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About Nylas

Nylas is a developer platform that powers applications with email, calendar, and 

contacts integrations through a modern REST API. The Nylas API handles more  

than 100 million API requests per day and has synced more than 15 billion emails.  

22,000 developers are signed up to use the API. We’re built on Python, and excited  

to share some of our learnings here.

Overview

The TIOBE index recognized Python as the 2018 programming 

language of the year, and it’s no wonder why. The versatile language 

can be used for developing desktop GUI applications, APIs, and web 

applications — to name a few. The friendly syntax of the language 

makes it easier to maintain your codebase over time as it scales. We at 

Nylas are excited to share some of the latest Python use cases that are 

instrumental in laying a strong foundation for your codebase. You can 

use this knowledge to leverage Python for building apps that scale.

In this guide, you’ll learn:

Starting and going beyond pip .......................................................................................... 3

Virtualenv, dh-virtualenv, and easier deployments ............................................................ 6

Profiling Python in production: how to reduce CPU usage by 80% with Python .............. 8

4 Python libraries you can’t live without............................................................................13

https://www.nylas.com/
https://www.tiobe.com/tiobe-index/
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Getting Started with Your First Python 
Deployment: Git & Pip

Python offers a rich ecosystem of modules. Whether you’re building a web server or a 

machine learning classifier, there’s probably a module to help you get started. Today’s 

standardized way of getting these modules is via pip, which downloads and installs from 

the Python Package Index (aka PyPI). This is just like apt, yum, rubygem, etc.

Most people set up their development environment by first cloning the code using git, 

and then installing dependencies via pip. So it makes sense why this is also how most 

people first try to deploy their code. A deploy script might look something like this:

git-pull-pip-install-deploy.sh

git clone https://github.com/company/somerepo.git

cd /somerepo

pip install -r requirements.txt

python start_server.py
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But when deploying large production services, this strategy breaks down for several 

reasons:

1. Pip does not offer a “revert deploy” strategy.

Running pip uninstall doesn’t always work properly, and there’s no way to rollback 

to a previous state. Virtualenv could help with this, but it’s really not built for managing 

a history of environments.

2. Installing dependencies with pip can make deploys painfully slow.

Calling pip install for a module with C extensions will often build it from source, 

which can take on the order of minutes to complete for a new virtualenv. Deploys 

should be a fast lightweight process, taking on the order of seconds.

3. Building your code separately on each host can cause consistency issues.

When you deploy with pip, the version of your app running is not guaranteed to be the 

same from server to server. Errors in the build process or existing dependencies result 

in inconsistencies that are difficult to debug, and deploys will fail if the PyPI or your git 

servers are down.

pip install and git pull oftentimes depend on external servers. You can choose 

to use third-party systems (e.g. Github, PyPI) or set up your own servers. Regardless, 

it is important to make sure that your deploy process meets the same expectations of 

uptime and scale. Often external services are the first to fail when you scale your own 

infrastructure, especially with large deployments.

If you’re running an app that people depend on and running it across many servers, 

then the git+pip strategy will only cause headaches. What you need is a deploy strategy 

that’s fast, consistent and reliable. 

More specifically: 

1. Capability to build code into a single, versioned artifact

2. Unit and system tests that can test the versioned artifact

3. A simple mechanism to cleanly install/uninstall artifacts from remote hosts

Having these three things would allow you to spend more time building features, and 

less time shipping our code in a consistent way. Using Docker will add complexity to 

your runtime. Using PEX will add complexity to your build. So, What’s the best solution? 

dh-virtualenv. 

https://stackoverflow.com/questions/14572773/pip-is-not-uninstalling-packages
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Packages: the original “containers”.

A couple of years ago, Spotify quietly released a tool called dh-virtualenv, which you 

can use to build a Debian package that contains a virtualenv.

Building with dh-virtualenv simply creates a Debian package that includes a 

virtualenv, along with any dependencies listed in the requirements.txt file. When 

this Debian package is installed on a host, it places the virtualenv at /usr/share/

python/<project-name>. That’s it.

