
What every systems programmer should know about lockless concurrency

Matt Kline

November 1, 2017

Abstract

Seasoned programmers are familiar with concurrency building blocks like mutexes,
semaphores, and condition variables. But what makes them work? How do we write
concurrent code when we can’t use them, like when we’re working below the operating
system in an embedded environment, or when we can’t block due to hard time constraints?
And since your system transforms your code into things you didn’t write, running in orders
you never asked for, how do multithreaded programs work at all? Concurrency—especially
on modern hardware—is a complicated and unintuitive topic, but let’s try to cover some
fundamentals.

Contents

1. Background . 2
2. Enforcing law and order . 3
3. Atomicity . 3
4. Arbitrarily-sized “atomic” types . 4
5. Atomic read-modify-write operations . 4

5.1. Exchange . 4
5.2. Test and set . 4
5.3. Fetch and… . 4
5.4. Compare and swap . 4

6. Lock-free does not mean “faster” . 5
7. Sequential consistency on weakly-ordered hardware 5
8. Implementing atomic read-modify-write operations with LL/SC instructions . 6

8.1. Spurious LL/SC failures . 6
9. Do we always need sequentially consistent operations? 6
10. Memory orderings . 7

10.1. Acquire and release . 7
10.2. Relaxed . 8
10.3. Acquire-Release . 8
10.4. Consume . 9
10.5. hc svnt dracones . 10

11. Hardware convergence . 10
12. Optimizations . 10
13. Takeaways . 10
Additional Resources . 11
About This Document . 11

Contributing . 11
License . 11

1

1. Background

Modern computers run multiple sequences of instructions
concurrently. We call them different names depending on the
context—processes, threads, tasks, interrupt service routines,
and so on—but many of the same principles apply across the
board. On single-core machines, these sequences take turns,
sharing the cpu. On multiprocessors, several can run in paral-
lel, each on its own core.

While computer scientists have invented many useful ab-
stractions, these instruction streams (let’s call them threads
from here on out for the sake of brevity) ultimately interact
with one another by sharing bits of state. For this to work, we
must be able to reason about the order of reads and writes that
communicating threads make to memory. Consider a simple
example where some thread A shares an integer with other
threads. It writes the value to some variable, then sets a flag to
instruct others to read whatever it just stored. As code, this
might resemble:

int v;

bool v_ready = false;

void threadA()

{

// Write the value

// and set its ready flag.

v = 42;

v_ready = true;

}

void threadB()

{

// Await a value change and read it.

while (!v_ready) { /* spin */ }

const int my_v = v;

// Do something with my_v...

}

Our systemmust guarantee that other threads observeA’s write
to v_ready only after A’s write to v. (If another thread can
“see” v_ready change before it sees v change, our communi-
cation scheme can’t work.)

This appears to be an incredibly simple guarantee to pro-
vide, but nothing is as it seems. For starters, any compiler
worth its salt will happily modify and reorder your code to take
better advantage of the hardware it runs on. So long as the re-
sulting instructions run to the same effect for the current thread,
reads and writes can be moved to avoid pipeline stalls* or to

improve locality.† Variables can be assigned to the same mem-
ory location if they’re never used in overlapping time frames.
Instructions can be executed speculatively, before a branch is
taken, then undone if the compiler guessed incorrectly.‡

Even if we used a compiler that didn’t reorder our code,
we’d still in trouble, since our hardware does it too! Modern
cpu designs handle incoming instructions in a much more
complicated fashion than traditional pipelined approaches like
the one shown in Figure 1. They contain multiple data paths,
each for different types of instructions, and schedulers which
reorder and route instructions through these paths.

Figure 1: A traditional five-stage cpu pipeline with fetch, decode, execute,
memory access, and write-back stages. Modern designs are much
more complicated, often reordering instructions on the fly.
Image courtesy of Wikipedia.

It’s also easy to make naïve assumptions about how mem-
ory works. If we imagine a multiprocessor, we might think of
something resembling Figure 2, where each core takes turns
performing reads and writes to the system’s memory.

Figure 2: An idealized multiprocessor where cores take sequential turns
accessing a single shared set of memory.

