
eMag Issue 58 - Jan 2018

FACILITATING THE SPREAD OF KNOWLEDGE AND INNOVATION IN PROFESSIONAL SOFTWARE DEVELOPMENT

Book Review and Q&A

Practical
Monitoring with
Mike Julian

ARTICLE

Observability and Avoiding Alert
Overload from Microservices at
the Financial Times

OBSERVABILITY

FOLLOW US CONTACT US
GENERAL FEEDBACK feedback@infoq.com
ADVERTISING sales@infoq.com
EDITORIAL editors@infoq.com

facebook.com
/InfoQ

@InfoQ google.com
/+InfoQ

linkedin.com
company/infoq

IN THIS ISSUE
Practical Monitoring: Book Review and
Q&A with Mike Julian6

The Value of Logging Within Cloud-Native
Applications: Q&A with Kresten Krab

10

Distributed Tracing: Exploring the Past, Present and
Future with Dapper, Zipkin and LightStep [x]PM14

Charity Majors on Observability and Understanding
the Operational Ramifications of a System18

Observability and Avoiding Alert Overload
from Microservices at the Financial Times22

Uwe Friedrichsen on Functional Service Design and
Observabilityfrom Microservices at the Financial Times26

Debugging Distributed Systems: Q&A with the
“Squash” Microservice Debugger Creator Idit Levine 32

https://www.facebook.com/InfoQ-75911537320
https://twitter.com/infoq
https://plus.google.com/+infoq/posts
https://www.linkedin.com/company/infoq

A LETTER FROM THE EDITOR

The topic of “observability” has been getting much at-
tention recently, particularly in relation to building and
operating “cloud native” systems. Several thought-lead-
ers within this space like Cindy Sridharan have mused
that observability could simply be a re-packaging of the
age-old topic of monitoring (and argued that no amount
of “observability” or “monitoring” tooling can ever be a
substitute to good engineering intuition and instincts).
Others, like Charity Majors have looked back at the roots
of the term, which was taken from control theory and
corresponds to a measure of how well internal states of
a system can be inferred from knowledge of its external
outputs. Both Sridharan and Majors discuss that the im-
plementation of an observable systems should enable
engineers to ask ad hoc (or following an incident, post
hoc) questions about how the software works during
execution. This emag explores the topic of observability
in-depth, covering the role of the “three pillars of observ-
ability” -- monitoring, logging, and distributed tracing --
and relates these topics to designing and operating soft-
ware systems based around modern architectural styles
like microservices and serverless.

The first article, “Practical Monitoring: Book Review and
Q&A with Mike Julian”, provides a foundational introduc-
tion to the topic of monitoring, and presents an overview
of core principles, monitoring antipatterns, and monitor-
ing design patterns. The next article, a Q&A with Krest-
en Krab Thorup, explores “The Value of Logging within
Cloud Native Applications”, and argues that aggregating
logs from diverse components or services that make up a
running system provides an excellent way to monitor, de-
bug and understand modern software systems. The third
article completes the exploration of the three pillars of
observability by examining the past, present and future
of distributed tracing. InfoQ sat down with Ben Sigelman,

co-author of the original Google Dapper tracing paper
and co-founder of LightStep, and discussed distribut-
ed tracing benefits -- the identification of performance
bottlenecks and the ability to “drill-down” into specific
requests -- and challenges -- making sense of the trace
data, and the processing of extremely high volumes of
generated trace data.

The second half of this emag focuses on practical use
cases, and explores the impact of observability for a
modern software architect. First, Charity Majors discuss-
es “Observability and Understanding the Operational
Ramifications of a System”, and argues that the health of
the system no longer matters -- we have entered an era
where the health of each individual event, or each indi-
vidual user’s experience, is what truly matters. The next
article summarises a thought-provoking talk from Sarah
Wells at QCon London last year, “Observability and Avoid-
ing Alert Overload from Microservices at the Financial
Times”. In order to adapt to the challenges of monitor-
ing a microservices-based application, Wells suggested
a three-pronged approach: build a system that can be
supported; concentrate on “stuff that matters”; and cul-
tivate alerts and the information they contain. The final
two articles, featuring Uwe Friedrichsen and Idit Levine,
focus on designing and debugging modern architectures
using the principles of observability -- monitoring and
logging systems must evolve in ways that reflect current
software architecture, and this has an impact that is both
technical and cognitive.

The topic of observability is rapidly evolving, and so this
emag aims to generate discussion and exploration. At
InfoQ we are always keen to encourage the submission of
articles that further the conversation: editors@infoq.com

Daniel Bryant

Mike Julian
is a consultant who helps companies build better

monitoring for their applications and infrastructure. He
is editor of Monitoring Weekly, an online publication

about all things monitoring. Julian has previously
worked as an operations/DevOps engineer for Taos
Consulting, Peak Hosting, Oak Ridge National Lab,

and others. He is originally from Knoxville, Tenn. and
currently resides in San Francisco. Outside of work, he

spends his time driving mountain roads in a classic
BMW, reading, and traveling. You can find him at Mike

Julian, Aster Labs, and Monitoring Weekly.

Kresten Krab
provides technical leadership and vision at Humio.
In his previous role as CTO of Trifork, Kresten was
responsible for technical strategy and provided

consulting advice to teams on a variety of
technologies to include distributed systems and
databases, Erlang, Java, and mobile-application
development. Kresten has been a contributor to

several open-source projects, including GCC, GNU
Objective-C, GNU Compiled Java, Emacs, and Apache

Geronimo/Yoko. Prior to Trifork, Kresten worked at
NeXT Software (now acquired by Apple), where
he was responsible for the development of the

Objective-C tool chain, the debugger, and the runtime
system. Kresten has a Ph.D. in computer science from

University of Aarhus.

CONTRIBUTORS
Daniel Bryant
is leading change within organisations and technology. His
current work includes enabling agility within organisations
by introducing better requirement gathering and planning
techniques, focusing on the relevance of architecture within agile
development, and facilitating continuous integration/delivery.
Daniel’s current technical expertise focuses on ‘DevOps’ tooling,
cloud/container platforms and microservice implementations.

https://www.mikejulian.com/
https://www.mikejulian.com/
https://www.asterlabs.io/
https://weekly.monitoring.love/

Charity Majors
is a cofounder and engineer at Honeycomb, a startup

that blends the speed of time series with the raw
power of rich events to give you interactive, iterative
debugging of complex systems. She has worked at
companies like Facebook, Parse, and Linden Lab, as
a systems engineer and engineering manager, but

always seems to end up responsible for the databases
too. She loves free speech, free software, and a nice

peaty single malt.

Idit Levine
Founder/Leader/Contributor on a variety of Cloud

open source Projects. Expert in cluster management
like: Kubernetes, Mesos & DockerSwam. Hybrid cloud:

AWS, Google Cloud, OpenStack, Xen & vSphere
Comfortable with Cloud Foundry and a laundry list of

other frameworks and tools.

Uwe Friedrichsen
 is CTO of Codecentric AG, where he focuses on
resilience, scalability, and the IT of (the day after)
tomorrow. He has traveled the IT world for many
years and is always in search of innovative ideas
and concepts. Often, you can find him sharing

ideas at conferences or in his many articles, blog
posts, and tweets.

Observability // eMag Issue 58 - Jan 20186

Practical Monitoring

Mike Julian’s recently
published Practical
Monitoring (O’Reilly) aims
to provide readers with a
foundational introduction to
the topic of monitoring as
well as practical guidelines
on how to monitor service-
based applications and
cloud infrastructure.

by Daniel Bryant

Book Review and Q&A
with Mike Julian

KEY TAKEAWAYS

Mike Julian’s new book, Practical
Monitoring, provides a foundational

introduction to the topic of monitoring,
and presents an overview of core

principles, monitoring antipatterns, and
monitoring design patterns.

Monitoring is an action -- a thing you
do -- while observability is an attribute
of a system that enables monitoring.
The more observable a system is, the

better you can monitor it, the better you
can reason about it, the better you can

simply understand how it works.

The most common antipattern, and most
insidious one, is constantly looking for

the next hot tool that’s going to solve all
your problems.

When it comes to business metrics
it is crucial that everyone at least

understands what these metrics are,
why they matter, and how the app/
infrastructure makes them available.

Read online on InfoQ

https://www.linkedin.com/in/miketjulian/
https://www.practicalmonitoring.com/
https://www.practicalmonitoring.com/
https://www.infoq.com/profile/Daniel-Bryant
https://www.infoq.com/articles/practical-monitoring-mike-julian

Observability // eMag Issue 58 - Jan 2018 7

Julian discusses in the preface
that the monitoring landscape
of today is vastly different than
it was only a few years ago. With
the widespread popularity of
ephemeral cloud infrastructure
and architectural approaches like
microservices came new prob-
lems for monitoring and created
new ways to solve old problems.
The book aims to address these
issues, and also answer common
monitoring questions such as:
Do you have a nagging feeling
that your monitoring needs im-
provement but you’re just not
sure where to start or how to do
it? Are you plagued by constant,
meaningless alerts? Does your
monitoring system routinely miss
real problems?

Practical Monitoring is focused on
readers who seek a foundational
understanding of monitoring. The
preface states that it is suitable for
junior staff as well as non-techni-
cal staff looking to learn about
monitoring and warns “if you al-
ready have a great grasp on mon-
itoring, this probably is not the
book for you”. Although Julian
introduces and discusses many
modern monitoring tools such
as StatsD, InfluxDB, Prometheus,
and Sensu, he does not inspect
specific tools but instead focuses
on practical, real-world examples
on how such tools should be de-
ployed within a holistic approach
to monitoring.

The book begins with an over-
view of monitoring principles,
and looks at monitoring anti-pat-
terns as well as current good
practices in monitoring design
patterns. The anti-patterns of tool
obsession, monitoring as a job,
and checkbox monitoring rein-
force Julian’s argument that any
approach to monitoring should
be holistic. The best-practice
patterns he presents — such as
composable monitoring, mon-

itor from the user perspective,
and continual improvement —
also demonstrate the influence
of modern software-engineer-
ing approaches, such as a focus
on modularity, cultivating a us-
er-centric approach, and princi-
ples from lean. Julian also covers
how to create effective alerting,
and discusses the associated peo-
ple and organizational challenges
of being on call and managing in-
cidents. This section of the book
concludes with a basic primer of
the use of statistics within mon-
itoring, and covers the use of
mean, average, and median, as
well as quantiles and standard
deviation.

The remainder of Practical Moni-
toring covers monitoring tactics,
and includes a discussion of mon-
itoring from the perspective of
both the business and technolo-
gy. The chapter on monitoring the
business discusses concepts such
as key performance indicators
(KPIs), and provides techniques
to identify and capture these.
The book presents real-world use
cases that help the reader under-
stand the explanations and guid-
ance. Monitoring tactics from the
technology perspective is provid-
ed within a chapter for each of
following: front end, application
(back end), server, network, and
security.

