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Recommended Texts

Hobson, M. P., Efstathiou, G., and Lasenby, A. N. 2006, General Relativity: An Introduction
for Physicists, (Cambridge: Cambridge University Press) Referenced as HELOG.

A very clear, very well-blended book, admirably covering the mathematics, physics, and
astrophysics of GR. Excellent presentation of black holes and gravitational radiation. The
explanation of the geodesic equation and the affine connection is very clear and enlightening.
Not so much on cosmology, though a nice introduction to the physics of inflation. Overall, my
favourite text on this topic. (The metric has a different sign convention in HEL0O6 compared
with Weinberg 1972 & MTW [see below], as well as these notes. Be careful.)

Weinberg, S. 1972, Gravitation and Cosmology. Principles and Applications of the General
Theory of Relativity, (New York: John Wiley) Referenced as W72.

This has become a classic reference, but it is by now very dated. Very little material on black
holes, an awkward treatment of gravitational radiation, and an unsatisfying development of
the geometrical interpretation of the equations are all drawbacks. The author could not
be more explicit in his aversion to anything geometrical. Gravity is a field theory with a
mere geometrical “analogy,” according to Weinberg. From the introduction: “[A] student
who asked why the gravitational field is represented by a metric tensor, or why freely falling
particles follow geodesics, or why the field equations are generally covariant would come
away with the impression that this had something to do with the fact that space-time is
a Riemannian manifold.” Well, yes, actually. There is simply no way to understand the
equations of gravity without immersing oneself in geometry, and this point-of-view has led
to profound advances. (Please do come away from this course with the impression that
space-time is something very like a Riemannian manifold.) The detailed sections on classical
physical cosmology are this text’s main strength, and these are very fine indeed. Weinberg
also has a more recent graduate text on cosmology per se, (Cosmology 2007, Oxford: Oxford
University Press). This is very comprehensive, but at an advanced level and quite a difficult
read.

Misner, C. W., Thorne, K. S., and Wheeler, J. A. 1973, Gravitation, (New York: Freeman)
Reprinted 2017 by Princeton University Press. Referenced as MTW.

At 1280 pages, don’t drop this on your toe, not even the paperback version. MTW, as
it is known, is often criticised for its sheer bulk and its seemingly endless meanderings.
But look, I must say, in the end, there really is a lot of very good material in here, much
that is difficult to find anywhere else. It is a monumental achievement. It is also the
opposite of Weinberg: geometry is front and centre from start to finish, and there is lots
and lots of black hole and nice gravitational radiation physics, 40+ years on more timely
than ever. I heartily recommend its insightful discussion of gravitational radiation, now part
of the course syllabus. There is a “Track 1”7 and “Track 2” for aid in navigation; Track 1
contains the essentials. (Update: A new hardbook edition has been published in October
2017 by Princeton University Press. Text is unchanged, but there is interesting new prefatory
material.)

Hartle, J. B. 2003, Gravity: An Introduction to Einstein’s General Theory of Relativity, (San
Francisco: Addison-Wesley)

This is GR Lite, at a very different level from the previous three texts. But for what it is
meant to be, it succeeds very well. Coming into the subject cold, this is not a bad place
to start to get the lay of the land, to understand the issues in their broadest context, and



to be treated to a very accessible presentation. General Relativity is a demanding subject.
There will be times in your study of GR when it will be difficult to see the forest for the
trees, when you will feel overwhelmed with the calculations, drowning in a sea of indices and
Riemannian formalism. Everything will be all right: just spend some time with this text.

Ryden, Barbara 2017, Introduction to Cosmology, (Cambridge: Cambridge University Press)

Very recent and therefore up-to-date second edition of an award-winning text. The style is
clear and lucid, the level is right, and the choice of topics is excellent. Less GR and more
astrophysical in content but with a blend appropriate to the subject matter. Ryden is always
very careful in her writing, making this a real pleasure to read. Warmly recommended.

A few other texts of interest:

Binney J., and Temaine, S. 2008, Galactic Dynamics, (Princeton: Princeton University
Press) Masterful text on galaxies with an excellent cosmology treatment in the appendix.
Very readable, given the high level of mathematics.

Longair, M., 2006, The Cosmic Century, (Cambridge: Cambridge University Press) Excel-
lent blend of observations, theory and history of cosmology, as part of a more general study.
Good general reference for anyone interested in astrophysics.

Landau, L., and Lifschitz, E. M. 1962, Classical Theory of Fields, (Oxford: Pergamon) Clas-
sic advanced text; original and interesting treatment of gravitational radiation. Dedicated
students only!

Peebles, P. J. E. 1993, Principles of Physical Cosmology, (Princeton: Princeton University
Press) Authoritative and advanced treatment by the leading cosmologist of the 20th century,
but in my view a difficult and sometimes frustrating read. A better reference than text.

Shapiro, S., and Teukolsky S. 1983, Black Holes, White Dwarfs, and Neutron Stars, (Wiley:
New York) A text I grew up with. Very clear, with a nice summary of applications of GR to
compact objects and good physical discussions. Level is appropriate to this course. Highly
recommended.



Notational Conventions & Miscellany

e Spacetime dimensions are labelled 0, 1, 2, 3 or (Cartesian) ct, x, y, z or (spherical) ct, 7,0, ¢.
Time is always the O-component. Beware of extraneous factors of ¢ in 0-index quan-
tities, present in e.g. T% = pc?, dz’= cdt, but absent in e.g. goo = —1. (That is one
reason why some like to set ¢ = 1 from the start.)

e Repeated indices are summed over, unless otherwise specified. (Einstein summation
convention.)

e The Greek indices &, A, i, v etc. are used to represent arbitrary spacetime components
in all general relativity calculations.

e The Greek indices a, 3, etc. are used to represent arbitrary spacetime components in
special relativity calculations (Minkowski spacetime).

e The Roman indices 7, j, k are used to represent purely spatial components in any space-
time.

e The Roman indices a, b, ¢c,d are used to represent fiducial spacetime components for
mnemonic aids, and in discussions of how to perform index-manipulations and/or per-
mutations, where Greek indices may cause confusion.

e x is used to denote a generic dummy index, always summed over with another .

e The tensor n®® is numerically identical to 7,5 with —1,1,1,1 corresponding to the
00, 11, 22, 33 diagonal elements. Other texts may use the sign convention 1, —1, —1, —1.
Be careful.

e Viewed as matrices, the metric tensors g, and g"” are always inverses. The respective
diagonal elements of diagonal g, and g"” metric tensors are therefore reciprocals.

e ¢ almost always denotes the speed of light. It is occasionally used as an (obvious)
tensor index. ¢ as the velocity of light is only occasionally set to unity in these notes
or in the problem sets; if so it is explicitly stated. (Relativity texts often set ¢ = 1 to
avoid clutter.) Newton’s G is never unity, no matter what. And don’t you even think
of setting 27 to unity.

e [t is “Lorentz invariance,” but “Lorenz gauge.” Not a typo, actually two different
blokes.



Really Useful Numbers

c = 2.99792458 x 10® m s™! (Exact speed of light.)

¢ = 8.9875517873681764 x 10'® m? s72 (Exact!)

a = 7565723 x 10716 J m~3 K=* (Blackbody radiation constant.)
G =6.67384 x 107" m3 kg™! s72 (Newton’s G.)

M = 1.98855 x 10*° kg (Mass of the Sun.)

re = 6.955 x 10* m (Radius of the Sun.)

GM = 1.32712440018 x 10*® m3 s72 (Solar gravitational parameter; much more accurate
than either G or M, separately.)

2G M /c* = 2.9532500765 x 10 m (Solar Schwarzschild radius.)
GM¢/c*re = 2.1231 x 107% (Solar relativity parameter.)

Mg = 5.97219 x 10?* kg (Mass of the Earth)

re = 6.371 x 10° m (Mean Earth radius.)

G Mg = 3.986004418 x 10 m? s=2(Earth gravitational parameter.)
2G My /c* = 8.87005608 x 10~® m (Earth Schwarzschild radius.)
GMg/Prg = 6.961 x 1071 (Earth relativity parameter.)

1 AU = 1495978707 x 10"'m (1 Astronomical Unit by definition.)
1pc = 3.085678 x 10 m (1 parsec.)

Hy = 100k km s™* Mpc™' (Hubble constant. h ~ 0.7. H;' = 3.085678h~! x 10'7s=
9.778h~1 x 10% yr.)

For diagonal g,

1 99aa
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4y, = —-— 2% b, N M
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Ricci tensor:
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Most of the fundamental ideas of
science are essentially simple, and
may, as a rule, be erpressed in a

language comprehensible to everyone.

— Albert Einstein

1 An overview

1.1 The legacy of Maxwell

We are told by the historians that the greatest Roman generals would have their most
important victories celebrated with a triumph. The streets would line with adoring crowds,
cheering wildly in support of their hero as he passed by in a grand procession. But the
Romans astutely realised the need for a counterpoise, so a slave would ride with the general,
whispering in his ear, “All glory is fleeting.”

All glory is fleeting. And never more so than in theoretical physics. No sooner is a triumph
hailed, but unforseen puzzles emerge that couldn’t possibly have been anticipated before the
breakthrough. The mid-nineteenth century reduction of all electromagnetic phenomena to
four equations, the “Maxwell Equations,” is very much a case in point.

Maxwell’s equations united electricity, magnetism, and optics, showing them to be differ-
ent manifestations of the same field. The theory accounted for the existence of electromag-
netic waves, explained how they propagate, and that the propagation velocity is 1/, /€opio (€o

is the permitivity, and o the permeability, of free space). This combination is numerically
precisely equal to the speed of light. Light is electromagnetic radiation! The existence of
electromagnetic raditation was then verified by brilliant experiments carried out by Heinrich
Hertz in 1887, in which the radiation was directly generated and detected.

But Maxwell’s theory, for all its success, had disquieting features when one probed. For
one, there seemed to be no provision in the theory for allowing the velocity of light to change
with the observer’s velocity. The speed of light is aways 1/,/€pio. A related point was
that simple Galilean invariance was not obeyed, i.e. absolute velocities seemed to affect the
physics, something that had not been seen before. Lorentz and Larmor in the late nineteenth
century discovered that Maxwell’s equations did have a simple mathematical velocity trans-
formation that left them invariant, but it was not Galilean, and most bizarrely, it involved
changing the time. The non-Galilean character of the transformation equation relative to
the “aetherial medium” hosting the waves was put down, a bit vaguely, to electromagnetic
interactions between charged particles that truly changed the length of the object. In other
words, the non-Galilean transformation was somehow electrodynamical in origin. As to the
time change...well, one would just have to put up with it as an aetherial formality.

All was resolved in 1905 when Einstein showed how, by adopting as postulates (i) the
speed of light is constant in all frames (as had already been indicated by a body of irrefutable
experiments, including the famous Michelson-Morley investigation); (ii) the truly essential
Galilean notion that relative uniform velocity cannot be detected by any physical experiment,
that the “Lorentz transformations” (as they had become known) must follow. Moreover,
electromagnetic radiation took on a reality its own. The increasingly problematic aether
medium that supposedly hosted these waves could be abandoned; the waves were hosted by
the vacuum itself. Finally, all equations of physics, not just electromagnetic phenomena, had
to be invariant in form under the Lorentz transformations, even with its peculiar relative
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time variable. The transformations were purely kinematic, having nothing in particular to
do with electrodynamics. They were much more general. These ideas and the consequences
that ensued collectively from them became known as relativity theory, in reference to the
invariance of form with respect to relative velocities. The relativity theory stemming from
Maxwell’s equations is rightly regarded as one of the crown jewels of 20th century physics.
In other words, a triumph.

1.2 The legacy of Newton

Another triumph, another problem. If indeed, all of physics had to be compatible with
relativity, what of Newtonian gravity? It works incredibly well, yet it is manifestly not
compatible with relativity, because Poisson’s equation

V20 = 4rGp (1)

implies instantaneous transmission of changes in the gravitational field from source to poten-
tial. (Here ® is the Newtonian potential function, G the Newtonian gravitational constant,
and p the mass density.) Wiggle the density locally, and throughout all of space there must
instantaneously be a wiggle in ®, as given by equaton (1).

In Maxwell’s theory, the electrostatic potential satisfies its own Poisson equation, but the
appropriate time-dependent potential obeys a wave equation:

Vo — ——— = - (2)

and solutions of this equation propagate signals at the speed of light c. In retrospect, this is
rather simple. Mightn’t it be the same for gravity?

No. The problem is that the source of the signals for the electric potential field, i.e. the
charge density, behaves differently from the source for the gravity potential field, i.e. the mass
density. The electrical charge of an individual bit of matter does not change when the matter
is viewed in motion, but the mass does: the mass increases with velocity. This seemingly
simple detail complicates everything. Moreover, in a relativistic theory, energy, like matter,
is a source of a gravitational field, including the distributed energy of the gravitational field
itself! A relativistic theory of gravity would have to be nonlinear. In such a time-dependent
theory of gravity, it is not even clear a priori what the appropriate mathematical objects
should be on either the right side or the left side of the wave equation. Come to think of it,
should we be using a wave equation at all?

1.3 The need for a geometrical framework

In 1908, the mathematician Hermann Minkowski came along and argued that one should
view the Lorentz transformations not merely as a set of rules for how coordinates (including a
time coordinate) change from one constant-velocity reference frame to another, but that these
coordinates should be regarded as living in their own sort of pseudo-Euclidian geometry—a
spacetime, if you will: Minkowski spacetime.

To understand the motivation for this, start simply. We know that in ordinary Euclidian
space we are free to choose any coordinates we like, and it can make no difference to the
description of the space itself, for example, in measuring how far apart objects are. If (z,y)
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is a set of Cartesian coordinates for the plane, and (z/, ") another coordinate set related to
the first by a rotation, then

dz® + dy* = da”? + dy”* (3)

i.e., the distance between two closely spaced points is the same number, regardless of the
coordinates used. dz? + dy? is said to be an “invariant.”

Now, an abstraction. There is nothing special from a mathematical viewpoint about
the use of dz? + dy? as our so-called metric. Imagine a space in which the metric invariant
was dy? — dz?. From a purely mathematical point of view, we needn’t worry about the
plus/minus sign. An invariant is an invariant. However, with dy? — dz? as our invariant, we
are describing a Minkowski space, with déy = cdt and dx an ordinary space interval, just as
before. Under Lorentz transformations, c?dt? — dz? is in fact an invariant quantity, and this
is precisely what we need in order to guarantee that the speed of light is always constant—an
invariant! In this case, c2dt? — da? is always zero for light propagation along x, whatever
coordinates (read “observers”) are involved, and more generally,

Adt? —dx® —dy* —d2* =0 (4)

will guarantee the same in any direction. We have thus taken a kinematical requirement—
that the speed of light be a universal constant—and given it a geometrical interpretation in
terms of an invariant quantity (a “quadratic form” as it is sometimes called) in Minkowski
space. Rather, Minkowski’s spacetime.

Pause. As the French would say, “Bof.” And so what? Call it whatever you like.
Who needs obfuscating mathematical pretence? Eschew obfuscation! Lots of things add
quadratically. The Lorentz transform stands on its own! I like my way! That was very much
Einstein’s initial take on Minkowski’s pesky little meddling with his theory.

However, it is the geometrical viewpoint that is the more fundamental. In Minkowski’s
1908 tour-de-force paper, we find the first mention of 4-vectors, of relativistic tensors, of the
Maxwell equations in manifestly covariant form, and the realisation that the magnetic vec-
tor and electrostatic potentials combine to form a 4-vector. Gone are the comforting clocks
and rods of 1905 relativity. This is more than “iiberfliissige Gelehrsamkeit” (superfluous
erudition), Einstein’s dismissive term for the whole business. In 1912, Einstein dramatically
changed his opinion. His great revelation, his big idea, was that the effect of the presence of
matter (or its equivalent enerqy) in the universe is to distort a truly Minkowski spacetime,
and this embedded distortion manifests itself as the gravitational field. Minkowski spacetime
is physical stuff. This same distortion must become, in the limit of weak gravity, familiar
Newtonian theory. You thought gravity was dynamics? Nope. Gravity is a purely geomet-
rical phenomenon.

Whoa. Now that is one big idea. It is an idea that will take the rest of this course—and
beyond—to understand. How did Einstein make this leap? Why did he change his mind?
Where did this notion of a gravity-geometry connection come from?

From a simple observation. In a freely falling elevator, or more safely in an aircraft
executing a ballistic parabolic arch, one feels “weightless.” That is, the effect of gravity
can be made to locally disappear in the appropriate reference frame—the right coordinates.
This is because gravity has exactly the same effect on all types mass, regardless of compo-
sition, which is precisely what we would expect if objects were responding to background
geometrical distortions instead of an applied force. In free-fall, the effective absence of grav-
ity, we locally return to the environment of undistorted (“flat,” in mathematical parlance)
Minkowski spacetime, much as a flat Euclidian tangent plane is an excellent local approxi-
mation to the surface of a curved sphere. This is why it is easy to be fooled into thinking that
the earth is flat, if your view is local. “Tangent plane coordinates” on small scale road maps
locally eliminate spherical geometry complications, but if we are flying to Hong Kong, the
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earth’s curvature is important. Einstein’s notion that the effect of gravity is to cause a geo-
metrical distortion of an otherwise flat Minkowski spacetime, and therefore that it is always
possible to find coordinates in which local distortions may be eliminated to leading order, is
the foundational insight of general relativity. It is known as the Equivalence Principle. We
will have more to say on this topic.

Spacetime. Spacetime. Bringing in time, you see, is everything. Who would have thought
of it in a geometrical theory? Non-Euclidean geometry, as developed by the great mathemati-
cian Bernhard Riemann, begins with just the notion we’ve been discussing, that any distorted
space looks locally flat. Riemannian geometry is the natural language of gravitational theory,
and Riemann himself had the notion that gravity might arise from a non-Euclidian curvature
in three-dimensional space. He got nowhere, because time was not part of his geometry. He
is thinking of space. It was the (in my view underrated) genius of Minkowski, who in showing
us how to incorporate time into a purely geometrical theory, allowed Einstein to take the
crucial next step, freeing himself to think of gravity in geometrical terms, without having
to agonise over whether it made any sense to have time as part of a geometrical framework!
In fact, the Newtonian limit is reached not from the leading order curvature terms in the
spatial part of the geometry, but from the leading order “curvature” (if that is the word) of
the time dimension. That is why Riemann failed.

Riemann created the mathematics of non-Euclidian geometry. Minkoswki realised that
the natural language of the Lorentz transformations was neither electrodynamical, nor even
kinematic, it was really geometrical. But you need to include time as a component of the
geometrical interpretation! Einstein took the great leap of realising that gravity arises from
the distortions of Minkowski’s flat spacetime created by the existence of mass/energy.

Well done. You now understand the conceptual framework of general relativity, and that
is itself a giant leap. From here on, it is just a matter of the technical details. But then, you
and I also can paint like Leonardo da Vinci. It is just a matter of the technical details.
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From henceforth, space by itself and
time by itself, have vanished into the
merest shadows, and only a blend of

the two exists in its own right.

— Hermann Minkowsk:

2 The toolbox of geometrical theory: Minkowski space-
time

In what sense is general relativity “general?” In the sense that as we are dealing with a
true spacetime geometry, the essential mathematical description must be the same in any
coordinate system at all, not just among those related by constant velocity reference frame
shifts, nor even just among those coordinate transformations that make tangible physical
sense as belonging to some observer or another. Any mathematically proper coordinates at
all, however unusual. Full stop.

We need coordinates for our description of the structure of spacetime, but somehow the
essential physics (and other mathematical properties) must not depend on which coordinates
we use, and it is no easy business to formulate a theory which satisfies this restriction. We
owe a great deal to Bernhard Riemann for coming up with a complete mathematical theory
for these non-Euclidian geometries. The sort of geometry in which it is always possible to
find coordinates in which the space looks locally smooth is known as a Riemannian manifold.
Mathematicians would say that an n-dimensional manifold is homeomorphic to n-dimensional
Euclidian space. Actually, since our local invariant interval c?dt? — da® is not a simple sum
of squares, but contains a minus sign, the manifold is said to be pseudo-Riemannian. Pseudo
or no, the descriptive mathematical machinery is the same.

The objects that geometrical theories work with are scalars, vectors, and higher order
tensors. You have certainly seen scalars and vectors before in your other physics courses,
and you may have encountered tensors as well. We will need to be very careful how we define
these objects, and very careful to distinguish them from objects that look like vectors and
tensors (because they have many components and index labels) but actually are not.

To set the stage, we begin with the simplest geometrical objects of Minkowski spacetime
that are not just simple scalars: the 4-vectors.
2.1 The 4-vector formalism

In their most elementary guise, the familiar Lorentz transformations from “fixed” laboratory
coordinates (t, z,y, z) to moving frame coordinates (t',z’, 1/, 2’) take the form

ct' = y(ct —vx/c) = y(ct — Bx) (5)
o = 4(z — vt) = (z — Bt ()
y =y (7)

2=z (8)
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where v is the relative velocity (taken along the x axis), ¢ the speed of light, § = v/c and

1 1
V1—v?/c? B V1-p52 ©)

is the Lorentz factor. The primed frame can be thought of as the frame moving with an
object we are studying, that is to say the object’s rest frame. To go backwards to find (z,t)
as a function (2/;t), just interchange the primed and unprimed coordinates in the above
equations, and then flip the sign of v. Do you understand why this works?

v

Ezercise.  Show that in a coordinate free representation, the Lorentz transformations are
ct' =~(ct — B+ x) (10)
(=1
32
where ¢ = v is the vector velocity and boldface x’s are spatial vectors. (Hint: This is not nearly

as scary as it looks! Note that 3/ is just a unit vector in the direction of the velocity and sort
out the components of the equation.)

' =x+

(B-x)B—ctB (11)

Ezercise. The Lorentz transformation can be made to look more rotation-like by using hyperbolic
trigonometry. The idea is to place equations (5)—(8) on the same footing as the transformation of
Cartesian position vector components under a simple rotation, say about the z axis:

' =z cosh +ysinb (12)
Yy = —wxsinf +ycosb (13)
2=z (14)
Show that if we define

B = tanh(, (15)

then
v =cosh(, ~f =sinh(, (16)

and
ct' = ctcosh ¢ — xsinh (, (17)
2’ = —ctsinh ¢ + x cosh (. (18)

What happens if we apply this transformation twice, once with “angle” ¢ from (z,t) to (2/,¢'), then
with angle £ from (2/,t) to (2”,t")? How is (z,t) related to (2”,¢")?

Following on, rotations can be made to look more Lorentz-like by introducing

1
a=tanf, ['= —— 19
V14 a? (19)
Then show that (12) and (13) become
' =T(z+ ay) (20)
y' =T(y — ax) (21)
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Thus, while a having a different appearance, the Lorentz and rotational transformations have math-
ematical structures that are similar. The Universe has both timelike and spacelike dimensional
extensions; what distinguishes a timelike extension from a spacelike extension is the symmetry it
exhibits. Spacelike extensions exhibit rotational (trigonometric) symmetry amongst themselves.
Timelike extensions exhibit Lorentzian (hyperbolic trigonometric) symmetry with a spacelike ex-
tension, and probably nothing with another timelike extension. Maybe that is self-consistently
why there can only be one timelike dimension in the Universe. The fundamental imperative for
symmetry is often a powerful constraint in physics.

Of course lots of quantities besides position are vectors, and it is possible (indeed de-
sirable) just to define a quantity as a vector if its individual components satisfy equations
(12)—(14). Likewise, we find that many quantities in physics obey the transformation laws of
equations (5-8), and it is therefore natural to give them a name and to probe their proper-
ties more deeply. We call these quantities 4-vectors. They consist of an ordinary vector V',
together with an extra component —a “time-like” component we will designate as V°. (We
use superscripts for a reason that will become clear later.) The“space-like” components are
then V1, V2 V3. The generic form for a 4-vector is written V<, with « taking on the values
0 through 3. Symbolically,

Ve= (V0 V) (22)

We have seen that (ct, ) is one 4-vector. Another, you may recall, is the 4-momentum,
p* = (E/c,p) (23)

where p is the ordinary momentum vector and E' is the total energy. Of course, we speak of
relativistic momentum and energy:

p=ymv, E=ymc (24)
where m is a particle’s rest mass. Just as
(ct)? — 2 (25)
is an invariant quantity under Lorentz transformations, so too is
E? — (pc)* = m?*c! (26)
A rather plain 4-vector is p® without the coefficient of m. This is the 4-velocity U?,
U® =~(c,v) (27)

Note that in the rest frame of a particle, U° = ¢ (a constant) and the ordinary 3-velocity
components U = 0. To get to any other frame, just use (“boost with”) the Lorentz transfor-
mation along the v direction. (Be careful with the sign of v). We don’t have to worry that
we boost along one axis only, whereas the velocity has three components. If you wish, just
rotate the axes as you like after we’ve boosted. This sorts out all the 3-vector components
and leaves the time (“0”) component untouched.

Humble in appearance, the 4-velocity is a most important 4-vector. Via the simple trick
of boosting, the 4-velocity may be used as the starting point for constructing many other
important physical 4-vectors. Consider, for example, a charge density py, which is at rest.
We may create a 4-vector which, in the rest frame, has only one component: pyc is the lonely
time component and the ordinary spatial vector components are all zero. It is just like U?,
only with a different normalisation constant. Now boost! The resulting 4-vector is denoted

J* = v(cpo, vpo) (28)
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The time component gives the charge density in any frame, and the 3- vector components are
the corresponding standard current density J! This 4-current is the fundamental 4-vector
of Maxwell’s theory. As the source of the fields, this 4-vector source current is the basis for
Maxwell’s electrodynamics being a fully relativistic theory. J° is the source of the electric
field potential function ®, and J is the source of the magnetic field vector potential A.
Moreover, as we will shortly see,

A% = (D, A/c) (29)

is itself a 4-vector! From here, we can generate the electromagnetic fields themselves from
the potentials by constructing a tensor...well, we are getting a bit ahead of ourselves.

2.2 Transformation of gradients

We have seen how the Lorentz transformation express 2'¢ as a function of the x coordinates.
It is a simple linear transformation, and the question naturally arises of how the partial
derivatives, 0/0t, 0/0x transform, and whether a 4-vector can be constructed from these
components. This is a simple exercise. Using

ct = ~y(ct' + Ba’) (30)
r =2 + Bet’) (31)
we find o oto ord 9 0
X
o " ovol Toves o 0% (32)
0 ox 0 ot 0 0 10
o0 " owor Torar Yor TP (33)

In other words,

10 10 0
cor :7(5&”%) (34)
0 0 10
O —7<a—x+5ga) (35)
and for completeness,
0 0
o7 " ay .
0 0
5% = B (37)

This is not the Lorentz transformation (5)—(8); it differs by the sign of v. By contrast,
coordinate differentials dz® transform, of course, just like z¢:

cdt’ = ~(edt — Bdx), (38)
dz' = ~(dz — Bedt), (39)
dy = dy, (40)
dz' = dz. (41)
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This has a very important consequence:

i, 0 dv. (0 0 0 10

or simplifying,

ot ox' ot ox ot oz

Adding y and z into the mixture changes nothing. Thus, a scalar product exists between dxz®
and 0/0x“ that yields a Lorentz scalar, much as dx - V, the ordinary complete differential, is
a rotational scalar. It is the fact that only certain combinations of 4-vectors and 4-gradients
appear in the equations of physics that allows these equations to remain invariant in form
from one reference frame to another.

dt’a— + dw’a— =*(1 - %) (dta— + dwa—) = dta— + dma— (43)

It is time to approach this topic, which is the mathematical foundation on which special
and general relativity is built, on a firmer and more systematic footing.

2.3 Transformation matrix

We begin with a simple but critical notational convention: repeated indices are summed over,
unless otherwise explicitly stated. This is known as the FEinstein summation convention,
invented to avoid tedious repeated summation »’s. For example:

o 0 0 0 0 0
dx e dt 5 +dx pe +dy a9 +dz P (44)
I will often further shorten this to dz“d,. This brings us to another important notational
convention. I was careful to write J,, not 0% Superscripts will be reserved for vectors,
like dx® which transform like (5) through (8) from one frame to another (primed) frame
moving a relative velocity v along the x axis. Subscripts will be used to indicate vectors that
transfrom like the gradient components in equations (34)—(37). Superscipt vectors like dz®
are referred to as contravariant vectors; subscripted vectors as covariant. (The names will
acquire significance later.) The co- contra- difference is an important distinction in general
relativity, and we begin by respecting it here in special relativity.

Notice that we can write equations (38) and (39) as

[—cdt'] = ~y([—cdt] + pdx) (45)
dz' = ~(dz + f[—cdt]) (46)
so that the 4-vector (—cdt, dx,dy, dz) is covariant, like a gradient! We therefore have
dz® = (cdt, dz, dy, dz) (47)
dre = (—cdt,dz, dy, dz) (48)

It is easy to go between covariant and contravariant forms by flipping the sign of the time
component. We are motivated to formalise this by introducing a matrix 7,4 defined as

-1 0 0 0

0 0
Nap = 0 0 (49)
0 1

o O =
O = O
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Then dz, = n.sdz? “lowers the index.” We will write n*? to raise the index, though it is a
numerically identical matrix. Note that the invariant spacetime interval may be written

Adr? = Adt? — da® — dy® — d2* = —n.pda®da” (50)

The time interval dr is just the “proper time,” the time shown ticking on the clock in the
rest frame moving with the object of interest (since in this frame all spatial differentials dz*
are zero). Though introduced as a bookkeeping device, 7,4 is an important quantity: it goes
from being a constant matrix in special relativity to a function of coordinates in general
relativity, mathematically embodying the departures of spacetime from simple Minkowski
form when matter is present.

The standard Lorentz transformation may now be written as a matrix equation, dz'® =
Aaﬂdxﬁ , where

v =By 0 0 dx?

o 38 | =By v 00 dx!
Apdr=1"¢" ¢ 1 ¢ dz? (51)

0 0 01 dz?

A% is symmetric in o and 3. (A possible notational ambiguity is difficult to avoid here:
f and v used as subscripts or superscripts are of course never velocity variables!) Direct
matrix multiplication gives:

BN Nae = Ngy (52)
(Do it, and notice that the n matrix must go in the middle...why?) Then, if V* is any

contravariant vector and W, any covariant vector, V*W,, must be an invariant (or “scalar”)

because
VW), = VW Pnge = A VIN W nge = VIW e = VIW, (53)

For covariant vectors, for example 3, the transformation is 0/, = Aﬁoﬁﬂ, where Aﬁa is
the same as A® | but with the sign of 3 reversed:

v By 00
ia | By v 00
=10 0 10 (54)
0 0 0 1
Note that R 5
A%AP = 62, (55)

where d5 is the Kronecker delta function. This leads immediately once again to V'*W; =
VeW,.

Notice that equation (38) says something rather interesting in terms of 4-vectors. The
right side is just proportional to —dz*U,, where U, is the (covariant) 4-vector corresponding
to ordinary velocity v. Consider now the case dt’ = 0, a surface in t, x,y, z, spacetime cor-
responding to simultaneity in the frame of an observer moving at velocity v. The equations
of constant time in this frame are given by the requirement that dz® and U, are orthogonal.

Ezercise. Show that the general Lorentz transformation matrix is:

v —Bs — 1Py LA
Ao | 7B 1+ (y=DBY/B (Y= 1)BuBy/B (v = 1)Bp:/B? (56)
ST =By (- DBB/E 1+ (- VBB (1= 1)8,B./8

=B (y=DBB/B (V= 1)BB:/B 1+ (v - 1)B2/B
Hint: Keep calm and use (10) and (11).
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2.4 Tensors

There is more to relativistic life than vectors and scalars. There are objects called tensors,
with more that one indexed component. But possessing indices isn’t enough! All tensor
components must transform in the appropriate way under a Lorentz transformation. To
play off an example from Prof. S. Blundell, I could make a matrix of grocery prices with a
row of dairy products (a;; = milk, a;5 = butter), and a row of vegetables (as; = carrots,
ase = spinach). If I put this collection in my shopping cart and push the cart at some velocity
v, I shouldn’t expect the prices to change by a Lorentz transformation!

A tensor 7%’ must transform according to the rule

afl __ Aa AB €
7% = A NPT, (57)
while .
/ €
T.5 = AT A 5T, (58)
and of course / B
T = AavAEBT], (59)

You get the idea. Contravariant superscript use A, covariant subscript use A.

Tensors are not hard to find. Remember equation (52)7 It works for /~X"‘B as well, since it
doesn’t depend on the sign of 8 (or its magnitude for that matter):

”15/167%6 = gy (60)

S0 1ap is a tensor, with the same components in any frame! The same is true of 05, a mized

tensor (which is the reason for writing its indices as we have), that we must transform as

follows: . -

Here is another tensor, slightly less trivial:
W = yeu” (62)

where the U'’s are 4-velocities. This obviously transforms as tensor, since each U obeys its
own vector transformation law. Consider next the tensor

T = po(uu’) (63)

where the () notation indicates an average of all the 4-velocity products u®u” taken over
a whole swarm of little particles, like a gas. (An average of 4-velocities is certainly itself a
4-velocity, and an average of all the little particle tensors is itself a tensor.) p, is a local rest
density, a scalar number. (Here, 7 is not an index.)

The component T% is just pc?, the energy density of the swarm, where p (without the
r) includes both a rest mass energy and a thermal contribution. (The thermal part comes
from averaging the “swarming” ~ factors in the u® = vc.) Moreover, if, as we shall assume,
the particle velocities are isotropic, then 7% vanishes if a # 3. Finally, when a = 3 # 0,
then T (no sum!) is by definition the pressure P of the swarm. (Do you see how this works
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out with the  factors when the u’ are relativistic?) Hence, in the frame in which the swarm
has no net translational bulk motion,

p2 0 0 0

. 0 P 0 0

=19 0o p o (64)
0 0 0 P

This is, in fact, the most general form for the so-called energy-momentum stress tensor for
an isotropic fluid in the rest frame of the fluid.

To find T%% in any frame with 4-velocity U® we could adopt a brute force method, boost
away, and apply the A matrix twice to the rest frame form, but what a waste of effort that
would be! Here is a better idea. If we can find any true tensor that reduces to our result
in the rest frame, then that tensor is the unique stress tensor. Proof: if a tensor is zero in
any frame, then it is zero in all frames, as a trivial consequence of the transformation law.
Suppose the tensor I construct, which is designed to match the correct rest frame value, may
not be (you claim) correct in all frames. Hand me your tensor, the one you think is the
correct choice. Now, the two tensors by definition match in the rest frame. I'll subtract one
from the other to form the difference between my tensor and your tensor. The difference
is also a tensor, but it vanishes in the rest frame by construction. Hence this “difference
tensor” must vanish in all frames, so your tensor and mine are identical after alll Corollary:
if you can prove that the two tensors are the same in any one particular frame, then they
are the same in all frames. This is a very useful ploy.

The only two tensors we have at our disposal to construct 7% are 7 and U*U”, and
there is only one linear superposition that matches the rest frame value and does the trick:

T = Pp™ + (p+ P/A)UU? (65)

This is the general form of energy-momentum stress tensor appropriate to an ideal fluid.

2.4.1 Conservation of 7T°°

One of the most salient properties of 7% is that it is conserved, in the sense of
oT8
=0
oz

Since gradients of tensors transform as tensors, this must be true in all frames. What,
exactly, are we conserving?

(66)

First, the time-like O-component of this equation is

%{72 (p+Pc—Z2)] +V- [72 <ﬂ+§) v] =0 (67)

which is the relativistic version of mass conservation,

0

P () = 0. (68)
ot

Elevated in special relativity, it becomes a statement of energy conservation. So one of the

things we are conserving is energy. (And not just rest mass energy by the way, thermal

energy as well!) This is good.
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The spatial part of the conservation equation reads

o[, P o\ [, P oP
a0t (o e)o) (@) [ (e ) o] + 5 0 )

You may recognise this as Euler’s equation of motion, a statement of momentum conserva-
tion, upgraded to special relativity. Conserving momentum is also good.

What if there are other external forces? The idea is that these are included by expressing
them in terms of the divergence of their own stress tensor. Then it is the total 7%? including,
say, electromagnetic fields, that comes into play. What about the force of gravity? That, it
will turn out, is on an all-together different footing.

You start now to gain a sense of the difficulty in constructing a theory of gravity com-
patible with relativity. The density p is part of the stress tensor, and it is the entire stress
tensor in a relativistic theory that would have to be the source of the gravitational field,
just as the entire 4-current J* is the source of electromangetic fields. No fair just picking
the component you want. Relativistic theories work with scalars, vectors and tensors to
preserve their invariance properties from one frame to another. This insight is already an
achievement: we can, for example, expect pressure to play a role in generating gravitational
fields. Would you have guessed that? Our relativistic gravity equation maybe ought to look
something like :

1 9?°GH
2 Ot?
where G* is some sort of, I don’t know, conserved tensor guy for the...spacetime geome-
try and stuff? In Maxwell’s theory we had a 4-vector (A%) operated on by the so-called
“d’Alembertian operator” V2 — (1/¢)?9?/0t* on the left side of the equation and a source
(J*) on the right. So now we just need to find a G* tensor to go with 7#”. Right?

Actually, this really is a pretty good guess. It is more-or-less correct for weak fields, and
most of the time gravity is a weak field. But...well...patience. One step at a time.

V2GH —

= (70)
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Then there occurred to me the
‘glicklichste Gedanke meines Lebens,’
the happiest thought of my life, in the
following form. The gravitational field
has only a relative existence in a way

similar to the electric field gemerated

by magnetoelectric induction. Because !

for an observer falling freely from the
roof of a house there exists—at least
m  his  immediate surroundings—no

gravitational field.

— Albert Einstein

3 The effects of gravity

The central idea of general relativity is that presence of mass (more precisely the presence
of any stress-energy tensor component) causes departures from flat Minkowski spacetime
to appear, and that other matter (or radiation) responds to these distortions in some way.
There are then really two questions: (i) How does the affected matter/radiation move in
the presence of a distorted spacetime?; and (ii) How does the stress-energy tensor distort
the spacetime in the first place? The first question is purely computational, and fairly
straightforward to answer. It lays the groundwork for answering the much more difficult
second question, so let us begin here.

3.1 The Principle of Equivalence

We have discussed the notion that by going into a frame of reference that is in free-fall, the
effects of gravity disappear. In this era in which space travel is common, we are all familiar
with astronauts in free-fall orbits, and the sense of weightlessness that is produced. This
manifestation of the Equivalence Principle is so palpable that hearing total mishmashes
like “In orbit there is no gravity” from an over-eager science correspondent is a common
experience. (Our own BBC correspondent in Oxford Astrophysics, Prof. Christopher Lintott,
would certainly never say such a thing.)

The idea behind the equivalence principle is that the m in ' = ma and the m in the
force of gravity F, = mg are the same m and thus the acceleration caused by gravity, g, is
invariant for any mass. We could imagine, for example, that F' = m;a and F, = m,g, where
mg is some kind of “massy” property that might vary from one type of body to another
with the same m;. In this case, the acceleration a is m,g/my, i.e., it varies with the ratio of
inertial to gravitational mass from one body to another. How well can we actually measure
this ratio, or what is more to the point, how well do we know that it is truly a universal
constant for all types of matter?

The answer is very, very well indeed. We don’t of course do anything as crude as directly
measure the rate at which objects fall to the ground any more, a la Galileo and the tower
of Pisa. As with all classic precision gravity experiments (including those of Galileo!) we

'With apologies to any readers who may actually have fallen off the roof of a house—safe space statement.
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Figure 1: Schematic diagram of the E&étvos experiment. (Not to scale!) A barbell
shape, the red object above, is hung from a pendulum on the surface of a rotating Earth,
with two masses of two different types of material, say copper and lead. Each mass is
affected by gravity (g), pulling it to the centre of the earth with a force proportional to
a gravitational mass mgy, and a centrifugal force (c¢) proportional to the inertial mass my,
due to the earth’s rotation. Forces are shown as blue arrows, rotation axis as a maroon
arrow. Any difference between the inertial to gravitational mass ratio (in copper and lead
here) will produce an unbalanced torque about the axis of the suspending fibre of the
barbell, arising from the g and c forces.

use a pendulum. The first direct measurement of the gravitational to inertial mass actually
predates relativity, the so-called E6tvos experiment, after Baron Lorand E6tvos (1848-1919).
(Pronouced “6tvosh” with 6 as in German schon.)

The idea is shown in schematic form in figure [1]. Hang a pendulum from a string, but
instead of hanging a big mass, hang a rod, and put two masses of two different types of
material at either end. There is a force of gravity toward the center of the earth (g in the
figure), and a centrifugal force (¢) due to the earth’s rotation. The net force is the vector
sum of these two, and if the components of the acceleration perpendicular to the string
of each mass do not precisely balance, and they won't if m,/m; is not the same for both
masses, there will be a net torque twisting the masses about the string (a quartz fibre in
the actual experiment). The fact that no such twist is measured is an indication that the
ratio my/m; does not, in fact, vary. In practise, to achieve high accuracy, the pendulum
rotates with a tightly controlled period, so that the masses would be sometimes hindered
by any putative torque, sometimes pushed forward by this torque. This would imprint a
frequency dependence onto the motion, and the resulting signal component at a particular
frequency can be very sensitively constrained. Experiment shows that the ratio between any
difference in the twisting accelerations on either mass and the average acceleration must be
less than a few parts in 10" (Su et al. 1994, Phys Rev D, 50, 3614). With direct laser
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ranging experiments to track the Moon’s orbit, it is possible, in effect, to use the Moon and
Earth as the masses on the pendulum as the ey rotate around the Sun! This gives an accuracy
an order of magnitude better, a part in 10! (Williams et al. 2012, Class. Quantum Grav.,
29, 184004), an accuracy comparable to measurlng the distance to the Sun to within the size
of your thumbnail.

There are two senses in which the Equivalence Principle may be used, a strong sense and
weak sense. The weak sense is that it is not possible to detect the effects of gravity locally in
a freely falling coordinate system, that all matter behaves identically in a gravitational field
independent of its composition. Experiments can test this form of the Principle directly.
The strong, much more powerful sense, is that all physical laws, gravitational or not, behave
in a freely falling coordinate system just as they do in Minkowski spacetime. In this sense,
the Principle is a postulate which appears to be true.

If going into a freely falling frame eliminates gravity locally, then going from an inertial
frame to an accelerating frame reverses the process and mimics the effect of gravity—again,
locally. After all, if in an inertial frame

d*x

and we transform to the accelerating frame 2’ by x = 2’ + gt?/2, where g is a constant, then

d*x
dt?

which looks an awful lot like motion in a gravitational field.

One immediate consequence of this realisation is of profound importance: gravity affects
light. In particular, if we are in an elevator of height h in a gravitational field of local
strength ¢, locally the physics is exactly the same as if we were accelerating upwards at g.
But the effect of this on light is then easily analysed: a photon released upwards reaches a
detector at height h in a time h/c, at which point the detector is moving at a velocity gh/c
relative to the bottom of the elevator (at the time of release). The photon is measured to
be redshifted by an amount gh/c?, or ®/c* with ® being the gravitational potential per unit
mass at h. This is the classical gravitational redshift, the simplest nontrivial prediction of
general relativity. The gravitational redshift has been measured accurately using changes in
gamma ray energies (RV Pound & JL Snider 1965, Phys. Rev., 140 B, 788).

The gravitational redshift is the critical link between Newtonian theory and general
relativity. It is not, after all, a distortion of space that gives rise to Newtonian gravity at
the level we are familiar with, it is a distortion of the flow of time.

