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On the nature of the electroweak phase transition in the two Higgs doublet model
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We perform a non-perturbative study of the electroweak phase transition (EWPT) in the two Higgs
doublet model (2HDM) by deriving a dimensionally-reduced high-temperature effective theory for
the model, and matching to known results for the phase diagram of the effective theory. We find
regions of the parameter space where the theory exhibits a strong first order phase transition. In
particular, our findings are consistent with previous perturbative results suggesting that the primary
signature of a strong EWPT in the 2HDM is mA0 > mH0 +mZ .

I. INTRODUCTION

Accounting for the observed baryon asymmetry in the
present universe is a major unsolved problem in cos-
mology. One of the leading candidates for a viable
mechanism, electroweak baryogenesis (EWBG) [1], sug-
gests that the asymmetry originates from the electroweak
phase transition (EWPT) in the early universe. Accord-
ing to the Sakharov conditions [2] the transition would
have to be of first order, accompanied by a sizable vio-
lation of CP-symmetry. Unfortunately, these conditions
immediately rule out EWBG within the minimal Stan-
dard Model (SM), as it was shown in the 1990’s that
the SM EWPT is a crossover [3–6]. Furthermore, CP-
violating effects within the SM are heavily suppressed
already at temperatures of order 1 GeV, let alone at the
EW transition temperature of O(150 GeV) [7–9].

Independently of the question of the baryon asymme-
try of the universe, a host of beyond the Standard Model
(BSM) theories have been proposed to solve open prob-
lems in physics. Determining whether BSM theories can
produce a first order EWPT and thus facilitate EWBG is
nontrivial: quantitatively reliable conclusions about the
nature of the phase transition typically require a non-
perturbative—in practice lattice field theory—approach,
which has been deemed unmanageable for large param-
eter spaces. Because of this difficulty, analyses based
on the finite-temperature effective potential have become
the standard approach [10–16]. Such studies can, how-
ever, have considerable uncertainties: in one study [17],
an error in excess of 10% in the critical temperature
was seen comparing the 1-loop effective potential to non-
perturbative results. The order of the phase transition
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can also differ.
One fruitful approach is the derivation of three-

dimensional high-temperature effective theories via di-
mensional reduction (DR). This method was originally
applied to the SM in Ref. [18], and non-perturbative sim-
ulations were carried out in [3–5]; unfortunately these did
not reveal the potential for a first order EWPT (see how-
ever [19]). Recently, the same method was applied to the
SM accompanied by a real singlet [20].

In this paper, we turn our attention to one of the most
widely studied BSM models, namely the two Higgs dou-
blet model (2HDM), where the SM is augmented with an
additional Higgs doublet (see Ref. [21] for a review, and
Refs. [22–24] for earlier work on DR in the 2HDM). We
derive a three-dimensional high-T effective theory, study-
ing a region of parameter space where the effective theory
has the same form as that of the Standard Model, similar
to Ref. [25]. This reduces the problem of determining the
phase diagram of the theory to mapping its parameter
space to that of the SM effective theory. Equipped with
the analysis of [3–5], we can discover interesting and phe-
nomenologically viable regions of parameter space where
the EWPT is first order. Our work corroborates key
findings of perturbative studies of EWBG in the 2HDM.

II. DIMENSIONAL REDUCTION OF THE
2HDM

The 2HDM is an extension of the SM featuring an
additional Higgs doublet. Our four-dimensional original
theory can therefore be described by the schematic action

S =

∫
d4x [Lgauge + Lfermion + Lscalar + LYukawa] , (1)

suppressing the presence of counterterm and ghost contri-
butions. The field content of the theory includes SU(3)c,
SU(2)L and U(1)Y gauge fields, two scalar doublets φ1

and φ2, as well as all fermions present in the SM. In our
present treatment, we will consider only one quark flavor
in the Yukawa sector, namely the top, since it has the
largest coupling to the Higgs field. The top quark cou-
ples to one doublet only (by convention φ2), and we have
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not yet committed to a specific type of 2HDM (Type I
or II).

We will content ourselves with explicitly writing down
only the BSM part of our model, i.e. the extended scalar
sector. This has Lagrangian

Lscalar = (Dµφ1)†(Dµφ1) + (Dµφ2)†(Dµφ2) + V (φ1, φ2),

(2)

with usual covariant derivative Dµ. The potential has
the form

V (φ1, φ2) = µ2
11φ
†
1φ1 + µ2

22φ
†
2φ2 + µ2

12φ
†
1φ2 + µ2∗

12φ
†
2φ1

+ λ1(φ†1φ1)2 + λ2(φ†2φ2)2 + λ3(φ†1φ1)(φ†2φ2)

+ λ4(φ†1φ2)(φ†2φ1) +
λ5

2
(φ†1φ2)2 +

λ∗5
2

(φ†2φ1)2.

(3)

In general, C(P) symmetry is broken when λ5 or µ2
12 are

complex; we have discarded so-called hard CP-breaking
terms, often parametrised by λ6,7. For a detailed discus-
sion see Refs. [21, 26].

The first three-dimensional effective theory, obtained
by integrating out the hard scale πT from the theory
(see e.g. Ref. [20] for details of the general procedure),
has schematic form

S =

∫
d3x

[
L(3)

gauge + L(3)
scalar + L(3)

temporal

]
, (4)

where we have again suppressed the ghost and countert-
erm contributions. The field content is now SU(2)L and
U(1)Y gauge fields; two Higgs doublets; and temporal
scalar fields Aa0 , B0, C

α
0 . The fermions are integrated out

and the SU(3)c gauge fields can be neglected [20]. The
fundamental scalar sector remains similar to the full the-
ory,

L(3)
scalar = (Drφ1)†(Drφ1) + (Drφ2)†(Drφ2) + V (φ1, φ2),

(5)

where r = 1, 2, 3 is summed over. In the second step of
DR, the heavy temporal scalar fields are integrated out.

