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Abstract

We review a possible framework for (non)linear quantum theories, into which linear
quantum mechanics fits as well, and discuss the notion of “equivalence” in this setting.
Finally, we draw the attention to persisting severe problems of nonlinear quantum
theories.

1 Nonlinearity in quantum mechanics

Nonlinearity can enter quantum mechanics in various ways, so there are a number of
associations a physicist can have with the term “nonlinear quantum mechanics”. Because
of this, we shall start with a (certainly incomplete) list of those ways that we shall not
deal with here.

In quantum field theory, nonlinearity occurs in the equations of interacting field op-
erators. These equations may be quantizations of nonlinear classical field equations (see,
e.g., [1]) or mathematically tractable models as in φ4-theory. Here, however, the field
operators remain linear, as does the whole quantum mechanical setup for these quantum
field theories.

On a first quantized level, nonlinear terms have been proposed very early for a phe-
nomenological and semi-classical description of self-interactions, e.g., of electrons in their
own electromagnetic field (see, e.g., [2]). Being phenomenological, these approaches are
build on linear quantum mechanics and use the standard notion of observables and states.
For complex systems, the linear multi-particle Schrödinger equation is often replaced by a
nonlinear single-particle Schrödinger equation as in the density functional theory of solid
state physics.

There have also been attempts to incorporate friction on a microscopic level using non-
linear Schrödinger equations. Many of these approaches incorporate stochastic frictional
forces in the nonlinear evolution equation for wavefunctions (see, e.g., [3]).

Contrary to these, we are concerned with a more fundamental role of nonlinearity in
quantum mechanics. Notable efforts in this direction have been launched, for example, by
Bialinycki-Birula and Mycielski [4], Weinberg [5], and Doebner and Goldin [6, 7].

2 Problems of a fundamentally nonlinear nature

There are evident problems if we merely replace (naively) the evolution equation of quan-
tum mechanics, i.e., the linear Schrödinger equation, by a nonlinear variant, but stick to
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the usual definitions of linear quantum mechanics, like observables being represented by
self-adjoint operators, and states being represented by density matrices.

Density matrices W ∈ T +
1 (H) represent in general a couple of different, but indistin-

guishable mixtures of pure states,∑
j

λj |ψj〉〈ψj | = W =
∑
j

λ′j |ψ′
j〉〈ψ′

j |, (1)

where {(λj , ψj)}j=1,... and {(λ′j , ψ′
j)}j=1,... are different mixtures of pure states ψj and ψ′

j

with weights
∑
j

λj = 1 and
∑
j

λ′j = 1, respectively. This identification of different mix-

tures is evidently not invariant under a nonlinear time-evolution Φt of the wavefunctions,∑
j

λj |Φt(ψj)〉〈Φt(ψj)|
i.g.

�=
∑
j

λ′j |Φt(ψ′
j)〉〈Φt(ψ′

j)|. (2)

This apparent contradiction has been used by Gisin, Polchinski, and others [8, 9] to pre-
dict superluminal communications in an EPR-like experiment for any nonlinear quantum
theory.

Rather than taking this observation as an inconsistency of a nonlinear quantum theory
(e.g., as in [10, 11]), we take it as an indication that the notions of observables and states in
a nonlinear quantum theory have to be adopted appropriately [12]. If nonlinear quantum
mechanics is to remain a statistical theory, we need a consistent and complete statisti-
cal interpretation of the wave function and the observables, and therefore a consistent
description of mixed states.

3 Generalized quantum mechanics

In view of the intensive studies on nonlinear Schrödinger equations in the last decade, it
is astonishing to note that a framework for a consistent framework of nonlinear quantum
theories has already been given by Mielnik in 1974 [13]. We shall adopt this approach here
and develop the main ingredients of a quantum theory with nonlinear time evolutions of
wavefunctions.

Our considerations will be based on a fundamental hypothesis on physical experiments:

All measurements can in principle be reduced to a change of the dynamics of
the system (e.g., by invoking external fields) and positional measurements.

In fact, this point of view, which has been taken by a number of theoretical physicists
[13, 14, 15, 16], becomes most evident in scattering experiments, where the localization of
particles is detected (asymptotically) after interaction.

Based on this hypothesis, we build our framework for a nonlinear quantum theory on
three main “ingredients” [17]:

First, a topological space T of wavefunctions. In the one-particle examples below, this
topological space is a Hilbert space of square integrable functions, but we may also think
of other function spaces [18].
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Figure 1: Velocity cone for the asymptotic measurement of momentum.