3.2 The geodesic equation

We denote by &% our freely falling inertial coordinate frame in which the effects of gravity
are locally absent. In this frame, the equation of motion for a particle is

d2 ga

dr?

=0 (73)

with
Adr? = —n,pdede’ (74)
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being the invariant time interval. (If we are doing light, then dr = 0, but ultimately it
doesn’t really matter. Either take a limit from finite d7, or use any other parameter you
fancy, like your wristwatch. In the end, we won’t use 7 or your watch. As for d€®, it is just
the freely-falling guy’s ruler and his wristwatch.) Next, write this equation in any other set
of coordinates you like, and call them x#. Our inertial coordinates £€* will be some function

or other of the z* so
oo e _d (o d
dr2 dr \ Ozt dr

where we have used the chain rule to express d{®/dr in terms of dz#/dr. Carrying out the
differentiation,

(75)

_0E APt 0% dat dxv
Ozt dr?  OxkOzv dr dr
where now the chain rule has been used on 9£%/dz#. This may not look very promising.

But if we multiply this equation by dz*/9¢%, and remember to sum over o now, then the
chain rule in the form
ox* 0g* 5

dEx i 1

rescues us. (We are using the chain rule repeatedly and will certainly continue to do so,
again and again. Make sure you understand this, and that you understand what variables
are being held constant when the partial derivatives are taken. Deciding what is constant is
just as important as doing the differentiation!) Our equation becomes

(76)

(77)

d*z* \ dzt dx”
- =0 78
dr? modr dr ’ (78)
where ok o2
LA (79)

w T{“@x“@x”

is known as the affine connection, and is a quantity of central importance in the study of
Riemannian geometry and relativity theory in particular. You should be able to prove, using
the chain rule of partial derivatives, an identity for the second derivatives of £ that we will
use shortly: ,
(63 [0}
dxrdxy  Jxr

(How does this work out when used in equation [76]?)

No need to worry, despite the intimidating notation. (Early relativity texts liked to
use gothic font Qﬂzy for the affine connection, which must have imbued it with a nice

steampunk terror.) There is nothing especially mysterious about the affine connection. You
use it all the time, probably without realising it. For example, in cylindrical (r, #) coordinates,

when you use the combinations =162 or r+2r6 for your radial and tangential accelerations,
you are using the affine connection and the geodesic equation. In the first case, I'y, = —r;
in the second, '’y = 1/r. (What happened to the 27)

Ezercise. Prove the last statements using £* = rcos0,&Y = rsinf.

Ezercise. On the surface of a unit-radius sphere, choose any point as your North Pole, work in
colatitude 6 and azimuth ¢ coordinates, and show that locally near the North Pole £ = 6 cos ¢,
&Y = fOsin ¢. It is in this sense that the £* coordinates are tied to a local region of the space near
the North Pole point. In our freely-falling coordinate system, the local coordinates are tied to a
point in spacetime.
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3.3 The metric tensor
In our locally inertial coordinates, the invariant spacetime interval is

Adr? = —n,pdE*dEP, (81)
so that in any other coordinates, d¢® = (0£*/0z*)dx* and

0> 0¢P
2,2 0S¢
AT = ~Tag ozt Oxv

datds” = —g,, dztdx” (82)

where
B OE> 9¢P
Juw = Tlap oxH Oxv
is known as the metric tensor. The metric tensor embodies the information of how coordinate
differentials combine to form the invariant interval of our spacetime, and once we know g,,,,,
we know everything, including (as we shall see) the affine connections Fl’\w. The object of
general relativity theory is to compute g,, for a given distribution of mass (more precisely,

a given stress energy tensor), and a key goal of this course is to find the field equations that
enable us to do so.

(83)

3.4 The relationship between the metric tensor and affine connec-
tion

Because of the explicit reliance on the local freely falling inertial coordinates £<, the g, and
Ff;,/ quantities are awkward to use in their present formulation. Fortunately, there is a direct
relationship between Ffw and the first derivatives of g,, that will allow us to become free of

local bondage, permitting us to dispense with the £ altogether. Though their ezistence is
crucial to formulate the mathematical structure, the practical necessity of the £’s to carry
out calculations is minimal.

Differentiate equation (83):

09 o> o¢P o> 9%¢P
or> o Oz Ozt Oxv + Mg Ok Ox v (84)

Now use (80) for the second derivatives of &:

Gy ag~ 0P, 06> ¢,
= g o —— —— 85
Bar 1P e G M o P Oz Oz M (8)
All remaining & derivatives may be absorbed as part of the metric tensor, leading to
G
8_;)‘ = g%+ 9l (86)

It remains only to unweave the I"s from the cloth of indices. This is done by first adding
0gx,/0x* to the above, then subtracting the same with indices p and v reversed.

ag;w 89)\1/ ag)\u

oo T o g = I 9t 9T+ Pl — 0P - Pl (8T)
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Remembering that I' is symmetric in its bottom indices, only the g,, terms survive, leaving

aguu 89)\y ag)xu
— = 2g,,I"”
ox? * ox+  Oxv Iev™ x (88)

Our last step is to multiply by the inverse matrix ¢*?, defined by
9" gov = 0y, (89)

leaving us with the pretty result

o _ 97 (aguu + 89)\11 . agku) . (90>

KA oz ok oxV

Notice that there is no mention of the ¢’s. The affine connection is completely specified by
g"” and the derivatives of g, in whatever coordinates you like. In practise, the inverse matrix
is not difficult to find, as we will usually work with metric tensors whose off diagonal terms
vanish. (Gain confidence once again by practising the geodesic equation with cylindrical
coordinates ¢, = 1, ggo = r* and using [90.]) Note as well that with some very simple index
relabeling, equation (88) leads directly to the mathematical identity

, dztda® (8gw, 18g>\u) da* da*

= S _ 1
o dr dr dr dr (o1)

oxr 2 Oxv

We'll use this in a moment.

vo

FExercise. Prove that ¢¥? is given explicitly by

AV 9O
Vo op 01" O

ST deog

Ezercise. Prove the identities on page 6 of the notes for a diagonal metric gy,

1 'Jaa .
=T = %un %C;b (a = b permitted, NO SUM)
1 a(]bb
Iy, = b, NO SUM
w 29(1(1 dl (a # ’ )

b. =0, (a,b,c distinct)

be

3.5 Variational calculation of the geodesic equation

The physical significance of the relationship between the metric tensor and affine connection
may be understood by a variational calculation. Off all possible paths in our spacetime
from some point A to another B, which leaves the proper time an extremum (in this case, a
maximum)? The motivation for this formulation is obvious: “The shortest distance between
two points is a straight line,” and the equations for this line-geodesic are d*¢;/ds* = 0 in
Cartesian coordinates. This is an elementary property of Euclidian space. We may ask what
is the shortest distance between two points in a more general curved space as well, and
this question naturally lends itself to a variational approach. What is less obvious is that
this mathematical machinery, which was fashioned for generalising the spacelike straight line
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equation d*¢?/ds* = 0 to more general non-Euclidian geometries, also works for generalising

a dynamical equation of the form d?¢'/dr? = 0, where now we are using invariant timelike
intervals, to geodesics embedded in distorted Minkowski geometries.

We describe our path by some external parameter p, which could be anything really,
perhaps the time on your very own wristwatch in your rest frame. (I don’t want to start
with 7, because dr = 0 for light.) Then the proper time from A to B is

Bdar 1 (P dat dzv\"?
Tap=| —dp==] (—guw———) d 92
AB /A dp P C/A ( Iu dp dp) D ( )

Next, vary z* to 2* + dz* (we are regarding 2* as a function of p remember), with jz*
vanishing at the end points A and B. We find

1 (B dat dav\ ~H? dg dz* dz” dozt dz¥
0Tsp = — —Quy—— —— — 2 5 — 20, ————— | d 93
AB T 9 /A ( In dp dp > ( o " dp dp In dp dp > b (93)

(Do you understand the final term in the integral?)

Since the leading inverse square root in the integrand is just dp/dr, dT4p simplifies to

B i v n v
5TAB:2L/ (_aquyax/\d:r dx 5 déx* dx )dT, (94)
cJa

oz dr dr Guw dr dr

and p has vanished from sight. Should we now worry about light? No, not really. We could
simply set dr = Kdp, where K is an arbitrary constant, and take the limit that K goes
to zero at the end of our calculations. We will do something very much like this when we
consider particle orbits around a black hole.

We next integrate the second term by parts, noting that the contribution from the end-
points has been specified to vanish. Remembering that

dg)\l/ o dz? ag)\u

= 95
dr dr Oxz°’ (95)
we find 5 ,
1 10g,, dx* dx¥  Ogy, dx? dz” d“x
0T um = — 2 y—— | da™d 96
AB c/A(an’\dT d7+3x“d7' d7'+g/\ d7'2)$ ! (96)
or
1 (B 10g g \ dxt dx” d*x”
0T g = — —_ 2 o y st d
A C/A {( 29 owr ) dr dr a0 (97)
Finally, using equation (91), we obtain
1 [PT/da"da” d?x”
6Tap = — ———TY 4+ —— ) g\ | 02 d 98
AB C/A |:<d7' dr W+d7'2>g)‘] var (98)

Thus, if the geodesic equation (78) is satisfied, 0T 45 = 0 is satisfied, and the proper time is
an extremum. The name “geodesic” is used in geometry to describe the path of minimum
distance between two points in a manifold, and it is therefore gratifying to see that there is
a correspondence between a local “straight line” with zero curvature, and the local elimina-
tion of a gravitational field with the resulting zero acceleration, along the lines of the first
paragraph of this section. In the first case, the proper choice of local coordinates results in
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the second derivative with respect to an invariant spatial interval vanishing; in the second
case, the proper choice of coordinates means that the second derivative with respect to an
invariant time interval vanishes, but the essential mathematics is the same.

There is often a very practical side to working with the variational method: it can be
much easier to obtain the equations of motion for a given g,, this way, as opposed to first
calculating the Fl’)y explicitly. The variational method quickly produces all the non-vanishing
affine connection components; just read them off as the coefficients of (dx*/d7)(dz"/dT).
These quantities are then available for any variety of purposes.

Here is a nice trick. You should have little difficulty showing that if we apply the Euler-
Lagrange variational method directly to the following functional “Lagrangian” L,
L=g,,i"i", (99)

where the dot is d/dr, the resulting Euler-Lagrange equation

d <8£> 8520 (100)

dr \oir) — Oxr
is just the standard geodesic equation of motion! This is usually the best way to proceed.

In classical mechanics, we all know that the equations of motion may be derived from a
Lagrangian variational principle of least action, an integral involving the difference between
kinetic and potential energies. This doesn’t seem geometrical at all. What is the connection
with what we’ve just done? How do we make contact with Newtonian mechanics from the
geodesic equation?

3.6 The Newtonian limit

We consider the case of a slowly moving mass (“slow” of course means relative to ¢, the
speed of light) in a weak gravitational field (GM/rc* < 1). Since cdt > |dx|, the geodesic
equation greatly simplfies:

d*at cdt\?
—+I5 (— ] =0. 101
dr? +hoo (dT) (101)
now 1, (0 g0y O
YJov Jov goo
', = =g — 102
0 =39 (8(cdt) T o cdr) 8:10”) (102)
In the Newtonian limit, the largest of the g derivatives is the spatial gradient, hence
1 ., 0900
Ify ~ —=g"— 1
00 29 v (103)
Since the gravitational field is weak, g, differs very little from the Minkoswki value:
o = Nap + hap,  ap <1, (104)
and the p = 0 geodesic equation is
d®t  10hg [dt\?
20 22) =0 105
dr? + 2 Ot \dr (105)
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Clearly, the second term is zero for a static field, and will prove to be tiny when the gravita-
tional field changes with time under nonrelativistic conditions—we are, after all, calculating
the difference between proper time and observer time! Dropping this term we find that ¢
and 7 are linearly related, so that the spatial components of the geodesic equation become

d*x
[saac Newton would say:
Tz oo (107)
dt? o

with ® being the classical gravitational potential. The two views are consistent if
29 29
hoo =~ ~ 2 900 >~ — (1 + ?> (108)

In other words, the gravitational potential force emerges as a sort of centripital term, similar
in structure to the centripital force in the standard radial equation of motion. This is a
remarkable result. It is by no means obvious that a purely geometrical geodesic equation
can serve the role of a Newtonian gravitational potential gradient force equation, but it
can. Moreover, it teaches us that the Newtonian limit of general relativity is all in the time
component, hgg. It is now possible to measure directly the differences in the rate at which
clocks run at heights separated by a few meters on the Earth’s surface.

The quantity hgg is a dimensionless number of order v?/c?, where v is a velocity typical
of the system, an orbital speed or just the square root of a potential. Note that hgyy is
determined by the dynamical equations only up to an additive constant. Here we have
chosen the constant to make the geometry Minkowskian at large distances from any matter.
At the surface of a spherical object of mass M and radius R,

M\ (R
hoo ~ 4.2 x 107° (%) (f@) (109)

where M, is the mass of the sun (about 2 x 10%° kg) and R, is the radius of the sun (about

7 x 10® m). The gravitational redshift fraction is half this number. As an exercise, you may
wish to look up masses of planets and other types of stars and evaluate hgy. What is its
value at the surface of a white dwarf (mass of the sun, radius of the earth)? What about a
neutron star (mass of the sun, radius of Oxford)? How many decimal points are needed to
see the time difference in two digital clocks at a one meter separation in height on the earth?

We are now able to relate the geodesic equation to the principle of least action in classical
mechanics. In the Newtonian limit, our variational integral becomes

/ [(1 +28/P)dt* — d|a|?] (110)
(Remember our compact notation: dt* = (dt)?, d|z|* = (d|z|)?.) Expanding the square root,

& o?
/0(1—1—6—2—@4—...) dt (111)

where v? = (d|z|/dt)?>. Thus, minimising the Lagrangian (kinetic energy minus potential
energy) is the same as maximising the proper time intervall What an unexpected and
beautiful connection.
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What we have calculated in this section is nothing more than our old friend the gravi-
tational redshift, with which we began our formal study of general relativity. The invariant
spacetime interval d7, the proper time, is given by

cdr? = —g,,dztdz” (112)
For an observer at rest at location x, the time interval registered on a clock will be

dr(x) = [—goo(x)]"*dt (113)
where dt is the time interval registered at infinity, where —ggg — 1. (Compare: the “proper
length” on the unit sphere for an interval at constant 6 is sin 6d¢, where d¢ is the length
registered by an equatorial observer.) If the interval between two wave crest crossings is

found to be dr(y) at location y, it will be dr(x) when the light reaches x and it will be dt
at infinity. In general,

dr(y)  [ow()]"?
dr(x) B {goo(x)] ’ (114)
and in particular
) V) gy (115)

where v = 1/d7(R) is, for example, an atomic transition frequency measured at rest at the
surface R of a body, and v(o0) the corresponding frequency measured a long distance away.
Interestingly, the value of gyy that we have derived in the Newtonian limit is, in fact, the
exact relativistic value of gop around a point mass M! (A black hole.) The precise redshift

formula is /2
2GM
Voo = (1 ~ e ) v (116)

The redshift as measured by wavelength becomes infinite from light emerging from radius
R = 2GM/c?*, the so-called Schwarzschild radius (about 3 km for a point with the mass of
the sun!).

Historically, in its infancy general relativity theory was supported empirically by the
reported detection of a gravitational redshift in a spectral line observed from the surface of
the white dwarf star Sirius B in 1925 by W.S. Adams. It “killed two birds with one stone,”
the leading astronomer A.S. Eddington remarked. For it not only proved the existence of
white dwarf stars (at the time controversial since the mechanism of pressure support was
unknown), the measurement also confirmed an early and important prediction of general
relativity theory: the redshift of light due to gravity.

Alas, the modern consensus is that the actual measurements were flawed! Adams knew
what he was looking for and found it. We now call this “confirmation bias.” Though
premature, the activity this apparently positive observation imparted to the study of white
dwarfs and to relativity theory turned out to be very fruitful indeed. But we were lucky.
Well-regarded but incorrect single-investigator astronomical observations have often caused
much confusion and needless wrangling, as well as years of wasted effort.

The first definitive test for gravitational redshift came much later, and it was purely ter-
restrial: the 1959 Pound and Rebka experiment performed at Harvard University’s Jefferson
Tower measured the frequency shift of a 14.4 keV gamma ray falling (if that is the word
for a gamma ray) 22.6 m. Pound & Rebka were able to measure the shift in energy—just
a few parts in 10'*—by what was at the time the new and novel technique of Mdssbauer
spectroscopy.
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Ezercise. A novel application of the gravitational redshift is provided by Bohr’s refutation of
an argument put forth by Einstein purportedly showing that an experiment could in principle be
designed to bypass the quantum uncertainty relation AE At > h. The idea is to hang a box
containing a photon by a spring suspended in a gravitational field g. At some precise time a
shutter is opened and the photon leaves. You weigh the box before and after the photon. There is
in principle no interference between the arbitrarily accurate change in box weight and the arbitrarily
accurate time at which the shutter is opened. Or is there?

1.) Show that the box apparatus satisfies an equation of the form

Mi=—-Mg— kx
where M is the mass of the apparatus, = is the displacement, and k is the spring constant. Before
release, the box is in equilibrium at x = —gM/k.

2.) Show that the momentum of the box after a short time interval A¢ from when the photon
escapes is

dp = _gom sin(wAt) ~ —gdmAt
w

where dm is the (uncertain!) photon mass and w? = k/M. With dp ~ gdmAt, the uncertainty
principle then dictates an uncertain location of the box position dx given by gédm dxAt ~ h. But
this is location uncertainty, not time uncertainty.

3.) Now the gravitational redshift comes in! The flow of time depends upon location. Show that if
there is an uncertainty in position éx, there is an uncertainty in the time of release: 0t ~ (gdz/c?)At.

4.) Finally use this in part (2) to establish 6E 6t ~ h with 6E = dmc?.

Why does general relativity come into nonrelativistic quantum mechanics in such a fundamental
way? Because the gravitational redshift is relativity theory’s point-of-contact with classical New-
tonian mechanics, and Newtonian mechanics when blended with the uncertainty principle is the
start of nonrelativistic quantum mechanics.

A final thought

We Newtonian beings, with our natural mode of thinking in terms of forces and responses,
would naturally say “How interesting, the force of gravity distorts the flow of time.” This
is the way I have been describing the gravitational redshift throughout this chapter. But
Einstein has given us a more profound insight. It is not that gravity distorts the flow of time.
An Einsteinian being, brought up from the cradle to be comfortable with a spacetime point-
of-view, would, upon hearing this comment, cock their head and say: “What are you talking
about? Newtonian gravity ¢s the distortion of the flow of time. It is a simple geometric
distortion that is brought about by the presence of matter.” This is a better way to think of
it. Close to the source, the effect of weak gravity is indeed a distortion in the flow of time;
far from the source, the effect of weak gravity is gravitational radiation, and this, we shall
see, may be thought of as a distortion of space.
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4 Tensor Analysis

Further, the dignity of the science
seems to require that every possible
means be explored itself for the solution
of a problem so elegant and so cele-
brated.

— Carl Friedrich Gauss

A mathematical equation is valid in the presence of general gravitational fields when
i.) It is a valid equation in the absence of gravity and respects Lorentz invariance.

ii.) It preserves its form, not just under Lorentz transformations, but under any coordinate
transformation, x — x’.

What does “preserves its form” mean? It means that the equation must be written in terms
of quantities that transform as scalars, vectors, and higher ranked tensors under general
coordinate transformations. From (ii), we see that if we can find one coordinate system in
which our equation holds, it will hold in any set of coordinates. But by (i), the equation
does hold in locally freely falling coordinates, in which the effect of gravity is locally absent.
The effect of gravity is strictly embodied in the two key quantities that emerge from the
calculus of coordinate transformations: the metric tensor g,, and its first derivatives in Ff;l,.

This approach is known as the Principle of General Covariance, and it is a very powerful
tool indeed.

4.1 Transformation laws

The simplest vector one can write down is the ordinary coordinate differential dx*. If 2/* =
a'"(z), there is no doubt how the dz'* are related to the dx*. It is called the chain rule, and
it is by now very familiar:

ox't
oxv
Be careful to distinguish between the coordinates x*, which can be pretty much anything,

and their differentials dxz*, which are true vectors. Indeed, any set of quantities V* that
transforms in this way is known as a contravariant vector:

da'™ = dz” (117)

oz'*
s — v
V=SV (118)

The contravariant 4-velocity, which is a 4-vector, is simply V# = dx*/dr, a generalisation of
the special relativistic d€®/dr. A covariant vector, by contrast, transforms as

v ox"

I axlu v

(119)

“CO LOW, PRIME BELOW.” (Sorry. Maybe you can do better.) These definitions of

contravariant and covariant vectors are consistent with those we first introduced in our
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discussions of the Lorentz matrices Aj and /~\g in Chapter 2, but now generalised from
specific linear transformations to arbitrary transformations.

The simplest covariant vector is the gradient 9/0x* of a scalar ®. Once again, the chain
rule tells us how to transform from one set of coordinates to another—we’ve no choice:

0P ox? 00

ox'H - ox'* Oxv

(120)

The generalisation to tensor transformation laws is immediate. A contravariant tensor TH”

transforms as . .
T _ Oz Ox™

= Oxr Ox°

T#° (121)

a covariant tensor T}, as
, OxP 0x°
=——T, (122)
Hv o't Oxv P
and a mixed tensor T# as
n g
w_ oz Oz°
v OxP Oz °

The generalisation to mixed tensors of arbitrary rank should be self-evident.

(123)

By this definition the metric tensor g,, really is a covariant tensor, just as its notation
would lead you to believe, because

o™ 0P 9L 9P Oxt Dar O O’

I _ = - =
Y = Tap oz Ox'v B 9xX Oxp Ox'm Oz’ Pre oz’ Ox'v

(124)

and the same for the contravariant g*. (How else could it be? dz*dz" is clearly a contravari-
ant tensor, and g, dz"dz” is by construction a scalar, which works only g, is a covariant
tensor.) However, the gradient of a vector is not, in general, a tensor or a vector:

I\ I\ I\ p v 2 I\ P
oV 0 <8x Vl,)_ax dxP OV o*x™ Ox v (125)

ox'H - ox'™ \ Ox” Oz Ot Oxp + O0xPOxY Ox'H

The first term is just what we would have wanted if we were searching for a tensor trans-
formation law. But oh those pesky second order derivatives—the final term spoils it all.
This of course vanishes when the coordinate transformation is linear (as when we found that
vector derivatives are perfectly good tensors under the Lorentz transformations), but not in
general. We will show in the next section that while the gradient of a vector is in general
not a tensor, there is an elegant solution around this problem.

Tensors can be created and manipulated in many ways. For example, direct products of
tensors are tensors:
Wiy =T"S,,. (126)

A linear combination of tensors of the same rank multiplied by scalars is obviously a tensor
of unchanged rank. A tensor can lower its index by multiplying by g,, or raise it with g":

0x® x> Ox'™ Ox'P ox°® 0x'P o0x° 0x'P
T/ P = / T/Vp — - Tﬂ‘r — o KT — T T 127
K L ox'* Ox'v Oxr Ox™ Jox ox'* Ox™ 9 ox'm Ox™ ¢ (127)

which indeed does transform as a tensor of mixed second rank, 7,”. Multiplying 7" by any
covariant tensor Sy, of course generates a mixed tensor M ", but we adopt the very useful
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convention of keeping the name T,” when multiplying by S,, = g, and thinking of the
index as “being lowered.” (And of course index-raising for multiplication by g”*.)
Mixed tensors can “contract” to scalars. Start with 7. Then consider the transforma-
tion of T‘L:
o ox'* OxP
Qv Ox'm
Le, T" is a scalar T'. Exactly the same type of calculation shows that T/ is a vector T",
and so on. Remember to contract “up—down:” T, =T, not T"* =T.

T =80T =T, (128)

The generalisation of the familiar scalar dot product between vectors A* and B* is
A'B,, = g, A*BY. We are often interested in just the spatial part of 4-vectors, the 3-vector
A’ Then, in a non-Euclidian 3-space, the cosine of the angle Af between two vectors may
be written as the ratio

A'B; gi; A'BI
Af = 4 ‘ = e 129
€08 (ATA; BEBp)Y?  (guAFA! gy B™B™)1/2 (129)

the analogue of A - B/(|A[|B|). If we are given two parameterised curves, perhaps two
orbits z'(p) and y'(p), and wish to know the angle between them at some particular point,
this angle becomes
"y, gz’jj:iyj
cos A = — =
(@925 ghg)? (g E! grng™ym)H?

where the dot notation denotes d/dp. Do you see why this is so?

4.2 The covariant derivative

Knowing the general the transformation law for a vector allows us to understand more fully
the content of the geodesic equation. With V' = d&®/dr, the geodesic equation actually tells
us the proper form of the vector quantity to use for dV'®/dr that is valid in any coordinate
system. To see this clearly, consider the derivative of any vector dA" /dr, expressed here in
local inertial coordinates £, and in these coordinates this is the right form of the derivative.
Then, exactly the same manipulations we used to derive the geodesic equation yield, upon
going to arbitrary coordinates x* and vector A*:

dA® _ d (aga A#) RS S S

dr dr \ Oz Ozt dr Orrozy dr

(This is of course always valid, whether dA"/dr happens to vanish or not.) Mutiplying by
x> /0€, we find
oz dA™  dAY dz”
o dr — dr dr
The left hand side is now the formal transformation law of dA’®/dr from local inertial to

general coordinates. The right side tells us precisely what that expression is. Evidently, the
combination on the right of this equation is a general vector quantity unto itself.

(130)

A
+ I, A"
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We will return to this neat result when we discuss the important concept of parallel
transport, but for now, let us further note that, with V¥ = dz¥/dr, the vectorial right side
of (130) may be written as

v aAA A “w

% [% + I, A } (131)
Since V" is a vector and A* is arbitrary, the expression in square brackets must be a mixed
tensor of rank two: it contracts with a contravariant vector V¥ to produce another con-
travariant vector. Recall that F/);V vanishes in local inertial coordinates, in which we know
that simple partial derivatives of vectors are valid tensors. So this prescription tells us how
to upgrade the notion of a partial derivative of a vector to the status of a full tensor: to
make a tensor out of a plain partial derivative of a vector, form the quantity

814)‘ A v A

Ern + 1,47 = A, (132)
the so called covariant derivative. Following convention, we use a semicolon to denote co-
variant differentiation. (Some authors use a comma for partial derivatives (e.g A” ), but

it is more clear to use full partial derivative notation [or 0,], and we shall abide by this

practise in these notes, if not always in lecture.) We now have a generalisation of the partial
derivative to tensor form!

You know, this is really too important a result not to check in detail. We also need how
to construct the covariant derivative of covariant vectors, and of more general tensors. (Talk
about confusing. Notice the use of the word “covariant” twice in that last statement in two
very different senses. Apologies for this awkward, but completely standard, mathematical
nomenclature.) If you are already convinced that the covariant derivative really is a tensor,
just skip down to right after equation (139). You won’t learn anything more than you already
know in the next long paragraph, and there is a lot of calculation.

The first thing we need to do is to establish the transformation law for Fﬁy. This is just
repeated application of the chain rule:

/A 2 ¢a 2\ p o et
M = ox'™ 0% _ 0x'™ dxf 0 0z O (133)
" 0& Qx/mox™  QxP 9L~ Oz’ \ Dx’ Ox°
Carrying through the derivative,
/A P o T 2o 2.0 o
r ox' OxP [ 0x Ox™ O 07z’ 0€ (134)
" OxP 0> \ Ox' Ox'm Qx™0x®  Qx'MOx™ Ox°

Cleaning up, and recognising an affine connection when we see one, helps to rid us of these
meddlesome £’s:

oz da” 0x” _, N oz 9%xf
Oxp Ox'* Qx™ ™7~ QxP Qz'MOx™

A
F;W = (135)

This may also be written
- Oz 0x™ 027, daP 0x” OPa™
K Qxe O/ Oz’ 77 Qx™ Oa'M Oz OxP
Do you see why? (Hint: Either integrate d/0x'* by parts or differentiate the identity

ox'* dxr N

oxP Oxv %)

(136)
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Hence

A A 0z 9x™ O0x° p ozP 0x° 0?2 &E”’An’ (137)
K Oxr Oz'* dx'v ox" Oz’ Qxrdx® | Ox
and spotting some tricky sums over dx™ that turn into Kronecker delta functions,
oz Ox™ 0xz° 0%z
DAY = —_—T* A% — AP 138
H Oxr Ox'* ™7 Ox'* xPOx° (138)

Finally, adding this to (125), the unwanted terms cancel just as they should. We thus obtain

I I P v
DA 2P On (aA » AU) (135)

1—\//\ A/V
ox'H oxv Ox'* \ Oxr

as desired. This combination really does transform as a tensor ought to.

It is now a one-step process to deduce how covariant derivatives work for covariant vectors.
With VA arbitrary, consider

oA
VA, = Vag— + T, A (140)

which is a perfectly good covariant vector. Integrating by parts the first term on the right,
and then switching dummy indices A and v in the final term, this expression is identical to
OxH Oxt

AAWY) s {GVA _ F”/\V} (141)

Since the first term is the covariant gradient of a scalar, and the entire expression must be
a good covariant vector, the term in square brackets must be a purely covariant tensor of
rank two. We have very quickly found our generalisation for the covariant derivative of a
covariant vector: oV,

au

That this really s a vector can also be directly verified via a calculation exactly similar to
our previous one for the covariant derivative of a contravariant vector.

Vip = 22 — TV, (142)

Covariant derivatives of tensors are now simple to deduce. The tensor 7" must formally
transform like a contravariant wvector if we “freeze” one of its indices at some particular
component and allow the other to take on all component values. Since the formula must be
symmetric in the two indices,

T)\m aT)\n

= o+ LT 4Ty T (143)
and then it should also follow
8T K v v
T = &; ~ %, T, — T Th, (144)
and of course
A aT/\ A v v A
R a + FV/,LTH FMHTV (145)
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The generalisation to tensors of arbitrary rank should now be self-evident. To generate the
affine connection terms, freeze all indices in your tensor, then unfreeze them one-by-one,
treating each unfrozen index as either a covariant or contravariant vector, depending upon
whether it is down or up. Practise this until it is second-nature.

We now can give a precise rule for how to take an equation that is valid in special
relativity, and upgrade it to the general relativistic theory of gravity. Work exclusively with
4-vectors and 4-tensors. Replace 1. with g,,. Take standard partial derivatives and turn
them into covariant derivatives. Voila: your equation is set for the presence of gravitational
fields.

It will not have escaped your attention, I am sure, that applying (144) to g,, produces

Guvx = W - ngFZ)\ - guprﬁ)\ =0 (146)

where equation (86) has been used for the last equality. The covariant derivatives of g,
vanish. This is exactly what we would have predicted, since the partial derivatives of 7,3
vanish in special relativity, and thus the covariant derivative of g,, should vanish in the
presence of gravitational fields. It’s just the general relativistic upgrade of dn,z/027 = 0.

Here are two important technical points that are easily shown. (You should do so explic-
itly.)

e The covariant derivative obeys the Leibniz rule for products. For example:
(TWUM);,O = T;ZVU/\H + T Ussp,

av, OAH

L+,
oxv oxVv
This means that you can interchange the order of lowering or raising an index and
covariant differentiation; hence

(A“VM);,, = AM(‘/M)%V + VM(A“);,, = A¥

(I's cancel!)

e The operation of contracting two tensor indices commutes with covariant differentia-
tion. It does not matter which you do first. Try it in the second example above by
considering the covariant derivative of V#V,, first before, then after, contracting the
indices.

4.3 The affine connection and basis vectors

The reader may be wondering how this all relates to our notions of, say, spherical or polar
geometry and their associated sets of unit vectors and coordinates. The answer is: very
simply. Our discussion will be straightforward and intuitive, rather than rigorous.

A vector V may be expanded in a set of basis vectors,
V =V", (147)

where we sum over the repeated a, but a here on a bold-faced vector refers to a particular
vector in the basis set. The V' are the usual vector contravariant components: old friends,
just numbers. Note that the sum is not a scalar formed from a contraction! We’ve used
roman letters here to help avoid that pitfall.
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The covariant components are associated with what mathematicians are pleased to call
a dual basis:
V =V,e’ (148)

Same V mind you, just different ways of representing its components. If the e’s seem a
little abstract, don’t worry, just take them at a formal level for the moment. You've seen
something very like them before in elementary treatments of vectors.

The basis and the dual basis are related by a dot product rule,
€. e’ =0 (149)

This dot product rule relates the vectors of orthonormal bases. The basis vectors transform
just as good old vectors should:

e, = %eb, e’ = %eb (150)
Note that the dot product rule gives
V.V =VWe,-e® = Vol = VoV, (151)
as we would expect. On the other hand, expanding the differential line element ds,
ds® = e dr®-epdr’ = e,-epdr®da’ (152)
so that we recover the metric tensor
Jab = €qa°€p (153)
Exactly the same style calculation gives
9" = e*eb (154)

These last two equations tell us first that g, is the coefficient of e® in an expansion of the

vector e, in the usual basis:
e, = gabea, (155)

and tell us second that ¢® is the coefficient of e, in an expansion of the vector e’ in the dual

basis:

e’ = g%e, (156)

We’ve recovered the rules for raising and lowering indices, in this case for the entire basis
vector.

Basis vectors change with coordinate position, as pretty much all vectors do in general.
We define an thrice-indexed object T by

de,

=T, 157
o~ The, (157)
so that
I =e’d.e,=0.(e.€) — e, 0.’ =—e,0.€. (158)
(Remember the shorthand notation 0/0x¢ = 9,.) The last equality implies the expansion
oe’
= —I7.e 159
=Tl (159)
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Consider 0.9, = 0.(e,-€p). Using (157),

OcGar = (0c€4)-€p + €4+(0c€p) = cmed-eb + ea-Fffced, (160)

or finally
Ocgab = Laetas + ieYads (161)

exactly what we found in (86)! This leads, in turn, precisely to (90), the equation for the
affine connection in terms of the g partial derivatives. We now have a more intuitive under-
standing of what the I'’s really represent: they are expansion coefficients for the derivatives
of basis vectors, which is how we are used to thinking of the extra acceleration terms in
non Cartesian coordinates when we first encounter them in our first mechanics courses. In
Cartesian coordinates, the I'’, just go away.

Finally, consider
0.(V'ey) = (0.V?) ey + V00,5 = (0.V")ey + VT €0 (162)
Taking the dot product with e’:
e’0,(V'ey) = 9,V + V'Te, = V4, (163)

just the familiar covariant derivative of a contravariant vector. This one you should be able
to do yourself:

ed'aa(%eb) = aa‘/d - %FZd = ‘/d;aa (164)

the covariant derivative of a covariant vector. This gives us some understanding as to why
the true tensors formed from the partial derivatives of a vector V are not simply 9,V¢
and 0,Vy, but rather e?9,(V%e;) and e4-9,(V,€’) respectively. The I'-terms then emerge
as derivatives of the e basis vectors. Our terse, purely coordinate notation avoids the use
of the e bases, but at a cost of missing a deeper and ultimately simplifying mathematical
structure. We can see an old maxim of mathematicians in action: good mathematics starts
with good definitions.

4.4 Volume element

The transformation of the metric tensor g,, may be thought of as a matrix equation:

oz® oz
G = Zo e g (165)
Remembering that the determinant of the product of matrices is the product of the deter-

minants, we find
2

oz (166)

da
where ¢ is the determinant of g,, (just the product of the diagonal terms for the diagonal
metrics we will be using), and the notation |0x’/0x| indicates the Jacobian of the transfor-

mation x — z/. The significance of this result is that there is another quantity that also
transforms with a Jacobian factor: the volume element d*z.

8_90’
ox

/

g:

d*z’ = d*z. (167)
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This means

or’'

Oz | |0x

S drr = /=
g'd g@x’ ox

In other words, \/—g d*x is the invariant volume element of curved spacetime. The minus
sign is used merely as an absolute value to keep the quantities positive. In flat Minkowski
space time, d*z is invariant by itself.

d'r = \/—gd*x. (168)

Euclidian example: in going from Cartesian (¢ = 1) to cylindrical polar (¢ = R?) to
spherical coordinates (g = r*sin?#6), we have dv dydz = RARdz d¢ = r*sin 0 dr df dp. You
knew that. For a diagonal g, our formula gives a volume element of

V911922933900 |dx" da® da® dz®,

just the product of the proper differential intervals. That also makes sense.

4.5 Covariant div, grad, curl, and all that

The ordinary partial derivative of a scalar transforms generally as covariant vector, so in this
case there is no distinction between a covariant and standard partial derivative. Another

easy result is
ov, oV,

V#;l/ - VV;M = oxv - ok’ (169)
(The affine connection terms are symmetric in the two lower indices, so they cancel.) More
interesting is

ovH

=g TV (170)
where by definition
9" (Ogpu | Ogor  Ogur
I‘# — 7 PH pA © 171
pA 9 ((9:1:)‘ - ozt OxP (71)

Now, g"” is symmetric in its indices, whereas the last two g derivatives combined are anti-
symmetric in the same indices, so that combination disappears entirely. We are left with

T+ :g_“pagpu
mA 9 O

(172)

In this course, we will be dealing entirely with diagonal metric tensors, in which pu = p for
nonvanishing entries, and g"” is the reciprocal of g,,. In this simple case,

e :181n|g|
mA T2 Qg

(173)

where ¢ is as usual the determinant of g,,, here just the product of the diagonal elements.
Though our result seems specific to diagonal g,,, W72 pp. 106-7, shows that this result is

true for any g,,.”

2Sketchy proof for the mathematically inclined: For matrix M, trace Tr, differential §, to first order
in § we have §lndet M = Indet(M + §M) — Indet M = Indet M~Y(M + §M) = Indet(l + M~15M) =
In(1+ Tr M~16M) = Tr M~15M. Can you supply the missing details?
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The covariant divergence (170) becomes

L 9(/lglv") (174)

b \/m al’“

a neat and tidy result. Note that

/\/]g]d% VE=0 (175)

if V# vanishes sufficiently rapidly) at infinity. (Why?)

We cannot leave the covariant derivative without discussing T/, the covariant divergence

of T, (And similarly for the divergence of T*.) Conserved stress tensors are, after all,
general relativity’s “coin of the realm.” We have:

THY — oT™ +THTNY £ TV TH or TH. =
Ok pA pA= Vit

and using (173), we may condense this to

1 9(y/|g|T™ 1 0 s
v gl Oar p o /lgl o Oxr K

For an antisymmetric contravariant tensor, call it A, the last term of the first equality
drops out because I' is symmetric in its lower indices:

o L 00/IglA™)

= if A" antisymmetric. (178)

3 \/m ax,u

or™

oz

+ FZATAV — T, 1" (176)

4.6 Hydrostatic equilibrium

You have been patient and waded through a sea of indices, and it is time to be rewarded.
We will do our first real physics problem in general relativity: hydrostatic equilibrium.

In Newtonian mechanics, you will recall that hydrostatic equilibrium represents a balance
between a pressure gradient and the force of gravity. In general relativity this is completely
encapsulated in the condition

T =0
applied to the energy-momentum stress tensor (65), upgraded to covariant status:
" = Pg"™ + (p + P/ U*U (179)

Our conservation equation is
v v aP 2 v
0=T =g" Eym + [(p+ P/ U*U"]

where we have made use of the Leibniz rule for the covariant derivative of a product, and
the fact that the g, covariant derivative vanishes. Using (177):

(9P+ 1
dzr  |g|'/? Oxr

(180)

W

0=g" [lg]/2(p + P/)UMU"] + Tys(p + P/ UMY (181)
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In static equilibrium, all the U components vanish except U°. To determine this, we use
guUPU" = = (182)

the upgraded version of special relativity’s 7,sU*U? = —c?. Thus,

0 =——, (183)
Joo
and with w g
v _ 9 9900
o = 5 Bk’ (184)
our equation reduces to
P 8 In |g()0’1/2
0=g"|— *+P)——— 185
T | Gan * ('OC + ) oxH (185)
Since g,,, has a perfectly good inverse, the term in square brackets must be zero:
oP 0l 1/2
P | (pe2 4 p) bl =, (186)

oz oxt

This is the general relativistic equation of hydrostatic equilibrium. Compare this with the
Newtonian counterpart:

VP +pVP =0 (187)
The difference for a static problem is the replacement of p by p + P/c? for the inertial mass
density, and the use of In |gg|*/? for the potential (to which it reduces in the Newtonian
limit).

If P= P(p), P =dP/dp, equation (186) may be formally integrated:

P'(p)d
/Lp2 + In | goo|"/* = constant. (188)
P(p) + pc
Ezercise. Solve the GR equation of hydrostatic equilibrium exactly for the case |goo] = (1 —

2G M /rc*)'/? (e.g., near the surface of a neutron star) and P = Kp? for v > 1.

4.7 Covariant differentiation and parallel transport

Recall the geodesic equation,

d?z* ., dat dz”
— = 0. 189
dr? modr dr (189)
Writing the vector da?/dr as V* this becomes
dv> dxt
— 4T, ——V"=0 190
dr thw dr ' (190)

a covariant formulation of the statement that the vector V* is conserved along a geodesic
path. But the covariance property of this statement has nothing to do with the specific
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identity of V* with da*/dr. We have seen that the left-side of this equation is a genuine
vector for any V as long as V? itself is a bona fide contravariant vector. The right side

simply tells us that the fully covariant left side expression happens to vanish. Therefore,
just as we “upgrade” from special to general relativity the partial derivative,
oV« 6V)‘
028 i

we upgrade the derivative along a path z(7) in the same way by multiplying by dz*/dT and
summing over the index u:

A [ A
+TAVY =V, (191)

dve  dvA dzt DV*
— +T,—V"= 192
dr - dr Tl dr Dt (192)
DV?/Dr is a true vector; the transformation
DV 9z DV#
= (193)

Dr Ozt Dt

may be verified directly. (The inhomogeneous contributions from the I' transformation and
the derivatives of the derivatives of the coordinate transformation coefficients cancel in a
manner exactly analogous to our original covariant partial derviative calculation.)

Exactly the same reasoning is used to define the covariant derivative for a covariant
vector, which follows from (142):

dVy dzt DV,

— —TL——W=—= 194
dr A dr DTt (194)
The same is true for tensors, e.g.:
a1y dx” dx” DTy
Lo, =T —Th,—T7 = —2. 195
ar o dr Wgrh = Dr (195)
As you might expect, the Leibniz rule holds for the covariant derivative along a path, e.g.
D(V*V,) DV, DV“
=Vr—L 41V,
DTt DTt + DTt

with affine connection terms always cancelling when they need to.

When a vector or tensor quantity is carried along a path, and the object does not change
in a locally inertially reference frame (d/dr = 0), this statement becomes, in arbitrary
coordinates, D/Dt = 0. This is the same physical result expressed in a covariant language.
(Once again this works because the statements agree in the inertial coordinates, and then
their zero difference is zero in any coordinate frame.) The condition D/D7 = 0 is known as
parallel transport. A steady vector, for example, may always point along the y axis as we
move it around in the xy plane, but its » and # components will have to change in order
to keep this true! The prescription for how those components change is the content of the
parallel transport equation.

Suppose that we do a round trip following the rule of parallel transport, and we come
back to our exact starting point. Does a vector/tensor have to have the same value it began
with? You might think that the answer must be yes, but it turns out to be more complicated
than that. Indeed, it is a most interesting question...

The stage is now set to introduce the key tensor embodying the gravitational distortion
of spacetime.
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5 The curvature tensor

The properties which distinguish space
from other conceivable triply-ertended
magnitudes are only to be deduced
from experience...At every point the
three-directional measure of curvature
can have an arbitrary value if only the
effective curvature of every measurable
region of space does not differ notice-

ably from zero.

