness") // temp array is now fully initialized
@NonNull Object [] oa = temp;

Note that the checker is currently not powerful enough to ensure that each array component was initialized.
Therefore, the last assignment needs to be trusted: that is, a programmer must verify that it is safe, then write a
@SuppressWarnings annotation.

You need to supply the -Alint=forbidnonnullarraycomponents command-line option to enable this behavior.
For backwards-compatibility reasons, the default behavior is currently to unsoundly allow non-null array components.

3.3.5 Run-time checks for nullness
When you perform a run-time check for nullness, such as if (x != null) ..., then the Nullness Checker refines the
type of x to @NonNull within the scope of the test. For more details, see Section 25.4.

3.3.6 Additional details
The Nullness Checker does some special checks in certain circumstances, in order to soundly reduce the number of
warnings that it produces.

For example, a call to System.getProperty(String) can return null in general, but it will not return null if the
argument is one of the built-in-keys listed in the documentation of System.getProperties(). The Nullness Checker is
aware of this fact, so you do not have to suppress a warning for a call like System.getProperty("line.separator").
The warning is still issued for code like this:

final String s = "line.separator";
nonNullvar = System.getProperty(s);

though that case could be handled as well, if desired. (Suppression of the warning is, strictly speaking, not sound,
because a library that your code calls, or your code itself, could perversely change the system properties; the Nullness
Checker assumes this bizarre coding pattern does not happen.)

3.3.7 Inference of @NonNull and @Nullable annotations
It can be tedious to write annotations in your code. Tools exist that can automatically infer annotations and insert them
in your source code. (This is different than type qualifier refinement for local variables (Section 25.4), which infers a
more specific type for local variables and uses them during type-checking but does not insert them in your source code.
Type qualifier refinement is always enabled, no matter how annotations on signatures got inserted in your source code.)

Your choice of tool depends on what default annotation (see Section 3.3.2) your code uses. You only need one of
these tools.

28

http://docs.oracle.com/javase/8/docs/api/java/lang/System.html#getProperty-java.lang.String-
http://docs.oracle.com/javase/8/docs/api/java/lang/System.html#getProperties--

• Inference of @Nullable: If your code uses the standard CLIMB-to-top default (Section 25.3.2) or the NonNull
default, then use the AnnotateNullable tool of the Daikon invariant detector.

• Inference of @NonNull: If your code uses the Nullable default, use one of these tools:

– Julia analyzer,
– Nit: Nullability Inference Tool,
– Non-null checker and inferencer of the JastAdd Extensible Compiler.

3.4 Suppressing nullness warnings
When the Nullness Checker reports a warning, it’s best to change the code or its annotations, to eliminate the warning.
Alternately, you can suppress the warning, which does not change the code but prevents the Nullness Checker from
reporting this particular warning to you.

The Checker Framework supplies several ways to suppress warnings, most notably the @SuppressWarnings("nullness")
annotation (see Section 26). An example use is

// might return null
@Nullable Object getObject(...) { ... }

void myMethod() {
@SuppressWarnings("nullness") // with argument x, getObject always returns a non-null value
@NonNull Object o2 = getObject(x);

The Nullness Checker supports an additional warning suppression key, nullness:generic.argument. Use of
@SuppressWarnings("nullness:generic.argument") causes the Nullness Checker to suppress warnings related
to misuse of generic type arguments. One use for this key is when a class is declared to take only @NonNull type
arguments, but you want to instantiate the class with a @Nullable type argument, as in List<@Nullable Object>.
For a more complete explanation of this example, see Section 31.6.1, page 187.

The Nullness Checker also permits you to use assertions or method calls to suppress warnings; see below.

3.4.1 Suppressing warnings with assertions and method calls
Occasionally, it is inconvenient or verbose to use the @SuppressWarnings annotation. For example, Java does
not permit annotations such as @SuppressWarnings to appear on statements. In such cases, you can use the
@AssumeAssertion string in an assert message (see Section 26.2).

If you need to suppress a warning within an expression, then sometimes writing an assertion is not convenient. In
such a case, you can suppress warnings by writing a call to the NullnessUtils.castNonNull method. The rest of
this section discusses the castNonNull method.

The Nullness Checker considers both the return value, and also the argument, to be non-null after the castNonNull
method call. The Nullness Checker issues no warnings in any of the following code:

// One way to use castNonNull as a cast:
@NonNull String s = castNonNull(possiblyNull1);

// Another way to use castNonNull as a cast:
castNonNull(possiblyNull2).toString();

// It is possible, but not recommmended, to use castNonNull as a statement:
// (It would be better to write an assert statement with @AssumeAssertion
// in its message, instead.)
castNonNull(possiblyNull3);
possiblyNull3.toString();

The castNonNull method throws AssertionError if Java assertions are enabled and the argument is null.
However, it is not intended for general defensive programming; see Section 26.2.1.

29

api/org/checkerframework/checker/nullness/qual/Nullable.html
http://plse.cs.washington.edu/daikon/download/doc/daikon.html#AnnotateNullable
http://plse.cs.washington.edu/daikon/
api/org/checkerframework/checker/nullness/qual/NonNull.html
http://julia.scienze.univr.it/
http://nit.gforge.inria.fr
http://jastadd.org/jastadd-tutorial-examples/non-null-types-for-java/
http://jastadd.org/
api/org/checkerframework/checker/nullness/NullnessUtils.html#castNonNull-T-

A potential disadvantage of using the castNonNull method is that your code becomes dependent on the Checker
Framework at run time as well as at compile time. You can avoid this by copying the implementation of castNonNull
into your own code, and possibly renaming it if you do not like the name. Be sure to retain the documentation
that indicates that your copy is intended for use only to suppress warnings and not for defensive programming. See
Section 26.2.1 for an explanation of the distinction.

The Nullness Checker introduces a new method, rather than re-using an existing method such as org.junit.Assert.assertNotNull(Object)
or com.google.common.base.Preconditions.checkNotNull(Object). Those methods are commonly used for
defensive programming, so it is impossible to know the programmer’s intent when writing them. Therefore, it is
important to have a method call that is used only for warning suppression. See Section 26.2.1 for a discussion of the
distinction between warning suppression and defensive programming.

3.5 Examples

3.5.1 Tiny examples
To try the Nullness Checker on a source file that uses the @NonNull qualifier, use the following command (where javac
is the Checker Framework compiler that is distributed with the Checker Framework):

javac -processor org.checkerframework.checker.nullness.NullnessChecker examples/NullnessExample.java

Compilation will complete without warnings.
To see the checker warn about incorrect usage of annotations (and therefore the possibility of a null pointer exception

at run time), use the following command:

javac -processor org.checkerframework.checker.nullness.NullnessChecker examples/NullnessExampleWithWarnings.java

The compiler will issue two warnings regarding violation of the semantics of @NonNull.

3.5.2 Example annotated source code
Some libraries that are annotated with nullness qualifiers are:

• The Nullness Checker itself.
• The Plume-lib library. Run the command make check-nullness.
• The Daikon invariant detector. Run the command make check-nullness.

3.6 Tips for getting started
Here are some tips about getting started using the Nullness Checker on a legacy codebase. For more generic advice (not
specific to the Nullness Checker), see Section 2.4.1.

Your goal is to add @Nullable annotations to the types of any variables that can be null. (The default is to assume
that a variable is non-null unless it has a @Nullable annotation.) Then, you will run the Nullness Checker. Each of
its errors indicates either a possible null pointer exception, or a wrong/missing annotation. When there are no more
warnings from the checker, you are done!

We recommend that you start by searching the code for occurrences of null in the following locations; when you
find one, write the corresponding annotation:

• in Javadoc: add @Nullable annotations to method signatures (parameters and return types).
• return null: add a @Nullable annotation to the return type of the given method.
• param == null: when a formal parameter is compared to null, then in most cases you can add a @Nullable

annotation to the formal parameter’s type

30

api/org/checkerframework/checker/nullness/qual/NonNull.html
api/org/checkerframework/checker/nullness/qual/NonNull.html
http://mernst.github.io/plume-lib/
http://plse.cs.washington.edu/daikon/
api/org/checkerframework/checker/nullness/qual/Nullable.html

• TypeName field = null;: when a field is initialized to null in its declaration, then it needs either a
@Nullable or a @MonotonicNonNull annotation. If the field is always set to a non-null value in the constructor,
then you can just change the declaration to Type field;, without an initializer, and write no type annotation
(because the default is @NonNull).
• declarations of contains, containsKey, containsValue, equals, get, indexOf, lastIndexOf, and remove

(with Object as the argument type): change the argument type to @Nullable Object; for remove, also change
the return type to @Nullable Object.

You should ignore all other occurrences of null within a method body. In particular, you (almost) never need to
annotate local variables.

Only after this step should you run ant to invoke the Nullness Checker. The reason is that it is quicker to search for
places to change than to repeatedly run the checker and fix the errors it tells you about, one at a time.

Here are some other tips:

• In any file where you write an annotation such as @Nullable, don’t forget to add import
org.checkerframework.checker.nullness.qual.*;.

• To indicate an array that can be null, write, for example: int @Nullable [].
By contrast, @Nullable Object [] means a non-null array that contains possibly-null objects.

• If you know that a particular variable is definitely not null, but the Nullness Checker estimates that the variable
might be null, then you can make the Nullness Checker trust your judgment by writing an assertion (see
Section 26.2):

assert var != null : "@AssumeAssertion(nullness)";

• To indicate that a routine returns the same value every time it is called, use @Pure (see Section 25.4.3).
• To indicate a method precondition (a contract stating the conditions under which a client is allowed to call it),

you can use annotations such as @RequiresNonNull (see Section 3.2.2).

3.7 Other tools for nullness checking
The Checker Framework’s nullness annotations are similar to annotations used in IntelliJ IDEA, FindBugs, JML, the
JSR 305 proposal, NetBeans, and other tools. Also see Section 32.5 for a comparison to other tools.

You might prefer to use the Checker Framework because it has a more powerful analysis that can warn you about
more null pointer errors in your code.

If your code is already annotated with a different nullness annotation, you can reuse that effort. The Checker
Framework comes with cleanroom re-implementations of annotations from other tools. It treats them exactly as if you
had written the corresponding annotation from the Nullness Checker, as described in Figure 3.2.

Alternately, the Checker Framework can process those other annotations (as well as its own, if they also appear in
your program). The Checker Framework has its own definition of the annotations on the left side of Figure 3.2, so that
they can be used as type qualifiers. The Checker Framework interprets them according to the right side of Figure 3.2.

The Checker Framework may issue more or fewer errors than another tool. This is expected, since each tool uses a
different analysis. Remember that the Checker Framework aims at soundness: it aims to never miss a possible null
dereference, while at the same time limiting false reports. Also, note FindBugs’s non-standard meaning for @Nullable
(Section 3.7.2).

Because some of the names are the same (NonNull, Nullable), you can import at most one of the annotations with
conflicting names; the other(s) must be written out fully rather than imported.

Note that some older tools interpret array and vararg declarations inconsistently with the Java specification. For
example, they might interpret @NonNull Object [] as “non-null array of objects”, rather than as “array of non-null
objects” which is the correct Java interpretation. Such an interpretation is unfortunate and confusing. See Section 31.5.3
for some more details about this issue.

31

api/org/checkerframework/checker/nullness/qual/Nullable.html
api/org/checkerframework/checker/nullness/qual/MonotonicNonNull.html
api/org/checkerframework/dataflow/qual/Pure.html
api/org/checkerframework/checker/nullness/qual/RequiresNonNull.html

android.annotation.NonNull
android.support.annotation.NonNull
com.sun.istack.internal.NotNull
edu.umd.cs.findbugs.annotations.NonNull
javax.annotation.Nonnull
javax.validation.constraints.NotNull
org.eclipse.jdt.annotation.NonNull
org.jetbrains.annotations.NotNull
org.jmlspecs.annotation.NonNull
org.netbeans.api.annotations.common.NonNull

⇒ org.checkerframework.checker.nullness.qual.NonNull

android.annotation.Nullable
android.support.annotation.Nullable
com.sun.istack.internal.Nullable
edu.umd.cs.findbugs.annotations.Nullable
edu.umd.cs.findbugs.annotations.CheckForNull
edu.umd.cs.findbugs.annotations.UnknownNullness
javax.annotation.Nullable
javax.annotation.CheckForNull
org.eclipse.jdt.annotation.Nullable
org.jetbrains.annotations.Nullable
org.jmlspecs.annotation.Nullable
org.netbeans.api.annotations.common.NullAllowed
org.netbeans.api.annotations.common.CheckForNull
org.netbeans.api.annotations.common.NullUnknown

⇒ org.checkerframework.checker.nullness.qual.Nullable

Figure 3.2: Correspondence between other nullness annotations and the Checker Framework’s annotations.

3.7.1 Which tool is right for you?
Different tools are appropriate in different circumstances. Here is a brief comparison with FindBugs, but similar points
apply to other tools.

The Checker Framework has a more powerful nullness analysis; FindBugs misses some real errors. However,
FindBugs does not require you to annotate your code as thoroughly as the Checker Framework does. Depending on the
importance of your code, you may desire: no nullness checking, the cursory checking of FindBugs, or the thorough
checking of the Checker Framework. You might even want to ensure that both tools run, for example if your coworkers
or some other organization are still using FindBugs. If you know that you will eventually want to use the Checker
Framework, there is no point using FindBugs first; it is easier to go straight to using the Checker Framework.

FindBugs can find other errors in addition to nullness errors; here we focus on its nullness checks. Even if you use
FindBugs for its other features, you may want to use the Checker Framework for analyses that can be expressed as
pluggable type-checking, such as detecting nullness errors.

Regardless of whether you wish to use the FindBugs nullness analysis, you may continue running all of the other
FindBugs analyses at the same time as the Checker Framework; there are no interactions among them.

If FindBugs (or any other tool) discovers a nullness error that the Checker Framework does not, please report it to
us (see Section 32.2) so that we can enhance the Checker Framework.

3.7.2 Incompatibility note about FindBugs @Nullable
FindBugs has a non-standard definition of @Nullable. FindBugs’s treatment is not documented in its own Javadoc;
it is different from the definition of @Nullable in every other tool for nullness analysis; it means the same thing as
@NonNull when applied to a formal parameter; and it invariably surprises programmers. Thus, FindBugs’s @Nullable

32

http://findbugs.sourceforge.net/api/edu/umd/cs/findbugs/annotations/Nullable.html

is detrimental rather than useful as documentation. In practice, your best bet is to not rely on FindBugs for nullness
analysis, even if you find FindBugs useful for other purposes.

You can skip the rest of this section unless you wish to learn more details.
FindBugs suppresses all warnings at uses of a @Nullable variable. (You have to use @CheckForNull to indicate a

nullable variable that FindBugs should check.) For example:

// declare getObject() to possibly return null
@Nullable Object getObject() { ... }

void myMethod() {
@Nullable Object o = getObject();
// FindBugs issues no warning about calling toString on a possibly-null reference!
o.toString();

}

The Checker Framework does not emulate this non-standard behavior of FindBugs, even if the code uses FindBugs
annotations.

With FindBugs, you annotate a declaration, which suppresses checking at all client uses, even the places that
you want to check. It is better to suppress warnings at only the specific client uses where the value is known to be
non-null; the Checker Framework supports this, if you write @SuppressWarnings at the client uses. The Checker
Framework also supports suppressing checking at all client uses, by writing a @SuppressWarnings annotation at the
declaration site. Thus, the Checker Framework supports both use cases, whereas FindBugs supports only one and gives
the programmer less flexibility.

In general, the Checker Framework will issue more warnings than FindBugs, and some of them may be about real
bugs in your program. See Section 3.4 for information about suppressing nullness warnings.

(FindBugs made a poor choice of names. The choice of names should make a clear distinction between annotations
that specify whether a reference is null, and annotations that suppress false warnings. The choice of names should also
have been consistent for other tools, and intuitively clear to programmers. The FindBugs choices make the FindBugs
annotations less helpful to people, and much less useful for other tools. As a separate issue, the FindBugs analysis is
also very imprecise. For type-related analyses, it is best to stay away from the FindBugs nullness annotations, and use a
more capable tool like the Checker Framework.)

3.7.3 Relationship to Optional<T>

Many null pointer exceptions occur because the programmer forgets to check whether a reference is null before
dereferencing it. Java 8’s Optional<T> class provides a partial solution: you cannot dereference the contained value
without calling the get method.

However, the use of Optional for this purpose is unsatisfactory. First, it adds syntactic complexity, making your
code longer and harder to read. (The Optional class provides some operations, such as map and orElse, that you
would otherwise have to write; without these its code bloat would be even worse.) Second, there is no guarantee that the
programmer remembers to call isPresent before calling get. Thus, use of Optional doesn’t solve the underlying
problem — it merely converts a NullPointerException into a NoSuchElementException exception, and in either
case your code crashes.

The Nullness Checker does not suffer these limitations. It works with existing code and types, it ensures that you
check for null wherever necessary, and it infers when the check for null is not necessary based on previous statements
in the method.

3.8 Initialization Checker
Every object’s fields start out as null. By the time the constructor finishes executing, the @NonNull fields have been
set to a different value. Your code can suffer a NullPointerException when using a @NonNull field, if your code uses

33

http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html

the field during initialization. The Nullness Checker prevents this problem by warning you anytime that you may be
accessing an uninitialized field. This check is useful because it prevents errors in your code. However, the analysis
can be confusing to understand. If you wish to disable the initialization checks, pass the command-line argument
-AsuppressWarnings=uninitialized when running the Nullness Checker. You will no longer get a guarantee of no
null pointer exceptions, but you can still use the Nullness Checker to find most of the null pointer problems in your
code.

An object is partially initialized from the time that its constructor starts until its constructor finishes. This is relevant
to the Nullness Checker because while the constructor is executing — that is, before initialization completes — a
@NonNull field may be observed to be null, until that field is set. In particular, the Nullness Checker issues a warning
for code like this:

public class MyClass {
private @NonNull Object f;
public MyClass(int x, int y) {

// Error because constructor contains no assignment to this.f.
// By the time the constructor exits, f must be initialized to a non-null value.

}
public MyClass(int x) {

// Error because this.f is accessed before f is initialized.
// At the beginning of the constructor’s execution, accessing this.f
// yields null, even though field f has a non-null type.
this.f.toString();

}
public MyClass(int x, int y, int z) {

m();
}
public void m() {

// Error because this.f is accessed before f is initialized,
// even though the access is not in a constructor.
// When m is called from the constructor, accessing f yields null,
// even though field f has a non-null type.
this.f.toString();

}

When a field f is declared with a @NonNull type, then code can depend on the fact that the field is not null. However,
this guarantee does not hold for a partially-initialized object.

The Nullness Checker uses three annotations to indicate whether an object is initialized (all its @NonNull fields
have been assigned), under initialization (its constructor is currently executing), or its initialization state is unknown.

These distinctions are mostly relevant within the constructor, or for references to this that escape the constructor
(say, by being stored in a field or passed to a method before initialization is complete). Use of initialization annotations
is rare in most code.

The most common use for the @UnderInitialization annotation is for a helper routine that is called by constructor.
For example:

class MyClass {
Object field1;
Object field2;
Object field3;

public MyClass(String arg1) {
this.field1 = arg1;
init_other_fields();

34

api/org/checkerframework/checker/nullness/qual/NonNull.html

@UnknownInitialization Date

@UnknownInitialization Object

@Initialized Object @UnderInitialization Object

@Initialized Date @UnderInitialization Date

@UnderInitialization(Object.class) Giraffe

@UnderInitialization(Vertebrate.class) Giraffe

@UnderInitialization(Mammal.class) Giraffe

@UnderInitialization(Giraffe.class) Giraffe

Figure 3.3: Partial type hierarchy for the Initialization type system. @UnknownInitialization and
@UnderInitialization each take an optional parameter indicating how far initialization has proceeded, and the right
side of the figure illustrates its type hierarchy in more detail.

}

// A helper routine that initializes all the fields other than field1.
@EnsuresNonNull({"field2", "field3"})
private void init_other_fields(@UnderInitialization(MyClass.class) MyClass this) {

field2 = new Object();
field3 = new Object();

}
}

For compatibility with Java 6 and 7, you can write the receiver parameter in comments (see Section 27.2.1):

private void init_other_fields(/*>>>@UnderInitialization(MyClass.class) MyClass this*/) {

3.8.1 Initialization qualifiers
The initialization hierarchy is shown in Figure 3.3. The initialization hierarchy contains these qualifiers:

@Initialized indicates a type that contains a fully-initialized object. Initialized is the default, so there is little
need for a programmer to write this explicitly.

@UnknownInitialization indicates a type that may contain a partially-initialized object. In a partially-initialized
object, fields that are annotated as @NonNull may be null because the field has not yet been assigned.
@UnknownInitialization takes a parameter that is the class the object is definitely initialized up to. For
instance, the type @UnknownInitialization(Foo.class) denotes an object in which every fields declared in
Foo or its superclasses is initialized, but other fields might not be. Just @UnknownInitialization is equivalent
to @UnknownInitialization(Object.class).

@UnderInitialization indicates a type that contains a partially-initialized object that is under initialization —
that is, its constructor is currently executing. It is otherwise the same as @UnknownInitialization. Within the
constructor, this has @UnderInitialization type until all the @NonNull fields have been assigned.

A partially-initialized object (this in a constructor) may be passed to a helper method or stored in a variable; if so, the
method receiver, or the field, would have to be annotated as @UnknownInitialization or as @UnderInitialization.

If a reference has @UnknownInitialization or @UnderInitialization type, then all of its @NonNull fields are
treated as @MonotonicNonNull: when read, they are treated as being @Nullable, but when written, they are treated as
being @NonNull.

The initialization hierarchy is orthogonal to the nullness hierarchy. It is legal for a reference to be @NonNull
@UnderInitialization, @Nullable @UnderInitialization, @NonNull @Initialized, or @Nullable @Initialized.
The nullness hierarchy tells you about the reference itself: might the reference be null? The initialization hierarchy tells

35

api/org/checkerframework/checker/initialization/qual/Initialized.html
api/org/checkerframework/checker/initialization/qual/UnknownInitialization.html
api/org/checkerframework/checker/nullness/qual/NonNull.html
api/org/checkerframework/checker/initialization/qual/UnderInitialization.html
api/org/checkerframework/checker/initialization/qual/UnderInitialization.html
api/org/checkerframework/checker/nullness/qual/MonotonicNonNull.html
api/org/checkerframework/checker/nullness/qual/Nullable.html
api/org/checkerframework/checker/nullness/qual/NonNull.html

Declarations Expression Expression’s nullness type, or checker error
class C {
@NonNull Object f;
@Nullable Object g;
...

}
@NonNull @Initialized C a; a @NonNull

a.f @NonNull
a.g @Nullable

@NonNull @UnderInitialization C b; b @NonNull
b.f @MonotonicNonNull
b.g @Nullable

@Nullable @Initialized C c; c @Nullable
c.f error: deref of nullable
c.g error: deref of nullable

@Nullable @UnderInitialization C d; d @Nullable
d.f error: deref of nullable
d.g error: deref of nullable

Figure 3.4: Examples of the interaction between nullness and initialization. Declarations are shown at the left for
reference, but the focus of the table is the expressions and their nullness type or error.

you about the @NonNull fields in the referred-to object: might those fields be temporarily null in contravention of their
type annotation? Figure 3.4 contains some examples.

3.8.2 How an object becomes initialized
Within the constructor, this starts out with @UnderInitialization type. As soon as all of the @NonNull fields have
been initialized, then this is treated as initialized. (See Section 3.8.3 for a slight clarification of this rule.)

The Initialization Checker issues an error if the constructor fails to initialize any @NonNull field. This ensures that
the object is in a legal (initialized) state by the time that the constructor exits. This is different than Java’s test for
definite assignment (see JLS ch.16), which does not apply to fields (except blank final ones, defined in JLS §4.12.4)
because fields have a default value of null.

All @NonNull fields must either have a default in the field declaration, or be assigned in the constructor or in a
helper method that the constructor calls. If your code initializes (some) fields in a helper method, you will need to
annotate the helper method with an annotation such as @EnsuresNonNull({"field1", "field2"}) for all the fields
that the helper method assigns. It’s a bit odd, but you use that same annotation, @EnsuresNonNull, to indicate that a
primitive field has its value set in a helper method, which is relevant when you supply the -Alint=uninitialized
command-line option (see Section 3.1).

3.8.3 Partial initialization
So far, we have discussed initialization as if it is an all-or-nothing property: an object is non-initialized until initialization
completes, and then it is initialized. The full truth is a bit more complex: during the initialization process an object can
be partially initialized, and as the object’s superclass constructors complete, its initialization status is updated. The
Initialization Checker lets you express such properties when necessary.

Consider a simple example:

class A {
Object a;
A() {

a = new Object();

36

api/org/checkerframework/checker/initialization/qual/UnderInitialization.html
api/org/checkerframework/checker/nullness/qual/NonNull.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-16.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.12.4
api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html

}
}
class B extends A {

Object b;
B() {

super();
b = new Object();

}
}

Consider what happens during execution of new B().

1. B’s constructor begins to execute. At this point, neither the fields of A nor those of B have been initialized yet.
2. B’s constructor calls A’s constructor, which begins to execute. No fields of A nor of B have been initialized yet.
3. A’s constructor completes. Now, all the fields of A have been initialized, and their invariants (such as that field a

is non-null) can be depended on. However, because B’s constructor has not yet completed executing, the object
being constructed is not yet fully initialized. When treated as an A (e.g., if only the A fields are accessed), the
object is initialized, but when treated as a B, the object is still non-initialized.

4. B’s constructor completes. The object is initialized when treated as an A or a B. (And, the object is fully initialized
if B’s constructor was invoked via a new B(). But the type system cannot assume that – there might be a class
C extends B { ... }, and B’s constructor might have been invoked from that.)

At any moment during initialization, the superclasses of a given class can be divided into those that have completed
initialization and those that have not yet completed initialization. More precisely, at any moment there is a point in the
class hierarchy such that all the classes above that point are fully initialized, and all those below it are not yet initialized.
As initialization proceeds, this dividing line between the initialized and uninitialized classes moves down the type
hierarchy.

The Nullness Checker lets you indicate where the dividing line is between the initialized and non-initialized classes.
The @UnderInitialization(classliteral) indicates the first class that is known to be fully initialized. When
you write @UnderInitialization(OtherClass.class) MyClass x;, that means that variable x is initialized for
OtherClass and its superclasses, and x is (possibly) uninitialized for MyClass and all subclasses.

We can now state a clarification of Section 3.8.2’s rule for an object becoming initialized. As soon as all of the
@NonNull fields in class C have been initialized, then this is treated as @UnderInitialization(C), rather than
treated as simply @Initialized.

The example above lists 4 moments during construction. At those moments, the type of the object being constructed
is:

1. @UnderInitialization B
2. @UnderInitialization A
3. @UnderInitialization(A.class) A
4. @UnderInitialization(B.class) B

3.8.4 How to handle warnings
There are several ways to address a warning “error: the constructor does not initialize fields: . . . ”.

• Declare the field as @Nullable. Recall that if you did not write an annotation, the field defaults to @NonNull.
• Declare the field as @MonotonicNonNull. This is appropriate if the field starts out as null but is later set to a

non-null value. You may then wish to use the @EnsuresNonNull annotation to indicate which methods set the
field, and the @RequiresNonNull annotation to indicate which methods require the field to be non-null.

• Initialize the field in the constructor or in the field’s initializer, if the field should be initialized. (In this case, the
Initialization Checker has found a bug!)

37

api/org/checkerframework/checker/initialization/qual/UnderInitialization.html
api/org/checkerframework/checker/nullness/qual/NonNull.html
api/org/checkerframework/checker/initialization/qual/UnderInitialization.html
api/org/checkerframework/checker/initialization/qual/Initialized.html
api/org/checkerframework/checker/nullness/qual/Nullable.html
api/org/checkerframework/checker/nullness/qual/NonNull.html
api/org/checkerframework/checker/nullness/qual/MonotonicNonNull.html
api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
api/org/checkerframework/checker/nullness/qual/RequiresNonNull.html

Do not initialize the field to an arbitrary non-null value just to eliminate the warning. Doing so degrades your
code: it introduces a value that will confuse other programmers, and it converts a clear NullPointerException into
a more obscure error.

If your code calls an instance method from a constructor, you may see a message such as the following:

Foo.java:123: error: call to initHelper() not allowed on the given receiver.
initHelper();

^
found : @UnderInitialization(com.google.Bar.class) @NonNull MyClass
required: @Initialized @NonNull MyClass

The problem is that the current object (this) is under initialization, but the receiver formal parameter (Section 31.5.1)
of method initHelper() is implicitly annotated as @Initialized. If initHelper() doesn’t depend on its receiver
being initialized — that is, it’s OK to call x.initHelper even if x is not initialized — then you can indicate that:

class MyClass {
void initHelper(@UnknownInitialization MyClass this, String param1) { ... }

}

If you are using annotations in comments, you would write:

class MyClass {
void initHelper(/*>>>@UnknownInitialization MyClass this,*/ String param1) { ... }

}

You are likely to want to annotate initHelper() with @EnsuresNonNull as well; see Section 3.2.2.
You may get the “call to . . . is not allowed on the given receiver” error even if your constructor has already initialized

all the fields. For this code:

public class MyClass {
@NonNull Object field;
public MyClass() {

field = new Object();
helperMethod();

}
private void helperMethod() {
}

}

the Nullness Checker issues the following warning:

MyClass.java:7: error: call to helperMethod() not allowed on the given receiver.
helperMethod();

^
found : @UnderInitialization(MyClass.class) @NonNull MyClass
required: @Initialized @NonNull MyClass

1 error

The reason is that even though the object under construction has had all the fields declared in MyClass ini-
tialized, there might be a subclass of MyClass. Thus, the receiver of helperMethod should be declared as
@UnderInitialization(MyClass.class), which says that initialization has completed for all the MyClass fields
but may not have been completed overall. If helperMethod had been a public method that could also be called
after initialization was actually complete, then the receiver should have type @UnknownInitialization, which is the
supertype of @UnknownInitialization and @UnderInitialization.

38

api/org/checkerframework/checker/initialization/qual/Initialized.html
api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html

3.8.5 More details about initialization checking
Suppressing warnings You can suppress warnings related to partially-initialized objects with
@SuppressWarnings("initialization").

Checking initialization of all fields, not just @NonNull ones When the -Alint=uninitialized command-line
option is provided, then an object is considered uninitialized until all its fields are assigned, not just the @NonNull ones.
See Section 3.1.

Use of method annotations A method with a non-initialized receiver may assume that a few fields (but not all of
them) are non-null, and it sometimes sets some more fields to non-null values. To express these concepts, use the
@RequiresNonNull, @EnsuresNonNull, and @EnsuresNonNullIf method annotations; see Section 3.2.2.

Source of the type system The type system enforced by the Initialization Checker is known as “Freedom Before
Commitment” [SM11]. Our implementation changes its initialization modifiers (“committed”, “free”, and “unclas-
sified”) to “initialized”, “unknown initialization”, and “under initialization”. Our implementation also has several
enhancements. For example, it supports partial initialization (the argument to the @UnknownInitialization and
@UnderInitialization annotations.

3.8.6 Rawness Initialization Checker
The Checker Framework supports two different initialization checkers that are integrated with the Nullness Checker.
You can use whichever one you prefer.

One (described in most of Section 3.8) uses the three annotations @Initialized, @UnknownInitialization, and
@UnderInitialization. We recommend that you use it.

The other (described here in Section 3.8.6) uses the two annotations @Raw and @NonRaw. The rawness type system
is slightly easier to use but slightly less expressive.

To run the Nullness Checker with the rawness variant of the Initialization Checker, invoke the NullnessRawness-
Checker rather than the NullnessChecker; that is, supply the -processor org.checkerframework.checker.nullness.NullnessRawnessChecker
command-line option to javac. Although @Raw roughly corresponds to @UnknownInitialization and @NonRaw
roughly corresponds to @Initialized, the annotations are not aliased and you must use the ones that correspond to
the type-checker that you are running.

An object is raw from the time that its constructor starts until its constructor finishes. This is relevant to the Nullness
Checker because while the constructor is executing — that is, before initialization completes — a @NonNull field may
be observed to be null, until that field is set. In particular, the Nullness Checker issues a warning for code like this:

public class MyClass {
private @NonNull Object f;
public MyClass(int x, int y) {

// Error because constructor contains no assignment to this.f.
// By the time the constructor exits, f must be initialized to a non-null value.

}
public MyClass(int x) {

// Error because this.f is accessed before f is initialized.
// At the beginning of the constructor’s execution, accessing this.f
// yields null, even though field f has a non-null type.
this.f.toString();

}
public MyClass(int x, int y, int z) {

m();
}
public void m() {

39

api/org/checkerframework/checker/nullness/qual/RequiresNonNull.html
api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html
api/org/checkerframework/checker/initialization/qual/Initialized.html
api/org/checkerframework/checker/initialization/qual/UnknownInitialization.html
api/org/checkerframework/checker/initialization/qual/UnderInitialization.html
api/org/checkerframework/checker/nullness/qual/Raw.html
api/org/checkerframework/checker/nullness/qual/NonRaw.html

@NonRaw Object @Raw Date

@Raw Object

@NonRaw Date

Figure 3.5: Partial type hierarchy for the Rawness Initialization type system.

// Error because this.f is accessed before f is initialized,
// even though the access is not in a constructor.
// When m is called from the constructor, accessing f yields null,
// even though field f has a non-null type.
this.f.toString();

}

In general, code can depend that field f is not null, because the field is declared with a @NonNull type. However, this
guarantee does not hold for a partially-initialized object.

The Nullness Checker uses the @Raw annotation to indicate that an object is not yet fully initialized — that is, not all
its @NonNull fields have been assigned. Rawness is mostly relevant within the constructor, or for references to this
that escape the constructor (say, by being stored in a field or passed to a method before initialization is complete). Use
of rawness annotations is rare in most code.

The most common use for the @Raw annotation is for a helper routine that is called by constructor. For example:

class MyClass {
Object field1;
Object field2;
Object field3;

public MyClass(String arg1) {
this.field1 = arg1;
init_other_fields();

}

// A helper routine that initializes all the fields other than field1
@EnsuresNonNull({"field2", "field3"})
private void init_other_fields(@Raw MyClass this) {

field2 = new Object();
field3 = new Object();

}
}

For compatibility with Java 6 and 7, you can write the receiver parameter in comments (see Section 27.2.1):

private void init_other_fields(/*>>> @Raw MyClass this*/) {

Rawness qualifiers

The rawness hierarchy is shown in Figure 3.5. The rawness hierarchy contains these qualifiers:

40

api/org/checkerframework/checker/nullness/qual/NonNull.html
api/org/checkerframework/checker/nullness/qual/Raw.html

Declarations Expression Expression’s nullness type, or checker error
class C {
@NonNull Object f;
@Nullable Object g;
...

}
@NonNull @NonRaw C a; a @NonNull

a.f @NonNull
a.g @Nullable

@NonNull @Raw C b; b @NonNull
b.f @MonotonicNonNull
b.g @Nullable

@Nullable @NonRaw C c; c @Nullable
c.f error: deref of nullable
c.g error: deref of nullable

@Nullable @Raw C d; d @Nullable
d.f error: deref of nullable
d.g error: deref of nullable

Figure 3.6: Examples of the interaction between nullness and rawness. Declarations are shown at the left for reference,
but the focus of the table is the expressions and their nullness type or error.

@Raw indicates a type that may contain a partially-initialized object. In a partially-initialized object, fields that are
annotated as @NonNull may be null because the field has not yet been assigned. Within the constructor, this has
@Raw type until all the @NonNull fields have been assigned. A partially-initialized object (this in a constructor)
may be passed to a helper method or stored in a variable; if so, the method receiver, or the field, would have to be
annotated as @Raw.

@NonRaw indicates a type that contains a fully-initialized object. NonRaw is the default, so there is little need for a
programmer to write this explicitly.

@PolyRaw indicates qualifier polymorphism over rawness (see Section 24.2).

If a reference has @Raw type, then all of its @NonNull fields are treated as @MonotonicNonNull: when read, they
are treated as being @Nullable, but when written, they are treated as being @NonNull.

The rawness hierarchy is orthogonal to the nullness hierarchy. It is legal for a reference to be @NonNull @Raw,
@Nullable @Raw, @NonNull @NonRaw, or @Nullable @NonRaw. The nullness hierarchy tells you about the reference
itself: might the reference be null? The rawness hierarchy tells you about the @NonNull fields in the referred-to object:
might those fields be temporarily null in contravention of their type annotation? Figure 3.6 contains some examples.

How an object becomes non-raw

Within the constructor, this starts out with @Raw type. As soon as all of the @NonNull fields have been initialized, then
this is treated as non-raw.

The Nullness Checker issues an error if the constructor fails to initialize any @NonNull field. This ensures that the
object is in a legal (non-raw) state by the time that the constructor exits. This is different than Java’s test for definite
assignment (see JLS ch.16), which does not apply to fields (except blank final ones, defined in JLS §4.12.4) because
fields have a default value of null.

All @NonNull fields must either have a default in the field declaration, or be assigned in the constructor or in a
helper method that the constructor calls. If your code initializes (some) fields in a helper method, you will need to
annotate the helper method with an annotation such as @EnsuresNonNull({"field1", "field2"}) for all the fields
that the helper method assigns. It’s a bit odd, but you use that same annotation, @EnsuresNonNull, to indicate that a
primitive field has its value set in a helper method, which is relevant when you supply the -Alint=uninitialized
command-line option (see Section 3.1).

41

api/org/checkerframework/checker/nullness/qual/Raw.html
api/org/checkerframework/checker/nullness/qual/NonNull.html
api/org/checkerframework/checker/nullness/qual/Raw.html
api/org/checkerframework/checker/nullness/qual/NonRaw.html
api/org/checkerframework/checker/nullness/qual/PolyRaw.html
api/org/checkerframework/checker/nullness/qual/MonotonicNonNull.html
api/org/checkerframework/checker/nullness/qual/Nullable.html
api/org/checkerframework/checker/nullness/qual/NonNull.html
api/org/checkerframework/checker/nullness/qual/Raw.html
api/org/checkerframework/checker/nullness/qual/NonNull.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-16.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.12.4
api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html

Partial initialization

So far, we have discussed rawness as if it is an all-or-nothing property: an object is fully raw until initialization
completes, and then it is no longer raw. The full truth is a bit more complex: during the initialization process, an object
can be partially initialized, and as the object’s superclass constructors complete, its rawness changes. The Nullness
Checker lets you express such properties when necessary.

Consider a simple example:

class A {
Object a;
A() {

a = new Object();
}

}
class B extends A {

Object b;
B() {

super();
b = new Object();

}
}

Consider what happens during execution of new B().

1. B’s constructor begins to execute. At this point, neither the fields of A nor those of B have been initialized yet.
2. B’s constructor calls A’s constructor, which begins to execute. No fields of A nor of B have been initialized yet.
3. A’s constructor completes. Now, all the fields of A have been initialized, and their invariants (such as that field a

is non-null) can be depended on. However, because B’s constructor has not yet completed executing, the object
being constructed is not yet fully initialized. When treated as an A (e.g., if only the A fields are accessed), the
object is initialized (non-raw), but when treated as a B, the object is still raw.

4. B’s constructor completes. The object is fully initialized (non-raw), if B’s constructor was invoked via a new B()
expression. On the other hand, if there was a class C extends B { ... }, and B’s constructor had been
invoked from that, then the object currently under construction would not be fully initialized — it would only be
initialized when treated as an A or a B, but not when treated as a C.

At any moment during initialization, the superclasses of a given class can be divided into those that have completed
initialization and those that have not yet completed initialization. More precisely, at any moment there is a point in the
class hierarchy such that all the classes above that point are fully initialized, and all those below it are not yet initialized.
As initialization proceeds, this dividing line between the initialized and raw classes moves down the type hierarchy.

The Nullness Checker lets you indicate where the dividing line is between the initialized and non-initialized classes.
You have two equivalent ways to indicate the dividing line: @Raw indicates the first class below the dividing line, or
@NonRaw(classliteral) indicates the first class above the dividing line.

When you write @Raw MyClass x;, that means that variable x is initialized for all superclasses of MyClass, and
(possibly) uninitialized for MyClass and all subclasses.

When you write @NonRaw(Foo.class) MyClass x;, that means that variable x is initialized for Foo and all its
superclasses, and (possibly) uninitialized for all subclasses of Foo.

If A is a direct superclass of B (as in the example above), then @Raw A x; and @NonRaw(B.class) A x; are
equivalent declarations. Neither one is the same as @NonRaw A x;, which indicates that, whatever the actual class of
the object that x refers to, that object is fully initialized. Since @NonRaw (with no argument) is the default, you will
rarely see it written.

We can now state a clarification of Section 3.8.6’s rule for an object becoming non-raw. As soon as all of the
@NonNull fields have been initialized, then this is treated as @NonRaw(typeofthis), rather than treated as simply
@NonRaw.

42

api/org/checkerframework/checker/nullness/qual/Raw.html
api/org/checkerframework/checker/nullness/qual/NonRaw.html
api/org/checkerframework/checker/nullness/qual/NonNull.html
api/org/checkerframework/checker/nullness/qual/NonRaw.html
api/org/checkerframework/checker/nullness/qual/NonRaw.html

The example above lists 4 moments during construction. At those moments, the type of the object being constructed
is:

1. @Raw Object
2. @Raw Object
3. @NonRaw(A.class) A
4. @NonRaw(B.class) B

Example As another example, consider the following 12 declarations:

@Raw Object rO;
@NonRaw(Object.class) Object nroO;
Object o;

@Raw A rA;
@NonRaw(Object.class) A nroA; // same as "@Raw A"
@NonRaw(A.class) A nraA;
A a;

@NonRaw(Object.class) B nroB;
@Raw B rB;
@NonRaw(A.class) B nraB; // same as "@Raw B"
@NonRaw(B.class) B nrbB;
B b;

In the following table, the type in cell C1 is a supertype of the type in cell C2 if: C1 is at least as high and at least as
far left in the table as C2 is. For example, nraA’s type is a supertype of those of rB, nraB, nrbB, a, and b. (The empty
cells on the top row are real types, but are not expressible. The other empty cells are not interesting types.)

@Raw Object rO;

@NonRaw(Object.class) Object nroO;
@Raw A rA;
@NonRaw(Object.class) A nroA;

@NonRaw(Object.class) B nroB;

@NonRaw(A.class) A nraA;
@Raw B rB;
@NonRaw(A.class) B nraB;
@NonRaw(B.class) B nrbB;

Object o; A a; B b;

More details about rawness checking

Suppressing warnings You can suppress warnings related to partially-initialized objects with
@SuppressWarnings("rawness"). Do not confuse this with the unrelated @SuppressWarnings("rawtypes")
annotation for non-instantiated generic types!

Checking initialization of all fields, not just @NonNull ones When the -Alint=uninitialized command-line
option is provided, then an object is considered raw until all its fields are assigned, not just the @NonNull ones. See
Section 3.1.

Use of method annotations A method with a raw receiver often assumes that a few fields (but not all of them) are non-
null, and sometimes sets some more fields to non-null values. To express these concepts, use the @RequiresNonNull,
@EnsuresNonNull, and @EnsuresNonNullIf method annotations; see Section 3.2.2.

The terminology “raw” The name “raw” comes from a research paper that proposed this approach [FL03]. A better
name might have been “not yet initialized” or “partially initialized”, but the term “raw” is now well-known. The @Raw
annotation has nothing to do with the raw types of Java Generics.

43

api/org/checkerframework/checker/nullness/qual/RequiresNonNull.html
api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html
api/org/checkerframework/checker/nullness/qual/Raw.html

Chapter 4

Map Key Checker

The Map Key Checker tracks which values are keys for which maps. If variable v has type @KeyFor("m")..., then the
value of v is a key in Map m. That is, the expression m.containsKey(v) evaluates to true.

Section 3.2.4 describes how @KeyFor annotations enable the Nullness Checker (Chapter 3, page 24) to treat calls to
Map.get more precisely by refining its result to @NonNull in some cases.

You will not typically run the Map Key Checker. It is automatically run by other checkers, in particular the Nullness
Checker.

You can suppress warnings related to map keys with @SuppressWarnings("keyfor"); see Chapter 26, page 140.

4.1 Map key annotations
These qualifiers are part of the Map Key type system:

@KeyFor(String[] maps) indicates that the value assigned to the annotated variable is a key for at least the
given maps.

@UnknownKeyFor is used internally by the type system but should never be written by a programmer. It indicates
that the value assigned to the annotated variable is not known to be a key for any map. It is the default type
qualifier.

@KeyForBottom is used internally by the type system but should never be written by a programmer.

@UnknownKeyFor

@KeyForBottom

@KeyFor(map1) @KeyFor(map2)

@KeyFor({map1,map2}) @KeyFor({map2,map3})

@KeyFor({map1,...,mapn})

Figure 4.1: The subtyping relationship of the Map Key Checker’s qualifiers. @KeyFor(A) is a supertype of @KeyFor(B)
if and only if A is a subset of B. Qualifiers in gray are used internally by the type system but should never be written by
a programmer.

44

http://docs.oracle.com/javase/8/docs/api/java/util/Map.html#get-java.lang.Object-
api/org/checkerframework/checker/nullness/qual/KeyFor.html
api/org/checkerframework/checker/nullness/qual/UnknownKeyFor.html
api/org/checkerframework/checker/nullness/qual/KeyForBottom.html

4.2 Examples
The Map Key Checker keeps track of which variables reference keys to which maps. A variable annotated with
@KeyFor(mapSet) can only contain a value that is a key for all the maps in mapSet. For example:

Map<String,Date> m, n;
@KeyFor("m") String km;
@KeyFor("n") String kn;
@KeyFor({"m", "n"}) String kmn;
km = kmn; // OK - a key for maps m and n is also a key for map m
km = kn; // error: a key for map n is not necessarily a key for map m

As with any annotation, use of the @KeyFor annotation may force you to slightly refactor your code. For example,
this would be illegal:

Map<String,Object> m;
Collection<@KeyFor("m") String> coll;
coll.add(x); // error: coll’s element type is @KeyFor("m") String, but x does not have that type
m.put(x, ...);

The example type-checks if you reorder the two calls:

Map<String,Object> m;
Collection<@KeyFor("m") String> coll;
m.put(x, ...); // after this statement, x has type @KeyFor("m") String
coll.add(x); // OK

4.3 Inference of @KeyFor annotations
Within a method body, you usually do not have to write @KeyFor explicitly, because the checker infers it based on usage
patterns. When the Map Key Checker encounters a run-time check for map keys, such as “if (m.containsKey(k))
...”, then the Map Key Checker refines the type of k to @KeyFor("m") within the scope of the test (or until k is
side-effected within that scope). The Map Key Checker also infers @KeyFor annotations based on iteration over a map’s
key set or calls to put or containsKey. For more details about type refinement, see Section 25.4.

Suppose we have these declarations:

Map<String,Date> m = new Map<String,Date>();
String k = "key";
@KeyFor("m") String km;

Ordinarily, the following assignment does not type-check:

km = k; // Error since k is not known to be a key for map m.

The following examples show cases where the Map Key Checker infers a @KeyFor annotation for variable k based
on usage patterns, enabling the km = k assignment to type-check.

m.put(k, ...);
// At this point, the type of k is refined to @KeyFor("m") String.
km = k; // OK

if (m.containsKey(k)) {

45

http://docs.oracle.com/javase/8/docs/api/java/util/Map.html#keySet--
http://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-
http://docs.oracle.com/javase/8/docs/api/java/util/Map.html#containsKey-java.lang.Object-

// At this point, the type of k is refined to @KeyFor("m") String.
km = k; // OK
...

}
else {

km = k; // Error since k is not known to be a key for map m.
...

}

The following example shows a case where the Map Key Checker resets its assumption about the type of a field
used as a key because that field may have been side-effected.

class MyClass {
private Map<String,Object> m;
private String k; // The type of k defaults to @UnknownKeyFor String
private @KeyFor("m") String km;

public void myMethod() {
if (m.containsKey(k)){

km = k; // OK: the type of k is refined to @KeyFor("m") String

sideEffectFreeMethod();
km = k; // OK: the type of k is not affected by the method call

// and remains @KeyFor("m") String

otherMethod();
km = k; // error: At this point, the type of k is once again

// @UnknownKeyFor String, because otherMethod might have
// side-effected k such that it is no longer a key for map m.

}
}

@SideEffectFree
private void sideEffectFreeMethod() { ... }

private void otherMethod() { ... }
}

46

Chapter 5

Interning Checker

If the Interning Checker issues no errors for a given program, then all reference equality tests (i.e., all uses of “==”) are
proper; that is, == is not misused where equals() should have been used instead.

Interning is a design pattern in which the same object is used whenever two different objects would be considered
equal. Interning is also known as canonicalization or hash-consing, and it is related to the flyweight design pattern.
Interning has two benefits: it can save memory, and it can speed up testing for equality by permitting use of ==.

The Interning Checker prevents two types of errors in your code. First, == should be used only on interned values;
using == on non-interned values can result in subtle bugs. For example:

Integer x = new Integer(22);
Integer y = new Integer(22);
System.out.println(x == y); // prints false!

The Interning Checker helps programmers to prevent such bugs. Second, the Interning Checker also helps to prevent
performance problems that result from failure to use interning. (See Section 2.3 for caveats to the checker’s guarantees.)

Interning is such an important design pattern that Java builds it in for these types: String, Boolean, Byte,
Character, Integer, Short. Every string literal in the program is guaranteed to be interned (JLS §3.10.5), and the
String.intern() method performs interning for strings that are computed at run time. The valueOf methods in
wrapper classes always (Boolean, Byte) or sometimes (Character, Integer, Short) return an interned result (JLS
§5.1.7). Users can also write their own interning methods for other types.

It is a proper optimization to use ==, rather than equals(), whenever the comparison is guaranteed to produce the
same result — that is, whenever the comparison is never provided with two different objects for which equals() would
return true. Here are three reasons that this property could hold:

1. Interning. A factory method ensures that, globally, no two different interned objects are equals() to one another.
(In some cases other, non-interned objects of the class might be equals() to one another; in other cases, every
object of the class is interned.) Interned objects should always be immutable.

2. Global control flow. The program’s control flow is such that the constructor for class C is called a limited number
of times, and with specific values that ensure the results are not equals() to one another. Objects of class C can
always be compared with ==. Such objects may be mutable or immutable.

3. Local control flow. Even though not all objects of the given type may be compared with ==, the specific objects
that can reach a given comparison may be. For example, suppose that an array contains no duplicates. Then
testing to find the index of a given element that is known to be in the array can use ==.

To eliminate Interning Checker errors, you will need to annotate the declarations of any expression used as an
argument to ==. Thus, the Interning Checker could also have been called the Reference Equality Checker. In the future,
the checker will include annotations that target the non-interning cases above, but for now you need to use @Interned,
@UsesObjectEquals (which handles a surprising number of cases), and/or @SuppressWarnings.

To run the Interning Checker, supply the -processor org.checkerframework.checker.interning.InterningChecker
command-line option to javac. For examples, see Section 5.4.

47

https://docs.oracle.com/javase/specs/jls/se8/html/jls-3.html#jls-3.10.5
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html#intern--
https://docs.oracle.com/javase/specs/jls/se8/html/jls-5.html#jls-5.1.7
https://docs.oracle.com/javase/specs/jls/se8/html/jls-5.html#jls-5.1.7

Date @Interned Object

Object

@Interned Date

Figure 5.1: Type hierarchy for the Interning type system.

5.1 Interning annotations
These qualifiers are part of the Interning type system:

@Interned indicates a type that includes only interned values (no non-interned values).
@PolyInterned indicates qualifier polymorphism. For a description of @PolyInterned, see Section 24.2.
@UsesObjectEquals is a class (not type) annotation that indicates that this class’s equals method is the same as

that of Object. In other words, neither this class nor any of its superclasses overrides the equals method. Since
Object.equals uses reference equality, this means that for such a class, == and equals are equivalent, and so
the Interning Checker does not issue errors or warnings for either one.

5.2 Annotating your code with @Interned
In order to perform checking, you must annotate your code with the @Interned type annotation, which indicates a type
for the canonical representation of an object:

String s1 = ...; // type is (uninterned) "String"
@Interned String s2 = ...; // Java type is "String", but checker treats it as "@Interned String"

The type system enforced by the checker plugin ensures that only interned values can be assigned to s2.
To specify that all objects of a given type are interned, annotate the class declaration:

public @Interned class MyInternedClass { ... }

This is equivalent to annotating every use of MyInternedClass, in a declaration or elsewhere. For example, enum
classes are implicitly so annotated.

5.2.1 Implicit qualifiers
As described in Section 25.3, the Interning Checker adds implicit qualifiers, reducing the number of annotations that
must appear in your code. For example, String literals and the null literal are always considered interned, and object
creation expressions (using new) are never considered @Interned unless they are annotated as such, as in
@Interned Double internedDoubleZero = new @Interned Double(0); // canonical representation for Double zero

For a complete description of all implicit interning qualifiers, see the Javadoc for InterningAnnotatedTypeFactory.

5.3 What the Interning Checker checks
Objects of an @Interned type may be safely compared using the “==” operator.

The checker issues an error in two cases:

1. When a reference (in)equality operator (“==” or “!=”) has an operand of non-@Interned type.
2. When a non-@Interned type is used where an @Interned type is expected.

48

api/org/checkerframework/checker/interning/qual/Interned.html
api/org/checkerframework/checker/interning/qual/PolyInterned.html
api/org/checkerframework/checker/interning/qual/PolyInterned.html
api/org/checkerframework/checker/interning/qual/UsesObjectEquals.html
api/org/checkerframework/checker/interning/qual/Interned.html
api/org/checkerframework/checker/interning/qual/Interned.html
api/org/checkerframework/checker/interning/InterningAnnotatedTypeFactory.html
api/org/checkerframework/checker/interning/qual/Interned.html
api/org/checkerframework/checker/interning/qual/Interned.html
api/org/checkerframework/checker/interning/qual/Interned.html
api/org/checkerframework/checker/interning/qual/Interned.html

com.sun.istack.internal.Interned ⇒ org.checkerframework.checker.interning.qual.Interned
Figure 5.2: Correspondence between other interning annotations and the Checker Framework’s annotations.

This example shows both sorts of problems:

Date date;
@Interned Date idate;
...
if (date == idate) { ... } // error: reference equality test is unsafe
idate = date; // error: idate’s referent may no longer be interned

The checker also issues a warning when .equals is used where == could be safely used. You can disable this
behavior via the javac -Alint command-line option, like so: -Alint=-dotequals.

For a complete description of all checks performed by the checker, see the Javadoc for InterningVisitor.
You can also restrict which types the checker should examine and type-check, using the -Acheckclass option. For

example, to find only the interning errors related to uses of String, you can pass -Acheckclass=java.lang.String.
The Interning Checker always checks all subclasses and superclasses of the given class.

5.3.1 Limitations of the Interning Checker
The Interning Checker conservatively assumes that the Character, Integer, and Short valueOf methods return a
non-interned value. In fact, these methods sometimes return an interned value and sometimes a non-interned value,
depending on the run-time argument (JLS §5.1.7). If you know that the run-time argument to valueOf implies that the
result is interned, then you will need to suppress an error. (An alternative would be to enhance the Interning Checker to
estimate the upper and lower bounds on char, int, and short values so that it can more precisely determine whether the
result of a given valueOf call is interned.)

5.4 Examples
To try the Interning Checker on a source file that uses the @Interned qualifier, use the following command (where
javac is the Checker Framework compiler that is distributed with the Checker Framework):

javac -processor org.checkerframework.checker.interning.InterningChecker examples/InterningExample.java

Compilation will complete without errors or warnings.
To see the checker warn about incorrect usage of annotations, use the following command:

javac -processor org.checkerframework.checker.interning.InterningChecker examples/InterningExampleWithWarnings.java

The compiler will issue an error regarding violation of the semantics of @Interned.
The Daikon invariant detector (http://plse.cs.washington.edu/daikon/) is also annotated with @Interned.

From directory java, run make check-interning.

5.5 Other interning annotations
The Checker Framework’s interning annotations are similar to annotations used elsewhere.

If your code is already annotated with a different interning annotation, you can reuse that effort. The Checker
Framework comes with cleanroom re-implementations of annotations from other tools. It treats them exactly as if you
had written the corresponding annotation from the Interning Checker, as described in Figure 5.2.

Alternately, the Checker Framework can process those other annotations (as well as its own, if they also appear in
your program). The Checker Framework has its own definition of the annotations on the left side of Figure 5.2, so that
they can be used as type qualifiers. The Checker Framework interprets them according to the right side of Figure 5.2.

49

api/org/checkerframework/checker/interning/InterningVisitor.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-5.html#jls-5.1.7
api/org/checkerframework/checker/interning/qual/Interned.html
api/org/checkerframework/checker/interning/qual/Interned.html
http://plse.cs.washington.edu/daikon/
api/org/checkerframework/checker/interning/qual/Interned.html

Chapter 6

Lock Checker

The Lock Checker prevents certain kinds of concurrency errors. If the Lock checker issues no warnings for a given
program, then the program holds the appropriate lock every time that it accesses a variable annotated with @GuardedBy.

