Hacking Secret
Ciphers with Python

By Al Sweigart

Copyright © 2013 by Al Sweigart

Some Rights Reserved. “Hacking Secret Ciphers with Python” is licensed under a Creative
Commons Attribution-Noncommercial-Share Alike 3.0 United States License.

You are free:
To Share — to copy, distribute, display, and perform the work

@ To Remix — to make derivative works

Under the following conditions:

® Attribution — You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the work).
(Visibly include the title and author's name in any excerpts of this work.)

@ Noncommercial — You may not use this work for commercial purposes.

@ Share Alike — If you alter, transform, or build upon this work, you may distribute
the resulting work only under the same or similar license to this one.

Book Version 3
Special thanks to Ari Lacenski. I can’t thank her enough. Without her efforts there’d be typos literally on every page.

Thanks to Jason Kibbe. Cover lock photo by “walknboston” http://www.flickr.com/photos/walkn/3859852351/ Romeo
& Juliet and other public domain texts from Project Gutenberg. Various image resources from Wikipedia. Wrinkled
paper texture by Pink Sherbet Photography http://www.flickr.com/photos/pinksherbet/2978651767/ Computer User
icon by Katzenbaer.

If you've downloaded this book from a torrent, it’s probably out of date. Go
to http://inventwithpython.com/hacking to download the latest version.

ISBN 978-1482614374
1st Edition

OKY! T'M Going
To WACK THE
DaTagase!

YEAHHK "

Movies and TV shows always make hacking look exciting with furious typing and meaningless
ones and zeros flying across the screen. They make hacking look like something that you have to
be super smart to learn. They make hacking look like magic.

It’s not magic. It’s based on computers, and everything computers do have logical
principles behind them which can be learned and understood. Even when you don’t
understand or when the computer does something frustrating or mysterious, there is always,
always, always a reason why.

And it’s not hard to learn. This book assumes you know nothing about cryptography or
programming, and helps you learn, step by step, how to write programs that can hack encrypted
messages. Good luck and have fun!

100% of the profits from this book are donated
to the Electronic Frontier Foundation, the Creative Commons, and the Tor Project.

Dedicated to Aaron Swartz, 1986 — 2013

“Aaron was part of an army of citizens that believes democracy
only works when the citizenry are informed, when we know about
our rights—and our obligations. An army that believes we must
make justice and knowledge available to all—not just the well born
or those that have grabbed the reins of power—so that we may
govern ourselves more wisely.

When I see our army, I see Aaron Swartz and my heart is broken.
We have truly lost one of our better angels.”

-CM.

ABOUT THIS BOOK

There are many books that teach beginners how to write secret messages using ciphers. There are
a couple books that teach beginners how to hack ciphers. As far as I can tell, there are no books to
teach beginners how to write programs to hack ciphers. This book fills that gap.

This book is for complete beginners who do not know anything about encryption, hacking, or
cryptography. The ciphers in this book (except for the RSA cipher in the last chapter) are all
centuries old, and modern computers now have the computational power to hack their encrypted
messages. No modern organization or individuals use these ciphers anymore. As such, there’s no
reasonable context in which you could get into legal trouble for the information in this book.

This book is for complete beginners who have never programmed before. This book teaches basic
programming concepts with the Python programming language. Python is the best language for
beginners to learn programming: it is simple and readable yet also a powerful programming
language used by professional software developers. The Python software can be downloaded for

There are two definitions of “hacker”. A hacker is a person who studies a system (such as the
rules of a cipher or a piece of software) to understand it so well that they are not limited by the
original rules of that system and can creatively modify it to work in new ways. “Hacker” is also
used to mean criminals who break into computer systems, violate people’s privacy, and cause
damage. This book uses “hacker” in the first sense. Hackers are cool. Criminals are just people
who think they’re being clever by breaking stuff. Personally, my day job as a software
developer pays me way more for less work than writing a virus or doing an Internet scam would.

On a side note, don’t use any of the encryption programs in this book for your actual files.
They’re fun to play with but they don’t provide true security. And in general, you shouldn’t trust
the ciphers that you yourself make. As legendary cryptographer Bruce Schneier put it, “Anyone,
from the most clueless amateur to the best cryptographer, can create an algorithm that he himself
can’t break. It’s not even hard. What is hard is creating an algorithm that no one else can break,
even after years of analysis. And the only way to prove that is to subject the algorithm to years of
analysis by the best cryptographers around.”

This book is released under a Creative Commons license and is free to copy and distribute (as
long as you don’t charge money for it). The book can be downloaded for free from its website at

feel free to email me at al@inventwithpython.com.

TABLE OF CONTENTS

About This BOOKccciiimiieisesnssiss s ssss s s sss s s s s s s s s s an s 6
Table of CONEENLSccceiiieiiiiiii e s s sn e e n e mn e nm e naan 7
Chapter 1 - Making Paper Cryptography Tools..........coemeeeemeeeeeeeeeeeeeeeeeeeceeeeeeeee e 1
WHhat 1S CryPtOZIAPRY? c...cveiiieiiiieeieet ettt ettt ettt et ettt sb et e bt et e e bt et e bt et e e bt e s bt e st e besanesbeentenbeeneens 2
COARS VS. CIPHIETS ..ttt ettt ettt sb et e b et sb et e bt et e e bt et e eb e e bt e be e bt es e e bt ebtenbeemeenbesane bt emtensesnnens 2
Making a Paper CIPher WREEL......c...oouiiiiiiieie ettt et st e sa e e bt e s ate s bt e st e ebeesaneenaneens 3

A VIrttal CIPRer WREELco..oiiiiiiiiiiieeee ettt ettt sttt et et e st e s bt e st e b s et e bt eabenbeeneens 7
How to Encrypt with the CIpher WREE]ooouiiiiiiiiiee ettt ettt ettt e bee st e i e 8
How to Decrypt with the CIPher WHEEL.......cc.covuiiiiiiiiiiiriteieteestee ettt sttt ettt be e 9

A Different Cipher TOOL: The St. CYr STAEcc.viiiiiiiiiieeieeeee ettt st e eseaeeneees 10
Practice EXercises, Chapter 1, SEE A ..ottt ettt ettt et e bt e st e s bt e sat e e bt e seteenbeesaseebeesnnean 11
Doing Cryptography without Paper TOOLScc.ceiiririiririiiieieieeies ettt sttt sttt st 11
Practice Exercises, Chapter 1, SEt B ..ottt ettt et st et e st enbeesene s 13
Double-Strength ENCIYPHONT......c..oiiiiiiieieteteeterte ettt ettt et b et st e e sb e et sbe et sbe et e sbeenbeebeebesbeebesbeenee 13
Programming a Computer t0 do ENCIYPLIONcc.cocuiriiiiiiiiiiiiiiieiientctctct sttt sttt 14
Chapter 2 - Installing Python.........co oo ssrrssssss e s s e s s s s s s sssssssssssssnnnens 16
Downloading and Installing PythOncccociiiiiiiiiiiiiiiicctcc ettt 17
DOWNIOAAING PYPEICIIP.PY -+ttt ettt ettt b e ettt s bt et e s bt et e sb e et e sbe et e sbeenbesbeenbesbeenbesbeenbeensenee 18
SHArtING IDLE.......ioiiieiieie ettt ettt et s e et e s et e e bt e e ab e e bt e s et e e st e et e e nat e et e e eat e e bt e ehte e neeeaneebeesnteeneeeas 18
The Featured PrOZIAIMSccuiiiiiiiiiiiiiiiiiccectcttet ettt sttt e st e bttt eae s sbeeanenne 19
Line NUMDEIS QN SPACES.......erutiiiitiiiertieieeitet ettt ettt ettt et s bt et s bt et s bt et e sbe e besbe et e sbeeabeebeenbesbeenbeessenee 20
Text Wrapping in ThiS BOOKcoiiiiiiiieieeee ettt ettt st e st aeeset e et e saneeseesneees 20
Tracing the Program ONIINE...........coiiiiiiiiiiieietee ettt ettt ettt sbe et esbe et e s bt esbesbe et e s bt ebesbeebesnsenee 21
Checking Your Typed Code with the Online Diff TOOL........c..cocueiiiiiniiiiniiiier e 21
COopYINg aNd PaStING TEXEcveruiiiiitieiietieiteeitet ettt ettt et e te st e et e s bt esbesbeeabesbeestesbeesbesbeenbesbeenbeeseenbesbeenbeensenee 21
MoOTe INFO LINKS ..ot e 22
Programming and Cryptographycc.oeeeoiiriiniiiiiiintetetete ettt ettt ettt et sat et et e sae e beenesaeenees 22
Chapter 3 - The Interactive Shell....... i 26
Some Simple Math STULT.....c..ooiiiii ettt sttt st et be e e 26

Integers and Floating POint VALUESccccoiuiiiiiiiiiiiieieeete ettt sttt et st be et s ebesbe e 27

EEXPI@SSIONS ...ttt ettt ettt ettt b ettt e bt et s b e st e bt e ate s bt e at e e bt e st e s bt e a bt e bt et e sbe et e bt et sbe et e bt et e sbe e beebeenee 27

OFAET OF OPEIALIONSc.veuvniiieiietietert ettt ettt ettt ettt ettt se et e a et et e bt besa b e e et et eb e e bt s bt e b e s b e b et e bt euesueebesuesae s eneeneen 28
EValuating EXPIESSIONSccueeuviriiiiintieienttestteiteet ettt et s e st eat e bt sat e st e atesbeeatesb e e st esbe et e sbeesbesbeesnesbeembeeneentesseennesnnenee 29
EITOTS AI€ OKAY .. .oouiiiiiiiiiiiiiiet et ettt st et sa e st be s be s 29
Practice EXercises, ChapLer 3, SEL Aoiiiiiieiieierieeteste ettt ettt ettt et e st eteset et e sbe e besae e besaeentesaeensesneentesseensesseanes 30
Every Value has @ DAt TYPe......coueieiriiriiiiiieteetestteteee ettt ettt ettt et et ettt st et s bt et sbe et eseeaesbeeaeeneenee 30
Storing Values in Variables with Assignment StAEIMENESc..cccecveeririirenierteteieeecee ettt eteete e sr e eeneeneas 30
OVEIrWIIHNG VATTIADIES......euiiiiiiiiiiiiieieeitere ettt ettt ettt s b et b et sb et e e bt et sbeembeebeenteebeenbesnnenee 32
Using More Than One Variablec.c.ooiiiiiiiiiiiieeieeste ettt sttt ettt st e st eaeeseteebeesaseebeesnnees 33
Variable INAIMES.........oouiiiiiiieee ettt e et s et e et ea e b e e neenean 34
Practice EXercises, Chapter 3, SEt B ..ottt sttt ettt s 35
Summary - But When Are We Going to Start HacKing?..........cooouieiiiiiiiiiiiiiiieeeeresieeeeee et s 35
Chapter 4 - Strings and Writing Programs...........ooooooeeeeeeeeeeee e 36
SHIITIES ¢ttt ettt ettt et s ettt e a bt e bt e et e st e e et e e e a et et e e e ht e et e e e a bt e bt e eat e e bt e et e e eh b e e at e e eateeabeeehte e bt e eaneebeesateenateans 36
String Concatenation With the + OPEIALOTc..ceuerueriiriieiinienterieet ettt et ettt sbe et s bt et sbeesbesbeeeesbeenees 38
String Replication With the * OPEIatOreivuiiiiiirieeiierie ettt et e sttt et e st sbeesabeebeesstesaeesaseenseesaseenseenas 39
Printing Values with the print () FUNCHONcociiiiiiiiiiii ettt s 39
ESCAPE CRATACTETSeuveeuteiieiieeiteteet ettt ettt ettt b et b e s e bt ea e s bt e at e bt eabe s bt eabeeb e e s b e sbeembesbeenbesbeenbeebeenbesbeenbeebeenee 40
Quotes and DOUDIE QUOLESccueeriieiiieiieeiieeteerte et e steeeteesaeesteessbeessaaasseesseessseessseanseessseesseessssenseessseenseessseesssesnsens 41
Practice EXercises, Chapter 4, S Aooui oottt ettt ettt et e st esate s bt esste e bt e saseeseeseseenseesaseenseesnsenn 42
TIUAEXING ..ttt ettt b e et e s bt e bt e bt e h b e bt e a e e e bt eabesb e e a b e eh e et sb e et e e bt et e sb e et e ehe et e sbe e beebtenee 42
INEGALIVE INACKES ...ceeveeiieeiiieiieetee ettt ettt ettt et e st e ettt et e e s ate e bt e sat e e st e sateesaeeeabeesstesmseesaseenseesateenseesaseenseennsean 44
STICINE 1ttt ettt h et h bt s bt et eh et s bt et ea e e bt e h b e bt e a b e bt e bt e bt ea b e e bt e a b e bt e a b e bt e aaenbeenteebeentesbeentes 44
BIank STHEe INAEXES.........ooviiiiiiiiiiiiiii e 45
Practice EXercises, Chapter 4, SEt Booi ittt sttt et sb ettt e b e b bt 46
Writing Programs in IDLE’S File EdItOr......ccuoouiiiiiiiiiiiieieieeeeees ettt sttt sttt 46
HEIIO WOTTA! ..o e s 47
Source Code Of HEIIo WOTIA.......c..oviiiiiiiieee ettt ettt s be et st e bt et e sbe et e beesaesbeenees 47
SAVING YOUT PIOZTAIM ..ottt sttt st a et et sa ettt sb e sbeeaesaeennes 48
RUNNING YOUT PrOZIAIMcuiiiiiiiiiiiiitiicieee ettt et sttt sa et sae e e e enean 49
Opening The Programs YOU VE SAVEd........ccoeiiiriiriiiiiiieieiertesteseee ettt ettt sttt b et ene s 50
How the “Hello World” Program WOTKSc..coueiiiiiiiiinieee ettt st 50
COMUTICIIES ... eevtettente ettt ettt et ettt et et e e bt eut e bt eh b e bt eat e bt e st e bt ea e e bt eu s e bt eateebeembesbeeab e bt ensesbeembeebeenbesbeenbeebeenbesbeenbesneanee 50

FUINICHIONS. ...ttt ettt e e et e e e sttt e etaeeesataeeaessaeeeasseeaassseeaassseeesssaeeasssaeeassseserssaeeanssseenssseesssaeaansseeannnnes 51

The PLINT () fUNCHON «eeeetietieeiee ettt et e et et e et e st e e seeesteesseessseeseeanseessseenseesnseenseessseenseeanseensneensens 51

The 1NPUL () FUNCHON c.eetiiiieiieiectete ettt ettt et e sttt e s bt eabe st e e st e sbeenteseeenbesaeensesseenseeneansesstenseensanee 51
ENdiNg the PrOGIAINcoviiiiiiiiiiiiiiieeet ettt ettt et et b et bttt s bttt sbeems e eae et e sseenbesnnenee 52
Practice EXercises, ChapLer 4, SEt Ccouiiuiiieriieieiieieeieete st ete sttt s et e st eateste et e sbeestesaeenbesaeensesseenseeneensesseensesseanse 52
SUITIMATY ..ttt ettt et b e s bttt b e bt e bt et eat e bt s ae e bt ea e e bt e bt e sb e emt e e b e e et e sbeemt e bt eanesbeemtenbeennenaeennes 53
Chapter 5 - The Reverse CipPNer ... eeeeeeeeeeennnnnnnnnnnsnnnnnsssssssssssssssssssssssssssssssnsnssssnssnnnnnnnnns 54
THE REVETSE CIPRET....c..eiiiiiiiiiiiiiieeiieteet ettt ettt ettt et b et s bt e e bt et sbe et e s bt et e sbe et e eanenaeeseebesnnenee 54
Source Code of the Reverse Cipher PrOZIAM......c..cccociiiiiriieieiieieieentetereeeeetee sttt 55
Sample Run of the Reverse Cipher ProOgram..........cccooueiieiiiiiiiiniiiieteeeeeete ettt 55
Checking Your Source Code with the Onling Diff TOOLcccooiiiriiiiiiiiiiieee e 56
HOW the Program WOTKS.........cooiiiiiiiiieieee ettt ettt ettt e sat e et e e s bae s bt e saseebeeseteenbeesaseensaesnseas 56
The 1en () FUNCHOM ..ot st 57
INtroducing the Whi 1@ LIOOP...ccueiiiiiiiiieeie ettt ettt et st e sat e et e e st ee s bt e saeeebeeseteenbeesaseebeesnseas 58
The BOOIEan Data TYPEeovuiiiiieiiieiiieiie ettt ettt ettt et e st e bt e s et e e bt e s bt e sbbesateesaseenbeesateenbeesaseensaesnseas 59
COMPATISON OPCIALOTS ...eevvieniieeiiteriteetteriteerttesteestteeteesttesateesuteebeesatesnteesaseenseesaseeseesaseesssesaseesaseensaessseenseesaseensaesnseas 59
CONAITIONS ...ttt ettt e a s e b e s e e e e e s e e be s e e b e s e e e emeeseeseea et e seeeeneeneenean 62
BIOCKS ..o 62
The While LOOP STALEINEIL ...cc.eeitiitiiiirtietiittete ettt ettt ettt et s bt et e s bt et e s bt et e ebe e besbe e besbe et e sbeembesbeenbesbeenbesnsenee 63
COTOWING” & STIINE c.veveentieiieieeteteetteteete st etesteestesseetesseestesseessesseessesseansasseansesssenseaseensesssessesseensesseensenssensesseensenssense 64
Tracing Through the Program, SteP DY STEPcc.eeuiriiiiiiiieieeeeetee ettt s 67
Using 1nput () In OUF PrOGIamS.c..cooiiiiiiiiiiiiiiiieicicctetece ettt sttt sttt et st ae s ae e 68
Practice Exercises, Chapter 5, SECHOM Acouiiiiiiriiiieiietert ettt ettt sttt sb et bt et sbe et sbeeab e sbeente s e e nbesaeenee 69
SUIMIMIATY 1.ttt ettt et et e et e e s ate e bt e s ueeeaseesateea st esaeeeaseesaseesseeaseeseeesaseensseenseessseenseesaseenseesnseenseeans 69
Chapter 6 - The Caesar Cipher................ oo 70
Implementing @ PIOZIAIML......c..cociiiiiiiiiiiiiiiiiicieetete ettt et sttt e st st sae et et e be s sbeeanenne 70
Source Code of the Caesar Cipher ProOgram...........cooiieiiiiiniiiienieeeeeteieeee et sttt st s 71
Sample Run of the Caesar Cipher Program............cccooiiiiiiiriiiieneeeeetese ettt sttt st s 72
Checking Your Source Code with the Online Diff TOO]c.ccocueiiiiiiniiniiiiiiireeee e 73
Practice EXercises, ChapLEr 6, SEL Aoii ittt ettt ettt ettt b ettt e b e sb e e tesbe et e s bt esbesbeenbe s bt entesbeebesbeenne 73
HOW the Program WOTKS........coueiiiiiiiiiiiiee ettt sttt ettt e sa e beeaesaeennes 73
Importing Modules with the ImpPOTt STABMENL......c..cceeciiiiririirieieieietee ettt 73
COMSLANES.c.cuiiictii et b e se bt a e e a b e et s b sa e b sa et e eneea s enesa e e enean 74