This is almost never the case. While processor speeds have
increased exponentially in the past decades, ram hasn’t been
able to keep up, creating an ever-widening gulf between the
time it takes to run an instruction and the time needed to re-
trieve data from main memory. Hardware manufacturers have
compensated by placing an increasing number of hierarchical
caches directly on the cpu die. Each core also usually has a
store buffer that handles pending writes while subsequent in-
structions are executed. Keeping this memory system coherent,
so that writes made by one core are observable by others, even
if those cores use different caches, is quite challenging.

*Most cpu designs execute parts of several instructions in parallel to increase their clock speed (see Figure 1). When the result of an instruction is needed by
another instruction in the pipeline, the cpumay need to suspend forward progress, or stall, until that result is ready.

†ram is not read in single bytes, but in chunks called cache lines. If variables that are used together can be placed on the same cache line, several can be read or
written at once. (We’ll discuss caches and memory hierarchies shortly.)

‡This is especially common when using profile-guided optimization.

2

https://commons.wikimedia.org/wiki/File:Fivestagespipeline.png

Figure 3: A common memory hierarchy for modern multiprocessors

The net effect of these complications is that there is no
consistent concept of “now” in a multithreaded program, espe-
cially one running on a multiprocessor. Attaining some sense
of order so that threads can communicate is a team effort of
hardware manufacturers, compiler writers, language design-
ers, and application developers. Let’s explore what we can do,
and what tools we will need.

2. Enforcing law and order

Creating order in our programs requires a different approach
on each cpu architecture. Until alarmingly recently, systems
languages like C and C++ offered no help here, so developers
needed assembly to write lockless code.* Thankfully, the 2011
iso standards of both languages introduced tools for inter-
thread memory access. So long as the programmer uses them
correctly, the compiler will prevent reorderings—both by the
optimizer, and by hardware—that cause data races.†

Let’s return to our example from before. For it to work
as-desired, we need to use an atomic type for the “ready” flag:

int v = 0;

std::atomic_bool v_ready(false);

void threadA()

{

v = 42;

v_ready = true;

}

void threadB()

{

while (!v_ready) { /* spin */ }

const int my_v = v;

// Do something with my_v...

}

The C and C++ standard libraries define a series of these
types in <stdatomic.h> or <atomic>, respectively. They
look and act just like the integer types they mirror (e.g.,
bool → atomic_bool, int → atomic_int, etc.), but
the compiler ensures that other loads and stores aren’t
reordered around their reads and writes. By using an
atomic Boolean, v = 42 is now guaranteed to happen before
v_ready = true in thread A, just as my_v = v must occur
after reading v_ready in thread B.

Formally, these types provide a single total modification or-
der such that, “[…] the result of any execution is the same as if
the reads andwrites occurred in some order, and the operations
of each individual processor appear in this sequence in the
order specified by its program.” This model, defined by Leslie
Lamport in 1979, is called sequential consistency. Informally, the
important takeaway is that sequentially consistent reads and
writes act as rendezvous points for threads. By ensuring that
other reads and writes cannot move“past” them, we know that
anything thread A did before writing to an atomic variable—
such as assigning 42 to v before writing to v_ready—can be
observed by another thread that reads the atomic variable.

3. Atomicity

Our focus so far on ordering sidestepped the other vital ele-
ment of lockless programming: atomicity. Something is atomic
if it cannot be divided into smaller parts. To see why lockless
reads and writes must have this quality, let’s see what prob-
lems we might encounter if they did not.

Consider a program with two threads. One thread pro-
cesses some list of files and increments a counter each time
it finishes working on one of them. The other thread handles
the user interface, and will periodically read the counter to
update a progress bar. If that counter is a 64-bit integer, we
have a problem on 32-bit machines, since two loads or stores
are needed to read or write the entire value. If we’re having
a particularly unlucky time, the first thread could be halfway
through writing the counter when the second thread reads it,
receiving an incorrect value. These unfortunate occasions are
called torn reads and writes.

If reads and writes to shared data are atomic, however,
our problem disappears. We can also see that, compared to the
difficulties of establishing order, ensuring atomicity is fairly
straightforward: make sure that variables used for thread syn-
chronization are no larger than the architecture’s word size.

*Calling this sort of work “lockless” programming is a bit of a misnomer, or at least isn’t telling the whole story. While you can use these techniques to write
non-blocking thread synchronization, they’re the exact same approaches used to build locks and other blocking concurrency primitives.

