
eMag Issue 57 - Jan 2018

FACILITATING THE SPREAD OF KNOWLEDGE AND INNOVATION IN PROFESSIONAL SOFTWARE DEVELOPMENT

PRESENTATION

Exploring the Fundamentals
of Stream Processing
with the Dataflow Model
and Apache Beam

PRESENTATION

Migrating Batch ETL to
Stream Processing:
A Netflix Case Study with
Kafka and Flink

Streaming
Architecture

FOLLOW US CONTACT US

When Streams Fail: Implementing a Resilient
Apache Kafka Cluster at Goldman Sachs
Anton Gorshkov discusses how the Goldman Sachs platform team designed and oper-
ated a resilient on-premise Apache Kafka cluster, which is the foundation of their stream
processing capabilities.

Exploring the Fundamentals of Stream Processing
with the Dataflow Model and Apache Beam
Frances Perry and Tyler Akidau discuss the Google Dataflow model and the practical
implementation of this within the Apache Beam stream processing platform

Is Batch ETL Dead, and is Apache Kafka
the Future of Data Processing?
Neha Narkhede argues that traditional batch ETL is ineffective for solving the require-
ments of modern data processing, and instead Apache Kafka can be used to create a
real-time stream processing platform.

Migrating Batch ETL to Stream Processing:
A Netflix Case Study with Kafka and Flink
Shriya Arora presents a Netflix case study of a data processing migration to Apache Flink,
and discusses that there are many decisions and tradeoffs that must be made when mov-
ing from batch ETL to stream processing.

Demystifying DynamoDB Streams: An Introduction to
Ordering, Deduplication and Checkpointing
Akshat Vig and Khawaja Shams explore the implementation of Amazon DynamoDB
Streams, and argue that understanding ordering and the effects of event duplication are
vital for building distributed systems.

GENERAL FEEDBACK feedback@infoq.com
ADVERTISING sales@infoq.com
EDITORIAL editors@infoq.com

facebook.com
/InfoQ

@InfoQ google.com
/+InfoQ

linkedin.com
company/infoq

IN THIS ISSUE
8

14

18

24

30

https://www.facebook.com/InfoQ
https://twitter.com/infoq
https://plus.google.com/+infoq/posts
https://www.linkedin.com/company/infoq

Download the FREE Book

Kafka: The Definitive Guide
Real-time data and stream processing at scale

Neha Narkhede,
Gwen Shapira & Todd Palino

• Deep dive into Apache
Kafka’s internal design

• Get best practices for
developing applications

• Understand how to deploy
Kafka in production

• Review detailed use-cases

http://bit.ly/2z5GcB2

A LETTER FROM THE EDITOR

With the rise of technologies like Apache Kafka,
Apache Beam and Spark Streaming, the topic of
stream processing is becoming increasingly popular.
Commercial businesses are being formed around the
associated open source technology, conference talks
are filled with stories of migrations from batch Ex-
tract-Transform-Load (ETL) to stream processing, and
blog posts and online discussions debate important
concepts like if it is really possible to implement ex-
actly once processing (as shown in the second arti-
cle, the answer is yes, with caveats). This InfoQ emag
aims to cut through some of the hype, and introduce
you to core stream processing concepts like the log,
the dataflow model, and implementing fault-tolerant
streaming systems.

The first article summarises an excellent QCon San
Francisco presentation by Frances Perry and Tyler
Akidau, and explores the fundamentals of stream
processing with the dataflow model and the corre-
sponding Apache Beam implementation. The data-
flow model encourages engineers to ask four ques-
tions in order to understand the approach required
when processing data: what are you computing?
Where in event time? When in processing time? and
how do refinements relate? Apache Beam is the prac-
tical implementation of this model, and includes: the
unified Beam Model (the what / where / when / how);
SDKs for writing data processing pipelines using the
Beam Model APIs; and “runners” for executing the
data processing pipelines using existing distributed
processing backends like Apache Flink or Apache
Spark.

The stream processing paradigm is similar to many
existing concepts, such as event stream processing
and reactive processing. At the core of many of the
implementations of these concepts is a distribut-
ed transaction log. A log -- an append only, total-
ly ordered data structure -- is a powerful primitive
for building distributed systems. Many RDBMS use
change logs (or “write ahead logs”) to improve per-
formance, for point-in-time-recovery (PITR) after a
crash, and also for distributed replication. The sec-
ond article in this emag explores how the Amazon
DynamoDB team exposed the transaction/change
log of the DynamoDB NoSQL service to end-user
engineers as “DynamoDB Streams” -- a Kinesis Data
Stream. Akshat Vig and Khawaja Shams discussed
how understanding the concepts of ordering, de-
duplication, and checkpointing is vital for building
correct systems, particularly distributed (streaming-)
based systems.

Apache Kafka is an open source stream processing
platform that is designed as a “massively scalable
pub/sub message queue architected as a distrib-
uted transaction log”. At QCon San Francisco Neha
Narkhede argued that “logs unify batch and stream
processing”, and platforms like Kafka can be used to
create the next generation of ETL systems. This con-
cept is explored within the third article of the series.
Traditional approaches to data integration often end
up “looking like a mess”, with custom scripts, ESBs,
MQs, custom middleware, and Hadoop deployments
being woven together to provide a bespoke solution
that was focused on batch processing. Kafka enables
the building of real-time streaming data pipelines

Daniel Bryant

from “source” to “sink” by providing the Kafka Con-
nect API -- a series of pluggable data input/output
connectors for the ‘E’ and ‘L’ in ETL; and the Kafka
Streams API -- a fluent DSL for stream processing with
operators such as join, map, filter and windowed ag-
gregates, which is effectively the ‘T’ in ETL.

The fourth article presents a case study of how Shirya
Arora and the Data Engineering and Analytics team
at Netflix migrated an existing batch ETL data pro-
cessing system to a real-time stream processing sys-
tem using Apache Flink. Arora cautioned that there
are many decisions and tradeoffs that must be made
when moving from batch to stream data processing
- engineers should not “stream all the things” just be-
cause stream processing technology is popular. This
case study demonstrated that there were clear busi-
ness wins for using stream processing, including the
opportunity to train machine learning algorithms
with the latest data, and the creation of opportuni-
ties for new kinds of machine learning algorithms.
There were also technical wins for implementing
stream processing, such as the ability to save on stor-
age costs, faster turnaround time on error correction,
and integration with other real-time systems.

The final article in this series summarises Anton Gor-
shov’s recent QCon New York presentation, where
he explains in detail how the Core Front Office Plat-
form team at Goldman Sachs provision and operate
a large-scale on-premise Apache Kafka cluster. The
team has invested significant resources into pre-
venting data loss, and this includes providing tape
backup, nightly batch replication, and synchronous

disk level replication. There has also been significant
investment in creating tooling to support their in-
frastructure, including a REST-like service and web
application to provide insight into the Kafka cluster,
and the creation of a comprehensive metrics cap-
ture component. The core takeaway is that failure
will occur, and engineers must plan to handle this.
The approach that has been adopted at GS is to run
everything with high-availability (“belt and suspend-
ers”), and be transparent in all of the approaches and
trade-offs made to ensure resilience.

Frances Perry Neha Narkhede

Akshat Vig Anton Gorshkov

CONTRIBUTORS
Daniel Bryant
is leading change within organisations and technology. His
current work includes enabling agility within organisations
by introducing better requirement gathering and planning
techniques, focusing on the relevance of architecture within agile
development, and facilitating continuous integration/delivery.
Daniel’s current technical expertise focuses on ‘DevOps’ tooling,
cloud/container platforms and microservice implementations.

works in DynamoDB (Amazon Web Services)
as Senior Software engineer with 7 years of

experience on distributed systems.

 is a software engineer at Google. After
many years working on Google’s internal

data processing stack, she joined the Cloud
Dataflow team to make this technology
available to external cloud customers.

is co-founder and CTO at Confluent, a
company backing the popular Apache

Kafka messaging system. Prior to founding
Confluent, Neha led streams infrastructure at

LinkedIn.

is a managing director at Goldman Sachs
Asset Management where he runs a global

Core Platform team, focusing on GSAM’s data
strategy and real-time services.

Khawaja Shams Shriya Arora

Tyler Akidau

is the Head of Engineering for NoSQL at
Amazon Web Services. Prior to Amazon,

he led the Data Services team at NASA Jet
Propulsion Laboratory.

 is a Staff Software Engineer at Google where
he’s spent six years working on massive-scale

streaming data processing systems.

is a senior data engineer at Netflix.