Note: This does not mean that your program has no concurrency errors. (You might have forgotten to annotate that
a particular variable should only be accessed when a lock is held. You might release and re-acquire the lock, when
correctness requires you to hold it throughout a computation. And, there are other concurrency errors that cannot, or
should not, be solved with locks.) However, ensuring that your program obeys its locking discipline is an easy and
effective way to eliminate a common and important class of errors.

To run the Lock Checker, supply the -processor org.checkerframework.checker.lock.LockChecker command-
line option to javac.

6.1 Lock annotations
Summary of declaration annotations used by the Lock Checker.

Type annotation Indicates
@GuardedBy(String lock) Fields/variables only accessible after acquiring the given lock.
Declaration annotation Indicates
@Holding(String[] locks) Locks that must be held before the method is called.
@EnsuresLockHeld(String[] expressions) Locks guaranteed to be held when the method returns.
@EnsuresLockHeldIf(String[] expr, boolean result) Locks guaranteed to be held when the method returns the given result.
@LockingFree The method does not make any use of locks or synchronization.

6.1.1 Type annotations for objects protected by locks
@GuardedBy(String lock) indicates a type whose value may be accessed only when the given lock is held. See the

Javadoc for GuardedBy for an explanation of the argument and other details. The lock acquisition and the value
access may be arbitrarily far in the future; or, if the value is never accessed, the lock never need be held.

6.1.2 Lock method annotations
The Lock Checker supports several annotations that specify method behavior. These are declaration annotations, not
type annotations: they apply to the method itself rather than to some particular type.

@EnsuresLockHeld(String[] expressions)
@EnsuresLockHeldIf(String[] expressions, boolean result) indicate a method postcondition. With @EnsuresLockHeld,

the given expressions are known to be objects used as locks and are known to be in a locked state after the method
returns; this is useful for annotating a method that takes a lock. With @EnsuresLockHeldIf, if the annotated

50

api/org/checkerframework/checker/lock/qual/GuardedBy.html
api/org/checkerframework/checker/lock/qual/GuardedBy.html
api/org/checkerframework/checker/lock/qual/GuardedBy.html
api/org/checkerframework/checker/lock/qual/EnsuresLockHeld.html
api/org/checkerframework/checker/lock/qual/EnsuresLockHeldIf.html

method returns the given boolean value (true or false), the given expressions are known to be objects used as
locks and are known to be in a locked state after the method returns; this is useful for annotating a method that
conditionally takes a lock. See Section 6.2.2 for examples.

@LockingFree indicates that the method does not use synchronization/locking, directly or indirectly. This is used
to facilitate dataflow analysis and is less restrictive than @SideEffectFree. It is especially useful for annotating
library methods, including JDK methods. Since @SideEffectFree implies @LockingFree, if both are applicable
then you should only write @SideEffectFree.
It is critical not to use this annotation for any method that uses synchronization/locking, directly or indi-
rectly. This is because even methods that are guaranteed to release all locks they acquire could cause deadlocks.
Although the Lock Checker currently does not aid with deadlock detection, this annotation must be used in
anticipation that the Lock Checker eventually could.

6.1.3 Discussion of @Holding
A programmer might choose to use the @Holding method annotation in two different ways: to specify a higher-level
protocol, or to summarize intended usage. Both of these approaches are useful, and the Lock Checker supports both.

Higher-level synchronization protocol @Holding can specify a higher-level synchronization protocol that is not
expressible as locks over Java objects. By requiring locks to be held, you can create higher-level protocol primitives
without giving up the benefits of the annotations and checking of them.

Method summary that simplifies reasoning @Holding can be a method summary that simplifies reasoning. In this
case, the @Holding doesn’t necessarily introduce a new correctness constraint; the program might be correct even if
the lock were acquired later in the body of the method or in a method it calls, so long as the lock is acquired before
accessing the data it protects.

Rather, here @Holding expresses a fact about execution: when execution reaches this point, the following locks are
already held. This fact enables people and tools to reason intra- rather than inter-procedurally.

In Java, it is always legal to re-acquire a lock that is already held, and the re-acquisition always works. Thus,
whenever you write

@Holding("myLock")
void myMethod() {

...
}

it would be equivalent, from the point of view of which locks are held during the body, to write

void myMethod() {
synchronized (myLock) { // no-op: re-aquire a lock that is already held

...
}

}

The advantages of the @Holding annotation include:

• The annotation documents the fact that the lock is intended to already be held.
• The Lock Checker enforces that the lock is held when the method is called, rather than masking a programmer

error by silently re-acquiring the lock.
• The synchronized statement can deadlock if, due to a programmer error, the lock is not already held. The Lock

Checker prevents this type of error.
• The annotation has no run-time overhead. Even if the lock re-acquisition succeeds, it still consumes time.

51

api/org/checkerframework/dataflow/qual/LockingFree.html
api/org/checkerframework/dataflow/qual/SideEffectFree.html

6.2 Examples

6.2.1 Examples of @GuardedBy and @Holding
The most common use of @GuardedBy is to annotate a field declaration type. However, other uses of @GuardedBy are
possible.

Return types A return type may be annotated with @GuardedBy:

@GuardedBy("MyClass.myLock") Object myMethod() { ... }

// reassignments without holding the lock are OK.
@GuardedBy("MyClass.myLock") Object x = myMethod();
@GuardedBy("MyClass.myLock") Object y = x;
x.toString(); // ILLEGAL because the lock is not held
synchronized(MyClass.myLock) {

y.toString(); // OK: the lock is held
}

Formal parameters A parameter type may be annotated with @GuardedBy, which indicates that the method body
must acquire the lock before accessing the parameter. A client may pass a non-@GuardedBy reference as an argument,
since it is legal to access such a reference after the lock is acquired.

void helper1(@GuardedBy("MyClass.myLock") Object a) {
a.toString(); // ILLEGAL: the lock is not held
synchronized(MyClass.myLock) {

a.toString(); // OK: the lock is held
}

}
@Holding("MyClass.myLock")
void helper2(@GuardedBy("MyClass.myLock") Object b) {

b.toString(); // OK: the lock is held
}
void helper3(Object c) {

helper1(c); // OK: passing a subtype in place of a the @GuardedBy supertype
c.toString(); // OK: no lock constraints

}
void helper4(@GuardedBy("MyClass.myLock") Object d) {

d.toString(); // ILLEGAL: the lock is not held
}
void myMethod2(@GuardedBy("MyClass.myLock") Object e) {

helper1(e); // OK to pass to another routine without holding the lock
e.toString(); // ILLEGAL: the lock is not held
synchronized (MyClass.myLock) {

helper2(e);
helper3(e);
helper4(e); // OK, but helper4’s body still does not type-check

}
}

6.2.2 Examples of @EnsuresLockHeld and @EnsuresLockHeldIf
@EnsuresLockHeld and @EnsuresLockHeldIf are primarily intended for annotating JDK locking methods, as in:

52

package java.util.concurrent.locks;

class ReentrantLock {

@EnsuresLockHeld("this")
public void lock();

@EnsuresLockHeldIf (expression="this", result=true)
public boolean tryLock();

[...]
}

They can also be used to annotate user methods, particularly for higher-level lock constructs such as a Monitor, as
in this simplified example:

public class Monitor {

private ReentrantLock lock; // Initialized in the constructor

[...]

@EnsuresLockHeld("lock")
public void enter() {

lock.lock();
}

[...]
}

6.2.3 Example of @LockingFree
@LockingFree is useful when a method does not make any use of synchronization or locks but causes other side
effects (hence @SideEffectFree is not appropriate). @SideEffectFree implies @LockingFree, therefore if both are
applicable, you should only write @SideEffectFree.

private Object myField;
private ReentrantLock lock; // Initialized in the constructor
private @GuardedBy("lock") Object x; // Initialized in the constructor

[...]

@LockingFree
// This method does not use locks or synchronization but cannot
// be annotated as @SideEffectFree since it alters myField.
void myMethod() {

myField = new Object();
}

@SideEffectFree
int mySideEffectFreeMethod() {

return 0;

53

net.jcip.annotations.GuardedBy
javax.annotation.concurrent.GuardedBy

⇒ org.checkerframework.checker.lock.qual.GuardedBy

Figure 6.1: Correspondence between other lock annotations and the Checker Framework’s annotations.

}

void myUnlockingMethod() {
lock.unlock();

}

void myUnannotatedEmptyMethod() {
}

void myOtherMethod() {
if (lock.tryLock()) {

x.toString(); // OK: the lock is held
myMethod();
x.toString(); // OK: the lock is still known to be held since myMethod is locking-free
mySideEffectFreeMethod();
x.toString(); // OK: the lock is still known to be held since mySideEffectFreeMethod

// is side-effect-free
myUnlockingMethod();
x.toString(); // ILLEGAL: myLockingMethod is not locking-free

}
if (lock.tryLock()) {

x.toString(); // OK: the lock is held
myUnannotatedEmptyMethod();
x.toString(); // ILLEGAL: even though myUnannotatedEmptyMethod is empty, since it is

// not annotated with @LockingFree, the Lock Checker no longer knows
// the state of the lock.

if (lock.isHeldByCurrentThread()) {
x.toString(); // OK: the lock is known to be held

}
}

}

6.3 Other lock annotations
The Checker Framework’s lock annotations are similar to annotations used elsewhere.

If your code is already annotated with a different lock annotation, you can reuse that effort. The Checker Framework
comes with cleanroom re-implementations of annotations from other tools. It treats them exactly as if you had written
the corresponding annotation from the Lock Checker, as described in Figure 6.1.

Alternately, the Checker Framework can process those other annotations (as well as its own, if they also appear in
your program). The Checker Framework has its own definition of the annotations on the left side of Figure 6.1, so that
they can be used as type annotations. The Checker Framework interprets them according to the right side of Figure 6.1.

6.3.1 Relationship to annotations in Java Concurrency in Practice
The book Java Concurrency in Practice [GPB+06] defines a @GuardedBy annotation that is the inspiration for ours.
The book’s @GuardedBy serves two related but distinct purposes:

54

http://jcip.net/
http://jcip.net.s3-website-us-east-1.amazonaws.com/annotations/doc/net/jcip/annotations/GuardedBy.html

• When applied to a field, it means that the given lock must be held when accessing the field. The lock acquisition
and the field access may be arbitrarily far in the future.

• When applied to a method, it means that the given lock must be held by the caller at the time that the method is
called — in other words, at the time that execution passes the @GuardedBy annotation.

The Lock Checker renames the method annotation to @Holding, and it generalizes the @GuardedBy annotation into
a type annotation that can apply not just to a field but to an arbitrary type (including the type of a parameter, return
value, local variable, generic type parameter, etc.). This makes the annotations more expressive and also more amenable
to automated checking. It also accommodates the distinct meanings of the two annotations, and resolves ambiguity
when @GuardedBy is written in a location that might apply to either the method or the return type.

(The JCIP book gives some rationales for reusing the annotation name for two purposes. One rationale is that
there are fewer annotations to learn. Another rationale is that both variables and methods are “members” that can be
“accessed”; variables can be accessed by reading or writing them (putfield, getfield), and methods can be accessed
by calling them (invokevirtual, invokeinterface): in both cases, @GuardedBy creates preconditions for accessing
so-annotated members. This informal intuition is inappropriate for a tool that requires precise semantics.)

6.4 Possible extensions
The Lock Checker validates some uses of locks, but not all. It would be possible to enrich it with additional annotations.
This would increase the programmer annotation burden, but would provide additional guarantees.

Lock ordering: Specify that one lock must be acquired before or after another, or specify a global ordering for all
locks. This would prevent deadlock.

Not-holding: Specify that a method must not be called if any of the listed locks are held.
These features are supported by Clang’s thread-safety analysis.

6.5 A note on Lock Checker internals
The following type qualifiers are inferred and used internally by the Lock Checker and should never need to be written
by the programmer. They are presented here for reference on how the Lock Checker works and to help understand
warnings produced by the Lock Checker. You may skip this section if you are not seeing a warning mentioning
@LockHeld or @LockPossiblyHeld.

These type qualifiers are used on the types of the objects that will be used as locks to protect other objects. The
Lock Checker uses them to track the current state of locks at a given point in the code.

@LockPossiblyHeld indicates a type that may be used as a lock to protect a field/variable (i.e. an object of this
type may be used as the expression in a @GuardedBy annotation) and the lock may or may not be currently held.
Since any object can potentially be used as a lock, it in fact applies to all non-primitive types. This is the default
type qualifier in the hierarchy and it is the top type.

@LockHeld indicates a type that may be used as a lock to protect a field/variable, and is currently in a locked state on
the current thread. It is a subtype of @LockPossiblyHeld and is the bottom type.

55

api/org/checkerframework/checker/lock/qual/Holding.html
api/org/checkerframework/checker/lock/qual/GuardedBy.html
http://clang.llvm.org/docs/ThreadSafetyAnalysis.html
api/org/checkerframework/checker/lock/qual/LockPossiblyHeld.html
api/org/checkerframework/checker/lock/qual/LockHeld.html

Chapter 7

Fake Enum Checker

Java’s enum keyword lets you define an enumeration type: a finite set of distinct values that are related to one another
but are disjoint from all other types, including other enumerations. Before enums were added to Java, there were two
ways to encode an enumeration, both of which are error-prone:

the fake enum pattern a set of int or String constants (as often found in older C code).
the typesafe enum pattern a class with private constructor.

Sometimes you need to use the fake enum pattern, rather than a real enum or the typesafe enum pattern. One
reason is backward-compatibility. A public API that predates Java’s enum keyword may use int constants; it cannot be
changed, because doing so would break existing clients. For example, Java’s JDK still uses int constants in the AWT
and Swing frameworks. Another reason is performance, especially in environments with limited resources. Use of an
int instead of an object can reduce code size, memory requirements, and run time.

In cases when code has to use the fake enum pattern, the Fake Enum Checker, or Fenum Checker, gives the same
safety guarantees as a true enumeration type. The developer can introduce new types that are distinct from all values of
the base type and from all other fake enums. Fenums can be introduced for primitive types as well as for reference
types.

Figure 7.1 shows part of the type hierarchy for the Fenum type system.

7.1 Fake enum annotations
The checker supports two ways to introduce a new fake enum (fenum):

1. Introduce your own specialized fenum annotation with code like this in file MyFenum.java:

@Fenum("A") @FenumUnqualified

@FenumTop

@FenumBottom

@Fenum("B") @FenumC @FenumD

Figure 7.1: Partial type hierarchy for the Fenum type system. There are two forms of fake enumeration annotations —
above, illustrated by @Fenum("A") and @FenumC. See Section 7.1 for descriptions of how to introduce both types of
fenums. The type qualifiers in gray (@FenumTop, @FenumUnqualified, and @FenumBottom) should never be written
in source code; they are used internally by the type system.

56

https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.9
http://www.oracle.com/technetwork/java/page1-139488.html

package myproject.qual;

import java.lang.annotation.*;
import org.checkerframework.framework.qual.SubtypeOf;
import org.checkerframework.framework.qual.TypeQualifier;

@Documented
@Retention(RetentionPolicy.RUNTIME)
@TypeQualifier
@SubtypeOf({ FenumTop.class })
public @interface MyFenum {}
You only need to adapt the italicized package, annotation, and file names in the example.

2. Use the provided @Fenum annotation, which takes a String argument to distinguish different fenums. For
example, @Fenum("A") and @Fenum("B") are two distinct fenums.

The first approach allows you to define a short, meaningful name suitable for your project, whereas the second
approach allows quick prototyping.

7.2 What the Fenum Checker checks
The Fenum Checker ensures that unrelated types are not mixed. All types with a particular fenum annotation, or
@Fenum(...) with a particular String argument, are disjoint from all unannotated types and all types with a different
fenum annotation or String argument.

The checker forbids method calls on fenum types and ensures that only compatible fenum types are used in
comparisons and arithmetic operations (if applicable to the annotated type).

It is the programmer’s responsibility to ensure that fields with a fenum type are properly initialized before use.
Otherwise, one might observe a null reference or zero value in the field of a fenum type. (The Nullness Checker
(Chapter 3, page 24) can prevent failure to initialize a reference variable.)

7.3 Running the Fenum Checker
The Fenum Checker can be invoked by running the following commands.

• If you define your own annotation, provide the name of the annotation using the -Aquals option:
javac -processor org.checkerframework.checker.fenum.FenumChecker

-Aquals=myproject.qual.MyFenum MyFile.java ...
• If your code uses the @Fenum annotation, you do not need the -Aquals option:

javac -processor org.checkerframework.checker.fenum.FenumChecker MyFile.java ...

7.4 Suppressing warnings
One example of when you need to suppress warnings is when you initialize the fenum constants to literal values.
To remove this warning message, add a @SuppressWarnings annotation to either the field or class declaration, for
example:

@SuppressWarnings("fenum:assignment.type.incompatible") // initialization of fake enums
class MyConsts {

public static final @Fenum("A") int ACONST1 = 1;
public static final @Fenum("A") int ACONST2 = 2;

}

57

api/org/checkerframework/checker/fenum/qual/Fenum.html
api/org/checkerframework/checker/fenum/qual/Fenum.html

7.5 Example
The following example introduces two fenums in class TestStatic and then performs a few typical operations.

@SuppressWarnings("fenum:assignment.type.incompatible") // initialization of fake enums
public class TestStatic {

public static final @Fenum("A") int ACONST1 = 1;
public static final @Fenum("A") int ACONST2 = 2;

public static final @Fenum("B") int BCONST1 = 4;
public static final @Fenum("B") int BCONST2 = 5;

}

class FenumUser {
@Fenum("A") int state1 = TestStatic.ACONST1; // ok
@Fenum("B") int state2 = TestStatic.ACONST1; // Incompatible fenums forbidden!

void fenumArg(@Fenum("A") int p) {}

void foo() {
state1 = 4; // Direct use of value forbidden!
state1 = TestStatic.BCONST1; // Incompatible fenums forbidden!
state1 = TestStatic.ACONST2; // ok

fenumArg(5); // Direct use of value forbidden!
fenumArg(TestStatic.BCONST1); // Incompatible fenums forbidden!
fenumArg(TestStatic.ACONST1); // ok

}
}

7.6 References
• Java Language Specification on enums:
https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.9

• Tutorial trail on enums:
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html

• Typesafe enum pattern:
http://www.oracle.com/technetwork/java/page1-139488.html

• Java Tip 122: Beware of Java typesafe enumerations:
http://www.javaworld.com/article/2077487/core-java/java-tip-122--beware-of-java-typesafe-enumerations.
html

58

https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.9
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
http://www.oracle.com/technetwork/java/page1-139488.html
http://www.javaworld.com/article/2077487/core-java/java-tip-122--beware-of-java-typesafe-enumerations.html
http://www.javaworld.com/article/2077487/core-java/java-tip-122--beware-of-java-typesafe-enumerations.html

Chapter 8

Tainting Checker

The Tainting Checker prevents certain kinds of trust errors. A tainted, or untrusted, value is one that comes from an
arbitrary, possibly malicious source, such as user input or unvalidated data. In certain parts of your application, using a
tainted value can compromise the application’s integrity, causing it to crash, corrupt data, leak private data, etc.

For example, a user-supplied pointer, handle, or map key should be validated before being dereferenced. As another
example, a user-supplied string should not be concatenated into a SQL query, lest the program be subject to a SQL
injection attack. A location in your program where malicious data could do damage is called a sensitive sink.

A program must “sanitize” or “untaint” an untrusted value before using it at a sensitive sink. There are two general
ways to untaint a value: by checking that it is innocuous/legal (e.g., it contains no characters that can be interpreted
as SQL commands when pasted into a string context), or by transforming the value to be legal (e.g., quoting all the
characters that can be interpreted as SQL commands). A correct program must use one of these two techniques so that
tainted values never flow to a sensitive sink. The Tainting Checker ensures that your program does so.

If the Tainting Checker issues no warning for a given program, then no tainted value ever flows to a sensitive sink.
However, your program is not necessarily free from all trust errors. As a simple example, you might have forgotten
to annotate a sensitive sink as requiring an untainted type, or you might have forgotten to annotate untrusted data as
having a tainted type.

To run the Tainting Checker, supply the -processor TaintingChecker command-line option to javac.

8.1 Tainting annotations
The Tainting type system uses the following annotations:

• @Untainted indicates a type that includes only untainted, trusted values.
• @Tainted indicates a type that may include only tainted, untrusted values. @Tainted is a supertype of
@Untainted.
• @PolyTainted is a qualifier that is polymorphic over tainting (see Section 24.2).

8.2 Tips on writing @Untainted annotations
Most programs are designed with a boundary that surrounds sensitive computations, separating them from untrusted
values. Outside this boundary, the program may manipulate malicious values, but no malicious values ever pass the
boundary to be operated upon by sensitive computations.

In some programs, the area outside the boundary is very small: values are sanitized as soon as they are received from
an external source. In other programs, the area inside the boundary is very small: values are sanitized only immediately
before being used at a sensitive sink. Either approach can work, so long as every possibly-tainted value is sanitized
before it reaches a sensitive sink.

59

https://en.wikipedia.org/wiki/Sql_injection
https://en.wikipedia.org/wiki/Sql_injection
api/org/checkerframework/checker/tainting/qual/Untainted.html
api/org/checkerframework/checker/tainting/qual/Tainted.html
api/org/checkerframework/checker/tainting/qual/PolyTainted.html

Once you determine the boundary, annotating your program is easy: put @Tainted outside the boundary, @Untainted
inside, and @SuppressWarnings("tainting") at the validation or sanitization routines that are used at the boundary.

The Tainting Checker’s standard default qualifier is @Tainted (see Section 25.3.1 for overriding this default). This
is the safest default, and the one that should be used for all code outside the boundary (for example, code that reads user
input). You can set the default qualifier to @Untainted in code that may contain sensitive sinks.

The Tainting Checker does not know the intended semantics of your program, so it cannot warn you if you mis-
annotate a sensitive sink as taking @Tainted data, or if you mis-annotate external data as @Untainted. So long as you
correctly annotate the sensitive sinks and the places that untrusted data is read, the Tainting Checker will ensure that all
your other annotations are correct and that no undesired information flows exist.

As an example, suppose that you wish to prevent SQL injection attacks. You would start by annotating the
Statement class to indicate that the execute operations may only operate on untainted queries (Chapter 28 describes
how to annotate external libraries):

public boolean execute(@Untainted String sql) throws SQLException;
public boolean executeUpdate(@Untainted String sql) throws SQLException;

8.3 @Tainted and @Untainted can be used for many purposes
The @Tainted and @Untainted annotations have only minimal built-in semantics. In fact, the Tainting Checker
provides only a small amount of functionality beyond the Subtyping Checker (Chapter 22). This lack of hard-coded
behavior means that the annotations can serve many different purposes. Here are just a few examples:

• Prevent SQL injection attacks: @Tainted is external input, @Untainted has been checked for SQL syntax.
• Prevent cross-site scripting attacks: @Tainted is external input, @Untainted has been checked for JavaScript

syntax.
• Prevent information leakage: @Tainted is secret data, @Untainted may be displayed to a user.

In each case, you need to annotate the appropriate untainting/sanitization routines. This is similar to the @Encrypted
annotation (Section 22.2), where the cryptographic functions are beyond the reasoning abilities of the type system. In
each case, the type system verifies most of your code, and the @SuppressWarnings annotations indicate the few places
where human attention is needed.

If you want more specialized semantics, or you want to annotate multiple types of tainting in a single program, then
you can copy the definition of the Tainting Checker to create a new annotation and checker with a more specific name
and semantics. See Chapter 29 for more details.

8.3.1 Qualifier Parameters
The Tainting Checker supports qualifier parameters. See section 24.3 for more details on qualifier parameters.

The qualifier parameter system currently (as of February 2015) incurs a 50% performance penalty. If this is unaccept-
able you can run the original Tainting Checker by passing -processor org.checkerframework.checker.tainting.classic.TaintingClassicChecker
command-line option to javac.

60

http://docs.oracle.com/javase/8/docs/api/java/sql/Statement.html

Chapter 9

Regex Checker for regular expression
syntax

The Regex Checker prevents, at compile-time, use of syntactically invalid regular expressions and access of invalid
capturing groups.

A regular expression, or regex, is a pattern for matching certain strings of text. In Java, a programmer writes a
regular expression as a string. At run time, the string is “compiled” into an efficient internal form (Pattern) that is
used for text-matching. Regular expression in Java also have capturing groups, which are delimited by parentheses and
allow for extraction from text.

The syntax of regular expressions is complex, so it is easy to make a mistake. It is also easy to accidentally use a
regex feature from another language that is not supported by Java (see section “Comparison to Perl 5” in the Pattern
Javadoc). Ordinarily, the programmer does not learn of these errors until run time. The Regex Checker warns about
these problems at compile time.

For further details, including case studies, see a paper about the Regex Checker [SDE12].
To run the Regex Checker, supply the -processor org.checkerframework.checker.regex.RegexChecker

command-line option to javac.

9.1 Regex annotations
These qualifiers make up the Regex type system:

@Regex indicates valid regular expression Strings. This qualifier takes an optional parameter of at the least the
number of capturing groups in the regular expression. If not provided, the parameter defaults to 0.

@PolyRegex indicates qualifier polymorphism. For a description of @PolyRegex, see Section 24.2.

The subtyping hierarchy of the Regex Checker’s qualifiers is shown in Figure 9.1.

9.2 Annotating your code with @Regex

9.2.1 Implicit qualifiers
As described in Section 25.3, the Regex Checker adds implicit qualifiers, reducing the number of annotations that must
appear in your code. The checker implicitly adds the Regex qualifier with the parameter set to the correct number of
capturing groups to any String literal that is a valid regex. The Regex Checker allows the null literal to be assigned
to any type qualified with the Regex qualifier.

61

http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
api/org/checkerframework/checker/regex/qual/Regex.html
api/org/checkerframework/checker/regex/qual/PolyRegex.html
api/org/checkerframework/checker/regex/qual/PolyRegex.html

@Unqualified

@Regex(0) = @Regex

@Regex(2)

@Regex(1)

@RegexBottom

.

.

.

Figure 9.1: The subtyping relationship of the Regex Checker’s qualifiers. Because the parameter to a @Regex qualifier
is at least the number of capturing groups in a regular expression, a @Regex qualifier with more capturing groups is a
subtype of a @Regex qualifier with fewer capturing groups. Qualifiers in gray are used internally by the type system but
should never be written by a programmer.

public @Regex String parenthesize(@Regex String regex) {
return "(" + regex + ")"; // Even though the parentheses are not @Regex Strings,

// the whole expression is a @Regex String
}

Figure 9.2: An example of the Regex Checker’s support for concatenation of non-regular-expression Strings to produce
valid regular expression Strings.

9.2.2 Capturing groups
The Regex Checker validates that a legal capturing group number is passed to Matcher’s group, start and end
methods. To do this, the type of Matcher must be qualified with a @Regex annotation with the number of capturing
groups in the regular expression. This is handled implicitly by the Regex Checker for local variables (see Section 25.4),
but you may need to add @Regex annotations with a capturing group count to Pattern and Matcher fields and
parameters.

9.2.3 Concatenation of partial regular expressions
In general, concatenating a non-regular-expression String with any other string yields a non-regular-expression

String. The Regex Checker can sometimes determine that concatenation of non-regular-expression Strings will produce
valid regular expression Strings. For an example see Figure 9.2.

62

http://docs.oracle.com/javase/8/docs/api/java/util/regex/Matcher.html
http://docs.oracle.com/javase/8/docs/api/java/util/regex/Matcher.html#group-int-
http://docs.oracle.com/javase/8/docs/api/java/util/regex/Matcher.html#start-int-
http://docs.oracle.com/javase/8/docs/api/java/util/regex/Matcher.html#end-int-

String regex = getRegexFromUser();
if (! RegexUtil.isRegex(regex)) {

throw new RuntimeException("Error parsing regex " + regex, RegexUtil.regexException(regex));
}
Pattern p = Pattern.compile(regex);

Figure 9.3: Example use of RegexUtil methods.

9.2.4 Testing whether a string is a regular expression
Sometimes, the Regex Checker cannot infer whether a particular expression is a regular expression — and sometimes
your code cannot either! In these cases, you can use the isRegex method to perform such a test, and other helper
methods to provide useful error messages. A common use is for user-provided regular expressions (such as ones passed
on the command-line). Figure 9.3 gives an example of the intended use of the RegexUtil methods.

RegexUtil.isRegex returns true if its argument is a valid regular expression.
RegexUtil.regexError returns a String error message if its argument is not a valid regular expression, or null

if its argument is a valid regular expression.
RegexUtil.regexException returns the PatternSyntaxException that Pattern.compile(String) throws

when compiling an invalid regular expression. It returns null if its argument is a valid regular expression.

An additional version of each of these methods is also provided that takes an additional group count param-
eter. The RegexUtil.isRegex method verifies that the argument has at least the given number of groups. The
RegexUtil.regexError and RegexUtil.regexException methods return a String error message and Pattern-
SyntaxException, respectively, detailing why the given String is not a syntactically valid regular expression with at
least the given number of capturing groups.

If you detect that a String is not a valid regular expression but would like to report the error higher
up the call stack (potentially where you can provide a more detailed error message) you can throw a
RegexUtil.CheckedPatternSyntaxException. This exception is functionally the same as a PatternSyntax-
Exception except it is checked to guarantee that the error will be handled up the call stack. For more details, see the
Javadoc for RegexUtil.CheckedPatternSyntaxException.

A potential disadvantage of using the RegexUtil class is that your code becomes dependent on the Checker
Framework at run time as well as at compile time. You can avoid this by adding the Checker Framework to your project,
or by copying the RegexUtil class into your own code.

9.2.5 Qualifier Parameters
The Regex Checker supports qualifier parameters. See section 24.3 for more details on qualifier parameters.

The qualifier parameter system currently (as of February 2015) incurs a 50% performance penalty. If this is unaccept-
able you can run the original Regex Checker by passing -processor org.checkerframework.checker.regex.classic.RegexClassicChecker
as a command-line option to javac.

9.2.6 Suppressing warnings
If you are positive that a particular string that is being used as a regular expression is syntactically valid, but the Regex
Checker cannot conclude this and issues a warning about possible use of an invalid regular expression, then you can use
the RegexUtil.asRegex method to suppress the warning.

You can think of this method as a cast: it returns its argument unchanged, but with the type @Regex String if it is
a valid regular expression. It throws an error if its argument is not a valid regular expression, but you should only use it
when you are sure it will not throw an error.

There is an additional RegexUtil.asRegex method that takes a capturing group parameter. This method works the
same as described above, but returns a @Regex String with the parameter on the annotation set to the value of the
capturing group parameter passed to the method.

63

api/org/checkerframework/checker/regex/RegexUtil.html#isRegex-java.lang.String-
api/org/checkerframework/checker/regex/RegexUtil.html#regexError-java.lang.String-
api/org/checkerframework/checker/regex/RegexUtil.html#regexException-java.lang.String-
http://docs.oracle.com/javase/8/docs/api/java/util/regex/PatternSyntaxException.html
http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#compile-java.lang.String-
api/org/checkerframework/checker/regex/RegexUtil.html#isRegex-java.lang.String-int-
api/org/checkerframework/checker/regex/RegexUtil.html#regexError-java.lang.String-int-
api/org/checkerframework/checker/regex/RegexUtil.html#regexException-java.lang.String-int-
api/org/checkerframework/checker/regex/RegexUtil.CheckedPatternSyntaxException.html
http://docs.oracle.com/javase/8/docs/api/java/util/regex/PatternSyntaxException.html
http://docs.oracle.com/javase/8/docs/api/java/util/regex/PatternSyntaxException.html
api/org/checkerframework/checker/regex/RegexUtil.CheckedPatternSyntaxException.html
api/org/checkerframework/checker/regex/RegexUtil.html#asRegex-java.lang.String-
api/org/checkerframework/checker/regex/RegexUtil.html#asRegex-java.lang.String-int-

The use case shown in Figure 9.3 should support most cases so the asRegex method should be used rarely.

64

Chapter 10

Format String Checker

The Format String Checker prevents use of incorrect format strings in format methods such as System.out.printf
and String.format.

The Format String Checker warns you if you write an invalid format string, and it warns you if the other arguments
are not consistent with the format string (in number of arguments or in their types). Here are examples of errors that the
Format String Checker detects at compile time. Section 10.3 provides more details.

String.format("%y", 7); // error: invalid format string

String.format("%d", "a string"); // error: invalid argument type for %d

String.format("%d %s", 7); // error: missing argument for %s
String.format("%d", 7, 3); // warning: unused argument 3
String.format("{0}", 7); // warning: unused argument 7, because {0} is wrong syntax

To run the Format String Checker, supply the -processor org.checkerframework.checker.formatter.FormatterChecker
command-line option to javac.

10.1 Formatting terminology
Printf-style formatting takes as an argument a format string and a list of arguments. It produces a new string in which
each format specifier has been replaced by the corresponding argument. The format specifier determines how the format
argument is converted to a string. A format specifier is introduced by a % character. For example, String.format("The
%s is %d.","answer",42) yields "The answer is 42.". "The %s is %d." is the format string, "%s" and "%d"
are the format specifiers; "answer" and 42 are format arguments.

10.2 Format String Checker annotations
The @Format qualifier on a string type indicates a valid format string. The JDK documentation for the Formatter
class explains the requirements for a valid format string. A programmer rarely writes the @Format annotation, as it is
inferred for string literals. A programmer may need to write it on fields and on method signatures.

The @Format qualifier is parameterized with a list of conversion categories that impose restrictions on the format
arguments. Conversion categories are explained in more detail in Section 10.2.1. The type qualifier for "%d %f" is for
example @Format({INT, FLOAT}).

Consider the below printFloatAndInt method. Its parameter must be a format string that can be used in a format
method, where the first format argument is “float-like” and the second format argument is “integer-like”. The type of its
parameter, @Format({FLOAT, INT}) String, expresses that contract.

65

http://docs.oracle.com/javase/8/docs/api/java/io/PrintStream.html#printf-java.lang.String-java.lang.Object...-
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html#format-java.lang.String-java.lang.Object...-
api/org/checkerframework/checker/formatter/qual/Format.html
http://docs.oracle.com/javase/8/docs/api/java/util/Formatter.html#syntax
api/org/checkerframework/checker/formatter/qual/Format.html

@InvalidFormat

@UnknownFormat

@FormatBottom

@Format(...,)

Figure 10.1: The Format String Checker type qualifier hierarchy. The figure does not show the subtyping rules among
different @Format(...) qualifiers; see Section 10.2.1.

void printFloatAndInt(@Format({FLOAT, INT}) String fs) {
System.out.printf(fs, 3.1415, 42);

}

printFloatAndInt("Float %f, Number %d"); // OK
printFloatAndInt("Float %f"); // error

Figure 10.1 shows all the type qualifiers. The annotations other than @Format are only used internally and cannot
be written in your code. @InvalidFormat indicates an invalid format string — that is, a string that cannot be used as a
format string. For example, the type of "%y" is @InvalidFormat String. @FormatBottom is the type of the null
literal. @Unqualified is the default that is applied to strings that are not literals and on which the user has not written a
@Format annotation.

10.2.1 Conversion Categories
Given a format specifier, only certain format arguments are compatible with it, depending on its “conversion” — its last,
or last two, characters. For example, in the format specifier "%d", the conversion d restricts the corresponding format
argument to be “integer-like”:

String.format("%d", 5); // OK
String.format("%d", "hello"); // error

Many conversions enforce the same restrictions. A set of restrictions is represented as a conversion category. The
“integer like” restriction is for example the conversion category INT. The following conversion categories are defined in
the ConversionCategory enumeration:

GENERAL imposes no restrictions on a format argument’s type. Applicable for conversions b, B, h, H, s, S.
CHAR requires that a format argument represents a Unicode character. Specifically, char, Character, byte, Byte,

short, and Short are allowed. int or Integer are allowed if Character.isValidCodePoint(argument)
would return true for the format argument. (The Format String Checker permits any int or Integer without
issuing a warning or error — see Section 10.3.2.) Applicable for conversions c, C.

INT requires that a format argument represents an integral type. Specifically, byte, Byte, short, Short, int and
Integer, long, Long, and BigInteger are allowed. Applicable for conversions d, o, x, X.

FLOAT requires that a format argument represents a floating-point type. Specifically, float, Float, double, Double,
and BigDecimal are allowed. Surprisingly, integer values are not allowed. Applicable for conversions e, E, f, g,
G, a, A.

TIME requires that a format argument represents a date or time. Specifically, long, Long, Calendar, and Date are
allowed. Applicable for conversions t, T.

UNUSED imposes no restrictions on a format argument. This is the case if a format argument is not used as replacement
for any format specifier. "%2$s" for example ignores the first format argument.

66

api/org/checkerframework/checker/formatter/qual/InvalidFormat.html
api/org/checkerframework/checker/formatter/qual/FormatBottom.html
api/org/checkerframework/framework/qual/Unqualified.html
api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#INT
api/org/checkerframework/checker/formatter/qual/ConversionCategory.html
api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#GENERAL
api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#CHAR
api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#INT
api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#FLOAT
api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#TIME
api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#UNUSED

Further, all conversion categories accept null.
The same format argument may serve as a replacement for multiple format specifiers. Until now, we have assumed

that the format specifiers simply consume format arguments left to right. But there are two other ways for a format
specifier to select a format argument:

• n$ specifies a one-based index n. In the format string "%2$s", the format specifier selects the second format
argument.

• The < flag references the format argument that was used by the previous format specifier. In the format string "%d
%<d" for example, both format specifiers select the first format argument.

In the following example, the format argument must be compatible with both conversion categories, and can therefore
be neither a Character nor a long.

format("Char %1$c, Int %1$d", (int)42); // OK
format("Char %1$c, Int %1$d", new Character(42)); // error
format("Char %1$c, Int %1$d", (long)42); // error

Only three additional conversion categories are needed represent all possible intersections of previously-mentioned
conversion categories:

NULL is used if no object of any type can be passed as parameter. In this case, the only legal value is null. The format
string "%1$f %1$c", for example requires that the first format argument be null. Passing a value such as 4 or
4.2 would lead to an exception.

CHAR_AND_INT is used if a format argument is restricted by a CHAR and a INT conversion category (CHAR ∩ INT).
INT_AND_TIME is used if a format argument is restricted by an INT and a TIME conversion category (INT ∩ TIME).

All other intersections lead to already existing conversion categories. For example, GENERAL ∩ CHAR = CHAR and
UNUSED ∩ GENERAL = GENERAL.

Figure 10.2 summarizes the subset relationship among all conversion categories.

GENERAL

FLOAT

UNUSED

INT TIME CHAR

CHAR_AND_INT INT_AND_TIME

NULL

Figure 10.2: The subset relationship among conversion categories.

Here are the subtyping rules among different @Format qualifiers. It is legal to:

• use a format string with a weaker (less restrictive) conversion category than required.

67

api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#NULL
api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#CHAR_AND_INT
api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#CHAR
api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#INT
api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#INT_AND_TIME
api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#INT
api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#TIME
api/org/checkerframework/checker/formatter/qual/Format.html

• use a format string with fewer format specifiers than required, but a warning is issued.

The following example shows the subtyping rules in action:

@Format({FLOAT, INT})
String f;

f = "%f %d"; // Ok
f = "%s %d"; // OK, %s is weaker than %f
f = "%f"; // warning: last argument is ignored
f = "%f %d %s"; // error: too many arguments
f = "%d %d"; // error: %d is not weaker than %f

String.format(f, 0.8, 42);

10.3 What the Format String Checker checks
If the Format String Checker issues no errors, it provides the following guarantees:

1. The following guarantees hold for every format method invocation:

(a) The format method’s first parameter (or second if a Locale is provided) is a valid format string (or null).
(b) A warning is issued if one of the format string’s conversion categories is UNUSED.
(c) None of the format string’s conversion categories is NULL.

2. If the format arguments are passed to the format method as varargs, the Format String Checker guarantees the
following additional properties:

(a) No fewer format arguments are passed than required by the format string.
(b) A warning is issued if more format arguments are passed than required by the format string.
(c) Every format argument’s type satisfies its conversion category’s restrictions.

3. If the format arguments are passed to the format method as array, a warning is issued by the Format String
Checker.

Following are examples for every guarantee:

String.format("%d", 42); // OK
String.format(Locale.GERMAN, "%d", 42); // OK
String.format(new Object()); // error (1a)
String.format("%y"); // error (1a)
String.format("%2$s", "unused", "used"); // warning (1b)
String.format("%1$d %1$f", 5.5); // error (1c)
String.format("%1$d %1$f %d", null, 6); // error (1c)
String.format("%s"); // error (2a)
String.format("%s", "used", "ignored"); // warning (2b)
String.format("%c",4.2); // error (2c)
String.format("%c", (String)null); // error (2c)
String.format("%1$d %1$f", new Object[]{1}); // warning (3)
String.format("%s", new Object[]{"hello"}); // warning (3)

10.3.1 Possible false alarms
There are three cases in which the Format String Checker may issue a warning or error, even though the code cannot
fail at run time. (These are in addition to the general conservatism of a type system: code may be correct because of

68

http://docs.oracle.com/javase/8/docs/api/java/util/Locale.html

application invariants that are not captured by the type system.) In each of these cases, you can rewrite the code, or you
can manually check it and write a @SuppressWarnings annotation if you can reason that the code is correct.

Case 1b: Unused format arguments. It is legal to provide more arguments than are required by the format string;
Java ignores the extras. However, this is an uncommon case. In practice, a mismatch between the number of format
specifiers and the number of format arguments is usually an error.

Case 1c: Format arguments that can only be null. It is legal to write a format string that permits only null arguments
and throws an exception for any other argument. An example is String.format("%1$d %1$f", null). The Format
String Checker forbids such a format string. If you should ever need such a format string, simply replace the problematic
format specifier with "null". For example, you would replace the call above by String.format("null null").

Case 3: Array format arguments. The Format String Checker performs no analysis of arrays, only of varargs
invocations. It is better style to use varargs when possible.

10.3.2 Possible missed alarms
The Format String Checker helps prevent bugs by detecting, at compile time, which invocations of format methods will
fail. While the Format String Checker finds most of these invocations, there are cases in which a format method call
will fail even though the Format String Checker issued neither errors nor warnings. These cases are:

1. The format string is null. Use the Nullness Checker to prevent this.
2. A format argument’s toString method throws an exception.
3. A format argument implements the Formattable interface and throws an exception in the formatTo method.
4. A format argument’s conversion category is CHAR or CHAR_AND_INT, and the passed value is an int or Integer,

and Character.isValidCodePoint(argument) returns false.

The following examples illustrate these limitations:

class A {
public String toString() {

throw new Error();
}

}

class B implements Formattable {
public void formatTo(Formatter fmt, int f,

int width, int precision) {
throw new Error();

}
}

// The checker issues no errors or warnings for the
// following illegal invocations of format methods.
String.format(null); // NullPointerException (1)
String.format("%s", new A()); // Error (2)
String.format("%s", new B()); // Error (3)
String.format("%c", (int)-1); // IllegalFormatCodePointException (4)

10.4 Implicit qualifiers
As described in Section 25.3, the Format String Checker adds implicit qualifiers, reducing the number of annotations
that must appear in your code. The checker implicitly adds the @Format qualifier with the appropriate conversion
categories to any String literal that is a valid format string.

69

10.5 FormatMethod
Your project may contain methods that forward their arguments to a format method. Consider for example the following
log method:

@FormatMethod
void log(String format, Object... args) {

if (enabled) {
logfile.print(indent_str);
logfile.printf(format , args);

}
}

By attaching a @FormatMethod annotation to such a method, you can instruct the Format String Checker to check
every invocation of the method. This check is analogous to the check done on every invocation of built in format
methods like String.format.

10.6 Testing whether a format string is valid
The Format String Checker automatically determines whether each String literal is a valid format string or not. When
a string is computed or is obtained from an external resource, then the string must be trusted or tested.

One way to test a string is to call the FormatUtil.asFormat method to check whether the format string is valid
and its format specifiers match certain conversion categories. If this is not the case, asFormat raises an exception. Your
code should catch this exception and handle it gracefully.

The following code examples may fail at run time, and therefore they do not type check. The type-checking errors
are indicated by comments.

Scanner s = new Scanner(System.in);
String fs = s.next();
System.out.printf(fs, "hello", 1337); // error: fs is not known to be a format string

Scanner s = new Scanner(System.in);
@Format({GENERAL, INT}) String fs = s.next(); // error: fs is not known to have the given type
System.out.printf(fs, "hello", 1337); // OK

The following variant does not throw a run-time error, and therefore passes the type-checker:

Scanner s = new Scanner(System.in);
String format = s.next()
try {

format = FormatUtil.asFormat(format, GENERAL, INT);
} catch (IllegalFormatException e) {

// Replace this by your own error handling.
System.err.println("The user entered the following invalid format string: " + format);
System.exit(2);

}
// fs is now known to be of type: @Format({GENERAL, INT}) String
System.out.printf(format,"hello",1337);

A potential disadvantage of using the FormatUtil class is that your code becomes dependent on the Checker Framework
at run time as well as at compile time. You can avoid this by adding the Checker Framework to your project, or by
copying the FormatUtil class into your own code.

70

api/org/checkerframework/checker/formatter/qual/FormatMethod.html
api/org/checkerframework/checker/formatter/FormatUtil.html#asFormat-java.lang.String-org.checkerframework.checker.formatter.qual.ConversionCategory...-

Chapter 11

Internationalization Format String Checker
(I18n Format String Checker)

The Internationalization Format String Checker, or I18n Format String Checker, prevents use of incorrect i18n format
strings.

If the I18n Format String Checker issues no warnings or errors, then MessageFormat.format will raise no error at
run time. “I18n” is short for “internationalization” because there are 18 characters between the “i” and the “n”.

Here are the examples of errors that the I18n Format Checker detects at compile time.

// Warning: the second argument is missing.
MessageFormat.format("{0} {1}", 3.1415);
// String argument cannot be formatted as Time type.
MessageFormat.format("{0, time}", "my string");
// Invalid format string: unknown format type: thyme.
MessageFormat.format("{0, thyme}", new Date());
// Invalid format string: missing the right brace.
MessageFormat.format("{0", new Date());
// Invalid format string: the argument index is not an integer.
MessageFormat.format("{0.2, time}", new Date());
// Invalid format string: "#.#.#" subformat is invalid.
MessageFormat.format("{0, number, #.#.#}", 3.1415);

For instructions on how to run the Internationalization Format String Checker, see Section 11.5.
The Internationalization Checker or I18n Checker (Chapter 12.2, page 78) has a different purpose. It verifies that

your code is properly internationalized: any user-visible text should be obtained from a localization resource and all
keys exist in that resource.

11.1 Internationalization Format String Checker annotations
The MessageFormat documentation specifies the syntax of the i18n format string.

These are the qualifiers that make up the I18n Format String type system. Figure 11.1 shows their subtyping
relationships.

@I18nFormat represents a valid i18n format string. For example, @I18nFormat({GENERAL, NUMBER, UNUSED,
DATE}) is a legal type for "{0}{1, number} {3, date}", indicating that when the format string is used, the
first argument should be of GENERAL conversion category, the second argument should be of NUMBER conversion
category, and so on. Conversion categories such as GENERAL are described in Section 11.2.

71

http://docs.oracle.com/javase/8/docs/api/java/text/MessageFormat.html#format-java.lang.String-java.lang.Object...-
http://docs.oracle.com/javase/8/docs/api/java/text/MessageFormat.html
api/org/checkerframework/checker/i18nformatter/qual/I18nFormat.html

@I18nFormatBottom

@I18nUnknownFormat

@I18nInvalidFormat @I18nFormat(...,) @I18nFormatFor("#1") @I18nFormatFor("#n") ...

Figure 11.1: The Internationalization Format String Checker type qualifier hierarchy. The figure does not show the
subtyping rules among different @I18nFormat(...) qualifiers; see Section 11.2. All @I18nFormatFor annotations
are unrelated by subtyping. The qualifiers in gray are used internally by the checker and should never be written by a
programmer.

@I18nFormatFor indicates that the qualified type is a valid i18n format string for use with some array of values.
For example, @I18nFormatFor("#2") indicates that the string can be used to format the contents of the second
parameter array. The argument is a Java expression whose syntax is explained in Section 25.5. An example of its
use is:

static void method(@I18nFormatFor("#2") String format, Object... args) {
// the body may use the parameters like this:
MessageFormat.format(format, args);

}

method("{0, number} {1}", 3.1415, "A string"); // OK
// error: The string "hello" cannot be formatted as a Number.
method("{0, number} {1}", "hello", "goodbye");

@I18nInvalidFormat represents an invalid i18n format string. Programmers are not allowed to write this
annotation. It is only used internally by the type checker.

@I18nUnknownFormat represents any string. The string might or might not be a valid i18n format string. Program-
mers are not allowed to write this annotation.

@I18nFormatBottom indicates that the value is definitely null. Programmers are not allowed to write this
annotation.

11.2 Conversion categories
In a message string, the optional second element within the curly braces is called a format type and must be one of
number, date, time, and choice. These four format types correspoond to different conversion categories. date and
time correspond to DATE in the conversion categories figure. choice corresponds to NUMBER. The format type
restricts what arguments are legal. For example, a date argument is not compatible with the number format type, i.e.,
MessageFormat.format("{0, number}", new Date()) will throw an exception.

The I18n Checker represents the possible arguments via conversion categories. A conversion category defines a set
of restrictions or a subtyping rule.

Figure 11.2 summarizes the subset relationship among all conversion categories.
Here are the subtyping rules among different @I18nFormat qualifiers. It is legal to:

• use a format string with a weaker (less restrictive) conversion category than required.
• use a format string with fewer format specifiers than required, but a warning is issued.

The following example shows the subtyping rules in action:

@I18nFormat({NUMBER, NUMBER}) String format;
// OK.

72

api/org/checkerframework/checker/i18nformatter/qual/I18nFormat.html
api/org/checkerframework/checker/i18nformatter/qual/I18nFormatFor.html
api/org/checkerframework/checker/i18nformatter/qual/I18nFormatFor.html
api/org/checkerframework/checker/i18nformatter/qual/I18nInvalidFormat.html
api/org/checkerframework/checker/i18nformatter/qual/I18nUnknownFormat.html
api/org/checkerframework/checker/i18nformatter/qual/I18nFormatBottom.html

UNUSED

GENERAL

DATE

NUMBER

Figure 11.2: The subset relationship among i18n conversion categories.

format = "{0, number, #.#} {1, number}";
// OK, GENERAL is weaker (less restrictive) than NUMBER.
format = "{0, number} {1}";
// Error, the right-hand-side is stronger (more restrictive) than the left-hand-side’s type.
format = "{0} {1} {2}";

The conversion categories are:

UNUSED indicates an unused argument. For example, in MessageFormat.format("{0, number} {2, number}",
3.14, "Hello", 2.718) , the second argument Hello is unused. Thus, the conversion categories for the
format, 0, number 2, number, is (NUMBER, UNUSED, NUMBER).

GENERAL means that any value can be supplied as an argument.
DATE is applicable for date, time, and number types. An argument needs to be of Date, Time, or Number type or a

subclass of them, including Timestamp and the classes listed immediately below.
NUMBER means that the argument needs to be of Number type or a subclass: Number, AtomicInteger, AtomicLong,

BigDecimal, BigInteger, Byte, Double, Float, Integer, Long, Short.

11.3 What the Internationalization Format String Checker checks
The Internationalization Format String Checker checks calls to the i18n formatting method MessageFormat.format
and guarantees the following:

1. The checker issues a warning for the following cases:

(a) There are missing arguments from what is required by the format string.
MessageFormat.format("{0, number} {1, number}", 3.14); // Output: 3.14 {1}

(b) More arguments are passed than what is required by the format string.
MessageFormat.format("{0, number}", 1, new Date());
MessageFormat.format("{0, number} {0, number}", 3.14, 3.14);
This does not cause an error at run time, but it often indicates a programmer mistake. If it is intentional,
then you should suppress the warning (see Chapter 26).

(c) Some argument is an array of objects.
MessageFormat.format("{0, number} {1}", array);
The checker cannot verify whether the format string is valid, so the checker conservatively issues a warning.
This is a limitation of the Internationalization Format String Checker.

2. The checker issues an error for the following cases:

(a) The format string is invalid.

73

api/org/checkerframework/checker/i18nformatter/qual/I18nConversionCategory.html#UNUSED
api/org/checkerframework/checker/i18nformatter/qual/I18nConversionCategory.html#GENERAL
api/org/checkerframework/checker/i18nformatter/qual/I18nConversionCategory.html#DATE
http://docs.oracle.com/javase/8/docs/api/java/sql/Date.html
http://docs.oracle.com/javase/8/docs/api/java/sql/Time.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Number.html
http://docs.oracle.com/javase/8/docs/api/java/sql/Timestamp.html
api/org/checkerframework/checker/i18nformatter/qual/I18nConversionCategory.html#NUMBER
http://docs.oracle.com/javase/8/docs/api/java/lang/Number.html
http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicInteger.html
http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicLong.html
http://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html
http://docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Byte.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Float.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Integer.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Long.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Short.html
http://docs.oracle.com/javase/8/docs/api/java/text/MessageFormat.html#format-java.lang.String-java.lang.Object...-

• Unmatched braces.
MessageFormat.format("{0, time", new Date());

• The argument index is not an integer or is negative.
MessageFormat.format("{0.2, time}", new Date());
MessageFormat.format("{-1, time}", new Date());

• Unknown format type.
MessageFormat.format("{0, foo}", 3.14);

• Missing a format style required for choice format.
MessageFormat.format("{0, choice}", 3.14);

• Wrong format style.
MessageFormat.format("{0, time, number}", 3.14);

• Invalid subformats.
MessageFormat.format("{0, number, #.#.#}", 3.14)

(b) Some argument’s type doesn’t satisfy its conversion category.
MessageFormat.format("{0, number}", new Date());

The Checker also detects illegal assignments: assigning a non-format-string or an incompatible format string to a
variable declared as containing a specific type of format string. For example,

@I18nFormat({GENERAL, NUMBER}) String format;
// OK.
format = "{0} {1, number}";
// OK, GENERAL is weaker (less restrictive) than NUMBER.
format = "{0} {1}";
// OK, it is legal to have fewer arguments than required (less restrictive).
// But the warning will be issued instead.
format = "{0}";

// Error, the format string is stronger (more restrictive) than the specifiers.
format = "{0} {1} {2}";
// Error, the format string is more restrictive. NUMBER is a subtype of GENERAL.
format = "{0, number} {1, number}";

11.4 Resource files
A programmer rarely writes an i18n format string literally. (The examples in this chapter show that for simplicity.)
Rather, the i18n format strings are read from a resource file. The program chooses a resource file at run time depending
on the locale (for example, different resource files for English and Spanish users).
For example, suppose that the resource1.properties file contains

key1 = The number is {0, number}.

Then code such as the following:

String formatPattern = ResourceBundle.getBundle("resource1").getString("key1");
System.out.println(MessageFormat.format(formatPattern, 2.2361));

will output “The number is 2.2361.” A different resource file would contain key1 = El número es {0, number}.
When you run the I18n Format String Checker, you need to indicate which resource file it should check. If you

change the resource file or use a different resource file, you should re-run the checker to ensure that you did not make
an error. The I18n Format String Checker supports two types of resource files: ResourceBundles and property files. The
example above shows use of resource bundles. For more about checking property files, see Chapter 12, page 77.

74

11.5 Running the Internationalization Format Checker
The checker can be invoked by running one of the following commands (with the whole command on one line).

• Using ResourceBundles:
javac -processor org.checkerframework.checker.i18nformatter.I18nFormatterChecker -Abundlenames=MyResource MyFile.java

• Using property files:
javac -processor org.checkerframework.checker.i18nformatter.I18nFormatterChecker -Apropfiles=MyResource.properties

MyFile.java

• Not using a property file. Use this if the programmer hard-coded the format patterns without loading them from a
property file.
javac -processor org.checkerframework.checker.i18nformatter.I18nFormatterChecker MyFile.java

11.6 Testing whether a string has an i18n format type
In the case that the checker cannot infer the i18n format type of a string, you can use the I18nFormatUtil.hasFormat
method to define the type of the string in the scope of a conditional statement.

I18nFormatUtil.hasFormat returns true if the given string has the given i18n format type.

For an example, see Section 11.7.

