

Android UI Design i

Android UI Design

Android UI Design ii

Contents

1 Android UI Overview 1

1.1 Introduction . 1

1.2 Android App Structure and UI patterns . 1

1.2.1 Top level view . 2

1.2.2 Detail view . 3

1.2.3 Action Bar . 3

1.3 Standard components . 3

1.4 Multiple devices support . 7

2 Android UI: Understanding Views 10

2.1 Overview . 10

2.2 Views . 10

2.2.1 TextView component . 12

2.2.2 ImageView component . 14

2.2.3 Input controls . 16

2.3 UI Events and Listeners . 22

2.4 UI Development . 24

2.5 View and Adapters . 27

2.5.1 Handling ListView events . 32

2.5.2 Custom Adapter and View Holder pattern . 34

2.6 Download the Source Code . 37

3 Android UI: Layouts with View Groups and Fragments 38

3.1 Overview . 38

3.2 Layout overview . 38

3.2.1 LinearLayout . 39

3.2.2 TableLayout . 44

3.2.3 RelativeLayout . 50

3.2.4 FrameLayout . 55

3.2.5 GridLayout . 55

3.2.6 Layout and multiple screen support . 55

Android UI Design iii

3.3 Fragments . 55

3.3.1 Fragment lifecycle . 59

3.3.2 How to use fragments . 61

3.3.3 FrameLayout and FragmentManager . 64

3.3.4 Fragment Activity communication . 64

3.3.5 Inter fragment communication . 66

3.3.6 Multiple screen support using fragments . 66

3.4 Download the Source Code . 71

4 Android UI: Adding Multimedia to an App 72

4.1 Overview . 72

4.2 Multimedia API . 72

4.2.1 Using Android Camera . 74

4.3 Graphics . 77

4.4 Drawable . 82

4.4.1 Shape drawable . 83

4.4.2 State list . 88

4.4.3 Nine-patch . 91

4.5 Download the Source Code . 95

5 Android UI: Themes and Styles 96

5.1 Introduction . 96

5.2 Style definition . 97

5.2.1 Inheritance . 97

5.2.2 Style properties . 97

5.3 Creating and applying themes . 100

5.3.1 Themes and platforms . 108

5.4 Conclusion . 108

5.5 Download the Source Code . 108

6 Android UI: Full Sample App 109

6.1 Introduction . 109

6.2 App structure . 109

6.2.1 Item List with ListView and Object Model . 112

6.2.2 Multi-device support and layout considerations . 116

6.2.3 Add item user interface layout . 118

6.2.4 Tag Color/Priority Spinner . 120

6.2.5 Date and Time picker . 122

6.2.6 Main Activity . 125

6.2.7 Action bar . 126

6.3 Styling the app . 129

6.4 Conclusion . 132

6.5 Download the Source Code . 132

Android UI Design iv

Copyright (c) Exelixis Media P.C., 2015

All rights reserved. Without limiting the rights under
copyright reserved above, no part of this publication
may be reproduced, stored or introduced into a retrieval system, or
transmitted, in any form or by any means (electronic, mechanical,
photocopying, recording or otherwise), without the prior written
permission of the copyright owner.

Android UI Design v

Preface

Android is an operating system based on the Linux kernel and designed primarily for touchscreen mobile devices such as smart-
phones and tablet computers. Android OS has taken over the world of mobile devices and is growing rapidly the last few years.

Android’s user interface is based on direct manipulation, using touch inputs that loosely correspond to real-world actions, like
swiping, tapping, pinching and reverse pinching to manipulate on-screen objects. The response to user input is designed to be
immediate and provides a fluid touch interface.

In this course, you will get a look at the fundamentals of Android UI design. You will understand user input, views and layouts,
as well as adapters and fragments.

Furthermore, you will learn how to add multimedia to an app and also leverage themes and styles. Of course, all these are tied
up with a sample application, which you will build from scratch.

Android UI Design vi

About the Author

Francesco Azzola is an electronic engineer, having achieved his degree at the University of Perugia (Italy). He has more than 15
years experience in architecting and developing JEE applications. He worked in the telecom area for several years architecting
VAS service with JEE technology and developing mobile applications. In particular his experience and activities are focused in:

• Android software development

• JEE enterprise application

• Multichannel application (Web, Mobile, Voice channel)

He designed and implemented a java library for UCP protocol to exchange information with a SMS gateway. He also designed
the Vodafone MAM java library to send and receive SMS. He designed and developed a GSM AT commands library to connect
to a GSM external model, so that an application using this library can send and receive SMS and monitor the GSM modem status.

Francesco developed a SMS/GSM application in JEE, used by some italian mobile companies to support huge SMS/MMS traffic
and to develop value added services. He worked on designing and developing a tool to analyze SIM Card GSM/UMTS in order
to represent its file system in XML format. This tool was developed in Java/JEE technology and it can be used to verify sim card
compliance to the specifications.

He designed and implemented a JEE enterprise application using all JEE technologies for an insurance company. He developed
and implemented a jee library useful to support multichannel application that can be accessed using normal browser, mobile
application (Android and so on) and by Voice (Voice recognition and Text to speech).

Francesco has also developed several Android apps some of them are published on Google Play.

He wrote several articles for Java.net regarding JavaFX, JBI (Java Business Integration) and SMS, JavaFX JEE integration using
Spring and also some other articles for italian online magazine.

Lately he is working for a company that provides software solutions for public administration and in more detail my activities
are focused on document management.

His areas of interest include mobile application development in Android, JEE architecture and OpenSource software that he used
for developing some projects described above.

During his career he has received these certifications:

• Sun Certified Enterprise Architect (SCEA)

• Sun Certified Web Component Developer (SCWCD)

• Sun Certified Java Programmer (SCJP)

Android UI Design 1 / 132

Chapter 1

Android UI Overview

1.1 Introduction

Android is a widely used OS made for smart phones and tablets. It is an open source project led by Google and it is released under
Apache License. This permissive license helped this OS to be widely adopted and allows the manufacturers to freely modify and
customize it. As matter of fact, despite Android being designed for smartphones and tablets, it is also used in TVs, cameras and
so on. Moreover, Android has a very large community that extend its features and creates apps that cover almost all aspects.

All android applications, called apps, are built on Android UI framework. App interface is the first thing a user sees and interacts
with. From the user perspective, this framework keeps the overall experience consistent for every app installed in our smartphone
or tablets. At the same time, from the developer perspective, this framework provides some basic blocks that can be used to build
complex and consistent user interface (API).

Android UI interface is divided in three different areas:

• Home screen

• All apps

• Recent screen

The home screen is the “landing” area when we power our phone on. This interface is highly customizable and themed. Using
widgets we can create and personalize our “home” screen. All apps is the interface where the app installed are displayed, while
recent screens are the list of last used apps.

Since its born, Android has changed a lot in terms of its features and its interfaces. The growth of the smartphone power made
possible creating ever more appealing apps.

At the beginning, apps in Android did not have a consistent interface and well defined rules so every app had a different approach,
navigation structure and buttons position. This caused user confusion and it was one of the most important missing features
compared to the iOS.

1.2 Android App Structure and UI patterns

Android apps are very different from each other because they try to address different user needs. There are simple apps with a
very simple UI that has just only one view and there are other apps much more complex with a very structured navigation and
multiple views.

In general, we can say an Android app is made by a top-level view and detail/level view.

Android UI Design 2 / 132

Figure 1.1: screenshot

One of the biggest efforts made by Google was to define a well defined set of rules that helps developers to create appealing user
interfaces. At the same time, these rules help users to navigate through every app in the same way. We call this UI consistency.
Android, moreover, guarantees to the developers the required flexibility to customize the app look and feel and make it unique.
These rules are known as UI patterns. Patterns are proven solution approaches to well known problems. Thus, having a well
defined UI pattern catalog and knowing when and where apply them, we can create appealing apps that are not only full of
interesting features but they are enjoyable by users and easy to use.

1.2.1 Top level view

As said, the top level view is the “landing” area of our app, so we have to reserve to it a special attention, because this is the first
thing an user sees of our app. There are some specific patterns that can be applied when designing this view depending on the
type of information we want to show:

• Fixed tabs

• Spinner

• Navigation drawer

We have to choose one of them carefully depending on the nature of our app. We can use fixed tabs when we want to give to
the user an overview of the different views present in our app, so that a user can switch easily between them to show different
type of information. A typical example is a app that shows tech news: in this case we could use different tabs to group news like
(‘Android’,iOS, ‘Games’ and so on).

Spinner is used when we want to move directly to a specific view, this is the case of a calendar app when we can use spinner to
go directly to a specific month.

Android UI Design 3 / 132

The navigation drawer is one of the newest patterns introduced by Google. This is a sliding menu, usually at the left side of the
smartphone screen, that can be opened and closed by the user. This pattern can be used when we have a multiple top level view
and we want to give to the user a fast access to one of them, or we want to give to the user the freedom to move to one low level
view directly. This pattern replaces, somehow, an old pattern called dashboard widely used in the past. This pattern is simple a
view where there are some big buttons/icons to access to specific views/app features.

1.2.2 Detail view

The detail view is a low level view where a user can interact with data directly. It is used to show data and edit them. In this
kind of view the layout plays an important role to make data well organized and structured. At this level, we can implement
an efficient navigation to improve usability of our app. In fact, we can use swipe view pattern so that user can move between
different detail views. Depending on the type of component we use to show detail information to the user, we can implement
some low level patterns that simplify the user interaction with our app.

1.2.3 Action Bar

The action bar is relatively new in Android and was introduced in Android 3.0 (API level 11). It is a well known pattern that
plays an important role. An action bar is a piece of the screen, usually at the top, that is persistent across multiple views. It
provides some key functions:

• App branding: icon area

• Title area

• Key action area

• Menu area

1.3 Standard components

How do we build an user interface? Android gives some key components that can be used to create user interface that follows
the pattern we talked about before. All the Android user interface are built using these key components:

• View It is the base class for all visual components (control and widgets). All the controls present in an android app are derived
from this class. A View is an object that draws something on a smartphone screen and enables an user to interact with it.

• Viewgroup A ViewGroup can contain one or more Views and defines how these Views are placed in the user interface
(these are used along with Android Layout managers.

• Fragments Introduced from API level 11, this component encapsulates a single piece of UI interface. They are very useful
when we have to create and optimize our app user interface for multiple devices or multiple screen size.

• Activities Usually an Android app consists of several activities that exchange data and information. An Activity takes
care of creating the user interface.

Moreover, Android provides several standard UI controls, Layout managers and widgets that we can use without much effort and
with which we can create apps fast and simply.

Furthermore, we can can extend them and create a custom control with a custom layout and behaviour. Using these four compo-
nents and following the standard UI patterns we can create amazing apps that are “easy-to-use”. There are some other aspects,
anyway, we have to consider when building and coding an app, like themes, styles, images and so on, and those will be covered
in the following articles.

As said, Android provides some standard UI components that can be grouped in:

• Tabs

Android UI Design 4 / 132

• Spinners

• Pickers

• Lists

• Buttons

• Dialogs

• Grid lists

• TextFields

The figure below shows some Android custom components:

Figure 1.2: screenshot

If we analyze in more detail an Android user interface, we can notice that it has an hierarchical structure where at the root there’s
a ViewGroup. A ViewGroup behaves like an invisible container where single views are placed following some rules. We
can combine ViewGroup with ViewGroup to have more control on how views are located. We have to remember that more
complex is the user interface more time the system requires to render it. Therefore, for better performance we should create
simple UIs. Additionally, a clean interface helps user to have a better experience when using our app.

A typical UI structure is shown below:

Android UI Design 5 / 132

Figure 1.3: screenshot

If we create a simple android app, using our IDE, we can verify the UI structure:

Android UI Design 6 / 132

Figure 1.4: screenshot

From the example above, we can notice that at the top of the hierarchy there is a ViewGroup (called RelativeLayout) and
then there are a list of view child (controls and widgets).

When we want to create an UI in Android we have to create some files in XML format. Android is very powerful from this point
of view because we can “describe” our UI interface just in XML format. The OS will then convert it in a real code lines when
we compile our app and create the apk. We will cover this topic in a later article where we will describe how we can code a real
Android UI using layouts and so on.

Android UI Design 7 / 132

1.4 Multiple devices support

As we know by now, Android is a widely used system by smartphones and tablets. It is installed on many devices and it is a great
opportunity for developers because it is possible to reach a wide audience. On the other side, this large number of devices that
use Android is a big challenge for every Android developer. To provide a great user experience, we have to take under account
that our app can run on variety of devices with different screen resolutions and physical screen sizes.

We have to consider that our app can run on a smartphone or on a tablet and we have to provide the same usability even if the
differences in terms of screen resolution and size are big. Our app has to be so flexible that it can adapt its layout and controls
depending on the device where it is installed on. Let’s suppose, for example, that we have an app that shows a list of items and
when the user clicks on one of them, the app shows the item detail. It is a very common situation; if our app runs on a smartphone
we need to have two screens one for the list and one for the details as shown below:

Figure 1.5: screenshot

while if our app runs on a tablet, it has to show the details on the same screen:

Android UI Design 8 / 132

Figure 1.6: screenshot

Even if the system tries its best to scale and resize our app so that it works on different screen sizes, we have to make our best
effort to ensure that our app supports several screens. This is a big challenge and we can win it if we follow some guidelines.

There are some key concepts we have to understand before coding our app:

• Screen size It is the physical screen or in other words, the real dimension of our device screen.

• Density It is the number of pixels in a given area. Usually we consider dot per inch (dpi). This is a measure of the screen
quality.

• Orientation This is how the screen is oriented. It can be landscape or portrait.

• Density independent pixel This is a new pixel unit measure introduced by Android. It is called dp. One dp is equivalent at
one pixel at 160dpi screen. We should use dp unit in our measures when creating UI, at the runtime the system takes care to
convert it in real pixel.

From the screen size point of view, Android groups the devices in four areas,small, normal, large and extra large (xlarge),
depending on the actual screen dimension expressed in inches. From the dpi point of view, on the other hand, we can group
devices in: ldpi (low dpi), mdpi (medium dpi), hdpi (high dpi), xhdpi (extra high dpi) and lately xxhdpi. This is important when
we use drawables (i.e bitmaps), because we have to create several images according to the different screen resolution.

This categorization is reflected in our IDE (i.e. Eclipse or Android Studio), so if we look under the res directory we can find a
structure like the one shown below:

Android UI Design 9 / 132

Figure 1.7: screenshot

The best practices we have to follow are:

• Don’t use fixed dimensions expressed in pixel, instead we should use dp.

• Provide several layout structures for different screen size, we can do it creating several layout files.

• Provide several bitmap with different resolution for different screen resolution. We can consider using 9-Patches-Drawables.

Moreover, Android provides a resource qualifier mechanism that helps us to have more control on how the system select the
resource. Usually we can use:

<resource_name>_<qualifier>

where the resource_name can be for example drawable or layout while the qualifier can be hdpi, large and so on. Look here if
you want to have more information.