The final step is to notice that φ1 and φ2 mix when
µ2

12 6= 0, and near the phase transition one mass eigen-
value will generically be small while the other is large.
This observation—specific to the 2HDM—allows us to
integrate out the heavy mode and study the phase tran-
sition with only one scalar field coupled to the gauge
fields. Our final effective theory therefore becomes

S =

∫
d3x

[
L̂(3)

gauge + L̂(3)
scalar

]
, (6)

with

L̂(3)
scalar = (Drφ)†(Drφ) + µ̂2

3φ
†φ+ λ̂3(φ†φ)2. (7)

Now φ is the remaining light φ1-φ2 mixing mode, and

the parameters of the theory are µ̂2
3, λ̂3 and the 3-d

gauge couplings ĝ′3 and ĝ3 for the U(1)Y and SU(2)L

interactions, respectively. As in the original analysis of
Refs. [3, 18], we omit all non-perturbative effects related
to the U(1)Y gauge field.

The main task of the DR process is to perturbatively
match the parameters of the original 4-d theory, Eq. (2),
to those of the final effective theory, Eq. (7). This is
accomplished by demanding that the effective theory re-
produces the static Green’s functions of the original the-
ory at large distances R � 1/T . This, in turn, results
in a number of matching relations from which the effec-
tive theory parameters are solved. This procedure will
be presented in Ref. [26]; the results are summarised in
the Appendix.

As discussed above, the effective theory of Eq. (7) has
the same form as that of the SM, studied in Refs. [3–5].
This allows us to adopt existing numerical results for the
strength of the phase transition, and determine the form
of the phase diagram through our matching procedure
alone.

The validity of the DR can be quantified by estimating
the effect of neglected dimension-6 operators. While it
is difficult to comprehensively evaluate their effect, one
can evaluate the change in the vacuum expectation value
(vev) of the Higgs field in the effective theory caused
by the (φ†φ)3 operators. In Eq. (201) of Ref. [18], it
was shown that in the SM the dominant neglected con-
tribution comes from the top quark; its effect is about
one percent. We therefore estimate the effect of new
BSM contributions to these operators by comparing their
magnitude to the contribution from the top quark [see
Eqs. (A34,A35) in the Appendix]. This is only a rough
estimate: we consider only contributions coming from
the first step of DR when the superheavy modes are
integrated out. Furthermore, we do not consider other
dimension-6 operators or the final (φ†φ)3 operators ap-
pearing in the effective theory at the light scale after
integrating out the heavy mode in the diagonal basis.

Finally, although the parameter matching is per-
turbative, the study of the 3-d phase diagram is
non-perturbative and—within the limitations of lattice
methods—exact. Hence, the existence and strength of
a phase transition is assured. We emphasise that the
main advantage of our approach lies in a proper han-
dling of the infrared physics, which causes trouble in
traditional perturbative studies of the EWPT. Resum-
mations are performed when the superheavy and heavy
scales are integrated out perturbatively, and the prob-
lematic light modes are treated non-perturbatively on
the lattice. However, the mapping to precise values of
the 4-d parameters, where this phase transition occurs in
the 2HDM, is limited by the accuracy of the perturba-
tive truncation. We organise the expansion in terms of
the gauge coupling g, and perform the DR up to O(g4).
Thus the calculation is carried out at the one-loop level
for quartic couplings, and the two-loop level for mass
parameters. This exceeds the accuracy used in the per-
turbative calculations of (for instance) Ref. [27] (but see
Ref. [28] for a recent two-loop perturbative calculation in
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the inert doublet model).

III. SCANNING THE PARAMETER SPACE

The phase diagram of the dimensionally-reduced the-
ory can be mapped using the dimensionless parameters

x ≡ λ̂3/ĝ
2
3 , y ≡ µ̂2

3/ĝ
4
3 . It is known that within this

theory the EWPT occurs near y ' 0; the Higgs mass pa-
rameter becomes negative at this point. In Refs. [3–5], it
was found that the transition is first order for x . 0.11,
and strongly so for x . 0.04.

We therefore search for areas of 2HDM parameter
space that map onto regions of the 3-d effective theory
with x < 0.11 and y ' 0. Since there are ten real pa-
rameters in the 4-d theory and only three in the 3-d one,
inverting the mapping process is not unique. We need to
perform scans of the 2HDM parameter space, where we
will be guided by the results of Ref. [29] that combine
phenomenological constraints with a one-loop resummed
perturbative determination of the effective potential. An-
other recent treatment is found in Refs. [30, 31].

A uniform scan through a 10-dimensional parameter
space is computationally expensive; we must therefore
make some simplifying assumptions. We take all pa-
rameters of the 2HDM to be real, setting Im(λ5) = 0,
Im(µ2

12) = 0. This eliminates extra CP violation in the
model, which would be crucial for baryogenesis. How-
ever, the effect of these imaginary parts on the order and
strength of the transition is expected to be negligible;
the CP-violating phase must necessarily be small due to
EDM constraints [32–34].