Streaming Architecture // eMag Issue 57 - Jan 20188

EXPLORING THE
FUNDAMENTALS OF
STREAM PROCESSING
WITH THE DATAFLOW
MODEL AND APACHE BEAM
At QCon San Francisco 2016,
Frances Perry and Tyler Akidau
presented “Fundamentals
of Stream Processing with
Apache Beam”.

View Full Presentation

KEY TAKEAWAYS

Data captured within modern systems
has become increasingly “big”, and
may be generated as an unordered

and (effectively) infinite stream. Data
may also be captured with unknown

delays, particularly if it is collected via an
unreliable (distributed) network

The Google Dataflow Model --
and corresponding Apache Beam

implementation -- encourages users to ask
four questions in order to understand the
approach required when processing data:
what are you computing? Where in event
time? When in processing time? and how

do refinements relate?

The Apache Beam project includes three
things: The conceptual unified Beam

Model (the what / where / when / how);
SDKs for writing data processing pipelines
using the Beam Model APIs; and “runners”
for executing the data processing pipelines

using existing distributed processing
backends like Apache Flink or Apache

Spark

https://www.infoq.com/presentations/stream-apache-beam
https://qconsf.com/

Streaming Architecture // eMag Issue 57 - Jan 2018 9

Perry and Akidau, both senior staff engineers at Google, began the talk with a discussion
of how data captured within modern systems has become increasingly “big”, and may be
generated as an unordered and (effectively) infinite stream. This can make it challeng-
ing for data-processing systems and end users to extract meaningful and timely results
and insight for the business. For example, capturing ongoing player scores from a mo-
bile-game application results in a continual stream of data, and the business may want
to mine this data in order to understand and improve player retention or “stickiness”. In
addition to being unordered, data may also be captured with unknown delays, particu-
larly if it is collected via an unreliable network: data may arrive delayed by a few seconds
due to a network glitch, a few minutes due to loss of signal, or potentially hours (or days)
delayed if the player continues to play the game aboard a transatlantic flight without mo-
bile reception until they land.

Some data processing is relatively straightforward — for example, element-wise trans-
formations like parsing, translating, or filtering. However, a large amount of data process-
ing requires aggregation operations such counting and joining, and this means that the
stream of data must be chopped up in finite chunks before the aggregation can occur and
a result be emitted. The logical approach to this woulda be to divide the stream into pro-
cessing time windows — for example, two-minute or one-hour chunks — but the chal-
lenge with this approach is the potential late arrival of data. This can lead to processing
data out of context, where the processing time is significantly different than the original
event time, which may be a problem for some algorithms. Somehow, late arriving data
needs to be shuffled back into the appropriate time window and context from which it
originated.

Although this reshuffling of late-arriving data makes conceptual sense, it can be challeng-
ing to implement. In an idealized world, the event data would be processed as it was gen-
erated, but in reality there is a variable skew between the event generation and process-
ing time for which a formal method needs to account and compensate. The solution is to
use a watermark to describe event-time progress. A watermark is essentially a timestamp,
and when the processing system receives a watermark, it assumes that it is not going to
see any message older than that timestamp. A watermark can be perfect — for example,
with data taken from a static set of sequentially increasing log files — or heuristic, where
the system has to best guess about when all events for a given time window have arrived.

APACHE BEAM
FOUNDER

TYLER AKIDAU
DISCUSSES

STREAMING
SYSTEM

AND THEIR
COMPLEXITIES

More on this

https://www.linkedin.com/in/frances-perry-b06a616/
https://www.linkedin.com/in/tyler-akidau-5221672/
https://databricks.com/blog/2017/05/08/event-time-aggregation-watermarking-apache-sparks-structured-streaming.html
https://www.infoq.com/podcasts/Tyler-Akidau

Streaming Architecture // eMag Issue 57 - Jan 201810

If a watermark is too slow, the sys-
tem waits for late data to arrive,
and the computational results of
the stream-processing operation
may be delayed. If a watermark is
too fast, then some data arrives
late, and an early (speculative)
result that was emitted may have
to be updated. The reality is that
many modern systems will be
processing infinite streams or un-
ordered data that is collected via
a distributed system and so the
data-processing system must ac-
count for these issues.

The bulk of the talk explored the
challenges of modern stream
processing and used the Data-
flow model alongside the corre-
sponding practical implementa-
tion of this model in the Apache
Beam API in order to ask four
questions in order to understand
the approaches required when
processing data:

• What are you computing?

• Where in event time?

• When in processing time?

• How do refinements relate?

For the question “What are you
computing?”, the answer may be
element-wise (single-element)
processing, perhaps a transla-
tion or filter — this is effectively
the map part of the popular Ma-
pReduce paradigm — or it may
be aggregating, such as a join or
a count — this can be thought of
as the reduce part of MapReduce.
The answer to this question could
also involve composite opera-
tions: these are operations that
are made up of primitives, but
we would like to think of them as
conceptually simpler higher-lev-
el operations. The talk presented
an example of using the Apache
Beam API and pseudo Java code
that computes integer sums from
the exemplar mobile-phone
game app. The PCollection ab-
straction represents a potentially
distributed, multi-element data
set: we can think of a PCollec-
tion as pipeline data, and Beam
transforms use PCollection ob-
jects as inputs and outputs.

For the next question, “Where
in event time?”, the typical ap-
proach is to use windowing to di-
vide data into event-time-based

The Apache Beam
project includes three

things: The unified
Beam Model; SDKs

for writing data
processing pipelines;

and “runners” for
executing pipelines

using backends
like Apache Flink or

Apache Spark

https://blog.acolyer.org/2015/08/18/the-dataflow-model-a-practical-approach-to-balancing-correctness-latency-and-cost-in-massive-scale-unbounded-out-of-order-data-processing/
https://blog.acolyer.org/2015/08/18/the-dataflow-model-a-practical-approach-to-balancing-correctness-latency-and-cost-in-massive-scale-unbounded-out-of-order-data-processing/
https://en.wikipedia.org/wiki/MapReduce
https://en.wikipedia.org/wiki/MapReduce

Streaming Architecture // eMag Issue 57 - Jan 2018 11

finite chunks. These windows can be fixed (e.g., every five minutes), sliding (e.g., the previous 24 hours for every
hour) or session-based (e.g., an application-specific burst of activity). Windowing is very similar to the concept
of using a composite key to group data within batch processing.

The third question, “When in processing time?”, relates to the requirements for triggers that control when results
are emitted. Triggers are often relative to the watermark — when the watermark is seen, we believe that all the
results for this event-time have been seen, and therefore the computation result can be emitted. If a perfect
watermark is used, this can lead to the late emission of results as the system waits for all data elements to be
processed before emitting any result. If a heuristic watermark is used, the results can be emitted in a more timely
fashion, but the processing of late elements can provide additional challenges.

The issues with defining triggers can be mitigated by using early and late firings. An early firing can provide a
speculative result at specific time periods — i.e., after every minute — and late firing allows results to be updat-

Streaming Architecture // eMag Issue 57 - Jan 201812

ed as late arriving data is processed. A key consideration when using early and late
triggers relates to the fourth question, “How to make refinements (or updates) on
speculative results?” Three tactics are available: discarding, simply throwing away
any previous speculative results; accumulating, updating the result emitted for
every update; or accumulating and retracting, updating the result emitted for ev-
ery update but also issuing a retraction on the previous result. There are tradeoffs
with each approach between the ease of implementation and the correctness of
last observed and total observed values. This must be taken into account if, for
example, a downstream service is performing multiple aggregations within a dis-
tributed pipeline — without the issuing of a retraction accompanying an update,
the wrong result may be computed.

The final section of the talk examined properties that make the Apache Beam
model of stream processing “awesome”. The first property discussed was correct-
ness. It has historically been challenging to achieve correctness in a distributed
stream-processing system; the very nature of a distributed system means that
data will arrive with variable latency. However, modern stream-processing sys-
tems provide primitives to allow engineers to make tradeoffs between accuracy
and result-emission latency. The second property is power. The Apache Beam
API provides an engineer with powerful primitives and abstractions that can be
implemented with relative ease. For example, the fluent-style Beam DSL allows
easy swapping of approaches and algorithms, such as changing from a fixed win-
dow-aggregation strategy to a session-based one. This also relates to the third
useful property of composability, as it is easy to compose new pipelines within the
Beam API in order to test new hypothesis or experiment with the data. The final
two properties, flexibility and modularity, allow various approaches to processing
the data with minimal (and easily understandable) changes to code.