Even if we follow all the best practices to support multiple screen in our app, there might be some situations where they are
not enough, especially when we want to support smartphones and tablets. In this case, Android has introduced the Fragment
concept. Fragments are available since API 11 and there is a library to maintain the backward compatibility. We will cover
these topics in the next articles. Stay tuned!

http://developer.android.com/guide/practices/screens_support.html

Android UI Design 10 / 132

Chapter 2

Android UI: Understanding Views

2.1 Overview

In our previous chapter, we introduced some basic concepts about Android UI patterns and we saw how we can create consistent
UI following those patterns. In this article, we want to explore more about Views and how we can use them to build great user
interfaces. This article will cover concepts about Views and Adapters. Developing a user interface in Android can be quite
simple since we can describe them using XML files and the system will do the heavy work converting those in real user interface
components, placing them according to the screen size and resolution.

The Android UI framework provides some basic UI components, that are called controls or widgets, helping developers while
coding and building an app.

2.2 Views

The View class is the basic class that all the components extend. A View draws something on a piece of screen and it is
responsible to handle events while user interacts with it. Even the generic ViewGroup class extends View. A ViewGroup
is a special View that holds other views and places these views following some rules. We will see that Android provides some
specialized views that helps us to handle text, images, user inputs, buttons and so on.

All these views have some key aspects in common:

• All views have a set of properties: These properties affect the way the view is rendered. There is a set of properties common
to all views, while there are some other properties depending on the type of view.

• Focus: The system manages the focus on each view and depending on the user input, we can modify and force the focus on a
specific view.

• Listeners: All views have listeners which are used to handle events when the user interacts with the view. We can register our
app to listen to specific events that occur on a view.

• Visibility: We can control if a view is visible or not and we can change the view visibility at runtime too.

A view property is a key value pair that we can use to customize the view behavior. The property values can be:

• a number

• a string

• a reference to a value written somewhere else

Android UI Design 11 / 132

The first two options are trivial, the third is the most interesting one because we can create a file (always in XML) that holds a
list of values and we can reference it in our property value. This is the best approach to follow especially when we use themes
and styles or we want to support multi-language apps.

One of the most important property is view id: this is a unique identifier for the view and we can look up a specific view using
this id. This is a “static” property meaning we cannot change it once we have defined it.

When we want to set a view property, we have two ways to do it:

• using XML while we define our view

• programmatically

For example, let’s suppose we want to define a TextView (it writes a text). In XML we have:

<TextView
android:id="@+id/textView1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/hello_world" />

As you can notice, we defined an id called textView1, some other properties that have a string values and another property called
android:text that reference a value written somewhere else.

We could do the same thing using just code lines:

TextView tv = new TextView(this);
tv.setText("blabla");

These two approaches are equivalent; however, the first one in XML is the preferred one. There is a correspondence between
XML view property and the Java method: usually for each XML property there is a set method that we can use in our code. You
can look here to have more information about this correspondence. In XML, a view property is called attribute.

Two properties that play an important role are layout_width and layout_height. These two properties define how large
and how tall should be the view. We can use two predefined values:

• MATCH_PARENT

• WRAP_CONTENT

With MATCH_PARENT value, we mean that we want our view as big as its parent that holds it, while with WRAP_CONTENT we
specify that our view must be big enough to hold its content.

There is another option: using a numeric value. In this case, we specify the exact measure of our view. In this case, the best
practice suggests using dp unit measure so that our view can be adapted to different screen density.

Talking about view listeners, this is a well-known approach when we want to be notified about some events. A listener in Java
is an interface that defines some methods, which our listener class must implement so that it can receive notifications when a
specific event occurs.

The Android SDK has several listener types, so different interfaces can be implemented. Two of the most popular are: View.
OnClickListener, View.OnTouchListener and so on.

Android provides several standard components and of course if we cannot find a component that fulfills our needs, we can always
implement a custom view. Using a custom view, we can define what our view will draw on the screen and its behaviour. We can
even define custom properties that affect the view’s behavior. In this case, we have to extend the basic View class and override
some methods.

http://developer.android.com/reference/android/view/View.html
http://developer.android.com/reference/android/view/View.OnClickListener.html
http://developer.android.com/reference/android/view/View.OnClickListener.html
http://developer.android.com/reference/android/view/View.OnTouchListener.html

Android UI Design 12 / 132

2.2.1 TextView component

This is one of the simplest components. We use it when we want to show a text on the screen. We have seen it before:

<TextView
android:id="@+id/textView1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/hello_world" />

where android:text holds the text we want to show. It has some attributes we can use to specify how we want to show the
text:

• android:fontFamily - It is the font-family.

• android:shadowColor - It is the shadow color.

• android:shadowDx - It is the shadow x axis offset.

• android:shadowDy - It is the shadow y axis offset.

• android:textStyle - It is the style (bold, italic, bolditalic).

• android:textSize - It is the text size.

Below are some examples of TextView:

Android UI Design 13 / 132

Figure 2.1: screenshot

Android UI Design 14 / 132

and the corresponding XML is:

<TextView
android:id="@+id/textView1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Android UI" />

<TextView
android:id="@+id/textView2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Android UI"
android:textStyle="italic" />

<TextView
android:id="@+id/textView2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Android UI"
android:textColor="#FFFFFF"
android:textSize="15dp"
android:textStyle="bold" />

2.2.2 ImageView component

This component is used to show an image on the screen. The image we want to show can be placed inside our apk or we can
load it remotely. In the first case, our image has to be placed under the res/drawable directory. Base on what we discussed
in our previous chapter, we already know we have to keep in mind that our app can run on multipe devices with different screen
density.

To better support different screen densities, we can create different images with different resolutions. The res/drawable
directory is the default directory where the system looks if it cannot find an image with the right density for the screen. Generally
speaking, we have to create at least four different image with different resolutions, in fact we can notice in our IDE that there are
at least five directories:

• drawable-ldpi (not supported any more)

• drawable-mdpi (medium dpi)

• drawable-hdpi (high dpi)

• drawable-xhdpi (extra-high dpi)

• drawable-xxhdpi (x-extra-high dpi)

• drawable

An important thing to remember is the following: the images must have the same name. Once we have it, we can use the
ImageView in this way:

<ImageView
android:id="@+id/img"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/robot" />

where we referenced the image, called robot.png, using @drawable/robot (without the extension). The result is shown
below:

Android UI Design 15 / 132

Figure 2.2: screenshot

Android UI Design 16 / 132

If the image has to be loaded remotely, there are some considerations to keep in mind while doing it. First, you should consider
that loading an image from a remote server is a time consuming operation and you should do it in a separate thread so that you
can avoid ANR (Application Not Responding) problem. If you want to keep things simple you could use an AsyncTask or you
can use the Volley lib. The second thing to remember is that you cannot set the image in an XML file, but you can define only
the ImageView without referencing an image. In this case, you can set the image using:

img.setImageBitmap(your_bitmap)

where your_bitmap is the image you have loaded remotely.

2.2.3 Input controls

Input controls are components that the user can interact with. Using a component like that, you can, for example, give to
the user the chance to insert some values. The Android UI framework provides a wide range of input controls: text field,
input field, toggle buttons, radio buttons, buttons, checkbox, pickers and so on. Each of them has a
specialized class and we can build complex interfaces using these components. There is a list of common components, below,
with the class that handles it:

Table 2.1: datasheet

Component Description Class
Button This one of the most used

components. It can be pressed by a
user and when pressed we can launch
an action.

Button

TextFields This is an editable text and we give to
the user the chance to insert some
data. EditText is the classic input
field while
AutoCompleteTextView is a
component we can use when we have
a pre-defined list of result and we
want the system to complete some
words inserted by user

EditText AutoCompleteTextView

CheckBox This is an on/off component. We can
use it when we want user to select one
or more choices.

CheckBox

Radio buttons Very similar to the checkbox except
for the fact that the user can select
only one item.

RadioGroup RadioButton

Toggle button On/off component with a state
indicator.

ToggleButton

Pickers Component that helps the user to
select one value using up/down
buttons or gesture. Usually we use
DatePicker and TimePicker

DatePicker TimePicker

We want to focus our attention on a Button component that this is widely used in Android UI. First, we have to define our UI
using XML file:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingBottom="@dimen/activity_vertical_margin"

http://developer.android.com/reference/android/widget/Button.html
http://developer.android.com/reference/android/widget/EditText.html
http://developer.android.com/reference/android/widget/AutoCompleteTextView.html
http://developer.android.com/reference/android/widget/CheckBox.html
http://developer.android.com/reference/android/widget/RadioGroup.html
http://developer.android.com/reference/android/widget/RadioButton.html
http://developer.android.com/reference/android/widget/ToggleButton.html
http://developer.android.com/reference/android/widget/DatePicker.html
http://developer.android.com/reference/android/widget/TimePicker.html

Android UI Design 17 / 132

android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
tools:context=".MainActivity" >

<Button
android:id="@+id/Btn"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="Click here!" />

</RelativeLayout>

Notice that in the button id we used @+id meaning we are adding a new id and the android:text attribute is the string we
want to show on the button. You could use a reference instead of writing text directly. If we create a simple app using this layout
and run it we will have:

Android UI Design 18 / 132

Figure 2.3: screenshot

Android UI Design 19 / 132

We will see later how we can catch UI events so that we can handle user clicks. We can consider a bit more complex interface:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
tools:context=".MainActivity" >

<Button
android:id="@+id/Btn"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="Click here!" />

<CheckBox
android:id="@+id/checkBox1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignLeft="@+id/Btn"
android:layout_below="@+id/Btn"
android:layout_marginTop="29dp"
android:text="CheckBox" />

<ToggleButton
android:id="@+id/toggleButton1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignLeft="@+id/checkBox1"
android:layout_below="@+id/checkBox1"
android:layout_marginTop="20dp"
android:text="ToggleButton" />

<EditText
android:id="@+id/editText1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignLeft="@+id/toggleButton1"
android:layout_centerVertical="true"
android:ems="10"
android:hint="Your name here" >

<requestFocus />
</EditText>

<Switch
android:id="@+id/switch1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignBaseline="@+id/toggleButton1"
android:layout_alignBottom="@+id/toggleButton1"
android:layout_alignParentRight="true"
android:text="Switch" />

<RadioGroup
android:id="@+id/radioGroup"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignLeft="@+id/editText1"

Android UI Design 20 / 132

android:layout_below="@+id/editText1"
android:layout_marginTop="24dp" >

<RadioButton
android:id="@+id/radioButton1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignLeft="@+id/editText1"
android:layout_below="@+id/editText1"
android:layout_marginTop="40dp"
android:text="Option 1" />

<RadioButton
android:id="@+id/radioButton2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignLeft="@+id/radioButton1"
android:layout_below="@+id/radioButton1"
android:text="Option 2" />

</RadioGroup>

</RelativeLayout>

In this interface, we used almost all the UI components and if we run the app we have:

Android UI Design 21 / 132

Figure 2.4: screenshot

Android UI Design 22 / 132

2.3 UI Events and Listeners

By now, we have created Android user interfaces but we have not considered how to handle events that the user generates when
he interacts with our app.

Listeners are an important aspect when developing UIs in Android. Generally speaking, when an user interacts with our app
interface, the system “creates” some events. Each view that builds our interface is capable of generating events and providing the
means to handle them.

From an API point of view, if we look at a View class, we can notice there are some public methods; these methods are called
by the system when some events occur. They are called callback methods, and they are the way we can capture the events
that occur while an user interacts with our app. Usually these callback methods starts with on + event_name.

Every View provides a set of callback methods. Some are common between several views while others are view-specific.
Anyway, in order to use this approach, if we want to catch an event, we should extend the View and this is clearly not practical.
For this reason, every View has a set of interfaces that we have to implement in order to be notified about the events that occur.
These interfaces provide a set of callback methods. We call these interfaces as event listeners. Therefore, for example, if we want
to be notified when a user clicks on a button we have an interface to implement called View.onClickListener.

Let us consider the example above when we used a Button in our UI. If we want to add a listener, the first thing we have to do
is to get a reference to the Button:

Button b = (Button) findViewById(R.id.btn);

In our Activity there is a method called findViewById that can be used to get the reference to a View defined in our user
interface. Once we have the reference, we can handle the user click:

b.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {

// here we handle the event
}

});

As you can see we used a compact form and you can notice the callback method called onClick. This method is called by the
system when a user clicks on our button, so here we have to handle the event. We could obtain the same result in a different way:
we can make our Activity implement the View.OnClickListener interface and implement onClick again. Running
the app we have as a result:

Android UI Design 23 / 132

Figure 2.5: screenshot

Android UI Design 24 / 132

We can use the same technique if we want to listen to different events.

2.4 UI Development

Previously, we shortly introduced the Activity concept. It is time to better explain its function. An Android UI cannot exist if
there is not a container that holds it. This container is called Activity and it is one of the most important concepts in Android.
Every app we will create has at least one Activity and usually, more complex apps have several activities that interact each
other exchanging data and information using Intents. An Activity takes care of creating a window where we place our UI.

We can, now, build a complete app that uses the UI components shown above and mix them. Let’s suppose we want to create an
app that asks the user’s name and it has a button to confirm it.

First thing is to create a layout. We assume you already know how to create an Android project. If not, please refer to our
"Android Hello World" article. In Android (i.e. using Eclipse as IDE) we have to place the XML files under res/layout.
If you look carefully, you can notice that there are different sub-directories with different names and extensions. By now, it is
enough that we add our files under res/layout (the default directory). Other dirs will be used depending on the type of the
device, so that we have the chance to optimize our UI according to the screen size and orientation.

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/edt"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
tools:context=".MainActivity" >

<TextView
android:id="@+id/textView1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Please insert your username" />

<EditText
android:id="@+id/editText1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignLeft="@+id/textView1"
android:layout_below="@+id/textView1"
android:ems="10" />

<Button
android:id="@+id/btn1"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"
android:layout_marginBottom="16dp"
android:text="Confirm" />

</RelativeLayout>

Next we have to create an activity. If we use an IDE, we will notice that it has already created a default class (in Eclipse it is called
MainActivity.java). Looking its source code, there is a onCreate method. Here, the first thing we do is to “attach” our
UI to the activity:

setContentView(R.layout.activity_main);

Next we can handle the click event: when user clicks, we can retrieve the EditText value and show a message:

http://www.javacodegeeks.com/2012/12/android-hello-world-example-how-to-develop-android-apps.html

Android UI Design 25 / 132

// Lookup Button reference
Button b = (Button) findViewById(R.id.btn1);

// Lookup EditText reference
final EditText edt = (EditText) findViewById(R.id.editText1);

b.setOnClickListener(new View.OnClickListener() {

@Override
public void onClick(View v) {

String txt = edt.getText().toString();
Toast.makeText(MainActivity.this, "Hello " + txt, Toast.LENGTH_LONG).show() ←↩

;
}

});

Running the app we obtain:

Android UI Design 26 / 132

Figure 2.6: screenshot

Android UI Design 27 / 132

This is a very simple example but it is useful to have an idea of how we can create a user interface.

