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A LETTER FROM THE EDITOR

With the rise of technologies like Apache Kafka, 
Apache Beam and Spark Streaming, the topic of 
stream processing is becoming increasingly popular. 
Commercial businesses are being formed around the 
associated open source technology, conference talks 
are filled with stories of migrations from batch Ex-
tract-Transform-Load (ETL) to stream processing, and 
blog posts and online discussions debate important 
concepts like if it is really possible to implement ex-
actly once processing (as shown in the second arti-
cle, the answer is yes, with caveats). This InfoQ emag 
aims to cut through some of the hype, and introduce 
you to core stream processing concepts like the log, 
the dataflow model, and implementing fault-tolerant 
streaming systems. 

The first article summarises an excellent QCon San 
Francisco presentation by Frances Perry and Tyler 
Akidau, and explores the fundamentals of stream 
processing with the dataflow model and the corre-
sponding Apache Beam implementation. The data-
flow model encourages engineers to ask four ques-
tions in order to understand the approach required 
when processing data: what are you computing? 
Where in event time? When in processing time? and 
how do refinements relate? Apache Beam is the prac-
tical implementation of this model, and includes: the 
unified Beam Model (the what / where / when / how); 
SDKs for writing data processing pipelines using the 
Beam Model APIs; and “runners” for executing the 
data processing pipelines using existing distributed 
processing backends like Apache Flink or Apache 
Spark.

The stream processing paradigm is similar to many 
existing concepts, such as event stream processing 
and reactive processing. At the core of many of the 
implementations of these concepts is a distribut-
ed transaction log. A log -- an append only, total-
ly ordered data structure -- is a powerful primitive 
for building distributed systems. Many RDBMS use 
change logs (or “write ahead logs”) to improve per-
formance, for point-in-time-recovery (PITR) after a 
crash, and also for distributed replication. The sec-
ond article in this emag explores how the Amazon 
DynamoDB team exposed the transaction/change 
log of the DynamoDB NoSQL service to end-user 
engineers as “DynamoDB Streams” -- a Kinesis Data 
Stream. Akshat Vig and Khawaja Shams discussed 
how understanding the concepts of ordering, de-
duplication, and checkpointing is vital for building 
correct systems, particularly distributed (streaming-) 
based systems. 

Apache Kafka is an open source stream processing 
platform that is designed as a “massively scalable 
pub/sub message queue architected as a distrib-
uted transaction log”. At QCon San Francisco Neha 
Narkhede argued that “logs unify batch and stream 
processing”, and platforms like Kafka can be used to 
create the next generation of ETL systems. This con-
cept is explored within the third article of the series. 
Traditional approaches to data integration often end 
up “looking like a mess”, with custom scripts, ESBs, 
MQs, custom middleware, and Hadoop deployments 
being woven together to provide a bespoke solution 
that was focused on batch processing. Kafka enables 
the building of real-time streaming data pipelines 

Daniel Bryant



from “source” to “sink” by providing the Kafka Con-
nect API -- a series of pluggable data input/output 
connectors for the ‘E’ and ‘L’ in ETL; and the Kafka 
Streams API -- a fluent DSL for stream processing with 
operators such as join, map, filter and windowed ag-
gregates, which is effectively the ‘T’ in ETL.

The fourth article presents a case study of how Shirya 
Arora and the Data Engineering and Analytics team 
at Netflix migrated an existing batch ETL data pro-
cessing system to a real-time stream processing sys-
tem using Apache Flink. Arora cautioned that there 
are many decisions and tradeoffs that must be made 
when moving from batch to stream data processing 
- engineers should not “stream all the things” just be-
cause stream processing technology is popular. This 
case study demonstrated that there were clear busi-
ness wins for using stream processing, including the 
opportunity to train machine learning algorithms 
with the latest data, and the creation of opportuni-
ties for new kinds of machine learning algorithms. 
There were also technical wins for implementing 
stream processing, such as the ability to save on stor-
age costs, faster turnaround time on error correction, 
and integration with other real-time systems.

The final article in this series summarises Anton Gor-
shov’s recent QCon New York presentation, where 
he explains in detail how the Core Front Office Plat-
form team at Goldman Sachs provision and operate 
a large-scale on-premise Apache Kafka cluster. The 
team has invested significant resources into pre-
venting data loss, and this includes providing tape 
backup, nightly batch replication, and synchronous 

disk level replication. There has also been significant 
investment in creating tooling to support their in-
frastructure, including a REST-like service and web 
application to provide insight into the Kafka cluster, 
and the creation of a comprehensive metrics cap-
ture component. The core takeaway is that failure 
will occur, and engineers must plan to handle this. 
The approach that has been adopted at GS is to run 
everything with high-availability (“belt and suspend-
ers”), and be transparent in all of the approaches and 
trade-offs made to ensure resilience.
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EXPLORING THE 
FUNDAMENTALS OF 
STREAM PROCESSING 
WITH THE DATAFLOW 
MODEL AND APACHE BEAM
At QCon San Francisco 2016, 
Frances Perry and Tyler Akidau 
presented “Fundamentals 
of Stream Processing with 
Apache Beam”. 

View Full Presentation

KEY TAKEAWAYS

Data captured within modern systems 
has become increasingly “big”, and 
may be generated as an unordered 

and (effectively) infinite stream. Data 
may also be captured with unknown 

delays, particularly if it is collected via an 
unreliable (distributed) network

The Google Dataflow Model -- 
and corresponding Apache Beam 

implementation -- encourages users to ask 
four questions in order to understand the 
approach required when processing data: 
what are you computing? Where in event 
time? When in processing time? and how 

do refinements relate?

The Apache Beam project includes three 
things: The conceptual unified Beam 

Model (the what / where / when / how); 
SDKs for writing data processing pipelines 
using the Beam Model APIs; and “runners” 
for executing the data processing pipelines 

using existing distributed processing 
backends like Apache Flink or Apache 

Spark

https://www.infoq.com/presentations/stream-apache-beam
https://qconsf.com/
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Perry and Akidau, both senior staff engineers at Google, began the talk with a discussion 
of how data captured within modern systems has become increasingly “big”, and may be 
generated as an unordered and (effectively) infinite stream. This can make it challeng-
ing for data-processing systems and end users to extract meaningful and timely results 
and insight for the business. For example, capturing ongoing player scores from a mo-
bile-game application results in a continual stream of data, and the business may want 
to mine this data in order to understand and improve player retention or “stickiness”. In 
addition to being unordered, data may also be captured with unknown delays, particu-
larly if it is collected via an unreliable network: data may arrive delayed by a few seconds 
due to a network glitch, a few minutes due to loss of signal, or potentially hours (or days) 
delayed if the player continues to play the game aboard a transatlantic flight without mo-
bile reception until they land.

Some data processing is relatively straightforward — for example, element-wise trans-
formations like parsing, translating, or filtering. However, a large amount of data process-
ing requires aggregation operations such counting and joining, and this means that the 
stream of data must be chopped up in finite chunks before the aggregation can occur and 
a result be emitted. The logical approach to this woulda be to divide the stream into pro-
cessing time windows — for example, two-minute or one-hour chunks — but the chal-
lenge with this approach is the potential late arrival of data. This can lead to processing 
data out of context, where the processing time is significantly different than the original 
event time, which may be a problem for some algorithms. Somehow, late arriving data 
needs to be shuffled back into the appropriate time window and context from which it 
originated.

Although this reshuffling of late-arriving data makes conceptual sense, it can be challeng-
ing to implement. In an idealized world, the event data would be processed as it was gen-
erated, but in reality there is a variable skew between the event generation and process-
ing time for which a formal method needs to account and compensate. The solution is to 
use a watermark to describe event-time progress. A watermark is essentially a timestamp, 
and when the processing system receives a watermark, it assumes that it is not going to 
see any message older than that timestamp. A watermark can be perfect — for example, 
with data taken from a static set of sequentially increasing log files — or heuristic, where 
the system has to best guess about when all events for a given time window have arrived.