We then reparametrise the model following Ref. [29],
applying tree-level relations between the MS parameters
and physical quantities. The masses of the CP-even
scalars are denoted by mh = 125 GeV and mH0

; that
of the CP-odd scalar by mA0

; and that of the charged
scalar by mH± . We also employ two angles α and β: α
parametrises mixing between the CP-even states, while
β is related to the ratio of the vevs tan(β) ≡ ν2

ν1
. Here,

ν1 and ν2 are the vevs for φ1 and φ2 respectively with
ν2

1 + ν2
2 = ν2 and ν = 246 GeV. Finally, there is the

squared mass scale M2 ≡ µ2(tan(β) + 1/ tan(β)), where
we treat µ2 ≡ −Reµ2

12 as an input parameter. The rela-
tions between the physical states and gauge eigenstates
can be obtained from Ref. [29].

We also fix mH± = mA0
, since EW precision tests

require the mass of the charged Higgs to be roughly de-
generate with either H0 or A0 [35, 36]. Furthermore, we
work in the alignment limit by setting cos(β−α) = 0. In
this limit, the CP-even scalar h couples to SM particles
exactly like the SM Higgs. We investigate relatively few
values for tan(β), whereas we perform a more exhaustive
scan in a three-dimensional parameter space spanned by
mH0

, mA0
, and µ2. At each point, we require that tree-

level stability and unitary constraints be satisfied; for de-
tails, see Ref. [26]. Note that Ref. [27] imposes stronger
conditions than these, so we will overestimate the num-

ber of physical points. Furthermore, for the DR to be
valid, the tree-level mass parameters µ11, µ22 and µ12

should be comparable to the Debye mass mD ∼ gT near
the phase transition. This sets an upper bound for the
input parameter µ . 200 GeV. Finally, we verify that
in the effective theory the other doublet really is heavy
near the phase transition, so it is justified to integrate it
out.

IV. RESULTS

Following our scanning protocol outlined above, we fix
tan(β) and scan in the two scalar masses mH0 and mA0

between 137.5 and 562.5 GeV at spacings of 6.25 GeV; a
total of 4624 points. A dense scan in µ is then carried out
for each pair, from 10 to 150 GeV at intervals of 2.5 GeV
for a total of 56 values. In all, each of our fixed-tan(β)
plots results from scanning approximately 260 000 points.
The upper limit on µ is chosen to ensure that the DR is
valid, as explained above.

We first check whether each point is physical, accord-
ing to our criteria. If so, we then perform the DR for
evenly-spaced temperatures between 80 and 200 GeV, at
intervals of 20 GeV. This allows us to find the value of x
when y = 0—on the critical line—by interpolation. We
then use x to characterise the phase transition.

We take 0.0 < x < 0.11 as the indicator of a first-
order EWPT. The upper limit comes from previous non-
perturbative studies. At small but positive x, the DR no
longer works well, and at negative x it fails as the po-
tential of the dimensionally reduced system is no longer
bounded from below; one must include dimension-6 op-
erators in the three-dimensional theory.

Combining different values of µ, we indicate the rel-
ative number of points with a first-order phase transi-
tion as a heat map in Fig. 1, for three separate values of
tan(β). The majority of our points reside in the region
mA0 > mH0 + mZ . This was claimed in Refs. [27, 29]
as the key signature of a first order phase transition (but
see Refs. [30, 31]). However, at small tan(β) we also see a
considerable number of points in regions where this mass
hierarchy does not hold.

In Fig. 2 we show a breakdown of the heatmap plot
with fixed tan(β) = 2.0 for two values of µ. An estima-
tion of the effect of the neglected 6-dimensional operators
is included. Generally, decreasing values of x correspond
to increasing importance of dimension-6 terms; when the
effect of these terms becomes large, the DR also breaks
down. These plots also show how the lower first-order
region disappears as µ increases. The lower region ex-
tends further into the domain for which the dimension-6
operators become important. We therefore have greater
confidence in our results for points in the upper region.

Experimental constraints on the 2HDM parameter
space depend strongly on the way in which fermions cou-
ple to the Higgs doublets. With the exception of the top
quark, other Yukawa couplings have little effect on our
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Figure 1. Heat maps with fixed tan(β), showing regions of first order EWPT (0 < x < 0.11 and y ' 0) in the alignment limit.
The dotted lines correspond to mA0 = mH0 and mA0 = mH0 ±mZ .
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Figure 2. Slices with two different values of µ, with fixed
tan(β) = 2.0. The validity of the DR is estimated by showing
the relative effect of a neglected dimension-6 operator. The
white regions are either unphysical, or there is no transition.

EWPT analysis, and we have not yet had to indicate
whether we are considering Type I (all quarks couple to
φ2) or Type II (up-type quarks couple to φ2, down-type
to φ1). The most stringent constraints come from flavour
physics, where B-decays set the bound mH± & 580 GeV

for the charged Higgs mass in the Type II 2HDM [38].
Assuming that m±H is degenerate with mA0

in accordance
with EW precision tests, this rules out our regions of first-
order EWPT in Type II, but no such lower bound exists
in Type I for tanβ ≥ 2 [38, 39].

Additional restrictions come from direct searches for
neutral Higgses at the LHC [40]. For Type I, the H0 →
ττ cross section is suppressed by cot2 β, and our choices
of tanβ are within current experimental bounds. Finally,
we have verified that the mass range we scan in is allowed
by measurements of the h → γγ decay [41], as well as
the relatively recent search for A0 → Zh processes [42].
Having not scanned in the hidden-Higgs region where
constraints from charged-scalar searches become impor-
tant [43], we conclude that our first-order EWPT regions
are currently not ruled out by experiments if a Type I
2HDM is assumed.