The concluding chapter exam-
ines how to conduct a monitor-
ing assessment, and revisits key
concepts from the rest of the
book with a focus on how to iden-
tify associated current strengths
and weaknesses within an orga-
nization. Julian suggests how to
prioritize monitoring efforts, and
leaves a clear message for the
reader that “monitoring is never
done, since the business, applica-
tion, and infrastructure will con-
tinue to evolve over time”.

Practical Monitoring is available
to purchase via the companion
website and also Safari books.
InfoQ recently sat down with the
author to find out more about his
motivations for writing the book.

InfoQ: Could you introduce
yourself and say a little about
your motivation for writing
Practical Monitoring?

Mike Julian: I’m a former oper-
ations engineer turned business
owner. I run a consulting compa-
ny called Aster Labs where I focus
on helping companies improve
their monitoring. I’m the editor
of Monitoring Weekly, a weekly
e-mail newsletter about all things
monitoring. I’m also involved in a
few other projects, which you can
find on my personal site, mikeju-
lian.com.

Every time I was at an event,
pub, or coffee shop and some-
one would find out that I’m “the
monitoring guy,” the very next
question would be something
along the lines of, “My monitor-
ing stinks. What should I do?” or
my personal favorite, “What’s the
best monitoring tool these days?”
After the bajillionth time answer-
ing the same questions with the
same answers, I decided to just
write a book about it all. Specifi-
cally, I wanted a book that wasn’t
oriented around how to use this
tool or that tool and instead talk-
ed about the principals behind
monitoring. And thus, Practical
Monitoring was born.

InfoQ: Your book makes good
use of design patterns, which
many developers can relate to.
Can we ask why you chose this
approach?

Julian: You know, it was actual-
ly accidental. I begin the book

https://www.infoq.com/news/2017/09/metrics-that-matter
https://www.infoq.com/news/2017/09/metrics-that-matter
http://www.practicalmonitoring.com/
http://www.practicalmonitoring.com/
https://www.safaribooksonline.com/library/view/practical-monitoring/9781491957349/
https://www.asterlabs.io/
https://weekly.monitoring.love/
https://mikejulian.com/
https://mikejulian.com/
https://www.practicalmonitoring.com/
https://www.practicalmonitoring.com/

Observability // eMag Issue 58 - Jan 20188

with what I think is the most im-
portant topic: anti-patterns and
things not to do. After writing
that chapter, I realized I should
probably tell people what they
should do, too, making Chapter
2: “Monitoring Design Patterns” a
thing. I think it worked out quite
well. Ultimately, it fits very well
with my tool-agnostic approach
to monitoring in that you should
focus on good patterns, avoid
bad ones, and everything else
will fall into place.

InfoQ: Can you explain a little
about how operational and
infrastructure monitoring has
evolved over the last five years?
How have cloud, containers,
new data-store technologies
and new language runtimes
impacted monitoring?

Julian: The rise of ephemer-
al infrastructure (e.g., contain-
ers, short-lived cloud instances,
serverless) and distributed archi-
tectures has drastically changed
how we do monitoring. Even five
years ago, Graphite and StatsD
were still cutting-edge tools, and
emitting metrics from inside the
app was a novel idea for many
teams. Nowadays, not only is
such a setup commonplace, but
many teams are finding it insuf-
ficient.

Specifically, we’re now talking
about how to handle millions of
metrics, how to monitor code that
exists for fractions of seconds,
how to effectively trace requests
through hundreds of micros-
ervices, and more. I think these
problems transcend languages
and storage back ends, and speak
more directly to how we reason
about the systems we build. This
is certainly a much harder (and
more interesting!) problem than
monitoring, say, the latest NoSQL
data store.

InfoQ: What role do QA/testers
have in relation to monitoring
and observability of a system,
both from a business and oper-
ational perspective?

Julian: I think it’s actually a mixed
bag for QA teams: as applications
and systems become more ob-
servable and capable of check-
ing and reporting on their own
health/functionality, the role of
QA diminishes significantly.

On the other hand, QA is in a
great position to work with en-
gineering on what metrics and
health checks the app needs to
make the QA team’s job easier
and more automated. Certainly,
there are some aspects of a sys-
tem that can’t easily be automat-
ed for testing, but those that can
be automated should be. QA is in
the best position to say how that
should look.

InfoQ: How important it is for
engineers to understand sta-
tistics in relation to monitor-
ing? Can you recommend key
things to learn?

Julian: You can get surprising-
ly far with very basic statistics. A
cursory understanding of the use
and limitations of averages, me-
dian, and percentiles really solves
a lot of the use cases the typical
engineer is likely to encounter.
For example, one of the most mis-
understood statistical concepts
is that of the percentile and the
limitations on it. If you record the
90th percentile of a dataset ev-
ery week over 12 weeks and then
average those 12 data points to-
gether, the answer is inaccurate
(because a percentile is inten-
tionally losing data). In order to
calculate the 90th percentile for
a 12-week period, you’d need to
have the full 12 weeks of data.

If you want a book about stats
that’s more approachable than
your college textbook, I recom-
mend Naked Statistics by Charles
Wheelan, which I really enjoyed
reading during my research.

InfoQ: What is the most com-
mon monitoring anti-pattern
you see? Can you recommend
an approach to avoid this?

Julian: The most common one,
and most insidious one, is con-
stantly looking for the next hot
tool that’s going to solve all prob-
lems (Chapter 1’s “Anti-pattern
#1: Tool Obsession”). You can read
more about it in the book, but
the quick version is that there is
no magic here and teams have
done quite well with awful tools.
I’ve seen plenty of teams using
the latest tools and miserably fail
to build any effective monitoring.
As the old saying goes, a crafts-
person doesn’t blame their tools
for bad work.

The solution is to recognize that
your tools probably aren’t the
problem, and that you need to
look much deeper at what you’re
actually doing, how you’re mon-
itoring apps and infrastructure,
and why you think your moni-
toring isn’t very good. There’s a
99% chance that your tools are
fine, and in fact your strategy is to
blame.

InfoQ: There has been some
great discussion recently about
monitoring versus observabil-
ity from engineers like Cindy
Sridharan and Charity Majors.
What are your thoughts on
this?

Julian: I think Cindy is brilliant
and totally on point about all of
it. If I really had to sum it up, I’d
put it this way: monitoring is an

https://graphiteapp.org/
https://github.com/etsy/statsd
https://www.amazon.com/Naked-Statistics-Stripping-Dread-Data/dp/0393071952/ref=mt_hardcover?_encoding=UTF8&me=
https://www.amazon.com/Naked-Statistics-Stripping-Dread-Data/dp/0393071952/ref=mt_hardcover?_encoding=UTF8&me=
https://medium.com/@copyconstruct/monitoring-and-observability-8417d1952e1c
https://medium.com/@copyconstruct/monitoring-and-observability-8417d1952e1c
https://medium.com/@copyconstruct/monitoring-in-the-time-of-cloud-native-c87c7a5bfa3e
https://medium.com/@copyconstruct/monitoring-in-the-time-of-cloud-native-c87c7a5bfa3e
https://honeycomb.io/blog/2017/10/metrics-not-the-observability-droids-youre-looking-for/

Observability // eMag Issue 58 - Jan 2018 9

action — a thing you do — while
observability is an attribute of a
system that enables monitoring
(credit to Baron Schwartz for that
take on it).

Many of you have no doubt been
in the situation where you’re try-
ing to monitor some homegrown
application only to realize it’s a
black box with no logs or metrics
— that’s an unobservable system.
The more observable a system
is, the better you can monitor it,
the better you can reason about
it, the better you can simply un-
derstand how it works. Really, im-
proving observability is a matter
of improving the application.

I don’t talk about observability
much in the book and instead
conflate it with monitoring. That
was intentional. Observability
versus monitoring is a nuanced
topic and not one that really
matters when you’re just getting
started with monitoring. I imag-
ine that once your monitoring
matures, the concept of observ-
ability will begin to matter a lot
more to you and your team.

InfoQ: You talk about business
metrics and KPIs in the book.
Who do you believe is most
responsible for ensuring these
are implemented: product
owners, developers, or opera-
tors? Or is it a team effort, and
if so, how should everyone
work together?

Julian: It’s really a team effort,
though everyone has a different
role to play. For example, let’s
take the example of user growth
over time on a SaaS app. Product
owners/managers define that
this is something they care about,
and developers write the code to
make reporting on that data easy.

In a more complex scenario, tech-
nical operations/system admin-
istrators will have a role: the cost
to service a user. Calculating how
much your infrastructure costs
per user is a great way to eventu-
ally increase profit margins, but is
also helpful to understand if your
current infrastructure is tenable
or not. For example, if the cost
to provide service to a customer
outpaces the revenue from a cus-
tomer, you’ve got a bit of a prob-
lem on your hands, and this kind
of data is something that system
administrators will have (or can
calculate) and which the business
is often just guessing at.

No matter who does what, when
it comes to business metrics, I
think it’s crucial that everyone
at least understands what these
metrics are, why they matter,
and how the app/infrastructure
makes them available.

InfoQ: Can you share any tac-
tics for an engineer that wants
to understand and implement
KPIs for the business? Where
is the best source of KPIs, and
how should engineers present
results to the business?

Julian: Sit down with a product
manager or your nearest VP and
ask them a few questions: How
does the business make money?
How do we know if we’re doing
well or doing poorly? What are
the targets for those metrics?

You’ll get a great sense of how
the business actually functions
and what matters. You can fol-
low it up with one last question:
What data that you don’t current-
ly have would make decisions
easier? Sometimes you can help
with that problem, sometimes
you can’t.

Either way, having a better un-
derstanding of how the business
works and what data is used to
judge the health of the company
is always valuable.

InfoQ: Thanks for taking the
time to sit down with us today.
Is there anything else you
would like to share with the
InfoQ readers?

Julian: Thank you! It’s been a
pleasure. The last thing I want to
say is this: improving monitoring
is a journey, and often a long one.
Improve a small amount every
day and you’ll do fine, but don’t
expect a major overhaul over-
night or even by next month.

Further information on the book
can be found on this website, and
also also on Safari.

https://www.vividcortex.com/blog/monitoring-isnt-observability
http://www.practicalmonitoring.com/
https://www.safaribooksonline.com/library/view/practical-monitoring/9781491957349/

Observability // eMag Issue 58 - Jan 201810

The Value of Logging Within
Cloud-Native Applications

InfoQ recently sat down with
Kresten Krab, CTO at Humio,
to discuss the role of logging
within the overall topic of system
observability.

Read online on InfoQ

by Daniel Bryant

KEY TAKEAWAYS

Aggregating logs from diverse
components or services that make up a

running system provides an excellent way
to monitor, debug and understand modern

software systems.

For debugging or incident response, you
need a system that makes it easy to do
ad-hoc queries; it is important to have a
logging solution that does not impose a

schema on what you log.

Logs naturally evolve from a more verbose
level, to a more structured and better

information-to-noise ratio level. Neglecting
to cultivate this evolution this is an anti-

pattern.