APACHE BEAM 
FOUNDER 

TYLER AKIDAU 
DISCUSSES 

STREAMING 
SYSTEM 

AND THEIR 
COMPLEXITIES

More on this

https://www.linkedin.com/in/frances-perry-b06a616/
https://www.linkedin.com/in/tyler-akidau-5221672/
https://databricks.com/blog/2017/05/08/event-time-aggregation-watermarking-apache-sparks-structured-streaming.html
https://www.infoq.com/podcasts/Tyler-Akidau
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If a watermark is too slow, the sys-
tem waits for late data to arrive, 
and the computational results of 
the stream-processing operation 
may be delayed. If a watermark is 
too fast, then some data arrives 
late, and an early (speculative) 
result that was emitted may have 
to be updated. The reality is that 
many modern systems will be 
processing infinite streams or un-
ordered data that is collected via 
a distributed system and so the 
data-processing system must ac-
count for these issues. 

The bulk of the talk explored the 
challenges of modern stream 
processing and used the Data-
flow model alongside the corre-
sponding practical implementa-
tion of this model in the Apache 
Beam API in order to ask four 
questions in order to understand 
the approaches required when 
processing data:

• What are you computing?

• Where in event time?

• When in processing time?

• How do refinements relate?

For the question “What are you 
computing?”, the answer may be 
element-wise (single-element) 
processing, perhaps a transla-
tion or filter — this is effectively 
the map part of the popular Ma-
pReduce paradigm — or it may 
be aggregating, such as a join or 
a count — this can be thought of 
as the reduce part of MapReduce. 
The answer to this question could 
also involve composite opera-
tions: these are operations that 
are made up of primitives, but 
we would like to think of them as 
conceptually simpler higher-lev-
el operations. The talk presented 
an example of using the Apache 
Beam API and pseudo Java code 
that computes integer sums from 
the exemplar mobile-phone 
game app. The PCollection ab-
straction represents a potentially 
distributed, multi-element data 
set: we can think of a PCollec-
tion as pipeline data, and Beam 
transforms use PCollection ob-
jects as inputs and outputs.

For the next question, “Where 
in event time?”, the typical ap-
proach is to use windowing to di-
vide data into event-time-based 

The Apache Beam 
project includes three 

things: The unified 
Beam Model; SDKs 

for writing data 
processing pipelines; 

and “runners” for 
executing pipelines 

using backends 
like Apache Flink or 

Apache Spark

https://blog.acolyer.org/2015/08/18/the-dataflow-model-a-practical-approach-to-balancing-correctness-latency-and-cost-in-massive-scale-unbounded-out-of-order-data-processing/
https://blog.acolyer.org/2015/08/18/the-dataflow-model-a-practical-approach-to-balancing-correctness-latency-and-cost-in-massive-scale-unbounded-out-of-order-data-processing/
https://en.wikipedia.org/wiki/MapReduce
https://en.wikipedia.org/wiki/MapReduce
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finite chunks. These windows can be fixed (e.g., every five minutes), sliding (e.g., the previous 24 hours for every 
hour) or session-based (e.g., an application-specific burst of activity). Windowing is very similar to the concept 
of using a composite key to group data within batch processing.

The third question, “When in processing time?”, relates to the requirements for triggers that control when results 
are emitted. Triggers are often relative to the watermark — when the watermark is seen, we believe that all the 
results for this event-time have been seen, and therefore the computation result can be emitted. If a perfect 
watermark is used, this can lead to the late emission of results as the system waits for all data elements to be 
processed before emitting any result. If a heuristic watermark is used, the results can be emitted in a more timely 
fashion, but the processing of late elements can provide additional challenges.

The issues with defining triggers can be mitigated by using early and late firings. An early firing can provide a 
speculative result at specific time periods — i.e., after every minute — and late firing allows results to be updat-
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ed as late arriving data is processed. A key consideration when using early and late 
triggers relates to the fourth question, “How to make refinements (or updates) on 
speculative results?” Three tactics are available: discarding, simply throwing away 
any previous speculative results; accumulating, updating the result emitted for 
every update; or accumulating and retracting, updating the result emitted for ev-
ery update but also issuing a retraction on the previous result. There are tradeoffs 
with each approach between the ease of implementation and the correctness of 
last observed and total observed values. This must be taken into account if, for 
example, a downstream service is performing multiple aggregations within a dis-
tributed pipeline — without the issuing of a retraction accompanying an update, 
the wrong result may be computed.

The final section of the talk examined properties that make the Apache Beam 
model of stream processing “awesome”. The first property discussed was correct-
ness. It has historically been challenging to achieve correctness in a distributed 
stream-processing system; the very nature of a distributed system means that 
data will arrive with variable latency. However, modern stream-processing sys-
tems provide primitives to allow engineers to make tradeoffs between accuracy 
and result-emission latency. The second property is power. The Apache Beam 
API provides an engineer with powerful primitives and abstractions that can be 
implemented with relative ease. For example, the fluent-style Beam DSL allows 
easy swapping of approaches and algorithms, such as changing from a fixed win-
dow-aggregation strategy to a session-based one. This also relates to the third 
useful property of composability, as it is easy to compose new pipelines within the 
Beam API in order to test new hypothesis or experiment with the data. The final 
two properties, flexibility and modularity, allow various approaches to processing 
the data with minimal (and easily understandable) changes to code.

The concepts for Apache Beam evolved from the original 2004 MapReduce pa-
per, which were in turn further refined at Google through the creation of internal 
systems like Bigtable, Dremel, Spanner, and MillWheel. Although Google focused 
on satisfying internal requirements with these systems, company engineers pub-
lished a series of papers at conferences and within academic journals, and this led 
to the creation of a vibrant open-source ecosystem formed around these ideas. 

https://research.google.com/archive/mapreduce.html
https://research.google.com/archive/mapreduce.html
https://research.google.com/archive/bigtable.html
https://research.google.com/pubs/pub36632.html
https://research.google.com/archive/spanner.html
https://research.google.com/pubs/pub41378.html
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This in turn led to the creation of numerous successful open-source Apache projects like Hadoop, Drill, Spark, 
and Tez. In 2014, Google Cloud Platform began to offer Cloud Dataflow, which is a fully managed stream and 
batch data-processing service created based on the years of experience working on the internal data-process-
ing systems. There were two parts to Cloud Dataflow: the Dataflow programming model discussed previously 
and the SDK, a “no knobs” managed service for executing the models. Google ultimately contributed the Data-
flow model and SDK to the open-source community as the Apache Beam project.

The Apache Beam project in-
cludes three things:

1. The conceptual Beam model

• The what/where/when/how 
model presented in the talk

2. SDKs for writing Beam pipe-
lines

• Java SDK

• Python SDK

3. Runners for existing distrib-
uted processing back ends

• Apache Flink

• Apache Spark

• Google Cloud Dataflow

• Apache Apex

• Apache Gearpump (incubat-
ing)

• Direct Runner for local devel-
opment and testing

Fundamentally, the Beam mod-
el attempts to generalize the 
semantics of this modern style 
of data processing and provides 
three core levels of abstraction 
for various personas within the 
data-processing community: 
end users who simply want to 
write data pipelines or transform 
libraries in a language that is ei-
ther familiar to them or that their 
organization has invested in, SDK 
writers who want to make Beam 
concepts available in new lan-
guages, and runner writers who 
have a distributed processing 
environment and want to sup-
port Beam pipelines. It is worth 
noting that since not all runners 
offer the same capabilities (al-
though many are converging), 
the Apache Beam project has 

created a series of runner capa-
bility matrices that provide fur-
ther details.

Additional information on the 
topic of streaming fundamen-
tals can be found in Akidau’s ar-
ticles “The world beyond batch: 
Streaming 101” and “The world 
beyond batch: Streaming 102”. 
The Apache Beam website also 
contains many useful references 
and tutorials, and the Beam com-
munity offers user and developer 
mailing lists at user-subscribe@
beam.apache.org and dev-sub-
scribe@beam.apache.org.

