
13/02/2013

1

Basic OO Principles

OO Design Principles

Toni Sellarès
Universitat de Girona

Basic OO Principles

– Abstraction

– Encapsulation,

– Inheritance,

– Polymorphism,

– Composition.

13/02/2013

2

Abstraction and Encapsulation

Abstraction and encapsulation:

- are highly-related concepts that often became confused with one another.

Abstraction is a technique that:

- helps us identify which information should be visible (essential), and which
information should be hidden (non essential).

- focuses on obtaing interfaces (outside view) of objects.

Encapsulation is a technique for:

- packaging the information in such a way as to hide what should be hidden, and
make visible what is intended to be visible.

- hiding implementation details.

The end goal is to have a software architecture that facilitates both
substitution and reuse.

Helps the system evolve with minimal collateral damage from changes:

– We can change one part of the system without having to change others.

Easyier maintainability, flexibility and extensibility of code.

Abstraction and Encapsulation

13/02/2013

3

Inheritance [IS-A relationship]

Method of reuse in which a new functionality is obtained by extending the
implementation of an existing class.

The generalization class (the superclass) explicitly captures the common
attributes and methods.

The specialization class (the subclass) extends the implementation with
additional attributes and methods.

Polymorphism (1)

Is the ability of objects belonging to different classes to respond to method
calls of methods of the same name, each one according to an appropriate
classe-specific behaviour.

The different objects involved only need to present a compatible interface
to the clients: there must be public methods with the same name and the

same parameter sets in all the objects.

13/02/2013

4

Polymorphism (2)

The program does not have to know the exact classe of the object in
advance, so this behavior can be implemented at run time.

Polymorphism allows client programs to be written based only on the
abstract interfaces of the objects which will be manipulated (interface
inheritance).

This means that future extension in the form of new classes of objects is

easy, if the new objects conform to the original interface.

Composition [HAS-A relationship] (1)

Method of reuse in which a new functionality is obtained by creating an object
composed of other objects.

The new functionality is obtained by delegating functionality to one of the
objects being composed.

Composition encapsulates several objects inside another one.

13/02/2013

5

OO Design Principles and Heuristics

• Minimize the Accessibility of Classes and Members.

• Encapsulate what varies.

• Favor Composition over Inheritance.

• Program To an Interface, Not an Implementation.

• Software Entities (Classes, Modules, Functions) should be
Open for Extension, but Closed for Modification.

• Functions that use references to base classes must be able to
use objects of derived subclasses without knowing it.

• Depend On Abstractions. Do not depend on Concrete Classes.

Principle

Minimize the Accessibility of

Classes and Members

13/02/2013

6

Private Methods
Provide a way of designing a class behavior so that external objects

are not permitted to access the behavior that is meant only for the

internal use.

Accessor Methods
Provide a way of accessing an object’s state using specific methods.

This approach discourages different client objects from directly
accessing the attributes of an object, resulting in a more maintainable
class structure.

Principle

Encapsulate what varies

13/02/2013

7

Encapsulate what varies
No matter how well you design an application, over time
it must grow and change or it will die.

Identify the aspects of your application that may vary,
say with every new requirement.

Take the parts that vary and encapsulate them: hide the
details of what can change behind the public interface of
a class.

This allows you to alter or extend these parts without
affecting the parts that don’t change.

This principle is the basis for almost every design pattern.

When designing software, look for the portions most likely to change and prepare them for future expansion by
shielding the rest of the program from that change.

Hide the potential variation behind an interface.

Then, when the implementation changes, software written to the interface doesn't need to change.

Principle

Favor Composition over Inheritance

13/02/2013

8

There are two common techniques for reusing functionality
in object oriented systems:

1. class inheritance

2. object composition

Pros and Cons of Inheritance (1)

Advantages:

– New implementation is easy, since most of it is inherited.

– Easy to modify or extend the implementation being reused.

13/02/2013

9

Pros and Cons of Inheritance (2)

Disadvantages:

– Breaks encapsulation, since it exposes a subclass to implementation details of

its superclass.

– White-box reuse, since internal details of superclasses are often visible to

subclasses.

– Subclasses may have to be changed if the implementation of the superclass

changes.

– Implementations inherited from superclasses can not be changed at runtime.

Pros and Cons of Composition (1)

Advantages:

– Composing objects are accessed by the composed class solely
through their interfaces.

– Black-box reuse, since internal details of composed objects are not
visible.

