
Object-oriented design : principles

J.Serrat

102759 Software Design
http://www.cvc.uab.es/shared/teach/a21291/web/

August 6, 2014

Index

1 Information hiding

2 Don’t talk to strangers

3 DRY: Don’t repeat yourself

4 SRP: Single responsibility principle

5 LSP: Liskov substitution principle

6 OCP: Open-closed principle

7 Program to an interface

8 Favor composition

http://www.cvc.uab.es/shared/teach/a21291/web/

References

1 Head first object-oriented analysis and design. B.D.
McLaughlin, G. Pollice, D. West. O’Reilly, 2006. Chapter 8.

2 Articles on design principles, LSP, SRP, OCP from
objectmentor.com at course web page

Principles

Design principle

Technique or advice to be applied when designing or writing code
to make software more maintainable, flexible, or extensible under
the inevitable changes.

Extend GRASP patterns.

Where do they come from ? Years of experience in OO design and
implementation.

objectmentor.com

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

Information hiding

Information hiding

Minimize the accessibility of classes and members.

Classes should not expose their internal implementation details.

A component (class, package, API. . .) should provide all and only
the information clients need to effectively use it.

Benefits:

protect clients from changes in the implementation

also, protect the provider from undue use of internal variables
by clients

5 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

Information hiding

In Java,

set all attributes private or protected

add necessary public setters and getters

set to private internal methods, not intended to be used by
client classes

1 class Vehicle {

2 private double speed; // in Km/h

3
4 public double getSpeed() {

5 return speed;

6 }

7 public void setSpeed(double s) {

8 speed = s;

9 }

6 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

Information hiding

10 public action_break(int seconds, double pressure) {

11 deceleration = mpsToKmh(

12 compute_deceleration(pressure));

13 while ((seconds>0) && (getSpeed()>0)) {

14 double newSpeed = max(0, getSpeed() - deceleration)

15 setSpeed(newSpeed)

16 delay(1);

17 seconds--;

18 }

19 }

20 private double compute_deceleration(double pressure) {

21 // some equation relating pedal pressure to

22 // speed change in meters per second, each second

23 }

24 // meters/second to Km/h

25 private double mpsToKmh(double mps) {

26 return mps*36.0/10.0;

27 }

28 }

7 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

Information hiding

Why do it so ?

You can put constraints on values. If clients of Velocity accessed
speed directly, then they would each be responsible for checking
these constraints

1 class Vehicle {

2 private double speed; // in Km/h

3
4 public void setSpeed(double s) {

5 if ((s>=0.0) && (s<=MAX_SPEED)){

6 speed = s;

7 } else {

8 throw SpeedOutOfRangeException();

9 }

10 }

8 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

Information hiding

You can change your internal representation without changing the
class interface (i.e. what’s public, exposed to the outside)

1 class Vehicle {

2 private double speed; // in Miles/h

3
4 public void setSpeed(double s) {

5 if ((s>=0.0) && (s<=MAX_SPEED)){

6 speed = kmhToMph(s);

7 } else {

8 throw SpeedOutOfRangeException();

9 }

10 }

11 private kmhToMph(double s) {

12 return s*0.62137;

13 }

9 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

Information hiding

You can perform arbitrary side effects. If clients of Velocity
accessed speed directly, then they would each be responsible for
executing these side effects.

1 class Vehicle {

2 private double speed; // in Km/h

3
4 public void setSpeed(double s) {

5 speed = s;

6 automatic_change_gears();

7 update_wheel_revolutions();

8 update_fuel_consuption();

9 }

10 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

“Don’t talk to strangers”

Don’t talk to strangers

An object A can request a service (call a method) of an object
instance B, but object A should not “reach through” object B to
access yet another object C to request its services.

Another name for loose coupling.

“Just one point” : in A don’t do getB().getC().methodOfC()

11 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

“Don’t talk to strangers”

1 class Company {

2 Collection departments = new ArrayList<Department>();

3 }

4 class Department {

5 private Employee manager;

6 public Employee getManager() {

7 return manager;

8 }

9 class Employee {

10 private double salary;

11 public double getSalary() {

12 return salary;

13 }

14 }

12 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

“Don’t talk to strangers”

Don’t :

1 // within Company

2 for (Department dept : departments) {

3 System.out.println(dept.getManager().getSalary());

4 // now Company depends on Employee

5 }

Do :

1 class Department {

2 //...