The complete video for the talk 
Perry and Akidau presented 
at QCon SF, “Fundamentals of 
Stream Processing with Apache 
Beam”, can be found on InfoQ.

http://hadoop.apache.org/
https://drill.apache.org/
https://spark.apache.org/
https://tez.apache.org/
https://cloud.google.com/dataflow/
https://beam.apache.org/
https://beam.apache.org/get-started/quickstart-java/
https://beam.apache.org/get-started/quickstart-py/
https://beam.apache.org/documentation/runners/flink/
https://beam.apache.org/documentation/runners/spark/
https://beam.apache.org/documentation/runners/dataflow/
https://beam.apache.org/documentation/runners/apex/
https://beam.apache.org/documentation/runners/gearpump/
https://beam.apache.org/documentation/runners/gearpump/
https://beam.apache.org/documentation/runners/direct/
https://beam.apache.org/documentation/runners/direct/
https://beam.apache.org/documentation/runners/capability-matrix/
https://beam.apache.org/documentation/runners/capability-matrix/
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102
https://beam.apache.org/documentation/
mailto:user-subscribe@beam.apache.org
mailto:user-subscribe@beam.apache.org
mailto:dev-subscribe@beam.apache.org
mailto:dev-subscribe@beam.apache.org
https://www.infoq.com/presentations/stream-apache-beam
https://www.infoq.com/presentations/stream-apache-beam
https://www.infoq.com/presentations/stream-apache-beam
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DEMYSTIFYING 
DYNAMODB STREAMS: 
AN INTRODUCTION 
TO ORDERING, 
DEDUPLICATION AND 
CHECKPOINTING
At QCon San Francisco 
2016, Akshat Vig and 
Khawaja Shams presented 
“Demystifying DynamoDB 
Streams”. 

View Full Presentation

KEY TAKEAWAYS

A log -- an append only, totally ordered data 
structure -- is a powerful primitive for building 
distributed systems. Many RDBMS use change 

logs (or “write ahead logs”) to improve 
performance, for point-in-time-recovery (PITR) 
after a crash, and also for distributed replication

The Amazon DynamoDB team exposed the 
underlying DynamoDB change log to end-user 
engineers as “DynamoDB Streams” -- a Kinesis 

Data Stream

Understanding ordering and the effects of 
message duplication are vital for building correct 

systems, particularly distributed systems

It is not possible to obtain exactly-once end-to-
end delivery within a distributed system, although 
systems can be designed to provide exactly-once 

processing. This is typically implemented using 
checkpointing and deduplication/idempotency 

filters

“Checkpointing” consists of maintaining a pointer 
that specifies the latest transaction that has been 

read or processed within a log, which indicates 
the current state of processing

https://www.infoq.com/presentations/dynamodb-streams
https://qconsf.com/
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In order to build something even 
as simple as a master-slave rep-
lication, there are several primi-
tives to understand. The first and 
foremost is ordering. Imagine if 
two transactions were to be ap-
plied sequentially to a database 
— the first writes a new entry 
and the second deletes this en-
try, which ultimately results in no 
data persisting in the database — 
but if the ordering is not guaran-
teed, the delete transaction could 
be processed first (causing no ef-
fect) and then the write transac-
tion applied, which results in data 
incorrectly persisting in the data-
base. The second core primitive is 
duplication: each single transac-
tion should appear exactly once 
within the log. Failure to enforce 
ordering or prevent duplication 
within a log can result in the mas-
ter and slave becoming inconsis-
tent.

Shams posed the question of 
why these core primitives are im-
portant, given that not many en-
gineers will be writing crash-re-
covery tooling or implementing 
distributed databases. He quickly 
pointed out that many engineers 
are indeed building distributed 
systems — such as those based 
on the microservices architecture 
— and often rely on log process-
ing and event-driven architecture 
to share data, for example, via 

Apache Kafka or Amazon Kine-
sis. Accordingly, an awareness of 
these fundamental log-process-
ing concepts is essential.

Vig, senior software engineer at 
AWS, discussed the concept of 
checkpointing. As the log is be-
ing processed, a pointer must be 
kept in order to specify the latest 
transaction that has been read or 
processed. In essence, this indi-
cates the current state of process-
ing. If the processing of the log is 
interrupted — for example, by a 
crash in the consuming system — 
the current checkpoint can be ex-
amined and processing resumed 
from the indicated transaction. 
This not only prevents extra work 
but also attempts to ensure ac-
curacy by preventing the repro-

cessing of transactions that have 
already been seen. 

There are multiple strategies to 
checkpointing, each of which is a 
trade-off between specificity and 
throughput. For example, check-
pointing after every transaction 
is processed provides a specific 
pointer to the last read item, but 
is high cost in that it requires a 
checkpoint write for every item. 
Checkpointing after every, say, 10 
reads is less specific to the exact 
item that has most recently been 
processed but requires an order 
of magnitude less cost in check-
point writes. 

On the other hand, the larger 
the number of transactions that 
occur between checkpoints, the 
more transactions that have to 

The core takeaway from the talk was that an append-only, totally ordered log data structure is a powerful 
primitive for building a distributed system, but engineers using this technology must understand the key 
principles of ordering, deduplication, and checkpointing. They explored these concepts in depth and pro-
vided practical examples using DynamoDB Streams, which is effectively an end-user service that exposes the 
underlying change log of the Amazon DynamoDB data-store technology. 

Shams, VP of engineering at AWS Elemental, began the talk by discussing the longstanding relationship be-
tween relational-database technology and the log data structure. Many RDBMSs use change logs — such as 
MySQL’s binary log or PostgreSQL’s write-ahead log — to improve performance, provide point-in-time recov-
ery (PITR) after a crash, and implement replication. A database change log also effectively allows the creation 
of a distributed database via replication of data on additional external hosts. For example, MySQL replicates 
data between a master and associated slave hosts through its binary log. Each slave maintains two threads 
for the process of replication: one to continually write a copy of the master binary log on the local slave’s disk 
and one to sequentially read through the log and apply each transaction to the local replicated copy of the 
database.

https://martinfowler.com/articles/microservices.html
https://kafka.apache.org/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/kinesis/
https://www.linkedin.com/in/akshatvig/
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html
https://aws.amazon.com/dynamodb/
https://www.linkedin.com/in/kshams/
https://dev.mysql.com/doc/refman/5.7/en/binary-log.html
https://www.postgresql.org/docs/9.3/static/continuous-archiving.html
https://dev.mysql.com/doc/refman/5.7/en/replication.html
https://dev.mysql.com/doc/refman/5.7/en/replication.html
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be read (and processed) if a crash 
does occur. Not only does this 
take time but, Shams cautioned, 
in some systems it may be unac-
ceptable to reprocess transac-
tions (which could give the im-
pression of going back through 
time) and therefore the only strat-
egy in this case is to checkpoint 
every processed transaction.

Vig presented a series of trends 
that the AWS team has identified 
within current software architec-
tures. The first, optimizing global 
latency, occurs when engineers 
attempt to provide a consistent 
experience across different geo-
graphic regions — for example, 
by implementing cross-region 
replication of data. There are mul-
tiple approaches to implement-
ing this; for example, engineers 
can build the geo-replication log-
ic directly into the application, or 
transactions can be written to a 
distributed queue before being 
processed independently within 
each geographic region. How-
ever, none of these implementa-
tions is trivial, and the complex-
ity increases as the transaction 
throughput and number of sup-
ported geographic regions in-
creases.

The second trend, protection of 
logical corruption, is an attempt 
by engineers to prevent appli-
cation-level issues that are not 
physical in nature — for example, 
if a new release of an application 
incorrectly mutates data by acci-
dent, the system should be able 
to recover. Typical approaches to 
this include using PITR snapshots 
or delayed replicas that maintain 
a live copy of a data store at var-
ious points in time (for example, 
multiple live standby databases 
of one running one hour in the 
past, a second running two hours 
in the past, etc.). There is obvious-
ly an operational cost to imple-
menting and maintaining both of 
these approaches.

The third trend AWS detected 
within modern architectures is 
the requirement for flexible que-
rying of data: engineers frequent-
ly want both online transaction 
processing (OLTP) and online an-
alytical processing (OLAP) queries 
on data within a system. Storing 
the single source of truth with-
in a log allows the processing of 
data multiple times, and the data 
can also materialize in a variety 
of ways. This can often be seen 
within event sourcing (ES) and 
command-query responsibility 
segregation (CQRS) architectures, 
by which data materializes using 
a data-store technology most ap-
propriate to each query use case 
— for example, using a graph 
database for queries involving 
connectedness or shortest-path 
algorithms in combination with a 
RDMS for relational queries and a 
key-value store for direct identifi-
er-driven lookups.