11.7 Examples of using the Internationalization Format Checker
• Using MessageFormat.format.

// suppose the bundle "MyResource" contains: key1={0, number} {1, date}
String value = ResourceBundle.getBundle("MyResource").getString("key1");
MessageFormat.format(value, 3.14, new Date()); // OK
// error: incompatible types in argument; found String, expected number
MessageFormat.format(value, "Text", new Date());

• Using the I18nFormatUtil.hasFormat method to check whether a format string has particular conversion
categories.

void test1(String format) {
if (I18nFormatUtil.hasFormat(format, I18nConversionCategory.GENERAL,

I18nConversionCategory.NUMBER)) {
MessageFormat.format(format, "Hello", 3.14); // OK
// error: incompatible types in argument; found String, expected number
MessageFormat.format(format, "Hello", "Bye");
// error: missing arguments; expected 2 but 1 given
MessageFormat.format(format, "Bye");
// error: too many arguments; expected 2 but 3 given
MessageFormat.format(format, "A String", 3.14, 3.14);

}
}

• Using @I18nFormatFor to ensure that an argument is a particular type of format string.

static void method(@I18nFormatFor("#2") String f, Object... args) {...}

method("{0, number} {1} {2, choice,0#zero|1#one|1<greater than one}", 3.14, "Hello", 100); // OK, MessageFormat.format(...) would return "3.14 Hello greater than one"

75

api/org/checkerframework/checker/i18nformatter/I18nFormatUtil.html#hasFormat-java.lang.String-org.checkerframework.checker.i18nformatter.qual.I18nConversionCategory...-
api/org/checkerframework/checker/i18nformatter/I18nFormatUtil.html#hasFormat-java.lang.String-org.checkerframework.checker.i18nformatter.qual.I18nConversionCategory...-
http://docs.oracle.com/javase/8/docs/api/java/text/MessageFormat.html#format-java.lang.String-java.lang.Object...-
api/org/checkerframework/checker/i18nformatter/I18nFormatUtil.html#hasFormat-java.lang.String-org.checkerframework.checker.i18nformatter.qual.I18nConversionCategory...-
api/org/checkerframework/checker/i18nformatter/qual/I18nFormatFor.html

// error: incompatible types in argument; found String, expected number
method("{0, number} {1}", "Bye", "Bye");

• Annotating a string with @I18nFormat.

@I18nFormat({I18nConversionCategory.DATE}) String;
s1 = "{0}";
// error: incompatible types in assignment
s1 = "{0, number}";

76

api/org/checkerframework/checker/i18nformatter/qual/I18nFormat.html

Chapter 12

Property File Checker

The Property File Checker ensures that a property file or resource bundle (both of which act like maps from keys to
values) is only accessed with valid keys. Accesses without a valid key either return null or a default value, which
can lead to a NullPointerException or hard-to-trace behavior. The Property File Checker (Section 12.1, page 77)
ensures that the used keys are found in the corresponding property file or resource bundle.

We also provide two specialized checkers. An Internationalization Checker (Section 12.2, page 78) verifies that code
is properly internationalized. A Compiler Message Key Checker (Section 12.3, page 78) verifies that compiler message
keys used in the Checker Framework are declared in a property file; This is an example of a simple specialization of the
property file checker, and the Checker Framework source code shows how it is used.

It is easy to customize the property key checker for other related purposes. Take a look at the source code of the
Compiler Message Key Checker and adapt it for your purposes.

12.1 General Property File Checker
The general Property File Checker ensures that a resource key is located in a specified property file or resource bundle.

The annotation @PropertyKey indicates that the qualified String is a valid key found in the property file or
resource bundle. You do not need to annotate String literals. The checker looks up every String literal in the specified
property file or resource bundle, and adds annotations as appropriate.

If you pass a String variable to be eventually used as a key, you also need to annotate all these variables with
@PropertyKey.

The checker can be invoked by running the following command:

javac -processor org.checkerframework.checker.propkey.PropertyKeyChecker
-Abundlenames=MyResource MyFile.java ...

You must specify the resources, which map keys to strings. The checker supports two types of resource: resource
bundles and property files. You can specify one or both of the following two command-line options:

1. -Abundlenames=resource_name
resource_name is the name of the resource to be used with ResourceBundle.getBundle(). The checker
uses the default Locale and ClassLoader in the compilation system. (For a tutorial about ResourceBundles,
see https://docs.oracle.com/javase/tutorial/i18n/resbundle/concept.html.) Multiple resource
bundle names are separated by colons ’:’.

2. -Apropfiles=prop_file
prop_file is the name of a properties file that maps keys to values. The file format is described in the Javadoc for
Properties.load(). Multiple files are separated by colons ’:’.

77

api/org/checkerframework/checker/propkey/qual/PropertyKey.html
http://docs.oracle.com/javase/8/docs/api/java/util/ResourceBundle.html#getBundle-java.lang.String-java.util.Locale-java.lang.ClassLoader-
https://docs.oracle.com/javase/tutorial/i18n/resbundle/concept.html
http://docs.oracle.com/javase/8/docs/api/java/util/Properties.html#load-java.io.Reader-

12.2 Internationalization Checker
The Internationalization Checker, or I18n Checker, verifies that your code is properly internationalized. International-
ization is the process of designing software so that it can be adapted to different languages and locales without needing
to change the code. Localization is the process of adapting internationalized software to specific languages and locales.

Internationalization is sometimes called i18n, because the word starts with “i”, ends with “n”, and has 18 characters
in between. Localization is similarly sometimes abbreviated as l10n.

The checker focuses on one aspect of internationalization: user-visible strings should be presented in the user’s own
language, such as English, French, or German. This is achieved by looking up keys in a localization resource, which
maps keys to user-visible strings. For instance, one version of a resource might map "CANCEL_STRING" to "Cancel",
and another version of the same resource might map "CANCEL_STRING" to "Abbrechen".

There are other aspects to localization, such as formatting of dates (3/5 vs. 5/3 for March 5), that the checker does
not check.

The Internationalization Checker verifies these two properties:

1. Any user-visible text should be obtained from a localization resource. For example, String literals should not be
output to the user.

2. When looking up keys in a localization resource, the key should exist in that resource. This check catches
incorrect or misspelled localization keys.

If you use the Internationalization Checker, you may want to also use the Internationalization Format String Checker,
or I18n Format String Checker (Chapter 11). It verifies that internationalization format strings are well-formed and
used with arguments of the proper type, so that MessageFormat.format does not fail at run time.

12.2.1 Internationalization annotations
The Internationalization Checker supports two annotations:

1. @Localized: indicates that the qualified String is a message that has been localized and/or formatted with
respect to the used locale.

2. @LocalizableKey: indicates that the qualified String or Object is a valid key found in the localization resource.
This annotation is a specialization of the @PropertyKey annotation, that gets checked by the general Property
Key Checker.

You may need to add the @Localized annotation to more methods in the JDK or other libraries, or in your own
code.

12.2.2 Running the Internationalization Checker
The Internationalization Checker can be invoked by running the following command:

javac -processor org.checkerframework.checker.i18n.I18nChecker -Abundlenames=MyResource MyFile.java ...

You must specify the localization resource, which maps keys to user-visible strings. Like the general Property Key
Checker, the Internationalization Checker supports two types of localization resource: ResourceBundles using the
-Abundlenames=resource_name option or property files using the -Apropfiles=prop_file option.

12.3 Compiler Message Key Checker
The Checker Framework uses compiler message keys to output error messages. These keys are substituted by localized
strings for user-visible error messages. Using keys instead of the localized strings in the source code enables easier
testing, as the expected error keys can stay unchanged while the localized strings can still be modified. We use the

78

http://docs.oracle.com/javase/8/docs/api/java/text/MessageFormat.html#format-java.lang.String-java.lang.Object...-
api/org/checkerframework/checker/i18n/qual/Localized.html
api/org/checkerframework/checker/i18n/qual/LocalizableKey.html

Compiler Message Key Checker to ensure that all internal keys are correctly localized. Instead of using the Property
File Checker, we use a specialized checker, giving us more precise documentation of the intended use of Strings.

The single annotation used by this checker is @CompilerMessageKey. The Checker Framework is completely
annotated; for example, class org.checkerframework.framework.source.Result uses @CompilerMessageKey in
methods failure and warning. For most users of the Checker Framework there will be no need to annotate any
Strings, as the checker looks up all String literals and adds annotations as appropriate.

The Compiler Message Key Checker can be invoked by running the following command:

javac -processor org.checkerframework.checker.compilermsgs.CompilerMessagesChecker
-Apropfiles=messages.properties MyFile.java ...

You must specify the resource, which maps compiler message keys to user-visible strings. The checker supports the
same options as the general property key checker. Within the Checker Framework we only use property files, so the
-Apropfiles=prop_file option should be used.

79

api/org/checkerframework/checker/compilermsgs/qual/CompilerMessageKey.html

Chapter 13

Signature Checker for string
representations of types

The Signature String Checker, or Signature Checker for short, verifies that string representations of types and signatures
are used correctly.

Java defines multiple different string representations for types (see Section 13.1), and it is easy to misuse them or to
miss bugs during testing. Using the wrong string format leads to a run-time exception or an incorrect result. This is a
particular problem for fully qualified and binary names, which are nearly the same — they differ only for nested classes
and arrays.

13.1 Signature annotations
Java defines four main formats for the string representation of a type. There is an annotation for each of these
representations. Figure 13.1 shows how they are related.

@FullyQualifiedName A fully qualified name (JLS §6.7), such as package.Outer.Inner, is used in Java code
and in messages to the user.

@BinaryName A binary name (JLS §13.1), such as package.Outer$Inner, is the representation of a type in its
own .class file.

@FieldDescriptor A field descriptor (JVMS §4.3.2), such as Lpackage/Outer$Inner;, is used in a .class
file’s constant pool, for example to refer to other types; it abbreviates primitives and arrays, and uses internal
form (JVMS §4.2) for class names.

@ClassGetName The type representation used by the Class.getName(), Class.forName(String), and
Class.forName(String, boolean, ClassLoader) methods. This format is: for any non-array type, the
binary name; and for any array type, a format like the FieldDescriptor field descriptor, but using “.” where the
field descriptor uses “/”.

@SourceName A source name is a string that is a valid fully qualified name and a valid binary name. A pro-
grammer should never or rarely use this — you should know how you intend to use a given variable. The
checker infers it for literal strings such as "package.MyClass" that are valid in both formats, and you might
occasionally see it in an error message. Likewise, you might see other types such as SourceNameForNonArray,
BinaryNameForNonArray, and FieldDescriptorForArray, but you generally should not use them either.

Java also defines other string formats for a type: simple names (JLS §6.2), qualified names (JLS §6.2), and canonical
names (JLS §6.7). The Signature Checker does not include annotations for these.

Here are examples of the supported formats:

80

api/org/checkerframework/checker/signature/qual/FullyQualifiedName.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-6.html#jls-6.7
api/org/checkerframework/checker/signature/qual/BinaryName.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-13.html#jls-13.1
api/org/checkerframework/checker/signature/qual/FieldDescriptor.html
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.3.2
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.2.1
api/org/checkerframework/checker/signature/qual/ClassGetName.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#getName--
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.3.2
api/org/checkerframework/checker/signature/qual/SourceName.html

@FullyQualifiedName
String

@BinaryName
String

String

@SourceNameForNonArray
String

@ClassGetName
String

@FieldDescriptor
String

@FieldDescriptorForArray
String

@BinaryNameForNonArray
String

@SourceName
String

Figure 13.1: Partial type hierarchy for the Signature type system, showing string representations of a Java type.
Programmers only need to write the boldfaced qualifiers, in the second row; qualifiers below those are included to
improve the internal handling of String literals.

fully-qualified name binary name Class.getName field descriptor
int int int I
int[][] int[][] [[I [[I
MyClass MyClass MyClass LMyClass;
MyClass[] MyClass[] [LMyClass; [LMyClass;
java.lang.Integer java.lang.Integer java.lang.Integer Ljava/lang/Integer;
java.lang.Integer[] java.lang.Integer[] [Ljava.lang.Integer; [Ljava/lang/Integer;
package.Outer.Inner package.Outer$Inner package.Outer$Inner Lpackage/Outer$Inner;
package.Outer.Inner[] package.Outer$Inner[] [Lpackage.Outer$Inner; [Lpackage/Outer$Inner;

Java defines one format for the string representation of a method signature:

@MethodDescriptor A method descriptor (JVMS §4.3.3) identifies a method’s signature (its parameter and return
types), just as a field descriptor identifies a type. The method descriptor for the method

Object mymethod(int i, double d, Thread t)

is

(IDLjava/lang/Thread;)Ljava/lang/Object;

13.2 What the Signature Checker checks
Certain methods in the JDK, such as Class.forName, are annotated indicating the type they require. The Signature
Checker ensures that clients call them with the proper arguments. The Signature Checker does not reason about string
operations such as concatenation, substring, parsing, etc.

To run the Signature Checker, supply the -processor org.checkerframework.checker.signature.SignatureChecker
command-line option to javac.

81

api/org/checkerframework/checker/signature/qual/MethodDescriptor.html
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.3.3

Chapter 14

GUI Effect Checker

One of the most prevalent GUI-related bugs is invalid UI update or invalid thread access: accessing the UI directly
from a background thread.

Most GUI frameworks (including Android, AWT, Swing, and SWT) create a single distinguished thread — the UI
event thread — that handles all GUI events and updates. To keep the interface responsive, any expensive computation
should be offloaded to background threads (also called worker threads). If a background thread accesses a UI element
such as a JPanel (by calling a JPanel method or reading/writing a field of JPanel), the GUI framework raises an exception
that terminates the program. To fix the bug, the background thread should send a request to the UI thread to perform the
access on its behalf.

It is difficult for a programmer to remember which methods may be called on which thread(s). The GUI Effect
Checker solves this problem. The programmer annotates each method to indicate whether:

• It accesses no UI elements (and may run on any thread); such a method is said to have the “safe effect”.
• It may access UI elements (and must run on the UI thread); such a method is said to have the “UI effect”.

The GUI Effect Checker verifies these effects and statically enforces that UI methods are only called from the
correct thread. A method with the safe effect is prohibited from calling a method with the UI effect.

For example, the effect system can reason about when method calls must be dispatched to the UI thread via a
message such as Display.syncExec.

@SafeEffect
public void calledFromBackgroundThreads(JLabel l) {

l.setText("Foo"); // Error: calling a @UIEffect method from a @SafeEffect method
Display.syncExec(new @UI Runnable {

@UIEffect // inferred by default
public void run() {

l.setText("Bar"); // OK: accessing JLabel from code run on the UI thread
}

});

}

The GUI Effect Checker’s annotations fall into three categories:

• effect annotations on methods (Section 14.1),
• class or package annotations controlling the default effect (Section 14.4), and
• effect-polymorphism: code that works for both the safe effect and the UI effect (Section 14.5).

82

14.1 GUI effect annotations
There are two primary GUI effect annotations:

• @SafeEffect is a method annotation marking code that must not access UI objects.
• @UIEffect is a method annotation marking code that may access UI objects. Most UI object methods (e.g.,

methods of JPanel) are annotated as @UIEffect.

@SafeEffect is a sub-effect of @UIEffect, in that it is always safe to call a @SafeEffect method anywhere it is
permitted to call a @UIEffect method. We write this relationship as

@SafeEffect ≺ @UIEffect

14.2 What the GUI Effect Checker checks
The GUI Effect Checker ensures that only the UI thread accesses UI objects. This prevents GUI errors such as invalid
UI update and invalid thread access.

The GUI Effect Checker issues errors in the following cases:

• A @UIEffect method is invoked by a @SafeEffect method.
• Method declarations violate subtyping restrictions: a supertype declares a @SafeEffect method, and a subtype

annotates an overriding version as @UIEffect.

Additionally, if a method implements or overrides a method in two supertypes (two interfaces, or an interface and
parent class), and those supertypes give different effects for the methods, the GUI Effect Checker issues a warning (not
an error).

14.3 Running the GUI Effect Checker
The GUI Effect Checker can be invoked by running the following command:

javac -processor org.checkerframework.checker.guieffect.GuiEffectChecker MyFile.java ...

14.4 Annotation defaults
The default method annotation is @SafeEffect, since most code in most programs is not related to the UI. This also
means that typically, code that is unrelated to the UI need not be annotated at all.

The GUI Effect Checker provides three primary ways to change the default method effect for a class or package:

• @UIType is a class annotation that makes the effect for unannotated methods in that class default to @UIEffect.
(See also @UI in Section 14.5.2.)
• @UIPackage is a package annotation, that makes the effect for unannotated methods in that package default

to @UIEffect. It is not transitive; a package nested inside a package marked @UIPackage does not inherit the
changed default.

• @SafeType is a class annotation that makes the effect for unannotated methods in that class default to @SafeEffect.
Because @SafeEffect is already the default effect, @SafeType is only useful for class types inside a package
marked @UIPackage.

There is one other place where the default annotation is not automatically @SafeEffect: anonymous inner classes.
Since anonymous inner classes exist primarily for brevity, it would be unfortunate to spoil that brevity with extra
annotations. By default, an anonymous inner class method that overrides or implements a method of the parent type
inherits that method’s effect. For example, an anonymous inner class implementing an interface with method @UIEffect
void m() need not explicitly annotate its implementation of m(); the implementation will inherit the parent’s effect.
Methods of the anonymous inner class that are not inherited from a parent type follow the standard defaulting rules.

83

api/org/checkerframework/checker/guieffect/qual/SafeEffect.html
api/org/checkerframework/checker/guieffect/qual/UIEffect.html
api/org/checkerframework/checker/guieffect/qual/UIType.html
api/org/checkerframework/checker/guieffect/qual/UIPackage.html
api/org/checkerframework/checker/guieffect/qual/SafeType.html

14.5 Polymorphic effects
Sometimes a type is reused for both UI-specific and background-thread work. A good example is the Runnable
interface, which is used both for creating new background threads (in which case the run() method must have the
@SafeEffect) and for sending code to the UI thread to execute (in which case the run() method may have the
@UIEffect). But the declaration of Runnable.run() may have only one effect annotation in the source code. How do
we reconcile these conflicting use cases?

Effect-polymorphism permits a type to be used for both UI and non-UI purposes. It is similar to Java’s generics in
that you define, then use, the effect-polymorphic type. Recall that to define a generic type, you write a type parameter
such as <T> and use it in the body of the type definition; for example, class List<T> { ... T get() {...} ...
}. To instantiate a generic type, you write its name along with a type argument; for example, List<Date> myDates;.

14.5.1 Defining an effect-polymorphic type
To declare that a class is effect-polymorphic, annotate its definition with @PolyUIType. To use the effect variable in
the class body, annotate a method with @PolyUIEffect. It is an error to use @PolyUIEffect in a class that is not
effect-polymorphic.

Consider the following example:

@PolyUIType
public interface Runnable {

@PolyUIEffect
void run();

}

This declares that class Runnable is parameterized over one generic effect, and that when Runnable is instantiated, the
effect argument will be used as the effect for the run method.

14.5.2 Using an effect-polymorphic type
To instantiate an effect-polymorphic type, write one of these three type qualifiers before a use of the type:

• @AlwaysSafe instantiates the type’s effect to @SafeEffect.
• @UI instantiates the type’s effect to @UIEffect. Additionally, it changes the default method effect for the class to
@UIEffect.
• @PolyUI instantiates the type’s effect to @PolyUIEffect for the same instantiation as the current (containing)

class. For example, this is the qualifier of the receiver this inside a method of a @PolyUIType class, which is
how one method of an effect-polymorphic class may call an effect-polymorphic method of the same class.

As an example:

@AlwaysSafe Runnable s = ...; s.run(); // s.run() is @SafeEffect
@PolyUI Runnable p = ...; p.run(); // p.run() is @PolyUIEffect (context-dependent)
@UI Runnable u = ...; u.run(); // u.run() is @UIEffect

It is an error to apply an effect instantiation qualifier to a type that is not effect-polymorphic.

14.5.3 Subclassing a specific instantiation of an effect-polymorphic type
Sometimes you may wish to subclass a specific instantiation of an effect-polymorphic type, just as you may extend
List<String>.

To do this, simply place the effect instantiation qualifier by the name of the type you are defining, e.g.:

84

api/org/checkerframework/checker/guieffect/qual/PolyUIType.html
api/org/checkerframework/checker/guieffect/qual/PolyUIEffect.html
api/org/checkerframework/checker/guieffect/qual/AlwaysSafe.html
api/org/checkerframework/checker/guieffect/qual/UI.html
api/org/checkerframework/checker/guieffect/qual/PolyUI.html

@UI
public class UIRunnable extends Runnable {...}
@AlwaysSafe
public class SafeRunnable extends Runnable {...}

The GUI Effect Checker will automatically apply the qualifier to all classes and interfaces the class being defined
extends or implements. (This means you cannot write a class that is a subtype of a @AlwaysSafe Foo and a @UI Bar,
but this has not been a problem in our experience.)

14.5.4 Subtyping with polymorphic effects
With three effect annotations, we must extend the static sub-effecting relationship:

@SafeEffect ≺ @PolyUIEffect ≺ @UIEffect
This is the correct sub-effecting relation because it is always safe to call a @SafeEffect method (whether from an
effect-polymorphic method or a UI method), and a @UIEffect method may safely call any other method.

This induces a subtyping hierarchy on type qualifiers:
@AlwaysSafe ≺ @PolyUI ≺ @UI

This is sound because a method instantiated according to any qualifier will always be safe to call in place of a method
instantiated according to one of its super-qualifiers. This allows clients to pass “safer” instances of some object type to
a given method.

14.6 References
The ECOOP 2013 paper “JavaUI: Effects for Controlling UI Object Access” includes some case studies on the checker’s
efficacy, including descriptions of the relatively few false warnings we encountered. It also contains a more formal
description of the effect system. You can obtain the paper at:
http://homes.cs.washington.edu/~mernst/pubs/gui-thread-ecoop2013-abstract.html

85

http://homes.cs.washington.edu/~mernst/pubs/gui-thread-ecoop2013-abstract.html

Chapter 15

Units Checker

For many applications, it is important to use the correct units of measurement for primitive types. For example, NASA’s
Mars Climate Orbiter (cost: $327 million) was lost because of a discrepancy between use of the metric unit Newtons
and the imperial measure Pound-force.

The Units Checker ensures consistent usage of units. For example, consider the following code:

@m int meters = 5 * UnitsTools.m;
@s int secs = 2 * UnitsTools.s;
@mPERs int speed = meters / secs;

Due to the annotations @m and @s, the variables meters and secs are guaranteed to contain only values with meters
and seconds as units of measurement. Utility class UnitsTools provides constants with which unqualified integer are
multiplied to get values of the corresponding unit. The assignment of an unqualified value to meters, as in meters =
99, will be flagged as an error by the Units Checker.

The division meters/secs takes the types of the two operands into account and determines that the result is of
type meters per second, signified by the @mPERs qualifier. We provide an extensible framework to define the result of
operations on units.

15.1 Units annotations
The checker currently supports two varieties of units annotations: kind annotations (@Length, @Mass, . . .) and the SI
units (@m, @kg, . . .).

Kind annotations can be used to declare what the expected unit of measurement is, without fixing the particular unit
used. For example, one could write a method taking a @Length value, without specifying whether it will take meters or
kilometers. The following kind annotations are defined:

@Area
@Current
@Length
@Luminance
@Mass
@Speed
@Substance
@Temperature
@Time

For each kind of unit, the corresponding SI unit of measurement is defined:

1. For @Area: the derived units square millimeters @mm2, square meters @m2, and square kilometers @km2

86

api/org/checkerframework/checker/units/qual/Area.html
api/org/checkerframework/checker/units/qual/Current.html
api/org/checkerframework/checker/units/qual/Length.html
api/org/checkerframework/checker/units/qual/Luminance.html
api/org/checkerframework/checker/units/qual/Mass.html
api/org/checkerframework/checker/units/qual/Speed.html
api/org/checkerframework/checker/units/qual/Substance.html
api/org/checkerframework/checker/units/qual/Temperature.html
api/org/checkerframework/checker/units/qual/Time.html
api/org/checkerframework/checker/units/qual/mm2.html
api/org/checkerframework/checker/units/qual/m2.html
api/org/checkerframework/checker/units/qual/km2.html

2. For @Current: Ampere @A
3. For @Length: Meters @m and the derived units millimeters @mm and kilometers @km
4. For @Luminance: Candela @cd
5. For @Mass: kilograms @kg and the derived unit grams @g
6. For @Speed: meters per second @mPERs and kilometers per hour @kmPERh
7. For @Substance: Mole @mol
8. For @Temperature: Kelvin @K and the derived unit Celsius @C
9. For @Time: seconds @s and the derived units minutes @min and hours @h

You may specify SI unit prefixes, using enumeration Prefix. The basic SI units (@s, @m, @g, @A, @K, @mol, @cd)
take an optional Prefix enum as argument. For example, to use nanoseconds as unit, you could use @s(Prefix.nano)
as a unit type. You can sometimes use a different annotation instead of a prefix; for example, @mm is equivalent to
@m(Prefix.milli).

Class UnitsTools contains a constant for each SI unit. To create a value of the particular unit, multiply an
unqualified value with one of these constants. By using static imports, this allows very natural notation; for example,
after statically importing UnitsTools.m, the expression 5 * m represents five meters. As all these unit constants are
public, static, and final with value one, the compiler will optimize away these multiplications.

15.2 Extending the Units Checker
You can create new kind annotations and unit annotations that are specific to the particular needs of your project. An
easy way to do this is by copying and adapting an existing annotation. (In addition, search for all uses of the annotation’s
name throughout the Units Checker implementation, to find other code to adapt; read on for details.)

Here is an example of a new unit annotation.

@Documented
@Retention(RetentionPolicy.RUNTIME)
@TypeQualifier
@SubtypeOf({ Time.class })
@UnitsMultiple(quantity=s.class, prefix=Prefix.nano)
@Target(ElementType.TYPE_USE, ElementType.TYPE_PARAMETER)
public @interface ns {}

The @SubtypeOf meta-annotation specifies that this annotation introduces an additional unit of time. The
@UnitsMultiple meta-annotation specifies that this annotation should be a nano multiple of the basic unit @s:
@ns and @s(Prefix.nano) behave equivalently and interchangeably. Most annotation definitions do not have a
@UnitsMultiple meta-annotation.

To take full advantage of the additional unit qualifier, you need to do two additional steps. (1) Provide constants that
convert from unqualified types to types that use the new unit. See class UnitsTools for examples (you will need to
suppress a checker warning in just those few locations). (2) Put the new unit in relation to existing units. Provide an
implementation of the UnitsRelations interface as a meta-annotation to one of the units.

See demonstration examples/units-extension/ for an example extension that defines Hertz (hz) as scalar per
second, and defines an implementation of UnitsRelations to enforce it.

15.3 What the Units Checker checks
The Units Checker ensures that unrelated types are not mixed.

All types with a particular unit annotation are disjoint from all unannotated types, from all types with a different
unit annotation, and from all types with the same unit annotation but a different prefix.

Subtyping between the units and the unit kinds is taken into account, as is the @UnitsMultiple meta-annotation.
Multiplying a scalar with a unit type results in the same unit type.

87

api/org/checkerframework/checker/units/qual/A.html
api/org/checkerframework/checker/units/qual/m.html
api/org/checkerframework/checker/units/qual/mm.html
api/org/checkerframework/checker/units/qual/km.html
api/org/checkerframework/checker/units/qual/cd.html
api/org/checkerframework/checker/units/qual/kg.html
api/org/checkerframework/checker/units/qual/g.html
api/org/checkerframework/checker/units/qual/mPERs.html
api/org/checkerframework/checker/units/qual/kmPERh.html
api/org/checkerframework/checker/units/qual/mol.html
api/org/checkerframework/checker/units/qual/K.html
api/org/checkerframework/checker/units/qual/C.html
api/org/checkerframework/checker/units/qual/s.html
api/org/checkerframework/checker/units/qual/min.html
api/org/checkerframework/checker/units/qual/h.html
api/org/checkerframework/checker/units/qual/Prefix.html

The division of a unit type by the same unit type results in the unqualified type.
Multiplying or dividing different unit types, for which no unit relation is known to the system, will result in a

MixedUnits type, which is separate from all other units. If you encounter a MixedUnits annotation in an error message,
ensure that your operations are performed on correct units or refine your UnitsRelations implementation.

The Units Checker does not change units based on multiplication; for example, if variable mass has the type @kg
double, then mass * 1000 has that same type rather than the type @g double. (The Units Checker has no way of
knowing whether you intended a conversion, or you were computing the mass of 1000 items. You need to make all
conversions explicit in your code, and it’s good style to minimize the number of conversions.)

15.4 Running the Units Checker
The Units Checker can be invoked by running the following commands.

• If your code uses only the SI units that are provided by the framework, simply invoke the checker:

javac -processor org.checkerframework.checker.units.UnitsChecker MyFile.java ...

• If you define your own units, provide the name of the annotations using the -Aunits option:
javac -processor org.checkerframework.checker.units.UnitsChecker \

-Aunits=myproject.qual.MyUnit,myproject.qual.MyOtherUnit MyFile.java ...

15.5 Suppressing warnings
One example of when you need to suppress warnings is when you initialize a variable with a unit type by a literal
value. To remove this warning message, it is best to introduce a constant that represents the unit and to add a
@SuppressWarnings annotation to that constant. For examples, see class UnitsTools.

15.6 References
• The GNU Units tool provides a comprehensive list of units:
http://www.gnu.org/software/units/

• The F# units of measurement system inspired some of our syntax:
https://en.wikibooks.org/wiki/F_Sharp_Programming/Units_of_Measure

88

http://www.gnu.org/software/units/
https://en.wikibooks.org/wiki/F_Sharp_Programming/Units_of_Measure

Chapter 16

Constant Value Checker

The Constant Value Checker is a constant propagation analysis: for each variable, it determines whether that variable’s
value can be known at compile time.

There are two ways to run the Constant Value Checker.

• Typically, it is automatically run by another type checker. When using the Constant Value Checker as part of
another checker, the statically-executable.astub file in the Constant Value Checker directory must be
passed as a stub file for the checker.

• Alternately, you can run just the Constant Value Checker, by supplying the following command-line option to
javac: -processor org.checkerframework.common.value.ValueChecker -Astubs=statically-executable.astub

16.1 Annotations
The Constant Value Checker uses type annotations to indicate the value of an expression (Section 16.1.1), and it uses
method annotations to indicate methods that the Constant Value Checker can execute at compile time (Section 16.1.2).

16.1.1 Type Annotations
Typically, the programmer does not write any type annotations. Rather, the type annotations are inferred by the Constant
Value Checker. The programmer is also permitted to write type annotations. This is only necessary in locations where
the Constant Value Checker does not infer annotations: on fields and method signatures.

The type annotations are @BoolVal, @IntVal, @DoubleVal, and @StringVal.
Each type annotation takes as an argument a set of values, and its meaning is that at run time, the expression

evaluates to one of the values. For example, an expression of type @StringVal("a", "b") evaluates to one of the
values "a", "b", or null. The set is limited to 10 entries; if a variable could be more than 10 different values, the
Constant Value Checker gives up and its type becomes @UnknownVal instead.

Figure 16.1 shows the subtyping relationship among the type annotations. For two annotations of the same type,
subtypes have a smaller set of possible values, as also shown in the figure. Because int can be casted to double, an
@IntVal annotation is a subtype of a @DoubleVal annotation with the same values.

Figure 16.2 shows how the Constant Value Checker infers type annotations (using flow-sensitive type qualifier
refinement, Section 25.4).

16.1.2 Compile-time execution of expressions
Whenever all the operands of an expression are compile-time constants (that is, their types have constant-value type
annotations), the Constant Value Checker attempts to execute the expression. This is independent of any optimizations
performed by the compiler and does not affect the code that is generated.

89

api/org/checkerframework/common/value/qual/BoolVal.html
api/org/checkerframework/common/value/qual/IntVal.html
api/org/checkerframework/common/value/qual/DoubleVal.html
api/org/checkerframework/common/value/qual/StringVal.html
api/org/checkerframework/common/value/qual/StringVal.html
api/org/checkerframework/common/value/qual/UnknownVal.html

@DoubleVal({1.0,2.0})

@DoubleVal({1.0})

@IntVal({1})

@IntVal({1,2}) @IntVal(long[])

@BottomVal

@BoolVal(boolean[])

@UnknownVal

@DoubleVal(double[]) @DoubleVal(double[])

Figure 16.1: The type qualifier hierarchy of the Constant Value Checker annotations. Qualifiers in gray are used
internally by the type system but should never be written by a programmer. On the right are examples of additional
subtyping relationships that depend on the annotations’ arguments.

public void foo(boolean b) {
int i = 1; // i has type: @IntVal({1}) int
if (b) {

i = 2; // i now has type: @IntVal({2}) int
}

// i now has type: @IntVal({1,2}) int
i = i + 1; // i now has type: @IntVal({2,3}) int

}

Figure 16.2: The Constant Value Checker infers different types for a variable on different lines of the program.

The Constant Value Checker statically executes operators that do not throw exceptions (e.g., +, -, <<, !=), and also
calls to methods annotated with @StaticallyExecutable.

A @StaticallyExecutable method must be @Pure (side-effect-free and deterministic). Additionally, a @StaticallyExecutable
method and any method it calls must be on the classpath for the compiler, because they are reflectively called at
compile-time to perform the constant value analysis. Any standard library methods (such as those annotated as
@StaticallyExecutable in file statically-executable.astub) will already be on the classpath.

To use @StaticallyExecutable on methods in your own code, you should first compile the code without the
Constant Value Checker and then add the location of the resulting .class files to the classpath. This can be done by
either adding the destination path to your environment variable CLASSPATH or by passing the argument -classpath
path/to/class/files to the call. The latter would look similar to: -processor org.checkerframework.common.value.ValueChecker
-Astubs=statically-executable.astub -classpath $CLASSPATH:$MY_PROJECT/build/

@StaticallyExecutable @Pure
public int foo(int a, int b) {

return a + b;
}

public void bar() {
int a = 5; // a has type: @IntVal({5}) int
int b = 4; // b has type: @IntVal({4}) int
int c = foo(a, b); // c has type: @IntVal({9}) int

}

Figure 16.3: The @StaticallyExecutable annotation enables constant propagation through method calls.

90

api/org/checkerframework/common/value/qual/StaticallyExecutable.html
api/org/checkerframework/dataflow/qual/Pure.html
api/org/checkerframework/common/value/qual/StaticallyExecutable.html

16.2 Warnings
The Constant Value Checker issues a warning if it cannot load and run, at compile time, a method marked as
@StaticallyExecutable. If it issues such a warning, then the return value of the method will be @UnknownVal
instead of being able to be resolved to a specific value annotation. Some examples of these:

• [class.find.failed] Failed to find class named Test.
The checker could not find the class specified for resolving a @StaticallyExecutable method. Typically this
is caused by not providing the path of a class-file needed to the classpath.

• [method.find.failed] Failed to find a method named foo with argument types [@IntVal(3) int].
Treating result as @UnknownVal
The checker could not find the method foo(int) specified for resolving a @StaticallyExecutable method,
but could find the class. This is usually due to providing an outdated version of the class-file that does not contain
the @StaticallyExecutable method.

• [method.evaluation.exception] Failed to evaluate method public static int Test.foo(int) because
it threw an exception: java.lang.ArithmeticException: / by zero. Treating result as @UnknownVal
An exception was thrown when trying to statically execute the method. In this case it was a divide-by-zero
exception. If the arguments to the method each only had one value in their annotations then this exception will
always occur when the program is actually run as well. If there are multiple possible values then the exception
might not be thrown on every execution, depending on the run-time values.

There is one other situation in which the Constant Value Checker produces a warning message:

• [too.many.values.given] Annotation ignored because the maximum number of values tracked is
10.
The Constant Value Checker only tracks up to 10 possible values for an expression. If you write an annotation
with more values than will be tracked, the annotation is ignored.

91

Chapter 17

Aliasing Checker

The Aliasing Checker identifies expressions that definitely have no aliases.
Two expressions are aliased when they have the same non-primitive value; that is, they are references to the identical

Java object in the heap. Another way of saying this is that two expressions, exprA and exprB, are aliases of each other
when exprA==exprB at the same program point.

Assigning to a variable or field typically creates an alias. For example, after the statement a = b;, the variables a
and b are aliased.

Knowing that an expression is not aliased permits more accurate reasoning about how side effects modify the
expression’s value.

To run the Aliasing Checker, supply the -processor org.checkerframework.common.aliasing.AliasingChecker
command-line option to javac. However, a user rarely runs the Aliasing Checker directly. This type system is mainly
intended to be used together with other type systems. For example, the SPARTA information flow type-checker
(Section 23.8) uses the Aliasing Checker to improve its type refinement — if an expression has no aliases, a more
refined type can often be inferred, otherwise the type-checker makes conservative assumptions.

17.1 Aliasing annotations
There are two possible types for an expression:

@MaybeAliased is the type of an expression that might have an alias. This is the default, so every unannotated type
is @MaybeAliased. (This includes the type of null.)

@Unique is the type of an expression that has no aliases.
The @Unique annotation is only allowed at local variables, method parameters, constructor results, and method
returns. A constructor’s result should be annotated with @Unique only if the constructor’s body does not creates
an alias to the constructed object.

There are also two annotations, which are currently trusted instead of verified, that can be used on formal parameters
(including the receiver parameter, this):

@MaybeAliased

@Unique

Figure 17.1: Type hierarchy for the Aliasing type system.

92

api/org/checkerframework/common/aliasing/qual/MaybeAliased.html
api/org/checkerframework/common/aliasing/qual/Unique.html

@NonLeaked identifies a formal parameter that is not leaked nor returned by the method body. For example, the
formal parameter of the String copy constructor, String(String s), is @NonLeaked because the body of the
method only makes a copy of the parameter.

@LeakedToResult is used when the parameter may be returned, but it is not otherwise leaked. For example,
the receiver parameter of StringBuffer.append(StringBuffer this, String s) is @LeakedToResult,
because the method returns the updated receiver.

17.2 Leaking contexts
This section lists the expressions that create aliases. These are also called “leaking contexts”.

Assignments After an assignment, the left-hand side and the right-hand side are typically aliased. (The only coun-
terexample is when the right-hand side is a fresh expression; see Section 17.4.)

@Unique Object u = ...;
Object o = u; // (not.unique) type-checking error!

If this example type-checked, then u and o would be aliased. For this example to type-check, either the @Unique
annotation on the type of u, or the o = u; assignment, must be removed.

Method calls and returns (pseudo-assignments) Passing an argument to a method is a “pseudo-assignment” because
it effectively assigns the argument to the formal parameter. Return statements are also pseudo-assignments. As
with assignments, the left-hand side and right-hand side of pseudo-assignments are typically aliased.
Here is an example for argument-passing:

void foo(Object o) { ... }

@Unique Object u = ...;
foo(u); // type-checking error, because foo may create an alias of the passed argument

Passing a non-aliased reference to a method does not necessarily create an alias. However, the body of the
method might create an alias or leak the reference. Thus, the Aliasing Checker always treats a method call as
creating aliases for each argument unless the corresponding formal parameter is marked as @@NonLeaked or
@@LeakedToResult.
Here is an example for a return statement:

Object id(@Unique Object p) {
return p; // (not.unique) type-checking error!

}

If this code type-checked, then it would be possible for clients to write code like this:

@Unique Object u = ...;
Object o = id(u);

after which there is an alias to u even though it is declared as @Unique.
However, it is permitted to write

Object id(@LeakedToResult Object p) {
return p;

}

after which the following code type-checks:

@Unique Object u = ...;
id(u); // method call result is not used
Object o1 = ...;
Object o2 = id(o1); // argument is not @Unique

Throws A thrown exception can be captured by a catch block, which creates an alias of the thrown exception.

93

api/org/checkerframework/common/aliasing/qual/NonLeaked.html
api/org/checkerframework/common/aliasing/qual/LeakedToResult.html
api/org/checkerframework/common/aliasing/qual/NonLeaked.html
api/org/checkerframework/common/aliasing/qual/LeakedToResult.html

void foo() {
@Unique Exception uex = new Exception();
try {

throw uex; // (not.unique) type-checking error!
} catch (Exception ex) {

// uex and ex refer to the same object here.
}

}

Array initializers Array initializers assign the elements in the initializers to corresponding indexes in the array,
therefore expressions in an array initializer are leaked.

void foo() {
@Unique Object o = new Object();
Object[] ar = new Object[] { o }; // (not.unique) type-checking error!
// The expressions o and ar[0] are now aliased.

}

17.3 Restrictions on where @Unique may be written
The @Unique qualifier may not be written on locations such as fields, array elements, and type parameters.

As an example of why @Unique may not be written on a field’s type, consider the following code:

class MyClass {
@Unique Object field;
void foo() {

MyClass myClass2 = this;
// this.field is now an alias of myClass2.field

}
}

That code must not type-check, because field is declared as @Unique but has an alias. The Aliasing Checker
solves the problem by forbidding the @Unique qualifier on subcomponents of a structure, such as fields. Other solutions
might be possible; they would be more complicated but would permit more code to type-check.

@Unique may not be written on a type parameter for similar reasons. The assignment

List<@Unique Object> l1 = ...;
List<@Unique Object> l2 = l1;

must be forbidden because it would alias l1.get(0) with l2.get(0) even though both have type @Unique. The
Aliasing Checker forbids this code by rejecting the type List<@Unique Object>.

17.4 Aliasing type refinement
Type refinement enables a type checker to treat an expression as a subtype of its declared type. For example, even if you
declare a local variable as @MaybeAliased (or don’t write anything, since @MaybeAliased is the default), sometimes
the Aliasing Checker can determine that it is actually @Unique. For more details, see Section 25.4.

The Aliasing Checker treats type refinement in the usual way, except that at (pseudo-)assignments the right-hand-
side (RHS) may lose its type refinement, before the left-hand-side (LHS) is type-refined. The RHS always loses its
type refinement (it is widened to @MaybeAliased, and its declared type must have been @MaybeAliased) except in the
following cases:

94

// Annotations on the StringBuffer class, used in the examples below.
// class StringBuffer {
// @Unique StringBuffer();
// StringBuffer append(@LeakedToResult StringBuffer this, @NonLeaked String s);
// }

void foo() {
StringBuffer sb = new StringBuffer(); // sb is refined to @Unique.

StringBuffer sb2 = sb; // sb loses its refinement.
// Both sb and sb2 have aliases and because of that have type @MaybeAliased.

}

void bar() {
StringBuffer sb = new StringBuffer(); // sb is refined to @Unique.

sb.append("someString");
// sb stays @Unique, as no aliases are created.

StringBuffer sb2 = sb.append("someString");
// sb is leaked and becomes @MaybeAliased.

// Both sb and sb2 have aliases and because of that have type @MaybeAliased.
}

Figure 17.2: Example of Aliasing Checker’s type refinement rules.

• The RHS is a fresh expression — an expression that returns a different value each time it is evaluated. In practice,
this is only method/constructor calls with @Unique return type. A variable/field is not fresh because it can return
the same value when evaluated twice.

• The LHS is a @NonLeaked formal parameter and the RHS is an argument in a method call or constructor
invocation.

• The LHS is a @LeakedToResult formal parameter, the RHS is an argument in a method call or constructor
invocation, and the method’s return value is discarded — that is, the method call or constructor invocation is
written syntactically as a statement rather than as a part of a larger expression or statement.

A consequence of the above rules is that most method calls are treated conservatively. If a variable with declared
type @MaybeAliased has been refined to @Unique and is used as an argument of a method call, it usually loses its
@Unique refined type.

Figure 17.2 gives an example of the Aliasing Checker’s type refinement rules.

95

Chapter 18

Linear Checker for preventing aliasing

The Linear Checker implements type-checking for a linear type system. A linear type system prevents aliasing:
there is only one (usable) reference to a given object at any time. Once a reference appears on the right-hand side
of an assignment, it may not be used any more. The same rule applies for pseudo-assignments such as procedure
argument-passing (including as the receiver) or return.

One way of thinking about this is that a reference can only be used once, after which it is “used up”. This property
is checked statically at compile time. The single-use property only applies to use in an assignment, which makes a new
reference to the object; ordinary field dereferencing does not use up a reference.

By forbidding aliasing, a linear type system can prevent problems such as unexpected modification (by an alias), or
ineffectual modification (after a reference has already been passed to, and used by, other code).

To run the Linear Checker, supply the -processor org.checkerframework.checker.linear.LinearChecker
command-line option to javac.

Figure 18.1 gives an example of the Linear Checker’s rules.

18.1 Linear annotations
The linear type system uses one user-visible annotation: @Linear. The annotation indicates a type for which each value
may only have a single reference — equivalently, may only be used once on the right-hand side of an assignment.

The full qualifier hierarchy for the linear type system includes three types:

• @UsedUp is the type of references whose object has been assigned to another reference. The reference may not be
used in any way, including having its fields dereferenced, being tested for equality with ==, or being assigned to
another reference. Users never need to write this qualifier.

• @Linear is the type of references that have no aliases, and that may be dereferenced at most once in the future.
The type of new T() is @Linear T (the analysis does not account for the slim possibility that an alias to this
escapes the constructor).

• @NonLinear is the type of references that may be dereferenced, and aliases made, as many times as desired. This
is the default, so users only need to write @NonLinear if they change the default.

@UsedUp is a supertype of @NonLinear, which is a supertype of @Linear.
This hierarchy makes an assignment like

@Linear Object l = new Object();
@NonLinear Object nl = l;
@NonLinear Object nl2 = nl;

legal. In other words, the fact that an object is referenced by a @Linear type means that there is only one usable
reference to it now, not that there will never be multiple usable references to it. (The latter guarantee would be possible
to enforce, but it is not what the Linear Checker currently does.)

96

api/org/checkerframework/checker/linear/qual/Linear.html

class Pair {
Object a;
Object b;
public String toString() {
return "<" + String.valueOf(a) + "," + String.valueOf(b) + ">";

}
}

void print(@Linear Object arg) {
System.out.println(arg);

}

@Linear Pair printAndReturn(@Linear Pair arg) {
System.out.println(arg.a);
System.out.println(arg.b); // OK: field dereferencing does not use up the reference arg
return arg;

}

@Linear Object m(Object o, @Linear Pair lp) {
@Linear Object lo2 = o; // ERROR: aliases may exist
@Linear Pair lp3 = lp;
@Linear Pair lp4 = lp; // ERROR: reference lp was already used
lp3.a;
lp3.b; // OK: field dereferencing does not use up the reference
print(lp3);
print(lp3); // ERROR: reference lp3 was already used
lp3.a; // ERROR: reference lp3 was already used
@Linear Pair lp4 = new Pair(...);
lp4.toString();
lp4.toString(); // ERROR: reference lp4 was already used
lp4 = new Pair(); // OK to reassign to a used-up reference
// If you need a value back after passing it to a procedure, that
// procedure must return it to you.
lp4 = printAndReturn(lp4);
if (...) {
print(lp4);

}
if (...) {
return lp4; // ERROR: reference lp4 may have been used

} else {
return new Object();

}
}

Figure 18.1: Example of Linear Checker rules.

18.2 Limitations
The @Linear annotation is supported and checked only on method parameters (including the receiver), return types,
and local variables. Supporting @Linear on fields would require a sophisticated alias analysis or type system, and is
future work.

No annotated libraries are provided for linear types. Most libraries would not be able to use linear types in their
purest form. For example, you cannot put a linearly-typed object in a hash table, because hash table insertion calls
hashCode; hashCode uses up the reference and does not return the object, even though it does not retain any pointers
to the object. For similar reasons, a collection of linearly-typed objects could not be sorted or searched.

Our lightweight implementation is intended for use in the parts of your program where errors relating to aliasing and
object reuse are most likely. You can use manual reasoning (and possibly an unchecked cast or warning suppression)
when objects enter or exit those portions of your program, or when that portion of your program uses an unannotated
library.

97

Chapter 19

IGJ immutability checker

Note: The IGJ type-checker has some known bugs and limitations. Nonetheless, it may still be useful to you.
IGJ is a Java language extension that helps programmers to avoid mutation errors (unintended side effects). If the

IGJ Checker issues no warnings for a given program, then that program will never change objects that should not be
changed. This guarantee enables a programmer to detect and prevent mutation-related errors. (See Section 2.3 for
caveats to the guarantee.)

To run the IGJ Checker, supply the -processor org.checkerframework.checker.igj.IGJChecker command-
line option to javac. For examples, see Section 19.7.

19.1 IGJ and mutability
IGJ [ZPA+07] permits a programmer to express that a particular object should never be modified via any reference
(object immutability), or that a reference should never be used to modify its referent (reference immutability). Once a
programmer has expressed these facts, an automatic checker analyzes the code to either locate mutability bugs or to
guarantee that the code contains no such bugs.

To learn more details of the IGJ language and type system, please see the ESEC/FSE 2007 paper “Object and
reference immutability using Java generics” [ZPA+07]. The IGJ Checker supports Annotation IGJ (Section 19.5),
which is a slightly different dialect of IGJ than that described in the ESEC/FSE paper.

@ReadOnly Date

@ReadOnly Object

@Immutable Object @Mutable Object

@Immutable Date @Mutable Date

Figure 19.1: Type hierarchy for three of IGJ’s type qualifiers.

98

http://homes.cs.washington.edu/~mernst/pubs/immutability-generics-fse2007-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/immutability-generics-fse2007-abstract.html

19.2 IGJ Annotations
Each object is either immutable (it can never be modified) or mutable (it can be modified). The following qualifiers are
part of the IGJ type system.

@Immutable An immutable reference always refers to an immutable object. Neither the reference, nor any aliasing
reference, may modify the object.

@Mutable A mutable reference refers to a mutable object. The reference, or some aliasing mutable reference, may
modify the object.

@ReadOnly A readonly reference cannot be used to modify its referent. The referent may be an immutable or a
mutable object. In other words, it is possible for the referent to change via an aliasing mutable reference, even
though the referent cannot be changed via the readonly reference.

@Assignable The annotated field may be re-assigned regardless of the immutability of the enclosing class or object
instance.

@AssignsFields is similar to @Mutable, but permits only limited mutation — assignment of fields — and is
intended for use by constructor helper methods. @AssignsFields is assumed to be true of the result of a
constructor, so it does not need to be written there.

@I simulates mutability overloading or the template behavior of generics. It can be applied to classes, methods, and
parameters. See Section 19.5.3.

For additional details, see [ZPA+07].

19.3 What the IGJ Checker checks
The IGJ Checker issues an error whenever mutation happens through a readonly reference, when fields of a readonly
reference which are not explicitly marked with @Assignable are reassigned, or when a readonly reference is assigned
to a mutable variable. The checker also emits a warning when casts increase the mutability access of a reference.

19.4 Implicit and default qualifiers
As described in Section 25.3, the IGJ Checker adds implicit qualifiers, reducing the number of annotations that must
appear in your code.

For a complete description of all implicit IGJ qualifiers, see the Javadoc for IGJAnnotatedTypeFactory.
The default annotation (for types that are unannotated and not given an implicit qualifier) is as follows:

• @Mutable for almost all references. This is backward-compatible with Java, since Java permits any reference to
be mutated.

• @Readonly for local variables. This qualifier may be refined by flow-sensitive local type refinement (see
Section 25.4).

• @Readonly for type parameter and wildcard bounds. For example,

interface List<T extends Object> { ... }

is defaulted to

interface List<T extends @Readonly Object> { ... }

This default is not backward-compatible — that is, you may have to explicitly add @Mutable annotations to some
type parameter bounds in order to make unannotated Java code type-check under IGJ. However, this reduces the
number of annotations you must write overall (since most variables of generic type are in fact not modified), and
permits more client code to type-check (otherwise a client could not write List<@Readonly Date>).

99

api/org/checkerframework/checker/igj/qual/Immutable.html
api/org/checkerframework/checker/igj/qual/Mutable.html
api/org/checkerframework/checker/igj/qual/ReadOnly.html
api/org/checkerframework/checker/igj/qual/Assignable.html
api/org/checkerframework/checker/igj/qual/AssignsFields.html
api/org/checkerframework/checker/igj/qual/I.html
api/org/checkerframework/checker/igj/qual/Assignable.html
api/org/checkerframework/checker/igj/IGJAnnotatedTypeFactory.html

19.5 Annotation IGJ dialect
The IGJ Checker supports the Annotation IGJ dialect of IGJ. The syntax of Annotation IGJ is based on type annotations.

The syntax of the original IGJ dialect [ZPA+07] was based on Java 5’s generics and annotation mechanisms. The
original IGJ dialect was not backward-compatible with Java (either syntactically or semantically). The dialect of IGJ
checked by the IGJ Checker corrects these problems.

The differences between the Annotation IGJ dialect and the original IGJ dialect are as follows.

19.5.1 Semantic Changes
• Annotation IGJ does not permit covariant changes in generic type arguments, for backward compatibility with Java.

In ordinary Java, types with different generic type arguments, such as Vector<Integer> and Vector<Number>,
have no subtype relationship, even if the arguments (Integer and Number) do. The original IGJ dialect changed
the Java subtyping rules to permit safely varying a type argument covariantly in certain circumstances. For
example,

Vector<Mutable, Integer> <: Vector<ReadOnly, Integer>
<: Vector<ReadOnly, Number>
<: Vector<ReadOnly, Object>

is valid in IGJ, but in Annotation IGJ, only

@Mutable Vector<Integer> <: @ReadOnly Vector<Integer>

holds and the other two subtype relations do not hold

@ReadOnly Vector<Integer> </: @ReadOnly Vector<Number>
</: @ReadOnly Vector<Object>

• Annotation IGJ supports array immutability. The original IGJ dialect did not permit the (im)mutability of array
elements to be specified, because the generics syntax used by the original IGJ dialect cannot be applied to array
elements.

19.5.2 Syntax Changes
• Immutability is specified through type annotations [Ern08] (Section 19.2), not through a combination of generics

and annotations. Use of type annotations makes Annotation IGJ backward compatible with Java syntax.
• Templating over Immutability: The annotation @I(id) is used to template over immutability. See Section 19.5.3.

19.5.3 Templating over immutability: @I
@I is a template annotation over IGJ Immutability annotations. It acts similarly to type variables in Java’s generic types,
and the name @I mimics the standard <I> type variable name used in code written in the original IGJ dialect. The
annotation value string is used to distinguish between multiple instances of @I — in the generics-based original dialect,
these would be expressed as two type variables <I> and <J>.

Usage on classes A class declaration annotated with @I can then be used with any IGJ Immutability annotation. The
actual immutability that @I is resolved to dictates the immutability type for all the non-static appearances of @I with the
same value as the class declaration.

Example:

@I
public class FileDescriptor {

private @Immutable Date creationData;
private @I Date lastModData;

100

http://types.cs.washington.edu/jsr308/
api/org/checkerframework/checker/igj/qual/I.html
api/org/checkerframework/checker/igj/qual/I.html
api/org/checkerframework/checker/igj/qual/I.html
api/org/checkerframework/checker/igj/qual/I.html
api/org/checkerframework/checker/igj/qual/I.html
api/org/checkerframework/checker/igj/qual/I.html
api/org/checkerframework/checker/igj/qual/I.html

public @I Date getLastModDate(@ReadOnly FileDescriptor this) { }
}

...
void useFileDescriptor() {

@Mutable FileDescriptor file =
new @Mutable FileDescriptor(...);

...
@Mutable Data date = file.getLastModDate();

}

In the last example, @I was resolved to @Mutable for the instance file.

Usage on methods For example, it could be used for method parameters, return values, and the actual IGJ immutability
value would be resolved based on the method invocation.

For example, the below method getMidpoint returns a Point with the same immutability type as the passed
parameters if p1 and p2 match in immutability, otherwise @I is resolved to @ReadOnly:

static @I Point getMidpoint(@I Point p1, @I Point p2) { ... }

The @I annotation value distinguishes between @I declarations. So, the below method findUnion returns a
collection of the same immutability type as the first collection parameter:

static <E> @I("First") Collection<E> findUnion(@I("First") Collection<E> col1,
@I("Second") Collection<E> col2) { ... }

19.6 Iterators and their abstract state
This section explains why the receiver of Iterator.next() is annotated as @ReadOnly.

An iterator conceptually has two pieces of state:

1. the underlying collection
2. an index into that collection (indicating the next object to be returned)

We choose to exclude the index from the abstract state of the iterator. That is, a change to the index does not count
as a mutation of the iterator itself.

Changes to the underlying collection are more important and interesting, and unintentional changes are much more
likely to lead to important errors. Therefore, this choice about the iterator’s abstract state appears to be more useful than
other choices. For example, if the iterator’s abstract state included both the underlying collection and the index, then
there would be no way to express, or check, that Iterator.next does not change the underlying collection.

19.7 Examples
To try the IGJ Checker on a source file that uses the IGJ qualifier, use the following command (where javac is the
Checker Framework compiler that is distributed with the Checker Framework).

javac -processor org.checkerframework.checker.igj.IGJChecker examples/IGJExample.java

The IGJ Checker itself is also annotated with IGJ annotations.

101

api/org/checkerframework/checker/igj/qual/I.html
api/org/checkerframework/checker/igj/qual/Mutable.html
api/org/checkerframework/checker/igj/qual/I.html
api/org/checkerframework/checker/igj/qual/ReadOnly.html
api/org/checkerframework/checker/igj/qual/I.html
api/org/checkerframework/checker/igj/qual/I.html

Chapter 20

Javari immutability checker

Note: The Javari type-checker has some known bugs and limitations. Nonetheless, it may still be useful to you.
Javari [TE05, QTE08] is a Java language extension that helps programmers to avoid mutation errors that result from

unintended side effects. If the Javari Checker issues no warnings for a given program, then that program will never
change objects that should not be changed. This guarantee enables a programmer to detect and prevent mutation-related
errors. (See Section 2.3 for caveats to the guarantee.) The Javari webpage (http://types.cs.washington.edu/
javari/) contains papers that explain the Javari language and type system. By contrast to those papers, the Javari
Checker uses an annotation-based dialect of the Javari language.