The future impact of Artificial Intelligence
(AI) and Machine Learning (ML) in the

logging space will likely be big. For now,
focus on getting logs at the fingertips of
developers to let them interact with them

and employ the human intelligence to
provide interpretation.

Q&A with Kresten Krab

Krab began by stating that cloud and container technol-
ogy provide a lot of advantages, but at the cost of under-
standability — which is potentially the best way to view
the term “observability”. The discussion covered many top-
ics, but a key theme is that aggregating logs from diverse
components or services that make up a running system
provides an excellent way to monitor, debug, and under-
stand modern software systems.

https://www.infoq.com/articles/logging-cloud-native
https://www.linkedin.com/in/krestenkrabthorup/
https://www.humio.com
https://www.infoq.com/profile/Daniel-Bryant

Observability // eMag Issue 58 - Jan 2018 11

InfoQ: Could you introduce
yourself and say a little about
your current work at Humio,
please?

Kresten Krab: For the last two
years, I’ve been CTO at Humio,
a startup that we launched to
provide a better way for DevOps
teams to understand their
systems. Twenty years ago, I
co-founded Trifork, which is now
a bespoke software-solution
provider with 400+ employees,
where our mission has always
been to help other companies
succeed with new technology.

I’ve been involved with teams
implementing new technology,
training, and building confer-
ences to spread the knowledge.
As part of this, we’ve seen the ev-
er-increasing complexity of soft-
ware systems being built all the
way from the first web-enabling
projects in the late ’90s to today’s
complex cloud solutions, and I’ve
seen the struggle in teams trying
to understand, debug, and mon-
itor their systems in production.

So we observed that aggregat-
ing logs from diverse compo-
nents or services that make up a
running system provides an ex-
cellent way to monitor, debug,
and understand these systems.
At Humio, we refer to this as the
ability to “feel the hum of your
system”. Logs are a great “lowest
common denominator” point of
integration for understanding a
system because logs are already
there. You don’t need to augment
existing systems to make them
generate logs: they are already
generating logs and you just need
to gather them and put them on
a shared timeline of events.

We have found that existing
providers of log-management
tools require you to limit your
logging — whether it is costs,
quota limitations, complexity, or

performance — and we thought
we could do better. So you can
say we’re on a mission to de-
mocratize logging. Humio is the
product we’re building from the
ground up to let everyone share
this insight.

InfoQ: There has been some
discussion recently about
monitoring versus observ-
ability. How does logging
relate?

Krab: We welcome this discus-
sion very much. The term “observ-
ability” fits well with our mantra
of “feeling the hum of your sys-
tem”. I don’t think there is a “ver-
sus” discussion here; the term
“observability” covers a spectrum
of information being emitted by a
system. The spectrum goes from
detailed logs of events or trac-
es (being the most verbose and
rich in information) to traditional
monitoring events or aggregat-
ed stats. You can derive the stats
from the events, but not the oth-
er way around. An excellent read
on this spectrum of information is
also Cindy Sridharan’s blog post
on “Monitoring in the Time of
Cloud Native”.

So, if you’re only gathering met-
rics in the traditional way of mon-
itoring, then you’re throwing in-
formation away. This works well
if the system being monitored is
mature and well understood but
that is usually not the case when
you’re building a system in the
first place. In other words, you of-
ten don’t know what will be caus-
ing calamities, so having a richer
base to search is a huge advan-
tage. It enables you to go back in
time and search for patterns that
you only now realize are import-
ant.

Our vantage point is that all these
sources of information fit well into
a time-series text data storage

with a rich query capability, and
that it is a huge advantage to be
able to process both event-style
information and metrics-style in-
formation in a shared tool with-
out having to limit yourself to
debug and understand a system
in terms of what you thought was
important. If you’ve ever had an
“I wish I indexed that” moment
then you know what I mean.

InfoQ: Can you explain a little
about how operational and
infrastructure logging has
evolved over the last five
years? How have cloud, con-
tainers, and new language
runtimes impacted monitoring
and logging?

Krab: Software nowadays is no
longer a single body of code
you can build and test in isola-
tion. Cloud, containers, and all
this tech obviously provide a lot
of advantages, but at the cost
of “understandability” (which is
maybe the best way to view the
term “observability”). The sys-
tem components are increas-
ingly scattered and remote, and
less likely to be under your di-
rect control. This evolution goes
hand in hand with the DevOps
movement, which has changed
the way people think about soft-
ware. There are a lot of teams
now who have a system they
“care about”, as opposed to just
building a piece of software and
“throwing it over the wall to ops”.

So, understanding the behav-
ior of your software system is
now largely only possible in the
wild. Most software systems are
a composition of other systems
that are out of your control. Think
of your software system as an
autonomous car; it has to be put
on the road to be tested and im-
proved, but in many ways we’re
still building software as if we
could test it in the lab. This is the

https://medium.com/@copyconstruct/monitoring-and-observability-8417d1952e1c
https://medium.com/@copyconstruct/monitoring-and-observability-8417d1952e1c
https://medium.com/@copyconstruct/monitoring-in-the-time-of-cloud-native-c87c7a5bfa3e
https://medium.com/@copyconstruct/monitoring-in-the-time-of-cloud-native-c87c7a5bfa3e

12

impact of cloud and containers on our soft-
ware systems, and I think we have to come to
terms with this to deal with it head on.

InfoQ: How have new architectural styles
such as microservices and function as a
service (FaaS), which are in effect distrib-
uted systems, impacted logging?

Krab: In terms of exposing the resource con-
sumption of the individual components, and
being able to improve parts of your system in-
dividually, I think these are wins. But in terms
of understanding your system as a whole —
in particular, if you don’t capture and central-
ize your logging — these mostly contribute
adversely to the big picture because informa-
tion is scattered across diverse platforms and
components.

It is daunting to speak for logging in gener-
al, but I can say what we do at Humio in this
space. For platforms such as DC/OS, Mesos,
Kubernetes, Heroku, Cloud Foundry, AWS,
etc., we provide integrations that make it sim-
ple to grab all the logs and put them in one
place. On each of these platforms, logging
is more or less done in an uniform way, and
that lets a logging infrastructure capture a
wide range of logs without a lot of configura-
tion. So, with these architectural styles, where
you have your system in a shared infrastruc-
ture, you can now get the logs as a side effect
of using the platform, which simplifies getting
access to them.

InfoQ: What types of query are engineers
typically making of logging systems, and
how are modern logging platforms adapt-
ing to this?

Krab: We see our users going through an evo-
lution. At first, they make free text searches,
using the logging platform as a search en-
gine for their logs. But then, quickly the focus
changes to extracting information from text
and building aggregations over that extract-
ed data.

As you get to know your logs, engineers will
develop metrics — aggregate queries —
that are important for the health of the sys-
tem. These are the queries that make up dash-
boards and the input data for alerting. For a Try it FREE FOR 30 DAYS at

https://honeycomb.io/signup

“When investigating a
problem, I want to know if it’s

caused by a particular
customer.

Being able to break down
metrics on higher-cardinality

fields gives very
actionable insights.”

http://bit.ly/2n6wACL

Observability // eMag Issue 58 - Jan 2018 13

majority of systems, you can live
with these aggregate stats being
computed from the logs as op-
posed to be built into the system
itself as a monitoring metric.

For debugging or incident re-
sponse, you need a system that
makes it easy to do ad hoc que-
ries, which makes it important to
have a logging solution that does
not impose a schema on what
you log. In these situations, we
generally see engineers asking
questions about things that they
did not think about up front.

An interesting thing is the feed-
back loop that happens when de-
velopers realize that they can in-
teract with the logs. You see that
logs evolve incrementally and
becoming more structured as
you try to debug or improve your
system. The word “incremental” is
important here, because you can-
not build the perfect set of logs
for your system from day one. So,
you end up refactoring your
logs: new subsystems log more
verbosely, and as a subsystem
matures, you tend to reduce the
information-to-noise ratio in the
logs. So, your logging platform
should be able to cope with this
diversity.

InfoQ: What is the most com-
mon logging anti-pattern you
see? Can you recommend an
approach to avoid it?

Krab: Well, the thing that hurts
my heart is to hear stories of
someone unable to log (or, god
forbid, being unable to access
logs) because of quota, cost, or
company policy. We see custom-
ers who reduce their logging by
sampling data at ingest. This can
be necessary at scale, but should
be avoided as far as possible.

I mentioned the refactoring of
logs before. Logs naturally evolve

from a more verbose level to a
more structured level with a bet-
ter information-to-noise ratio.
This process is like weeding your
garden, and I’d consider it an an-
ti-pattern to neglect doing this.

InfoQ: What role do you think
QA/testers have in relation to
the observability of a system,
particularly in relation to log-
ging?

Krab: Logs are super useful for
testing and QA. As part of our own
automated tests and CI setup, we
capture logs from the builds and
run queries over these as part of
acceptance, as well as reporting
and alerting for the builds. In this
way, you can use log aggregation
to construct integration tests as
well as a means to improve per-
formance and general quality of
your tests.

InfoQ: What will the impact of
AI/ML be on logging, both in
regards to implementing effec-
tive logging and also providing
insight into issues (or potential
issues)?

Krab: I think this will likely be
big. For now, we focus on getting
logs at the fingertips of devel-
opers to let them interact with
them and employ the human
intelligence to provide interpre-
tation. AI/ML generally requires
a baseline to allow you to iden-
tify outliers, and as a system that
generates logs stabilizes, the log-
ging platform will be able to pro-
vide this baseline. The richness of
logging and the high entropy in
logs do provide a challenge for
both AI and ML, as they tend to
do better in a low-dimensionality
setting.

I think that believing that a log-
ging system can auto-magically
detect outliers in arbitrary logs is

an impossibility. You need some
sort of interaction where users
of the system extract and gener-
alize information in the logging
flow that is deemed interesting
for outlier detection. For partic-
ular kinds of logs, this may be
achieved more or less automati-
cally, but in the general case, you
will need some kind of data scien-
tist’s capacity to choose what to
look out for.

InfoQ: Thanks for taking the
time to sit down with us today.
Is there anything else you
would like to share with the
InfoQ readers?

Krab: Thank you too. Feel free to
swing by humio.com, and try our
SaaS solution or ask us to how to
run Humio on your own gear. We
are always keen to discuss these
ideas about logging in more
depth!

http://humio.com/

Observability // eMag Issue 58 - Jan 201814

Distributed Tracing:
Exploring the Past,
Present and Future
with Dapper, Zipkin
and LightStep [x]PM

Distributing tracing is
increasingly seen as an
essential component for
observing distributed systems
and microservice applications.