— G. F. B. Riemann

5.1 Commutation rule for covariant derivatives

The covariant derivative shares many properties with the ordinary partial derivative: it is a
linear operator, it obeys the Leibniz rule, and it allows true tensor status to be bestowed upon
partial derivatives (or derivatives with respect to a scalar parameter) in any coordinates. A
natural question arises. Ordinarily, partial derivatives commute: the order in which they are
taken does not matter, provided that appropriate smoothness conditions are present. Does
the same commutation work for covariant derivatives? Does V%, _ equal V¥ _ 7

Just do it.

oVH
V‘fa = 5 +Io Vi =T" (196)
Then 7w
T = —24T*T" — TV TH, (197)
o,T axq— vT g oT 14

or

PPvVe 9 oV ovH
Tr = 5765 T 30 (DA, V) + T <% + FKUVA) —Tv, ( 5 T r’;VVA) (198)

The first term and the last group (proportional to I'V_) are manifestly symmetric in o and
7, and so will vanish when the same calculation is done with the indices reversed and then
subtracted off. A bit of inspection shows that the same is true for all the remaining terms
proportional to the partial derivatives of V#. The residual terms from taking the covariant
derivative commutator are then
al—‘l/{o 81—‘,;7 A

15, =T, = {W ~ ge Tl I VE (199)

which we may write as

1% (200)

AoT

Tlif;T - T/fr;a =R

Now, both sides of this equation must be tensors, and V?* is itself some arbitrary vector.
(Good thing those partial derivatives of V* cancelled out.) This means that the quantity
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RY__must transform its coordinate indices as a tensor. That it actually does so may also be
verified explicitly in a nasty calculation (if you really want to see it spelt out in detail, see

W72 pp.132-3). We conclude that

ork ork
R#AUT = 81’: - aTJT + FIAJLT KO’ - FI!JLO'FKT (201)
is a true tensor. It is known as the Riemann curvature tensor. In fact, it may be shown
(W72 p. 134) that this is the only tensor that is linear in the second derivatives of g,,,, and
contains only its first and second derivatives.

Why do we refer to this peculiar mixed tensor as the “curvature tensor?” We may begin to
answer this by noting that it vanishes in ordinary flat Minkowski spacetime—simply choose
Cartesian coordinates to do the calculation. Then, because R", _ is a tensor, if it is zero
in one set of coordinates, it is zero in all. Commuting covariant derivatives makes sense in
this case, since they amount to ordinary derivatives. Evidently, distortions from Minkowski
space are essential for a nonvanishing curvature tensor, an intuition we will strengthen in

the next section.

Ezercise. What is the (much simpler) form of R",_ _ in local inertial coordinates? It is often
convenient to work in such coordinates to prove a result, and then generalise it to arbitrary
coordinates using the the fact that R", _ is a tensor.

AoT

5.2 Parallel transport

We move on to the yet more striking example of parallel transport. Consider a vector V)
whose covariant derivative along a curve x(7) vanishes. Then,

dVy  _, dz”

— = Vi 202
dr Av dr K ( )
Consider next a tiny round trip journey over a closed path on which V) is changing by the
above prescription. If we remain in the neighbourhood of some point X”, with z” passing
through X* at some instant 7y, 2°(19) = X?, we Taylor expand as follows:

ory,
% (v) = T%,(X) + (2 — Xp)a—XAp + ... (203)
Viz(T)] =V (X)) +dV, + ... =V, (X) + (f — X”)FZP(X)VU(X) + ... (204)
(where x* — X* is dz” from the right side of the parallel transport equation), whence
s V, =TV r— XAV, o3 re ey 205
>\1/<I> #(l‘)— Av “—i-(l’ - ) o OXP + up= Av + . ( )

where all quantities on the right (except z!) are evaluated at X. Integrating
dVy =T% (2)V,(z) dz” (206)

around a tiny closed path §, and using (206) and (205), we find that there is a change in
the starting value AV), arising from the term linear in x* given by

aFUV g v
AV, = ( e T Fupr;g) v, ]{ a2’ dzx (207)
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The integral § 2”dz” certainly doesn’t vanish. (Try integrating it around a unit square in
the xy plane.) But it i¢s antisymmetric in p and v. (Integrate by parts and note that the
integrated term vanishes, being an exact differential.) That means the only part of the I'T
and OI'/OX terms that survives the pr summation is the part that is antisymmetric in (p, v).
Since any object depending on two indices, say A(p,r), can be written as a symmetric part
plus an antisymmetric part,

S 1A, ») + A, )] + Al ) — A, )],

>
we find .
AV = 3 "AVPV(,?{:U” dx” (208)
where i
R, - (ZI;: _ gzgg +T0 T — rgyrgp) (209)

is precisely the curvature tensor. Parallel transport of a vector around a closed curve does
not change the vector, unless the enclosed area has a nonvanishing curvature tensor. In fact,
“the enclosed area” can be given a more intuitive interpretation if we think of integrating
around a very tiny square in the pv plane. Then the closed loop integral is just the directed
area dx’dx": ]

AVy = 5 T\wpVoda? dz”. (210)
The conversion of a tiny closed loop integral to an enclosed surface area element reminds us
of Stokes theorem, and it will not be surprising to see that there is an analogy here to the
identity “divergence of curl equals zero”. We will make good use of this shortly.

FExercise. A laboratory demonstration. Take a pencil and move it round the surface
of a flat desktop without rotating the pencil. Do the same on a cylinder, something like a
mailing tube. (Avoid the endcap!) Moving the pencil around a closed path, always parallel
to itself, will in either case not change its orientation. Now do the same on the surface of a
spherical globe. Take a small pencil, pointed poleward, and move it from the equator along
the 0° meridian through Greenwich till you hit the north pole. Now, once again parallel to
itself, move the pencil down the 90°E meridian till you come to the equator. Finally, once
again parallel to itself, slide the pencil along the equator to return to the starting point at
the prime meridian.

Has the pencil orientation changed from its initial one? Explain.

Curvature®, or more precisely the departure of spacetime from Minkowski structure,
reveals itself through the existence of the curvature tensor R?,,,. If spacetime is Minkowski-

flat, every component of the curvature tensor vanishes. An important consequence is that
parallel transport around a closed loop can result in a vector or tensor not returning to
its original value, if the closed loop encompasses matter (or its energy equivalent). An
experiment was proposed in the 1960’s to measure the precession of a gyroscope orbiting the
earth due to the effects of the spacetime curvature tensor. This eventually evolved into a
satellite known as Gravity Probe B, a $750,000,000 mission, launched in 2004. Alas, it was
plagued by technical problems for many years, and its results were controversial because of
unexpectedly high noise levels (due to solar activity). A final publication of science results in

3“Curvature” is one of these somewhat misleading mathematical labels that has stuck, like “imaginary”
numbers. The name implies an external dimension into which the space is curved or embedded, an unnec-
essary complication. The space is simply distorted.
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2011 claims to have verified the predictions of general relativity to high accuracy, including
an even smaller effect known as “frame dragging” from the earth’s rotation, but my sense
is that there is lingering uneasiness in the physics community regarding the handling of the
noise. Do an internet search on Gravity Probe B and judge for yourself!

When GPB was first proposed in the early 1960’s, tests of general relativity were very
few and far between. Any potentially observable result was novel and worth exploring.
Since that time, experimental GR has evolved tremendously. We now live in a world of
gravitational lensing, exquisitely sensitive Shapiro time delays, and stunning confirmations
of gravitational radiation, first via the binary pulsar system PSR1913+16, and more recently
the direct signal detection of a number of sources via advanced LIGO. All of these will be
discussed in later chapters. At this point it borders on ludicrous to entertain serious doubt
that the crudest leading order general relativity parallel transport prediction is correct. (In
fact, it looks like we have seen this effect directly in close binary pulsar systems.) Elaborately
engineered artificial gyroscopes, precessing by teeny-tiny amounts in earth orbit, don’t seem
very exciting any more to 21st century physicists.

5.3 Algebraic identities of R’ )

5.3.1 Remembering the curvature tensor formula.

It is helpful to have a mnemonic for generating the curvature tensor. The hard part is
keeping track of the indices. Remember that the tensor itself is just a sum of derivatives of
I', and quadratic products of I'. That part is easy to remember, since the curvature tensor
has “dimensions” of 1/x2, where z represents a coordinate. To remember the coordinate
juggling of R%, , start with:

aFgC * a
Ord + Fbc dx
where the first abed ordering is simple to remember since it follows the same placement in
R% ., and * is a dummy variable. For the second I'T' term, remember to just write out
the lower bed indices straight across, making the last unfilled space a dummy index *. The
counterpart dummy index that is summed over must then be the upper slot on the other I,
since there is no self-contracted I' in the full curvature tensor. There is then only one place
left for upper a. To finish off, just subtract the same thing with ¢ and d reversed. Think of
it as swapping your CD’s. We arrive at:

ory, oIy,
Oz oxe

Rabcd = + FZC g* - PZng* (211)

5.3.2 Ry, fully covariant form

The fully covariant form of the stress tensor can be written so that it involves only second-
order derivatives of g,,, and products of I's, with no I' partial derivatives. The second-order
g-derivatives, which are linear terms, will be our point of contact with Newtonian theory
from the full field equations. But hang on, we have a bit of heavy weather ahead.

We define

R)\;,LVH = g)\aRJ;wn (212)
or
ore, org. o
Rogun = x| 2% — S5 4T, 17, ~ TILTY, (213)
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Remembering the definition of the affine connection (90), the right side of (213) is

gﬂ 0 go’p agpu + 89,01/ . ag,uz/ . gﬁ 0 go’p agpu + agpf-c . ag;m
2 Oz* oxrv ~ Oxt  Oxr 2 OxV ox® Ozt OxP
+ Oxo (FZVan - FZEFZn) (214>
The x" and 2z partial derivatives will operate on the ¢?” term and the g-derivative terms.

Let us begin with the second group, the dg/dx derivatives, as it is simpler. With ¢,,¢7” = 0¥,
the terms that are linear in the second order g-derivatives are

1 ( 829)\1, 829;”/ 829>\.‘£ 829;14/{ )

= — — 215
2 \ Oz®dxr  Oxtdx*  Oxvdxt  Jxvdx? (215)
If you can sense the beginnings of the classical wave equation lurking in these linear second

order derivatives, which are the leading terms when g,,, departs only a little from 7, then
you are very much on the right track.

We are not done of course. We have the terms proportional to the x* and z* derivatives
of ¢g??, which certainly do not vanish in general. But the covariant derivative of the metric
tensor gy, does vanish, so invoke this sleight-of-hand integration by parts:

agap o agAO’ o
Dogor = 9" 5o = =97 (Tirgno + Tiogm) (216)

where in the final equality, equation (144) has been used. By bringing ¢°” out from the
partial derivative, it recombines with the first order g-derivatives to form affine connections
once again. All the remaining terms of Ry, from (214) are now of the form gI'T:

— (T \gno + Llegin) T2, 4 (Tosgno + Lisgin) D0, + gro (U245 — DLFE (217)

It is not obvious at first, but with a little colour coding and index agility to help, you should
be able to see four of these six gI'T" terms cancel out— the second group with the fifth, the
fourth group with the sixth—leaving only the first and third terms:

9o (T I0e = T0AIT) (218)
Adding together the terms in (215) and (218), we arrive at
. 1 < 629)\1/ @2gp,v 629)\5 629;“-:

v =5\ uroun ~ o~ durowr T dwr o

Ezercise. What is R, in local inertial coordinates?

) + Ino (FZAFZK - FZ)\FZV) (219>

Note the following important symmetry properties for the indices of Ry,,.. Because each
of these identities may be expressed as a vanishing tensor equation (left side minus right side
equals zero), they may be established generally by choosing any particular coordinate frame
we like. We choose a simple locally flat frame in which the I" vanish. These results may then
be verified just from the terms linear in the g derivatives in (219):

Ryuwr = Ruixu (symmetry) (220)
Rywr = —Rupwr = =Ry = Ry (antisymmetry) (221)
Ry + Ry + Ry =0 (cyclic) (222)
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5.4 The Ricci Tensor

The Ricci tensor is the curvature tensor contracted on its (raised) first and third indices,
R, ;- In terms of the covariant curvature tensor:

R, = g’\”R,\W,€ = g’\”RmA” (by symmetry) = g”)‘R,,,i,\u = Ry, (223)
so that the Ricci tensor is symmetric.

The Ricci tensor is an extremely important tensor in general relativity. Indeed, we shall
very soon see that Iz, = 0 is Einstein’s Laplace equation. There is enough information here
to calculate the deflection of light by a gravitating body or the advance of a planet’s orbital
perihelion! What is tricky is to guess the general relativistic version of the Poisson equation,

and no, it is not R, proportional to the stress energy tensor 7),,. (It wouldn’t be very tricky
then, would it?) Notice that while R*,, = 0 implies that the Ricci tensor vanishes, the
converse does not follow: R,, = 0 does not necessarily mean that the full curvature tensor

(covariant or otherwise) vanishes.
FEzercise. Fun with the Ricci tensor. Prove first that

or? or
;L)\ UK A A
ks = O O\ FZAFMI B FZKFM'

The expression given with the “Really Useful Numbers” on page 6 of these notes has a
somewhat different form to the above. Can you show that the two expressions are actually
one and the same?

Next show that R R R
R/m, =g VR/L)\VH, =g VR)\[I,H,V =g VR[J,)\H,V?

and that gA“RAWH = ¢"" Ry = 0. Why does this mean that R, is the only second rank
covariant tensor that can be formed from contracting Ry..7

We are not quite through contracting. We may form the curvature scalar
R=R', (224)

another very important quantity in general relativity.

Ezercise. The curvature scalar is unique. Prove that

R = gl/)\g#HR/\,uVK - —gVAQHRRHAm

and that
A/LQVHRA;WK = 0.

Justify the title of this exercise.

The Ricci tensor can be a real nuisance to evaluate explicitly in terms of the partial
derivatives of g,,, with sums within sums to be carried out. We are, alas, often faced with
this task. Fortunately, for the case of a diagonal metric tensor, a more explicit formula is
available, as the next exercise shows. It is still messy!

FEzercise. The Ricci tensor for a diagonal g,,. Off syllabus, only for the zealous!
Using the equations on page 29 for the affine connection I'j, for an assumed diagonal metric,
derive the following two forms for the Ricci tensor. Flrst “for components of the form Raa
(no sum on repeated roman indices throughout this exercme) show that

1 A - 1 . . 1 h 8)\ Jaa (8>\ Qaa)z (8(L In C]M)2 (a)\ Q(La)a)\ In g
Ruyo = =0,0.In g, — = (0, In 940 )0 In g, + = [d : — - + . + - =1
2 Il 4( ga) Jla T3 ; 3 9ar ) Jaa g 2 295
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The notation g|, denotes the absolute value of the determinant of g,, without the factor gq.

For components of the form R, a # b, show that

1 1 ;
Rop = iaaab In gjqp — 1 [(0aIn g1)0p In gaa + (9 In g) 00 In g, —2(0p In g ) O In g — Z (00 In gax)Op In gar]-
A#a,b

The notatation gj,, denotes the absolute value of the determinant of g, without the factors

Jaa and gpp,. These expressions look complicated, but in practice are not difficult to use, as
several of the terms will often vanish identically.

(Note: I am unaware of these two formulae appearing elsewhere in the literature, but I
suspect they are to be found somewhere. Student feedback is welcome.)

5.5 Curvature and Newtonian gravity

That curvature should be at the heart of our understanding of gravity is perhaps not too
surprising if we think carefully about the Poisson equation:

V20 = 4rGp (225)

where @ is the usual gravitational potential, and p the mass density. If you have an old-
fashioned enough book on fluid dynamics available (I like An Introduction to Fluid Dynamics
by G. Batchelor) you will come across a formula that relates the V2 operator directly to the
curvature of an ordinary 2D surface:

0?¢C  0%¢ 1 1

D T e 226
0x? + 8y2 R1 + R2 ( )

where ( is the (assumed small) displacement of the surface from planar, and the R’s are
the two “principal radii of curvature.” (Pick a point and think of fitting as smoothly as
possible, into the deformed surface, arcs of two circles at right angles to one another. The
R's are the radii of these circles.) So the Laplacian operator is on its own quite literally
a measure of spatial curvature. Moreover, if we have a surface membrane with a pressure
discontinuity AP(z,y) across it, then the displacement satisfies the dynamical force balance

(Young-Laplace equation):
0?¢ 0%
—+—| =AP 227

,Y (axQ + ayg ? ( )
where 7 is the assumed constant surface tension of the membrane (dimensions of energy per
area). This is identical to the 2D Poisson equation. So, at least in a two-dimensional world,

we can think of the Newtonian potential ® as the displacement of a surface membrane and p
as the applied pressure difference. That makes 1/(47G), in this analogy, the surface tension!

The origins of Riemannian Geometry began with Gauss trying to describe the mathe-
matics of two-dimensional surfaces with arbitrary curvature. Riemann then worked out the
notion of curvature in its full generality. It is of some interest therefore, to see geometrical
curvature already built into 2D Newtonian gravity at a fundamental level.

5.6 The Bianchi Identities

The fully covariant curvature tensor obeys a very important set of differential identities,
analogous to div(curl)=0. These are the Bianchi identities. We shall prove the Bianchi
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identities in our favourite freely-falling inertial coordinates with I' = 0, and since we will be
showing that a tensor is zero in these coordinates, it must be zero in all coordinate systems.
In I' = 0 coordinates,

Rypwrn = (228)

1 0 829)\1/ o aZQuV . (92.9)\,{ 829;“;
2 0xn \ Oxroxt  Odxrdxr®  Odxtdxv  OJxvOxt
The Bianchi identities follow from cycling k goes to v, v goes to 1, n goes to k. Leave A and
p alone. Repeat. Add the original Ry, and the two cycled expressions together. You will
find that this gives

R/\umm + R/\lmwfi + R/\um;v =0 (229)

An easy way to check the bookkeeping on this is just to focus upon the ¢’s: once you’ve
picked a particular value of 9?g,, in the numerator, the other dx¢ indices downstairs are
unambiguous, since as coordinate derivatives their order is immaterial. The first term in
(229) is then as shown: (gx,, —Guvs —9as: Gur)- Cycle to get the second group for the second
Bianchi term, (gxy, —9un, —9xvs guw)- The final term then is (gre, —9un, —9ans Guy). Look:
every ¢, has its opposite when you add these all up, so the sum is clearly zero.

We would like to get equation (229) into the form of a single vanishing covariant tensor
divergence, for reasons that will soon become very clear. Toward this goal, contract A with
v, remembering the symmetries in (221). (E.g., in the second term on the left side of [229],
swap v and n before contracting, changing the sign.) We find

me - Rl“?;“ + Ry,u/m;l/ =0. (230>
Next, contract p with s:
R, — R“WL -Rr,.,=0 (231)
(Did you understand the manipulations to get that final term on the left? First set things up with:
R i = 97 Boprny = =9 Ryuorn

Now it is easy to raise p and contract with x:

VO DU _ _ vo _ __ pv
97 Ry = =9 Rony = Rn;v)

Cleaning things up, our contracted identity (231) becomes:

(64R —2R" ), = 0. (232)

Raising 1 (we are allowed, of course, to bring ¢"" inside the covariant derivative to do this—
why?), and dividing by —2 puts this identity into its classic “zero-divergence” form:

R
(RW - g“"a) =0 (233)
yn

)

The generic tensor combination A* — g"” A /2 will appear repeatedly in our study of gravi-
tational radiation.

Einstein did not know equation (233) when he was struggling mightily with his theory.
But to be fair, neither did most mathematicians! The identities were actually first discovered
by the German mathematician A. Voss in 1880, then independently in 1889 by Ricci. These
results were then quickly forgotten, even, it seems, by Ricci himself. Bianchi then redis-
covered them on his own in 1902, but they were still not widely known in the mathematics
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community in 1915. This was a pity, because the Bianchi identities streamline the derivation
of the field equations. Indeed, they are referred to as the “royal road to the Gravitational
Field Equations ” by Einstein’s biographer A. Pais. It seems to have been the great math-
ematician H. Weyl who in 1917 first recognised the importance of the Bianchi identities for
relativity, yet the particular derivation we have followed was not formulated until 1922, by
Harward. A messy legacy.

The reason for the identities” importance is precisely analogous to Maxwell’s penetrating
understanding of the mathematical restrictions that the curl operator imposes on the type
of field it generates: why does the displacement current need to be added to the equation
V X B = pyJ? Because taking the divergence of this equation in this form gives zero
identically on the left—the divergence of the curl is zero—so the right hand source term must
also have a vanishing divergence. In other words, it must become a statement of some sort of
physical conservation law. Maxwell needed and invoked a physical “displacement current,”
(1/c*)OE /0t, adding it to the right side of the equation, because V-J is manifestly not always
zero. The ensuing physical conservation law corresponded to the conservation of electric
charge, now built directly into the fundamental formulation of Maxwell’s Equations. Here,
we shall use the Bianchi identities as the analogue (and it really is a precise mathematical
analogue) of “the divergence of the curl is zero,” a geometrical constraint that ensures that the
Gravitational Field Equations have conservation of the stress energy tensor automatically
built into their fundamental formulation, just as Maxwell’s Field Equations have charge
conservation built into their underlying structure. What is good for Maxwell is good for
Einstein.
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6 The Einstein Field Equations

In the spring of 1913, Planck and
Nernst had come to Zirich for the
purpose of sounding out Einstein about
his possible interest in moving to
Berlin...Planck [asked him] what he
was working on, and Finstein described
general relativity as it was then. Planck
said ‘As an older friend, I must advise
you against it for in the first place
you will not succeed; and even if you

succeed, no one will believe you.’

— A. Pais, writing in ‘Subtle is the
Lord’

6.1 Formulation

We will now apply the principle of general covariance to the gravitational field itself. What
is the relativistic analogue of V2® = 47Gp? We have now built up a sufficiently strong
mathematical arsenal from Riemannian geometry to be able to give a satisfactory answer to
this question.

We know that we must work with vectors and tensors to maintain general covariance, and
that the Newton-Poisson source, p, is a only one component of a more general stress-energy
tensor 7, (in its covariant form) in relativity. We expect, therefore, that the gravitional
field equations will take the form

G, =CT,, (234)

where C is a constant, and G, is some tensor that is comprised of g, and its second
derivatives, or quadratic products of the first derivatives of g,,. We guess this since i) we
know that in the Newtonian limit the largest component of g,, is the goo ~ —1 — 2®/c?
component; ii) we need to recover the Poisson equation; and iii) we assume that we are
seeking a theory of gravity that does not change its character with length scale: it has no
characteristic length associated with it where the field properties change fundamentally. We
need exclusively “1/r?” scaling on the left side.

The last condition may strike you as a bit too restrictive. Hey, who ordered that? Well,
umm...OK, we now know this is actually wrong. It is wrong when applied to the Universe as
a whole. But it is the simplest assumption that we can make that will satisfy all the basic
requirements of a good theory. Let’s come back to the general relativity updates once we
have version GR1.0 installed.

Next, we know that the stress energy tensor is conserved in the sense of T#" = (0. We

also know from our work with the Bianchi identities of the previous section that this will
automatically be satisfied if we take G, to be proportional to the particular linear combi-
nation
g;wR

2

(Notice that there is no difficulty shifting indices up or down as considerations demand: our

G x Ry, —
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index shifters g, and ¢"” all have vanishing covariant derivatives and can be moved inside

and outside of semi-colons.) We have therefore determined the field equations of gravity up

to an overall normalisation:
gu R

Ry, — — CT,, (235)

The final step is to recover the Newtonian limit. In this limit, 7},, is dominated by Tgo, and
g, can be replaced by 7,3 when shifting indices. The leading order derivative of g,, that
enters into the field equations comes from

2¢
g~ —1— =

where ® is the usual Newtonian potential. In what follows, we use i, j, k to indicate spatial
indices, and 0 will always be reserved for time.

The trace of equation (235) reads (raise p, contract with v):

4 x R

=3

— —R=CT. (236)

Substituting this for R back in the original equation leads to

g1\ _
R, =C (TW — “2 ) =CSu (237)
which defines the so-called source function, a convenient grouping we shall use later:
S =T — 9uT/2. (238)
The 00 component of of (237) is
T
Roo =C (Too - 90; ) (239)

In the Newtonian limit, the trace 7= T" is dominated by the 0 term, TY, and raising and
lowering of the indices is done by the 7, weak field limit of g, .

70 T T 2
Ry = C (Too - 77002 0) —C (TOO - %) =Cc2= C%, (240)

where p is the Newtonian mass density. Calculating Ry explicitly,
ROO = RVOVO = nAVR/\OVO (241)
We need only the linear part of R),,. in the weak field limit:

1 ( 829)\1/ a2g,u1/ 329,\n 829;“1 )

5 - - (242)

R VK —
An oxrcoxt  OJzxrdxr  OxvOxt  Oz¥Oz?

and in the static limit with © = x = 0, only the final term on the right side of this equation

survives: )
1 0%goo

Ryovo = 2 DO (243)
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Finally,
1 92900 1 1
R, :)\VRV:_)\V :—V2 - _
00 =1 Ltxowo 277 0o’ 2 Joo 2
This happily agrees with the Poisson equation if C' = —87G/c*. Hello Isaac Newton. As
Einstein himself put it: “No fairer destiny could be allotted to any physical theory, than that
it should of itself point out the way to the introduction of a more comprehensive theory, in
which it lives on as a limiting case.” We therefore arrive at the Finstein Field Equations:

2
v — OP°

(244)

1 8rG
G'uy = RMV - §gNVR = —FTMV (245)

The Field Equations first appeared in Einstein’s notes on 25 November 1915, just over a
hundred years ago, after an inadvertent competition with the mathematician David Hilbert,
triggered by an Einstein colloquium at Gottingen. (Talk about being scooped! Hilbert
actually derived the Field Equations first, by a variational method, but rightly insisted on
giving Einstein full credit for the physical theory. Incidentally, in common with Einstein,
Hilbert didn’t know the Bianchi identities.)

It is useful to also exhibit these equations explicitly in source function form. Contracting
wand v,

8t
and the field equations become
8t 1 8t
R“V = —7 (TMV — §g/“,T) = —?Swj (247)
where as before,
1
S,uu = T,uu - ég;wT7 (248>

a “Bianchified form” of the stress tensor. In vacuo, the Field Equations reduce to the
analogue of the Laplace Equation:
R, = 0. (249)

One final point. If we allow the possibility that gravity could change its form on different
scales, it is always possible to add a term of the form +£Ag,, to G,,, where A is a constant,
without violating the conservation of 7}, condition. This is because the covariant derivatives
of g, vanish identically, so that T}, is still conserved. Einstein, pursuing the consequences
of a cosmological theory, realised that his field equations did not produce a static universe.
This is bad, he thought, and Nature is not bad. Everyone knows the Universe is static. This
is good. So he sought a source of static stabilisation, adding an offsetting positive A term to
the right side of the field equations:

1 8t
R,uzx - §g,u1/R = _7T/.Ll/ + Ag,uu; (25())
and dubbed A the cosmological constant. Had he not done so, he could have made a spec-
tacular prediction: the Universe is dynamic, a player in its own game, and must be either
expanding or contracting.* With the historical discovery of an expanding univese, Einstein
retracted the A term, calling it “the biggest mistake of my life.”

4Even within the context of straight Euclidian geometry and Newtonian dynamics, uniform expansion of
an infinite space avoids the self-consistency problems associated with a static model. I've never understood
why this simple point is not emphasised more.
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Surprise. We now know that this term is, in fact, present on the largest cosmological
scales, and on these scales it is no small effect. It mimics (and may well be) an energy
density of the vacuum itself. It is measured to be 70% of the effective energy density in
the Universe, and it certainly doesn’t make the Universe static! It is to be emphasised
that A must be taken into account only on the largest scales, scales over which the locally
much higher baryon and dark matter inhomogeneities are lowered by effective smoothing.
A is otherwise completely negligible. The so-called biggest mistake of Einstein’s life was,
therefore, quadratic in amplitude: one factor of error for introducing A for the wrong reason,
the second factor for retracting A for the wrong reason!

Except for cosmological problems, we will always assume A = 0.

6.2 Coordinate ambiguities

There is no unique solution to the Field Equation because of the fact that they have been
constructed to admit a new solution by a transformation of coordinates. To make this point
as clear as possible, imagine that we have worked hard, solved for the metric g,,,, and it turns
out to be plain old Minkowski space.” We have the usual time ¢ coordinate for index 0, and
let us say «, (3, v for the three spatial dimensions. Even if we restrict ourselves to diagonal
Guv, we might have found that the four diagonal entries are (—1,1,1,1) or (—1,1,a% 1)
or (—1,1,a? a?sin? 3) depending upon whether we happen to be using Cartesian (z,y, 2),
cylindrical (R, ¢, z), or spherical (7,0, ¢) spatial coordinate systems. The upside is that we
always have the freedom to work with coordinates that simplify our equations, that make
physical properties of our solutions more transparent, or that join smoothly on to a favourite
flat space coordinates at large distances from a source. The downside is that in a complicated
problem, it is far from easy to know the best coordinates to be using.

Coordinate freedom is particularly useful for gravitational radiation. You may remember
when you studied electromagnetic radiation that the equations for the potentials (both A
and ®) simplified considerably when a particular “gauge” was used—the Lorenz gauge. A
different gauge could have been used, in which case the potentials would certainly have
looked different, but the physical fields would have been just the same. The same is true
for gravitational radiation. Here, coordinate transformations play this gauge role, but in a
rather peculiar way: we change the components of g, as though a coordinate transformation
were taking place, yet we actually keep our working coordinates the same! (Which is why
we call it a gauge transformation.) What seems like an elementary blunder is actually a
perfectly correct thing to do, and will be explained more fully in Chapter 7.

For the problem of determining g,,, around a point mass—the Schwarzschild black hole—
we will choose to work with coordinates that look as much as possible like standard spherical
coordinates.

6.3 The Schwarzschild Solution

We wish to determine the form of the metric tensor g, for the spacetime surrounding a point
mass M by solving the equation R,, = 0, subject to the appropriate boundary conditions.

Because the spacetime is static and spherically symmetric, we expect the invariant line
element to take the form

— Pdr? = —BJAdt* + Adr® + C d)? (251)

SDon’t smirk. If we're using awkward coordinates, it can be very hard to tell. You’ll see.
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where d€2 is the (undistorted) solid angle,

d? = db* + sin? 0 d¢?
and A, B, and C are all functions of the radial variable. We may choose our coordinates so
that C is defined to be 72 (if it is not already, do a coordinate transformation r? = C(r)

and then drop the ). A and B will then be some unknown functions of 7 to be determined.
Our metric is now in “standard form:”

—cdr?* = —B(r) A2dt* + A(r) dr® + r* (d6* + sin® 0 d¢?) (252)
We may read off the components of g,,:
g = —B(r) Grr = A(7) goo =1 Gpp = 1sin’0 (253)
and its inverse g,
gt =—-B"(r) g =A"(r) g% =2 g% = r~*(sin )2 (254)
The determinant of g, is —g, where

g=r*ABsin® 0 (255)

We have seen that the affine connection for a diagonal metric tensor will be of the form

1 0Guq
re =1y = —
ab ba 2gaa &Eb
no sum on a, with a = b permitted; or
L Ogu,
ry, =— —
P 204, Oa°

no sum on a or b, with a and b distinct. The nonvanishing components follow straightfor-
wardly:

B/
Iy, =17 = 5B
., B . A T, 7 sin® 0
Th=g51 Tw=g1 Tee=—7 les=—"74
1
Ify=T) =- TY, =—sindcosd
0 or = 56 sin @ cos
1
Fg;:rgfz; [y =T, = cotf (256)
where A" = dA/dr, B' = dB/dr.
Next, we need the Ricci Tensor:
ora,  or
— pA A ks A A
Rl“’v =R UK T Ot - o> + FZ)\me - FZKF)\n (257>
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Remembering equation (173), this may be written

1 921 ory,. .ol
= pr g pnopA w19 (258)

Ry = = -
" 2 0xkOxH oz PAT RN 2 O

Right. First R;;. Remember, static fields.

_ory, I}, 0ln|g|
= N FA B Zaefiunll A
==, 7 2 Ou
o (B [}, 0lng
- _Z IR RS W
ar (2A> Tt T 2 or
B" B' A’ B/2 B/2 B’ A B 4
:_(ﬂ> Tor B T AR 1A (z*%ﬁ)
This gives
B/l B/ B/ A/ B/
ST (= I p
Ry 2A+4A(B+A) A (259)
Next, R,,:
19%Ing OI" [7 Olng
_ o Fn 1“)\ it
Brr 2 0Or? or e 2 Or
10 7%%+B’+4 0 ! L A A’+B’+4
20r\VJA B r 2A AT 4A\NA T B r
B" 1(B\* 2 . : , s\2 1 /AN AB A
‘@—5(5) — g+ ()P4 )"+ (T0) + (17) 7(‘) TIAB A

_B”_l B ZZ % /%_ A/B/_A/
2B 2\ B 432 4AB  rA

so that finally we arrive at
B" 1B (A B A
— ==+ =] - — 2
R =55 4B(A+B) A (260)
Tired? Well, here is a spoiler: all we will need for the problem at hand is in Ry and R,
so you can now skip right now to the end of the section. For the true fanatics, we are just

getting warmed up. On to Rgg—have at it!

N
R
_detd) 4 (1) gy g O
:_ﬁ il i:él +T5 T, + Toalas + TonlG, + 27:4 (i/ +%’+§)
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1 3 rA ., . s \2 1B
== rg t A g TRl T6Th+ (T5,) + o4p
1 n 3 rA 2 bt 4 rB’
=————+—————+4co
sin A 242 A 2AB
The trigonometric terms add to —1. We finally obtain
1 r A B
Rgg = —1 — | —— 261
00 t1t3g ( i B) (261)

R, is the last nonvanishing Ricci component. No whining now! The first term in (257)
vanishes, since nothing in the metric depends on ¢. Then,

or) [ 01n|g]
B o0 Lo 0Inlg
Roo = —ax T Toalon — 5" 5
aFr ar (9ln| | 1 81n| |
ooy, ard, ; . g L 9
= 89 © + T4, + T4 + THT0, 2F¢¢ or PR
0 (rsin“d 0
a_<T> (510008 0) + T, + T4, + T4, T, + T4T,
+1 - Qalnsin29+l rsin® 0 £+2/+%
5 sinfcosf—o— + 1 A B r

i 02 A’ si 2 i 02 i 02 i 02 A B’ 4
— snf_?‘ S 0+eesz/«9—sin2 H—SHA —cos O— SHA Q—M—I—eesz/g—kTSln 0 (— +— + —)
7A ,

A2 2A A B
r A B 1 g
= sin 9{214( A—l—E)—I—Z—l}—Sln 0 Rgo

The fact that Ryy = sin? @ Rpy and that R,, = 0 if p and v are not equal are consequences
of the spherical symmetry and time reversal symmetry of the problem repsectively. If the
first relation did not hold, or if R;; did not vanish when 7 and j were different spatial
coordinates, then an ordmary rotation of the axes would change the relative form of the
tensor components, despite the spherical symmetry. This is impossible. If R;; = R;; were
non-vanishing (i is again a spatial index), the coordinate transformation ¢ = —t would
change the components of the Ricci tensor. But a static 12, must be invariant to this form
of time reversal coordinate change. (Why?) Note that this argument is not true for Ry,.
(Why not?)

Learn to think like a mathematical physicist in this kind of a calculation, taking into
account the symmetries that are present, and you will save a lot of work.

FExercise. Self-gravitating masses in general relativity. We are solving in this section
the vacuum equations R, = 0, but it is of great interest for stellar structure and cosmology
to have a set of equations for a self-gravitating spherical mass. Toward that end, we recall
equation (247):
GG 887G v o
By === S = == (T = 55T)

Let us evaluate S, for the case of an isotropic stress energy tensor of an ideal gas in its rest
frame. With

g =—B, gw=A, g =1 gos =1’sin’0,
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the stress-energy tensor
T/w = Pg/w + (/) + P/Cz)U/iUw

where U, is the 4-velocity, show that, in addition to the trivial condition
U =Uy=U, =0,
we must have U; = —cv/B (remember equation [182]) and that

B A 2 ‘
Su = 5(3P+p62)7 Spr = §<p62—P), Soo = %(PCZ—P)

We will develop the solutions of R, = —87GS,, /c¢* shortly.

Enough. We have more than we need to solve the problem at hand. To solve the equations
R,, = 0 is now a rather easy task. Two components will suffice (we have only A and B to
solve for after all), all others then vanish identically. In particular, work with R, and Ry,
both of which must separately vanish, so

R,, Ru B 1 A B B
A+§__T_A<Z+§ =0 (262)

whence we find
AB = constant = 1 (263)

where the constant must be unity since A and B go over to their Minkowski values at large
distances. The condition that Ry = 0 is now from (259) simply

2B’
B+ =0, (264)

r

which means that B is a linear superposition of a constant plus another constant times 1/7.
But B must approach unity at large r, so the first constant is one, and we know from long ago
that the next order term at large distances must be 2 /c? in order to recover the Newtonian

limit. Hence,
-1
po1- XM fh:O_QGM) (265)

re? rc?

The Schwarzschild Metric for the spacetime around a point mass is exactly

2GM 2GM\ "
ﬂ%ﬁz—(y-a )&M+(L—G >CW+ﬂwﬂw%me2 (266)

rc2 rc2

This remarkable, simple and critically important exact solution of the Einstein Field Equa-
tion was obtained in 1916 by Karl Schwarzschild from the trenches of World War I. Tragically,
Schwarzschild did not survive the war,® dying from a skin infection five months after finding
his marvelous solution. He managed to communicate his result fully in a letter to Ein-
stein. His final correspondence to Einstein was dated 22 December 1915, 28 days after the
formulation of the Field Equations.

6The senseless WWI deaths of Karl Schwarzschild for the Germans and Oxford’s Henry Moseley for the
British were incalculable losses for science. Schwarzschild’s son Martin, a 4-year-old at the time of his father’s
death, also became a great astrophysicist, developing much of the modern theory of stellar evolution.
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Ezercise. The Tolman-Oppenheimer-Volkoff Equation. Let us strike again while the
iron is hot. Referring back to the previous exercise, we repeat part of our Schwarzschild
calculation, but with the source terms S, retained. Form a familiar combination once
again:

(P + pc?)

R”'_|_&__L £’+£’ __87rG &4_5,.7. __87TG
A B  rA\ A B) ct B A ) ct

Show now that adding 2Rgy/r? eliminates the B dependence:

ATB TR T TR RtaET T e

Solve this equation for A and show that the solution with A(0) = 1 at the centre of the star
is

Ry, Ry 2Ry 24 2 2 167Gp

2 - g
A(r) = (1 - —G./;/l(r)> ., M(r) = / 4rp(r') v’ dr’
cr 0
Why is this the correct boundary condition?

Finally, use the equation Rpy = —8G7Spy/c* together with hydrostatic equilibrium (186)
(for the term B’/B in Ryp) to obtain the celebrated Tolman-Oppenheimer-Volkoff equation
for the interior structure of general relativistic stars:

aP — GM(r)p P 4r3 P ~ 2GM(r) !
ot (1) (3 e) (- 55"

Note: this is a rather long, but completely straightforward, exercise.

Students of stellar structure will recognise the classical equation hydrostatic equilibrium
equation for a Newtonian star, with three correction terms. The final factor on the right is
purely geometrical, the radial curvature term A from the metric. The corrective replacement
of p by p + P/c?* arises even in the special relativistic equations of motion for the inertial

density; for inertial purposes P/c? is an effective density. Finally the modification of the
gravitating M (r) term (to M(r)+4mr3P/c?) also includes a contribution from the pressure,

as though an additional effective mass density 3P(r)/c? were spread throughout the interior
spherical volume within r, even though P(r) is just the local pressure. Note that in massive
stars, this pressure could be radiative!

6.4 The Schwarzschild Radius

It will not have escaped the reader’s attention that at

_2GM

r
c2

= Ry (267)

the metric becomes singular in appearance. Rg is known as the Schwarzschild radius. Nu-
merically, normalising M to one solar mass Mg,

Rs = 2.95 (M /My) km, (268)

which is well inside any normal star! The Schwarzschild radius is part of the external vacuum
spacetime only for black holes. Indeed, it is what makes black holes black. At least it was
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thought to be the feature that made black holes truly black, until Hawking came along in
1974 and showed us that quantum field theory changes the behaviour of black holes. But as
usual, we are getting ahead of ourselves. Let us stick to classical theory.

I have been careful to write “singular in appearance” because in fact, the spacetime
is perfectly well behaved at r = Rg. It is only the coordinates that become strained at
this point, and these coordinates have been introduced, you will recall, so that they would
be familiar to us, we few, we happy band of observers at infinity, as ordinary spherical
coordinates. The curvature scalar R, for example, remains zero without so much as a ripple
as we pass through » = Rg. We can see this coordinate effect staring at us if we start with
the ordinary metric on the unit sphere,

ds* = df* + sin® 0 do?,
and change coordinates to x = sin §:

dz?

ds® =
N 1—22

+ 22de?.

This looks horrible at x = 1, but in reality nothing is happening. Since x is just the distance
from the z-axis to spherical surface (i.e. cylindrical radius), the “singularity” simply reflects
the fact that at the equator x has reached its maximum value 1. So, dzr must be zero at
this point. x is just a bad coordinate at the equator. But then ¢ is a bad coordinate at the
poles, # = 0 or # = 7, or for that matter x = 0. Bad coordinates happen to good, decent
spacetimes. Get over it.

The physical interpretation of the first two terms of the metric (266) is that the proper
time interval at a fixed spatial location is given by

2GM 2
dt (1 - — ) (proper time interval at fixed location). (269)
re

The proper radial distance interval at a fixed angular location and time is

2G M\
dr <1 - — ) (proper radial distance interval at fixed time & angle). (270)
re

Fxercise. Getting rid of the Schwarzschild coordinate singularity. A challenge
problem for the adventurous student only. Make sure you want to do this be-
fore you start. Consider the rather unusual coordinate transformation found by Martin
Kruskal. Start with our standard spherical coordinates t,r, 6, ¢ and introduce new " and ¢/

coordinates: 9 2
2 2,2 22 [ TC re
— At =T —1])e
ol =c (QGM > o <2G’M>

2r'ct! tonh 3t
—— =tanh | ——
r’2 | 22 2GM

where 7" is an arbitrary constant. Show that the Schwarzschild metric transforms to

2 3]\[’3 2
—2dr? = <3 G > exp ( e ) (dt? — dr'?) — r?dQ?

cSrT? 2G M
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where T is arbitrary constant with dimensions of time, and r is the implicit solution of our
first equation for 2 — ¢2t"2. The right side of this equation has a minimum of —c*T? at
r = 0, hence we must have

‘T‘/Q > CZ(t/Q - T2)

always. When ' < T there is no problem. But when ¢’ > T there are two distinct regions:

1" = t+c/t"? — T?! Then the metric has a real singularity at either of these values of " (which
is just r = 0), but still no singularity at ' = +ct’, the value r = Rg.

6.5 Schwarzschild spacetime.

6.5.1 Radial photon geodesic

This doesn’t mean that there is nothing of interest happening at r = Ryg.

For starters, the gravitational redshift recorded by an observer at infinity relative to
someone at rest at location r in the Schwarzschild spacetime is given (we now know) precisely
by

dr
dt = Exact. 271
(1 —2GM/rc?)/? ( ) (271)
so that at r — Ryg, signals arrive at a distant observer’s post infinitely redshifted. What
does this mean?