The concepts for Apache Beam evolved from the original 2004 MapReduce pa-
per, which were in turn further refined at Google through the creation of internal
systems like Bigtable, Dremel, Spanner, and MillWheel. Although Google focused
on satisfying internal requirements with these systems, company engineers pub-
lished a series of papers at conferences and within academic journals, and this led
to the creation of a vibrant open-source ecosystem formed around these ideas.

https://research.google.com/archive/mapreduce.html
https://research.google.com/archive/mapreduce.html
https://research.google.com/archive/bigtable.html
https://research.google.com/pubs/pub36632.html
https://research.google.com/archive/spanner.html
https://research.google.com/pubs/pub41378.html

Streaming Architecture // eMag Issue 57 - Jan 2018 13

This in turn led to the creation of numerous successful open-source Apache projects like Hadoop, Drill, Spark,
and Tez. In 2014, Google Cloud Platform began to offer Cloud Dataflow, which is a fully managed stream and
batch data-processing service created based on the years of experience working on the internal data-process-
ing systems. There were two parts to Cloud Dataflow: the Dataflow programming model discussed previously
and the SDK, a “no knobs” managed service for executing the models. Google ultimately contributed the Data-
flow model and SDK to the open-source community as the Apache Beam project.

The Apache Beam project in-
cludes three things:

1. The conceptual Beam model

• The what/where/when/how
model presented in the talk

2. SDKs for writing Beam pipe-
lines

• Java SDK

• Python SDK

3. Runners for existing distrib-
uted processing back ends

• Apache Flink

• Apache Spark

• Google Cloud Dataflow

• Apache Apex

• Apache Gearpump (incubat-
ing)

• Direct Runner for local devel-
opment and testing

Fundamentally, the Beam mod-
el attempts to generalize the
semantics of this modern style
of data processing and provides
three core levels of abstraction
for various personas within the
data-processing community:
end users who simply want to
write data pipelines or transform
libraries in a language that is ei-
ther familiar to them or that their
organization has invested in, SDK
writers who want to make Beam
concepts available in new lan-
guages, and runner writers who
have a distributed processing
environment and want to sup-
port Beam pipelines. It is worth
noting that since not all runners
offer the same capabilities (al-
though many are converging),
the Apache Beam project has

created a series of runner capa-
bility matrices that provide fur-
ther details.

Additional information on the
topic of streaming fundamen-
tals can be found in Akidau’s ar-
ticles “The world beyond batch:
Streaming 101” and “The world
beyond batch: Streaming 102”.
The Apache Beam website also
contains many useful references
and tutorials, and the Beam com-
munity offers user and developer
mailing lists at user-subscribe@
beam.apache.org and dev-sub-
scribe@beam.apache.org.

The complete video for the talk
Perry and Akidau presented
at QCon SF, “Fundamentals of
Stream Processing with Apache
Beam”, can be found on InfoQ.

http://hadoop.apache.org/
https://drill.apache.org/
https://spark.apache.org/
https://tez.apache.org/
https://cloud.google.com/dataflow/
https://beam.apache.org/
https://beam.apache.org/get-started/quickstart-java/
https://beam.apache.org/get-started/quickstart-py/
https://beam.apache.org/documentation/runners/flink/
https://beam.apache.org/documentation/runners/spark/
https://beam.apache.org/documentation/runners/dataflow/
https://beam.apache.org/documentation/runners/apex/
https://beam.apache.org/documentation/runners/gearpump/
https://beam.apache.org/documentation/runners/gearpump/
https://beam.apache.org/documentation/runners/direct/
https://beam.apache.org/documentation/runners/direct/
https://beam.apache.org/documentation/runners/capability-matrix/
https://beam.apache.org/documentation/runners/capability-matrix/
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102
https://beam.apache.org/documentation/
mailto:user-subscribe@beam.apache.org
mailto:user-subscribe@beam.apache.org
mailto:dev-subscribe@beam.apache.org
mailto:dev-subscribe@beam.apache.org
https://www.infoq.com/presentations/stream-apache-beam
https://www.infoq.com/presentations/stream-apache-beam
https://www.infoq.com/presentations/stream-apache-beam

Streaming Architecture // eMag Issue 57 - Jan 201814

DEMYSTIFYING
DYNAMODB STREAMS:
AN INTRODUCTION
TO ORDERING,
DEDUPLICATION AND
CHECKPOINTING
At QCon San Francisco
2016, Akshat Vig and
Khawaja Shams presented
“Demystifying DynamoDB
Streams”.

View Full Presentation

KEY TAKEAWAYS

A log -- an append only, totally ordered data
structure -- is a powerful primitive for building
distributed systems. Many RDBMS use change

logs (or “write ahead logs”) to improve
performance, for point-in-time-recovery (PITR)
after a crash, and also for distributed replication

The Amazon DynamoDB team exposed the
underlying DynamoDB change log to end-user
engineers as “DynamoDB Streams” -- a Kinesis

Data Stream

Understanding ordering and the effects of
message duplication are vital for building correct

systems, particularly distributed systems

It is not possible to obtain exactly-once end-to-
end delivery within a distributed system, although
systems can be designed to provide exactly-once

processing. This is typically implemented using
checkpointing and deduplication/idempotency

filters

“Checkpointing” consists of maintaining a pointer
that specifies the latest transaction that has been

read or processed within a log, which indicates
the current state of processing

https://www.infoq.com/presentations/dynamodb-streams
https://qconsf.com/

Streaming Architecture // eMag Issue 57 - Jan 2018 15

In order to build something even
as simple as a master-slave rep-
lication, there are several primi-
tives to understand. The first and
foremost is ordering. Imagine if
two transactions were to be ap-
plied sequentially to a database
— the first writes a new entry
and the second deletes this en-
try, which ultimately results in no
data persisting in the database —
but if the ordering is not guaran-
teed, the delete transaction could
be processed first (causing no ef-
fect) and then the write transac-
tion applied, which results in data
incorrectly persisting in the data-
base. The second core primitive is
duplication: each single transac-
tion should appear exactly once
within the log. Failure to enforce
ordering or prevent duplication
within a log can result in the mas-
ter and slave becoming inconsis-
tent.

Shams posed the question of
why these core primitives are im-
portant, given that not many en-
gineers will be writing crash-re-
covery tooling or implementing
distributed databases. He quickly
pointed out that many engineers
are indeed building distributed
systems — such as those based
on the microservices architecture
— and often rely on log process-
ing and event-driven architecture
to share data, for example, via

Apache Kafka or Amazon Kine-
sis. Accordingly, an awareness of
these fundamental log-process-
ing concepts is essential.

Vig, senior software engineer at
AWS, discussed the concept of
checkpointing. As the log is be-
ing processed, a pointer must be
kept in order to specify the latest
transaction that has been read or
processed. In essence, this indi-
cates the current state of process-
ing. If the processing of the log is
interrupted — for example, by a
crash in the consuming system —
the current checkpoint can be ex-
amined and processing resumed
from the indicated transaction.
This not only prevents extra work
but also attempts to ensure ac-
curacy by preventing the repro-

cessing of transactions that have
already been seen.

There are multiple strategies to
checkpointing, each of which is a
trade-off between specificity and
throughput. For example, check-
pointing after every transaction
is processed provides a specific
pointer to the last read item, but
is high cost in that it requires a
checkpoint write for every item.
Checkpointing after every, say, 10
reads is less specific to the exact
item that has most recently been
processed but requires an order
of magnitude less cost in check-
point writes.

On the other hand, the larger
the number of transactions that
occur between checkpoints, the
more transactions that have to

The core takeaway from the talk was that an append-only, totally ordered log data structure is a powerful
primitive for building a distributed system, but engineers using this technology must understand the key
principles of ordering, deduplication, and checkpointing. They explored these concepts in depth and pro-
vided practical examples using DynamoDB Streams, which is effectively an end-user service that exposes the
underlying change log of the Amazon DynamoDB data-store technology.

Shams, VP of engineering at AWS Elemental, began the talk by discussing the longstanding relationship be-
tween relational-database technology and the log data structure. Many RDBMSs use change logs — such as
MySQL’s binary log or PostgreSQL’s write-ahead log — to improve performance, provide point-in-time recov-
ery (PITR) after a crash, and implement replication. A database change log also effectively allows the creation
of a distributed database via replication of data on additional external hosts. For example, MySQL replicates
data between a master and associated slave hosts through its binary log. Each slave maintains two threads
for the process of replication: one to continually write a copy of the master binary log on the local slave’s disk
and one to sequentially read through the log and apply each transaction to the local replicated copy of the
database.

https://martinfowler.com/articles/microservices.html
https://kafka.apache.org/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/kinesis/
https://www.linkedin.com/in/akshatvig/
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html
https://aws.amazon.com/dynamodb/
https://www.linkedin.com/in/kshams/
https://dev.mysql.com/doc/refman/5.7/en/binary-log.html
https://www.postgresql.org/docs/9.3/static/continuous-archiving.html
https://dev.mysql.com/doc/refman/5.7/en/replication.html
https://dev.mysql.com/doc/refman/5.7/en/replication.html

Streaming Architecture // eMag Issue 57 - Jan 201816

be read (and processed) if a crash
does occur. Not only does this
take time but, Shams cautioned,
in some systems it may be unac-
ceptable to reprocess transac-
tions (which could give the im-
pression of going back through
time) and therefore the only strat-
egy in this case is to checkpoint
every processed transaction.