†The ISO C11 standard lifted its lockless concurrency facilities, almost verbatim, from the C++11 standard. Everything you see here should be identical in both
languages, barring some arguably cleaner syntax in C++.

3

4. Arbitrarily-sized“atomic” types

Along with atomic_int and friends, C++ provides the tem-
plate std::atomic<T> for declaring arbitrary atomic types.
C, lacking a similar language feature but wanting to provide
the same functionality, added an _Atomic keyword. Running
counter to what we just discussed, any type can be “atomic”,
even if it is larger than the target architecture’s word size. In
these cases, the compiler and the language runtime library
automatically surround reads and writes to the variable with
locks. For situations where this is unacceptable,* you can add
an assertion:

std::atomic<Foo> bar;

ASSERT(bar.is_lock_free());

Though there a few rare exceptions,† the result of this check
is almost always known at compile time. Consequently, the
C++17 standard adds is_always_lock_free:

static_assert(

std::atomic<Foo>::is_always_lock_free);

5. Atomic read-modify-write operations

Loads and stores are all well and good, but sometimes we need
to read a value, modify it, and write it back in a single atomic
step. There are a few common read-modify-write (rmw) op-
erations. In C++, they’re represented as member functions of
std::atomic<T>. In C, they’re freestanding functions.

5.1. Exchange

The simplest atomic rmw operation is an exchange: the cur-
rent value is read and replaced with a new one. To see where
this might be useful, let’s tweak our example from §3. Instead
of displaying the total number of processed files, we might
want to show how many were processed each second. To do
so, we’ll have the ui thread zero the counter each time it is
read. Even if these reads and writes are atomic, we could still
run into the following race condition:

1. The ui thread reads the counter.

2. Before the ui thread has the chance to zero it, the worker
thread increments it again.

3. The ui thread now zeroes the counter, and the previous
increment is lost.

If the ui thread exchanges the current value of the counter
with zero atomically, the race disappears.

5.2. Test and set

Test-and-set works on a Boolean value: we read it, set it to
true, and provide the value it held beforehand. C and C++
offer a type dedicated to this purpose, called atomic_flag.
We could use it to build a spinlock:

std::atomic_flag af;

void lock()

{

while (af.test_and_set()) {

// Spin with backoff

}

}

void unlock() { af.clear(); }

If the previous value is false, we are the first to acquire the
lock, and the caller can proceed with exclusive access to what-
ever the lock protects. If the previous value is true, someone
else has acquired the lock and we must wait until they release
it by clearing the flag.

5.3. Fetch and…

We can also read a value, perform some basic mathematical
operation on it (addition, subtraction, bitwise and, or, xor),
and return its previous value. You might have noticed that in
our exchange example, the worker thread’s additions must also
be atomic, or else we could run into a race where:

1. The worker thread loads the current counter value and adds
one.

2. Before that thread can store the value back, the ui thread
zeroes the counter.

3. The worker now performs its store, as if the counter was
never cleared.

5.4. Compare and swap

Finally, we have compare-and-swap (cas), sometimes called
compare-and-exchange. It allows us to conditionally exchange a
value if its previous value matches some expected one. In C
and C++, cas resembles the following, if it were all executed
atomically:

*…which is quite often, since we’re often using atomic operations to avoid locks in the first place.
†The language standards permit atomic types to be sometimes lock-free. This might be necessary for architectures that don’t guarantee atomicity for unaligned
reads and writes.

4

template <typename T>

bool atomic<T>::compare_exchange_strong(

T& expected, T desired)

{

if (*this == expected) {

*this = desired;

return true;

}

else {

expected = *this;

return false;

}

}

You might be perplexed by the _strong suffix. Is there a
“weak” cas? Yes, but hold onto that thought—we’ll talk
about it in §8.1.

Let’s say we have some long-running piece of work that
we might want to cancel from a ui thread. We’ll give it three
states: idle, running, and cancelled, and write a loop that exits
when it is cancelled.

enum class TaskState : int8_t {

Idle, Running, Cancelled

};

std::atomic<TaskState> ts;

void taskLoop()

{

ts = TaskState::Running;

while (ts == TaskState::Running) {

// Do good work.