The Javarifier tool infers Javari types for an existing program; see Section 20.2.2.
Also consider the IGJ Checker (Chapter 19). The IGJ type system is more expressive than that of Javari, and the

IGJ Checker is a bit more robust. However, IGJ lacks a type inference tool such as Javarifier.
To run the Javari Checker, supply the -processor org.checkerframework.checker.javari.JavariChecker

command-line option to javac. For examples, see Section 20.5.

20.1 Javari annotations
The following six annotations make up the Javari type system.

@ReadOnly indicates a type that provides only read-only access. A reference of this type may not be used to modify
its referent, but aliasing references to that object might change it.

@Mutable indicates a mutable type.
@Assignable is a field annotation, not a type qualifier. It indicates that the given field may always be assigned, no

matter what the type of the reference used to access the field.
@QReadOnly corresponds to Javari’s “? readonly” for wildcard types. An example of its use is List<@QReadOnly

Date>. It allows only the operations which are allowed for both readonly and mutable types.

@ReadOnly Date @Mutable Object

@ReadOnly Object

@Mutable Date

Figure 20.1: Type hierarchy for Javari’s ReadOnly type qualifier.

102

http://types.cs.washington.edu/javari/
http://types.cs.washington.edu/javari/
api/org/checkerframework/checker/javari/qual/ReadOnly.html
api/org/checkerframework/checker/javari/qual/Mutable.html
api/org/checkerframework/checker/javari/qual/Assignable.html
api/org/checkerframework/checker/javari/qual/QReadOnly.html

@PolyRead (previously named @RoMaybe) specifies polymorphism over mutability; it simulates mutability over-
loading. It can be applied to methods and parameters. See Section 24.2 and the @PolyRead Javadoc for more
details.

@ThisMutable means that the mutability of the field is the same as that of the reference that contains it. @ThisMutable
is the default on fields, and does not make sense to write elsewhere. Therefore, @ThisMutable should never
appear in a program.

20.2 Writing Javari annotations

20.2.1 Implicit qualifiers
As described in Section 25.3, the Javari Checker adds implicit qualifiers, reducing the number of annotations that must
appear in your code.

For a complete description of all implicit Javari qualifiers, see the Javadoc for JavariAnnotatedTypeFactory.

20.2.2 Inference of Javari annotations
It can be tedious to write annotations in your code. The Javarifier tool (http://types.cs.washington.edu/javari/
javarifier/) infers Javari types for an existing program. It automatically inserts Javari annotations in your Java
program or in .class files.

This has two benefits: it relieves the programmer of the tedium of writing annotations (though the programmer
can always refine the inferred annotations), and it annotates libraries, permitting checking of programs that use those
libraries.

20.3 What the Javari Checker checks
The checker issues an error whenever mutation happens through a readonly reference, when fields of a readonly
reference which are not explicitly marked with @Assignable are reassigned, or when a readonly expression is assigned
to a mutable variable. The checker also emits a warning when casts increase the mutability access of a reference.

20.4 Iterators and their abstract state
For an explanation of why the receiver of Iterator.next() is annotated as @ReadOnly, see Section 19.6.

20.5 Examples
To try the Javari Checker on a source file that uses the Javari qualifier, use the following command (where javac is the
Checker Framework compiler that is distributed with the Checker Framework). Alternately, you may specify just one of
the test files.

javac -processor org.checkerframework.checker.javari.JavariChecker tests/javari/*.java

The compiler should issue the errors and warnings (if any) specified in the .out files with same name.
To run the test suite for the Javari Checker, use ant javari-tests.
The Javari Checker itself is also annotated with Javari annotations.

103

api/org/checkerframework/checker/javari/qual/PolyRead.html
api/org/checkerframework/checker/javari/qual/PolyRead.html
api/org/checkerframework/checker/javari/qual/ThisMutable.html
api/org/checkerframework/checker/javari/JavariAnnotatedTypeFactory.html
http://types.cs.washington.edu/javari/javarifier/
http://types.cs.washington.edu/javari/javarifier/
api/org/checkerframework/checker/javari/qual/Assignable.html

Chapter 21

Reflection resolution

A call to Method.invoke might reflectively invoke any method, so the annotated JDK contains conservative annotations
for Method.invoke. These conservative library annotations often cause a checker to issue false positive warnings when
type-checking code that uses reflection.

If you supply the -AresolveReflection command-line option, the Checker Framework attempts to resolve
reflection. At each call to Method.invoke or Constructor.newInstance, the Checker Framework first soundly
estimates which methods might be invoked at runtime. When type-checking the call, the Checker Framework uses a
library annotation that indicates the parameter and return types of the possibly-invoked methods.

If the estimate of invoked methods is small, these types are precise and the checker issues fewer false positive
warnings. If the estimate of invoked methods is large, these types are no better than the conservative library annotations.

Reflection resolution is disabled by default, because it increases the time to type-check a program. You should enable
reflection resolution with the -AresolveReflection command-line option if, for some call site of Method.invoke or
Constructor.newInstance in your program:

1. the conservative library annotations on Method.invoke or Constructor.newInstance cause false positive
warnings,

2. the set of possibly-invoked methods or constructors can be known at compile time, and
3. the reflectively invoked methods/constructors are on the class path at compile time.

Reflection resolution does not change your source code or generated code. In particular, it does not replace the
Method.invoke or Constructor.newInstance calls.

The command-line option -AresolveReflection=debug outputs verbose information about the reflection resolu-
tion process.

Section 21.1 first describes the MethodVal and ClassVal Checkers, which reflection resolution uses internally. Then,
Section 21.2 gives examples of reflection resolution.

21.1 MethodVal and ClassVal Checkers
The implementation of reflection resolution internally uses the ClassVal Checker (Section 21.1.1) and the MethodVal
Checker (Section 21.1.2). They are very similar to the Constant Value Checker (Section 16) in that their annotations
estimate the run-time value of an expression.

In some cases, you may need to write annotations such as @ClassVal, @MethodVal, @StringVal and @ArrayLen
(from the Constant Value Checker, Section 16) to aid in reflection resolution. Often, though, these annotations can be
inferred (Section 21.1.3).

21.1.1 ClassVal Checker
The ClassVal Checker defines the following annotations:

104

http://docs.oracle.com/javase/8/docs/api/java/lang/reflect/Method.html#invoke-java.lang.Object-java.lang.Object...-

@UnknownClass

@ClassValBottom

@ClassVal("java.lang.String")

@ClassBound({"java.lang.String","com.example.MyClass"})

@ClassBound("java.lang.String") @ClassVal({"java.lang.String","com.example.MyClass"})

Figure 21.1: Partial type hierarchy for the ClassVal type system. The type qualifiers in gray (@UnknownClass and
@ClassValBottom) should never be written in source code; they are used internally by the type system.

@ClassVal(String[] value) If an expression has @ClassVal type with a single argument, then its exact
run-time value is known at compile time. For example, @ClassVal("java.util.HashMap") indicates that the
Class object represents the java.util.HashMap class.
If multiple arguments are given, then the expression’s run-time value is known to be in that set.
The arguments are binary names (JLS §13.1).

@ClassBound(String[] value) If an expression has @ClassBound type, then its run-time value is known to
be upper-bounded by that type. For example, @ClassBound("java.util.HashMap") indicates that the Class
object represents java.util.HashMap or a subclass of it.
If multiple arguments are given, then the run-time value is equal to or a subclass of some class in that set.
The arguments are binary names (JLS §13.1).

@UnknownClass Indicates that there is no compile-time information about the run-time value of the class — or that
the Java type is not Class. This is the default qualifier, and it may not be written in source code.

@ClassValBottom Type given to the null literal. It may not be written in source code.

Subtyping rules

Figure 21.1 shows part of the type hierarchy of the ClassVal type system. @ClassVal(A) is a subtype of @ClassVal(B)
if A is a subset of B. @ClassBound(A) is a subtype of @ClassBound(B) if A is a subset of B. @ClassVal(A) is a
subtype of @ClassBound(B) if A is a subset of B.

21.1.2 MethodVal Checker
The MethodVal Checker defines the following annotations:

@MethodVal(String[] className, String[] methodName, int[] params) Indicates that an ex-
pression of type Method or Constructor has a run-time value in a given set. If the set has size n, then each of
@MethodVal’s arguments is an array of size n, and the ith method in the set is represented by { className[i],
methodName[i], params[i] }. For a constructor, the method name is “<init>”.
Consider the following example:

@MethodVal(className={"java.util.HashMap", "java.util.HashMap"},
methodName={"containsKey", "containsValue"},
params={1, 1})

This @MethodVal annotation indicates that the Method is either HashMap.containsKey with 1 formal parameter
or HashMap.containsValue with 1 formal parameter.
The @MethodVal type qualifier indicates the number of parameters that the method takes, but not their type. This
means that the Checker Framework’s reflection resolution cannot distinguish among overloaded methods.

@UnknownMethod Indicates that there is no compile-time information about the run-time value of the method — or
that the Java type is not Method or Constructor. This is the default qualifier, and it may not be written in source
code.

@MethodValBottom Type given to the null literal. It may not be written in source code.

105

api/org/checkerframework/common/reflection/qual/ClassVal.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-13.html#jls-13.1
api/org/checkerframework/common/reflection/qual/ClassBound.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-13.html#jls-13.1
api/org/checkerframework/common/reflection/qual/UnknownClass.html
api/org/checkerframework/common/reflection/qual/ClassValBottom.html
api/org/checkerframework/common/reflection/qual/MethodVal.html
api/org/checkerframework/common/reflection/qual/UnknownMethod.html
api/org/checkerframework/common/reflection/qual/MethodValBottom.html

@UnknownMethod

@MethodValBottom

@MethodVal(className={"java.lang.String", "java.lang.String"},methodName={"toString","equals"},params={0,1})

@MethodVal(className="java.lang.String",methodName="equals",params=1)

Figure 21.2: Partial type hierarchy for the MethodVal type system. The type qualifiers in gray (@UnknownMethod and
@MethodValBottom) should never be written in source code; they are used internally by the type system.

bn is the binary name of C
C.class : @ClassVal(bn)

s : @StringVal(ν)
Class.forName(s) : @ClassVal(ν)

e : τ bn is the binary name of τ

e.getClass() : @ClassBound(bn)

(e : @ClassBound(ν) ∨ e : @ClassVal(ν))
s : @StringVal(µ) p : @ArrayLen(π)

e.getMethod(s,p) : @MethodVal(cn=ν,mn=µ,np=π)

e : @ClassVal(ν) p : @ArrayLen(π)

e.getConstructor(p) : @MethodVal(cn=ν,mn = "<init>",np = π)

Figure 21.3: Example inference rules for @ClassVal, @ClassBound, and @MethodVal. Additional rules exist for
expressions with similar semantics but that call methods with different names or signatures.

Subtyping rules

Figure 21.2 show part of the type hierarchy of the MethodVal type system. @MethodVal(classname=CA, methodname=MA,
params=PA) is a subtype of @MethodVal(classname=CB, methodname=MB, params=PB) if

∀indexesi∃an index j : CA[i] =CB[j],MA[i] = MA[j],andPA[i] = PB[j]

where CA, MA, and PA are lists of equal size and CB, MB, and PB are lists of equal size.

21.1.3 MethodVal and ClassVal inference
The developer rarely has to write @ClassVal or @MethodVal annotations, because the Checker Framework infers them
according to Figure 21.3. Most readers can skip this section, which explains the inference rules.

The ClassVal Checker infers the exact class name (@ClassVal) for a Class literal (C.class), and for a static method
call (e.g., Class.forName(arg), ClassLoader.loadClass(arg), ...) if the argument is a statically computable
expression. In contrast, it infers an upper bound (@ClassBound) for instance method calls (e.g., obj.getClass()).

The MethodVal Checker infers @MethodVal annotations for Method and Constructor types that have been created
using a method call to Java’s Reflection API:

• Class.getMethod(String name, Class<?>... paramTypes)
• Class.getConstructor(Class<?>... paramTypes)

Note that an exact class name is necessary to precisely resolve reflectively-invoked constructors since a constructor
in a subclass does not override a constructor in its superclass. This means that the MethodVal Checker does not infer a
@MethodVal annotation for Class.getConstructor if the type of that class is @ClassBound. In contrast, either an
exact class name or a bound is adequate to resolve reflectively-invoked methods because of the subtyping rules for
overridden methods.

106

21.2 Reflection resolution example
Consider the following example, in which the Nullness Checker employs reflection resolution to avoid issuing a false
positive warning.

public class LocationInfo {
@NonNull Location getCurrentLocation() { ... }

}

public class Example {
LocationInfo privateLocation = ... ;
String getCurrentCity() throws Exception {

Method getCurrentLocationObj = LocationInfo.class.getMethod("getCurrentLocation");
Location currentLocation = (Location) getCurrentLocationObj.invoke(privateLocation);
return currentLocation.nameOfCity();

}
}

When reflection resolution is not enabled, the Nullness Checker uses conservative annotations on the Method.invoke
method signature:

@Nullable Object invoke(@NonNull Object recv, @NonNull Object ... args)
This causes the Nullness Checker to issue the following warning even though currentLocation cannot be null.

error: [dereference.of.nullable] dereference of possibly-null reference currentLocation
return currentLocation.nameOfCity();

^
1 error

When reflection resolution is enabled, the MethodVal Checker infers that the @MethodVal annotation for getCurrentLocationObj
is:

@MethodVal(className="LocationInfo", methodName="getCurrentLocation", params=0)

Based on this @MethodVal annotation, the reflection resolver determines that the reflective method call represents
a call to getCurrentLocation in class LocationInfo. The reflection resolver uses this information to provide the
following precise procedure summary to the Nullness Checker, for this call site only:

@NonNull Object invoke(@NonNull Object recv, @Nullable Object ... args)
Using this more precise signature, the Nullness Checker does not issue the false positive warning shown above.

107

Chapter 22

Subtyping Checker

The Subtyping Checker enforces only subtyping rules. It operates over annotations specified by a user on the command
line. Thus, users can create a simple type-checker without writing any code beyond definitions of the type qualifier
annotations.

The Subtyping Checker can accommodate all of the type system enhancements that can be declaratively specified
(see Chapter 29). This includes type introduction rules (implicit annotations, e.g., literals are implicitly considered
@NonNull) via the @ImplicitFor meta-annotation, and other features such as flow-sensitive type qualifier inference
(Section 25.4) and qualifier polymorphism (Section 24.2).

The Subtyping Checker is also useful to type system designers who wish to experiment with a checker before writing
code; the Subtyping Checker demonstrates the functionality that a checker inherits from the Checker Framework.

If you need typestate analysis, then you can extend a typestate checker, much as you would extend the Subtyping
Checker if you do not need typestate analysis. For more details (including a definition of “typestate”), see Chapter 23.1.
See Section 31.6.2 for a simpler alternative.

For type systems that require special checks (e.g., warning about dereferences of possibly-null values), you will
need to write code and extend the framework as discussed in Chapter 29.

22.1 Using the Subtyping Checker
The Subtyping Checker is used in the same way as other checkers (using the -processor
org.checkerframework.common.subtyping.SubtypingChecker option; see Chapter 2), except that it requires an
additional annotation processor argument via the standard “-A” switch:

• -Aquals: this option specifies a comma-no-space-separated list of the fully-qualified class names of the annota-
tions used as qualifiers in the custom type system. For example,
javac -processor org.checkerframework.common.subtyping.SubtypingChecker

-Aquals=myproject.qual.MyQual,myproject.qual.OtherQual MyFile.java ...
It serves the same purpose as the @TypeQualifiers annotation used by other checkers (see section 29.7).
The annotations listed in -Aquals must be accessible to the compiler during compilation in the classpath. In
other words, they must already be compiled (and, typically, be on the javac bootclasspath) before you run the
Subtyping Checker with javac. It is not sufficient to supply their source files on the command line.

To suppress a warning issued by the Subtyping Checker, use a @SuppressWarnings annotation, with the argument
being the unqualified, uncapitalized name of any of the annotations passed to -Aquals. This will suppress all warnings,
regardless of which of the annotations is involved in the warning. (As a matter of style, you should choose one of the
annotations as your @SuppressWarnings key and stick with it for that entire type hierarchy.)

108

api/org/checkerframework/checker/nullness/qual/NonNull.html
api/org/checkerframework/framework/qual/ImplicitFor.html
api/org/checkerframework/framework/qual/TypeQualifiers.html
http://docs.oracle.com/javase/8/docs/api/java/lang/SuppressWarnings.html

22.2 Subtyping Checker example
Consider a hypothetical Encrypted type qualifier, which denotes that the representation of an object (such as a String,
CharSequence, or byte[]) is encrypted. To use the Subtyping Checker for the Encrypted type system, follow three
steps.

1. Define two annotations for the Encrypted and PossiblyUnencrypted qualifiers:

package myqual;

import java.lang.annotation.Target;
import java.lang.annotation.ElementType;
import org.checkerframework.framework.qual.SubtypeOf;
import org.checkerframework.framework.qual.TypeQualifier;

/**
* Denotes that the representation of an object is encrypted.
*/

@TypeQualifier
@SubtypeOf(PossiblyUnencrypted.class)
@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
public @interface Encrypted {}

package myqual;

import java.lang.annotation.Target;
import java.lang.annotation.ElementType;
import org.checkerframework.framework.qual.DefaultQualifierInHierarchy;
import org.checkerframework.framework.qual.SubtypeOf;
import org.checkerframework.framework.qual.TypeQualifier;

/**
* Denotes that the representation of an object might not be encrypted.
*/

@TypeQualifier
@DefaultQualifierInHierarchy
@SubtypeOf({})
@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
public @interface PossiblyUnencrypted {}

Don’t forget to compile these classes:

$ javac myqual/Encrypted.java myqual/PossiblyUnencrypted.java

The resulting .class files should either be on your classpath, or on the processor path (set via the -processorpath
command-line option to javac).

2. Write @Encrypted annotations in your program (say, in file YourProgram.java):

import myqual.Encrypted;

...

public @Encrypted String encrypt(String text) {
// ...

}

109

// Only send encrypted data!
public void sendOverInternet(@Encrypted String msg) {

// ...
}

void sendText() {
// ...
@Encrypted String ciphertext = encrypt(plaintext);
sendOverInternet(ciphertext);
// ...

}

void sendPassword() {
String password = getUserPassword();
sendOverInternet(password);

}

You may also need to add @SuppressWarnings annotations to the encrypt and decrypt methods. Analyzing
them is beyond the capability of any realistic type system.

3. Invoke the compiler with the Subtyping Checker, specifying the @Encrypted annotation using the -Aquals
option. You should add the Encrypted classfile to the processor classpath:

$ javac -processorpath myqualpath -processor org.checkerframework.common.subtyping.SubtypingChecker \
-Aquals=myqual.Encrypted,myqual.PossiblyUnencrypted YourProgram.java

YourProgram.java:42: incompatible types.
found : @myqual.PossiblyUnencrypted java.lang.String
required: @myqual.Encrypted java.lang.String

sendOverInternet(password);
^

110

Chapter 23

Third-party checkers

The Checker Framework has been used to build other checkers that are not distributed together with the framework.
This chapter mentions just a few of them. They are listed in chonological order; older ones appear first and newer ones
appear last.

They are externally-maintained, so if you have problems or questions, you should contact their maintainers rather
than the Checker Framework maintainers.

If you want a reference to your checker included in this chapter, send us a link and a short description.

23.1 Typestate checkers
In a regular type system, a variable has the same type throughout its scope. In a typestate system, a variable’s type can
change as operations are performed on it.

The most common example of typestate is for a File object. Assume a file can be in two states, @Open and @Closed.
Calling the close() method changes the file’s state. Any subsequent attempt to read, write, or close the file will lead to
a run-time error. It would be better for the type system to warn about such problems, or guarantee their absence, at
compile time.

Just as you can extend the Subtyping Checker to create a type-checker, you can extend a typestate checker to create
a type-checker that supports typestate analysis. An extensible typestate analysis by Adam Warski that builds on the
Checker Framework is available at http://www.warski.org/typestate.html.

23.1.1 Comparison to flow-sensitive type refinement
The Checker Framework’s flow-sensitive type refinement (Section 25.4) implements a form of typestate analysis. For
example, after code that tests a variable against null, the Nullness Checker (Chapter 3) treats the variable’s type as
@NonNull T, for some T.

For many type systems, flow-sensitive type refinement is sufficient. But sometimes, you need full typestate analysis.
This section compares the two. (Unused variables (Section 25.6) also have similarities with typestate analysis and can
occasionally substitute for it. For brevity, this discussion omits them.)

A typestate analysis is easier for a user to create or extend. Flow-sensitive type refinement is built into the Checker
Framework and is optionally extended by each checker. Modifying the rules requires writing Java code in your checker.
By contrast, it is possible to write a simple typestate checker declaratively, by writing annotations on the methods (such
as close()) that change a reference’s typestate.

A typestate analysis can change a reference’s type to something that is not consistent with its original definition.
For example, suppose that a programmer decides that the @Open and @Closed qualifiers are incomparable — neither
is a subtype of the other. A typestate analysis can specify that the close() operation converts an @Open File into a
@Closed File. By contrast, flow-sensitive type refinement can only give a new type that is a subtype of the declared

111

http://www.warski.org/typestate.html

type — for flow-sensitive type refinement to be effective, @Closed would need to be a child of @Open in the qualifier
hierarchy (and close() would need to be treated specially by the checker).

23.2 Units and dimensions checker
A checker for units and dimensions is available at http://www.lexspoon.org/expannots/.

Unlike the Units Checker that is distributed with the Checker Framework (see Section 15), this checker includes
dynamic checks and permits annotation arguments that are Java expressions. This added flexibility, however, requires
that you use a special version both of the Checker Framework and of the javac compiler.

23.3 Thread locality checker
Loci, a checker for thread locality, is available at http://www.it.uu.se/research/upmarc/loci/. Developer
resources are available at the project page http://java.net/projects/loci/.

23.4 Safety-Critical Java checker
A checker for Safety-Critical Java (SCJ, JSR 302) is available at http://sss.cs.purdue.edu/projects/oscj/
checker/checker.html. Developer resources are available at the project page http://code.google.com/p/
scj-jsr302/.

23.5 Generic Universe Types checker
A checker for Generic Universe Types, a lightweight ownership type system, is available from https://ece.
uwaterloo.ca/~wdietl/ownership/.

23.6 EnerJ checker
A checker for EnerJ, an extension to Java that exposes hardware faults in a safe, principled manner to save energy
with only slight sacrifices to the quality of service, is available from http://sampa.cs.washington.edu/research/
approximation/enerj.html.

23.7 CheckLT taint checker
CheckLT uses taint tracking to detect illegal information flows, such as unsanitized data that could result in a SQL
injection attack. CheckLT is available from http://checklt.github.io/.

23.8 SPARTA information flow type-checker for Android
SPARTA is a security toolset aimed at preventing malware from appearing in an app store. SPARTA provides an
information-flow type-checker that is customized to Android but can also be applied to other domains. The SPARTA
toolset is available from http://types.cs.washington.edu/sparta/. The paper “Collaborative verification of
information flow for a high-assurance app store” appeared in CCS 2014.

112

http://www.lexspoon.org/expannots/
http://www.it.uu.se/research/upmarc/loci/
http://java.net/projects/loci/
http://sss.cs.purdue.edu/projects/oscj/checker/checker.html
http://sss.cs.purdue.edu/projects/oscj/checker/checker.html
http://code.google.com/p/scj-jsr302/
http://code.google.com/p/scj-jsr302/
https://ece.uwaterloo.ca/~wdietl/ownership/
https://ece.uwaterloo.ca/~wdietl/ownership/
http://sampa.cs.washington.edu/research/approximation/enerj.html
http://sampa.cs.washington.edu/research/approximation/enerj.html
http://checklt.github.io/
http://types.cs.washington.edu/sparta/
http://homes.cs.washington.edu/~mernst/pubs/infoflow-ccs2014.pdf
http://homes.cs.washington.edu/~mernst/pubs/infoflow-ccs2014.pdf

Chapter 24

Generics and polymorphism

This chapter describes support for Java generics (also known as “parametric polymorphism”) and polymorphism over
type qualifiers.

The Checker Framework currently supports two schemes for polymorphism over type qualifiers.
Section 24.2 describes the original scheme, which uses method-based annotations that are meta-annotated with

@PolymorphicQualifier.
Section 24.3 describes the qualifier parameters scheme, in which qualifier parameters are specified for classes and

methods similarly to Java generics. The qualifier parameter scheme is more powerful than the original approach, but
is currently (as of February 2015) experimental and incurs a 50% performance penalty. Currently, only the Tainting
Checker (Chapter 8) and the Regex Checker (Chapter 9) support qualifier parameters.

24.1 Generics (parametric polymorphism or type polymorphism)
The Checker Framework fully supports type-qualified Java generic types and methods (also known in the research
literature as “parametric polymorphism”). When instantiating a generic type, clients supply the qualifier along with the
type argument, as in List<@NonNull String>.

24.1.1 Raw types
Before running any pluggable type-checker, we recommend that you eliminate raw types from your code (e.g., your code
should use List<...> as opposed to List). Your code should compile without warnings when using the standard Java
compiler and the -Xlint:unchecked -Xlint:rawtypes command-line options. Using generics helps prevent type
errors just as using a pluggable type-checker does, and makes the Checker Framework’s warnings easier to understand.

If your code uses raw types, then the Checker Framework will do its best to infer the Java type parameters and the
type qualifiers. If it infers imprecise types that lead to type-checking warnings elsewhere, then you have two options.
You can convert the raw types such as List to parameterized types such as List<String>, or you can supply the
-AignoreRawTypeArguments command-line option. That option causes the Checker Framework to ignore all subtype
tests for type arguments that were inferred for a raw type.

24.1.2 Restricting instantiation of a generic class
When you define a generic class in Java, the extends clause of the generic type parameter (known as the “upper bound”)
requires that the corresponding type argument must be a subtype of the bound. For example, given the definition
class G<T extends Number> {...}, the upper bound is Number and a client can instantiate it as G<Number> or
G<Integer> but not G<Date>.

You can write a type qualifier on the extends clause to make the upper bound a qualified type. For example, you
can declare that a generic list class can hold only non-null values:

113

api/org/checkerframework/framework/qual/PolymorphicQualifier.html

class MyList<T extends @NonNull Object> {...}

MyList<@NonNull String> m1; // OK
MyList<@Nullable String> m2; // error

That is, in the above example, all arguments that replace T in MyList<T> must be subtypes of @NonNull Object.
Conceptually, each generic type parameter has two bounds — a lower bound and an upper bound — and at

instantiation, the type argument must be within the bounds. Java only allows you to specify the upper bound; the lower
bound is implicitly the bottom type void. The Checker Framework gives you more power: you can specify both an
upper and lower bound for type parameters and wildcards. For the upper bound, write a type qualifier on the extends
clause, and for the lower bound, write a type qualifier on the type variable.

class MyList<@LowerBound T extends @UpperBound Object> { ... }

For a concrete example, recall the type system of the Regex Checker (see Figure 9, page 61) in which @Regex(0) :>
@Regex(1) :> @Regex(2) :> @Regex(3) :>

class MyRegexes<@Regex(5) T extends @Regex(1) String> { ... }

MyRegexes<@Regex(0) String> mu; // error - @Regex(0) is not a subtype of @Regex(1)
MyRegexes<@Regex(1) String> m1; // OK
MyRegexes<@Regex(3) String> m3; // OK
MyRegexes<@Regex(5) String> m5; // OK
MyRegexes<@Regex(6) String> m6; // error - @Regex(6) is not a supertype of @Regex(5)

The above declaration states that the upper bound of the type variable is @Regex(1) String and the lower bound
is @Regex(5) void. That is, arguments that replace T in MyList<T> must be subtypes of @Regex(1) String and
supertypes of @Regex(5) void. Since void cannot be used to instantiate a generic class, MyList may be instantiated
with @Regex(1) String through @Regex(5) String.

To specify an exact bound, place the same annotation on both bounds. For example:

class MyListOfNonNulls<@NonNull T extends @NonNull Object> { ... }
class MyListOfNullables<@Nullable T extends @Nullable Object> { ... }

MyListOfNonNulls<@NonNull Number> v1; // OK
MyListOfNonNulls<@Nullable Number> v2; // error
MyListOfNullables<@NonNull Number> v4; // error
MyListOfNullables<@Nullable Number> v3; // OK

It is an error if the lower bound is not a subtype of the upper bound.

class MyClass<@Nullable T extends @NonNull Object> // error @Nullable is not a supertype of @NonNull

Defaults

If the extends clause is omitted, then the upper bound defaults to @TopType Object. If no type annotation is
written on the type parameter name, then the lower bound defaults to @BottomType void. If the extends clause is
written but contains no type qualifier, then the normal defaulting rules apply to the type in the extends clause (see
Section 25.3.2).

These rules mean that even though in Java the following two declarations are equivalent:

class MyClass<T>
class MyClass<T extends Object>

they may specify different type qualifiers on the upper bound, depending on the type system’s defaulting rules.

114

24.1.3 Type annotations on a use of a generic type variable
A type annotation on a use of a generic type variable overrides/ignores any type qualifier (in the same type hierarchy) on
the corresponding actual type argument. For example, suppose that T is a formal type parameter. Then using @Nullable
T within the scope of T applies the type qualifier @Nullable to the (unqualified) Java type of T. This feature is only
rarely used.

Here is an example of applying a type annotation to a generic type variable:

class MyClass2<T> {
...
@Nullable T myField = null;
...

}

The type annotation does not restrict how MyClass2 may be instantiated. In other words, both MyClass2<@NonNull
String> and MyClass2<@Nullable String> are legal, and in both cases @Nullable T means @Nullable String.
In MyClass2<@Interned String>, @Nullable T means @Nullable @Interned String.

24.1.4 Annotations on wildcards
At an instantiation of a generic type, a Java wildcard indicates that some constraints are known on the type argument,
but the type argument is not known exactly. For example, you can indicate that the type parameter for variable ls is
some unknown subtype of CharSequence:

List<? extends CharSequence> ls;
ls = new ArrayList<String>(); // OK
ls = new ArrayList<Integer>(); // error - Integer is not a subtype of CharSequence

For more details about wildcards, see the Java tutorial on wildcards or JLS §4.5.1.
You can write a type annotation on the bound of a wildcard:

List<? extends @NonNull CharSequence> ls;
ls = new ArrayList<@NonNull String>(); // OK
ls = new ArrayList<@Nullable String>(); // error - @Nullable is not a subtype of @NonNull

Conceptually, every wildcard has two bounds — an upper bound and a lower bound. Java only permits you to write
the upper bound (with <? extends SomeType>) or the lower bound (with <? super OtherType>), but not both; the
unspecified bound is implicitly the top type Object or the bottom type void. The Checker Framework is more flexible:
it lets you simultaneously write annotations on both the top and the bottom type. To annotate the implicit bound, write
the type annotation before the ?. For example:

List<@LowerBound ? extends @UpperBound CharSequence> lo;
List<@UpperBound ? super @NonNull Number> ls;

For an unbounded wildcard (<?>, with neither bound specified), the annotation in front of a wildcard applies to both
bounds. The following three declarations are equivalent (except that you cannot write the bottom type void; note that
Void does not denote the bottom type):

List<@NonNull ?> lnn;
List<@NonNull ? extends @NonNull Object> lnn;
List<@NonNull ? super @NonNull void> lnn;

Note that the annotation in front of a type parameter always applies to its lower bound, because type parameters can
only be written with extends and never super.

The defaulting rules for wildcards also differ from those of type parameters (see Section 25.3.4).

115

https://docs.oracle.com/javase/tutorial/java/generics/wildcards.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.5.1
http://docs.oracle.com/javase/8/docs/api/java/lang/Void.html

24.1.5 Examples of qualifiers on a type parameter
Recall that @Nullable X is a supertype of @NonNull X, for any X. Most of of the following types mean different
things:

class MyList1<@Nullable T> { ... }
class MyList1a<@Nullable T extends @Nullable Object> { ... } // same as MyList1
class MyList2<@NonNull T extends @NonNull Object> { ... }
class MyList2a<T extends @NonNull Object> { ... } // same as MyList2
class MyList3<T extends @Nullable Object> { ... }

MyList1 and MyList1a must be instantiated with a nullable type. The implementation of MyList1 must be able to
consume (store) a null value and produce (retrieve) a null value.

MyList2 and MyList2a must be instantiated with non-null type. The implementation of MyList2 has to account
for only non-null values — it does not have to account for consuming or producing null.

MyList3 may be instantiated either way: with a nullable type or a non-null type. The implementation of MyList3
must consider that it may be instantiated either way — flexible enough to support either instantiation, yet rigorous
enough to impose the correct constraints of the specific instantiation. It must also itself comply with the constraints of
the potential instantiations.

One way to express the difference among MyList1, MyList2, and MyList3 is by comparing what expressions are
legal in the implementation of the list — that is, what expressions may appear in the ellipsis in the declarations above,
such as inside a method’s body. Suppose each class has, in the ellipsis, these declarations:

T t;
@Nullable T nble; // Section "Type annotations on a use of a generic type variable", below,
@NonNull T nn; // further explains the meaning of "@Nullable T" and "@NonNull T".
void add(T arg) { }
T get(int i) { }

Then the following expressions would be legal, inside a given implementation — that is, also within the ellipses. (Compil-
able source code appears as file checker-framework/checker/tests/nullness/generics/GenericsExample.java.)

MyList1 MyList2 MyList3
t = null; OK error error
t = nble; OK error error
nble = null; OK OK OK
nn = null; error error error
t = this.get(0); OK OK OK
nble = this.get(0); OK OK OK
nn = this.get(0); error OK error
this.add(t); OK OK OK
this.add(nble); OK error error
this.add(nn); OK OK OK

The differences are more significant when the qualifier hierarchy is more complicated than just @Nullable and
@NonNull.

24.1.6 Covariant type parameters
Java types are invariant in their type parameter. This means that A<X> is a subtype of B<Y> only if X is identical to Y. For
example, ArrayList<Number> is a subtype of List<Number>, but neither ArrayList<Integer> nor List<Integer>
is a subtype of List<Number>. (If they were, there would be a type hole in the Java type system.) For the same
reason, type parameter annotations are treated invariantly. For example, List<@Nullable String> is not a subtype of
List<String>.

116

When a type parameter is used in a read-only way — that is, when values of that type are read but are never
assigned — then it is safe for the type to be covariant in the type parameter. Use the @Covariant annotation to indicate
this. When a type parameter is covariant, two instantiations of the class with different type arguments have the same
subtyping relationship as the type arguments do.

For example, consider Iterator. Its elements can be read but not written, so Iterator<@Nullable String> can
be a subtype of Iterator<String> without introducing a hole in the type system. Therefore, its type parameter is
annotated with @Covariant. The first type parameter of Map.Entry is also covariant. Another example would be the
type parameter of a hypothetical class ImmutableList.

The @Covariant annotation is trusted but not checked. If you incorrectly specify as covariant a type parameter that
that can be written (say, the class performs a set operation or some other mutation on an object of that type), then you
have created an unsoundness in the type system. For example, it would be incorrect to annotate the type parameter of
ListIterator as covariant, because ListIterator supports a set operation.

24.1.7 Method type argument inference and type qualifiers
Sometimes method type argument inference does not interact well with type qualifiers. In such situations, you might
need to provide explicit method type arguments, for which the syntax is as follows:

Collections.</*@MyTypeAnnotation*/ Object>sort(l, c);

This uses Java’s existing syntax for specifying a method call’s type arguments.

24.2 Qualifier polymorphism
This section describes the original Checker Framework scheme for qualifier polymorphism. Section 24.3 describes an
alternative scheme that uses qualifier parameters.

The Checker Framework supports type qualifier polymorphism for methods, which permits a single method to have
multiple different qualified type signatures. This is similar to Java’s generics, but is used in situations where you cannot
use Java generics. If you can use generics, you typically do not need to use a polymorphic qualifier such as @PolyNull.

To use a polymorphic qualifier, just write it on a type. For example, you can write @PolyNull anywhere in a method
that you would write @NonNull or @Nullable. A polymorphic qualifier can be used on a method signature or body. It
may not be used on a class or field.

A method written using a polymorphic qualifier conceptually has multiple versions, somewhat like a template in
C++ or the generics feature of Java. In each version, each instance of the polymorphic qualifier has been replaced by
the same other qualifier from the hierarchy. See the examples below in Section 24.2.1.

The method body must type-check with all signatures. A method call is type-correct if it type-checks under any one
of the signatures. If a call matches multiple signatures, then the compiler uses the most specific matching signature for
the purpose of type-checking. This is the same as Java’s rule for resolving overloaded methods.

To define a polymorphic qualifier, mark the definition with @PolymorphicQualifier. For example, @PolyNull is
a polymorphic type qualifier for the Nullness type system:

@PolymorphicQualifier
@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
public @interface PolyNull { }

See Section 24.2.5 for a way you can sometimes avoid defining a new polymorphic qualifier.

24.2.1 Examples of using polymorphic qualifiers
As an example of the use of @PolyNull, method Class.cast returns null if and only if its argument is null:

@PolyNull T cast(@PolyNull Object obj) { ... }

117

api/org/checkerframework/checker/nullness/qual/Covariant.html
api/org/checkerframework/framework/qual/PolymorphicQualifier.html
api/org/checkerframework/checker/nullness/qual/PolyNull.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#cast-java.lang.Object-

This is like writing:

@NonNull T cast(@NonNull Object obj) { ... }
@Nullable T cast(@Nullable Object obj) { ... }

except that the latter is not legal Java, since it defines two methods with the same Java signature.
As another example, consider

// Returns null if either argument is null.
@PolyNull T max(@PolyNull T x, @PolyNull T y);

which is like writing

@NonNull T max(@NonNull T x, @NonNull T y);
@Nullable T max(@Nullable T x, @Nullable T y);

At a call site, the most specific applicable signature is selected.
Another way of thinking about which one of the two max variants is selected is that the nullness annotations of (the

declared types of) both arguments are unified to a type that is a supertype of both, also known as the least upper bound
or lub. If both arguments are @NonNull, their unification (lub) is @NonNull, and the method return type is @NonNull.
But if even one of the arguments is @Nullable, then the unification (lub) is @Nullable, and so is the return type.

24.2.2 Relationship to subtyping and generics
Qualifier polymorphism has the same purpose and plays the same role as Java’s generics. If a method is written using
generics, it usually does not need qualifier polymorphism. If you have legacy code that is not written generically, and
you cannot change it to use generics, then you can use qualifier polymorphism to achieve a similar effect, with respect
to type qualifiers only. The base Java types are still treated non-generically.

Why not use ordinary subtyping to handle qualifier polymorphism? Ordinarily, when you want a method to work on
multiple types, you can just use Java’s subtyping. For example, the equals method is declared to take an Object as its
first formal parameter, but it can be called on a String or a Date because those are subtypes of Object.

In most cases, the same subtyping mechanism works with type qualifiers. String is a supertype of @Interned
String, so a method toUpperCase that is declared to take a String parameter can also be called on a @Interned
String argument.

You use qualifier polymorphism in the same cases when you would use Java’s generics. (If you can use Java’s
generics, then that is often better and you don’t also need to use qualifier polymorphism.) One example is when you
want a method to operate on collections with different types of elements. Another example is when you want two
different formal parameters to be of the same type, without constraining them to be one specific type.

24.2.3 Using multiple polymorphic qualifiers in a method signature
Usually, it does not make sense to write only a single instance of a polymorphic qualifier in a method definition: if you
write one instance of (say) @PolyNull, then you should use at least two. (An exception is a polymorphic qualifier on an
array element type; this section ignores that case, but see below for further details.)

For example, there is no point to writing

void m(@PolyNull Object obj)

which expands to

void m(@NonNull Object obj)
void m(@Nullable Object obj)

This is no different (in terms of which calls to the method will type-check) than writing just

118

void m(@Nullable Object obj)

The benefit of polymorphic qualifiers comes when one is used multiple times in a method, since then each instance
turns into the same type qualifier. Most frequently, the polymorphic qualifier appears on at least one formal parameter
and also on the return type. It can also be useful to have polymorphic qualifiers on (only) multiple formal parameters,
especially if the method side-effects one of its arguments. For example, consider

void moveBetweenStacks(Stack<@PolyNull Object> s1, Stack<@PolyNull Object> s2) {
s1.push(s2.pop());

}

In this example, if it is acceptable to rewrite your code to use Java generics, the code can be even cleaner:

<T> void moveBetweenStacks(Stack<T> s1, Stack<T> s2) {
s1.push(s2.pop());

}

24.2.4 Using a single polymorphic qualifier on an element type
There is an exception to the general rule that a polymorphic qualifier should be used multiple times in a signature. It
can make sense to use a polymorphic qualifier just once, if it is on an array or generic element type.

For example, consider a routine that returns the index, in an array, of a given element:

public static int indexOf(@PolyNull Object[] a, @Nullable Object elt) { ... }

If @PolyNull were replaced with either @Nullable or @NonNull, then one of these safe client calls would be
rejected:

@Nullable Object[] a1;
@NonNull Object[] a2;

indexOf(a1, someObject);
indexOf(a2, someObject);

Of course, it would be better style to use a generic method, as in either of these signatures:

public static <T extends @Nullable Object> int indexOf(T[] a, @Nullable Object elt) { ... }
public static <T extends @Nullable Object> int indexOf(T[] a, T elt) { ... }

The examples in this section use arrays, but analogous collection examples exist.
These examples show that use of a single polymorphic qualifier may be necessary in legacy code, but can often be

avoided by use of better code style.

24.2.5 The @PolyAll qualifier applies to every type system
Each type system has its own polymorphic type qualifier. If some method is qualifier-polymorphic over every type
qualifier hierarchy, then it is tedious, and leads to an explosion in the number of type annotations, to place every @Poly*
qualifier on that method.

For example, a method that only performs == on array elements will work no matter what the array’s element types
are:

119

/** Searches for the first occurrence of the given element in the array,
* testing for equality using == (not the equals method). */

public static int indexOfEq(@PolyAll Object[] a, @Nullable Object elt) {
for (int i=0; i<a.length; i++)

if (elt == a[i])
return i;

return -1;
}

The @PolyAll qualifier takes an optional argument so that you can specify multiple, independent polymorphic type
qualifiers. For example, the method also works no matter what the type argument on the second argument is. This
signature is overly restrictive:

/** Returns true if the arrays are elementwise equal,
* testing for equality using == (not the equals method). */

public static int eltwiseEqualUsingEq(@PolyAll Object[] a, @PolyAll Object elt) {
for (int i=0; i<a.length; i++)

if (elt != a[i])
return false;

return true;
}

That signature requires the element type annotation to be identical for the two arguments. For example, it forbids this
invocation:

@Mutable Object[] x;
@Immutable Object y;
... indexOf(x, y) ...

A better signature lets the two arrays’ element types vary independently:

public static int eltwiseEqualUsingEq(@PolyAll(1) Object[] a, @PolyAll(2) Object elt)

Note that in this case, the @Nullable annotation on elt’s type is no longer necessary, since it is subsumed by @PolyAll.
The @PolyAll annotation at a location l applies to every type qualifier hierarchy for which no explicit qualifier is

written at location l. For example, a declaration like @PolyAll @NonNull Object elt is polymorphic over every type
system except the nullness type system, for which the type is fixed at @NonNull. That would be the proper declaration
for elt if the body had used elt.equals(a[i]) instead of elt == a[i].

24.3 Qualifier parameters
This section describes qualifier parameters which is the new, more-powerful qualifier polymorphism scheme. As of
February 2015, only the Tainting Checker (Chapter 8) and the Regex Checker (Chapter 9) support qualifier parameters.
Other checkers with qualifier polymorphism support use the original qualifier polymorphism scheme (Section 24.2).

Qualifier parameters provide a way for you to re-use the same code with different type qualifiers in a type-safe
manner.

Qualifier parameters are very similar to Java generics, so if you understand the benefits of generics and how to use
them, you will find qualifier parameters natural. Both mechanisms are used on classes and methods where different
instances of the class have different types. Without generics or qualifier parameters, the types of the members would
have to be overly general, which would cause information loss, compiler warnings, the need for casts, and potentially
run-time errors. Generics parameterize a class or method with a type, so that a client can specialize the definition
with a type as in List<Integer> or List<String>. By contrast, qualifier parameters enable a client to specialize the
definition with just a qualifier as in MyClass〈〈@Regex〉〉 or MyClass〈〈@NonNull〉〉.

120

api/org/checkerframework/framework/qual/PolyAll.html

24.3.1 Motivation for qualifier parameters
As an example of a problem that qualifier parameters solve, consider the Holder class below. In some uses of Holder,
the item field holds a @Tainted String value, and in other uses of Holder, the item field holds an @Untainted
String value. The only declaration of item that is consistent with all uses is @Tainted String, which is a supertype
of @Untainted String. When an @Untainted String value is put in a Holder, a cast is required when the value is
later retrieved.

class Holder {
@Tainted String item; // overly-general declaration, leads to casts

}

// taintedHolder can hold both @Tainted and @Untainted values
Holder taintedHolder = new Holder();
taintedHolder.item = getTaintedValue();
@Tainted String taintedString = taintedHolder.item; // OK; type-checks with the Tainting Checker.

// The programmer intends untaintedHolder to hold only @Untainted values
Holder untaintedHolder = new Holder();
untaintedHolder.item = getUntaintedValue();
@Untainted String untaintedString = untaintedHolder.item; // safe code, but Tainting Checker compile-time error.
// A cast makes the assignment type-check, but casts are unsound and error-prone.
String untaintedString = (@Untainted untaintedString) untaintedHolder.item;
taintedHolder.item = getTaintedValue(); // An error that we would like the type sysetm to catch

Qualifier parameters allow sound type-checking of this code without the use of casts.

24.3.2 Overview of qualifier parameters
These following examples add qualifier parameters to Holder from Section 24.3.1 to allow sound type-checking.

For clarity, this section displays qualifier parameters using an idealized syntax using double angle brackets, 〈〈...〉〉.
Note that this is not the actual syntax you will use in source code, which is described in Section 24.3.4.

In the qualifier parameter system, a class can declared to have one or more qualifier parameters. For example, a
qualifier parameter can be added to the Holder class:

class Holder 〈〈Q〉〉 {

}

This declares that Holder takes one qualifier parameter, named Q.
Q can be referenced inside the Holder class. In the following, item will have the same qualifier that Holder is

instantiated with:

class Holder 〈〈Q〉〉 {
@Q String item;

}

References and instantiations of Holder specify a qualifier argument for its parameter Q.

Holder〈〈Q=@Tainted〉〉 taintedHolder;
Holder〈〈Q=@Untainted〉〉 untaintedHolder;

Qualifier parameters permit instantiating a class with the appropriate type qualifier rather than relying on an
overly-general declaration. Therefore, the following code type-checks without casts:

Holder〈〈Q=@Tainted〉〉 taintedHolder = new Holder〈〈Q=@Tainted〉〉();
@Tainted String s = holder.item;

Holder〈〈Q=@Untainted〉〉 untaintedHolder = new Holder〈〈Q=@Untainted〉〉();
@Untainted String s = holder.item;

121

Like generics, two classes with different qualifier parameters have no subtyping relationship:

taintedHolder = untaintedHolder; // Error: not a subtype
untaintedHolder = taintedHolder; // Error: not a subtype
Holder〈〈Q=@Tainted〉〉 taintedHolder2;
taintedHolder = taintedHolder2; // OK: the qualifier argument is the same for both

24.3.3 Qualifier parameter wildcards
As with Java generics, wildcard extends and super bounds may be used. Wildcards create a subtyping relationship
between classes with qualifier parameters. See the Java tutorial at http://docs.oracle.com/javase/tutorial/
java/generics/subtyping.html for more information on subtyping relationships with wildcards.

Holder〈〈Q=@Tainted〉〉 holder;
Holder〈〈Q=? extends @Tainted〉〉 holderExtends;
Holder〈〈Q=? super @Tainted〉〉 holderSuper;

holder = holderExtends; // Error: not a subtype
holderExtends = holder; // OK

holder = holderSuper; // Error: not a subtype
holderSuper = holder; // OK

For soundness, when a class is parameterized with a wildcard, members of a qualified class that use the parameter
as their type have restrictions on their use, just as in Java. In particular, a member of a qualified class with an extends-
bounded wildcard may only be set to null. A member of a qualified class with a super-bounded wildcard will always
have the top type when accessed.

Holder〈〈Q=? extends @Untainted〉〉 holderExtends;
@Untainted String s1 = holderExtends.item; // OK
holderExtends.item = getTaintedString(); // Error: only null can be assigned to item

Holder〈〈Q=? super @Untainted〉〉 holderSuper;
@Untainted String s2 = holderSuper.item; // Error: item has the top type
holderSuper.item = getUntaintedString(); // OK

24.3.4 Syntax of qualifier parameters
The examples in Sections 24.3.2–24.3.3 used double angle brackets, 〈〈...〉〉, for qualifier parameter declarations and
qualifier arguments. In real source code, qualifier parameter declarations and uses, and qualifier arguments, are specified
via Java annotations.

• To declare a qualifier parameter, use @ClassTypesystemParam or @MethodTypesystemParam and give a
name for the parameter, as in @ClassTaintingParam("main").

• To use a qualifier parameter, write @Var and indicate the parameter being used, as in @Var(arg="main").
• To supply a qualifier argument, write the argument annotation (e.g., @Tainted), but supply a param argument, as

in @Tainted("main") which means that @Tainted is the argument to the parameter named main.

These annotations are summarized in Figure 24.1 and are more fully explained below.
Each type system that supports qualifier parameters has its own copy of these annotations. The functionality of the

annotations is the same, but since a java file might be annotated with annotations for multiple type systems, i.e. have
annotations for both the Regex and the Tainting checker, there must be a different copy of each annotation so that the
Checker Framework can determine the checker that an annotation belongs to.

122

http://docs.oracle.com/javase/tutorial/java/generics/subtyping.html
http://docs.oracle.com/javase/tutorial/java/generics/subtyping.html

Generic Equivalent Idealized Syntax Actual Syntax
Declare a class parameter class Holder<T> {} class Holder〈〈Q〉〉 {} @ClassTaintingParam("Q") class Holder {}
Declare a method parameter <T> void do() {} 〈〈V〉〉 void do() {} @MethodTaintingParam("V") void do() {}
Instantiate (supply an argument) Holder<String> Holder〈〈Q=@Tainted〉〉 @Tainted(param="Q") Holder
Use a parameter <T> void do(T t) {} 〈〈V〉〉 void do(@V Object o) {} @MethodTaintingParam("V") void do(@Var(arg="V") Object o) {}
Use a parameter as an argument <T> void do(List<T> t) {} 〈〈V〉〉 void do(Holder〈〈Q=@V〉〉 h) {} @MethodTaintingParam("V") void do(@Var(arg="V" param="Q") Holder o) {}
Instantiate without constraints Holder<?> Holder〈〈Q=?〉〉 @Wild(param="Q") Holder
Instantiate with upper bound Holder<? extends Object> Holder〈〈Q=? extends @Tainted〉〉 @Tainted(param="Q", wildcard=Wildcard.EXTENDS) Holder
Instantiate with lower bound Holder<? super Object> Holder〈〈Q=? super @Tainted〉〉 @Tainted(param="Q", wildcard=Wildcard.SUPER) Holder

Figure 24.1: Comparison of the syntax of Java generics, the idealized syntax used in Sections 24.3.2–24.3.3, and the
actual syntax used in Java source code.

@ClassTaintingParam Declares a qualifier parameter for a class.

// Equivalent to
class Holder 〈〈Q〉〉 {

}

// Declare a parameter "main"
@ClassTaintingParam("main")
class Holder {

}

// The parameter "main" can now be set
@Tainted(param="main") Holder h;

@MethodTaintingParam Declares a qualifier parameter for a method.
Qualifier arguments to a method are never specified explicitly; they are inferred by the Checker Framework based
on the parameters passed to the method invocation. Unlike Java generics, there is no way to explicitly specify
method qualifier parameters on an invocation.

class Util {

// Declare a method parameter.
@MethodTaintingParam("meth")
public static @Var("meth") String id(@Var("meth") String in) {

return in;
}

}

// Qualifier arguments are inferred.
@Untainted String untainted = Util.id(getUntaintedString());

@Var Declares a use of a qualifier parameter. The arg field specifies which qualifier parameter in the surrounding
scope the type should get its value from. For example:

// Equivalent to
class Holder 〈〈Q〉〉 {
@Q String item;

}

123

api/org/checkerframework/checker/tainting/qual/ClassTaintingParam.html
api/org/checkerframework/checker/tainting/qual/MethodTaintingParam.html
api/org/checkerframework/checker/tainting/qual/Var.html

// Declare a parameter
@ClassTaintingParam ("main")
class Holder {

// item will have the qualifier that Holder is instantiated with
@Var(arg="main") String item;

}

@Tainted(param="main") Holder h1 = new @Tainted(param="main") Holder();
@Tainted String value1 = h1.item;

@Untainted(param="main") Holder h2 = new @Untainted(param="main") Holder();
@Untainted String value1 = h2.item;

The "param" field specifies that the value of the qualifier parameter specified by "arg" should be used as the
parameter to another qualifier type. For example:

// Equivalent to
class Holder 〈〈Q〉〉 {
@Q String item;
Holder〈〈Q=@Q〉〉 nestedHolder;

}

@ClassTaintingParam ("main")
class Holder {

// item will have the qualifier that Holder is instantiated with
@Var(arg="main") String item;

// nestedHolder will be instantiated with the same qualifier as the
// enclosing "main" parameter
@Var(arg="main", param="main") Holder nestedHolder;

}

@Tainted(param="main") Holder h1 = new @Tainted(param="main") Holder();
@Tainted(param="main") Holder nestedHolder = h1;
@Tainted String value1 = h1.nestedHolder.item;

@Untainted(param="main") Holder h2 = new @Untainted(param="main") Holder();
@Untainted(param="main") Holder nestedHolder2 = h2;
@Untainted String value1 = h2.nestedHolder.item;

@Tainted When the param field is not set, this annotation behaves as described in Chapter 8 and indicates that the
value is tainted. For example:

// The value should be considered tainted
@Tainted String tainted = getTaintedString();

When the param param field is set, the annotation indicates that the value of the @Tainted qualifier should be
used as the qualifier argument to the class that it annotates. For example:

// Equivalent to Holder〈〈@Tainted〉〉 holder

// This declares a Holder object, whose Tainting qualifier parameter is set to @Tainted.
// Holder must have been declared to have a Tainting qualifier parameter

124

api/org/checkerframework/checker/tainting/qual/Tainted.html

// by using the @ClassTaintingParam annotation.
@Tainted(param="main") Holder holder;

The wildcard field can be set to a Wildcard value. This allows qualifier parameters to act like wildcards.

// Equivalent to Holder〈〈? extends @Untainted〉〉

// Instantiate Holder with a wildcard parameter.
@Untainted(param="main", wildcard=Wildcard.EXTENDS) Holder extends;

// OK because of the extends bound
extendsHolder = new @Untainted(param="main") Holder();
// Error: the new Holder is not a subtype of extendsHolder
extendsHolder = new @Untainted(param="main") Holder();

@Untainted @Untainted behaves the same as @Tainted but for untainted values.
@Wild Declares that a class has an unknown qualifier parameter. This is useful in cases where the qualifier parameter

in the class is not used or is used in very limited ways.

// Equivalent to
Holder〈〈?〉〉 h1 = new Holder〈〈@Untainted〉〉();

@Wild(param="main") Holder h1 = new @Untainted(param="main") Holder;

// Error: item is not guaranteed to be an @Untainted value.
@Untainted String s1 = h1.item;

@PolyTainted Enables method qualifier polymorphism. When the field param is not set, @PolyTainted behaves
as described Section 24.2. For example:

class Util {
static @PolyTainted String id(@PolyTainted String in) {

return in;
}

}

@Untainted String s = Util.id(getUntaintedString()); // OK
The field param can be used to specify that the inferred qualifier parameter should be used as an argument to an-
other parameterized type. In this mode @PolyTainted is a shorthand for a combination of @MethodTaintingParam
and @Var. For example:

class Util {
static @PolyTainted(param="main") Holder id(@PolyTainted(param="main") Holder in) {

return in;
}

}

// Equivalent to this code
@MethodTaintingParam("meth")
public static @Var(arg="meth", param="main") Holder id(@Var(arg="meth", param="main) Holder in) {

return in;
}

125

api/org/checkerframework/qualframework/poly/qual/Wildcard.html
api/org/checkerframework/checker/tainting/qual/Untainted.html
api/org/checkerframework/checker/tainting/qual/Wild.html
api/org/checkerframework/checker/tainting/qual/PolyTainted.html

24.3.5 Primary qualifiers
Type system specific annotations, like @Tainted or @Regex, have dual uses in the qualifier parameter system. When
their "param" field is set, they are used as a argument to a qualifier parameter.

When their "param" field is not set, they apply directly to a type and not to any qualifier parameters of the type. We
call the qualifier that applies directly to a type the primary qualifier. For example an @Tainted String is a String with
a tainted value and its primary qualifier is @Tainted.