Vig presented a series of trends
that the AWS team has identified
within current software architec-
tures. The first, optimizing global
latency, occurs when engineers
attempt to provide a consistent
experience across different geo-
graphic regions — for example,
by implementing cross-region
replication of data. There are mul-
tiple approaches to implement-
ing this; for example, engineers
can build the geo-replication log-
ic directly into the application, or
transactions can be written to a
distributed queue before being
processed independently within
each geographic region. How-
ever, none of these implementa-
tions is trivial, and the complex-
ity increases as the transaction
throughput and number of sup-
ported geographic regions in-
creases.

The second trend, protection of
logical corruption, is an attempt
by engineers to prevent appli-
cation-level issues that are not
physical in nature — for example,
if a new release of an application
incorrectly mutates data by acci-
dent, the system should be able
to recover. Typical approaches to
this include using PITR snapshots
or delayed replicas that maintain
a live copy of a data store at var-
ious points in time (for example,
multiple live standby databases
of one running one hour in the
past, a second running two hours
in the past, etc.). There is obvious-
ly an operational cost to imple-
menting and maintaining both of
these approaches.

The third trend AWS detected
within modern architectures is
the requirement for flexible que-
rying of data: engineers frequent-
ly want both online transaction
processing (OLTP) and online an-
alytical processing (OLAP) queries
on data within a system. Storing
the single source of truth with-
in a log allows the processing of
data multiple times, and the data
can also materialize in a variety
of ways. This can often be seen
within event sourcing (ES) and
command-query responsibility
segregation (CQRS) architectures,
by which data materializes using
a data-store technology most ap-
propriate to each query use case
— for example, using a graph
database for queries involving
connectedness or shortest-path
algorithms in combination with a
RDMS for relational queries and a
key-value store for direct identifi-
er-driven lookups.

The fourth trend Vig discussed
was the rise in popularity of
event-driven architectures (EDA),
in which engineers are increas-
ingly building systems that pro-
cess streams of events, poten-
tially in parallel. An example of
this style of architecture can be
seen within function-as-a-service
(FaaS) serverless applications, in
which engineers write functions
that are triggered by an event,
such as a write to an object store
or a request from an API gateway.

The presentation shifted gears
in the second half as Shams and
Vig discussed how the Dyna-
moDB team at AWS attempted
to provide building blocks that
end-user engineers could use to
implement solutions that address
the trends identified above. The
solution was AWS DynamoDB
Streams, which essentially ex-
poses the change log of Dyna-
moDB to engineers as an Am-
azon Kinesis Stream. Following
the principles discussed earlier
in the presentation, DynamoDB
Streams are highly available, du-
rable, ordered and deduplicated.
It is worth noting that at the 2017
AWS re:Invent conference, Ama-
zon announced end-user services
for DynamoDB cross-region repli-
cated Global Tables and automat-
ed on-demand DynamoDB back-
up, presumably built using these
primitives.

Shams and Vig presented a sam-
ple voting application that was
built using DynamoDB Streams.
Optimistic concurrency can be
implemented within systems
built upon DynamoDB by using
the put if not exists com-
mand. In the voting application,
this could be used to prevent du-
plicate votes, perhaps those oc-
curring by accident via a logical
error within the application. If the
put if not exists command
detects an attempt to make a
duplicate write then this write

https://en.wikipedia.org/wiki/Online_transaction_processing
https://en.wikipedia.org/wiki/Online_transaction_processing
https://en.wikipedia.org/wiki/Online_analytical_processing
https://en.wikipedia.org/wiki/Online_analytical_processing
https://www.infoq.com/articles/microservices-aggregates-events-cqrs-part-1-richardson
https://www.infoq.com/articles/microservices-aggregates-events-cqrs-part-1-richardson
https://en.wikipedia.org/wiki/Event-driven_architecture
https://martinfowler.com/articles/serverless.html
https://martinfowler.com/articles/serverless.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.Lambda.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.Lambda.html
https://aws.amazon.com/kinesis/data-streams/
https://aws.amazon.com/kinesis/data-streams/
https://www.infoq.com/news/2017/12/aws-reinvent-day-one
https://www.infoq.com/news/2017/12/aws-reinvent-day-one
https://aws.amazon.com/dynamodb/global-tables/
https://aws.amazon.com/dynamodb/backup-restore/
https://aws.amazon.com/dynamodb/backup-restore/

Streaming Architecture // eMag Issue 57 - Jan 2018 17

would fail and no corresponding
DynamoDB Stream entry would
be generated. A conditional put
could be used to allow a voter
to change their vote within the
application, where the condition
specified would be a different
candidate ID. If the condition is
satisfied, then the new write (the
vote update) would succeed, and
a DynamoDB Stream entry would
be generated that contains both
the updated NewImage and the
previous OldImage data.

When processing a DynamoDB
Stream using Kinesis, the applica-
tion should checkpoint the logs
using the Kinesis client library.
As Shams and Vig had noted ear-
lier, this can be used to prevent
re-processing of data. Shams cau-
tioned that implementing glob-
al ordering within a distributed
system is only possible if a single
process within the system gener-
ates a unique sequence number,
and this typically limits through-
put. An application can attempt
to implement global ordering us-
ing timestamps, but this assumes
that all processes within the sys-
tem have access to a reliable and
uniformly configured clock. This
is generally considered an un-
reasonable assumption, but it is
worth noting that AWS have re-
cently released the Amazon Time
Sync Service, which provides a

“highly accurate and reliable time
reference that is natively accessi-
ble from Amazon EC2 instances”.

Implementing partial ordering
within a system — ordering for
each individual item within a
DynamoDB table — is, however,
relatively simple, as mutations for
an individual item are written to
the same shard within Kinesis. As
long as the application processes
data in order within a shard, this
will be sufficient.

Vig concluded the talk by stating
that it is possible to consume Dy-
namoDB Streams using at-most
once or at-least once semantics,
but not exactly once. It is not pos-
sible to obtain exactly once end-
to-end delivery within a distribut-
ed system, although systems can

be implemented to provide ex-
actly once processing. This is typi-
cally implemented using dedupli-
cation or idempotency filters.

The full video for Shams and Vig’s
QCon SF 2016 presentation “De-
mystifying DynamoDB Streams”
can be found on InfoQ.

http://docs.aws.amazon.com/streams/latest/dev/kinesis-record-processor-ddb.html
https://github.com/awslabs/amazon-kinesis-client
https://aws.amazon.com/about-aws/whats-new/2017/11/introducing-the-amazon-time-sync-service/
https://aws.amazon.com/about-aws/whats-new/2017/11/introducing-the-amazon-time-sync-service/
http://bravenewgeek.com/you-cannot-have-exactly-once-delivery/
http://bravenewgeek.com/you-cannot-have-exactly-once-delivery/
https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it/
https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it/
https://www.infoq.com/presentations/dynamodb-streams
https://www.infoq.com/presentations/dynamodb-streams

Streaming Architecture // eMag Issue 57 - Jan 201818

IS BATCH ETL DEAD,
AND IS APACHE KAFKA
THE FUTURE OF DATA
PROCESSING?

At QCon San Francisco 2016,
Neha Narkhede presented
“ETL is Dead; Long Live
Streams”, and discussed
the changing landscape of
enterprise data processing.

View Full Presentation

KEY TAKEAWAYS

Several recent data trends are driving a
dramatic change in the old-world batch

Extract-Transform-Load (ETL) architecture:
data platforms operate at company-wide scale;

there are many more types of data sources;
and stream data is increasingly ubiquitous

Enterprise Application Integration (EAI)
was an early take on real-time ETL, but the

technologies used were often not scalable. This
led to a difficult choice with data integration
in the old world: real-time but not scalable, or

scalable but batch.

Apache Kafka is an open source streaming
platform that was developed seven years ago

within LinkedIn

Kafka enables the building of streaming data
pipelines from “source” to “sink” through the

Kafka Connect API and the Kafka Streams API

Logs unify batch and stream processing. A log
can be consumed via batched “windows”, or in

real time by examining each element as
it arrives

https://www.infoq.com/presentations/etl-streams
https://qconsf.com/

Streaming Architecture // eMag Issue 57 - Jan 2018 19

A core premise of the talk was
that the open-source Apache
Kafka streaming platform can
provide a flexible and uniform
framework that supports modern
requirements for data transfor-
mation and processing.

