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Many-particle entanglement is a fundamental concept of quantum physics

that still presents conceptual challenges. While spin-squeezed and other non-

classical states of atomic ensembles were used to enhance measurement pre-

cision in quantum metrology, the notion of entanglement in these systems re-

mained controversial because the correlations between the indistinguishable

atoms were witnessed by collective measurements only. Here we use high-

resolution imaging to directly measure the spin correlations between spatially

separated parts of a spin-squeezed Bose-Einstein condensate. We observe en-

tanglement that is strong enough for Einstein-Podolsky-Rosen steering: we

can predict measurement outcomes for non-commuting observables in one

spatial region based on a corresponding measurement in another region with

an inferred uncertainty product below the Heisenberg relation. This could be

exploited for entanglement-enhanced imaging of electromagnetic field distri-

butions and quantum information tasks beyond metrology.
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Two quantum mechanical degrees of freedom are entangled (nonseparable) if the quantum

state of one cannot be described independently of the other. When measurements are performed

on both, entanglement results in correlations between the outcomes. While entanglement can

exist between any quantum degrees of freedom, the conflict with classical physics is particu-

larly striking when the correlations are observed between measurement outcomes obtained in

spatially separated regions. Einstein, Podolsky and Rosen pointed out [1] that if the correlations

are sufficiently strong, local measurements in one region A can apparently change the quantum

state in a spatially separated region B, a scenario Schrödinger named “steering” [2]. The possi-

bility of steering between spatially separated systems implies that quantum theory is in conflict

with a local realist description of the world [3]. In fact, steering allows an observer in A to use

her local measurement outcomes to predict the outcomes of non-commuting measurements in

B with uncertainties below the Heisenberg uncertainty relation for B. EPR steering has been

extensively explored with optical systems[3]. Between spatially separated atomic ensembles,

entanglement was observed [4, 5, 6, 7], but EPR steering has not yet been achieved for more

than two atoms [8]. Demonstrating the EPR paradox with ensembles of massive particles is de-

sirable as it puts quantum physics to a stringent test in a new regime of increasingly macroscopic

systems [3].

Experiments with ultracold atomic ensembles recently made rapid progress and a variety

of nonclassical states can be prepared [9]. Besides being of fundamental interest, such states

find applications in quantum metrology [10], where the correlations between the constituent

atoms are exploited to reduce the noise in atom interferometric measurements [11, 12, 13, 14].

Because of the large number of atoms involved, it is usually not possible to address and detect

the atoms individually. In the case of Bose-Einstein condensates (BECs), it is even impos-

sible in principle: the atoms are identical particles that occupy the same spatial mode. Still,

quantum correlations between them can be characterized with the help of witness observables
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that involve only collective measurements on the entire ensemble [15, 16]. This approach has

been used to reveal the presence of entanglement[11, 17], EPR correlations[18], and even Bell

correlations[19] in a cloud of atoms. However, these non-classical correlations have not yet been

observed directly by performing measurements on spatially separated subsystems. Moreover,

many authors have questioned whether the concept of entanglement in systems of indistinguish-

able particles is fully legitimate and useful for tasks other than metrology 1.

As pointed out in the theoretical work of Killoran et al. [20], the presence of entanglement

in an ensemble of indistinguishable particles can be unambiguously confirmed by extracting it

into spatially separated modes, turning it into a resource for a variety of quantum information

tasks.

In our experiment, we demonstrate that entanglement can be extracted from spatially sepa-

rated parts of a spin-squeezed BEC and use it to demonstrate the EPR paradox with an atomic

system.

The quantum degrees of freedom in our experiment are two collective spins [9] ~̂SA and

~̂SB that describe the internal state of atoms in regions A and B, respectively. Each atom is an

effective two-level system with internal states |1〉 and |2〉. The component ŜA
z = (N̂A

1 − N̂A
2 )/2

is half the atom number difference between the states, evaluated in region A, and a similar

definition holds for ŜB
z . Other spin components can be measured by applying appropriate spin

rotations before detection. To detect entanglement we use the criterion of Giovannetti et al.