V. DISCUSSION

It is a shortcoming of present-day particle cosmology
that it is still impossible to reliably determine the nature
and strength of the EWPT for a given BSM scenario.
This information would be valuable not only for EWBG,
but also in the context of gravitational wave physics, as a
first-order EWPT would leave an imprint in the sensitiv-
ity range of the future LISA mission and other proposed
space-based gravitational-wave detectors [37].

We have taken a step towards tackling this challenge,
studying the mapping of the phase diagram of one vi-
able BSM theory, the 2HDM. Our results concern the
EWPT in the alignment limit cos(β −α) = 0. Our work
so far supports the idea that the primary signature of
a strong first order transition in this theory is indeed
mA0

> mH0
+mZ , as suggested by Refs. [27, 29].

We perform a perturbative construction of an effec-
tive 3D theory, going beyond previous DR studies in the
2HDM. We then apply non-perturbative results in our
scan of the parameter space. Our procedure avoids the
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IR problems that usually plague perturbative expansions
at high T .

The techniques discussed in this paper can be applied,
with suitable modifications, to a host of other models
where a substantial region of parameter space can be
mapped onto the three-dimensional theory of the mini-
mal Standard Model. In the 2HDM, nearly the entire pa-
rameter space is accessible in this way. For other models,
further simulations will be required to fully explore the
phenomenologically interesting parameter space.

In the future, our aim is to perform a thorough com-
parison of perturbative and non-perturbative results in
this model. Similar projects to study the EWPT and
benchmark the accuracy of perturbation theory are al-
ready underway in the Standard Model augmented by a
real singlet [44] or triplet field [45]; the EWPT has been

perturbatively analysed for the former in Refs. [46, 47],
and for the latter in Ref. [48].
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Appendix

Appendix A: Dimensional reduction of 2HDM

In this Appendix we collect the matching relations between the full four-dimensional theory and effective theories.
A detailed derivation can be found in Ref. [26].

1. Three-dimensional effective theories

We denote the fields of the effective theories with the same symbols as those of the four-dimensional theory,
even though their normalisation is different and will affect the mapping between full and effective theories. These
normalisations between 4-d and 3-d fields have been listed below.

The schematic form of classical Lagrangian density of the effective theory was given in Eq. (4) of the main paper.
The temporal part reads

L(3)
temporal =

1

2
(DrA

a
0)2 +

1

2
m2
DA

a
0A

a
0 +

1

2
(∂rB0)2 +

1

2
m′2DB

2
0 +

1

4
κ1(Aa0A

a
0)2 +

1

4
κ2B

4
0

+
1

4
κ3A

a
0A

a
0B

2
0 + h1φ

†
1φ1A

a
0A

a
0 + h2φ

†
1φ1B

2
0 + h3B0φ

†
1
~A0 · ~τφ1 + h4φ

†
2φ2A

a
0A

a
0

+ h5φ
†
2φ2B

2
0 + h6B0φ

†
2
~A0 · ~τφ2 +

1

2
(∂rC

α
0 )2 +

1

2
m′′2D C

α
0 C

α
0 + ω3C

α
0 C

α
0 φ
†
2φ2. (A1)

Here the covariant derivative of an isospin triplet reads DrA
a
0 = ∂rA

a
0 + g3ε

abcAbrA
c
0, and for the temporal gluon Cα0

ordinary derivative is used instead of covariant derivative as gluons are discarded for only contributing at a higher
order [20].

After the heavy temporal scalars have been integrated out, their effects are encoded by the parameters and fields
of a new theory where the parameters are denoted with a bar as ḡ3, ḡ

′
3, µ̄

2
11,3 etc. In this theory, the phase transition

takes place close to a point where the mass matrix has zero eigenvalue, and then generically in the diagonal basis
the other mass parameter is heavy. By performing a unitary transformation, one can diagonalise the scalar potential.

Denoting Ω ≡
√

(µ̄2
11,3 − µ̄2

22,3)2 + 4µ̄2∗
12,3µ̄

2
12,3, this transformation reads

(
φ1

φ2

)
≡
(
α β
γ δ

)(
θ
φ

)
, (A2)
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where

α ≡ 2√
4 +

∣∣∣ (µ̄2
22,3−µ̄2

11,3)+Ω

µ̄2∗
12,3

∣∣∣2 , β ≡ (µ̄2
11,3 − µ̄2

22,3 − Ω∗)

µ̄2
12,3

√
4 +

∣∣∣ (µ̄2
22,3−µ̄2

11,3)+Ω

µ̄2∗
12,3

∣∣∣2
γ ≡ 2√

4 +
∣∣∣−(µ̄2

22,3−µ̄2
11,3)+Ω

µ̄2∗
12,3

∣∣∣2 , δ ≡ (µ̄2
11,3 − µ̄2

22,3 + Ω∗)

µ̄2
12,3

√
4 +

∣∣∣−(µ̄2
22,3−µ̄2

11,3)+Ω

µ̄2∗
12,3

∣∣∣2 . (A3)

The mass parameters in the diagonal basis read

µ̃2
φ =

1

2
(µ̄2

11,3 + µ̄2
22,3 − Ω), µ̃2

θ =
1

2
(µ̄2

11,3 + µ̄2
22,3 + Ω). (A4)

Generally µ̃2
θ is heavy when µ̃2

φ is light, and therefore the field θ can be integrated out. The scalar self-couplings in
the diagonal basis are given by 