– Good encapsulation.

– Fewer implementation dependencies.

– Each class is focused on just one task.

– The composition can be defined dynamically at run-time through
objects acquiring references to other objects of the same type.

13/02/2013

10

Pros and Cons of Composition (2)

Disadvantages:

– Resulting systems tend to have more objects and inter-relationships between

them than when it is defined in a single class.

– Interfaces must be carefully defined in order to use many different objects as

composition blocks.

Inheritance/Composition Summary

• Both composition and inheritance are important methods of reuse.

• Inheritance was overused in the early days of OO development.

• Over time we've learned that designs can be made more reusable
and simpler by favoring composition.

• Of course, the available set of composable classes can be enlarged
using inheritance:

- So composition and inheritance work together.

• But our principle is:

Favor Composition Over Inheritance

13/02/2013

11

Coad’s Rules

Use inheritance only when all of the following criteria are satisfied:

– A subclass expresses "is a special kind of" and not "is a role played by a“.

– An instance of a subclass never needs to become an object of another

class.

– A subclass extends, rather than overrides or nullifies, the responsibilities

of its superclass.

– A subclass does not extend the capabilities of what is merely a utility

class.

– For a class in the actual Problem Domain, the subclass specializes a role,

transaction or device.

Inheritance/Composition Example 1

Inheritance ok here!

"Is a special kind of" not "is a role played by a“:

• Pass. Reservation and purchase are a special
kind of transaction.

Never needs to transmute:

• Pass. A Reservation object stays a Reservation
object; the same is true for a Purchase object.

Extends rather than overrides or nullifies:

• Pass.

Does not extend a utility class:

• Pass.

Within the Problem Domain, specializes a role,
transaction or device:

• Pass. It's a transaction.

13/02/2013

12

Inheritance/Composition Example 2 (1)

"Is a special kind of" not "is a role played by a“:

• Fail. A passenger is a role a person plays. So is an
agent.

Never needs to transmute:

• Fail. A instance of a subclass of
Person could change from
Passenger to Agent to Agent
Passenger over time.

Extends rather than overrides or nullifies:

• Pass.

Does not extend a utility class:

• Pass.

Within the Problem Domain, specializes a
role, transaction or device:

• Fail. A Person is not a role, transaction or device.

Inheritance does not fit here!

Inheritance/Composition Example 2 (2)

"Is a special kind of" not "is a role played by a“:

• Pass. Passenger and agent are special kinds
of person roles.

Never needs to transmute:

• Pass. A Passenger object stays a Passenger
object; the same is true for an Agent object.

Extends rather than overrides or nullifies:

• Pass.

Does not extend a utility class:

• Pass.

Within the Problem Domain, specializes a role,
transaction or device:

• Pass. A PersonRole is a type of role.

Inheritance ok here!

13/02/2013

13

Principle

Program To an Interface (Supertype),

Not an Implementation

Interface is a subset of all the methods that an object implements.

Implementation is the code.

Interface is MORE IMPORTANT than implementation:

– Interface, once decided, is hard to change,

– Implementation can be easily changed.

Interface and implementation

13/02/2013

14

Interface and implementation

Disk drive

CDROM

Printer

Digital camera

Future products . . .

USB bus

Interface versus implementation

USB is an abstraction of the hardware

- Design the PC system around the USB interface, not to a particular device

USB

MP3 Digital
Camera

Mobile
Phone

Rest of the
System

Interface

Implementation

Interface and implementation

13/02/2013

15

Interfaces

• Interface is a subset of all the methods that an object
implements.

• An object can have many interfaces

• A type is a specific interface of an object.

• Different objects can have the same type and the same
object can have many different types.

• An object is known by other objects only through its
interface.

Interface Inheritance

• Interface Inheritance (Subtyping) describes when one
object can be used in place of another object.

13/02/2013

16

Benefits of Interfaces

Advantages:

– Clients are unaware of the specific class of the object they are using.
– One object can be easily replaced by another.
– Object connections need not be hardwired to an object of a specific

class, thereby increasing flexibility.
– Loosens coupling.
– Increases likelihood of reuse.
– Improves opportunities for composition since contained objects can be

of any class that implements a specific interface.

Disadvantages:

– Modest increase in design complexity.