3 double getManagerSalary() {

4 return getManager().getSalary();

5 }

6 }

7
8 // within Company

9 for (Department dept : departments) {

10 System.out.println(dept.getManagerSalary());

11 }
13 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

DRY: Don’t repeat yourself

Don’t Repeat Yourself

Avoid duplicate code by abstracting out things that are common
and placing those things in a single location.

One rule, one place.

DRY is also about responsibility assignment : put each piece of
information and behavior is in a unique, sensible place.

Cut and paste [code] is evil.

14 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

DRY: Don’t repeat yourself

A software for chemical plant control has a Valve class.

Each time a valve is opened, it must automatically close after n
seconds.

Both PressureTank and Boiler objects have an output valve.

1 class Valve {

2 private open = False;

3 public open() {

4 open = True;

5 // do something

6 }

7 public close() {

8 open = False;

9 // do something

10 }

11 }

15 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

DRY: Don’t repeat yourself

1 class PressureTank {

2 private Valve valve = new Valve();

3 //...

4 public void releasePressure(seconds) {

5 valve.open();

6 // launch thread so we can return exec. control at once

7 final Timer timer = new Timer();

8 timer.schedule(new TimerTask() {

9 public void run() {

10 valve.close();

11 timer.cancel();

12 }

13 }, seconds);

14 }

16 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

DRY: Don’t repeat yourself

1 class Boiler {

2 private List<Valve> inputValves = new ArrayList<Valve>();

3 private int timeToFill;

4 //...

5 public void fillBoiler() {

6 for (valve : inputValves) {

7 valve.open();

8 final Timer timer = new Timer();

9 timer.schedule(new TimerTask() {

10 public void run() {

11 valve.close();

12 timer.cancel();

13 }

14 }, (int) (timeToFill/inputValves.size()));

15 }

16 }

What if we wanted later to change how to close the valve ? Or
add additional effect like record the opening and closing events ?

17 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

DRY: Don’t repeat yourself

1 public class Valve {

2 public void open(int seconds) {

3 open = true;

4 // do something

5 final Timer timer = new Timer();

6 timer.schedule(new TimerTask() {

7 public void run() {

8 close();

9 timer.cancel();

10 }

11 }, seconds);

12 }

13 }

18 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

DRY: Don’t repeat yourself

1 class PressureTank {

2 private Valve valve = new Valve();

3 //...

4 public void releasePressure(seconds) {

5 valve.open(seconds);

6 }

7 }

8
9 class Boiler {

10 private List<Valve> inputValves = new ArrayList<Valve>();

11 private int timeToFill;

12 //...

13 public void fillBoiler() {

14 for (valve : inputValves) {

15 valve.open((int) (timeToFill/inputValves.size()));

16 }

17 }

18 }

19 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

SRP: Single responsibility principle

Single Responsibility Principle

Every object in your system should have a single responsibility, and
all the object’s services should be focused on carrying out that
single responsibility.

One class should have only one reason to change.

SRP is another name for cohesion.

Why ? because each responsibility is an axis of change.

20 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

SRP: Single responsibility principle

The “one responsibility” of a class can be lot of different small
tasks, but all related to a single big thing.

The Board of a puzzle game application holds
the tiles placed by the user and can

initialize the board to no tiles

return the number of rows, columns, tiles
in a row, column

add, remove a tile in a certain position

check if a tile fits into a position

check whether all tiles have been placed

21 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

SRP: Single responsibility principle

All Board methods manage the board one way or another.

22 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

SRP: Single responsibility principle

Would it be ok to put in Board a method which takes a picture
and generates a grid of tiles ?

Tiles[][] makeTiles(Bitmap picture, int rows, int

columns)

According to GRASP creator, since Board contains and uses tiles,
yes. But Board would loose cohesion

different number of sides in a tile: square, triangular,
hexagonal
different types of tile profile (difficulty)
pictures can be in different formats
tiles can be created from synthetic images, video frames . . .

Better make a TileFactory class with this responsibility. And a
Jigsaw object gives tiles to Board constructor.

23 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

LSP: Liskov substitution principle

Liskov substitution principle

Subtypes must be substitutable for their base types.

Where an object of the derived class is expected, it can be
substituted by an object of the base class.

24 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

LSP: Liskov substitution principle

A jigsaw puzzle application

lets you choose among cross, square and triangular tiles

tiles have two different faces

can be rotated and flipped to fit the jigsaw

one can check whether a piece fits or not in a certain place

25 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

LSP: Liskov substitution principle

26 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

LSP: Liskov substitution principle

What’s wrong here ?