}

}

If we only want to set ts to Cancelled when it’s currently
Running, but do nothing if it’s already Idle, we could cas:

bool cancel()

{

auto expected = TaskState::Running;

return ts.compare_exchange_strong(

expected, TaskState::Cancelled);

}

6. Lock-free does not mean“faster”

Somewhere in this discussion, it’s important to point out that
lockless algorithms are not somehow“better” or “faster” than
lock-based ones. They are just different tools. Well-written

locks can be very efficient for sharing data between threads.
On the other hand, if you find yourself in an interrupt service
routine, or processing audio in real time, locks are not an op-
tion. Blocking in these cases would be disastrous, so a lock-free
approach is your only hope.

Of course, there are situations where blocking and non-
blocking approaches could both work.* If performance is a
concern, profile! How well a given synchronization method
will perform depends on a number of factors, ranging from
the number of threads at play to the specifics of your cpu
hardware. And as always, consider the tradeoffs you make
between complexity and performance. Lockless programming
is a perilous activity with a proud tradition of code that is ever
so subtly wrong.

7. Sequential consistency on weakly-ordered hardware

As mentioned in §2, different hardware architectures provide
different ordering guarantees, or memory models. For example,
x64 is relatively strongly-ordered, and can usually be trusted to
preserve some system-wide order of loads and stores. Other
architectures like arm are more weakly-ordered, so one should
make few assumptions that loads and stores are in program or-
der unless the cpu is given special instructions—called mem-
ory barriers—to not shuffle them around.

It’s helpful to look at how atomic operations work in a
weakly-ordered system, both to gain a better understanding
of what’s happening in hardware, and to see why the C and
C++models were designed as they were.† Let’s examine arm,
since it’s straightforward and widely-used. Consider the sim-
plest atomic operations: loads and stores.

atomic_int foo;

int getFoo()

{

return foo;

}

becomes

getFoo:

ldr r3, <&foo>

dmb

ldr r0, [r3, #0]

dmb

bx lr

void setFoo(int i)

{

foo = i;

}

becomes

setFoo:

ldr r3, <&foo>

dmb

str r0, [r3, #0]

dmb

bx lr

After loading the address of our atomic variable into some
scratch register (r3), the compiler sandwiches our load or
store between memory barriers (dmb), then returns. These

*You may also hear of wait-free algorithms—they are a subset of lock-free ones which are guaranteed to complete in some bounded number of steps.
†It’s worth noting that the concepts we discuss here aren’t oddities specific to C and C++. Newer systems programming languages like D and Rust have converged
on similar models.

5

barriers give us sequential consistency—the first ensures that
previous reads and writes cannot be placed after our operation,
and the second ensures that subsequent reads and writes can-
not be placed before it.

8. Implementing atomic read-modify-write operations
with LL/SC instructions

Like many other risc* architectures, arm lacks dedicated
instructions for rmw operations. How do we make them
atomic? Normal loads and stores won’t do, since the proces-
sor can context switch to some other thread between any two
instructions. We need something special: load-link and store-
conditional (ll/sc). The two work in tandem: A load-link
reads a value from a given address (just like any other load),
but also instructs the processor to monitor that address. Store-
conditional instructions write the given value only if no other
stores were made to that address since the corresponding load-
link. As an example, let’s look at an atomic fetch and add:

On arm,

void incFoo() { ++foo; }

compiles to:

incFoo:

ldr r3, <&foo>

dmb

loop:

ldrex r2, [r3] // LL foo

adds r2, r2, #1 // Increment

strex r1, r2, [r3] // SC

cmp r1, #0 // Check the SC result.

bne loop // Loop if the SC failed.

dmb

bx lr

We ll the current value, add one, and immediately try to store
it back with a sc. If that fails, another thread may have written
a new value to foo since our ll, so we repeat the process. In
this way, at least one thread is always making forward progress
in atomically modifying foo, even if several are attempting to
do so at once.†

8.1. Spurious LL/SC failures

As you might imagine, keeping track of load-linked addresses
on a byte-addressable level can be infeasibly expensive in terms
of cpu hardware. To reduce this cost, many processors mon-
itor them at some coarser granularity, such as the cache line.
This means that a sc can fail if it is preceded by a write to any

address in the monitored block, not just the specific one that
was load-linked.