@Var can also be used to set primary qualifiers by omitting the "param" field on the annotation.

126

Chapter 25

Advanced type system features

This chapter describes features that are automatically supported by every checker written with the Checker Framework.
You may wish to skim or skip this chapter on first reading. After you have used a checker for a little while and want
to be able to express more sophisticated and useful types, or to understand more about how the Checker Framework
works, you can return to it.

25.1 Invariant array types
Java’s type system is unsound with respect to arrays. That is, the Java type-checker approves code that is unsafe and
will cause a run-time crash. Technically, the problem is that Java has “covariant array types”, such as treating String[]
as a subtype of Object[]. Consider the following example:

String[] strings = new String[] {"hello"};
Object[] objects = strings;
objects[0] = new Object();
String myString = strs[0];

The above code puts an Object in the array strings and thence in myString, even though myString = new
Object() should be, and is, rejected by the Java type system. Java prevents corruption of the JVM by doing a
costly run-time check at every array assignment; nonetheless, it is undesirable to learn about a type error only via a
run-time crash rather than at compile time.

When you pass the -AinvariantArrays command-line option, the Checker Framework is stricter than Java, in
the sense that it treats arrays invariantly rather than covariantly. This means that a type system built upon the Checker
Framework is sound: you get a compile-time guarantee without the need for any run-time checks. But it also means that
the Checker Framework rejects code that is similar to what Java unsoundly accepts. The guarantee and the compile-time
checks are about your extended type system. The Checker Framework does not reject the example code above, which
contains no type annotations.

Java’s covariant array typing is sound if the array is used in a read-only fashion: that is, if the array’s elements are
accessed but the array is not modified. However, fact about read-only usage is not built into any of the type-checkers
except those that are specifically about immutability: IGJ (see Chapter 19, page 98) and Javari (see Chapter 20,
page 102). Therefore, when using other type systems along with -AinvariantArrays, you will need to suppress any
warnings that are false positives because the array is treated in a read-only way.

25.2 Context-sensitive type inference for array constructors
When you write an expression, the Checker Framework gives it the most precise possible type, depending on the
particular expression or value. For example, when using the Regex Checker (Chapter 9, page 61), the string "hello" is

127

given type @Regex String because it is a legal regular expression (whether it is meant to be used as one or not) and
the string "(foo" is given the type @Unqualified String because it is not a legal regular expression.

Array constructors work differently. When you create an array with the array constructor syntax, such as the
right-hand side of this assignment:

String[] myStrings = {"hello"};

then the expression does not get the most precise possible type, because doing so could cause inconvenience. Rather, its
type is determined by the context in which it is used: the left-hand side if it is in an assignment, the declared formal
parameter type if it is in a method call, etc.

In particular, if the expression {"hello"} were given the type @Regex String[], then the assignment would be
illegal! But the Checker Framework gives the type String[] based on the assignment context, so the code type-checks.

If you prefer a specific type for a constructed array, you can indicate that either in the context (change the declaration
of myStrings) or in a new construct (change the expression to new @Regex String[] {"hello"}).

25.3 The effective qualifier on a type (defaults and inference)
A checker sometimes treats a type as having a slightly different qualifier than what is written on the type — especially if
the programmer wrote no qualifier at all. Most readers can skip this section on first reading, because you will probably
find the system simply “does what you mean”, without forcing you to write too many qualifiers in your program. In
particular, qualifiers in method bodies are extremely rare.

Most of this section is applicable only to source code that is being checked by a checker. When the compiler reads
a .class file that was checked by a checker, the .class file contains the explicit or defaulted annotations from the
source code and no defaulting is necessary. When the compiler reads a .class file that was not checked by a checker,
the .class file contains only explicit annotations and defaulting might be necessary; see Section 25.3.5 for these rules.

The following steps determine the effective qualifier on a type — the qualifier that the checkers treat as being
present.

1. If a type qualifier is present in the source code, that qualifier is used.
2. The type system adds implicit qualifiers. This happens whether or not the programmer has written an explicit

type qualifier.
Here are some examples of implicit qualifiers:

• In the Nullness type system (see Chapter 3, page 24), enum values, string literals, and method receivers are
always non-null.
• In the Interning type system (see Chapter 5, page 47), string literals and enum values are always interned.

If the type has an implicit qualifier, then it is an error to write an explicit qualifier that is equal to (redundant with)
or a supertype of (weaker than) the implicit qualifier. A programmer may strengthen (write a subtype of) an
implicit qualifier, however.
Implicit qualifiers arise from two sources:

built-in Implicit qualifiers can be built into a type system (Section 29.4), in which case the type system’s
documentation explains all of the type system’s implicit qualifiers. Both of the above examples are built
into the Nullness type system.

programmer-declared A programmer may introduce an implicit annotation on each use of class C by writing a
qualifier on the declaration of class C. If MyClass is declared as class @MyAnno MyClass {...}, then
each occurrence of MyClass in the source code is treated as if it were @MyAnno MyClass.

3. If there is no explicit or implicit qualifier on a type, then a default qualifier is applied; see Section 25.3.1.
At this point (after step 3), every type has a qualifier.

4. The type system may refine a qualified type on a local variable — that is, treat it as a subtype of how it was
declared or defaulted. This refinement is always sound and has the effect of eliminating false positive error
messages. See Section 25.4.

128

25.3.1 Default qualifier for unannotated types
A type system designer, or an end-user programmer, can cause unannotated references to be treated as if they had a
default annotation.

There are several defaulting mechanisms, for convenience and flexibility. When determining the default qualifier for
a use of a type, the following rules are used in order, until one applies.

• Use the innermost user-written @DefaultQualifier, as explained in this section.
• Use the default specified by the type system designer (Section 29.3.4); this is usually CLIMB-to-top (Sec-

tion 25.3.2).
• Use @Unqualified, which the framework inserts to avoid ambiguity and simplify the programming interface for

type system designers. Users do not have to worry about this detail, but type system implementers can rely on the
fact that some qualifier is present.

The end-user programmer specifies a default qualifier by writing the @DefaultQualifier annotation on a package,
class, method, or variable declaration. The argument to @DefaultQualifier is the String name of an annotation. It
may be a short name like "NonNull", if an appropriate import statement exists. Otherwise, it should be fully-qualified,
like "org.checkerframework.checker.nullness.qual.NonNull". The optional second argument indicates where
the default applies. If the second argument is omitted, the specified annotation is the default in all locations. See the
Javadoc of DefaultQualifier for details.

For example, using the Nullness type system (Chapter 3):

import org.checkerframework.framework.qual.*; // for DefaultQualifier[s]
import org.checkerframework.checker.nullness.qual.NonNull;

@DefaultQualifier(NonNull.class)
class MyClass {

public boolean compile(File myFile) { // myFile has type "@NonNull File"
if (!myFile.exists()) // no warning: myFile is non-null

return false;
@Nullable File srcPath = ...; // must annotate to specify "@Nullable File"
...
if (srcPath.exists()) // warning: srcPath might be null

...
}

@DefaultQualifier(Mutable.class)
public boolean isJavaFile(File myfile) { // myFile has type "@Mutable File"

...
}

}

If you wish to write multiple @DefaultQualifier annotations at a single location, use @DefaultQualifiers
instead. For example:

@DefaultQualifiers({
@DefaultQualifier(NonNull.class),
@DefaultQualifier(Mutable.class)

})

If @DefaultQualifier[s] is placed on a package (via the package-info.java file), then it applies to the given
package and all subpackages.

129

api/org/checkerframework/framework/qual/Unqualified.html
api/org/checkerframework/framework/qual/DefaultQualifier.html
api/org/checkerframework/framework/qual/DefaultQualifier.html
api/org/checkerframework/framework/qual/DefaultQualifier.html
api/org/checkerframework/framework/qual/DefaultQualifier.html
api/org/checkerframework/framework/qual/DefaultQualifiers.html

Recall that an annotation on a class definition indicates an implicit qualifier (Section 25.3) that can only be
strengthened, not weakened. This can lead to unexpected results if the default qualifier applies to a class definition.
Thus, you may want to put explicit qualifiers on class declarations (which prevents the default from taking effect), or
exclude class declarations from defaulting.

When a programmer omits an extends clause at a declaration of a type parameter, the default still applies to the
implicit upper bound. For example, consider these two declarations:

class C<T> { ... }
class C<T extends Object> { ... } // identical to previous line

The two declarations are treated identically by Java, and the default qualifier applies to the Object upper bound whether
it is implicit or explicit. (The @NonNull default annotation applies only to the upper bound in the extends clause, not
to the lower bound in the inexpressible implicit super void clause.)

25.3.2 Defaulting rules and CLIMB-to-top
Each type system defines a default qualifier. For example, the default qualifier for the Nullness Checker is @NonNull.
That means that when a user writes a type such as Date, the Nullness Checker interprets it as @NonNull Date.

We recommend that the type system apply that default qualifier to most but not all types. In particular, we
recommend the CLIMB-to-top rule. This rule states that the top qualifier in the hierarchy is applied to the CLIMB
locations: Casts, Locals, Instanceof, and iMplicit Bounds. For example, when the user writes a type such as Date in
such a location, the Nullness Checker interprets it as @Nullable Date (because @Nullable is the top qualifier in the
hierarchy, see Figure 3.1).

The CLIMB-to-top rule is used only for unannotated source code that is being processed by a checker. For
unannotated libraries (code read by the compiler in .class or .jar form), the checker uses conservative defaults
(Section 25.3.5).

The rest of this section explains the rationale and implementation of CLIMB-to-top.
Here is the rationale for CLIMB-to-top:

• Casts and local variables (including resource variables in the try-with-resources construct, variables in for
statements, exception parameters etc.) should be defaulted to top because they are the locations to which type
refinement (Section 25.4) is applied. If they start as the top type, then the Checker Framework chooses the best
(most general) possible type for them. As a result, a programmer rarely writes an explicit annotation on any of
those locations.
Catch arguments, known as exception parameters in the Java Language Specification, should be defaulted to top
for most checkers; otherwise, an error will be issued. This is because exceptions of arbitrary qualified types can
be thrown and the Checker Framework does not provide runtime checks.

• Instanceof types are defaulted to top for a similar reason: so that programmers do not need to write annotations
on them. If the instanceof’s qualifier is top, then the Checker Framework will never issue an error that the
instanceof qualifier is not compatible with the argument.

• Implicit upper bounds are defaulted to top to allow them to be instantiated in any way. If a user declared
class C<T> { ... }, then we assume that the user intended to allow any instantiation of the class, and
the declaration is interpreted as class C<T extends @Nullable Object> { ... } rather than as class
C<T extends @NonNull Object> { ... }. The latter would forbid instantiations such as C<@Nullable
String>, or would require rewriting of code. On the other hand, if a user writes an explicit bound such as class
C<T extends D> { ... }, then the user intends some restriction on instantiation and can write a qualifier on
the upper bound as desired.
This rule means that the upper bound of class C<T> is defaulted differently than the upper bound of class
C<T extends Object>. It would be more confusing for “Object” to be defaulted differently in class C<T
extends Object> and in an instantiation C<Object>, and for the upper bounds to be defaulted differently in
class C<T extends Object> and class C<T extends Date>.

130

api/org/checkerframework/checker/nullness/qual/NonNull.html
api/org/checkerframework/checker/nullness/qual/Nullable.html

• Implicit lower bounds are defaulted to the bottom type, again to allow maximal instantiation. Note that Java does
not allow a programmer to express both the upper and lower bounds of a type, but the Checker Framework allows
the programmer to specify either or both; see Section 24.1.2.

Here is how the CLIMB-to-top rule is expressed for the Nullness Checker:

@DefaultQualifierInHierarchy
public @interface NonNull { }

@DefaultFor({ DefaultLocation.LOCAL_VARIABLE, DefaultLocation.RESOURCE_VARIABLE,
DefaultLocation.IMPLICIT_UPPER_BOUNDS })

public @interface Nullable { }

Note that DefaultLocation.LOCAL_VARIABLE includes casts and instanceof. As mentioned above, the exception
parameters are always non-null, so DefaultLocation.EXCEPTION_PARAMETER is excluded from the above list.

A type system designer does not have to use the CLIMB-to-top rule. In addition, a user may choose a different rule
for defaults using the @DefaultQualifier annotation; see Section 25.3.1.

25.3.3 Inherited defaults
In certain situations, it would be convenient for an annotation on a superclass member to be automatically inherited by
subclasses that override it. This feature would reduce both annotation effort and program comprehensibility. In general,
a program is read more often than it is edited/annotated, so the Checker Framework does not currently support this
feature. Here are more detailed justifications:

• Currently, a user can determine the annotation on a parameter or return value by looking at a single file. If
annotations could be inherited from supertypes, then a user would have to examine all supertypes to understand
the meaning of an unannotated type in a given file.

• Different annotations might be inherited from a supertype and an interface, or from two interfaces. Presumably,
the subtype’s annotations would be stronger than either (the greatest lower bound in the type system), or an error
would be thrown if no such annotations existed.

If these issues can be resolved, then the feature may be added in the future. Or, it may be added optionally, and each
type-checker implementation can enable it if desired.

25.3.4 Inherited wildcard annotations
If a wildcard is unbounded and has no annotation (e.g. List<?>), the annotations on the wildcard’s bounds are copied
from the type parameter to which the wildcard is an argument. For example, the two wildcards in the declarations below
are equivalent.

class MyList<@Nullable T extends @Nullable Object> {}

MyList<?> listOfNullables;
MyList<@Nullable ? extends @Nullable Object> listOfNullables;

We copy these annotations because wildcards must be within the bounds of their corresponding type parameter.
Therefore, there would be many false positive type.argument.type.incompatible warnings if the bounds of a
wildcard were defaulted differently from the bounds of its corresponding type parameter. Here is another example:

class MyList<@Regex(5) T extends @Regex(1) Object> {}

MyList<?> listOfRegexes;
MyList<@Regex(5) ? extends @Regex(1) Object> listOfRegexes;

131

api/org/checkerframework/framework/qual/DefaultQualifier.html

Note, this applies only to unbounded wildcards. The two wildcards in the following example are equivalent.

class MyList<@Nullable T extends @Nullable Object> {}

List<? extends Object> listOfNonNulls;
List<@NonNull ? extends @NonNull Object> listOfNonNulls2;

Note, the upper bound of the wildcard ? extends Object is defaulted to @NonNull using the CLIMB-to-top rule
(see Section 25.3.2).

25.3.5 Default qualifiers for .class files (conservative library defaults)
Note: For release 1.9.3, the conservative library defaults presented in this section are off by default and can be turned on
by supplying the -AsafeDefaultsForUnannotatedBytecode command-line option. Starting with release 1.9.4, they
will be turned on by default and it will be possible to turn them off by supplying a -AunsafeDefaultsForUnannotatedBytecode
command-line option. That option will replace the existing -AsafeDefaultsForUnannotatedBytecode command-
line option.

The defaulting rules presented so far apply to source code that is read by the compiler. When the compiler reads a
.class file, different defaulting rules apply.

If the checker was run during the compiler execution that created the .class file, then there is no need for defaults:
the .class file has an explicit qualifier at each type use. (Furthermore, unless warnings were suppressed, those
qualifiers are guaranteed to be correct.) When you are performing pluggable type-checking, it is best to ensure that the
compiler only reads such .class files. Section 28.1 discusses how to create annotated libraries.

If the checker was not run during the compiler execution that created the .class file, then the .class file contains
only the type qualifiers that the programmer wrote explicitly. (Furthermore, there is no guarantee that these qualifiers
are correct, since they have not been checked.) In this case, each checker decides what qualifier to use for the locations
where the programmer did not write an annotation. The typical choice is:

• For method parameters, use the bottom qualifier (see Section 29.3.5).
• For method return values, use the top qualifier (see Section 29.3.5).

For example, an unannotated method

String concatenate(String p1, String p2)

in a classfile would be interpreted as

@Top String concatenate(@Bottom String p1, @Bottom String p2)

There is no single possible default that is sound for fields. In the rare circumstance that there is a mutable public
field in an unannotated library, the Checker Framework may fail to warn about code that can misbehave at run time.
The Checker Framework developers are working to improve handling of mutable public fields in unannotated libraries.

These choices are conservative. They are likely to cause many false-positive type-checking errors, which will help
you to know which library methods need annotations. You can then write those library annotations (see Chapter 28) or
alternately suppress the warnings (see Section 26).

25.4 Automatic type refinement (flow-sensitive type qualifier inference)
In order to reduce your burden of annotating types in your program, the checkers soundly treat certain variables and
expressions as having a subtype of their declared or defaulted (Section 25.3.1) type. This functionality eliminates some
false positive warnings, but it never introduces unsoundness nor causes an error to be missed.

As an example, suppose you write

132

@Nullable String myVar;
...
myVar = "hello";
myVar.hashCode();

The Nullness Checker issues a warning whenever a method such as hashCode() is called on a possibly-null value,
which may result in a null pointer exception. The Nullness Checker need not issue a warning in this case. In particular,
after the assignment, type-checker treats myVar as having type @NonNull String, which is a subtype of its declared
type.

Here is another example:

@Nullable String myVar;
...
if (myVar != null) {

myVar.hashCode();
}

Once again, the Nullness Checker need not issue a warning. Within the body of the if test, the type of myVar is
@NonNull String, even though myVar is declared as @Nullable String.

Array element types and generic arguments are never changed by type refinement. Changing these components of
a type never yields a subtype of the declared type. For example, List<Number> is not a subtype of List<Object>.
Similarly, the Checker Framework does not treat Number[] as a subtype of Object[]; see Section 25.1 for why.

By default, all checkers, including new checkers that you write, automatically incorporate type refinement. Most of
the time, users don’t have to think about, and may not even notice, type refinement. The checkers simply do the right
thing even when a programmer omits an annotation on a local variable, or when a programmer writes an unnecessarily
general type in a declaration.

The functionality has a variety of names: automatic type refinement, flow-sensitive type qualifier inference, local
type inference, and sometimes just “flow”.

If you are curious or want more details about this feature, then read on.
As an example, the Nullness Checker (Chapter 3) can automatically determine that certain variables are non-null,

even if they were explicitly or by default annotated as nullable. The checker treats a variable or expression as @NonNull

• starting at the time that it is either assigned a non-null value or checked against null (e.g., via an assertion, if
statement, or being dereferenced)

• until it might be re-assigned (e.g., via an assignment that might affect this variable, or via a method call that
might affect this variable).

As with explicit annotations, the implicitly non-null types permit dereferences and assignments to non-null types,
without compiler warnings.

Consider this code, along with comments indicating whether the Nullness Checker (Chapter 3) issues a warning.
Note that the same expression may yield a warning or not depending on its context.

// Requires an argument of type @NonNull String
void parse(@NonNull String toParse) { ... }

// Argument does NOT have a @NonNull type
void lex(@Nullable String toLex) {

parse(toLex); // warning: toLex might be null
if (toLex != null) {

parse(toLex); // no warning: toLex is known to be non-null
}
parse(toLex); // warning: toLex might be null
toLex = new String(...);
parse(toLex); // no warning: toLex is known to be non-null

}

133

api/org/checkerframework/checker/nullness/qual/NonNull.html

If you find examples where you think a value should be inferred to have (or not have) a given annotation, but the
checker does not do so, please submit a bug report (see Section 32.2) that includes a small piece of Java code that
reproduces the problem.

The inference indicates when a variable can be treated as having a subtype of its declared type — for instance, when
an otherwise nullable type can be treated as a @NonNull one. The inference never treats a variable as a supertype of its
declared type (e.g., an expression of @NonNull type is never inferred to be treated as possibly-null).

Type inference is never performed for method parameters of non-private methods, nor for non-private fields. More
generally, the inferred information is never written to the .class file as user-written annotations are. If the checker did
inference in externally-visible locations and wrote it to the .class file, then the resulting .class file would be different
depending on whether an annotation processor had been run or not. It is a design goal that the same annotations appear
in the .class file regardless of whether the class is compiled with or without the checker, and this requires that any
public signature be fully annotated by the user rather than inferred.

The @TerminatesExecution annotation indicates that a given method never returns. This can enable the flow-
sensitive type refinement to be more precise.

25.4.1 Run-time tests and type refinement
Some type systems support a run-time test that the Checker Framework can use to refine types within the scope of a
conditional such as if, after an assert statement, etc.

Whether a type system supports such a run-time test depends on whether the type system is computing properties of
data itself, or properties of provenance (the source of the data). An example of a property about data is whether a string
is a regular expression. An example of a property about provenance is units of measure: there is no way to look at the
representation of a number and determine whether it is intended to represent kilometers or miles.

Type systems that support a run-time test are:

• Nullness Checker for null pointer errors (see Chapter 3, page 24)
• Map Key Checker to track which values are keys in a map (see Chapter 4, page 44)
• Regex Checker to prevent use of syntactically invalid regular expressions (see Chapter 9, page 61)
• Format String Checker to ensure that format strings have the right number and type of % directives (see Chapter 10,

page 65)
• Internationalization Format String Checker to ensure that i18n format strings have the right number and type of
{} directives (see Chapter 11, page 71)

Type systems that do not currently support a run-time test, but could do so with some additional implementation
work, are

• Interning Checker for errors in equality testing and interning (see Chapter 5, page 47)
• Lock Checker for concurrency and lock errors (see Chapter 6, page 50)
• Property File Checker to ensure that valid keys are used for property files and resource bundles (see Chapter 12,

page 77)
• Internationalization Checker to ensure that code is properly internationalized (see Chapter 12.2, page 78)
• Signature String Checker to ensure that the string representation of a type is properly used, for example in
Class.forName (see Chapter 13, page 80).

• Constant Value Checker to determine whether an expression’s value can be known at compile time (see Chapter 16,
page 89)

Type systems that cannot support a run-time test are:

• Initialization Checker to ensure all fields are set in the constructor (see Chapter 3.8, page 33)
• Fake Enum Checker to allow type-safe fake enum patterns (see Chapter 7, page 56)
• Tainting Checker for trust and security errors (see Chapter 8, page 59)
• GUI Effect Checker to ensure that non-GUI threads do not access the UI, which would crash the application (see

Chapter 14, page 82)

134

api/org/checkerframework/checker/nullness/qual/NonNull.html
api/org/checkerframework/checker/nullness/qual/NonNull.html
api/org/checkerframework/dataflow/qual/TerminatesExecution.html

• Units Checker to ensure operations are performed on correct units of measurement (see Chapter 15, page 86)
• Aliasing Checker to identify whether expressions have aliases (see Chapter 17, page 92)
• Linear Checker to control aliasing and prevent re-use (see Chapter 18, page 96)
• IGJ Checker for mutation errors (incorrect side effects), based on the IGJ type system (see Chapter 19, page 98)
• Javari Checker for mutation errors (incorrect side effects), based on the Javari type system (see Chapter 20,

page 102)
• Subtyping Checker for customized checking without writing any code (see Chapter 22, page 108)

25.4.2 Fields and flow-sensitive analysis
Flow sensitivity analysis infers the type of fields in some restricted cases:

• A final initialized field: Type inference is performed for final fields that are initialized to a compile-time constant
at the declaration site; so the type of protocol is @NonNull String in the following declaration:

public final String protocol = "https";

Please note that such inferred type may leak to the public interface of the class. To override such behavior, you
can explicitly insert the desired annotation, e.g.,

public final @Nullable String protocol = "https";

• Within method bodies: Type inference is performed for fields in the context of method bodies, like local variables,
but method invocations invalidate any inferred information. Consider the following example, where updatedAt
is a nullable field:

class DBObject {
@Nullable Date updatedAt;

void persistData() {
... // write to disk or other non-volatile memory
updatedAt = null;

}

void update() {
if (updatedAt == null)

updatedAt = new Date();
// updatedAt is nonnull
log("Updating object at " + updatedAt.getTime());

persistData();
// updatedAt is nullable again
log.debug("Saved object updated at " + updatedAt.getTime()); // invalid!

}
}

Here the call to persistData() invalidates the inferred non-null type of updatedAt.
When methods do not modify any object state or have any identity side effects (e.g., log() method here), you
can annotate these methods as SideEffectFree or Pure (see Section 25.4.3). When a method is annotated as
SideEffectFree, the flow analyzer carries the inferred types across the method invocation boundary.

25.4.3 Side effects, determinism, purity, and flow-sensitive analysis
As described above, a checker can use a refined type for an expression from the time when the checker infers that the
value has that refined type, until the checker can no longer support that inference.

135

The refined type begins at a test (such as if (myvar != null) ...) or an assignment. If the assignment occurs
within a method body, write a postcondition annotation such as @EnsuresNonNull.

The refined type ends at an assignment or possible assignment. Any method call has the potential to side-effect any
field, so calling a method typically causes the checker to discard its knowledge of the refined type. This is undesirable if
the method doesn’t actually re-assign the field.

There are three annotations, collectively called purity annotations, that you can use to help express what effects a
method call does not have. Usually, you only need to use @SideEffectFree.

@SideEffectFree indicates that the method has no (visible) side effects.
@Deterministic indicates that if the method is called multiple times with the same arguments, then it returns the

same result.
@Pure indicates that the method is both @SideEffectFree and @Deterministic.

The Javadoc of the annotations describes their semantics and how they are checked. This manual section gives
examples and supplementary information.

For example, consider the following declarations and uses:

@Nullable Object myField;

int computeValue() { ... }

...
if (myField != null) {

int result = computeValue();
myField.toString();

}

Ordinarily, the Nullness Checker would issue a warning regarding the toString() call, because the receiver myField
might be null, according to the @Nullable annotation on the declaration of myField. Even though the code checked
the value of myField, the call to computeValue might have re-set it to null. If you change the declaration of
computeValue to

@SideEffectFree int computeValue() { ... }

then the Nullness Checker issues no warnings, because it can reason that the second occurrence of myField has the
same (non-null) value as the one in the test.

As a more complex example, consider the following declaration and uses:

@Nullable Object getField(Object arg) { ... }

...
if (x.getField(y) != null) {

x.getField(y).toString();
}

Ordinarily, the Nullness Checker would issue a warning regarding the toString() call, because the receiver
x.getField(y) might be null, according to the @Nullable annotation in the declaration of getField. If you change
the declaration of getField to

@Pure @Nullable Object getField(Object arg) { ... }

then the Nullness Checker issues no warnings, because it can reason that the two invocations x.getField(y) have the
same value, and therefore that x.getField(y) is non-null within the then branch of the if statement.

136

api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
api/org/checkerframework/dataflow/qual/SideEffectFree.html
api/org/checkerframework/dataflow/qual/SideEffectFree.html
api/org/checkerframework/dataflow/qual/Deterministic.html
api/org/checkerframework/dataflow/qual/Pure.html

If a method is side-effect-free or pure, then it would be legal to annotate its receiver and every parameter as
@ReadOnly, in the IGJ (Chapter 19) or Javari (Chapter 20) type systems. The reverse is not true, because the method
might side-effect a global variable. (Also, for the case of @Pure, the method might not be deterministic.)

If you supply the command-line option -AsuggestPureMethods, then the Checker Framework will suggest
methods that can be marked as @SideEffectFree, @Deterministic, or @Pure.

Currently, purity annotations are trusted. Purity annotations on called methods affect type-checking of client code.
However, you can make a mistake by writing @SideEffectFree on the declaration of a method that is not actually
side-effect-free or by writing @Deterministic on the declaration of a method that is not actually deterministic. To
enable checking of the annotations, supply the command-line option -AcheckPurityAnnotations. It is not enabled
by default because of a high false positive rate. In the future, after a new purity-checking analysis is implemented, the
Checker Framework will default to checking purity annotations.

It can be tedious to annotate library methods with purity annotations such as @SideEffectFree. If you supply
the command-line option -AassumeSideEffectFree, then the Checker Framework will unsoundly assume that every
called method is side-effect-free. This can make flow-sensitive type refinement much more effective, since method calls
will not cause the analysis to discard information that it has learned. However, this option can mask real errors. It is
most appropriate when you are starting out annotating a project, or if you are using the Checker Framework to find
some bugs but not to give a guarantee that no more errors exist of the given type.

A common error is:

MyClass.java:1465: error: int hashCode() in MyClass cannot override int hashCode(Object this) in java.lang.Object; attempting to use an incompatible purity declaration
public int hashCode() {

^
found : []
required: [SIDE_EFFECT_FREE, DETERMINISTIC]

The reason for the error is that the Object class is annotated as:

class Object {
...
@Pure int hashCode() { ... }

}

(where @Pure means both @SideEffectFree and @Deterministic). Every overriding definition, including those in
your program, must use be at least as strong a specification; in particular, every overriding definition must be annotated
as @Pure.

You can fix the definition by adding @Pure to your method definition. Alternately, you can suppress the warning.
You can suppress each such warning individually using @SuppressWarnings("purity.invalid.overriding"), or
you can use the -AsuppressWarnings=purity.invalid.overriding command-line argument to suppress all such
warnings. In the future, the Checker Framework will support inheriting annotations from superclass definitions.

25.4.4 Assertions
If your code contains an assert statement, then your code could behave in two different ways at run time, depending
on whether assertions are enabled or disabled via the -ea or -da command-line options to java.

By default, the Checker Framework outputs warnings about any error that could happen at run time, whether
assertions are enabled or disabled.

If you supply the -AassumeAssertionsAreEnabled command-line option, then the Checker Framework assumes
assertions are enabled. If you supply the -AassumeAssertionsAreDisabled command-line option, then the Checker
Framework assumes assertions are disabled. You may not supply both command-line options. It is uncommon to supply
either one.

These command-line arguments have no effect on processing of assert statements whose message contains the
text @AssumeAssertion; see Section 26.2.

137

api/org/checkerframework/dataflow/qual/Pure.html
api/org/checkerframework/dataflow/qual/SideEffectFree.html
api/org/checkerframework/dataflow/qual/Deterministic.html

25.5 Writing Java expressions as annotation arguments
Sometimes, it is necessary to write a Java expression as the argument to an annotation. The annotations that take a Java
expression as an argument include:

• @RequiresQualifier
• @EnsuresQualifier
• @EnsuresQualifierIf
• @RequiresNonNull
• @EnsuresNonNull
• @EnsuresNonNullIf
• @KeyFor
• @I18nFormatFor

The expression is a subset of legal Java expressions:

• the receiver object, this.
• the receiver object as seen from the superclass, super. This can be used to refer to fields shadowed in the subclass

(although shadowing fields is discouraged in Java).
• a formal parameter. Write # followed by the one-based parameter index. For example: #1, #3. It is not permitted

to write #0 to refer to the receiver object; use this instead.
• a static variable. Write the class name and the variable, as in System.out.
• a field of any expression. For example: next, this.next, #1.next.
• an array access. For example: this.myArray[i], vals[#1].
• literals: string, integer, long, null.
• a method invocation on any expression. This even works for overloaded methods and methods with type

parameters. For example: m1(x, y.z, #2), a.m2("hello").

You may optionally omit a leading “this.”, just as in Java. Thus, this.next and next are equivalent.
One unusual feature is that the method call is allowed to have side effects. If a specification is going to be checked at

run time via assertions, then the specification must not use methods with side effects. But, the Checker Framework works
at compile time, so it allows side effects. The current implementation will never able to prove such a contract, but it is
able to use the information (when checking the method body with preconditions, or when checking the callers code with
postconditions). This can be useful to annotate trusted methods precisely (e.g., java.io.BufferedReader.ready()).

(A side note: The formal parameter syntax #1 is less natural in source code than writing the formal parameter name.
This syntax is necessary for separate compilation, when an annotated method has already been compiled into a .class
file and a client of that method is later compiled. In the .class file, no formal parameter name information is available,
so it is necessary to use a number to indicate a formal parameter.)

Limitations: The following Java expressions may not currently be written:

• Some literals: floats, doubles, chars, and class literals.
• String concatenation expressions.
• Mathematical operators (plus, minus, division, ...).
• Comparisons (equality, less than, etc.).
• Quantification over all array components (e.g. to express that all array elements are non-null).

25.6 Unused fields
In an inheritance hierarchy, subclasses often introduce new methods and fields. For example, a Marsupial (and its
subclasses such as Kangaroo) might have a variable pouchSize indicating the size of the animal’s pouch. The field
does not exist in superclasses such as Mammal and Animal, so Java issues a compile-time error if a program tries to
access myMammal.pouchSize.

138

api/org/checkerframework/framework/qual/RequiresQualifier.html
api/org/checkerframework/framework/qual/EnsuresQualifier.html
api/org/checkerframework/framework/qual/EnsuresQualifierIf.html
api/org/checkerframework/checker/nullness/qual/RequiresNonNull.html
api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html
api/org/checkerframework/checker/nullness/qual/KeyFor.html
api/org/checkerframework/checker/i18nformatter/qual/I18nFormatFor.html

If you cannot use subtypes in your program, you can enforce similar requirements using type qualifiers. For fields,
use the @Unused annotation (Section 25.6.1), which enforces that a field or method may only be accessed from a
receiver expression with a given annotation (or one of its subtypes). For methods, annotate the receiver parameter this;
then a method call type-checks only if the actual receiver is of the specified type.

Also see the discussion of typestate checkers, in Chapter 23.1.

25.6.1 @Unused annotation
A Java subtype can have more fields than its supertype. For example:

class Animal { }
class Mammal extends Animal { ... }
class Marsupial extends Mammal {

int pouchSize; // pouch capacity, in cubic centimeters
...

}

You can simulate the same effect for type qualifiers: the @Unused annotation on a field declares that the field may
not be accessed via a receiver of the given qualified type (or any supertype). For example:

class Animal {
@Unused(when=Mammal.class)
int pouchSize; // pouch capacity, in cubic centimeters
...

}
@interface Mammal { }
@interface Marsupial { }

@Marsupial Animal joey = ...;
... joey.pouchSize ... // OK
@Mammal Animal mae = ...;
... mae.pouchSize ... // compile-time error

The above class declaration is like writing

class @Mammal-Animal { ... }
class @Marsupial-Animal {

int pouchSize; // pouch capacity, in cubic centimeters
...

}

139

api/org/checkerframework/framework/qual/Unused.html

Chapter 26

Suppressing warnings

When the Checker Framework reports a warning, it’s best to change the code or its annotations, to eliminate the warning.
Alternately, you can suppress the warning, which does not change the code but prevents the Checker Framework from
reporting this particular warning to you.

You may wish to suppress checker warnings because of unannotated libraries or un-annotated portions of your
own code, because of application invariants that are beyond the capabilities of the type system, because of checker
limitations, because you are interested in only some of the guarantees provided by a checker, or for other reasons.
Suppressing a warning is similar to writing a cast in a Java program: the programmer knows more about the type than
the type system does and uses the warning suppression or cast to convey that information to the type system.

You can suppress a single warning message (or those in a single method or class) by using the following mechanisms:

• the @SuppressWarnings annotation (Section 26.1), or
• the @AssumeAssertion string in an assert message (Section 26.2).

You can suppress warnings throughout the codebase by using the following mechanisms:

• the -AsuppressWarnings command-line option (Section 26.3),
• the -AskipUses and -AonlyUses command-line options (Section 26.4),
• the -AskipDefs and -AonlyDefs command-line options (Section 26.5),
• the -AuseSafeDefaultsForUnannotatedSourceCode command-line option (Section 28.1),
• the -Alint command-line option (Section 26.6), or
• not using the -processor command-line option (Section 26.7).

Some type checkers can suppress warnings via

• checker-specific mechanisms (Section 26.8).

We now explain these mechanisms in turn.

26.1 @SuppressWarnings annotation
You can suppress specific errors and warnings by use of the @SuppressWarnings annotation, for example @SuppressWarnings("interning")
or @SuppressWarnings("nullness"). Section 26.1.1 explains the syntax of the argument string.

A @SuppressWarnings annotation may be placed on program declarations such as a local variable declaration, a
method, or a class. It suppresses all warnings related to the given checker, for that program element. Section 26.1.2
discusses where the annotation may be written in source code.

Section 26.1.3 gives best practices for writing @SuppressWarnings annotations.

140

http://docs.oracle.com/javase/8/docs/api/java/lang/SuppressWarnings.html

26.1.1 @SuppressWarnings syntax
The @SuppressWarnings annotation takes a string argument.

The most common usage is @SuppressWarnings("checkername"), as in @SuppressWarnings("interning")
or @SuppressWarnings("nullness"). The argument checkername is in lower case and is derived from the way you in-
voke the checker. For example, if you invoke a checker as javac -processor MyNiftyChecker ..., then you would
suppress its error messages with @SuppressWarnings("mynifty"). (An exception is the Subtyping Checker, for
which you use the annotation name; see Section 22.1). While not recommended, using @SuppressWarnings("all")
will suppress all warnings for all checkers.

The @SuppressWarnings argument string can also be of the form checkername:messagekey, in which case only
errors/warnings relating to the given message key are suppressed. For example, cast.unsafe is the messagekey for
warnings about an unsafe cast, and cast.redundant is the messagekey for warnings about a redundant cast.

Each warning from the compiler gives the most specific suppression key that can be used to suppress that warning.
An example is dereference.of.nullable in
MyFile.java:107: error: [dereference.of.nullable] dereference of possibly-null reference myList

myList.add(elt);
^

With the -AshowSuppressWarningKeys command-line option, the compiler lists every key that would suppress the
warning, not just the most specific one.

26.1.2 Where @SuppressWarnings can be written
@SuppressWarnings is a declaration annotation, so it may be placed on program declarations such as a local variable
declaration, a method, or a class. It cannot be used on statements, expressions, or types. To reduce the scope of a
@SuppressWarnings annotation, it is sometimes desirable to extract part of an expression into a local variable, so that
warnings can be suppressed just for that local variable’s initializer expression.

As an example, consider suppressing a warnings at a cast that you know is safe. Here is an example that uses the
Tainting Checker (Section 8); assume that expr has compile-time (declared) type @Tainted String, but you know
that the run-time value of expr is untainted.
@SuppressWarnings("tainting:cast.unsafe") // expr is untainted because ... [explanation goes here]
@Untainted String myvar = expr;

It would have been illegal to write
@Untainted String myvar;
...
@SuppressWarnings("tainting:cast.unsafe") // expr is untainted because ...
myvar = expr;

This does not work because Java does not permit annotations (such as @SuppressWarnings) on assignments or other
statements or expressions.

26.1.3 Good practices when suppressing warnings
Suppress warnings in the smallest possible scope

If a particular expression causes a false positive warning, you should extract that expression into a local variable and
place a @SuppressWarnings annotation on the variable declaration, rather than suppressing warnings for a larger
expression or an entire method body. See Section 26.1.2.

Use a specific argument to @SuppressWarnings

It is best to use the most specific possible message key to suppress just a specific error that you know to be a false
positive. The checker outputs this message key when it issues an error. If you use a broader @SuppressWarnings
annotation, then it may mask other errors that you needed to know about.

141

The example of Section 26.1.2 could have been written as any one of the following, with the last one being the best
style:

@SuppressWarnings("tainting") // suppresses all tainting-related warnings
@SuppressWarnings("tainting:cast") // suppresses tainting warnings about casts
@SuppressWarnings("tainting:cast.unsafe") // suppresses tainting warnings about unsafe casts

Justify why the warning is a false positive

A @SuppressWarnings annotation asserts that the code is actually correct or safe (that is, no undesired behavior will
occur), even though the type system is unable to prove that the code is correct or safe.

Whenever you write a @SuppressWarnings annotation, you should also write, typically on the same line, a code
comment explaining why the code is actually correct. In some cases you might also justify why the code cannot be
rewritten in a simpler way that would be amenable to type-checking.

This documentation will help you and others to understand the reason for the @SuppressWarnings annotation. It
will also help if you decide to audit your code to verify all the warning suppressions.

26.2 @AssumeAssertion string in an assert message
You can suppress a warning by asserting that some property is true, and placing the string
@AssumeAssertion(warningkey) in the assertion message.

For example, in this code:

assert x != null : "@AssumeAssertion(nullness)";
... x.f ...

the Nullness Checker assumes that x is non-null from the assert statement forward, and so the expression x.f cannot
throw a null pointer exception.

The assert expression must be an expression that would affect flow-sensitive type qualifier refinement (Sec-
tion 25.4), if the expression appeared in a conditional test. Each type system has its own rules about what type
refinement it performs.

The warning key is exactly as in the @SuppressWarnings annotation (Section 26.1). The same good practices
apply as for @SuppressWarnings annotations, such as writing a comment justifying why the assumption is safe
(Section 26.1.3).

The -AassumeAssertionsAreEnabled and -AassumeAssertionsAreDisabled command-line options (Sec-
tion 25.4.4) do not affect processing of assert statements that have @AssumeAssertion in their message. Writing
@AssumeAssertion means that the assertion would succeed if it were executed, and the Checker Framework makes
use of that information regardless of the -AassumeAssertionsAreEnabled and -AassumeAssertionsAreDisabled
command-line options.

26.2.1 Suppressing warnings and defensive programming
This section explains the distinction between two different uses for assertions (and for related methods like JUnit’s
Assert.assertNotNull).

Assertions are commonly used for two distinct purposes: documenting how the program works and debugging
the program when it does not work correctly. By default, the Checker Framework assumes that each assertion is used
for debugging: the assertion might fail at run time, and the programmer wishes to be informed at compile time about
such run-time errors. On the other hand, if you write the @AssumeAssertion string in the assert message, then the
Checker Framework assumes that you have used some other technique to verify that the assertion can never fail at run
time, so the checker assumes the assertion passes and does not issue a warning.

Distinguishing the purpose of each assertion is important for precise type-checking. Suppose that a programmer
encounters a failing test, adds an assertion to aid debugging, and fixes the test. The programmer leaves the assertion

142

in the program if the programmer is worried that the program might fail in a similar way in the future. The Checker
Framework should not assume that the assertion succeeds — doing so would defeat the very purpose of the Checker
Framework, which is to detect errors at compile time and prevent them from occurring at run time.

On the other hand, assertions sometimes document facts that a programmer has independently verified to be true, and
the Checker Framework can leverage these assertions in order to avoid issuing false positive warnings. The programmer
marks such assertions with the @AssumeAssertion string in the assert message. Only do so if you are sure that the
assertion always succeeds at run time.

Sometimes methods such as NullnessUtils.castNonNull are used instead of assertions. Just as for assertions,
you can treat them as debugging aids or as documentation. If you know that a particular codebase uses a nullness-
checking method not for defensive programming but to indicate facts that are guaranteed to be true (that is, these
assertions will never fail at run time), then you can suppress warnings related to it. Annotate its definition just as
NullnessUtils.castNonNull is annotated (see the source code for the Checker Framework). Also, be sure to
document the intention in the method’s Javadoc, so that programmers do not accidentally misuse it for defensive
programming.

If you are annotating a codebase that already contains precondition checks, such as:

public String get(String key, String def) {
checkNotNull(key, "key"); //NOI18N
...

}

then you should mark the appropriate parameter as @NonNull (which is the default). This will prevent the checker from
issuing a warning about the checkNotNull call.

26.3 -AsuppressWarnings command-line option
Supplying the -AsuppressWarnings command-line option is equivalent to writing a @SuppressWarnings annotation
on every class that the compiler type-checks. The argument to -AsuppressWarnings is a comma-separated list of
warning suppression keys, as in -AsuppressWarnings=purity,uninitialized.

When possible, it is better to write a @SuppressWarnings annotation with a smaller scope, rather than using the
-AsuppressWarnings command-line option.

26.4 -AskipUses and -AonlyUses command-line options
You can suppress all errors and warnings at all uses of a given class, or suppress all errors and warnings except those
at uses of a given class. (The class itself is still type-checked, unless you also use the -AskipDefs or -AonlyDefs
command-line option, see 26.5).

Set the -AskipUses command-line option to a regular expression that matches class names (not file names) for
which warnings and errors should be suppressed. Or, set the -AonlyUses command-line option to a regular expression
that matches class names (not file names) for which warnings and errors should be emitted; warnings about uses of all
other classes will be suppressed.

For example, suppose that you use “-AskipUses=^java\.” on the command line (with appropriate quoting) when
invoking javac. Then the checkers will suppress all warnings related to classes whose fully-qualified name starts with
java., such as all warnings relating to invalid arguments and all warnings relating to incorrect use of the return value.

To suppress all errors and warnings related to multiple classes, you can use the regular expression alternative
operator “|”, as in “-AskipUses="java\.lang\.|java\.util\."” to suppress all warnings related to uses of classes
belong to the java.lang or java.util packages.

You can supply both -AskipUses and -AonlyUses, in which case the -AskipUses argument takes precedence,
and -AonlyUses does further filtering but does not add anything that -AskipUses removed.

Warning: Use the -AonlyUses command-line option with care, because it can have unexpected results. For example,
if the given regular expression does not match classes in the JDK, then the Checker Framework will suppress every

143

api/org/checkerframework/checker/nullness/NullnessUtils.html#castNonNull-T-
api/org/checkerframework/checker/nullness/NullnessUtils.html#castNonNull-T-

warning that involves a JDK class such as Object or String. The meaning of -AonlyUses may be refined in the
future. Oftentimes -AskipUses is more useful.

26.5 -AskipDefs and -AonlyDefs command-line options
You can suppress all errors and warnings in the definition of a given class, or suppress all errors and warnings except
those in the definition of a given class. (Uses of the class are still type-checked, unless you also use the -AskipUses or
-AonlyUses command-line option, see 26.4).

Set the -AskipDefs command-line option to a regular expression that matches class names (not file names) in
whose definition warnings and errors should be suppressed. Or, set the -AonlyDefs command-line option to a regular
expression that matches class names (not file names) whose definitions should be type-checked.

For example, if you use “-AskipDefs=^mypackage\.” on the command line (with appropriate quoting) when
invoking javac, then the definitions of classes whose fully-qualified name starts with mypackage. will not be checked.

If you supply both -AskipDefs and -AonlyDefs, then -AskipDefs takes precedence.
Another way not to type-check a file is not to pass it on the compiler command-line: the Checker Framework

type-checks only files that are passed to the compiler on the command line, and does not type-check any file that is not
passed to the compiler. The -AskipDefs and -AonlyDefs command-line options are intended for situations in which
the build system is hard to understand or change. In such a situation, a programmer may find it easier to supply an extra
command-line argument, than to change the set of files that is compiled.

A common scenario for using the arguments is when you are starting out by type-checking only part of a legacy
codebase. After you have verified the most important parts, you can incrementally check more classes until you are
type-checking the whole thing.

26.6 -Alint command-line option
The -Alint option enables or disables optional checks, analogously to javac’s -Xlint option. Each of the distributed
checkers supports at least the following lint options:

• cast:unsafe (default: on) warn about unsafe casts that are not checked at run time, as in ((@NonNull String)
myref). Such casts are generally not necessary when flow-sensitive local type refinement is enabled.

• cast:redundant (default: on) warn about redundant casts that are guaranteed to succeed at run time, as in
((@NonNull String) "m"). Such casts are not necessary, because the target expression of the cast already has
the given type qualifier.

• cast Enable or disable all cast-related warnings.
• all Enable or disable all lint warnings, including checker-specific ones if any. Examples include
redundantNullComparison for the Nullness Checker (see Section 3.1) and dotequals for the Interning
Checker (see Section 5.3). This option does not enable/disable the checker’s standard checks, just its optional
ones.

• none The inverse of all: disable or enable all lint warnings, including checker-specific ones if any.

To activate a lint option, write -Alint= followed by a comma-delimited list of check names. If the option is preceded
by a hyphen (-), the warning is disabled. For example, to disable all lint options except redundant casts, you can pass
-Alint=-all,cast:redundant on the command line.

Only the last -Alint option is used; all previous -Alint options are silently ignored. In particular, this means that
-Alint=all -Alint=cast:redundant is not equivalent to -Alint=-all,cast:redundant.

26.7 No -processor command-line option
You can also compile parts of your code without use of the -processor switch to javac. No checking is done during
such compilations, so no warnings are issued related to pluggable type-checking.

144

26.8 Checker-specific mechanisms
Finally, some checkers have special rules. For example, the Nullness checker (Chapter 3) uses the special castNonNull
method to suppress warnings (Section 3.4.1). This manual also explains special mechanisms for suppressing warnings
issued by the Fenum Checker (Section 7.4) and the Units Checker (Section 15.5).

145

Chapter 27

Handling legacy code

Section 2.4.1 describes a methodology for applying annotations to legacy code. This chapter tells you what to do if, for
some reason, you cannot change your code in such a way as to eliminate a checker warning.

Also recall that you can convert checker errors into warnings via the -Awarns command-line option; see Sec-
tion 2.2.2.

27.1 Checking partially-annotated programs: handling unannotated code
Sometimes, you wish to type-check only part of your program. You might focus on the most mission-critical or
error-prone part of your code. When you start to use a checker, you may not wish to annotate your entire program right
away. You may not have enough knowledge to annotate poorly-documented libraries that your program uses.

If annotated code uses unannotated code, then the checker may issue warnings. For example, the Nullness Checker
(Chapter 3) will warn whenever an unannotated method result is used in a non-null context:

@NonNull myvar = unannotated_method(); // WARNING: unannotated_method may return null

If the call can return null, you should fix the bug in your program by removing the @NonNull annotation in your
own program.

If the library call never returns null, there are several ways to eliminate the compiler warnings.

1. Annotate unannotated_method in full. This approach provides the strongest guarantees, but may require you to
annotate additional methods that unannotated_method calls. See Chapter 28 for a discussion of how to annotate
libraries for which you have no source code.

2. Annotate only the signature of unannotated_method, and suppress warnings in its body. Two ways to suppress
the warnings are via a @SuppressWarnings annotation or by not running the checker on that file (see Section 26).

3. Suppress all warnings related to uses of unannotated_method via the skipUses processor option (see Sec-
tion 26.4). Since this can suppress more warnings than you may expect, it is usually better to annotate at least the
method’s signature. If you choose the boundary between the annotated and unannotated code wisely, then you
only have to annotate the signatures of a limited number of classes/methods (e.g., the public interface to a library
or package).

Chapter 28 discusses adding annotations to signatures when you do not have source code available. Section 26
discusses suppressing warnings.

27.2 Backward compatibility with earlier versions of Java
Sometimes, your code needs to be compiled by people who are using a Java 5/6/7 compiler, which does not support
type annotations. You can handle this situation by writing annotations in comments (Sections 27.2.1–27.2.3).

146

api/org/checkerframework/checker/nullness/qual/NonNull.html

If your code just needs to be run by people who are not using a Java 8 JVM, supply an appropriate -target
command-line option to javac. As discussed in Section 27.2.4, the disadvantage is that this makes it more difficult for
clients of your library to use pluggable type-checking to verify their own code against the .class or .jar files that you
supply; Section 27.2.5 gives a partial solution.

27.2.1 Annotations in comments
A Java 4 compiler does not permit use of annotations. A Java 5/6/7 compiler only permits annotations on declarations —
it does not permit annotations on generic arguments, casts, extends clauses, method receivers, etc.

So that your code can be compiled by any Java compiler (for any version of the Java language), you may write
any single annotation inside a /*. . .*/ Java comment, as in List</*@NonNull*/ String>. The Checker Framework
compiler treats the code exactly as if you had not written the /* and */. In other words, the Checker Framework
compiler will recognize the annotation (when it is targeting a Java 8 or later JVM), but your code will still compile with
any Java compiler.

By default, the Checker Framework compiler ignores any comment that contains spaces at the beginning or end,
or between the @ and the annotation name. In other words, it reads /*@NonNull*/ as an annotation but ignores
/* @NonNull*/ and /*@ NonNull*/ and /*@NonNull */. This feature enables backward compatibility with code
that contains comments that start with @ but are not annotations. (The ESC/Java [FLL+02], JML [LBR06], and
Splint [Eva96] tools all use “/*@” or “/* @” as a comment marker.) Compiler flag -XDTA:spacesincomments causes
the compiler to parse annotation comments even when they contain spaces. You may need to use -XDTA:spacesincomments
if you use Eclipse’s “Source > Correct Indentation” command, since it inserts space in comments. But the annotation
comments are less readable with spaces, so it’s even better to disable inserting spaces: in the Formatter preferences, in
the Comments tab, unselect the “enable block comment formatting” checkbox.

Compiler flag -XDTA:noannotationsincomments causes the compiler to ignore annotation comments. With
this compiler flag, the Checker Framework compiler behaves like a standard Java 8 compiler that does not support
annotations in comments. If your code already contains comments of the form /*@...*/ that look like type annotations,
and you want the Checker Framework compiler not to try to interpret them, then you can either selectively add spaces
to the comments or use -XDTA:noannotationsincomments to turn off all annotation comments.

Note: Annotations in comments is a feature of the javac compiler that is distributed along with the Checker
Framework. It is not supported by the mainline OpenJDK javac. This is the key difference between the Checker
Framework compiler and the OpenJDK compiler.

Annotations in comments do not appear in Java 5/6/7 .class files

The Checker Framework compiler ignores annotations in comments when targeting a Java 5/6/7 JVM, for example
when the -target 7 command-line option is supplied.

It would be possible for the Checker Framework compiler to read the annotations in comments and place them in
the Java 5/6/7 .class file so that they are available when type-checking client code. However, this would have two
problems. First, it would only be use useful to the Checker Framework compiler, because a standard Java 8 compiler
will not look for type annotations in Java 5/6/7 bytecode. Second, the type annotations make reference to parts of the
Java 8 JDK, such as ElementType.TYPE_USE. Therefore, trying to run the .class file on a Java 5/6/7 JVM would
cause warnings or crashes.

27.2.2 Import statements and receiver parameters in comments
There is a more powerful mechanism that permits arbitrary code to be written in a comment. Format the comment as
“/*»>. . .*/”, with the first three characters of the comment being greater-than signs. As with annotations in comments,
the commented code is ignored by ordinary compilers but is treated like code by the Checker Framework compiler.

This mechanism is intended for two purposes. First, it supports the receiver (this parameter) syntax. For example,
to specify a method that does not modify its receiver:

147

http://docs.oracle.com/javase/8/docs/api/java/lang/annotation/ElementType.html#TYPE_USE

public boolean method1(/*>>> @ReadOnly MyClass this*/) { ... }
public boolean method2(/*>>> @ReadOnly MyClass this, */ String argument) { ... }

Second, it can be used for import statements:

/*>>>
import org.checkerframework.checker.nullness.qual.*;
import org.checkerframework.checker.regex.qual.*;
*/

If the import statements are not commented out, then every time you compile the code (even when not doing pluggable
type-checking), the annotation definitions (e.g., the checker.jar or checker-qual.jar file) must be on the classpath.
(This is done automatically if you use the Checker Framework comiler.) Commenting out the import statements also
eliminates Eclipse warnings about unused import statements, if all uses of the imported qualifier are themselves in
comments and thus invisible to Eclipse.

A third use is for writing multiple annotations inside one comment, as in /*»> @NonNull @Interned */ String
s;. However, it is better style to write multiple annotations each inside its own comment, as in /*@NonNull*/
/*@Interned*/ String s;.

It would be possible to abuse the /*»>...*/ mechanism to inject code only when using the Checker Framework
compiler. Doing so is not a sanctioned use of the mechanism.

27.2.3 Migrating away from annotations in comments
Suppose that your codebase currently uses annotations in comments, but you wish to remove the comment characters
around your annotations, because in the future you will use only compilers that support type annotations and your code
will only run on Java 8 or later JVMs. This Unix command removes the comment characters, for all Java files in the
current working directory or any subdirectory.

find . -type f -name ’*.java’ -print \
| xargs grep -l -P ’/*\s*@([^ */]+)\s**/’ \
| xargs perl -pi.bak -e ’s|/*\s*@([^ */]+)\s**/|@\1|g’

You can customize this command:

• To process comments with embedded spaces and asterisks, change two instances of “[^ */]” to “[^/]”.
• To ignore comments with leading or trailing spaces, remove the four instances of “\s*”.
• To not make backups, remove “.bak”.

The command does not handle the »> comments; you will need to adapt the above command to do so, or remove
them in another way.

27.2.4 No modular type-checking when targeting Java 5/6/7
The Checker Framework’s type annotations utilize a Java 8 feature that allows them to be placed on any type use,
including generic type parameters as in List<@NonNull String>. A downside is that use of these type annotations
creates a dependency on Java 8, which means that the compiled program requires a Java 8 or later JDK at run time.

To ensure that your program can run on a Java 5/6/7 JVM, use a command-line option such as -target 7 when
doing normal compilation to produce classfiles. Before doing so, you will do pluggable typechecking, using the -target
8 command-line option (or no -target command-line option) to javac; you may wish to supply the -proc:only
command-line argument so that the type-checking step does not overwrite existing classfiles.

Here are the disadvantages of this approach:

148

• It produces classfiles that contain no trace of your type annotations. This means that modular typechecking (also
known as separate compilation) is not possible.
You need to compile your entire application every time you do pluggable type-checking, rather than just compiling
a subset of the files. Furthermore, clients of your code cannot do pluggable type-checking to verify that they are
using your code correctly, unless they re-compile your code (or at least all the interfaces that they use) every time
that they compile their own.

• It makes pluggable type-checking a different step than “real” compilation, rather than both happening at the
same time. You will do pluggable type-checking first, and when it works or when you want to create a binary to
distribute to others, you will compile with an ordinary Java compiler.

