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It is widely believed that special initial conditions must be imposed on any time-symmetric law if its
solutions are to exhibit behavior of any kind that defines an “arrow of time.”We show that this is not so. The
simplest nontrivial time-symmetric law that can be used to model a dynamically closed universe is the
Newtonian N-body problem with vanishing total energy and angular momentum. Because of special
properties of this system (likely to be shared by any law of the Universe), its typical solutions all divide at a
uniquely defined point into two halves. In each, a well-defined measure of shape complexity fluctuates but
grows irreversibly between rising bounds from that point. Structures that store dynamical information
are created as the complexity grows and act as “records.” Each solution can be viewed as having a single
past and two distinct futures emerging from it. Any internal observer must be in one half of the solution and
will only be aware of the records of one branch and deduce a unique past and future direction from
inspection of the available records.
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Many different phenomena in the Universe are time
asymmetric and define an arrow of time that points in the
same direction everywhere at all times [1]. Attempts to
explain how this arrow could arise from time-symmetric
laws often invoke a “past hypothesis”: the initial condition
with which the Universe came into existence must have
been very special. This is based on thermodynamic
reasoning, which seems to make a spontaneous emergence
of an arrow of time very unlikely. Although thermody-
namics works very well for subsystems, provided gravity is
not a dominant force, self-gravitating systems exhibit
“antithermodynamic” behavior that is not fully understood.
Since the Universe is the ultimate self-gravitating system
and since it cannot be treated as any subsystem, its behavior
may well confound thermodynamic expectations.
In this Letter, we present a gravitational model in which

this is the case. In all of its typical solutions, internal
observers will find a manifest arrow of time, the nature of
which we are able to precisely characterize. We emphasize
that in this Letter we make no claim to explain all the
various arrows of time. We are making just one point: an
arrow of time does arise in at least one case without any
special initial condition, which may therefore be dispen-
sable for all the arrows. In this connection, we mention that
in Ref. [2] (Sec. II), Carroll and Chen conjectured that the
thermodynamic arrow of time might have a time-symmetric
explanation through entropy arrows much like the com-
plexity and information arrows we find.
The model.—The Newtonian N-body problem with

vanishing total energy Etot ¼ 0, momentum Ptot ¼ 0,
and angular momentum Jtot ¼ 0 is a useful model of
the Universe in many respects [3]. As we show below,

these conditions match the intuition that only relational
degrees of freedom of the Universe should have physical
significance [4–6]. A total angular momentum Jtot and a
total energy Etot would define, respectively, an external
frame in which the Universe is rotating and an absolute
unit of time. Moreover the conditions Jtot ¼ Ptot ¼ 0 and
Etot ¼ 0 ensure scale invariance and are close analogues
of the Arnowitt-Deser-Misner constraints of Hamiltonian
general relativity (in the spatially closed case) [7]. These
properties, along with the attractivity of gravity, are
architectonic and likely to be shared by any fundamental
law of the Universe.
First support for our claim follows from the rigorous

results of Ref. [8] that asymptotically (as the Newtonian
time t → �∞) N-body solutions with Etot ¼ 0 and Jtot ¼ 0
typically “evaporate” into subsystems [sets of particles
with separations bounded by Oðt2=3Þ] whose centers of
mass separate linearly with t as t → �∞. (The separation
linear in t is, of course, a manifestation of Newton’s first
law in the asymptotic regime. Our result arises from the
combination of this behavior with gravity’s role in creating
subsystems that mostly then become stably bound.) Each
subsystem consists of individual particles and/or clusters
whose constituents remain close to each other; i.e., the
distances between constituent particles of a cluster are
bounded by a constant for all times. One finds in numerical
simulations that the bulk of the clusters are two-body
Kepler pairs whose motion asymptotes into elliptical
Keplerian motion. For reasons we next discuss, this
t → �∞ behavior occurs in all typical solutions on either
side of a uniquely defined point of minimum expansion, as
illustrated in Fig. 1.
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We identify and explain the arrows of time in theN-body
solutions through the way the shape degrees of freedom
(defined below) evolve and now explain why.
Elimination of scale.—Let ra denote the position of

particle a, pa its momentum, and ma its mass. We consider
the NewtonianN-body problemwith vanishing total energy
Etot ¼ 0:

Etot ¼
XN

a¼1

pa · pa

2ma
þ VNew; VNew ¼ −

X

a<b

mamb

rab
; ð1Þ

where rab≔jjra − rbjj. The dynamics generated by a
potential Vk homogeneous [A function fðx1;…; xnÞ is
homogeneous of degree k if fðαx1;…; αxnÞ ¼
αkfðx1;…; xnÞ for all α > 0.] of degree k satisfies dynami-
cal similarity [9]: the anisotropic rescaling

ra → αra; t → α1−k=2t; ð2Þ
of spatial distances and Newtonian time sends solutions
into solutions. Kepler’s third law is a consequence of this
property in the particular case k ¼ −1. Dynamical sim-
ilarity enables us to eliminate scale from the N-body
problem. As the overall scale of the system, it is natural
to use Ic:m:, the center-of-mass moment of inertia