This is troublesome when we want to compare and swap,
and is the raison d’être for compare_exchange_weak. Unlike
the _strong version, a weak cas is allowed to fail spuriously,
just like the underlying ll/sc mechanism. Consider some
function that atomically multiplies a value:

void atomicMultiply(int by)

{

int expected = foo;

// Which CAS should we use?

while (!foo.compare_exchange_?(

expected, expected * by)) {

// Empty loop.

// (On failure, expected is updated with

// foo's most recent value.)

}

}

If we use compare_exchange_strong here, the compiler
must emit nested loops: an inner one to protect us from spuri-
ous sc failures, and an outer one which repeatedly loads and
multiplies foo until no other thread has modified it. With
compare_exchange_weak, the compiler is free to generate a
single loop instead, since we don’t care about the difference be-
tween spurious failures and “normal” ones caused by another
thread modifying foo.

9. Do we always need sequentially consistent
operations?

All of our examples so far have used sequentially consistent
reads and writes to prevent memory accesses from being re-
arranged in ways that break our code. We’ve also seen how
weakly-ordered architectures like arm use a pair of memory
barriers to provide this guarantee. As you might expect, these
barriers can have a non-trivial impact on performance. After
all, they inhibit optimizations that your compiler and hardware
would otherwise make.

What if we could avoid some of this slowdown? Consider
some simple case like the spinlock from §5.2. Between the
lock() and unlock() calls, we have a critical section where
we can safely modify shared state protected by the lock. Out-
side this critical section, we only read and write to things that
aren’t shared with other threads.

*Reduced instruction set computer, in contrast to a complex instruction set computer (cisc) architecture like x64.
†…though generally, we want to avoid cases where multiple threads are vying for the same variable for any significant amount of time.

6

deepThought.calculate(); // non-shared

lock(); // Lock; critical section begins

sharedState.subject =

"Life, the universe and everything";

sharedState.answer = 42;

unlock(); // Unlock; critical section ends

demolishEarth(vogons); // non-shared

It’s vital that reads and writes to the sharedmemory we’re
protecting don’t move outside the critical section. But the
opposite isn’t true—the compiler and hardware could move
as much as they desire into the critical section without caus-
ing any trouble. We have no problem with the following if it is
somehow faster:

lock(); // Lock; critical section begins

deepThought.calculate(); // non-shared

sharedState.subject =

"Life, the universe and everything";

sharedState.answer = 42;

demolishEarth(vogons); // non-shared

unlock(); // Unlock; critical section ends

So, how do we tell the compiler as much?

10. Memory orderings

By default, all atomic operations—including loads, stores, and
the various flavors of rmw—are sequentially consistent. But
this is only one of several orderings that we can give them.
We’ll examine each of them in turn, but a full list, along with
the enumerations that the C and C++ api uses, is:

• Sequentially Consistent (memory_order_seq_cst)

• Acquire (memory_order_acquire)

• Release (memory_order_release)

• Relaxed (memory_order_relaxed)

• Acquire-Release (memory_order_acq_rel)

• Consume (memory_order_consume)

To specify one of these orderings, you provide it as an optional
argument that we’ve slyly failed to mention so far:*

void lock()

{

while (af.test_and_set(

memory_order_acquire)) {

// Spin with backoff

}

}

void unlock()

{

af.clear(memory_order_release);

}

Non-sequentially consistent loads and stores also use member
functions of std::atomic<>:

int i = foo.load(memory_order_acquire);

Compare-and-swap operations are a bit odd in that they have
two orderings: one for when the cas succeeds, and one for
when it fails:

while (!foo.compare_exchange_weak(

expected, expected * by,

memory_order_seq_cst, // On success

memory_order_relaxed)) // On failure

{ /* empty loop */ }

With the syntax out of the way, let’s look at what these
orderings are and how we can use them. As it turns out, al-
most all of the examples we’ve seen so far don’t actually need
sequentially consistent operations.