One way to enable clients to do pluggable type-checking is to provide a version of your library compiled for Java 8
or later, with the type annotations. Clients will do type-checking against this version of the library, but will do normal
compilation and execution using the Java 5, 6, or 7 version of your library.

Section 27.2.5 gives an alternative approach with its own advantages and disadvantages.

27.2.5 Distributing declaration annotations instead of type annotations
If it is important to you to distribute Java 5/6/7 classfiles against which clients can do some type-checking, this section
gives a way to do so.

The idea is to use annotations that are Java 5/6/7 declaration annotations. This approach requires you to use
annotations that are declared in different packages than usual and that have slightly different names.

• At code locations that are legal for both declaration and type annotations (such as for fields, method returns, and
method parameters), write annotations normally (not in comments).

• At locations where a declaration annotation is not permitted (such as generic type parameters and extends
clauses), write annotations in comments.

Here are some disadvantages of this approach:

• You need to use nonstandard names for some annotations, and to remember which annotations to write in
comments and which to write normally.

• It produces classfiles that contain only some of your type annotations — the ones that were not written in
comments. If your code uses type annotations at locations such as generic type parameters and extends clauses,
then modular type-checking will not observe them; the implications of that were described above.

Here are more details about the approach. Suppose you wish to run the Nullness Checker using Java 6 or 7
declaration annotations rather than type annotations. You have two options.

1. At locations where declaration annotations are possible, use aliased annotations from other projects. For example,
the aliased annotations for the Nullness Checker are listed in Section 3.7.
At locations where only type annotations are possible, use the “*Type” compatibility annotations from package
org.checkerframework.checker.nullness.compatqual in comments. For example, the Nullness Checker
declares these declaration annotations: @NullableType, @NonNullType, @PolyNullType, @MonotonicNonNullType,
and @KeyForType.

2. At locations where declaration annotations are possible, use “*Decl” compatibility annotations from package
org.checkerframework.checker.nullness.compatqual. For example, the Nullness Checker declares these
declaration annotations: @NullableDecl, @NonNullDecl, @PolyNullDecl, @MonotonicNonNullDecl, and
@KeyForDecl.
At locations where only type annotations are possible, use the regular Checker Framework type annotations in
comments.

Notice that in each case, the declaration annotations and type annotations have distinct names. This enables a
programmer to import both sets of annotations without a name conflict. But, you must remember to use the correct
name, depending on where the annotations are written.

149

api/org/checkerframework/checker/nullness/compatqual/NullableType.html
api/org/checkerframework/checker/nullness/compatqual/NonNullType.html
api/org/checkerframework/checker/nullness/compatqual/PolyNullType.html
api/org/checkerframework/checker/nullness/compatqual/MonotonicNonNullType.html
api/org/checkerframework/checker/nullness/compatqual/KeyForType.html
api/org/checkerframework/checker/nullness/compatqual/NullableDecl.html
api/org/checkerframework/checker/nullness/compatqual/NonNullDecl.html
api/org/checkerframework/checker/nullness/compatqual/PolyNullDecl.html
api/org/checkerframework/checker/nullness/compatqual/MonotonicNonNullDecl.html
api/org/checkerframework/checker/nullness/compatqual/KeyForDecl.html

Eventually, when backward compatibility with Java 7 and earlier is not important, you should refactor your codebase
to use only the regular Checker Framework annotations, and not to write them in comments.

150

Chapter 28

Annotating libraries

If your code uses a library that does not contain type annotations, then the type-checker has no way to know the
library’s behavior. The type-checker makes conservative assumptions about unannotated bytecode: it assumes that every
method parameter has the bottom type annotation and that every method return type has the top type annotation (see
Section 25.3.5 for details and an example). These conservative library annotations invariably lead to checker warnings.
This chapter describes how to eliminate the warnings by adding annotations to the library. (Alternately, you can instead
suppress all warnings related to an unannotated library by use of the -AskipUses or -AonlyUses command-line option;
see Section 26.4.)

(Note: This chapter uses “library” to refer to code that is provided in .class or .jar form. You should use this
approach for parts of your own codebase if you typically compile different parts separately. If your codebase is typically
compiled together and you are type-checking only part of it, you can use the approach described in this chapter, or you
can use command-line arguments such as -AskipUses and -AskipDefs (see Sections 26.4–26.5). Also, recall that the
Checker Framework analyzes all, and only, the source code that is passed to it. The Checker Framework is a plug-in to
the javac compiler, and it never analyzes code that is not being compiled, though it does look up annotations in the class
files for code that was previously compiled.)

You make the library’s annotations known to the checkers by writing annotations in a copy of the library’s source
code (or in a “stub file” if you do not have access to the source code). Given the library annotations, you have two
options:

1. You can compile the library to create .class and .jar files that contain the annotations. Then, when doing
pluggable type-checking, you would put those files on the classpath. When running your code, you can use either
version of the library: the one you created or the original distributed version.
With this compilation approach, the syntax of the library annotations is validated ahead of time. Thus, this
compilation approach is less error-prone, and the type-checker runs faster. You get correctness guarantees about
the library in addition to your code. Section 28.1 describes how to compile a library.

2. You can supply the annotated library source code, or a very concise variant called a “stub file”, textually to the
Checker Framework.
The stub file approach does not require you to compile the library source code. A stub file is applicable to multiple
versions of a library, so the stub file does not need to to be updated when a new version of the library is released.
When provided by the author of the checker, a stub file is used automatically, with no need for the user to supply
a command-line option. The stub file reader approach has some limitations, notably using non-standard syntax in
some locations (Section 28.2.5). Section 28.2 describes how to create and use stub files.

If you write any library annotations, please share them so that they can be distributed with the Checker Framework.
Sharing your annotations is useful even if the library is only partially annotated.

151

28.1 Compiling partially-annotated libraries
If you completely annotate a library, then you can compile it using a pluggable type-checker, and include the resulting
.jar file on your classpath. You get a guarantee that the library contains no errors.

The rest of this section tells you how to compile a library if you partially annotate it: that is, you write annotations
for some of its classes but not others. (There is another type of partial annotation, which is when you annotate method
signatures but do not type-check the bodies. To do that variety of partial annotation, simply suppress warnings; see
Chapter 26. You can combine the two types of partial annotation.)

When compiling a partially-annotated library, the checker needs to use normal defaulting rules (Section 25.3.2) for
code you have annotated and conservative defaulting rules (Section 25.3.5) for code you have not yet annotated. You
use @AnnotatedFor to indicate which classes you have annotated.

28.1.1 The -AuseSafeDefaultsForUnannotatedSourceCode command-line argu-
ment

When compiling a library that is not fully annotated, use command-line argument -AuseSafeDefaultsForUnannotatedSourceCode.
This causes the checker to behave normally for classes with a relevant @AnnotatedFor annotation. For all other classes,
the checker uses conservative defaults (see Section 25.3.5) for any type use with no explicit user-written annotation, and
the checker issues no warnings.

The @AnnotatedFor annotation, written on a class, indicates that the class has been annotated for certain type
systems. For example, @AnnotatedFor({"nullness", "regex"}) means that the programmer has written an-
notations for the Nullness and Regular Expression type systems. If one of those two type-checkers is run, the
-AuseSafeDefaultsForUnannotatedSourceCode command-line argument has no effect and this class is treated
normally: unannotated types are defaulted using normal source-code defaults and type-checking warnings are issued.
@AnnotatedFor’s arguments are any string that may be passed to the -processor command-line argument: the
fully-qualified class name for the checker, or a shorthand for built-in checkers (see Section 2.2.4).

Whenever you compile a class using the Checker Framework, including when using the -AuseSafeDefaultsForUnannotatedSourceCode
command-line argument, the resulting .class files are fully-annotated; each type use in the .class file has an explicit
type qualifier for any checker that is run.

28.1.2 Workflow for creating or augmenting a partially-annotated library
This section describes the typical workflow for creating a partially-annotated library.

1. Read file checker-framework/checker/lib/README to find out whether an annotated version of the library
already exists.
If it does not already exist, fork the project (if its license permits forking). Add a note, perhaps in a README,
indicating how to obtain the corresponding upstream version; that will enable others to see exactly what edits you
have made.
Adjust the library’s build process, such as a Maven or Ant buildfile.

(a) Every time the build system runs the compiler, it should:
• passes the -AuseSafeDefaultsForUnannotatedSourceCode command-line option and
• runs every pluggable type-checker for which any annotations exist, using -processor TypeSystem1,TypeSystem2,TypeSystem3

(b) When the build system creates a .jar file, the resulting .jar file includes the contents of checker-framework/checker/dist/checker-qual.jar.
You are not adding new build targets, but modifying existing targets. The reason to run every type-checker is
to verify the annotations you wrote, and to use appropriate defaults for all unnanotated type uses. The reason
to include the contents of checker-qual.jar is so that the resulting .jar file can be used whether or not the
Checker Framework is being run.

2. Annotate some files.
When you annotate a file, annotate the whole thing, not just a few of its methods. Once the file is fully
annotated, add an @AnnotatedFor({"checkername"}) annotation to its class(es), or augment an existing
@AnnotatedFor annotation.

152

api/org/checkerframework/framework/qual/AnnotatedFor.html
api/org/checkerframework/framework/qual/AnnotatedFor.html
api/org/checkerframework/framework/qual/AnnotatedFor.html

3. Build the library.
Because of the changes that you made in step 1, this will run pluggable type-checkers. If there are any compiler
warnings, fix them and re-compile.
Now you have a .jar file that you can use while type-checking and at run time.

4. Tell other people about your work so that they can benefit from it.

• Please inform the Checker Framework developers about your new annotated library by opening an issue.
This will let us include your annotated .jar file in directory checker-framework/checker/lib/ of the
Checker Framework release.
• Encourage the library’s maintainers to accept your annotations into its main version control repository. This

will make the annotations easier to maintain, the library will obtain the correctness guarantees of pluggable
type-checking, and there will be no need for the Checker Framework to include an annotated version of the
library.
You will probably want to write the annotations in comments, so that it is still possible to compile the library
without use of Java 8.
If the library maintainers do not accept the annotations, then periodically, such as when a new version of the
library is released, pull changes from upstream (the library’s main version control system) into your fork,
add annotations to any newly-added methods in classes that are annotated with @AnnotatedFor, rebuild to
create an updated .jar file, and inform the Checker Framework developers by opening an issue or issuing a
pull request.

28.2 Using stub classes
A stub file contains “stub classes” that contain annotated signatures, but no method bodies. A checker uses the annotated
signatures at compile time, instead of or in addition to annotations that appear in the library.

Section 28.2.3 describes how to create stub classes. Section 28.2.1 describes how to use stub classes. These sections
illustrate stub classes via the example of creating a @Interned-annotated version of java.lang.String. You don’t
need to repeat these steps to handle java.lang.String for the Interning Checker, but you might do something similar
for a different class and/or checker.

28.2.1 Using a stub file
The -Astubs argument causes the Checker Framework to read annotations from annotated stub classes in preference to
the unannotated original library classes. For example:
javac -processor org.checkerframework.checker.interning.InterningChecker -Astubs=String.astub:stubs MyFile.java MyOtherFile.java ...

Each stub path entry is a file or a directory; specifying a directory is equivalent to specifying every file in it whose
name ends with .astub. The stub path entries are delimited by File.pathSeparator (‘:’ for Linux and Mac, ‘;’ for
Windows).

A checker automatically reads the stub file jdk.astub, unless command-line option -Aignorejdkastub is sup-
plied. (The checker author should place jdk.astub in the same directory as the Checker class, i.e., the subclass
of BaseTypeVisitor.) Programmers should only use the -Astubs argument for additional stub files they create
themselves.

If a method appears in more than one stub file (or twice in the same stub file), then the annotations are merged. If
any of the methods have different annotations from the same hierarchy on the same type, then the annotation from the
last declaration is used.

28.2.2 Stub file format
Every Java file is a valid stub file. However, you can omit information that is not relevant to pluggable type-checking;
this makes the stub file smaller and easier for people to read and write.

As an illustration, a stub file for the Interning type system (Chapter 5) could be:

153

api/org/checkerframework/checker/interning/qual/Interned.html

import org.checkerframework.checker.interning.qual.Interned;
package java.lang;
@Interned class Class<T> { }
class String {

@Interned String intern();
}

Note, annotations in comments are ignored.
The stub file format is allowed to differ from Java source code in the following ways:

Method bodies: The stub class does not require method bodies for classes; any method body may be replaced by a
semicolon (;), as in an interface or abstract method declaration.

Method declarations: You only have to specify the methods that you need to annotate. Any method declaration may
be omitted, in which case the checker reads its annotations from library’s .class files. (If you are using a stub
class, then typically the library is unannotated.)

Declaration specifiers: Declaration specifiers (e.g., public, final, volatile) may be omitted.
Return types: The return type of a method does not need to match the real method. In particular, it is valid to use

java.lang.Object for every method. This simplifies the creation of stub files.
Import statements: All imports must be at the beginning of the file. The only required import statements are the

ones to import type annotations. Import statements for types are optional.
Enum constants in annotations need to be either fully qualified or imported. For example, one has to either write
the enum constant ANY in fully-qualified form:

@Source(sparta.checkers.quals.FlowPermission.ANY)

or correctly import the enum class:

import sparta.checkers.quals.FlowPermission;
...
@Source(FlowPermission.ANY)

or statically import the enum constants:

import static sparta.checkers.quals.FlowPermission.*;
...
@Source(ANY)

Importing all packages from a class (import my.package.*;) only considers annotations from that package;
enum types need to be explicitly imported.

Multiple classes and packages: The stub file format permits having multiple classes and packages. The packages are
separated by a package statement: package my.package;. Each package declaration may occur only once; in
other words, all classes from a package must appear together.

28.2.3 Creating a stub file
If you have access to the Java source code

Every Java file is a stub file. If you have access to the Java file, then you can use the Java file as the stub file. Just add
annotations to the signatures, leaving the method bodies unchanged. The stub file parser silently ignores any annotations
that it cannot resolve to a type, so don’t forget the import statement.

Optionally (but highly recommended!), run the type-checker to verify that your annotations are correct. When you
run the type-checker on your annotations, there should not be any stub file that also contains annotations for the class. In
particular, if you are type-checking the JDK itself, then you should use the -Aignorejdkastub command-line option.

This approach retains the original documentation and source code, making it easier for a programmer to double-
check the annotations. It also enables creation of diffs, easing the process of upgrading when a library adds new
methods. And, the annotations are in a format that the library maintainers can even incorporate.

The downside of this approach is that the stub files are larger. This can slow down parsing.

154

If you do not have access to the Java source code

If you do not have access to the library source code, then you can create a stub file from the class file (Section 28.2.3),
and then annotate it. The rest of this section describes this approach.

1. Create a stub file by running the stub class generator. (checker.jar and javac.jar must be on your classpath.)

cd nullness-stub
java org.checkerframework.framework.stub.StubGenerator java.lang.String > String.astub

Supply it with the fully-qualified name of the class for which you wish to generate a stub class. The stub class
generator prints the stub class to standard out, so you may wish to redirect its output to a file.

2. Add import statements for the annotations. So you would need to add the following import statement at the
beginning of the file:

import org.checkerframework.checker.interning.qual.*;

The stub file parser silently ignores any annotations that it cannot resolve to a type, so don’t forget the import
statement. Use the -AstubWarnIfNotFound command-line option to see warnings if an entry could not be found.

3. Add annotations to the stub class. For example, you might annotate the String.intern() method as follows:

@Interned String intern();

You may also remove irrelevant parts of the stub file; see Section 28.2.2.

28.2.4 Troubleshooting stub libraries
Type-checking does not yield the expected results

By default, the stub parser silently ignores annotations on unknown classes and methods. The stub parser also silently
ignores unknown annotations, so don’t forget to import any annotations.

Use command-line option -AstubWarnIfNotFound to warn whenever some element of a stub file cannot be found.
The @NoStubParserWarning annotation on a package or type in a stub file overrides the -AstubWarnIfNotFound

command-line option, and no warning will be issued.
Use command-line option -AstubDebug to output debugging messages while parsing stub files, including about

unknown classes, methods, and annotations. This overrides the @NoStubParserWarning annotation.

Problems parsing stub libraries

When using command-line option -AstubWarnIfNotFound, an error is issued if a stub file has a typo or the API
method does not exist.

Fix this error by removing the extra L in the method name:

StubParser: Method isLLowerCase(char) not found in type java.lang.Character

Fix this error by removing the method enableForgroundNdefPush(...) from the stub file, because it is not
defined in class android.nfc.NfcAdapter in the version of the library you are using:

StubParser: Method enableForegroundNdefPush(Activity,NdefPushCallback)
not found in type android.nfc.NfcAdapter

28.2.5 Limitations
The stub file reader has several limitations. We will fix these in a future release.

• The receiver is written after the method parameter list, instead of as an explicit first parameter. That is, instead of

returntype methodname(@Annotations C this, params);

in a stub file one has to write

155

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html#intern--

returntype methodname(params) @Annotations;

• The stub file reader does not handle nested classes. To work around this, it permits a top-level class to be written
with a $ in its name, and applies the annotations to the appropriate nested class.
• Annotations must be written before the package name on a fully qualified types rather than directly on the type it

qualifies. However, it is usually not necessary to write the fully qualified name.

void init(@Nullable java.security.SecureRandom random);

• Annotations can only use string, boolean, or integer literals; other literals are not yet supported.

If these limitations are a problem, then you should insert annotations in the library’s .class files instead.

28.3 Troubleshooting/debugging annotated libraries
Sometimes, it may seem that a checker is treating a library as unannotated even though the library has annotations. The
compiler has two flags that may help you in determining whether library files are read, and if they are read whether the
library’s annotations are parsed.

-verbose Outputs info about compile phases — when the compiler reads/parses/attributes/writes any file. Also
outputs the classpath and sourcepath paths.

-XDTA:parser (which is equivalent to -XDTA:reader plus -XDTA:writer) Sets the internal debugJSR308 flag,
which outputs information about reading and writing.

156

Chapter 29

How to create a new checker

This chapter describes how to create a checker — a type-checking compiler plugin that detects bugs or verifies their
absence. After a programmer annotates a program, the checker plugin verifies that the code is consistent with the
annotations. If you only want to use a checker, you do not need to read this chapter.

Writing a simple checker is easy! For example, here is a complete, useful type-checker:

@TypeQualifier
@SubtypeOf(Unqualified.class)
@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
public @interface Encrypted {}

This checker is so short because it builds on the Subtyping Checker (Chapter 22). See Section 22.2 for more
details about this particular checker. When you wish to create a new checker, it is often easiest to begin by building it
declaratively on top of the Subtyping Checker, and then return to this chapter when you need more expressiveness or
power than the Subtyping Checker affords.

You can also create your own checker by customizing a different existing checker. Specific checkers that are
designed for extension (besides the Subtyping Checker) include the Fake Enumeration Checker (Chapter 7, page 56),
the Units Checker (Chapter 15, page 86), and a typestate checker (Chapter 23.1, page 111). Or, you can copy and then
modify a different existing checker — whether one distributed with the Checker Framework or a third-party one.

You can place your checker’s source files wherever you like. When you compile your checker,
$CHECKERFRAMEWORK/framework/dist/framework.jar and $CHECKERFRAMEWORK/framework/dist/javac.jar
should be on your classpath. (If you wish to modify an existing checker in place, or to place the source code for your
new checker in your own private copy of the Checker Framework source code, then you need to be able to re-compile
the Checker Framework, as described in Section 32.3.)

The rest of this chapter contains many details for people who want to write more powerful checkers. You do not
need all of the details, at least at first. In addition to reading this chapter of the manual, you may find it helpful to
examine the implementations of the checkers that are distributed with the Checker Framework. You can even create your
checker by modifying one of those. The Javadoc documentation of the framework and the checkers is in the distribution
and is also available online at http://types.cs.washington.edu/checker-framework/current/api/.

If you write a new checker and wish to advertise it to the world, let us know so we can mention it in the Checker
Framework Manual, link to it from the webpages, or include it in the Checker Framework distribution. For examples,
see Chapters 23.1 and 23.

29.1 Relationship of the Checker Framework to other tools
This table shows the relationship among various tools. All of the tools support the Java 8 type annotation syntax. You
use the Checker Framework to build pluggable type systems, and the Annotation File Utilities to manipulate .java and
.class files.

157

http://types.cs.washington.edu/checker-framework/current/api/

Subtyping
Checker

Nullness
Checker

Mutation
Checker

Tainting
Checker

. . . Your
Checker

Base Checker
(enforces subtyping rules)

Type
inference

Other
tools

Checker Framework
(enables creation of pluggable type-checkers)

Annotation File Utilities
(.java↔ .class files)

Type Annotations syntax and classfile format (“JSR 308”)
(no built-in semantics)

The Base Checker enforces the standard subtyping rules on extended types. The Subtyping Checker is a simple
use of the Base Checker that supports providing type qualifiers on the command line. You usually want to build your
checker on the Base Checker.

29.2 The parts of a checker
The Checker Framework provides abstract base classes (default implementations), and a specific checker overrides as
little or as much of the default implementations as necessary. Sections 29.3–29.7 describe the components of a type
system as written using the Checker Framework:

29.3 Type qualifiers and hierarchy. You define the annotations for the type system and the subtyping relationships
among qualified types (for instance, that @NonNull Object is a subtype of @Nullable Object).

29.4 Type introduction rules. For some types and expressions, a qualifier should be treated as implicitly present even
if a programmer did not explicitly write it. For example, in the Nullness type system every literal other than null
has a @NonNull type; examples of literals include "some string" and java.util.Date.class.
Optionally, write dataflow rules to enhance flow-sensitive type qualifier inference (Section 29.5).

29.6 Type rules. You specify the type system semantics (type rules), violation of which yields a type error. There are
two types of rules.

• Subtyping rules related to the type hierarchy, such as that every assignment and pseudo-assignment satisfies
a subtyping relationship. Your checker automatically inherits these subtyping rules from the Base Checker
(Chapter 22).
• Additional rules that are specific to your particular checker. For example, in the Nullness type system, only

references with a @NonNull type may be dereferenced. You write these additional rules yourself.

29.7 Interface to the compiler. The compiler interface indicates which annotations are part of the type system, which
command-line options and @SuppressWarnings annotations the checker recognizes, etc.

29.3 Annotations: Type qualifiers and hierarchy
A type system designer specifies the qualifiers in the type system (Section 29.3.1) and the type hierarchy that relates
them. The type hierarchy — the subtyping relationships among the qualifiers — can be defined either declaratively
via meta-annotations (Section 29.3.2), or procedurally through subclassing QualifierHierarchy or TypeHierarchy
(Section 29.3.3).

29.3.1 Defining the type qualifiers
Type qualifiers are defined as Java annotations [Dar06]. In Java, an annotation is defined using the Java @interface
keyword. For example:

// Define an annotation for the @NonNull type qualifier.
@TypeQualifier
@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
public @interface NonNull { }

158

http://types.cs.washington.edu/annotation-file-utilities/
http://types.cs.washington.edu/jsr308/
api/org/checkerframework/checker/nullness/qual/NonNull.html
api/org/checkerframework/checker/nullness/qual/NonNull.html
api/org/checkerframework/framework/type/QualifierHierarchy.html
api/org/checkerframework/framework/type/TypeHierarchy.html

Write the @TypeQualifier meta-annotation on the annotation definition to indicate that the annotation represents a
type qualifier and should be processed by the checker. Also write a @Target meta-annotation to indicate where the
annotation may be written. (An annotation that is written on an annotation definition, such as @TypeQualifier, is
called a meta-annotation.)

Your type system should include a top qualifier and a bottom qualifier (Section 29.3.5). You should also define a
polymorphic qualifier @PolyMyTypeSystem (Section 24.2).

29.3.2 Declaratively defining the qualifier hierarchy
Declaratively, the type system designer uses two meta-annotations (written on the declaration of qualifier annotations)
to specify the qualifier hierarchy.

• @SubtypeOf denotes that a qualifier is a subtype of another qualifier or qualifiers, specified as an array of class
literals. For example, for any type T , @NonNull T is a subtype of @Nullable T :

@TypeQualifier
@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
@SubtypeOf({ Nullable.class })
public @interface NonNull { }

@SubtypeOf accepts multiple annotation classes as an argument, permitting the type hierarchy to be an arbitrary
DAG. For example, in the IGJ type system (Section 19.2), @Mutable and @Immutable induce two mutually
exclusive subtypes of the @ReadOnly qualifier.
All type qualifiers, except for polymorphic qualifiers (see below and also Section 24.2), need to be properly
annotated with SubtypeOf.
The top qualifier is annotated with @SubtypeOf({ }). The top qualifier is the qualifier that is a supertype of
all other qualifiers. For example, @Nullable is the top qualifier of the Nullness type system, hence is defined as:

@TypeQualifier
@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
@SubtypeOf({ })
public @interface Nullable { }

If the top qualifier of the hierarchy is the unqualified type, then its children will use @SubtypeOf(Unqualified.class),
but no @SubtypeOf({ }) annotation on the top qualifier is necessary. For an example, see the Encrypted
type system of Section 22.2.

• @PolymorphicQualifier denotes that a qualifier is a polymorphic qualifier. For example:

@TypeQualifier
@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
@PolymorphicQualifier
public @interface PolyNull { }

For a description of polymorphic qualifiers, see Section 24.2. A polymorphic qualifier needs no @SubtypeOf
meta-annotation and need not be mentioned in any other @SubtypeOf meta-annotation.

The declarative and procedural mechanisms for specifying the hierarchy can be used together. In particular, when
using the @SubtypeOf meta-annotation, further customizations may be performed procedurally (Section 29.3.3) by
overriding the isSubtype method in the checker class (Section 29.7). However, the declarative mechanism is sufficient
for most type systems.

29.3.3 Procedurally defining the qualifier hierarchy
While the declarative syntax suffices for many cases, more complex type hierarchies can be expressed by overriding,
in your subclass of BaseTypeVisitor, either createQualifierHierarchy or createTypeHierarchy (typically

159

api/org/checkerframework/framework/qual/TypeQualifier.html
http://docs.oracle.com/javase/8/docs/api/java/lang/annotation/Target.html
api/org/checkerframework/framework/qual/TypeQualifier.html
api/org/checkerframework/framework/qual/SubtypeOf.html
api/org/checkerframework/checker/nullness/qual/NonNull.html
api/org/checkerframework/checker/nullness/qual/Nullable.html
api/org/checkerframework/framework/qual/SubtypeOf.html
api/org/checkerframework/checker/igj/qual/Mutable.html
api/org/checkerframework/checker/igj/qual/Immutable.html
api/org/checkerframework/checker/igj/qual/ReadOnly.html
api/org/checkerframework/framework/qual/SubtypeOf.html
api/org/checkerframework/checker/nullness/qual/Nullable.html
api/org/checkerframework/framework/qual/PolymorphicQualifier.html
api/org/checkerframework/framework/qual/SubtypeOf.html
api/org/checkerframework/framework/qual/SubtypeOf.html
api/org/checkerframework/framework/qual/SubtypeOf.html
api/org/checkerframework/framework/util/GraphQualifierHierarchy.html#isSubtype-java.util.Collection-java.util.Collection-
api/org/checkerframework/common/basetype/BaseTypeVisitor.html
api/org/checkerframework/framework/type/AnnotatedTypeFactory.html#createQualifierHierarchy--
api/org/checkerframework/framework/type/AnnotatedTypeFactory.html#createTypeHierarchy--

only one of these needs to be overridden). For more details, see the Javadoc of those methods and of the classes
QualifierHierarchy and TypeHierarchy.

The QualifierHierarchy class represents the qualifier hierarchy (not the type hierarchy), e.g., Mutable is a
subtype of ReadOnly. A type-system designer may subclass QualifierHierarchy to express customized qualifier
relationships (e.g., relationships based on annotation arguments).

The TypeHierarchy class represents the type hierarchy — that is, relationships between annotated types, rather
than merely type qualifiers, e.g., @Mutable Date is a subtype of @ReadOnly Date. The default TypeHierarchy
uses QualifierHierarchy to determine all subtyping relationships. The default TypeHierarchy handles generic
type arguments, array components, type variables, and wildcards in a similar manner to the Java standard subtype
relationship but with taking qualifiers into consideration. Some type systems may need to override that behavior. For
instance, the Java Language Specification specifies that two generic types are subtypes only if their type arguments
are identical: for example, List<Date> is not a subtype of List<Object>, or of any other generic List. (In the
technical jargon, the generic arguments are “invariant” or “novariant”.) The Javari type system overrides this behavior
to allow some type arguments to change covariantly in a type-safe manner (e.g., List<@Mutable Date> is a subtype
of List<@QReadOnly Date>).

29.3.4 Defining a default annotation
A type system applies a default qualifier where the user has not written a qualifier (and no implicit qualifier is applicable),
as explained in Section 25.3.1.

The type system designer may specify a default annotation declaratively, using the @DefaultQualifierInHierarchy
meta-annotation. Note that the default will apply to any source code that the checker reads, including stub libraries, but
will not apply to compiled .class files that the checker reads.

Alternately, the type system designer may specify a default procedurally, by calling the
QualifierDefaults.addAbsoluteDefault method. You may do this even if you have declaratively defined the
qualifier hierarchy; see the Nullness Checker’s implementation for an example.

29.3.5 Completeness of the type hierarchy
When you define a type system, its type hierarchy must be a complete lattice — that is, there must be a top type that is a
supertype of all other types, and there must be a bottom type that is a subtype of all other types. Furthermore, it is best
if the top type and bottom type are defined explicitly for the type system, rather than (say) reusing a qualifier from the
Checker Framework such as @Unqualified.

It is possible that a single type-checker checks multiple type hierarchies. An example is the Nullness Checker,
which has three separate type hierarchies, one each for nullness, initialization, and map keys. In this case, each type
hierarchy would have its own top qualifier and its own bottom qualifier; they don’t all have to share a single top qualifier
or a single bottom qualifier.

Bottom qualifier Your type hierarchy must have a bottom qualifier — a qualifier that is a (direct or indirect) subtype
of every other qualifier.

Your type system must give null the bottom type. (The only exception is if the type system has special treatment
for null values, as the Nullness Checker does.) This legal code will not type-check unless null has the bottom type:

<T> T f() {
return null;

}

You don’t necessarily have to define a new bottom qualifier. You can use org.checkerframework.framework.qual.Bottom
if your type system does not already have an appropriate bottom qualifier.

If your type system has a special bottom type that is used only for the null value, then users should never write the
bottom qualifier explicitly. To ensure this, write @Target({}) on the definition of the bottom qualifier.

160

api/org/checkerframework/framework/type/QualifierHierarchy.html
api/org/checkerframework/framework/type/TypeHierarchy.html
api/org/checkerframework/framework/type/QualifierHierarchy.html
api/org/checkerframework/checker/igj/qual/Mutable.html
api/org/checkerframework/checker/igj/qual/ReadOnly.html
api/org/checkerframework/framework/type/QualifierHierarchy.html
api/org/checkerframework/framework/type/TypeHierarchy.html
api/org/checkerframework/framework/type/TypeHierarchy.html
api/org/checkerframework/framework/type/QualifierHierarchy.html
api/org/checkerframework/framework/type/TypeHierarchy.html
api/org/checkerframework/framework/qual/DefaultQualifierInHierarchy.html
api/org/checkerframework/framework/util/defaults/QualifierDefaults.html#addAbsoluteDefault-javax.lang.model.element.AnnotationMirror-org.checkerframework.framework.qual.DefaultLocation-

The hierarchy shown in Figure 19.1 lacks a bottom qualifier, because there is no qualifier that is a subtype of both
@Immutable and @Mutable. The actual IGJ hierarchy does contain a (non-user-visible) bottom qualifier, defined like
this:

@TypeQualifier
@SubtypeOf({Mutable.class, Immutable.class, I.class})
@Target({}) // forbids a programmer from writing it in a program
@ImplicitFor(trees = { Kind.NULL_LITERAL, Kind.CLASS, Kind.NEW_ARRAY },

typeClasses = { AnnotatedPrimitiveType.class })
@interface IGJBottom { }

Top qualifier Your type hierarchy must have a top qualifier — a qualifier that is a (direct or indirect) supertype of
every other qualifier. Here is the reason. The default type for local variables is the top qualifier (that type is then
flow-sensitively refined depending on what values are stored in the local variable). If there is no single top qualifier,
then there is no unambiguous choice to make for local variables.

Furthermore, it is most convenient to users if the top qualifier is defined by the type system. It is possible
to use the framework’s @Unqualified as the top type, but this is poor practice. Users lose flexibility in ex-
pressing defaults: there is no way for a user to change the default qualifier for just that type system. If a user
specifies @DefaultQualifier(Unqualified.class), then the default would apply to every type system that uses
@Unqualified, which is unlikely to be desired.

29.4 Type factory: Implicit annotations
For some types and expressions, a qualifier should be treated as present even if a programmer did not explicitly write it.
For example, every literal (other than null) has a @NonNull type.

The implicit annotations may be specified declaratively and/or procedurally.

29.4.1 Declaratively specifying implicit annotations
The @ImplicitFor meta-annotation indicates implicit annotations. When written on a qualifier, ImplicitFor specifies
the trees (AST nodes) and types for which the framework should automatically add that qualifier.

In short, the types and trees can be specified via any combination of five fields in ImplicitFor:

• trees: an array of com.sun.source.tree.Tree.Kind, e.g., NEW_ARRAY or METHOD_INVOCATION
• types: an array of TypeKind, e.g., ARRAY or BOOLEAN
• treeClasses: an array of class literals for classes implementing Tree, e.g., LiteralTree.class or
ExpressionTree.class

• typeClasses: an array of class literals for classes implementing javax.lang.model.type.TypeMirror, e.g.,
javax.lang.model.type.PrimitiveType. Often you should use a subclass of AnnotatedTypeMirror.

• stringPatterns: an array of regular expressions that will be matched against string literals, e.g., "[01]+" for a
binary number. Useful for annotations that indicate the format of a string.

For example, consider the definitions of the @NonNull and @Nullable type qualifiers:
@TypeQualifier
@SubtypeOf({ Nullable.class })
@ImplicitFor(
types={TypeKind.PACKAGE},
typeClasses={AnnotatedPrimitiveType.class},
trees={
Tree.Kind.NEW_CLASS,
Tree.Kind.NEW_ARRAY,
Tree.Kind.PLUS,
// All literals except NULL_LITERAL:

161

api/org/checkerframework/checker/nullness/qual/NonNull.html
api/org/checkerframework/framework/qual/ImplicitFor.html
api/org/checkerframework/framework/qual/ImplicitFor.html
api/org/checkerframework/framework/qual/ImplicitFor.html
https://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/com/sun/source/{}/tree/Tree.Kind.html?is-external=true
http://docs.oracle.com/javase/8/docs/api/javax/lang/model/{}/type/TypeKind.html?is-external=true
https://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/com/sun/source/{}/tree/Tree.html?is-external=true
api/org/checkerframework/framework/type/AnnotatedTypeMirror.html
api/org/checkerframework/checker/nullness/qual/NonNull.html
api/org/checkerframework/checker/nullness/qual/Nullable.html

Tree.Kind.BOOLEAN_LITERAL, Tree.Kind.CHAR_LITERAL, Tree.Kind.DOUBLE_LITERAL, Tree.Kind.FLOAT_LITERAL,
Tree.Kind.INT_LITERAL, Tree.Kind.LONG_LITERAL, Tree.Kind.STRING_LITERAL

})
@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
public @interface NonNull { }

@TypeQualifier
@SubtypeOf({})
@ImplicitFor(trees={Tree.Kind.NULL_LITERAL})
@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
public @interface Nullable { }

For more details, see the Javadoc for the ImplicitFor annotation, and the Javadoc for the javac classes that are
linked from it. You only need to understand a small amount about the javac AST, such as the Tree.Kind and TypeKind
enums. All the information you need is in the Javadoc, and Section 29.11 can help you get started.

29.4.2 Procedurally specifying implicit annotations
The Checker Framework provides a representation of annotated types, AnnotatedTypeMirror, that extends the
standard TypeMirror interface but integrates a representation of the annotations into a type representation. A checker’s
type factory class, given an AST node, returns the annotated type of that expression. The Checker Framework’s
abstract base type factory class, AnnotatedTypeFactory, supplies a uniform, Tree-API-based interface for querying
the annotations on a program element, regardless of whether that element is declared in a source file or in a class file. It
also handles default annotations, and it optionally performs flow-sensitive local type inference.

AnnotatedTypeFactory inserts the qualifiers that the programmer explicitly inserted in the code. Yet, certain
constructs should be treated as having a type qualifier even when the programmer has not written one. The type system
designer may subclass AnnotatedTypeFactory and override annotateImplicit(Tree,AnnotatedTypeMirror)
and annotateImplicit(Element,AnnotatedTypeMirror) to account for such constructs.

29.5 Dataflow: enhancing flow-sensitive type qualifier inference
By default, every checker performs automatic type refinement, also known as flow inference, as described in Section 25.4.

In the uncommon case that you wish to disable flow inference in your checker, put the following two lines at the
beginning of the constructor for your subtype of BaseAnnotatedTypeFactory:

// use true to enable flow inference, false to disable it
super(checker, false);

You can enhance the Checker Framework’s built-in flow-sensitive type refinement, so that it is more powerful and is
customized to your type system. In particular, your enhancement will yield a more refined type for certain expressions.
However, most enhancements to type refinement are based on a run-time test specific to the type system and not all
type-systems have applicable run-time tests. See Section 25.4.1 (page 134) to determine if run-time tests are applicable
to your type system.

The Checker Framework’s type refinement is implemented with a dataflow algorithm which can be customized to
enhance the built-in type refinement. The next sections detail dataflow customization. It would also be helpful to read
the Dataflow Manual, which gives a more in-depth description of the Checker Framework’s dataflow framework.

The steps to customizing type refinement are:

1. 29.5.1 Create required classes and configure their use
2. 29.5.2 Override methods that handle Nodes of interest
3. 29.5.3 Determine which expressions will be refined
4. 29.5.4 Implement the refinement

162

api/org/checkerframework/framework/qual/ImplicitFor.html
https://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/com/sun/source/{}/tree/Tree.Kind.html?is-external=true
http://docs.oracle.com/javase/8/docs/api/javax/lang/model/{}/type/TypeKind.html?is-external=true
api/org/checkerframework/framework/type/AnnotatedTypeMirror.html
api/org/checkerframework/framework/type/AnnotatedTypeFactory.html
api/org/checkerframework/framework/type/AnnotatedTypeFactory.html
api/org/checkerframework/framework/type/AnnotatedTypeFactory.html
api/org/checkerframework/common/basetype/BaseAnnotatedTypeFactory.html
http://types.cs.washington.edu/checker-framework/current/checker-framework-dataflow-manual.pdf
api/org/checkerframework/dataflow/cfg/node/Node.html

The Regex Checker’s dataflow customization for the RegexUtil.asRegex run-time check is used as an example
throughout the steps.

The RegexUtil.asRegex method is declared as:
@Regex(0) String asRegex(String s, int groups) { ... }

which means that an expression such as RegexUtil.asRegex(myString, myInt) has type @Regex(0) String. When
int parameter group is known or can be inferred at compile time, a better estimate can be given. For example,
RegexUtil.asRegex(myString, 2) has type @Regex(2) String.

29.5.1 Create required classes and configure their use
The following classes must be created to customize dataflow. These classes must be included on the classpath like other
components of your checker.

1. Create a class that extends CFAbstractTransfer
CFAbstractTransfer performs the default Checker Framework type refinement. The extended class will add
functionality by overriding superclass methods.
The Regex Checker’s extended CFAbstractTransfer is RegexTransfer.

2. Create a class that extends CFAbstractAnalysis and uses the extended CFAbstractTransfer
CFAbstractTransfer and its superclass, Analysis, are the central coordinating classes in the Checker Frame-
work’s dataflow algorithm. The createTransferFunction method must be overridden in an extended CFAbstractTransfer
to return a new instance of the extended CFAbstractTransfer.
The Regex Checker’s extended CFAbstractAnalysis is RegexAnalysis, which overrides the createTransferFunction
to return a new RegexTransfer instance:
@Override
public RegexTransfer createTransferFunction() {

return new RegexTransfer(this);
}

3. Configure the checker’s type factory to use the extended CFAbstractAnalysis
To configure your checker’s type factory to use the new extended CFAbstractAnalysis, override the createFlowAnalysis
method in your type factory to return a new instance of the extended CFAbstractAnalysis.
@Override
protected RegexAnalysis createFlowAnalysis(

List<Pair<VariableElement, CFValue>> fieldValues) {

return new RegexAnalysis(checker, this, fieldValues);
}

29.5.2 Override methods that handle Nodes of interest
At this point, your checker is configured to use your extended CFAbstractAnalysis, but it uses only the default
behavior. Next, in your extended CFAbstractTransfer override the visitor method that handles the Nodes relevant to
your run-time check or run-time operation can be used to refine types.

A Node is basically equivalent to a javac compiler Tree. A tree is a node in the abstract syntax tree of the program
being checked. See 29.11 for more information about trees.

A Node generally maps one-to-one with a Tree. When dataflow processes a method, it translates Trees into Nodes
and then calls the appropriate visit method on CFAbstractTransfer which then performs the dataflow analysis for the
passed in Node.

Decide what Node kinds are of interest with respect to the run-time checks or run-time operations you are trying
to support. The Node subclasses can be found in the org.checkerframework.dataflow.cfg.node package. Some
examples are EqualToNode, LeftShiftNode, VariableDeclarationNode.

The Regex Checker refines the type of a run-time test method call, so RegexTransfer overrides the method that
handles MethodInvocationNodes, visitMethodInvocation.

163

api/org/checkerframework/framework/flow/CFAbstractTransfer.html
api/org/checkerframework/framework/flow/CFAbstractTransfer.html
api/org/checkerframework/framework/flow/CFAbstractTransfer.html
api/org/checkerframework/checker/regex/classic/RegexTransfer.html
api/org/checkerframework/framework/flow/CFAbstractAnalysis.html
api/org/checkerframework/framework/flow/CFAbstractTransfer.html
api/org/checkerframework/framework/flow/CFAbstractTransfer.html
api/org/checkerframework/dataflow/analysis/Analysis.html
api/org/checkerframework/framework/flow/CFAbstractTransfer.html
api/org/checkerframework/framework/flow/CFAbstractTransfer.html
api/org/checkerframework/framework/flow/CFAbstractAnalysis.html
api/org/checkerframework/checker/regex/classic/RegexAnalysis.html
api/org/checkerframework/checker/regex/classic/RegexTransfer.html
api/org/checkerframework/framework/flow/CFAbstractAnalysis.html
api/org/checkerframework/framework/flow/CFAbstractAnalysis.html
api/org/checkerframework/framework/flow/CFAbstractAnalysis.html
api/org/checkerframework/framework/flow/CFAbstractAnalysis.html
api/org/checkerframework/framework/flow/CFAbstractTransfer.html
api/org/checkerframework/dataflow/cfg/node/Node.html
api/org/checkerframework/dataflow/cfg/node/Node.html
https://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/com/sun/source/{}/tree/Tree.html?is-external=true
api/org/checkerframework/dataflow/cfg/node/Node.html
https://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/com/sun/source/{}/tree/Tree.html?is-external=true
https://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/com/sun/source/{}/tree/Tree.html?is-external=true
api/org/checkerframework/dataflow/cfg/node/Node.html
api/org/checkerframework/framework/flow/CFAbstractTransfer.html
api/org/checkerframework/dataflow/cfg/node/Node.html
api/org/checkerframework/dataflow/cfg/node/Node.html
api/org/checkerframework/dataflow/cfg/node/Node.html
api/org/checkerframework/dataflow/cfg/node/EqualToNode.html
api/org/checkerframework/dataflow/cfg/node/LeftShiftNode.html
api/org/checkerframework/dataflow/cfg/node/VariableDeclarationNode.html
api/org/checkerframework/checker/regex/classic/RegexTransfer.html
api/org/checkerframework/dataflow/cfg/node/MethodInvocationNode.html

public TransferResult<CFValue, CFStore> visitMethodInvocation(
MethodInvocationNode n, TransferInput<CFValue, CFStore> in) { ... }

29.5.3 Determine the expressions to refine the types of
There are usually multiple expressions used in a run-time check or run-time operation; determine which expression the
customization will refine. This is usually specific to the type system and run-time test.

Expressions are refined by modifying the return value of a visitor method in CFAbstractTransfer. CFAbstractTransfer
visitor methods return a TransferResult. The constructor of a TransferResult takes two parameters: the resulting
type for the Node being evaluated (the result type) and a map from expressions in scopes to estimates of their types (a
Store).

For the program operation op(a,b), an enhancement may improve the Checker Framework’s types by:

1. Changing the resulting type to refine the estimate of the type of entire expression op(a,b), or
2. Changing the store to refine the estimate of some other expression, such as a or b.

Changing the TransferResult’s result type changes the type that is returned by the AnnotatedTypeFactory for
the tree corresponding to the Node that was visited. (Remember that BaseTypeVisitor uses the AnnotatedTypeFactory
to look up the type of a Tree, and then performs checks on types of one or more Trees).

When RegexTransfer evaluates a RegexUtils.asRegex invocation, it updates the TransferResult’s result type.
This changes the type of the RegexUtils.asRegex invocation when it’s Tree is looked up by the AnnotatedTypeFactory.
Regex Checker’s visitMethodInvocation is shown in more detail in 29.5.4.

Updating the Store treats an expression as a having a refined type for the remainder of the method or conditional
block. For example, when the Nullness Checker’s dataflow evaluates myvar != null, it updates the Store to specify
that the variable myvar should be treated as having type @NonNull for the rest of the then conditional block. Not all
kinds of expressions can be refined; currently method return values, local variables, fields, and array values can be
stored in the Store. Other kinds of expressions, like binary expressions or casts, cannot be stored in the Store.

Both the Store and the result type may be updated in the same TransferResult.

29.5.4 Implement the refinement
This section details implementing the visitor method RegexTransfer.visitMethodInvocation for the RegexUtil.asRegex
run-time test. You can find other examples of visitor methods in LockTransfer and FormatterTransfer.

A general outline of the visit method is to:

1. Determine if the visited Node is of interest
2. Determine the refined type
3. Return a TransferResult with the refined types

1. Determine if the visited Node is of interest
The visitor method for a Node is invoked for all instances of that Node kind in the program, so the Node
must be inspected to determine if it is an instance of the desired run-time test or operation. For example,
visitMethodInvocation is called when dataflow processes any method invocation, but the RegexTransfer
should only refine the result of RegexUtils.asRegex invocations:
@Override
public TransferResult<CFValue, CFStore> visitMethodInvocation(...)
...
MethodAccessNode target = n.getTarget();
ExecutableElement method = target.getMethod();
Node receiver = target.getReceiver();
if (receiver instanceof ClassNameNode) {
ClassNameNode cn = (ClassNameNode) receiver;
String receiverName = cn.getElement().toString();

// Is this a RegexUtil.isRegex(s, groups) method call?

164

api/org/checkerframework/framework/flow/CFAbstractTransfer.html
api/org/checkerframework/framework/flow/CFAbstractTransfer.html
api/org/checkerframework/dataflow/analysis/TransferResult.html
api/org/checkerframework/dataflow/analysis/TransferResult.html
api/org/checkerframework/dataflow/cfg/node/Node.html
api/org/checkerframework/dataflow/analysis/Store.html
api/org/checkerframework/dataflow/analysis/TransferResult.html
api/org/checkerframework/framework/type/AnnotatedTypeFactory.html
api/org/checkerframework/dataflow/cfg/node/Node.html
api/org/checkerframework/common/basetype/BaseTypeVisitor.html
api/org/checkerframework/framework/type/AnnotatedTypeFactory.html
https://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/com/sun/source/{}/tree/Tree.html?is-external=true
https://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/com/sun/source/{}/tree/Tree.html?is-external=true
api/org/checkerframework/checker/regex/classic/RegexTransfer.html
api/org/checkerframework/dataflow/analysis/TransferResult.html
https://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/com/sun/source/{}/tree/Tree.html?is-external=true
api/org/checkerframework/framework/type/AnnotatedTypeFactory.html
api/org/checkerframework/dataflow/analysis/Store.html
api/org/checkerframework/dataflow/analysis/Store.html
api/org/checkerframework/dataflow/analysis/Store.html
api/org/checkerframework/dataflow/analysis/Store.html
api/org/checkerframework/dataflow/analysis/Store.html
api/org/checkerframework/dataflow/analysis/TransferResult.html
api/org/checkerframework/checker/lock/LockTransfer.html
api/org/checkerframework/checker/formatter/FormatterTransfer.html
api/org/checkerframework/dataflow/cfg/node/Node.html
api/org/checkerframework/dataflow/analysis/TransferResult.html
api/org/checkerframework/dataflow/cfg/node/Node.html
api/org/checkerframework/dataflow/cfg/node/Node.html
api/org/checkerframework/dataflow/cfg/node/Node.html
api/org/checkerframework/dataflow/cfg/node/Node.html
api/org/checkerframework/checker/regex/classic/RegexTransfer.html

if (isRegexUtil(receiverName)) {
if (ElementUtils.matchesElement(method,
null, IS_REGEX_METHOD_NAME, String.class, int.class)) {

...

2. Determine the refined type
Some run-time tests, like the null comparison test, have a deterministic type refinement, e.g. the Nullness Checker
always refines the argument in the expression to @NonNull. However, sometimes the refined type is dependent
on the parts of run-time test or operation itself, such as arguments passed to it.
For example, the refined type of RegexUtils.asRegex is dependent on the integer argument to the method call.
The RegexTransfer uses this argument to build the resulting type @Regex(i), where i is the value of the integer
argument. Note that currently this code only uses the value of the integer argument if the argument was an integer
literal. It could be extended to use the value of the argument if it was any compile-time constant or was inferred
at compile time by another analysis, such as the 16.
AnnotationMirror regexAnnotation;
Node count = n.getArgument(1);
if (count instanceof IntegerLiteralNode) {
IntegerLiteralNode iln = (IntegerLiteralNode) count;
Integer groupCount = iln.getValue();
regexAnnotation = factory.createRegexAnnotation(groupCount);

If the integer argument was not a literal integer, the RegexTransfer falls back to refining the type to just
@Regex(0).

} else {
regexAnnotation = AnnotationUtils.fromClass(factory.getElementUtils(), Regex.class);

}

3. Return a TransferResult with the refined types
As discussed in section 29.5.3, the type of an expression is refined by modifying the TransferResult. Since the
RegexTransfer is updating the type of the run-time test itself, it will update the result type and not the Store.
A CFValue is created to hold the type inferred. CFValue is a wrapper class for values being inferred by dataflow:

CFValue newResultValue = analysis.createSingleAnnotationValue(regexAnnotation,
result.getResultValue().getType().getUnderlyingType());

Then, RegexTransfer’s visitMethodInvocation creates and returns a TransferResult using newResultValue
as the result type.
return new RegularTransferResult<>(newResultValue, result.getRegularStore());

Finally, when the Regex Checker encounters a RegexUtils.asRegex method call, the checker will refine the
return type of the method if it can determine the value of the integer parameter at compile time.

29.6 Visitor: Type rules
A type system’s rules define which operations on values of a particular type are forbidden. These rules must be defined
procedurally, not declaratively.

The Checker Framework provides a base visitor class, BaseTypeVisitor, that performs type-checking at each
node of a source file’s AST. It uses the visitor design pattern to traverse Java syntax trees as provided by Oracle’s Tree
API, and it issues a warning whenever the type system is violated.

A checker’s visitor overrides one method in the base visitor for each special rule in the type qualifier system. Most
type-checkers override only a few methods in BaseTypeVisitor. For example, the visitor for the Nullness type system
of Chapter 3 contains a single 4-line method that warns if an expression of nullable type is dereferenced, as in:

myObject.hashCode(); // invalid dereference

165

api/org/checkerframework/checker/regex/classic/RegexTransfer.html
api/org/checkerframework/checker/regex/classic/RegexTransfer.html
api/org/checkerframework/dataflow/analysis/TransferResult.html
api/org/checkerframework/dataflow/analysis/TransferResult.html
api/org/checkerframework/checker/regex/classic/RegexTransfer.html
api/org/checkerframework/dataflow/analysis/Store.html
api/org/checkerframework/framework/flow/CFValue.html
api/org/checkerframework/framework/flow/CFValue.html
api/org/checkerframework/dataflow/analysis/TransferResult.html
api/org/checkerframework/common/basetype/BaseTypeVisitor.html
http://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/
http://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/
api/org/checkerframework/common/basetype/BaseTypeVisitor.html

By default, BaseTypeVisitor performs subtyping checks that are similar to Java subtype rules, but taking the type
qualifiers into account. BaseTypeVisitor issues these errors:

• invalid assignment (type.incompatible) for an assignment from an expression type to an incompatible type. The
assignment may be a simple assignment, or pseudo-assignment like return expressions or argument passing in a
method invocation
In particular, in every assignment and pseudo-assignment, the left-hand side of the assignment is a supertype of
(or the same type as) the right-hand side. For example, this assignment is not permitted:

@Nullable Object myObject;
@NonNull Object myNonNullObject;
...
myNonNullObject = myObject; // invalid assignment

• invalid generic argument (type.argument.type.incompatible) when a type is bound to an incompatible generic
type variable

• invalid method invocation (method.invocation.invalid) when a method is invoked on an object whose type is
incompatible with the method receiver type

• invalid overriding parameter type (override.parameter.invalid) when a parameter in a method declaration is
incompatible with that parameter in the overridden method’s declaration

• invalid overriding return type (override.return.invalid) when a parameter in a method declaration is incompatible
with that parameter in the overridden method’s declaration
• invalid overriding receiver type (override.receiver.invalid) when a receiver in a method declaration is incompatible

with that receiver in the overridden method’s declaration

29.6.1 AST traversal
The Checker Framework needs to do its own traversal of the AST even though it operates as an ordinary annotation
processor [Dar06]. Annotation processors can utilize a visitor for Java code, but that visitor only visits the public
elements of Java code, such as classes, fields, methods, and method arguments — it does not visit code bodies or various
other locations. The Checker Framework hardly uses the built-in visitor — as soon as the built-in visitor starts to visit a
class, then the Checker Framework’s visitor takes over and visits all of the class’s source code.

Because there is no standard API for the AST of Java code1, the Checker Framework uses the javac implementation.
This is why the Checker Framework is not deeply integrated with Eclipse, but runs as an external tool (see Section 30.6).

29.6.2 Avoid hardcoding
It may be tempting to write a type-checking rule for method invocation, where your rule checks the name of the method
being called and then treats the method in a special way. This is usually the wrong approach. It is better to write
annotations, in a stub file (Chapter 28), and leave the work to the standard type-checking rules.

29.7 The checker class: Compiler interface
A checker’s entry point is a subclass of SourceChecker, and is usually a direct subclass of either BaseTypeChecker
or AggregateChecker. This entry point, which we call the checker class, serves two roles: an interface to the compiler
and a factory for constructing type-system classes.

Because the Checker Framework provides reasonable defaults, oftentimes the checker class has no work to do. Here
are the complete definitions of the checker classes for the Interning Checker and the Nullness Checker:

1Actually, there is a standard API for Java ASTs — JSR 198 (Extension API for Integrated Development Environments) [Cro06]. If tools were
to implement it (which would just require writing wrappers or adapters), then the Checker Framework and similar tools could be portable among
different compilers and IDEs.

166

api/org/checkerframework/common/basetype/BaseTypeVisitor.html
api/org/checkerframework/common/basetype/BaseTypeVisitor.html
api/org/checkerframework/framework/source/SourceChecker.html
api/org/checkerframework/common/basetype/BaseTypeChecker.html
api/org/checkerframework/framework/source/AggregateChecker.html

@TypeQualifiers({ Interned.class, PolyInterned.class, PolyAll.class })
@SupportedLintOptions({"dotequals"})
public final class InterningChecker extends BaseTypeChecker { }

@TypeQualifiers({ Nullable.class, Raw.class, NonNull.class, PolyNull.class, PolyAll.class })
@SupportedLintOptions({"flow", "cast", "cast:redundant"})
public class NullnessChecker extends BaseTypeChecker { }

The checker class must indicate the annotations that make up the type hierarchy for this checker (including polymor-
phic qualifiers), either via a @TypeQualifiers annotation or by overriding the createSupportedTypeQualifiers
method. Each argument to @TypeQualifiers or value returned by createSupportedTypeQualifiers is a class
literal for a type qualifier whose definition bears the @TypeQualifier meta-annotation. An aggregate checker (which
extends AggregateChecker) does not need to specify its type qualifiers, but each of its component checkers should do
so.

The checker class bridges between the compiler and the rest of the checker. It invokes the type-rule check visitor on
every Java source file being compiled, and provides a simple API, SourceChecker.report, to issue errors using the
compiler error reporting mechanism.

Also, the checker class follows the factory method pattern to construct the concrete classes (e.g., visitor, factory) and
annotation hierarchy representation. It is a convention that, for a type system named Foo, the compiler interface (checker),
the visitor, and the annotated type factory are named as FooChecker, FooVisitor, and FooAnnotatedTypeFactory.
BaseTypeChecker uses the convention to reflectively construct the components. Otherwise, the checker writer must
specify the component classes for construction.