[21], who have shown that for all separable states

EEnt =
4 Var(gzŜA

z + ŜB
z ) Var(gyŜA

y + ŜB
y )(

|gzgy||〈ŜA
x 〉|+ |〈ŜB

x 〉|
)2 ≥ 1 , (1)

where Var( · ) denotes the variance and gz, gy, are real parameters that can be optimized to mini-

mize EEnt. Therefore, EEnt < 1 is a sufficient condition to certify entanglement (nonseparability)
1For a brief review of the debate, see [20].
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between A and B. The variances in Eq. (1) quantify the uncertainty with which an observer in

A can predict (infer) the outcome of a spin measurement in B, based on a measurement on her

own system, and are therefore called inferred variances.

If correlations betweenA andB are strong enough, an observer inA can predict the result of

non-commuting measurements performed by B with a product of the inferred variances below

the Heisenberg uncertainty bound for system B, i.e. there is a violation of the relation [3]

EA→B
EPR =

4 Var(gzŜA
z + ŜB

z ) Var(gyŜA
y + ŜB

y )

|〈ŜB
x 〉|2

≥ 1 . (2)

Note that if there are no correlations between A and B, the variances in Eq. (2) are minimized

for gz = gy = 0, for which the spin uncertainty relation for B is recovered. In the presence

of a violation of Eq. (2), B must conclude that he is in the paradoxical situation considered by

EPR, where A is able to predict his measurement results without any classical communication.

Note that a violation of Eq. (1) does not imply a violation of Eq. (2), while the converse is true.

This reflects the fact that entanglement is necessary but not sufficient for EPR steering, and that

they are inequivalent types of correlations [22, 23]. Moreover, the asymmetry between A and

B present in Eq. (2) implies that if A can steer B (denoted A→ B), then not necessarily B can

steer A (B → A), as investigated both theoretically [24] and experimentally [25] in optics.

To demonstrate a violation of both Eq. (1) and Eq. (2) with a massive many-particle system,

we perform experiments with two-component BECs of N = 530 ± 40 87Rb atoms, magnet-

ically trapped on an atom chip [26]. The two components correspond to the hyperfine states

|F = 1,mF = −1〉 ≡ |1〉 and |F = 2,mF = 1〉 ≡ |2〉 and occupy nearly identical spatial

modes. They can be described by a collective spin ~̂S, referring to the entire BEC. We pre-

pare the BEC in a spin-squeezed state by controlling atomic collisions with a state-dependent

potential, as described in ref. [19, 17, 14]. The spin-squeezed state features quantum correla-

tions between the atoms, which reduce fluctuations of Ŝz and increase fluctuations of Ŝy while
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maintaining a large spin polarization in Ŝx (see Fig. 1b). We obtain typically −3.2(2) dB of

spin squeezing according to the Wineland criterion [27]. Alternatively, we can prepare the BEC

in a coherent spin state, where the atomic internal states are uncorrelated.

In order to access spatially separated regions in the BEC, we use the sequence illustrated in

Fig. 1a. After preparing the state, the atomic cloud is released from the trap and expands during

a 2.2 ms time-of-flight. This expansion is spin-independent since collisional interactions are

very similar for |1〉 and |2〉 and leads to a magnification of the atomic cloud without affecting

the spin correlations between the atoms.

Next, we set the axis ~n of the spin components ŜA
~n and ŜB

~n to be measured by applying

a Rabi rotation pulse to the entire atomic cloud. Immediately thereafter, we record two high-

resolution absorption images [28] of the atomic density distributions in states |2〉 and |1〉 by

illuminating the atomic cloud twice with a resonant laser beam. The imaging pulses project the

spin state and simultaneously localize the atoms in well-defined positions. Fig. 1c shows typical

absorption images taken in this way. This experimental sequence is repeated hundreds of times,

alternating the measurement direction ~n along either x, y or z.

We now define the two regions A and B to be analyzed on all pairs of absorption images

(Fig. 1c). Counting the atom numbers NA
1 and NA

2 in region A realizes a single-shot projec-

tive measurement of the local collective spin ŜA
~n = (NA

1 − NA
2 )/2. The same approach is

applied to region B, which yields ŜB
~n . The spins ~̂SA and ~̂SB are well defined if the atomic

densities can be unambiguously attributed to the corresponding region on the absorption image.