1 boolean tryToAdd1(Board board, Tile t, int x, int y) {

2 int angle = 0;

3 boolean fits = board.fits(t, x, y);

4 while ((angle<=270) && !fits) {

5 // does tile t match neighbor tiles in (x, y), if any ?

6 // which are the neighbor tiles is known by board

7 angle += 90;

8 t.rotate90();

9 fits = board.fits(t, x, y);

10 }

11 return fits;

12 }

27 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

LSP: Liskov substitution principle

What about moving rotate60(), rotate120() from
TriangularTile to the base class Tile ?

Misuse of inheritance: again not all base methods apply to all
subclasses. Would make design and implementation confusing.

28 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

LSP: Liskov substitution principle

Is this any better ?

1 boolean tryToAdd2(Board board, Tile t, int x, int y) {

2 int angle = 0;

3 boolean fits = board.fits(t, x, y);

4 if (t instanceof TriangularTile) {

5 while ((angle<=120) && !fits) {

6 angle += 60;

7 ((TriangularTile) t).rotate60();

8 fits = board.fits(t, x, y);

9 }

10 } else if ((t instanceof CrossTile) | (t instanceof

SquareTile)) {

11 while ((angle<=270) && !fits) {

12 angle += 90;

13 t.rotate90();

14 fits = board.fits(t, x, y);

15 }

16 }

17 return fits;

18 }
29 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

LSP: Liskov substitution principle

We already saw in GRASP this was a bad idea: redundant code,
problem if we add a new tile class (hexagonal).

How to solve it ?

Replace all rotateX() methods for

base method rotate() , which rotates the tile by

int unitRotationAngle, different for each subclass

30 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

LSP: Liskov substitution principle

1 boolean tryToAdd3(Board board, Tile t, int x, int y) {

2 int angle = 0;

3 boolean fits = board.fits(t, x, y);

4 while ((angle <= t.getMaximumAngle())

5 // 120 for TriangleTile, 270 for Cross, SquareTile

6 && !fits) {

7 angle += t.getUnitRotationAngle();

8 // 60 for TriangleTile, 90 for Cross, SquareTile

9 t.rotate();

10 // rotates this unit rotation angle

11 fits = board.fits(t, x, y);

12 }

13 return fits;

14 }

31 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

OCP: Open-closed principle

Open-Closed Principle

Classes should be open for extension, and closed for modification.

Intent: allow change, but doing it without requiring to modify
existing code.

How :

once implemented a class, do not modify it

if a change request comes, subclass it and override methods

or use composition (see later “favor composition”)

32 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

OCP: Open-closed principle

Now we need also to represent jigsaws with triangular and
hexagonal tiles.

33 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

OCP: Open-closed principle

34 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

OCP: Open-closed principle

Ideally, make changes and avoid client classes to be affected by
them because they rely on the interface of the base class (see
“program to an interface, not an implementation”).

Not always possible. We would better change Board and Tile to
abstract classes, and add SquareBoard, SquareTile, to increase
extendability.

35 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

“Program to an interface, not an implementation”

Suppose your application must manage a sequence of students
enrolled in a course. Which is the best choice in Java ?

(a) an array Student employees[MaxNumStudents]

(b) ArrayList<Student> students = new

ArrayList<Student>();

(c) LinkedList<Student> students = new

LinkedList<Student>();

(d) Vector<Student> students = new Vector<Student>();

(e) none of them

(a) is surely a bad choice: it can not be resized.

ArrayList, LinkedList, Vector are specific classes of lists
derived from AbstractList and implementing the List interface.

36 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

“Program to an interface, not an implementation”

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/LinkedList.html

37 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

“Program to an interface, not an implementation”

What’s the difference ?

ArrayList

Resizable-array implementation of the List interface plus methods
to manipulate the size of the array that is used internally to store
the list.

LinkeList

Linked list implementation of the List interface plus provides
uniformly named methods to get, remove and insert an element at
the beginning and end of the list. These operations allow linked
lists to be used as a stack, queue, or double-ended queue (deque).

The class implements the Queue interface, providing
first-in-first-out queue operations for push, pop, etc.

38 / 60

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/LinkedList.html

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

“Program to an interface, not an implementation”

Vector

Implements a growable array of objects. Like an array, it contains
components that can be accessed using an integer index. However,
the size of a Vector can grow or shrink as needed to accommodate
adding and removing items after the Vector has been created.