Ic:m:≔
XN

a¼1

ma∥ra − rc:m:∥2 ¼
1

mtot

X

a<b

mambr2ab; ð3Þ

where rc:m: ¼ ð1=mtotÞ
P

amara are the center-of-mass
coordinates and mtot ¼

P
ama. We can express Ic:m: in

terms of all the remaining variables in the system by
solving the constraint Etot ¼ 0 for it [7]. This can be done
uniquely, as we now prove. Awell-known analytic result in
N-body theory is the Lagrange-Jacobi relation [7]

̈Ic:m: ¼ 4Ec:m: − 2ð2þ kÞVk; ð4Þ

which holds for any potential homogeneous of degree k.
Then, for the Newton potential VNew with k ¼ −1 and
Ec:m: ≥ 0, it follows that ̈Ic:m: > 0. This, in turn, means that
Ic:m: as a function of t is concave upwards, and (half) its
time derivative D, the dilatational momentum

D≔
XN

a¼1

rc:m:
a · pa

c:m:; pa
c:m: ¼ pa −

1

N

XN

b¼1

pb; ð5Þ

is monotonic. The monotonicity of D implies that Ic:m: is
U-shaped, with a unique minimum, corresponding to the
turning point of Fig. 1. At that point, D ¼ 0.
Since D is monotonic, it can be used as a physical time

variable τ. Evolution in τ is generated by a τ-dependent
Hamiltonian H [7]

HðτÞ ¼ ln

�XN

a¼1

πa · πa þ τ2
�
− lnðI1=2c:m:jVNewjÞ: ð6Þ

Here, πa are shape momenta, defined as

πa ¼
ffiffiffiffiffiffiffiffiffi
Ic:m:

ma

s

pa −Dσa; σa ¼
ffiffiffiffiffiffiffiffiffi
ma

Ic:m:

r
rc:m:
a ; ð7Þ

where σa are shape coordinates, which coordinatize pre-
shape space, the quotient of configuration space by global
translations and dilatations. One could also quotient by
rotations, to obtain shape space S, the true relational
configuration space [6,7]. However, this further quotient
is technically impractical and does not affect our argument
(as rotations commute with both the Hamiltonian and

FIG. 1. Three configurations at different Newtonian times t of a typical solution of theN-body problem with Jtot ¼ 0 and Etot ¼ 0. The
time symmetry of the law is reflected in qualitative symmetry about the central region in which the distribution of the particles is
maximally uniform. The direction of time indicated by the arrow of the time axis is purely conventional. Either choice of direction gives
contraction with structure destruction through uniformity at minimal size followed by expansion and structure formation, mainly in the
form of Kepler pairs (shown as loops). Internal observers must be on one side of the central region and would regard it as their past.

PRL 113, 181101 (2014) P HY S I CA L R EV I EW LE T T ER S week ending
31 OCTOBER 2014

181101-2



the dilatations). The shape momenta πa are the variables
canonically conjugate to σa [7].
Each point of S (a shape) is an objective state of the

system, freed of unphysical properties like the overall
orientation in absolute space, the position of the center
of mass of the Universe, and the total scale.
The Hamiltonian HðτÞ is a function of time τ, the shape

degrees of freedom, and their conjugate momenta. This
allows us to eliminate the evolution of scale from the
problem and express the dynamics purely on shape space.
The usual description with scale can be reconstructed from
the solution on shape space, for which it is necessary to
specify a nominal initial value of Ic:m: (due to dynamical
similarity, this value is completely conventional and
unmeasurable).
Complexity.—If we ignore the nominal scale of the

system, what characterizes best its overall state? It must
be some dimensionless measure of inhomogeneity that
distinguishes the central “turning point” shown in Fig. 1
from the states on either side. To our knowledge, the
objective criterion we now propose is new. There are two
simple lengths that characterize the system. One is the
root-mean-square length lrms:

lrms≔
1

mtot

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

a<b

mambr2ab
r

¼ 1

mtot
I1=2c:m:; ð8Þ

which is dominated by the largest rab and measures the
overall size of the system. The other is the mean harmonic
length lmhl:

1

lmhl
≔

1

m2
tot

X

r<a

mamb

rab
¼ 1

m2
tot
jVNewj: ð9Þ

This length is dominated by the smallest rab and measures
how close to each other are the tightest particle pairs. We
obtain an observable on shape space by taking the ratio of
these two lengths CS≔lrms=lmhl and call it the complexity
of the system. It is a good measure of nonuniformity or
clustering. Even for relatively small N, lrms [Eq. (8)]
changes little if two particles approach each other or even
coincide. In contrast, lmhl [Eq. (9)] is sensitive to any
clustering and tends to 0 if that happens. Moreover, while
CS grows with clustering, the numerical calculations of
Battye et al. [11] for the equal-mass case indicate that the
minima of CS for N ≈ 103–104 correspond to extraordi-
narily uniform (super-Poissonian) shapes. Figure 2 is a plot
of CS for a typical solution with N ¼ 1000: it shows an
obvious secular growth away from the point of minimal
expansion. (The graph showing conjectured behavior of the
Universe’s entropy in the bottom right corner of Fig. 2 in
Ref. [2] is very like our Fig. 2. In both cases, the most
uniform state of the Universe occurs symmetrically in the
middle.) We will show below how this can be understood as
an intrinsic property of the dynamics on shape space.

Notice that − lnðI1=2c:m:jVNewjÞ ¼ − lnCS in Eq. (6) plays
the role of the potential that attracts the system towards
more inhomogeneous shapes. Also, CS has minima and
saddle points, but no maximum: it is unbounded above.
This will prove crucial for an understanding of the system’s
behavior.
Scale acts as friction on shapes.—The dynamics on

shape space is described by a τ-dependent Hamiltonian (6).
Dimensional analysis allows us to eliminate this τ depend-
ence. Introduce λ ¼ log τ and divide the shape momenta by
D:ωa ¼ πa=D. These new momentaωa are dimensionless.
In these new variables, the evolution is generated by a time-
independent (autonomous) Hamiltonian [7]:

H0 ¼ log

�XN

a¼1

ωa · ωa þ 1

�
− logCS: ð10Þ

Now, however, the equations of motion

dσa
dλ

¼ ∂H0

∂ωa ;
dωa

dλ
¼ −

∂H0

∂σa − ωa; ð11Þ

have a noncanonical friction term −ωa which spontane-
ously dissipates the dimensionless momenta ωa. (Notice
that the change of variables that we performed allows us to
describe only half of each solution: the half before or after
D ¼ 0 [7]. Each typical solution of the N-body problem
maps into two solutions of the equations with friction.) This
and the fact that the potential − lnCS has no local minima
(only infinitely deep potential wells) explain why CS grows
secularly on either side of a unique minimum.
The arrow of time.—In the above, we have reformulated

the dynamics of theN-body problem as a dynamical system
on shape space whose motion is controlled by a potential
− lnCS and is subject to linear friction. This explains
intuitively why CS and therefore lnCS grows secularly: it is
essentially minus the potential energy of a system with
friction. Moreover, one can use the results of Ref. [8] to

FIG. 2. Numerical computation of the complexity CS vs
Newtonian time. This is the typical graph one obtains from a
simulation with N ¼ 1000 particles. There is clear linear growth
of CS on either side of the central “turning point,” where the
moment of inertia Ic:m: is minimal and the dilatational momentum
D vanishes.
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show that typically there is a lower bound on CS that grows
without bound for large jτj. (This result holds also for the
atypical solutions that reach Ic:m: ¼ 0. However, we have
to assume that at least one bound system forms, and no
particle escapes in finite times like in Xia’s solution [12].)
In the light of this circumstance, it is very natural to

identify an arrow of time with the direction in which
structure, measured in our case by CS, grows. We then have
a dynamically enforced scenario with one past (the mini-
mum of CS, which occurs near τ ¼ 0) and two futures. The
growth-of-complexity arrow always points away from the
unique past. In the atypical solutions that terminate with
Ic:m: ¼ 0, there is one past and only one future [7].
Growth of information.—Our evidence for the passage of

time is in locally stored records (including memory), which,
by agreeingwith each other, lead us to believe in a dynamical
law that has generated them from a unique past [13].
Complexity is a prerequisite for storage of information in

local subsystems and therefore the formation of records. We
nownote that anotionof local recordscanbefound inamodel
as simple as our Etot ¼ 0 and Jtot ¼ 0 N-body problem.
Recall that the system, for large jtj, breaks up typically

into disjoint subsystems drifting apart linearly in
Newtonian time t. These subsystems get more and more
isolated, and one can associate dynamically generated local
information with them. For this, we use the result of
Marchal and Saari [8] that as t → ∞ each subsystem J
develops asymptotically conserved quantities:

EJ ðtÞ ¼ EJ ð∞Þ þOðt−5=3Þ;
JJ ðtÞ ¼ JJ ð∞Þ þOðt−2=3Þ;