λ̃1

λ̃2

λ̃3

λ̃4

λ̃5/2

λ̃6

λ̃7


= M ·


λ̄1,3

λ̄2,3

λ̄3,3

λ̄4,3

λ̄5,3/2
λ̄∗5,3/2

 , (A5)

where

M ≡



|β|4 |δ|4 |β|2|δ|2 |β|2|δ|2 (β∗δ)2 (βδ∗)2

|α|4 |γ|4 |α|2|γ|2 |α|2|γ|2 (α∗γ)2 (αγ∗)2

2|α|2|β|2 2|γ|2|δ|2 |α|2|δ|2 + |β|2|γ|2 2 Re(αβ∗γ∗δ) 2α∗β∗γδ 2αβγ∗δ∗

2|α|2|β|2 2|γ|2|δ|2 2 Re(αβ∗γ∗δ) |α|2|δ|2 + |β|2|γ|2 2α∗β∗γδ 2αβγ∗δ∗

(αβ∗)2 (γδ∗)2 αβ∗γδ∗ αβ∗γδ∗ (β∗γ)2 (αδ∗)2

2|β|2αβ∗ 2|δ|2γδ∗ β∗δ∗(βγ + αδ) β∗δ∗(βγ + αδ) 2β∗γβ∗δ 2αβδ∗δ∗

2|α|2α∗β 2|γ|2γ∗δ α∗γ∗(βγ + αδ) α∗γ∗(βγ + αδ) 2α∗γα∗δ 2αβγ∗γ∗


. (A6)

The scalar potential in the diagonal basis reads

V (φ, θ) = µ̃2
φφ
†φ+ µ̃2

θθ
†θ + λ̃1(φ†φ)2 + λ̃2(θ†θ)2 + λ̃3(φ†φ)(θ†θ) + λ̃4(φ†θ)(θ†φ)

+
λ̃5

2
(φ†θ)2 +

λ̃∗5
2

(θ†φ)2 + λ̃6(φ†φ)(φ†θ) + λ̃∗6(φ†φ)(θ†φ) + λ̃7(θ†θ)(θ†φ) + λ̃∗7(θ†θ)(φ†θ), (A7)

where φ and θ are light and heavy fields, respectively.
When the heavy doublet θ has been integrated out, the final effective theory is same as in that of the SM, as given

in Eq. (6) of the main paper.

2. Matching relations and normalisations of fields

Our calculations are carried out in the MS scheme. We use the following notation:

Nd = 2,

Lb ≡ 2 ln

(
Λ

T

)
− 2[ln(4π)− γ], (A8)

Lf ≡ Lb + 4 ln 2,

c ≡ 1

2

(
ln

(
8π

9

)
+
ζ ′(2)

ζ(2)
− 2γ

)
,
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where Λ is the renormalisation scale of the 4-d theory and γ is the Euler-Mascheroni constant.
The normalisations relating three- and four-dimensional fields read

A2
3d,0 =

A2
4d,0

T

{
1 +

g2

(4π)2

[
Nd − 26

6
Lb +

1

3
(8 +Nd) +

4Nf
3

(Lf − 1)

]}
,

A2
3d,r =

A2
4d,r

T

[
1 +

g2

(4π)2

(
Nd − 26

6
Lb −

2

3
+

4Nf
3
Lf

)]
,

B2
3d,0 =

B2
4d,0

T

{
1 +

g′2

(4π)2

[
Nd

(
Lb
6

+
1

3

)
+

20Nf
9

(Lf − 1)

]}
,

B2
3d,r =

B2
4d,r

T

[
1 +

g′2

(4π)2

(
Nd

Lb
6

+
20Nf

9
Lf

)]
, (A9)

(
φ†1φ1

)
3d

=

(
φ†1φ1

)
4d

T

[
1− 1

(4π)2

(
3

4
(3g2 + g′

2
)Lb

)]
,

(
φ†2φ2

)
3d

=

(
φ†2φ2

)
4d

T

[
1− 1

(4π)2

(
3

4
(3g2 + g′

2
)Lb − 3g2

Y Lf

)]
,

(
φ†1φ2

)
3d

=

(
φ†1φ2

)
4d

T

[
1− 1

(4π)2

(
3

4
(3g2 + g′

2
)Lb −

3

2
g2
Y Lf

)]
.

For dimensional reduction, the required ingredients include matching relations between the 4-d and 3-d theories, one-
loop β-functions (to make the matching relations renormalisation scale independent) and finally the relations between
MS-parameters and physical quantities.

We use the tree-level relations, despite the fact that for consistent O(g4) accuracy one should use the one-loop
corrected relations. This would require performing one-loop vacuum renormalisation of the physical quantities. This
is a non-trivial task, and is left for the future. In the special case of the inert doublet model, the one-loop vacuum
renormalisation can be found in Ref. [28]. Below we list all needed matching relations, while β-functions and relations
of MS-parameters and physical quantities can be found in Ref. [26] with detailed derivations and explicit, step-by-step
intermediate results.

a. Integration over superheavy scale

A full O(g4)-accurate dimensional reduction requires the evaluation of the mass parameters at two-loop and cou-
plings at one-loop order. The results are listed below.

m2
D = g2T 2

(
4 +Nd

6
+
Nf
3

)
, (A10)

m′2D = g′2T 2

(
Nd
6

+
5Nf

9

)
, (A11)

m′′2D = g2
sT

2

(
1 +

Nf
6

)
, (A12)

g2
3 = g2(Λ)T

[
1 +

g2

(4π)2

(
44−Nd

6
Lb +

2

3
− 4Nf

3
Lf

)]
, (A13)

g′23 = g′2(Λ)T

[
1− g′2

(4π)2

(
Nd
6
Lb +

20Nf
9

Lf

)]
, (A14)

κ1 = T
g4

16π2

16 +Nd − 4Nf
3

, (A15)