Roughly equivalent to ArrayList, except that it is synchronized.

39 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

“Program to an interface, not an implementation”

LinkedList<E> ArrayList<E> Vector List Queue

add(E el) • • • •
add(int index, E el) • • • •
addElement(E el) •
addFirst(E el) •
addLast(E el) •
offer() • •
remove() • •
remove(int index) • • • •
remove(Object ob) • • • •
removeFirst() •
removeLast() •
poll() • •
get(int index) • • • •
getFirst(E el) •
getLast(E el) •
firstElement() •
lastElement() •
set(int index, E el) • • • •

40 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

“Program to an interface, not an implementation”

ArrayList<E> LinkedList<E>

Vector<E>

get(int index) O(1) O(n)
add(E el) O(n) ∗ O(1)
add(int index, E el) O(n) ∗ O(n)
remove(int index) O(n−index) O(n)
Iterator.remove() O(n−index) O(1)
ListIterator.add(E el) O(n−index) O(1)

∗ worst-case since the array must be resized and copied

Answer: it depends. If frequent insertions/deletions not in the end
of the list, use LinkedList.

41 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

“Program to an interface, not an implementation”

Then should we do like this ?

1 class Course {

2 LinkedList<Student> students = new LinkedList<Student>();

3 //...

4 public void enrollStudent(Student st) {

5 students.addLast(st); // exists only for linked lists

6 }

7 }

8
9 class Listing {

10 //...

11 public void printStudents(LinkedList<Student> stlist) {

12 // sort list

13 Iterator it = stlist.Iterator();

14 while (it.hasNext()) {

15 student = it.next();

16 printStudent(st);

17 }

18 }

19 }
42 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

“Program to an interface, not an implementation”

This is “programming to an implementation”: the code depends
on a concrete class, the LinkedList subclass, which is one
implementation of the List supertype.

What if later on we need to change the type of list to ArrayList

to speed up list traversal or sorting ? We would need to replace
everywhere

LinkedList −→ ArrayList

addLast() −→ add()

addFirst(), addlast(), removeFirst(), removeLast(),
getFirst() . . . by something else

But we could change our mind again and switch to a Vector !
add() −→ addElement() . . .

43 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

“Program to an interface, not an implementation”

It is better to “program to an interface” which means a supertype,
exploiting polymorphism so that code does not depend on the type
of the actual runtime object

In Java : an interface, abstract or super class.

In our case: write code that is ok as long as he student list is of a
type implementing the Java interface List

44 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

“Program to an interface, not an implementation”

1 class Course {

2 List<Student> students = new LinkedList<Student>();

3 // could be also ArrayList or Vector

4 public void enrollStudent(Student st) {

5 students.add(st); // to the end

6 }

7 }

8
9 class Listing {

10 //...

11 public void printStudents(List<Student> stlist) {

12 // sort list

13 Iterator it = stlist.Iterator();

14 while (it.hasNext()) {

15 student = it.next();

16 printStudent(st);

17 }

18 }

19 }

45 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

“Program to an interface, not an implementation”

Suppose your application must manage a queue of student teams
(StudentTeam objects) which present their project to the assistant
lecturer. What would be the best class to represent them ?

(a) an array StudentTeam teams[MaxNumStudentTeams]

(b) ArrayList<StudentTeam> students = new

ArrayList<StudentTeam>();

(c) LinkedList<StudentTeam> students = new

LinkedList<StudentTeam>();

(d) Vector<StudentTeam> students = new

Vector<StudentTeam>();

(e) none of them

Queue<StudentTeam> students = new

Queue<StudentTeam>(); because of this

46 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

“Favor composition over inheritance”

Composition and inheritance are two ways of getting some
functionality from another class.

47 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

“Favor composition over inheritance”

48 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

“Favor composition over inheritance”

1 abstract class Product {

2 protected String name;

3 private double net_price;

4 //... setters and getters

5 public double get_total_price() { // net price plus tax

6 return net_price + tax(net_price);

7 }

8 protected abstract double tax(double price);

9 }

10
11 class ProductTaxable extends Product {

12 private static final double tax_rate = 0.21; // 21% VAT

13 @Override

14 protected double tax(double price) {

15 return tax_rate*price;

16 }

17 }

49 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

“Favor composition over inheritance”

18 class ProductNonTaxable extends Product {

19 @Override

20 protected double tax(double price) {

21 return 0.0;

22 }

23 }

24
25 class ProductTaxableWithExemption extends Product {

26 private static final double MIN_PRICE_EXEMPTION = 1000.0;

27 private static final double tax_rate_1 = 0.21; // VAT

28 private static final double tax_rate_2 = 0.07; // reduced VAT

29 @Override

30 protected double tax(double price) {

31 return (price < MIN_PRICE_EXEMPTION ?