Narkhede, co-founder and CTO
of Confluent, began the talk by
stating that data and data sys-
tems have significantly changed
within the past decade. The old
world typically consisted of op-
erational databases providing
online transaction processing
(OLTP) and relational data ware-
houses providing online analyti-
cal processing (OLAP). Data from

a variety of operational databas-
es was typically batch-loaded
into a master schema within the
data warehouse once or twice a
day. This data integration process
is commonly referred to as ex-
tract-transform-load (ETL).

Several recent data trends are
driving a dramatic change in the
old-world ETL architecture:

• Single-server databases are
being replaced by a myriad
of distributed data platforms
that operate at company-wide
scale.

• There are many more types of
data sources beyond transac-
tional data: e.g., logs, sensors,
metrics, etc.

• Stream data is increasing-
ly ubiquitous, and there is a
business need for faster pro-
cessing than daily batches.

The result of these trends is that
traditional approaches to data
integration often end up looking
like a mess, with a combination
of custom transformation scripts,
enterprise middleware such as
enterprise service buses (ESBs)
and message-queue (MQ) tech-
nology, and batch-processing
technology like Hadoop.

Before exploring how transition-
ing to modern streaming tech-
nology could help to alleviate
this issue, Narkhede dove into a
short history of data integration.
Beginning in the 1990s within
the retail industry, businesses
became increasingly keen to an-
alyze buyer trends with the new
forms of data now available to
them. Operational data stored
within OLTP databases had to be
extracted, transformed into the

destination warehouse schema,
and loaded into a centralized
data warehouse. As this technol-
ogy has matured over the past
two decades, however, the data
coverage within data warehouses
remains relatively low due to the
drawbacks of ETL:

• There is a need for a global
schema.

• Data cleansing and curation
is manual and fundamentally
error prone.

• The operational cost of ETL is
high: it is often slow and time
and resource intensive.

• ETL tools were built to narrow-
ly focus on connecting data-
bases and the data warehouse
in a batch fashion.

Enterprise application integra-
tion (EAI) was an early take on

https://www.linkedin.com/in/nehanarkhede/
https://en.wikipedia.org/wiki/Enterprise_application_integration
https://en.wikipedia.org/wiki/Enterprise_application_integration

Streaming Architecture // eMag Issue 57 - Jan 201820

real-time ETL, and used ESBs and MQs for data integration. Although effective for real-time processing, these
technologies could often not scale to the magnitude required. This led to a difficult choice with data integration
in the old world: real time but not scalable, or scalable but batch.

Narkhede argued that the mod-
ern streaming world has new re-
quirements for data integration:

• The ability to process high-vol-
ume and high-diversity data.

• A platform must support re-
al-time from the ground up,
which drives a fundamental
transition to event-centric
thinking.

• Forward-compatible data ar-
chitectures must be enabled
and must be able to support
the ability to add more appli-
cations that need to process
the same data differently.

These requirements drive the
creation of a unified data-integra-
tion platform rather than a series
of bespoke tools. This platform

must embrace the fundamental
principles of modern architecture
and infrastructure, and should be
fault tolerant, be capable of paral-
lelism, support multiple delivery
semantics, provide effective oper-
ations and monitoring, and allow
schema management. Apache
Kafka, which was developed sev-
en years ago within LinkedIn, is
one such open-source streaming
platform and can operate as the
central nervous system for an or-
ganization’s data in the following
ways:

• It serves as the real-time, scal-
able messaging bus for appli-
cations, with no EAI.

• It serves as the source-of-
truth pipeline for feeding all
data-processing destinations.

• It serves as the building block
for stateful stream-processing
microservices.

Apache Kafka currently process-
es 14 trillion message a day at
LinkedIn, and is deployed with-
in thousands of organizations
worldwide, including Fortune
500 companies such as Cisco,
Netflix, PayPal, and Verizon. Kaf-
ka is rapidly becoming the stor-
age of choice for streaming data,
and it offers a scalable messaging
backbone for application integra-
tion that can span multiple data
centers.

Fundamental to Kafka is the con-
cept of the log; an append-only,
totally ordered data structure. The
log lends itself to publish-sub-
scribe (pubsub) semantics, as

https://kafka.apache.org/
https://kafka.apache.org/

Streaming Architecture // eMag Issue 57 - Jan 2018 21

a publisher can easily append
data to the log in immutable and
monotonic fashion, and subscrib-
ers can maintain their own point-
ers to indicate current message
processing.

Kafka enables the building of
streaming data pipelines — the
E and L in ETL — through the
Kafka Connect API. The Connect
API leverages Kafka for scalabil-

ity, builds upon Kafka’s fault-tol-
erance model, and provides a
uniform method to monitor all
of the connectors. Stream pro-
cessing and transformations can
be implemented using the Kafka
Streams API — this provides the
T in ETL. Using Kafka as a stream-
ing platform eliminates the need
to create (potentially duplicate)
bespoke extract, transform, and
load components for each des-

tination sink, data store, or sys-
tem. Data from a source can be
extracted once as a structured
event into the platform, and any
transforms can be applied via
stream processing.

In the final section of her talk,
Narkhede examined the concept
of stream processing — trans-
formations on stream data — in
more detail, and presented two

https://docs.confluent.io/current/connect/index.html
https://kafka.apache.org/documentation/streams/
https://kafka.apache.org/documentation/streams/

Streaming Architecture // eMag Issue 57 - Jan 201822

competing visions: real-time MapReduce versus event-driven mi-
croservices. Real-time MapReduce is suitable for analytic use cases
and requires a central cluster and custom packaging, deployment,
and monitoring. Apache Storm, Spark Streaming, and Apache Flink
implement this. Narkhede argued that the event-driven micros-
ervices vision — which is implemented by the Kafka Streams API
— makes stream processing accessible for any use case, and only
requires adding an embedded library to any Java application and
an available Kafka cluster.

The Kafka Streams API provides a convenient fluent DSL, with oper-
ators such as join, map, filter, and window aggregates.

This is true event-at-a-time stream processing — there is no mi-
cro-batching — and it uses a dataflow-style windowing approach
based on event time in order to handle late-arriving data. Kafka
Streams provides out-of-the-box support for local state, and sup-
ports fast stateful and fault-tolerant processing. It also supports
stream reprocessing, which can be useful when upgrading applica-
tions, migrating data, or conducting A/B testing.

Narkhede concluded the talk by stating that logs unify batch and
stream processing — a log can be consumed via batched windows
or in real time by examining each element as it arrives — and that
Apache Kafka can provide the “shiny new future of ETL”.

The full video of Narkhede’s QCon SF talk “ETL Is Dead; Long Live
Streams” can be found on InfoQ.

http://storm.apache.org/
https://spark.apache.org/streaming/
https://flink.apache.org/
https://www.infoq.com/presentations/etl-streams
https://www.infoq.com/presentations/etl-streams

Streaming Architecture // eMag Issue 57 - Jan 2018 23

Sponsored article

HANDLING GDPR WITH APACHE KAFKA:
HOW DOES A LOG FORGET?
By Ben Stopford

Click here to read the full article

If you follow the press around Apache Kafka you’ll
probably know it’s pretty good at tracking and re-
taining messages, but sometimes removing messag-
es is important too. GDPR is a good example of this
as, amongst other things, it includes the right to be
forgotten. This raises a very obvious question: how
do you delete arbitrary data from Kafka? After all, its
underlying storage mechanism is an immutable log.

As it happens, Kafka is a pretty good fit for GDPR. The
regulatory regime specifies not only that users have
the right to be forgotten, but also have the right to
request a copy of their personal data. Companies are
also required to keep detailed records of what data
is used for—a requirement for which recording and
tracking the messages that move from application to
application is a boon.

How do you delete (or redact) data from
Kafka?
The simplest way to remove messages from Kafka is
to simply let them expire. By default, Kafka will keep
data for two weeks, and you can tune this to an ar-
bitrarily large (or small) period of time. There is also
an Admin API that lets you delete messages explicit-
ly if they are older than some specified time or offset.
But businesses increasingly want to leverage Kafka’s
ability to keep data for longer periods of time, say
for Event Sourcing architectures or as a source of
truth. In such cases it’s important to understand how
to make long lived data in Kafka GDPR compliant. For
this,compacted topics are the tool of choice, as they
allow messages to be explicitly deleted or replaced
via their key.