The upper () and Lower () String MethOdscociiiiiiiiiieeieee ettt ettt 75

The £O1 LOOP STALEINENL.erutiiiriieiirtierieeiteet ettt ettt st ettt ettt et s bt et e sbe et e sbeetesbe e besbeesnesbeemsesbeesesbeensesseenee 76

A while Loop Equivalent 0f @ £OI LOOP. ..ottt sttt 77
Practice Exercises, Chapter 0, SEt Bcoiiiiiiiiie ettt sttt s 78
The 1 STAEIMENToouiiiiiiiiiiicitee ettt e st s b e sae b s b b sbe e b saeebesaeebeennenne 78
The €15€ STABIMENL.......c..ciiiiiiiiiiiiece ettt s e e e e s e e enean 79
The €11 f STAEIMENT.....cuiiiiiiiiiiiiieie e ettt et st et be b sat e b s b b sae e b e saeesbesanesbeennenne 79
The in and NOt 11N OPETALOLS.....cceiiiiiiiiiiiiiiieieiee et st a e st eb e s ae e beebs e 80
The £ind () SrNG MENOC. ..ottt sttt ettt st sbe et sbeeaesbeeaesanenee 81
Practice EXercises, Chapter 0, S Ccouiiiiiiiiiieiieerite ettt ettt ettt ettt e st e e bt e st te s bt e saseebeesateenbeesaseesaesnnean 82
BaCK t0 the COUE.......c.iiiiiiiiee e s st s e et et n e e ene e 82
Displaying and Copying the Encrypted/Decrypted StrNgcoveeriiiiiiniiinieiieerieeieeste ettt seee s es 85
Encrypt NON-Letter CRATACLEISc..ueitiiiiiiiieiieeiie ettt ettt ettt et e ettt e sate e bt esstessaeesaseebeeseteenbeesaseesaesaneas 86
SUITITIATY ..ttt b e bt e bbbt e bt e bt e bt e bt eat e bt e et e bt e st e bt e bt e bt ea b e bt e st e sbeembe bt e st e sbeemeenbeenaesbeennes 87
Chapter 7 - Hacking the Caesar Cipher with the Brute-Force Technique......ccccccceuvuuiennnees 88
HACKING CIPRETS ...ttt ettt et b et s bt et eb e et e sbe et e s bt et e sbeenbeebeebesbeebeebeenne 88
The Brute-FOrce AACKcccoiiiiiiiiiiiiiiiiii e 89
Source Code of the Caesar Cipher Hacker Programccccoooiiiiiiiiiiiniicceeeereeeeeeeee e 89
Sample Run of the Caesar Cipher Hacker Programccccoccovieniiiiiiiiiiiiiniiiciecicectesteeceeere e 90
HOW the Program WOTKS.........ccooiiiiiiiiii ettt 91
The £anGe () FUNCHON c....oiiiiiiiicicccee et e et e ettt e e et e e eeaaaeeetbeeeessseeeessaaeassseeeensseeesssaeaaassneeanes 91
BACK 10 the COUE.......eetiiiiiiieieeiteee ettt sttt et b et e s bt e et e s bt et e e bt et e sbeeabesbeenbesbeenbesbeenbesbeenbeebeenne 93
SHrNG FOIMAHINEZ ..ottt ettt et st et et s bt et s bt et e sat et e bt esbesaeesneebeesnesaeennes 94
Practice EXercises, Chapter 7, St Aooui oottt ettt ettt ettt et e st e e st e s bt e sete s st e saeeeaeesnteebeesaseenseesnseen 95
SUIMINATY ...ttt ettt a e s et be e e e e e e st e bt be s et b e e e e eme e st eaeea e be s e et e e eseeseeseebesee s eaesneneeneenean 95
Chapter 8 - Encrypting with the Transposition Cipher ... 96
Encrypting with the Transposition CIPIETcoiouiriiiiiiiiiiireeeeeee ettt sttt 96
Practice EXercises, Chapter 8, SEt Ac..oi ittt ettt ettt st sae e be e et ennes 98
A Transposition Cipher Encryption Program............cccccoiiiiiiiiiniiiiiiiiiineesceee ettt 98
Source Code of the Transposition Cipher Encryption Programc..cocccoeeveiiiiiinininiiniinieenecienceeeeeeeseenes 98
Sample Run of the Transposition Cipher Encryption Programc..coccoceoeoiiiieiiiininienineneeieceeseeeeseseeeeeeneen 99
HOW the Program WOTKS.coeiiiiiiieieietet ettt ettt sttt b et b et e bt eate s bt e st e bt e st e s bt e st esbeeatesbeensesbeeneens 100
Creating Your Own Functions with def Statements........c..cecueeiriiririeniriienteeneeteneeteere ettt eaeens 100

The Program’s main () FUNCHONcoc.iiiiiiitiiiieee ettt ettt ettt e b et et eatenbeeanens 101

PaATAIMELETS.oii ittt ettt e e et e e e et eeeetteeeeetseeeetaeeeesseeeasesseeasseeeasssseaassseeansseseessasesssseeenseeeansaeeeantreeas 102

Variables in the Global and Local SCOPEcc.ccuetririririricieieieeeentest ettt sttt 104
The GLODAL STALEIMENLeeeuveeeeeeieeeiieeiee et esteeeteeseeeseesseeeseessseeseesnseesssesnseessseanseessseensseanseesseesnseesnseenseesnsennnseans 104
Practice EXercises, Chapter 8, SEt Bccoiiiiiiiiiiiiieie sttt sttt sttt et e sttt e b et e sbe et e sbeennens 106
The LISt DAta TYPE ...eveemeiiiiieniieteeteete sttt ettt ettt b st s bt e st e bt et e s bt e st e bt essenbeemt e bt eaeesbeentesbeennens 106
Using the 1ist () Function to Convert Range Objects t0 LSScoeveruerierieirinineniinicieeetececneeresee e 109
Reassigning the Tems 1N LISES.....cueeiiiiriiiiiiiieeeeteet ettt sttt st b e et sbe e sbeeanens 110
Reassigning Characters I STIIMEScocvierirereietiinieertet ettt e ettt et et es et sa et e s et eatebeebesaesbenaenenneneenens 110
LLISES OF LLISES ettt ettt et e s a e bt e bt et b e e a e bt eanesa e b eanens 110
Practice EXercises, Chapter 8, SEt Cco.eiiiiiiiiiieieiteeteseeteet ettt ettt sttt et b ettt b e et esbe e e e nbeeanens 111
Using 1len () and the 1n Operator With LASESc.c.eiiiiiiiiiiiiieiieeieeeerte ettt st ebeesaneesaneea 111
List Concatenation and Replication with the + and * OPErators.........c.cceeriererrieniriiereeienteeterteeeese et 112
Practice Exercises, Chapter 8, SEt Dccc.ii ittt st ettt st st e st e et e saneenaeeeas 113
The Transposition Encryption ALGOTItRIM «......cccuiiiiiiiiiiiiniiieeeteeeeteeete ettt et 113
Augmented ASSIZNMENT OPETALOTSc.veeueerrerriierieeriteeteenteesttesteesteeeteesseesteesaseesstesaseesseesseessaesseessseenseesssesnseenns 115
BaCK t0 the COTE.......c..oiiiiiic ettt ettt 116
The Join () SING MENOG. ...ccc.ciiiiiiiieee ettt et s e et e st e bt e et e e s btesabeesaseenbeesaneenaeeens 118
Return Values and refturn STALEINENLScc.eiitirieiiiieeierieeteete ettt ettt b et ettt e b e et e sbe et esbeeseesbeesesbeeneens 119
Practice Exercises, Chapter 8, SELEc.cooiiiiiiiiieeee ettt sttt et e st st e st e et e saneenaeeeas 120
BACK 10 the COAE.......eeieiniiiieiterteeee ettt b et b et b e e st e b e et e s bt e st e s bt ea b e bt e st e nbe e st enbeeatesbe et enbeeanens 120
The Special name Variable...........cooooiiiiiiiiiii 120
Key Size and Message LenGthcc.coiiiiiiiiiiiieeee ettt sttt b et b et b e ettt e b 121
SUIMIMIATY 1.ttt ettt et e st et e et e e s tte st e e sae e e et e s ateeaseeeat e e s eeeaseeeaseeaseeseseenseeeaseenseesnseesnseenseesanesseennneannne 122
Chapter 9 - Decrypting with the Transposition Cipher................oooooooomoeooeee 123
Decrypting with the Transposition Cipher 0n Paperc..ccccoiiiiniiiiniiiiiniiicieccecreteee et 124
Practice EXercises, Chapter 9, SEt A ..ottt ettt ettt ettt e bt et s bt et e bt e st e sbe et e bt estesbeeatenbeennens 125
A Transposition Cipher Decryption PrOZIam..cccoiuieiiriiiiniiierieeieieet ettt ettt et sbe e 126
Source Code of the Transposition Cipher Decryption Programcccceceverieniniiniiniinineneneenieeeereeecseeeene 126
HOW the Program WOTKS.coueiiiiiiieieeiet ettt sttt ettt b et s b et e s bt et e s bt e st e sb e easesbe e st e bt eabesbeensesbeeneens 127
Themath.ceil (), math.floor () and round () FUNCHONS......ccooviiiiiiiiiieeie e 128
The and and or BoOlean OPETators...........ccecueretruiriieerieieieteitete ettt ettt ettt st et sae s ee et eseebesaeebesaesaenneneeaeas 132
Practice Exercises, Chapter 9, SEt Bccooiiiiiiiii ettt sttt st 133

TIULN TADIES ... e ettt e e ettt e e et e e et e e e aae e e eeaaeeeeaaeeeeaaseeeeaseeeeseeeeensseeeesseeeesaeeeanseeean 133

The and and 0r OPErators are SHOTECULScc.erirriiririterieierteet ettt ettt ettt sb et esbeeseesbeenesbeennens 134

Order of Operations for Boolean OPEIatorscccceivererierieteirineniistenteteteitete sttt ettt sae st sae e eseeaeen 135
BaCK t0 the COTE..........oiiiiiiiccce et sttt 135
Practice EXercises, Chapter 9, SEt Cco.ooiiiuiiiiiieieeieeie sttt ettt et ettt e e st e este s bt est et e estesbe e b asseentesseensensesnnens 137
SUITIMATY ..ttt ettt b et s et e st e bt s bttt e bt e bt e bt e bt e st e bt ebb e bt ea b et e e bt e bt e st ebesbee bt ebeentesbeensesbeente 137
Chapter 10 - Programming a Program to Test Our Programccccmmeiiiiiiemmecccnssnnnnnnes 138
Source Code of the Transposition Cipher Tester Program............ccoccecueririinerieninniinenieeeeeseenieeeesee st 139
Sample Run of the Transposition Cipher Tester Program............ccccoccevrirenieiieieiiniininenenteeeeeeeee e 140
HOW the Program WOTKS......c...ooiiiiiiieeteee ettt ettt ettt s e et e st e bt e et e e s btesabeesateenbeesaseenaeeens 141
Pseudorandom Numbers and the random. seed () Function..........c..cccccccoiiiiiiiiiiininiceeneeseseeeeene 141
The random. randint () FUNCHONccociiiiiiiiiii 143
RETEIENCES ... 143
The copy .deepCOPY () FUNCHONSoiiiiiiiiiiii ettt ettt et e st e e be e e e bbeeesbeeeeabeeeenssaaensseeens 147
Practice Exercises, Chapter 10, SEt Aco ittt ettt et e st et e et e st e sabeesateebeesaneenneeeas 148
The random.shuffle () FUNCHONccccociiiiiiiiiii 148
Randomly Scrambling @ SNc.c.eoiiiiriiiiiiiieeeert ettt ettt e st e tee s te e bt e st e e sbtesabeesaseebeesaseenneenas 149
Back t0 the COUE.......c.oiuiiiiiiiiiiiii e 149
The SYS . @XIT () FUNCHOMN ...eeitiiiiieie ettt et e et e e s ta e et e e saaeesseessbeesaeenseessaesnsaessseenseesnsennseeans 150
Testing OUr TSt PrOGIAIML.......couiiiiiiiiiiiiiiiicientetee sttt ettt ettt b e e sae et eanesaeenesbeennens 151
SUITHMIATY ..ttt b et h e e a e s bt e st e bt e bt et e ea b e bt e bt e bt e st e b e eh b e bt ea b e b e e bt e bt es b et e ebte bt eueenbesbtenbeeneenee 152
Chapter 11 - Encrypting and Decrypting Files ... 153
PLAIN TEXE FILES ..ttt ettt et b et b e a e s bt et e s bt e st e s bt e st e bt e st e nbe e st e bt esbenbeeatenbesanens 154
Source Code of the Transposition File Cipher Program..........c..cccccovirviiiiiiiiininiiniiiiieniiieeeeceeieeeere st eeene 154
Sample Run of the Transposition File Cipher Programc..cocooiiiiiiiiiiiiieniiceeteeeteesteseete et 157
REAAING FIOM FILES.....couiiiiieiiieiecee ettt ettt et st e sttt e bt e s e te e bt e et e e s stesaseesaseenseesnseennneens 157
WG TO FILES ..ttt ettt et h et s b et e e bt et e sb e et e e bt e st e s bt enbesbeentesbtenbesbeensesbeeneas 158
HOW the Program WOTKS.........ccccciiiiiiiiiicecete ettt ettt sttt s s ae e 159
The 0s.path.eXI1STS () FUNCHON c.coitiiiiieieeeee ettt st s e et e st e eteesneeeseesnseenneeens 160
The startswith () and endswith () Sring Methods........ccccoviiiiiiiiiiiniiiinieeeee e 161
The title () SrNG MEthOM . .cooiiiiiiiiiiiiet ettt b et b et s b et s bt et e bt et e s be et e bt entesbeeatenbeennens 162
The time Module and time.time () FUnCtion ... 163
BACK 10 the COUE.......eetiiiiiiieiteeteee ettt e et b et b et e bt e it e s bt et e e bt e st e s bt eat e bt e st e sbe e st e bt enbenbeentenbeennens 164

Practice Exercises, Chapter 11, SEt Acooiiiiiiiiieieet ettt st sb et sbe et e sre st ne e 165

Chapter 12 - Detecting English Programmatically..........eeeemmmmmmmmmmmmmmmmesemmesseeeeneeennnnnnsnnnnes 166
How Can a Computer Understand ENgliSh?........co.coviiiiiiiiniiiiiiiieece ettt 167
Practice Exercises, Chapter 12, SECHION Acc.oiieiiiiieieiieieeieete sttt ettt et et este st et e bt estesbeeatasseessesseensesseensens 169
The Detect English MOGUIEcocueiuiiiiiiiiiiiicecteet sttt st ettt et sb et be st sbe e e sbeeanens 169
Source Code for the Detect English MOGUIE...........cccoiiiiiniiiiiiiiieereteeeete ettt enene 169
How the Program WOTKS.c.cooiiiiiiiiiiiiiiiiitce sttt st e sae e 170
Dictionaries and the Dictionary Data TYPEc.coeevuiririiririinintenteeteteet ettt ettt sbe e 171
Adding or Changing Items in @ DICHONATYccc.eiiiiiiiiiiiiiiieee ettt sttt et st e st e ebeesareesaneeas 172
Practice Exercises, Chapter 12, SEt B ..ottt ettt et sbe e 173
Using the 1en () Function With DICHONATIES......cccueiriiiiiiniiieiieiieee ettt ettt et st e st eebeesabeesaneen 173
Using the in Operator With DICHONATIEScc.eevviruietirieierieeteeieetesteete ettt ettt st sb e et sbeebe b eaeens 173
Using £or Loops With DICHONATIESecoueeriiiiiiiiiieiteiiieete ettt ettt ettt sate et e sete e bt e st e sbtesabeesaseebeesaseenneenas 174
Practice EXercises, Chapter 12, SEt Ccouiiiiiiiiiieeiereeteet ettt ettt sttt b e et sb et b e st sbe e e nbeeaeens 174
The Difference Between Dictionaries and LiSts............ccooiiiiiiiiiiiiiiiiiii e 174
Finding Items is Faster with Dictionaries Than LiStS........c.cceceririiiriiiiinirieneeieseeseeteeet ettt 175
The SPLIt () MEhOGoiuiiiiiiiiiiiiiicc et s 175
THE NOTIE VAIUE ..ttt sttt b et b et e b e st e b e et e s bt e st e s bt e st e bt e st e nbe e st e b e eatenbe et enbesnnens 176
Back t0 the COTE........c.oiuiiiiiiiiiici e 177
“DIVIAE DY ZEI0O™ EITOTS. ...ttt sttt s et besae s e e e e e eaeen 179
The float (), int (), and str () Functions and Integer DiViSIONcoceerivinieiiieenieeieenie e 179
Practice Exercises, Chapter 12, SEt Dcocuiiiiiiiiiiiieeereeetet ettt sttt b ettt ae b eaaens 180
Back t0 the COTe........c.oiuiiiiiiiiiiiii e 180
The append() LiSt MENOM.cc.veiiieiieiiecie ettt ettt et e et e et e s saeetaessseesseessseessaeanseessaesnseessseensessssennsseans 182
Defatlt ATGUINIENLSoveiuiiiieiieitieiete ettt ettt ettt b e et sa et b e et s bt et e s bt eab e s bt e st e bt eabesbeessesbeeanesbtennenbeennens 183
CalCULAtING PEICEITAZE. ... c.veeuteteeiietieiterte ettt ettt et b et b et e bt e st e s bt e st e s bt eabe s bt eab e bt e st e sbeeabenbeeabesbeenbenbeennens 184
Practice Exercises, Chapter 12, SELE ..ottt sttt sttt sb et sbe e 185
SUITIMATY ..ttt ettt b et a et b e st b e st e bt s bt e bt e st e bt e bt e bt eae e bt e bt e bt e st et e sbee bt eseesnesbeenseennenne 186