The fourth trend Vig discussed 
was the rise in popularity of 
event-driven architectures (EDA), 
in which engineers are increas-
ingly building systems that pro-
cess streams of events, poten-
tially in parallel. An example of 
this style of architecture can be 
seen within function-as-a-service 
(FaaS) serverless applications, in 
which engineers write functions 
that are triggered by an event, 
such as a write to an object store 
or a request from an API gateway.

The presentation shifted gears 
in the second half as Shams and 
Vig discussed how the Dyna-
moDB team at AWS attempted 
to provide building blocks that 
end-user engineers could use to 
implement solutions that address 
the trends identified above. The 
solution was AWS DynamoDB 
Streams, which essentially ex-
poses the change log of Dyna-
moDB to engineers as an Am-
azon Kinesis Stream. Following 
the principles discussed earlier 
in the presentation, DynamoDB 
Streams are highly available, du-
rable, ordered and deduplicated. 
It is worth noting that at the 2017 
AWS re:Invent conference, Ama-
zon announced end-user services 
for DynamoDB cross-region repli-
cated Global Tables and automat-
ed on-demand DynamoDB  back-
up, presumably built using these 
primitives.

Shams and Vig presented a sam-
ple voting application that was 
built using DynamoDB Streams. 
Optimistic concurrency can be 
implemented within systems 
built upon DynamoDB by using 
the put if not exists com-
mand. In the voting application, 
this could be used to prevent du-
plicate votes, perhaps those oc-
curring by accident via a logical 
error within the application. If the 
put if not exists command 
detects an attempt to make a 
duplicate write then this write 

https://en.wikipedia.org/wiki/Online_transaction_processing
https://en.wikipedia.org/wiki/Online_transaction_processing
https://en.wikipedia.org/wiki/Online_analytical_processing
https://en.wikipedia.org/wiki/Online_analytical_processing
https://www.infoq.com/articles/microservices-aggregates-events-cqrs-part-1-richardson
https://www.infoq.com/articles/microservices-aggregates-events-cqrs-part-1-richardson
https://en.wikipedia.org/wiki/Event-driven_architecture
https://martinfowler.com/articles/serverless.html
https://martinfowler.com/articles/serverless.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.Lambda.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.Lambda.html
https://aws.amazon.com/kinesis/data-streams/
https://aws.amazon.com/kinesis/data-streams/
https://www.infoq.com/news/2017/12/aws-reinvent-day-one
https://www.infoq.com/news/2017/12/aws-reinvent-day-one
https://aws.amazon.com/dynamodb/global-tables/
https://aws.amazon.com/dynamodb/backup-restore/
https://aws.amazon.com/dynamodb/backup-restore/
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would fail and no corresponding 
DynamoDB Stream entry would 
be generated. A conditional put 
could be used to allow a voter 
to change their vote within the 
application, where the condition 
specified would be a different 
candidate ID. If the condition is 
satisfied, then the new write (the 
vote update) would succeed, and 
a DynamoDB Stream entry would 
be generated that contains both 
the updated NewImage and the 
previous OldImage data.

When processing a DynamoDB 
Stream using Kinesis, the applica-
tion should checkpoint the logs 
using the Kinesis client library. 
As Shams and Vig had noted ear-
lier, this can be used to prevent 
re-processing of data. Shams cau-
tioned that implementing glob-
al ordering within a distributed 
system is only possible if a single 
process within the system gener-
ates a unique sequence number, 
and this typically limits through-
put. An application can attempt 
to implement global ordering us-
ing timestamps, but this assumes 
that all processes within the sys-
tem have access to a reliable and 
uniformly configured clock. This 
is generally considered an un-
reasonable assumption, but it is 
worth noting that AWS have re-
cently released the Amazon Time 
Sync Service, which provides a 

“highly accurate and reliable time 
reference that is natively accessi-
ble from Amazon EC2 instances”.

Implementing partial ordering 
within a system — ordering for 
each individual item within a 
DynamoDB table — is, however, 
relatively simple, as mutations for 
an individual item are written to 
the same shard within Kinesis. As 
long as the application processes 
data in order within a shard, this 
will be sufficient.

Vig concluded the talk by stating 
that it is possible to consume Dy-
namoDB Streams using at-most 
once or at-least once semantics, 
but not exactly once. It is not pos-
sible to obtain exactly once end-
to-end delivery within a distribut-
ed system, although systems can 

be implemented to provide ex-
actly once processing. This is typi-
cally implemented using dedupli-
cation or idempotency filters.

The full video for Shams and Vig’s 
QCon SF 2016 presentation “De-
mystifying DynamoDB Streams” 
can be found on InfoQ.

http://docs.aws.amazon.com/streams/latest/dev/kinesis-record-processor-ddb.html
https://github.com/awslabs/amazon-kinesis-client
https://aws.amazon.com/about-aws/whats-new/2017/11/introducing-the-amazon-time-sync-service/
https://aws.amazon.com/about-aws/whats-new/2017/11/introducing-the-amazon-time-sync-service/
http://bravenewgeek.com/you-cannot-have-exactly-once-delivery/
http://bravenewgeek.com/you-cannot-have-exactly-once-delivery/
https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it/
https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it/
https://www.infoq.com/presentations/dynamodb-streams
https://www.infoq.com/presentations/dynamodb-streams
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IS BATCH ETL DEAD, 
AND IS APACHE KAFKA 
THE FUTURE OF DATA 
PROCESSING?

At QCon San Francisco 2016, 
Neha Narkhede presented 
“ETL is Dead; Long Live 
Streams”, and discussed 
the changing landscape of 
enterprise data processing. 

View Full Presentation

KEY TAKEAWAYS

Several recent data trends are driving a 
dramatic change in the old-world batch 

Extract-Transform-Load (ETL) architecture: 
data platforms operate at company-wide scale; 

there are many more types of data sources; 
and stream data is increasingly ubiquitous

Enterprise Application Integration (EAI) 
was an early take on real-time ETL, but the 

technologies used were often not scalable. This 
led to a difficult choice with data integration 
in the old world: real-time but not scalable, or 

scalable but batch.

Apache Kafka is an open source streaming 
platform that was developed seven years ago 

within LinkedIn

Kafka enables the building of streaming data 
pipelines from “source” to “sink” through the 

Kafka Connect API and the Kafka Streams API

Logs unify batch and stream processing. A log 
can be consumed via batched “windows”, or in 

real time by examining each element as  
it arrives

https://www.infoq.com/presentations/etl-streams
https://qconsf.com/
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A core premise of the talk was 
that the open-source Apache 
Kafka streaming platform can 
provide a flexible and uniform 
framework that supports modern 
requirements for data transfor-
mation and processing.

Narkhede, co-founder and CTO 
of Confluent, began the talk by 
stating that data and data sys-
tems have significantly changed 
within the past decade. The old 
world typically consisted of op-
erational databases providing 
online transaction processing 
(OLTP) and relational data ware-
houses providing online analyti-
cal processing (OLAP). Data from 

a variety of operational databas-
es was typically batch-loaded 
into a master schema within the 
data warehouse once or twice a 
day. This data integration process 
is commonly referred to as ex-
tract-transform-load (ETL).

Several recent data trends are 
driving a dramatic change in the 
old-world ETL architecture:

• Single-server databases are 
being replaced by a myriad 
of distributed data platforms 
that operate at company-wide 
scale.

• There are many more types of 
data sources beyond transac-
tional data: e.g., logs, sensors, 
metrics, etc.

• Stream data is increasing-
ly ubiquitous, and there is a 
business need for faster pro-
cessing than daily batches.

The result of these trends is that 
traditional approaches to data 
integration often end up looking 
like a mess, with a combination 
of custom transformation scripts, 
enterprise middleware such as 
enterprise service buses (ESBs) 
and message-queue (MQ) tech-
nology, and batch-processing 
technology like Hadoop.