KEY TAKEAWAYS

Distributing tracing is increasingly seen as an
essential component for observing distributed
systems and microservice applications. There

are several popular open source standards
and frameworks like the OpenTracing API and

OpenZipkin

The basic idea behind distributed tracing is
relatively straightforward -- specific request
inflexion points must be identified within a

system and instrumented. All of the trace data
must be coordinated and collated to provide a

meaningful view of a request

Request tracing is similar in concept to
Application Performance Management

(APM). An emerging challenge is processing
the volume of the data generated from

increasingly large-scale systems

Google overcame this issue when
implementing their Dapper distributed tracing
system by sampling traces, typically 1 in 1000,

but modern commercial tracing products claim
to be able to analyse 100% of requests.

Observability // eMag Issue 58 - Jan 2018 15

This article provides an introduc-
tion to and overview of this tech-
nique, starting with an explora-
tion of Google’s Dapper request
tracing paper -- which in turn led
to the creation of the Zipkin and
OpenTracing projects -- and end-
ing with a discussion of the future
of tracing with Ben Sigelman, cre-
ator of the new LightStep [x]PM
tracing platform.

As stated in the original Dapper
paper, modern Internet services
are often implemented as com-
plex, large-scale distributed sys-
tems -- for example, using the
popular microservice architec-
tural style. These applications are
assembled from collections of
services that may be developed
by different teams, and perhaps
using different programming
languages. At Google-scale these
application span thousands of
machines across multiple facili-
ties, but even for relatively small
cloud computing use cases it is
now recommended practice to

run multiple versions of a service
spread across geographic “avail-
ability zones” and “regions”. Tools
that aid in understanding system
behaviour, help with debugging,
and enable reasoning about per-
formance issues are invaluable in
such a complex system and envi-
ronment.

The basic idea behind request
tracing is relatively straightfor-
ward: specific inflexion points
must be identified within a sys-
tem, application, network, and
middleware -- or indeed any
point on a path of a (typically us-
er-initiated) request -- and instru-
mented. These points are of par-
ticular interest as they typically
represent forks in execution flow,
such as the parallelization of pro-
cessing using multiple threads, a
computation being made asyn-
chronously, or an out-of-process
network call being made. All of
the independently generated
trace data must be collected, co-
ordinated and collated to provide

a meaningful view of a request’s
flow through the system. Cindy
Sridharan has provided a very
useful guide that explores the
fundamentals of request tracing,
and also places this technique in
the context of the other two pil-
lars of modern monitoring and
“observability”: logging and met-
rics collection.

Decomposing a Trace
As defined by the Cloud Native
Computing Foundation (CNCF)
OpenTracing API project, a trace
tells the story of a transaction
or workflow as it propagates
through a system. In OpenTracing
and Dapper, a trace is a directed
acyclic graph (DAG) of “spans”,
which are also called segments
within some tools, such as AWS
X-Ray. Spans are named and
timed operations that represent
a contiguous segment of work in
that trace. Additional contextual
annotations (metadata, or “bag-
gage”) can be added to a span by

Figure 1. Visualising a basic trace with a series of spans over the lifetime of a request (image taken from the
OpenTracing documentation)

https://research.google.com/pubs/pub36356.html
https://lightstep.com/product
https://twitter.com/copyconstruct/
https://twitter.com/copyconstruct/
https://medium.com/@copyconstruct/monitoring-in-the-time-of-cloud-native-c87c7a5bfa3e
https://medium.com/@copyconstruct/monitoring-in-the-time-of-cloud-native-c87c7a5bfa3e
https://www.cncf.io/
https://www.cncf.io/
http://opentracing.io/
http://opentracing.io/documentation/#what-is-a-trace
https://aws.amazon.com/xray/
https://aws.amazon.com/xray/
https://github.com/opentracing/specification/blob/master/specification.md#user-content-set-a-baggage-item
https://github.com/opentracing/specification/blob/master/specification.md#user-content-set-a-baggage-item
http://opentracing.io/documentation/#a-basic-trace

Observability // eMag Issue 58 - Jan 201816

a component being instrument-
ed -- for example, an application
developer may use a tracing SDK
to add arbitrary key-value items
to a current span. It should be
noted that adding annotation
data is inherently intrusive: the
component making the annota-
tions must be aware of the pres-
ence of a tracing framework.

Trace data is typically collected
“out of band” by pulling locally
written data files (generated via
an agent or daemon) via a sep-
arate network process to a cen-
tralised store, in much the same
fashion as currently occurs with
log and metrics collection. Trace
data is not added to the request
itself, because this allows the size
and semantics of the request to
be left unchanged, and locally
stored data can be pulled when it
is convenient.

When a request is initiated a “par-
ent” span is generated, which in
turn can have causal and tem-
poral relationships with “child”
spans. Figure 1, taken from the
OpenTracing documentation,
shows a common visualisation
of a series of spans and their re-
lationship within a request flow.
This type of visualisation adds
the context of time, the hierar-
chy of the services involved, and
the serial or parallel nature of the
process/task execution. This view
helps to highlight the system’s
critical path, and can provide
a starting point for identifying
bottlenecks or areas to improve.
Many distributed tracing systems
also provide an API or UI to allow
further “drill down” into the de-
tails of each span.

The Challenges
of Implementing
Distributed Tracing
Historically it has been challeng-
ing to implement request tracing
with a heterogeneous distributed

system. For example, a microser-
vices architecture implemented
using multiple programming lan-
guages may not share a common
point of instrumentation. Both
Google and Twitter were able to
implement tracing by creating
Dapper and Zipkin (respectively)
with relative ease because the
majority of their inter-process
(inter-service) communication
occurred via a homogenous RPC
framework -- Google had created
Stubby (a variant of which has
been released as the open source
gRPC) and Twitter had created Fi-
nagle.

The Dapper paper makes clear
that the value of tracing is only
realised through (1) ubiquitous
deployment -- i.e. no parts of the
system under observation are
not instrumented, or “dark” -- and
(2) continuous monitoring -- i.e.
the system must be monitoring
constantly, as unusual events of
interest are often difficult to re-
produce.

The rise in popularity of “service
mesh” network proxies like Envoy,
Linkerd, and Conduit (and associ-
ated control planes like Istio) may
facilitate the adoption of tracing
within heterogeneous distribut-
ed systems, as they can provide
the missing common point of
instrumentation. Sridharan dis-
cusses this concept further in her
Medium post discussing observ-
ability:

“Lyft famously got tracing sup-
port for all of their applications
without changing a single line
of code by adopting the service
mesh pattern [using their Envoy
proxy]. Service meshes help with
the DRYing of observability by
implementing tracing and stats
collections at the mesh level,
which allows one to treat individ-
ual services as blackboxes but still
get incredible observability onto
the mesh as a whole.”

The Need For Speed:
Request Tracing and
APM
Web page load speed can dra-
matically affect user behaviour
and conversion. Google ran a la-
tency experiment using its search
engine and discovered that by
adding 100 to 400 ms delay to the
display of the results page result-
ed in a measurable impact on the
number of searches a user ran.
Greg Linden commented in 2006
that experiments ran by Amazon.
com demonstrated a significant
drop in revenue was experienced
when 100ms delay to page load
was added. Although under-
standing the flow of a web re-
quest through a system can be
challenging, there can be signif-
icant commercial gains if perfor-
mance bottlenecks are identified
and eliminated.

Request tracing is similar in con-
cept to Application Performance
Management (APM) -- both are
related to the monitoring and
management of performance
and availability of software ap-
plications. APM aims to detect
and diagnose complex applica-
tion performance problems to
maintain an expected Service
Level Agreement (SLA). As mod-
ern software architectures have
become increasingly distributed,
APM tooling has adapted to mon-
itor (and visualise) this. Figure 2
shows a visualisation from the
open source Pinpoint APM tool,
and similar views can be found
in commercial tooling like Dyna-
trace APM and New Relic APM.

An emerging challenge with-
in the request tracing and APM
space is processing the volume
of the data generated from in-
creasingly large-scale systems.
As stated by Adrian Cockcroft, VP
of Cloud Architecture Strategy at
AWS, public cloud may have de-
mocratised access to powerful
and scalable infrastructure and

https://landing.google.com/sre/book/chapters/production-environment.html#our-software-infrastructure-XQs4iw
https://grpc.io/
https://blog.twitter.com/engineering/en_us/a/2011/finagle-a-protocol-agnostic-rpc-system.html
https://blog.twitter.com/engineering/en_us/a/2011/finagle-a-protocol-agnostic-rpc-system.html
https://www.envoyproxy.io/
https://linkerd.io/
https://conduit.io/
https://istio.io/
https://medium.com/@copyconstruct/monitoring-in-the-time-of-cloud-native-c87c7a5bfa3e
https://medium.com/@copyconstruct/monitoring-in-the-time-of-cloud-native-c87c7a5bfa3e
https://research.googleblog.com/2009/06/speed-matters.html
https://research.googleblog.com/2009/06/speed-matters.html
http://glinden.blogspot.co.uk/2006/11/marissa-mayer-at-web-20.html
http://glinden.blogspot.co.uk/2006/11/marissa-mayer-at-web-20.html
https://github.com/naver/pinpoint
https://www.dynatrace.com/
https://www.dynatrace.com/
https://newrelic.com/application-monitoring
https://www.linkedin.com/in/adriancockcroft/

Observability // eMag Issue 58 - Jan 2018 17

services, but monitoring systems
must be more available (and
more scalable) than the systems
that they are monitoring. Google
overcame this issue when imple-
menting Dapper by sampling
traces, typically 1 in 1000, and still
found that meaningful insight
could be generated with this rate.
Many engineers and thought
leaders working within the space
-- including Charity Majors, CEO
of Honeycomb, an observability
platform -- believe that samping
of monitoring data is essential:

“It’s this simple: if you don’t sam-
ple, you don’t scale.

If you think this is even a contro-
versial statement, you have never
dealt with observability at scale
OR you have done it wastefully
and poorly.”

InfoQ recently attended the CNCF
CloudNativeCon in Austin, USA,
and sat down with Ben Sigelman,
one of the authors of the origi-
nal Dapper paper and CEO and
co-founder of LightStep, who has
recently announced a new com-
mercial tracing platform, “Light-
Step [x]PM”. Sigelman discussed
that LightStep’s unconventional
architecture (which utilises ma-
chine learning techniques within
locally installed agents) allows
the analysis of 100.0% of transac-
tion data rather than 0.01% that
was implemented with Dapper:

“What we built was (and is still)
essential for long-term perfor-
mance analysis, but in order to
contend with the scale of the sys-
tems being monitored, Dapper
only centrally recorded 0.01% of
the performance data; this meant
that it was challenging to apply
to certain use cases, such as re-
al-time incident response (i.e.,
“most firefighting”).

LightStep have worked with a
number of customers over the

past 18 months -- including Lyft
(utilising the Envoy proxy as an
integration point), Twilio, GitHub,
and DigitalOcean -- and have
demonstrated that their solution
is capable of handling high vol-
umes of data:

“Lyft sends us a vast amount
of data – LightStep analyzes
100,000,000,000 microservice
calls every day. At first glance,
that data is all noise and no sig-
nal: overwhelming and uncor-
related. Yet by considering the
entirety of it, LightStep can mea-
sure how performance affects dif-
ferent aspects of Lyft’s business,
then explain issues and anoma-
lies using end-to-end traces that
extend from their mobile apps to
the bottom of their microservices
stack.”