Comfortably sitting in the Clarendon Labs, monitoring the radio signals my hardworking
graduate student is sending me whilst engaged on a perfectly reasonable thesis mission to take
measurements of the r = Rg tidal forces in a nearby black hole, I grow increasingly impatient.
Not only are the incessant complaints becoming progressively more torpid and drawn out,
the transmission frequency keeps shifting to longer and longer wavelengths, slipping out of
my receiver’s bandpass. Most irritating. Eventually, all contact is lost. (Typical.) I never
receive any signal of any kind from within Rg. Rg is said to be the location of the event
horizon. The singularity at » = 0 is present, but completely hidden from the outside world
at R = Rg within an event horizon. It is what Roger Penrose has aptly named “cosmic
censorship.”

The time coordinate change for light to travel from r4 to rg following its geodesic path
is given by setting

—(1 = 2GM/rc®)cdt? +dr*/(1 — 2GM /rc*) =0

and then computing

B 1 "B dr B —Ta RS TB—RS
Fam — dt — = — Pnl—=2—2 272
AB /A C/TA (1—-2GM/rc?) c - c n(rA—RS> (272)

which will be recognised as the Newtonian time interval plus a logarithmic correction pro-
poritional to the Schwarzschild radius Rg. Note that our expression becomes infinite when
a path endpoint includes Rg. When Rg may be considered small over the entire integration
path, to leading order

— R — Rgl
fope BT rA | Bsy (T_A) _TB—Ta (HM) (273)
c (& B C B —1TA
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A GPS satellite orbits at an altitude of 20,200 km, and the radius of the earth is 6370 km.
Rg for the earth is only 9mm! (Make a fist. Squeeze the entire earth inside it. You're not
even close to making a black hole.) Then, the general relativistic correction factor is

1 -3
Rs 9 x 10 — 6.5 % 10°10
5 —1a (20,200 — 6370) x 10°

This level of accuracy, about a part in 10°, is needed for determining positions on the surface
of the earth to a precision of a few meters (as when your GPS intones “Turn right onto the
Lon-don Road.”). How does the gravitational effect compare with the second order kinematic
time dilation due to the satellite’s motion? You should find them comparable.

6.5.2 Orbital equations

Formally, we wish to solve the geodesic equation for the orbits around a point mass. We
write the equation not as a function of 7, but of some other parameter p:

d?z* ., dxtdz”
0 + wj% i =0 (274)

We will assume that 7 is just p multiplied by some constant, but that the constant is zero
for a photon. That way, we don’t have to worry anything singular happening when dr = 0
for a photon. We use some other scalar dp, a differential that is finite for both ordinary
matter and photon orbits. Don’t worry about what p is for now, we’ll see how that all works
mathematically in a moment. If you're still bothered, just think of dp as the time you view
as elapsed on your own personal Casio (whatever) wristwatch. That’s a good scalar!

The orbital equations themselves are most easily derived by starting with the Euler-
Lagrange Equations for the Lagrangian

dat dx¥ 22 -2 272
L=gu b dp B(r)c*t® + A(r)r* +r°¢ (275)
where the dot now represents d/dp, just as we learned at the end of section 3.5, page 31,
using 7. (Remember dp and dr are just proportional to one another.) We have fixed the
orbital plane to § = 7/2, so that df/dp vanishes identically. A and B depend explicitly on
r, and implicitly on p via r = r(p). Recall that for large r, A and B approach unity. The
Euler-Lagrange equation for time ¢ is simple, since there is no 9L /0t:

d (oL d dt

— (= )=-2— (B —| =0, 276

dp(at) Cdp( dp) 270
and the same holds true analogously for the ¢ equation:
d (0L d dgb)

— (= )=2—(r*==| =0. 277

dp (8¢) dp ( dp (277)

These equations are both very easy to solve. Since p can be always be multiplied by some
arbitrary factor, it is handy to choose the integration constant of (276) in such a way that
p goes over to the time ¢ at large r distances. Then, ¢ is given by the equation:
dt
— =B (278)
dp
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Moreover, general relativity conserves angular momentum for a spherical spacetime just like
ordinary mechanics. The angular variable ¢ is given by the differential equation:

d
7’2d—jj =J (constant. ) (279)
We could now proceed with the formal Euler-Lagrange equation for r, but there is a much
more direct option available to us. Just write down directly the line element for (dr/dp)?,
and use the last two results we just derived for dt/dp and d¢/dp.

d 2 2 2 d 2
A <d_;) + % — % = <d—;) = —F (constant) (280)

where we have introduced our mysterious proportionality factor linking dr and dp via c?dr? =
Edp?, i.e. p and 7 differ only by the proportionality constant E. (Notice the flexibility we
have: had we chosen a different integration constant in (278), we could now just absorb it
into our definition FE.) For ordinary matter, £ > 0, while £ = 0 for photons. Far from the
Schwarzschild radius of the point mass, assuming that we are still on the orbit, to leading
Newtonian order the final term on the left —c?/B dominates over the first two. With B ~ 1,
we then find E ~ ¢, which is just the rest mass energy per unit mass. The small difference
between E and ¢? is proportional to the Newtonian energy. Substituting for B in (280), we
note more generally that the extremal (maximum and minimum) values of orbital radius r
for a bound orbit (when 7 = 0) are solutions of

2GM J? 9
for ordinary matter, and of
2GMN\ J*
<1 — 7’02 > 7’_2 —C = (282)

for photons. (A bound photon orbit can only be circular, and the orbit is actually unstable.)

The radial equation of motion may be written for either dr/dr, dr/dt, or dr/d¢ respec-
tively (we use AB = 1):

dr\? ) J? c
dr\? J?

(d_:) + B? (E + 7«_2) = B*¢ (284)
dr\? 9 Er? Art

<%) +r°B <1 + 7) - 7 (285)

From here on, it is only a matter of evaluating a (perhaps complicated) integral over r to
obtain the explicit solution for the orbit. We can always do this task numerically. When
we are looking only for small perturbations from Newtonian theory, as discussed in the next
section of classical tests of general relativity, analytic progress is possible.
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Figure 2: Bending of light by the gravitational field of the sun. In flat spacetime the
photon ~ travels the straight line from ¢ = 0 to ¢ = 7 along the path rsiny = b. The
presence of spacetime curvature starts the photon at ¢ = —¢ and finishes its passage at
@ =7+ 0. The deflection angle is Ay = 20.
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6.6 The deflection of light by an intervening body.

The first prediction made by General Relativity Theory that could be tested was that
starlight passing by the limb of the sun would be slightly, but measurably, deflected by
the gravitational field. This type of measurement can only be done, of course, when the sun
is completely eclipsed by the moon. Fortunately, the timing of the appearance of Einstein’s
theory with an eclipse was ideal. One of the longest total solar eclipses of the 20th century
occurred on 29 May 1919. The path of totality extended along a narrow strip of the earth
starting in South America and continuing to central Africa. An expedition headed by Arthur
Eddington observed the eclipse from the island of Principe, just off the west coast of Africa.
Measurements of the angular shifts of thirteen stars confirmed not only that gravity certainly
affected the propagation of light, but that it did so by an amount in much better accord
with general relativity theory than with a Newtonian “corpuscular theory,” with the test
mass velocity set equal to ¢. (The latter gives a deflection angle only half as large as GR,
in essence because the 2GM /rc* terms in both the dt and dr metric coefficients contribute
equally to the photon deflection, whereas in the Newtonian limit only the modification in
the dt metric coefficient is retained.) This success earned Einstein press coverage that today
is normally reserved for rock stars. Fverybody knew who Albert Einstein was!

Today, not only mere deflection, but “gravitational lensing” and actual image forma-
tion (across the electromagnetic spectrum) are standard astronomical techniques to probe
intervening matter in all of its forms: from small planets to huge, diffuse cosmological ag-
glomerations of dark matter. The weak lensing caused by the presence of the latter is the
target of the Fuclid space-based telescope mission to be launched in 2021.

Let us return to the classic test. As in Newtonian dynamics, it turns out to be easier to

work with « = 1/r, in which case
du\> 1 [(dr\’
— ) === . 2
() = (%) (250

Equation (285) with £ = 0 for a photon may be written

1 (dr\> B &
i (d_¢> + 2 = 7 = constant (287)
In terms of w: 5 9
du 9 2GMu C
() (-55") % 9

Differentiating with respect to ¢ (du/d¢ = u’) leads quickly to

M
u 4 u = 3G2 u? = 3eu®. (289)

C

We treat e = GJ\/[/C2 as a small parameter. We expand u as u = ug+uy, with u; = O(eug) <
ug (read “uy is of order e times uy and much smaller than uy”). Then, terms of order unity
must obey the equation

ug + ug = 0, (290)

and the terms of order e must obey the equation

u +uyp = 3eud. (291)
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To leading order (u = ugp), nothing happens: the photon moves in a straight line. If the
point of closest approach is the impact parameter b, then the equation for a straight line is
rsing = b, or
sin ¢

b

which is the unique solution to equation (290) with boundary conditions r = oo at ¢ = 0
and ¢ = 7.

At order €, there is a deflection from a straight line due to the presence of u;:

(292)

Uy =

3e

3€ .
uf +uy = 3euj = —sin® ¢ = 52

B (1 — cos2¢) (293)
Clearly, we need to search for solutions of the form u; = U + V cos 2¢, where U and V' are
constants. Substituting this into (293), we easily find find U = 3¢/2b* and V = €/20*. Our

solution is then )

sing 3¢ i € COS 2¢
b 2b? 202
With € = 0, the solution describes a straight line, rsin¢ = b. The first order effects of
including e incorporate the tiny deflections from this straight line. The € = 0 solution sends
r off to infinity at ¢ = 0 and ¢ = . We may compute the leading order small changes to
these two “infinity angles” by using ¢ = 0 and ¢ = 7 in the correction € cos2¢ term. Then

we find that r goes off to infinity not at ¢ = 0 and m, but at the slightly corrected values
¢ = —0 and ¢ = 7™+ ¢ where

_26

) 2 (295)
In other words, there is now a total deflection angle A¢ from a straight line of 24, or
4GM
Ap = 52 = 1.75 arcseconds for the Sun. (296)
c

Happily, arcsecond deflections were just at the limit of reliable photographic methods of
measurement in 1919. Those arcsecond deflections unleashed a truly revolutionary paradigm
shift. For once, the word is not an exaggeration.

6.7 The advance of the perihelion of Mercury

For Einstein personally, the revolution had started earlier, even before he had his Field
Equations. The vacuum form of the Field Equations is, as we know, sufficient to describe
the spacetime outside the gravitational source bodies themselves. Working with the equation
R, = 0, Einstein found, and on 18 November 1915 presented, the explanation of a 60-year-
old astronomical puzzle: what was the cause of Mercury’s excess perihelion advance of 43"
per century? The directly measured perihelion advance is actually much larger than this,
but after the interactions from all the planets are taken into account, the excess 43" per
century is an unexplained residual of 7.5% of the total. According to Einstein’s biographer
A. Pais, the discovery that this precise perihelion advance emerged from general relativity
was

“...by far the strongest emotional experience in Einstein’s scientific life, perhaps in all his life.
Nature had spoken to him. He had to be right.”
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Figure 3: Departures from a 1/r gravitational potential cause elliptical orbits not to
close. In the case of Mercury, the perihelion advances by 43 seconds of arc per century.
The effect is shown here, greatly exaggerated.
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6.7.1 Newtonian orbits

Interestingly, the perihelion first-order GR calculation is not much more difficult than straight
Newtonian. GR introduces a 1/r? term in the effective gravitational potential, but there is

already a 1/7? term from the centrifugal term! Other corrections do not add substantively
to the difficulty. We thus begin with a detailed review of the Newtonian problem, and we
will play off this solution for the GR perihelion advance.

Conservation of energy is
where J is the (constant) specific angular momentum 72d¢/dt and £ is the constant energy
per unit mass. (In this Newtonian case, when the two bodies have comparable masses, M is

actually the sum of the individual masses, and r the relative separation of the two bodies.)
This is just the low energy limit of (283), whose exact form we may write as

1(dr\* & [(J*\ GM J? 2 F
El (e B (i I ) R ey 2. (298)
2 \dr E \ 2r? r r2E 2F
We now identify E with ¢? to leading order, and to next order (¢ — E)/2 with £ (i.e. the
mechanical energy above and beyond the rest mass energy). The Newtonian equation may

e witten drd¢ Jdr 2GM  J\'?
UT:%%ZE%::&<28+ . —ﬁ> (299)
and thence separated:
Jdr =0 (300)
r? (25 + 260 ‘]—2)
r r
With u = 1/r,
/ 28 QGj\ZU N A (801)
(ﬁ e )
or
/ du =¥ (302)

26 G2M? GM\?
et T\

Don’t be put off by all the fluff. The integral is standard trigonometric,

[ u V=R = = cos /)

giving us:
GM
-1 E
Ccos RPN =+¢ (303)
525
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In terms of » = 1/u this equation unfolds and simplifies down to

2 2
_ J2)GM o, 2T

S - 304
" 1+ecosg’ G2M? (304)

With € < 0 we find that € < 1, and that (304) is just the equation for a classical elliptical
orbit of eccentricity e. We identify the semilatus rectum,

L=J%/GM (305)

the perihelion (radius of closest approach) r_ and the aphelion (radius of farthest extent)

Ty,
L L L_1(1 1 (306)
Tire T i—e T2\ T

and the semi-major axis
1
a= §(T+ +r_), whence L = a(1 — €%) (307)

Notice that the zeros of the denominator in the integral (302) occur at u_ = 1/r_ and
uy = 1/ry, corresponding in our arccosine function to ¢ equals 0 and 7 respectively.

FEzercise.) The Shows must go on. Show that the semi-minor axis of an ellipse is b = av/1 — €.
Show that the area of an ellipse is wab. Show that the total energy of a two-body bound system
(masses mq1 and mg) is —G'mims/2a, independent of e. With M = my + mg, show that the period

of a two-body bound system is 27+/a3/GM, independent of €. (There is a very simple way to do
the latter!)

6.7.2 The perihelion advance of Mercury

Equation (285) may be written in terms of u = 1/r as

du\* 2GMu , F ?
(%) + (1 S ) (u + ﬁ) =7 (308)

Now differentiate with respect to ¢ and simplify. The resulting equation is:

p GME SGMUQNGM 3G Mu?
u—l—u:CZﬂ—ir 2 _J2+ ER

(309)

since E is very close to ¢? for a nonrelativistic Mercury, and the difference here is immaterial.
The Newtonian limit corresponds to dropping the final term on the right side of the equation;
the resulting solution is

GM J2/GM

uSun = — (1+e€ecos¢) or r:m

(310)

where € is an arbitrary constant. This is just the classic equation for a conic section, with
hyperbolic (e > 1), parabolic (¢ = 1) and ellipsoidal (¢ < 1) solutions. For ellipses, € is the
eccentricity.

74



As the general relativistic term 3GMu?/c? is tiny, we are entirely justified in using the

Newtonian solution for «? in this higher order term. Writing u = uy + du with uy given by
(310), the differential equation becomes

d25u 3GM
00 +du = 2 UN =

3(GM)?
2 J4

(1 + 2€cos ¢ + € cos® ¢). (311)

In Problem Set 2, you will be asked to solve this equation. The resulting solution for
u = uy + du may be written

GM

7 (14 ecos[p(1 — a)]) (312)

u =~

where a = 3(GM/Jc)?. Thus, the perihelion occurs not with a ¢-period of 27, but with a

slightly longer period of
2m

11—«

~ 21 + 27, (313)

i.e. an advance of the perihelion by an amount

2 10
A = 2ra = 6 (GJ—M) = 6 (GM) — 2,783 x 10~° (10 m) (314)

c 2L L

in units of radians per orbit. With L = 5.546 x 10'° m, the measured semilatus rectum for
Mercury’s orbit, this value of A¢ works out to be precisely 43 seconds of arc per century.
(There are 415.2 orbits of Mercury per century.) Einstein confided to a colleague that
when he found that his result (314) agreed so precisely with observations, he felt as though
something inside him actually snapped...

From the discovery in 1915, until the 1982 gravitational radiation measurement of the bi-
nary pulsar 1913416, the accord with the Mercury perihelion advance was general relativity’s
greatest observational success.

6.8 Shapiro delay: the fourth protocol

For many years, the experimental foundation of general relativity consisted of the three
tests we have described that were first proposed by Einstein: the gravitational red shift, the
bending of light by gravitational fields, and the advance of Mercury’s perihelion. In 1964,
nearly a decade after Einstein’s passing, a fourth test was proposed: the time delay by radio
radar signals when passing near the sun in the inner solar system. The idea, proposed and
carried out by Irwin Shapiro, is that a radio signal is sent from earth, bounces off Mercury,
and returns. One does the experiment when Mercury is at its closest point to the earth,
then repeats the experiment when the planet is on the far side of its orbit. There should be
an additional delay of the pulses when Mercury is on the far side of the sun because of the
traversal of the radio waves across the sun’s Schwarzschild geometry. It is this delay that is
measured.

Recall equation (284), using the “ordinary” time parameter ¢ for an observer at infinity,
with £ = 0 for radio waves: )
(dr) B*J* B¢

) taE T A (315)
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Figure 4: Radar echo delay from Venus as a function of time, fit with
general relativistic prediction.

It is convenient to evaluate the constant .J in terms of ry, the point of closest approach to
the sun. With dr/dt = 0, we easily find

7,,2 2
e — I

where By = B(rg). The differential equation then separates and we find that the time #(r, ()
to traverse from rg to r (or vice-versa) is

1 /" Adr
t(r,ro) = —/ 5N (317)
70 0
1210
( By 7”2>

where we have made use of AB = 1. Expanding to first order in GM/c*r with B =

1 —2GM/c*r:
B} 2GM (1 1\] r?
2N 1 S | Y 318
By r? [ i c? <r0 r)] 72 (318)
This may now be rewritten as:
B r? r2 2GMr
12l (o) (o 2o 319
By r? ( r2> ( c2r(r+r0)) (319)
Using this in our time integral for #(rg,r) and expanding,
1 [ 2\ 12 2GM  GM
t(ro,) = —/ dr (1 . T—g) <1 TR ) (320)
C Jry r re Ar(r +ro)
The required integrals are
1 /[ rdr 1 2012
R R 320
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2GM [T dr 2GM (T 2GM r r2
= / 2= =~ cosh™ (—) =3 In (— +y = 1) (322)
40

To To L)
M " d M —
G TO/ r i :G T —To (323)
A Sy (r4ro)(r2 —1rd)l/2? A3\ r+mr
Thus,
1 2GM r r2 GM [r—r
/ e (A VL Wity P AR AN 0 324
(o) = 20 =)+ 2 (D [ )+ L ey

We are interested in 2t(ry,70) £ 2t(rqe,rg) for the path from the earth at r, reflected from
the planet (at 75), and back. The £ sign depends upon whether the signal passes through
ro while enroute to the planet, i.e. on whether the planet is on the far side or the near side
of the sun.

It may seem straightforward to plug in values appropriate to the earth’s radial location
and the planet’s (either Mercury or Venus, in fact), compute the “expected Newtonian time”
for transit (a sum of the first terms) and then measure the actual time for comparison with
our formula. In practise, to know what the delay is, we have to know what the Newtonian
transit time is to fantastic accuracy! In fact, the way this is done is to treat the problem
not as a measurement of a single delay time, but as an entire function of time given by
our solution (324) with r = r(¢). Figure (3) shows such a fit near the passage of superior
conjunction (i.e. the far side orbital near the sun in sky projection), in excellent agreement
with theory. Exactly how the parameterisation is carried out would take us too far afield;
there is some discussion in W72 pp. 202-207, and an abundance of topical information on
the internet under “Shapiro delay.”

Modern applications of the Shapiro delay use pulsars as signal probes, whose time passage
properties are altered by the presence of gravitational waves, a topic for the next chapter.

7



They are not objective, and (like abso-
lute welocity) are not detectable by any
conceivable experiment. They are merely
sinuosities in the co-ordinate system, and
the only speed of propagation relevant to
them is “the speed of thought.”

— A. S. Eddington writing in 1922 of
FEinstein’s suspicions.

On September 14, 2015, at 09:50:45 UTC
the two detectors of the Laser Interfer-
ometer Gravitational Wave Observatory
stmultaneously observed a transient grav-
itational wave signal. The signal sweeps
upwards from 35 to 250 Hz with a peak
gravitational wave strain of 1 x 1072, It
matches the waveform predicted by general
relativity for the inspiral and merger of a
pair of black holes and the ringdown of the

resulting single black hole.

— B. P. Abbott et al., 2016, Physical
Review Letters, 116, 061102

7 Gravitational Radiation

Gravity is spoken in the three languages. First, there is traditional Newtonian potential
theory, the language used by most practising astrophysicists. Then, there is the language of
Einstein’s General Relativity Theory, the language of Riemannian geometry that we have
been studying. Finally, there is the language of quantum field theory: gravity is a theory
of the exchange of spin 2 particles, gravitons, much as electromagnetism is a theory arising
from the exchange of spin 1 photons. Just as the starting point of quantum electrodynamics
is the radiation theory of Maxwell, the starting point of quantum gravity must be a classical
radiation theory of gravity. Unlike quantum electrodynamics, the most accurate physical
theory ever created, there is no quantum theory of gravity at present, and there is not even
a consensus approach. Quantum gravity is therefore very much an active area of ongoing
research. For the theorist, this is reason enough to study the theory of gravitational radi-
ation in general relativity. But there are good reasons for the practical astrophysicist to
get involved. In Februrary 2016, the first detection of gravitational waves was announced.
The event signal had been received and recorded on September 14, 2015, and is denoted
Glravitational|W[ave|150914. The detection was so clean, and matched the wave form pre-
dictions of general relativity in such detail, there can be no doubt that the detection was
genuine. A new way to probe the most impenetrable parts of the Universe is at hand.
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The theory of general relativity in the limit when g,, is very close to 7,, is a classical
theory of gravitational radiation (and not just Newtonian theory), in the same way that
Maxwellian Electrodynamics is a classical electromagnetic radiation theory. The field equa-
tions for the small difference tensor g,, — 7, become, in the weak field limit, a set of rather
ordinary looking wave equations with source terms—much like Maxwell’'s Equations. The
principal difference is that electrodynamics is sourced by a vector quantity (the usual vector
potential A with the potential ® combine to form a 4-vector), whereas gravitational fields in
general relativity are sourced by a tensor quantity 7),,. This becomes a major difference when
we relax the condition that the gravity field be Weaﬁ: the gravitational radiation itself makes
a contribution to its own source, something electromagnetic radiation cannot do. But this is
not completely unprecedented in wave theories. We have seen this sort of thing before, in a
purely classical context: sound waves can themselves generate acoustical disturbances, and
one of the consequences is a shock wave, or sonic boom. While a few somewhat pathological
mathematical solutions for exact gravitational radiation waves are known, in general people
either work in the weak field limit or resort to numerical solutions of the field equations.
Even with powerful computers, however, precise numerical solutions of the field equations
for astrophysically interesting problems—Ilike merging black holes—have long been a major
technical challenge. In the last decade, a practical mathematical breakthrough has occurred,
and it is now possible to compute highly accurate wave forms for these kinds of problems,
with important predictions for the new generation of gravitational wave detectors.

As we have noted, astrophysicists now have perhaps the most important reason of all to
understand gravitational radiation: we are on the verge of what will surely be a golden age
of gravitational wave astronomy. That gravitational radiation truly exists was established in
the years following 1974, when a close binary system (7.75 hour period) with a neutron star
and a pulsar (PSR 1913+16) was discovered and followed-up by Hulse and Taylor. So much
orbital information could be extracted from this remarkable system that it was possible to
predict, then measure, the rate of orbital decay (the gradual shortening of the period of the
pulsar’s decaying orbit) caused by the energy loss in gravitational radiation. Though tiny
in any practical sense, the period change was large enough to be cleanly measured. General
relativity turned out to be exactly correct (Taylor & Weisberg, ApJ, 1982, 253, 908), and
the 1993 Nobel Prize in Physics was duly awarded to Hulse and Taylor for this historical
achievement.

The September 2015 gravitational wave detection pushed back the envelope dramatically.
It established that i) the direct reception and quantitative analysis of gravitational waves is
technically feasible and will soon become a widely-used probe of the universe; ii) black holes
exist beyond any doubt whatsoever, this truly is the proverbial “smoking-gun”; iii) the full
dynamical content of strong field general relativity, on time and length scales characteristic of
stellar systems, is correct. This achievement is an historical milestone in physics. Some have
speculated that its impact on astronomy will rival Galileo’s introduction of the telescope.
Perhaps Hertz’s 1887 detection of electromagnetic radiation in the lab is another, more apt,
comparison. (Commercial exploitation of gravity waves is probably some ways off. Maybe
it will be licenced someday as a revenue source.)

There may be more to come. In the near future, it is anticipated that extremely deli-
cate pulsar timing experiments, in which arrival times of pulses are measured to fantastic
precision, will detect distortions in space. In essence, this is a measure of the Shapiro delay,
caused neither by the Sun nor by a star, but by the passage of a large scale gravitational
wave between us and the pulsar probes!

The subject of gravitational radiation is complicated and computationally intensive. Even
the basics will involve some effort on your part. I hope you will agree that the effort is well
rewarded.
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7.1 The linearised gravitational wave equation

Summary: The linearised gravitational wave equation of general relativity takes on the form
of a standard wave equation when written in what are known as “harmonic” coordinates.
These coordinates are very important for the study of gravitational radiation.

We assume that the metric is close to Minkowski space. Let us introduce the quantity
h,y, the (small) departure in the metric tensor g,, from its Minkowski 7, limit:

Guv = Npv + h;w (325)

To leading order, when we raise and lower indices we may do so with 7,,. But be careful
with ¢g" itself. Don’t just lower the indices in the above equation willy-nilly! Instead, note
that

g =" — ht (326)
to ensure g,, 9" = ;. (You can raise the index of g with 7 only when approximating g" as
its leading order value, which is n**.) Note that

0
Whye =h", n"—=—, 327
n K n axl, amu ( )
so that we can slide dummy indices “up-down” as follows:
Oh ., oh? oh? Oht
H v v = v (328)

Oz, = Tle oz, - oxP oz

The story begins with the Einstein Field Equations cast in a form in which the “linearised
Ricci tensor” is isolated on the left side of our working equation. Specifically, we write

R, = R)+ RY) + .. etc. (329)
and W
R
Gla) = RjL) = =5~ (330)

where Rf}l,) is all the Ricci tensor terms linear in h,,, REE’) all terms quadratic in A, and so
forth. The linearised affine connection is

A omA
o L (8hp,, O 8h,w) 1 (ah , O 8h,w) | 331)

2 ozt oxV oxr 2\ Ox+ oxV oxy,

In terms of hy,, and h = 1", from equation (219) on page 51, we explicitly find

1 2h *h 2p
RY = ( 0 = on, —|—Dhu,,) (332)

w9\ gxrdzr  OxvOr*  Oxrdx
where o |
_ = 2 _ I
H= Ox 0Ty v c2 Ot? (333)
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is the d’Alembertian (clearly a Lorentz invariant), making a most welcome appearance into
the proceedings. Contracting p with v, we find that

82 hHv

RW = op — Yy (334)
where we have made use of
Ohy — OnM
8_%  Oxh

Assembling G,(}l,), we find

u-tf,z -2
%

L - - by — g (ah— 21 (335)
2 | OxtOxv  OxrOx¥ Oz Oxt Ty o0x* oxr ) |-

The full, nonlinear Field Equations may then formally be written

81GT, 81G(T, + )
1) v 1 . v v
Gl =— <C_4# + Gy — GL)) =_ Z4 w) (336)
where . . @
_C Ay € 2 B7
Tuw 87TG<G/W Gl.)) =~ e Ry — N 5 (337)

Though composed of geometrical terms, the quantity 7, is written on the right side of the
equation with the stress energy tensor 7),,, and is interpreted as the stress energy contribution
of the gravitational radiation itself. We shall have more to say on this in section 7.4. In linear

theory, 7,, is neglected in comparison with the ordinary matter 7),,.

Exercise. Show that, in terms of the source function S, = T}, — 1,,1/2, the linear field
equation is

0h *n, o?n? 167G
- S R T L
Oxtoxy  Ox*Ox¥  Ox Oxt K A

Recover the static Poisson equation limit, as per our more general treatment in Chapter 6.

Sy

This is all a bit disappointing to behold. Even the linearised Field Equations look to
be a mess! But then, you may have forgotten that the raw Maxwell wave equations for the
potentials are no present, either. You will permit me to remind you. Here are the equations
for the scalar potential ® and vector potential A:

10
2p+ - —(V-A) = —4
\V, +Cat(v ) P (338)
240 1O0°A 192y _ 4r
VA 5553 v VA+cat = CJ (339)

(Note: T have used esu units, which are much more natural for relativity. Here p is the
electric charge density.) Do the following exercise!

Ezercise. In covariant notation, with A = (&, A) and J* = (p, J/c) representing respec-

tively the potential and source term 4-vectors, the original general equations look a bit more
presentable. The only contravariant 4-vectors that we can form which are second order in
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the derivatives of A* are OA® and 9°0sA”. Show that if 9,J% = 0 identically, then our
equation relating A% to J* must be of the form

OA% — 90 AP = CJ°

where C' is a constant to be determined, and that this equation remains unchanged when
the transformation A% — A® + 0“A in made. This property is known as gauge-invariance.
We will shortly see something very analogous in general relativity. In the meantime, how do
we determine C'?7

Do you remember the way forward from here? Work in the “Lorenz gauge,” which we are
always free to do:

VAt - = (340)

In covariant 4-vector language, this is simply a vanishing divergence condition, d,A% = 0.
Then, the dynamical equations simplify:

100
1 0’°A 47
2

This is much nicer. Physically transparent Lorentz-invariant wave equations emerge. Might
something similar happen for the Einstein Field Equations?

That the answer might be YES is supported by noticing that G,(}V) can be written entirely
in terms of the Bianchi-like quantity

_ Jh _ 5tk
P = h — ””2 L or =R - (343)

Using this in (335), the linearised Field Equation becomes

*ny, PR, *hv 167GT,,

© Oxvdrr  OxrOz + ox oxr A

(It is easiest to verify this by starting with (344), substituting with (343), and showing that
this leads to (335).)

2GY) = Oh,,

pv

(344)

Interesting. Except for Ohy, every term in this equation involves the divergence 9,h*,
or 9,h*. Hmmm. Shades of Maxwell’s 0,A%. In the Maxwell case, the freedom of gauge

invariance allowed us to pick the gauge in which 0,A% = 0. Does equation (344) have a
gauge invariance that will allow us to do the same for gravitational radiation, so that we can
set these h-divergences to zero?

It does. Go back to equation (335) and on the right side, change h,, to h/,,, where
ogH

v
08, 0E, ,
Fov —h 2% 4
oxt  Ozv’ = h Oz (345)

and the &, represent any vector function. You will find that the form of the equation
is completely unchanged, i.e., the §, terms cancel out identically! This is a true gauge
invariance.

By = Py —
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FExercise. Show that under a gauge transformation,

oc, 0, . ocr Om O,

oxrkt  Oxv +nw(?f){;‘” G

— Dgy

-, 7
h 72 h;w -

What is happening here is that an infinitesimal coordinate transformation itself is acting
to leading order as a gauge transformation. If

ot =gt 4+ (), or at =" - (a) (to leading order), (346)
then
, , , oxf O0x° ocr ., 0&
Gy = M + h;w = @w%a = (5ﬁ - @) (5u - 8xu) (Mpo + Trpo) (347)

Notice that for the derivatives of £”, we may use x instead of 2/, since the difference is
quadratic in £&. With 1’ identical to 7, we must have to leading order in &

o5 %5
oxr  Oxv’

as before. Though closely related, don’t confuse general covariance under coordinate trans-
formations with this gauge transformation. Unlike general covariance, the gauge transfor-
mation is implemented without actually changing the coordinates! We keep the same x’s
and add a group of certain functional derivatives to the h,,,, analogous to adding a gradient
V& to A in Maxwell’s theory. We find that the equations remain identical, just as we would
find if we took VX (A 4+ VA) in the Maxwell case.

Pause for a moment. In general relativity, don’t we actually need to change the coordi-
nates when we...well, when we change the coordinates? What is going on here? Keeping the
coordinates is not an option, is it? Change the h*” tensor components as though we were
changing coordinates, but then leave the coordinates untouched? Why should that work?
The answer is that the additional terms that we pick up when we elect to do the full coordi-
nate transformation are of higher order than the purely linear (in 9€) terms that come from
merely changing the components of h,,. Remember that h,, is itself already infinitesimal!
The additional terms that we are ignoring are of quadratic order, the product of 9¢ and 0Oh,
and all h’s are small. The terms that we retain are of linear order, 9§ alone. This is the right
and proper thing to do. We are, after all, only working to linear order in our formulation of
the problem.

R = hy — (348)

Understanding the gauge invariant properties of the gravitational wave equation was very
challenging in the early days of the subject. The opening “speed-of-thought” quotation of
this chapter by Eddington is taken somewhat out of context. What he really said in his
famous paper (Eddington A.S. 1922 Proc. Roy. Soc. A, 102, 716, 268) is the following:

“Weyl has classified plane gravitational waves into three types, viz.: (1) longitudinal-longitudinal;
(2) longitudinal-transverse; (3) transverse-transverse. The present investigation leads to the con-
clusion that transverse-transverse waves are propagated with the speed of light in all systems of
co-ordinates. Waves of the first and second types have no fixed velocity—a result which rouses
suspicion as to their objective existence. Einstein had also become suspicious of these waves (in
so far as they occur in his special co-ordinate system) for another reason, because he found they
convey no energy. They are not objective and (like absolute velocity) are not detectable by any
conceivable experiment. They are merely sinuosities in the co-ordinate system, and the only speed
of propagation relevant to them is the ‘speed of thought.” ”
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The final line of this quotation is often taken to be dismissive of the entire notion of
gravitational radiation, which it clearly is not. Rather, it is directed toward those solutions
which we would now say are gauge-dependent (either of the first two types of waves, which
involve at least one longitudinal component) and those which are gauge-independent (the
third category, which is completely transverse). Physical solutions must ultimately be gauge
independent. Matters would have been quite clear to anyone who bothered to examine the
components of the Riemann curvature tensor! The first two types of waves would have
produced an identically zero R/\um' They produce no curvature; they are indeed “merely

sinuosities in the co-ordinate system,” and they are are unphysical.

Back to our problem. Just as the Lorenz gauge 0,A% = 0 was useful in the case of
Maxwell’s equations, so now is the so-called harmonic gauge:

Ot Ohl 1 0h
dxH  OxH 20z
In this gauge, the Field Equations (344) take the “wave-equation” form

=0 (349)

- 167GT,,

Dhy = ——— (350)

C

How we can be sure that, even with our gauge freedom, we can find the right £&# to get into
a harmonic gauge and ensure the emergence of (350)7 Well, if we have been unfortunate
enough to be working in a gauge in which equation (349) is not satisfied, then form A/, a la
equation (348) and demand that in our new gauge, Oh/*/dx* = (1/2)0h' /0x”. We ﬁnd that
this implies -
Oh*
Ot
a wave equation for &, identical in form to (350). For this equation, a solution certainly
exists. Indeed, our experience with electrodynamics has taught us that the solution to the
fundamental radiation equation (350) takes the form

P () = A‘C(f/ UG ; RIS g R=jp— (352)

and hence a similar solution exisits for (351). The h,,,, like their electrodynamic counterparts,
are determined at time ¢ and location r by a source intergration over r’ taken at the retarded
times ¢ =t — R/c. In other words, disturbances in the gravitational field travel at a finite
speed, the speed of light c.

&, = (351)

Ezercise. Show that for a source with motions near the speed of light, like merging black
holes, h,, (or hy, for that matter) is of order Rg/r, where Rg is the Schwarzschild radius
based on the total mass of the system in question and r is the distance to the source. You
want to know how big h,,, is going to be in your detector when black holes merge? Count

the number of expected Schwarzschild radii to the source and take the reciprocal. With A%
equal to the total mass measured in solar masses, show that A, ~ 3]\/[5” /Tkm, Measuring r
in km. We are pushing our weak field approximation here, but to this order it works fine.
We'll give a sharper estimate shortly.

7.1.1 Come to think of it...

You may not have actually seen the solution (352) before, or maybe, you know, you just
need a little reminding. It is important. Let’s derive it.
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Consider the equation

1 0w 9
T 202 + VU = —Axf(r,t) (353)
We specialise to the Green’s function solution
1 0*G 9
- C—QW + VG = —471’(5(?")5@) (354)

Of course, our particular choice of origin is immaterial, as is our zero of time, so that we
shall replace r by R=7 — v’ (R = |R|), and t by 7 =t — t’ at the end of the calculation,
with the primed values being fiducial reference points. The form of the solution we find here
will still be valid with the shifts of space and time origins.

Fourier transform (354) by integrating over [ e™!dt and denote the fourier transform of
G by G: . 3

kG + V?G = —47d(r) (355)

where k? = w?/c%. Clearly G is a function only of 7, hence the solution to the homogeneous
equation away from the origin,

2(rG)
dr?

+ k2 (rG) = 0,

is easily found to be G = e**" /r. Although we haven’t done anything to deserve this favour,
the singular delta function behaviour is actually already included here! This may be seen by
taking the static limit & — 0, in which case we recover the correctly normalised 1/r potential
of a point charge at the origin. The back transform gives

G = _/ eﬂ:zkr—zwt dw = —— 6—zw(t$'r/c) dw (356)

2rr J_ 2mr J_o

which we recognise as a Dirac delta function (remember w/k = ¢):

G (5(tq;7"/c) R o(t —Tr/c) R o(r _RR/C)~ (357)

We have selected the retarded time solution ¢ — r/c as a nod to causality, and moved thence
to (7, R) variables for an arbitary time and space origin. We see directly that a flash at
t =t', located at r = v/, produces an effect at a time R/c later, at a distance R from the
flash. The general solution constructed from our Green’s function is

U(r,t) = / / <r};’t/)5(t—t’—R/c)dt’dr’: / / (";;’ Y g (358)

where in the final integral we have set t' = ¢ — R/c, the retarded time. Remember that ¢’
depends on both r and r’.

7.2 Plane waves

Summary: Linear gravitational radiation comes in only two modes of plane wave polarisation.
In what are known as “transverse-traceless” (TT) coordinates, a plane wave travelling in the
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z direction has one mode with hy, and hy, = —hg, and all others zero. The other mode
has hyy = hy, and all others zero. In contrast to harmonic coordinates, which are generally
available, the TT gauge is available only for plane wave solutions. These coordindates are
the most widely used for studying linear gravitational radiation.

To understand more fully the solution (352), consider the problem in which 7},, has an
oscillatory time dependence, e~™". Since we are dealing with a linear theory, this isn’t
particularly restrictive, since any well-behaved time dependence can be represented by a
Fourier sum. The source, say a binary star system, occupies a finite volume. We seek the

solution for f_zu,, at distances huge compared with the scale of the source itself, i.e. r > r'.
Then,

R~r—e, -7 (359)
where e, is a unit vector in the r direction, and
_ i(kr—wt) 4G
F(r )~ S 16 / T (1) exp(—ik - 77) d (360)
r c

with k = (w/c)e, the wavenumber in the radial direction. Since r is huge, this has the

asymptotic form of a plane wave. Hence, h,, and thus h,, itself have the form of simple
plane waves, travelling in the radial direction, at large distances from the source generating
them. These waves turn out to have some remarkable polarisation properties, which we now
discuss.

7.2.1 The transverse-traceless (TT) gauge
Consider a traveling plane wave for h,,,, orienting our z axis along k, so that
K =w/c, k' =0, k¥*=0, ¥* =w/c  and ko = —w/c, ki =k (361)

where as usual we raise and lower indices with 7, or its numerically identical dual n*”.

Then h,, takes the form
hyw = ewa exp(ik,z”) (362)

where a is an amplitude and e,, = e,, a polarisation tensor, again with the 7’s raising and
lowering subscripts. Thus

eij = e = eV (363)
eV = —eh = el = —ey (364)
e = egp = —e} (365)

The harmonic constraint 5h Y

o
v ___# 366
Oxt 2 0xv (366)
implies

kuey = kel /2. (367)

This leads to several linear dependencies between the e,,. For example, when v = 0 this

means .
koeg + krgeg = ko(e; + 68)/2, (368)

o — (eoo + e30) = (es — €00) /2. (369)
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When v = j (a spatial index),
k:oe? + k’gﬁ? = k;(ei; — eoo)/2. (370)
The 5 =1 and j = 2 cases reduce to
o1 + €31 = €2 + €32 = 0, (371)

while j = 3 yields
eo3 + €33 = (€5 — €no) /2 = —(eoo + €o3). (372)
Equations (371) and the first=last equality of (372) yield

€01 = —€31, €o2 = —€32, €03 = — (€00 + €33)/2. (373)
Using the above expression for ey3 in the first=second equality of (372) then gives
€99 = —€11. (374)

Of the 10 independent components of the symmetric e, the harmonic condition (366) thus
enables us to express eg; and egs in terms of es;, egg, and e;;. These latter 5 components plus
a sixth, ej9, remain unconstrained for the moment.

But wait! We have not yet used the gauge freedom of equation (348) within the harmonic
constraint. We can still continue to eliminate components of e,,,. In particular, let us choose

£u(z) = i€, exp(ik,z”) (375)

where the €, are four constants to be chosen. This satisfies 0¢,=0, and therefore does not
change the harmonic coordinate condition, d,h% = 0. Then, following the prescription of
(348), we generate a new, but physically equivalent polarisation tensor,

€ = Cuv + kuey ke (376)
Now, by choosing the ¢, appropriately, we can actually eliminate all of the e:“/ except for
ey, €hy = —€'4, and €},. In particular, using (376),

ey = e, €1y = €12 (377)

both remain unchanged. But, with k = w/c,
¢l3 = €13 + ke, €hy = eaz + kea, esy = e33 + 2kes,  €py = ego — 2keq, (378)

so that these four components may be set to zero by a simple choice of the €,. When working
with plane waves we may always choose this gauge, which is transverse (since the only e;;
components that are present are transverse to the z direction of propagation) and traceless
(since e;; = —egp). Oddly enough, this gauge is named the transverse-traceless (TT) gauge.
Notice that in the TT gauge, h,, vanishes if any of its indices are 0, whether raised or
lowered, and gravitational waves propagate to leading order only as distortions in space, not
time.

We have thus seen that there are only two independent modes of a gravitational wave.
The first, with e;; and ey = —eq; present, is known as the “+” mode. The second, with
€19 = €97 present, is the cross or “x” mode. All gravitational radiation is a superposition of
these two modes.
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7.3 The quadrupole formula

Summary: h¥ is given by a very simple formula in harmonic coordinates (not just the TT
gauge), and is directly proportional to the second time derivative of the classical moment of

inertia tensor, 1. The latter requires use of only the T% component of the stress tensor.