Chapter 13 - Hacking the Transposition Cipher ... 187
Source Code of the Transposition Cipher Hacker Programccoceviiiiiiiiininiininiiincenecnieeeceseceeeene 187
Sample Run of the Transposition Breaker PrOgramc..cccccueoiiiiiiiiiinicniiieieieiieeseteeeeee e 189
HOW the Program WOTKS.cc.eiiiriiiiiiicc ettt ettt ettt st sb et saee bt sane e 190

Multi-line Strings With TTiple QUOLESc.ccueiiieiiiiiieieieeetet ettt ettt sttt st s se e 190

BACK t0 the COU@.....eo ittt et e ettt e e ettt e e et e e e aae e e eatseeeeataeaeassseeesbesesasasesassseeesseeesnsaeeeanseeeas 191

The strip () SING MEhO ...c.oooiiiiiiiiiiiicee ettt st ettt ettt 193
Practice EXercises, Chapter 13, SEt A ..ottt ettt sb e st sbe e 195
SUITIMATY ..ot a et b e e as e bt et e b s as e b et e b e e abesb e as e b e sas e bt ess e b e sbse bt essesbesutesneensenne 195
Chapter 14 - Modular Arithmetic with the Multiplicative and Affine Ciphers 196
OR NO Math! ..ttt ettt ettt sttt ettt a e bt be s et bt e st e bt e bt sae et st e e e eneeaeas 197
Math OR YEaN! ...o.eiiiiiiicicee ettt ettt bbbttt nees 197
Modular Arithmetic (aka ClOCK ATITMELIC)c.uivtieiietieieriieiesteete sttt ettt ettt ste bt et esbeeseesbeebesaeeneens 197
THE Y0 MOA OPEIALOTveiutieiieeite ettt ettt ettt et et e et e st e e bt e st e e sbtesateesbeeeabeesaseebtesaseenseesaseesnseenseesnseenaneens 199
Practice EXercises, Chapter 14, SEt A ..ottt sttt b et sb et b e et be e e nbeeaeens 199
GCD: Greatest Common Divisor (aka Greatest COmmON FacCtor)covviiiiiiiiieiiiiiiiieeeeiiee e 199
Visualize Factors and GCD with Cuisenaire ROdS..........c.couciiiiiiiiiiiiiicce e 200
Practice Exercises, Chapter 14, SEt Boo ittt st ettt et st e st e e beesaneenaeeeas 202
MUIEIPIE ASSIZIIMEIIL. ...c..eetieiiiieiiieteeit ettt ettt eb ettt b ettt e e b e e st e s bt e st e s bt eabe s bt eat e bt e st e bt e st e beesbesbeenbenbeeneens 202
Swapping Values with the Multiple Assignment TTICK.......cccccviiiiriiiiniiiteeeee e 203
Euclid’s Algorithm for Finding the GCD 0f TWO NUMDETS........cccerieriiriieieniieieniieie ettt sieeneseeennens 203
CRELAIIVELY PIIIMIE” ..ottt h et b et b et s bt e bt e s bt e st e s bt e st e bt e st e s bt e a b e beeseenbeeasenbesanens 205
Practice EXercises, Chapter 14, SEt Cc.oi ittt ettt ettt e sttt e s ate e bt e et e e sstesaseesaseenbeesnseenneeens 205
The MUItPIHCAtIVE CIPRET ...c..eeitiiiiiiieierieeet ettt ettt b et b et h et b e et e b e e st e s bt et e bt eatesbe et enbeeneens 205
Practice Exercises, Chapter 14, SEt Dco oottt st ettt e st e st esateebeesaneenaeeeas 207
Multiplicative Cipher + Caesar Cipher = The Affine Cipher..........coccevieririiiniiiiniiieeeeeeeeeeeeeeseeee e 207
The First Affine Key ProbIem........co.eeiiiiiiiiiiiiieeeeeereete ettt sttt b ettt et s be et e b sanens 207
Decrypting with the Affine CIPRET........cocooiiiiiiiiiiiiii ettt et 208
Finding ModUular INVETSESc..ccceiriiiiiiiieieicieteie ettt ettt ettt st e e e 209
The / / Integer DIVISION OPETALOTccueeruierieiriieeteerite et eeteerttesteesteeeteestteeteesateeseeseseenseesaseesseesnseessseenseesnsesnneenns 210
Source Code of the cryptomath MOAUIE.......cc.eiiiiiiiiiiieeee ettt ettt ettt st 210
Practice Exercises, Chapter 14, SELE ..ottt sttt ettt 211
SUIMIMIATY ...ttt ettt st e bt et e s bt et e e eb et et e e s ateeab e e eab e e b e e eabeesateeabeesabeeabeeeabeebaeeaseesteenbeesaneeseesaneennee 211
Chapter 15 - The Affine CIpher ... ssss s s smmmm s s s s s e nas 213
Source Code of the Affine Cipher Programcccooiiiiiiiiiniiieeeteeeee ettt sttt 214
Sample Run of the Affine Cipher Programc..ccccoiiiiiiiiiniiiiiiicecerte ettt 216
Practice EXercises, Chapter 15, SEt A ..ottt ettt b et b et sb e st sbe et e sbeeanens 216
HOW the Program WOTKS.ccooiiiriiiiiiiiice ettt sttt ettt sb et st sb ettt saee bt eane et 216

Splitting One Key into TWO KEYSc.coiriiriiriiiiiiiiiiieenetctetet ettt sttt s enene 218

The TUPLE DAt TYPE ..envirieiierieeiteetee ettt ettt ettt b et b e et e s bt e st e bt e st e sbe et e bt eaeesbeennesbeennens 218

Input Validation 0n the KEYScceiiiiiriiiiiiiiieeese ettt sttt st 219
The Affine Cipher Encryption FUNCHONcc.cooiiiiiiiiiiiiinieieeetcee ettt st 220
The Affine Cipher Decryption FUNCHONc..cc.coviiiiiininitceieieeertct ettt sttt st 221
Generating Random KEYSc..ocuiiiiiiriniiiiiiicee ettt sttt st st 222
The Second Affine Key Problem: How Many Keys Can the Affine Cipher Have?ccocoveniiviininiinnncnennnene 223
SUITIMATY ..ottt b et b e s hs e b e b e b e hbe b eas e b e e as e bt et e b e sbse bt essesbesusesneensenne 225
Chapter 16 - Hacking the Affine CIpher....... e 226
Source Code of the Affine Cipher Hacker Programi.............ccoceiiiiiiiiiniiiiieeniceeeeete sttt 226
Sample Run of the Affine Cipher Hacker Program.............coccoiiiiiiiiiiniiiiniiicecentceeeesteeee et 228
HOW the Program WOTKS......c...eoiiiiiiietee ettt ettt et s ettt e st e bt e et e e s btesabeesaseenbeesnbeenaneens 228
The Affine Cipher Hacking FUNCHON.cocuiiuiiiiiiiiiitieiereeet ettt sttt et s sbe e 230
The * * EXPONENE OPETALOTeeiiieriiiiiieiiteriteette et eniteete e sttt ebeesiteeateeateesaeessteesaseenbeesaseeseesaseensaesnseessseanseesnsesnnneens 230
The CONTINUE STABIMENTc..oiiiiiiiiiiiee ettt st e sae e seeaeen 231
Practice EXercises, Chapter 16, SEt Acooiiiiiiiieieeeee ettt sttt et e st et e st esbtesabeesateebeesabeenaeeeas 234
SUITHTIATY .ttt et et b e e h e st e st e bt e bt et e e bt e bt e bt e bt e st e bt eb e e bt ea b e bt e bt e bt e st et e sbee bt ebtenbesbtenbesneenne 234
Chapter 17 - The Simple Substitution Ciphercccciiiiieersrcrrrrreee s 235
The Simple Substitution Cipher with Paper and Pencilccccoceiiiiiiiiiiiniiiiiee e 236
Practice EXercises, Chapter 17, SEt A ..ottt ettt s e et e st et e st e s bt e sabeesaseebeesnseenneeens 236
Source Code of the Simple SubStitution CIPRET.........c.coviiiiiiiiiiiieeeere ettt 237
Sample Run of the Simple Substitution Cipher Programcccccooiiiiiiiniiiiiiiiiiiiesecceeee e 239
HOW the Program WOTKS.........cociiiiiiiiiiiiiintee sttt sttt ettt sae e sbe s bt sbeennens 239
The Program’s main () FUNCHONcocuiiiiiiiiiiieeee ettt b ettt b ettt e b e 240
The sort () LiStMEthodccoiiiiiiiiii e 241
WIAPPET FUNCHOMNS ...ttt sttt ettt b et e sb e et e e bt et e s bt embesb e eabesbeembesbeennesbeenees 242
The Program’s translateMessage () FUNCHON ... 243
The isupper () and islower () Sring Methodsocooiiiiiiiiiiinieeeee et 245
Practice Exercises, Chapter 17, SEt B ..ottt sttt et 247
Generating @ RaNAOM KEYco.eiiiiiiiiiiiieeee ettt sttt et b e et be et e bt et e s be et e nbeeneens 247
Encrypting Spaces and PUNCIUALIONcccueiuiiiiiiiiiiniieiceitet ettt sttt sttt et sbe st sbe et esre et aesae e 248
Practice EXercises, Chapter 17, SEt Ccouiiiiiiiiiiieee ettt ettt b et b et e bt et e sbe et e sbeeanens 249
SUITIMATY ...ttt sttt b et a et b e st e b e bt e bt s bt e bt e st e bt ebtesb e eme e bt s bt e bt e st et e sbeebeeneensesbeennesnnenne 249

Chapter 18 - Hacking the Simple Substitution Cipher ... 250

ComPULING WOTA PALLEITIS ...c..eeveiiiitiiierieeitetee ettt sttt s b et b et e bt et e s bt et e bt eanesbeeanenbeennens 251

Getting a List of Candidates for @ CIPREIWOIdccooiririiriiiiiiirienieereeetet et 252
Practice Exercises, Chapter 18, SEt A ..ottt sttt sb ettt sbe e 253
Source Code of the Word Pattern ModULEcc.cciiriiininiiiiiiieeecnesteeeete ettt 253
Sample Run of the Word Pattern MOAUIEcccceririniniiniiiiiiieenereteeeetetee sttt 255
HOW the Program WOTKS.........cociiiiiiiiriiieeenteete sttt sttt et b e et be et e b et e sbe e e e sbeennens 256
The pprint.pprint () and pprint.pformat () FUNCHONSccoceiirieiiinieienieeiecete e 256
Building Strings in Python With LISTSccccetiiiiiiiiiiiiiiieceteseete ettt 257
Calculating the WOTd PatterNcc.oiiiiiiiiiiiiiieeteree ettt ettt et e sttt e s te e bt e et e e s btesabeesaseenbeesaseenneeens 258
The Word Pattern Program’s main () FUNCHON «..ccc.oouiiiiiiiiiiiiiiiiiceieeecee et 259
Hacking the Simple SubStitUtION CIPRETooiuiiiiiiiiiiiieieete ettt st ettt et st e st e enbeesnbeesaneeas 262
Source Code of the Simple Substitution Hacking Program............ccccoceveeiiiiniininiiininiceeeeseeieeteie st eeene 262
Hacking the Simple Substitution Cipher (in TREOTY)couiiiiiiiiiiiiiieeee et 266
Explore the Hacking Functions with the Interactive Shell..........occooiiiiiiiiniiieeeeeceeee e 266
HOW the Program WOTKS.co.eiiiiiiiireeieieet ettt ettt b et sb et e bt et e st e et e bt eatesbeeaaesbeennens 271
TMPOTt ATL The TRINEZS. cc.eeeiiieiiiiie ettt sttt e bt et st e e s at e e bt e seb e e bt e eabeesbtesabeesnseenseesnseenaneens 272
A Brief Intro to Regular Expressions and the sub() Regex Methodcccoveeiiriiiiininiininieneeeeeeeseeeesieeene 272
The Hacking Program’s main () FUNCHONccoieciirieieiieiectete ettt ettt steeneesseensesseeneens 273
Partially HACKING the CIPRET......couiiuiiiiiiiieiietereeet ettt sttt b et b et e bt et e sbe et e nbeeaeens 274
Blank Cipherletter MapPINESccc.cotevieriiiiiniiiienitetenie ettt ettt ettt ettt sttt et et s bt et be b sat et esbeesnesateanesbeennens 275
Adding Letters to a Cipherletter MaPPINgc.coeerierieiiererienieetesteete sttt st e e sttt e st e sbe e b esbe et e sbeebesbeeneens 276
Intersecting TWO Letter MAPPINGScc.cvteiiririiiriiieieeiesiteteete ettt ettt ettt ettt et beebesat e esbeeanesbeeanesbeeanens 277
Removing Solved Letters from the Letter Mapping..........coeevueririirienienieienieeiestcete ettt sttt s sbe e 278
Hacking the Simple Substitution CIPRETcoouiiiiiiiiiieniiteteetereete ettt ettt bbb e 281
Creating a Key from a Letter MapPINgccccecuirieiiniiiiniiierieetesitetee ettt st ettt et sat e sae e bt ene b eanens 283
Couldn’t We Just Encrypt the Spaces TOO0?cccoiiiririierieieieieentestesteeet ettt sttt s 285
SUITIMATY ..ttt ettt et a et b e ettt e bt e bt s et e bt e st e bt ebt e bt eme e bt sat e bt e st et e sbeebeebeentesbeenbeennenne 286
Chapter 19 - The Vigenere CIPRErccccevreeerrrsscerisssssesissssssssssssnssssssssssssssssssssesssnsssesssnnes 287
Le Chiffre Indéchiffrable ... 288
Multiple “Keys” in the VIZENETe KEYccciiuiiiiiiiiiiieierieeteett ettt sttt st sb et e b eaeens 288
Source Code of Vigenere Cipher PrOZram.........coccoceviiiiiiiiiniiiietcecentete ettt ettt 291
Sample Run of the Vigenere Cipher Programcoccocuiiiiiiriiiiniiiiniieicententeteteee ettt et st 294
HOW the Program WOTKS.........cccociiiiiiiiiiccccte sttt ettt sttt st s ae e 294

SUITIMATY ...ttt ettt ettt b e st b e bt e bt sh s e bt e st e bt ebtesb e eae et e ebe et e e st et e sbte bt eneenbesueennesnnenne 298

Chapter 20 - Frequency ANalySiS.....cuuuummmmmmmmmmemeemmneeeenenensnnnnnnnnsnnas 299

The Code for Matching Letter FIEQUENCIESc..ccceiririiririeieieieiiientcetetet ettt sttt 304
HOW the Program WOTKS.........cociiiiiiiiiiitie sttt ettt ettt b e et be et e be et e sbeeaeesbeeneens 306
The Most Common Letters, “ETAOINcooiiiiieeie ettt ettt ettt stteeteesaeesteesbeestaaeseessaeeseessseessseenseessseans 307
The Program’s getLettersCount () FUNCHON ..cccoociiiiiiiiiiiiie et 307
The Program’s getItemAtIndexZero () FUNCHOMN ...occcociiiiiiiiieieee et 308
The Program’s getFrequencyOrder () FUNCHONcccociiiiiiriiiiieieececeeeeeee e 308
The sort () Method’s key and reverse Keyword ATgUMENLTScoeoveieieirenierenienieieieeneneereseeseeeeneeaeen 310
Passing FUNCHONS @S VALUESc..co.uiiuiiiiiiiiiiieiteseeeet ettt ettt b ettt et b e et sb et e b e e st e sbeeatenbeeaeens 311
Converting Dictionaries to Lists with the keys(), values(), items() Dictionary Methodsc.ccceeeevieeneerieennnnne 313
Sorting the Items from @ DICHONATYcc.eeiirtiiiiiiiriereeteeet ettt ettt ettt ettt et sbe et ebe et e sbeenbesbeenee 315
The Program’s englishFregMatchScore () FUNCHONccciiieiirieiienieeecee ettt 316
SUITHTIATY ..ttt ettt et e bt e a e st e st e bt e h e et e e bt e bt e bt e bt e st e bt eb e e bt ea b e b e e bt e bt em b et e sbee bt ebeenbesbeenbesneenne 317
Chapter 21 - Hacking the Vigenere Cipher.......... o rrcccecrrrrscceressecesesssscesesssscsssesssnnes 318
The DICtONATY ATLACKcctiiterieiietietert ettt ettt ettt b ettt e b e et e st e e st e s bt eat e s bt ea b e bt esbe bt e st e beestenbeenbenbeeneens 319
Source Code for a Vigenére Dictionary Attack Programcoccooviiiiiiiiiiiniiiiienieeeeeete ettt 319
Sample Run of the Vigenére Dictionary Hacker Programcccccecieriiiiiinieninienenteseeeesteseetee st eieeee 320
The readlines () File Object MEthOdccccoiiiiiiiiiiniiiiniiiiiitcccctertcee ettt 321
The Babbage Attack & Kasiski EXamMINation.........ccoeiieiiiriiiiininienieeieeerieee ettt 321
Kasiski Examination, Step 1 — Find Repeat Sequences’ SPacingS........ccvecvereriierieerienieriienieesienieseesseeeessessnesseessenns 321
Kasiski Examination, Step 2 — Get Factors 0f SpPacingscoceceviriiiniiiineriiiniiienienecitereie ettt eaeene 322
Get Every Nth Letters from @ SINEco.eeuiruieiiiieeeieeteneetest ettt sttt b ettt sb e et sbe e e e sbesaeens 323
FreQUENCY ANALYSIS ...eeiuieiiieiteeiie ettt ettt ettt et e st e et e st e e st e st e e see s et e esaeeenseeseseenseeenseenstesaseesnseanseesnseennneens 323
Brute-Force through the PosSible KEYS........co.tiiiiiiiiiiiiieeeeteeetee ettt 325
Source Code for the Vigenere Hacking Program..........ccccoccevieniriiniiiiiniiiiiniiienieeeiectcieeeeie ettt 326
Sample Run of the Vigeneére Hacking Programc..cooeiieiiriiniiiiniieeeeteseete ettt 332
HOW the Program WOTKS.coueiiiiiiieieeiet ettt ettt sttt et h et s b et e s bt et e s bt e st e bt e st e sbe e st e bt eabesbeensesbeeneens 334
Finding Repeated SEQUENCESco.iiiiiiiiiiriiiieiieienit ettt ettt sttt et et st sb et be st sb e ese et e saeenesanene 335
CalCULALING FACLOTS ...cuveiiiitieiieite ettt ettt h et b et e bt e it e s bt e at e e bt e st e s bt eat e bt essenbeeabenbeenbesbeenbesbeeneens 337
Removing Duplicates with the set() FUNCHONcc.coiiiiiiiiiniiiiiciteecteeeeet ettt 338
The Kasiski Examination ALZOTIRIML.cccuiiuiiiiiiiiiiitieeneeeetee ettt sb ettt e b e 341
The extend () LiSt MEthOd........cccciiiiiiiiiiii e 342