The finite optical resolution, in combination with a redistribution of atomic density due to the

random photon scattering during imaging, amounts to an uncertainty in the atomic position of

σblur = 1.8 µm, corresponding to 1.4 pixels on the images. To minimize the effect of crosstalk

between A and B, we leave a gap of 3 pixels between the two regions. In this way, on average

less than four atoms are simultaneously detected in both regions, rendering crosstalk negligible
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(Supplementary Materials).

To detect entanglement between regions A and B we evaluate Eq. (1) for different positions

of the gap, corresponding to different splitting ratios NA/(NA +NB), where NA = NA
1 +NA

2

and similar for NB (Fig. 2a, green dots). For a wide range of splitting ratios we observe a viola-

tion of the inequality in Eq. (1), which proves that the two local spins ŜA and ŜB are entangled.

This extracted entanglement derives from the quantum correlations among the indistinguishable

atoms in the initial state[20], since the expansion of the cloud, the spin rotation and detection

do not create correlations. For comparison, the same analysis has also been applied to measure-

ments performed on a coherent spin state, which does not show entanglement within the error

bars (Fig. 2a, orange dots).

An intriguing feature of our approach to extract entanglement from a many-body state is

that the subsystems can be defined a posteriori on the images. This is in contrast to other exper-

iments where the subsystems are defined by the experimental setup [4, 5, 6, 7] or by the source

of the state [3, 25]. We exploit this feature to detect entanglement between regions A and B

patterned in a variety of different shapes, see Fig. 2b. The fact that we observe entanglement

between all such regions reflects the symmetry of the underlying many-body quantum state:

the quantum state of the indistinguishable bosons in the condensate has to be symmetric under

particle exchange. Consequently, each atom is entangled with all other atoms, and the entangle-

ment extends over the entire atomic cloud. For comparison, we again show measurements for a

coherent spin state, which does not show entanglement.

The correlations in our system are strong enough to demonstrate an EPR paradox: Fig. 3a

shows a measurement of the EPR criterion Eq. (2) for vertical splitting of the cloud and different

positions of the gap. We observe EPR steering A→ B (green data points), which is maximized

for non-symmetric splitting. The asymmetry indicates the presence of technical noise [29].

For comparison, we evaluate the spin uncertainty relation 4 Var(ŜB
z ) Var(ŜB

y )/|〈ŜB
x 〉|2 ≥ 1 for
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system B, illustrating the reduction of the uncertainty product when replacing the non-inferred

variances with the inferred ones. As can be seen in Eq. (2), EPR steering is an asymmetric

concept. By relabeling region A as B and vice versa, we can invert the roles of the steering

and steered systems. This inverted scenario also shows EPR steering B → A (red data points

in Fig. 3a). The absence of a splitting ratio showing two-way steering A ↔ B indicates the

presence of noise in our system [24, 25].

Finally, we characterize the robustness of the observed EPR steering A → B to a variation

of the gap size. We fix the central position of the gap such that the splitting ratio is 0.77 (the

ratio maximizing steering A → B in Fig. 3a) and change the gap width symmetrically with

respect to this position (Fig. 3c). We observe that EPR steering vanishes for large widths of the

gap, where the size of the steered system is considerably reduced (Fig. 3b).

We have shown that entanglement and EPR steering can be observed between the collective

spins in different spatial regions of a many-body system. These results are based on the ex-

traction of entanglement from a system of identical particles, and on the observation that local

collective spins, associated with arbitrary patterns in the atomic density images, satisfy criteria

certifying entanglement and EPR steering. Our method can be applied to quantum metrology,

for example for the measurement of field distributions with an uncertainty beyond the standard

quantum limit. Moreover, EPR entanglement is a resource for tasks such as quantum teleporta-

tion and quantum key distribution [3]. Furthermore, our study raises the question whether Bell

correlations could also be observed between spatially separated regions, and if such correlations

can be distributed over macroscopic distances by splitting the atomic cloud.