κ2 = T
g′4

16π2

(
Nd
3
− 380

81
Nf

)
, (A16)

κ3 = T
g2g′2

16π2

(
2Nd −

8

3
Nf

)
, (A17)
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h1 =
g2(Λ)T

4

(
1 +

1

(4π)2

{[
44−Nd

6
Lb +

53

6
− Nd

3
− 4Nf

3
(Lf − 1)

]
g2 +

g′2

2

+ 12λ1 + 2(2λ3 + λ4)

})
, (A18)

h2 =
g′2(Λ)T

4

(
1 +

1

(4π)2

{
3g2

2
+

[
1

2
− Nd

6

(
2 + Lb

)
− 20Nf

9
(Lf − 1)

]
g′2

+ 12λ1 + 2(2λ3 + λ4)

})
, (A19)

h3 =
g(Λ)g′(Λ)T

2

{
1 +

1

(4π)2

[
− 5 +Nd

6
g2 +

3−Nd
6

g′2 + Lb

(
44−Nd

12
g2 − Nd

12
g′2
)

−Nf (Lf − 1)

(
2

3
g2 +

10

9
g′2
)

+ 4λ1 + 2λ4

]}
, (A20)

h4 =
g2(Λ)T

4

(
1 +

1

(4π)2

{[
44−Nd

6
Lb +

53

6
− Nd

3
− 4Nf

3
(Lf − 1)

]
g2 +

g′2

2
− 6g2

Y (A21)

+ 12λ2 + 2(2λ3 + λ4)

})
, (A22)

h5 =
g′2(Λ)T

4

(
1 +

1

(4π)2

{
3g2

2
+

[
1

2
− Nd

6

(
2 + Lb

)
− 20Nf

9
(Lf − 1)

]
g′2 − 34

3
g2
Y

+ 12λ2 + 2(2λ3 + λ4)

})
, (A23)

h6 =
g(Λ)g′(Λ)T

2

{
1 +

1

(4π)2

[
− 5 +Nd

6
g2 +

3−Nd
6

g′2 + Lb

(
44−Nd

12
g2 − Nd

12
g′2
)

−Nf (Lf − 1)

(
2

3
g2 +

10

9
g′2
)

+ 2g2
Y + 4λ2 + 2λ4

]}
, (A24)

ω3 = − 2T

16π2
g2
sg

2
Y , (A25)

λ1,3 = T

{
λ1(Λ) +

1

(4π)2

[
1

8

(
3g4 + g′

4
+ 2g2g′

2
)

− Lb
(

3

16

(
3g4 + g′

4
+ 2g2g′

2
)

+ λ2
3 + λ3λ4 +

1

2
λ2

4 +
1

2
|λ5|2 −

3

2

(
3g2 + g′

2 − 8λ1

)
λ1

)]}
, (A26)

λ2,3 = T

{
λ2(Λ) +

1

(4π)2

[
1

8

(
3g4 + g′

4
+ 2g2g′

2
)

+ 3Lf

(
g4
Y − 2λ2g

2
Y

)
− Lb

(
3

16

(
3g4 + g′

4
+ 2g2g′

2
)

+ λ2
3 + λ3λ4 +

1

2
λ2

4 +
1

2
|λ5|2 −

3

2

(
3g2 + g′

2 − 8λ2

)
λ2

)]}
, (A27)

λ3,3 = T

{
λ3(Λ) +

1

(4π)2

[
1

4

(
3g4 + g′

4 − 2g2g′
2
)
− 3Lfλ3g

2
Y

− Lb
(

3

8

(
3g4 + g′

4 − 2g2g′
2
)

+ 2(λ1 + λ2)(3λ3 + λ4) + 2λ2
3 + λ2

4 + |λ5|2 −
3

2

(
3g2 + g′

2
)
λ3

)]}
,

(A28)

λ4,3 = T

{
λ4(Λ) +

1

(4π)2

[
g2g′

2 − 3Lfλ4g
2
Y

− Lb
(

3

2
g2g′

2
+ 2(λ1 + λ2)λ4 + 2λ2

4 + 4λ3λ4 + 4|λ5|2 −
3

2

(
3g2 + g′

2
)
λ4

)]}
(A29)
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and λ5,3 = T

{
λ5(Λ) +

1

(4π)2

[
− 3Lfλ5g

2
Y − Lb

(
2(λ1 + λ2 + 2λ3 + 3λ4)λ5 −

3

2

(
3g2 + g′

2
)
λ5

)]}
. (A30)

We emphasise that these relations are independent of the four dimensional theory renormalisation scale Λ, which can
be seen by applying the β-functions to the tree-level terms. This serves as a crosscheck of the correctness of our
calculation. These relations have been calculated previously in Ref. [22], with the restriction of λ5 being real rather
than complex. We have corrected two minor errors in the expressions for λ4,3 and λ5,3 for the terms involving λ5.