The end Keyword Argument fOr PIINT () woceceeieeiiieeneeeieieeee sttt ettt 347

The itertools.producCt () FUNCHONcccci ettt ettt e e eseesnseenseeenseenneeens 348

The Dreak STABIMENTcccociiiiiiiii ettt s s e st b e e b sa e e be s e sae s e sbeeanens 352
Practice EXercises, Chapter 21, SEt Acou ittt ettt sttt sttt b et sb et be s sbe e e e sbeeanens 354
Modifying the Constants of the Hacking Program..........c..ccccoecieiiiiiiininininieicieiiceeseeceeteteeee s 354
SUITIMATY ...ttt b ettt a et e bt s bbbt e bt e bt s bt e bt e st e bt ebe e bt e st et e e b e e bt em b et e sbee bt ebeenbesbaennesneenne 355
Chapter 22 - The One-Time Pad Cipher ... eeeeeeeeeeeeeeeeeennsessssnssnsssssssssssssssnns s s s nnnnnnnnnnnns 356
The Unbreakable One-Time Pad CIPher.........cocoviiiiiiiiiniiieeetenieeeeet ettt s 357
Why the One-Time Pad is Unbreakable............coiviriiiiiiiiiiiieneeteeetcrteeteseet ettt ettt 357
Beware PSeudorandOmnessc.ooiiuiiiiiiiiiiieieie ettt sttt s 358
Beware the Two-Time Pad ... 358
The Two-Time Pad i the VIZenere CIPhET..........coouiiiiiiiiiiiiiieeieeieetet ettt sttt ettt st e st e b e sabeesaeeeas 359
Practice EXercises, Chapter 22, SEt Acou ittt ettt sttt b e et e e bt e st e sbe et e nbeeaeens 360
SUIMIMIATY ...ttt ettt et set et e et e e bt e sab e e sut e e e e e s ateeab e e eab e et eesabeesaseembeeseseeaseeeabeeseesaseennseenbeesaneeseesnneanene 360
Chapter 23 - Finding Prime Numbers..........oooeeeeeeeeeeee s 361
Prime NUMDETS ..o 362
COMPOSILE INUITIDETS. ...ttt ettt sh ettt et b e a e s bt et e bt e st e st e e st e e bt eabe s bt ea b e b e eabe bt eat e beeatesbeenbenbeeneens 363
Source Code for The Prime Sieve Module.............ccooiiiiiiiiiiiiii e 363
HOW the Program WOTKS.coeiiiiiiieieiieee ettt ettt et b et h e et s bt e st e bt et e s bt et e beestesbeeaeesbeeneens 364
How to Calculate if a Number iS Primeccccooiiiiiiiiiiiiiiic 365
The Sieve of EratoSthenes..........ccccoiiiiiiiiiiiiii e 366
The PrimeSieve () FUNCHOMN.......cccciiiecie ettt et e et e s e e e teesaae e teessbeessaeenseessaesssaessseenseesssennsnenns 368
Detecting Prime NUIMDETSco.cioiiiiiiiiiiiiiietenteteeet sttt ettt st ettt b e et sat et sbeeanesateanesbeennens 369
Source Code for the Rabin-Miller MOQUIE.........cc.cooiiiiiiiririeieeieeeteteetete sttt ettt et et 370
Sample Run of the Rabin Miller MOAUIEcoiiiiiiiiiiiiieeieeeeeete ettt st este e esneenaee 372
HOW the Program WOTKS.co.eiiiiiiieieiiieet ettt ettt et b et sh et s bt et e bt e st e s bt et e bt eabesbeeaeesbeeneens 372
The Rabin-Miller Primality AIZOTItRIccc.ooiiiiiiiiiiiiiiii ettt st 372
The New and Improved 1 SPrime () FUNCHOMNoocuiitiiiiiiiiieiiete ettt st 373
SUITHMATY ..ttt ettt b et a et b e sttt e st e bt s bt e bt e st e bt ebe e bt emt e bt eae e bt e st et e sbee bt eneentesbeenseennenne 375
Chapter 24 - Public Key Cryptography and the RSA Cipher........cccoomiiiiiiiimeeecnssnnnnnns 378
PUDBIIC KEY CIyPLOZIAPIY . ..c.ceotiiiiiiiiiiiieitentteteete sttt ettt ettt et b e st sb et b e st eb et e bt sbee bt ebeebesbeebesanenne 379
The Dangers of “TeXtbo0k™ RSAooiiiee ettt sttt s s 381
A Note ADOUL AUTNENTICATIONeuiitiiiiitietiet ettt ettt ettt ettt e bt et e s bt et e s bt eate s bt eabesbeesbesbeeabanbeenbesbeentenbeennens 381

The Man-In-The-Middle ALLACKccciiieiiiiieiiie ettt e et e e et eeeteeeestbe e e e abeseeabaeeesssseeesseeesssseeensseeens 382

Generating Public and Private KeYs.........cooiiiiiiriiiiieiieeet ettt s 383

Source Code for the RSA Key Generation Programc..coccveiririinininienieieinenieeseesteeeeee e seseeneeeneene 383
Sample Run of the RSA Key Generation PrOZIamcocceieririiniiiiniriinenieneeteieeteteeteesiee sttt 385
How the Key Generation Program WOTKSc..cccociiiiiriniiniiiiiicneniestcne ettt sttt 386
The Program’s generateKey () FUNCHON........cociiiiiiiieieeeeeeee ettt st 387
RSA KEY FIle FOIMALcueiiiiiiiiiiiiiticsetee ettt ettt st sttt et be et sae e neseeaeen 390
HyYDIIA CIYPLOSYSIEIMS ...cuvenviuienieiiiiietententententet ettt ettt sttt ettt et sttt ettt e bt sae e b s e e b et et eatebe e bt saeebenaesaenneneeneen 391
Source Code for the RSA Cipher PrOZIamcoeiiiiiiiiiiiiiiiceteeeeeste ettt 391
Sample Run of the RSA Cipher Programi...........coocoiiiiiiiiiiiiiiiieeieete ettt ettt st e st saeesneenane 395
Practice EXercises, Chapter 24, SEE A ..ottt ettt sttt et b e et sbe et e bt et e sbe et enbesaeens 397
DAGILAl STZNATUIES ...eveeiieiiieiteete ettt ettt et e st e e bt e et e e b te s et e e s ateeabeesateebteeaseesstesnbeesaseenbeesaseenneenas 397
How the RSA Cipher Program WOTKScoeeiiiiiiiiiiiinieeetereete ettt sttt sbe e 398
ASCII: Using Numbers to Represent CharaCterseeuereeieririereerienieeierieetest ettt et te b eseeseeeeesneeaeens 400
The chr () and ord () FUNCHONSc.ociiiiiiiii e 400
Practice Exercises, Chapter 24, SEt B ...ttt sttt sbe e 401
BIOCKS ...t e 401
Converting Strings to Blocks with getBLOCKSEFLOMTEXE () teovereeriererienierienienienieeienieetenteeeesieeseeseeeeesieeneens 404
The encode () String Method and the Bytes Data TYPEcceevuiiiiieiiirieiieeeeee ettt 405
The bytes () Function and decode () Bytes Methodcccoocuiiiiiiiiiiiiniiienieeeee et 405
Practice EXercises, Chapter 24, SEt Ccoouiiiiiiiiiiiieete sttt ettt b ettt et b e et s bt et e sbe et e sbe et e nbeeanens 406
BACK 10 the COAE......eeiiiiiiiieterteee ettt b et b et b e e et e s bt et e s bt e st e s bt ea b e bt e st e s bt e st e b e esbesbe et enbesaeens 406
The min () and max () FUNCHONSocoiiiiiiiii e 407
B TSR o FoT=S anull O I B 05\Y) (<1 4 (o Yo RO 410
The Mathematics of RSA Encrypting and DeCTYPUNG.......c..eecueruirierieieniieienieeest ettt ettt ee b saeens 411
The POW () FUNCLOMNeieiiieiiieie ettt ettt et e e st e e te e s b e e s saeesbeessaeesseessseensaaenseessaeessaessseanseeensennnseans 411
Reading in the Public & Private Keys from their Key Files........coccoviiiiiiiiiiniiiiiiieeeeieeeceeeeee e 413
The Full RSA ENCIyPion PrOCESSc..eiviiiiiiiiiiiiieeeteete sttt ettt sttt et b et be et esbe e e e s be et e sbeennens 413
The Full RSA DECryption PrOCESSc..ciutiiiriiiiiriieiiitieieniteteete ettt ettt ettt sb e sb et sbe e sre et b eanens 416
Practice Exercises, Chapter 24, SEt Dccooiiiiiiiiiieerieetete ettt ettt b ettt sb et e s be et e sbeeanens 418
Why Can’t We Hack the RSA CIPher........oouiiiiiiiiiiiieeseeee ettt st 418
SUIMTIATY ..ttt ettt et e bt e s bt e et e e ebt e et e e s hteeab e e eab e et et eabeesateeabeesateeabeeeabeebaeeabeensteembeenaneebeesaneennee 420

Y0 Lo T A a3 L= V1 0 422

Chapter 1 — Making Paper Cryptography Tools 1

CHAPTER 1

MAKING PAPER
CRYPTOGRAPHY TOOLS

Topics Covered In This Chapter:

What is cryptography?

Codes and ciphers

The Caesar cipher

Cipher wheels

St. Cyr slides

Doing cryptography with paper and pencil
“Double strength” encryption

“I couldn’t help but overhear, probably because I
was eavesdropping.”

Anonymous

2 http://inventwithpython.com/hacking

What is Cryptography?

Look at the following two pieces of text:

“Zsijwxyfsi nigjsjxx gjyyjw. Ny nx jnymjw ktqqd tw “Flwyt tsytbbnz jgtw yjxndwri iyn fqq knqrgt xj mh
bnxitr; ny nx anwyzj ns bjfqym fsi anhj ns utajwyd. ndyn jxwgswhj. Dyi jjkxxx sg ttwt gdhz js jwsn;

Ns ymj bnsyjw tk tzw qnkj, bj hfs jsotd ns ujfhj ymj whnjyiyb aijnn snagdqt nnjwww, xstsxsu jdnxzz xkw
kwznyx bmnhm ns nyx xuwnsl tzw nsizxywd uqfsyji. znfs uwwh xni xjzw jzwyjy jwnmns mnyfjx. Stjj wwzj
Htzwynjwx tk Iqtwd, bwnyjwx tw bfwwntwx, xqzrgjw ti fnu, gt uyko qqsbay jmwskj. Sxitwru nwngn

nx ujwrnyyji dtz, gzy tsqd zuts qfzwjgx.” nxfzfbl yy hnwydsj mhnxytb myysyt.”

The text on the left side is a secret message. The message has been encrypted, or turned into a

secret code. It will be completely unreadable to anyone who doesn’t know how to decrypt it
(that is, turn it back into the plain English message.) This book will teach you how to encrypt and
decrypt messages.

The message on the right is just random gibberish with no hidden meaning whatsoever.
Encrypting your written messages is one way to keep them secret from other people, even if they
get their hands on the encrypted message itself. It will look exactly like random nonsense.

Cryptography is the science of using secret codes. A cryptographer is someone who uses and
studies secret codes. This book will teach you what you need to know to become a cryptographer.

Of course, these secret messages don’t always stay secret. A cryptanalyst is someone who can
hack secret codes and read other people’s encrypted messages. Cryptanalysts are also called code
breakers or hackers. This book will also teach you what you need to know to become a

cryptanalyst. Unfortunately the type of hacking you learn in this book isn’t dangerous enough to
get you in trouble with the law. (I mean, fortunately.)

Spies, soldiers, hackers, pirates, royalty, merchants, tyrants, political activists, Internet shoppers,
and anyone who has ever needed to share secrets with trusted friends have relied on cryptography
to make sure their secrets stay secret.

Codes vs. Ciphers

The development of the electric telegraph in the early 19" century allowed for near-instant
communication through wires across continents. This was much faster than sending a horseback
rider carrying a bag of letters. However, the telegraph couldn’t directly send written letters drawn
on paper. Instead it could send electric pulses. A short pulse is called a “dot” and a long pulse is
called a “dash”.

Email questions to the author: al@inventwithpython.com

Chapter 1 — Making Paper Cryptography Tools 3

Figure 1-1. Samuel Morse Figure 1-2. Alfred Vail

April 27,1791 — April 2, 1872 September 25, 1807 — January 18, 1859
In order to convert these dots and dashes to A o= T ==
English letters of the alphabet, an encoding B =—ooo U oem=—
system (or code) is needed to translate from C —e—oe V eee—
English to electric pulse code (called D =—ee Woe——
encoding) and at the other end translate IE : o — o $: : .___
electric pulses to English (called decoding). G =mm—u 7 em—e
The code to do this over telegraphs (and later, H eeee
radio) was called Morse Code, and was | oo
developed by Samuel Morse and Alfred Vail.] e —— 1 om—m——
By tapping out dots and dashes with a one- K —0— 2 00— ——
button telegraph, a telegraph operator could L e=—seoe 3 eeo——
communicate an English message to someone M == 4 eeee—

. . N =——e 5 eeeoee
on the other side of the world almost instantly! 0 —— 6 —eeee
(If you’d like to learn Morse code, visit P e——e 7 ——eee
http://invpy.com/morse.) Q =——— 8§ mmm——oe
R @ =0 0 o — @
S o000 0 —— ———

Figure 1-3. International Morse Code, with
characters represented as dots and dashes.

Codes are made to be understandable and publicly available. Anyone should be able to look
up what a code’s symbols mean to decode an encoded message.

Making a Paper Cipher Wheel

Before we learn how to program computers to do encryption and decryption for us, let’s learn
how to do it ourselves with simple paper tools. It is easy to turn the understandable English text
(which is called the plaintext) into the gibberish text that hides a secret code (called the

4 http://inventwithpython.com/hacking

ciphertext). A cipher is a set of rules for converting between plaintext and ciphertext. These
rules often use a secret key. We will learn several different ciphers in this book.

Let’s learn a cipher called the Caesar cipher. This cipher was used by Julius Caesar two thousand
years ago. The good news is that it is simple and easy to learn. The bad news is that because it is
so simple, it is also easy for a cryptanalyst to break it. But we can use it as a simple learning
exercise. More information about the Caesar cipher is given on Wikipedia:

To convert plaintext to ciphertext using the Caesar cipher, we will create something called a
cipher wheel (also called a cipher disk). You can either photocopy the cipher wheel that

circles and lay them on top of each other like in Figure 1-8.

Email questions to the author: al@inventwithpython.com

Chapter 1 — Making Paper Cryptography Tools 5

Figure 1-4. The inner circle of the cipher wheel cutout.

6 http://inventwithpython.com/hacking

SOEAUE

5
g

8
/\/w

Figure 1-5. The outer circle of the cipher wheel cutout.

-

Don’t cut out the page from this book!

Email questions to the author: al@inventwithpython.com

Chapter 1 — Making Paper Cryptography Tools 7

e

G S
Figure 1-6. Cutting out Figure 1-7. The cut-out circles. Figure 1-8. The
the cipher wheel completed cipher
circles. wheel.

After you cut out the circles, place the smaller one in the middle of the larger one. Put a pin or
brad through the center of both circles so you can spin them around in place. You now have a tool
for creating secret messages with the Caesar cipher.

A Virtual Cipher Wheel

There is also a virtual cipher wheel online if you
don’t have scissors and a photocopier handy.
Open a web browser to

version of the cipher wheel.

To spin the wheel around, click on it with the
mouse and then move the mouse cursor around
until the key you want is in place. Then click the
mouse again to stop the wheel from spinning.

Figure 1-9. The online cipher wheel.

8 http://inventwithpython.com/hacking

How to Encrypt with the Cipher Wheel

First, write out your message in English on paper. For this example we will encrypt the message,
“The secret password is Rosebud.” Next, spin the inner wheel around until its letters match up
with letters in the outer wheel. Notice in the outer wheel there is a dot next to the letter A. Look at
the number in the inner wheel next to the dot in the outer wheel. This number is known the

encryption key.

The encryption key is the secret to encrypting or decrypting the message. Anyone who reads this
book can learn about the Caesar cipher, just like anyone who reads a book about locks can learn
how a door lock works. But like a regular lock and key, unless they have the encryption key, they
will not be able to unlock (that is, decrypt) the secret encrypted message. In Figure 1-9, the outer
circle’s A is over the inner circle’s number 8. That means we will be using the key 8 to encrypt
our message. The Caesar cipher uses the keys from O to 25. Let’s use the key 8 for our example.
Keep the encryption key a secret; the ciphertext can be read by anyone who knows that the
message was encrypted with key 8.

THE S ECRET PASSWOTRTD
R A A A A A T A A A
BPM AMIKTZMB X 1AAEWZTL
I S RO S EBUD
R e A A
QA ZWAMICL

For each letter in our message, we will find where it is in the outer circle and replace it with the
lined-up letter in the inner circle. The first letter in our message is T (the first “T” in “The
secret...”), so we find the letter T in the outer circle, and then find the lined-up letter in the inner
circle. This letter is B, so in our secret message we will always replace T’s with B’s. (If we were
using some other encryption key besides 8, then the T’s in our plaintext would be replaced with a
different letter.)

The next letter in our message is H, which turns into P. The letter E turns into M. When we have
encrypted the entire message, the message has transformed from “The secret password is
Rosebud.” to “Bpm amkzmb xiaaewzl qa Zwamjcl.” Now you can send this message to someone
(or keep it written down for yourself) and nobody will be able to read it unless you tell them the

secret encryption key (the number 8).

Email questions to the author: al@inventwithpython.com

Chapter 1 — Making Paper Cryptography Tools

The secret pa:’::-wr»r& is Rosebud.