LightStep [x]PM is currently
available as a SaaS platform, and
Sigelman was keen to stress that
although 100% of requests can
be analysed, not all of this data
is exfiltrated from the locally in-
stalled agents to the centralised
platform. Sigelman sees this
product as a “new age APM” tool,
which will provide value to cus-
tomers looking for performance
monitoring and automated root

cause analysis of complex distrib-
uted applications.

Conclusion
Response latency within distrib-
uted systems can have significant
commercial impact, but under-
standing the flow of a request
through a complex system and
identifying bottlenecks can be
challenging. The use of distribut-
ed tracing -- in combination with
other techniques like logging and
monitoring metrics -- can provide
insight into distributed applica-
tions like those created using the
microservices architecture pat-
tern. Open standards and tooling
are emerging within the space
of distributed tracing -- like the
OpenTracing API and OpenZipkin
-- and commercial tooling is also
emerging which potentially com-
petes with existing APM offerings.
There are several challenges with
implementing distributed trac-
ing for modern Internet services,
such as processing the high vol-
ume of trace data and generating
meaningful insight, but both the
open source ecosystem and ven-
dors are rising to the challenge.

Figure 2. Request tracing within modern APM tooling (image taken from
the Pinpoint APM GitHub repository)

https://www.infoq.com/news/2015/06/monitoring-microservices
https://www.infoq.com/news/2015/06/monitoring-microservices
https://www.linkedin.com/in/charity-majors-826b765
https://twitter.com/mipsytipsy/status/936484900286296064
https://twitter.com/mipsytipsy/status/936484900286296064
https://events.linuxfoundation.org/events/kubecon-cloudnativecon-north-america-2018/
https://events.linuxfoundation.org/events/kubecon-cloudnativecon-north-america-2018/
https://www.linkedin.com/in/bensigelman
https://lightstep.com/
https://lightstep.com/blog/launching-lightstep/
https://lightstep.com/blog/launching-lightstep/
https://lightstep.com/product
https://github.com/naver/pinpoint

Observability // eMag Issue 58 - Jan 201818

Charity Majors on Observability
and Understanding the
Operational Ramifications
of a System

InfoQ recently sat down
with Charity Majors, CEO of
Honeycomb and co-author
(with Laine Campbell)
of Database Reliability
Engineering, to discuss the
topics of observability and
monitoring.

Read online on InfoQ

KEY TAKEAWAYS

The current best-practice approaches
to developing software -- microservices,
containers, cloud native -- are all ways

of coping with massively more complex
systems. However, our approach to

monitoring has not kept pace.

Majors argues that the health of the
system no longer matters. We’ve entered
an era where what matters is the health of
each individual event, or each individual

user’s experience (or other high cardinality
dimensions).

Don’t attempt to “monitor everything”.
In the chaotic future we’re all hurtling
toward, you actually have to have the

discipline to have radically fewer paging
alerts -- not more.

Many of us don’t have the problems of
large distributed systems. If you can

get away with a monolith and a LAMP
stack and a handful of monitoring

checks, Majors suggests that you should
absolutely do that.

by Daniel Bryant

https://www.infoq.com/articles/charity-majors-observability-failure
https://www.linkedin.com/in/charity-majors-826b765/
http://honeycomb.io/
https://www.linkedin.com/in/lainecampbell/
http://shop.oreilly.com/product/0636920039761.do
http://shop.oreilly.com/product/0636920039761.do
https://www.infoq.com/profile/Daniel-Bryant

Observability // eMag Issue 58 - Jan 2018 19

InfoQ: Could you introduce
yourself and share a little
about your experience of
monitoring systems, especially
data-store technologies?

Charity Majors: I’m an opera-
tions engineer, co-founder, and
(wholly accidentally) CEO of Hon-
eycomb. I’ve been on call for var-
ious corners of the Internet ever
since I was 17 years old: university,
Second Life, Parse, Facebook. I’ve
always gravitated towards oper-
ations because I love chaos and
data because I have a god com-
plex. I do my best work when the
material is critical, unpredictable,
and dangerously high stakes.
Actually, when I put it that way,
maybe it was inevitable for me to
end up as CEO of a startup….

One thing I have never loved,
though, is monitoring. I’ve always
avoided that side of the room. I
will prototype and build v1 of a
system, or I will deep dive and
debug or put right a system, but I
steer away from the stodgy areas
of building out metrics and dash-
boards and curating monitoring
checks. It doesn’t help that I’m
not so capable when it comes to
visualization and graphs.

InfoQ: How have operational
and infrastructure monitor-
ing evolved over the last five
years? How have cloud, con-
tainers, and new (old) modular
architectures impacted moni-
toring?

Majors: Oh man. There’s a tidal
wave of technological change
that’s been gaining momentum
over the past five years. Micros-
ervices, containers, cloud native,
schedulers, serverless... all these
movements are ways of coping
with massively more complex
systems (driven by Moore’s law,
the mobile diaspora, and the
platform-ization of technical

products). The center of gravity
is moving relentlessly to the gen-
eralist software engineer, who
now sits in the middle of all these
APIs for in-house services and
third-party services. And their
one job is to craft a usable piece
of software out of the center of
this storm.

What’s interesting is that moni-
toring hasn’t really changed. Not
in the past... 20 years.

You’ve still got metrics, dash-
boards, and logs. You’ve got
much better ones! But monitor-
ing is a very stable set of tools
and techniques, with well-known
edge cases and best practices, all
geared around monitoring and
making sure the system is still in
a known good state.

However, I would argue that the
health of the system no longer
matters. We’ve entered an era
where what matters is the health
of each individual event or each
individual user’s experience or
each shopping cart’s experience
(or other high cardinality dimen-
sions). With distributed systems,
you don’t care about the health
of the system, you care about the
health of the event or the slice.

This is why you’re seeing people
talk about observability instead
of monitoring, about unknown
unknowns instead of known un-
knowns, and about distributed
tracing, honeycomb, and other
event-level tools aimed at de-
scribing the internal state of the
system to external observers.

InfoQ: How has the approach
to monitoring data-store tech-
nologies changed over the last
few years?

Majors: Databases and networks
were the last two priesthoods
of system specialists. They had

their own special tooling, in-
side language, and specialists,
and they didn’t really belong to
the engineering org. That time
is over. Now, you have roles like
database-reliability engineer
(DBRE), which acknowledges the
deep specialist knowledge while
also wrapping them into the fold
of continuous integration/contin-
uous deployment, code review,
and infrastructure automation.

This goes for monitoring and ob-
servability tooling as well. Tools
create silos. If you want your engi-
neering org to be cross-function-
ally literate, if you want a shared
on-call rotation, you have to use
the same tools to debug and un-
derstand your databases as you
do the rest of your stack. That’s
why Honeycomb and other
next-generation services focus
on providing an software-ag-
nostic interface for ingesting
data. Anything you can turn into
a data structure, we can help you
debug and explore. This is such a
powerful leap forward for engi-
neering teams.

InfoQ: With the rise in popular-
ity of DBaaS technologies like
AWS RDS and Google Spanner,
has the importance of moni-
toring database technologies
risen or fallen? And what has
been the impact for the end
users/operators?

Majors: Monitoring isn’t really
the point. I outsource most of my
monitoring to AWS, and it’s ter-
rific! We use RDS and Aurora at
Honeycomb despite being quite
good at databases ourselves, be-
cause it isn’t our core competen-
cy. If AWS goes down, let them
get paged.

Where that doesn’t let me off the
hook is observability, instrumen-
tation, and architecture. We have
architected our system to be resil-

http://honeycomb.io/
http://honeycomb.io/

Observability // eMag Issue 58 - Jan 201820

ient to as many problems as pos-
sible, including an AWS Availabil-
ity Zone going down. We have
instrumented our code and we
slurp lots of internal performance
information out of MySQL, so that
we can ask any arbitrary question
of our stack — including databas-
es. This rich ecosystem of intro-
spection and instrumentation is
not particularly biased towards
the traditional monitoring stack’s
concerns of actionable alerts and
outages.

It will always be the engineer’s re-
sponsibility to understand the op-
erational ramifications and failure
models of what we’re building,
auto-remediate the ones we can,
fail gracefully where we can’t, and
shift as much operational load to
the providers whose core compe-
tency it is as humanly possible.
But honestly, databases are just
another piece of software. In the
future, you want to treat databas-
es as much like stateless services
as possible (while recognizing
that, operably speaking, they ar-
en’t) and as much like the rest of
your stack as possible.

InfoQ: What role do QA/testers
have in relation to monitoring
and observability of a system,
both from a business and op-
erational perspective? Should
the QA team be involved with
the definition of SLOs and
SLAs?

Majors: I’ve never worked with
QA or testers. I kind of feel like QA
lost the boat a decade ago and
failed to move with the times. I
deeply love the operations-engi-
neering profession, and I’m trying
to make sure the same doesn’t
happen to ops. There will always,
always be a place for operational
experts... but we are increasingly
a niche role, and for most people,
we will live on the other side of an
API.

Developers will own and operate
their own services, and this is a
good thing! Our roles as opera-
tional experts are to empower
and educate and be force ampli-
fiers. And to build the massive
world-class platforms they can
use to build composable infra-
structure stacks and pipelines,
like AWS and Honeycomb.

InfoQ: What is the most com-
mon monitoring anti-pattern
you see, both from the per-
spective of the data store and
application? Can you recom-
mend any approaches to avoid
these?

Majors: “Monitor every-
thing.” Dude, you can’t. You
can’t. People waste so much time
doing this that they lose track
of the critical path, and their im-
portant alerts drown in fluff and
cruft. In the chaotic future we’re
all hurtling toward, you actually
have to have the discipline to have
radically fewer paging alerts, not
more. Request rate, latency, er-
ror rate, saturation. Maybe some
end-to-end checks that stress
critical key-performance-indica-
tor (KPI) code paths.

People are over-paging them-
selves because their observability
blows and they don’t trust their
tools to let them reliably debug
and diagnose the problem. So
they lean heavily on over-pag-
ing themselves with clusters of
tens or hundreds of alerts, which
they pattern-match for clues
about what the root cause might
be. They’re flying blind for the
most part; they can’t just explore
what’s happening in production
and casually sate their curiosity. I
remember living that way too,
and that’s why we wrote Honey-
comb. So we would never have to
go back.

InfoQ: Thanks for taking the
time to sit down with us today.
Is there anything else you
would like to share with the
InfoQ readers?

Majors: Nothing I say should be
taken as gospel. Lots of people
don’t have the problems of large
distributed systems, and if you
don’t have those problems, you
shouldn’t take any of my advice. If
you can get away with a monolith
and a LAMP stack and a handful
of monitoring checks, you should
absolutely do that. Someday, you
may reach a tipping point where
it becomes harder and more com-
plicated to achieve your goals
without microservices and ex-
plorable event-driven observabil-
ity, but you should do your best
to put that day off. Live and build
as simply as you possibly can.