A checker can customize the default error messages through a Properties-loadable text file named
messages.properties that appears in the same directory as the checker class. The property file keys are the
strings passed to report (like type.incompatible) and the values are the strings to be printed ("cannot assign
..."). The messages.properties file only need to mention the new messages that the checker defines. It is also
allowed to override messages defined in superclasses, but this is rarely needed. For more details about message keys,
see Section 26.1.3 (page 141).

29.7.1 Bundling multiple checkers
Sometimes, multiple checkers work together and should always be run together. There are two different ways to bundle
multiple checkers together, by creating an “aggregate checker” or a “compound checker”.

1. An aggregate checker runs multiple independent, unrelated checkers. There is no communication or cooperation
among them.
The effect is the same as if a user passes multiple processors to the -processor command-line option.
For example, instead of a user having to run

javac -processor DistanceUnitChecker,VelocityUnitChecker,MassUnitChecker ... files ...

the user can write

javac -processor MyUnitCheckers ... files ...

if you define an aggregate checker class. Extend AggregateChecker and override the getSupportedTypeCheckers
method, like the following:

public class MyUnitCheckers extends AggregateChecker {
protected Collection<Class<? extends SourceChecker>> getSupportedCheckers() {

return Arrays.asList(DistanceUnitChecker.class,
VelocityUnitChecker.class,
MassUnitChecker.class);

}
}

167

api/org/checkerframework/framework/qual/TypeQualifiers.html
api/org/checkerframework/framework/type/AnnotatedTypeFactory.html#createSupportedTypeQualifiers--
api/org/checkerframework/framework/qual/TypeQualifier.html
api/org/checkerframework/framework/source/AggregateChecker.html
api/org/checkerframework/framework/source/SourceChecker.html#report-org.checkerframework.framework.source.Result-java.lang.Object-
api/org/checkerframework/common/basetype/BaseTypeChecker.html
http://docs.oracle.com/javase/8/docs/api/java/util/Properties.html
api/org/checkerframework/framework/source/SourceChecker.html#report-org.checkerframework.framework.source.Result-java.lang.Object-
api/org/checkerframework/framework/source/AggregateChecker.html

An example of an aggregate checker is I18nChecker (see Chapter 12.2, page 78), which consists of I18nSubchecker
and LocalizableKeyChecker.

2. Use a compound checker to express dependencies among checkers. Suppose it only makes sense to run
MyChecker if MyHelperChecker has already been run; that might be the case if MyHelperChecker computes
some information that MyChecker needs to use.
Override MyChecker.getImmediateSubcheckerClasses to return a list of the checkers that MyChecker de-
pends on. Every one of them will be run before MyChecker is run. One of MyChecker’s subcheckers may itself
be a compound checker, and multiple checkers may declare a dependence on the same subchecker. The Checker
Framework will run each checker once, and in an order consistent with all the dependences.
A checker obtains information from its subcheckers (those that ran before it) by querying their AnnotatedTypeFactory
to determine the types of variables.

29.7.2 Providing command-line options
A checker can provide two kinds of command-line options: boolean flags and named string values (the standard
annotation processor options).

Boolean flags

To specify a simple boolean flag, add:

@SupportedLintOptions({"flag"})

to your checker subclass. The value of the flag can be queried using

checker.getLintOption("flag", false)

The second argument sets the default value that should be returned.
To pass a flag on the command line, call javac as follows:

javac -processor Mine -Alint=flag

Named string values

For more complicated options, one can use the standard annotation processing @SupportedOptions annotation on the
checker, as in:

@SupportedOptions({"info"})

The value of the option can be queried using

checker.getOption("info")

To pass an option on the command line, call javac as follows:

javac -processor Mine -Ainfo=p1,p2

The value is returned as a single string and you have to perform the required parsing of the option.

29.8 Testing framework
The Checker Framework provides a convenient way to write tests for your checker. It is extensively documented in file
checker-framework/checker/tests/README.

168

api/org/checkerframework/checker/i18n/I18nChecker.html
api/org/checkerframework/checker/i18n/I18nSubchecker.html
api/org/checkerframework/checker/i18n/LocalizableKeyChecker.html
api/org/checkerframework/common/basetype/BaseTypeChecker.html#getImmediateSubcheckerClasses--
api/org/checkerframework/framework/type/AnnotatedTypeFactory.html

29.9 Debugging options
The Checker Framework provides debugging options that can be helpful when writing a checker. These are provided
via the standard javac “-A” switch, which is used to pass options to an annotation processor.

29.9.1 Amount of detail in messages
• -AprintAllQualifiers: print all type qualifiers, including qualifiers like @Unqualified which are usually not

shown. (Use the @InvisibleQualifier meta-annotation on a qualifier to hide it.)
• -Adetailedmsgtext: Output error/warning messages in a stylized format that is easy for tools to parse. This is

useful for tools that run the Checker Framework and parse its output, such as IDE plugins. See the source code of
SourceChecker.java for details about the format.

• -AprintErrorStack: print a stack trace whenever an internal Checker Framework error occurs.
• -Anomsgtext: use message keys (such as “type.invalid”) rather than full message text when reporting errors

or warnings. This is used by the Checker Framework’s own tests, so they do not need to be changed if the English
message is updated.

29.9.2 Stub and JDK libraries
• -Aignorejdkastub: ignore the jdk.astub file in the checker directory. Files passed through the -Astubs

option are still processed. This is useful when experimenting with an alternative stub file.
• -Anocheckjdk: don’t issue an error if no annotated JDK can be found.
• -AstubDebug: Print debugging messages while processing stub files.

29.9.3 Progress tracing
• -Afilenames: print the name of each file before type-checking it.
• -Ashowchecks: print debugging information for each pseudo-assignment check (as performed by BaseTypeVisitor;

see Section 29.6.

29.9.4 Saving the command-line arguments to a file
• -AoutputArgsToFile: This saves the final command-line parameters as passed to the compiler in a file. This

file can be used as a script (if the file is marked as executable on Unix, or if it includes a .bat extension on
Windows) to re-execute the same compilation command. This is useful, for example, when debugging problems
running the Checker Framework from Maven, since normally the command-line parameters used by Maven
are not user-visible. Note that this argument cannot be included in a file containing command-line arguments
passed to the compiler using the @argfile syntax. Please see Section 30.3.1 for more details on how to use this
command-line parameter to debug compilation using Maven.
Example usage: -AoutputArgsToFile=/home/username/scriptfile

29.9.5 Miscellaneous debugging options
• -Aflowdotdir: Directory for .dot files that visualize the control flow graph of all the methods and code fragments

analyzed by the dataflow analysis. The graph also contains information about flow-sensitively refined types of
various expressions at many program points.
• -AresourceStats: Whether to output resource statistics at JVM shutdown.

29.9.6 Examples
The following example demonstrates how these options are used:

169

api/org/checkerframework/common/basetype/BaseTypeVisitor.html

$ javac -processor org.checkerframework.checker.interning.InterningChecker \
examples/InternedExampleWithWarnings.java -Ashowchecks -Anomsgtext -Afilenames

[InterningChecker] InterningExampleWithWarnings.java
success (line 18): STRING_LITERAL "foo"

actual: DECLARED @org.checkerframework.checker.interning.qual.Interned java.lang.String
expected: DECLARED @org.checkerframework.checker.interning.qual.Interned java.lang.String

success (line 19): NEW_CLASS new String("bar")
actual: DECLARED java.lang.String

expected: DECLARED java.lang.String
examples/InterningExampleWithWarnings.java:21: (not.interned)

if (foo == bar)
^

success (line 22): STRING_LITERAL "foo == bar"
actual: DECLARED @org.checkerframework.checker.interning.qual.Interned java.lang.String

expected: DECLARED java.lang.String
1 error

You can use any standard debugger to observe the execution of your checker. Set the execution main class to
com.sun.tools.javac.Main, and insert the Checker Framework javac.jar (resides in .../checker-framework/checker/dist/javac.jar).
If using an IDE, it is recommended that you add .../jsr308-langtools as a project, so you can step into its source
code if needed.

You can also set up remote (or local) debugging using the following command as a template:

java -jar $CHECKERFRAMEWORK/framework/dist/framework.jar \
-J-Xdebug -J-Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=5005 \
-processor org.checkerframework.checker.nullness.NullnessChecker \
src/sandbox/FileToCheck.java

29.10 Documenting the checker
This section describes how to write a chapter for this manual that describes a new type-checker. This is a prerequisite to
having your type-checker distributed with the Checker Framework, which is the best way for users to find it and for it
to be kept up to date with Checker Framework changes. Even if you do not want your checker distributed with the
Checker Framework, these guidelines may help you write better documentation.

When writing a chapter about a new type-checker, see the existing chapters for inspiration. (But recognize that the
existing chapters aren’t perfect: maybe they can be improved too.)

A chapter in the Checker Framework manual should generally have the following sections:

Chapter: Belly Rub Checker The text before the first section in the chapter should state the guarantee that the checker
provides and why it is important. It should give an overview of the concepts. It should state how to run the
checker.

Section: Belly Rub Annotations This section includes descriptions of the annotations with links to the Javadoc.
Separate type annotations from declaration annotations, and put any type annotations that a programmer may not
write (they are only used internally by the implementation) last within variety of annotation.
Draw a diagram of the type hierarchy. A textual description of the hierarchy is not sufficient; the diagram really
helps readers to understand the system.
The Javadoc for the annotations deserves the same care as the manual chapter. Each annotation’s Javadoc
comment should use the @checker_framework.manual Javadoc taglet to refer to the chapter that describes the
checker; see ManualTaglet.

Section: What the Belly Rub Checker checks This section gives more details about when an error is issued, with
examples. This section may be omitted if the checker does not contain special type-checking rules — that is, if
the checker only enforces the usual Java subtyping rules.

Section: Examples Code examples.

170

api/org/checkerframework/javacutil/dist/ManualTaglet.html

Sometimes you can omit some of the above sections. Sometimes there are additional sections, such as tips on
suppressing warnings, comparisons to other tools, and run-time support.

You will create a new belly-rub-checker.tex file, then \input it at a logical place in manual.tex (not
necessarily as the last checker-related chapter). Also add two references to the checker’s chapter: one at the beginning
of chapter 1, and identical text in Section 25.4.1 (both of these lists appear in the same order as the manual chapters, to
help us notice if anything is missing).

Every chapter and (sub)*section should have a label defined within the \section command. Section labels should
start with the checker name (as in \label{bellyrub-examples}) and not with “sec:”. These conventions are for the
benefit of the Hevea program that produces the HTML version of the manual.

Don’t forget to write Javadoc for any annotations that the checker uses. That is part of the documentation
and is the first thing that many users may see. Also ensure that the Javadoc links back to the manual, using the
@checker_framework.manual custom Javadoc tag.

You should also integrate your new checker with the Eclipse plugin.

29.11 javac implementation survival guide
Since this section of the manual was written, the useful “The Hitchhiker’s Guide to javac” has become available at
http://openjdk.java.net/groups/compiler/doc/hhgtjavac/index.html. See it first, and then refer to this
section. (This section of the manual should be revised, or parts eliminated, in light of that document.)

A checker built using the Checker Framework makes use of a few interfaces from the underlying compiler (Oracle’s
OpenJDK javac). This section describes those interfaces.

29.11.1 Checker access to compiler information
The compiler uses and exposes three hierarchies to model the Java source code and classfiles.

Types — Java Language Model API

A TypeMirror represents a Java type.
There is a TypeMirror interface to represent each type kind, e.g., PrimitiveType for primitive types,

ExecutableType for method types, and NullType for the type of the null literal.
TypeMirror does not represent annotated types though. A checker should use the Checker Framework types API,

AnnotatedTypeMirror, instead. AnnotatedTypeMirror parallels the TypeMirror API, but also present the type
annotations associated with the type.

The Checker Framework and the checkers use the types API extensively.

Elements — Java Language Model API

An Element represents a potentially-public declaration that can be accessed from elsewhere: classes, interfaces,
methods, constructors, and fields. Element represents elements found in both source code and bytecode.

There is an Element interface to represent each construct, e.g., TypeElement for class/interfaces, ExecutableElement
for methods/constructors, VariableElement for local variables and method parameters.

If you need to operate on the declaration level, always use elements rather than trees (see below). This allows the
code to work on both source and bytecode elements.

Example: retrieve declaration annotations, check variable modifiers (e.g., strictfp, synchronized)

Trees — Compiler Tree API

A Tree represents a syntactic unit in the source code, like a method declaration, statement, block, for loop, etc. Trees
only represent source code to be compiled (or found in -sourcepath); no tree is available for classes read from
bytecode.

171

http://openjdk.java.net/groups/compiler/doc/hhgtjavac/index.html
http://docs.oracle.com/javase/8/docs/api/javax/lang/model/{}/type/TypeMirror.html?is-external=true
api/org/checkerframework/framework/type/AnnotatedTypeMirror.html
http://docs.oracle.com/javase/8/docs/api/javax/lang/model/{}/element/Element.html?is-external=true
https://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/com/sun/source/{}/tree/Tree.html?is-external=true

There is a Tree interface for each Java source structure, e.g., ClassTree for class declaration, MethodInvocationTree
for a method invocation, and ForEachTree for an enhanced-for-loop statement.

You should limit your use of trees. A checker uses Trees mainly to traverse the source code and retrieve the
types/elements corresponding to them. Then, the checker performs any needed checks on the types/elements instead.

Using the APIs

The three APIs use some common idioms and conventions; knowing them will help you to create your checker.
Type-checking: Do not use instanceof to determine the class of the object, because you cannot necessarily predict

the run-time type of the object that implements an interface. Instead, use the getKind() method. The method returns
TypeKind, ElementKind, and Tree.Kind for the three interfaces, respectively.

Visitors and Scanners: The compiler and the Checker Framework use the visitor pattern extensively. For example,
visitors are used to traverse the source tree (BaseTypeVisitor extends TreePathScanner) and for type checking
(TreeAnnotator implements TreeVisitor).

Utility classes: Some useful methods appear in a utility class. The Oracle convention is that the utility class for
a Foo hierarchy is Foos (e.g., Types, Elements, and Trees). The Checker Framework uses a common Utils suffix
instead (e.g., TypesUtils, TreeUtils, ElementUtils), with one notable exception: AnnotatedTypes.

29.11.2 How a checker fits in the compiler as an annotation processor
The Checker Framework builds on the Annotation Processing API introduced in Java 6. A type annotation processor is
one that extends AbstractTypeProcessor; these get run on each class source file after the compiler confirms that the
class is valid Java code.

The most important methods of AbstractTypeProcessor are typeProcess and getSupportedSourceVersion.
The former class is where you would insert any sort of method call to walk the AST, and the latter just returns a constant
indicating that we are targeting version 8 of the compiler. Implementing these two methods should be enough for a
basic plugin; see the Javadoc for the class for other methods that you may find useful later on.

The Checker Framework uses Oracle’s Tree API to access a program’s AST. The Tree API is specific to the Oracle
OpenJDK, so the Checker Framework only works with the OpenJDK javac, not with Eclipse’s compiler ecj or with gcj.
This also limits the tightness of the integration of the Checker Framework into other IDEs such as IntelliJ IDEA. An
implementation-neutral API would be preferable. In the future, the Checker Framework can be migrated to use the Java
Model AST of JSR 198 (Extension API for Integrated Development Environments) [Cro06], which gives access to the
source code of a method. But, at present no tools implement JSR 198. Also see Section 29.6.1.

Learning more about javac

Sun’s javac compiler interfaces can be daunting to a newcomer, and its documentation is a bit sparse. The Checker
Framework aims to abstract a lot of these complexities. You do not have to understand the implementation of javac
to build powerful and useful checkers. Beyond this document, other useful resources include the Java Infrastructure
Developer’s guide at http://wiki.netbeans.org/Java_DevelopersGuide and the compiler mailing list archives
at http://news.gmane.org/gmane.comp.java.openjdk.compiler.devel (subscribe at http://mail.openjdk.
java.net/mailman/listinfo/compiler-dev).

29.12 Integrating a checker with the Checker Framework
To integrate a new checker with the Checker Framework release, perform the following:

• Add a XXX-tests build target and ensure all tests pass.
• Make sure all-tests tests the new checker.
• Extend the check-compilermsgs target to include the compiler messages property file of the new checker in the
checker-args list.

• Make sure check-compilermsgs and check-purity run without warnings or errors.

172

http://docs.oracle.com/javase/8/docs/api/javax/lang/model/{}/type/TypeKind.html?is-external=true
http://docs.oracle.com/javase/8/docs/api/javax/lang/model/{}/element/ElementKind.html?is-external=true
https://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/com/sun/source/{}/tree/Tree.Kind.html?is-external=true
api/org/checkerframework/common/basetype/BaseTypeVisitor.html
https://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/com/sun/source/{}/util/TreePathScanner.html?is-external=true
api/org/checkerframework/framework/type/treeannotator/TreeAnnotator.html
https://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/com/sun/source/{}/tree/TreeVisitor.html?is-external=true
http://docs.oracle.com/javase/8/docs/api/javax/lang/model/{}/util/Types.html?is-external=true
http://docs.oracle.com/javase/8/docs/api/javax/lang/model/{}/util/Elements.html?is-external=true
https://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/com/sun/source/{}/util/Trees.html?is-external=true
api/org/checkerframework/javacutil/TypesUtils.html
api/org/checkerframework/javacutil/TreeUtils.html
api/org/checkerframework/javacutil/ElementUtils.html
api/org/checkerframework/framework/util/AnnotatedTypes.html
api/org/checkerframework/javacutil/AbstractTypeProcessor.html
api/org/checkerframework/javacutil/AbstractTypeProcessor.html
http://gcc.gnu.org/java/
http://www.jetbrains.com/idea/
http://wiki.netbeans.org/Java_DevelopersGuide
http://news.gmane.org/gmane.comp.java.openjdk.compiler.devel
http://mail.openjdk.java.net/mailman/listinfo/compiler-dev
http://mail.openjdk.java.net/mailman/listinfo/compiler-dev

Chapter 30

Integration with external tools

This chapter discusses how to run a checker from the command line, from a build system, or from an IDE. You can skip
to the appropriate section:

• javac (Section 30.1)
• Ant (Section 30.2)
• Maven (Section 30.3)
• Gradle (Section 30.4)
• IntelliJ IDEA (Section 30.5)
• Eclipse (Section 30.6)
• tIDE (Section 30.7)

If your build system or IDE is not listed above, you should customize how it runs the javac command on your
behalf. See your build system or IDE documentation to learn how to customize it, adapting the instructions for javac in
Section 30.1. If you make another tool support running a checker, please inform us via the mailing list or issue tracker
so we can add it to this manual.

This chapter also discusses type inference tools (see Section 30.8).
All examples in this chapter are in the public domain, with no copyright nor licensing restrictions.

30.1 Javac compiler
If you use the javac compiler from the command line, then you can instead use the “Checker Framework compiler”, a
variant of the OpenJDK javac that recognizes type annotations in comments and that includes the Checker Framework
jar files on its path. The Checker Framework compiler is backward-compatible, so using it as your Java compiler, even
when you are not doing pluggable type-checking, has no negative consequences.

You can use the Checker Framework compiler in three ways. You can use any one of them. However, if you are
using the Windows command shell, you must use the last one.

• Option 1: Add directory .../checker-framework-1.9.4/checker/bin to your path, before any other di-
rectory that contains a javac executable. Now, whenever you run javac, you will use the updated compiler.
If you are using the bash shell, a way to do this is to add the following to your ~/.profile (or alternately
~/.bash_profle or ~/.bashrc) file:

export CHECKERFRAMEWORK=${HOME}/checker-framework-1.9.4
export PATH=${CHECKERFRAMEWORK}/checker/bin:${PATH}

then log out and back in to ensure that the environment variable setting takes effect.
• Option 2: Whenever this document tells you to run javac, you can instead run $CHECKERFRAMEWORK/checker/bin/javac.

You can simplify this by introducing an alias. Then, whenever this document tells you to run javac, instead use
that alias. Here is the syntax for your ~/.bashrc file:

173

http://groups.google.com/group/checker-framework-discuss
https://github.com/typetools/checker-framework/issues

export CHECKERFRAMEWORK=${HOME}/checker-framework-1.9.4
alias javacheck=’$CHECKERFRAMEWORK/checker/bin/javac’

If you are using a Java 7 JVM, then add command-line arguments to so indicate:

export CHECKERFRAMEWORK=${HOME}/checker-framework-1.9.4
alias javacheck=’$CHECKERFRAMEWORK/checker/bin/javac -source 7 -target 7’

If you do not add the -source 7 -target 7 command-line arguments, you may get the following error when
running a class that was compiled by javacheck:

UnsupportedClassVersionError: ... : Unsupported major.minor version 52.0

• Option 3: Whenever this document tells you to run javac, instead run checker.jar via java (not javac) as in:

java -jar $CHECKERFRAMEWORK/checker/dist/checker.jar ...

You can simplify the above command by introducing an alias. Then, whenever this document tells you to run
javac, instead use that alias. For example:

Unix
export CHECKERFRAMEWORK=${HOME}/checker-framework-1.9.4
alias javacheck=’java -jar $CHECKERFRAMEWORK/checker/dist/checker.jar’

Windows
set CHECKERFRAMEWORK = C:\Program Files\checker-framework-1.9.4\
doskey javacheck=java -jar %CHECKERFRAMEWORK%\checker\dist\checker.jar $*

and add -source 7 -target 7 if you use a Java 7 JVM.
(Explanation for advanced users: More generally, anywhere that you would use javac.jar, you can substitute
$CHECKERFRAMEWORK/checker/dist/checker.jar; the result is to use the Checker Framework compiler
instead of the regular javac.)

To ensure that you are using the Checker Framework compiler, run javac -version (possibly using the full
pathname to javac or the alias, if you did not add the Checker Framework javac to your path). The output should be:

javac 1.8.0-jsr308-1.9.4

30.2 Ant task
If you use the Ant build tool to compile your software, then you can add an Ant task that runs a checker. We assume
that your Ant file already contains a compilation target that uses the javac task.

1. Set the jsr308javac property:
<property environment="env"/>

<property name="checkerframework" value="${env.CHECKERFRAMEWORK}" />

<!-- On Mac/Linux, use the javac shell script; on Windows, use javac.bat -->
<condition property="cfJavac" value="javac.bat" else="javac">

<os family="windows" />
</condition>

<presetdef name="jsr308.javac">
<javac fork="yes" executable="${checkerframework}/checker/bin/${cfJavac}" >
<!-- JSR-308-related compiler arguments -->
<compilerarg value="-version"/>
<compilerarg value="-implicit:class"/>

</javac>
</presetdef>

174

http://ant.apache.org/

2. Duplicate the compilation target, then modify it slightly as indicated in this example:
<target name="check-nullness"

description="Check for null pointer dereferences"
depends="clean,...">

<!-- use jsr308.javac instead of javac -->
<jsr308.javac ... >
<compilerarg line="-processor org.checkerframework.checker.nullness.NullnessChecker"/>
<!-- optional, to not check uses of library methods: <compilerarg value="-AskipUses=^(java\.awt\.|javax\.swing\.)"/> -->
<compilerarg line="-Xmaxerrs 10000"/>
...

</jsr308.javac>
</target>

Fill in each ellipsis (. . .) from the original compilation target.
In the example, the target is named check-nullness, but you can name it whatever you like.

30.2.1 Explanation
This section explains each part of the Ant task.

1. Definition of jsr308.javac:
The fork field of the javac task ensures that an external javac program is called. Otherwise, Ant will run
javac via a Java method call, and there is no guarantee that it will get the Checker Framework compiler that is
distributed with the Checker Framework.
The -version compiler argument is just for debugging; you may omit it.
The -implicit:class compiler argument causes annotation processing to be performed on implicitly compiled
files. (An implicitly compiled file is one that was not specified on the command line, but for which the source
code is newer than the .class file.) This is the default, but supplying the argument explicitly suppresses a
compiler warning.

2. The check-nullness target:
The target assumes the existence of a clean target that removes all .class files. That is necessary because Ant’s
javac target doesn’t re-compile .java files for which a .class file already exists.
The -processor ... compiler argument indicates which checker to run. You can supply additional arguments
to the checker as well.

30.3 Maven
If you use the Maven tool, then you can specify pluggable type-checking as part of your build process. This is done by
pointing Maven to a script that makes Maven use the Type Annotations compiler. These instructions use the artifacts
from Maven Central.

1. Declare a dependency on the type qualifier annotations. Find the existing <dependencies> section and add a
new <dependencies> item:

<dependencies>
... existing <dependency> items ...

<!-- annotations from the Checker Framework: nullness, interning, locking, ... -->
<dependency>

<groupId>org.checkerframework</groupId>
<artifactId>checker-qual</artifactId>
<version>1.9.4</version>

</dependency>

</dependencies>

175

http://maven.apache.org/
http://search.maven.org/#search%7Cga%7C1%7Corg.checkerframework

2. Direct the Maven compiler plugin to use the javac_maven script. Change the reference to the maven-compiler-plugin
within the <plugins> section, or add it if it is not present.

<build>
<plugins>

<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>

<source>1.8</source>
<target>1.8</target>
<fork>true</fork>
<executable>$env.CHECKERFRAMEWORK/checker/bin/javac_maven</executable>

</configuration>
</plugin>

</plugins>
</build>

On Windows, the javac_maven.bat script is automatically used instead of the javac_maven script – it is not
necessary to include the .bat extension in the absolute path above.
This script assumes that the Checker Framework is the only annotation processor being run. If this is not the case,
please modify the javac_maven script accordingly.

3. Create a text file named argfile in the same directory as the pom.xml and include in it the command-line
parameters to pass to the Java compiler.
Example contents of argfile:
-processor org.checkerframework.checker.nullness.NullnessChecker
-AsuppressWarnings=purity.invalid.overriding
-Alint
-AprintErrorStack
-Awarns
-Xmaxwarns 10000
Due to limitations of the pom.xml syntax, some command-line options are difficult or impossible to pass via the
pom.xml, hence the need for this file.
If you would like to call this file something other than argfile, please modify the javac_maven script accord-
ingly.

30.3.1 Debugging the Maven compiler command-line arguments
Maven will sometimes hide important Checker Framework and/or Java compiler debugging output. If Maven is not
producing the expected output when using it with the Type Annotations compiler and Checker Framework, it is possible
to output the compiler command-line arguments produced by Maven to a file. This file can then be used as a script
to execute the compiler in the same way Maven would have but without running Maven. This is done through the
-AoutputArgsToFile command-line parameter. To use it with Maven, modify (or copy) the javac_maven script such
that the last line in the script ends with:

[...] "-AoutputArgsToFile=<path to filename>" "$@"

For javac_maven.bat, modify (or copy) it such that the last line ends with:

[...] -AoutputArgsToFile=<path to filename> %*

Please see Section 29.9.4 for more details on how to use the resulting file.

30.4 Gradle
If you fork the compilation task, Gradle lets you specify the executable to compile java programs.

176

http://gradle.org/

To specify the appropriate executable, set options.fork = true and compile.options.fork.executable =
"$CHECKERFRAMEWORK/checker/bin/javac"

To specify command-line arguments, set compile.options.compilerArgs. Here is a possible example:

allprojects {
tasks.withType(JavaCompile).all { JavaCompile compile ->

compile.options.debug = true
compile.options.compilerArgs = [

’-version’,
’-implicit:class’,
’-processor’, ’org.checkerframework.checker.nullness.NullnessChecker’

]
options.fork = true
options.forkOptions.executable = "$CHECKERFRAMEWORK/checker/bin/javac"

}
}

30.5 IntelliJ IDEA
IntelliJ IDEA (Maia release) supports the Type Annotations (JSR-308) syntax. See http://blogs.jetbrains.com/
idea/2009/07/type-annotations-jsr-308-support/.

30.6 Eclipse
There are two ways to run a checker from within the Eclipse IDE: via Ant or using an Eclipse plugin. These two
methods are described below.

No matter what method you choose, we suggest that all Checker Framework annotations be written in the comments
if you are using a version of Eclipse that does not support Java 8. This will avoid many text highlighting errors with
versions of Eclipse that don’t support Java 8 and type annotations.

Even in a version of Eclipse that supports Java 8’s type annotations, you still need to run the Checker Framework
via Ant or via the plug-in, rather than by supplying the -processor command-line option to the ejc compiler. The
reason is that the Checker Framework is built upon javac, and ejc represents the Java program differently. (If both javac
and ejc implemented JSR 198 [Cro06], then it would be possible to build a type-checking plug-in that works with both
compilers.)

30.6.1 Using an Ant task
Add an Ant target as described in Section 30.2. You can run the Ant target by executing the following steps (instruc-
tions copied from http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.platform.doc.user%
2FgettingStarted%2Fqs-84_run_ant.htm):

1. Select build.xml in one of the navigation views and choose Run As > Ant Build... from its context menu.
2. A launch configuration dialog is opened on a launch configuration for this Ant buildfile.
3. In the Targets tab, select the new ant task (e.g., check-interning).
4. Click Run.
5. The Ant buildfile is run, and the output is sent to the Console view.

177

http://blogs.jetbrains.com/idea/2009/07/type-annotations-jsr-308-support/
http://blogs.jetbrains.com/idea/2009/07/type-annotations-jsr-308-support/
http://blogs.jetbrains.com/idea/2009/07/type-annotations-jsr-308-support/
http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2FgettingStarted%2Fqs-84_run_ant.htm
http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2FgettingStarted%2Fqs-84_run_ant.htm

30.6.2 Eclipse plugin for the Checker Framework
The Checker framework Eclipse Plugin enables the use of the Checker Framework within the Eclipse IDE. Its
website (http://types.cs.washington.edu/checker-framework/eclipse/). The website contains instructions
for installing and using the plugin.

30.7 tIDE
tIDE, an open-source Java IDE, supports the Checker Framework. See its documentation at http://tide.olympe.in/.

30.8 Type inference tools

30.8.1 Varieties of type inference
There are two different tasks that are commonly called “type inference”.

1. Type inference during type-checking (Section 25.4): During type-checking, if certain variables have no type
qualifier, the type-checker determines whether there is some type qualifier that would permit the program to
type-check. If so, the type-checker uses that type qualifier, but never tells the programmer what it was. Each time
the type-checker runs, it re-infers the type qualifier for that variable. If no type qualifier exists that permits the
program to type-check, the type-checker issues a type warning.
This variety of type inference is built into the Checker Framework. Every checker can take advantage of it at no
extra effort. However, it only works within a method, not across method boundaries.
Advantages of this variety of type inference include:

• If the type qualifier is obvious to the programmer, then omitting it can reduce annotation clutter in the
program.
• The type inference can take advantage of only the code currently being compiled, rather than having to be

correct for all possible calls. Additionally, if the code changes, then there is no old annotation to update.

2. Type inference to annotate a program (Section 30.8.2): As a separate step before type-checking, a type inference
tool takes the program as input, and outputs a set of type qualifiers that would type-check. These qualifiers are
inserted into the source code or the class file. They can be viewed and adjusted by the programmer, and can be
used by tools such as the type-checker.
This variety of type inference must be provided by a separate tool. It is not built into the Checker Framework.
Advantages of this variety of type inference include:

• The program contains documentation in the form of type qualifiers, which can aid programmer understand-
ing.
• Error messages may be more comprehensible. With type inference during type-checking, error messages can

be obscure, because the compiler has already inferred (possibly incorrect) types for a number of variables.
• A minor advantage is speed: type-checking can be modular, which can be faster than re-doing type inference

every time the program is type-checked.

Advantages of both varieties of inference include:

• Less work for the programmer.
• The tool chooses the most general type, whereas a programmer might accidentally write a more specific, less

generally-useful annotation.

Each variety of type inference has its place. When using the Checker Framework, type inference during type-
checking is performed only within a method (Section 25.4). Every method signature (arguments and return values)
and field must have already been explicitly annotated, either by the programmer or by a separate type-checking tool
(Section 30.8.2). This approach enables modular checking (one class or method at a time) and gives documentation
benefits. The programmer still has to put in some effort, but much less than without inference: typically, a programmer
does not have to write any qualifiers inside the body of a method.

178

http://types.cs.washington.edu/checker-framework/eclipse/
http://tide.olympe.in/

30.8.2 Type inference to annotate a program
This section lists tools that take a program and output a set of annotations for it.

Section 3.3.7 lists several tools that infer annotations for the Nullness Checker.
Section 20.2.2 lists a tool that infers annotations for the Javari Checker, which detects mutation errors.
Cascade [VPEJ14] is an Eclipse plugin that implements interactive type qualifier inference. Cascade is interactive

rather than fully-automated: it makes it easier for a developer to insert annotations. Cascade starts with an unannotated
program and runs a type-checker. For each warning it suggests multiple fixes, the developer chooses a fix, and Cascade
applies it. Cascade works with any checker built on the Checker Framework. You can find installation instructions and
a video tutorial at https://github.com/reprogrammer/cascade.

179

https://github.com/reprogrammer/cascade/
https://github.com/reprogrammer/cascade

Chapter 31

Frequently Asked Questions (FAQs)

These are some common questions about the Checker Framework and about pluggable type-checking in general. Feel
free to suggest improvements to the answers, or other questions to include here.

Contents:

31.1: Motivation for pluggable type-checking
31.1.1: I don’t make type errors, so would pluggable type-checking help me?
31.1.2: When should I use type qualifiers, and when should I use subclasses?

31.2: Getting started
31.2.1: How do I get started annotating an existing program?
31.2.2: Which checker should I start with?
31.2.3: Should I use pluggable types or Java subtypes?

31.3: Usability of pluggable type-checking
31.3.1: Are type annotations easy to read and write?
31.3.2: Will my code become cluttered with type annotations?
31.3.3: Will using the Checker Framework slow down my program? Will it slow down the compiler?
31.3.4: How do I shorten the command line when invoking a checker?

31.4: How to handle warnings
31.4.1: What should I do if a checker issues a warning about my code?
31.4.2: What does a certain Checker Framework warning message mean?
31.4.3: Can a pluggable type-checker guarantee that my code is correct?
31.4.4: What guarantee does the Checker Framework give for concurrent code?
31.4.5: How do I make compilation succeed even if a checker issues errors?
31.4.6: Why does the checker always say there are 100 errors or warnings?
31.4.7: Why does the Checker Framework report an error regarding a type I have not written in my program?
31.4.8: How can I do run-time monitoring of properties that were not statically checked?

31.5: Syntax of type annotations
31.5.1: What is a “receiver”?
31.5.2: What is the meaning of an annotation after a type, such as @NonNull Object @Nullable?
31.5.3: What is the meaning of array annotations such as @NonNull Object @Nullable []?
31.5.4: What is the meaning of a type qualifier at a class declaration?
31.5.5: Why shouldn’t a qualifier apply to both types and declarations?

180

31.6: Semantics of type annotations
31.6.1: Why are the type parameters to List and Map annotated as @NonNull?
31.6.2: How can I handle typestate, or phases of my program with different data properties?
31.6.3: Why are explicit and implicit bounds defaulted differently?

31.7: Creating a new checker
31.7.1: How do I create a new checker?
31.7.2: Why is there no declarative syntax for writing type rules?

31.8: Relationship to other tools
31.8.1: Why not just use a bug detector (like FindBugs)?
31.8.2: How does the Checker Framework compare with Eclipse’s Null Analysis?
31.8.3: How does pluggable type-checking compare with JML?
31.8.4: Is the Checker Framework an official part of Java?
31.8.5: What is the relationship between the Checker Framework and JSR 305?
31.8.6: What is the relationship between the Checker Framework and JSR 308?

31.1 Motivation for pluggable type-checking

31.1.1 I don’t make type errors, so would pluggable type-checking help me?
Occasionally, a developer says that he makes no errors that type-checking could catch, or that any such errors are
unimportant because they have low impact and are easy to fix. When I investigate the claim, I invariably find that the
developer is mistaken.

Very frequently, the developer has underestimated what type-checking can discover. Not every type error leads to an
exception being thrown; and even if an exception is thrown, it may not seem related to classical types. Remember that a
type system can discover null pointer dereferences, incorrect side effects, security errors such as information leakage
or SQL injection, partially-initialized data, wrong units of measurement, and many other errors. Every programmer
makes errors sometimes and works with other people who do. Even where type-checking does not discover a problem
directly, it can indicate code with bad smells, thus revealing problems, improving documentation, and making future
maintenance easier.

There are other ways to discover errors, including extensive testing and debugging. You should continue to use these.
But type-checking is a good complement to these. Type-checking is more effective for some problems, and less effective
for other problems. It can reduce (but not eliminate) the time and effort that you spend on other approaches. There are
many important errors that type-checking and other automated approaches cannot find; pluggable type-checking gives
you more time to focus on those.

31.1.2 When should I use type qualifiers, and when should I use subclasses?
In brief, use subtypes when you can, and use type qualifiers when you cannot use subtypes. For more details, see
Section 31.2.3.

31.2 Getting started

31.2.1 How do I get started annotating an existing program?
See Section 2.4.1.

181

31.2.2 Which checker should I start with?
You should start with a property that matters to you. Think about what aspects of your code cause the most errors, or
cost the most time during maintenance, or are the most common to be incorrectly-documented. Focusing on what you
care about will give you the best benefits.

When you first start out with the Checker Framework, it’s usually best to get experience with an existing type-checker
before you write your own new checker.

Many users are tempted to start with the Nullness Checker (see Chapter 3, page 24), since null pointer errors are
common and familiar. The Nullness Checker works very well, but be warned of three facts that make the absence of
null pointer exceptions challenging to verify.

1. Dereferences happen throughout your codebase, so there are a lot of potential problems. By contrast, fewer lines
of code are related to locking, regular expressions, etc., so those properties are easier to check.

2. Programmers use null for many different purposes. More seriously, programmers write run-time tests against
null, and those are difficult for any static analysis to capture.

3. The Nullness Checker interacts with initialization and map keys.

If null pointer exceptions are most important to you, then by all means use the Nullness Checker. But if you just
want to try some type-checker, there are others that are easier to use.

we do not recommend indiscriminately running all the checkers on your code. The reason is that each one has a
cost — not just at compile time, but also in terms of code clutter and human time to maintain the annotations. If the
property is important to you, is difficult for people to reason about, or has caused problems in the past, then you should
run that checker. For other properties, the benefits may not repay the effort to use it. You will be the best judge of this
for your own code, of course.

The Linear Checker (see Chapter 18, page 96) has not been extensively tested. The IGJ Checker (see Chapter 19,
page 98), Javari Checker (see Chapter 20, page 102), and some of the third-party checkers (see Chapter 23, page 111)
have known bugs that limit their usability. (Report the ones that affect you, and the Checker Framework developers will
prioritize fixing them.)

31.2.3 Should I use pluggable types or Java subtypes?
For some programming tasks, you can use either a Java subclass or a type qualifier. As an example that your code
currently uses String to represent an address. You could use Java subclasses by creating a new Address class and
refactor your code to use it, or you could use type qualifiers by creating an @Address annotation and applying it to
some uses of String in your code. As another example, suppose that your code currently uses MyClass in two different
ways that should not interact with one another. You could use Java subclasses by changing MyClass into an interface or
abstract class, defining two subclasses, and ensuring that neither subclass ever refers to the other subclass nor to the
parent class.

If Java subclasses solve your problem, then that is probably better. We do not encourage you to use type qualifiers
as a poor substitute for classes. An advantage of using classes is that the Java type-checker always runs; by contrast, it
is possible to forget to run the pluggable type-checker. However, here are some reasons type qualifiers may be a better
choice.

Backward compatibility Using a new class may make your code incompatible with existing libraries or clients. Brian
Goetz expands on this issue in an article on the pseudo-typedef antipattern [Goe06]. Even if compatibility is
not a concern, a code change may introduce bugs, whereas adding annotations does not change the run-time
behavior. It is possible to add annotations to existing code, including code you do not maintain or cannot change.
For code that strictly cannot be changed, you can add annotations in comments (see Section 27.2.1), or you can
write library annotations (see Chapter 28).

Broader applicability Type annotations can be applied to primitives and to final classes such as String, which cannot
be subclassed.

Richer semantics and new supertypes Type qualifiers permit you to remove operations, with a compile-time guar-
antee. An example is that an immutable version of a type prohibits calling mutator methods (see Chapters 19

182

and 20). More generally, type qualifiers permit creating a new supertype, not just a subtype, of an existing Java
type.

More precise type-checking The Checker Framework is able to verify the correctness of code that the Java type-
checker would reject. Here are a few examples.

• It uses a dataflow analysis to determine a more precise type for variables after conditional tests or assign-
ments.
• It treats certain Java constructs more precisely, such as reflection (see Chapter 21).
• It includes special-case logic for type-checking specific methods, such as the Nullness Checker’s treatment

of Map.get.

Efficiency Type qualifiers have no run-time representation. Therefore, there is no space overhead for separate classes
or for wrapper classes for primitives. There is no run-time overhead for due to extra dereferences or dynamic
dispatch for methods that could otherwise be statically dispatched.

Less code clutter The programmer does not have to convert primitive types to wrappers, which would make the code
both uglier and slower. Thanks to defaults and type inference (Section 25.3.1), you may be able to write and
think in terms of the original Java type, rather than having to explicitly write one of the subtypes in all locations.

31.3 Usability of pluggable type-checking

31.3.1 Are type annotations easy to read and write?
The papers “Practical pluggable types for Java” [PAC+08] and “Building and using pluggable type-checkers” [DDE+11]
discuss case studies in which programmers found type annotations to be natural to read and write. The code continued
to feel like Java, and the type-checking errors were easy to comprehend and often led to real bugs.

You don’t have to take our word for it, though. You can try the Checker Framework for yourself.
The difficulty of adding and verifying annotations depends on your program. If your program is well-designed and

-documented, then skimming the existing documentation and writing type annotations is extremely easy. Otherwise,
you may find yourself spending a lot of time trying to understand, reverse-engineer, or fix bugs in your program, and
then just a moment writing a type annotation that describes what you discovered. This process inevitably improves your
code. You must decide whether it is a good use of your time. For code that is not causing trouble now and is unlikely to
do so in the future (the code is bug-free, and you do not anticipate changing it or using it in new contexts), then the
effort of writing type annotations for it may not be justified.

31.3.2 Will my code become cluttered with type annotations?
In summary: annotations do not clutter code; they are used much less frequently than generic types, which Java
programmers find acceptable; and they reduce the overall volume of documentation that a codebase needs.

As with any language feature, it is possible to write ugly code that over-uses annotations. However, in normal use,
very few annotations need to be written. Figure 1 of the paper Practical pluggable types for Java [PAC+08] reports data
for over 350,000 lines of type-annotated code:

• 1 annotation per 62 lines for nullness annotations (@NonNull, @Nullable, etc.)
• 1 annotation per 1736 lines for interning annotations (@Interned)
• 1 annotation per 27 lines for immutability annotations (IGJ type system)

These numbers are for annotating existing code. New code that is written with the type annotation system in mind
is cleaner and more correct, so it requires even fewer annotations.

Each annotation that a programmer writes replaces a sentence or phrase of English descriptive text that would
otherwise have been written in the Javadoc. So, use of annotations actually reduces the overall size of the documentation,
at the same time as making it machine-processable and less ambiguous.

183

http://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-issta2008-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-icse2011-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-issta2008-abstract.html

31.3.3 Will using the Checker Framework slow down my program? Will it slow down the
compiler?

Using the Checker Framework has no impact on the execution of your program: the compiler emits the identical
bytecodes as the Java 8 compiler and so there is no run-time effect. Because there is no run-time representation of type
qualifiers, there is no way to use reflection to query the qualifier on a given object, though you can use reflection to
examine a class/method/field declaration.

Using the Checker Framework does increase compilation time. In theory it should only add a few percent overhead,
but our current implementation can double the compilation time — or more, if you run many pluggable type-checkers
at once. This is especially true if you run pluggable type-checking on every file (as we recommend) instead of just on
the ones that have recently changed. Nonetheless, compilation with pluggable type-checking still feels like compilation,
and you can do it as part of your normal development process.

31.3.4 How do I shorten the command line when invoking a checker?
The compile options to javac can be a pain to type; for example, javac -processor
org.checkerframework.checker.nullness.NullnessChecker See Section 2.2.3 for a way to avoid
the need for the -processor command-line option.

31.4 How to handle warnings and errors

31.4.1 What should I do if a checker issues a warning about my code?
For a discussion of this issue, see Section 2.4.6.

31.4.2 What does a certain Checker Framework warning message mean?
Search through this manual for the text of the warning message. Oftentimes the manual explains it. If not, ask on the
mailing list.

31.4.3 Can a pluggable type-checker guarantee that my code is correct?
Each checker looks for certain errors. You can use multiple checkers to detect more errors in your code, but you will
never have a guarantee that your code is completely bug-free.

If the type-checker issues no warning, then you have a guarantee that your code is free of some particular error.
There are some limitations to the guarantee.

Most importantly, if you run a pluggable checker on only part of a program, then you only get a guarantee that those
parts of the program are error-free. For example, suppose you have type-checked a framework that clients are intended
to extend. You should recommend that clients run the pluggable checker. There is no way to force users to do so, so
you may want to retain dynamic checks or use other mechanisms to detect errors.

Section 2.3 states other limitations to a checker’s guarantee, such as regarding concurrency. Java’s type system is
also unsound in certain situations, such as for arrays and casts (however, the Checker Framework is sound for arrays
and casts). Java uses dynamic checks is some places it is unsound, so that errors are thrown at run time. The pluggable
type-checkers do not currently have built-in dynamic checkers to check for the places they are unsound. Writing
dynamic checkers would be an interesting and valuable project.

Other types of dynamism in a Java application do not jeopardize the guarantee, because the type-checker is
conservative. For example, at a method call, dynamic dispatch chooses some implementation of the method, but
it is impossible to know at compile time which one it will be. The type-checker gives a guarantee no matter what
implementation of the method is invoked.

Even if a pluggable checker cannot give an ironclad guarantee of correctness, it is still useful. It can find errors,
exclude certain types of possible problems (e.g., restricting the possible class of problems), improve documentation,
and increase confidence in your software.

184

http://groups.google.com/group/checker-framework-discuss

31.4.4 What guarantee does the Checker Framework give for concurrent code?
The Lock Checker (see Chapter 6) offers a way to detect and prevent certain concurrency errors.

By default, the Checker Framework assumes that the code that it is checking is sequential: that is, there are no
concurrent accesses from another thread. This means that the Checker Framework is unsound for concurrent code, in
the sense that it may fail to issue a warning about errors that occur only when the code is running in a concurrent setting.
For example, the Nullness Checker issues no warning for this code:

if (myobject.myfield != null) {
myobject.myfield.toString();

}

This code is safe when run on its own. However, in the presence of multithreading, the call to toString may fail
because another thread may set myobject.myfield to null after the nullness check in the if condition, but before the
if body is executed.

If you supply the -AconcurrentSemantics command-line option, then the Checker Framework assumes that any
field can be changed at any time. This limits the amount of flow-sensitive type qualifier refinement (Section 25.4) that
the Checker Framework can do.

31.4.5 How do I make compilation succeed even if a checker issues errors?
Section 2.2 describes the -Awarns command-line option that turns checker errors into warnings, so type-checking
errors will not cause javac to exit with a failure status.

31.4.6 Why does the checker always say there are 100 errors or warnings?
By default, javac only reports the first 100 errors or warnings. Furthermore, once javac encounters an error, it doesn’t
try compiling any more files (but does complete compilation of all the ones that it has started so far).

To see more than 100 errors or warnings, use the javac options -Xmaxerrs and -Xmaxwarns. To convert Checker
Framework errors into warnings so that javac will process all your source files, use the option -Awarns. See Section 2.2
for more details.

31.4.7 Why does the Checker Framework report an error regarding a type I have not writ-
ten in my program?

Sometimes, a Checker Framework warning message will mention a type you have not written in your program. This is
typically because a default has been applied where you did not write a type; see Section 25.3.1. In other cases, this
is because flow-sensitive type refinement has given an expression a more specific type than you wrote or than was
defaulted; see Section 25.4.

31.4.8 How can I do run-time monitoring of properties that were not statically checked?
Some properties are not checked statically (see Chapter 26 for reasons that code might not be statically checked). In
such cases, it would be desirable to check the property dynamically, at run time. Currently, the Checker Framework has
no support for adding code to perform run-time checking.

Adding such support would be an interesting and valuable project. An example would be an option that causes the
Checker Framework to automatically insert a run-time check anywhere that static checking is suppressed. If you are
able to add run-time verification functionality, we would gladly welcome it as a contribution to the Checker Framework.

Some checkers have library methods that you can explicitly insert in your source code. Examples include the
Nullness Checker’s NullnessUtils.castNonNull method (see Section 3.4.1) and the Regex Checker’s RegexUtil
class (see Section 9.2.4). But, it would be better to have more general support that does not require the user to explicitly
insert method calls.

185

api/org/checkerframework/checker/nullness/NullnessUtils.html#castNonNull-T-

31.5 Syntax of type annotations
There is also a separate FAQ for the type annotations syntax (http://types.cs.washington.edu/jsr308/current/
jsr308-faq.html).

31.5.1 What is a “receiver”?
The receiver of a method is the this formal parameter, sometimes also called the “current object”. Within the method
declaration, this is used to refer to the receiver formal parameter. At a method call, the receiver actual argument is
written before the method name.

The method compareTo takes two formal parameters. At a call site like x.compareTo(y), the two arguments are x
and y. It is desirable to be able to annotate the types of both of the formal parameters, and doing so is supported by both
Java’s type annotations syntax and by the Checker Framework.

A type annotation on the receiver is treated exactly like a type annotation on any other formal parameter. At each call
site, the type of the argument must be a consistent with (a subtype of or equal to) the declaration of the corresponding
formal parameter. If not, the type-checker issues a warning.

Here is an example. Suppose that @A Object is a supertype of @B Object in the following declaration:

class MyClass {
void requiresA(@A MyClass this) { ... }
void requiresB(@B MyClass this) { ... }

}

Then the behavior of four different invocations is as follows:

@A MyClass myA = ...;
@B MyClass myB = ...;

myA.requiresA() // OK
myA.requiresB() // compile-time error
myB.requiresA() // OK
myB.requiresB() // OK

The invocation myA.requiresB() does not type-check because the actual argument’s type is not a subtype of the
formal parameter’s type.

A top-level constructor does not have a receiver. An inner class constructor does have a receiver, whose type is the
same as the containing outer class. The receiver is distinct from the object being constructed. In a method of a top-level
class, the receiver is named this. In a constructor of an inner class, the receiver is named Outer.this and the result is
named this.

31.5.2 What is the meaning of an annotation after a type, such as @NonNull Object
@Nullable?

In a type such as @NonNull Object @Nullable [], it may appear that the @Nullable annotation is written after the
type Object. In fact, @Nullable modifies []. See the next FAQ, about array annotations (Section 31.5.3).

31.5.3 What is the meaning of array annotations such as @NonNull Object @Nullable
[]?

You should parse this as: (@NonNull Object) (@Nullable []). Each annotation precedes the component of the
type that it qualifies.

186

http://types.cs.washington.edu/jsr308/current/jsr308-faq.html
http://types.cs.washington.edu/jsr308/current/jsr308-faq.html

Thus, @NonNull Object @Nullable [] is a possibly-null array of non-null objects. Note that the first token in
the type, “@NonNull”, applies to the element type Object, not to the array type as a whole. The annotation @Nullable
applies to the array ([]).

Similarly, @Nullable Object @NonNull [] is a non-null array of possibly-null objects.
Some older tools interpret a declaration like @NonEmpty String[] var as “non-empty array of strings”. This is in

conflict with the Java type annotations specification, which defines it as meaning “array of non-empty strings”. If you
use one of these older tools, you will find this incompatibility confusing. You will have to live with it until the older
tool is updated to conform to the Java specification, or until you transition to a newer tool that conforms to the Java
specification.

31.5.4 What is the meaning of a type qualifier at a class declaration?
Writing an annotation on a class declaration makes that annotation implicit for all uses of the class (see Section 25.3).
If you write class @MyQual MyClass { ... }, then every unannotated use of MyClass is @MyQual MyClass.
A user is permitted to strengthen the type by writing a more restrictive annotation on a use of MyClass, such as
@MyMoreRestrictiveQual MyClass.

31.5.5 Why shouldn’t a qualifier apply to both types and declarations?
It is bad style for an annotation to apply to both types and declarations. In other words, every annotation should have a
@Target meta-annotation, and the @Target meta-annotation should list either only declaration locations or only type
annotations. (It’s OK for an annotation to target both ElementType.TYPE_PARAMETER and ElementType.TYPE_USE,
but no other declaration location along with ElementType.TYPE_USE.)

Sometimes, it may seem tempting for an annotation to apply to both type uses and (say) method declarations. Here
is a hypothetical example:

“Each Widget type may have a @Version annotation. I wish to prove that versions of widgets don’t get
assigned to incompatible variables, and that older code does not call newer code (to avoid problems when
backporting).

A @Version annotation could be written like so:

@Version("2.0") Widget createWidget(String value) { ... }

@Version("2.0") on the method could mean that the createWidget method only appears in the 2.0
version. @Version("2.0") on the return type could mean that the returned Widget should only be used
by code that uses the 2.0 API of Widget. It should be possible to specify these independently, such as a 2.0
method that returns a value that allows the 1.0 API method invocations.”

Both of these are type properties and should be specified with type annotations. No method annotation is necessary
or desirable. The best way to require that the receiver has a certain property is to use a type annotation on the receiver of
the method. (Slightly more formally, the property being checked is compatibility between the annotation on the type of
the formal parameter receiver and the annotation on the type of the actual receiver.) If you do not know what “receiver”
means, see the next question.

Another example of a type-and-declaration annotation that represents poor design is JCIP’s @GuardedBy annota-
tion [GPB+06]. As discussed in Section 6.3.1, it means two different things when applied to a field or a method. To
reduce confusion and increase expressiveness, the Lock Checker (see Chapter 6) uses the @Holding annotation for one
of these meanings, rather than overloading @GuardedBy with two distinct meanings.

31.6 Semantics of type annotations

31.6.1 Why are the type parameters to List and Map annotated as @NonNull?
The annotation on java.util.Collection only allows non-null elements:

187

public interface Collection<E extends @NonNull Object> {
...

}

Thus, you will get a type error if you write code like Collection<@Nullable Object>. A nullable type parameter is
also forbidden for certain other collections, including AbstractCollection, List, Map, and Queue.

The extends @NonNull Object bound is a direct consequence of the design of the collections classes; it merely
formalizes the Javadoc specification. The Javadoc for Collection states:

Some list implementations have restrictions on the elements that they may contain. For example, some
implementations prohibit null elements, . . .

Here are some consequences of the requirement to detect all nullness errors at compile time. If even one subclass of
a given collection class may prohibit null, then the collection class and all its subclasses must prohibit null. Conversely,
if a collection class is specified to accept null, then all its subclasses must honor that specification.

The Checker Framework’s annotations make apparent a flaw in the JDK design, and helps you to avoid problems
that might be caused by that flaw.

Justification from type theory Suppose B is a subtype of A. Then an overriding method in B must have a stronger (or
equal) signature than the overridden method in A. In a stronger signature, the formal parameter types may be supertypes,
and the return type may be a subtype. Here are examples:

class A { @NonNull Object Number m1(@NonNull Object arg) { ... } }
class B extends A { @Nullable Object Number m1(@NonNull Object arg) { ... } } // error!
class C extends A { @NonNull Object Number m1(@Nullable Object arg) { ... } } // OK
class D { @Nullable Object Number m2(@Nullable Object arg) { ... } }
class E extends D { @NonNull Object Number m2(@Nullable Object arg) { ... } } // OK
class F extends D { @Nullable Object Number m2(@NonNull Object arg) { ... } } // error!

According to these rules, since some subclasses of Collection do not permit nulls, then Collection cannot
either:

// does not permit null elements
class PriorityQueue<E> implements Collection<E> {

boolean add(E);
...

}
// must not permit null elements, or PriorityQueue would not be a subtype of Collection
interface Collection<E> {

boolean add(E);
...

}

Justification from checker behavior Suppose that you changed the bound in the Collection declaration to extends
@Nullable Object. Then, the checker would issue no warning for this method:

static void addNull(Collection l) {
l.add(null);

}

However, calling this method can result in a null pointer exception, for instance caused by the following code:

addNull(new PriorityQueue());

188

Therefore, the bound must remain as extends @NonNull Object.
By contrast, this code is OK because ArrayList is documented to support null elements:

static void addNull(ArrayList l) {
l.add(null);

}

Therefore, the upper bound in ArrayList is extends @Nullable Object. Any subclass of ArrayList must also
support null elements.

Suppressing warnings Suppose your program has a list variable, and you know that any list referenced by that
variable will definitely support null elements. Then, you can suppress the warning:

@SuppressWarnings("nullness:generic.argument") // any list passed to this
method will support null elements
static void addNull(List l) {

l.add(null);
}

You need to use @SuppressWarnings("nullness:generic.argument") whenever you use a collection that may
contain null elements in contradiction to its documentation. Fortunately, such uses are relatively rare.

For more details on suppressing nullness warnings, see Section 3.4.