In the limit of large r (“compact source approximation”), equation (352) is:

_4d

R (v, t) . /T“”(r’,t')d3r', (379)

rc

where ¢’ =t —r/c is the retarded time. Moreover, for the TT gauge, we are interested in
the spatial 7j components of this equation, since all time indices vanish. (Also, because h,,,

is traceless, we need not distinguish between h and h.) The integral over T;; may be cast in
a very convenient form as follows.

o(zIT*) oTikN . .
— / — / / TZ] /
0 /—ax'k &*r / o ) A / &, (380)

where the first equality follows because the first integral reduces to a surface integration of
T at infinity, where it is presumed to vanish. Thus

. ik ) 70 ) 1d L
/T” d*r' = —/ (ZT/k) o7 dPr' = / <?9_/0> a7 dPr’ = P /Tlox” d*r’ (381)
T T c

where the second equality uses the conservation of T*”. Remember that ¢’ is the retarded
time. As Tj; is symmetric in its indices,

d o d .
% /TZOZ’/J dST/ = %/TJOZ'” d37”l (382)
Continuing in this same spirit,

TOk i3 0k o o
02/0( Tr'x )djrl :/(a )iL'/Z[L'/] d3r/+/<TOzx/j +T0]x/z) ddrl (383)

1k 1k
ox ox

Using exactly the same reasoning as before,
1d

/(To%'j + T @3y = Py /Toozv’ix'j >’ (384)
c

Differentiating with respect to ¢’, and using (382) and (381) gives an elegant result:

g 1 d? o
TY B3y = — T 23 3y 385
2c2 dt'?

Inserting this in (379), we obtain the quadrupole formula for gravitational radiation:

y 2G 219
R — 386
Sr dt'? (386)
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where IV is the quadrupole-moment tensor of the energy density:

IV = / Tz" 2" dr’ (387)
To estimate this numerically, we write
d*1%
Tz~ Ma?cw? (388)

where M is the characteristic mass of the rotating system, a an internal separation, and w
a characteristic frequency, an orbital frequency for a binary say. Then

2G' M a?w?
cAr

h' ~ 7 x 107**(M /M) (at,w? /7100) (389)
where M /My is the mass in solar masses, a;; the separation in units of 10* cm (about a
separation of one solar radius), w; the frequency associated with a 7 hour orbital period
(similar to PSR193+16) and rygo the distance in units of 100 parsecs, some 3 x 10 cm. A

typical rag?er large h one might expect at earth from a local astronomical source is then of
order 107",

What about the LIGO source, GW1509147 How does our formula work in this case?” The
distance in this case is cosmological, not local, with r = 1.2 x 10?2 km, or in astronomical
parlance, about 400 megaparsecs (Mpc). In this case, we write (389) as

—.i 2GMa’w? 2.9532 M 2 M /M, 2
Bid 4a v ( ) (M ) (%) ~1x 10—22Q (a_w) : (390)
ctr Tkm ® c TGpe c

since 2GMg/c? is just the Sun’s Schwarzschild radius. (One Gpc=10>Mpc = 3.0856 X
10*?km.) The point is that (aw/c)? is a number not very different from 1 for a relativistic
source, perhaps 0.1 or so. Plugging in numbers with M /M = 60 and (aw/c)?* = 0.1, we find
hij = 1.5 x 10721 just about as observed at peak amplitude.

Ezercise. Prove that h" given by (386) is an ezact solution of Oh% = 0, for any r, even if 7 is not
large.

7.4 Radiated Energy

Overall Section Summary: The energy flux at infinity carried off by gravitational radiation
is given in the TT gauge is given by —(c*/32wG)0h*" O;h,,. This is needed to understand
how the orbits of binary systems evolve due to the emission of gravitational radiation.

7.4.1 A useful toy problem

We have yet to make the link between h,, and the actual energy flux that is carried off by
these time varying metric coefficients. Relating metric coefficients to energy is not trivial.
To see how to do this, start with a simpler toy problem. Imagine that the wave equation for
general relativity looked like this:
1 0%® 9
—;WvLV @:47TG,0 (391)
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This is what a relativistic theory would look like if the source p were just a simple scalar
quantity, instead of a component of a stress tensor. Then, if we multiply by (1/47G)0®/0t,

integrate (0®/0t)V*® by parts and regroup, this leads to

1 0 |[/00\° ) 1 0% O
——— || = ) | —=—=—Vo ) =p—. 2
87G ot (at) FIver +v (47rG8tV ) T (392)
But
8<I> _0(p®)  9p _ O(p?) d(p?)
8t = 81& — Cba = 8t + (I)V ( ) T + V'(p’UCI)) — p’U'V@ (393)
where v is the velocity and the mass conservation equation
dp
— 0
5 T V(o) =
has been used in the second “= " sign from the left. Combining (392) and (393), and then
rearranging the terms a bit leads to
%) 1 0D\ 2 ) 1 0d
5 [p(I) t 3G ((E) + |V ) + V- (pv(I) — REV(I)) = pv-Vo (394)

The right side is just minus the rate at which work is being done on the sources per unit
volume. (The force per unit volume, you recall, is —pV ®.) For the usual case of interest when
the source p vanishes outside a certain radius, the left side may then be readily interpreted
as a far-field wave energy density of

E = [(0,®)* + |V®|?]/87G (Scalar gravity energy density) (395)
and a wave energy flux of
—(0,®)VP/4rG  (Scalar gravity energy flux) (396)

(Is the sign of the flux sensible for outgoing waves?) The question we raise here is whether
an analogous method might work on the more involved linear wave equation of tensorial
general relativity. The answer is YES, but we have to set things up properly. And, needless
to say, it is a bit more messy index-wise!

7.4.2 A conserved energy flux for linearised gravity

Summary: We zdentzfy the enerqy flux for gravitational radiation in the TT gauge by showing
that its 4-divergence is equal to the rate of doing work by a suitable Newtonian potential on
the material sources.

Start with equation (344):
_ o°h), 0°hy) O2h 167GT,,

Dhuu - v O o OrrOT + mwa’)j)‘axp = — A . (397)

To facilitate the construction of a conserved flux, we need to rewrite the final term on the
left side of this equation. Contract on pv: the first term on the left becomes Oh, the second
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and third each become —§?h* /9202, while the final contraction turns 7, into a factor of
4. (Why?) This leads us to
B 82BAp
Oh 4+ 2——— = —kT 398
OxAOxP 8 (398)
where we have written k = 167G /c*. Using this to substitute for 8,\8,)71)‘”, we may recast
our original equation as

_ *h RN pa -
h,, — ko v__ ap = —kS ” 399
Qi oxvox>  OxtOx 2 H Foou (399)

where we have introduced the source function

N T’
2

Sy =T — (400)

Now we may use the same technique we employed for our toy problem. Multiply (399) by

Oh* /9x°  summing over u and v as usual but keeping o free. We want to fold everything
on the left side into a divergence. The first term on the left becomes

8%’”[17 B OhHv 827LM,, 0 GBW OhHv B 87LW O2hHv

o0x° o g 0z ,0x° N 0z, \ Oxr Oz° O0zr Ox,0x°
0 @BW OhHv B 07LW ) 0 87LW OhHv B 0 EOEW on'" (401)
N 0z, \ Oz Ox° Ozxr O0x° Oz, N 0z, \ 0xr Oz° O0x° \ 2 Ozr Oz,

Do you see why the final equality is valid for the 0/0z7 exact derivative? For this purpose,

it doesn’t matter which group of uv’s (or p's) on the h’s (or the §/dz) is the up and which
is down!

Now that you’ve seen the tricks of the trade, you should be able to juggle the indices
with me and recast every single term on the left as an exact divergence. The second term
on the left is

OPhy o 9*hM Ohy,, O [(OhMOh,\  ORM 0Ny,
oxX Ox° ox> 0x°0x,

C Qxvdz> Ox°  Ox,0x* dz° Oz,

Replacing dummy-index v with dummy-index p in the first group on the right, and recog-
nising an exact derivative in the second group on the right,

PRy oW 9 (ORMOh,,\ 10 (O Ok
OxX Ox° 20x° \ 0z* Oz, |

orvdx> Ox° oz,

(402)

The third term of our equation is
02 AR
Oxtdx* Ox°

But this is exactly the same as what we’ve just done: simply interchange the dummy indices

p and v and remember that A*” is symmetric in pv. No need to do any more here. The
fourth and final term of the left side of equation is

1 0h  0%h 10 (8h 8h) 10 (8h 8h)

" 39w dwrte, 200, \owoer ) T 1007 \Gwr oa,

(403)
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Thus, after dividing our fundamental equation by 2k, the left side of equation (399) takes
on a nice compact form, and we find

o,y 1. O

= =S, 404
oz, QSW Oxo’ (404)
where
upa = 77)0 + npoS- (405)
S is the scalar density:
1 Ohy, O™ 1 [0hM™ Oh,, 1 [ Oh Oh
=—|— — — | =— = 4
S (4/-@ dzr Oz, ) T o (017* oz, ) T 3% (&BP axp) ’ (406)
and 7,, is a flux tensor:
1 (0hy, O™ 1 (Oh™M Oh,, 1 (0h Oh
Tor = 2 < dzP Ox° ) R ( dx* dro ) 4k \Oxrdzo )’ (407)

Lots of terms, but in the right gauge they almost all vanish! Note first that by working with
plane waves in harmonic coordinates, 9h™ /92> = 0, some terms disappear and U,; becomes

manifestly symmetric in po. (This symmetry must then always be true, even if it is not
blatent: the tensor U,, — Uy, is gauge invariant and vanishes for the harmonic gauage, so

it vanishes for all gauges.) Remembering as well that k,k” = 0 for the TT gauge, matters
dramatically simplify (almost everything vanishes) and we find the elegant result

U, — ct (5’71#,, OhHv

3970 \ Bur 527 ) (TT gauge). (408)

Why did we choose to divide by 2k for our overall normalisation constant? Why not just
k, or for that matter, 4x? It is the right side of our energy equation that answers this. This

is _
1o 1 N (OB O 1 on
_ 5, (7, — Qe _ _ -7, 4
25“ ol 2( . 2 ) (Ba:" 2 835") 271 Oz (409)

Choose ¢ = 0, the time component. We work in the Newtonian limit h% ~ —2®/c? where
® is a Newtonian gravitational potential. In the pur summation on the right side of the
equation, we are then dominated by the 00 components of both A*” and T},,. Now, we are
about to do a number of integration by parts. We will always ignore an exact derivative!
Why? Because the exact derivative of a periodic function (and everything here is periodic)
must oscillate away to zero on average. It is not a sustained energy source for the waves.
But in general the products of the periodic functions do not oscillate to zero; for example the
average of cos®(wt) = 1/2. This is a sustained source. Thus we keep these product terms,
only if they are not an exact derivative. Using the right arrow — to mean “integrate by
parts and ignore the pure derivatives” (as inconsequential for wave losses), we perform the
following manipulations on the right side of equation (409):

1 . OhY 10T}y 107" 1 .. .0h% v
— =T - W— = p0 5 70~ _Hp—. VO 410
27007940 - 2 020 2 Oxt - 2 oz’ pc ’ (410)

where the first equality follows from 9, 7% = 0. We have arrived on the right at an expression
for the rate at which the effective Newtonian potential does net work on the matter. Why
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is that 1/c there? Don’t worry, it cancels out with the same factor on the left (flux) side of
the original equation. What about the sign of this? This expression is negative if the force
—pV @ is oppositely directed to the velocity, so that the source is losing energy by generating
outgoing waves. Our harmonic gauge expression (408) for Uy, is also negative for an outward
flowing wave that is a function of the argument (r — ct), r being spherical radius and ¢ time.

By contrast, % would be positive, as befits an outward moving wave energy.
The fact that division by 2x produces a source corresponding to the rate at which work is
done on the Newtonian sources (when o = 0) means that our overall normalisation is indeed

correct. The o = 0 energy flux of (408) is the true energy flux of gravitational radiation in
the weak field limit:

fi:.E:CZ/{iO:—CUiOZ

ct ((‘9hw, OhH

390 \ Bet ot ) (TT gauge). (411)

7.5 The energy loss formula for gravitational waves

Summarg: Finstein’s classic formula for the total gravitational energy radiated by a source
)

G

Jij Jij, where Ji; is the traceless form of the source’s moment of inertia tensor:
Jij = Ii]’ - 5@]Ikk/3

Our next step is to evaluate the transverse and traceless components of h;;, denoted

h;fpjT, in terms of the transverse and traceless components of /;;. Begin with the traceless
component, denoted J;;:
5
Jij =L = F1 (412)

where [ is the trace of I;;. Next, we address the transverse property. The projection of a

vector v onto a plane perpendicular to a unit direction vector n is accomplished simply by
removing the component of v along n. Denoting the resulting projected vector as w,

w=v—(n-v)n (413)

or
wj = (05 — niny)v; = Pijvy (414)

where we have introduced the projection tensor
Bij = i — niny;,
with the easily shown properties
nz'Pz'j = anz'j =0, Pz‘ijk = Pz‘k, Py = 2. (415)

Notice that P;; Pj; = Py, simply states that if you project something that is already projected,
nothing is changed!

Projecting tensor components presents no difficulties,
wij = P Pjow — niwij = njwi; = 0, (416)

nor does the extraction of a projected tensor that is both traceless and transverse:
(]

1
w) = (Pikpjz - 53’ij1> v — wh = (PP — Pu)vm = (Pu — Pu)ow = 0. (417)
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Using the properties of P;; given in (415), it is a straightforward calculation to show that
the analogue of P;; Pj, = F;;, for the the traceless transverse operator is:

1 1 1

An informal way to say this is that if you take the transverse-traceless part of a tensor
that is already transverse and traceless, you don’t change anything! Knowing this simple
mathematical identity in advance will save a great deal of calculational effort.

Let us define .
JiT = (Pikpjl - §Pz'jpkl> Ikt (419)

Now do the following exercise.

Fxercise. Prove that Ji?T is also given by

1
JET = (PmPﬂ - 2%%) T,

so that nothing is changed by using only the traceless form of I;; in our calculations, J;;.
Yet another ploy to save computational effort.

Notice now that (J;; — JST)JET is the contraction of the part of J;; that has no transverse
component with the part that is completely transverse. This ought to vanish, if there is any
justice. Happily, it does:

1 1
(Jig — JED)VIET = Jiy 5T — (PP — §Piijl)(Piijn - EPiijn)Jmn (420)
Following (418), the right side of this is just
1
Jig I " = TP P — §Pklen)Jmn = Ji 5T = Ty =0 (421)

This will come in handy in a moment.

Next, we write down the traceless-transverse part of the quadrupole formula:

2 JTT
rr_ 2G4 (422)
U Srodr?
Recalling that ¢’ = ¢ — r/c and the J77’s are functions of ¢’ (not t!),
ONIT oG dBJIT OWIT oG dPJIT
[ R O a6 a2

ot Sr A3’ Or S CTr o dtB

where, in the second expression we retain only the dominant term in 1/r. The radial flux of
gravitational waves is then given by (411):

3 7TT g3 7TT

TR dt3 diB (424)

The 1/c? dependence ultimately translates into a 1/¢® dependence for Newtonian sources,
since each of the J’s carries a ¢? factor.
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The final step is to write out JX7 in terms of the .J;; via the TT projection operator. It

is here that the fact that J;; is traceless is a computational help.
1 1
(Pilcpjl 2P Pkl> = ((5ik - nmk)(5ﬂ - njnl) - 5((51']' - ninj)(5kl - nknl) (425)
With Jy; traceless, we may work this through to find
Jij = ka)ﬂ - EPiijl Jkl Jlj + = (5Z] + nlnj)nknlel — Ny nkJJk njnkJik (426)

Now,
Ty Ty =+ Ty = Tg)lTy (427)
But we’ve seen in (421) that
(T3 = T) Ty =0,

so we are left with

JijJij = 2nyng J i Jak + Eninjnknljij J ki (428)

Remember, the vector m is just the unit vector pointing in the direction of spherical angles
6 and ¢. In Cartesian coordinates:

n = (ng,ny,n,) = (sinfd cos ¢, sin O sin ¢, cos F).

The total gravitational wave luminosity is an integration of the distribution (428) over
all solid angles,

Lew = /7" FodQ = —/ JENFL . (429)

To evaluate this, you will need

This is pretty simple: if the two components n; and n; of the unit normal vector are not
the same, the integral vanishes by symmetry (e.g. the average of xy over a sphere is zero).
That means the integral is proportional to a delta function, say C'd;;. To get the constant of
proportionality C, just take the trace of both sides: [dQ = 47 = 3C, so C' = 4x/3. Much
more scary-looking is the other identity you’ll need:

4
/nmjnknl dS) = 1_7;(5z]5kl + (Sik(Sﬂ + 51[&@]) (431)

For example, the combination n,n,n,n, would be sin® @ cos @ cos? ¢ sin ¢. But keep calm and
think. The only way the integral cannot vanish is if two of the indices agree with one another
and the remaining two indices also agree with one another. Maybe the second agreeing pair
is just the same as the first, maybe not. (The n,n,n,n, example provided clearly vanishes
when integrated over solid angles, as you can easily show.) This pairwise index agreement
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rule is precisely what the additive combination of delta functions ensures, symmetrically
summed over the three different ways by which the pairwise index agreement can occur. To
get the 47 /15 factor, simply set ¢ = j and k = [, then sum. The integral on the left is then
trivially f ngn;nn; dS) = f dQ) = 47. The combination of delta functions is 9 + 3 + 3 = 15.
Hence the normalisation factor 47 /15. Putting this all together via (424), (428), (430) and
(431), remembering J; = 0, and carrying out the angular integral, the total gravitational
luminosity is thus given by

47T ]_ 47T ......
LGW: 87 e X |:47T—2X ?"‘5 X 1—5 X (O+1+1)1 JZ]J1]7
which amounts to:
G ... .. G /(... .. 1... ...
LGW:@JUJUZ@(Iijfz‘j_gfiifjj>' (432)

The calculation has not been easy. But the endpoint is a beautifully simple formula, a
classical result first derived by Albert Einstein” in 1918. Indirect verification of this formula
came in about 1980 with the analysis of the binary pulsar, some 25 years after Einstein’s
death. Direct verification with LIGO came in 2015, almost exactly one century after the
epochal relativity paper.

7.6 Gravitational radiation from binary stars

Summary: This section contains more advanced material not on the syllabus, and is optional.
Later, we will make use of the results for a circular orbit (equation 447 below), but you will
be provided with the formula.

In W72, the detection of gravitational radiation looms as only a very distant possibility,
and rightly so. The section covering this topic devotes its attention to the possibility that
rapidly rotating neutron stars might, just might, be a good source. Alas, for this to occur
the neutron star would have to possess a sizeable and rapidly varying quadrupole moment,
and this neutron stars do not seem to possess. Neutron stars are nearly exact spheres, even
when rotating rapidly as pulsars. They are in essence perfectly axisymmetric; were they to
have any quadrupole moment, it would hardly change with time.

The possibility that Keplerian orbits might be interesting for measuring gravitational
radiation effects is never mentioned in W72. Certainly ordinary orbits involving ordinary
stars are not a promising source. But compact objects (white dwarfs, neutron stars or black
holes) in very close binaries, with orbital periods measured in hours, were discovered within
two years of the book’s publication, and these turn out to be extremely interesting. They
are the central focus of modern day gravitational wave research. As we have noted earlier,
the first confirmation of the existence of gravitational radiation came from the binary pulsar
system 1913416, in which the change in the orbital period from the conversion of mechanical
energy into gravitational waves was inferred via the changing interval of the arrival times
of the pulsar’s signal. The amplitude of the gravitational waves was itself well below the
threshold of direct detection at the time, and still would be today at the emitted frequency.
Over long enough time scales, a tight binary of compact objects, black holes in the most
spectacular manifestation, will lose enough energy through gravitational radiation that the

"Actually, Einstein found a coefficient of 1/10, not 1/5. Eddington put matters right a few years later.
Tricky business, this gravitational radiation.
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resulting inspiral goes all the way to completion, and the system either coalesces or explodes.
Predictions suggest that there are enough merging binaries in the universe to produce a rather
high detection rate: several per year at a minimum. LIGO has already published its first
detection, and given how quickly it was found when the threshold detector upgrade was
made, there are grounds for optimism for more to come®. The final frenzied seconds before
coalescence will produce detectable gravitational wave signatures rich in physical content at
frequencies for which LIGO has been designed. Black hole merger waveforms can now be
determined by high precision numerical calculation (only relatively recently: see, e.g., F.
Pretorius 2005, Phys. Rev. Lett. 95, 121101).

Let us apply equation (432) to the case of two point masses in a classical Keplerian
orbit. There is of course no contradiction between assuming a classical Newtonian orbit and
calculating its relativistic gravitational energy loss. We are working in the regime in which
the losses exert only the most tiny change on the orbit over one period, and the masses,
though very close to one another by ordinary astronomical standards, are still separated
by a distance well beyond their respective Schwarzschild radii. (The numerical calculations
make no such restriction, faithfully calculating the orbital evolution all the way down to the
final merger of two black holes into one.)

The Newtonian orbital elements are defined on page 74. The separation r of the two
bodies is given as a function of azimuth ¢ as

L

- - 4
" 1+ ecoso (433)

where L is the semilatus rectum and e is the orbital eccentricity. With M being the total
mass of the individual objects, M = m; + ms, [ the constant specific angular momentum
(we forego J for angular momentum to avoid confusion with J;;), and a is the semi-major
axis, we have

do 12
2— = = = —_— 2
e [ L i a(l —¢€) (434)
and thus
dp ( GM \' . dr ([ GaM \"?
% = <CL3(1——€2)3> (1 + ecos ¢) % = (m) ESIH¢ (435)

The distance of each body from the center-of-mass is denoted r; and r,. Writing these as
vector quantities,

mor myr
rf:&w “:—j%' (436)

Thus, the xy coordinates in the orbital plane are
ry = %(COS ¢,sin @), ro = %(— cos ¢, — sin ¢). (437)

The nonvanishing moment tensors /;; are then
2 2

I, = mlmzj\}Llemg r? cos® ¢ = pr? cos® ¢ (438)
I, = pr’sin® ¢ (439)

8Update September 2017: yes indeed. Several confirmed sources are now being studied, including a
merger of neutron stars with baryons flying around everywhere.
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L, = I, = pr’sin ¢ cos ¢ (440)
Li = Lp + 1, = pr® (441)

where p is the reduced mass mymy/M. It is a now lengthy, but utterly straightforward task
to differentiate each of these moments three times. If you work through these, begin with
the relatively easy ¢ = 0 case when reproducing the formulae below, though I present the
results for finite € here:

3
ddt;:x = a1 + ecos ¢)?(2sin 2¢ + 3esin ¢ cos® @), (442)
d’I, e s . 9

R —a(l + ecos ¢)?[2sin 2¢ + esin ¢(1 + 3 cos” ¢)], (443)

&1, d3I,,
—dt3y = d—té/ = —a(1 + ecos $)?[2 cos 2¢ — e cos ¢(1 — 3 cos® @)], (444)

where B
2 _ mymy
= "5/ 25 44

“ a’(l — €e?)> (445)

Equation (432) yields, after some assembling:

32G* mimiM A , €,
Low = Egm(l—i—ecosgb) (14 €ecoso) —I—ﬁsm o) (446)
Our final step is to average Loy over an orbit. This is not simply an integral over d¢/2.

We must integrate over time, i.e., over dt = d¢/ é, and then divide by the orbital period to
produce a time average. The answer is

32G*mimiM

(Law) = FE fe) = 1.00 x 10%® m2,m2,M(ax) ™ f(e) Watts, (447)
where 1+ (73/24)€2 + (37/96)*
€
fle) = o (448)

and © indicates solar units of mass (1.99 x 10%° kg) and length (one solar radius is 6.955 x 10®
m). (Peters and Mathews 1963). Something that is of order v/c is considered to be New-
tonian, like a standard kinematic Doppler shift. At order v?/c?, we are in the regime of
relativity (e.g. gravitational redshift), and measurements are traditionally quite difficult.
Equation (447) tells us that Ly is a number of order EQ(v/c)®, where E is the Keple-
rian orbital energy, 2 the orbital frequency, and v a typical orbital velocity. No wonder
gravitational radiation is so hard to measure!

FExercise. Show that following the procedure described above, the time-averaged luminosity
(Lew )time 18 given by the expression

322G mimiM

2
_ . 6)2 )2 4+ & gin?
(Law )time = 5 @ (1= ) <(1 + ecos @) {(1 + ecos ) + Ths gb} >wgle7

where the ( ) angular average on the right is over 27 angles in ¢. Use the fact that the
angular average of cos? ¢ is 1/2 and the average of cos? ¢ is 3/8 to derive equation (447).
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Equations (447) and (448) give the famous gravitational wave energy loss formula for a
classical Keplerian orbit. Notice the dramatic effect of finite eccentricity via the f(€) function.
The first binary pulsar to be discovered, PSR1913416, has an eccentricity of about 0.62, and
thus an enhancement of its gravitational wave energy loss that is boosted by more than an
order of magnitude relative to a circular orbit.

This whole problem must have seemed like an utter flight of fancy in 1963, when the
calculation was first completed: the concept of a neutron star was barely credible and not
taken seriously; the notion of pulsar timing was simply beyond conceptualisation. A lesson,
perhaps, that no good calculation of an interesting physics problem ever goes to waste.

Ezercise. When we studied Schwarzschild orbits, there was an exercise to show that the total
Newtonian orbital energy of a bound two body system is —Gmyms/2a and that the system

period is 2m\/a®/GM, independent in both cases of the eccentricity. Use these results to
show that the orbital period change due to the loss of gravitational radiation is given by

: 1927 rmimas GM\ "
F=-= ( M2 ><a02> J(©)

with M = my + my as before. This P is a directly measurable quantity.

Fxercise. Now that you're an expert in the the two-body gravitational radiation problem,
let’s move on to three! Show that three equal masses revolving around their common centre-
of-mass emit no quadrupole gravitational radiation.

7.7 Detection of gravitational radiation

7.7.1 Preliminary comments

The history of gravitational radiation has been somewhat checkered. Albert Einstein himself
stumbled several times, both conceptually and computationally. Arguments of fundamental
principle persisted through the early 1960’s; technical arguments still go on.

At the core of the early controversy was the question of whether gravitational radiation
existed at alll The now classic Peters and Mathews paper of 1963 begins with a disclaimer
that they are assuming that the “standard interpretation” of the theory is correct. The
confusion concerned whether the oscillatory behaviour of h,, potentials were just some sort
of mathematical coordinate effect, devoid of any actual physical consequences. Here is an
example of how you might get into trouble. We calculate the affine connection I'¥' and apply
the geodesic equation,

2 b v A
A v, (449)
dr drodr
and ask what happens to a particle initially at rest with dz¥/dr = (—c¢,0). The subsequent
evolution of the spatial velocity components is then

d2 % )
d—fQ +Tic2 =0 (450)

But equation (331) clearly shows that Iy, = 0 since any h with a zero index vanishes for

our TT plane waves. The particle evidently remains at rest. Is there really no effect of
gravitational radiation on ordinary matter?!

99



Coordinates, coordinates, coordinates. The point, once again, is that coordinates by
themselves mean nothing, any more than does the statement “My house is located at the
vector (2, 1.3).” By now we should have learned this lesson. We picked our gauge to
make life simple, and we have indeed found a very simple coordinate system that remains
frozen to the individual particles! That does not mean that the particles don’t physically
budge The proper spatial separation between two particles with coordinate separation dz'
is ds? = (mi; + hij)da dx’, and that separation surely is not constant because hii, haa, and
hia = hgy are wiggling even while the da’ are fixed. Indeed, to first order in h;;, we may

write . ,
ds? = n;;(dx" + hidx® /2)(d2? + hj,dz™)2).

This makes the physical interpretation easy: the passing wave increments the initially undis-
turbed spatial interval dz’ by an amount hgdxz*/2. It was Richard Feynman who in 1955
seems to have given the simplest and most convincing argument for the existence of grav-
itational waves. If the separation is between two beads on a rigid stick and the beads are
free to slide, they will oscillate with the tidal force of the wave. If there is now a tiny bit of
stickiness, the beads will heat the stick. Where did that energy come from? It could only
be the wave. The “sticky bead argument” became iconic in the relativity community.

Recall that the two independent states of linear polarisation of a gravitational wave are
the + and x modes, “plus” and “cross.” The behave similarly, just rotated by 45°. The +
wave (e;; = —egq) causes a prolate extension along the vertical part of the plus sign as it
passes, then squeezes down along the vertical axis and oblate outward along the horizontal
axis, then once again squeezes inward from oblate to prolate once again. The x mode
(e21 = e12) shows the same oscillation pattern along a rotation pattern rotated by 45°. (An
excellent animation is shown in the Wikipedia article “Gravitational Waves.”) These are the
actual true physical distortions caused by the tidal force of the gravitational wave.

In 1968, in the midst of what had been intensively theoretical investigations and debate
surrounding the nature of gravitational radiation, a physicist named Joseph Weber calmly
announced that he had detected gravitational radiation experimentally in his basement lab,
coming in prodigious amounts from the centre of the Milk Way Galaxy, thank you very much.
His technique was to use what are now called “Weber bars”, giant cylinders of aluminium
fitted with special piezoelectric devices that can convert tiny mechanical oscillations into
electrical signals. The gravitational waves distorted these great big bars by a tiny, tiny
amount, and the signals were picked up. At least that was the idea. The dimensionless
relative strain §l/l of a bar of length [ due to passing wave would be of order h;;, or 1072
by our optimistic estimate. To make a long, rather sad story very short, Weber was in error
in several different ways, and ultimately his experiment was completely discredited. Yet his
legacy was not wholly negative. The possibility of actually detecting gravitational waves
hadn’t been really taken very seriously up to this point. Post Weber, the idea gradually
took hold in the physics establishment. People asked themselves how one might actually
go about detecting these signals and what might be learnt from an unambiguous detection.
So gravitational radiation detection became part of the mainstream, with leading figures in
relativity getting directly involved. The detection of gravitational radiation is not a task for
a lone researcher, however clever, working in the basement of university building, any more
than was finding the Higgs boson. Substantial resources of the National Science Foundation
in the US and an international research team numbering in the thousands were needed for the
construction and testing of viable gravitational wave receptors. (In the UK, the University
of Glasgow played a critical design role.) Almost fifty years after Weber, the LIGO facility
has at last cleanly detected the exquisitely gentle tensorial strains of grawtatlonal waves at
the level of h ~ 102!, The LIGO mirrors may not have crack’d from side-to-side, but they
did flutter a bit in the gravitational breeze. This truly borders on magic: if the effective
length of LIGO’s interferometer arm is taken is taken to be [ = 10 km, then 6/ is 1071 cm,
one percent of the radius of a proton!
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The next exercise is strongly recommended.

Fxercise. Weaker than weak interactions. Imagine a gravitational detector of two
identical masses m separated by a distance [ symmetrically about the origin along the x-
axis. Along comes a plane wave gravitational wave front, propagating along the z-axis, with
hyw = —hyy = Azp cos(kz — wt) and no other components. The masses vibrate in response.
Show that, to linear order in A,,,

1 . .
— imc‘lw‘ngAm sin wt,

that there are no other J;;, and that the masses radiate an average gravitational wave
luminosity of

<LGW> = szwﬁl%‘lix

Next, show that the average energy flux for our incoming plane wave radiation is, from
equation (411),
AwrA?

327G
The cross section for gravitational interaction (dimensions of area) is defined to be the ratio
of the average luminosity to the average incoming flux. Why is this a good definition for the
cross section? Show that this ratio is

8rGPmwtt 27 2 wh\*
o= = — J—
15¢8 15 %

F:

C

where Rg = 2Gm/c? is the Schwarzschild radius of each mass. Evaluate this numerically for
m = 10kg, [ = 10m, w = 20 rad s~! (motivated by GW150914). Compare this with a typical
weak interaction cross section of 107#*m?. Just how weak is gravitational scattering?

7.7.2 Indirect methods: orbital energy loss in binary pulsars

In 1974, a remarkable binary system was discovered by Hulse and Taylor (1975, ApJ Letters,
195, L51). One of the stars was a pulsar with a pulse period of 59 milliseconds, i.e., a neutron
star that rotates about 17 times a second! The orbital period was 7.75 hours. This is a very
tight binary, with a separation not very different from the radius of the Sun. The non-pulsar
was not actually seen, only inferred, but the small separation between the two stars together
with the absence of any eclipse of the pulsar’s beeping signal suggested that the companion
was also a compact star. (If the orbital plane were close to being in the plane of the sky
to avoid seeing these eclipses, then the pulsar pulses would likewise show no line-of-sight
Doppler shifts, in stark contradiction to observations.)

What made this yet more extraordinary is that pulsars are among the most accurate
clocks in the Universe, until recently more accurate than any earthbound atomic clock.
The most accurately measured pulsar has a pulse period known to 17 significant figures!
Indeed, pulsars, which are generally calibrated by ensemble averages of large numbers of
atomic clocks, are themselves directly used as standard clocks”. Nature obligingly placed its
most accurate clock in the middle of a neutron star binary, just the system for which such

9Gince 2011, a bank of six pulsars, observed from Gdansk Poland, has been monitored continuously as a
timekeeping device.

101



fantastically precise timing is a requirement. This, then, was the ultimate general relativity
laboratory.

Classic nonrelativistic binary observation techniques allow one to determine five parame-
ters from observations of the pulsar: the semimajor axis a projected against the plane of the
sky (asin?), the eccentricity e, the orbital period P, and two technical parameters related to
the periastron (the point of closest separation). The angular position of the periastron within
the orbit (“orbital phase”), and an absolute time reference point for when the periastron
occurs.

Relativistic effects, something new and beyond a standard Keplerian orbit analysis, give
two more parameters. The first is the advance of the perihelion (exactly analogous to Mer-
cury), which in the case of PSR 1913416 is 4.2° per year. (Compare with Mercury’s trifling
43 arc seconds per century!) The second is the second order (~ v?/c?) Doppler shift of the
pulse period. This arises from both the gravitational redshift of the combined system as well
as rotational kinematics. These seven parameters now allow a complete determination of the
individual masses and all of the classical orbital parameters of the system, a neat achieve-
ment in itself. The masses of the neutron stars are 1.4414 M and 1.3867 M, remarkably
similar to one another and remarkably similar to the Chandrasekhar mass 1.42 M'. (The
digits in the neutron stars’ masses are all significant!) More importantly, there is a third
relativistic effect also present, and therefore the problem is over-constrained. That is to say,
it is possible to make a prediction. The orbital period changes very slowly with time, short-
ening in duration due to the gradual approach of the two bodies. This “inspiral” is caused
by the loss of orbital energy, carried off by gravitational radiation, equation (447). Thus,
by monitoring the precise arrival times of the pulsar signals emanating from this slowly
decaying orbit, the existence of gravitational radiation could be quantitatively confirmed
and Einstein’s quadrupole formula verified, even though the radiation itself was not directly
observable.

Figure [5] shows the results of many years of observations. The dots are the cumulative
change in the time of periastron, due to the ever more rapid orbital period as gravitational
radiation losses cause the neutron stars to inspiral. Without the radiation losses, there would
still be a periastron advance of course, but the time between periastrons would not change:
the interval from one periastron to the next would just be a bit longer than an orbital
period. It is the accumulated time shift between periastron intervals that is the signature
of actual energy loss. The solid line in figure [5] is not a fit to the data. It is the prediction
of general relativity of what the cumulative change in the “epoch of periastron” (as it is
called) should be, according to the energy loss formula of Peters and Mathews, (447). This
beautiful precision fit leaves no doubt whatsover that the quadrupole radiation formula of
Einstein is correct. For this achievement, Hulse and Taylor won a well-deserved Nobel Prize
in 1993. (It must be just a coincidence that 1992 is about the time that the data points
seem to become more sparse.)

Direct detection of gravitational waves is a very recent phenomenon. There are two
types of gravitational wave detectors currently in operation. The first is based on a classic
19th century laboratory apparatus, a Michelson interferometer. The second makes use of
pulsar emissions—specifically the arrival times of pulses—as a probe of the h,, induced
by gravitational waves as these waves propagate across our line of site to the pulsar. The
interferometer detectors are designed for wave frequencies from ~ 10 Hz to 1000’s of Hz.
These are now up and running! By contrast, the pulsar measurements are sensitive to
frequencies of tens to hundreds of micro Hz—a very different range, measuring physical
processes on very different scales. This technique has yet to be demonstrated. The high
frequency interferometers measure the gravitational radiation from stellar-mass black holes

10This is the upper limit to the mass of a white dwarf star. If the mass exceeds this value, it collapses to
either a neutron star or black hole, but cannot remain a white dwarf.
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Figure 5: The cumulative change in the periastron event ( “epoch”) caused by the inspiral
of the pulsar PSR1913+16. The dots are the data, the curve is the prediction, not the
best fit! This prediction is confirmed to better than a fraction of a percent.
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or neutron star binaries merging together. The low frequency pulsar timing will also in
principle measure black holes merging, but with masses of order 10° solar masses. These are
the masses of black holes that live in the cores of active galaxies.

7.7.3 Direct methods: LIGO

LIGO, or Laser Interferometer Gravitational-Wave Observatory, detects gravitational waves
as described in figure (6). In the absence of a wave, the arms are set to destructively
interfere, so that no light whatsoever reaches the detector. The idea is that a gravitational
wave passes through the apparatus, each period of oscillation slightly squeezing one arm,
slightly extending the other. With coherent laser light traversing each arm, when this light
re-superposes at the centre, the phase will become ever so slightly out of precise cancellation,
and therefore photons will appear in the detector. In practise, the light makes many passages
back and forth along a 4 km arm before analysis. The development of increased sensitivity
comes from engineering greater and greater numbers of reflections, and thus a greater effective
path length. There are two such interferometers, one in Livingston, Louisiana, the other in
Hanford, Washington, a separation of 3000 km. Both must show a simultaneous wave passage
(“simultaneous” after taking into account an offset of 10 milliseconds for speed of light travel
time!) for the signal to be verified.

This is a highly simplified description, of course. All kinds of ingenious amplification
and noise suppression techniques go into this project, which is designed to measure induced
strains at the incredible level (as of March 2017) of 10723, This detection is only possible at
all because we measure not the flux of radiation, which would have a 1/7? dependence with
distance r to the source, but the amplitude h;;, which has a 1/r dependence.

Figure (7) shows a match of an accurate numerical simulation to the processed LIGO
event GW150914. T have overlaid three measured wave periods P;, P,, and Pz, with each of
their respective lengths given in seconds. (These were measured with a plastic ruler directly
from the diagram!) The total duration of these three periods is 0.086 s. Throughout this
time the black holes are separated by a distance in excess of of 4 Rg, so we are barely at the
limit for which we can trust Newtonian orbit theory. Let’s give it a try for a circular orbit.
(Circularity is not unexpected for the final throes of coalescence.)

Using the zero eccentricity orbital period decrease formula from the final exercise of §7.6,
but remembering that the orbital period P is twice the gravitational wave period Pgyy,

b _ 96w (mlmQ) GM\ "
Wy M? ac?

We eliminate the semi-major axis a in favour of the measured period Pgy,

4%a? m2a?
P? = TR whence P2, = el
This gives
. 967%/3 [ GM,\""”
Pow = — 50 (%) (451)
where we have introduced what is known as the “chirp mass” M.,
(mamy)?/5
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Figure 6: A schematic interferometer. Coherent light enters from the laser at the left.
Half is deflected 45° upward by the beam splitter, half continues on. The two halves
reflect from the mirrors. The beams re-superpose at the splitter, interfere, and are
passed to a detector at the bottom. If the path lengths are identical or differ by an
integral number of wavelengths they interfere constructively; if they differ by an odd
number of half-wavelengths they cancel one another. In “null” mode, the two arms
are set to destructively interfere so that no light whatsoever reaches the detector. A
passing gravity wave just barely offsets this precise destructive interference and causes
laser photons to appear in the detector.
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The chirp mass (so-named because if the gravitational wave were audible at these same
frequencies, it would indeed sound like a chirp!) is the above combination of m; and ma,
which is directly measurable from Pgy and its derivative. It is easy to show (try it!) that
M = my + ms is a minimum when m; = mso, in which case

mip = moy X~ 115MC
Putting numbers in (451), we find

Mo = —5.522 x 10* Paw P2y, (453)

where M, is the chirp mass in solar masses and Pgy is measured in seconds. From the
GW150914 data, we estimate

: P;— P —0.0057
Pow ~ = = —0.0663
TP+ P+ P, 0.086 ’
and for Pgy we use the midvalue P, = 0.0283. This yields
M. ~ 30.7 (454)

compared with “M,. ~ 30M,"” in Abbot et al. (2016). I'm sure this remarkable level of
agreement is somewhat (but not entirely!) fortuitous. Even in this, its simplest presentation,
the wave form presents a wealth of information. The “equal mass” coalescing black hole
system comprises two 35M black holes, and certainly at that mass a compact object can
only be a black hole!

The two masses need not be equal of course, so is it possible that this is something other
than a coalescing black hole binary? We can quickly rule out any other possibility, without
a sophisticated analysis. It cannot be any combination of white dwarfs or neutron stars,
because the chirp mass is too big. Could it be, say, a black hole plus a neutron star? With
a fixed observed M. = 30M, and a neutron star of at most ~ 2Mg, the black hole would
have to be some 1700M. So? Well, then the Schwarzschild radius would have to be very
large, and coalescence would have occurred at a separation distance too large for any of the
observed high frequencies to be generated! There are frequencies present toward the end of
the wave form event in excess of 75 Hz. This is completely incompatible with a black hole
mass of this magnitude.

A sophisticated analysis using accurate first principle numerical simulations of gravita-
tional wave from coalescing black holes tells an interesting history, one rather well-captured
by even our naive efforts. Using a detailed match to the waveform, the following can be
deduced. The system lies at a distance of some 400 Mpc, with significant uncertainties here
of order 40%. At these distances, the wave form needs to be corrected for cosmological
expansion effects, and the masses in the source rest frame are 36 M, and 29M,, with £15%
uncertainties. The final mass, 62M, is definitely less than the sum of the two, 65M: some
3Mc? worth of energy has disappeared in gravitational waves! A release of 5 x 10%7] is, I
believe, the largest explosion of any kind every recorded. A billion years later, some of that
energy, in the form of ripples in space itself, tickles the interferometer arms in Louisiana and
Washington. It is, I believe, at 107!% c¢m, the smallest amplitude mechanical motion ever
recorded.

What a story.
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Figure 7: From Abbot et al. (2016). The upper diagram is a schematic rendering of the
black hole inspiral process, from slowly evolution in a quasi-Newtonian regime, to a strongly
interacting regime, followed by a coalescence and “ring-down,” as the emergent single black
hole settles down to its final, nonradiating geometry. The middle figure is the gravitational
wave strain, overlaid with three identified periods discussed in the text. The final bottom plot
shows the separation of the system and the relative velocity as a function of time, from insprial
just up to the moment of coalescence.
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Figure 8: A schematic view of a gravitational wave passing through
an array of pulsar probes.

7.7.4 Direct methods: Pulsar timing array

Pulsars are, as we have noted, fantastically precise clocks. Within the pulsar cohort, those
with millisecond periods are the most accurate of all. The period of PSR1937+421 is known
to be 1.5578064688197945 milliseconds, an accuracy of one part in 107, (That is equivalent
to knowing the age of the Universe to within a few seconds!) One can then predict the arrival
time of a pulse to this level of accuracy as well. By constraining variations in pulse arrival
times from a single pulsar, we can set an upper limit to amount of gravitational radiation
that the signal has traversed. But we don’t just have one pulsar. So why settle for one pulsar
and mere constraints? We know of many pulsars, distributed more or less uniformly through
the galaxy. If the arrival times from this “pulsar timing array” (PTA) were correlated with
one another in a mathematically calculable manner, this would be a direct indication of
the the deformation of space caused by the passage of a gravitational wave. This technique
is sensitive to very long wavelength gravitational radiation, light-years in extent. This is
very difficult to do because all other sources introducing a spurious correlation must be
scrupulously eliminated. LIGO too has noise issues, but unlike pulsar blips propagating
through the interstellar medium, LIGO’s signal is very clean and all hardware is accessible.
Thus, PTA has its share of skeptics. At the time of this writing, there are only upper limits
from the PTA measurements.
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Despite its name, the big bang theory is
not really a theory of a bang at all. It is
really only a theory of the aftermath of a
bang.