‘BPM amkzmb xlaaewz! ga Zwamicl,
, }

-

——

Figure 1-10. A message encrypted with the cipher wheel.

Each letter on the outer wheel will always be encrypted to the same letter on the inner wheel. To
save time, after you look up the first T in “The secret...” and see that it encrypts to B, you can
replace every T in the message with B. This way you only need to look up a letter once.

How to Decrypt with the Cipher Wheel

To decrypt a ciphertext, go from the inner circle to the outer circle. Let’s say you receive this
ciphertext from a friend, “Iwt ctl ephhldgs xh Hldgsuxhw.” You and everyone else won’t be able
to decrypt it unless you know the key (or unless you are a clever hacker). But your friend has
decided to use the key 15 for each message she sends you.

Line up the letter A on the outer circle (the one with the dot below it) over the letter on the inner
circle that has the number 15 (which is the letter P). The first letter in the secret message is I, so
we find I on the inner circle and look at the letter next to it on the outer circle, which is T. The W
in the ciphertext will decrypt to the letter H. One by one, we can decrypt each letter in the
ciphertext back to the plaintext, “The new password is Swordfish.”

I W T C T L E PHHTLDG S
I el bl
T HE NE W P AS S WORD
X H HLDGSUZXHW
1 R T
IS S WORUDTFTITI S H

If we use an incorrect key like 16 instead of the correct key 15, the decrypted message is “Sgd
mdv ozrrvngc hr Rvnqcehrg.” This plaintext doesn’t look plain at all. Unless the correct key is
used, the decrypted message will never be understandable English.

10 http://inventwithpython.com/hacking

A Different Cipher Tool: The St. Cyr Slide

{

z

AlB[c[p[E[F[G[H[T[I[K[L[M[N[O[P[Q[R[SITIU[VIW[X[Y]Z
N [ulv]

L]

CID[E[FIGIH]TI[I[K[L][M[NIO[P[QIR[S[TIU[VIWIX[Y[Z]

|
|

lo[1[2]3[4[5[6]7[8]9/10[11]12/13[14[15/16]17[18[19[20[21]22[23[24/25]

‘AlB

Figure 1-11. Photocopy

these strips to make a St.

Cyr Slide.

There’s another paper tool that can be used to do encryption and
decryption, called the St. Cyr slide. It’s like the cipher wheel
except in a straight line.

Photocopy the image of the St. Cyr slide on the following page (or

strips.

Tape the two alphabet strips together, with the black box A next to
the white box Z on the other strip. Cut out the slits on either side of
the main slide box so that the taped-together strip can feed through
it. It should look like this:

Figure 1-12. The completed St. Cyr Slide

When the black box A is underneath the letter H (and the number
7), then to encrypt you must find where the plaintext letter is on
the long strip, and replace it with the letter above it. To decrypt,
find the ciphertext letter on the top row of letters and replace it
with the letter on the long strip below it.

The two slits on the larger box will hide any extra letters so that
you only see one of each letter on the slide for any key.

The benefit of the St. Cyr slide is that it might be easier to find the
letters you are looking for, since they are all in a straight line and
will never be upside down like they sometimes are on the cipher
wheel.

A virtual and printable St. Cyr slide can be found at

Email questions to the author: al@inventwithpython.com

Chapter 1 — Making Paper Cryptography Tools 11

Practice Exercises, Chapter 1, Set A

Don’t ignore the practice exercises!

There isn’t enough room in this book to put in all the practice
exercises, but they’re still important.

You don’t become a hacker by just reading about hacking and
programming. You have to actually do it!

Doing Cryptography without Paper Tools

The cipher wheel and St. Cyr slide are nice tools to do encryption and decryption with the Caesar
cipher. But we can implement the Caesar cipher with just pencil and paper.

Write out the letters of the alphabet from A to Z with the numbers from 0 to 25 under each letter.
0 goes underneath the A, 1 goes under the B, and so on until 25 is under Z. (There are 26 letters
in the alphabet, but our numbers only go up to 25 because we started at 0, not 1.) It will end up
looking something like this:

A B C D E
0 1 2 3 4

W

G H I J K L M
6 9 10 11 12

N 0] P Q R S T U \Y% W X Y Z
13 14 15 16 17 18 19 20 21 22 23 24 25

With the above letters-to-numbers code, we can use numbers to represent letters. This is a very
powerful concept, because math uses numbers. Now we have a way to do math on letters.

Now to encrypt we find the number under the letter we wish to encrypt and add the key number
to it. This sum will be the number under the encrypted letter. For example, we encrypt, “Hello.
How are you?” with the key 13. First we find the number under the H, which is 7. Then we add
the key to this number. 7 + 13 = 20. The number 20 is under the letter U, which means the letter
H encrypts to the letter U. To encrypt the letter E, we add the 4 under E to 13 to get 17. The
number above 17 is R, so E gets encrypted to R. And so on.

This works fine until we get to the letter O. The number under O is 14. But when we add 14 + 13
we get 27. But our list of numbers only goes up to 25. If the sum of the letter’s number and the

12 http://inventwithpython.com/hacking

key is 26 or more, we should subtract 26 from it. So 27 — 26 is 1. The letter above the number 1 is
B. So the letter O encrypts to the letter B when we are using the key 13. One by one, we can then
encrypt the letters in, “Hello. How are you?” to “Uryyb. Ubj ner 1bh?”

So the steps to encrypt a letter are:
1. Decide on a key from 1 to 25. Keep this key secret!
2. Find the plaintext letter’s number.
3. Add the key to the plaintext letter’s number.
4. If this number is larger than 26, subtract 26.
5. Find the letter for the number you’ve calculated. This is the ciphertext letter.
6. Repeat steps 2 to 5 for every letter in the plaintext message.

Look at the following table to see how this is done with each letter in “Hello. How are you?” with
key 13. Each column shows the steps for turning the plaintext letter on the left to the ciphertext
letter on the right.

Table 1-1. The steps to encrypt “Hello. How are you?” with paper and pencil.

Plaintext Plaintext + Key Result Subtract Result Ciphertext

Letter Number 26? Letter
H 7 + 13 =20 =20 20=U
E 4 + 13 =17 =17 17=R
L 11 + 13 =24 =24 24=Y
L 11 + 13 =24 =24 24=Y
(0] 14 + 13 =27 -26 = 1=B
H 7 + 13 =20 =20 20=U
0O 14 + 13 =27 -26 =1 1=B
W 22 + 13 =35 -26 =9 9=]
A 0 + 13 =13 =13 13=N
R 17 + 13 =30 -26 =4 4=E
E 4 + 13 =17 =17 17=R
Y 24 + 13 =37 -26 =11 11=L
(0] 14 + 13 =27 -26 =1 1=B
U 20 + 13 =33 -26 =7 7=H

Email questions to the author: al@inventwithpython.com

Chapter 1 — Making Paper Cryptography Tools 13

To decrypt, you will have to understand what negative numbers are. If you don’t know how to

To decrypt, subtract the key instead of adding it. For the ciphertext letter B, the number is 1.
Subtract 1 — 13 to get -12. Like our “subtract 26 rule for encrypting, when we are decrypting and
the result is less than 0, we have an “add 26” rule. -12 + 26 is 14. So the ciphertext letter B
decrypts back to letter O.

Table 1-2. The steps to decrypt the ciphertext with paper and pencil.
Ciphertext Ciphertext - Key Result Add Result Plaintext

Letter Number 26? Letter
U 20 - 13 =7 =7 7=H
R 17 - 13 =4 =4 4=E
Y 24 - 13 =11 =11 11=L
Y 24 - 13 =11 =11 11=L
B 1 - 13 =-12 +26 =14 14=0
U 20 - 13 = =7 7=H
B 1 - 13 =-12 +26 =14 14=0
J - 13 =4 +26 =22 22=W
N 13 - 13 =0 =0 0=A
E 4 - 13 =9 +26 =17 17=R
R 17 - 13 = =4 4=E
L 11 - 13 =- +26 =24 24=Y
B 1 - 13 =-12 +26 =14 14=0
H - 13 =- +26 =20 20=U

As you can see, we don’t need an actual cipher wheel to do the Caesar cipher. If you memorize
the numbers and letters, then you don’t even need to write out the alphabet with the numbers
under them. You could just do some simple math in your head and write out secret messages.

Practice Exercises, Chapter 1, Set B

Double-Strength Encryption?

You might think that encrypting a message twice with two different keys would double the
strength of our encryption. But this turns out not to be the case with the Caesar cipher (and most
other ciphers). Let’s try double-encrypting a message to see why.

14 http://inventwithpython.com/hacking

If we encrypt the word “KITTEN” with the key 3, the resulting cipher text would be
“NLWWHQ”. If we encrypt the word “NLWWHQ” with the key 4, the resulting cipher text of
that would be “RPAALU”. But this is exactly the same as if we had encrypted the word
“KITTEN” once with a key of 7. Our “double” encryption is the same as normal encryption, so it
isn’t any stronger.

The reason is that when we encrypt with the key 3, we are adding 3 to plaintext letter’s number.
Then when we encrypt with the key 4, we are adding 4 to the plaintext letter’s number. But
adding 3 and then adding 4 is the exact same thing as adding 7. Encrypting twice with keys 3 and
4 is the same as encrypting once with the key 7.

For most encryption ciphers, encrypting more than once does not provide additional
strength to the cipher. In fact, if you encrypt some plaintext with two keys that add up to 26, the
ciphertext you end up with will be the same as the original plaintext!

Programming a Computer to do Encryption

The Caesar cipher, or ciphers like it, were used to encrypt secret information for several centuries.
Here’s a cipher disk of a design invented by Albert Myer that was used in the American Civil
War in 1863.

Figure 1-13. American Civil War Union Cipher Disk at the National Cryptologic Museum.

If you had a very long message that you wanted to encrypt (say, an entire book) it would take you
days or weeks to encrypt it all by hand. This is how programming can help. A computer could do

Email questions to the author: al@inventwithpython.com

Chapter 1 — Making Paper Cryptography Tools 15

the work for a large amount of text in less than a second! But we need to learn how to instruct
(that is, program) the computer to do the same steps we just did.

We will have to be able to speak a language the computer can understand. Fortunately, learning a
programming language isn’t nearly as hard as learning a foreign language like Japanese or
Spanish. You don’t even need to know much math besides addition, subtraction, and
multiplication. You just need to download some free software called Python, which we will cover
in the next chapter.

16 http://inventwithpython.com/hacking

CHAPTER 2

INSTALLING PYTHON

Topics Covered In This Chapter:

e Downloading and installing Python
Downloading the Pyperclip module
How to start IDLE

Formatting used in this book
Copying and pasting text

“Privacy in an open society also requires
cryptography. If I say something, I want it
heard only by those for whom I intend it. If the
content of my speech is available to the world, I
have no privacy.”

Eric Hughes, “A Cypherpunk’s Manifesto”, 1993

The content of this chapter is very similar to the first chapter of Invent Your Own Computer
Games with Python. If you have already read that book or have already installed Python, you only
need to read the “Downloading pyperclip.py” section in this chapter.

Email questions to the author: al@inventwithpython.com

Chapter 2 — Downloading and Installing Python 17

Downloading and Installing Python

Before we can begin programming, you’ll need to install software called the Python interpreter.
(You may need to ask an adult for help here.) The interpreter is a program that understands the
instructions that you’ll write in the Python language. Without the interpreter, your computer won't
understand these instructions. (We'll refer to “the Python interpreter” as “Python” from now on.)

Because we’ll be writing our programs in the Python language we need to download Python from

is a little different depending on if your computer’s operating system is Windows, OS X, or a
Linux distribution such as Ubuntu. You can also find videos of people installing the Python

Important Note! Be sure to install Python 3, and not Python 2. The programs in this book use
Python 3, and you’ll get errors if you try to run them with Python 2. It is so important, I am
adding a cartoon penguin telling you to install Python 3 so that you do not miss this message:

Be sure to
install Python 3,
not Python 2!

Figure 2-1. “Be sure to install Python 3, not Python 2!”, says the incongruous penguin.

Windows Instructions

Download link to go to the download page, then look for the file called Python 3.3.0 Windows
Installer (“Windows binary — does not include source”) and click on its link to download Python
for Windows. (If there is a newer version than Python 3.3.0, you can download that one.)
Double-click on the python-3.3.0.msi file that you’ve just downloaded to start the Python

installer. (If it doesn’t start, try right-clicking the file and choosing Install.) Once the installer
starts up, click the Next button and accept the choices in the installer as you go. There’s no need
to make any changes. When the installer is finished, click Finish.

18 http://inventwithpython.com/hacking

OS X Instructions

The installation for OS X is similar. Instead of downloading the .msi file from the Python
website, download the .dmg Mac Installer Disk Image file instead. The link to this file will look
something like “Python 3.3.0 Mac OS X” on the “Download Python Software” web page.

Ubuntu and Linux Instructions

If your operating system is Ubuntu, you can install Python by opening a terminal window (click
on Applications » Accessories » Terminal) and entering sudo apt-get install
python3. 3 then pressing Enter. You will need to enter the root password to install Python, so
ask the person who owns the computer to type in this password.

You also need to install the IDLE software. From the terminal, type in sudo apt-get
install idle3. You will also need the root password to install IDLE.

Downloading pyperclip.py

Almost every program in this book uses a custom module I wrote called pyperclip.py. This
module provides functions for letting your program copy and paste text to the clipboard. This

This file must be in the same folder as the Python program files that you type. (A folder is also
called a directory.) Otherwise you will see this error message when you try to run your program:

ImportError: No module named pyperclip

Starting IDLE

We will be using the IDLE software to type in our programs and run them. IDLE stands for
Interactive DeveLopment Environment. While Python is the software that interprets and runs
your Python programs, the IDLE software is what you type your programs in.

If your operating system is Windows XP, you should be able to run Python by clicking the Start
button, then selecting Programs » Python 3.3 » IDLE (Python GUI). For Windows Vista or
Windows 7, click the Windows button in the lower left corner, type “IDLE” and select “IDLE
(Python GUI)”.

If your operating system is Max OS X, start IDLE by opening the Finder window and clicking on
Applications, then click Python 3.3, then click the IDLE icon.

Email questions to the author: al@inventwithpython.com

Chapter 2 — Downloading and Installing Python 19

If your operating system is Ubuntu or Linux, start IDLE by clicking Applications » Accessories
» Terminal and then type id1le3. You may also be able to click on Applications at the top of
the screen, and then select Programming and then IDLE 3.

Figure 2-2. IDLE running on Windows (left), OS X (center), and Ubuntu Linux (right).

The window that appears will be mostly blank except for text that looks something like this:

Python 3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) [MSC v.1600 64 bit
(AMD64)] on win32

Type "copyright", "credits" or "license()" for more information.

>>>

The window that appears when you first run IDLE is called the interactive shell. A shell is a
program that lets you type instructions into the computer. The Python shell lets you type Python
instructions in and then sends these instructions to the Python interpreter software to run. We can
type Python instructions into the shell and, because the shell is interactive, the computer will read
our instructions and perform them immediately.

The Featured Programs

“Hacking Secret Ciphers with Python” is different from other programming books because it
focuses on the source code for complete programs. Instead of teaching you programming
concepts and leaving it up to you to figure out how to make your own programs, this book shows
you complete programs and explains how they work.

As you read through this book, type the source code from this book into IDLE yourself. But you
can also download the source code files from this book’s website. Go to the web site

In general, you should read this book from front to back. The programming concepts build on
the previous chapters. However, Python is such a readable language that after the first few
chapters you can probably piece together what the code does. If you jump ahead and feel lost, try

20 http://inventwithpython.com/hacking

going back to the previous chapters. Or email your programming questions to the author at
al@inventwithpython.com.

Line Numbers and Spaces

When entering the source code yourself, do not type the line numbers that appear at the beginning
of each line. For example, if you see this in the book:

1. number = random.randint(l, 20)
2. spam = 42
3. print('Hello world!")

...then you do not need to type the “1.” on the left side, or the space that immediately follows it.
Just type it like this:

number = random.randint(1l, 20)
spam = 42
print('Hello world!")

Those numbers are only used so that this book can refer to specific lines in the code. They are not
a part of the actual program. Aside from the line numbers, be sure to enter the code exactly as it
appears. This includes the letter casing. In Python, HELLO and hello and Hello could refer to
three different things.

Notice that some of the lines don’t begin at the leftmost edge of the page, but are indented by four
or eight spaces. Be sure to put in the correct number of spaces at the start of each line. (Since each
character in IDLE is the same width, you can count the number of spaces by counting the number
of characters above or below the line you’re looking at.)

For example, you can see that the second line is indented by four spaces because the four
characters (“whil”) on the line above are over the indented space. The third line is indented by
another four spaces (the four characters “if n” are above the third line’s indented space):

while spam < 10:
if number == 42:
print('Hello")

Text Wrapping in This Book

Some lines of code are too long to fit on one line on the page, and the text of the code will wrap
around to the next line. When you type these lines into the file editor, enter the code all on one
line without pressing Enter.

Email questions to the author: al@inventwithpython.com

Chapter 2 — Downloading and Installing Python 21

You can tell when a new line starts by looking at the line numbers on the left side of the code.
The example below has only two lines of code, even though the first line is too long to fit on the

page:

1. print('This is the first Tine! XXX
XXXXXXXXXXXXXX ")
2. print('This is the second 1line!")

Tracing the Program Online

Tracing a program means to step through the code one line at a time, in the same way that a
each program in this book. The traces web page has notes and helpful reminders at each step of
the trace to explain what the program is doing, so it can help you better understand why these
programs work the way they do.

Checking Your Typed Code with the Online Diff Tool

Although it is very helpful to learn Python by typing out the source code for these programs, you
may accidentally make typos that cause your programs to crash. It may not be obvious where the
typo is.

You can copy and paste the text of your typed source code to the online diff tool on the book’s
website. The diff tool will show any differences between the source code in the book and the
source code you’ve typed. This is an easy way of finding any typos in your programs.

Copying and Pasting Text

Copying and pasting text is a very useful computer skill, especially for this book because many of
the texts that will be encrypted or decrypted are quite long. Instead of typing them out, you can
look at electronic versions of the text on this book’s website and copy the text from your browser
and paste it into IDLE.