Secondly, the time evolutions are given by homeomorphisms of T ,

Φ(Ext)
t : T → T , (3)

which depend on the time interval t and the external conditions (e.g., external fields)
Ext ∈ C. Mielnik’s motion group M [13] is the smallest (semi-) group containing all time
evolutions Φ(Ext)

t , close in the topology of pointwise convergence.
Finally, positional observables P are represented by probability measures on the physical

space M , which depend on the wavefunction φ ∈ T , i.e., P = {pB | B ∈ B(M)}, where

pB : T → [0, 1] ,
∞∑
k=1

pBk
= pB , B =

∞⋃
k=1

Bk, (4)

for disjoint Bk ∈ B(M).
We shall call the triple (T ,M,P) a quantum system. Using these basic ingredients, we

can define effects and states of the quantum system (T ,M,P) as derived concepts. An
effect (or a counter) is (at least approximately in the sense of pointwise convergence) a
combination of evolutions T ∈ M and positional measurements p ∈ P, i.e.,

E := {p ◦ T |p ∈ P, T ∈ M}p.c. (5)

is the set of effects. A general observable A is an E-valued measure on the set MA of its
classical values,

pA: B(MA) → E , pAMA [φ] = 1 . (6)

The standard example of such an asymptotic observable is the (dynamical) momentum of
a single particle of mass m in R3. Let B ∈ B(R3

p) be an open subset of the momentum
space R3

p, then

Bt :=
{ t
m
�p
∣∣∣ �p ∈ B

}
(7)

defines the corresponding velocity cone, see Figure 1.
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If Φ(0)
t denotes the free quantum mechanical time evolution of our theory — provided,

of course, there is such a distinguished evolution — the limit

pPB[φ] := lim
t→∞ pBt

[
Φ(0)
t [φ]

]
(8)

defines a probability measure on R3
p, so that the momentum observable is given by the

E-valued measure

P =
{
pPB ∈ E

∣∣∣ B ∈ B(R3
p)
}
. (9)

Coming back to the general framework, once we have determined the set of effects,
we can define the states of the quantum system as equivalence classes of mixtures of
wavefunctions.

Different mixtures of wave functions

π = {(λj , φj)}j=1,... ,
∑
j

λj = 1 , (10)

with the corresponding effects f [π] :=
∑
j

λjf(φj) may be indistinguishable with respect

to the effects E ,

π1 ∼ π2 ⇔
(
f [π1] = f [π2] ∀ f ∈ E

)
. (11)

Hence, the state space

S := Π(T )
/∼ (12)

is a convex set with pure states as extremal points E(S).

4 Linear quantum mechanics

Generalized quantum mechanics is indeed a generalization of linear quantum mechanics,
as the latter is contained in the general framework as a special case. To see this, we
consider a non-relativistic particle of mass m in R3 (Schrödinger particle), defined in our
setting as a quantum system (H,MS ,Pχ) with the topological space of wave functions as
the Hilbert-space

T ≡ H ≡ L2(R3, d3x) , (13)

the Born interpretation of |ψ(�x)|2/‖ψ‖2 as a positional probability density on R3, i.e.,

pB[ψ] :=
〈ψ|E(B)ψ〉

‖ψ‖2
=

‖E(B)ψ‖2

‖ψ‖2
(14)

defines the positional observables, and unitary time evolutions generated by the linear
Schrödinger equations

i�∂tψt =
(
− �

2

2m
∆ + V

)
ψt ≡ HV ψt , (15)
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with a class of suitable potentials V representing the external conditions of the system.
Starting with these three objects, we recover indeed the full structure of (linear) quan-

tum mechanics. First, the motion group of a Schrödinger particle is the whole unitary
group [19]

MS � U(H) . (16)

Furthermore, the (decision) effects are given precisely by orthogonal projection operators
[20],

E � Proj (H) , fE[ψ] =
‖Eψ‖2

‖ψ‖2
, (17)

so that the logical structure of quantum mechanics is recovered; observables occur nat-
urally through their spectral measures in this scheme. For example, the asymptotic
definition of momentum along the lines given above is well known in linear quantum me-
chanics [21] and leads through standard Fourier transform to the usual spectral measure
of the momentum operator P.

Finally, as a consequence of the above set of effects, the state space coincides with the
space of normalized, positive trace class operators,

S � T +
1 (H) , E(S) � P (H) . (18)

5 Equivalent quantum systems

Having based our discussion on a fundamental hypothesis on the distinguished role of
positional measurements in quantum mechanics, the notion of gauge equivalence has to be
reconsidered within the generalized framework of the previous section.

As our framework is based on topological spaces, two quantum systems (T ,M,P) and
(T̂ ,M̂, P̂) are topologically equivalent, if P and P̂ are positional observables on the same
physical space M , the time evolutions depend on the same external conditions C, and
there is a homeomorphism N : T → T̂ , such that

pB = p̂B ◦N , ∀B ∈ B(M) ,
Φ(Ext)
t = N−1 ◦ Φ̂(Ext)

t ◦N , ∀t ∈ R, Ext ∈ C . (19)

For the linear quantum systems of the previous section, this notion of topological equiva-
lence reduces naturally to ordinary unitary equivalence.