Using a continuous integration server (Jenkins) that runs dh-virtualenv to build the 

package, and uses Python’s wheel cache to avoid re-building dependencies is one of 

the most efficient ways to deploy code. This creates a single bundled artifact (a Debian 

package), which is then run through extensive unit and system tests. If the artifact 

passes, it is certified as safe for prod and uploaded to s3.

A key part of this process is that you can minimize the complexity of your deploy script 

by leveraging Debian’s built-in package manager, dpkg.

 A deploy script might look something like this:

temp=$(mktemp /tmp/deploy.deb.XXXXX)

curl “https://artifacts.nylas.net/sync-engine-3k48dls.deb” -o 

$temp

dpkg -i $temp

sv reload sync-engine

To rollback, you can simply deploy the previous versioned artifact. The dpkg utility 

handles cleaning up the old code for free.

One of the most important aspects of this strategy is that it achieves consistency 

and reliability, but still matches your development environment. If you already use 

virtualenvs, then you can think of dh-virtualenv as really just a way to ship artifacts to 

remote hosts. If you choose Docker or PEX, you will have to dramatically change the 

way you develop locally and introduce a lot of complexity. This helps to simplify the 

process when working with open source code.

You can ship all of your Python code with Debian packages and your entire codebase (with 

dozens of dependencies) will take fewer than 2 minutes to build, and seconds to deploy.

https://github.com/spotify/dh-virtualenv
https://wheel.readthedocs.io/en/latest/
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Getting started with dh-virtualenv.

If you are experiencing painful Python deployments, then ask your doctor about  

dh-virtualenv. It might be right for you!

Configuring Debian packages can be tricky for newcomers, here’s a handy utility to help 

you get started called make-deb. It generates a Debian configuration based on the 

setup.py file in your Python project.

First, install the make-deb tool, then run it from the root of your project:

cd /my/project

pip install make-deb

make-deb

If information is missing from your setup.py file, make-deb will ask you to add it. Once 

it has all the needed details, make-deb creates a Debian directory at the root of your 

project that contains all the configuration you’ll need for dh-virtualenv. 

Building a Debian package requires you to be running Debian with dh-virtualenv 

installed. If you’re not running Debian, we recommend Vagrant+Virtualbox to set up 

a Debian VM on Mac or Windows. You can see an example of this configuration by 

looking at the Vagrantfile in our sync engine git repository.

Finally, running dpkg-buildpackage -us -uc will create the Debian package. 

You don’t need to call dh-virtualenv directly, because it’s already specified in the 

configuration rules that make-deb created for you. Once this command is finished,  

you should have a shiny build artifact ready for deployment!

A simple deploy script might look like this:

scp my-package.deb remote-host.example.org:

ssh remote-host.example.org

# Run the next commands on remote-host.example.org

dpkg -i my-package.deb

/usr/share/python/myproject/bin/python

>>> import myproject # it works!

https://github.com/nylas/make-deb
https://github.com/nylas/sync-engine
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To deploy, you need to upload this artifact to your production machine. To install it, 

just run dpkg -i my-package.deb. Your virtualenv will be placed at /usr/share/

python/<project-name> and any script files defined in your setup.py will be available 

in the accompanying bin directory. And that’s it! You’re on your way to simpler deploys.

When building large systems, the engineering dilemma is often to find a balance 

between creating proper tooling, but not constantly re-architecting a new system from 

scratch. Using Debian package-based deploys is a great solution for deploying Python 

apps, and most importantly it lets you ship code faster with fewer issues.

https://github.com/nylas/sync-engine/blob/master/setup.py#L64
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Profiling Python in Products

How to Reduce CPU Usage by 80% Through Python Profiling

You can reduce CPU usage across your fleet by 80% by using a lightweight profiling 

strategy that you can run in production. 

If you can’t measure it, you can’t manage it. 
     

CPU optimization starts with measurement and instrumentation, but there’s more than 

one way to profile. It’s important to be able to profile both at a small scale using test 

benchmarks, and at a large scale in a live environment.