— Alan Guth

8 Cosmology

8.1 Introduction

Summary. When carefully applied, local Newtonian mechanics in a background of outwardly-
expanding matter provides a surprisingly good (indeed, unreasonably good) description of
much of basic cosmology. Expansion is essential for mathematical self-consistency. Photons
propagating in such an expanding space are observed to be redshifted relative to their rest
frame: the wavelength increases, as the photon propagates, in proportion to the size of the
Universe.

8.1.1 Newtonian cosmology

The subject of the origin of the Universe is irresistible to the scientist and layperson alike.
What went bang? Where did the Universe come from? What happened along the way?
Where are we headed? The theory of general relativity, with its rigorous mathematical
formulation of the large-scale geometry of spacetime, provides both the conceptual and
technical apparatus to understand the structure and evolution of the Universe. We are
fortunate to live in an era in which many precise answers to these great questions are at
hand. Moreover, while we need general relativity to put ourselves on a truly firm footing, we
can get quite far using very simple ideas and hardly any relativity at alll Not only can, we
absolutely should begin this way. Let us start with some very Newtonian dynamics and see
what there is to see. Then, knowing a bit of what to expect and where we are headed, we will
be in a much better position to revisit “the problem of the Universe” on a fully relativistic
basis.

A plausible but naive model of the Universe might be one in which space is ordinary
static Euclidian space, and the galaxies fill up this space uniformly (on average) everywhere.
Putting aside the question of the origin of such a structure (let’s say it has existed for all
time) and the problem that the cumulative light received at any location would be infinite
(“Olber’s paradox”—that’s tougher to get around: let’s say maybe we turned on the galaxies
at some finite time in the past'!), the static Euclidian model is not even mathematically
self-consistent.

Consider the analysis from figure [9]. In the figure on the left, we note that there are
two observers, one at the centre of the sphere 1, the other at the centre of sphere ry. Each
calculates the expected acceleration at the location of the big black dot, which is a point on
the surface of each of the spheres. Our model universe is spherically symmetric about rq,
but it is also spherically symmetric about r3! Hence the following conundrum:

See W72, pp. 611-13.
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Figure 9: In a static homogeneous Euclidian universe, an observer at the
center of sphere 1 would calculate a different gravitational acceleration for
the dot than an observer at the centre of sphere 2, i.e. a1 # as. But if
we take into account the actual relative acceleration of the two observers,
each considers the other to be in a noninertial frame, and the calculation
becomes self-consistent with this non-inertial “fictitious” force. (See text.)

The observer at the centre of sphere 1 ignores the effect of the spherically symmetric
mass exterior to the black point and concludes that the acceleration at the dot’s location is

GM (within ;)  47Gpry
2 = )
r{ 3

(455)

a1 =

directed toward the centre of the r; sphere. (Here p is meant to be the average uniform mass
density of the Universe.) But the observer at the origin of the ry sphere claims, by identical
reasoning, that the acceleration must be ay = 47Gpry/3 directed toward the centre of 75!
This shown on the right in figure [9]. Both cannot be correct.

What if the Universe is dynamically active? Then we must put in the gravitational accel-
eration, in the form of a noninertial reference frame, from the very start of the calculation.
If the observers at the centres of r; and 7y are actually accelerating relative to one another,
there is no reason to expect that their separate calculations for the black dot acceleration to
agree, because the observers are not part of the same inertial frame! Can we make this pic-
ture self-consistent somehow for any two r; and ry observers? Yes. If the Universe exhibits
a relative acceleration between two observers that is proportional to the vector difference
ro — 11 between the two observers’ positions, all is well.

Here is how it works. The observer at the centre of sphere 1 measures the acceleration of
the black dot to be —4wGpry/3 as above, with r; pointing from the centre of circle 1 to the
surface dot. The same circle 1 observer finds that the acceleration of the centre of sphere
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2 is —4nGp(r1 — r2)/3, where rq is the position vector oriented from the sphere 2 centre
toward the big dot. Defined this way, these particular 1 and r5 vectors are colinear. Thus,
the person at the centre of sphere 1 finds that the acceleration of the big dot, as measured by
an observer moving in the (noninertial) centre of sphere 2 frame is the sphere 1 acceleration
of —4wGpry/3 minus the acceleration of the observer at the centre of sphere 2:

- 47TC;,07“1 B —47er(;1 —r2) _ _47T(§)P7“2 (456)

Lo and behold, this is the acceleration that the observer at the centre of sphere 2 would find
self-consistently in the privacy of his own study, without worrying about what anyone else
thinks might be going on. A Euclidian, “linearly accelerating” universe is therefore perfectly
self-consistent. A dynamically active, expanding universe is required. The expansion process
itself is essentially Newtonian, not, as originally thought at the time of its discovery, a
mysterious effect of general relativity. Naively, the rate of expansion naively ought to be
slowing, since this is what gravity does: an object thrown from the surface of the earth slows
down as its distance from the surface increases. This is what astronomer’s assumed for 70
years. As we shall soon see however, our Universe is a bit more devious than that. There is
still some mystery here beyond the realm of the purely Newtonian!

8.1.2 The dynamical equation of motion

A simple way to describe the internal acceleration of the Universe is to begin with the
spatially homogeneous but time-dependent relative expansion between two locations. The
separation between two arbitrary points separated by a distance r(¢) may be written

r(t) = R(t)l (457)

where [ is a comoving coordinate that labels a fixed radial distance from us in the space—
fixed in the sense of being fixed to the expanding space, like latitude and longitude would
be on the surface of an inflating globe. If we take [ to have dimensions of length, then R(t)
is a dimensionless function of time alone. It is a scale factor that embodies the dynamical
behaviour of the Universe. The velocity v = dr/dt = 7 of a “fixed” point expanding with
space is then

v(t) = Rl = (R/R)r- (458)

We should emphasise the vector character of this relationship:
v(t) = (R/R)r (459)

where 7 is a vector pointing outward from our arbitrarily chosen origin. Then, the accelera-
tion is
dv ..
a(t) = e (R/R)r. (460)
(Why didn’t we differentiate r(t)/R(t)?) But we already know the relative acceleration
between two points, because we know Newtonian physics. Equation [455]) tells us that the
gravitational accleration is

4
a(t) = — WSGpr. (461)
Hence, )
AnGp R
— = —. 462
T =& (462)
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Notice how [ disappears: this is an equation for the scale factor R, and the scale factor

depends not on where you are, but on when you are. Next, multiply this equation by RR
and integrate, assuming that ordinary mass is conserved in the ordinary way, i.e. pR? is
constant. We then obtain

StGpR? o

3 Y
where F is an energy-like integration constant. This, in a simple, apparently naive Euclidian-
Newtonian approach, would be our fundamental dynamical cosmological equation for the
evolution of the Universe. Amazingly, providing that we are prepared to allow the mass
density p is to be upgraded to an energy density (divided by ¢?) that includes all contributions
(in particular radiation and vacuum energy), this innocent little equation turns out to be far
more general: it is ezactly correct in full relativity theory! More on this anon.

R? (463)

8.1.3 Cosmological redshift

The expansion of the Universe leads to a very important kinematic effect known as the
cosmological redshift. Since the Universe is expanding, a travelling photon is constantly
overtaking sources that are moving away from it. If a photon has a wavelength A at some
location r, when the photon passes an observer a distance dr = cdt away, moving at a relative

velocity Rdr/ R, this observer measures a Doppler change in wavelength d\ determined by
equation (459):

Lol == 464

= cRdr Rdt, (464)
or in other words _ )
ldh N R

Solving for A, we find that it is linearly proportional to R. It is as though the wavelength
stretches out with the rest of the Universe. This is a very general kinematic result, a
property of any cosmological model that is symmetrically expanding. (Even if there is
spatial curvature, the “differential proper distance” is always cdt for a travelling photon.)

This result means that the frequency of a photon goes down as 1/R. But the frequency
of a photon is proportional to its energy, hence the radiation temperature 7, o 1/R, and

the energy density in radiation (fourth power in T,) decreases as 1/R*. The total energy
in a volume R? thus decreases as 1/R; energy is not conserved in the expansion of the
Universe! By contrast, the entropy density in the radiation is proportional to Tg’, and (T, R)?

is therefore constant. The radiation entropy, which is just proportional to the number of
photons, is conserved. Photons are neither created nor destroyed by the act of expansion.
This makes perfect sense.

We are free, and it is customary, to choose our coordinates in such a way that the current
value of R is 1, with R becoming smaller and smaller as we go back in time. If a photon is
emitted with a wavelength A, at some time ¢ in the past, the wavelength (\g) we would now
measure at time tq is formally expressed as

Ao = Ae(1+ 2) (466)
where z is defined by this equation and known as the redshift parameter. Therefore,

)\0 . . R(to) . 1
»TPT RO T RO

. (467)
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The advantage to using z, as opposed to the more geometrical quantity R, is that z is
directly observed by astronomers. But the two quantities are mathematically equivalent via
this completely general equation, R = 1/(1 + z). In any symmetric cosmological model, if
you measure a redshift of 2, it has come from a time when the Universe had one-third of its
current size.

8.2 Cosmology models for the impatient

Summary. The concept of a spacetime metric is essential, even in Newtonian cosmology. A
metric allows us to describe the paths of photons as they move through an expanding space,
and to determine from which comoving coordinate location | they came for a given measured
redshift z. Because different cosmologies produce different functions for l(z), this quantity is
a key observational tool which in principle allows us to determine what kind of Universe we
live in.

8.2.1 The large-scale spacetime metric

Because the Newtonian approach works remarkably well, here is a brief reminder as to why
we really do need relativity in our study of the large scale structure of the Universe.

First, we require a Riemannian metric structure to ensure that the speed of light is a uni-
versal constant c, especially when traversing a dynamically evolving spacetime background.
It is easy to see what the form of this metric must be in a simple model of an expanding
Euclidian Universe. Symmetry demands that time must flow identically for all observers co-
moving with the universal expansion, and we can always choose time to be a linear function
of the time coordinate. Space is uniformly expanding at the same rate everywhere. So if
space itself is Euclidian, the spacetime metric practically leaps out of the page,

— Pdr? = —c*dt? + R*(d2® + dy® + d2°) (468)

where we have used the usual (z,y, z) Cartesian coordinates, and R satisfies equation (463).
Note that x,y, z are comoving with the expansion, in essence Cartesian coordinate of length
L,

dz? + dy* + d2? = di>.

In particular, for a photon heading directly towards us, along a line of sight to a distant
source,

dl
R— =— 469
o (469)
where dl should be thought of as the change of radial comoving coordinate induced by the
photon’s passage. A mechanical analogue is an ant, moving at a constant velocity ¢, crawling
along the surface of an expanding sphere from the pole to the equator. In this case, think
of dl as the change in the ant’s latitude.

Second, we must allow for the observational possibility of non-Euclidian spatial structure.
Now equation (468) really does appear to be the true form of the spacetime metric for our
Universe. Space happens to be very nearly, or perhaps even precisely, Euclidian. But as a
purely mathematical point, this need not be the case even if we demand perfect symmetry,
any more than the requirement of a perfectly symmetric two-dimensional surface demands a
Euclidian plane. We could preserve our global maximal spatial symmetry and be in a curved
space, like the surface of sphere. This surface, in common with a flat plane, is symmetric
about every point, but its spatial properties are clearly distorted relative to a plane. (E.g.
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the Pythagorean theorem does not hold, and the sum of the angles of a triangle exceeds 180
degrees.) The case of a two-dimensional spherical surface is readily grasped because we can
easily embed it in three dimensions to form a mental image. The surface is finite in area
and is said to be positively curved. There is also a perfectly viable, flaring, negatively curved
two-dimensional surface. A saddle begins to capture its essence, but not quite, because
the curvature of a saddle is not uniform. The case of a uniformly negatively curved two-
dimensional surface cannot actually be embedded in only three dimensions, so it is very hard
to picture in your mind’s eye! (At least it is for me.) There are positively and negatively
curved fully three-dimensional spaces as well, all perfectly symmetric, which are logically
possible alternative structures for the space of our Universe. They just happen not to fit
the data. It is fortunate for us that the real Universe seems also to be mathematically the
simplest. For now we confine our attention to this expanding, good old “flat” Euclidian
space.

Third, we need relativity in the form of the Birkhoff theorem to justify properly the
argument neglecting exterior contributions from outside the arbitraily chosen spheres we
used in section 8.1. The Newtonian description strictly can’t be applied to an infinite sys-
tem, whereas nothing prevents us from using Birkhoft’s theorem applied to an unbounded
symmetric spacetime.

Fourth, we need a relativistically valid argument to arrive at equation (463). Nothing
in the Newtonian derivation even hints at this level of generality. We shall return to this
carefully in section 8.3.

Finally, we need relativity theory to relate the energy constant E to the geometry of our
space. For now, we restrict ourselves to the case ' = 0, which will turn out to be the only
solution consistent with the adoption of a flat Euclidian spatial geometry, our own Universe.

8.2.2 The Einstein-de Sitter universe: a useful toy model

Consider equation (463) for the case E = 0 in the presence of ordinary matter, which
means that pR3 is a constant. Remember that we are free to choose coordinates in which
R = Ry = 1 at the present time ¢t = t,. We may then choose the constant pR? to be equal
to p(to) = pmo, the mass density at the current epoch. Equation (463) becomes

. e 1/2
RV2[R — (%) , (470)
Integrating,
2 87TGpM0 1/2
SR =)t 471
X 4 , (a71)
where the integration constant has been set to zero under the assumption that R was very
small at early times. This leads to
3Hot\ >
R= ( 20 ) , (472)

where we have introduced an important structural constant of the Universe, Hy, the value

of R/R at the current time to. (The current growth rate.) This is known as the Hubble
constant,

. 1z
Hy = R(ty) = <87TG%> — R= HyR'/?. (473)
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More generally, the Hubble parameter is defined by

H(t) =~ (474)

for any time ¢. The solution (472) of the scale factor R is known, for historical reasons, as
the Einstein-de Sitter model.

Ezercise. Show that H(t) = Hy(1 + 2)*? for our simple model R = (t/t)*/>.

The Hubble constant is in principle something that we may observe directly, “simply” by
measuring the distances to nearby galaxies as well as their redshift, and then using equation
(459) locally. As a problem in astronomy, this is hardly simple! On the contrary, it is a very
difficult task because we cannot be certain that the motion of these nearby galaxies comes
from cosmological expansion alone. But astronomers have persevered, and the bottom line
is that the measured value of Hy and the measured value of the density of ordinary matter
pmo do not satisfy (473) in our Universe. There is just not enough ordinary matter pyso to
account for the measured Hy. On the other hand, equation (463) does seem to be precisely
valid, with £ = 0. As the energy density of radiation in the contemporary Universe is much
less than 3HZ /871G, how is all this possible?

The answer is stunning. While the energy density in the Universe of ordinary matter
most certainly dominates over radiation, there is now strong evidence of an additional energy
density associated with the vacuum of spacetime itself! This energy density, py, is the
dominant energy density of the real Universe on cosmological scales, though not at present
overwhelmingly so: py is about 69% of the total energy budget whereas matter (the familiar
baryons plus whatever “dark matter” is) comes in at about 31%. However, because py
remains constant as the Universe expands, at later times vacuum energy will dominate the
expansion: pys drops off as 1/R3, and the constant py takes up the slack.

What does this imply for the expansion behaviour of the Universe? With an effective
vacuum Hubble parameter of

H, = <87T§PV)1/27 (475)
equation (463) at later times takes the form
R=HyR (476)
or
R x exp(Hyt). (477)

The Universe will expand exponentially! In other words, rather than gravity slowly decelerat-
ing the expansion by the Newtonian mutual attractive force, the vacuum energy density will
actively drive an ever more vigorous repulsive force. The converse of this is that Universe was
expanding more slowly in the past than in the present. It is this particular discovery which
has led to our current understanding of the remarkable expansion dynamics of the Universe.
The Nobel Prize in Physics was awarded to Perlmutter, Schmidt and Riess in 2011 for their
use of distant supernovae as a tool for unravelling the dynamics of the Universe from early
to modern times. We currently live in the epoch where exponential expansion is taking over.

Equations (467), (469) and (473) may be combined to answer the following question. If
we measure a photon of redshift z, from what value of [ did it originate? This is an important
question because it provides the link between astronomical observations and the geometry

of the Universe. With R(t) = (t/t9)%® = (3Hot/2)*/?, equation (469) may be be integrated
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over the path of the photon from its emission at [ at time ¢:

l t / 1
dt dR 2c 2c 1
dll = —c — =c — =—1(1—-VR :—<1— )Elz 478
A ¢ R RRR H0< ) HO \/1—{—2 <) ( )

0

Note that as z — oo, | — 2¢/H,, a constant. The most distant photons—and therefore the
most distant regions of the Universe that may causally influence us—come from [ = 2¢/H,.
This quantity is known as the horizon, denoted ly. Beyond the horizon, we can detect—
and be influenced by—mnothing. This particular value of Iy = 2¢/H, is associated with
the Einstein—de Sitter model, but the existence of a horizon is a general feature of many
cosmologies and will generally be a multiple of ¢/Hy. Do not confuse this cosmological
horizon, sometimes called a “particle horizon” with the event horizon of a black hole. The
particle horizon is notionally outward, the cosmological radial extent over which causality
may be exerted. The event horizon is notionally inward, the radius of a surface enveloping
a blackhole, within which no causal contact with the outside world is possible.

Physical distances are given not by [, but by RIl. Since R = 1 currently, 2¢/Hy is the
current physical scale of the horizon as well. There is nothing special about now, however.
We could be doing this analysis at any time ¢, and the physical size of the horizon at time ¢ in

the E-de S model would then be 2¢/H (t) = 2¢/[Ho(1 + 2)3/?]. So here is another interesting
question. The furthest back in time that we can see is to a redshift of about z = 1500.
At higher redshifts than this, the Universe was completely opaque to photons. Just as in
viewing the Sun we can only see to its opaque photosphere, not into its interior, we can only
see back in cosmological time to a time when the Universe itself became similarly opaque.
What would be the subtended angular size of the horizon © at z = 1500, as we measure it
today on the sky? This is an important question because we would not expect the Universe
to be very smooth or regular or correlated in any way on angular scales bigger than this.
(The E-dS model doesn’t actually hold during the radiation dominated phase, but it will
serve to make our point; greater numerical accuracy doesn’t help the problem!) The angular
size of the horizon at a redshift z is given by the following expression:
2c 1 2c 1

o) = i 2 ReIG) T BV viveo1 T
The first equality sets the horizon angle equal to the actual physical size of the horizon at
redshift z, divided by d = R(z)(z), the distance to redshift z at the earlier time corresponding
to redshift z (not now!). This d is the relevant distance to the photon sources at the moment
of the radiation emission. The Universe was a smaller place then, and we cannot, we must
not, use the current proper distance, which would be Ryl(z) = I(z). If you plug in z = 1500
into (479) and convert O to degrees, you'll find Oy = 1.5°, about 3 times the diameter
of the full moon. But the Universe looks very regular on much, much larger angular scales,
indeed it is regular over the entire sky. Even if our model is only crude, it highlights an
important problem. Simply put, how does the Universe know about itself in a global sense,
given that it takes signals, even signals travelling at the speed of light, so long to cross it?
What we have here, ladies and gentleman, is a failure to communicate. We will see later in
this course how modern cosmology can address this puzzle.

By the way, the fact that the Universe was “on top of us” at early times has another
surprising consequence. Assuming that the average physical size of a galaxy isn’t changing
very much with time, if we calculate the average angular size of a galaxy, we find that at
low redshift, all is normal: the more distant galaxies appear to be smaller. But then, at
progressively higher redshifts, the galaxies appear to be growing larger on the sky! Why?
Because at large z, the Universe was, well, on top of us. The “distance-to-redshift-z” formula
is (for E-dS models):

(RG) 2 - <\/1+—Z . 1) (480)

T Ho(1+2)
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At low z, this is increasing linearly with z, which is intuitive: bigger redshift, more distant.
But at large z this declines as 1/z, since the Universe really was a smaller place.

Exercise. At what redshift would the average galaxy appear to be smallest in this model?
(Answer: z = 5/4.)

8.3 The Friedman-Robertson-Walker Metric

Summary. The form of the metric for an expanding space time that is homogeneous and
1sotropic about every point, but allows for curvature to be present, is known as the Friedman-
Robertson-Walker (FRW) metric. A uniformly expanding FEuclidian space is a particular
instance of the FRW metric, one that seems to describe our Universe. The form of the
FRW can be found with simple mathematics, from the notion of a curved spherical surface in
multidimensional Euclidian spaces. The FRW is required to establish the relationship between
the redshift of a photon and its comoving coordinate of origin.

We begin with an important notational shift. The variable r will henceforth denote a
comoving radial coordinate. To avoid any confusion, we will no longer use [ as a comoving
coordinate.

The Friedman-Robertson-Walker, or FRW, metric is the most general metric of a homo-
geneous isotropic cosmology. To understand its mathematical form, let us start simply. The
ordinary metric for a planar two-dimensional space (“2-space”) without curvature may be
written in cylindrical coordinates as

ds® = dw’® + w?d¢? (481)

where the radial @ and angular ¢ polar coordinates are related to ordinary Cartesian x and
y coordinates by the familiar formulae:

T = w Cos ¢, y = wsing (482)

As we have noted, this flat 2-space is not the most general globally symmetric 2-space
possible. The space could, for example, be distorted like the 2-surface of a sphere, yet retain
the symmetry of every point being mathematically equivalent. The metric for a spherical

surface is
ds* = a*df* + a* sin® 0dp*, (483)

where a is the radius of the sphere. We know how to relate cylindrical polar and spherical
coordinates: set w = asinf. This may be viewed as a purely formal transformation of
coordinates, but in our mind’s eye we can picture # in simple geometrical terms as the
colatitude angle measured downward from the z axis, so that this w is actually the same
cylindrical radius @ seen in equation (481). But don’t expect to get back to (481) from (483)
via this simple coordinate change sinf = w/a. Instead, we find that the spherical surface

metric becomes: )

2 dw 2 72

R A .
an entirely different space from the flat planar surface (481). The space of (484) is the same
original spherical surface space we started with by any other name; the metric resembles
equation (481) for a plane only in the limit a — oo. Changing coordinates does not change
the geometry. In particular, a coordinate change cannot alter any curvature scalar, which
remains invariant to coordinate transformation.
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Let’s stretch ourselves a bit and consider at a formal level the closely related two-
dimensional metric

dwo?
ds* = ———— + w’d¢’ 485
s 1+w2/a2+w ¢ (485)
which upon substituting sinh y = w/a reverts to
ds® = a’dx* + a® sinh? x d¢? (486)

the fundamental symmetry properties of the metric are unaffected by the +w?/a? sign flip.
The flip in denominator sign simply changes the sign of the constant curvature from positive
(convex, think sphere) to negative (flaring, think saddle). This characteristic form of the
radial metric tensor component, goe = 1/(1+w?/a?), will reappear when we go from curved
2-space to curved 3-space.

8.3.1 Maximally symmetric 3-spaces

It is best to begin with the conclusion, which ought not to surprise you. The most general
form of the three dimensional metric tensor that is maximally symmetric—homogeneous and
isotropic about every point—takes the form

2

2 2 2 742 2

+ 7r2d6? 4 r* sin® 0 dgz52) (487)

where we allow ourselves the liberty of taking the curvature constant a? to be either positive
or negative.

The derivation of the metric for the three-dimensional hypersurface of a four-dimensional
sphere is not difficult. The surface of such a “4-sphere” (Cartesian coordinates w, x,y, ) is
given by

w® + 2% + y* + 2* = a® = constant. (488)

2

Thus, on the three-dimensional surface (“3-surface”), a small change in w? is restricted to

satisfy:
d(w?) = —d(2* + y* + 2°) = —d(r?), whence dw = —rdr/w (489)

with r2 = 22 + 3? + 22. Therefore,

2 _ r2(dr)®  r?(dr)?

(dw) w: a2 (490)
The line element in Cartesian 4-space is
ds® = dz* + dy* + dz* + dw® = dr* + r*df® + r*sin® 0 d¢* + dw®. (491)

Adding together dr? and (dw)? as given by (490), there follows immediately the desired line
element restricted to the 3-surface of a 4-sphere, analogous to our expression for the ordinary
spherical surface metric (483):

dr?

ds® = ————
§ 1 —12/a?

+ 72d0* + r? sin? 0d¢?, (492)
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just as we see in equation (487). An alternative form for (492) is sometimes useful without
the singular denominator. Set » = asin y. Then

ds® = a®dy® + a’sin® yd#* + a*sin® y sin? fd¢> (493)

Ezercise. Show that the 3-surface of a 4-sphere with radius a has a “volume” 72a3.

Exercise. Would you care to hazard a guess as to what the line element of the 4-surface of
a 5-sphere looks like either in the form of (492) or (493)?

If for the moment we restrict ourselves to thinking of a? as positive, then the correspond-
ing negatively curved (saddle-like) 3-surface has line elements

dr?

ds* = —————
i 1+ 172/a?

+ 1r2df? + r? sin® 0dg?, (494)

and, with » = a sinh y, the alternative form is
ds* = a’dx® + a® sinh? xd#* + a* sinh? x sin? 0d¢?. (495)

For our Universe, a appears to be immeasurably large (but with y small and ax finite). In
other words, space is neither positively nor negatively curved. Space is basically flat.

It is customary in some textbooks to set a to be a positive constant, use ' = r/a as
a rescaled radial variable, and then absorb the factor of a into the definition of what you
mean by the scale factor R(t). In effect, one introduces a new scale factor R' = aR. This
eliminates a entirely from the metric! If you do that however, you give up on the convenience
of setting the current value of R’ equal to 1. Dropping the " on 7’ and R/, this general FRW
metric, with a absorbed, is written:

2

r
1 — kr?

— dr? = —c2dt* + R*(t) ( + r2df* + r* sin’ 6’> : (496)

where the constant k is 4+1 for a positively curved space, —1 for a negatively curved space,
and 0 for a flat space. This particular line element with

Goo = -1, Grr = Rz(t)/(l - krg)v Jog = R2(t)’l“2, Jop = RQ(t)TZ sin2 0. (497)

is often what people mean when they write “the FRW metric.” Because a is absent in this
formulation, this can be mathematically convenient. In my view, the form (487) is more
physically transparent.

Be careful! In (496), R has dimensions of length, and r is dimensionless. In (487), R is
dimensionless and it is r that carries dimensions of length. For £ = 0, we may stick to R
being dimensionless and r carrying dimensions of length, as there is no need to “absorb a.”
Remember that in all cases r is a comoving coordinate.

A few final words on practical uses of the FRW metric. I will use the metric in the form
(487). In flat Euclidian space, the integrated comoving distance to coordinate r is just r
itself. (The proper distance is then found by multiplying by the scale factor R(t) at the
appropriate time.) Otherwise, the comoving radial distance associated with coordinate r is

=asin"'(r/a) (a* > 0), or asinh™'(r/a) (a® <0).

T drl
/0 T—=r2]a?

119



(In either case above, a is regarded as a positive absolute value or norm.)

By way of a specific example, let us rework equation (478) in our current notation for
the case of positive curvature. The comoving coordinate of a photon arriving with redshift
z when the scale factor was R is given by

- — ¢ o dt —c lﬁzc z—dz = asin ! (r[z]/a
asin”™ " (r/a) = /t R - BR /0(1+2)R(Z)_ (rz]/a)

We'’ve been a bit casual with notation to avoid a clutter, using R as dummy variable inside
the integral and also as an integration limit. (The same with z.) But the meaning should
be clear. Note that we have used R = 1/(1 + z), so that the current value of R is 1, which

appropriate for the the form of the metric in equation (487). R is given by equation (463)
quite generally, but we need to relate F and a. That requires general relativity. In §8.4, we
show that 2E = —c?/a?.

Let’s look at a pure vacuum E = (0 universe, but one with finite py and Hy so that we
have something to work with! Then R = Hy R and

LdR c YdR c (1 ) cz
r—c - = 1) === 498
r RR Hy /g R* Hy \R Hy (458)

How interesting. There is no horizon in such a universe. As z — oo, r — o0o. An early
phase of exponential growth (“inflation”) has in fact been proposed as a means to avoid the
horizon problem. We’ve learnt something very important already:.

Next, the volume of photons in a maximally symmetric space within redshift z,, is for-
mally given by
r2dr’

L
0 V1—=1r72/a?

a function of r and thus ultimately of redshift. But what do we use for R inside this integral?
That depends on the question. If we are interested in the current net volume of these sources,
then R = Ry, a constant, and life is simple. If we are interested in the net volume of all
the sources occupied at the time of their emission, then we would need first to find R as a
function of r to do the integral, then we need to find r(z,,) to get back to redshift z. That
can be complicated! As an easier example, however, the current net volume V for sources
out to a maximum redshift z,, with a®> > 0is (R= Ry = 1)

V =dn (499)

T r2dy! s . 4T r2
V:47T0\/TWZ2TF<&SIH E—CLT 1—¥ . (500)

You should be able to show that this reduces to the more familiar 47r3/3 when a is large.
In that case, for an E-dS universe the volume to redshift z is (show!):

V(z) = 327” (Hi0>3 (1 - 11+ Z)3. (501)

8.4 Large scale dynamics

Summary. The day of reckoning can be put off no longer, as the Field Equations of general
relativity are confronted. We show that our Newtonian dynamical equation for R is valid
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under all circumstances, and that 2E from this equation is equal to —c*/a® where a is from
the FRW metric. We show that the Field Equations can be modified by the addition of what
is known as the comological constant, a term whose effect is greatest at the largest scales.
Remarkably, this is mathematically identical to the effect of a vacuum energy density, and
we therefore keep the original form of the Field Equations and allow for the possibility that
the energy density pc® may contain a contribution from the vacuum.

The student should read and study subsections 8.4.1 and 8.4.3, but may regard the rather
heavy 8.4.2 as optional (off syllabus). Remember, however, the identification of 2E with

—c2/a®.

8.4.1 The effect of a cosmological constant

Begin first with the Field Equations including the cosmological constant, equation (250):

Guv G

R, — 5 R = —7TW + Ag (502)

Recall the stress energy tensor for a perfect fluid:
T = Pgu + (p+ P/*)ULU,. (503)

We may arrange the right side source term of (502) as follows:

G 7G| =~ P
where iy N
~ c c
P=P— = 505
srg’ P °P + 8t (505)

In other words, the effect of a cosmological constant is to leave the left side of the Field
Equations untouched and to leave the right side of the Field Equations in the form of a
stress tensor for a perfect fluid, but with the density acquiring a constant additive term
c?A/87G and the pressure acquiring a constant term of the opposite sign, —c*A/87G!

This is simple, almost trivial, mathematics, but profound physics. The effect of a cosmo-
logical constant is as if the vacuum itself had an energy density &y = pyc? = ¢*A/87G and
a pressure Py = —c*A/87G. Does it make sense that the vacuum has a negative pressure,
equal to its energy density but opposite in sign? Yes! If the vacuum volume expands by dV/,
the change in energy per unit volume of expansion is just dE/dV = pyc®. By the first law
of thermodynamics, this must be —Py,. Yet more fundamentally, if we recall the form of the
stress energy tensor of the vacuum, but without assuming Py = —pyc?, then

Ty vy = Pvguw + (pv + Py /) UU,, (506)

and the last group of terms would change the form of the vacuum stress energy going from
one constant velocity observer to another. In other words, you could tell if you were moving
relative to the vacuum. That is absolutely forbidden! The vacuum stress must always be
proportional to g,,, and to g,, alone. The only way this can occur is if Py = —pyc?.

An early general relativity advocate, Sir Arthur Eddington was particularly partial to
a cosmological constant, and was fond of commenting that setting A = 0 would be to
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“knock the bottom out of space.” At the time this was probably viewed as Eddington in
his customary curmudgeon mode; today the insight seems downright prescient. Nowadays,
physicists like to think less in terms of a cosmological constant and place more conceptual
emphasis on the notion of a vacuum energy density. What is the reason for its existence?
Why does it have the value that it does? If py is not strictly constant, general relativity
would be wrong. Are the actual observational data supportive of a truly constant value for
pv? The value of py probably emerged from the same type of “renormalisation process” (for
those of you familiar with this concept) that has produced finite values for the masses for
the fundamental particles. How do we calculate this? These are some of the most difficult
questions in all of physics.

For present purposes, we put these fascinating issues to the side, and continue our devel-
opment of large scale models of the Universe without the formal appearance of a cosmological
constant, but with the understanding that we may add the appropriate contributions to the
density p and pressure P to account precisely for the effects of A.

8.4.2 Formal analysis

Regard this subection as OPTIONAL—off-syllabus.
We shall use the Field Equations in terms of the source function S,, =T, — 9,,71/2,

8rG
R;w - - A S/Ll/7 (507)
and the FRW metric in the form of equation (497), which is more convenient for this analysis.
In our comoving coordinates, the only component of the covariant 4-velocity U, that does not
vanish is Uy = —c (from the relations ¢®(U%)? = —¢? and Uy = gooU®). The nonvanishing
components of 7}, are then

Too = PCz, Tij = Pgij- (508)
Which means , '
Ty = —pc®, T;=06,P, T=T}=—pc"+3P (509)
We shall need
1 1
S(]o = TOO — %T = §(pc2 + 3P), Sij = Egij(p02 — P) (510)

To calculate Ryo, begin with our expression for the Ricci tensor, (258):
R :182ln|g| _8112,{ T 0ln|g]
MR 2 0xm 0z Ot PATHI 9 Qg
where ¢ is the determinant of the metric tensor g,, given by (497). Defining

£) =1/~ k),

we have

lgl = RO(t) r* f(r)sin® 0 (511)
For diagonal metrics, 'Y, = 9,(In g,4)/2 and T°, = —(9ygaa)/2gs (n0 sum on a). Therefore
'), = 0, and our expression for Ry simplifies to

19%In|g] 10%In|g]|

Foo = 2 020020 2 020020

+I0,Tp, = + Ty Th + 18,19, + r&r& (512)
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With

19%Inlg| 3R  3R? ) s R
- = — =1, =I¢ = 513
2919920 ~ R Ri2T 0T 0T 00T R (513)
the 00 component of (507) becomes
- ArGR 3P
ot (. 31) o

which differs from our Newtonian equation (462) only by an additional, apparently very
small, term of 3P/c? as an effective source of gravitation. However, during the time when
the Universe was dominated by radiation, this term was important, and even now it turns
out to be not only important, but negative as welll During the so-called inflationary phase,
3P/c* was hugely important. We will have much more to say about all of this later.

The rr component of the Field Equations is a bit more involved. Ready? With f' =
df /dr, we prepare a working table in advance of all the results we will need:

10%In]g| o Oln|g|
Ry = = =TI - Lpm 515
2 o2 o AT g (515)
1 9g f 1 dg,» fRR 1 9dg,, R
:T: J :Lv Fgr:_ J :f ) 67":— g = 5. (516)
2¢,, Or 2f 2cgog Ot c 2¢g,, Ot Re
1 0 1 0 1
oo Ly Lo o1
2944 OF 2999 Or r

Olnlg| f 4 18Wnlg] 1 1(f)* 2 or° 1 : -
5 Tt som TIF o T aw - @ URIRR) 61

Olnlg] 6R orn,  f"  (f)?

= — == — 519
ot R’ or 2f  2f? (519)
Putting it all together:
1821n|g] orr.  ory, , 0 \2 6 \2 0rr Ln0lnfg] ro, Jdln|g|
For = 2 o2 or 920 ()7 (F9T> + (F‘W) 2Ll = 2 or 2¢Ot
// // 2fR2 f/ 3fR2
2 _
ZZ b [ZZ | (i mi) s G B ()
Thus, with f'/f = 2krf,
2fR? fRR e e AnR2Gf
R, = — 5 — Spr = ——49T7«(pc2 —P)= —(pC2 — P)
c c c
or i .
2R? + RR + 2kc* = 4nGR*(p — P/c?) (520)

Notice that r has disappeared, as it must! (Why must it?) Eliminating R from (520) via
equation (514) and simplifying the result leads to

8tGpR?

R —
3

= —kc? (521)
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This is exactly the Newtonian equation (463) with the constant 2F “identified with” —kc?.
But be careful. The Newtonian version (463) was formulated with R dimensionless. In
equation (521), R has been rescaled to have dimensions of length, and & is either 1, 0, or —1.
To compare like-with-like we should repeat the calculation with the radial line element of
the metric (487). Don’t panic: this just amounts to replacing k& with 1/a? with dimensions
of an inverse length squared. We then have 2F = —c?/a?, carrying dimensions of R? or 1/t2.
The important point is that equation (463) is valid in full general relativity! And, as we have
just seen, the dynamical Newtonian energy constant may be identified with the geometrical
curvature of the space.

One final item in our analysis. We have not yet made use of the equation for the conser-
vation of energy-momentum, based on (177) and the Bianchi Identities:

1 a(y/lglT
T = WIIT™) o s (522)

. \/m Ot

This constraint is of course already built into the Field Equations themselves, and so in this
sense adds no new information to our problem. But we may ask whether use of this equation
from the start might have saved us some labour in getting to (521): it was a long derivation
after all. The answer is an interesting “yes” and ‘“no.”

The v = 0 component of (522) reads

TOO
o — L OWIIITT) o g (523)

e \/m o0

Only affine connections of the form T'% (spatial index 4, no sum) are present, and with

1 0gy; 10g; - . p .
Q‘ _ 11 _ - 1 TOO — 2 T'L'L — P w__ NO SUMS
s Y U Vi pc’, "= - (NOu )
equation (523) becomes:
1 9(R3pc?) R P\ R
———FF+3P—==0 )+ 3 — | ==0. 024
Boa R CCPTVTE) R (524)

Notice how this embodies at once the law of conservation of mass (in the large ¢ limit), and
the first law of thermodynamics, dE = —PdV .

Exercise. Justify the last statement, and show that a pure vacuum energy density universe
satisfies (524).

If we now use (524) to substitute for P in (514), after a little rearranging we easily arrive

at the result J 8rC d
52 7T 2

dt (7) 3 a ) (525)
which in turn immediately integrates to (521)! This is surely a much more efficient route
to (521), except...except that we cannot relate the integration constant that emerges from
(525) to the spatial curvature constant k. True, we have a faster route to our final equation,
but with only dynamical information. Equation (521) is after all just a statement of energy
conservation, as seen clearly from our Newtonian derivation. Without explicitly considering
the Ricci R, component, we lose the geometrical connection between Newtonian E (just an
integration constant) and —kc?>. We therefore have consistency between the energy conser-
vation and Ricci approaches, but not true equivalence. A subtle and interesting distinction.
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8.4.3 The 2, parameter

We work with the dynamical cosmological equation in its Newtonian form, with no loss of
generality,

8rGpR? c?
- =2F=——, 526
where F is an energy integration constant. Using observable quantities, £/ may be set by
the convention that R = 1 at the current time t,. We write 2F in terms of Hy, the Hubble

constant Ry and poc?, the current average value of the total energy density of the Universe:

R2

87 G po c?
2 _ 2 _ _
H; (1— SH2 ):Ho(l—Qo)—QE——?, (527)
where the parameter ) is
87TGp0
Qp = . 528
° 7 3HZ (528)

The Universe is therefore positively curved (closed) or negatively curved (open) according

to whether the measured value of )y is larger or smaller than unity. Defining the critical
mass density p. by

_3m3

pc — 87TG7

and the critical energy density in the Universe is then p.c?. We have not yet assumed anything
about the sources of p; they can and do involve a vacuum energy density. The currently
best measured value of H, (in standard astronomical units) is 67.6 km s~! Mpc™','? or
Hy ~ 2.2 x 107! s71. This number implies a critical density of 8.6 x 10727 kg (about 5
hydrogen atoms) per cubic meter'®. The best so-called “concordance models” all point to
an Qy = 1, £ = 0, universe, but only if ~ 70% of pyc? comes from the vacuum! About 25%
comes from dark matter, which is matter that is not luminous but whose presence is inferred
from its gravitational effects, and just 5% comes from ordinary baryonic matter in the form
of gas and stars. We will denote the current vacuum contribution to 2y as Qo and the
matter contribution as {279. We have in addition a contribution from radiation, €2y, and
while it is quite negligible now, in the early universe (z > 1500) it was completely dominant,
even over the vacuum component. The Universe went first through a radiation-dominated
phase, followed by a matter-dominated phase, and then at about a redshift of 2, it started
to switch to a vacuum-dominated phase. This latter transition is still ongoing.

(529)

We do live in interesting times.

8.5 The classic, matter-dominated universes

Summary. Matter-dominated models of the Universe dominated cosmological thought through-
out the 20th century. If the matter density is high, these universes all have a closed geometry

120ne “megaparsec,” or Mpc is one million parsecs. One parsec (“pc”) is the distance from the solar system
at which the Earth-Sun semi-major axis would subtend an angle of one arcsecond: 1 pc = 3.0856 x 10'3 km,
1 Mpc = 3.0856 x 10'? km. Stars are typically separated by 1 pc in galaxies, galaxies from one another by
about 1Mpc.

13 The pressure in the vacuum is some 5.4 x 10719 Pa (for “Pascals”, the MKS pressure unit). This would
be an ultra-vacuum in a terrestrial lab, but rather dense by astronomical standards: it is roughly the gas
pressure in the core of a molecular cloud in the interstellar medium.
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and recollapse after a finite time. By contrast, low density, open geometry models expand
forever, the scale factor eventually increasing linearly with time. A unique critical density
divides these two cases. In this unique case the geometry is flat (Euclidian) and the expan-

sion rate is ever diminishing: the scale factor is proportional to t*/® at all times t. This is
the Einstein-de Sitter solution. All three types of solution may be studied analytically.

Let us return to the good old days, when the idea that the Universe was driven by “the
energy density of the vacuum” was the stuff of Star Trek conventions, not something that
serious-minded physicists dwelt upon. The expansion dynamics of the Universe was thought
to be dominated by matter, pure and simple, after a brief early phase when it was radiation-
dominated. Matter obeys the constraint that p(t)R*(t) remains constant with time. With
Ry =1, this constant must be the current mass density py;o. The dynamical equation of the
Universe may then be written

. 87GpR? Q
R2=2E+%=H (1—QMO+%) (530)
or / 11/2 7!
dR R'2dR
= Hyt 531
/ V1= Qo+ QMO/R’ \/ 1 — Quro) R + Qo ’ (531)

The nature of the integral depends upon whether 2, is less than, equal to, or greater than,
1. The case 2y;0 = 1 is trivial and leads immediately to

2/3
R— (3];0’5) (532)

our Einstein-de Sitter solution (472). According to (526) with £ = 0, the average density is
then given explicitly by .
R* 3 1

P=R23:G ~ 621G (533)

Consider next the case 9 > 1, that of a Closed Universe. Then (531) may be written:

R/l/QdR/
/ = QY2 Hyt (534)
Vi- R
Set
(1 — Q)R = sin® ¢ (535)
Then (534) becomes
2 e - —1 it 20) d6' = Q7 Hot 536
Aoy Jo 0 = ooy Jy om0 = it (550
o 20 — sin 20
— Sin 1/2
————— = Qo Hot 537
2(1 — Q)32 ‘ (537)
With n = 26, our final solution is in the form of a parameterisation:
1 _ o
R=——"20 gy 17200 (538)
2(1 — QMO) 2\/QMO<1 _ tho)S
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Some readers may recognise these equations for R and Hyt as the parameterisation of a
cycloid, which is the path taken by a fixed point on the circumference of a wheel as the
wheel rolls forward. (See the curve labelled “Closed” in figure [10].) Precisely analogous
expressions emerge for the case 0 < 1, which are easily verified from (531):

R coshn —1 Hyt — sinhn —n

- 1 ) 539
200, — 1) ) \/QMO(QJ_V}O_D3 (539)

This is the solution for negative curvature, an Open Universe.
Ezercise. Show that for either equation (538) or (539),

dn _ ¢
dt  aR

where a is interpreted as /| £ a?|. We will use this in the Problem Set!