A particular case arises if we consider automorphisms of the same topological space of
wavefunctions T that leave the positional observables invariant,

N : T → T , pB = pB ◦N ∀B ∈ B(M) . (20)

We call these automorphisms generalized gauge transformations. For linear quantum sys-
tems, these reduce to ordinary gauge transformations of the second kind, (Uθtψt) (�x) =
eiθt(�x)ψt(�x) . As in this linear case, the automorphisms N may be (explicitly) time-depen-
dent.
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6 Quantum mechanics in a nonlinear disguise

As we have seen in Section 4, the framework of Section 3 can indeed be filled in the case
of linear evolution equations; but are there also nonlinear models? Mielnik has listed a
number of nonlinear toy models for his framework [13] and has furthermore considered
finite-dimensional nonlinear systems [22]; Haag and Bannier have given an interesting
example of a quantum system with linear and nonlinear time evolutions [23].

Here, however, we shall proceed differently in order to obtain a nonlinear quantum
system: We use the generalized gauge transformations introduced in the previous section
in order to construct nonlinear quantum systems (H,M,P) with L2-wavefunctions that
are gauge equivalent to linear quantum mechanics.

To simplify matters, we assume that the time evolution of a nonlinear quantum system
is still given by a local, (quasi-)homogeneous nonlinear Schrödinger equation. This leads
us to consider strictly local, projective generalized gauge transformations [20]

Nγt(ψt) = ψt exp (iγt ln |ψt|) , (21)

where γt is a time-dependent parameter. As these automorphisms of L2(R3, d3x) are
extremely similar to local linear gauge transformations of the second kind, they have been
called nonlinear gauge transformations [24] or gauge transformations of the third kind
[25].

Using these transformations, the evolution equations for ψ′
t := Nγt(ψt), where ψt is a

solution of the linear Schrödinger equation 15 are easily calculated:

i�∂tψt =
(
− �

2

2m
∆ + V

)
ψt − i

�
2γt
4m

R2[ψt]ψt −
�

2γt
4m

(R1[ψt] −R4[ψt])ψt

+
�

2γ2
t

16m
(2R2[ψt] −R5[ψt])ψt −

1
2
γ̇t ln |ψt|2 ψt ,

(22)

where

R1[ψ] :=
∇ · �J
ρ

, R2[ψ] :=
∆ρ
ρ
, R4[ψ] :=

�J · ∇ρ
ρ2

, R5[ψ] :=
∇ρ · ∇ρ
ρ2

. (23)

These equations contain typical functionals Rj of the Doebner–Goldin equations [7] as
well as the logarithmic term of Bialynicki-Birula–Mycielski [4]. Note that the form of
Eq. 22 does not immediately reveal its linearizability, the underlying linear structure of
this model is disguised.

In fact, through an iterated process of gauge generalization and gauge closure – similar
to the minimal coupling scheme of linear quantum mechanics – we could obtain a unified
family of nonlinear Schrödinger equations [25, 26] (R3[ψ] := �J 2

ρ2
):

i∂tψt = i
2∑
j=1

νjRj [ψt]ψt + µ0V +
5∑

k=1

µkRk[ψt]ψt + α1 ln |ψt|2 ψt . (24)

7 Final Remarks: Histories and Locality

In this contribution, we have sketched a framework for nonlinear quantum theories that
generalizes the usual linear one. We close with three remarks.
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The first is concerned with the definition of effects (and positional observables) in our
framework. Since we have used real-valued measures, our observables do not allow for
an idealization of measurements as in the linear theory, where a projection onto certain
parts of the spectrum is possible using the projection-valued measure. Combined subse-
quent measurements (histories) have to be described by quite complicated time evolutions.
However, in case of a linearizable quantum system, generalized projections

E := N ◦ E ◦N−1 , E ∈ Proj (H) (25)

onto nonlinear submanifolds of H can be realized as an idealization of measurements, and
yield a nonlinear realization of the standard quantum logic [12].

Secondly, we should emphasize that we have not been able to describe a complete and
satisfactory nonlinear theory that is not gauge equivalent to linear quantum mechanics.
One of the obstacles of quantum mechanical evolution equations like 24 is the difficulty of
the (global) Cauchy problem for partial differential equations. Whereas there is a solution
of the logarithmic nonlinear Schrödinger equation [27], there are only local solutions of
(non-linearizable) Doebner–Goldin equations [28].

Another problem of nonlinear Schrödinger equations in quantum mechanics is the lo-
cality of the corresponding quantum theory: EPR-like experiments could indeed lead to
superluminal communications, though not in the naive (and irrelevant) fashion described
in Section 2, relevant Gisin-effects [29] can occur if changes of the external conditions in
spatially separated regions have instantaneous effects. Since the nonlinear equations we
have considered here are separable, this effect can only occur for entangled initial wave-
functions, i.e.,

V (�x1, �x2) = V1(�x1) + V2(�x2) , ψ0(�x1, �x2) �= ϕ1(�x1)ϕ2(�x2) . (26)

For the Doebner-Goldin equations, for instance, such effects indeed occur (at least) for
certain subfamilies that are not Galilei invariant [29]; (higher order) calculations for the
Galilei invariant case and the logarithmic Schrödinger equation are not yet completed.

In the title of this contribution, we have put the prefix “non” in parentheses; the
remarks above may have indicated why. Finally, one might be forced to find different
ways of extending a nonlinear single-particle theory to many particles (see, e.g., [30, 31]).
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