2.5 View and Adapters

By now, we talked about UI components that show just only one value. Some components can display multiple values or a
collection of data. This type of control is called List control. If we want to use these controls in Android, we cannot use a
single component, as we did before, but we have to use two components: one that manages how data is displayed and another
one that manages the underlying data. The last one is called an Adapter. A list control extends AdapterView and the most
“famous” list controls are:

• ListView

• Spinner

• GridView

• Gallery

A ListView component displays its item in a list. This is used very often in Android UI.

Spinner is another component that displays only one item, but let the user choice among several items.

GridView shows its child in a table form, the table is scrollable and we can set the number of column to show.

Gallery shows item in an horizontally scrolling way. This component is deprecated since API level 16. We will focus our
attention on the first two component sbecause they are very useful when building user interfaces.

Looking at the API, the AdapterView extends ViewGroup so that they both extend indirectly View class. Extending
ViewGroup means that a list control holds a list of views as children and at the same time it is a View too. The adapter role
is to manage the data and to provide the appropriate child view according to the data that has to be displayed. Android provides
some general-purpose adapters. Data can be loaded from a database, from resources or we can create it dynamically.

Let us suppose we want to create a user interface where we display a list of items. Let’s suppose that items are simply strings. In
this case, the first thing we have to do is creating an ArrayAdapter. This one of the most used adapters because they are very
simple to use. We can use a pre-built layout for our children so that we do not have to work too much. Android provides several
pre-built layouts ready to be used.

Our app UI in XML looks like:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
tools:context=".MainActivity" >

<ListView
android:id="@+id/list"
android:layout_width="match_parent"
android:layout_height="match_parent" />

</RelativeLayout>

Now we have to create the Adapter so that we can display items:

ArrayAdapter<String> aAdpt = new ArrayAdapter<String>(this, android.R.layout. ←↩
simple_list_item_1,

new String[]{"Froyo", "Gingerbread", "Honeycomb", "Ice cream Sandwich", "Jelly Bean", " ←↩
KitKat"});

http://developer.android.com/reference/android/widget/AdapterView.html

Android UI Design 28 / 132

In this way, we created an ArrayAdapter using as child layout the android.R.layout.simple_list_item_1, a
layout provided by Android and we created a list of string as data. Now, we have to add the adapter to the listview:

ListView lv = (ListView) findViewById(R.id.list);
lv.setAdapter(aAdpt);

Running the app, we have:

Android UI Design 29 / 132

Figure 2.7: screenshot

Android UI Design 30 / 132

In the example above, we provided the items as a list of Strings written directly in the source code. We can provide such list in a
resource file. We can suppose we have a Spinner component where its child are retrieved from a resource file. First, we create
our ArrayAdapter:

ArrayAdapter<CharSequence> aAdpt = ArrayAdapter.createFromResource(this, R.array.days, ←↩
android.R.layout.simple_spinner_item);

where R.array.days is our array resource file (containing day names) and android.R.layout.simple_spinner_i
tem is the children layout. Then we attach the adapter to the spinner:

aAdpt.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);
spinner.setAdapter(aAdpt);

Running the app, we have:

Android UI Design 31 / 132

Figure 2.8: screenshot

Android UI Design 32 / 132

There are some cases where the information to display is stored in a database. In this case, Android provides some specialized
adapter that helps us to read data from the DB and populate the corresponding list control. This adapter is called CursorAda
pter or if we prefer we can use SimpleCursorAdapter. For example, we can use this type of adapter when we want to
populate a ListView with the contacts stored in our smart phone. In this case, we can use CursorAdapter.

2.5.1 Handling ListView events

Another important aspect is the interaction between user and list components. We focus our attention on the ListView. The
same considerations can be applied to other types of list components. Usually, when we have a ListView in the app interface,
we want to know the item clicked by user. We can use, as we did for other UI components, event listeners. If you recall the
previous example about ListView, the code to handle the event is the following:

lv.setOnItemClickListener(new AdapterView.OnItemClickListener() {
@Override
public void onItemClick(AdapterView<?> aView, View view, int position,long id) {

// We handle item click event
TextView tv = (TextView) view;
String text = (String) tv.getText();

Toast.makeText(MainActivity.this, "You clicked on " + text, Toast.LENGTH_LONG).show ←↩
();

}
});

Analyzing the code above, we simply set an item click listener and in this case we have to override a method called onIt
emCick. In this method, we receive, as a parameter, the AdapterView, the View that is clicked, the position inside the
ListView and its id. We already know that the View is a TextView because we used an ArrayAdapter of strings so we
can safely cast the view to the text view. Once we know the TextView clicked we can retrieve the text.

Android UI Design 33 / 132

Figure 2.9: screenshot

Android UI Design 34 / 132

2.5.2 Custom Adapter and View Holder pattern

There are some cases when the standard adapters are not sufficient and we want to have more control over the child view or we
want to add other components to the child view. There are other reasons you should consider when you decide to implement
a custom adapter: it could be perhaps that you have some data management requirements that you cannot satisfy using custom
adapters or you want to implement a caching policy.

In all these cases, we can implement a custom adapter: you can decide to extend a BaseAdapter abstract class or you can
extend some specialized class as ArrayAdapter for example. The choice depends on the type of information you have to
handle. To keep things simple and to focus our attention on the custom adapter, we will suppose we want to create a ListView
where child views has two text line.

First, we create our adapter and start implementing some methods:

public class CustomAdapter extends BaseAdapter {

@Override
public int getCount() {

// TODO Auto-generated method stub
return 0;

}

@Override
public Object getItem(int arg0) {

// TODO Auto-generated method stub
return null;

}

@Override
public long getItemId(int arg0) {

// TODO Auto-generated method stub
return 0;

}

@Override
public View getView(int arg0, View arg1, ViewGroup arg2) {

// TODO Auto-generated method stub
return null;

}
}

We have to implement four methods. Before doing it, we define a class that is our data model. For simplicity, we can assume we
have a class called Item with two public attributes: name and descr. Now we need a child layout so that we can display data:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical" >

<TextView
android:id="@+id/name"
android:layout_width="match_parent"
android:layout_height="match_parent" />

<TextView
android:id="@+id/descr"
android:layout_width="match_parent"
android:layout_height="match_parent" />

</LinearLayout>

In our adapter we need a constructor so that we can pass the data we want to display:

Android UI Design 35 / 132

public CustomAdapter(Context ctx, List<Item> itemList) {
this.ctx = ctx;
this.itemList = itemList;

}

Now it is quite trivial to override method, except getView:

@Override
public int getCount() {

return itemList == null ? 0 : itemList.size();
}

@Override
public Object getItem(int pos) {

return itemList == null ? null : itemList.get(pos);
}

@Override
public long getItemId(int pos) {

return itemList == null ? 0 : itemList.get(pos).hashCode();
}

Notice that in getItemId we return a unique value that represents the item. A bit more complex is the getView method. This
is the heart of the custom adapter and we have to implement it carefully. This method is called everytime the ListView has to
display child data. In this method, we can create the view manually or inflate an XML file:

@Override
public View getView(int position, View convertView, ViewGroup parent) {

View v = convertView;

if (v == null) {
LayoutInflater lInf = (LayoutInflater)
ctx.getSystemService(Context.LAYOUT_INFLATER_SERVICE);
v = lInf.inflate(R.layout.item_layout, null);

}

TextView nameView = (TextView) v.findViewById(R.id.name);
TextView descrView = (TextView) v.findViewById(R.id.descr);

nameView.setText(itemList.get(position).name);
descrView.setText(itemList.get(position).descr);
return v;

}

Analyzing the code, we can notice that we first check that the view passed as parameter is not null. This is necessary because
Android system can reuse a View to not waste resources. Therefore, if the view is not null we can avoid inflating XML layout
file. If it is null then we have to inflate the layout file. The next step is looking up the TextView inside our layout so that we
can set their values. Running the app, we will obtain:

Android UI Design 36 / 132

Figure 2.10: screenshot

Android UI Design 37 / 132

Looking at the getView method, we can notice we call findViewById several times. This is an expensive operation and we
should avoid calling it when it is not necessary because it can slow down the overall Listview performances and when user
scrolls, the ListView it can happen it is not smooth.

Moreover, we use findViewById even if the view is recycled. In this situation we can apply a pattern that reduces the use of
this method. This pattern is called View Holder, it requires we create an object to hold the references to the views inside our
child layout. Applaying this pattern getView method become:

@Override
public View getView(int position, View convertView, ViewGroup parent) {

View v = convertView;
TextHolder th = null;

if (v == null) {
LayoutInflater lInf = (LayoutInflater)
ctx.getSystemService(Context.LAYOUT_INFLATER_SERVICE);
v = lInf.inflate(R.layout.item_layout, null);

TextView nameView = (TextView) v.findViewById(R.id.name);
TextView descrView = (TextView) v.findViewById(R.id.descr);

th = new TextHolder();
th.nameView = nameView;
th.descrView = descrView;
v.setTag(th);

}
else

th = (TextHolder) v.getTag();

th.nameView.setText(itemList.get(position).name);
th.descrView.setText(itemList.get(position).descr);

return v;
}

static class TextHolder {
TextView nameView;
TextView descrView;

}

2.6 Download the Source Code

This was a lesson of using Android Views. You may download the source code here: AndroidView.zip

http://academy.javacodegeeks.com/wp-content/uploads/2014/01/2.-sample_proj.zip

Android UI Design 38 / 132

Chapter 3

Android UI: Layouts with View Groups and Frag-
ments

3.1 Overview

In the previous chapter, we talked about Views and we explained how to build user interfaces using Views. We discovered
different kinds of Views, with different controls. Android provides several common controls and using them we can build ap-
pealing user interfaces. We saw some useful patterns we can implement when we create UIs so that we can guarantee consistency
to our app interface.

In this article we want to explore how we can organize such views and how these views can be placed on the screen. In other
words, we will analyze in detail layout managers, or simply layouts.

3.2 Layout overview

When we create our app interface, we use some special view that acts as container. These special views control how other views
are placed on the smartphone/tablet screen. Android provides a collection of Layout Managers and each of them implements
a different strategy to hold, manage and place its children. From the API point of view, all the Layout managers derive from
the ViewGroup class. There are some layouts that place their children horizontally or vertically, and others that implement a
different strategy. We will analyze them in details later in this article.

In Android, layouts can be nested so we can use different layouts for different areas of our interface. However, please ve aware
that it is not advisable to create too complex layouts, because this can affect the overall app performance. We can declare a layout
in two ways:

• Using XML: In this case, using an XML file we “describe” how our user interface looks like. We define the elements (views
and sub layouts) that appear in the user interface. At the same time, we define their attributes, as we saw in the previous chapter.

• At runtime: In this case, we code our layout instantiating our ViewGroup and attaching Views to it. We can manipulate
their properties programmatically setting their attributes.

We can use both approaches in our app. We could, for example, use XML to create the user interface and assign to its Views
some properties. At run time, we can find (or lookup) this Views and ViewGroup (layout) and change their properties
programmatically. We could for example, have a View with red background and at runtime we change it to green color. Android
is very powerful and flexible from this point of view.

Using XML, we somehow decouple the presentation from the code that handles its behavior. In XML, the UI description is
external to the source code, so theoretically we could change the presentation, meaning just the XML file, without touching our
source code. This is the case when, for example, we want to adapt our user interface for multiple screen dimensions. In this case,
we define different layouts having the same name but in different directories, and the system chooses the one that best matches

Android UI Design 39 / 132

the screen dimensions. This is the standard approach taken by Android in order to handle multiple screen sizes. Moreover, we
will see later that we can use another technique based on Fragments. If we use XML, it is possible to use draw the layout and
debug it easily.

From the API point of View, each ViewGroup defines a nested class called LayoutParameter that holds some parameters
that define size and position for each views belonging to the ViewGroup. All ViewGroup have in common two parameters
called width and height (or layout_width and layout_height) that every View must define. These two parameters
represent the width and the height of the View. We can specify a numeric value or more often we can use two constants:

• wrap_content, meaning that the dimension of the view will depend on the actual content

• fill_parent (or match_parent), meaning that the view has to become as big as its parent holding it

A view in Android is a rectangle, and the view location is expressed as a pair of coordinates left and top. These two values
determine the View position inside its ViewGroup. Another important View property inside a Layout is padding, expressed
with four values (let, top, right, bottom). Using padding we can move the content of the View.

Android provides several standard layout managers:

• Linear Layout

• Table Layout

• Relative Layout

• Frame Layout

• Grid Layout

3.2.1 LinearLayout

This is the simplest Layout manager. This layout disposes its children vertically or horizontally depending on the orientation
parameter. To define this layout in XML, we can use:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent">

</LinearLayout>

The orientation attribute is the most important attribute because it determines how views are placed. It can assume two values:
horizontal or vertical. In the first case, the views are placed horizontally and in the second case they are placed vertically. There
are two other parameters that affect the position and the size of the views. They are gravity and weight.

The gravity parameter behaves like the alignment. So if we want to align a view to the left side we can set the gravity left or
right, if we want to align it to the right. The corresponding attribute in XML is layout_gravity. If we create an app, using
the layout shown below:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical" >

<TextView
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="left"
android:text="Left" />

Android UI Design 40 / 132

<TextView
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="right"
android:text="Right" />

<TextView
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="center"
android:text="Center" />

</LinearLayout>

and run it, we have:

Android UI Design 41 / 132

Figure 3.1: screenshot

Android UI Design 42 / 132

Another important parameter is weight (or layout_weight in XML). Using the weight parameter we can assign an importance
value to a View respect to the others. The View with higher importance value is more important than Views with lower values.
In other words, Views with higher weight value consume more space than other Views. For example, see this layout:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical" >

<TextView
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_weight="0"
android:gravity="left"
android:text="Left" />

<TextView
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_weight="1"
android:gravity="right"
android:text="Right" />

<TextView
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_weight="0"
android:gravity="center"
android:text="Center" />

</LinearLayout>

In this case, we used layout_weight and we gave more importance to the TextView with right text. Running the app, we have:

Android UI Design 43 / 132

Figure 3.2: screenshot

Android UI Design 44 / 132

Another important aspect we have to consider is the difference between android:gravity and layout_gravity. Even
if they look very similar, they have a different meaning. android:gravity is an attribute used by the View, while layout
_gravity is a parameter used by the container.

3.2.2 TableLayout

This is layout manager that disposes its children in a table, grouping them in rows and columns. For example, using the layout
shown below, we create two different rows holding two cells.