Before exploring how transition-
ing to modern streaming tech-
nology could help to alleviate 
this issue, Narkhede dove into a 
short history of data integration. 
Beginning in the 1990s within 
the retail industry, businesses 
became increasingly keen to an-
alyze buyer trends with the new 
forms of data now available to 
them. Operational data stored 
within OLTP databases had to be 
extracted, transformed into the 

destination warehouse schema, 
and loaded into a centralized 
data warehouse. As this technol-
ogy has matured over the past 
two decades, however, the data 
coverage within data warehouses 
remains relatively low due to the 
drawbacks of ETL:

• There is a need for a global 
schema.

• Data cleansing and curation 
is manual and fundamentally 
error prone.

• The operational cost of ETL is 
high: it is often slow and time 
and resource intensive.

• ETL tools were built to narrow-
ly focus on connecting data-
bases and the data warehouse 
in a batch fashion.

Enterprise application integra-
tion (EAI) was an early take on 

https://www.linkedin.com/in/nehanarkhede/
https://en.wikipedia.org/wiki/Enterprise_application_integration
https://en.wikipedia.org/wiki/Enterprise_application_integration
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real-time ETL, and used ESBs and MQs for data integration. Although effective for real-time processing, these 
technologies could often not scale to the magnitude required. This led to a difficult choice with data integration 
in the old world: real time but not scalable, or scalable but batch.

Narkhede argued that the mod-
ern streaming world has new re-
quirements for data integration:

• The ability to process high-vol-
ume and high-diversity data.

• A platform must support re-
al-time from the ground up, 
which drives a fundamental 
transition to event-centric 
thinking.

• Forward-compatible data ar-
chitectures must be enabled 
and must be able to support 
the ability to add more appli-
cations that need to process 
the same data differently.

These requirements drive the 
creation of a unified data-integra-
tion platform rather than a series 
of bespoke tools. This platform 

must embrace the fundamental 
principles of modern architecture 
and infrastructure, and should be 
fault tolerant, be capable of paral-
lelism, support multiple delivery 
semantics, provide effective oper-
ations and monitoring, and allow 
schema management. Apache 
Kafka, which was developed sev-
en years ago within LinkedIn, is 
one such open-source streaming 
platform and can operate as the 
central nervous system for an or-
ganization’s data in the following 
ways:

• It serves as the real-time, scal-
able messaging bus for appli-
cations, with no EAI.

• It serves as the source-of-
truth pipeline for feeding all 
data-processing destinations.

• It serves as the building block 
for stateful stream-processing 
microservices.

Apache Kafka currently process-
es 14 trillion message a day at 
LinkedIn, and is deployed with-
in thousands of organizations 
worldwide, including Fortune 
500 companies such as Cisco, 
Netflix, PayPal, and Verizon. Kaf-
ka is rapidly becoming the stor-
age of choice for streaming data, 
and it offers a scalable messaging 
backbone for application integra-
tion that can span multiple data 
centers.

Fundamental to Kafka is the con-
cept of the log; an append-only, 
totally ordered data structure. The 
log lends itself to publish-sub-
scribe (pubsub) semantics, as 

https://kafka.apache.org/
https://kafka.apache.org/
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a publisher can easily append 
data to the log in immutable and 
monotonic fashion, and subscrib-
ers can maintain their own point-
ers to indicate current message 
processing.

Kafka enables the building of 
streaming data pipelines — the 
E and L in ETL — through the 
Kafka Connect API. The Connect 
API leverages Kafka for scalabil-

ity, builds upon Kafka’s fault-tol-
erance model, and provides a 
uniform method to monitor all 
of the connectors. Stream pro-
cessing and transformations can 
be implemented using the Kafka 
Streams API — this provides the 
T in ETL. Using Kafka as a stream-
ing platform eliminates the need 
to create (potentially duplicate) 
bespoke extract, transform, and 
load components for each des-

tination sink, data store, or sys-
tem. Data from a source can be 
extracted once as a structured 
event into the platform, and any 
transforms can be applied via 
stream processing.

In the final section of her talk, 
Narkhede examined the concept 
of stream processing — trans-
formations on stream data — in 
more detail, and presented two 

https://docs.confluent.io/current/connect/index.html
https://kafka.apache.org/documentation/streams/
https://kafka.apache.org/documentation/streams/
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competing visions: real-time MapReduce versus event-driven mi-
croservices. Real-time MapReduce is suitable for analytic use cases 
and requires a central cluster and custom packaging, deployment, 
and monitoring. Apache Storm, Spark Streaming, and Apache Flink 
implement this. Narkhede argued that the event-driven micros-
ervices vision — which is implemented by the Kafka Streams API 
— makes stream processing accessible for any use case, and only 
requires adding an embedded library to any Java application and 
an available Kafka cluster. 

The Kafka Streams API provides a convenient fluent DSL, with oper-
ators such as join, map, filter, and window aggregates. 

This is true event-at-a-time stream processing — there is no mi-
cro-batching — and it uses a dataflow-style windowing approach 
based on event time in order to handle late-arriving data. Kafka 
Streams provides out-of-the-box support for local state, and sup-
ports fast stateful and fault-tolerant processing. It also supports 
stream reprocessing, which can be useful when upgrading applica-
tions, migrating data, or conducting A/B testing.

Narkhede concluded the talk by stating that logs unify batch and 
stream processing — a log can be consumed via batched windows 
or in real time by examining each element as it arrives — and that 
Apache Kafka can provide the “shiny new future of ETL”.

The full video of Narkhede’s QCon SF talk “ETL Is Dead; Long Live 
Streams” can be found on InfoQ.

http://storm.apache.org/
https://spark.apache.org/streaming/
https://flink.apache.org/
https://www.infoq.com/presentations/etl-streams
https://www.infoq.com/presentations/etl-streams
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Sponsored article

HANDLING GDPR WITH APACHE KAFKA:  
HOW DOES A LOG FORGET?
By Ben Stopford

Click here to read the full article

If you follow the press around Apache Kafka you’ll 
probably know it’s pretty good at tracking and re-
taining messages, but sometimes removing messag-
es is important too. GDPR is a good example of this 
as, amongst other things, it includes the right to be 
forgotten. This raises a very obvious question: how 
do you delete arbitrary data from Kafka? After all, its 
underlying storage mechanism is an immutable log.

As it happens, Kafka is a pretty good fit for GDPR. The 
regulatory regime specifies not only that users have 
the right to be forgotten, but also have the right to 
request a copy of their personal data. Companies are 
also required to keep detailed records of what data 
is used for—a requirement for which recording and 
tracking the messages that move from application to 
application is a boon.

How do you delete (or redact) data from 
Kafka?
The simplest way to remove messages from Kafka is 
to simply let them expire. By default, Kafka will keep 
data for two weeks, and you can tune this to an ar-
bitrarily large (or small) period of time. There is also 
an Admin API that lets you delete messages explicit-
ly if they are older than some specified time or offset. 
But businesses increasingly want to leverage Kafka’s 
ability to keep data for longer periods of time, say 
for  Event Sourcing  architectures or as a  source of 
truth. In such cases it’s important to understand how 
to make long lived data in Kafka GDPR compliant. For 
this,compacted topics are the tool of choice, as they 
allow  messages to be explicitly deleted or replaced 
via their key.

Data isn’t removed from compacted topics in the 
same way as in a relational database. Instead, Kafka 
uses a mechanism closer to those used by Cassan-
dra and HBase where records are marked for remov-
al then later deleted when the compaction process 
runs. Deleting a message from a compacted topic is 

as simple as writing a new message to the topic with 
the key you want to delete and a null value.  When 
compaction runs the message will be deleted forever.

//Create a record in a compacted topic in 
kafka 
producer.send(new 
ProducerRecord(CUSTOMERS_TOPIC, 
“Customer123”, “Donald Duck”)); 
//Mark that record for deletion when 
compaction runs 
producer.send(new 
ProducerRecord(CUSTOMERS_TOPIC, 
“Customer123”, null));

If the key of the topic is something other than the 
CustomerId, then you need some process to map the 
two. For example, if you have a topic of Orders, then 
you need a mapping of Customer to OrderId held 
somewhere. Then, to ‘forget’ a customer, simply look-
up their Orders and either explicitly delete them from 
Kafka, or alternatively redact any customer informa-
tion they contain. You might roll this into a process of 
your own, or you might do it using Kafka Streams if 
you are so inclined.