Interface Example (1)

/*
* Interface IManeuverable provides the specification for a
* maneuverable vehicle.
*/
public interface IManeuverable {
public void left();
public void right();
public void forward();
public void reverse();
public void climb();
public void dive();
public void setSpeed(double speed);
public double getSpeed();
}

public class Car
implements IManeuverable { // Code here. }

public class Boat
implements IManeuverable { // Code here. }

public class Submarine
implements IManeuverable { // Code here. }

13/02/2013

17

Interface Example (2)

This method in some other class can maneuver the
vehicle without being concerned about what the actual
class is (car, boat, submarine) or what inheritance
hierarchy it is in:

public void travel(IManeuverable vehicle) {
vehicle.setSpeed(35.0);
vehicle.forward();
vehicle.left();
vehicle.climb();

}

The Open-Closed Principle (OCP)

Software Entities (Classes, Modules, Functions)

should be Open for Extension,

but Closed for Modification

13/02/2013

18

OCP

• OCP states:

– We should attempt to design modules that never need to be changed: we
do not modify old code.

– We extend the behavior of the system by adding new code.

• OCP attacks software rigidity and fragility:

– When one change causes a cascade of changes!

OCP

– It is not possible to have all the modules of a software
system satisfy the OCP, but we should attempt to minimize
the number of modules that do not satisfy it.

– The OCP is really the heart of OO design.

– Conformance to OCP yields the greatest level of reusability
and maintainability.

13/02/2013

19

Example: “Closed Client”

• Client and Server are concrete classes

• Client class uses Server class

• If Client object wants to switch to a different Server
object, what would need to happen?

Client Server

Client code needs to be modified to name the new Server class !

• How is this “open” ?

Client AbstractServer

Server

Since the Client depends on the AbstractServer, we can simply
switch the Client to using a different Server, by providing a new
Server implementation. Client code is unaffected!

Example: “Open Client”

13/02/2013

20

Another OCP Example (1)

• Consider the following method:

• The job of the above method is to total the price of all parts
in the specified array of parts.

• Does this conform to OCP?
• YES! If Part is a base class or an interface and polymorphism is being
used, then this class can easily accommodate new types of parts without
having to be modified!

OCP Example (2)
• But what if the Accounting Department now decreed that motherboard

parts and memory parts have a premium applied when figuring the
total price?

• Would the following be a suitable modification? Does it conform to
OCP?

13/02/2013

21

OCP Example (3)

No! Every time the Accounting Department comes out with a
new pricing policy, we have to modify totalPrice () method.
This is not “Closed for modification”

These policy changes have to be implemented some place,
so what is a solution?

Version 1. Could incorporate the pricing policy in getPrice ()
method of Part.

• Here are example Part and Concrete Part classes:

Add method

Code in
concrete
classes

•Does this work? Is it “closed for modification”?
–No. We must now modify each subclass of Part whenever the pricing policy changes!

OCP Example (4)

13/02/2013

22

How to make it “Closed for Modification”

• Version 2. Better idea: have a PricePolicy class which can
be used to provide different pricing policies:

OCP Example (5)

With this solution we can dynamically set pricing policies at
run time by changing the PricePolicy object that an existing
Part object refers to.

13/02/2013

23

Corollary to OCP: Single Choice Principle

Whenever a software system must support a

set of alternatives, ideally only one class in

the system knows the entire set of

alternatives

The Liskov Substitution Principle (LSP)

Functions that use references to base classes

(super classes) must be able to use objects of

derived subclasses without knowing it.

13/02/2013

24

If a function does not satisfy the LSP, then it
probably makes explicit reference to some or all
of the subclasses of its superclass.

Such a function also violates the OCP, since it
may have to be modified whenever a new
subclass is created.

LSP

LSP Example

The Liskov Substitution Principle seems obvious given
polymorphism.

For example:
public void drawShape (Shape s) {

// code here
}

The drawShape method should work with any subclass
of the Shape superclass (or, if Shape is a Java interface,
it should work with any class that implements the Shape
interface).

So what is the big deal with LSP?

13/02/2013

25

LSP Example (1)

Consider the following Rectangle class:

// A very nice Rectangle class
public class Rectangle {

private double width;
private double height;

public Rectangle (double w, double h) {
width = w;
height = h;

}
public double getWidth () { return width;}
public double getHeight () { return height;}
public void setWidth (double w) { width = w; }
public void setHeight (double h) {height = h;}
public double area () { return (width * height);}

}

LSP Example (2)

Assume we need a Square class. Clearly a square is a
rectangle, so the Square class should be derived from
the Rectangle class.