In the Standard Model, the O(g4) result for the 3-d scalar mass parameter reads:(
µ2

22,3

)
SM

=µ2
22(Λ) +

T 2

16

(
3g2(Λ) + g′

2
(Λ) + 4g2

Y (Λ) + 8λ2(Λ)
)

+
1

16π2

{
µ2

22

((3

4
(3g2 + g′

2
)− 6λ2

)
Lb − 3g2

Y Lf

)
+ T 2

(
167

96
g4 +

1

288
g′

4 − 3

16
g2g′

2
+

1

4
λ2(3g2 + g′

2
)

+ Lb

(17

16
g4 − 5

48
g′

4 − 3

16
g2g′

2
+

3

4
λ2(3g2 + g′

2
)− 6λ2

2

)
+

1

T 2

(
c+ ln(

3T

Λ3d
)
)(39

16
g4

3 + 12g2
3h4 − 6h2

4 + 9g2
3λ2,3 − 12λ2

2,3

− 5

16
g′

4
3 −

9

8
g2

3g
′2
3 − 2h2

5 − 3h2
6 + 3g′

2
3λ2,3

)
− g2

Y

( 3

16
g2 +

11

48
g′

2
+ 2g2

s

)
+ (

1

12
g4 +

5

108
g′

4
)Nf

+ Lf

(
g2
Y

( 9

16
g2 +

17

48
g′

2
+ 2g2

s − 3λ2

)
+

3

8
g4
Y − (

1

4
g4 +

5

36
g′

4
)Nf

)
+ ln(2)

(
g2
Y

(
− 21

8
g2 − 47

72
g′

2
+

8

3
g2
s + 9λ2

)
− 3

2
g4
Y + (

3

2
g4 +

5

6
g′

4
)Nf

))}
. (A31)

This result can be found also in Ref. [18], apart from the two-loop contributions involving g′, as in that paper these

were assumed to scale as g′ ∼ g 3
2 .

In the 2HDM, the 3-d scalar mass parameters read:(
µ2

22,3

)
2HDM

=
(
µ2

22,3

)
SM

+
T 2

12

(
2λ3(Λ) + λ4(Λ)

)
+

1

16π2

{
µ2

11

(
− Lb(2λ3 + λ4)

)
+ T 2

(
5

48
g4 +

5

144
g′

4
+

1

24
(3g2 + g′

2
)(2λ3 + λ4)

+
1

T 2

(
c+ ln

( 3T

Λ3d

))(
− 1

8
(3g4

3 + g′
4
3) +

1

2
(3g2

3 + g′
2
3)(2λ3,3 + λ4,3)

− 2(λ2
3,3 + λ3,3λ4,3 + λ2

4,3)− 3|λ5,3|2
)

+ Lb

(
− 7

32
g4 − 7

96
g′

4 − 1

2
(λ1 + λ2)(2λ3 + λ4)

− 5

6
λ2

3 −
7

12
λ2

4 −
5

6
λ3λ4 −

3

4
|λ5|2 +

1

8
(3g2 + g′

2
)
(
2λ3 + λ4

))
+
(
− 1

4
g2
Y

(
2λ3 + λ4

))
Lf

)}
,

and

µ2
11,3 =µ2

11(Λ) +
T 2

16

(
3g2(Λ) + g′

2
(Λ) + 8λ1(Λ) +

4

3

(
2λ3(Λ) + λ4(Λ)

))
+

1

16π2

{
Lb

((3

4
(3g2 + g′

2
)− 6λ1

)
µ2

11 − (2λ3 + λ4)µ2
22

)
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+ T 2

(
59

32
g4 +

11

288
g′

4 − 3

16
g2g′

2
+

1

4
λ1(3g2 + g′

2
) +

1

24
(3g2 + g′

2
)(2λ3 + λ4)

+ Lb

(27

32
g4 − 17

96
g′

4 − 3

16
g2g′

2
+

1

8
(3g2 + g′

2
)(6λ1 + 2λ3 + λ4)− 1

2
(λ1 + λ2)(2λ3 + λ4)

− 6λ2
1 −

5

6
λ2

3 −
5

6
λ3λ4 −

7

12
λ2

4 −
3

4
|λ5|2

)
+

1

T 2

(
c+ ln(

3T

Λ3d
)
)(33

16
g4

3 + 12g2
3h1 − 6h2

1 + 9g2
3λ1,3 − 12λ2

1,3

− 7

16
g′

4
3 −

9

8
g2

3g
′2
3 − 2h2

2 − 3h2
3 + 3g′

2
3λ1,3 +

1

2
(3g2

3 + g′
2
3)(2λ3,3 + λ4,3)

− 2(λ2
3,3 + λ3,3λ4,3 + λ2

4,3)− 3|λ5,3|2
)

+ (
1

12
g4 +

5

108
g′

4
)Nf + Lf

(
− 1

4
g2
Y (2λ3 + λ4)− (

1

4
g4 +

5

36
g′

4
)Nf

)
+ ln(2)

(3

2
g2
Y

(
2λ3 + λ4

)
+ (

3

2
g4 +

5

6
g′

4
)Nf

))}
, (A32)

and finally

µ2
12,3 = µ2

12(Λ) +
1

16π2

{
Lb

((3

4
(3g2 + g′

2
)− λ3 − 2λ4

)
µ2

12 − 3λ5µ
2∗
12

)
− 3

2
g2
Y µ

2
12Lf

}
. (A33)

The bare mass parameters (µ2
11,3+δµ2

11,3, µ2
22,3+δµ2

22,3 and µ2
12,3+δµ2

12,3) are independent of the 4-d renormalisation
scale Λ; this serves as an important cross-check. The mass counterterms in the 3-d theory can be found in Ref. [26].
Note that in the coefficients of c + ln( 3T

Λ3
), we have used a higher order result that can be obtained by solving the

running directly in the 3-d theory; because the 3-d theory is super-renormalisable, this is the exact dependence of the
3-d theory RG-scale Λ3. The renormalisation scale of the 3-d theory then can be fixed as Λ3 = g2

3 . These relations for
the two-loop mass parameters have been calculated previously in Ref. [23], under the assumption of λ5 being real (see
also Ref. [24]). However, in Ref. [23] there are again minor errors propagating from the one-loop result of Ref. [22].