There is a less common case, which is worth mention-
ing, where the key (which Kafka uses for ordering) is 
completely different to the key you want to be able to 
delete by. Let’s say that you need to key your Orders 
by ProductId. This choice of key won’t let you delete 
Orders for individual customers, so the simple meth-
od above wouldn’t work. You can still achieve this 
by using a key that is a composite of the two: make 
the key [ProductId][CustomerId], then use a custom 
partitioner in the Producer (see the Producer Config: 
“partitioner.class”) that extracts the ProductId and 
partitions only on that value. Then you can delete 
messages using the mechanism discussed earlier us-
ing the [ProductId][CustomerId] pair as the key.

https://www.confluent.io/blog/handling-gdpr-log-forget/
http://www.itpro.co.uk/it-legislation/27814/what-is-gdpr-everything-you-need-to-know-8
https://en.wikipedia.org/wiki/Right_to_be_forgotten
https://en.wikipedia.org/wiki/Right_to_be_forgotten
https://cwiki.apache.org/confluence/display/KAFKA/KIP-107%3A+Add+purgeDataBefore%28%29+API+in+AdminClient
https://cwiki.apache.org/confluence/display/KAFKA/KIP-107%3A+Add+purgeDataBefore%28%29+API+in+AdminClient
https://www.confluent.io/blog/messaging-single-source-truth/
https://www.thoughtworks.com/radar/techniques/event-streaming-as-the-source-of-truth
https://www.thoughtworks.com/radar/techniques/event-streaming-as-the-source-of-truth
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MIGRATING BATCH ETL TO 
STREAM PROCESSING:  
A NETFLIX CASE STUDY 
WITH KAFKA AND FLINK
At QCon New York, Shriya 
Arora presented “Personalising 
Netflix with Streaming Datasets” 
and discussed the trials and 
tribulations of a recent migration 
of a Netflix data processing job 
from the traditional approach 
of batch-style ETL to stream 
processing using Apache Flink.

View Full Presentation

KEY TAKEAWAYS
There are many decisions and tradeoffs that 
must be made when moving from batch ETL 
to stream data processing. Engineers should 

not “stream all the things” just because stream 
processing technology is popular

The Netflix case study presented here 
migrated to Apache Flink. This technology 

was chosen due to the requirements for real-
time event-based processing and extensive 

support for customisation of windowing

Many challenges were encountered during 
the migration, such as getting data from 
live sources, managing side (metadata) 

inputs, handling data recovery and out of 
order events, and increased operational 

responsibility

There were clear business wins for using 
stream processing, including the opportunity 
to train machine learning algorithms with the 

latest data

There were also technical wins for 
implementing stream processing, such as 
the ability to save on storage costs, and 
integration with other real-time systems

https://www.infoq.com/presentations/netflix-personalization-datasets-streaming
https://qconnewyork.com/
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Arora, a senior data engineer at 
Netflix, began by stating that the 
key goal of the presentation was 
to help the audience decide if a 
stream-processing data pipeline 
would help resolve problems they 
may be experiencing with a tra-
ditional extract-transform-load 
(ETL) batch processing job. In 
addition to this, she discussed 
core decisions and tradeoffs that 
must be made when moving 
from batch to streaming. Arora 
was clear to stress that “batch is 
not dead”, and although there are 
many stream-processing engines, 
there is no single best solution.

Netflix’s core mission is to enter-
tain customers by allowing them 
to watch personalized video con-
tent anywhere at anytime. In the 
course of providing this personal-
ized experience, Netflix processes 
450 billion unique events daily 
from 100+ million active mem-
bers in 190 different countries 
who view 125 million hours of 
content per day. The Netflix sys-
tem uses the microservice archi-
tectural style and services com-
municate via remote procedure 

call (RPC) and messaging. The 
production system has a large 
Apache Kafka cluster with 700+ 
topics deployed that manages 
messaging and also feeds the da-
ta-processing pipeline.

Within Netflix, the Data Engineer-
ing and Analytics (DEA) team and 
Netflix Research are responsible 
for running the personalization 
systems. At a high level, micros-
ervice application instances emit 
user and system-driven data 
events that are collected within 
the Netflix Keystone data pipe-
line — a petabyte-scale real-time 
event streaming-processing sys-
tem for business and product 
analytics. Traditional batch data 
processing is conducted by stor-
ing this data within a Hadoop 
Distributed File System (HDFS) 
running on the Amazon S3 object 
storage service and processing 
with Apache Spark, Pig, Hive, or 
Hadoop. Batch-processed data is 
stored within tables or indexers 
like Elasticsearch for consump-
tion by the research team, down-
stream systems, or dashboard ap-
plications. Stream processing is 

also conducted by using Apache 
Kafka to stream data into Apache 
Flink or Spark Streaming.

Before discussing her team’s de-
cision to convert a long-running 
batch ETL job into a streaming 
process, Arora cautioned the au-
dience against “streaming all the 
things”. There are clear business 
wins for using stream process-
ing, including the opportunity 
to train machine-learning algo-
rithms with the latest data, pro-
vide innovation in the marketing 
of new launches, and create op-
portunities for new kinds of ma-
chine-learning algorithms. There 
are also technical wins, such as 
the ability to save on storage 
costs (as raw data does not need 
to be stored in its original form), 
faster turnaround time on error 
correction (long-running batch 
jobs can incur significant delays 
when they fail), real-time audit-
ing on key personalization met-
rics, and integration with other 
real-time systems.

A core challenge when imple-
menting stream processing is 

https://www.linkedin.com/in/shriyaarora/
https://www.infoq.com/presentations/netflix-failure-multiple-regions
https://www.infoq.com/presentations/netflix-failure-multiple-regions
https://kafka.apache.org/
https://www.infoq.com/news/2016/03/netflix-keystone-data-pipeline
https://www.infoq.com/news/2016/03/netflix-keystone-data-pipeline
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://spark.apache.org/
https://pig.apache.org/
https://hive.apache.org/
http://hadoop.apache.org/
https://www.elastic.co/
https://flink.apache.org/
https://flink.apache.org/
https://spark.apache.org/streaming/
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picking an appropriate engine. The first key 
question to ask is will the data be processed 
as an event-based stream or in micro-batch-
es. In Arora’s opinion, micro-batching is re-
ally just a subset of batch processing — one 
with a time window that may be reduced 
from a day in typical batch processing to 
hours or minutes — but a process still oper-
ating on a corpus of data rather than actual 
events. If results are simply required sooner 
than currently provided, and the organiza-
tion has already invested heavily in batch, 
then migrating to micro-batching could 
be the most appropriate and cost-effective 
solution.

The next challenge in picking a stream-pro-
cessing engine is to ask what features will 
be most important in order to solve the 
problem being tackled. This will most like-
ly not be an issue that is solved in an initial 
brainstorming session — often a deep un-
derstanding of the problem and data only 
emerge after an in-depth investigation. 
Arora’s case study required “sessioniza-
tion” (session-based windowing) of event 
data. Each engine supports this feature to 
varying degrees with varying mechanisms. 
Ultimately, Netflix chose Apache Flink for 
Arora’s batch-job migration as it provided 
excellent support for customization of win-

dowing in comparison with Spark Stream-
ing (although it is worth mentioning that 
new APIs supporting Spark Structured 
Streaming and advanced session handling 
have become stable as of Apache Spark 
2.2.0, which was released in July 2017, after 
this presentation was delivered).