Observability // eMag Issue 58 - Jan 2018 21

Sponsored article

Getting Started in Observability
with Structured Logging

Click here to read the full article

You might be think observability is a lot of work, but a
quick path to success is structured logging. You don’t
need fancy libraries or agents and you can make in-
cremental changes to your existing logging setup.

Structured logging means having a logging API to
help you provide *consistent context* in events. An
unstructured logger accepts strings. A structured log-
ger accepts a map, hash, or dictionary describing all
the attributes you can think of for an event:

• The function name and log line number

• The server’s host name

• The application’s build ID or git SHA

• Information about the client issuing a request

• Timing information

The format and transport details — whether you
choose JSON or something else, whether you log to
a file or stdout or straight to a network API — are less
important!

Let’s write a structured logging library!
Structured logging basically means you make a map
and print it out or shove it in a queue:

def log(**data):
 print json.dumps(data)

Maybe we’re not ready for open-source fame yet,
but there are two nice things about this “library”: 1)
it doesn’t let you pass a bare string message; you
have to pass a dictionary of key-value pairs, and 2)
it produces _structured, self-describing_ output that
can be consumed by humans and machines alike.

For example, this log line is not self-describing:

127.0.0.1 - - [12/Oct/2017 17:36:36]
“GET / HTTP/1.1” 200 -

This seems obvious, but if we start adding more data,
it will be hard to remember which dash means what.
In contrast, write code like:

log(upstream_address=”127.0.0.1”,
 hostname=”my-awesome-appserver”,
 date=datetime.now().isoformat(),
 request_method=”GET”,
 request_path=”/”,
 status=200)

That will produce output that’s comprehensible to
both machines and humans.

To include the same context at different places in the
code, wrap the logger in a class to bind context to:

class Logger(object):
 def __init__(self):
 self.context = {}

 def log(self, **data):
 data.update(self.context)
 print json.dumps(data)

 def bind(self, key, value):
 self.context[key] = value

Now you can write

logger = Logger()
logger.bind(“hostname”, “my-awesome-
appserver”)
logger.bind(“build_id”, 2309)

And all calls to `logger.log` automatically include
`host name` and `build_id`.

https://honeycomb.io/blog/2017/10/you-could-have-invented-structured-logging/

Observability // eMag Issue 58 - Jan 201822

Observability and
Avoiding Alert Overload
from Microservices at the
Financial Times

At QCon London 2017, Sarah
Wells presented “Avoiding Alerts
Overload from Microservices”
in which she cautioned that
developers and operators must
fundamentally change the way
they think about monitoring
when building a distributed
microservice-based system.

Read online on InfoQ

KEY TAKEAWAYS

Any microservice-based application is
a distributed systems, and accordingly,
services do not run independently. If

something fails, it can often lead to cascade
failures, which complicates monitoring and

alerting.

In order to adapt to the challenges
of monitoring a microservices-based
application, Wells suggested a three-

pronged approach: build a system that
can be supported; concentrate on “stuff

that matters”; and cultivate alerts and the
information they contain.

Creating alerts should be part of the normal
development workflow: “code, test, alerts”. In
order to ensure that the development team
know if an alert stops working, tests should

be added to validate the alert.

A microservices architecture lets you move
fast, but there is an associated operational
cost, particularly around monitoring and
observability. Make sure it’s a cost you’re

willing to pay.

by Daniel Bryant

https://www.infoq.com/articles/observability-financial-times
https://qconlondon.com/
https://qconlondon.com/london-2017/presentation/avoiding-alerts-overload-microservices
https://qconlondon.com/london-2017/presentation/avoiding-alerts-overload-microservices
https://www.infoq.com/profile/Daniel-Bryant

Observability // eMag Issue 58 - Jan 2018 23

Wells, a principal engineer at the
Financial Times (FT), began the
talk by stating that knowing when
there is a problem is not enough:
an alert must only be triggered
when an action by a human is re-
quired. A microservices architec-
ture may allow the development
team to move fast but there is an
operational cost, and the number
(and complexity) of alerts gener-
ated by a microservice-based sys-
tem can be overwhelming.

“A microservices architecture lets
you move fast, but there is an as-
sociated operational cost. Make
sure it’s a cost you’re willing to
pay,” she noted.

FT’s FT.com website is powered
by a microservice back end that
primarily uses the Java and Go
programming languages, pack-
aged and deployed with Docker
and CoreOS on the Amazon Web
Services (AWS) platform. FT stores
data within MongoDB, Elastic,
Neo4j, and Apache Kafka.

There are 99 functional services,
with 350 running instances at any
given time, and 52 nonfunction-
al services with 218 running in-
stances. Wells stated that if each
of the 568 service instances were
checked every minute, this would
result in 817,920 checks per day.

Running containers on shared
virtual machines (VMs) requires
92,160 system-level checks, for a
total of 910,080 checks per day. In
addition, any microservice-based
application is a distributed sys-
tem and, accordingly, services do
not run independently.

If something fails, it can often
lead to cascade failures, which
further complicates monitoring
and alerting. (see Figure 1)

In order to adapt to the chal-
lenges of monitoring a micros-
ervices-based application, Wells

suggested a three-pronged ap-
proach: build a system that can
be supported, concentrate on
“stuff that matters”, and cultivate
alerts and the information they
contain.

In order to build a system that
can be supported, log aggrega-
tion and monitoring are essential.
Log aggregation is required due
to the volume of services and
potential latency introduced via
communication over a network,
which means that logs may go
missing or get increasingly de-
layed. This in turn means that

log-based alerts may miss is-
sues, particularly time-sensitive
issues. Effective log aggregation
requires a method that finds all
related logs, and accordingly the
FT team uses transaction ID for
correlation.

Traditional monitoring tooling
like Nagios is often limited, as it
does not provide a service-level
view, and the default (infrastruc-
ture) checks include things that
cannot be fixed. In a microser-
vices-based system, monitoring
should take place at the service
and VM level. Monitoring needs

Figure 1: Wells stated that a microservices-based application makes the
challenges of monitoring worse.

Figure 2: The FT.com technical team’s SAWS aggregated monitoring.

https://www.linkedin.com/in/sarahjwells1/
https://www.ft.com/
https://www.infoq.com/articles/microservices-practical-tips
https://www.nagios.org/

Observability // eMag Issue 58 - Jan 201824

to be aggregated and made vi-
sual, and the FT technical team
uses a custom framework named
SAWS (built by Silvano Dossan,
shown in Figure 2) and Dashing.
They also extensively use graph-
ing via Graphite and Grafana.

When developing polyglot ser-
vices, logging and monitoring
integration must be made easy
for any language that is used.
The expectations, or operational
contract, must be specified, and
each service owner is responsible
for implementing functionality
to meet this requirement. For ex-
ample, the FT health-check stan-
dard requires that every service
expose a health-check endpoint
over HTTP (http://service/__
health) that returns a 200 if the
service can run the health check
and a JSON document containing
multiple checks that can contain
additional information but must
return “ok”:true or “ok”:-
false. (see Figure 3)

A core goal of monitoring and
alerting is to know about prob-
lems before clients do, and ac-
cordingly the practice of running
synthetic requests that mimic
user functionality behavior is vi-
tal. If functionality relating to a

key user journey is broken — for
example, an FT editor cannot
publish a new article — it must
be fixed immediately. Wells stat-
ed that engineers must learn to
prioritize and “concentrate on
the stuff that matters”. The FT
technical team has also created
dashboards that show core cli-
ent statistics, such as number of
errors and response latency, but
Wells stressed that it is “the end-
to-end [business functionality]
that matters” and “if you just want
information, create a dashboard
or report”.

Figure 3: The FT.com microservices alert dashboard, which is powered
by the Dashing framework.

It’s not.

Been told that logging,
aggregating, and filtering on
high cardinality fields like
customer_id is impossible?

Try it FREE FOR 30 DAYS at

https://honeycomb.io/signup

https://github.com/muce/SAWS
http://engineroom.ft.com/2014/05/29/big-flashing-devops-thing/
http://dashing.io/
https://graphiteapp.org/
https://grafana.com/
https://martinfowler.com/bliki/SyntheticMonitoring.html
http://bit.ly/2n6wACL

Observability // eMag Issue 58 - Jan 2018 25

Alerts must continually be culti-
vated, and if an alert is received
that doesn’t make sense or does
not require human interaction, it
must be corrected or removed.
If an issue occurs but it triggered
no alert, then one should be add-
ed as part of the fix. Key infor-
mation must be included within
each alert: for example, an over-
view of the business impact, the
associated runbook location, and
corresponding transaction IDs
that triggered the issue.

The FT team uses dedicated “Ops
Cops” (on-call members of the
development team, rotated reg-
ularly) to watch for issues with
monitoring, and has integrated
alerting within the team’s Slack
messaging system. The team uses
a predefined list of emojis (with a
clear, stated purpose for each) to
indicate when and how an issue
is being managed and resolved.

Concluding the talk, Wells sug-
gested that creating alerts should
be part of the normal develop-
ment “code, test, alerts” workflow.
In order to ensure that the devel-
opment team knows if an alert
stops working, tests should be
added to validate the alert. The FT
technical team subscribes to the
philosophy of chaos testing and,

inspired by Netflix’s Simian Army
and Chaos Monkey, has created
a “Chaos Snail” (which is “small-
er than a monkey, and written
in Bash shell!”). Wells cautioned
that proactivity is required when
maintaining and dealing with
alerts in a non-trivial system, and
out-of-date information can be
worse than none at all. Automate
updates wherever possible, and
find ways to share what is chang-
ing.

The slides for Wells’s “Avoiding
Alerts Overload From Micros-
ervices” talk can be found on
Speaker Deck, and the video can
be found on InfoQ.

Figure 4: A FT.com alert example with information that includes the
issue, the impact, transaction IDs, and a link to the associated runbook.

https://en.wikipedia.org/wiki/Runbook
https://github.com/Netflix/SimianArmy
https://speakerdeck.com/sarahjwells/qcon-london-2017-avoiding-alerts-overload-from-microservices
https://speakerdeck.com/sarahjwells/qcon-london-2017-avoiding-alerts-overload-from-microservices
https://speakerdeck.com/sarahjwells/qcon-london-2017-avoiding-alerts-overload-from-microservices
https://www.infoq.com/presentations/microservices-alerts

Observability // eMag Issue 58 - Jan 201826

Uwe Friedrichsen on
Functional Service Design
and Observability

At the microXchg 2017 conference
in Berlin, Uwe Friedrichsen
discussed the core concepts
of “Resilient Functional Service
Design” and how to create
observable systems.

Read online on InfoQ

KEY TAKEAWAYS

The key ideas associated with
microservices are the properties

that support independence of the
rest of the application landscape

and quick evolvability. This is often
ignored by implementers.