10.1. Acquire and release

We’ve just seen acquire and release in action with the lock ex-
ample from §9. You can think of these two as “one-way” barri-
ers: the former allows other reads and writes to move past it
in a before → after direction, and the latter works the opposite
way, letting others move after → before. On arm and other
weakly-ordered architectures, this allows us to drop one of the
memory barriers in each operation, such that

int acquireFoo()

{

return foo.load(memory_order_acquire);

}

void releaseFoo(int i)

{

foo.store(i, memory_order_release);

}

become:

*C, being C, defines separate functions for cases where you want to specify an ordering. exchange() becomes exchange_explicit(), a cas becomes
compare_exchange_strong_explicit(), and so on.

7

acquireFoo:

ldr r3, <&foo>

ldr r0, [r3, #0]

dmb

bx lr

releaseFoo:

ldr r3, <&foo>

dmb

str r0, [r3, #0]

bx lr

Together, these providewriter → reader synchronization:
if thread W stores a value with release semantics, and thread
R loads that value with acquire semantics, then all writes made
by W before its store-release are observable to R after its load-
acquire. If this sounds familiar, it’s exactly what we were trying
to achieve in §1 and §2:

int v;

std::atomic_bool v_ready(false);

void threadA()

{

v = 42;

v_ready.store(true, memory_order_release);

}

void threadB()

{

while (!v_ready.load(memory_order_acquire)) {

// spin

}

assert(v == 42); // Must be true

}

10.2. Relaxed

Relaxed atomic operations are used when a variable will be
shared between threads, but no specific order is required.

Figure 4: Relaxed atomic operations circa 1946

This might seem like a rare occurrence, but is surprisingly
common. Recall our examples from §3 and §5 where some
worker thread increments a counterwhich is read by aui thread

to show progress. That counter could be incremented with
atomic_fetch_add() using memory_order_relaxed. All
we need is atomicity—nothing is synchronized by the counter.

Relaxed reads and writes are also useful for sharing flags
between threads. Consider some thread that loops until told
to exit:

atomic_bool stop(false);

void worker()

{

while (!stop.load(memory_order_relaxed)) {

// Do good work.

}

}

int main()

{

launchWorker();

// Wait some...

stop = true; // seq_cst

joinWorker();

}

We don’t care if the contents of the loop are rearranged around
the load. Nothing bad will happen so long as stop only indi-
cates that the worker should exit and doesn’t “announce” any
new data to be read by the worker.

Finally, relaxed loads are commonly used with cas loops.
Return to our lock-free multiply:

void atomicMultiply(int by)

{

int expected = foo.load(memory_order_relaxed);

while (!foo.compare_exchange_?(

expected, expected * by,

memory_order_release,

memory_order_relaxed))

{ /* empty loop */ }

}

All of the loads can be relaxed, as we don’t need to enforce any
sort of ordering until we’ve successfully modified our value.
The initial load of expected isn’t even strictly necessary—it
just saves us a loop iteration if no other thread modifies foo
before the cas.

10.3. Acquire-Release

memory_order_acq_rel is used with atomic rmw opera-
tions that need to both load-acquire and store-release a value.
A typical example involves thread-safe reference counting, like
in C++’s shared_ptr:

8

atomic_int refCount;

void inc()

{

refCount.fetch_add(1, memory_order_relaxed);

}

void dec()

{

if (refCount.fetch_sub(1,

memory_order_acq_rel) == 1) {

// No more references.

// Delete the data.

}

}

Order doesn’t matter when incrementing the reference
count since no action is taken as a result. However, when we
decrement, we must ensure that:

1. All reads and writes to the referenced object happen before
the count reaches zero.

2. Deletion occurs after the reference count drops to zero.*

Curious readers might be wondering about the difference
between acquire-release and sequentially consistent operations.
To quote Hans Boehm, the chair of the ISO C++ Concurrency
Study Group,

The difference between acq_rel and seq_cst is gen-
erally whether the operation is required to participate
in the single global order of sequentially consistent op-
erations.

In other words, acquire-release provides order relative to the
variable being load-acquired and store-released, whereas se-
quentially consistent operation provides some global order
across the entire program. If the distinction still seems hazy,
you’re not alone. Boehm continues with,

This has subtle and unintuitive effects. The [barriers]
in the current standard may be the most experts-only
construct we have in the language.