Ezercise. Show that the equations analogous to (532), (538) and (539) for the FRW metric
in the form (496) are respectively

R =w'3t?® (Einstein — deSitter)

w (1—cosn w (1 —sinn
Re (1Y, e (1)

R <Coshn— 1>7 o % (smhg—n) (open)
c

c? 2
where w = 871G pyroR3 /3. Show that cdt = Rdn for the last two cases.

Ezercise. Show that as 7 — 0, both (538) and (539) reduce to R = Q/*[3H,t/2]%/3 (the
same of course as [532] for 3y = 1), and at late times (539) becomes the “coasting” solution,

R = /T—QgHyt. This means that a plot of all possible solutions of R(t) versus €2/ Hot
would converge to exactly same solution at early times, regardless of . Figure (10) shows
this behaviour quite clearly.

What if g = 07 Show then that R = Hyt for all times. Wait. Could a universe really
be expanding if there is nothing in it? Expanding with respect to exactly what, please? See
Problem Set.

8.6 Our Universe

8.6.1 Prologue

Throughout most the 20th century, the goal of cosmology was to figure out which of the
three standard model scenarios actually holds: do we live in an open, closed, or critical
universe? Solutions with a cosmological constant were relegated to the realm of disreputable
speculation, perhaps the last small chapter of a textbook, under the rubric of “Alternative
Cosmologies.” If you decided to sneak a look at this, you would be careful to lock your
office door. All of that changed in 1998-9, when the results of two cosmological surveys of
supernovae (Perlmutter et al. 1998 AplJ, 517, 565; Riess et al. 1999 Astron J., 116, 1009)
produced compelling evidence that the rate of expansion of the Universe is increasing with
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time, and that the spatial geometry of the Universe was flat (k = 0), even with what had
seemed to be an under density of matter.

Though something of a shock at the time, for years there had been mounting evidence
that something was seriously amiss with standard models. Without something to increase
the rate of the Universe’s expansion, the measured rather large value of H, consistently
gave an embarrassingly short lifetime for the Universe, less than the inferred ages of the
oldest stars! (The current stellar record holder is HE 1523-0901, coming in at a spry 13.2
billion years.) People were aware that a cosmological constant could fix this, but to get
an observationally reasonable balance between the energy density of ordinary matter and a
vacuum energy density seemed like a desperate appeal to “it-just-so-happens” fine-tuning.
But the new millenium brought with it unambiguous evidence that this is the way things
are: our Universe is about 30% non-relativistic matter, 70% vacuum energy, and boasts a
Euclidian spatial geometry. So right now it just so happens that there is a bit more than
twice as much energy in the vacuum as there is in ordinary matter. Nobody has the foggiest
idea why.

8.6.2 A Universe of ordinary matter and vacuum energy

It is perhaps some consolation that we can give a simple mathematical function for the scale
factor R(t) of our Universe. With E' = 0 for a Euclidian space, (526) is

' 1/2
k= (8”5’) ) R (540)

The energy density pc? is a combination of nonrelativistic matter py,, for which pR? is a
constant, and a vacuum energy densitgy py which remains constant. With p,so the current
value of pys and Ry = 1, pyr = pao/R° and therefore

PR = py R + p—g‘) (541)

Substituting (541) into (540) leads to

1/2
Rk 3Gy, (542)
V Pumo + pv R? 3

Integration then yields

RY2 4R _2 d(R)*? 21 sinhl( /,o_VRS/Q) _ /87rGt (543)
Vomo+pvRd 3J \pumo+pvRP 3oy PMO 3

Equation (543) then tells us:

R3? = % sinh @, / 8“;’” t) . (544)

In terms of the () parameters, we have

QM _ 87TGpM0

0 — 8tGpy

0 545
3HZ VT 3HZ (545)
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henceforth dropping the 0 subscript on the {2’s with the understanding that these parameters
refer to current time. The dynamical equation of motion (540) at the present epoch tells us
directly that

Qv+ Qy =1 (546)

In terms of the observationally accessible quantity €2,;, the scale factor R becomes
or, with Q,;, = 0.31,
R = 0.7659 sinh?/®(1.246 Hyt). (548)

This gives a current age of the Universe ¢y of
2sinh™'(1/Q; — 1) inh ! ~3/2
Hoto = =) sinh (076597 G g, (549)
3v1 = Qu 1.246

i.e., tg = 1 is rather close to 1/Hy: to ~ 13.8 billion years. (This calculation ignores the brief
period of the Universe’s history when it was radiation dominated.)

FExercise. Show that the redshift z is related to the time ¢ since the big bang by

. 1.19¢
2 = 1.306 sinh~%/? <9> —1

Lo

If a civilisation develops 5 billion years after the big bang and we detect their signals(!), at
what redshift would they be coming from?

8.7 Observational foundations of cosmology

8.7.1 The first detection of cosmological redshifts

To me, the name of Vesto Melvin Slipher has always conjured up images of some 1930’s J.
Edgar Hoover FBI G-man in a fedora who went after the bad guys. But Vesto was a mild-
mannered, careful astronomer. If we allow that Edwin Hubble was the father of modern
observational cosmology, then Slipher deserves the title of grandfather.

In 1912, using a 24-inch reflecting telescope, Slipher was the first person to measure the
redshifts of external galaxies. He didn’t know that that was what he had done, because
the notion of galaxies external to our own was not one that was well-formed at the time.
Nebular spectroscopy was hard, tedious work, spreading out the light from the already very
faint, low surface brightness smudges of spiral nebulae through highly dispersive prisms.
Slipher worked at Lowell Observatory, a small, isolated, private outpost in Flagstaff, Arizona.
Percival Lowell, Slipher’s boss, was at the time obsessed with mapping what he thought were
the Martian canals!

Slipher toiled away, far removed from the great centres of astronomical activity. By
1922, he had accumulated 41 spectra of spiral nebulae, of which 36 showed a shift toward
the red end of the spectrum. But he had no way of organising these data to bring out the
linear scaling of the redshift with distance for a very simple reason: he hadn’t any idea
what the distances to the nebulae were. Other observations were at this time showing an

129



25

20

R(t)

Flat, Om_V=0.1

Open B

Einstein-de Sitter

Closed

20

30

40

time

70 80 90

Figure 10: R(t) versus time, units of QX/[I/ 2H0_ ! for four model universes. ‘Closed’
is eq. (538); ‘Einstein- de Sitter’ eq. (532); ‘Open’ eq. (539). ‘Closed’ has Qpr = 1.1,
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Om_V=0.1", eq. (547), includes a cosmological constant with a vacuum contribution
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Figure 12: Parameter plane of Qy versus ), assuming no radiation contribution.
Regions of open/closed geometry and currently accelerating/decelerating dynamics
are shown. Also shown are approximate zones of one standard deviation uncertainties
for the distant supernova data (SNe) and —you have to squint—for fluctuations in
the cosmic microwave background radiation (CMB), which came a decade later.
Note the powerful constraint imposed by the latter: we no longer depend on the
SNe data. That the Universe is accelerating is beyond reasonable doubt.
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Figure 13: The current age of the Universe Hptg as a function of Qp; for flat,
matter plus vacuum energy models with negligible radiation. As €3, approaches
unity, the model recovers the Einstein—de Sitter value Hotg = 2/3; as Qpr — 0, Hoto
becomes proportional to —In €y, (Show!), and we recover a “logarithmic eternity,”
first highlighted by Sir Arthur Eddington.
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apparent trend of greater redshift with fainter nebulae, but the decisive step was taken
by Edwin Hubble. With the aid of Milton Humason, Hubble found a linear relationship
between galactic distance and redshift (E. Hubble 1929, PNAS, 15, 168.) How did Hubble
manage to determine the distances to the nebulae? Using the new 100-inch telescope on Mt
Wilson, Hubble had earlier resolved individual Cepheid variables stars in the outer arms of
the Andromeda spiral galazy, as we shall henceforth refer to it. For in obtaining the distances
to the “nebulae,” Hubble also showed that they must be galaxies in their own right.

Cepheid variable stars were at the time already well-studied in our own galaxy. Cepheids
oscillate in brightness with periods ranging from days to months. What makes them an
important candle for observatinoal astronomers is that they have a well-defined relationship
between their period time period and their absolute mean luminosity. To measure a distance,
one proceeds as follows. Find a Cepheid variable. Measure its oscillation period. Determine
thereby its true luminosity. Measure the star’s flux (energy per unit area per unit time
crossing your detector—this is all that can actually be measured). The flux is the absolute
luminosity L divided by 4712, where r is the distance to the star. Therefore, by measuring
the flux and inferring L from the oscillation period, one may deduce r, the distance to the
star. Simple—if you just happen to have a superb quality, 100-inch telescope handy. To
such an instrument, only Hubble and a small handful of other astronomers had access'.

8.7.2 The cosmic distance ladder

As observations improved through the 1930’s the linear relation between velocity and dis-
tance, which became known as the Hubble Law, v = Hyr, became more firmly established.
There are two major problems with collecting data in support of the Hubble expansion.

First, galaxies need not be moving with the Hubble expansion (or “Hubble flow”): their
motions are affected by neighbouring masses. The best known example of this is the An-
dromeda galaxy, whose redshift is in fact a blueshift! It is approaching our own Milky Way
Galaxy at about 300 km per second. The redshift measurement problem is greatest for a
nearby galaxy whose “peculiar velocity” (deviation from Hubble flow) is a large fraction of
its Hubble recession velocity. Second, it is very difficult to establish distances to cosmological
objects. We can establish distances to relatively nearby objects relatively easily, but these
galaxies are precisely the ones affected by large peculiar velocities. Those galaxies unaffected
by large peculiar velocities are just the ones whose distances are difficult to establish!

But observational astronomers are resourceful, and they have come up with a number of
ingenious techniques which have served them well. The idea is to create a cosmic “distance
ladder” (perhaps better described as a linked chain). You start with direct measurements
on certain objects, and then use those measurements to calibrate the distances to other,
somewhat more distant, objects. Then repeat. Here is how it actually works.

Start with our solar system. These days, we can bounce radar signals off planets and
measure the time of flight (even testing general relativity in the process, as we have seen)
to get extremely accurate distances. Next, we make use of our precise knowledge of the
astronomical unit (denoted AU) thus obtained to use the classic technique of trigonometric
parallax. The earth’s motion around the sun creates a baseline of about 2 AU, which
allows us to have a different perspective on nearby stars as we orbit. We see nearby stars
shift in angular position on the sky relative to their much more distant counterparts. The

14Much later, in 1952, Hubble’s quantitative results were found to be inaccurate. It turns out that Cepheids
come in two quite separate populations, with very different Period-Luminosity relations! This was discovered
by W. Baade, who was then motivated to introduce the concept of distinct stellar populations (differing by
ages) into astronomy. This also revised the whole extragalactic distance scale, though it kept intact the
linearity of the redshift-distance relation.
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observed angular shift is inversely proportional to the distance of the nearer star from the
solar system. We define the unit of distance known as a parsec (pc) as the distance at which
a separation of 1 AU subtends 1 second of arc. We can turn this definition around and say
that the parallax angle, perversely denoted as 7 in the astronomical literature and measured
in arc seconds, corresponds to a distance to a measured star of 1/7 parsecs. (One parsec is

~ 3.085678... x 10'® m. Because 1 AU is now a defined exact quantity, so is 1 pc.)

The next rung up the ladder is known as spectroscopic parallax. There is no actual
parallax angle in this case, it is just an analogous name. The idea is that you first use
the method of direct trigonometric parallax to obtain distances to stars of a given spectral
type. Knowing the distance to a star of a given spectral type and measuring its flux, you
also know the intrinsic luminosity L, since F' = L/4mwr? where F is the measured flux and
r the measured distance to the star. Now you see a star with precisely the same spectrum,
but much fainter and therefore more distant. You cannot measure its parallax, it is too
far away. But the detailed agreement between spectra means this is the same type of star
you've already measured, with the same mass and same luminosity. You then measure the
new star’s flux F, and deduce ts distance!

Keep going. Distances to Cepheid variables can be calibrated by spectroscopic parallax,
and these bright stars have, as we have explained, a well-defined period-luminosity rela-
tionship. They are bright enough that they can be seen individually in external galaxies.
Measure, thereby, the distances to these external galaxies.

Keep going. In studying the properties of external galaxies, Tully and Fisher showed that
the rotation velocities of spiral galaxies (measured by the Doppler shifts in the combined
spectra of moving stars) was tightly correlated with the intrinsic luminosity of the galaxy.
This is not terribly surprising in itself: the larger the stellar mass of a galaxy the larger
the luminosity, and the larger the binding mass the larger the rotational velocity. Tully
and Fisher crafted this notion into a widely used tool for establishing the distances to very
distant galaxies. Elliptical galaxies, which are supported by the dispersion of stellar velocities
rather than their systematic rotation were also turned into useful distance indicators. Here
the correlation between luminosity and velocity dispersion is known as the Faber-Jackson
relation.

The final step in the cosmic distance ladder involves Type Ia supernovae. Type Ia super-
novae are thought to occur when a white dwarf in a tight binary system accretes just enough
matter from its companion to tip itself over the “Chandrasekhar mass.” (This mass is the
maximum possible mass a white dwarf can sustain by electron degeneracy pressure, about
1.4 times the mass of the sun.) When this mass is exceeded, the white dwarf implodes, over-
whelmed by its now unsupportable self-gravitational attraction. In the process, carbon and
oxygen nuclei are converted to ®°Ni, triggering a thermonuclear explosion that can be seen
quite literally across the Universe. What is nice about type Ia supernovae, from an astro-
nomical perspective, is that they always occur in a white dwarf of the same mass. Therefore
there is little variation in the absolute intrinsic luminosity of the supernova explosion. To
the extent that there is some variation, it is reflected not just in the luminosity, but in the
rise and decay times of the emission, the “light curve.” The slower the decline, the larger
the luminosity. So you can correct for this. This relation has been well calibrated in many
galaxies with well-determined distances.

The Type la supernova data were the first to provide compelling evidence that the Uni-
verse was expanding. To understand how this was obtained we need to return to our formula
for the flux, F' = L/47r?, and understand how this changes in an expanding, possibly curved,
spatial geometry.
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8.7.3 The parameter ¢

Observational astronomers often work with distances where the time it has taken light to
reach us, measured from the present, is small compared with the age of the Universe. The
goal is to measure small changes from conditions at the current epoch, ¢ = ¢,. Under these
circumstances, it is mathematically convenient to expand our basic cosmological functions
R(t) and H (t) to leading order in a Taylor series in ¢t —t,. For example, the Hubble parameter

R/ R may be expanded in time:

o =

H(t) =

= Hy+ (t — o) (% — H§> + ... (550)

since R2/R? at the present time t, is H2. (Remember t < t, for observed sources.) This
may also be written

H(t) = Ho + Hy(to — t)(1 + qo0) (551)
where we have defined the deceleration parameter qq by
o= — 72 — I for Ry = 1. (552)

This is important observational quantity because it embodies the observed evolution of the
Hubble parameter. Next, use (1 + z)R(t) = 1 and expand R(t) in a similar Taylor series
around ty. Then, to leading order in z, we obtain z = Hy(ty — t), and then (551) becomes

H(z) = Ho[1+ 2(1 + qo)). (553)

For the classical matter-dominated cosmological models, qq is defined in such a way that
should be a positive quantity. If gg < 0, the Universe would be accelerating, a possibility
not taken seriously until after 1998. Consider the integral for the comoving coordinate
r= [cdt/R(t). With Ry =1 and t — ¢ty = dt, carry out the Taylor expansion in 0t of

1 1 . R
1 — - =1 2(R2— 0 4 . 4
2= B = RT3 5tRo + (3t (R5 — 57) + (554)

To linear order this gives 6t = —z/ Ry = —2 /Ho. Using this result in the small quadratic
correction term in (6¢)% in (554), the next order refinement is

—5t:t0—t:%[z—(1+%)z2}. (555)

Using our expansion for 1/R we find,

o dt’ H
() = c/ =l 1)+ 2~ 1)+ (556)
¢
and substituting with the help (555) through order 2*:
=S m g+ (557)
=g [P 3 Q) + ...

Equation (557) is general for any FRW model. ¢y embodies the leading order deviations
from a simple Euclidian model in which I(z)  z.
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8.7.4 The redshift—-magnitude relation

The flux that is measured from a source at cosmological distances differs from its simple
L/47r? form for several important reasons. It is best to write down the answer, and then
explain the appearance of each modification. For generality, we keep factors of Ry present,
so that general FRW metrics are permitted. The flux from an object at redshift z is given

by

_ LR*t) L
PO = GRIEG) ~ (i + 2R

where [(z) is computed, as always, by ¢ ftl; dt'/R(t"), with this definite integral written as a

function of z for the cosmological model at hand. (Recall R(t)/Ro = 1/(1 + 2), relating ¢ to
z.) The luminosity distance is then defined by F(z) = L/4nd2 or

dr(z) = (1 + 2)Rol(2), (559)

which reduces to the conventional Euclidian distance at small z.

(558)

Explanation: The two factors of 1+ z in the denominator of (558) arise from the change
in the luminosity L. First, the photons are emitted with Doppler-shifted energies. But even
if you were measuring only the rate at which the photons were being emitted (like bullets),
you would require an additional second 1 + z factor, quite separate from the first, due to
the emission interval time dilation. The photons have less energy and they are emitted less
often. The proper radius of the sphere over which the photons from the distant source at
z are now distributed is Ryl(z), where Ry is as usual the current value of R(t). For the
Einstein-de Sitter universe with Ry = 1, the explicit formula is:

_ LH;
1671+ 2) (V1 + 2 —1)2

The simple Euclidian value of L/4mr? is recovered at small z by rembering cz = v = Hyr,
whereas at high z, all the photons come from the current horizon distance 2¢/Hy, and the

1/2% behaviour in F is due entirely to 1 + z Doppler shifts.

F(z) (Einstein — de Sitter) (560)

A “magnitude” is an astronomical conventional unit used for, well, rather arcane reasons.
It is a logarithmic measure of the flux. Explicitly:

F = Folo04m (561)

where F is the measured flux, Fj is a constant that changes depending upon what wavelength
range you're measuring. m is then defined as the apparent magnitude. (Note: a larger
magnitude is fainter. Potentially confusing.) The “bolometric magnitude” covers a wide
wavelength range and is a measure of the total flux; in that case Fy = 2.52 x 1078 J m~2.
Astronomers plot m versus z for many objects that ideally have the same intrinsic luminosity,
like type Ia supernovae. Then they see whether the curve is well fit by a formula like (558)
for an FRW model. It was just this kind of exercise that led to the discovery in 1998-9 by
Perlmutter, Riess and Schmidt that our Universe must have a large value of €2y: we live in
an accelerating Universe!

FEzxercise. Show that ‘
L
 4me2z?
for any FRW model. Thus, with knowledge of L, observers can read off the value of H
from the dominant 1/2% leading order behaviour of the redshift-magnitude data, but that
knowledge of gy comes only once the leading order behaviour is subtracted off.

F(z) 1+ (g —1)z+...]
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Figure 14: Evidence for an accelerating Universe from type Ia supernovae. The top
figure shows a redshift-magnitude plot for three different FRW models, Q0 = 1,
Qy = 0, an Einstein-de Sitter model in mangenta; Q30 = 0.2, Qy = 0, an open
model, in black, and Q9 = 0.3, Qy = 0.7 an accelerating model, in blue. The
bottom panel shows the same with the inverse square slope removed. The data are
much better fit by the accelerating model.
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With the determination of €2y, the classical problem of the large scale structure of the
Universe has been solved. There were 6 quantities to be determined:

e The Hubble constant, Hy = R/ R at the present epoch.

e The age of the Universe, t;.

e The curvature of the Universe, in essence the integration constant 2F = —c?/a.

e The ratio Qg of the current mass density po to the critical mass density 3H2/87G.

e The value of the cosmological constant or equivalently, the ratio €2y of the vacuum
energy density pyc? to the critical energy density.

e The value of the gy parameter.

Within the context of FRW models, these parameters are not completely independent,
but are related by the dynamical equations for R (514) and R? (526). A quick summary:

Hy ~ 67.6 km s~ Mpc™1.

to ~ 13.8 billion years
E~0
® QMO ~ 0.31

e )y ~ 0.69.
® (o = QQ/Z — QV ~ —(0.54

FEzercise. Derive the last result on this list.

This brief list of values hardly does justice to the century-long effort to describe our Uni-
verse with precision. Because astronomers were forced to use galaxies as “standard candles”
(the colloquial term for calibrated luminosity sources), their measuring tools were fraught
with uncertainties that never could be fully compensated for. It was only the combination of
establishing a truly standard candle via the type Ia supernovae, together with the technical
capabilities of high receiver sensitivity and automated search techniques that allowed the
programme (“The Supervova Cosmology Project”) to succeed.

Since the 1998/9 breakthrough, cosmologists have not been idle. The development of
extremely sensitive receivers and sophisticated modelling techniques have turned the remnant
microwave radiation “noise” from the big bang itself into a vast treasure trove of information.
In particular, the nature of the tiny fluctuations that are present in the radiation intensity—
more specifically the radiation temperature—allow one to set very tight constraints on the
the large scale parameters of our Universe. Not only are these measurements completely
consistent with the supernova data, the results of the missions known as WMAP and Planck
render this same data all but obsolete! Figure (12) speaks for itself.
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8.8 Radiation-dominated universe

The early stages of the Universe were dominated by radiation, which includes very relativistic
particles along with photons. We denote the energy density of radiation as p,c?. In such a
universe,

py o< /R
This follows from the fact that the equlibrium energy density of radiation is proportional to
T747 where T, is the radiation temperature. The temperature T, has the same R-scaling as a

photon with energy hv: both the frequency v as well as T, (which measures average energy
per particle) decrease as 1/R. In these early times, the dynamical equation of motion (526)
is dominated by the two terms on the left side of the equation, both of which are very large
(becoming infinite as ¢ — 0) compared with the constant on the right side. Then, using

pR* = constant, the dynamical equation of motion at early times may then be written

87Gp,R*
3

This leads to a simple power law time dependence for the scale factor:

R’R? = = (constant). (562)

R(t) oc t'/?  (radiation dominated universe). (563)

Knowing only that R ~ t'/2, if we now return to the dynamical equation of motion, we may

solve explicitly for p.c%:
32 [ R 3c?
2
- =) = , 564
S TYe <R2> 327 G2 (564)

We then have an ezact expression for what the total energy density in all relativistic particles
must be, even if we don’t know how many relativistic species there are. (In practise, we have
a good idea of this number from other physics!)

This is a rather neat result. At at time of one second, we know that the Universe had an
energy density of 4 x 10%° J m~3, and that is that. Moreover, since the total energy density is
fixed, the greater the number of relativistic particle populations that were present in the early
Universe (e.g., the various neutrino species), the smaller the temperature at a given time.
During the epoch when hydrogen was being fused into helium and a few other low atomic
number nuclei, the production rate of these latter isotopes was sensitive to temperature. (By
contrast, helium production is not so temperature sensitive, which makes a prediction of its
abundance rather robust.) This temperature sensitivity of the light isotopes, combined with
their observationally-determined abundances, has been used to limit the number of different
types of neutrinos that could have been present during the era of nucleosynthesis.

8.9 The Cosmic Microwave Background Radiation (CMB)

8.9.1 Overview

The Universe is expanding, and expanding systems cool adiabatically. That means if we
follow history backwards, the compressing Universe becomes hot and dense. We have seen
that the energy density of a radiation scales as 1/R*, whereas the energy density of matter
(dominated by its rest mass) scales as 1/R3. Since 1/R?* gets bigger than 1/R? as R gets
smaller, the Universe must at some point in the past have become radiation dominated.
This, we shall see, occurred at a redshift z of about 1000.
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You should now be thinking of the radiation as true photons; electrons and positrons
(and probably neutrinos as well) are relativistic only at the very earliest times. At redshifts
larger than 1000, not only was radiation dominant, the photons were also “well-coupled” to
ordinary matter. That means that photons would scatter many times off of electrons during
the time it took the Universe to ~ double in size. These collisions kept the radiation in a
state of complete thermodynamic equilibrium, the radiation temperature did not differ from
the matter temperature. In thermodynamic equilibrium, the number density of photons is
fized, given by the Planck function associated with a blackbody spectrum:

(8712 /c3)dv
exp(hv/kT,) — 1

n(v,T)dv = (565)

You will recall that if radiation is in thermal equilibrium with matter, you don’t get to
choose how many photons there are at a given frequency. Mother Nature does. It is worth
dwelling on this point. Unlike a gas bag of atoms in thermal equilibrium, whose density can
be whatever we like, a gas bag of photons has its number density completely determined by
its temperature! The spectrum may be directly proportional a Planck function, but if the
overall number density is not given ezactly by (565), the photons are simply not in thermal
equilbrium with their surroundings. So does the inevitable decline in number density with
universal expansion mean that we lose a thermal equilibrium distribution for the radiation?

At about the time that the radiation became subdominant relative to matter, the photons
also lost good coupling with the matter. Thermal equilibrium could no longer be maintained
via photon-electron collisions or induced exchanges with atoms. Imagine now a situation
in which the photons “move along” with the expansion of the Universe, but are otherwise
unaffected by interactions. From what we’ve said, you might guess that while the overall
shape of the frequency spectrum would be maintained, the photon number density would be
diluted below that of a true blackbody. (Rather like sunlight reaching the earth.) Not so.
In fact, both the number density and effective temperature of the photons vary in just the
right way to maintain an exact blackbody distribution! The ever decreasing number density
is always exactly the correct one for a true thermal Planck spectrum for the evolving and
ever cooling photon temperature.

To see this, start with the spectrum (565) at the time ¢ of last scattering, by which we
mean the last moment thermal equilibrium was maintained by collisions. We follow a little
group of photons with frequency v and little disperson dv as these photons evolve with the
Universe. Now it is some much later time ¢. The ¢’ number density n(v',t',7") is diluted by
an overall (volume) factor of R3(t)/R3(t') relative to the original blackbody number density
at the time of last scattering t. In addition, each photon at ¢’ that we now observe at
frequency v’ must have come from a frequency way back at time ¢ given by v = R'V'/R
(where R = R(t')), in the original blackbody distribution. Therefore, to deduce the later
time ¢’ spectrum, follow this rule: take the original time-t blackbody distribution, dilute it
by R?/R’, and then replace v everywhere in the Planck formula by R'2//R. Carrying this
through,

R3 R3 (87/c®)(R'V'/R)*d(V'R'/R) v dv /c?
LYY = —n(v,t)dy = — =
n(v/, t)dv R’?’n(% Jdv R  exp(hR'V'/RKT,) — 1 exp(hv'/KT]) — 1 (566)

where 1! = T R/R', a cooler temperature. The remarkable point is that the distribution
(566) is still a blackbody at time ¢, but with a new temperature T! that has cooled in

proportion to 1/R with the expansion. The reason this is remarkable is that there is nothing
to maintain this thermal equilibrium! In fact, you can see that this scaling result follows
mathematically for any number spectrum of the form v*F(v/T) dv, where F' is an arbitrary
function.
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Might we just playing a mathematical game? What if, in the real Universe, other inter-
actions scatter photons and change their frequencies in the process? For many years, there
were arguments as to whether the actual cosmic radiation spectrum was truly a blackbody.
Adding to the confusion, there seemed to be outlandish observations. These were largely
based on strikingly un-blackbody spectra obtained from rocket-borne instruments. Now, to
significantly change the radiation spectrum of the entire Universe would takes a vast amount
of energy. From where would that have come? Theorists tied themselves into knots trying to
come up with explanations! All doubts were finally erased in 1992 when the COBE (COsmic
Background Explorer) satellite was launched. This satellite had (submillimeter) detectors
of unprecedented accuracy, and they showed that the background radiation was almost a
perfect blackbody at 7., = 2.728K. Figure (15) summarises the data. The error bars are
shown at 400 times their actual value, just in order to be visible. (The earlier misleading
rocket observations were by this time retracted.)

You may have noticed that I wrote “almost a perfect blackbody.” The photon distribution
is in fact not exactly a blackbody for two very interesting reasons. The first is that the earth
is not at rest relative to the CMB frame. In fact, the local group of galaxies seems to be
moving at about 630 km s~ relative to the CMB, a surprisingly large value. This translates
to a measured radiation temperature that is about 2 x 1073K warmer in one direction, and
the same amount cooler in the oppostion direction. This induces no change in the overall
energy of the radiation.

The second reason is much deeper in its physics. The objects that comprise our Universe
collapsed out of an expanding gaseous background, forming great clusters of galaxies and
ultimately individual galaxies and stars. The seeds to form these structures could not have
appeared recently, after the last scattering event. There simply hasn’t been enough time
for them to have grown from seeds, collapse and form the objects we see throughout the
Universe today. The seeds must already have been present during the era when the Universe
was radiation-dominated, the same era when matter and radiation were still interacting
strongly with one another. This interaction would have left its imprint, at the time of last
scattering, in the form of temperature fluctuations in the microwave background radiation.
Scrunch the matter, you also compress the radiation, and you heat it up a bit. Some places
are little hotter, others a bit cooler (where there has been dilation). The simplest calculations
suggested that the relative temperature fluctuation AT /T should have been at least ~ 1073,
in order for these initially tiny compressions to be able to form nonlinear structures by the
current epoch.

COBE found the temperature fluctuations. But when COBE (and later satellites in great
detail) did find them, they were an order of magnitude smaller. So how does structure form
in the Universe? The consensus answer is that there is more to matter in the Universe than
the usual atomic nuclei and electrons that we know about. The Universe is also pervaded
by what is known as “dark matter,” which turns out to be most of the so-called ordinary
matter, and apparently leaves no imprint on the microwave background. Dark Matter feels
the force of gravity and evidently little else, and had been postulated long before COBE
as something that was needed to hold galaxies together. COBE offered another compelling
reason to believe in Dark Matter.

The directors of the COBE project, John Mather and George Smoot, won the 2006 Nobel
Prize in Physics for their work.

8.9.2 An observable cosmic radiation background: the Gamow argument

The idea that the Universe had a residual radiation field left over from its formation and
that this radiation is potentially observable, seems to have originated with George Gamow in
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Figure 15: COBE satellite data showing a perfect fit to a blackbody at 2.728 K. To
be visible, the error bars are shown at 400 times their actual value! When shown
at an American Astronomical Society Meeting, this plot triggered a spontaneous
standing ovation. Units of v are cm™!, i.e., the wavelength in cm is the reciprocal
of the number on the x axis.
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Figure 16: COBE temperature fluctuations. Top: Temperature dipole variation
dominated by motion of the galaxy. Middle: Residual with kinematic dipole sub-
tracted off. Bottom: Further residual with galactic foreground subtracted off. These
represent primordial fluctuations in the CMB.

the 1940’s. Gamow was a theoretical physicist with a brilliant common sense instinct that
allowed him to make contributions to a wide variety of important problems, from the theory
of radioactivity to how DNA coding works. He spent many years developing, and making
respectable, what has become known as the Big Bang theory'®.

Gamow drew attention to the fact that Helium, with about about 25% of the mass of
the Universe, is neither an overwhelming nor a tiny constituent. Gamow was convinced, we
now know correctly, that Helium was made during a brief interval of nucleosynthesis in the
early Universe. (Gamow thought all the other elements were made this way as well, but that
turns out to be false. Heavier elements are made in stars.) The 25% number implies that
at the time of nucleosynthesis, the expansion rate of the Universe and the nuclear reaction
rate could not have been very different. Too rapid an expansion, there is no Helium made.
Too slow an expansion rate, all the protons get fused into Helium, and there is no Hydrogen
left over. The delicate balance turns out to be a remarkably tight constraint, leading to a
prediction that there should today be an observable residual radiation field of about 10 K.
Let’s see how it works.

At some point early in its history, the Universe’s temperature passes downward through
the range of ~ 10° K. When that happens, neutrons n and protons p can begin to combine
to form Deuterium (a proton p plus a neutron n ) nuclei. The reaction is pretty simple:

n+p—D+y

where v is a gamma ray. Helium synthesis follows rapidly thereafter. Gamow assumed
equal numbers of protons, neutrons and electrons. As we have emphasised, in order to get

15The name was coined by Fred Hoyle, a rival cosmologist who meant the description to be a disparaging
moniker. But proponents of the theory loved the name and adopted it as their own.
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a 25% yield of Helium, the reaction rate and the age of the Universe (which is of order
the expansion time to double in size) should be comparable. Denote the cross section for
Deuterium formation to be ¢ (units of area). Then, the reaction rate per proton due to an
incoming flux nv of neutrons is nvo (units of pure number per time). At the nucleosynthesis
age t, on average very roughly one reaction per proton should have occurred, because of the
order unity fraction of Helium that is observed—that is the heart of the Gamow argument:

nvot ~ 1, (567)

where ¢ is also the age of the Universe! The product ov turns out to be just a laboratory
number, nearly independent of v (because the cross section ¢ depends inversely on v) and, as
Gamow knew from nuclear physics experiments, is equal to about 4.6 x 1072 m? s=!. As for
the time ¢, we are interested in the epoch when the temperature 7, ~ 10°K. Using equation
(564) for the density in relativistic particles, and following Gamow by assuming (not quite
correctly, but let it go) that this was all radiation, the time ¢ is

. 3 1/2
t=
12 (327TGa> (568)

which amounts to 230 s for T, = 10°K. This gives n very close to 10* m™3. Next, Gamow
estimated a present day average particle density of about 0.1 per cubic meter based on
astronomical estimates and observations, so that the Universe had expanded by a factor of
10® in the scale factor R. (The factor 10% reduces n by 10*%.) But an expansion of a factor of
10® in R means that the current T, should be 10°/10% = 10 K! The millimeter detectors that
would have been required for this wavelength of observation were just at the leading edge of
technology in the late 1940s, a by-product of the development of radar during the Second
World War (which was instrumental to winning the Battle of Britain). But Gamow did not
pursue this result aggressively, and the prediction was gradually forgotten. This CMB could
have been detected in the late 1940’s, but it wasn’t.

The argument would be put slightly differently now, but it is in essence correct, and a
brilliant piece of intuitive reasoning.

Ezercise. Repeat the Gamow argument with modern cosmological numbers. Keep 7., = 10°K
and the ov value, but note that relativistic species present at the time include not only
photons but three types of neutrinos and three types of antineutrions, each neutrino-anti
neutrino combination contributing (7/8)aT to the background energy density. We can

neglect et and e™ pairs in our relativistic fermion population. Why? The 7/8 factor arises
beacause the neutrinos obey fermi statistics. Recall from your statistical physics that the
occupation number for a state with momentum p is

1
~ exp(pe/kT) £1

where the + sign is for bosons (e.g. photons) and the — sign for fermions (e.g. neutrinos).
The density of states (per unit volume) is the same for both types of particles: 4mwp*dp/h?,
where h is the Planck’s constant. The energy is the same for each type of particle, pc.
Therefore, the difference in the total energy densities of a population of bosons or fermions
comes down to the difference in two simple integrals:

/OO 3 dx 7/OO 3 dx
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Can you prove this mathematically without doing either integral explicitly? (Hint: consider
the difference { )

e —1 er 41’

and integrate z times the residual.) Note that for each neutrino specie the factor is actually
7/16, because only one spin helicity is present, as opposed to two spin states for photons.
But then the neutrinos get back up to 7/8 with their antiparticle cousins...which the photons
lack! You may take the current density in ordinary baryons to be 5% of the critical density
3HZ/87G.

Almost 20 years later, in 1965, the problem of determining the current 7', attracted the
attention of an impressive team of physicists at Princeton University. They rediscovered for
themselves the Gamow argument. The senior investigator, Robert Dicke, a hugely talented
physicist (both theoretical and experimental), realised that there was likely to be a measur-
able background radiation field that survived to the present day. Moreover, it could be easily
detected by an instrument, the Dicke radiometer, that he himself had invented twenty years
before! (A Dicke radiometer is a device that switches 100 times per second, looking between
the sky source and a carefully calibrated thermal heat bath of liquid helium. This imprints
a 100Hz fourier component on the desired signal, and thereby reduces nuisance variability
occurring on longer time scales.)

The A-Team assembled: Dicke, the scientific leader; J. Peebles, the brilliant young theo-
rist who would become the world’s leading cosmologist in the decades ahead, and P. Roll and
D. Wilkinson, superb craftsmen who designed and built the contemporary Dicke radiometer.
The were all set up to do the observation from the roof of their Princeton office building(!),
when a phone call came from nearby Bell Telephone Laboratories. Two radio engineers
named Arno Penzias and Robert Wilson had found a weird extraneous signal in their de-
tector. Their device was designed to receive longrange signals relayed by some of the first
commercial television satellites. (The Telstar series.) Naturally, they were trying to chase
down all possible sources of background confusion. The “effective radiation temperature” of
the nuisance diffuse signal was about 3 K. Penzias and Wilson had no idea what to make of
it, but were advised by a colleague to give the Dicke team at Princeton a call. Those guys
are very clever you know, they might just be able to help.

The 1978 Nobel Prize in Physics went to Penzias and Wilson for the discovery of the
cosmic microwave background radiation.

8.9.3 The cosmic microwave background (CMB): subsequent developments

The initial observations of the CMB were at one wavelength: 7 cm. Needless to say, a single
point does not establish an entire spectrum! The task of establishing the broader spectrum
was fraught with difficulties, however, with many disputed and ultimately withdrawn claims
of large deviations from a blackbody. In 1992, we have seen that matters were laid to rest
when the COBE satellite returned its dramatically undramatic finding that the CMB is, very
nearly, but not ezactly, a blackbody. There are small fluctuations in the temperature, the
largest of which amount to a few parts in 10*. This value is smaller than first expected, but
ultimately of the order needed to account for the nonlinear structure in the Universe that
we see today, provided that there is a healthy component of dark matter that does not react
with the radiation. This unseen, and perhaps unseeable, dark matter component had been
invoked, long before the COBE results, for a very different reason: to account for the large
stellar velocities measured in galaxies and within clusters of galaxies. These velocities are
unsustainable unless most of the gravitating mass of the galaxy or cluster is in the form of
dark, non-light-emitting matter. The COBE results are yet further evidence for the presence
of dark matter in the Universe.
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WMAP

Planck

Figure 17: WMAP (top) and Planck (bottom) temperature fluctuations, with dif-
ferent colour scales. Think of these as the Universe’s baby pictures. Note the much
higher angular resolution compared with COBE; Planck is another factor of 3 better
than WMAP. The angular information encoded on these smalle scales is valuable as
a means of tightly constraining cosmological parameters.

Following COBE, the next important CMB probe was the Wilkinson Microwave Anisotropy
Probe, or WMAP. This is named for David Wilkinson, the same Princeton researcher who
had been instrumental in the earliest CMB studies. With the launch of WMAP in 2003,
cosmology truly became a precision science. WMAP revealed the structure of the tempera-
ture fluctuations in such exquisitely fine angular resolution on the sky, it became possible to
determine all the key physical parameters of the Universe: Hg, 2570, £2v, to and many others,
to an excellent level of accuracy. WMAP was followed by the Planck satellite, launched in
2009, which provided a further shrinking of the error bars, higher angular resolution coverage
of the CMB on the sky, broader frequency coverage (very important for subtracting off the
effects of the Milky Way Galaxy), and better constraints on null results (absence of CMB
polarisation, for example). But somewhat disappointingly, there were no qualitatively new
physical findings. The current story remains essentially the one revealed by WMAP.

Think of the evolution of the maps and globes of the Earth, from ancient to modern
times. Gross inaccuracies in basic geometry gradually evolved to Googlemap standard over
a period of thousands of years. Contrast this with the observation that, well within the
professional careers of currently active researchers, serious models of the Universe went from
fundamental misconceptions to three-significant-figure accuracy in structural parameters.
By any measure, this is one of the great scientific achievements of our time. As with any
great scientific advance, its true meaning and its full implications will take years to elucidate.
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8.10 Thermal history of the Universe

8.10.1 Prologue

The recorded history of civilisation began when Sumerian merchants inscribed their grain
inventories on clay tablets. (BTW, the concept of a “grain inventory” would not have been
possible without the invention of large scale agriculture, which would not have been possible
without the invention of astronomy. Please, stick with this for a moment: despite what you're
thinking, I am on-message...) Etched in the matrix of clay, these markings were frozen in
time because the clay, once dried, remained unaltered and intact. It turns out that the
Universe has its own gigantic clay tablet, which allowed “inscriptions” first to be imprinted,
then to be preserved, pretty much unaltered for 13.8 billion years. We know the inscriptions
as temperature fluctuations, and the clay tablet as the cosmic microwave background.

The temperature fluctuations are a tracer of the initial density fluctuations, which coupled
to the radiation by electron-photon scattering, also known as Thompson scattering. While
this scattering remained vigorous, the CMB dutifully recorded and then re-recorded the ever
evolving changes in the density. Then, matter and radiation suddenly became decoupled,
and the pattern imprinted on the CMB abruptly stopped being recorded. The CMB instead
retained only the very last pattern that happened to be imprinted upon it, at the time
of the “last scattering.” It is this pattern that we receive, redshifted by the enormous
subsequent expansion of the Universe, in our detectors today. Think of this either as an
ancient inscription passed on through the aeons, or more congenially as the Universe’s baby
picture.

Exercise. Let or be the Thompson cross section for a photon to collide with an electron,
a constant number equal to 6.7 x 1072 m?. When an electron has moved relative to the
photon gas a distance [ such that the swept-out volume lor captures a single photon, [ is

said to be one mean free path (mfp): the average distance between scatterings.

Justify this definition, and show that the scattering rate per electron is n,cop = ¢/l. (What
is n, here?) In a radiation-dominated Universe, show that the ratio of the photon scattering

mfp to the horizon size grows like v/¢, and that the mfp relative to the scale factor R grows
like ¢. (¢ as usual is time.)

Exactly how to decipher the ancient CMB inscriptions and turn them into a model of the
Universe is a very complicated business. While it is a local Oxford Astrophysics speciality, it
is one that we will be able to treat only very superficially in this course. We shall go about
this in two steps. In the first, we will describe what I will call the “classical theory” of the
thermal history of the Universe: how matter and radiation behaved in each other’s presence
from temperatures of 10'? K through 3000K, the time when hydrogen ions recombine with
electrons to form neutral H atoms. In the second step, which the reader may regard as
optional “off-syllabus” material, we will discuss a more modern theory of the very early
Universe. This puts a premium on the notion of inflation, a period in the history of the
Universe in which it seems to have undergone a very rapid (exponentiall) growth phase.
First put forth in 1980, this idea has been the single most important theoretical advance in
modern cosmology in recent decades. There are very good theoretical reasons for invoking
the process of inflation, even if the mechanism is not well-understood (not an unusual state
of affairs in science), and there is by now compelling observational support for it. To my
mind, the best evidence there is for inflation is that we have in fact entered another, albeit
far more mild, inflationary stage of the Universe’s history.