Complementary to our work, the group of M. Oberthaler has observed spatially distributed

multipartite entanglement and the group of C. Klempt has detected entanglement of spatially

separated modes.
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Figure 1: Extracting entanglement from spatially separated regions of a BEC. a: Exper-
imental sequence. Step 1 consists in the preparation of a BEC in a spin squeezed state on an
atom chip. In step 2 the trapping potential is switched off and the BEC expands. In step 3,
a Rabi rotation pulse is applied to select the spin quadrature Ŝ~n to be measured, followed by
recording two high-resolution absorption images of the atomic density distributions in states |1〉
and |2〉. b: Illustration of the spin-squeezed state on a sphere (Wigner function, representing
the quantum fluctuations of the spin) and definition of the axes ~n used in the measurement of
the entanglement and EPR steering criteria. c: Single-shot absorption images of the atomic
densities in |2〉 and |1〉, showing example regions A and B used to define the collective spins
ŜA and ŜB entering in the entanglement and EPR steering criteria.
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Figure 2: Spatial entanglement patterns in the atomic cloud. a: Entanglement crite-
rion Eq. (1) evaluated for different vertical positions of the gap between regions A and B (see
Fig. 1c), corresponding to different splitting ratios NA/(NA + NB). Data for a spin squeezed
state are shown along with data for a coherent spin state. b: Entanglement between regions of
different shapes (A=yellow, B=red). The pixel pattern used for the analysis is illustrated above
the respective data points for squeezed (green) and coherent (orange) states.
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Figure 3: Observation of Einstein-Podolsky-Rosen steering. a: EPR steering criterion
Eq. (2), evaluated for steering A → B (green filled circles) and B → A (red filled circles) for
different vertical positions of the gap (see Fig. 1c), corresponding to different splitting ratios
NA/(NA + NB). EPR steering is strongest for splitting ratios around 0.8 and 0.2 , respec-
tively. Empty circles: spin uncertainty relation involving the product of non-inferred variances
in region B (Green) and A (Red). Lines are a guide to the eye and the shaded regions are the
reduction of the uncertainty product in replacing the non-inferred variances with the inferred
ones. b: EPR steering A → B for different widths of the gap in Fig. 1c. The center of the gap
is fixed to the position showing maximum EPR steering in Fig. 3a for a width of three pixels.
Even for a relatively large gap we find a significant violation of the bound, demonstrating that
the correlations cannot be explained by crosstalk between the regions. Lines and shaded regions
as in (a). c: Atom number in regions A and B as a function of the gap size.
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Supplementary Materials

Imaging system and atom number calibration

Our imaging system was previously described in detail in Ref.[17, 14] and we only recall here

the parameters corresponding to the present experiments. We record two absorption images,

taken 1.5 ms apart, of the atomic population in the two internal states. Our detection system

achieves atom number noise levels of σN1,det = 5.3 atoms and σN2,det = 5 atoms per whole

picture. The effective scattering cross section σeff is determined with the method described by

Reinaudi et al. [30] and we find σeff = (0.68± 0.02)σ0, where σ0 is the scattering cross section

of the cycling transition. Then, to take into account different detectivities for the two states,

we perform Rabi oscillations with high contrast and ensure that the detected total atom number

is independent of the relative population between the two states. We find that we typically

have a 5 % differential detectivity in favor of state |1〉 which can be due to the different initial

hyperfine sublevels. Finally, to calibrate the absolute atom number, we observe the scaling of

the projection noise with the total atom number. From a coherent state equally split in |1〉 and

|2〉, we look at the variance of the relative atom number. We find that the projection noise

dominates our measurement as the behavior is purely linear with a fitted slope 1.031 ± 0.005.

The small deviation from unity slope is then corrected for in our analysis.

Image analysis

Due to the finite speed of the camera, the two images are taken with a delay of 1.5 ms. This

means that the cloud of atoms in state |1〉 expands and falls longer than the cloud of atoms in

state |2〉, leading to an increased size of∼ 0.5% (0.04 pixel) horizontally and∼ 26% (2.5 pixel)

vertically (Fig. 1c), and to a center position which is ∼ 150 µm lower. Note that already after

the first image the spin state of the atoms is projected. However, after the first image only atoms

in |2〉 are spatially localized, while atoms in |1〉 are still completely delocalized until the second
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image is taken.