10.4. Consume

Last but not least, we have memory_order_consume. Con-
sider a scenario where data is rarely changed, but frequently
read by multiple threads. Perhaps it is a pointer in the kernel to
information about peripherals plugged into the machine. This

data will change very infrequently, so it makes sense to opti-
mize reads as much as possible. Given what we know so far,
the best we can do is:

std::atomic<PeripheralData*> peripherals;

// Writers:

PeripheralData* p = kAllocate(sizeof(*p));

populateWithNewDeviceData(p);

peripherals.store(p, memory_order_release);

// Readers:

PeripheralData* p =

peripherals.load(memory_order_acquire);

if (p != nullptr) {

doSomethingWith(p->keyboards);

}

Since we’re trying to optimize readers as much as possi-
ble, it would be really nice if we could avoid a memory barrier
on weakly-ordered systems. As it turns out, we usually can.
Since the data we examine (p->keyboards) is dependent on
the value of p, most platforms—even weakly-ordered ones—
cannot reorder the initial load (p = peripherals) to take
place after its use (p->keyboards).† So long as we convince
the compiler not to make any similar speculations, we’re in the
clear.

This is what memory_order_consume is for. Change
readers to:

PeripheralData* p =

peripherals.load(memory_order_consume);

if (p != nullptr) {

doSomethingWith(p->keyboards);

}

and an arm compiler could emit:

ldr r3, &peripherals

ldr r3, [r3]

// Look ma, no barrier!

cbz r3, was_null // Check for null

ldr r0, [r3, #4] // Load p->keyboards

b doSomethingWith(Keyboards*)

was_null:

...

Sadly, the emphasis here is on could. Figuring out what con-
stitutes a “dependency” between expressions isn’t as trivial as
one might hope,‡ so all compilers currently convert consume
operations to acquires.

*This can be optimized even further by making the acquire barrier only occur conditionally, when the reference count is zero. Standalone barriers are out-
side the scope of this paper, since they’re almost always pessimal compared to a combined load-acquire or store-release, but you can see an example here:
http://www.boost.org/doc/libs/release/doc/html/atomic/usage_examples.html.

†Much to everybody’s chagrin, this isn’t the case on some extremely weakly-ordered architectures like DEC Alpha.
‡Even the experts in the iso committee’s concurrency study group, sg1, came away with different understandings. See n4036 for the gory details. Proposed
solutions are explored in p0190r3 and p0462r1.

9

http://www.boost.org/doc/libs/release/doc/html/atomic/usage_examples.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4036.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0190r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0462r1.pdf

10.5. hc svnt dracones

Non-sequentially consistent orderings have many subtleties,
and a slight mistake can cause elusive Heisenbugs that only oc-
cur sometimes, on some platforms. Before reaching for them,
ask yourself:

Am I using a well-known and understood pattern
(such as the ones shown above)?

Are the operations occurring in a tight loop?

Does every microsecond count here?

If the answer isn’t yes for at least one of these, default to se-
quentially consistent operations. Otherwise, be sure to give
your code extra review and testing.

11. Hardware convergence

Those familiarwith the platformmay have noticed that allarm
assembly shown here is from the seventh version of the archi-
tecture. Excitingly, the current (eighth) generation offers amas-
sive improvement for lockless code. Since most programming
languages have converged on the memory model we’ve been
exploring, armv8 processors offer dedicated load-acquire and
store-release instructions, lda and stl. We can use them to
implement everything we’ve discussed here without resorting
to memory barriers. Hopefully, future cpu architectures will
follow suit.

12. Optimizations

Finally, one should realize that while atomic operations do pre-
vent certain optimizations, they aren’t somehow immune to all
of them. The optimizer can do fairly mundane things, such as
replacing foo.fetch_and(0) with foo = 0, but it can also
produce surprising results. Consider:

while (tmp = foo.load(memory_order_relaxed) {

doSomething(tmp);

}

Since relaxed loads provide no ordering guarantees, the com-
piler is free to unroll the loop as much as it pleases, perhaps
into:

while (tmp = foo.load(memory_order_relaxed) {

doSomething(tmp);

doSomething(tmp);

doSomething(tmp);

doSomething(tmp);

}

In some cases,“fusing” reads or writes like this is unacceptable,

so we must prevent it with volatile casts or incantations
like asm volatile("" ::: "memory").* The Linux kernel
provides READ_ONCE() and WRITE_ONCE() macros for this
exact purpose.†

13. Takeaways

We’ve only scratched the surface here, but hopefully you now
know:

• Why compilers and cpu hardware reorder loads and stores.