31.6.2 How can I handle typestate, or phases of my program with different data properties?
Sometimes, your program works in phases that have different behavior. For example, you might have a field that starts
out null and becomes non-null at some point during execution, such as after a method is called. You can express this
property as follows:

1. Annotate the field type as @MonotonicNonNull.
2. Annotate the method that sets the field as @EnsuresNonNull("myFieldName"). (If method m1 calls method

m2, which actually sets the field, then you would probably write this annotation on both m1 and m2.)
3. Annotate any method that depends on the field being non-null as @RequiresNonNull("myFieldName"). The

type-checker will verify that such a method is only called when the field isn’t null — that is, the method is only
called after the setting method.

You can also use a typestate checker (see Chapter 23.1, page 111), but they have not been as extensively tested.

31.6.3 Why are explicit and implicit bounds defaulted differently?
The following two bits of code have the same semantics under Java, but are treated differently by the Checker
Framework’s CLIMB-to-top defaulting rules (Section 25.3.2):

class MyClass<T> { ... }
class MyClass<T extends Object> { ... }

The difference is the annotation on the upper bound of the type argument T. They are treated in the following.

class MyClass<T> == class MyClass<T extends @TOPTYPEANNO Object> { ... }
class MyClass<T extends Object> == class MyClass<T extends @DEFAULTANNO Object>

189

api/org/checkerframework/checker/nullness/qual/MonotonicNonNull.html
api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
api/org/checkerframework/checker/nullness/qual/RequiresNonNull.html

@TOPTYPEANNO is the top annotation in the type qualifier hierarchy. For example, for the nullness type system, the top
type annotation is @Nullable; as shown in Figure 3.1. @DEFAULTANNO is the default annotation for the type system.
For example, for the nullness type system, the default type annotation is @NonNull.

In some type systems, the top qualifier and the default are the same. For such type systems, the two code snippets
shown above are treated the same. An example is the regular expression type system; see Figure 9.1.

The CLIMB-to-top rule reduces the code edits required to annotate an existing program, and it treats types written
in the program consistently.

When a user writes no upper bound, as in class C<T> { ... }, then Java permits the class to be instantiated
with any type parameter. The Checker Framework behaves exactly the same, no matter what the default is for a
particular type system – and no matter whether the user has changed the default locally.

When a user writes an upper bound, as in class C<T extends OtherClass> { ... }, then the Checker
Framework treats this occurrence of OtherClass exactly like any other occurrence, and applies the usual defaulting
rules. Use of Object is treated consistently with all other types in this location and all other occurrences of Object in
the program.

It is uncommon for a user to write Object as an upper bound with no type qualifier: class C<T extends Object>
{ ... }. It is better style to write no upper bound or to write an explicit type annotation on Object.

31.7 Creating a new checker

31.7.1 How do I create a new checker?
In addition to using the checkers that are distributed with the Checker Framework, you can write your own checker to
check specific properties that you care about. Thus, you can find and prevent the bugs that are most important to you.

Chapter 29 gives complete details regarding how to write a checker. It also suggests places to look for more help,
such as the Checker Framework API documentation (Javadoc) and the source code of the distributed checkers.

To whet your interest and demonstrate how easy it is to get started, here is an example of a complete, useful
type-checker.

@TypeQualifier
@SubtypeOf(Unqualified.class)
@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
public @interface Encrypted { }

Section 22.2 explains this checker and tells you how to run it.

31.7.2 Why is there no declarative syntax for writing type rules?
A type system implementer can declaratively specify the type qualifier hierarchy (Section 29.3.2) and the type
introduction rules (Section 29.4.1). However, the Checker Framework uses a procedural syntax for specifying type-
checking rules (Section 29.6). A declarative syntax might be more concise, more readable, and more verifiable than a
procedural syntax.

We have not found the procedural syntax to be the most important impediment to writing a checker.
Previous attempts to devise a declarative syntax for realistic type systems have failed; see a technical paper [PAC+08]

for a discussion. When an adequate syntax exists, then the Checker Framework can be extended to support it.

31.8 Relationship to other tools

31.8.1 Why not just use a bug detector (like FindBugs)?
Pluggable type-checking finds more bugs than a bug detector does, for any given variety of bug.

190

A bug detector like FindBugs [HP04, HSP05], Jlint [Art01], or PMD [Cop05] aims to find some of the most obvious
bugs in your program. It uses a lightweight analysis, then uses heuristics to discard some of its warnings. Thus, even if
the tool prints no warnings, your code might still have errors — maybe the analysis was too weak to find them, or the
tool’s heuristics classified the warnings as likely false positives and discarded them.

A type-checker aims to find all the bugs (of certain varieties). It requires you to write type qualifiers in your program,
or to use a tool that infers types. Thus, it requires more work from the programmer, and in return it gives stronger
guarantees.

Each tool is useful in different circumstances, depending on how important your code is and your desired level of
confidence in your code. For more details on the comparison, see Section 32.5. For a case study that compared the
nullness analysis of FindBugs, Jlint, PMD, and the Checker Framework, see section 6 of the paper “Practical pluggable
types for Java” [PAC+08].

31.8.2 How does the Checker Framework compare with Eclipse’s null analysis?
Eclipse comes with a null analysis that can detect potential null pointer errors in your code. Eclipse’s built-in analysis
differs from the Checker Framework in several respects.

The Checker Framework’s Nullness Checker (see Chapter 3, page 24) is more precise: it does a deeper semantic
analysis, so it issues fewer false positives than Eclipse. For example, the Nullness Checker handles initialization and
map key checking, it supports method pre- and post-conditions, and it includes a powerful dataflow analysis.

Eclipse assumes that all code is multi-threaded, which cripples its local type inference. By contrast, the Checker
Framework allows the user to specify whether code will be run concurrently or not via the -AconcurrentSemantics
command-line option (see Section 31.4.4).

The Checker Framework is easier to run in integration scripts or in environments where not all developers are using
Eclipse.

Eclipse handles only nullness properties and is not extensible, whereas the Checker Framework comes with over 20
type-checkers (for a list, see Chapter 1, page 12) and is extensible to more properties.

There are also some benefits to Eclipse’s Null Analysis. It is faster than the Checker Framework, in part because it
is less featureful. It is built into Eclipse, so you do not have to download and install a separate Eclipse plugin as you do
for the Checker Framework (see Section 30.6.2). Its IDE integration is tighter and slicker.

(If you know of other differences, please let us know at checker-framework-dev@googlegroups.com so we can
update the manual.)

31.8.3 How does pluggable type-checking compare with JML?
JML, the Java Modeling Language [LBR06], is a language for writing formal specifications.

JML aims to be more expressive than pluggable type-checking. A programmer can write a JML specification
that describes arbitrary facts about program behavior. Then, the programmer can use formal reasoning or a theorem-
proving tool to verify that the code meets the specification. Run-time checking is also possible. By contrast, pluggable
type-checking can express a more limited set of properties about your program. Pluggable type-checking annotations
are more concise and easier to understand.

JML is not as practical as pluggable type-checking. The JML toolset is less mature. For instance, if your code
uses generics or other features of Java 5, then you cannot use JML. However, JML has a run-time checker, which the
Checker Framework currently lacks.

31.8.4 Is the Checker Framework an official part of Java?
The Checker Framework is not an official part of Java. The Checker Framework relies on type annotations, which are
part of Java 8. See the Type Annotations (JSR 308) FAQ for more details.

191

http://findbugs.sourceforge.net/
http://jlint.sourceforge.net/
http://pmd.sourceforge.net/
http://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-issta2008.pdf
http://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-issta2008.pdf
http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Ftasks%2Ftask-using_null_annotations.htm
http://www.cs.ucf.edu/~leavens/JML/
http://types.cs.washington.edu/jsr308/current/jsr308-faq.html#pluggable-type-checking-in-java

31.8.5 What is the relationship between the Checker Framework and JSR 305?
JSR 305 aimed to define official Java names for some annotations, such as @NonNull and @Nullable. However, it
did not aim to precisely define the semantics of those annotations nor to provide a reference implementation of an
annotation processor that validated their use.

By contrast, the Checker Framework precisely defines the meaning of a set of annotations and provides powerful
type-checkers that validate them. However, the Checker Framework is not an official part of the Java language; it
chooses one set of names, but another tool might choose other names.

JSR 305 has been abandoned; there has been no activity by its expert group since 2009. In the future, the Java
Community Process might standardize the names and meanings of specific annotations, after there is more experience
with their use in practice.

The Checker Framework defines annotations @NonNull and @Nullable that are compatible with annotations
defined by JSR 305, FindBugs, IntelliJ, and other tools; see Section 3.7.

31.8.6 What is the relationship between the Checker Framework and JSR 308?
JSR 308, also known as the Type Annotations specification, dictates the syntax of type annotations in Java SE 8: how
they are expressed in the Java language.

JSR 308 does not define any type annotations such as @NonNull, and it does not specify the semantics of any
annotations. Those tasks are left to third-party tools. The Checker Framework is one such tool.

The Checker Framework makes use of Java SE 8’s type annotation syntax, but the Checker Framework can be used
with previous versions of the Java language via the annotations-in-comments feature (Section 27.2.1).

192

Chapter 32

Troubleshooting and getting help

The manual might already answer your question, so first please look for your answer in the manual, including this chapter
and the FAQ (Chapter 31). If not, you can use the mailing list, checker-framework-discuss@googlegroups.com,
to ask other users for help. For archives and to subscribe, see http://groups.google.com/group/
checker-framework-discuss. To report bugs, please see Section 32.2. If you want to help out, you can give
feedback (including on the documentation), choose a bug and fix it, or select a project from the ideas list at
https://github.com/typetools/checker-framework/wiki/Ideas.

32.1 Common problems and solutions
• To verify that you are using the compiler you think you are, you can add -version to the command line. For

instance, instead of running javac -g MyFile.java, you can run javac -version -g MyFile.java. Then,
javac will print out its version number in addition to doing its normal processing.

32.1.1 Unable to run the checker, or checker crashes
If you are unable to run the checker, or if the checker or the compiler terminates with an error, then the problem may be
a problem with your environment. (If the checker or the compiler crashes, that is a bug in the Checker Framework;
please report it. See Section 32.2.) This section describes some possible problems and solutions.

• If you get the error
com.sun.tools.javac.code.Symbol$CompletionFailure: class file for com.sun.source.tree.Tree not found

then you are using the source installation and file tools.jar is not on your classpath. See the installation
instructions (Section 1.3).

• If you get an error such as

package org.checkerframework.checker.nullness.qual does not exist

despite no apparent use of import org.checkerframework.checker.nullness.qual.*; in the source code,
then perhaps jsr308_imports is set as a Java system property, a shell environment variable, or a command-line
option. You should solve this by unsetting the variable/option, which it is deprecated.
If the error is

package org.checkerframework.checker.nullness.qual does not exist

(note the extra apostrophe!), then you have probably misused quoting when supplying the (deprecated) jsr308_imports
environment variable.

• If you get an error like one of the following,
...\build.xml:59: Error running ${env.CHECKERFRAMEWORK}\checker\bin\javac.bat compiler

193

http://groups.google.com/group/checker-framework-discuss
http://groups.google.com/group/checker-framework-discuss
https://github.com/typetools/checker-framework/wiki/Ideas

.../bin/javac: Command not found

then the problem may be that you have not set the CHECKERFRAMEWORK environment variable, as described in
Section 30.1. Or, maybe you made it a user variable instead of a system variable.

• If you get one of these errors:
The hierarchy of the type ClassName is inconsistent

The type com.sun.source.util.AbstractTypeProcessor cannot be resolved.
It is indirectly referenced from required .class files

then you are likely not using the Checker Framework compiler. Use either $CHECKERFRAMEWORK/checker/bin/javac
one of the alternatives described in Section 1.3.

• If you get the error

java.lang.ArrayStoreException: sun.reflect.annotation.TypeNotPresentExceptionProxy

If you get an error such as

java.lang.NoClassDefFoundError: java/util/Objects

then you are trying to run the compiler using a JDK 6 or earlier JVM. Install and use a Java 7 or 8 JDK, at least
for running the Checker Framework.
then an annotation is not present at run time that was present at compile time. For example, maybe when you
compiled the code, the @Nullable annotation was available, but it was not available at run time. You can use
JDK 8 at run time, or compile with a Java 6 or 7 compiler that will ignore the annotations in comments.
• A “class file for . . . not found” error, especially for an inner class in the JDK, is probably due to a JDK version

mismatch.
In general, Java issues a “class file for . . . not found” error when your classpath contains code that was compiled
with some library, but your classpath does not contain that library itself.
For example, suppose that when you run the compiler, you are using JDK 8, but some library on your classpath
was compiled against JDK 6 or 7, and the compiled library refers to a class that only appears in JDK 6 or 7. (If
only one version of Java existed, or the Checker Framework didn’t try to support multiple different versions of
Java, this would not be a problem.)
Examples of classes that were in JDK 7 but were removed in JDK 8 include:

class file for java.util.TimeZone$DisplayNames not found

Examples of classes that were in JDK 6 but were removed in JDK 7 include:

class file for java.io.File$LazyInitialization not found
class file for java.util.Hashtable$EmptyIterator not found
java.lang.NoClassDefFoundError: java/util/Hashtable$EmptyEnumerator

Examples of classes that were not in JDK 7 but were introduced in JDK 8 include:

The type java.lang.Class$ReflectionData cannot be resolved

Examples of classes that were not in JDK 6 but were introduced in JDK 7 include:

class file for java.util.Vector$Itr not found

There are even classes that were introduced within a single JDK release. Classes that appear in JDK 7 release 71
but not in JDK 7 release 45 include:

class file for java.lang.Class$ReflectionData not found

You may be able to solve the problem by running

cd checker
ant jdk.jar bindist

to re-generate files checker/jdk/jdk{7,8}.jar and checker/bin/jdk{7,8}.jar.
That usually works, but if not, then you should recompile the Checker Framework from source rather than using
the pre-compiled distribution.

194

• A NoSuchFieldError such as this:

java.lang.NoSuchFieldError: NATIVE_HEADER_OUTPUT

Field NATIVE_HEADER_OUTPUT was added in JDK 8. The error message suggests that you’re not executing with
the right bootclasspath: some classes were compiled with the JDK 8 version and expect the field, but you’re
executing the compiler on a JDK without the field.
One possibility is that you are not running the Checker Framework compiler — use javac -version to check
this, then use the right one. (Maybe the Checker Framework javac is at the end rather than the beginning of your
path.)
If you are using Ant, then one possibility is that the javac compiler is using the same JDK as Ant is using. You
can correct this by being sure to use fork="yes" (see Section 30.2) and/or setting the build.compiler property
to extJavac.
If you are building from source, you might need to rebuild the Annotation File Utilities before recompiling or
using the Checker Framework.

• If you get an error that contains lines like these:

Caused by: java.util.zip.ZipException: error in opening zip file
at java.util.zip.ZipFile.open(Native Method)
at java.util.zip.ZipFile.<init>(ZipFile.java:131)

then one possibility is that you have installed the Checker Framework in a directory that contains special characters
that Java’s ZipFile implementation cannot handle. For instance, if the directory name contains “+”, then Java 1.6
throws a ZipException, and Java 1.7 throws a FileNotFoundException and prints out the directory name with “+”
replaced by blanks.

• If you get an error

error: scoping construct for static nested type cannot be annotated

then you have probably written something like @Nullable java.util.List. The correct syntax is
java.util.@Nullable List. But, it’s usually better to add import java.util.List to your source file, so
that you can just write @Nullable List. Likewise, you must write Outer.@Nullable StaticNestedClass
rather than @Nullable Outer.StaticNestedClass.
Java 8 requires that a type qualifier be written directly on the type that it qualifies, rather than on a scoping
mechanism that assists in resolving the name. Examples of scoping mechanisms are package names and outer
classes of static nested classes.
The reason for the Java 8 syntax is to avoid syntactic irregularity. When writing a member nested class (also
known as an inner class), it is possible to write annotations on both the outer and the inner class: @A1 Outer.
@A2 Inner. Therefore, when writing a static nested class, the annotations should go on the same place: Outer.
@A3 StaticNested (rather than @ConfusingAnnotation Outer. Nested where @ConfusingAnnotation
applies to Outer if Nested is a member class and applies to Nested if Nested is a static class). It’s not legal to
write an annotation on the outer class of a static nested class, because neither annotations nor instantiations of the
outer class affect the static nested class.
Similar arguments apply when annotating package.Outer.Nested.

32.1.2 Unexpected type-checking results
This section describes possible problems that can lead the type-checker to give unexpected results.

• If the Checker Framework is unable to verify a property that you know is true, then it is helpful to formulate
an argument about why the property is true. Recall that the Checker Framework does modular verification, one
procedure at a time; it observes the specifications, but not the implementations, of other methods.
If any aspects of your argument are not expressed as annotations, then you may need to write more annotations.
If any aspects of your argument are not expressible as annotations, then you may need to extend the type-checker.

195

• If a checker seems to be ignoring the annotation on a method, then it is possible that the checker is reading the
method’s signature from its .class file, but the .class file was not created by the JSR 308 compiler. You can
check whether the annotations actually appear in the .class file by using the javap tool.
If the annotations do not appear in the .class file, here are two ways to solve the problem:

– Re-compile the method’s class with the Checker Framework compiler. This will ensure that the type
annotations are written to the class file, even if no type-checking happens during that execution.

– Pass the method’s file explicitly on the command line when type-checking, so that the compiler reads its
source code instead of its .class file.

• If a checker issues a warning about a property that it accepted (or that was checked) on a previous line, then
probably there was a side-effecting method call in between that could invalidate the property. For example, in
this code:

if (currentOutgoing != null && !message.isCompleted()) {
currentOutgoing.continueBuffering(message);

}

the Nullness Checker will issue a warning on the second line:

warning: [dereference.of.nullable] dereference of possibly-null reference currentOutgoing
currentOutgoing.continueBuffering(message);
^

If currentOutgoing is a field rather than a local variable, and isCompleted() is not a pure method, then a null
pointer dereference can occur at the given location, because isCompleted() might set the field currentOutgoing
to null.
If you want to communicate that isCompleted() does not set the field currentOutgoing to null, you can use
@Pure, @SideEffectFree, or @EnsuresNonNull on the declaration of isCompleted(); see Sections 25.4.3
and 3.2.2.

• If a checker issues a type-checking error for a call that the library’s documentation states is correct, then maybe
that library method has not yet been annotated, so default annotations are being used.
To solve the problem, add the missing annotations to the library (see Chapter 28). Depending on the checker, the an-
notations might be expressed in the form of stub files (which appear together with the checker’s source code, such
as in file checker/src/org/checkerframework/checker/interning/jdk.astub for the Interning Checker)
or in the form of annotated libraries (which appear under checker/jdk/, such as at checker/jdk/nullness/src/
for the Nullness Checker.

• If the compiler reports that it cannot find a method from the JDK or another external library, then maybe the
stub/skeleton file for that class is incomplete.
To solve the problem, add the missing annotations to the library, as described in the previous item.
The error might take one of these forms:

method sleep in class Thread cannot be applied to given types
cannot find symbol: constructor StringBuffer(StringBuffer)

• If you get an error related to a bounded type parameter and a literal such as null, the problem may be missing
defaulting. Here is an example:

mypackage/MyClass.java:2044: warning: incompatible types in assignment.
T retval = null;

^
found : null
required: T extends @MyQualifier Object

A value that can be assigned to a variable of type T extends @MyQualifier Object only if that value is
of the bottom type, since the bottom type is the only one that is a subtype of every subtype of T extends
@MyQualifier Object. The value null satisfies this for the Java type system, and it must be made to satisfy
it for the pluggable type system as well. The typical way to address this is to write the meta-annotation
@ImplicitFor(trees=Tree.Kind.NULL_LITERAL) on the definition of the bottom type qualifier.

196

api/org/checkerframework/dataflow/qual/Pure.html
api/org/checkerframework/dataflow/qual/SideEffectFree.html
api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html

• An error such as
MyFile.java:123: error: incompatible types in argument.

myModel.addElement("Scanning directories...");
^

found : String
required: ? extends Object

may stem from use of raw types. (“String” might be a different type and might have type annotations.) If your
declaration was
DefaultListModel myModel;

then it should be
DefaultListModel<String> myModel;

Running the regular Java compiler with the -Xlint:unchecked command-line option will help you to find and
fix problems such as raw types.

• The error
error: annotation type not applicable to this kind of declaration

... List<@NonNull String> ...

indicates that you are using a definition of @NonNull that is a declaration annotation, which cannot be used in
that syntactic location. For example, many legacy annotations such as those listed in Figure 3.2 are declaration
annotations. You can fix the problem by instead using a definition of @NonNull that is a type annotation, such as
the Checker Framework’s annotations; often this only requires changing an import statement. Alternately, if you
wish to continue using the legacy annotations in declaration locations, see Section 27.2.5.
• This compile-time error

unknown enum constant java.lang.annotation.ElementType.TYPE_USE

indicates that you are compiling using a Java 6 or 7 JDK, but your code references an enum constant that is only
defined in the Java 8 JDK. The problem might be that your code uses a library that references the enum constant.
In particular, the type annotations shipped with the Checker Framework reference ElementType.TYPE_USE. You
can use the Checker Framework, but still compile and run your code in a Java 6 or 7 JVM, by following the
instructions in Section 27.2.
If you ignore the error and run your code in a Java 6 or 7 JVM, then you will get a run-time error:
java.lang.ArrayStoreException: sun.reflect.annotation.EnumConstantNotPresentExceptionProxy

• If Eclipse gives the warning
The annotation @NonNull is disallowed for this location

then you have the wrong version of the org.eclipse.jdt.annotation classes. Eclipse includes two incompati-
ble versions of these annotations. You want the one with a name like org.eclipse.jdt.annotation_2.0.0.....jar,
which you can find in the plugins subdirectory under the Eclipse installation directory. Add this .jar file to your
build path.

32.1.3 Unable to build the checker, or to run programs
An error like this

Unsupported major.minor version 52.0

means that you have compiled some files into the Java 8 format (version 52.0), but you are trying to run them with
Java 7 or earlier. Likewise, “Unsupported major.minor version 51.0” means that you have compiled some files into the
Java 7 format (version 51.0), but you are trying to run them with Java 6 or earlier. Here are ways to solve the problem:

• Use a newer JVM (run java -version to determine the version you are using)
• Use the Checker Framework to type-check your code, then afterword produce a classfile that targets an earlier

JVM by supplying arguments such as javac -source 7 -target 7

197

http://docs.oracle.com/javase/8/docs/api/java/lang/annotation/ElementType.html#TYPE_USE

32.1.4 Classfile version warning
The following warning is innocuous and you can ignore it, or you can suppress it using the -Xlint:-classfile
command-line argument to javac:

RuntimeVisibleTypeAnnotations attribute introduced in version 52.0 class files is ignored in version 51.0 class files

This warning results when you compile a library using the Checker Framework compiler, then use a normal Java
compiler to compile client code that uses the library. The Checker Framework compiler puts Java 8 type annotations
even in Java 7 classfiles, for the benefit of modular typechecking. The Checker Framework compiler reads these
annotations in Java 7, and other compilers ignore them.

32.2 How to report problems (bug reporting)
If you have a problem with any checker, or with the Checker Framework, please file a bug at https://github.com/
typetools/checker-framework/issues. (First, check whether there is an existing bug report for that issue.)

Alternately (especially if your communication is not a bug report), you can send mail to checker-framework-
dev@googlegroups.com. We welcome suggestions, annotated libraries, bug fixes, new features, new checker plugins,
and other improvements.

Please ensure that your bug report is clear and that it is complete. Otherwise, we may be unable to understand it or
to reproduce it, either of which would prevent us from fixing the bug. Your bug report will be most helpful if you:

• Add -version -verbose -AprintErrorStack -AprintAllQualifiers to the javac options. This causes
the compiler to output debugging information, including its version number.

• Indicate exactly what you did. Don’t skip any steps, and don’t merely describe your actions in words. Show
the exact commands by attaching a file or using cut-and-paste from your command shell (a screenshot is not as
useful).

• Include all files that are necessary to reproduce the problem. This includes every file that is used by any of the
commands you reported, and possibly other files as well. Please attach the files, rather than pasting their contents
into the body of your bug report or email message.

• Indicate exactly what the result was by attaching a file or using cut-and-paste from your command shell (don’t
merely describe it in words). Also indicate what you expected the result to be, and why — remember, a bug is a
difference between desired and actual outcomes.

• Indicate what you have already done to try to understand the problem. Did you do any additional experiments?
What parts of the manual did read, and what else did you search for in the manual? This information will prevent
you being given redundant suggestions.

A particularly useful format for a test case is as a new file, or a diff to an existing file, for the existing Checker Frame-
work test suite. For instance, for the Nullness Checker, see directory checker-framework/checker/tests/nullness/.
But, please report your bug even if you do not report it in this format.

32.3 Building from source
The Checker Framework release (Section 1.3) contains everything that most users need, both to use the distributed
checkers and to write your own checkers. This section describes how to compile its binaries from source. You will be
using the latest development version of the Checker Framework, rather than an official release.

32.3.1 Obtain the source
Obtain the latest source code from the version control repository:

198

https://github.com/typetools/checker-framework/issues
https://github.com/typetools/checker-framework/issues

export JSR308=$HOME/jsr308
mkdir -p $JSR308
cd $JSR308
hg clone https://bitbucket.org/typetools/jsr308-langtools jsr308-langtools
git clone https://github.com/typetools/checker-framework.git checker-framework
git clone https://github.com/typetools/annotation-tools.git annotation-tools

(Alternately, you could use the version of the source code that is packaged in the Checker Framework release.)

32.3.2 Build the Type Annotations compiler
The Checker Framework compiler is built upon a compiler called the Type Annotations compiler. The Type Annotations
compiler is a variant of the OpenJDK javac that supports annotations in comments. The Checker Framework compiler
is a small wrapper around the Type Annotations compiler, which adds annotated JDKs and the Checker Framework jars
to the classpath.

1. Set the JAVA_HOME environment variable to the location of your JDK 7 or 8 installation (not the JRE installation,
and not JDK 6 or earlier). This needs to be an Oracle JDK. (The JAVA_HOME environment variable might already
be set, because it is needed for Ant to work.)
In the bash shell, the following command sometimes works (it might not because java might be the version in
the JDK or in the JRE):

export JAVA_HOME=${JAVA_HOME:-$(dirname $(dirname $(dirname $(readlink -f $(/usr/bin/which java)))))}

2. Compile the Type Annotations tools:

cd $JSR308/jsr308-langtools/make
ant clean-and-build-all-tools

3. Add the jsr308-langtools/dist/bin directory to the front of your PATH environment variable. Example
command:

export PATH=$JSR308/jsr308-langtools/dist/bin:${PATH}

You may wish to later put the Checker Framework javac even earlier on your path. The Checker Framework’s
javac ensures that the Checker Framework is on your classpath and bootclasspath, but is otherwise identical to
the Type Annotations compiler.

32.3.3 Build the Annotation File Utilities
This is simply done by:

cd $JSR308/annotation-tools
ant

You do not need to add the Annotation File Utilities to the path, as the Checker Framework build finds it using
relative paths.

32.3.4 Build the Checker Framework
1. Run ant to create checker.jar:

cd $JSR308/checker-framework/checker
ant

2. Add tools.jar and checker.jar to your classpath. (If you do not do this, you will have to supply the -cp
option whenever you run javac and use a checker plugin.) Example command:
export CLASSPATH=${CLASSPATH}:$JAVA_HOME/lib/tools.jar:$JSR308/checker-framework/checker/dist/checker.jar

199

3. Test that everything works:

• Run ant all-tests in the checker directory:
cd $JSR308/checker-framework/checker
ant all-tests

• Run the Nullness Checker examples (see Section 3.5, page 30).

32.3.5 Build the Checker Framework Manual (this document)
1. To build the manual you will need HEVEA (http://hevea.inria.fr/) installed.
2. Run make in the checker/manual directory to build both the PDF and HTML versions of the manual.

32.4 Publications
Here are two technical papers about the Checker Framework itself:

• “Practical pluggable types for Java” [PAC+08] (ISSTA 2008, http://homes.cs.washington.edu/~mernst/
pubs/pluggable-checkers-issta2008.pdf) describes the design and implementation of the Checker Frame-
work. The paper also describes case studies in which the Nullness, Interning, Javari, and IGJ Checkers found
previously-unknown errors in real software. The case studies also yielded new insights about type systems.

• “Building and using pluggable type-checkers” [DDE+11] (ICSE 2011, http://homes.cs.washington.edu/
~mernst/pubs/pluggable-checkers-icse2011.pdf) discusses further experience with the Checker Frame-
work, increasing the number of lines of verified code to 3 million. The case studies are of the Fake Enum,
Signature String, Interning, and Nullness Checkers. The paper also evaluates the ease of pluggable type-checking
with the Checker Framework: type-checkers were easy to write, easy for novices to use, and effective in finding
errors.

Here are some papers about type systems that were implemented and evaluated using the Checker Framework:

Nullness (Chapter 3) See the two papers about the Checker Framework, described above.
Rawness initialization (Section 3.8.6) “Inference of field initialization” (ICSE 2011, http://homes.cs.washington.

edu/~mernst/pubs/initialization-icse2011-abstract.html) describes inference for the Rawness Ini-
tialization Checker.

Interning (Chapter 5) See the two papers about the Checker Framework, described above.
Fake enumerations (Chapter 7) See the ICSE 2011 paper about the Checker Framework, described above.
Regular expressions (Chapter 9) “A type system for regular expressions” [SDE12] (FTfJP 2012, http://homes.cs.

washington.edu/~mernst/pubs/regex-types-ftfjp2012-abstract.html) describes the Regex Checker.
Format Strings (Chapter 10) “A type system for format strings” [WKSE14] (ISSTA 2014, http://homes.cs.

washington.edu/~mernst/pubs/format-string-issta2014-abstract.html) describes the Format String
Checker.

Signature strings (Chapter 13) See the ICSE 2011 paper about the Checker Framework, described above.
GUI Effects (Chapter 14) “JavaUI: Effects for controlling UI object access” [GDEG13] (ECOOP 2013, http://

homes.cs.washington.edu/~mernst/pubs/gui-thread-ecoop2013-abstract.html) describes the GUI
Effect Checker.

“Verification games: Making verification fun” (FTfJP 2012, http://homes.cs.washington.edu/~mernst/pubs/
verigames-ftfjp2012-abstract.html) describes a general inference approach that, at the time, had only
been implemented for the Nullness Checker (Section 3).

IGJ and OIGJ immutability (Chapter 19) “Object and reference immutability using Java generics” [ZPA+07] (ES-
EC/FSE 2007, http://homes.cs.washington.edu/~mernst/pubs/immutability-generics-fse2007-abstract.
html) and “Ownership and immutability in generic Java” [ZPL+10] (OOPSLA 2010, http://homes.cs.
washington.edu/~mernst/pubs/ownership-immutability-oopsla2010-abstract.html) describe the IGJ
and OIGJ immutability type systems. For further case studies, also see the ISSTA 2008 paper about the Checker
Framework, described above.

200

http://hevea.inria.fr/
http://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-issta2008.pdf
http://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-issta2008.pdf
http://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-icse2011.pdf
http://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-icse2011.pdf
http://homes.cs.washington.edu/~mernst/pubs/initialization-icse2011-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/initialization-icse2011-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/regex-types-ftfjp2012-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/regex-types-ftfjp2012-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/format-string-issta2014-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/format-string-issta2014-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/gui-thread-ecoop2013-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/gui-thread-ecoop2013-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/verigames-ftfjp2012-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/verigames-ftfjp2012-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/immutability-generics-fse2007-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/immutability-generics-fse2007-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/ownership-immutability-oopsla2010-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/ownership-immutability-oopsla2010-abstract.html

Javari immutability (Chapter 20) “Javari: Adding reference immutability to Java” [TE05] (OOPSLA 2005, http://
homes.cs.washington.edu/~mernst/pubs/ref-immutability-oopsla2005-abstract.html) describes
the Javari type system. For inference, see “Inference of reference immutability” [QTE08] (ECOOP 2008, http://
homes.cs.washington.edu/~mernst/pubs/infer-refimmutability-ecoop2008-abstract.html) and “Pa-
rameter reference immutability: Formal definition, inference tool, and comparison” [AQKE09] (J.ASE 2009,
http://homes.cs.washington.edu/~mernst/pubs/mutability-jase2009-abstract.html). For further
case studies, also see the ISSTA 2008 paper about the Checker Framework, described above.

Thread locality (Section 23.3) “Loci: Simple thread-locality for Java” [WPM+09] (ECOOP 2009, http://janvitek.
github.io/pubs/ecoop09.pdf)

Generic Universe Types (Section 23.5) “Tunable static inference for Generic Universe Types” (ECOOP 2011, http:
//homes.cs.washington.edu/~mernst/pubs/tunable-typeinf-ecoop2011-abstract.html) describes in-
ference for the Generic Universe Types type system.
Another implementation of Universe Types and ownership types is described in “Inference and checking of object
ownership” [HDME12] (ECOOP 2012, http://homes.cs.washington.edu/~mernst/pubs/infer-ownership-ecoop2012-abstract.
html).

Approximate data (Section 23.6) “EnerJ: Approximate Data Types for Safe and General Low-Power Computa-
tion” [SDF+11] (PLDI 2011, http://adriansampson.net/media/papers/enerj-pldi2011.pdf)

Information flow and tainting (Section 23.8) “Collaborative Verification of Information Flow for a High-Assurance
App Store” [EJM+14] (CCS 2014, http://homes.cs.washington.edu/~mernst/pubs/infoflow-ccs2014.
pdf) describes the SPARTA information flow type system.

ReIm immutability “ReIm & ReImInfer: Checking and inference of reference immutability and method purity” [HMDE12]
(OOPSLA 2012, http://homes.cs.washington.edu/~mernst/pubs/infer-refimmutability-oopsla2012-abstract.
html) describes the ReIm immutability type system.

In addition to these papers that discuss use the Checker Framework directly, other academic papers use the Checker
Framework in their implementation or evaluation. Most educational use of the Checker Framework is never published,
and most commercial use of the Checker Framework is never discussed publicly.

(If you know of a paper or other use that is not listed here, please inform the Checker Framework developers so we
can add it.)

32.5 Comparison to other tools
A pluggable type-checker, such as those created by the Checker Framework, aims to help you prevent or detect all
errors of a given variety. An alternate approach is to use a bug detector such as FindBugs, Jlint, or PMD.

A pluggable type-checker differs from a bug detector in several ways:

• A type-checker aims to find all errors. Thus, it can verify the absence of errors: if the type-checker says there are
no null pointer errors in your code, then there are none. (This guarantee only holds for the code it checks, of
course; see Section 2.3.)
A bug detector aims to find some of the most obvious errors. Even if it reports no errors, then there may still be
errors in your code.
Both types of tools may issue false alarms, also known as false positive warnings; see Section 26.

• A type-checker requires you to annotate your code with type qualifiers, or to run an inference tool that does so
for you. A bug detector may not require annotations. This means that it may be easier to get started running a
bug detector.

• A type-checker may use a more sophisticated and complete analysis. A bug detector typically does a more
lightweight analysis, coupled with heuristics to suppress false positives.
As one example, a type-checker can take advantage of annotations on generic type parameters, such as
List<@NonNull String>, permitting it to be much more precise for code that uses generics.

A case study [PAC+08, §6] compared the Checker Framework’s nullness checker with those of FindBugs, Jlint, and
PMD. The case study was on a well-tested program in daily use. The Checker Framework tool found 8 nullness errors
(that is, null pointer dereferences). None of the other tools found any errors.

201

http://homes.cs.washington.edu/~mernst/pubs/ref-immutability-oopsla2005-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/ref-immutability-oopsla2005-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/infer-refimmutability-ecoop2008-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/infer-refimmutability-ecoop2008-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/mutability-jase2009-abstract.html
http://janvitek.github.io/pubs/ecoop09.pdf
http://janvitek.github.io/pubs/ecoop09.pdf
https://ece.uwaterloo.ca/~wdietl/ownership/
http://homes.cs.washington.edu/~mernst/pubs/tunable-typeinf-ecoop2011-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/tunable-typeinf-ecoop2011-abstract.html
http://www.cs.rpi.edu/~huangw5/cf-inference/
http://homes.cs.washington.edu/~mernst/pubs/infer-ownership-ecoop2012-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/infer-ownership-ecoop2012-abstract.html
http://adriansampson.net/media/papers/enerj-pldi2011.pdf
http://homes.cs.washington.edu/~mernst/pubs/infoflow-ccs2014.pdf
http://homes.cs.washington.edu/~mernst/pubs/infoflow-ccs2014.pdf
http://homes.cs.washington.edu/~mernst/pubs/infer-refimmutability-oopsla2012-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/infer-refimmutability-oopsla2012-abstract.html
http://findbugs.sourceforge.net/
http://jlint.sourceforge.net/
http://pmd.sourceforge.net/

Also see the JSR 308 [Ern08] documentation for a detailed discussion of related work.

32.6 Credits, changelog, and license
The key developers of the Checker Framework are Mahmood Ali, Telmo Correa, Werner M. Dietl, Michael D. Ernst,
and Matthew M. Papi. Many other developers have also contributed, for example by writing the checkers that are
distributed with the Checker Framework. Many, many users to list have provided valuable feedback, for which we are
grateful.

Differences from previous versions of the checkers and framework can be found in the changelog.txt file. This file
is included in the Checker Framework distribution and is also available on the web at http://types.cs.washington.
edu/checker-framework/current/changelog.txt.

Two different licenses apply to different parts of the Checker Framework.

• The Checker Framework itself is licensed under the GNU General Public License (GPL), version 2. The GPL is
the same license that OpenJDK is licensed under. That means that type-checking your code using the Checker
Framework is no more dangerous (from an intellectual property point of view) than compiling your code using
javac.

• The more permissive MIT License applies to code that you might want to include in your own program, such as
the annotations.

For details, see file LICENSE.txt.

202

http://types.cs.washington.edu/jsr308/
http://types.cs.washington.edu/checker-framework/current/changelog.txt
http://types.cs.washington.edu/checker-framework/current/changelog.txt

Bibliography

[AQKE09] Shay Artzi, Jaime Quinonez, Adam Kieżun, and Michael D. Ernst. Parameter reference immutability:
Formal definition, inference tool, and comparison. Automated Software Engineering, 16(1):145–192,
March 2009.

[Art01] Cyrille Artho. Finding faults in multi-threaded programs. Master’s thesis, Swiss Federal Institute of
Technology, March 15, 2001.

[Cop05] Tom Copeland. PMD Applied. Centennial Books, November 2005.

[Cro06] Jose Cronembold. JSR 198: A standard extension API for Integrated Development Environments.
http://jcp.org/en/jsr/detail?id=198, May 8, 2006.

[Dar06] Joe Darcy. JSR 269: Pluggable annotation processing API. http://jcp.org/en/jsr/detail?id=269,
May 17, 2006. Public review version.

[DDE+11] Werner Dietl, Stephanie Dietzel, Michael D. Ernst, Kıvanç Muşlu, and Todd Schiller. Building and using
pluggable type-checkers. In ICSE’11, Proceedings of the 33rd International Conference on Software
Engineering, pages 681–690, Waikiki, Hawaii, USA, May 25–27, 2011.

[EJM+14] Michael D. Ernst, René Just, Suzanne Millstein, Werner M. Dietl, Stuart Pernsteiner, Franziska Roesner,
Karl Koscher, Paulo Barros, Ravi Bhoraskar, Seungyeop Han, Paul Vines, and Edward X. Wu. Collabo-
rative verification of information flow for a high-assurance app store. In Proceedings of the 21st ACM
Conference on Computer and Communications Security (CCS), Scottsdale, AZ, USA, November 4–6,
2014.

[Ern08] Michael D. Ernst. Type Annotations specification (JSR 308). http://types.cs.washington.edu/
jsr308/, September 12, 2008.

[Eva96] David Evans. Static detection of dynamic memory errors. In PLDI 1996, Proceedings of the SIGPLAN
’96 Conference on Programming Language Design and Implementation, pages 44–53, Philadelphia, PA,
USA, May 21–24, 1996.

[FL03] Manuel Fähndrich and K. Rustan M. Leino. Declaring and checking non-null types in an object-oriented
language. In Object-Oriented Programming Systems, Languages, and Applications (OOPSLA 2003),
pages 302–312, Anaheim, CA, USA, November 6–8, 2003.

[FLL+02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and Raymie Stata.
Extended static checking for Java. In PLDI 2002, Proceedings of the ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation, pages 234–245, Berlin, Germany, June 17–19, 2002.

[GDEG13] Colin S. Gordon, Werner Dietl, Michael D. Ernst, and Dan Grossman. JavaUI: Effects for controlling
UI object access. In ECOOP 2013 — Object-Oriented Programming, 27th European Conference, pages
179–204, Montpellier, France, July 3–5, 2013.

203

http://jcp.org/en/jsr/detail?id=198
http://jcp.org/en/jsr/detail?id=269
http://types.cs.washington.edu/jsr308/
http://types.cs.washington.edu/jsr308/

[Goe06] Brian Goetz. The pseudo-typedef antipattern: Extension is not type definition. http://www.ibm.com/
developerworks/java/library/j-jtp02216/, February 21, 2006.

[GPB+06] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes, and Doug Lea. Java Concurrency
in Practice. Addison-Wesley, 2006.

[HDME12] Wei Huang, Werner Dietl, Ana Milanova, and Michael D. Ernst. Inference and checking of object
ownership. In ECOOP 2012 — Object-Oriented Programming, 26th European Conference, pages 181–
206, Beijing, China, June 14–16, 2012.

[HMDE12] Wei Huang, Ana Milanova, Werner Dietl, and Michael D. Ernst. ReIm & ReImInfer: Checking and
inference of reference immutability and method purity. In Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA 2012), pages 879–896, Tucson, AZ, USA, October 23–25, 2012.

[HP04] David Hovemeyer and William Pugh. Finding bugs is easy. In Companion to Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA 2004), pages 132–136, Vancouver, BC, Canada,
October 26–28, 2004.

[HSP05] David Hovemeyer, Jaime Spacco, and William Pugh. Evaluating and tuning a static analysis to find
null pointer bugs. In ACM SIGPLAN/SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering (PASTE 2005), pages 13–19, Lisbon, Portugal, September 5–6, 2005.

[LBR06] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A behavioral interface
specification language for Java. ACM SIGSOFT Software Engineering Notes, 31(3), March 2006.

[PAC+08] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Jeff H. Perkins, and Michael D. Ernst. Practical
pluggable types for Java. In ISSTA 2008, Proceedings of the 2008 International Symposium on Software
Testing and Analysis, pages 201–212, Seattle, WA, USA, July 22–24, 2008.

[QTE08] Jaime Quinonez, Matthew S. Tschantz, and Michael D. Ernst. Inference of reference immutability. In
ECOOP 2008 — Object-Oriented Programming, 22nd European Conference, pages 616–641, Paphos,
Cyprus, July 9–11, 2008.

[SDE12] Eric Spishak, Werner Dietl, and Michael D. Ernst. A type system for regular expressions. In FTfJP 2012:
14th Workshop on Formal Techniques for Java-like Programs, pages 20–26, Beijing, China, June 12, 2012.

[SDF+11] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze, and Dan Grossman.
EnerJ: Approximate data types for safe and general low-power computation. In PLDI 2011, Proceedings
of the ACM SIGPLAN 2011 Conference on Programming Language Design and Implementation, pages
164–174, San Jose, CA, USA, June 6–8, 2011.

[SM11] Alexander J. Summers and Peter Müller. Freedom before commitment: A lightweight type system for
object initialisation. In Object-Oriented Programming Systems, Languages, and Applications (OOPSLA
2011), pages 1013–1032, Portland, OR, USA, October 25–27, 2011.

[TE05] Matthew S. Tschantz and Michael D. Ernst. Javari: Adding reference immutability to Java. In Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA 2005), pages 211–230, San
Diego, CA, USA, October 18–20, 2005.

[VPEJ14] Mohsen Vakilian, Amarin Phaosawasdi, Michael D. Ernst, and Ralph E. Johnson. Cascade: A universal
type qualifier inference tool. Technical report, University of Illinois at Urbana-Champaign, Urbana, IL,
USA, September 2014.

[WKSE14] Konstantin Weitz, Gene Kim, Siwakorn Srisakaokul, and Michael D. Ernst. A type system for format
strings. In ISSTA 2014, Proceedings of the 2014 International Symposium on Software Testing and
Analysis, pages 127–137, San Jose, CA, USA, July 23–25, 2014.

204

http://www.ibm.com/developerworks/java/library/j-jtp02216/
http://www.ibm.com/developerworks/java/library/j-jtp02216/

[WPM+09] Tobias Wrigstad, Filip Pizlo, Fadi Meawad, Lei Zhao, and Jan Vitek. Loci: Simple thread-locality for Java.
In ECOOP 2009 — Object-Oriented Programming, 23rd European Conference, pages 445–469, Genova,
Italy, July 8–10, 2009.

[ZPA+07] Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, Adam Kieżun, and Michael D. Ernst. Object
and reference immutability using Java generics. In ESEC/FSE 2007: Proceedings of the 11th European
Software Engineering Conference and the 15th ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pages 75–84, Dubrovnik, Croatia, September 5–7, 2007.

[ZPL+10] Yoav Zibin, Alex Potanin, Paley Li, Mahmood Ali, and Michael D. Ernst. Ownership and immutability in
generic Java. In Object-Oriented Programming Systems, Languages, and Applications (OOPSLA 2010),
pages 598–617, Revo, NV, USA, October 19–21, 2010.

205

	Introduction
	How to read this manual
	How it works: Pluggable types
	Installation
	Example use: detecting a null pointer bug
	What comes with the Checker Framework distribution

	Using a checker
	Writing annotations
	Running a checker
	Distributing your annotated project
	Summary of command-line options
	Checker auto-discovery
	Shorthand for built-in checkers

	What the checker guarantees
	Tips about writing annotations
	How to get started annotating legacy code
	Do not annotate local variables unless necessary
	Annotations indicate normal behavior
	Subclasses must respect superclass annotations
	Annotations on constructor invocations
	What to do if a checker issues a warning about your code

	Nullness Checker
	What the Nullness Checker checks
	Nullness annotations
	Nullness qualifiers
	Nullness method annotations
	Initialization qualifiers
	Map key qualifiers

	Writing nullness annotations
	Implicit qualifiers
	Default annotation
	Conditional nullness
	Nullness and arrays
	Run-time checks for nullness
	Additional details
	Inference of @NonNull and @Nullable annotations

	Suppressing nullness warnings
	Suppressing warnings with assertions and method calls

	Examples
	Tiny examples
	Example annotated source code

	Tips for getting started
	Other tools for nullness checking
	Which tool is right for you?
	Incompatibility note about FindBugs @Nullable
	Relationship to Optional<T>

	Initialization Checker
	Initialization qualifiers
	How an object becomes initialized
	Partial initialization
	How to handle warnings
	More details about initialization checking
	Rawness Initialization Checker

	Map Key Checker
	Map key annotations
	Examples
	Inference of @KeyFor annotations

	Interning Checker
	Interning annotations
	Annotating your code with @Interned
	Implicit qualifiers

	What the Interning Checker checks
	Limitations of the Interning Checker

	Examples
	Other interning annotations

	Lock Checker
	Lock annotations
	Type annotations for objects protected by locks
	Lock method annotations
	Discussion of @Holding

	Examples
	Examples of @GuardedBy and @Holding
	Examples of @EnsuresLockHeld and @EnsuresLockHeldIf
	Example of @LockingFree

	Other lock annotations
	Relationship to annotations in Java Concurrency in Practice

	Possible extensions
	A note on Lock Checker internals

	Fake Enum Checker
	Fake enum annotations
	What the Fenum Checker checks
	Running the Fenum Checker
	Suppressing warnings
	Example
	References

	Tainting Checker
	Tainting annotations
	Tips on writing @Untainted annotations
	@Tainted and @Untainted can be used for many purposes
	Qualifier Parameters

	Regex Checker for regular expression syntax
	Regex annotations
	Annotating your code with @Regex
	Implicit qualifiers
	Capturing groups
	Concatenation of partial regular expressions
	Testing whether a string is a regular expression
	Qualifier Parameters
	Suppressing warnings

	Format String Checker
	Formatting terminology
	Format String Checker annotations
	Conversion Categories

	What the Format String Checker checks
	Possible false alarms
	Possible missed alarms

	Implicit qualifiers
	FormatMethod
	Testing whether a format string is valid

	Internationalization Format String Checker (I18n Format String Checker)
	Internationalization Format String Checker annotations
	Conversion categories
	What the Internationalization Format String Checker checks
	Resource files
	Running the Internationalization Format Checker
	Testing whether a string has an i18n format type
	Examples of using the Internationalization Format Checker

	Property File Checker
	General Property File Checker
	Internationalization Checker
	Internationalization annotations
	Running the Internationalization Checker

	Compiler Message Key Checker

	Signature Checker for string representations of types
	Signature annotations
	What the Signature Checker checks

	GUI Effect Checker
	GUI effect annotations
	What the GUI Effect Checker checks
	Running the GUI Effect Checker
	Annotation defaults
	Polymorphic effects
	Defining an effect-polymorphic type
	Using an effect-polymorphic type
	Subclassing a specific instantiation of an effect-polymorphic type
	Subtyping with polymorphic effects

	References

	Units Checker
	Units annotations
	Extending the Units Checker
	What the Units Checker checks
	Running the Units Checker
	Suppressing warnings
	References

	Constant Value Checker
	Annotations
	Type Annotations
	Compile-time execution of expressions

	Warnings

	Aliasing Checker
	Aliasing annotations
	Leaking contexts
	Restrictions on where @Unique may be written
	Aliasing type refinement

	Linear Checker for preventing aliasing
	Linear annotations
	Limitations

	IGJ immutability checker
	IGJ and mutability
	IGJ Annotations
	What the IGJ Checker checks
	Implicit and default qualifiers
	Annotation IGJ dialect
	Semantic Changes
	Syntax Changes
	Templating over immutability: @I

	Iterators and their abstract state
	Examples

	Javari immutability checker
	Javari annotations
	Writing Javari annotations
	Implicit qualifiers
	Inference of Javari annotations

	What the Javari Checker checks
	Iterators and their abstract state
	Examples

	Reflection resolution
	MethodVal and ClassVal Checkers
	ClassVal Checker
	MethodVal Checker
	MethodVal and ClassVal inference

	Reflection resolution example

	Subtyping Checker
	Using the Subtyping Checker
	Subtyping Checker example

	Third-party checkers
	Typestate checkers
	Comparison to flow-sensitive type refinement

	Units and dimensions checker
	Thread locality checker
	Safety-Critical Java checker
	Generic Universe Types checker
	EnerJ checker
	CheckLT taint checker
	SPARTA information flow type-checker for Android

	Generics and polymorphism
	Generics (parametric polymorphism or type polymorphism)
	Raw types
	Restricting instantiation of a generic class
	Type annotations on a use of a generic type variable
	Annotations on wildcards
	Examples of qualifiers on a type parameter
	Covariant type parameters
	Method type argument inference and type qualifiers

	Qualifier polymorphism
	Examples of using polymorphic qualifiers
	Relationship to subtyping and generics
	Using multiple polymorphic qualifiers in a method signature
	Using a single polymorphic qualifier on an element type
	The @PolyAll qualifier applies to every type system

	Qualifier parameters
	Motivation for qualifier parameters
	Overview of qualifier parameters
	Qualifier parameter wildcards
	Syntax of qualifier parameters
	Primary qualifiers

	Advanced type system features
	Invariant array types
	Context-sensitive type inference for array constructors
	The effective qualifier on a type (defaults and inference)
	Default qualifier for unannotated types
	Defaulting rules and CLIMB-to-top
	Inherited defaults
	Inherited wildcard annotations
	Default qualifiers for .class files (conservative library defaults)

	Automatic type refinement (flow-sensitive type qualifier inference)
	Run-time tests and type refinement
	Fields and flow-sensitive analysis
	Side effects, determinism, purity, and flow-sensitive analysis
	Assertions

	Writing Java expressions as annotation arguments
	Unused fields
	@Unused annotation

	Suppressing warnings
	@SuppressWarnings annotation
	@SuppressWarnings syntax
	Where @SuppressWarnings can be written
	Good practices when suppressing warnings

	@AssumeAssertion string in an assert message
	Suppressing warnings and defensive programming

	-AsuppressWarnings command-line option
	-AskipUses and -AonlyUses command-line options
	-AskipDefs and -AonlyDefs command-line options
	-Alint command-line option
	No -processor command-line option
	Checker-specific mechanisms

	Handling legacy code
	Checking partially-annotated programs: handling unannotated code
	Backward compatibility with earlier versions of Java
	Annotations in comments
	Import statements and receiver parameters in comments
	Migrating away from annotations in comments
	No modular type-checking when targeting Java 5/6/7
	Distributing declaration annotations instead of type annotations

	Annotating libraries
	Compiling partially-annotated libraries
	The -AuseSafeDefaultsForUnannotatedSourceCode command-line argument
	Workflow for creating or augmenting a partially-annotated library

	Using stub classes
	Using a stub file
	Stub file format
	Creating a stub file
	Troubleshooting stub libraries
	Limitations

	Troubleshooting/debugging annotated libraries

	How to create a new checker
	Relationship of the Checker Framework to other tools
	The parts of a checker
	Annotations: Type qualifiers and hierarchy
	Defining the type qualifiers
	Declaratively defining the qualifier hierarchy
	Procedurally defining the qualifier hierarchy
	Defining a default annotation
	Completeness of the type hierarchy

	Type factory: Implicit annotations
	Declaratively specifying implicit annotations
	Procedurally specifying implicit annotations

	Dataflow: enhancing flow-sensitive type qualifier inference
	Create required classes and configure their use
	Override methods that handle Nodes of interest
	Determine the expressions to refine the types of
	Implement the refinement

	Visitor: Type rules
	AST traversal
	Avoid hardcoding

	The checker class: Compiler interface
	Bundling multiple checkers
	Providing command-line options

	Testing framework
	Debugging options
	Amount of detail in messages
	Stub and JDK libraries
	Progress tracing
	Saving the command-line arguments to a file
	Miscellaneous debugging options
	Examples

	Documenting the checker
	javac implementation survival guide
	Checker access to compiler information
	How a checker fits in the compiler as an annotation processor

	Integrating a checker with the Checker Framework

	Integration with external tools
	Javac compiler
	Ant task
	Explanation

	Maven
	Debugging the Maven compiler command-line arguments

	Gradle
	IntelliJ IDEA
	Eclipse
	Using an Ant task
	Eclipse plugin for the Checker Framework

	tIDE
	Type inference tools
	Varieties of type inference
	Type inference to annotate a program

	Frequently Asked Questions (FAQs)
	Motivation for pluggable type-checking
	I don't make type errors, so would pluggable type-checking help me?
	When should I use type qualifiers, and when should I use subclasses?

	Getting started
	How do I get started annotating an existing program?
	Which checker should I start with?
	Should I use pluggable types or Java subtypes?

	Usability of pluggable type-checking
	Are type annotations easy to read and write?
	Will my code become cluttered with type annotations?
	Will using the Checker Framework slow down my program? Will it slow down the compiler?
	How do I shorten the command line when invoking a checker?

	How to handle warnings and errors
	What should I do if a checker issues a warning about my code?
	What does a certain Checker Framework warning message mean?
	Can a pluggable type-checker guarantee that my code is correct?
	What guarantee does the Checker Framework give for concurrent code?
	How do I make compilation succeed even if a checker issues errors?
	Why does the checker always say there are 100 errors or warnings?
	Why does the Checker Framework report an error regarding a type I have not written in my program?
	How can I do run-time monitoring of properties that were not statically checked?

	Syntax of type annotations
	What is a ``receiver''?
	What is the meaning of an annotation after a type, such as @NonNull Object @Nullable?
	What is the meaning of array annotations such as @NonNull Object @Nullable []?
	What is the meaning of a type qualifier at a class declaration?
	Why shouldn't a qualifier apply to both types and declarations?

	Semantics of type annotations
	Why are the type parameters to List and Map annotated as @NonNull?
	How can I handle typestate, or phases of my program with different data properties?
	Why are explicit and implicit bounds defaulted differently?

	Creating a new checker
	How do I create a new checker?
	Why is there no declarative syntax for writing type rules?

	Relationship to other tools
	Why not just use a bug detector (like FindBugs)?
	How does the Checker Framework compare with Eclipse's null analysis?
	How does pluggable type-checking compare with JML?
	Is the Checker Framework an official part of Java?
	What is the relationship between the Checker Framework and JSR 305?
	What is the relationship between the Checker Framework and JSR 308?

	Troubleshooting and getting help
	Common problems and solutions
	Unable to run the checker, or checker crashes
	Unexpected type-checking results
	Unable to build the checker, or to run programs
	Classfile version warning

	How to report problems (bug reporting)
	Building from source
	Obtain the source
	Build the Type Annotations compiler
	Build the Annotation File Utilities
	Build the Checker Framework
	Build the Checker Framework Manual (this document)

	Publications
	Comparison to other tools
	Credits, changelog, and license