After all images have been recorded, we create two binary masks, one for state |1〉 and the

other for state |2〉, defining the regions A and B. Then, we evaluate the ensemble average (i.e.

average over all images) of the two atomic densities, and use it to center the two masks. Now

that the two masks are defined and positioned, we apply the same masks to all individual pictures

and count the atom numbers NA
1 , NA

2 , NB
1 and NB

2 . Within the technical limitations (image

resolution, blurring) discussed in the main text and in the following sections, our detection

scheme realizes a projective measurement of the local collective spin in regions A and B of the

expanded atomic cloud.

Optical resolution of the imaging system

To obtain an upper bound for the optical resolution of our imaging system, we image a small

atomic cloud. To this end we prepare atoms in a trap which is approximately 300 µm below

the chip surface, such that the atoms are trapped at a position close to where the falling atomic

cloud is in the actual experiments. In this way we image the atomic cloud only 10 µs after

switching off the trap, meaning that the atom density corresponds to a good approximation to

the in-situ density. By using short laser pulses of 10 µs for imaging, and averaging several

absorption images of this small cloud, we obtain an upper estimate of the point spread function

of our optical system. Figure S1 shows the averaged absorption images, the Gaussian fit and the

fit residuals. We find that the rms sizes are σhor = 1.1 pixel = 1.43 µm and σvert = 1.2 pixel =

1.56 µm.

Image blurring due to random photon scattering during absorption imag-
ing

In absorption imaging the atomic cloud is illuminated by a pulse of resonant laser light. During

the pulse the atoms scatter photons, which leads to a random velocity and position during the
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Figure S1: The left panel shows an averaged absorption image of a small atomic cloud, taken a
very short time after release from the trap. The gaussian fit (center panel) gives an upper bound
of the size of the optical point spread function of our imaging system. In the right panel the fit
residuals are shown. The colorbar applies to all three panels.

pulse. This blurring is leading to a reduction of the effective optical resolution. In our exper-

iment the pulse is very well described by a pulse of duration ∆tpulse with constant intensity.

We derive here a conservative estimate of the blurring. Since the atoms are mostly scattering

photons on a cycling transition, we assume here a two-level model for the atomic transition. We

further assume that the light is resonant during the whole imaging pulse. These assumptions

overestimate the actual spread in position, since the real scattering cross section is smaller and

the scattering rate would be also reduced due to the longitudinal acceleration Doppler-shifting

the atoms out of resonance during the pulse. These two effects are relatively small for our

parameters, such that our estimate, although conservative, should still give reasonably good

agreement with the experiment.

We are interested in the transverse spread of position due to the random scattering. As

derived by Joffe et al. [31], the mean squared transverse position at time t is given by

x2
rms(t) =

1

9
Np(t)v

2
rect

2 =
Γ

18

s

1 + s
v2

rect
3 .

Where Np(t) is the number of photons scattered between time 0 and t, and Γ and s = I
Isat

are
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the decay rate and saturation parameter of the transition, respectively. This size is however only

giving the rms transverse size of the atomic cloud at a given time. To estimate the rms size as

observed on the image, we have to time-average the spatial distribution over the pulse length.

To estimate this quantity, we consider a large numberM of atomic trajectories xj(t), j = 1...M .

Then, the time averaged mean squared transverse position is

x̄2
rms(∆tpulse) =

1

M

M∑
j=1

[
1

∆tpulse

∫ ∆tpulse

0

xj(t)dt
]2

≤ 1

M

M∑
j=1

1

∆tpulse

∫ ∆tpulse

0

x2
j(t)dt .

In the last expression we can exchange the order of integral and sum and use the rms transverse

size at time t to estimate the expectation value of the set of trajectories. In this way we obtain

x̄2
rms(∆tpulse) ≤

1

∆tpulse

∫ ∆tpulse

0

x2
rms(t)dt =

Γ

72

s

1 + s
v2

rec (∆tpulse)
3 .