To copy and paste text, you first need to drag the mouse over the text you want to copy. This will
highlight the text. Then you can either click on the Edit » Copy menu item, or on Windows
press Ctrl-C. (That’s press and hold the Ctrl button, then press C once, then let go of the Ctrl
button.) On Macs, the keyboard shortcut is Command-C (the &8 button). This will copy the
highlighted text to the computer’s memory, or clipboard.

22 http://inventwithpython.com/hacking

To paste the text that is on the clipboard, move the cursor to the place you want the text to be
inserted. Then either click on the Edit » Paste menu item or press Ctrl-V or Command-V.
Pasting will have the same effect as if you typed out all the characters that were copied to the
clipboard. Copying and pasting can save you a lot of typing time, and unlike typing it will never
make a mistake in reproducing the text.

You should note that every time you copy text to the clipboard, the previous text that was on the
clipboard is forgotten.

More Info Links

There is a lot that you can learn about programming and cryptography, but you don’t need to
learn all of it now. There are several times where you might like to learn these additional details
and explanations, but if I included them in this book then it would add many more pages.
Publication of this larger book would place so much combustible paper into a single space that
the book would be a fire hazard. Instead, I have included “more info” links in this book that you
can follow to this book’s website. You do not have to read this additional information to
understand anything in this book, but it will help you learn. These links begin with

Even though this book is not a dangerous fire hazard, please do not set it on fire anyway.

Programming and Cryptography

Programming and cryptography are two separate skills, but learning both is useful because a
computer can do cryptography much faster than a human can. For example, here is the entire text
of William Shakespeare’s “Romeo and Juliet” encrypted with a simple substitution cipher:

WUMIU FOT LZNCIB JWUNURZI Dguvwzh Bku guzhigunth, qubg fcei co terochs, Co afew Pisuof, kgiw ki nfx wzw hdioi, Awum fodciob rwz1ri qwife bu ok mzbeox, Kgiwi depen gnuut mfeih depen gfoth 7odnifo. Awum aus
upiwbgwukh Tu kebg bgicw i i e, B aifan T b g e nupi Fo b duobcorfod b Y i K g2 b dgntvih o, o duant i, ok b b
miot, WUMIU FOT LZNCIB FDB C HDIOI C Piwuof. F jzqned jofdi. fobiw HFMJHUO fot RWIRUWX, ua bgi guzhi ua Dfjznib, fwmit kebg hkuwth fot qzdenivh] HFMJHUO Rivi
nepi, ek xuzav oide uzb ' bgi dunnfuv. HEMJHUO C hbweei yzedens, gicor mupit, RWIRUWX Qzb bguz fiwb oub yzedenx mupit bu hbweei. HEMIHUO F tur ua bgi ¢
mupi mi bu Bbfot: C kenn bfei bgi K ua fox mfo uw mfet ua Muobfrzit, RWIRUWX Bgfb hgukh bgii{kife hnfpi; auw b kifeihb ruih bu bgi kfin. HEMJHUO By
yafwwin ch gibkiio uzw mihbiwh fot zh beicw mio. HEMJHUO ‘Beh fn woi, C kenn hguk mxhina f bxwiob: kgio C efpi auzrgb kebe bgimio, C kenn i dwzin kebg
bfei b co hiohi byt aiin ¢b, HEMJHUO Mi bgix hafon aiin kgeni C fim fgni bu hbfot: ot beh eouko C fm fjwibb jeid 12 RWIRUWX Beh kinn bguz fwb o
RWIRUWX Guk! b b qfde ot wzo? HEMHUO At noub. RWIRUWX Ou. i aif b HEMUHUO Nib h e bk uaur heih i b o RWIRUWX C ke ko f C i g, fot i b b e nch, HEMIHUO Of, b the. e qcb m bgsn i g ch chrii b b, ca bei it b,

ibis FQWFGEM fot QINBGIHIW) FQWFGEM Tu 7 b bz f 7. hew? HEUHUO g bz, hs. FWEGEN T s e s bgsma f . hew? HEMUHUO (Pt by RWIRUWX] Ch v het, ca C hf fx? RWIRUWX Ou, HEMJHUO Ou, hew, C tw oub qebi mx bizmg fb xuz, hew, gzb C gebi mx bgzma,

hew. RWIRUWX Tu xuz yzfwwin, hew? FQWEGEM Yzfwwin hew! ou, hew. HEMJHUO Ca xuz tw, hew, € fim aus xuz: C hivpi fh ruut fmfo h xuz. FQWFGEM Ou qibbiv. HEMIHUO Kinn, hew. RWIRUWX Hfs ‘qibbise: giwi dumih uoi ua mx mibiw'h ecohmio. HEMJHUO Xih, qibbiw. hes. FQWFGEM Xuz nei. HEMIHUO Twik, ca xuz gi mio.
Ruiruwex, winimqiw bex hkfhgeor nuk. [Beix acreb] [fobiw QIOPUNCU] QIOPUNCU Jfwb, auunh! Jzb 7] xuzw hkuwih: xuz couk oub kefb xuz t. [Qifbh tuko byicw hkuwth] [Tobivw BXQFNB] BXQFNB Kgfb, fwb bguz twiko fmuor bgihi gifwbnih gcoth? Bzwo b, Qiopuncu, nuue 7juo by tifbg. QIOPUNCU C t qzb eii bgi jifdi: j2b 7 bgx

i afbfin nucoh ua beihi bku auih F jfew ua hbfw-dwuhht neai Kguni mehftpiobaavit jebiuzh
I e o B K kb focib v b, Ke givibgfn v buc s e b
1 Kitn oub dwwex dufnh, RWIRUWX O io ki hguznt ai dunnciwh. HEMIHUO C mifo, fo ki gi o dguniw, Kinn ik, RWIRUWX Fx,
i i, RWIRUWX Bu mupi ch b Bocws ot b fob ch bu hbfot: i
inviauwi Kumio, gicor bei Kifei pihinh, i ipiv b C ki o Mo i
HUO P, bl s b it

hi va Muobizi
by

bgwzib geh mfcth bu bgi Kfin
o kefh hohi b kenb, RWI

hikuwt, Us mfofri b bu jfwb bgihi mio kebg mi. BXQENE Kgfb, twfko, fot bine ua jifdl C gfbi bei kuwt, Fh C gfbi ginn, fan Muobfrzih, fot bgii: Gipi f beil, dukfwt! [Bgix acrgb] [Tobiv, hipiwfn ua qubg guzhih, kgu luco bgi awf; bgio iobiw Debevioh, kebg dnzgh] qennh, fot jfwbehfoh! ! gifb beim tuko! Tuko kebg bei
Dfjznibh! tuko kebg bgi Muobfrzih! [Tobisw DEIZNIB co geh ruko, fot NFTX DFIZNIB] DFIZNIB Kfb ouchi ch bgch? Repi mi mx nuor hkuwt, gu! NFTX DFJZNIB F dwzbdg, fdwzbdg! kex dfn xuz auw fkuwt? DEIZNIB Mx hkuwt, C hfx! Unt Muobizi ch dumi, Fot anuzwehgih geh qnfti o hiebi ua mi. [lobiw MUOBFRZI fot NFTX MUOBFRZI]
MUOBFRZI Beuz pennfco Dfiznib.-Gunt mi oub, nib mi ru. NFTX MUOBFRZI Bguz hgfnb oub hbew f auub bu hiie faui. [lobiv JWCODI, kebg Fobiotiobh] JWCODI i bu ifdi, Jwuafoinh hbiin,.- Kenn bgix oub gifw? Kefb, gu! xuz mio, xuz qiflbh, Bfb yziodg bgi acwi ua xuzw jiwocdeuzh

Wi Keb jzwjni auzobfoh chhzcor awum uzw picoh, Uo fco ua busbzwi, awum bguhi qnuutx goth Bevwuk xuzw mehibimjiw' kifjuoh bu bgi rwuzot, Fot gifw b hiobiodi a xuzw mupt jwcodi. Bgwildepen qwiknh, quit ua fo fews kuwt, Qx bgi, unt Dijznb, fot Muobfi, G bgweditchbzwabei yzcib ua uzw hbwilbh, Fot mft Piwuof fodciob

debeioh DI qx bgiew rwfpi i

ncor uwofmiobh, Bu keint unt jfwbchfoh, co gfoth fh unt, Dfociw' keby: ifdi
couk uzw azwbgiw jnifhzwi co bech dfhi, Bu unt Awii-buko, uzav dummuo lzmiob-{nfdi. Uodi muwi, uo jfco ua i
hfwx, Fot xuzwh, dnuhi acrgheor iwi C tet fjwufdg: C twik bu jfwb bgim: o bgi cohbfob df iwx Bxgfinb,
o jfwb fot jiwb. Benn bei jweodi dfmi, kgu jfwbit icbgiw jfwb. NFTX MUOBFRZI U, kei h
Toxdmuwi Byfb KibKfit wuubibg asu bgi dcbxh e, Hu fwenx Kinecor et C it xuzw huos Bukfwth gem C mit, qzb gi Kih kfwi buni cobu bgi dupiw ua bgi kuut: C, mifhzweor
i qiio hiio, Kebg bifih fzmiobeor bgi awihg muwocor k. Fitcor bu dnuzth muwi dnuzth kebe geh i hergh: Qzb fan hu huuo fh bei fan
otukh, nudeh afw tfxnergb uzb Fot mfeih gemhing fo Qnfde fot wupi, Zonih ruut duzol

b xuzav dfoci't gfbi: Ca ipiv xuz tehbzwg uz hbwibh ffco, Xuzw nepih hufin if by auwaich ua b j » hgfn ru fuor kebg mi: Fot, Muobiiz, dumi xuz bgeh fibiwouuo, Bu

mm».‘.(ko, B st qsht Kk b b ol Wi i s ub hcor g, Fot i hesot ket it v i
wbgihb ifhb girco bu tw dzwbicoh awum Fawuwfh git, Fkf awum bgincrgb hbifnh aomime sifps huo, Fot jwepfbi co get
it QIOPUNCU M ouqnt o ta ok bes iz MUOBFRZ1 C ochgi ccm. QIOPUNCU Gfpi em
i i o o b ot Qg ch uko fodbcuoh dusohinnay, Ch b gembinaC ke oub i 80k v Qs b scmhin b i fot i, Hu st s uotcor Tt ehdups., b 21 ac ke o e ks, I g il g i i s b e, U ttedih e if b b
k. [Isizob MUOBFRZI fot NFTX
MUOBFRZ1] QIOPUNCU Ruut-muwwuk, duzheo. WUMIU Ch bgi téx hu xuzor? QIOPUNCU Qzb oik hbwade ocoi. WUMIU Fx mit hit guzwh hiim nuor. Kih bfb mx afbgiv befb kiob giodi hu afib? QIOPUNCU Cb k. Kefb hftoihh niorbgioh Wumiuh guzwh? WUMIU Oub gfpcor c guwb. QIOPUNCU Co nupi?
WUMIU Uzb-- QIOPUNCU Ua nupi? WUMIU Uz ua giw afpuzs, kgiwi C fin co nupi. QIOPUNCU Fafh, befb nupi, hu riobni co gh peik, Hguznt gi hu bxwoouzh fot wuzrg co jwuual WUMIU Fnfh, bgfb nupi, kguhi peik ch mzaanit hbenn, Hguznt, kebguzb ixih, hil iogkfh bu geh kenn! K, i Kitcoi? U mil Kgfb awfx kih giwi? Xib binn mi
qzb muwi kebg nupi. Kex, bgio, U qwikncor nupil U nupcor gfbit U fox becor, ua oubgcor acwhb dwifbil U gifpx nergboihh! hiweuzh pfocbx! Meh-hgfjo dgfuh ua kinn-hiimeor auwmh! Aifbgiw ua nift qwergb hmuei, dunt acwi, hede ibenn-kfecor hnii,befb ch oub kefb cb ch! Bgch
in ou nupi co bych. Tuhb bguz oub nfzrg? QIOPUNCU Ou, duv, C b7 QIOPUNCU Fb by ruut gifsbh ufjwihiveuo, WUMIU K gx, hzdg ¢h nupih bwfohrwihheuo. Ruciah ua meoi u px co mx quithb, Kgedg by kenb jwujfrbi, bu gfpi cb jwihb Kebg muwi ua bgcoi: bich nupi befb bguz
uko Tubg it muswi rwcia bu buu mzdg ua meoi uko. Nupi ch £ hmuel wichit keb icor pis' hif ouzwehgt kebg nupiwh bifuch: Kefb ch cb inhi? f mfloihh muhb tc wecor rfn ot fjwihiwpeor hkiib. Afwvikinn, mx duy. QIOPUNCU Huab! C kenn ru fvor; Fo ca xuz nifpi
<hbul uznupt WUMIU K, bt C o fot bin bis? QIOPUNCU Rt ke

dgfmgin jioh gerhin, Hizbh 2
gx fox mifoh? MUOBFRZI Q

dgfhbebx kinn formit, Awum nupih kife dgenichg quk hei nepih zogfwn'. Hei kenn oub hbfx b hei
dghbi? WUMIU Hgi gfb, fot co bufb hjfweor mieih gzri khbi, Auw qifzbx hbiwpit kebg giv hipiwebx Dzbh gifzb uaa awurn fn jubbi

pasne g WUMIU U. it ik C it s b o, QIOPUNCU Qv b Isfimcoi ubgiw gifzbeib. WUMIU ‘Beh bei kix Bu dfnn giwh isyzehebi, co yzihbeuo muwi:
wideuzh bwifizwi ua geh ixihers Higuk mi fmehbwihh befb ch jihcor afcw, Kafb tubg giv qifzbx hiwpi, qzb fh foubi Kgiwi C mix wift kgu jih fhhcor afew? Afwikinn: bguz dfohb oub bifdg mi
DFIZNIB, JFWCH, o Hinplob) DFIZNIB Qb Muabfizch qusot T ki C. o i e, fot e ub g, bgcoe, Au i b ant ki i e JFWCH Us ozt widewocor i xus
dgent eh xib £ hbwforiw co bei kuwnt; Higi gfbg oub hiio bgi dfori ua auzwbiio xifih, Nib bku muwi hzmmiwh kebgiv co bgiew jwet, Iwi ki mix bgcoe giw weji bu gi f qweti, JFWCH Xuzoriw bgfo hgi fwi gfijx mubgiwh mfti. DFJZNIB Fot buu huto mfww 1t fwi bguhi hu ifwn mf. By ifwby gfbg hkfnukt fin mx guiih qzb hyi, Hai ch bei gujiazn
i ua m fwhg: Qzb kuu g riobni Jfwich. ib i gifwh, M kenn bu giv duohiob ch qzb jfwb: Fo g rwii kebgo g hdu ua dgucds N m duohiob fot afew fdduwtcor pucdi Bgch ocrh C gunt fo un fddzhbumt aifhb. Kivibu C i copebit mfox f . Hzd C nups fot xuz. fmuor bg hbuwi, Lo muwi, mubb kindumi, mfeih m ozmjow
muwi. Fb m juuw guzhi nuue bu gigunt beeh ocrgb wbg-buwiftcor hbfwh bgfb miei tfe gifpio nergb: Hzdg dumauwb fl t nzhibx xuzor o aiin Fjwen uo bgi giin Ua nemj - o had icrgh Fnuor g imi gt b X0 bgh orgh Cogtwe (o m ughs g . i Fot et g mu kg miwc
mubib hefn gi K geds uo muwi peik, ua mfox meoi gicor uoi Mx hbfot co ozmgiw, bguzr ool Dumi, ru kebg mi. [Bu Hiwpfob, repeor ewwl, bz fquzb Bgwuzrg afew Pivvuo: ac

JFWCH] Hiwpfob Acot bgim uzb kguhi ofinih fwi kwebbio giwil Cb ch kwcbbio, bafb bgi hguimfeiw hguznt mittni kebg geh xfwt,fot bgi bfenuw kebg
bemi. {lobiw QIOPUNCU fot WUMIU] QIOPUNCU Bzb, mfo, uoi acwi gzwoh uzb fouby

feo-nifa ch isdinniob auw bgfb, QIOPUNCU Ausw kefb, C jwf bgii? WUMIU Auw xuzs qws WUMIU Oub mit, azb quzot muwi bgfo f mfi-mo eh; Hezb 7 co jwehuo, eilb kebguzb
dfo xuz wilt? WUMIU Fx. meoi uko auwbzoi co mx mehiwx. Hiwpfob Jiwgih xuz gfpi nifwoit cb kebguzb quue: qzb. coulbginibbiwh ot be o, Hiwpfab Xi i guoibbas: wibh . misws! WUMIL Hiis,aanuk, C dfowil. [With] Heroeuw Mibco fot ch e ot trgbivh: Dusobk
Fohinmi fot geh gifzbiuzh hehbivh; bgi nfix ketuk ua Pebwipcu; Herocu Jnfdiobe fot geh nupin ocidih; Miswdzbeu fot geh qwubgiw Pfiiobeo; meoi zodni Dfjznib, geh keai fot Fzrgbiwh; mx afey ocidi Wuhfcoi; Nepef: Herocuw Pfiobe fot geh duzhco Bxqfnb, Nzdeu fot bginepinx Giniof, F afew fbhimany: kgebgis hiuznt bgix dumi? Hiwpfob 7

e Gi gl ch howadeio anoot dfoou auweb B
11U FOT LZNCIB FDB C HDIOI CC F hiwiib. [Tobi
Fot e bz ittt h muor. Qb ok, v, ke s iz b hacs? DEIZNIB Qb hiscor s ke C fpi hic fawic M

forzehg: Bzwo retex, fot qi gunj qx qdekfit bzwocor: Uo thjiwfbi rwcia dzwih kebg

Email questions to the author: al@inventwithpython.com

Chapter 2 — Downloading and Installing Python 23

WUMLU Kechgiv? Hinpb B s b uew u WUMIU K guchi?Hinpio M b WUMIU Cotit, C gt i et s b i Hinpioh Ouk Co ‘mihbiw ch bei b fot a xuz i oub ua b guzhi ua Muobfezih, C jwf, dumi fot dwzh £dz ua keoi. Wihb xuz mivews! [Iscb]
‘QIOPUNCU b bac himi fodcio s ua Dfjznibh Hajh bgiafew Wuhi Kebg fn bei ua Piwuof: Ru bgcbgiv; fot, kebg b Dumfii giw afdi kebg humi mlh C hgfin hguk, Fot C kenn mfei bgii bacoe bex hikfo f dwuk. WUMIU Kgio bgi tipuzb winereuo ua meoi ixi Micobfeoh hzdg afahiguut,

ot beihi, kg uabio e, b au nefuh! Uoi s nupil bgi fan-hicor hzo QIOPUNCU Bz, xuz hik giw afew, . Giwhina juchit kebg hdfii i beiwi
qikicrg't Xuza nftx'h nupi frfcohb humi ubgisy mfct Bgfb C kenn hguk xuzh b beeh aithb, WUMIU Cin ru fuor, ou hads hergh bu g hguko, Q2b bu wiluedico hjiotuw ua meoi uko. [isizob] WUMIU FOT LZNCIB FDB C HDIOI CCC F waum co Dijznibh guzhi. [lobiy NFTX DEJZNIB fot