32 tax_rate_1*price : tax_rate_2*price);

33 }

34 }

Who gets which functionality ?

50 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

“Favor composition over inheritance”

Another way to get it is composition:

51 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

“Favor composition over inheritance”

1 abstract class Product {

2 protected String name;

3 private double net_price;

4 private TaxPolicy taxPolicy;

5 //... setters and getters

6 public Product(String str, double netp, TaxPolicy tp) {

7 name = str;

8 net_price = netp;

9 taxPolicy = tp;

10 }

11 public double get_total_price() { // net price plus tax

12 return net_price + taxPolicy.tax(net_price);

13 }

14 }

52 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

“Favor composition over inheritance”

17 interface TaxPolicy {

18 public double tax(double price);

19 }

20 class StandardTax implements TaxPolicy {

21 private static final double tax_rate = 0.21; // 21% VAT

22 public double tax(double price) {

23 return tax_rate*price;

24 }

25 }

26 class NoTax implements TaxPolicy {

27 public double tax(float price) {

28 return 0.0;

29 }

30 }

31 class TaxableWithExemption implements TaxPolicy {

32 //...

Which way is better ?

53 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

“Favor composition over inheritance”

Advantages of composition

contained objects are accessed by the containing object solely
through their interfaces =⇒ “black-box” reuse, since internal
details of contained objects are not visible

fewer implementation dependencies than with inheritance

each class is focused on just one task

the contained object can be set dynamically at run-time

Problems

we have more objects : each Product has a different
contained Tax object

54 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

“Favor composition over inheritance”

Advantages of inheritance

new implementation is easy, since most of it is inherited

easy to override or extend the implementation being reused

Disadvantages

exposes implementation details of superclass to its subclasses,
“white-box” reuse

subclasses may have to be changed if the implementation of
the superclass changes

implementations inherited from superclass can not be changed
at run-time: a product instantiated as ProductNonTaxable

will always be like this.

55 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

“Favor composition over inheritance”

Coad’s Rules : use inheritance only when all of the following
criteria are satisfied

a subclass expresses “is a special kind of” and not “is a role
played by a”

an instance of a subclass never needs to become an object of
another class

a subclass extends, rather than overrides or nullifies, the
responsibilities of its superclass

56 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

“Favor composition over inheritance”

ProductTaxable, ProductNonTaxable,
ProductTaxableWithExemption “are a special kind of” and
not “are a role played by a” Product ? No

a ProductTaxable never needs to transmute into an
ProductNonTaxable ? No, it may depend on tax law
changes or buyers nationality

ProductTaxable . . . extend rather than override or nullify
Product ? No, simply override tax computation

Therefore, better use composition.

57 / 60

Information hiding Don’t talk DRY SRP LSP OCP Program to an interface Favor composition

“Favor composition over inheritance”

NoTax, StandardTax, TaxWithExemption “are a special kind
of” TaxPolicy ? Yes

a NoTax role never needs to transmute into an StandardTax

etc. ? Yes

NoTax . . . roles extend TaxPolicy rather than override or
nullify it ? Yes, they implement tax method in the interface

58 / 60

Summary

You should

know what’s the intent of each principle :

information hiding
“Don’t talk to strangers”
DRY
SRP
LSP
OCP
“Favor composition over inheritance”
“Program to an interface, not an implementation”

recognize them in the Snake & Ladders game

apply them to the list of exercises and any other
object-oriented design problem you have to face

Next

A number of design patterns, almost all based on this principle:

Encapsulate what varies

Identify the aspects of your application that vary and separate
them from what stays the same.

Take the parts of your design that vary and encapsulate them so
that later you can extend or change them without affecting those
that don’t.

As an example, in the taxable products design we applied the Strategy
pattern.

	Information hiding
	Don't talk to strangers
	DRY: Don't repeat yourself
	SRP: Single responsibility principle
	LSP: Liskov substitution principle
	OCP: Open-closed principle
	Program to an interface
	Favor composition