XJ ðtÞ=t ¼ VJ ð∞Þ þOðt−1=3Þ: ð12Þ
Here, EJ ðtÞ, JJ ðtÞ, andXJ ðtÞ are, respectively, the energy,
angular momentum, and distance of the subsystem from the
center of mass of the total system. The quantities EJ ð∞Þ,
JJ ð∞Þ, and VJ ð∞Þ are constants to which EJ ðtÞ, JJ ðtÞ,
and XJ ðtÞ=t asymptote. Let YðtÞ be any one of these.
Then, at any finite time t, the quantity jYðsÞ=Yð∞Þ−1j will
be smaller than 10−N ðY;tÞ for all s > t. Here, the integer
N ðY; tÞ is a measure of how much we know about Yð∞Þ
from observation of Y up to time t and can be defined as

N ðY; tÞ ¼ ⌊log10
�
Yð∞Þ
ΔYðtÞ

�

⌋; ð13Þ

where ΔYðtÞ ¼ maxs>tjYðsÞ − Yð∞Þj means the maxi-
mum oscillation [bounded by Eq. (12)] that the quantity
Y can attain after time t. Essentially, N ðY; tÞ is the
number of decimal digits of Yð∞Þ that we know after
time t (with the caveat that in a decimal representation,
1 ¼ 0.999 999…). It is easy to see how the bounds
[Eq. (12)] imply a monotonic growth of N ðY; tÞ. This
growth goes along with the growth of CS and for the same
reason; namely, the subsystems get more and more
isolated from each other.

Spontaneous geometrogenesis.—In the foregoing, we
eliminated from the dynamics both Newtonian time t and
scale (represented by Ic:m:). Although extraneous and
superfluous for the shape dynamics, it is interesting to
see how they emerge as effective concepts.
At late τ’s, typical solutions will contain bound sys-

tems, like Kepler pairs. These will be stably bound for a
long interval of τ (many of them forever). A Kepler pair is
characterized by an orbital period, a major axis, and a
direction of the angular momentum. As we just noted,
these quantities are almost constant, in the sense that they
fluctuate around constant values. So, each well-isolated
Kepler pair represents a physical rod and clock, and a
frame of reference (because it provides almost-inertial
axes). The motions of particles near a Kepler pair,
measured by the scale provided by the semimajor axis
and the clock provided by the orbital period, are therefore
very well approximated by Newton’s equations in the
frame defined by the direction of angular momentum and
orbital axes.
Thus, in the asymptotic regime, Newtonian physics and a

Newtonian framework of space and time in which it holds
both emerge spontaneously from a dynamics of shapes with
friction.
Extension to general relativity.—We do not propose

the N-body model as a phenomenological model for
cosmology; rather, it serves as a toy model to explain a
new mechanism. A good cosmological model requires
general relativity (GR), which, as we will argue in this
section, possesses the right properties to give rise to the
same mechanism. However, if the N-body problem was
interpreted literally as a (coarse-grained) cosmological
model (e.g., as a model for the evolution of the
distribution of galaxies), one would need to include a
positive cosmological constant. This does not, for the
observed value, disrupt bound systems and actually
enhances the growth of complexity as we defined it (it
increases the lrms factor without affecting the lmhl factor
significantly).
As we said, the architectonic features of Newtonian

gravity that, as we have shown, generate arrows of time, are
also present in GR. GR can be described in a conformally
invariant way through the theory called shape dynamics
[6,14]. This theory involves only conformally invariant
degrees of freedom, plus a single and global scale degree of
freedom, which can be identified with the total volume V of
a compact spatial slice of constant mean extrinsic curvature
in spacetime.
In shape dynamics, V plays the same role as Ic:m: in

the N-body problem. Its conjugate momentum, known as
York time [7], is monotonic like D and can be used as a
time variable. In this case, too, the dynamics is generated
by a time-dependent Hamiltonian that can be made time
independent by switching to dimensionless variables and a
logarithmic time.
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The usual GR description in terms of a spacetime metric
can be locally constructed from the conformally invariant
one by solving two elliptic equations, which locally admit
unique solutions. Those are the Lichnerowicz-York equa-
tion, giving a local spatial scale (a local version of Ic:m:),
and an equation giving proper time (the lapse of Arnowitt-
Deser-Misner gravity) [7].
Conclusions.—Our results are a proof of principle: all

the solutions of a time-symmetric dynamical law suited to
approximate our Universe have a strongly time-asymmetric
behavior for internal observers. So far as we know, this
conclusion is new. It follows from the exact Lagrange-
Jacobi relation (4) and special properties of the model’s
potential. Of course, it has long been known that gravity
causes clustering of an initially uniform matter distribution.
In our Universe, this is reflected above all in the formation
of galaxies and is the most striking macroscopic arrow.
Our novelty is that in all solutions of the N-body problem
the dynamical law guarantees, without any past hypothesis,
an epoch of relative uniformity out of which growth of
structure must be observed. We conclude that the origin
of time’s arrow is not necessarily to be sought in initial
conditions but rather in the structure of the law which
governs the Universe.
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