Qowti] NFTX DFIZNIB Orhi Kiwih e frhin? i i auwby bu i Orwhi Ouk. s ms mfcwglk 1D, s v umi K, i e, gt ot e K bachrewn? K, Lo (o LZNCIB) LZNCID Gk cuk b i Ol Xy b LZNCIB i, v Keto e ken? NETX

fgeni, Ki mzhb " gfpi wimimaisvt mi, bguzh gifw uzw duzohin. Bguz coukhb m tfzegbisvh a Fjwibb fri. Ozwhi Alebg, C dfo binn giw fri zobu fo guzaw. NETX DFJZNIB Haih oub auzwbiio. Ozwhi Cnn nfx auzwbilo ua my bi xib, bu mx bilbg qi cb
mm. c giv: s - Hgi<h oub suzwbio. Guk uor h b ouk B Nim bt e DI xmwkwugb fot ut fxh. Ozwhi Ipio ww utt, ua fon Dumi wit fan Kiwt v fo Ko, it ch ket ot o i b ot . C i
b ocrgb hefin b D hafinn hgi, miwws; Fot hyi kih kifo',C oipiw hgir Ua fan bgi t bfb tfx: Auw C gft bgio nfet r, b tupi-g .
26~ Ofs, C tu gif f quico:—zb, 1 C nm. Kot bikibi by Kvemkut o b o Lo . jwibbx “bkih ou oit, C bwuk, Fot heodi befb bumn chinipio xifwh: Auw bgio hgi duznt)\b!m pe ofx, gx. bg\wmﬂ Hgmuzm elpi

o o Kt o ms. i b e b gt i g 1 s bt 300 b o B ke s b muwi ket jwibbs. . Bu hil, ouk,
2k b hgfon dumi fqusb! C kwwiob,fo C heuznt A\Eplfhnnihfmxnwh v i Lo yaubg g Fo, oy ' hbcobit fot fet Fx” NFTX DEJZNIB Touzrg ua bgeh; C jwix b, gunt bx jifdi. Ozwhi Xih, mi Ry e s, Buhgcne b hguznt nifpi dwxeor fot hfx Fx.” .
Kfwwiob, cb gft zjuo cbh qwuk F qzmj fh ger fi hbuoi; F Xif, yzuby " afdi? Bguz keio i Lont? ch beobi o it . LZNCIB Fot beob bt b, s b orwh, i COnhi I Cspi o fat e
b bu gch nwidit Bguz kihb bei jwibbeihb qfai beb fiw C ozwhit: Fo C mergb nepi bu hi bgii mfwweit uodi, C gfpi ma kehe. NFTX DEJZNIB Miww, befb 'mfwwx’ ch bei piwx bgimi C diimi bu bine ua. Binn mi, fzrgbiw Lzncib, Guk hbfoth LZNCIB Cb ch fo g 2fb C twifm oub

oub C bgcoi onx ozwhi, C kuzat hfx beuz gfthb hade't kehtum awum bex bifb, N fwwelti ouk: xuzoriw bgfo xuz, Giwi co Piwuof, nficih ua ibiim, Fwi mti fawifix mubgiwh: qx mx duzob, C kil ngmmb Siuch i s s gu. nupi.
OumbiF o, xusor o i £l s b kit i o s ki NETX DFIZNIB Pivao i el out hode {anakin. Orwhi O, g ki 0 S1ch, £ pivk anakiv. NFTX DEJZNID Kgth ik uz? dio . npi g rcimo? Bech ocb xuz hefon gt gem 1 i, Wit i bgi punzmi ua xuzor Jwehy afdi, Fou
acot tinergh kweb beiwi keb qifzbx'h jio: Isfimcoi ipiws mfwweit ncoifmiob, Fot hii guk voi P Bech u gifzbeax gem, wonx nfeh fdupiw: B achg ncpih co bgi hif. fo beh mzdg jweti Auw afew
kebguzb bgi afew kebgeo bu geti: Befb quue co mfox'h ixih hbuwx: Hu hg hgfwi o o, O fpor g, mfor ozl 1 Ozvhi O bt ofs, g o vk i NFTX DRFZNIR e guchus, dlo szt s sk apt? LZNCIB C ume bu
neci,ca nuuccor neceor mupi: Qzb ou muwi i kenn C otfwh meoi ixi Befo xuzw duohiob repih hbwiorbg bu mfei ¢b anx. uob,wmwmb\ by hiwpit7j, x jfobws, fot ipiwx c hbwfereb.
NFTX DFJZNIB Ki aunnuk bgit [1scb Hiwpfob] Lzneib, bgi duzobx hbfsh. Ozshi Ru, rewn, hie fjjx acrgbh bu gfjx tfxh. [Isizob] WUMIU FOT LZNCIB FDB C HDIOLCP s, tiobiw WOMIU. MIDZBCU, QIOPUNCU) kb scpi v bes M, Buwd ifui. o ueginhl WUMIU Kgh gon hgmhpngqlhjnﬂ auw uzw isdzhi? Uw
gt ki wo kebguzb f funurx? QIOPUNCU B tbi ch uzb ua hadg jwanescbx: Kinn gfpi ou Dzjct guutkcoe' kebe fhdfia, Qifiwcor f Biwbfwh 3 kebguzb-quuc hjuci Fabiv bgi. s iobwiodi: Qb i bgim mifizi 2 gx kefb beix ke Kinn itz
begim mifhasvi, fot i ruoi. WUMIU Repi m\!huwﬂg C fm oub auw bech lnvqncm Qeorrh eifp. C kenn qifw bei nergh. MIWDZBCU Ofx, iobni Wumi, ki WUMIU Oub €, aipi dfooub mupi. MIWDZBCU Xuz fuwi fnupiw:
quwwuk Dzjeth keorh, WUMIU kebg geh nergb aifbgiwh, fot hu quzot, € dfooub quzot f cbg fqupi tznn kui: Zotiw nupith gifpx gzwtio tu C heoe. MIWDZBCU Fot, bu henecach, hguznt xuz gzwtio nupi; Buu rwifb uijwithcuo aww £ biotiw becor. WUMIU Ch

i fwi bgi giibni ot

upi o bgcor b ch b s, Bzt bu quchbswash, ot b mem nczmnnwn MIWDZBCU Ca nup g wasrg Kebg xuz, g usrg Kb nupi; Iwede nupi auw jedecor,fot xuz gifb nupi uko. Repimi £ dihi bu j2b . peiico ¥ el auw £ pehuw! ket dfvi C Kafb dzeuzh ibg ek
MIU gifwb

s o . QIOPUNCU Dumi code ot b ot o i o, Q i o i e s gh it W wrhgih keb beiew giinh, Auw C fm jwupiwg't kebg f rwfothewi jewihiz Cinn gi f dfotni-guntiv, fot nuue o. Bei i hu afew, fot C fim twoi. MIWI

Bab, 120 bei muzhi, bei duohblgni uko kuwt: Ca bguz fwb tzo, ki'nn Zj bu bgi ifwh. D 20! WUMIU Ofs, bifbh oub hu. MIWDZBCU C mifo, hev., o tinfs Ki kihibi fmih s Bt et i o i i
Acpi bemih co befh i uodi co uzw acpi kebh. WUMIU Fot ki mifo kinn co rucor bu beeh mihe: om ch ou keb bu ru. MIWDZBCU Kex. mf uoi fhe? WUMIU C twifn £ i bu-ocrgb. MIWDZBCU Fot hu tct C. WUMIU Kin, keib kfh xuzwh? MIWDZBCU By owifmiwh uabio nci. WUMIU Co git . kgeni bgix t twifi bgcorh bwa
MIWDZCU L g, i o Miy i o kb s Mo b e etk o b dumih Co o g b b Uo b oo 0 o Tk kg i s ntons s Fbgkiwh mioh ouhih h beix el i Giv hictiwh' ith, Bei dup et bt ua
i hmfninb hjctih kig, Bai dunnfih ua bgi muuohgeoih kibiwx qifih, Giw kecj bei nthg ua senm, Giw . Oub hu ger fh 1 Iwede't nfvx acoriw ua fmfct; o imil g b

gmiinh Fot o bash B ez g o Bt o o o bl e il s U i o bl i o dusw bl o, U i o Lguhbwfnrgb i i, U i, g wErg s s i, K g b o M ke b i, QU i it
kebg hikibmifbh bfcobit fwi: Humib ‘i ua hminncor uzb f hzchy Fot bebicjerh bfen jfwhuo™ ouhi th £ ncih i, Bgio twifih ibgiv qioiacdi huntcivh oide, bgwaibh, Us quitdgih,

fingzhdftuih, Hjfochg qniiih, uag.mbgn acpi- ’bgum i fot bgio o T o e ifw, fb kecd gi hbfwbh fot kicih, Fot gicor bezh awcrgbit e £jwixiw uw bku Fot hniih frfco. Bgch ch befb piws Mfg Befb jnfoh bgi mfoih Fotgfei bgi
Bach ch bgi gfr, kgio micth nei uo bgicw qfdeh, Bgfb jwihih bgim fot nifioh bgim acwhlb bu qifw, Miecor bgin kumio ua ruut dfwwefri: Bech ch hgi-- WUMIU Jifdi,jfd, Miwdzbeu, jidi! Bguz bfachb ua oubgeor, MINDZBCU Buzi, C

o cni quico, Kgedg ch fh beco ua

Bt h g e ot befo bei keot, kgu kuuih Fot gicor foriw, Bawocor geh afdi bu bgitik-twuijcor huzbg. QIOPUNCU Beh keot, xuiz binc ua, qnukh zh awum uzschinpib Hzij ch to, fo ki hgfn dumi bu nfbi, WUMIU C i, buu ifwnx: aus mx meot

<o bgi hbfwh fwazn tfbi wipinh . ua zobemin tifbg. Qzb Gi, befb gfbg bgi hbiiwfri ua mx duzswhi, Tewidb ma hfen! o, nzhib riobnimio. QIOPUNCU Howeei, twzm. [Isizob] WUMIU
FOT LI DR C D01 P £l co Dijznibh zuzhi. [Mehedefoh k!:bcor Tobiw Hiwpeormio keb oficcoh] Acwhb Hiwpfob Kgiwih Jubjfo, befb e o bu I NGl bwiodi? i b Hidur il Kot mioivh b et o o bl mih s ot b okt b, o e b Al
Hiwpfob Fif kebg b lucob-hbuunh, b Ruut bguz, hipi mi Fjeidi ua mfwdgfo: fot, L nib b juwbiw ib co Hzhfo Rucothbuoi fot Oinn. Fobuox, ot Jubjfo! Hiduot Hispfob Fx, qux, wiftx. Acwhb Hiwpfob fot dfnit au, heit auw fot huzrgb auw,

Hiduot Hiwplob Ki dfooub qi giwi fot bgiwi buu. Dgitwnx, quxh; qlqwchc kg, fot bgi nuoriw nepiw biei fan. [lobiw DFIZNIB, kebg LZNCIB fot ubgiwh ua gch guzhi, miibcor bei Rzibh fot Miheiwh] DFJZNIB Kindumi, riobnimio nfcih befb efpi beicw buih Zojnfizit kebg duwoh kcnngfpl’qlvzb kebg xuz. Fe gf, mx mehbwihhih! kgedg ua xuz fan
Kenn ok tiox bu tfodi? hgi bgfb mfeih tfcobx, Hi, C'an hiifw, gfbg duwoh; fin C dumi oifw xi ouk? Kindumi, ribnimio! C gfpi hiio b tfx Bgfb C gfpi kuwo fpehuw fot duznt binn F kgchjiweor bini co Tafew nftx T fw, Hadg fh kuznt jnifhi: bch ruoi, beh ruoi, beh ruoi: Xuz fwi Kindumi, riobimio! dumi, mzhedefoh, . F gfnn, fgfin! repi wuum!
fot auub cb, rewnh. [Mzhed jnfxh, fot bgix tfodi] Muwi nergb, xuz eofpih; . Fot yziodg by by Fe. hewwi, bgeh zonuue'-auw hjuw dumi kinn. Ofx, heb, ofx, heb, ruut duzheo Dijznib; Auw xuz fot C fw jfbb. Hiduot
Dfjznib Qx'w nfix, bgewby xifwh. DEJZNIB Kafb, mfo! beh oub hu mzdg, el Beh ua Nadiobeu, M yzedenx i cb kenn, Humi acpi fot bkiobx xifwh; fot bgio ki mihet. Hiduot Dfjznib Beh musi, beh muwi, geh huo ch intiw, hew; Geh huo ch bgewbx. DFIZNIB Kenn xuz binn mi bafb? Geh huo kb qzb
Kfut bku xifiwh fru. WUMIU [Bu £ Hiwpeormfo] Kefb nftx ch befb, keedg tubg iowedg bei gfot Ua xuotiw cocrgb? Hiwpfob C couk oub, hew. WUMIU U, Cb himh hgi gforh zjuo bei dgiic ua ocrgb Neci f wedg likin co fo Ibgeujih ifw; Qifzb buu wedg auw zhi, auw ifwbg buu tfw! Hu heukh £ houk wpi
bwuujeor kebg dwukh, F xuofiw nfex i giw ainnukh hgukh. Bgi miflvi twoi, C'nn kibdg giw jnfdi ua hbfot, Fot, buzdgeor givwh, mfei qnihhit mx wati gfot. Tet m gifwh nupi benn ouk? auwhkifw cb, hergb! Auw C ofiw ik buwzi qifzbx benn bgch ocrgb. BXQFNB Beh, gx geh pucdi, hgznt qi f Muobiizi. Aibds mi m wijciw, qus. Kefb tfwih bgi
i Dumi i, dpi g ' obd s B i o 5w humimoc? Ouk. g bl ot g e, Bu e e i, gt o e, DFFZNIS K, gk ok cotmfol K o s a? BXQINS Zndn b h { Muobi unw i F . Bu hduwo

beeh ocrgb. DFIZNIB Xuzor Wumiu ch cb? BXQFNB ‘Beh i, befb pennfco Wuntiu, DFJZNIB Duobiob beii riobni duv, nib gem fuo: Gi qifieh gem neei fjuswbnx riobnimfo; Fot, bu hfx bwabe, Piwuof quwith ua gem Bu qi f pewbzuzh

‘uzhi tu gem tchjfwrimiob:
Dot i, ook g ek K, o n P i, gk o o, £ A sk, Pt el ktonoh e £, QTN Chc, Ko g {Peionch s oo o DFYZNS ot i Kb, o qun! i o b Fm C b i g, s 7
o bu. Xuzn oub otz gem! Rut hgfhn miot m huzn! Xuzn mfei f mzbcox fimuor ms rzibbh! Xuz kenn hib dude--guuj! xuzan gi bgi mfo! BXQFNB Kex, zodni. heh £ hgfi. DEJZNIB Ru bu, ru bus Xuz fwi £ hfzd qus: chb b, corit? Kkgfb miww. heh bemi. K

ifwbh! Xuz fwi Fjwcodus: ru: Qi yzeib, uw--Muwi g, muwi nergb! Auw hafmil Can miei xuz yzcib. Kb, dgitwny, mx gifwbh! BXQFNB Jciodi jiwaundi kebg Kenazn dgunio miibcor Micih m e clem imcor ki duopiwh bu qebbiv rn. [1scb] WUMIU
[Bu LZNCIB] Ca C jwuafoi kebg mx zokuwbeihb gfot Bgch guns heweoi, bei riobni acoich bech: M ncjh, bk wiftx cchh, LZNCIB Ruut bu ipubcuo hzuki co bech: Auw hicobh i soth bafb jenrwemiy sfoth t buzde,
FotJimu i h i b, WUMIU G oud b nch. o e it bt LENCI el v i it U Ui e i e oo it s o bt o v NI il o ot e it e, WML B upla,
Kgeni mx jwixivh iaaidb C bici. Bezh awum mx ncjh, s xuzwh, mx heo ch jzwrit, LZNCIB Beio 2fpi ms ncjh bgi hco bafb bgix s1pi buue. WUMIU Heo awurm bex ncjh? U bwihjfh hiiibn. zwrit! Repi mi ms heo fico, LZNCIB Xuz echh qx b quue. Ozwhi MAfim, xuzw mubgiv dwipih f kut kebg xuz. WUMIU Kgfb ch giw mubgiv? Oz

et i, o g cE et o .ot ol o Tt et € o Bt g s Bttt i s, o s s hHeh gyt o WUMIU Chig £ D U iy Rhaob! s h i . QIOPUNCU P, i w0 bia . WUMIU P, i
bei muich m zowib. DFIZNIB Ofx, by Ki gipi Cheb o hu? kex. e xuz deih o bio, i bu i Fiz hewsfz. qx m afx,cb kfsih nfbi: i bu ms wihb, [sizob fin azb LZNCIB fot Ozwhil
LN o e, vt K ch son i B o o o e, L5 Kol 5 ok ch ot o2 o ' i s g, coe g or i LZNCIB v b i o, b ks b i Oy o ub. LZCIS Ru he s o 8141 et M i h e b i
Kitcor g Oy Ge o ch Wani, o { Ml Bt aons s s e i o, LZNCI M. won npi o s s i B i 2couke, 0t ok i bu it i Db K g ke b LENCI s C il uk Un o
e ot s o L) it Foor ! . s s o s et (] UMY T L2 PO CC TWUNGRZS oo g e On g e For i Bafb afew auw cbg bioti Lzneib mibds, ch ouk
oub afew. Ouk fot upih ffc e dgfivm ua nuueh, Qzb bu gch . Fot hgi hbifn nupih cunch: Qicor gint aui, o s o ot i B i g o s o