To use an example from Nylas, when our API syncs email data with a developer’s 

software application, it’s essential that our system analyzes and attributes the data 

as quickly as possible. To optimize this, we needed to understand how different sync 

strategies and optimizations affect the first few seconds of a sync.
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At Nylas (see example below), we learned that by setting up a local test and adding 

a bit of custom instrumentation, you can build up a call graph of the program. This is 

simply a matter of using sys.setprofile() to intercept function calls. To better see 

exactly what’s happening, you can export this call graph to a specific JSON format, and 

then load this into the powerful visualizer built into the Chrome Developer Tools. This 

lets you inspect the precise timeline of execution:

Doing it live.

This strategy works well for detailed benchmarking of specific parts of an application, 

but is poorly suited to analyzing the aggregate performance of a large-scale system. 

Function call instrumentation introduces significant slowdown and generates a huge 

amount of data, so you can’t just directly run this profiler in production.

However, it’s difficult to accurately recreate production slowness in artificial 

benchmarks, especially when data being synced can have a heterogeneous workload. 

If the tests aren’t actually representative of real-world workload, you’ll end up with 

ineffective optimizations.

The answer to these shortcomings is to add lightweight instrumentation that you can 

continuously run in your full production cluster, and design a system to roll up the 

resulting data into a manageable format and size.

An example of a call 

graph exported to JSON 

and loaded into Chrome 

Developer Tools by 

the Nylas team. This 

visualization allows us 

to inspect the precise 

timeline of execution.

https://github.com/nylas/nylas-perftools/blob/master/py2devtools.py


10

At the heart of this strategy is a simple statistical profiler – code that periodically 

samples the application call stack, and records what it’s doing. This approach loses 

some granularity and is non-deterministic. But this overhead is low and controllable 

(just choose the sampling interval). Coarse sampling is fine, because you are trying to 

identify the biggest areas of slowness.

A number of libraries implement variants of this, but in Python, you can write a stack 

sampler in less than 20 lines:

import collections

import signal

class Sampler(object):

   def __init__(self, interval=0.001):

        self.stack_counts = collections.defaultdict(int)

        self.interval = interval

    def _sample(self, signum, frame):

       stack = []

        while frame is not None:

            formatted_frame = ‘{}({})’.format(frame.f_code.co_name,

       frame.f_globals. 

       get(‘__name__’))

            stack.append(formatted_frame)

            frame = frame.f_back

        formatted_stack = ‘;’.join(reversed(stack))

        self.stack_counts[formatted_stack] += 1

        signal.setitimer(signal.ITIMER_VIRTUAL, self.interval, 0)

    def start(self):

        signal.signal(signal.VTALRM, self._sample)

        signal.setitimer(signal.ITIMER_VIRTUAL, self.interval, 0)

Calling Sampler.start() sets the Unix signal ITIMER_VIRTUAL to be sent after the 

number of seconds specified by interval. This essentially creates a repeating alarm 

that will run the _sample method.

When the signal fires, this function saves the application’s stack, and keeps track of how 

many times you have sampled that same stack. Frequently sampled stacks correspond 

to code paths where the application is spending a lot of time.

http://man7.org/linux/man-pages/man2/setitimer.2.html
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The memory overhead associated with maintaining these stack counts stays reasonable, 

since the application only executes so many different frames. It’s also possible to 

bound the memory usage, if necessary, by periodically pruning infrequent stacks. In our 

application, the actual CPU overhead is demonstrably negligible:

Now that you have added instrumentation in the application, you can have each worker 

process expose its profiling data via a simple HTTP interface (see code). This lets you 

take a production worker process and generate a flamegraph that concisely illustrates 

where the worker is spending time:

curl $host:$port | flamegraph.pl > profile.svg

This graph of memory 

usage before and after 

the deploy enabling the 

profiler does not reflect 

a significant increase 

in CPU usage.

The longer the bar,  

the more time that code 

block takes to execute. 

You can figure out the 

most time-inefficient 

functions, and make 

them more performant.

https://github.com/nylas/nylas-perftools/blob/master/stacksampler.py#L75
https://github.com/brendangregg/FlameGraph
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This visualization makes it easy to quickly spot where CPU time is being spent in the 

actual process. For example, around 15% of runtime is being spent in the get() 

method highlighted above, executing a database load that turns out to normally be 

unnecessary. This wasn’t evident in local testing, but now it’s easy to identify and fix.