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent" >

<TableRow>

<TextView
android:layout_width="match_parent"
android:layout_height="match_parent"
android:text="Cell 1" >

</TextView>

<TextView
android:layout_width="match_parent"
android:layout_height="match_parent"
android:text="Cell 2" >

</TextView>
</TableRow>

<TableRow>

<TextView
android:layout_width="match_parent"
android:layout_height="match_parent"
android:text="Cell 3" >

</TextView>

<TextView
android:layout_width="match_parent"
android:layout_height="match_parent"
android:text="Cell 4" >

</TextView>
</TableRow>

</TableLayout>

We used as TableLayout child the TableRow, which represents a row inside the table. Running an app with this layout we
have:

Android UI Design 45 / 132

Figure 3.3: screenshot

Android UI Design 46 / 132

We can even use different cell numbers for different rows like the example shown below, where in the second row we have three
cells:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent" >

<TableRow>

<TextView
android:layout_width="match_parent"
android:layout_height="match_parent"
android:text="Cell 1" >

</TextView>

<TextView
android:layout_width="match_parent"
android:layout_height="match_parent"
android:text="Cell 2" >

</TextView>
</TableRow>

<TableRow>

<TextView
android:layout_width="match_parent"
android:layout_height="match_parent"
android:text="Cell 3" >

</TextView>

<TextView
android:layout_width="match_parent"
android:layout_height="match_parent"
android:text="Cell 4" >

</TextView>

<TextView
android:layout_width="match_parent"
android:layout_height="match_parent"
android:text="Cell 5" >

</TextView>
</TableRow>

</TableLayout>

In this case, the first row has an empty cell. Running the example we have:

Android UI Design 47 / 132

Figure 3.4: screenshot

Android UI Design 48 / 132

It is not required to use TableRow, because we can use all the components that extend the View class. In this case, this
component will have the same width as the table. For example:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent" >

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="This is a row!" >

</TextView>

<TableRow>

<TextView
android:layout_width="match_parent"
android:layout_height="match_parent"
android:text="Cell 1" >

</TextView>

<TextView
android:layout_width="match_parent"
android:layout_height="match_parent"
android:text="Cell 2" >

</TextView>
</TableRow>

<TableRow>

<TextView
android:layout_width="match_parent"
android:layout_height="match_parent"
android:text="Cell 3" >

</TextView>

<TextView
android:layout_width="match_parent"
android:layout_height="match_parent"
android:text="Cell 4" >

</TextView>

<TextView
android:layout_width="match_parent"
android:layout_height="match_parent"
android:text="Cell 5" >

</TextView>
</TableRow>

</TableLayout>

In this case, we did not use TableRow but we used TextView as the first TableLayout child and we specified that the
TextView width should be as big as the content. If we run an app with this layout, we have:

Android UI Design 49 / 132

Figure 3.5: screenshot

Android UI Design 50 / 132

You can notice that even if we specified that the TextView should be as big as the content, it still occupies the entire row.

3.2.3 RelativeLayout

This is the most flexible layout in Android. This layout manager uses a policy where the container places its Views relative to
other Views. We can implement, using this layout manager, very complex UI structures.

RelativeLayout implements some view attributes that we can use to place the View. There are attributes that control the
position of the View respect to other Views:

• layout_toLeftof: the right edge position of this View is to the left of a specific View

• layout_toRightof: the left edge position of this View is to the right of a specific View

• layout_below: the top edge of this view is below to a specific View

• layout_above: the bottom edge of this view is above to a specific View

There are other parameters that are used to place the view respect to its container:

• layout_alignParentLeft: the left edge of this view matches the left edge of its container

• layout_alignParentRight: the right edge of this view matches the right edge of its container

• layout_alignParentTop: the top edge of this view matches the top edge of its container

• layout_alignParentBottom: the bottom edge of this view matches the bottom edge of its container

There are some other parameters that can be used and you are advised to have a look at the documentation. For example:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent" >

<TextView
android:id="@+id/t1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Text1" />

<TextView
android:id="@+id/t2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@id/t1"
android:text="Text2" />

<TextView
android:id="@+id/t3"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@id/t1"
android:layout_toRightOf="@id/t2"
android:text="Text3" />

</RelativeLayout>

Android UI Design 51 / 132

In the example above, we placed the TextView with id t2 below the TextView with id t1, the TextView with id t3 is places
to the left of t2 and below t1. Running the example we have:

Android UI Design 52 / 132

Figure 3.6: screenshot

Android UI Design 53 / 132

Let us suppose we want to add another TextView to the layout above and this TextView has to be placed in bottom right
corner, so we have:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent" >

<TextView
android:id="@+id/t1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Text1" />

<TextView
android:id="@+id/t2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@id/t1"
android:text="Text2" />

<TextView
android:id="@+id/t3"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@id/t1"
android:layout_toRightOf="@id/t2"
android:text="Text3" />

<TextView
android:id="@+id/t4"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"
android:layout_alignParentRight="true"
android:text="Text4" />

</RelativeLayout>

Running the example, we have:

Android UI Design 54 / 132

Figure 3.7: screenshot

Android UI Design 55 / 132

3.2.4 FrameLayout

FrameLayout is a special layout that we will cover in more detail later. We saw different layout manager that implements
some specific strategies to place views on the UI. FrameLayout is used when we want to display dynamically a view. It is
very useful when we use Fragments.

3.2.5 GridLayout

This is the last layout manager that we cover in this article. It is very similar to TableLayout and it was introduced since
Android 4.0. This layout manager disposed its views in a grid form, but respect to the TableLayout it is easier to use.
GridLayout divides the screen area into cells. Its children occupy one or more cells.

3.2.6 Layout and multiple screen support

A special consideration is needed when we want to support multiple screen size. When we want to build an app for multiple
devices, we have to implement several layouts. In Android, we have different directories and there we can implement the layouts.
The default layout is the one under res/layout. We can provide some size qualifier that we append to the layout:

• small

• large

• xlarge

Moreover, we can even provide the screen orientation:

• land

• portrait

So, for example, if we want to create a layout for an extra large screen, we create a directory under res called layout-xlarge
and here we implement our layout.

If we want to provide a layout for landscape mode we create another dir, under res, called layout-land land and so on.
In Android 3.2 there were introduced other size qualifiers to better adapt the layout to the screen size. If you want to have more
information you can look here.

3.3 Fragments

By now, we have seen how we can build UIs using layouts and components. In this situation, we have an Activity with its
layout and components. We know how we can adapt our layout for multiple screens but this technique sometimes is not enough,
especially when we want to support tablets and smartphones. We have talked about this already, and we know that the smartphone
screen size is very different from the screen of a tablet. Moreover, it is necessary to make the UI more dynamic and flexible in a
large screen tablets. For these reasons, Android 3.0 (API level 11) has introduced the fragments concept.

What is a fragment? A fragment is a piece of user interface in an Activity. We can combine multiple fragments to create
complex UIs. Each fragment has its own lifecycle and we can manage the lifecycle of each fragment independently. A fragment
exists just inside an Activity that acts as its container. When we add a fragment inside a layout, it lives inside the ViewGroup
that represents the layout. A fragment is a very powerful component that helps developers to create dynamic UI and support, at
the same time, multiple screen size.

A fragment can be seen as a reusable piece of code with its own interface. It is crucial to differentiate when we need to use
fragments and when we can use just “simple” layouts. Well, as said before, there are some situations where simple layouts, even
if they are adapted to the screen size, are not enough.

A classic example is an app that has a list of contacts where, when a user clicks on a contact, the app shows the contact’s details.
In a smartphone we can move from one activity to another showing a different layout, list and details. However, in a tablet this

http://developer.android.com/guide/practices/screens_support.html

Android UI Design 56 / 132

behavior would result in a poorly appealing app that does not use all the screen size available. In the tablet, we would like to
have a list and the details at the same time on the screen.

For example, in a smartphone we would have:

Figure 3.8: screenshot

while in a tablet we would have:

Android UI Design 57 / 132

Figure 3.9: screenshot

In this case, fragments help us. We can create two fragments: one that handles the contact list and another one the contact details.
So we have:

Android UI Design 58 / 132

Figure 3.10: screenshot

while in a tablet:

Android UI Design 59 / 132

Figure 3.11: screenshot

3.3.1 Fragment lifecycle

Now that we know when we should use fragments, we need to know how they work before using them. A fragment has its own
lifecycle as an Activity has, but it is more complex in comparison to the activity lifecycle. Moreover, a fragment lives only
inside an Activity that acts as its container. Below, the fragment lifecycle is shown:

Android UI Design 60 / 132

Figure 3.12: screenshot

As we can see, this lifecycle has more states in comparison with the activity lifecycle. Moving from the top to the bottom, we
have:

• onInflate: This method is called only if we define fragment directly in our layout using the tag. In this method we can save
some configuration parameter and some attributes define in the XML layout file.

• onAttach: This method is called as soon as the fragment is “attached” to the “father” activity and we can use this method to
store the reference about the activity.

• onCreate: It is one of the most important steps, our fragment is in the creation process. This method can be used to start
some thread to retrieve data information, maybe from a remote server.

• onCreateView: It is the method called when the fragment has to create its view hierarchy. During this method we will
inflate our layout inside the fragment. During this phase we cannot be sure that our activity is still created so we cannot count
on it for some operation.

• OnActivityCreated: In this method, we are notified when the “father” activity is created and ready for use. From now
on, our activity is active and created and we can use it when we need.

Android UI Design 61 / 132

• onStart: Here we do the common things as in the activity onStart, during this phase our fragment is visible but it isn’t
still interacting with the user.

• onResume: This method is called when the fragment is ready to interact with user. At the end of this phase our fragment is
up and running!

Then, it is possible that the activity might be paused and so the activity’s onPause is called. Well, in this case the onPause
fragment method is called too. After that, it is possible that the OS decides to destroy our fragment view and so the onDestr
oyView is called. After that, if the system decides to dismiss our fragment, it calls the onDestroy method. Here we should
release all the active connections because our fragment is close to shutting down. Even during the destroy phase, it is still attached
to the father activity. The last step is to detach the fragment from the activity and it happens when the onDetach is called.

3.3.2 How to use fragments

Once we know the fragment lifecycle, we need to know how we can create a fragment and how we attach it to the Activity.
Creating a fragment is very simple, we have just to extend an Android class called android.app.Fragment . We can
suppose, we want to create a fragment called Fragment1. In this case we have:

public class Fragment1 extends Fragment {
}

In this way, we have created a fragment. In this class we can override callback methods so that we handle different states in the
fragment lifecycle. By now, we can suppose that this fragment has a very simple layout:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent" >

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Test Fragment1" />

</LinearLayout>

In this case this layout just has a TextView component that writes a text on the screen. If we want to “attach” this layout to
our fragment we can do it in the onCreateView method, because according to the fragment lifecycle, this method is called
when the fragment creates its view hierarchy. So in our Fragment1 class we can override the onCreateView method and
implement our logic:

@Override
public View onCreateView(LayoutInflater inflater, ViewGroup container,

Bundle savedInstanceState) {
View v = inflater.inflate(R.layout.text_frag, container, false);
return v;

}

In this method, we inflate our fragment layout called text_frag (the one shown above). Now we have created the fragment
and we need to attach it to the Activity that holds it, because we know that a fragment exists only inside an Activity. We
can do this operation in two ways:

• declaring the fragment inside the activity layout

• declaring a place holder inside the activity layout and attach the fragment inside the activity

In the first case, this operation is static, meaning we attach the fragment permanently to the activity. In the second case we can
manage fragments at runtime, so we can replace a fragment with another one for example.

If we declare the fragment inside the layout we have to use the fragment tag.

Moreover, we have to specify the full qualified class name. For example, if the Fragment1 class is under the package com.swa,
for the activity layout we will have:

http://developer.android.com/reference/android/app/Fragment.html

Android UI Design 62 / 132

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent" >

<fragment
android:id="@+id/f1"
android:layout_width="match_parent"
android:layout_height="match_parent"
class="com.sswa.Fragment1" />

</LinearLayout>

Running the example above, we will get us:

Android UI Design 63 / 132

Figure 3.13: screenshot

Android UI Design 64 / 132

A bit more complex is the second option where we want to manage fragments dynamically.

3.3.3 FrameLayout and FragmentManager

When we want to handle fragments dynamically inside our Activity we cannot use fragment tag in the activity layout but we
have to use a place holder that we will “fill” with the fragment UI. In this case, the activity layout becomes:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent" >

<FrameLayout
android:id="@+id/fl1"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />

</LinearLayout>

In the Activity, we have to use a component that helps us to handle fragments. This component is called FragmentMana
ger. Using this component we can add, remove, replace fragments at runtime and also to find fragments.

Note that before doing any kind of operations on a fragment, we need to activate a transaction. Using the FragmentManager
we can create a transaction, start it and commit it at the end, when the fragment operation is done. So in the Activity we have:

public class MainActivity extends Activity {

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main_din);

// Create fragment
Fragment1 f1 = new Fragment1();
FragmentManager fm = getFragmentManager();
FragmentTransaction ft = fm.beginTransaction();
ft.add(R.id.fl1, f1);
ft.commit();

}

}

3.3.4 Fragment Activity communication

Often we need to exchange information between a fragment and the activity that holds it. We need to consider that we can re-use
fragments with different activities, so we cannot bind the fragment to a specific activity.

Inside a fragment, we can retrieve the activity instance using the getActivity() method. If we want to exchange data, it is
a good practice to create a callback interface inside the fragment and require that the activity implements it.

For example, we can suppose to add a button to the fragment1 UI and when the user clicks the button we want to pass this
information to the activity. The first thing we need to do is to modify our fragment layout:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent" >

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"

http://developer.android.com/reference/android/app/FragmentManager.html
http://developer.android.com/reference/android/app/FragmentManager.html

Android UI Design 65 / 132

android:text="Test Fragment Dynamic" />

<Button
android:id="@+id/btn1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Click me" />

</LinearLayout>

The second step is to create an interface like this:

public class Fragment1 extends Fragment {
public static interface FragmentListener {

public void onClickButton() ;
}

}

Now that we have the interface, our activity has to implement it:

public class MainActivity extends Activity implements
Fragment1.FragmentListener {

@Override
public void onClickButton() {

// Handle here the event
}

}

Now we have to check, in the fragment class, if the activity implements the interface so that we can notify the event, when it
occurs. The best place to do it, remembering the fragment lifecycle, is in the onAttach method, so we have:

public class Fragment1 extends Fragment {

@Override
public void onAttach(Activity activity) {

super.onAttach(activity);
if (!(activity instanceof FragmentListener))

throw new ClassCastException();

}
}

We are, finally, ready to notify the event when the user clicks on the button and we can do it in the onCreateView method:

public class Fragment1 extends Fragment {

@Override
public View onCreateView(LayoutInflater inflater, ViewGroup container,

Bundle savedInstanceState) {
View v = inflater.inflate(R.layout.text_frag, container, false);
Button b = (Button) v.findViewById(R.id.btn1);
b.setOnClickListener(new View.OnClickListener() {

@Override
public void onClick(View v) {

((FragmentListener) getActivity()).onClickButton();
}

});
return v;

}
}

Android UI Design 66 / 132

3.3.5 Inter fragment communication

When developing an android app using fragments, we not only need to exchange data between the fragment and the activity that
contains it, but we also need to exchange information between two fragments. In this case, the best practice is to avoid a fragment
to fragment communication, so that we can guarantee that fragments are decoupled.