Observations:

 A square does not need both a width and a height as attributes,
but it will inherit them from Rectangle anyway. So each Square
object wastes a little memory -- but this is not a major concern.

 The inherited setWidth () and setHeight () methods are not
really appropriate for a Square, since the width and height of a
square are identical. So we’ll need to override the methods
setWidth () and setHeight ().

13/02/2013

26

LSP Example (3)

Here’s the Square class:

// A Square class
public class Square extends Rectangle {

public Square (double s) { super (s, s);}

public void setWidth (double w) {
super.setWidth (w);
super.setHeight(w);

}

public void setHeight (double h) {
super.setHeight (h);
super.setWidth (h);

}
}

setWidth () and
setHeight ()
overridden to reflect
Square semantics

LSP Example (4)

• Everything looks good. But consider this function!

public class TestRectangle {
// Define a method that takes a Rectangle reference.
public static void testLSP (Rectangle r) {

r.setWidth (4.0);
r.setHeight (5.0);
System.out.println (“Width is 4.0 and Height is 5.0” + “, Area” + r.area ());
if (r.area () == 20.0){

System.out.println (“Looking good \n”);
else

System.out.println(“Huh?? What kind of rectangle is this?? \n”);
}

13/02/2013

27

LSP Example (5)

public static void main (String args[]) {

// Create a Rectangle and a Square

Rectangle r = new Rectangle (1.0, 1.0);

Square s = new Square (1.0);

// Now call the testLSP method. According to LSP it should work for either

// Rectangles or Squares. Does it?

testLSP (r);

testLSP (s);

}

}

LSP Example (6)

Test program output:

Width is 4.0 and Height is 5.0, so Area os 20.0

Looking good!

Width is 4.0 and Height is 5.0, so Area is 25.0

Huh?? What kind of rectangle is this??

Looks like we violated LSP!

13/02/2013

28

LSP Example (7)

• The programmer of the testLSP () method made the reasonable
assumption that changing the width of a Rectangle leaves its height
unchanged.

• Passing a Square object to such a method results in problems,
exposing a violation of LSP.

• The Square and Rectangle classes look self consistent and valid.
Yet a programmer, making reasonable assumptions about the base
class, can write a method that causes the design model to break
down.

• Solutions cannot be viewed in isolation, they must also be viewed in
terms of reasonable assumptions that might be made by the users
of the design.

LSP Example (8)

• A mathematical square might be a rectangle, but a
Square object is a not a Rectangle object, because the
behavior of a Square object is not consistent with the
behavior of a Rectangle object!

• Behaviorally, a Square is not a Rectangle! A Square
object is hence not polymorphic with a Rectangle object.

• Hint on LSP violation: when simple methods such as the
setWidth and setHeight have to be overridden,
inheritance needs to be re-examined!

13/02/2013

29

LSP: Conclusions

• The Liskov Substitution Principle (LSP) makes it clear that the ISA
relationship is all about behavior.

• In order for the LSP to hold (and the OCP) all subclasses must
conform to behavior that the clients expect of the base classes they
use.

• A subtype must have no more constraints than its base type, since
the subtype must be usable anywhere the base type is usable.

• If the subtype has more constraints than its base type, there would
be uses that would be valid for the base type, but that would violate
one of the extra constraints of the subtype and thus violate the LSP!

• The guarantee of the LSP is that a subclass can always be used
wherever its base class is used!

Corollary to LSP: Design by contract Principle

A subtype can only have

weaker preconditions and

stronger postconditions

than its base class

13/02/2013

30

Dependency Inversion Principle (DIP)

Depend On Abstractions,

Not on Concrete Classes.

• DIP is naïve but powerful principle

– High-level components should not depend on low-level components. Both should
depend upon abstractions.

– Abstractions should not depend upon details. Details should depend upon abstractions.

– All relationships in a program must terminate at an abstract class or interface.

• According to this heuristic:

– No variable should hold a pointer or reference to a concrete class.

– No class should derive from a concrete class.

– No method should override an implemented method of any of its base classes.

• This heuristic is violated at least once in every program

– Classic example: use of String class.

DIP

13/02/2013

31

Dependency is transitive: Changes in the lower level modules can have
direct effects on the higher level modules, forcing them to change in turn.

• Absurd! High level modules should be driving change not the other way
round.

Reuse: We should be able to reuse the high level, policy setting modules.