Another question to ask is whether the im-
plementation requires the lambda architec-
ture. This architecture is not to be confused 
with AWS Lambda or serverless technology 
in general — in the data-processing domain, 
the lambda architecture is designed to han-
dle massive quantities of data by taking 
advantage of both batch-processing and 
stream-processing methods. This approach 
to architecture attempts to balance latency, 
throughput, and fault-tolerance by creating 
a batch layer that provides a comprehen-
sive and accurate “correct” view of batch 
data, while simultaneously implementing 
a speed layer for real-time stream process-
ing to provide potentially incomplete, but 
timely, views of online data. It may be the 
case that an existing batch job simply needs 
to be augmented with a speed layer, and if 
this is the case then choosing a data-pro-
cessing engine that supports both layers of 
the lambda architecture may facilitate code 
reuse.

http://tutorials.jenkov.com/java-performance/micro-batching.html
https://flink.apache.org/
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
http://blog.madhukaraphatak.com/introduction-to-spark-structured-streaming-part-14/
https://spark.apache.org/releases/spark-release-2-0-0.html
https://spark.apache.org/releases/spark-release-2-0-0.html
https://www.infoq.com/articles/lambda-architecture-scalable-big-data-solutions
https://www.infoq.com/articles/lambda-architecture-scalable-big-data-solutions
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Several additional questions to ask when choosing a stream-processing engine in-
clude: 

• What are other teams using within your organization? If there is a significant 
investment in a specific technology, then existing implementation and opera-
tional knowledge can often be leveraged. 

• What is the landscape of the existing ETL systems within your organization? Will 
a new technology easily fit in with existing sources and sinks?

• What are your requirements for learning curve? What engines do you use for 
batch processing, and what are the most widely adopted programming lan-
guages?

The penultimate section of the talk examined the migration of a Netflix batch 
ETL job to a stream-processing ETL process. The Netflix DEA team previously ana-
lyzed sources of play and sources of discovery within the Netflix application using 
a batch-style ETL job that can take longer than eight hours to complete. Sources 
of play are the locations from the Netflix application homepage from which users 
initiate playback. Sources of discovery are the locations on the homepage where 
users discover new content to watch. The ultimate goal of the DEA team was to 
learn how to optimize the homepage to maximize discovery of content and play-
back for users, and to improve the overly long 24-hour latency between occurring 
events and analysis. Real-time processing could shorten this gap between action 
and analysis.

Examining the “source of discovery” problem in more depth revealed to Netflix that 
the stream-processing engine to choose had to be able to: handle a high through-
put of data (users across the globe currently generate ~100 million discovery/
playback events per day); communicate to live microservices via thick (RPC-style) 
clients in order to enrich the initial events; integrate with the Netflix platform eco-
system such as, for example, service discovery; have centralized log management 
and alerting; and allow side inputs of slowly changing data (e.g., a dimension or 
metadata table containing film metadata or country demographics). 

https://en.wikipedia.org/wiki/Dimension_(data_warehouse)
https://en.wikipedia.org/wiki/Dimension_(data_warehouse)
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Ultimately, Arora and her team chose Apache Flink with an ensemble cast of supporting technology: 

• Apache Kafka acting as a message bus;

• Apache Hive providing data summarization, query, and analysis using an SQL-like interface (particularly for 
metadata in this case);

• Amazon S3 for storing data within HDFS;

• the Netflix OSS stack for integration into the wider Netflix ecosystem;

• Apache Mesos for job scheduling and execution; and

• Spinnaker for continuous delivery.

An overview of the complete source of discovery pipeline can be seen below.

Arora outlined the implemen-
tation challenges that the DEA 
team faced with the migration 
process:

Getting data from live sources:
• The job being migrated re-

quired access to the complete 
viewing history of the user 
of every playback initiation 
event.

• This was conceptually easy to 
implement with stream pro-
cessing, as the integration 
with the Netflix stack and 
real-time nature of the data 
processing meant that a sim-

ple RPC-like call was required 
for each event as it was pro-
cessed.

• However, because the Apache 
Flink stream-processing ap-
plication was written using 
the Java API and the Netflix 
OSS stack is also written using 
Java, it was sometimes chal-
lenging to ensure compati-
bility between libraries within 
both applications (managing 
so-called “JAR hell”).

Side inputs:
• Each item of metadata re-

quired within the stream-pro-
cessing job could have been 

obtained by making a call in 
the same fashion as getting 
data from live sources.

• However, this would require 
many network calls, and ul-
timately be a very inefficient 
use of resources.

• Instead the metadata was 
cached into memory for each 
stream-processing instance, 
and the data refreshed every 
15 minutes.

Data recovery:
• When a batch job fails due to 

an infrastructure issue, it is 
easy to rerun the job, as the 

https://kafka.apache.org/
https://hive.apache.org/
https://netflix.github.io/
http://mesos.apache.org/
https://www.spinnaker.io/
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data is still stored within the 
underlying object store — i.e., 
HDFS. This is not necessarily 
the case with stream process-
ing, as the original events can 
be discarded as they are pro-
cessed.

• Within the Netflix ecosystem, 
the TTLs of the message bus 
(Kafka) that stores the original 
events can be relatively ag-
gressive — due to the volume, 
as little as four to six hours. Ac-
cordingly, if a stream-process-
ing job fails and this is not de-
tected and fixed within the TTL 
time limit, data loss can occur.

• The solution for this issue was 
to additionally store the raw 
data in HDFS for a finite time 
(one to two days) in order to 
facilitate replay.

Out-of-order events:
• In the event of a pipeline fail-

ure, the data-recovery process 
(and reloading of events) will 
mean that “old” data will be 
mixed in with real-time data.

• The challenge is that late-ar-
riving data must be attributed 
correctly to the event time at 
which it was generated.

• The DEA team chose to im-
plement time windowing and 
also post-process data to en-
sure that the results are emit-
ted with the correct event-
time context.

Increased monitoring and 
alerts:
• In the event of a pipeline fail-

ure, the team must be notified 
as soon as possible.

• Failure to trigger a timely alert 
can result in data loss.

• Creating an effective monitor-
ing, logging, and alerting im-
plementation is vital.

Arora concluded the talk by stat-
ing that although the business 

and technical wins for migrating 
from batch ETL to stream process-
ing were numerous, there were 
also many challenges and learn-
ing experiences. Engineers adopt-
ing stream processing should be 
prepared to pay a pioneer tax, as 
most conventional ETL is batch 
and training machine-learning 
models on streaming data is rela-
tively new ground. The data pro-
cessing team will also be exposed 
to high-priority operational is-
sues — such as being on call and 
handling outages — as although 
“batch failures have to be ad-
dressed urgently, streaming fail-
ures have to be addressed imme-
diately”. An investment in resilient 
infrastructure must be made, and 
the team should also cultivate ef-
fective monitoring and alerting, 
and create continuous-delivery 
pipelines that facilitate the rapid 
iteration and deployment of the 
data-processing application.

The full video of Arora’s QCon 
New York 2017 talk “Personalizing 
Netflix with Streaming Datasets” 
can be found on InfoQ.

There are many 
decisions and 

tradeoffs that must 
be made when 

moving from batch 
ETL to stream 

data processing. 
Engineers should 

not “stream all the 
things” just because 

stream processing 
technology is popular.

https://flink.apache.org/news/2015/12/04/Introducing-windows.html
https://www.infoq.com/presentations/netflix-personalization-datasets-streaming
https://www.infoq.com/presentations/netflix-personalization-datasets-streaming
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WHEN STREAMS FAIL: 
IMPLEMENTING A RESILIENT 
APACHE KAFKA CLUSTER AT 
GOLDMAN SACHS

At QCon New York 2017, Anton 
Gorshkov presented “When Streams 
Fail: Kafka Off the Shore”. He shared 
insight into how a platform team at a 
large financial institution designs and 
operates shared internal messaging 
clusters like Apache Kafka, and 
also they plan for and resolve the 
inevitable failures that occur.