If we want to exchange data in ths manner, we can pass it from the first fragment to the activity, using the method described
before, and then from the activity to the destination fragment. In this way, we can be sure that our fragments can be re-used in
different situations.

3.3.6 Multiple screen support using fragments

At the beginning of this article, we explained when we should use fragments. We specified that they are very useful when we
want to support different screen sizes, for example when we build an app that runs on a smartphone and on a tablet too. In this
case just using layouts is not enough.

It is time ti explore how to create an UI that works on a tablet and a smartphone. In order to achieve this, we can revisit the
example described before. In this case, we can suppose that when a user clicks on the button then the app shows a message. If
we have a smartphone, when user clicks on the button then we move to another activity that shows the message, while if we use
a tablet we want to show this message on the same screen.

First things first, we code a second fragment with a very simple layout that just shows a message and we call this fragment
Fragment2:

public class Fragment2 extends Fragment {
@Override
public View onCreateView(LayoutInflater inflater, ViewGroup container,

Bundle savedInstanceState) {
View v = inflater.inflate(R.layout.frag_message, container, false);
return v;

}
}

The layout is:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent" >

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Hello world" />

</LinearLayout>

If the app runs on a smartphone, then the layout is similar to the one described previously, while some special consideration has
to be done in the case of a tablet. We can suppose, for simplicity, that tablet has a landscape layout, so we can create, under res
directory, a new directory called layout-land:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="horizontal" >

<FrameLayout
android:id="@+id/fl1"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />

Android UI Design 67 / 132

<FrameLayout
android:id="@+id/fl2"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />

</LinearLayout>

Notice that we have two FrameLayout in this case. The “heavy” work is done by the Activity. If in the current layout
attached to it there is no FrameLayout with id equal to f2, then we have a single fragment layout, meaning we are using a
smartphone, otherwise we are using a fragment.

In the callback method in the activity we have:

import wkkwc.com;

@Override
public void onClickButton() {

// Handle here the event
if (findViewById(R.id.fl2) != null) {

// We have dual fragment layout

Fragment2 f2 = (Fragment2) getFragmentManager().findFragmentById(R. ←↩
id.fl2);

if (f2 == null) {
// Fragment2 is not inizialized
f2 = new Fragment2();
FragmentTransaction ft = getFragmentManager(). ←↩

beginTransaction();
ft.replace(R.id.fl2, f2);
ft.commit();

}

}
else {

// Single fragment layout
Fragment2 f2 = new Fragment2();
FragmentTransaction ft = getFragmentManager().beginTransaction();
ft.replace(R.id.fl1, f2);
ft.commit();

}
}

Running the app, we have in the smartphone:

Android UI Design 68 / 132

Figure 3.14: screenshot

Android UI Design 69 / 132

Figure 3.15: screenshot

Android UI Design 70 / 132

while, if we run the app on a tablet, we have:

Figure 3.16: screenshot

Android UI Design 71 / 132

Figure 3.17: screenshot

3.4 Download the Source Code

This was a lesson of how to create Android Layouts with ViewGroups and Fragments. You may download the source code here:
AndroidLayout.zip

http://academy.javacodegeeks.com/wp-content/uploads/2014/01/FragmentTutorial.zip

Android UI Design 72 / 132

Chapter 4

Android UI: Adding Multimedia to an App

4.1 Overview

In this article, we will cover some multimedia and graphic aspects in Android. The Android SDK provides a set of APIs to
handle multimedia files, such as audio, video and images. Moreover, the SDK provides other API sets that help developers to
implement interesting graphics effects, like animations and so on.

The modern smart phones and tablets have an increasing storage capacity so that we can store music files, video files, images
etc. Not only the storage capacity is important, but also the high definition camera makes it possible to take impressive photos.
In this context, the Multimedia API plays an important role.

4.2 Multimedia API

Android supports a wide list of audio, video and image formats. You can give a look here to have an idea; just to name a few
formats supported:

Audio

• MP3

• MIDI

• Vorbis (es: mkv)

Video

• H.263

• MPEG-4 SP

Images

• JPEG

• GIF

• PNG

Android UI Design 73 / 132

Android, moreover, can handle local files, meaning files that are stored inside the smart phone or tablet or remote file using data
streaming. We can leverage these capabilities in order to build very interesting apps.

All the classes provided by the Android SDK that we can use to add multimedia capabilities to our apps are under the android.
media package. In this package, the heart class is called MediaPlayer. This class has several methods that we can use to
play audio and video file stored in our device or streamed from a remote server.

This class implements a state machine with well-defined states and we have to know them before playing a file. Simplifying the
state diagram, as shown in the official documentation, we can define these macro-states:

• Idle state: When we create a new instance of the MediaPlayer class.

• Initialization state: This state is triggered when we use setDataSource to set the information source that MediaPlayer
has to use.

• Prepared state: In this state, the preparation work is completed. We can enter in this state calling prepare method or
prepareAsync. In the first case after the method returns the state moves to Prepared. In the async way, we have to
implement a listener to be notified when the system is ready and the state moves to Prepared. We have to keep in mind
that when calling the prepare method, the entire app could hang before the method returns because the method can take a
long time before it completes its work, especially when data is streamed from a remote server. We should avoid calling this
method in the main thread because it might cause a ANR (Application Not Responding) problem. Once the MediaPlayer
is in prepared state we can play our file, pause it or stop it.

• Completed state: Te end of the stream is reached.

We can play a file in several ways:

// Raw audio file as resource
MediaPlayer mp = MediaPlayer.create(this, R.raw.audio_file);
// Local file
MediaPlayer mp1 = MediaPlayer.create(this, Uri.parse("file:///...."));
// Remote file
MediaPlayer mp2 = MediaPlayer.create(this, Uri.parse("http://website.com"));

or we can use setDataSource in this way:

MediaPlayer mp3 = new MediaPlayer();
mp3.setDataSource("http://www.website.com");

Once we have created our MediaPlayer we can “prepare” it:

mp3.prepare();

and finally we can play it:

mp3.start();

Please keep in mind the observations above regarding preparing the state. According to them, we can use an async operation so
that we will not stop the main thread. In this case, we have:

// Remote file
MediaPlayer mp2 = MediaPlayer.create(this, Uri.parse("http://website.com"));
mp2.setAudioStreamType(AudioManager.STREAM_MUSIC);
mp2.setOnCompletionListener(new MediaPlayer.OnCompletionListener() {

@Override
public void onCompletion(MediaPlayer mp) {

mp.start();
}

});
mp2.prepareAsync();

We used a listener to be notified when the MediaPlayer is in the prepared state so we can start playing. At the end, when we
don’t need the instance of MediaPlayer anymore, we should release it:

mp2.release();

http://developer.android.com/reference/android/media/MediaPlayer.html

Android UI Design 74 / 132

4.2.1 Using Android Camera

If we want to add to our apps the capability to take photos using the integrated smart phone camera, then the best way is to use
an Intent. For example, let us suppose we want to start the camera as soon as we press a button and show the result in our app.

In the onCreate method of our Activity, we have to setup a listener of the Button and when clicked to fire the intent:

Button b = (Button) findViewById(R.id.btn1);
b.setOnClickListener(new View.OnClickListener() {

@Override
public void onClick(View v) {

// Here we fire the intent to start the camera
Intent i = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);
startActivityForResult(i, 100);

}
});

In the onActivityResult method, we retrieve the picture taken and show the result:

@Override
protected void onActivityResult(int requestCode, int resultCode, Intent data) {

// This is called when we finish taking the photo
Bitmap bmp = (Bitmap) data.getExtras().get("data");
iv.setImageBitmap(bmp);

}

Running the app we have:

Android UI Design 75 / 132

Figure 4.1: screenshot

Android UI Design 76 / 132

Figure 4.2: screenshot

Android UI Design 77 / 132

In the example above, we used an emulated camera.

4.3 Graphics

By now, we talked about standard components that we can be used in our UI. This is good but it is not enough when we want
to develop a game or an app that requires graphic contents. Android SDK provides a set of API for drawing custom 2D and 3D
graphics. When we write an app that requires graphics, we should consider how intensive the graphic usage is. In other words,
there could be an app that uses quite static graphics without complex effects and there could be other app that uses intensive
graphical effects like games.

According to this usage, there are different techniques we can adopt:

• Canvas and Drawable: In this case, we can extend the existing UI widgets so that we can customize their behavior or we can
create custom 2D graphics using the standard method provided by the Canvas class.

• Hardware acceleration: We can use hardware acceleration when drawing with the Canvas API. This is possible from
Android 3.0.

• OpenGL: Android supports OpenGL natively using NDK. This technique is very useful when we have an app that uses
intensively graphic contents (i.e games).

The easiest way to use 2D graphics is extending the View class and overriding the onDraw method. We can use this technique
when we do not need a graphics intensive app.

In this case, we can use the Canvas class to create 2D graphics. This class provides a set of method starting with draw* that
can be used to draw different shapes like:

• lines

• circle

• rectangle

• oval

• picture

• arc

For example let us suppose we want do draw a rectangle. We create a custom view and then we override onDraw method. Here
we draw the rectangle:

public class TestView extends View {
public TestView(Context context) {

super(context);
}
public TestView(Context context, AttributeSet attrs, int defStyle) {

super(context, attrs, defStyle);

}
public TestView(Context context, AttributeSet attrs) {

super(context, attrs);
}

@Override
protected void onDraw(Canvas canvas) {

super.onDraw(canvas);
Paint p = new Paint();
p.setColor(Color.GREEN);
p.setStrokeWidth(1);

http://developer.android.com/reference/android/graphics/Canvas.html
http://developer.android.com/reference/android/view/View.html

Android UI Design 78 / 132

p.setStyle(Paint.Style.STROKE);
canvas.drawRect(5, 5, 120, 120, p);
invalidate();

}
}

As it is clear from the code above, in the onDraw method, we used the drawRect Canvas method. Notice that we used
another class called Paint. This class specifies how the shape will be drawn; it specifies its color, if it has to be filled, the border
width and so on.

In this case the layout looks like:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
tools:context=".MainActivity" >

<com.swa.customview.TestView
android:layout_width="wrap_content"
android:layout_height="wrap_content" />

</RelativeLayout>

Running the app, we have:

Android UI Design 79 / 132

Figure 4.3: screenshot

Android UI Design 80 / 132

Suppose we want to fill the rectangle with a gradient color, so the onDraw method becomes:

protected void onDraw(Canvas canvas) {
super.onDraw(canvas);
Paint p = new Paint();
p.setColor(Color.GREEN);
p.setStrokeWidth(1);
p.setStyle(Paint.Style.FILL_AND_STROKE);
LinearGradient lg = new LinearGradient(0F, 0F, 115F,115F, Color.GREEN, Color. ←↩

YELLOW, TileMode.CLAMP);
p.setShader(lg);
canvas.drawRect(5, 5, 120, 120, p);
invalidate();

}

Running the app we have:

Android UI Design 81 / 132

Figure 4.4: screenshot

Android UI Design 82 / 132

As we told before, beginning from Android 3.0 (API 11), we can use hardware acceleration. In this case, if we want to use it, we
have to modify the Manifest.xml and add the following line:

<application android:hardwareAccelerated="true" >

or we can use it at Activity level.

4.4 Drawable

In Android, a Drawable is a graphical object that can be shown on the screen. From API point of view all the Drawable
objects derive from Drawable class. They have an important role in Android programming and we can use XML to create
them. They differ from standard widgets because they are not interactive, meaning that they do not react to user touch.

Images, colors, shapes, objects that change their aspect according to their state, object that can be animated are all drawable
objects. In Android under res directory, there is a sub-dir reserved for Drawable, it is called res/drawable.

Figure 4.5: screenshot

Under the drawable dir we can add binary files like images or XML files.

As we saw in the previous chapters, we can create several directories according to the screen density we want to support. These
directories have a name like drawable-<>.

This is very useful when we use images; in this case, we have to create several image versions: for example, we can create an
image for the high dpi screen or another one for medium dpi screen. Once we have our file under drawable directory, we can
reference it, in our class, using R.drawable.file_name. While it is very easy add a binary file to one of these directory, it
is a matter of copy and paste, if we want to use a XML file we have to create it.

There are several types of drawable:

• Bitmap

• Nine-patch

http://developer.android.com/reference/android/graphics/drawable/Drawable.html

Android UI Design 83 / 132

• Layer list

• State list

• Level list

• Transition drawable

• Inset drawable

• Clip drawable

• Scale drawable

• Shape drawable

An interesting aspect is that we can create such elements using XML or directly from code. There is a correspondence between
the elements shown above and the API class. We can add the Drawable suffix and we create the corresponding class name: for
example if the corresponding class of Bitmap drawable is BitmapDrawable and so on.

You can have a look here if you want to have more information. We will not cover all these objects in this article but only the
most popular.

4.4.1 Shape drawable

This is a generic shape. Using XML we have to create a file with shape element as root. This element as an attribute called
android:shape where we define the type of shape like rectangle, oval, line and ring. We can customize the shape using child
elements like:

Table 4.1: datasheet

Element name Description
gradient Specify the gradient color for the shape.
solid Specify the background shape color.
stroke Specify the border of the shape.
corners Specify the corner radius of the shape.
padding Specify the padding for the shape.
size Specify the width and the height of the shape.

For example, let us suppose we want to create an oval with solid background color. We create a XML file called for example
oval.xml:

<shape xmlns:android="http://schemas.android.com/apk/res/android"
android:shape="oval" >

<solid android:color="#FF0000" />

<size
android:height="100dp"
android:width="120dp" />

</shape>

In this way, we create an oval shape having red as background color and with size 120dpx100dp. Then we can reference it in our
layout file:

<ImageView
android:layout_width="wrap_content"

http://developer.android.com/guide/topics/resources/drawable-resource.html

Android UI Design 84 / 132

android:layout_height="wrap_content"
android:layout_centerInParent="true"
android:src="@drawable/oval" />

Running the app, we obtain:

Android UI Design 85 / 132

Figure 4.6: screenshot

Android UI Design 86 / 132

For example, we can suppose we want to change the Button widget look. We want to create a rectangle with rounded corners
and as background a gradient color. We define a shape in XML file called round_corner.xml and we add it to drawable
dir:

<shape xmlns:android="http://schemas.android.com/apk/res/android"
android:shape="rectangle" >

<stroke
android:width="2dp"
android:color="#00FF00" />

<gradient
android:angle="-90"
android:endColor="#FFFFFF"
android:startColor="#00FF00"
android:type="linear" />

<corners android:radius="3dp" />

<padding
android:bottom="4dp"
android:left="4dp"
android:right="4dp"
android:top="4dp" />

</shape>

and in the layout file we have:

<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerInParent="true"
android:background="@drawable/round_corner"
android:text="Click me" />

Running the app, we have:

Android UI Design 87 / 132

Figure 4.7: screenshot

Android UI Design 88 / 132

As we can see, just using XML we can modify the widget background or create shapes.