Data isn’t removed from compacted topics in the
same way as in a relational database. Instead, Kafka
uses a mechanism closer to those used by Cassan-
dra and HBase where records are marked for remov-
al then later deleted when the compaction process
runs. Deleting a message from a compacted topic is

as simple as writing a new message to the topic with
the key you want to delete and a null value. When
compaction runs the message will be deleted forever.

//Create a record in a compacted topic in
kafka
producer.send(new
ProducerRecord(CUSTOMERS_TOPIC,
“Customer123”, “Donald Duck”));
//Mark that record for deletion when
compaction runs
producer.send(new
ProducerRecord(CUSTOMERS_TOPIC,
“Customer123”, null));

If the key of the topic is something other than the
CustomerId, then you need some process to map the
two. For example, if you have a topic of Orders, then
you need a mapping of Customer to OrderId held
somewhere. Then, to ‘forget’ a customer, simply look-
up their Orders and either explicitly delete them from
Kafka, or alternatively redact any customer informa-
tion they contain. You might roll this into a process of
your own, or you might do it using Kafka Streams if
you are so inclined.

There is a less common case, which is worth mention-
ing, where the key (which Kafka uses for ordering) is
completely different to the key you want to be able to
delete by. Let’s say that you need to key your Orders
by ProductId. This choice of key won’t let you delete
Orders for individual customers, so the simple meth-
od above wouldn’t work. You can still achieve this
by using a key that is a composite of the two: make
the key [ProductId][CustomerId], then use a custom
partitioner in the Producer (see the Producer Config:
“partitioner.class”) that extracts the ProductId and
partitions only on that value. Then you can delete
messages using the mechanism discussed earlier us-
ing the [ProductId][CustomerId] pair as the key.

https://www.confluent.io/blog/handling-gdpr-log-forget/
http://www.itpro.co.uk/it-legislation/27814/what-is-gdpr-everything-you-need-to-know-8
https://en.wikipedia.org/wiki/Right_to_be_forgotten
https://en.wikipedia.org/wiki/Right_to_be_forgotten
https://cwiki.apache.org/confluence/display/KAFKA/KIP-107%3A+Add+purgeDataBefore%28%29+API+in+AdminClient
https://cwiki.apache.org/confluence/display/KAFKA/KIP-107%3A+Add+purgeDataBefore%28%29+API+in+AdminClient
https://www.confluent.io/blog/messaging-single-source-truth/
https://www.thoughtworks.com/radar/techniques/event-streaming-as-the-source-of-truth
https://www.thoughtworks.com/radar/techniques/event-streaming-as-the-source-of-truth

Streaming Architecture // eMag Issue 57 - Jan 201824

MIGRATING BATCH ETL TO
STREAM PROCESSING:
A NETFLIX CASE STUDY
WITH KAFKA AND FLINK
At QCon New York, Shriya
Arora presented “Personalising
Netflix with Streaming Datasets”
and discussed the trials and
tribulations of a recent migration
of a Netflix data processing job
from the traditional approach
of batch-style ETL to stream
processing using Apache Flink.

View Full Presentation

KEY TAKEAWAYS
There are many decisions and tradeoffs that
must be made when moving from batch ETL
to stream data processing. Engineers should

not “stream all the things” just because stream
processing technology is popular

The Netflix case study presented here
migrated to Apache Flink. This technology

was chosen due to the requirements for real-
time event-based processing and extensive

support for customisation of windowing

Many challenges were encountered during
the migration, such as getting data from
live sources, managing side (metadata)

inputs, handling data recovery and out of
order events, and increased operational

responsibility

There were clear business wins for using
stream processing, including the opportunity
to train machine learning algorithms with the

latest data

There were also technical wins for
implementing stream processing, such as
the ability to save on storage costs, and
integration with other real-time systems

https://www.infoq.com/presentations/netflix-personalization-datasets-streaming
https://qconnewyork.com/

Streaming Architecture // eMag Issue 57 - Jan 2018 25

Arora, a senior data engineer at
Netflix, began by stating that the
key goal of the presentation was
to help the audience decide if a
stream-processing data pipeline
would help resolve problems they
may be experiencing with a tra-
ditional extract-transform-load
(ETL) batch processing job. In
addition to this, she discussed
core decisions and tradeoffs that
must be made when moving
from batch to streaming. Arora
was clear to stress that “batch is
not dead”, and although there are
many stream-processing engines,
there is no single best solution.

Netflix’s core mission is to enter-
tain customers by allowing them
to watch personalized video con-
tent anywhere at anytime. In the
course of providing this personal-
ized experience, Netflix processes
450 billion unique events daily
from 100+ million active mem-
bers in 190 different countries
who view 125 million hours of
content per day. The Netflix sys-
tem uses the microservice archi-
tectural style and services com-
municate via remote procedure

call (RPC) and messaging. The
production system has a large
Apache Kafka cluster with 700+
topics deployed that manages
messaging and also feeds the da-
ta-processing pipeline.

Within Netflix, the Data Engineer-
ing and Analytics (DEA) team and
Netflix Research are responsible
for running the personalization
systems. At a high level, micros-
ervice application instances emit
user and system-driven data
events that are collected within
the Netflix Keystone data pipe-
line — a petabyte-scale real-time
event streaming-processing sys-
tem for business and product
analytics. Traditional batch data
processing is conducted by stor-
ing this data within a Hadoop
Distributed File System (HDFS)
running on the Amazon S3 object
storage service and processing
with Apache Spark, Pig, Hive, or
Hadoop. Batch-processed data is
stored within tables or indexers
like Elasticsearch for consump-
tion by the research team, down-
stream systems, or dashboard ap-
plications. Stream processing is

also conducted by using Apache
Kafka to stream data into Apache
Flink or Spark Streaming.

Before discussing her team’s de-
cision to convert a long-running
batch ETL job into a streaming
process, Arora cautioned the au-
dience against “streaming all the
things”. There are clear business
wins for using stream process-
ing, including the opportunity
to train machine-learning algo-
rithms with the latest data, pro-
vide innovation in the marketing
of new launches, and create op-
portunities for new kinds of ma-
chine-learning algorithms. There
are also technical wins, such as
the ability to save on storage
costs (as raw data does not need
to be stored in its original form),
faster turnaround time on error
correction (long-running batch
jobs can incur significant delays
when they fail), real-time audit-
ing on key personalization met-
rics, and integration with other
real-time systems.

A core challenge when imple-
menting stream processing is

https://www.linkedin.com/in/shriyaarora/
https://www.infoq.com/presentations/netflix-failure-multiple-regions
https://www.infoq.com/presentations/netflix-failure-multiple-regions
https://kafka.apache.org/
https://www.infoq.com/news/2016/03/netflix-keystone-data-pipeline
https://www.infoq.com/news/2016/03/netflix-keystone-data-pipeline
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://spark.apache.org/
https://pig.apache.org/
https://hive.apache.org/
http://hadoop.apache.org/
https://www.elastic.co/
https://flink.apache.org/
https://flink.apache.org/
https://spark.apache.org/streaming/

Streaming Architecture // eMag Issue 57 - Jan 201826

picking an appropriate engine. The first key
question to ask is will the data be processed
as an event-based stream or in micro-batch-
es. In Arora’s opinion, micro-batching is re-
ally just a subset of batch processing — one
with a time window that may be reduced
from a day in typical batch processing to
hours or minutes — but a process still oper-
ating on a corpus of data rather than actual
events. If results are simply required sooner
than currently provided, and the organiza-
tion has already invested heavily in batch,
then migrating to micro-batching could
be the most appropriate and cost-effective
solution.

The next challenge in picking a stream-pro-
cessing engine is to ask what features will
be most important in order to solve the
problem being tackled. This will most like-
ly not be an issue that is solved in an initial
brainstorming session — often a deep un-
derstanding of the problem and data only
emerge after an in-depth investigation.
Arora’s case study required “sessioniza-
tion” (session-based windowing) of event
data. Each engine supports this feature to
varying degrees with varying mechanisms.
Ultimately, Netflix chose Apache Flink for
Arora’s batch-job migration as it provided
excellent support for customization of win-

dowing in comparison with Spark Stream-
ing (although it is worth mentioning that
new APIs supporting Spark Structured
Streaming and advanced session handling
have become stable as of Apache Spark
2.2.0, which was released in July 2017, after
this presentation was delivered).