However, the load on any single worker process isn’t necessarily representative of 

the aggregate workload across all processes and instances. You want to be able to 

aggregate stacktraces from multiple processes. You also need a way to save historical 

data, as the profiler only stores traces for the current lifetime of the process. To do this,  

you can run a collector agent that periodically polls all sync engine processes (across 

multiple machines), and persists the aggregated profiling data to its own local store. 

Finally, a lightweight web app can visualize this data on demand. Answering the 

question, “Where is your application spending CPU time?” is now as simple as visiting 

an internal URL:

Since you can render profiles for any given time interval, it’s easy to track down the 

cause of any regressions and the moment they were introduced.

Monitoring your application.

Being able to measure and introspect about your services in a variety of ways is crucial 

to keeping them stable and performant. The simple tooling presented here can be a 

vital part of a larger monitoring infrastructure for your application.

We hosted the flame 

graph of our profiling 

data on an internal 

application, so our 

developers could easily 

view and track changes 

over time.
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4 Python Libraries You Can’t Live Without 

As we all know, open-source code isn’t just developed and left standing; it’s regularly 

maintained and extended by talented and dedicated Python developers.  

These crucial libraries will save you from reinventing the wheel time and time again,  

and you can get a lot of mileage out of them.

1    ptpython for fast & easy internal tooling
The ptpython REPL brings autocomplete, syntax highlighting and multiline editing to 

the Python shell, creating a robust and customizable Python environment. You can use 

it to enhance your Python console with pre-loaded text, helper functions and objects 

for our developers and our developer success engineers to use. If an error pops up 

in our logs, you can quickly load the buggy object in a Python REPL, debug the root 

cause, and experiment with solutions directly in the Python shell. 

2    tldextract for parsing URLs
If you’ve ever tried to write a regular expression to define a valid URL, you know 

it’s not as straightforward as it sounds. The normal .com, .org and .net top-level 

domains are easy enough to codify, but these days .limo, .pizza and .duck are all 

valid suffixes as well. If you have a need to parse URLs to validate emails and server 

addresses, you use tldextract to separate the protocol from the domain, subdomain(s) 

and suffix in a given URL. 

https://github.com/prompt-toolkit/ptpython
https://github.com/john-kurkowski/tldextract
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3    vcr for fast, reusable test fixtures
If you work with a lot of APIs, this means you likely make multiple HTTP requests. 

To simplify and speed up testing, you can use vcr to record the responses from the 

HTTP interactions in your test code and save them to a flat file in your codebase, 

called a cassette.

After the initial response has been recorded, it is “replayed” by later tests, so you don’t 

have to make live requests to external APIs in your test code. This makes your tests fast 

(no real HTTP requests anymore), deterministic (the test will continue to pass, even if 

you are offline) and accurate (the response will contain the same headers and body you 

get from a real request). 

4    expiringdict for ordered caches
Mailgun’s expiringdict is a great example of a library that does one thing, and does 

it really well. Their data structure, based off collections’ OrderedDict, creates a 

dictionary with a max length, and items that “expire” after a certain amount of time,  

to be used as a cache. 

Caching the results of queries you know are executed frequently lets you serve up 

faster results, with less load on the database. To prevent the cache from getting too 

big, which impacts performance, you can cap the size, and it’s convenient to set an 

expiration date on the data, so that your cache doesn’t get stale.

https://github.com/kevin1024/vcrpy
https://github.com/mailgun/expiringdict
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Bringing It Together

As you can see, Python can be used for a variety of functions that aid with building a 

reliable product in an efficient manner. With its robust libraries, your Python code will 

be readable, maintainable, and compatible with other major platforms and systems as 

you scale. Using Python will also simplify complex development issues and make it easy 

to implement vital testing measures. 

See what Python can do for you, and share your learnings with us on Twitter: @Nylas!

Learn more about the Nylas APIs for email, calendar and contacts,  

or create a free developer account.

https://twitter.com/nylas
https://www.nylas.com/
https://dashboard.nylas.com/register
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