4.4.2 State list

This drawable object can display several drawables depending on the object state. It is very useful when we want to customize
some object that has an internal states. For example, the Button widget is one of these objects, it has several states: pressed,
focused and so on.

In XML this drawable is represented by selector tag. This tag has item child elements:

<selector xmlns:android="http://schemas.android.com/apk/res/android">

<item android:drawable=""drawable1" android:state_pressed="true"/>
<item android:drawable=""drawable2" android:state_focused="true"/>

</selector>

Let’s suppose we want to customize a Button widget in our layout when it is pressed. Additionally, we want to change its
background to a red gradient color. So the first thing we do is to define two shapes:

<shape xmlns:android="http://schemas.android.com/apk/res/android" >

<solid android:color="#00FF00" />

</shape>

green.xml

<shape xmlns:android="http://schemas.android.com/apk/res/android" >

<gradient
android:angle="-90"
android:endColor="#FFFFFF"
android:startColor="#AA0000"
android:type="linear" />

</shape>

Once we have our shapes we can assign them to different object states:

<selector xmlns:android="http://schemas.android.com/apk/res/android">

<item android:drawable="@drawable/red_gradient" android:state_pressed="true"/>
<item android:drawable="@drawable/green"/>

</selector>

In this way, we assign the red_gradient drawable when the button is pressed and the green drawable in the default state. Running
the app we have:

Android UI Design 89 / 132

Figure 4.8: screenshot

Android UI Design 90 / 132

Figure 4.9: screenshot

Android UI Design 91 / 132

4.4.3 Nine-patch

Nine-patch image is a special background image that can be resized, so that it can hold the View content. You can look here if
you want to have more information. It can be used when we want to create an image but we do not know the exact size of the
View content.

Briefly, while creating this image we define the borders that can be stretched and the static area. Android provides a tool to help
us creating this kind of images located under the tools directory. Suppose we want to create a Button widget background, we
can create an image like the one shown below:

Now we can run draw9patch.bat under the tools directory. Now we can drag&drop this image on the window just opened:

Figure 4.10: screenshot

The window is divided in two areas: the left one is the “working window” while on the right side we have the final result. Now
we have to choose the area of the image that can scale, we can do it drawing lines on the left and top side, as you can see in the
picture:

http://developer.android.com/guide/topics/graphics/2d-graphics.html#nine-patch
http://developer.android.com/tools/help/draw9patch.html

Android UI Design 92 / 132

Figure 4.11: screenshot

Now we set the content area, selecting the right and bottom side of the image.

Figure 4.12: screenshot

Android UI Design 93 / 132

We can see on the right side the final result. Now we can save our work. When we have finished, we can copy this image under
res/drawable of our Android project.

To see the final effect we can create a layout like the one shown below:

<Button
android:id="@+id/btn1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:background="@drawable/stdbox"
android:text="This is a standard background with red border" />

<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@id/btn1"
android:layout_marginTop="10dp"
android:background="@drawable/box"
android:text="This is a 9 patch background with red border" />

In the first button we used a standard image the simple red box as shown above, while in the second button we use a 9-patch
image.

Running the example we have:

Android UI Design 94 / 132

Figure 4.13: screenshot

Android UI Design 95 / 132

You can notice the 9-patch images scales better than the standard image.

4.5 Download the Source Code

This was a lesson on how to use Multimedia with Android. You may download the source code here:

• CustomView.zip

• DrawableTutorial.zip

• MediaTutorial.zip

• PatchTutorial.zip

http://academy.javacodegeeks.com/wp-content/uploads/2014/02/4.-CustomView.zip
http://academy.javacodegeeks.com/wp-content/uploads/2014/02/4.-DrawableTutorial.zip
http://academy.javacodegeeks.com/wp-content/uploads/2014/02/4.-MediaTutorial.zip
http://academy.javacodegeeks.com/wp-content/uploads/2014/02/4.-PatchTutorial.zip

Android UI Design 96 / 132

Chapter 5

Android UI: Themes and Styles

5.1 Introduction

In the previous chapters, we talked about layout and how we can organize our Views so that we can create appealing user
interfaces. We saw there are several layout manager and View provided by the Android SDK and that, if they are not
enough, we can create custom layout manager and View. We also talked about drawable, which is very useful when we
want to customize some widget.

In this article we will describe how we can use style and theme. This is an important aspect when developing an app because
using style and theme we can brand our app and have an harmonious look.

While the layout and the Views specify the structure of the user interface, styles and themes define their look. What is a theme
in Android?

A theme is a set of styles and can be applied to the whole app or to a single Activity. It helps to create an appealing user
interface. A style, on the other hand, specifies a set of properties that have effects on how a View or Window looks like. These
properties specify the font size, the font family, the background color, font color and so on. We can imagine that a style is like a
CSS in a web page, it separates the content structure from how it is displayed on the screen.

When we create a layout in XML we use layout managers and Views. When using Views we could specify for example
the background color, the font color, View size and so on. For example let us suppose we have a simple TextView like the one
shown below:

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:background="#FF0000"
android:text="Hello style"
android:textColor="#FFFFFF"
android:textSize="14sp" >

</TextView>

Looking at the code above we notice there are some mistakes: we added to the View not only the information regarding its
content but also information about how it looks like and we hard-coded it directly. This is a very bad practice, because if we want
to change the text color we should look for each TextView in our user interface definition.

Moreover, in a consistent and appealing user interface where text messages have all the same size, we will have to replicate the
text size information for each TextView in our layout. This is a classic example where using a style would avoid duplication
of data, separate the layout structure from its appearance and improve the XML file readability.

Styles and themes are very similar concepts: when we apply a style to an Activity or an application, instead of applying
it to a single View, we call it a theme. In this case every property of a View that belongs to the Activity/application will
be specified by the Activity/application style. For example we could define text size and color in a style and apply it to an
Activity. In this way all the texts will look like as defined in the style.

http://developer.android.com/reference/android/widget/TextView.html

Android UI Design 97 / 132

5.2 Style definition

Now that we know what a style is, we have to define it inside our app. To do this, we have to create an XML file under res/
values. We can choose the file name as we prefer but it must have the .xml extension. A style is defined inside the resource
tag. So we have:

<resources xmlns:android="http://schemas.android.com/apk/res/android" >

<style
name="MyTextStyle"
parent="@android:style/TextAppearance" >

<item name="android:textColor">#FF0000</item>

<item name="android:textSize">14sp</item>
</style>

</resources>

In this way we have defined a new style called MyTextStyle and we have defined some properties as specified in item tags.
Notice that in the style definition we used the parent attribute. This is an optional attribute which can be usedf if we want the
defined style to inherit its properties from the parent style. Then, inside the style definition, we can override the parent properties.
Under the style tag we defined two items so we specified two properties.

An item tag has a name attribute that defines the property name. This is the name of the property we want to apply the style,
and the tag content is the property value. In our case, we defined a property called android:textColor assigning to it the
value #FF0000 and another one called android:textSize and we assigned the value 14sp.

5.2.1 Inheritance

As we have seen before, style can inherit from a parent style, using parent attribute in style tag. So we can create an hierarchical
structure with styles. There is another way to implement an hierarchical structure inside the same XML style file: we can simply
use . notation.

For example, we can suppose we want to create another style called MyTextStyleHuge that inherits from MyTextStyle
but overrides the text size:

<style name="MyTextStyle.MyTextStyleHuge" >
<item name="android:textSize">30sp</item>

</style>

and we can continue in this way adding new inheritance.

5.2.2 Style properties

Each style defines the values of a set of properties using item tag. The property names are the names of the properties defined
by a View. For example, looking at TextView we notice it has a set of properties described in the documentation in the XML
attributes section. If we want to define the style of one of this property, we have to use the same name in the attribute name of
item tag.

Looking at the example above, we used the properties android:textSize and android:textColor, they are two prop-
erties of the TextView according to the documentation: the first one used to define the text size and the other one for text
color.

Once we have defined our style we have to apply it. As said before we can apply it to a single View, to an Activity or to an
application. For example if we want to apply the style to a single View we use style attribute in this way:

http://developer.android.com/reference/android/widget/TextView.html

Android UI Design 98 / 132

<TextView
style="@style/MyTextStyle"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Text with style" />

Now we applied MyTextStyle to the TextView.

These two ways are equivalent:

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Hello without style"
android:textColor="#FF0000"
android:textSize="14dp" >

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Text with style"
style="@style/MyTextStyle"/>

In the left side we used a bad practice that we should avoid, while on right side we used a best practice. Running an app with
these two TextView in the layout we have:

Android UI Design 99 / 132

Figure 5.1: screenshot

Android UI Design 100 / 132

As you can notice the result is the same for both TextView.

5.3 Creating and applying themes

We know a theme is a special style that is applied to an Activity or to an application instead of a single View. A theme is
always a style and when we want to define a theme we use the same technique used before when defining a style, so we create a
XML file under res/values. Android provides a large collection of themes and styles that we can use or override customizing
them.

Let us suppose we want to create a theme for all the application that sets the background to green. In this scenario, we define a
style called AllGreen in this way:

<style
name="AllGreen"
parent="@android:style/Theme.Black" >

<item name="android:background">#00FF00</item>

</style>

and then we apply it to the application in the Manifest.xml:

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AllGreen" >

</application>

Running an app like that we will have the following result:

Android UI Design 101 / 132

Figure 5.2: screenshot

Android UI Design 102 / 132

As a result the Activity background is green as we wanted. We have defined before a style for TextView and now we would
like to use it in our theme. To do it, we have to modify it a little bit:

<resources xmlns:android="http://schemas.android.com/apk/res/android" >

<style
name="MyTextStyle"
parent="@android:style/Widget.Text<code>View</code>" >

<item name="android:textColor">#FF0000</item>

<item name="android:textSize">14sp</item>
</style>

<style
name="AllGreen"
parent="@android:style/Theme.Black" >

<item name="android:background">#00FF00</item>

<item name="android:textViewStyle">@style/MyTextStyle</item>
</style>

</resources>

Running the app we have:

Android UI Design 103 / 132

Figure 5.3: screenshot

Android UI Design 104 / 132

By now we used just solid color for the background and we have seen it is easy to change the background, but what if we want
to use a gradient color?

In the previous chapter we described how to create a gradient: we have to create a file with XML extension under res/
drawable directory; we call it grandient_red.xml:

<shape xmlns:android="http://schemas.android.com/apk/res/android" >

<gradient
android:endColor="#AA0000"
android:startColor="#FF0000"
android:type="linear" />

</shape>

Now we have to reference it in our style and for simplicity we can create another style file called style_gradient.xml:

<resources xmlns:android="http://schemas.android.com/apk/res/android" >

<style
name="RedGrad"
parent="@android:style/Theme.Black" >

<item name="android:background">@drawable/gradient_red</item>
</style>

</resources>

As you can notice, we referenced the drawablewe created under the drawable directory, using @drawable/file_name.
Running an app with this style we have:

Android UI Design 105 / 132

Figure 5.4: screenshot

Android UI Design 106 / 132

Until now, whenever we defibed colors or font sizes, we used some hard coded values. Even if this is possible, it is not recom-
mended for several reasons:

• If we want to change the color or a font size for example we have to look for these values in the style file.

• We would like to change the font size and colors according to the platform version for example or according to the screen
dimensions.

So it is a good practice to move the color definition and/or the font size and so on to an external resources and reference them in
the style.

So let us rewrite the text style we used before where this time we write the style in an XML file called style_text.xml:

<resources>

<style name="MyTextStyle1" >

<item name="android:textColor">@color/red</item>

<item name="android:textSize">@dimen/myTextSize</item>
</style>

</resources>

In this style we referenced an external resource that sets the text color and the text size. In this case, we have to create two files:
one that we can call colors.xml containing the color definition and another one containing the dimension called dimens.
xml:

<resources>
<color name="red">#FF0000</color>

</resources>
<resources>

<dimen name="myTextSize">14sp</dimen>
</resources>

We now know that we can reference external resources using the @ symbol, but sometimes we want to reference a single style
element not the whole style.

For example, we want to reference the current text color, but we do not know which one will be used by the OS. How can we do
it? Well Android provides the ? symbol, which we can use to access a single element. For example we can suppose we want to
set the text color value to one defined in Android OS:

<style name="TextRef" >

<item name="android:textColor">?android:attr/textColorLink</item>

</style>

Using this notation, we set the current text color to the default text color used for links. Running the app we have:

Android UI Design 107 / 132

Figure 5.5: screenshot

Android UI Design 108 / 132

5.3.1 Themes and platforms

Android provides an interesting feature that is useful when we want to create an app for different devices that can run on different
Android versions.

Until now we used just res/values and we created several files that represent styles, dimensions, colors and so on. Android
can use different resources according to the platform version, so we could adapt, for example, our themes and styles to the
platform version, or we can even create a different style with different colors depending on the platform.

We know that newer Android version introduced some new features, APIs and resources including styles and themes. We could
use newer themes when our app runs on devices that have a new Android version. At the same time, we want to keep the
compatibility towards older Android versions. Using platform dependent resources we can achieve this goal.

In order to create a resource set that is dependent on the platform version we have to create a directory under res called
values-vxx where xx is the API level; for example if we want to create a resource set that is suitable for Android 3.0 (API
level 11) or higher, we can create a directory called values-v11. Under this directory we create style and themes. If we notice
when we use Eclipse as IDE it creates two themes by default, one under res/values:

<style name="AppBaseTheme" parent="android:Theme.Light"></style>

and another one under res/values-v11:

<style name="AppBaseTheme" parent="android:Theme.Holo.Light"></style>

As you can see, these two themee have the same name but inherit from different parents.

We can not only specify our theme according to the platform version but also according to the screen size. For example, if we
want to apply our theme when the smallest screen size is at least 600dp, we can create a directory called values-sw600dp
and create under it our style file. This style and theme will be applied only when the device smallest screen size is at least 600dp.
This technique is useful when we want to provide different style/theme according to the screen size. We could, for example, have
only one style/theme defined in res/values and provide different text size according to the screen size. In this case we can
only create a file called dimens.xml.

5.4 Conclusion

We now know how to use styles and themes and it is useful to recap some basic rules we should follow:

• Do not use hard coded values for colors, size and so on.

• Define a style or a theme and use style=”...” in the widget definition to reference the style.

• In the style definition do not use values directly in the XML file but reference theme using external resources. For example
reference a color using @color/color_name.

• Provides different style or theme according to the platform version.

• Provides different resources according to the screen size.

5.5 Download the Source Code

This was a lesson on how to use Android Themes and Styles. You may download the source code here:

themeStyle.zip

http://academy.javacodegeeks.com/wp-content/uploads/2014/02/5.-styletutorial.zip

Android UI Design 109 / 132

Chapter 6

Android UI: Full Sample App

6.1 Introduction

In this last chapter about Android UI, we will build an Android app that uses almost all the concepts we talked about in the
previous chapters. We talked about the most important aspects we need to consider when developing an Android app. We saw
how to create a UI structure using layout managers and how we can place widgets; we described some best practices, we should
use, while developing an app. Well, the app we will build will be based on the topics covered previously, so have another look at
them to refresh your memory.