In what follows, the reader should bear in mind the characteristic physical parameters
on what is known as the “Planck scale.” These are the scales set by the three fundamental
dimensional constants of physics: Newton’s GG, Planck’s h, and the speed of light ¢. There
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are unique dimensional combinations to form a mass mp, a length [p and a time tp from
these constants:

h 1/2
mp = (g) = 5.456 x 107° kg (569)
h 1/2
Ip = (C—f) = 4.051 x 107% m (570)
hG 1/2
tp=lp/c= (0—5) =1.351 x 107* s (571)

With these three quantities, we can form any other dimensional quantity we like. These
are, in some sense, the limits of our knowledge, for it is on these scales that we may expect
quantum gravity effects to be important, a theory of which we remain quite ignorant. We
cannot expect to have anything like a classical picture of the early Universe for time ¢ < p,
or for horizon scales ¢/ H < lp. The Planck mass may not, at first glance, appear remarkable,
but remember the natural comparison is with elementary particle masses. An electron, for
example, is close to 5 x 107% GeV in rest energy; the Planck mass energy is mpc? = 3.06 x 10%?
GeV. By these Planckian standards, we will always be working with very low mass particles,
and very long length and time scales.

8.10.2 Classical cosmology: Helium nucleosynthesis

Let us begin the story when the temperature of the Universe is just under 102K. This is
very early on, only about 10~%s after the big bang. At this stage, the Universe consists of a
relativistic cocktail of photons, neutrinos and their antiparticles, muons and their antipar-
ticles and electrons and their antiparticles (positrons). This cocktail is well-mixed (shaken,
not stirred). Even the neutrinos are in complete thermal equilibrium, freely created and
destroyed.'® There is also a population of protons and neutrons, which are energetically
unimportant at these temperatures. But keep track of them! They are going to make the
Universe we know as home.

Once the temperature slips below 10'? K, the muons and antimuons can annihilate,
but there isn’t enough energy for muon production from the other relativistic populations
present. The energy from the photons and e*e™ pairs produced in the annhilation is shared
amongst all the other populations. Everyone is heated and takes part, including, at these
ultra high densities, the normally elusive neutrinos.

The Universe continues to expand, the temperature falls. To understand the next im-
portant phase, recall that neutrons and protons do not have quite the same mass. More
precisely, with m, the proton mass and m,, the neutron mass,

Ame® = (m,, —m,)c® = 1.293 MeV = 2.072 x 107" J. (572)

This is very small compared with either m,c* or m,c*. Except when we are specifically

concerned with the mass difference or doing very accurate calculations, there is normally no
need to distinguish m,, for m,. Textbooks on statistical mechanics tells us that the ratio of
the probabilities for finding a system in some state ¢ or j depends only on the energies F;
and E; of these states, and nothing else. In particular, the ratio of the probability of finding
the system in 7 to the probability of finding it in j is given by the Boltzmann equation:

P g Ei —E;
I — | = o7
p 5ol ) o

6By using the word “freely,” we ignore the particle rest masses.
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where the ¢’s are known as the statistical weights, a fancy name for how many distinct states
there are with energy E; or E;. (If you've forgotten this and don’t have a statistical mechanics

textbook handy, and you are curious, see the Exercise below for a quick justification.) Below
10K, the so-called Boltzmann factor exp(—Amc?/kT) starts to differ noticeably from unity,

and as we approach 10! it becomes rather small. Since neutrons are more massive than
protons, the former become more scarce at cooler temperatures. The critical temperature
corresponding to kT = Amc? is 1.5 x 10"°K. (By way of comparison, for electrons and

positrons, m.c?/k = 5.9 x 10°K.)

Ezercise. Let the probability of finding a system in state i be f(FE;), where E; is the energy
of the state. The ratio of the probability of finding the system in state ¢ versus j is then
f(E;)/f(E;). But this ratio must be a function only of the difference of the energies, because
a constant additive constant in energy can’t affect the physics! The potential energy is always
defined only up to such a constant. Hence, with F' an arbitrary function,

f(E;)
f(E))

If £; = E; + ¢, show that if this equation is to hold even to first order in ¢, that

— F(E; - E)).

f(E) o exp(—pE)

where § is an as yet undetermined constant. We can determine ( by physics, e.g. by
demanding that the ideal gas equation of state be satisfed, pressure P equals nk’l’, where

n is the number density and k is the Boltzmann constant and T the temperature. Then it
follows (show!) = 1/kT.

The reactions that determine the neutron n proton p balance are (I means “antineu-
trino”):
n+v<«<pte

n+et < p+u
n<pt+e+v

The reaction rates for the two body processes are about 0.1 per second per nucleon at
T = 10'°K. However, this rate drops rapidly as the thermometer falls. Below 10°K, the
reactions can’t keep up with the expansion rate of the Universe, they don’t take place fast
enough. Once this occurs, whatever the ratio of n/p happens to be, it remains “frozen”
with time, since the Universe is too cold to keep the reactions cooking! At T' = 10'°K, the
Universe is about 1 s old. The n/p ratio at this temperature is exp(—Amc?/kT) ~ 0.2, and
it remains stuck at this value, i.e. it is frozen in.

Fxercise. Show that the early Universe “temperature clock” is given conveniently by
t~ 1T,

where ¢ is the time in seconds and Ty the temperature in 10'°°K. Assume a Universe of
photons, electrons and positrons, and three neutrinos and anti-neutrinos.

This figure of 20% is interesting, because it is neither close to unity nor tiny (a coincidence
related to the 25% Heiulm mass fraction!). Without further production of neutrons, they will
decay in minutes by the third reaction channel. If all the neutrons had decayed into protons
and electrons and antineutrinos, there would have been no cosmological nucleosynthesis.

148



But just as the neutrons start to decay as we approach 10°K, the remaining neutrons are
salvaged by being safely packed into stable *He nuclei. Helium nuclei are environmentally
sound, perfectly safe, radioactive containment vehicles. Here neutron decay is absolutely
forbidden, in essence because the statistical phase space within the realm of the nuclear
potential is degenerate. “Degenerate” means that when the neutrons are confined to the
nuclear potential, there are no available states for them to decay into. They are already
occupied by protons. It is rather like trying to use Oxford public transportation on a very
rainy day: SORRY, BUS FULL.

Back to our story. The neutrons are scarfed up into He nuclei. This offers a firm prediction
for the observed mass fraction of the Universe, since later stellar nucleosynthesis does not
change the Helium number significantly. (By sharp contrast, almost all of the heavier element
abundances, collectively not much more than one percent of the total, are indeed dominated
by stellar nucleosynthesis.) From what we have just seen, we may estimate the mass fraction
in Helium to be A

mpx(nf2) 2 433 (574)
my(n + p) 1+p/n

Much more detailed, time-dependent calculations (pioneered by Peebles in 1965) give a
number close to 0.27 (a slight refinement of the 25% figure mentioned above), but the essential
physics is captured by our simple estimate. There is not very much wiggle room here. We
cannot use the precise value of this abundance to determine retrospectively what sort of
Universe (open, closed, critical) we live in. The curse and strength of the calculation is that
the results are essentially the same for any FRW model. The Big Bang Theory predicts
something close to 27% of the mass of the Universe is in the form of Helium, and that is
that. Happily, this turns out to be very close to what observations reveal.

8.10.3 Neutrino and photon temperatures

This subsection is non-examinable.

As the temperature slides from 5 x 10° K to below 10%, the electron positron pairs annihilate
into photons,
ete” — 2y

The falling temperature means that the photons cannot maintain an equilibrium population
of these eTe™ pairs. In other words, there is a conversion of electrons and positrons into
photons. However, it is not possible to just add photons and keep the temperature the
same. In thermal equilibrium, the number of photons at a given temperature is fized. If
you add more via eTe™ annihilation, the extra photons force a new thermal equilibrium,
one at a higher temperature that is compatible with the increased photon number. The
photons are, in effect, heated. By contrast, the relativistic neutrinos that are also present
just march blithely along, enjoying the expansion of the Universe without a care, oblivious
to everything. (When it was the muons that annihilated, the Universe was so dense that
even the neutrinos took part in the thermal collisions, but not this time!) This means that
present day background neutrinos are cooler than the CMB photons. The question is, by
how much?

This turns out to be a relatively simple problem, because if we fix our attention on a
comoving volume of the Universe, the entropy in this volume is conserved by the conversion
of electron-positron pairs into photons. For photons or relativistic electrons/positrons, the
entropy per unit volume is a function only of the temperature. It is most easily calculated
from a standard thermodynamic identity,

E+PV =TS + puXN =0,
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for a gas with zero chemical potential . The latter is true of a relativistic gas that freely
creates and annihilates its own particles. So for the entropy per unit volume s,

S E P
With pc? denoting the energy per unit volume and P = pc?/3 for a relativistic gas,
4pc?
= D76
$=3r (576)

With a relativistic energy density always proportional to 7%, the entropy per unit volume
is proportional to T, and the entropy in a comoving volume R? is proportional to (T R)3.
It is conserved with the expansion, in essence because the entropy and particle number are
proportional to one another, and particle number is conserved.

Before the e™e™ annihilation, the entropy in volume R? in photons, electrons and positrons
1s

4a(TR)? 7\  1la(TR),
RP=""""""7 [1492x%x | =_— “vefore 577
s 3 ( +2x 8) 3 (577)
Afterwards, and after the reestablishment of thermal equilibrium, it is all photons:
4a(TR)3
R3 _ ( 3)afte7“ (578)

This entire process conserves entropy sR>: it conserves the sum of the number of particles in
photons plus the number of ete™ pairs. It is therefore reversible. Thus, one could recompress
the adiabatic expansion backwards to produce anew the pairs. In other words,

4<TR)2fter 11(TR)I?;efore
= 579
3 3 (579)

Now for an interesting point of physics. Recall that the muon-antimuon annihilation heated
all relativistic populations, because the reaction rates demand this at these earlier times,
when the Universe was so very dense. But the ete™ population annihilation we are now
considering ignores the neutrinos. The density has now fallen to a level at which the neu-
trinos pass through everything, so that their TR value does not increase during the e*e™
annihilation. This process must therefore produce different cosmic background photon and
neutrino temperatures. The ratio of neutrino temperature 7, to photon temperature 77, is

T, A\ /3
ol

This would correspond to a current value of 7T, = 1.95 K — if the neutrinos remained a yu = 0
relativistic population for all time. (We now know they do not—at least not quite.) At one
time, people wondered whether there was any possible way to measure this temperature
difference. But a temperature of 1.95K corresponds to an energy k7T of 1.7 x 107% eV,
whereas the average mass per neutrino species (the best we can measure at the current
time) is about 0.1 eV, with a corresponding temperature of 1160 K. Neutrinos thus became
“cold” at a redshift of z ~ 400. As we shall see, this is well after hydrogen recombined, but
probably before galaxies formed. These neutrinos are a part, but only a very small part, of
the dark matter in galaxies. Even if it had turned out that neutrinos had zero rest mass, it
would have been impossible with present technology to measure a 2K neutrino background!
Nevertheless, the physics of this problem is enlightening, and the formal difference in neutrino
and photon temperatures surprising.
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8.10.4 Ionisation of Hydrogen

Between the time of Helium synthesis, a few minutes into the baby Universe’s life, and a
few hundred thousand years, almost nothing happens. Radiation remains the dominant
source of energy and pressure, and the Universe simply expands with R scaling like /2.
The matter and the radiation remain tightly coupled, so that density fluctuations in the
matter correspond also to energy fluctuations in the radiation. But finally at some point,
the Universe cools enough that hydrogen recombines and the matter ceases to be an ionised
plasma, becoming a neutral gas. At what temperature does this occur? To answer this
question, we need to use an interesting sort of variation of the Boltzmann equation, known
as the Saha equation. It tells us the ionisation fraction of an atomic element as a function
of T.

Recall the Boltzmann equation. The probability P; for an atom to be in state i relative
to the probability P; to be in state j is

P g E; — E;
— S — 081
p o () o1

where E;, E; are the energies of the states, and g;, g; are the statistical weights (i.e. the
number of states at each level). For simplicity, we will consider a gas of pure hydrogen, and
interpret this equation as follows. State j is the ground state of hydrogen with one electron,
the 1s state. Let’s set j equal to 0 so we think of neutrality. State ¢ is then the ionised state
with a bare proton and a free electron with kinetic energy between E and E + dE. Set i
equal to 1. Whether bound or free, the electron has two spin states available to it, so this
factor of 2 appears in both numerator and denominator, cancelling in the process. Then
go is unity. We think of ¢g; as the number of states available to the electron with energy
in the range dF. Do you remember how to do this odd-sounding calculation? In terms of
momentum p (a scalar magnitude here), the number of states per electron around a shell of
thickness dp in momentum space is

47p?

nehd dp
where the factor 1/n, represents the volume per electron and h is Planck’s constant. This
is derived in any standard text on statistical mechanics, but if this is not familiar, now is
a good time to have a look at Blundell and Blundell, Concepts of Thermal Physics. The
concept comes from the stratagem of putting the electrons in big cube of volume V', counting
the eigenstates (now discrete because of the box walls) for each electron, and then noticing
that the artificial box appears in the calculation only as a volume per electron, which is
just 1/n.. Drawing these threads together, (581) becomes, upon adding up all possible free

electron states,
Ny P 4 o 2 —p2/2mckT
=exp| ——= ) —= e et d 582
o p ( kT) e /O p p (582)
where ® is the ionisation potential of hydrogen, m,. the electron mass, n. the electron density,
n, the proton density and ng the neutral hydrogen density. Note that we have replaced the
ratio of relative probabilities of the ionised H state (or p) to the neutral H state (subscript
0) by their number denisities n, and ny. Now

00 0 1/2
/ p? e P2k T gy — (2mek;T)3/2/ 2e™ dx = (2m kT)>? x WT (583)
0 0
The Saha equation becomes
3/2
nen,  (2mmckT B d
e ( 72 ) exp ( T (584)
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The final step is to note that for pure hydrogen, n. = n, and thus n. + ng is the total
hydrogen density ngy. This remains unchanged regardless of the ionisation state: if n, goes
up by 1, ng has gone down by 1. With = n./ny, our equation therefore becomes

72 1/ 2rmkT\>? P 2.415 x 102173/2 1.578 x 107
= — | — expl|———= | = exp| ——————
l—2 ng h? P kT ny P T

(585)
in MKS units. The value x = 0.5 is attained at a redshift of about 1400, a temperature of
3800 K. This is remarkable, because it is much less than the formal Boltzmann ionisation
temperature of 1.58 x 10°K. At redshifts less than 1400, the Universe becomes transparent to
photons, the energy density is already dominated by matter. Interestingly, the intergalactic
medium seems to have been reionised shortly after galaxies were able to form at z ~ 10,
presumably by the very radiation produced by the accretion process that gave rise to these
galaxies. To pursue this active area of current astrophysical research would take us too
far afield at this point. Now that we have a sense of the basics of Helium nucleosynthesis
and hydrogen recombination, we return to the very early Universe. It is there that we will
learn about what seems to have been a key process for creating the Universe as we know it:
inflation.
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From a small seed a mighty trunk may

grow.

— Aeschylus

9 The Seeds of Structure

9.1 The growth of density perturbations in an expanding universe

This section is optional and off-syllabus.

The Universe is expanding and the density of nonrelativistic matter decreasing as 1/R3.
In such an expanding background, as the reservoir of material to form condensed objects
diminishes so quickly, does gravity even permit the sort of runaway collapse we think of
when we envision a star or a galaxy forming?

Determining the fate of a small overdensity or underdensity of nonrelativistic matter in an
FRW universe is a problem that can be approached via an analysis of how small disturbances
behave in a uniformly expanding background. We require two fundamental equations. The
first expresses the conservation of ordinary matter. The mass within a volume V| fv pdV is
changed only if matter flows into or out from the boundaries of V. The flux of mass (mass
per square meter per second) is pv. Hence

d dp
— pdV:/—dV:—/ p'v-dA:—/V-p'v av
dt Jy v Ot oV 1% (pv)

where OV is the volume’s boundary, and we have used the divergence theorem. The volume
V' is arbitrary, so we must have

0

a—f +V-(pw) =0 (586)
which is the equation of mass conservation. Newton’s equation of motion states that if a
mass element of fluid pdV is accelerating, then it is acted on by a gravitational force given by

—pdV V&, where ® is the associated potential function. In other words, the force equation
reads after cancellation of pdV/,

{% . v)} v= -V (587)

Note that the acceleration measured relative to a fixed space-time coordinate background
means that the “total time derivative” must be used, d; + v;0; in index notation.

The local time behaviour of the density is entirely Newtonian. The expansion of the
universe is described by

v = %’r (588)
a familiar Hubble law. The mass equation then becomes
odp 10 (4 R
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With the background p independent of position,

dlnp_l_ﬂ.%_
dt R

0 (590)

whence pR? is a constant, as we know. As for the force equation, a straightforward calculation
yields

0 R

a—;’ (0 Vo= o (591)
and, as the discussion of §8.1.1 shows that /R = —47wGp/3, our solution for the background
expansion is correct. The Poisson equation

1 02(rd
vip = 1200y a, (592)

is likewise solved by our solution. (Try ® = 27Gpr?/3.)

We are interested in the fate of small disturbances dp, dv and d® expressed as small
additions to this background:

p—p+op, v—ov+ov, &—d+iP (593)

Using our fundamental equations, we replace our dynamical variables as shown, and because
the d-quantities are small, we retain them only through linear order. We ignore quadratic
and higher order tems. The mass equation is then

% + V-(pdv) + V-(vép) =0 (594)

Note that the gradient of p vanishes and that the equilibrium v satisfies Vv = —0;In p.
It is then straightforward to show that the perturbed linearised mass conservation equation
simplifies to

0 op
{E + (v - V)} " + V-0v =0 (595)
The linearised equation of motion
[% +uv- V} dv+ (0v - V)v=-Vid (596)
becomes ,
9 +v-V|dv+ Eév =-Vid (597)
ot R™

Next, we change to comoving coordinates. This is straightforward. Let » = R(#)r’ and
t = t'. Then »’ (or 2 in index notation) is a comoving spatial coordinate. The partial
derivative transformation is (sum over repeated i):

g o0 0x;0 1, oxr;  m o v
oot YRV @ RENTR (598)
so that 5 5
O hww)= (5%9)
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which is a time derivative following a fluid element of the unperturbed expansion. Then, our
two equations for mass conservation and dynamics are

o dp 1_, B

%? + EV Odv=0 (600)
v R 1_,
57 + Eév = —}—%V 0P (601)

Taking V'- of (601) and using (600) leads to

P 6p 2RO 6p 1 _, op
L P V250 =4 - 2
o + Rov RQV 4] WGp(p) (602)

where the last equality is the linearised Poisson equation V20¢ = 4wGdp. For an Einstein-de
Sitter univese, recall that p = 1/67Gt* and R/R = 2/3t, where we have dropped the primes.

Using the notation § = dp/p and a dot § for a time derivative, our differential equation for
the growth of small perturbations in an Einstein de-Sitter universe takes on a very elegant
form:

. 4. 2
bt b= 550=0 (603)

This differential equation has two very simple linearly independent solutions, one where §
decays as 1/t, the other where it grows as /3. (Show!) The important point is that because
of the background expansion, the pertubations display none of the rapid growth one usually
finds against a static background. The growing solution of the small perturbation is t%/3,
growing no faster than the universe itself expands. This is a pretty torpid tempo. For the
musically inclined, think adagio.

How our Universe grew both its large and small scale structures has long been a great
mystery, one that remains far from well-understood. To make things grow in the barren soil
of the Universe, one needs to start out with very healthy-sized seeds!”. The questions of
where those might come from are the topics of the next section.

9.2 Inflationary Models

9.2.1 “Clouds on the horizon”

We begin by posing two profound mysteries associated with classical FRW universes: the
horizon problem and the flatness problem.

We have already encountered the first, the horizon problem, on page (116). The CMB is
homogeneous to 1 part in 10 on all angular scales, yet the angular size of the horizon at the
redshift of hydrogen recombination is of the order of the diameter of the full moon. How can
we possibly understand this degree of homogeneity between regions that have never been in
causal contact?

The second problem is known as the flatness problem. Consider the dynamical equation
of motion in the form
8rGp 2K

1-— PE _1_Q_E

(604)

170ne also needs a great deal of Dark Matter, a topic we must alas leave untouched.
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Now if E happens to be zero, € is unity for all time. Fair enough. But the measured value of
Q, at least in terms of ordinary matter, was thought to be a number of order 25%, including
unseen dark matter, with only 5% for ordinary baryons. This is decidedly smaller than unity,

but not infinitesimally small. Now normally either €2 is very close to unity if F is small and R

large, or € is very small indeed, proportional to 1/RR? throughout most of the vast history
of a matter dominated universe. But €2 passes though through “a number less than but not
very different from unity” during a tiny, fleeting moment of a universe’s history. And this is
the period we just so happen to be observing it? That certainly is a coincidence. We don’t
like coincidences like that.

To see how the concept of inflation can resolve both of these problems, consider the
integral that is done on page (116) to calculate the horizon distance. The problem is that
the horizon length at cosmic time ¢ is very finite, of order ¢/H (t). Formally, this distance is

proportional to
dt’ dR
| 5~ | (905

Imagine that at very small R, the dominant behaviour of R is R ~ RP, where p is some
number. If p > 0, then the integral diverges like In R or R7? at small R, and in this case
divergence is good: it is what we want. Then the the horizon problem goes away because the
horizon is unbounded! In essence a small patch of universe, small enough to communicate
with itself completely, can rapidly grow to encompass an arbitrarily large segment of sky.
With p > 0, then R > 0 at small R so that the universe would be accelerating (or just
not decelerating). The problem with standard models is that they are radiation-dominated,
p = —1, and highly decelerating. A matter-dominated universe, p = —1/2, is no help.

What instead appears to have happened is that the Universe, early in its history, went

through a phase of exponential expansion with R ~ R, p = +1. As we have seen, the Universe
has begun such an inflationary period recently, at redshifts of order unity. Exponential
expansion is the hallmark of a vacuum energy density py, with a corresponding pressure
Py = —pyc?. This rapid expansion makes an entire Universe from a once very tiny region
that was in complete causal self-contact'®. The rapid large expansion also has the effect of

killing off the 2E/ R term in equation (627). In other words it resolves the flatness problem by,
well, flattening the Universe! Think of being on patch of sphere and then having the radius
expand by an enormous factor. The new surface would look very flat indeed. Dynamically,
(627) shows us that 2 must then be equal to unity to great accuracy. This is just what
observations show.

At this point the student may wish to move on to the closing remarks of §X. The next
subsection is an overview of the modern ideas of inflation, but is entirely of syllabus. I hope
that if it is impratical to read this now, you will return to it at your leisure at some future
point.

9.2.2 The stress energy tensor of a field

This subsection is optional and off-syllabus, containing advanced material.

Can we make a case for early inflation? If we are to understand the physics of the vacuum
quantitatively, we need to learn a little about quantum field theory, the domain of physics
where the vacuum makes a starring appearance in a leading role.

18Note that the rest of the original universe is still hanging around! Inflationary models therefore lead
naturally to the concept of a “multiverse,” which in itself would help us to understand many otherwise
mysterious cooperations between physical scales.
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Let us start easy, with spin 0 particles. Spin 0 particles, so-called scalar fields (“scalar”
because they have only one component), satisfy the Klein-Gordon equation. In Minkowski
spacetime, this is

O0® — p*® =0, u®= (mc/h)? (606)

where as usual O = 0%0,, m is the mass of the particle (the “quantum of the field”), and h
is Planck’s constant over 2w. Now when we solve the Einstein Field Equations, we need to
know what the stress energy tensor T"" is. For ordinary stuff, this is not a problem:

T = Pg" + (p+ P/ U*U"

The question is, what is the T"" for a field obeying equation (606)7 Is there something we
can identify as the energy density? The pressure? Once we have a T"” from a field equation,
there is nothing to prevent us from treating it on an equal footing with the usual TH” given
above, and using it as source term in the Einstein Field Equations.

We are not entirely in the dark on how to proceed. Indeed, there is light. Literally.
Electrodynamics is a field theory. There is both an energy density in the electromagnetic
field and a corresponding pressure. In short, there is a perfectly good stress tensor available
for whatever legitimate use we would like. We may certainly use this stress tensor on the
right side of the Einstein Field Equations. With the help of our “4-potential” A, (space
components equal to the usual vector potential A and time component equal to minus the
electrostatic potential), we first define the field tensor Fs:

0Ag  0A,
F.5= — 607
™ 0z~ 9zP (607)
and then the stress tensor is
[0} [0} 1 o
T = FoP? — 7 PR, (608)

(The texts of Jackson [1998] or W72 are good references if needed.) There is in fact only
one conserved tensorial combination that is quadratic in the derivatives of the 4-potential.
You're looking at it. The overall normalisation constant can be determined by looking at the
interaction between the fields and the particles via the Lorentz equation of motion. (More
precisely the work done by the fields upon the particles.) A tensor quantity that is quadratic
in the derivatives of the potentials and is conserved: these are the essential features we seek.

With this thought in mind, it is a surprisingly simple matter to find the T,z for the
Klein-Gordon field, and even to pick out its corresponding p and P. Multiply (606) by 0z®.
For ease of future generality, let’s call the p? term dV (®)/d®, and refer to it as “the potential

derivative”. For the K-G equation, V = p2®?/2. We will shortly consider other forms. The
equation becomes:
90 P> dAV(D) 90 OV O(nasV)

0xB 0xdx,  d® 0xP  0xB  Ox, (609)
Integrate the left side by parts:
o0 e 0 0P 92\ 0P 0P (610)
0P 0x®dx,  Oxy \ Oz OxPB Oz 0zP0x,,
But the final term of (610) is
od  9°® 10 0P 0P
e =~ (e 11
Ozx® 0280z, 2 0z, (naﬁ oz 8$7> (611)
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Putting the last three equations together:

OTs 100 90 0d O
Hap o where Tap = —nug | 22292 L y@)| + (2292) (61
DT o ) WHEIE Zap a8 19 9 oz, ( )} * (83:0‘ 8335) (612)
with frame-independent trace T = —(0,P)(0*®) — 4V. Ty may be read off directly:
T, :m?:i4ﬁ+ﬁv¢ﬁ+v (613)

which really does look like an energy density, but corresponds to the true rest frame pc?
only in the rest frame of the field! The first term is a kinetic energy density (the dot as
usual means time derivative), the second is the effective potential energy density from the
spring-like coupling that produces the simple harmonic motion of ®, and the final term is
the external potential from an external driver. In textbooks on quantum fields, Chapter
1 often begins by examining the quantum mechanics of a collection of masses on springs,
because that problem is not just similar to, but is practically identical with, the problem of
the excitation of massless spin 0 particles. The Hamiltonian density found for this analogue
mechanical problem is precisely our expression (613), where ® corresponds to the mass
displacement.

To extract the energy density and pressure, begin by recalling the quantum mechanical
association between the derivative operator 0, and the 4-momentum p,. (Don’t worry
about any constant coefficients, they will ultimately cancel.) In equation (612), the final
term combination 0, J3® should then be identified with the U,Us term in our classical

stress tensor, which is (p+ P/c*)U,Us. To turn the p,, terms into 4-velocity U, terms, divide

and multiply by the effective squared rest mass scalar “E? — p?c?”. This is not a matter

of inserting a constant factor of m2c* somewhere. We must be express everything in terms
of the field ®! The mass expression we require is then —c?9,® 9"® (Why, what does 0,

correspond to?). To go from 4-momentum to 4-velocity is a simple sleight-of-hand:

20,0950 1

0,090 = S0 BY 2
T 00000 " 2

(—0,207). (614)
Now read off the 4-vector(s), and then p+ P/c? must be the final multiplicative field scalar:
Uy = c(0,8) (—0,207®) /2 P_l oo 615
L= @) (00 D= e, (615)
The pressure P is just the coefficient of 1,4 in (612):
1
P=— (587(156’7(1) + V(CD)) (616)
Then, from the second of equations in (615):
1
m?:—(§m®@¢—vwm) (617)

Remember, these are the rest frame pressure and the rest frame energy density, expressed
in a form that is valid for any frame. Notice the difference between T in (613) and pc? in
(617)! When do the two expressions agree with one another?
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The idea now is to upgrade from 7,4 to g,, as per the usual GR prescription, and then
use this quantum form of 7}, in the classical spacetime cosmological equations during the
earliest phase of the Universe. But why go through the trouble of picking out p and P, why
not just work directly with the stress tensor itself? The reason for explicitly identifying p
and P is that it is becomes a relatively easy matter to analyse the “quantum cosmological
field equations” by analogy to the classical case.

The fundamental dynamical equation in the absence of curvature is

_ 8nGp
3

Jig (618)

where H = R/R. We need a second equation to know how p (and P) depend upon R. This
is the energy conservation equation, (524):

P
p+3H (p + 0—2) =0. (619)

Remember that this equation comes from 0#7),, = 0. But this amounts to solving the Klein-

Gordon equation itself, since the way we formed our stress tensor (612) was by contracting
the K-G equation with a 4-gradient of ®. So all the relevant equations are embodied in (618)
and (619), with (617) and (616) for ®.

What is this V(®)? It helps to have a concrete mechanical model. If I have a one-
dimensional collection of masses on springs (we can even make the masses out of concrete),
and ¢, is the lateral displacment of mass n, the equation of motion for spring constant k is:

Q.Zgn = _k<¢n - ¢n—1) - k(¢n - ¢n+1) (620)
Now when n is very large and the masses are closely spaced with a small separation Az, I
can take the limit
On — 1 =~ Axﬁbln_1/2

so that
- k(¢n - anfl) - k(‘bn - ¢n+1) — _kAx<¢;zfl/2 - ¢;+1/2) (621)

where the spatial x derivative ¢’ is formally defined halfway between the integer n’s. A
second use of this limit brings us to

- kA$(¢;1—1/2 - ¢;z+1/2) = k’(Ax)QCbz (622)
or 56 56
o = o (623)

where ¢ = k(Ax)? becomes the velocity of a propagating ¢ disturbance as k gets large and
Az small. A three-dimensional extension of this argument would introduce nothing new,
so this is a mechanical analogue of the standard wave equation. But this is not yet the
Klein-Gordon equation: where is V7

Do the same problem, but this time hang the masses from strings of length [ in a vertical
gravitational field g, while they slide back and forth on their connecting springs, as in figure
[18]. Then, our final partial differential equation becomes

¢ _ P9 g
7 o 1 (624)
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Figure 18: Mechanical analogue of the Klein-Gordon equation. Spring-like
coupling between adjacent masses gives rise to the wave equation, while
the pendula produce an acceleration directly proportional to the displace-
ment, not the 9, derivative thereof. This g/l force is exactly analogous
to the mass term in the KG equation, which evidently arises from similar
“external couplings” of the scalar field ®. (Only two masses are shown
instead of an infinite continuum.)

This is the Klein-Gordon equation with our potential V' term. The final term is an external
coupling between the displacement ¢ (or the “field” ®) and some external interaction. Note:
an interaction. In the K-G equation, the coefficient embodying this interaction g/l is called
“mass.” This sets up Richard Feynman’s famous quotation: “All mass is interaction.” This
kind of loading is the price you have to pay to jiggle the masses on the springs, or to jiggle
the field, when there is some kind of external coupling present. The mass of electron arises,
at least in part, from the fact that when you try to accelerate it, you produce disturbances
in the photon field and the charge radiates.

We could imagine putting our concrete masses in some kind of a yet more complicated
external force. Maybe g¢/l is only the first term in a Taylor series of, say, gsin¢/l. (Can
you think of simple mechanical system that would, in fact, have this property?) The point
here is that as long as the equilibrium ¢ = 0 null displacement state is one that is stable, any
small deviation from ¢ = 0 will be generically linear in the interaction, and V' (¢) (or V(®))
quadratic. This is why we think of V' as a sort of potential function. We speak casually of
the field being a “ball sitting at the bottom of a potential well.” The rollback oscillation
frequency then becomes the mass of the field particle!

So in our example, what is giving rise to this so-called interaction? Where is the external
pendulum force coming from that is affecting the ® field? The answer is that comes from
the vacuum itself.

Effective Potentials in Quantum Field Theory

One thing you have to understand about the quantum vacuum: it is a jungle out there.

The vacuum, even the vacuum, is full of fluctuations in the varied collection of harmonic
oscillators that we are pleased to call particles. Depending upon our precise circumstances,
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a simple Klein-Gordon equation, which would represent completely free massive particles,
doesn’t capture the dynamics of the scalar field in question. The scalar field could interact
with all these other fields, and since interaction is mass, in the process create a new mass
coefficient. We could easily imagine a non-linear “pendulum,” coupling to other fields. Then,
the mass constant ;2 is not, in fact, a constant, but would depend on the field strength @.
In the simplest case, u? would depend additively upon @2, so that only the magnitude of ®,
not its sign, affects the distortion of 2. Then, the resulting potential V(®) would take the
form

V(®) = p’®%/2 4 po* (625)

In fact, for decades before the notion of the inflation became popular, precisely this model
potential had been in wide use amongst particle physicists for completely different reasons.
If for some reason u? was, despite it mathematical form, a negative quantity, and 3 positive,
then & = 0 is not a stable vacuum solution. The true, stable vacuum state would be the
global minimum, ®? = |p?/43|. With respect to distrubances about this displaced minimum,
the potential once again appears stable-quadratic, and we are back to (to leading order) to
the Klein-Gordon Equation But the mass coefficient has changed! For understanding the
dynamics of the early Universe, it is not so much the location of the new equilibrium that
is important, it is the journey we take to reach it: down the potential slide! This is from
whence inflation may originate—assuming, of course, that we start off at or near the top of
the slide.

Try not to be put off by the vagueness of all this. This is forefront physics and we are
groping a bit. As Mark Twain once quipped about Wagnerian music, it is better than it
sounds. The real world’s V(®) may well be a complicated function (lots of interactions),
but we have long ago landed in a stable local parabolic minimum of V| so to us things
now look deceptively, Klein-Gordonly, simple. It is OK to grope in the dark a bit to try
to understand what new physics might in principle lie beyond the usual theories and to see
what the most robust predictions might be. But within reason, of course. As long as certain
ground rules like Lorentz invariance are respected, there is considerable freedom in choosing
the form of the interaction. As noted, the type of quartic potential (625) was already well-
known to particle physicists and in-play at the time it was appropriated by cosmologists.
The particle physicists had borrowed it from condensed matter physicists, who had in turn
used it (in the form of a thermodynamic potential) to describe ferromagnets. This so-called
broken symmetry approach has proven to be enormously useful in particle physics. (The
Higgs Boson, for example.) Just as a ferromagnet can spontaneously magnetise itself, so too
can certain types of particle spontaneously acquire mass. These physically distinct processes
turn out to share very similar mathematics.

In a ferromagnet, the equilibrium state minimises the Gibbs Free Energy G, as is usual
for thermodynamical systems at fixed temperature and pressure. G is a function of the
magnetisation M, and typically takes the form of (625):

G =aM?+ gM* (626)
At high temperatures, above some critical T,., both a and [ are positive. Below T, however,
a changes sign, and it becomes energetically more favourable — G attains a smaller value—
when M? is finite and equal to —a/23. The system, in other words, becomes spontaneously
magnetised. A similar mathematical arrangement also produces the phenomenon of super-
conductivity. And in particle physics, this is the core of the argument for how a class of field
particles acquires mass under conditions that are otherwise mysterious.

The slow roll inflationary scenario

The essence of the so-called slow roll inflationary is easily grasped. Start by using (613)
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Field

Figure 19: V(®) potential functions of the form (625). The
upper curve corresponds to p? > 0, the lower to p? < 0. If
there is a scalar field described by the pu? < 0 potential in the
early Universe, it could trigger an episode of inflation. Before
cosmological applications, these potential functions were used to
describe ferromagnets, and to explain how symmetry is broken
in fundamental particle physics.

and (616) in (618) and (619). This leads to the equations

1@ H2
2
H? = — <V¥+2&) (627)
and J
b+ 3HP 24V _ 2
+3HO + ¢ =0 (628)

The idea is that the gross form of the potential V(®) itself changes while the Universe
expands and cools, going from the top form of figure (19) early on to the bottom form as
things cool, much as a ferromagnet’s free energy does when the temperature changes from

T >T,.toT < T, Moreover, if V is very flat, so that dV//d® is small, then d is also small
by equation (628) and there is an extended period when (627) is simply

R TGV,
H="n~ 220 2
R 3c2? (629)

where V; is the (approximately) constant of V(®). R grows exponentially,

R o exp ( BrGVo t) (630)

3c?

and the Universe enters its inflationary phase. ® meanwhile grows slowly, but it does grow,
and eventually, after many e-foldings, the inflation stops when the minimum of V(®) is
reached. It was Alan Guth, a particle physicist, who put together this picture in 1980,
and brought to the fore the concept of inflation as a phase of the history of the early
Universe. In particular, he argued that the peculiar model potentials then in widespread
use to understand ferromagnets and symmetry breaking in particle physics, might also be
relevant to fundamental problems in cosmology.
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FEzercise. The slow-roll equations of inflationary cosmology, from (627) and (628), are

. 2
o RY _ 8GV b _ e ]/QQ
\R|] 32 n 247GV dd’

What are the conditions for their validity? Next, try a potential of the form

V(®) = Vol — 202,

where € is small and V|, constant. Plot V' as a function of ®. Show that this V' satisfies the
slow-roll constraints, and solve the above differential equations for R(¢) and ®(¢) with no
further approximations.

The theoretical arguments for the mechanism of inflation are not based on fundamental
theory (at least not yet). They are what physicists call “phenomenological.” That means
they are motivated by the existence of an as yet unexplained phenomenon, and rely on the
detailed mathematical exploration of a what-if theory to see how the ideas might lead to
the behaviour in question. Perhaps the theory, if framed carefully, will explain something it
wasn’t specifically designed to do. That would be encouraging! Inflation models have this
property, which is why there are very attractive.

Here is an example. During the period of inflation, small fluctuations go through two
types of behaviour in sequence. At first, they oscillate, like a sound wave. But as the
Universe rapidly expands, at some point the peak of a wave and the trough of a wave find
themselves outside of each other’s horizons! A wave can’t possibly oscillate coherently under
those conditions, so the disturbance remains “frozen” with the expansion.

But the rapid inflation eventually slows while the Universe is still practically a newborn
baby. Then, the expansion no longer is accelerating, but decelerating. It does not take very
long before the ever expanding horizon scale can once again can enclose a wavelength. In the
parlance of cosmology, the wave “enters” the horizon, and the oscillation can then restart!
Suppose that between this (very early) moment of restart when the oscillation starts off with
zero velocity, and the time of hydrogen recombination (several hundred thousand years later),
when we see the imprint of the fluctuation in the radiation, there is one full contraction of
the oscillation. (Or, one full expansion, if the disturbance starts on its expanding phase.)
This half-period of oscillation correponds to a particular wavelength, and for this particular
wavelength we would expect to see a peak when we plot the spectrum of fluctuations as a
function of wavelength. And then another peak for the shorter wavelength that would allow a
compression followed by a complete expansion. And so on. The so-called power spectrum®?
Figure (19) shows a sequence of peaks on certain angular scales on the sky. In order to
exist as well-defined entitites, instead of just a smear, these peaks need to have oscillations
recommence at nearly the same time. This is possible only because of inflation. During
inflation, the rapid expansion prevents the random oscillations that would otherwise be
present. It then allows the dance to begin again from zero velocity. This happens very early
on, once the rapid expansion has slowed and the oscillations enter the horizon. The coherent
release at only slightly different (shorter wavelengths enter the horizon a bit sooner!) early
times is what makes the peaks possible in the first place. Their very existence is powerful
evidence for the concept of inflation.

Let us recap. The concept of an early inflationary period of the Universe explains both
why there is such uniformity in the CMB temperature across the sky and why the Universe
is flat. It explains why there is an FRW metric at all! But there is subtlety as well in the

19Tf T(0, ¢) is the CMB temperature as a function of angle (angular separation), and 7 is the usual fourier
transform in wavenumber space, the power spectrum is |7 |%.
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Figure 20: The temperature power spectrum of fluctuations (known as “T'T spec-
trum” in the literature) as a function of angular scale from recent Planck data. (The
bottom plot is a measure of the discrepancy between the data and a model, and does
not concern us here.) The excellent model fit in the top plot is strong evidence for
inflation.
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predictions of inflation, including statistical predictions of where the power spectrum should
have its peaks. There is so much more that, alas, we don’t have time to go into in this
course. There are, for example, firm predictions for how large scale structure in the Universe
evolves—how galaxies cluster—from the initial seed fluctuations. (Quantum fluctuations!)
These predictions rely on the notion of Cold Dark Matter taking part in the gravitational
response to the seeds. Cold Dark Matter (CDM) is cold in the sense that it responds readily
to gravitational perturbations, forming the bulk of the mass distribution in galaxies and
clusters. Though we don’t know very much about CDM, there are reasons to think that it
may be some kind of weakly interacting massive particle, and there are searches underway
to try to detect such particles via their (perhaps) more easily found decay products®’. But it
all must begin with some kind of inflationary process. There really is no other explanation
for how vast stretches of the Universe could ever have been in causal contact. Inflation is
a powerful, unifying concept without which we can not make sense of even the most basic
cosmological observations. And don’t forget: the Universe is inflating right now! We are
living through mild inflation that will, with time, become much more dramatic.

But from whence inflation? Why? What is the underlying imperative to inflate, and
then exit gracefully from inflation? While there are some promising ideas afoot, we still
don’t really know how and why inflation occurred. Maybe somebody reading these notes
will settle the matter.?!

9.3 A Final Word

Astrophysics can be a very a messy and speculative business. But every once and a while,
something truly outstanding is accomplished. The development of stellar structure and evo-
lution is one such triumph. This led to a new field of science: nuclear astrophysics, and
ultimately a precision theory for the origin of all the chemical elements. We now understand
where atoms come from, and even how to make them ourselves, a stunning achievement.
Another milestone is the full blossoming of the theory of black holes, brilliantly confirmed
in the last year by the LIGO detections of gravitational radiation from a number of merg-
ing black hole binaries. Surely the development of precision cosmology, the discovery and
construction of a model of the Universe, must also rank as one of the great advances in
science. I view this on a par with the Rutherford nuclear atom, Godel’s theorem, or the
Crick-Watson DNA model: not just a technical advance, but a transformative understand-
ing. We have taken the measure of the entire Universe, and the vacuum is a full player.
What we thought of a generation ago as the stuff of the Universe is foam on a sea, less than
5% of the true stuff of the Universe. The Universe started out dominated by its vacuum,
and it will spend most of its life dominated by its vacuum. Let that sink in. The time when
matter and radiation have much of a say in regulating the Universe will be a fleeting instant
in its history, one which we are only just now emerging from. We ensembles of ordinary
matter are the condensed fumes from the Universe’s exhaust vapour, waste products of the
vacuum-driven engine. Even that doesn’t begin to capture our insignificance. The concept
of inflation suggests that an incomprehensibly vast multiverse is a viable description of the
true reality. But we can take heart, all is not bleak. Important questions remain for us, tiny
restless pieces of a Universe that has produced a recursive understanding of itself. Thank
goodness for that. Along the way, we have deduced our true age, our dynamics, and a great
deal of our history. I think it very unlikely that very many universes are fortunate enough
to have internal bits that are able to justify such a remarkable and outlandish claim.

20Update: No luck so far with the searches! An alternative view that black holes may be the dark matter
is now starting to be taken seriously. We’ll see.

21’'m quite serious: given the historical track record, when this problem is solved, it would not be at all
surprising to me if it is by someone who was an Oxford undergraduate.
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End of notes April 3, 2018.
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