Monitoring and logging systems
need to evolve in ways that reflect
current software architecture, and

this has an impact that is both
technical and cognitive.

Many things learned in a classic
software engineering education
about how to slice functionality

(such as “Don’t Repeat Yourself”)
does not work for distributed
systems, like microservices.

The term “microservices” itself will
probably disappear in the future,
but the new architectural style of
functional decomposition is here

to stay.

by Daniel Bryant

Friedrichsen believes that in order to develop effective sys-
tems, microservice developers must learn about fault-tol-
erant design patterns and caching but not use them to mit-
igate fundamentally bad (overly coupled) system design,
understand domain-driven design (DDD) and modularity,

https://www.infoq.com/articles/functional-service-design-observability
http://microxchg.io/
https://www.xing.com/profile/Uwe_Friedrichsen
https://www.youtube.com/watch?v=F3wqb6nTzOw
https://www.youtube.com/watch?v=F3wqb6nTzOw
https://www.infoq.com/profile/Daniel-Bryant
https://www.infoq.com/minibooks/domain-driven-design-quickly

Observability // eMag Issue 58 - Jan 2018 27

and aim to design for replaceable
components rather than reuse.

Friedrichsen, CTO at Codecentric,
began the presentation by stat-
ing that the goal of software de-
velopment is to deliver business
value, and for this to be realized,
the software must be run in pro-
duction and be highly available.
Modern architectural styles, such
as microservices, mean that ev-
erything is now distributed, most
likely spanning at least a local
area network, and therefore fail-
ures within the system are normal
and not predictable. Developers
must learn about the fundamen-
tals of resilience, shown in Figure
1.

Developers should familiarize
themselves with fault-tolerant
design patterns, such as circuit

breakers, bulkheads, timeouts,
and retries, which have been pop-
ularized by Michael Nygard’s Re-
lease It! book. Caching, although
useful, should be deployed with
care and not used simply to over-
come bad system design, such as
a long activation path involving
many dependent services.

Friedrichsen presented a series
of foundations of design for mi-
croservices (pictured in Figure
2), which included a series of
design principles focusing on
high cohesion, low coupling, and
separation of concerns. These
principles are especially crucial
across system boundaries, and
even though the theory was well
documented in the ’70s by David
Parnas (PDF link), it is still often
misunderstood.

DDD is a useful tool, but many
developers overly focus on the
static context model of domain,
something Friedrichsen calls “en-
tity DDD”. The dynamic behavior
of the system is often more illus-
trative of the business activities,
domain events, and flow of data.

Quoting Fred Brooks, Friedrichsen
discussed the promise of software
reuse that developers have spent
many years chasing. Brooks sug-
gested that the effort required
to create a reusable component
(over one that fits a purpose for a
single case) is typically multiplied
by three, meaning that any return
on investment for reusability is
only seen when a component has
been used without modification
at least four times.

Figure 1: The fundamental concepts and patterns of system resilience.

https://blog.codecentric.de/en/2015/10/the-broken-promise-of-re-use/
http://itrevolution.com/books/the-art-of-business-value/
http://itrevolution.com/books/the-art-of-business-value/
https://martinfowler.com/articles/microservices.html
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
https://pragprog.com/book/mnee/release-it
https://pragprog.com/book/mnee/release-it
https://www.cs.umd.edu/class/spring2003/cmsc838p/Design/criteria.pdf
https://www.cs.umd.edu/class/spring2003/cmsc838p/Design/criteria.pdf
https://www.infoq.com/minibooks/domain-driven-design-quickly
https://www.infoq.com/news/2016/06/event-storming-ddd
https://en.wikipedia.org/wiki/Fred_Brooks
https://blog.codecentric.de/en/2015/10/the-broken-promise-of-re-use/

Observability // eMag Issue 58 - Jan 201828

Monitoring and
logging systems
need to evolve in
ways that reflect
current software
architecture,
and this has an
impact that is
both technical
and cognitive.

Observability // eMag Issue 58 - Jan 2018 29

The communication paradigm
used within a microservices sys-
tem also greatly influences the
functional service design, and
Friedrichsen suggested that care
should be taken with up-front ar-
chitectural choices that may limit
future modification and extensi-
bility.

The concluding message and
core takeaway from the talk was
that developers and architects
need to relearn functional service
design when implementing dis-
tributed systems like those being
created by microservice architec-
tures, as the properties of these
systems expose and multiply the
effects of design issues we have
known about for many years.

InfoQ sat down with Friedrichsen
to further discuss the challenges

of designing resilient and observ-
able services.

InfoQ: What is the most chal-
lenging issue for the current
batch of organizations imple-
menting microservices?

Uwe Friedrichsen: That they are
doing microservices in the first
place.

“Microservices” has become a
popular, mainstream term and
everybody who uses Spring Boot
or the like claims to do microser-
vices. Do not get me wrong: there
is nothing wrong about Spring
Boot, but writing a standalone
application that exposes some
HTTP interface does not mean
that you write a microservice.

The key ideas with microservices
are the properties that support
independence of the rest of the
application landscape and quick
evolvability. Unfortunately, based
on what I can observe, people put
too little effort into those proper-
ties that define a microservice.

Microservices is an architectural
style that helps you to move fast.
You need to move fast in IT if your
company lives in a fast-moving
market and if the IT needs to sup-
port business to move fast. But
even then, a lot more than just
an architectural style is needed to
move fast as IT.

The problem of those hyped
trends like microservices is that
people often try to pick them up
even if they are not an adequate
solution for their situation. If your
IT does not seriously try to be-

Figure 2: Uwe Friedrichsen’s foundations of service design.

https://projects.spring.io/spring-boot/

Observability // eMag Issue 58 - Jan 201830

come faster, you probably do not
need microservices. You can still
use Spring Boot (it is fun, after all),
but you should not call it micros-
ervices.

InfoQ: Moving now towards
development patterns, can
you recommend a technique
for encouraging developers
and architects to think about
functional service design?

Friedrichsen: If I knew one, I
would sell it for a lot of money
and be real rich…. But again, let
us be fair. I see three factors that
make it hard to get developers
and architects to think about
functional service design to the
extent they should:

1. It is hard, really hard, and even
after 40+ years of software archi-
tecture and design it is poorly un-
derstood.

A lot of people then mention
DDD, and DDD indeed is a good
starting point. Still, only knowing
the patterns is completely dif-
ferent from being able to create
a sound design for your current
business problem using those
patterns — especially if you have
your product manager or prod-
uct owner sitting over you all the
time, urging you to be more pro-
ductive.

Also, everything we learned in
our software education about
how to slice functionality — e.g.,
functional decomposition, DRY
(don’t repeat yourself) or creating
re-usable functionality — does
not work for distributed systems,

like microservices are. If you use
those design best practices, you
will end up with an extremely
poor design that will haunt you
badly in production. Basically, we
have to relearn design for distrib-
uted systems and, based on my
personal observations, we still
have to learn a lot about how to
do that right.

2. The real issues of IT are
swamped by more attractive
sideshows.

New frameworks, programming
languages, endless debates
about how to do this and how to
do that, tons of opinionated peo-
ple who try to tell you if you don’t
do this or that, you are doing it all
wrong… — we drown in shiny
new stuff and opinions. Go to a
conference, read an IT magazine,
or just look at your Twitter time-

Figure 3: Friedrichsen suggested developers should dismiss reusability and instead strive for replaceability.

https://www.infoq.com/minibooks/domain-driven-design-quickly

Observability // eMag Issue 58 - Jan 2018 31

line and you know what I mean.
And all of this promises a lot more
fun than trying to learn how to
design well.

3. We lose our collective memory
every five years.

Based on my observations, we
face a new generation of devel-
opers coming from university (or
wherever else) about every five
years. From a different perspec-
tive, this means that we lose our
collective memory also every five
years. These people do not (yet)
know the talk or article that was
an eye-opener for you several
years ago. They have to relearn all
that on their own from scratch —
every single person who starts in
IT.

What makes things harder with
respect to “timeless” topics like
functional design is the fact that
in IT, new is considered valuable
and old is considered worthless.
We are a fast-moving business, ar-
en’t we? What value could knowl-
edge that is five, 10, or even more
than 20 years old possibly have?
And even if some people even-
tually understand that not all old
knowledge is worthless, that we
keep telling and forgetting the
same stories over and over again,
it mostly remains unheard of by
the vast numbers of new devel-
opers joining IT every year.

InfoQ: You mention the rapid
change of people within the IT
industry. What does the future
hold for the microservices
architectural style itself?

Friedrichsen: If I am really frank:
I have no idea. The term “micros-
ervices” itself will probably even-
tually be burnt — as all hype
terms become after a majority of
vendors, consultants, and people
who just want to adorn them-
selves with the new cool thing

have picked them up. The archi-
tectural style, on the other hand,
is here to stay. Actually, the style
was not new when we started to
call it “microservices”; it existed
for many years. It just was updat-
ed based on the advances in IT
and then called “microservices”.
And probably after the next
update, the style will be called
something different.

In the near future, we maybe will
see some more differentiation of
the microservices style. Not ev-
erybody needs all properties of
a pure microservices style. Many
people might get along with
just a subset of the microser-
vices-style properties in order to
satisfy the needs they face.

But to be honest: in the end, I
have no idea.

The full video for Friedrichsen’s
talk, “Resilient Functional Service
Design”, can be found on InfoQ.

It’s not.

Been told that logging,
aggregating, and filtering on
high cardinality fields like
customer_id is impossible?

Try it FREE FOR 30 DAYS at

https://honeycomb.io/signup

https://www.infoq.com/presentations/resilience-functional-service-design
https://www.infoq.com/presentations/resilience-functional-service-design
http://bit.ly/2n6wACL

Observability // eMag Issue 58 - Jan 201832

Debugging
Distributed Systems

InfoQ recently sat down with
Idit Levine, CEO of solo.io
and creator of the new open
source “Squash” microservices
debugger, and discussed the
challenges of observing and
debugging distributed systems and
applications.

KEY TAKEAWAYS

The ability to monitor and debug
an application is important during
development and in production.
Debugging a microservice-based

application is more challenging than
debugging a monolithic application, as

it is difficult to attach a native debugger
to multiple processes that communicate

across a network.

Squash in an open source microservice
debugging tool that orchestrates run-time

debuggers attached to microservices
and provides familiar features like setting
breakpoints, stepping through the code,

viewing and modifying variables etc

We should aspire to provide distributed
applications the same level of

observability and control that is available
for monolithic applications. A service
mesh may be the future best point of
integration for such observation, for

example, logging, tracing and in-process
debugging

Q&A with the “Squash” Microservice
Debugger Creator Idit Levine

https://www.linkedin.com/in/iditlevine/

Observability // eMag Issue 58 - Jan 2018 33

InfoQ: Hi Idit, and welcome to
InfoQ! Could you introduce
yourself, and discuss a little
about your latest venture solo.
io please?