We estimate the validity of the dimensional reduction by evaluating to order O(g6) the terms Λ6,1(φ†1φ1)3
3d and

Λ6,2(φ†2φ2)3
3d, where the coefficients are given by

Λ6,1 =
ζ(3)

3(4π)4

(
30λ3

1 +
1

4
λ3

3 + λ3
+ + λ3

− +
3

32
g6 +

3

64
(g2 + g′

2
)3
)
, (A34)

Λ6,2 =
ζ(3)

3(4π)4

(
30λ3

2 +
1

4
λ3

3 + λ3
+ + λ3

− +
3

32
g6 +

3

64
(g2 + g′

2
)3 − 21

2
g6
Y

)
, (A35)

where λ± ≡ 1
2 (λ3 +λ4±λ5). The last term in the above equation is the contribution from the top quark. Comparing

the magnitude of the other terms to that term yields a rough estimate of the importance of neglected dimension-6
operators.

b. Integration over heavy scale

Here we list the matching results for the parameters in the simplified 3-d effective theories, where the heavy temporal
scalars and the heavy second doublet have been integrated out. The two-loop contributions to mass parameters are
highlighted with subscripts. One could give the coefficients of logarithmic contributions in terms of the running in
the final theory here as well, but we have omitted this for simplicity.

ḡ2
3 =g2

3

(
1− g2

3

24πmD

)
, (A36)

ḡ′23 =g′23 , (A37)

µ̄2
11,3 =µ2

11,3 −
1

4π

(
3h1mD + h2m

′
D

)
+

1

16π2

(
3g2

3h1 − 3h2
1 − h2

2 −
3

2
h2

3
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+
(
− 3

4
g4

3 + 12g2
3h1

)
ln
( Λ′3

2mD

)
− 6h2

1 ln
( Λ′3

2mD + µ11,3

)
− 2h2

2 ln
( Λ′3

2m′D + µ11,3

)
− 3h2

3 ln
( Λ′3
mD +m′D + µ11,3

)
+ 2µ11,3

(
3
h2

1

mD
+

h2
2

m′D

)
+ 2µ22,3

(
3
h1h4

mD
+
h2h5

m′D

))
2-loop

, (A38)

µ̄2
22,3 =µ2

22,3 −
1

4π

(
3h4mD + h5m

′
D + 8ω3m

′′
D

)
+

1

16π2

(
3g2

3h4 − 3h2
4 − h2

5 −
3

2
h2

6

+
(
− 3

4
g4

3 + 12g2
3h4

)
ln
( Λ′3

2mD

)
− 6h2

4 ln
( Λ′3

2mD + µ22,3

)
− 2h2

5 ln
( Λ′3

2m′D + µ2
22,3

)
− 3h2

6 ln
( Λ′3
mD +m′D + µ22,3

)
+ 2µ2

22,3

(
3
h2

4

mD
+

h2
5

m′D

)
+ 2µ11,3

(
3
h4h1

mD
+
h5h2

m′D

))
2-loop

, (A39)

µ̄2
12,3 =µ2

12,3, (A40)

λ̄1,3 =λ1,3 −
1

8π

( 3h2
1

mD
+

h2
2

m′D
+

h2
3

mD +m′D

)
, (A41)

λ̄2,3 =λ2,3 −
1

8π

( 3h2
4

mD
+

h2
5

m′D
+

h2
6

mD +m′D

)
, (A42)

λ̄3,3 =λ3,3 −
1

4π

(3h1h4

mD
+
h2h5

m′D
+

h3h6

mD +m′D

)
, (A43)

λ̄4,3 =λ4,3 (A44)

and λ̄5,3 =λ5,3. (A45)

The renormalisation scale of the 3-d theory that appears in two-loop contribution can be fixed as Λ′3 = ḡ2
3 [18].

When the second doublet is integrated out as a heavy field, the parameters of the final 3-d theory read

ĝ2
3 =ḡ2

3

(
1− ḡ2

3

48πµ̃θ

)
, (A46)

ĝ′23 =ḡ′23

(
1− ḡ′23

48πµ̃θ

)
, (A47)

λ̂ =λ̃1 −
1

16π

1

µ̃θ

(
2λ̃2

3 + 2λ̃3λ̃4 + λ̃2
4 + |λ̃5|2 − 48 Re(λ̃6λ̃7) + 48|λ̃6|2

)
, (A48)

µ̂2 =µ̃2
φ −

µ̃θ
4π

(
2λ̃3 + λ̃4

)
+

1

16π2

(
1

8
(3ḡ2

3 + ḡ′23 )(2λ̃3 + λ̃4)− λ̃2
3 − λ̃3λ̃4 − λ̃2

4

+ 3λ̃2(2λ̃3 + λ̃4) + 18 Re(λ̃7λ̃6)− 3|λ̃5|2
(

ln
( Λ′′3

2µ̃θ

)
+

1

2

)
− 3|λ̃7|2

(
ln
( Λ′′3

3µ̃θ

)
+ 2
)

− 9|λ̃6|2
(

ln
(Λ′′3
µ̃θ

)
+

1

2

)
+

1

8

(
− 3ḡ4

3 − ḡ′43 + 4(3ḡ2
3 + ḡ′23 )(2λ̃3 + λ̃4)

− 16(λ̃2
3 + λ̃3λ̃4 + λ̃2

4)
)

ln
( Λ′′3

2µ̃θ

))
2-loop

. (A49)

The renormalisation scale of the final 3-d theory at the light scale can then be fixed as Λ′′3 = ĝ2
3 .
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