As an example, we will build a To Do app: this is a simple app where we can add todo items and manage them. We will cover
how to create the UI layout structure, how to add widgets so that we can show text messages to the user and how to accept user
input. An important aspect we will consider is how to build an app that can be used on several devices with different screen size
and resolutions.

6.2 App structure

Before digging into the code details, the first thing we should consider when building an app is making some sketches that help
us to understand the app navigation and user interaction. There are several tools we can use, some of them are free. Moreover,
these sketches help us to have an idea how our app will look like and we could show them to our customers so that they can
realize if the app we want to build respects their needs.

Coming back to our To do app, we can image we have these requirements we have to satisfy:

• There should be a list of items (to do items).

• A user can add an item to the existing ones.

• Items should have a priority color.

• The app should run on smart phone and tablets.

In a real app, the requirements will be much more complex of course, but this is just a stepping stone. We can imagine a simple
navigation like this one:

Android UI Design 110 / 132

Figure 6.1: screenshot

Android UI Design 111 / 132

Figure 6.2: screenshot

Android UI Design 112 / 132

This is a very simple navigation: at the start up, the app shows the current items list and when the user clicks on "Add Item" on
the action bar. the app will show the add item screen. To keep things simple and get focused on the UI aspects we can suppose
that the app will not save the items. It could be an interesting exercise for the reader to extend the app so that it saves the items.

Now that we roughly know what the navigation will be and how the app user interface will look, we can start creating our app
using our IDE. In this case we will use Eclipse + ADT. We create a new Android project that we can call Todo. We will not cover
how to create an Android project using Eclipse so we assume you are already familiar with this IDE. Check out our "Android
Hello World" example if you are not familiar with the process.

6.2.1 Item List with ListView and Object Model

Now we have our project structure, we can focus our mind on designing the model that stands behind the app. In this case the
model is very simple, it is just a class that holds the information about a new todo item:

public class Item implements Serializable {
private String name;
private String descr;
private Date date;
private String note;
private TagEnum tag;

// Set and get methods
}

This will be the basic class that we will handle in our app. Looking at the Android project, we have just created, we can notice
that under the layout directory there is a default layout called activity_main.xml. This is the default layout created by the
tool.

By now we can suppose we have just a list of items in this layout: this layout will be used just for smart phone and we will
consider later when the app runs on a tablet. The list item layout is very simple, it is just built by a standard ListView widget:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
tools:context=".MainActivity" >

<ListView
android:id="@+id/listItmes"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />

</RelativeLayout>

If you notice, we instructed Android to use just the space necessary to hold the items in the list. We know that to use a ListView
we have to implement an adapter. We could use a standard adapter provided by Android, but in this case these standard adapters
are not enough, we want to implement a custom adapter because we would like to show some information for each row in the
list. We would like that a row in the list looks like:

http://www.javacodegeeks.com/2012/12/android-hello-world-example-how-to-develop-android-apps.html
http://www.javacodegeeks.com/2012/12/android-hello-world-example-how-to-develop-android-apps.html

Android UI Design 113 / 132

Figure 6.3: screenshot

As you can notice, each row has an image on the left side that represents the todo priority and some information. By now we
do not consider applying any style to our rows. To have a row in our ListView like that, we have to create a row layout that
we will use in our custom adapter. So we can create a new file called item_layout.xml under layout directory. This file
looks like this:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent" >

<ImageView
android:id="@+id/tagView"
android:layout_width="30dp"
android:layout_height="20dp"
android:background="@color/red" />

<TextView
android:id="@+id/nameView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentTop="true"
android:layout_toRightOf="@id/tagView" />

<TextView
android:id="@+id/descrView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@id/nameView"
android:layout_toRightOf="@id/tagView" />

<TextView
android:id="@+id/dateView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"
android:layout_alignParentRight="true" />

</RelativeLayout>

In this layout, we use a RelativeLayout manager to place easily widgets where we want. As you can see in this layout
manager, views are placed according to other view positions. For example we want our todo name to be placed just after the
image, so we use the attribute:

android:layout_toRightOf="@id/tagView"

http://developer.android.com/reference/android/widget/RelativeLayout.html

Android UI Design 114 / 132

Moreover, we can place views respect to the parent, for example we want that the date information will be placed on the right
side of the row and at the bottom:

android:layout_alignParentRight="true"
android:layout_alignParentBottom="true"

Now that we have the layout, we have to build the adapter. We will extend an ArrayAdapter and override some methods so
we can handle our model data and the new layout. We call this adapter ToDoItemAdaper, so we have:

public class ToDoItemAdapter extends ArrayAdapter<Item> {
private Context ctx;
private List<Item> itemList;
public ToDoItemAdapter(Context context, List<Item> itemList) {

super(context, R.layout.item_layout);
this.ctx = context;
this.itemList = itemList;

}
}

The constructor receives the Context and the itemList as parameters, the last one param holds the todo item list. You can
notice that when we call the super method, we pass out custom layout called R.layout.item_layout. Now we have to
override one of the most important method called getView, used to create the View and render the row layout:

@Override
public View getView(int position, View convertView, ViewGroup parent) {

View v = convertView;
ItemHolder h = null;
if (v == null) {

// Inflate row layout
LayoutInflater inf = (LayoutInflater) ctx.getSystemService(Context. ←↩

LAYOUT_INFLATER_SERVICE);
v = inf.inflate(R.layout.item_layout, parent, false);
// Look for Views in the layout
ImageView iv = (ImageView) v.findViewById(R.id.tagView);
TextView nameTv = (TextView) v.findViewById(R.id.nameView);
TextView descrView = (TextView) v.findViewById(R.id.descrView);
TextView dateView = (TextView) v.findViewById(R.id.dateView);
h = new ItemHolder();
h.tagView = iv;
h.nameView = nameTv;
h.descrView = descrView;
h.dateView = dateView;
v.setTag(h);

}
else

h = (ItemHolder) v.getTag();

h.nameView.setText(itemList.get(position).getName());
h.descrView.setText(itemList.get(position).getDescr());
h.tagView.setBackgroundResource(itemList.get(position).getTag().getTagColor ←↩

());
h.dateView.setText(sdf.format(itemList.get(position).getDate()));

return v;
}

In this method, we check at the beginning if the View we receive as parameter is null. In this case, we have to inflate our layout.
If you notice, we used the ViewHolder pattern to make the ListView scrolling smoother. We have created a small inner
class called ItemHolder that holds the references to the View inside our custom layout:

// ViewHolder pattern
static class ItemHolder {

http://developer.android.com/reference/android/widget/ArrayAdapter.html
http://developer.android.com/reference/android/content/Context.html

Android UI Design 115 / 132

ImageView tagView;
TextView nameView;
TextView descrView;
TextView dateView;

}

One thing you should notice is how we handled the background color of the ImageView. We used setBackgroundResou
rce to set the imageview background. This method accepts an int representing the resource id we want to use as background:

h.tagView.setBackgroundResource(itemList.get(position).getTag().getTagColor());

Looking at our model class we can notice that the getTag() method returns an instance of TagEnum class. This is an
enumeration defined in this way:

public enum TagEnum {
BLACK(R.color.black,"Black"), RED(R.color.red, "Red"),
GREEN(R.color.green, "Green"), BLUE(R.color.blue, "Blue"),YELLOW(R.color.yellow," ←↩

Yellow");
private int code;
private String name;
private TagEnum(int code, String name) {

this.code = code;
this.name = name;

}
public int getTagColor() {

return this.code;
}

}

In the enumeration we define the different colors we want to support and as first parameter we pass a resource id. If you remember
in a previous chapter we talked about how to define resource color in XML format. We know, already, we have to create a XML
file under res/values that we can call colors.xml:

<resources>

<color name="red" >#FF0000
</color>

<color name="green" >#00FF00
</color>

<color name="blue" >#0000FF
</color>

<color name="black" >#000000
</color>

<color name="yellow" >#FFAA00
</color>

</resources>

In the enumeration color definition we referenced this color using R.color.color_name, so that when we use getTag
Color method in the custom adapter getView, we receive the resource id that will be used by the image background. An
important aspect to understand is that we did not hard-code the colors in the constructor: for example, we could use directly the
color hex code like #FF0000 for red and so on.

Even if the result would be the same, it is not recommended to use hard-coded values in the source code. For example, if we
want to change the red color to another one, we will have to find the hex color in the source code and change it, but if we had
used resources to define colors, we would go directly to the file holding the color definitions and change the color we like.

http://developer.android.com/reference/android/widget/ImageView.html
http://developer.android.com/reference/android/view/View.html#setBackgroundResource%28int%29
http://developer.android.com/reference/android/view/View.html#setBackgroundResource%28int%29

Android UI Design 116 / 132

Notice that in the enumeration, we used a bad practice: we wrote directly the color name. We used it purposely to show to you
something you should not do. In this case, if we want to support multi-language app, we have to change the way we initialize the
enumeration using name written in a string resource file.

6.2.2 Multi-device support and layout considerations

Remember that one of our requirements is that we have to build an app that supports both smart phones and tablets. Thinking
about tablet screen dimensions, we realize that the screen is too big to hold just a list of items, so we could consider splitting the
screen in two areas: one that holds the list and another one that we can use to show item details or even to show the user interface
to add a new item. This is true if we use tablets, but if we have a smart phone the screen dimensions are not big enough to be
divided in two areas.

At the same time, we do not want to develop two different code branches: one for smart phone and one for tablet. We would
rewrite the same code changing just some details and dimensions. Android helps us to solve this problem: we talked about
Fragment in a previous chapter. So we could create a fragment that handles the user interface to add a new item to the list. A
fragment encapsulates a set of components and activity behaviors so that we can reuse this piece of code in different activities.
The figures below depict the situation we have to handle:

Figure 6.4: screenshot

http://developer.android.com/reference/android/app/Fragment.html

Android UI Design 117 / 132

Figure 6.5: screenshot

When the app runs in a smart phone we have to handle two activities one for the list item and another that handles the user input,
while in a tablet we can have only one activity.

We can suppose that the screen size is at least 600dp so we want to split the screen in a different areas and we define a new layout
under res/layout-sw600dp:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
tools:context=".MainActivity" >

<ListView
android:id="@+id/listItmes"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_weight="1" />

<FrameLayout
android:id="@+id/frm1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_weight="1" />

Android UI Design 118 / 132

</LinearLayout>

where the FrameLayout will be “filled” dynamically depending on the navigation flow.

Of course, we can customize the layout in more details, according to the different screen sizes. In this case, we can simply create
different layouts in different directories under res.

6.2.3 Add item user interface layout

If we run the app we have as a result an empty list with no items. We have to create a new user interface. So keeping in mind
the considerations we made before, we create a Fragment that handles the add item functionality, calling it as NewItemFra
gment. A fragment has a complex life cycle but for this purpose we can override just onCreateView method. This method
is responsible for creating the user interface. As always, we have to create the layout first. In our IDE under res/layout we
create another xml file that we call add_item_layout.xml:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent" >

<TextView
android:id="@+id/txtTitle"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:text="@string/addItem" />

<TextView
android:id="@+id/itemName"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@id/txtTitle"
android:layout_marginStart="10dp"
android:text="@string/addItemName" />

<EditText
android:id="@+id/edtName"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignParentLeft="true"
android:layout_below="@id/itemName"
android:hint="@string/addItemNameHint" />

<TextView
android:id="@+id/itemDescr"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentLeft="true"
android:layout_below="@id/edtName"
android:layout_marginTop="10dp"
android:text="@string/addItemDescr" />

<EditText
android:id="@+id/edtDescr"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignParentLeft="true"
android:layout_below="@id/itemDescr"
android:hint="@string/addItemDescrHint" />

<TextView
android:id="@+id/itemNote"

http://developer.android.com/reference/android/app/Fragment.html#onCreateView%28android.view.LayoutInflater,%20android.view.ViewGroup,%20android.os.Bundle%29

Android UI Design 119 / 132

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentLeft="true"
android:layout_below="@id/edtDescr"
android:layout_marginTop="10dp"
android:text="@string/addItemNote" />

<EditText
android:id="@+id/edtNote"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignParentLeft="true"
android:layout_below="@id/itemNote"
android:hint="@string/addItemNoteHint" />

<TextView
android:id="@+id/itemDate"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentLeft="true"
android:layout_below="@id/edtNote"
android:layout_marginTop="10dp"
android:text="@string/addItemDate" />

<TextView
android:id="@+id/inDate"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentLeft="true"
android:layout_below="@id/itemDate"
android:layout_marginTop="10dp" />

<TextView
android:id="@+id/itemTime"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentLeft="true"
android:layout_below="@id/inDate"
android:layout_marginTop="10dp"
android:text="@string/addItemTime" />

<TextView
android:id="@+id/inTime"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentLeft="true"
android:layout_below="@id/itemTime"
android:layout_marginTop="10dp" />

<TextView
android:id="@+id/itemTag"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentLeft="true"
android:layout_below="@id/inTime"
android:layout_marginTop="10dp"
android:text="@string/addItemTag" />

<Spinner
android:id="@+id/tagSpinner"
android:layout_width="wrap_content"
android:layout_height="wrap_content"

Android UI Design 120 / 132

android:layout_alignParentLeft="true"
android:layout_below="@id/itemTag" />

<!-- ADD button -->

<Button
android:id="@+id/addBtn"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"
android:layout_centerHorizontal="true"
android:text="@string/addButton" />

</RelativeLayout>

It is a very simple layout made by TextView and EditText: the first one is used to show text messages on the user interface
and the other one is used to accept user inputs. There are two components that are important in this layout: the Spinner and
the Date/Time picker.

A spinner is a UI component that shows only one item at time and lets the user to select one item among them. We use this
component to show different tag colors/priorities. It suits perfectly our purpose, in fact we want the user to select one color
among a color list.