If we take the estimate of the size obtained from in-situ absorption images (see above) into

account and the blurring due to resonant absorption during the 50 µs long imaging pulses, we

obtain a total rms size of the blurred cloud on the camera of σblur = 1.4 pixel = 1.8 µm. We

want to emphasize here that our estimation is conservative in the sense that it gives an upper

bound for the blurring, overestimating the actual effect.

Crosstalk estimation

We present here a simple model for estimating the amount of crosstalk between regions A and

B. To be conservative, we consider the case of horizontal splitting which is expected to present

the strongest crosstalk, due to the smaller extent of the atomic cloud in this direction. We

assume the regions A and B to be described by the filter functions fA(x) = Θ(xa − x) and

fB(x) = Θ(x − xb) in the horizontal x coordinate, where Θ( · ) is the Heaviside step function.

In the vertical direction we assume the regions to extend to infinity. Note that in our case, where

the atomic density is fully contained within a rectangular region on the image, this description is

fully equivalent to two finite rectangular regions which are split by a gap of xb−xa. In this case,
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we can reduce our model to a one dimensional problem along x, since all vertical contributions

simply integrate out. For estimating the fraction of atoms which is detected in both regions due

to the blurring in the images, we first calculate the effective detectivity in region A of the spin

distribution in x taking the blurring into account. We model the blurring as a Gaussian with size

σblur. The dedectivity in A is then given by

detA(x) =
1√

2πσblur

∫ ∞
−∞

fA(x′)e
− (x−x′)2

2σblur dx′ =
1

2

(
1 + erf

(
xa − x√

2σblur

))
,

and similar for detB(x). We estimate the atomic signal NAB detected in both regions on the

same image as

NAB =

∫ ∞
−∞

n(x)detA(x)detB(x)dx

where n(x) is the atomic density along x. From the experimental density profile and with a gap

of three pixels we get NAB < 4 atoms, for any position of the gap.

Effect of crosstalk between regions A and B

We adopt a simple theoretical model to understand how crosstalk between regions A and B

due to finite imaging resolution can result in a violation of the EPR criterion, Eq. (2). First,

it is easy to check that the term Var(gzŜA
z + ŜB

z ) in Eq. (2) is minimized for the choice gz =

−Cov(ŜA
z , Ŝ

B
z )/Var(ŜA

z ), which results in

min
gz

Var(gzŜA
z + ŜB

z ) = Var(ŜB
z )− Cov(ŜA

z , Ŝ
B
z )2

Var(ŜA
z )

. (3)

The same expression, with y instead of z, is found for the other variance in Eq. (2). Already at

this point it is possible to see from Eq. (3) that, even for an uncorrelated state, if the two regions

A and B are overlapping, or equivalently if some spins are attributed both to ŜA and ŜB, the

resulting covariance will be non-zero. This reduces Var(g~nŜA
~n + ŜB

~n ), for any measurement

quadrature ~n, and leads to a violation of the inequality in Eq. (2).

18



We make a quantitative estimate of this violation originating from crosstalk in the following

minimal example. Consider N spins 1/2, and the associated collective spin operators

~̂SA =
l∑

i=1

~̂s(i) and ~̂SB =
N∑
i=k

~̂s(i) , (4)

where ~̂s(i) is the spin operator acting on the i-th spin. If l ≥ k, then n = l − k + 1 spins

contribute both to ~̂SA and ~̂SB. Under the assumption of uncorrelated spins, each prepared in

state (|↑〉+ |↓〉) /
√

2, we observe that

Cov(ŜA
z , Ŝ

B
z ) = Var

(
l∑

i=k

s(i)
z

)
=
n

4
, (5)

which results in

min
{gy ,gz}

EA→B
EPR = 4

(
(NB/4)− (n/4)2

(NA/4)

)2

/(NB/2)2 = 1− 2n2

NB(N −NB)
+O(n3) , (6)

where NA = l and NB = N − k + 1 are the number of spins in the two regions. From Eq. (6)

we conclude that a coherent state can violate the EPR criterion Eq. (2) if there is a crosstalk of

n spins. For our regions A and B as defined in Fig. 1, we estimate n = NAB = 4, which yields

min{gy ,gz} EA→B
EPR = 0.998 for a coherent state.
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