View Full Presentation

KEY TAKEAWAYS
The Goldman Sachs Core Front Office 

Platform team run an on-premise Apache 
Kafka cluster on a virtualised on-premise 
infrastructure that handles ~1.5 Tb a week 

of traffic

The team has invested significant 
resources into preventing data loss, and 
with data centers in the same (or very 
close) metro area, the multiple centers 
can effectively be treated as a single 
redundant data center for disaster 

recovery and business continuity (DRBC) 
purposes

The Core Front Office Platform team have 
invested significantly in creating tooling 
to support their infrastructure, including 

a REST service to provide insight into 
the Kafka cluster, and the creation 

of a comprehensive metrics capture 
component

Failure will occur, and engineers must 
plan to handle this. The approach that has 
been adopted at GS is to run everything 
with high-availability, and be transparent 

in all of the trade-offs made

https://www.infoq.com/presentations/streaming-kafka-spark
https://qconnewyork.com/
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Gorshkov, managing director at 
Goldman Sachs, began by intro-
ducing Goldman Sachs and dis-
cussing the stream-processing 
workloads his division manages. 
The company’s Investment Man-
agement Division has $1.4 trillion 
in assets under management, 
and the Core Platform team in-
terfaces with many other inter-
nal teams to provide platforms 
and infrastructure to run Apache 
Kafka, Data Fabric, and Akka. The 
team operates an on-premise 
Apache Kafka cluster running 
on virtualized infrastructure that 
handles ~1.5 TB a week of traffic, 
and although the message count 
is relatively low — in the order of 
millions per week — at peak pe-
riods, Kafka can see about 1,500 
messages produced per second.

The deployment goals of the 
Apache Kafka cluster are:

• no data loss, even in the event 
of a data-center outage;

• no notion of primary/backup;

• no failover scenarios; and

• to minimize outage time.

The team has invested signifi-
cant resources into preventing 
fundamental data loss, and this 
includes providing tape backup, 
nightly batch replication, asyn-
chronous replication, and syn-
chronous replication (e.g., syn-
chronous disk-level replication 
with Symmetrix Remote Data 
Facility). Gorshkov reminded the 
audience of latency numbers that 
every programmer should know, 
and stated that the speed of light 
dictates that a best-case network 

round trip from New York City 
to San Francisco takes ~60ms, 
Virginia to Ohio takes ~12ms, 
and New York City to New Jersey 
takes ~4ms. With data centers in 
the same metro area or otherwise 
close, multiple centers can effec-
tively be treated as a single re-
dundant data center for disaster 
recovery and business continuity. 
This is much the same approach 
as taken by modern cloud ven-
dors like AWS, with infrastructure 
being divided into geographic re-
gions, and regions being further 
divided into availability zones. 

Allowing multiple data centers 
to be treated as one leads to an 
Apache Kafka cluster deployment 
strategy as shown on the diagram 
below, with a single conceptual 
cluster that spans multiple phys-
ical data centers.

https://www.linkedin.com/in/anton-gorshkov-4720391/
https://kafka.apache.org/
https://kafka.apache.org/
https://akka.io/
https://www.emc.com/storage/symmetrix-vmax/srdf-40k.htm
https://www.emc.com/storage/symmetrix-vmax/srdf-40k.htm
https://gist.github.com/jboner/2841832
https://gist.github.com/jboner/2841832
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html


Streaming Architecture // eMag Issue 57 - Jan 201832

Gorshkov ran through a series of 
failure scenarios, starting with an 
exploration of what happens if a 
single virtual-machine (VM) host 
fails within a data center. This 
generally happens one to five 
times a year yet has no impact on 
Kafka producers or consumers, as 
the system is still able to satisfy 
the minimum required synchro-
nization of at least three replicas. 
In this case, there is no manual 
recovery, beyond replacing the 
host. The occurrence of two hosts 
failing simultaneously occurs 
once a year or potentially more 
often if there is an underlying in-
frastructure or hypervisor failure. 
If this failure mode occurs, the 
processing for some Kafka topics 
will halt. The short-term fix is to 
add replicas for the affected par-
titions, and ultimately to replace 
the bad hosts. The Goldman 

Sachs compute infrastructure al-
lows seamless VM replacement 
with no need to update DNS 
aliases or change Kafka configu-
ration.

If three hosts within a data cen-
ter fail then cluster processing 
immediately halts as this config-
uration can no longer satisfy the 
required number of in-sync repli-
cas across the cluster. Fortunate-
ly, this only occurs once every 
few years. The fix is to replace the 
host as soon as possible. If a data 
center fails or a network partition 
occurs — which Gorshkov esti-
mates is a “once a 20-year event” 
— then the short-term solution 
is to add additional hosts in the 
data center that is not affected. 
The largest impact on recovery 
time is how long it takes to pro-

vision new hosts, as data centers 
typically maintain spare capacity.

The Core Platform team has in-
vested significantly in creating 
tooling to support their infra-
structure, including a REST-like 
service and associated web appli-
cation to provide insight into the 
Kafka cluster. The REST endpoints 
allow messages to be viewed on 
all topics, and core metrics like 
consumer lag and the number of 
in-sync replicas to be obtained. It 
is also possible to obtain informa-
tion on ZooKeeper configuration, 
the process of leader election, 
and run-time broker metrics. 
The platform team has also cre-
ated a component that records 
a multitude of metrics from the 
operation of the cluster at the 
application, JVM, and infrastruc-
ture levels. Metrics are sent to a 
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time-series database and are for-
warded to a centrally managed 
Goldman Sachs alerting instruc-
ture. From here, alerts can be is-
sued to on-call engineers.

A typical sample deployment 
includes an upstream service 
— e.g., a trade-orders service — 
acting as a message source and 
sending events based on an in-
ternal state change (which is also 
captured in a data store local to 
the service) to the Apache Kafka 
cluster. The Kafka Connect API is 
used to connect message sinks 
to the Kafka cluster, and down-
stream targets typically include 
a direct sink to an in-memory 
RDBMS that maintains a tabular 
version of all messages for trou-
bleshooting purposes, a Spark 
Streaming job that outputs re-
sults to an in-memory RDBMS 
that is queried by end users via 
the associated Vert.x or REST APIs, 
and a batch ETL job that persists 
all events to a data lake for audit/
governance purposes.

If a significant outage does occur 
and messages need to be resent, 
then the globally unique identifi-
er that is added to every message 

by the upstream service makes 
this relatively easy to replay with-
out processing duplicate messag-
es or breaking idempotency guar-
antees. If the upstream system 
did not generate unique identifi-
ers, then Gorshkov recommends 
exploring the new exactly-once 
processing semantics introduced 
to Apache Kafka by the Conflu-
ent team, and also researching 
into Kafka Improvement Proposal 

(KIP) “KIP-98 - Exactly Once Deliv-
ery and Transactional Messaging”.

In the final section of the talk, 
Gorshkov stated that failure will 
always occur and that engineers 
must plan to handle this. The 
approach that his team has ad-
opted is “belt and suspenders” 
for everything. Ultimately, a lot 
of the tradeoffs that are encoun-
tered for setting up resilient sys-
tems involves throughput versus 
reliability (versus cost). Apache 
Kafka has many configuration op-
tions — perhaps too many — and 
it can be best to hide some of the 
knobs from end users. For more 
details on configuring Kafka to 
run effectively, Gorshkov recom-
mended the Confluent online talk 
series, “Best Practices for Apache 
Kafka in Production” by Gwen 
Shapira. He concluded the talk 
by stating the resilience must be 
implemented using a transparent 
approach, as this is the only way 
engineers will gain confidence in 
the system.

The video from Gorshkov’s QCon 
NY talk “When Streams Fail: Kafka 
Off the Shore” can be found on 
InfoQ.

https://docs.confluent.io/current/connect/index.html
https://spark.apache.org/streaming/
https://spark.apache.org/streaming/
http://vertx.io/
https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it/
https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it/
https://cwiki.apache.org/confluence/display/KAFKA/KIP-98+-+Exactly+Once+Delivery+and+Transactional+Messaging
https://cwiki.apache.org/confluence/display/KAFKA/KIP-98+-+Exactly+Once+Delivery+and+Transactional+Messaging
https://www.confluent.io/online-talk/best-practices-for-apache-kafka-in-production-confluent-online-talk-series
https://www.confluent.io/online-talk/best-practices-for-apache-kafka-in-production-confluent-online-talk-series
https://www.linkedin.com/in/gwenshapira
https://www.linkedin.com/in/gwenshapira
https://www.infoq.com/presentations/streaming-kafka-spark
https://www.infoq.com/presentations/streaming-kafka-spark
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