• Pretty good already at reusing the lower level implementations libraries.
• Difficult to reuse higher level modules when they depend on lower level

details.

Conclusions: Strive for having higher level modules be independent of
the lower level modules.

DIP is at the heart of framework design!

DIP

Class X depends on class Y if any of the following applies:

– X has a Y and calls it

– X is a Y

– X depends on some class Z that depends on Y (transitivity)

X depends on Y does not imply Y depends on X. If both happen to be true
this is called a cyclic dependency: X can't then be used without Y, and
viceversa.

The existence of a large number of cyclic dependencies in an object oriented
program might be an indicator for suboptimal program design.

DIP

13/02/2013

32

Breaking up a dependency with Inversion of Control

If an object x of class X calls methods of an object y of class
Y, then class X depends on Y.

The dependency can now be inverted by introducing a third
class, namely an interface class I that must contain all methods
that x might call on y.

Furthermore, Y must be changed such that it implements
interface I.

X and Y are now both dependent on interface I and class X no
longer depends on class Y (presuming that X does not
instantiate Y).

The newly introduced interface I depends on nothing.

This elimination of the dependency of class X on Y by
introducing an interface I is said to be an inversion of control or
a dependency inversion.

DIP helps to make design OCP compliant !

DIP

Inversion of Control:

• Each high level module declares an abstract interface for
the services it needs

• Lower level layers are realized using through the
abstract interface

• Here:

– Upper level layers do not depend on the lower level modules

– Lower layers depend on the abstract service layers declared in
the upper layers!

DIP

13/02/2013

33

Traditional functional programming:

– High level components: business/application rules

– Low level components: implementation of the business rules

– High level components complete their functionality by
calling/invoking the low level implementation provided by the low
level components

• High level depends on the lower level

Policy layer

Mechanism
layer

Utility layer

DIP

Better “inverted” Design
 Design applies DIP.

Inversion of Ownership!
The client “owns” the interface
The utility libraries don’t own the
interfaces they implement.

Sometimes called the Hollywood principle:
“Don’t call us, we’ll call you!”

Advantages:
Policy Layer is now unaffected by
changes in the Utility Layer
Policy Layer is now reusable!
Inverting Dependencies breaks:

Transitive dependency
Direct dependency in most
cases

Provides design that is more flexible,
durable and mobile!

Policy

Policy Layer
<< interface >>
Policy Service

Interface

Mechanism

Mechanism
Layer

<< interface >>
Mechanism
Service
Interface

Utility

Utility
Layer

DIP

13/02/2013

34

HighLevel

AbstractInterface1
<<Interface>>

AbstractInterface2
<<Interface>>

AbstractInterface3
<<Interface>>

DetailImpl1 DetailImpl2 DetailImpl3

DIP

• Dependency Inversion Principle can be applied whenever
one class sends a message to another.

• Consider the case of a Button and Lamp object.
– Button:

• senses the external environment
• receives poll message
• Determines whether or not user has “pressed” it.

– Lamp:
• Affects the external environment
• On receiving turnOn message, illuminates the light
• On receiving turnOff message, extingishes the light.

• Actual physical mechanism for the Lamp and the Button is
irrelevant.

DIP Example (1)

13/02/2013

35

Naïve Design
public class Button {

private Lamp itsLamp;
public Button (Lamp l) { itsLamp = l;}

public void poll (){
if (/* some condition*/)

itsLamp.turnOn ();
else

itsLamp.turnOff ();
}

}

public class Lamp {
public void turnOn ();
public void turnOff ();

}

Button Lamp
+ poll () + turnOn ()

+ turnOff ()

Why is this a naïve design?

DIP Example (2)

Why is the design naïve?

• The dependency between Lamp and Button
implies that Lamp cannot be modified without
changing (at least recompiling).

• Also - not possible to reuse the Button class to
control a Motor/Portal object.

• The Button and Lamp code violates the DIP.

DIP Example (3)

13/02/2013

36

Applying DIP:

Button

Lamp

+ poll ()

<< interface >>
Button Server

+ turnOn ()
+ turnOff ()

DIP Example (4)

Final Comments:

– One of the most common places that designs depend
upon concrete classes is when those designs create
instances:

• By definition, you cannot create instances of abstract classes.
• Thus to create instances you must depend on concrete

classes!
• An elegant solution to this problem - Abstract Factory Pattern

– If a class/module is concrete but extremely stable DIP
can be relaxed.

DIP