6.2.4 Tag Color/Priority Spinner

To work correctly, a Spinner needs an array adapter behind it. Android provides a list of adapters we can use, but we want to
customize them because we want to show an image with a color. Then, we have to create a custom adapter in the same way we
did for the ListView. First we create the row layout called spinner_tag_layout.xml:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent" >

<ImageView
android:id="@+id/tagSpinnerImage"
android:layout_width="30dp"
android:layout_height="20dp" />

<TextView
android:id="@+id/tagNameSpinner"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_toRightOf="@id/tagSpinnerImage" />

</RelativeLayout>

and finally we create our adapter:

public class TagSpinnerAdapter extends ArrayAdapter<TagEnum> {

private Context ctx;
private List<TagEnum> tagList;

public TagSpinnerAdapter(Context ctx, List<TagEnum> tagList) {
super(ctx, R.layout.spinner_tag_layout);
this.ctx = ctx;
this.tagList = tagList;

}

http://developer.android.com/reference/android/widget/TextView.html
http://developer.android.com/reference/android/widget/EditText.html
http://developer.android.com/reference/android/widget/Spinner.html

Android UI Design 121 / 132

@Override
public View getDropDownView(int position, View convertView, ViewGroup parent) {

return _getView(position, convertView, parent);
}

@Override
public View getView(int position, View convertView, ViewGroup parent) {

return _getView(position, convertView, parent);
}

private View _getView(int position, View convertView, ViewGroup parent) {
View v = convertView;
if (v == null) {

// Inflate spinner layout
LayoutInflater inf = (LayoutInflater) ctx.getSystemService(Context. ←↩

LAYOUT_INFLATER_SERVICE);
v = inf.inflate(R.layout.spinner_tag_layout, parent, false);

}

// We should use ViewHolder pattern
ImageView iv = (ImageView) v.findViewById(R.id.tagSpinnerImage);
TextView tv = (TextView) v.findViewById(R.id.tagNameSpinner);

TagEnum t = tagList.get(position);
iv.setBackgroundResource(t.getTagColor());
tv.setText(t.getName());
return v;

}

}

Analyzing the code above, we notice that this adapter handles TagEnum objects and we override two methods getView and
getDropDownView. We handle these methods in the same way. As you can notice we did almost the same things already
done for the ListView.

In the fragment that holds this UI components, we have to find the reference to the Spinner and set the custom layout we
defined above:

Spinner sp = (Spinner) v.findViewById(R.id.tagSpinner);
TagSpinnerAdapter tsa = new TagSpinnerAdapter(getActivity(), tagList);
sp.setAdapter(tsa);

When user selects one item in the Spinner, we have to find a way to know which one item was selected.

As you remember, we can use listener to be informed when some events occur in a component. In this case we are interested on
item selection event, so we create a listener for it:

sp.setOnItemSelectedListener(new AdapterView.OnItemSelectedListener() {
@Override
public void onItemSelected(AdapterView<?> adptView, View view,

int pos, long id) {
currentTag = (TagEnum) adptView.getItemAtPosition(pos);

}

@Override
public void onNothingSelected(AdapterView<?> arg0) {

// TODO Auto-generated method stub

}
});

and we store the result in a class attribute.

Android UI Design 122 / 132

6.2.5 Date and Time picker

When we add a new todo item to the list, we want the user to select the date and the time. Android provides two components
called DatePickerDialog and TimePickerDialog. As the name implies, these are two dialogs that can be opened to
select the date and the time.

We are using fragments so we have to create two inner class that present to the user the date and time pickers. In this case we
extend for both pickers the DialogFragment class and override the onCreateDialog method. In this method, we simply
initialize the Date picker and return it as result:

public static class DatePickerFragment extends DialogFragment implements DatePickerDialog. ←↩
OnDateSetListener {

@Override
public Dialog onCreateDialog(Bundle savedInstanceState) {

// Use the current date as the default date in the picker
final Calendar c = Calendar.getInstance();
c.setTime(selDate);
int year = c.get(Calendar.YEAR);
int month = c.get(Calendar.MONTH);
int day = c.get(Calendar.DAY_OF_MONTH);

// Create a new instance of DatePickerDialog and return it
return new DatePickerDialog(getActivity(), this, year, month, day);

}

@Override
public void onDateSet(DatePicker view, int year, int monthOfYear,

int dayOfMonth) {

Calendar c = Calendar.getInstance();
c.set(year, monthOfYear, dayOfMonth, 9, 0);
selDate = c.getTime();
tvDate.setText(sdfDate.format(selDate));

}
}

From the code above you can notice that we simply set the current date to the DatePickerDialog in the onCreateDialog.
We implement the DatePickerDialog.OnDateSetListener to be notified when user selects the date. In the callback
method of this interface we simply store the date selected by the user.

In the same way, we handle the TimePickerFragment, but in this case we extend TimePickerDialog:

public static class TimePickerFragment extends DialogFragment implements TimePickerDialog. ←↩
OnTimeSetListener {

@Override
public Dialog onCreateDialog(Bundle savedInstanceState) {

// Use the current date as the default date in the picker
final Calendar c = Calendar.getInstance();
c.setTime(selDate);
int hour = c.get(Calendar.HOUR_OF_DAY);
int minute = c.get(Calendar.MINUTE);

// Create a new instance of TimePickerDialog and return it
return new TimePickerDialog(getActivity(), this, hour, minute,

DateFormat.is24HourFormat(getActivity()));
}

@Override
public void onTimeSet(TimePicker view, int hourOfDay, int minute) {

Calendar c = Calendar.getInstance();
c.setTime(selDate);
c.set(Calendar.HOUR_OF_DAY, hourOfDay);
c.set(Calendar.MINUTE, minute);

http://developer.android.com/reference/android/app/DatePickerDialog.html
http://developer.android.com/reference/android/app/TimePickerDialog.html
http://developer.android.com/reference/android/app/DialogFragment.html
http://developer.android.com/reference/android/app/TimePickerDialog.html

Android UI Design 123 / 132

selDate = c.getTime();
// We set the hour
tvTime.setText(sdfTime.format(selDate));

}
}

These are two dialogs that they do not appear by themselves, but we have to check if the user clicks on a date/time textview to
open these dialogs, so we have:

tvDate = (TextView) v.findViewById(R.id.inDate);
tvTime = (TextView) v.findViewById(R.id.inTime);

to get the reference to the TextView and then we have simply implement a listener:

tvDate.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {

DatePickerFragment dpf = new DatePickerFragment();
dpf.show(getFragmentManager(), "datepicker");

}
});

As result we have:

Android UI Design 124 / 132

Figure 6.6: screenshot

The last part in developing this fragment is dedicated to handling the event when the user clicks on the add button. When this
event occurs, the fragment should create an instance of Item class holding the data inserted by user and send it back to the activity
that holds the fragment. The best practice suggests to use an interface and callback methods.

We can define this interface in the fragment class:

public interface AddItemListener {
public void onAddItem(Item item);

}

It is a very simple interface made by just only one method. Now we have:

Button addBtn = (Button) v.findViewById(R.id.addBtn);
addBtn.setOnClickListener(new View.OnClickListener() {

@Override
public void onClick(View v) {

// We retrieve data inserted
Item i = new Item();

Android UI Design 125 / 132

i.setName(edtName.getText().toString());
i.setDescr(edtDescr.getText().toString());
i.setNote(edtNote.getText().toString());
i.setTag(currentTag);
i.setDate(selDate);
// Safe cast
((AddItemListener) getActivity()).onAddItem(i);

}
});

By using an interface we decouple the fragment from the activity that holds it and this will be very useful as we will see later.

Coming back to the note made regarding smart phones and tablets and remembering the picture shown above, we know that if
the app runs in a smart phone we have to use two activities so we create another one called NewItemActivity that will hold
the fragment described above. This activity is very simple because it acts as a fragment container.

public class NewItemActivity extends Activity implements NewItemFragment.AddItemListener{
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
NewItemFragment nif = new NewItemFragment();
getFragmentManager().beginTransaction().add(android.R.id.content, nif). ←↩

commit();
}

@Override
public void onAddItem(Item item) {

// We get the item and return to the main activity
Log.d("TODO", "onAddItem");
Intent i = new Intent();
i.putExtra("item", item);
setResult(RESULT_OK,i);
finish();

}
}

In the onCreate method, we create a new instance of our fragment class and the using FragmentManager we show the
fragment on the screen.

Notice that this activity implements the interface defined in the fragment because it has to be notified when the user wants to add
a new item, so it implements the onAddItem method. We will cover the functionality of this method later.

6.2.6 Main Activity

The main activity is the heart of the app, it is the activity that is called at the start up. It sets up the initial layout and shows the
item list that we previously described:

itemListView = (ListView) findViewById(R.id.listItmes);
adpt = new ToDoItemAdapter(this, itemList);
itemListView.setAdapter(adpt);

Now we have to check if our app runs on a smart phone or a tablet so that we can change the activity behavior. We can do it by
verifying if there is a FrameLayout component in the layout definition:

if (findViewById(R.id.frm1) != null)
isTablet = true;

http://developer.android.com/reference/android/app/FragmentManager.html

Android UI Design 126 / 132

6.2.7 Action bar

In this activity we add a action bar (a well-known Android pattern) with an action: add new item. To define it, we create (if not
exists) a XML file under res/menu:

<menu xmlns:android="http://schemas.android.com/apk/res/android" >

<item
android:id="@+id/action_add"
android:icon="@android:drawable/ic_menu_add"
android:orderInCategory="0"
android:showAsAction="always"/>

</menu>

As a result we obtain:

Figure 6.7: screenshot

As a user clicks on the plus sign, we should show the user interface for adding a new item. The first thing we have to handle is
the event when user clicks on plus icon so we have to override a method in the activity class:

@Override
public boolean onOptionsItemSelected(MenuItem item) {

int menuId = item.getItemId();
switch (menuId) {

case R.id.action_add: {
if (!isTablet) {

Intent i = new Intent(this, NewItemActivity.class);
startActivityForResult(i, ADD_ITEM);
break;

}
else {

Log.d("TODO", "Tablet");
FragmentTransaction ft = getFragmentManager(). ←↩

beginTransaction();
NewItemFragment nif = new NewItemFragment();
ft.replace(R.id.frm1, nif);
ft.commit();

}

Android UI Design 127 / 132

}
}

}

This method is very important because we define how our activity should behave. If the button clicked by the user is our add
button, we first verify if our app is running on a smart phone. In this case, we know we have to start another activity and we start
it waiting for a result.

If we start an activity waiting for its result in the called activity we should return the result and we do it in the NewItemActiv
ity in this way:

@Override
public void onAddItem(Item item) {

// We get the item and return to the main activity
Log.d("TODO", "onAddItem");
Intent i = new Intent();
i.putExtra("item", item);
setResult(RESULT_OK,i);
finish();

}

In this method we create an Intent that holds the result and pass it back to the calling activity (MainActivity) and we finish
the activity. In the MainActivity, then, we have to be ready to handle the result:

protected void onActivityResult(int requestCode, int resultCode, Intent data) {
Log.d("TODO", "OnResult");
if (requestCode == ADD_ITEM) {

if (resultCode == RESULT_OK) {
Log.d("TODO", "OK");
Item i = (Item) data.getExtras().getSerializable("item");
itemList.add(i);
adpt.notifyDataSetChanged();

}
}

}

In this activity we extract the item object stored inside the Intent that we receive as result and add it to the item list. When we
finish we call notifyDataSetChange method so that the ListView can be updated.

If our app is running on a tablet we simply “fill” the FrameLayout with the NewItemFragment described above. In this
case we start a transaction and replace the FrameLayout with the fragment and at the end we commit the transaction. In this
case, we do not need to start another activity because we use the FrameLayout to show the fragment that handles the user
interface for adding a new item. So we have:

Android UI Design 128 / 132

Figure 6.8: screenshot

Android UI Design 129 / 132

In this case, we have to simply implement the interface specified by the fragment as we did before:

@Override
public void onAddItem(Item item) {

itemList.add(item);
adpt.notifyDataSetChanged();
NewItemFragment nif = (NewItemFragment) getFragmentManager().findFragmentById(R.id. ←↩

frm1);
getFragmentManager().beginTransaction().remove(nif).commit();

}

Notice in the last part that we removed the fragment at the end.

6.3 Styling the app

By now we have not considered the application’s style, but we know we can apply style to every UI component. We can modify
all the UI colors and looks, implementing our style and branding the app. For example we want to apply a style to the listView
row making them a little more appealing. We create (if it does not already exist), a file called style.xml under res/values
and here we can define our style as we discussed in a previous chapter:

<style name="dateStyle">
<item name="android:textAppearance">?android:textAppearanceSmall</item>
<item name="android:textColor">@color/red</item>

</style>

<style name="descrStyle">
<item name="android:textStyle">italic</item>
<item name="android:textAppearance">?android:textAppearanceSmall</item>

</style>

<style name="nameStyle">
<item name="android:textAppearance">?android:textAppearanceMedium</item>
<item name="android:textStyle">bold</item>

</style>

We defined three different styles and we want to apply them to our listview row:

<TextView
android:id="@+id/nameView"
style="@style/nameStyle"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentTop="true"
android:layout_toRightOf="@id/tagView" />

<TextView
android:id="@+id/descrView"
style="@style/descrStyle"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@id/nameView"
android:layout_toRightOf="@id/tagView" />

<TextView
android:id="@+id/dateView"
style="@style/dateStyle"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"
android:layout_alignParentRight="true" />

Android UI Design 130 / 132

Running the app with this style we have:

Android UI Design 131 / 132

Figure 6.9: screenshot

Android UI Design 132 / 132

6.4 Conclusion

In this Android UI course we covered some important UI aspects, concepts and best practices we should follow when developing
an Android app. In this last article we saw how to apply all this knowledge to build a real app using all the topics covered in the
previous chapters. Of course, this simple app can be improved and you can have it as an exercise to try to add new functionalities.
For example, we did not cover how to modify or delete the items in the list. In this case we could listen when a user clicks on an
item and you could show a menu with several options, or we could use the action bar changing it according to the user actions.
For example we could create a multiple selection list view and when user clicks on “trash” icon in the action bar we remove all
the items selected.

There are different aspects we can improve in this app and it will be a good exercise if you want to go deeper in Android
development aspects.

6.5 Download the Source Code

This was a lesson on how to create an Android app UI from scratch. You may download the source code here: AndroidApp.zip

http://academy.javacodegeeks.com/wp-content/uploads/2014/02/6.-ToDO.zip

	Android UI Overview
	Introduction
	Android App Structure and UI patterns
	Top level view
	Detail view
	Action Bar

	Standard components
	Multiple devices support

	Android UI: Understanding Views
	Overview
	Views
	TextView component
	ImageView component
	Input controls

	UI Events and Listeners
	UI Development
	View and Adapters
	Handling ListView events
	Custom Adapter and View Holder pattern

	Download the Source Code

	Android UI: Layouts with View Groups and Fragments
	Overview
	Layout overview
	LinearLayout
	TableLayout
	RelativeLayout
	FrameLayout
	GridLayout
	Layout and multiple screen support

	Fragments
	Fragment lifecycle
	How to use fragments
	FrameLayout and FragmentManager
	Fragment Activity communication
	Inter fragment communication
	Multiple screen support using fragments

	Download the Source Code

	Android UI: Adding Multimedia to an App
	Overview
	Multimedia API
	Using Android Camera

	Graphics
	Drawable
	Shape drawable
	State list
	Nine-patch

	Download the Source Code

	Android UI: Themes and Styles
	Introduction
	Style definition
	Inheritance
	Style properties

	Creating and applying themes
	Themes and platforms

	Conclusion
	Download the Source Code

	Android UI: Full Sample App
	Introduction
	App structure
	Item List with ListView and Object Model
	Multi-device support and layout considerations
	Add item user interface layout
	Tag Color/Priority Spinner
	Date and Time picker
	Main Activity
	Action bar

	Styling the app
	Conclusion
	Download the Source Code