Another question to ask is whether the im-
plementation requires the lambda architec-
ture. This architecture is not to be confused
with AWS Lambda or serverless technology
in general — in the data-processing domain,
the lambda architecture is designed to han-
dle massive quantities of data by taking
advantage of both batch-processing and
stream-processing methods. This approach
to architecture attempts to balance latency,
throughput, and fault-tolerance by creating
a batch layer that provides a comprehen-
sive and accurate “correct” view of batch
data, while simultaneously implementing
a speed layer for real-time stream process-
ing to provide potentially incomplete, but
timely, views of online data. It may be the
case that an existing batch job simply needs
to be augmented with a speed layer, and if
this is the case then choosing a data-pro-
cessing engine that supports both layers of
the lambda architecture may facilitate code
reuse.

http://tutorials.jenkov.com/java-performance/micro-batching.html
https://flink.apache.org/
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
http://blog.madhukaraphatak.com/introduction-to-spark-structured-streaming-part-14/
https://spark.apache.org/releases/spark-release-2-0-0.html
https://spark.apache.org/releases/spark-release-2-0-0.html
https://www.infoq.com/articles/lambda-architecture-scalable-big-data-solutions
https://www.infoq.com/articles/lambda-architecture-scalable-big-data-solutions

Streaming Architecture // eMag Issue 57 - Jan 2018 27

Several additional questions to ask when choosing a stream-processing engine in-
clude:

• What are other teams using within your organization? If there is a significant
investment in a specific technology, then existing implementation and opera-
tional knowledge can often be leveraged.

• What is the landscape of the existing ETL systems within your organization? Will
a new technology easily fit in with existing sources and sinks?

• What are your requirements for learning curve? What engines do you use for
batch processing, and what are the most widely adopted programming lan-
guages?

The penultimate section of the talk examined the migration of a Netflix batch
ETL job to a stream-processing ETL process. The Netflix DEA team previously ana-
lyzed sources of play and sources of discovery within the Netflix application using
a batch-style ETL job that can take longer than eight hours to complete. Sources
of play are the locations from the Netflix application homepage from which users
initiate playback. Sources of discovery are the locations on the homepage where
users discover new content to watch. The ultimate goal of the DEA team was to
learn how to optimize the homepage to maximize discovery of content and play-
back for users, and to improve the overly long 24-hour latency between occurring
events and analysis. Real-time processing could shorten this gap between action
and analysis.

Examining the “source of discovery” problem in more depth revealed to Netflix that
the stream-processing engine to choose had to be able to: handle a high through-
put of data (users across the globe currently generate ~100 million discovery/
playback events per day); communicate to live microservices via thick (RPC-style)
clients in order to enrich the initial events; integrate with the Netflix platform eco-
system such as, for example, service discovery; have centralized log management
and alerting; and allow side inputs of slowly changing data (e.g., a dimension or
metadata table containing film metadata or country demographics).

https://en.wikipedia.org/wiki/Dimension_(data_warehouse)
https://en.wikipedia.org/wiki/Dimension_(data_warehouse)

Streaming Architecture // eMag Issue 57 - Jan 201828

Ultimately, Arora and her team chose Apache Flink with an ensemble cast of supporting technology:

• Apache Kafka acting as a message bus;

• Apache Hive providing data summarization, query, and analysis using an SQL-like interface (particularly for
metadata in this case);

• Amazon S3 for storing data within HDFS;

• the Netflix OSS stack for integration into the wider Netflix ecosystem;

• Apache Mesos for job scheduling and execution; and

• Spinnaker for continuous delivery.

An overview of the complete source of discovery pipeline can be seen below.

Arora outlined the implemen-
tation challenges that the DEA
team faced with the migration
process:

Getting data from live sources:
• The job being migrated re-

quired access to the complete
viewing history of the user
of every playback initiation
event.

• This was conceptually easy to
implement with stream pro-
cessing, as the integration
with the Netflix stack and
real-time nature of the data
processing meant that a sim-

ple RPC-like call was required
for each event as it was pro-
cessed.

• However, because the Apache
Flink stream-processing ap-
plication was written using
the Java API and the Netflix
OSS stack is also written using
Java, it was sometimes chal-
lenging to ensure compati-
bility between libraries within
both applications (managing
so-called “JAR hell”).

Side inputs:
• Each item of metadata re-

quired within the stream-pro-
cessing job could have been

obtained by making a call in
the same fashion as getting
data from live sources.

• However, this would require
many network calls, and ul-
timately be a very inefficient
use of resources.

• Instead the metadata was
cached into memory for each
stream-processing instance,
and the data refreshed every
15 minutes.

Data recovery:
• When a batch job fails due to

an infrastructure issue, it is
easy to rerun the job, as the

https://kafka.apache.org/
https://hive.apache.org/
https://netflix.github.io/
http://mesos.apache.org/
https://www.spinnaker.io/

Streaming Architecture // eMag Issue 57 - Jan 2018 29

data is still stored within the
underlying object store — i.e.,
HDFS. This is not necessarily
the case with stream process-
ing, as the original events can
be discarded as they are pro-
cessed.

• Within the Netflix ecosystem,
the TTLs of the message bus
(Kafka) that stores the original
events can be relatively ag-
gressive — due to the volume,
as little as four to six hours. Ac-
cordingly, if a stream-process-
ing job fails and this is not de-
tected and fixed within the TTL
time limit, data loss can occur.

• The solution for this issue was
to additionally store the raw
data in HDFS for a finite time
(one to two days) in order to
facilitate replay.

Out-of-order events:
• In the event of a pipeline fail-

ure, the data-recovery process
(and reloading of events) will
mean that “old” data will be
mixed in with real-time data.

• The challenge is that late-ar-
riving data must be attributed
correctly to the event time at
which it was generated.

• The DEA team chose to im-
plement time windowing and
also post-process data to en-
sure that the results are emit-
ted with the correct event-
time context.

Increased monitoring and
alerts:
• In the event of a pipeline fail-

ure, the team must be notified
as soon as possible.

• Failure to trigger a timely alert
can result in data loss.

• Creating an effective monitor-
ing, logging, and alerting im-
plementation is vital.

Arora concluded the talk by stat-
ing that although the business

and technical wins for migrating
from batch ETL to stream process-
ing were numerous, there were
also many challenges and learn-
ing experiences. Engineers adopt-
ing stream processing should be
prepared to pay a pioneer tax, as
most conventional ETL is batch
and training machine-learning
models on streaming data is rela-
tively new ground. The data pro-
cessing team will also be exposed
to high-priority operational is-
sues — such as being on call and
handling outages — as although
“batch failures have to be ad-
dressed urgently, streaming fail-
ures have to be addressed imme-
diately”. An investment in resilient
infrastructure must be made, and
the team should also cultivate ef-
fective monitoring and alerting,
and create continuous-delivery
pipelines that facilitate the rapid
iteration and deployment of the
data-processing application.

The full video of Arora’s QCon
New York 2017 talk “Personalizing
Netflix with Streaming Datasets”
can be found on InfoQ.

There are many
decisions and

tradeoffs that must
be made when

moving from batch
ETL to stream

data processing.
Engineers should

not “stream all the
things” just because

stream processing
technology is popular.

https://flink.apache.org/news/2015/12/04/Introducing-windows.html
https://www.infoq.com/presentations/netflix-personalization-datasets-streaming
https://www.infoq.com/presentations/netflix-personalization-datasets-streaming

Streaming Architecture // eMag Issue 57 - Jan 201830

WHEN STREAMS FAIL:
IMPLEMENTING A RESILIENT
APACHE KAFKA CLUSTER AT
GOLDMAN SACHS

At QCon New York 2017, Anton
Gorshkov presented “When Streams
Fail: Kafka Off the Shore”. He shared
insight into how a platform team at a
large financial institution designs and
operates shared internal messaging
clusters like Apache Kafka, and
also they plan for and resolve the
inevitable failures that occur.

View Full Presentation

KEY TAKEAWAYS
The Goldman Sachs Core Front Office

Platform team run an on-premise Apache
Kafka cluster on a virtualised on-premise
infrastructure that handles ~1.5 Tb a week

of traffic

The team has invested significant
resources into preventing data loss, and
with data centers in the same (or very
close) metro area, the multiple centers
can effectively be treated as a single
redundant data center for disaster

recovery and business continuity (DRBC)
purposes

The Core Front Office Platform team have
invested significantly in creating tooling
to support their infrastructure, including

a REST service to provide insight into
the Kafka cluster, and the creation

of a comprehensive metrics capture
component

Failure will occur, and engineers must
plan to handle this. The approach that has
been adopted at GS is to run everything
with high-availability, and be transparent

in all of the trade-offs made

https://www.infoq.com/presentations/streaming-kafka-spark
https://qconnewyork.com/

Streaming Architecture // eMag Issue 57 - Jan 2018 31

Gorshkov, managing director at
Goldman Sachs, began by intro-
ducing Goldman Sachs and dis-
cussing the stream-processing
workloads his division manages.
The company’s Investment Man-
agement Division has $1.4 trillion
in assets under management,
and the Core Platform team in-
terfaces with many other inter-
nal teams to provide platforms
and infrastructure to run Apache
Kafka, Data Fabric, and Akka. The
team operates an on-premise
Apache Kafka cluster running
on virtualized infrastructure that
handles ~1.5 TB a week of traffic,
and although the message count
is relatively low — in the order of
millions per week — at peak pe-
riods, Kafka can see about 1,500
messages produced per second.