• Why we need special tools to prevent these reorderings for
communications between threads.

• Howwe can guarantee sequential consistency in our programs.

• Atomic read-modify-write operations.

• How atomic operations can be implemented on weakly-
ordered hardware, and what implications this can have for a
language-level api.

• How we can carefully optimize lockless code using alterna-
tive memory orderings.

• How the compiler might optimize atomic operations even
further, and what we can do to prevent certain undesirable
optimizations.

To learn more, see the additional resources below, or exam-
ine lock-free data structures and algorithms, such as a single-
producer/single-consumer (sp/sc) queue or read-copy-update
(rcu).‡

Good luck and godspeed!

*See https://stackoverflow.com/a/14983432.
†See n4374 and the kernel’s compiler.h for details.
‡See the Linux Weekly News article, What is RCU, Fundamentally? for an introduction.

10

https://stackoverflow.com/a/14983432
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4374.html
http://elixir.free-electrons.com/linux/latest/source/include/linux/compiler.h
https://lwn.net/Articles/262464/

Additional Resources

atomic<> Weapons: The C++11 Memory Model and Modern Hardware by Herb Sutter, a
three-hour talk that provides a more thorough dive on the concepts discussed here. Also
the source of figures 2 and 3.

Futexes are Tricky, a paper by Ulrich Drepper on how mutexes and other synchronization
primitives can be built in Linux using atomic operations and syscalls.

Is Parallel Programming Hard,And, If So, What Can You Do About It? , by Paul E. McKen-
ney, an incredibly comprehensive book covering parallel data structures and algorithms,
transactional memory, cache coherence protocols, cpu architecture specifics, and more.

Memory Barriers: a Hardware View for Software Hackers, an older but much shorter piece
by McKenney explaining how memory barriers are implemented in the Linux kernel on
various architectures.

Preshing On Programming, a blog with many excellent articles on lockless concurrency.

No Sane Compiler Would Optimize Atomics, a discussion of how atomic operations are
handled by current optimizers. Available as a writeup, n4455, and as a CppCon talk.

cppreference.com, an excellent reference for the C and C++memory model and atomic
api.

Matt Godbolt’s Compiler Explorer, an online tool that provides live, color-coded disas-
sembly using compilers and flags of your choosing. Fantastic for examining what compilers
emit for various atomic operations on different architectures.

About This Document

Contributing

Contributions are welcome! Sources and history are available on Gitlab and Github. This
paper is prepared in LATEX—if you’re not familiar with it, feel free to contact the author
(via email, by opening an issue, etc.) in lieu of pull requests.

License

This paper is licensed under a Creative Commons Attribution-ShareAlike 4.0 Interna-
tional License. The legalese can be found through https://creativecommons.org/

licenses/by-sa/4.0/, but in short, you are free to copy, redistribute, translate, or oth-
erwise transform this paper so long as you give appropriate credit, indicate if changes were
made, and release your version or copy under this same license.

11

https://channel9.msdn.com/Shows/Going+Deep/Cpp-and-Beyond-2012-Herb-Sutter-atomic-Weapons-1-of-2
https://www.akkadia.org/drepper/futex.pdf
https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://www.rdrop.com/~paulmck/scalability/paper/whymb.2010.06.07c.pdf
http://preshing.com/archives/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4455.html
https://www.youtube.com/watch?v=IB57wIf9W1k
http://en.cppreference.com
https://godbolt.org/
https://gitlab.com/mrkline/lockless-concurrency
https://github.com/mrkline/lockless-concurrency
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

	Background
	Enforcing law and order
	Atomicity
	Arbitrarily-sized “atomic” types
	Atomic read-modify-write operations
	Exchange
	Test and set
	Fetch and…
	Compare and swap

	Lock-free does not mean “faster”
	Sequential consistency on weakly-ordered hardware
	Implementing atomic read-modify-write operations with LL/SC instructions
	Spurious LL/SC failures

	Do we always need sequentially consistent operations?
	Memory orderings
	Acquire and release
	Relaxed
	Acquire-Release
	Consume
	Hc Svnt Dracones

	Hardware convergence
	Optimizations
	Takeaways
	Additional Resources
	About This Document
	Contributing
	License