Levine: Hi Daniel, thank you for
having me. I am the founder and
CEO of solo.io, whose general
mission is to streamline the cloud
stack. I’ve been in the cloud man-
agement space for 12 years, since
I’ve joined DynamicOps (the de-
veloper of vCAC, later acquired
by VMware) as one of its first em-
ployees.

Most recently I was the CTO of
the cloud-management division
at EMC. There I led, designed and
implemented project unik, an
open source platform for auto-
mating Unikernels compilation
and deployment, and project lay-
er-x, an open source framework
for cross-cluster scheduling.

Solo.io is currently in stealth
mode, but my commitment to
the open source community is as
strong as ever. That’s why we re-
cently released Squash, an open
source platform for debugging
microservices applications. We
plan to enhance Squash and
bring other valuable tools to the
community in the near future.

InfoQ: Can you explain a little
about how operational and
infrastructure monitoring
has evolved over the last five
years? How have cloud, con-
tainers, and new architectural
styles like microservices im-
pacted monitoring and debug-
ging?

Levine: Monitoring the state
of an application is important
during development and in pro-
duction. With a monolithic ap-
plication, this is rather straight-
forward, since one can attach a
native debugger to the process

and have the ability to get a com-
plete picture of the state of the
application and its evolution.

Monitoring a microservice-based
application poses a greater chal-
lenge, particularly when the ap-
plication is composed of tens or
hundreds of microservices. Due
to the fact that any request may
involve being processed by many
microservices running multiple
times -- potentially on different
servers -- it is exceptionally diffi-
cult to follow the “story” of the ap-
plication and identify the causes
of problems when they arise.

Currently, the main methodology
relies on obtaining a trace of all
transactions and dependencies
using tools that, for example, im-
plement the OpenTracing stan-
dard. These tools capture timing,
events, and tags, and collect this
data out-of-band (asynchronous-
ly). OpenTracing allows users to
perform critical path analysis and
monitor request latency, perform
topological analysis and identi-
fy bottlenecks due to shared re-
sources. Users can also log what
they think could be useful data,
like the values of different vari-
ables, error messages etc.

InfoQ: We’ve been keenly
watching the evolution of
Squash -- an open source tool
that allows the debugging
of microservices application
running on container orches-
tration from IDE -- and would
be keen to hear the goals of
the project and rationale for
creating this?

Levine: OpenTracing tools are
very powerful, but they have lim-
itations and gaps. Since logging
the state of the application during
runtime can be expensive and
result in performance overhead,
one needs to limit the amount of
collected information. One way

to do this is to follow only a sub-
set of the transactions, and not
all of them. Tuning the size of this
sample represents a tradeoff be-
tween the amount of information
collected on one hand, and the
price in performance and costs
on the other.

One consequence is that once a
problem is identified, it is possi-
ble that some needed informa-
tion is missing. Obtaining this
information requires running
the application again, and wait-
ing for the data to be collected.
Moreover, OpenTracing is not a
runtime debugger and does not
allow changing variables during
runtime to explore potential solu-
tions to a problem. Any attempt
to fix a problem requires wrap-
ping the code, running the appli-
cation, and waiting for the data
again. Solving a problem may ne-
cessitate several such iterations,
which can be both daunting and
expansive.

Our vision for Squash is to com-
plement the OpenTracing tools
and close these gaps. The main
goal of Squash is to provide an
efficient tool for debugging mi-
croservices applications. Squash
orchestrates run-time debuggers
attached to microservices, provid-
ing familiar features like setting
breakpoints, stepping through
the code, viewing and modifying
variables etc. Importantly, Squash
allows the developer to seamless-
ly follow the application and skip
between microservices. Squash
takes care of all the necessary pip-
ing, allowing developers to focus
on their own code and solve the
issues they actually care about. To
make Squash accessible and easy
to adopt, it integrates with exist-
ing popular IDEs.

Squash is designed to provide
essential capabilities for monitor-
ing the life cycle of an application
both in the development phase,

http://solo.io
http://solo.io
https://goo.gl/f6kAJn
https://goo.gl/oizAbU
https://goo.gl/oizAbU
https://www.solo.io/single-post/2017/05/14/Squash-Microservices-Debugger
http://opentracing.io/
https://github.com/opentracing/specification/blob/master/specification.md
https://github.com/opentracing/specification/blob/master/specification.md

Observability // eMag Issue 58 - Jan 201834

allowing development of robust code, as well as
during production, allowing fast adaptation of
the code when new difficulties arise.

InfoQ: What are the future plans for Squash?

Levine: We recognized that Squash can lever-
age a service mesh (like Istio) and proxy (like
Envoy) to let users debug application that run
in the mesh without pausing the entire service.
Accordingly, we’ve just officially pushed Squash
http envoy filter to Envoy upstream. Next, we
will work with the Istio team to configure this
project to use it.

We have received community requests to inte-
grate Squash with more platforms, like Mesos
and Docker Swarm, and we hope to also inte-
grate it with Cloud Foundry. We have also added
support for more debuggers, like Java, Node js
and Python. Lastly, we are looking forward to
support more IDEs, including IntelliJ IDEA and
Eclipse.

In addition, we are talking with the OpenTrac-
ing-community leader, with the aim to integrate
OpenTracing with Squash. The vision is that us-
ers would be able to identify latency between
two services via OpenTracing, and zoom-in to
resolve the problem with Squash.

InfoQ: We’ve seen you talk about Unikernels,
and would be keen to get your opinion on
the role this technology will play in the fu-
ture? Bryan Cantrill has famously stated that
Unikernels are unfit for production, and are
also entirely undebuggable. What do you
think about this?

Levine: I believe that Unikernels will play a
significant role in the future, mainly in the IoT
space. The benefits of Unikernels – their “slim”
footprint, security, performance – are a great fit
to IoT devices where the storage is limited and
one prefers to include minimal code rather than
a full-blown OS.

I believe unik is a fantastic orchestration tool
to build and run a Unikernel, and it seems that
the community agrees based on the traffic and
clones on the GitHub repository. I am very hap-
py that people are using unik. Next, I hope to
extend unik to be more than a Unikernel tool,

Debugging a microservice-
based application is more

challenging than debugging
a monolithic application, as it

is difficult to attach a native
debugger to multiple processes
that communicate [exclusively]

across a network.

https://istio.io/
https://www.envoyproxy.io/
https://goo.gl/QJZ9g7
https://www.joyent.com/blog/Unikernels-are-unfit-for-production

Observability // eMag Issue 58 - Jan 2018 35

by supporting Kata Containers, LinuxKit,
FreeRTOS and other IoT embedded de-
vice software.

Bryan is absolutely right that Unikernels
can only be production ready when mon-
itoring and debugging tools for Uniker-
nels become available. Currently, such
tools do not exist.

When we built unik we had to debug the
Unikernel, and we did that using the gdb
debugger. I can therefore testify that de-
bugging Unikernels is indeed possible,
but can be extremely hard.

I think that the community, which recog-
nizes the huge potential of Unikernels,
should invest in creating new tools that
will automate this process and make it
easier. Squash, for example, is already
leveraging debuggers like gdb, so po-
tentially it could be expanded to help de-
bugging Unikernels.

InfoQ: “Serverless” technology is also
getting increasingly popular, and
would a tools like Squash also be
useful for debugging applications/
functions deployed here?

Levine: Definitely! Actually, we originally
thought of Squash as a tool for debug-
ging serverless applications. However,
most people who run serverless apps to-
day use the public cloud FaaS platforms --
and for good reasons, as this is currently
the most mature offering. Such platforms
take the complexity away from the user,
but also take away the control and flex-
ibility.

Users do not have any control or access
to the environment that the functions
run on. This really limit the ability of the
community to innovate in the serverless
space, and forces it to come up with hacks
and “creative” solutions to overcome its
limitations. I am not a fan of “hacks”, and
therefore when we built Squash we gave
priority to platforms that provide us with
the hooks to plug into.

InfoQ: What other tools do you think
future developers will need to under-
stand and debug large-scale, rapidly
evolving container-based applica-
tions?

Levine: As a community, we should as-
pire to provide distributed applications
the same level of observability and con-
trol that is available for monolithic appli-
cations. A combination of existing tools
already points us in the right direction.
Log collection can be done by Open-
Tracing tools, metrics collected by Pro-
metheus, and debugging by Squash. All
of these methods should plugin to a ser-
vice mesh to achieve full efficiency.

InfoQ: What role do you think QA/Tes-
ters have in relation to observability
and debuggability of a system?

Levine: In one possible mode of action,
I would expect the QA and testers to fo-
cus on the logs and provide context. With
container-based applications, this should
be done using OpenTracing. The devel-
oper will then be able to reproduce the
bug and use Squash to attach a debug-
ger, step through the code, and resolve
the issue.

InfoQ: Thanks once again for taking
the time to sit down with us today. Is
there anything else you would like to
share with the InfoQ readers?

Levine: We at solo are working hard of
building more open source tools to fa-
cilitate microservices development and
operation. In particular, we are focused
on innovative and helpful tools to accel-
erate adoption of microservices in the en-
terprise. We are super excited about our
plans for 2018 -- please stay tuned!

Additional information on solo.io can be
found at the company website, and the
open source Squash microservices de-
bugger can be found on GitHub.

https://katacontainers.io/
https://github.com/linuxkit/linuxkit
https://www.freertos.org/
https://prometheus.io/
https://prometheus.io/
https://www.solo.io/
https://github.com/solo-io/squash
https://github.com/solo-io/squash

PREVIOUS ISSUES

57
This InfoQ emag aims to introduce you to core stream pro-
cessing concepts like the log, the dataflow model, and im-
plementing fault-tolerant streaming systems.

Streaming
Architecture

Reactive JavaScript

This eMag is meant to give an easy-going, yet varied
introduction to reactive programming with JavaScript.
Modern web frameworks and numerous libraries
have all embraced reactive programming. The rise in
immutability and functional reactive programming
have added to the discussion. It’s important for
modern JavaScript developers to know what’s going
on, even if they’re not using it themselves.

54

Cloud Native

In this eMag, the InfoQ team pulled together stories
that best help you understand this cloud-native rev-
olution, and what it takes to jump in. It features inter-
views with industry experts, and articles on key topics
like migration, data, and security.

55

Faster,
Smarter DevOps

This DevOps eMag has a broader setting than pre-
vious editions. You might, rightfully, ask “what does
faster, smarter DevOps mean?”. Put simply, any and
all approaches to DevOps adoption that uncover im-
portant mechanisms or thought processes that might
otherwise get submerged by the more straightfor-
ward (but equally important) automation and tooling
aspects.

56

https://www.infoq.com/minibooks/emag-streaming-architecture
https://www.infoq.com/minibooks/emag-reactive-javascript
https://www.infoq.com/minibooks/emag-cloud-native
https://www.infoq.com/minibooks/emag-faster-smarter-devops

	_GoBack
	_GoBack
	_8avnpxuocndn
	_6y4so62t2ypc
	_8iujdrmwjj32
	_sh8lkoqv4sd1
	_GoBack