The deployment goals of the
Apache Kafka cluster are:

• no data loss, even in the event
of a data-center outage;

• no notion of primary/backup;

• no failover scenarios; and

• to minimize outage time.

The team has invested signifi-
cant resources into preventing
fundamental data loss, and this
includes providing tape backup,
nightly batch replication, asyn-
chronous replication, and syn-
chronous replication (e.g., syn-
chronous disk-level replication
with Symmetrix Remote Data
Facility). Gorshkov reminded the
audience of latency numbers that
every programmer should know,
and stated that the speed of light
dictates that a best-case network

round trip from New York City
to San Francisco takes ~60ms,
Virginia to Ohio takes ~12ms,
and New York City to New Jersey
takes ~4ms. With data centers in
the same metro area or otherwise
close, multiple centers can effec-
tively be treated as a single re-
dundant data center for disaster
recovery and business continuity.
This is much the same approach
as taken by modern cloud ven-
dors like AWS, with infrastructure
being divided into geographic re-
gions, and regions being further
divided into availability zones.

Allowing multiple data centers
to be treated as one leads to an
Apache Kafka cluster deployment
strategy as shown on the diagram
below, with a single conceptual
cluster that spans multiple phys-
ical data centers.

https://www.linkedin.com/in/anton-gorshkov-4720391/
https://kafka.apache.org/
https://kafka.apache.org/
https://akka.io/
https://www.emc.com/storage/symmetrix-vmax/srdf-40k.htm
https://www.emc.com/storage/symmetrix-vmax/srdf-40k.htm
https://gist.github.com/jboner/2841832
https://gist.github.com/jboner/2841832
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html

Streaming Architecture // eMag Issue 57 - Jan 201832

Gorshkov ran through a series of
failure scenarios, starting with an
exploration of what happens if a
single virtual-machine (VM) host
fails within a data center. This
generally happens one to five
times a year yet has no impact on
Kafka producers or consumers, as
the system is still able to satisfy
the minimum required synchro-
nization of at least three replicas.
In this case, there is no manual
recovery, beyond replacing the
host. The occurrence of two hosts
failing simultaneously occurs
once a year or potentially more
often if there is an underlying in-
frastructure or hypervisor failure.
If this failure mode occurs, the
processing for some Kafka topics
will halt. The short-term fix is to
add replicas for the affected par-
titions, and ultimately to replace
the bad hosts. The Goldman

Sachs compute infrastructure al-
lows seamless VM replacement
with no need to update DNS
aliases or change Kafka configu-
ration.

If three hosts within a data cen-
ter fail then cluster processing
immediately halts as this config-
uration can no longer satisfy the
required number of in-sync repli-
cas across the cluster. Fortunate-
ly, this only occurs once every
few years. The fix is to replace the
host as soon as possible. If a data
center fails or a network partition
occurs — which Gorshkov esti-
mates is a “once a 20-year event”
— then the short-term solution
is to add additional hosts in the
data center that is not affected.
The largest impact on recovery
time is how long it takes to pro-

vision new hosts, as data centers
typically maintain spare capacity.

The Core Platform team has in-
vested significantly in creating
tooling to support their infra-
structure, including a REST-like
service and associated web appli-
cation to provide insight into the
Kafka cluster. The REST endpoints
allow messages to be viewed on
all topics, and core metrics like
consumer lag and the number of
in-sync replicas to be obtained. It
is also possible to obtain informa-
tion on ZooKeeper configuration,
the process of leader election,
and run-time broker metrics.
The platform team has also cre-
ated a component that records
a multitude of metrics from the
operation of the cluster at the
application, JVM, and infrastruc-
ture levels. Metrics are sent to a

Streaming Architecture // eMag Issue 57 - Jan 2018 33

time-series database and are for-
warded to a centrally managed
Goldman Sachs alerting instruc-
ture. From here, alerts can be is-
sued to on-call engineers.

A typical sample deployment
includes an upstream service
— e.g., a trade-orders service —
acting as a message source and
sending events based on an in-
ternal state change (which is also
captured in a data store local to
the service) to the Apache Kafka
cluster. The Kafka Connect API is
used to connect message sinks
to the Kafka cluster, and down-
stream targets typically include
a direct sink to an in-memory
RDBMS that maintains a tabular
version of all messages for trou-
bleshooting purposes, a Spark
Streaming job that outputs re-
sults to an in-memory RDBMS
that is queried by end users via
the associated Vert.x or REST APIs,
and a batch ETL job that persists
all events to a data lake for audit/
governance purposes.

If a significant outage does occur
and messages need to be resent,
then the globally unique identifi-
er that is added to every message

by the upstream service makes
this relatively easy to replay with-
out processing duplicate messag-
es or breaking idempotency guar-
antees. If the upstream system
did not generate unique identifi-
ers, then Gorshkov recommends
exploring the new exactly-once
processing semantics introduced
to Apache Kafka by the Conflu-
ent team, and also researching
into Kafka Improvement Proposal

(KIP) “KIP-98 - Exactly Once Deliv-
ery and Transactional Messaging”.

In the final section of the talk,
Gorshkov stated that failure will
always occur and that engineers
must plan to handle this. The
approach that his team has ad-
opted is “belt and suspenders”
for everything. Ultimately, a lot
of the tradeoffs that are encoun-
tered for setting up resilient sys-
tems involves throughput versus
reliability (versus cost). Apache
Kafka has many configuration op-
tions — perhaps too many — and
it can be best to hide some of the
knobs from end users. For more
details on configuring Kafka to
run effectively, Gorshkov recom-
mended the Confluent online talk
series, “Best Practices for Apache
Kafka in Production” by Gwen
Shapira. He concluded the talk
by stating the resilience must be
implemented using a transparent
approach, as this is the only way
engineers will gain confidence in
the system.

The video from Gorshkov’s QCon
NY talk “When Streams Fail: Kafka
Off the Shore” can be found on
InfoQ.

https://docs.confluent.io/current/connect/index.html
https://spark.apache.org/streaming/
https://spark.apache.org/streaming/
http://vertx.io/
https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it/
https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it/
https://cwiki.apache.org/confluence/display/KAFKA/KIP-98+-+Exactly+Once+Delivery+and+Transactional+Messaging
https://cwiki.apache.org/confluence/display/KAFKA/KIP-98+-+Exactly+Once+Delivery+and+Transactional+Messaging
https://www.confluent.io/online-talk/best-practices-for-apache-kafka-in-production-confluent-online-talk-series
https://www.confluent.io/online-talk/best-practices-for-apache-kafka-in-production-confluent-online-talk-series
https://www.linkedin.com/in/gwenshapira
https://www.linkedin.com/in/gwenshapira
https://www.infoq.com/presentations/streaming-kafka-spark
https://www.infoq.com/presentations/streaming-kafka-spark

PREVIOUS ISSUES

56
This DevOps eMag has a broader setting than previous
editions. You might, rightfully, ask “what does faster, smart-
er DevOps mean?”. Put simply, any and all approaches to
DevOps adoption that uncover important mechanisms or
thought processes that might otherwise get submerged
by the more straightforward (but equally important) auto-
mation and tooling aspects.

Faster, Smarter
DevOps

Serverless Computing

In this InfoQ eMag, we curated some of the best
serverless content into a single asset to give you a
relevant, pragmatic look at this emerging space.

53

Reactive JavaScript

This eMag is meant to give an easy-going, yet varied
introduction to reactive programming with JavaScript.
Modern web frameworks and numerous libraries
have all embraced reactive programming. The rise in
immutability and functional reactive programming
have added to the discussion. It’s important for
modern JavaScript developers to know what’s going
on, even if they’re not using it themselves.

54

Cloud Native

In this eMag, the InfoQ team pulled together stories
that best help you understand this cloud-native rev-
olution, and what it takes to jump in. It features inter-
views with industry experts, and articles on key topics
like migration, data, and security.

55

https://www.infoq.com/minibooks/emag-faster-smarter-devops
https://www.infoq.com/minibooks/serverless-computing
https://www.infoq.com/minibooks/emag-reactive-javascript
https://www.infoq.com/minibooks/emag-cloud-native

	_GoBack