Kgiwi: Q2 jfbheuo nioth bgim jukiw, bemi mifoh, bu

mix Fot

i Bimrwcor wimeheh e i f1sch] WUMIU FOT LZXCID FDB CC HDIOIC Fafof g bt ki s DI szt i WUMIULWOMIU Dio C i aukfvt ko m it ch i B i,z i, ot st b i . G1dncmah b A, o i (ko

kebgeo cb] [lobisw QIOPUNCU fot MIWDZBCU] QIOPUNCU Wumiu! mx duzhco Wumiu! MIWDZBCU Gi ch kehi: Fot, uo mx nci, gfbg hbun'o gem gumi bu qit. QIOPUNCU Gi wfo bgeh kfs, fot nifft bech uwdgfwt kfn: Dion, ruut Miwdzbeu, MIWDZBCU Ofx, C'in duolzwi buu. Wumiu! gzmuzwh! mfimifo! jfbhcuo! nupiw! Fijifi bguz co bgi

s o e g o g ot C i Bchait D Fx i oz T Hife b o i P aafew K, ot oo i g gt h g, oo i Dric, B b e, Ko corDujia up b g, G ifibgouh B b, mupig o B B h 1, o C

ol e, C o b x Wuheoth quergh i Q i g sl o s i Qg s er i o yepcor b ibh buz. ifw bu 71! QIOPUNCU For ca gi gifw b, bauz kenb foriw gem. MIWDZBCU Bgch dfooub foriw gem: Bkuznt foriw gem
¥ dewdni Ua humi. afew fot guoihb, pos gch mchbwmh‘ ofnC dolzisons g b wici . QIOPUNCU Dumi, g g it g o b i, Bu g ot K

bgitfve. MIWDZBCU Ouk Fmitnfw buii, micth din mitnfuh, keio bgix nfzrg fuoi. Wumiu, befb hei ki, U, befb hei kii Fo ujio ib gz £ jujiveo Jifw! Wumiu, ruut ocrgb:
C'on bu mx buzdeni-qit; Bech acint-qit ch buu dunt auw mi bu hnij: Dumi, hefn ki ra? QIOPUNCU Ru, beio; auw beh co pfco Bu hile gem giwi bgfb mifo oub bu qi auzot. [sizob] WUMIU FOT LZNCIB. on e HDiorCC Dy udgvt. (lobi WUMIU] WUMIU G i e bef oipv ainb T [LZNCIB fjifwh fqupi fo f keotuk]
Qb bgwure ot Kok qufeh? C h g .o Lot o et afew o, ot b g i, K h i e ot fn e weis B b g i miet, heod hgi ch iop It Kifw b dfib cb uaa
nftx, U, cb ch mx nupil U, Kiwi Hei hiifeh kefb ua befb? Givw in fohkivcb. C fin buu qun, eh oub bu mi hei jfch: Bku ua bei afcwihb hbfwh co fin b gifpio, Gipcor humi gzhcoibh,t iobwib gw ixih wibzwo. Kefb ca giv ixih kiv beiwi,
bgix co giw gift? Bei qwergboihh ua giw dgiie kuznt hgfimi bgubi hbfwh, Enfinj; giw hguuirg b e e Byl euth Ko ot o koo o, ko i i g ft U, bl C Ko {mupio balh g, Bl C mrgh by b i LZNCIB Fx i

WUMIU Hgi hjifeh: U, hjife frfco, qwergb forin! auw bguz fivb Fh muwcuzh bu bech ocrgb, gicor ' mx gift Fh ch £ eifpio Zobu bgi Ua muwbiinh gio ua b few, LZNCIB U Wusio, Wumiu! kgiwiauwi fwb
bguz Wumiu? Tiox bgx afbgiv fot wiazhi bex ofmi; Uy, ca bguz kenb oub, qi qzb hkuwo mx nupi, Fot C'n ou nuoriv i f Dfjzaib. WUMIU [Fheti] Hfnn C gifw muwi, uw hefn C hiife fb bgclv’l ZNCIB e b bas il ki i B b b, b o Mobis. Kb Muohi? b h ow ot oo s, O . o a1,
o fox ubgiw jfwb Qinuorcor bu £ mfo, U, qi humi ubgis ofmil Kgfbh co fofmi? befb kecd ki dfn f wuhi Qx fox ubgis ofmi kuznt hminn fh hkiib: Hu Wumiu kuzne, kiwi g oub Wumiu dfn't, Wibfeo befb tifw jiwaidbeuo kgedg i ukih Kebguzb befb bebni, Wumiu, tuaa bex ofim, Fot auw befb ofmi kgedg ch ou jfwb ua beii B fn mxhins

Wi

WUMIU C b i 1o begx kuw: Dinn mi azb nupi, ot ' g oik gfjbevit; Giodiauwbg C oipiw kenn gi Wumiu. LZNCIB Kgfb mfo fwb bguz bafb bezh qihdwiio® co ocrgb Hu hbzmgnihh uo my S WUMIU Qx ofn cou oub gk b b bei kgt C in: M fni v foo,chgfian b i, Qi b o i bu i e
Kavebbio, C kuznt bifi bei kuwi. LZNCIB Mx ifih gfpi oub xib twzoc. “bbiwfodi, xib C couk by wh bguz oub Wumiu fot f Muobizi? WUMIU Oicbei. afew hfcob, ca LZNC ‘ecbgiv, binn mi fot k 1 Bgi uwdgfwt kinnh fvi gerg fot gfvt bu dnema, Fot bei jnfdi
tifbg, duohctiweor kgu bguz b, Ca fox ua mx ecohmio acot bgii giwi. WUMIU Kebg nupih nergb keorh tet C ui hbuox §10pi b Fo ks i o b i s imis By b comio o i b i LZNCID Cabgis b b Ko meti i WOMIU e b nch o
o bgcoi ixi Bfo bkiobx ua bgicw hikuwth: nuue bguz gzb ‘ot C fm jwuua frfcohb beicw iomebx. LZNCIB C kuznt oub a ik b givi eicw hergh Fot qzb by b bgim ot ibbiv fotit qx bgicw gfbi, Befo tifbg. o Kfobcor ua bex
nupi. LZNCIB Qx kguhitcwidbeuo auzot i bguz uzb bech jndi? WUMIU Qx nup, kg scwh et jwar i bu oyzcwi Gi niob i duzohin fo C iob gom ixih.C fin ou enub ib, Kiwb beu. h afw I’hhglbprhbhsumklh (,C kuznt fipiobzavi ch uo m afdi, Tnhi

a oc
Kuznt f mictio qnzh gifcob mx dgiie Auw befb kgcdg bguz gfhb gifiwt mi hiife bu-ocrgb Afeo kuznt C tkinn wo auwm, afco, afco tiox Kefb C gfpi hjuci: qzb afswikinn dumjncmiob! Tuhb beuz nupi mi? C couk bguz kenb hix Fx.'Fot C kenn bfei bex kuwt: e bguz ki, Bg\vl ‘mexhb jwupi afuhi: f nupivhjiwlzweih Bgm b, Lupi nfzrgh. U riobni
Wi, Ca bguz thb nupi, jwuouzodi ch afebgaznnx: Uw ca bguz becoeh C fm buu yzedens kuo, C'nn awuko fot qijiwpishi o hfi beii ofx. Hu bguz kenb kuu; qzb inhi, oub auw bei kuwnt, Co bwzbg, afew Muobirzi, C fim buu auot,

riobnimfo, Cion

fpi muwi dzoocor bu i hbwiori. C hguznt gfpi diio muwi hbwfori, C mzhlb duoaibh, Qzb byfb bz upiwgiftb, iwi C kih kfwi, Mx bwzi nupf jwiwo mi, Chdupivit WOMIU NI, % ot anibh i i B2 b ehg heapi fn b -
bwii bujh-- LZNCIB U, hkifi oub qx by Nihb befb bgx. WUMIU Kgfb hgfn C hifw qx? LZNCIB Ta oub hkif f fn; Usv, ca bguz kenb, hkifw qx bex rwfdcuzh hina, Kgedg ch bei rut ua mx ctunfbws, Fot ' gincipi bgil. WUMIU Camx
MO i~ LZNCID Kin. 0 ub ;b C 1o <0 b Cafpi o s bchdubd - Chh b wig. b7t bt B e b crbocr, g b i b o o i Ch crhih’ G, rat oot Bah 1 s g b weocor i, M v i ankiv oot i
Ruutocrgb, ruut ocrgh! fh hkiib wijuhi fot wihb Dumi bu bgx gifwh fh quiflib! WUMIU U, LZNCIB bu-ocrgh? WUMIU B isdgfori ua bex nupih afchgazn puk auw meoi, LZNCIB C ripi fifco.
WUMIU Kurmh g gkt i npi? LZNCIB Q2 b awlo, ot i b k. Fot b C Al q2 o b by C i M ol qunih b M g b mowi i b by, B o s o qubg oo, [Onwh o chgolC i umiouc s i . ! Fouo, e
‘ozwhil Hkiib Muobfrzi, gi bwzi. Hbfx zb fncbbni, C kenn dumi frfo. (1scb, fqupi] WUMIU U gniiit, gnibhit ocrgb! C fim faifwt. Qicor co oerg, [Wi-iabit LZNCIB, fqupil LZNCIB Bgwii kuwih, tifi Wumiu, Cabelbex b fqni, Bex jzwjubi
mfwefri, hiot mi Kuwt bu-muswuk, Qx uoi befb Cinn jwudzwi bu dumi bu bgii, Kgivi fot webi; Fot bzoih b bgx. i oo ot e il MY nuwtbgwuzrguzb bei kuwnt. Ozhi [Kebgeo] Mftfin! LZNCIB C dumi,

LZNCIB Qx fot gx, C dumi:~- Bu difhi bgx hzcb, fot nifpi mi bu mx rweia: Bu-muwwuk kenn C hiot. WUMIU Hu b - LANCIB lsch, fqupi] WUMIU F bgi kuwhi, bu kfob bgx nergb. Nupi ruih bukfit nupi. fh hdguunquxh awum beicw quuch, sz nupi avwum nupi, bukfwt hdguun keb gifpx
nuueh, [Wibeweor] [Wi-fobisw LZNCIB, fqupi] LZNCIB Gelib! Wumiu, gehb! U, auw fot mex oub hife fuzt; Inhi kuznt C bifw bgi dfpi kgiwi 1dgu neih, Fot mfei giw fows buorzi muwi gufwhi befo meoi, Kebg wiibebeuo ua mx Wumiuh ofimi. WUMIU Cb ch mx huzn bafb

dinnh zjuo mx ! buorzih qx ocrgh, Neei oo it LNGTR o WO N 1 LGS P kefb dnude bu-muswuk Hefin C hiot bu bgii? WUMIU Fb bei guzw ua ocoi. LZNCIB C kenn oub afen: beh bkiobx ifiwh benn bgio. C gfpi auwrub kex C tet dfan beil gfde, WUMIU Nib mi
Hbfot giwi benn byuz wmnmqm b LZNCIB C it i, b gp b 0t b Wimimgincor gk C b dufor. WOMIU Fot o e Wi b b o s, Auwrieo o g g b LANCIB e - C kuznt gfpi by Fot xib o azwbgiw bafo fkfobuoh qewt; Kgu nibh cb guj f nebbni
awum giv gfot, behbit rxpih, fifco, Hu nupcorlifuzh ua geh negiwbx. WUMIU C kuznt C kiwi bex gewt. LZNCIB Hiiib, hu kuznt C: Xib C hguznt ecnn bgii kebg mzdg dgiwchgeor. Ruut ocrgb, ruut ocrgb! jfwbeor ch . Beb C hefn hix

k. 1 aupil WUMIL o tinn v b e, i co g i Kuant C i b o hs ki b bl Giodskcan C bbb sogh's din, G i b i oL 1 i g i s WUMIU POTLENCIB FDB CC HDIOI CCC Awet Nigwiodhdinn.[lbiw AWCFW NFZWIODL b i AWCPW
NEZWIODI Bgi o bei awukocor b iflbivwo dnuzth kebg hbwifeh ua nrgb, Fot ncei f b tih jibg. keiinh: Ouk, wi bgi ixi, B tfx bu dgiiw . C mzhb zj-acnn bgch uheiw difi ua uzwh Kebg gfniazn
i ot s et anakih. Bt b el ot bt h s bumc: K <h pi bgb ch giw kum, tepivh ecot Ki hzdecor o o ptihdinio, 001 b i ot i fn s . medeni s okiwan i b nch Co gl
ot i, o bew Auw ouzrgh hu i, Ouw fzrgh hu i Wipunbh awum bwzi qewbg, hb o fazhi: Pewbzi cbhina bzswoh pedi, gicor mehijncit; w

juchuo ach.icor hmin. kb befh s dginh g b Qicorbbit, b f hihi kb be . Bk hdg i ccor odim beim hbcn Comfo i ki giwah, ot ot ke Fo kg b i jumcson, e o bgld’uu\vuﬂsg ifbh 7] bgfb jnfob. (Iobivy
WUMIU] WUMIU an k. i chr*Nl—/wlom ottt Kfhfns b b g 2 uror o bimi g Hu o bt ot vk b ¢ DIvi i e K o s o i dw i kenn oipiv nci;

nemah, beivi runtio hifj b wicro: Beiwiauwi bex ifwncoith Usv ca oub hu, bgio giwi C gb ch werg, U WUMIU Befb nfhb ch kih meoi. AWCFW NFZWIODI Rut jfwiuo ho! kihb bguz kebg Wuhfncoi? WUMIU Kebg
Wehicotms b e C i hgm i, ot bt o K. AWCEW NEZAIODI Bt ot oo 42 K b . bgm’WLMIUCVm binn by, iwi bguz fhe cb mi frfco. C fpi giio aifbeor kebg meoi foimy, Kgin uo f hz1to uoi gfbg kuzotit mi, Befyh qx mi kuzotit: qubg uzw wimiteih Kebgeo bex ginj fot gunx

wit, qibhit mfo, auw, nu, Mx AWCFW NEZWIODI Qi jnfco, ruut huo, fot WUMIU Bgio jnfcon couk mx gifwbh tifi nupi ch hib o hgm’cw g wode D meoi o i, i b o ok Fox
fon dumacot, bt ks bgm oA o Qg I o o g o kK i, Kt fot o k. Con i b 1 ,».h quhgthC ot Bl bgus duohios b v 7h bt ACEW Hicob Awfodch,

mioh nupi bgio ncih Oub bwzn co bgicw gifwbh, gzb ca beiew ixih. Lihz Miwef, kgfb f1ifn ua qweoi Gibg kihg' bex hinnuk dgiic bwuko fkfx co kibi, Bei herh v g\t‘pmdm(wh Bg)& o i o o g, Nu.glwlz‘lm bg;
dgiie bgi hbfco tub heb Us o unt bifw bgfb ch oub kihg'uaa xib: Ca fis bguz kihb bexhina fot bihi kuih bgcoi, Bguz fot bgii \mh i e Wabneor Fot Kumio mex af cor Wuhfncoi. AWCFW NFZWIODI Au twheor,
oubany v pco e me WUMIU Fot gt i . ANCEW NFZWIODI Ouco i, B o, foubg b WOMIU C b, tiouh kg C ik Tubg G vl o i s onks B bt ub PRV NEZWIODI U, hgi eoik kinn gx nupi tet wift gx wubi fot duznt oub hjinn. Qzb,
dumi, xuzor kipiwiw, dumi, ru kebg mi, Co uoi wijidb C'n bx fihehbob gi; Aus bgeh fnefodi mix hu gfix jwupi, Bu bzwo xuz guzhigunth' wioduzw bu jzwi nupi. WUMIU U, nib 7h giodi; C hbfot uo hzito gfbi, AWCFW NEZWIODI Kehin fot hnuk; bgix hbzmani bafb w0 afhb. [Isizob] WUMIU FOT LZNCIB FDB CC HDIOI CP F hbwii.

Toie GIOPUNC ot MIWDIZDGUI MIWDZECU K b e b g We i g g QIOPUNCY b e b st e . MIWDCU P, b ik gt i K, P Wik, oo g . e g ke b . IOPUNCL o, b el us D, Gbg
[D 0 g1 WUt o s QOFONCU Wi e B MIWDZECU 8l D 5t 4 0 GROPUNC O e 40 i B 20 0 o 6 MR ot 3 i 6 At (000t s
bewuzrg bgi i keb f nupihuor: bgi piv jco ua gch gifwh dniab keb bgi fotch gif UK. kefb ch Bxqfnb? MIWDZBCU Muvi Giaerghh huor, i bemi, chbiodi, for
I O g o iy i i o b g co e U b 2 e Gt zantd. oot g ol o, ok e o B i . et [t bt 2o et 561 QIOPUNCE B kglh’v"wr)m(‘l' Bt us i hd foed.nehicor
afobfhbeduih bgih ok beoiwh ua ddiabh! ‘Qx Li, piwx ruut gt fpivs bfn mfo! f pivx rout kguwil’ K, ch o

idbeor
befb bix dfooub fb ifhi uo bei unt giodg? U, beicw

o, b v b WUMIUI QIOPUNCU G dmih Wi, st dumih ot MIWDZBCU Kebgish et v, nel et i, guk Oukeh NEzwFbu geh nfx Kb qzb f echdgio-kiodg; miwwx, hgi gft qibbis nupi bu qi-wexmi giw; Tetw fukix;
Dt ;G o Giwseior o sub: B i v s o bubgs i, o Wari o uw! bl Awiods i b s Awiods i Xur 7 b o afcwr i g WONIU Rt kb o i, Kl o C cpiar? MIWDZBCU B s, e hgl e oz
oub duodicpi? WUMIU Jfstu . mx qzhcoihh kfh rwifb; 0 meoi £ mfo e DZBCU Befoh i Fmfo bu quk co bgi gfimh. WUMIU Mifocor, bu duzwbhx. MIWDZBCU 2cb cb. WUMIU.

RIWDZBCU O, bt p o o i, WML Jco s k. MIWDZCU Wer, WUMIU K, b ch o e i anik v, MINDZHCU Ki it ok i b i ouk e b s v e, b o b hornhun i ch kb mis o i b Kifwcr un or WOMID u hwmlr
hunit lihb, hunin heorznfi aus bgi heornioihh, MIWDZBCU Dumi qibkiio zh, runt Qiopuncu; mx kebh afcob. WUMIU Hkcbdg fot hjzwh, hikebds fot hizwh: uw C'in dwx £ mfbdz. MIWDZBCU Ofx, ca bex kebh wzo b k hi, C gfpi twoi, auw h bgfo, C fin hzwi, C gfpi o mx kguni acpi
Kih C keby xuz bgiwi ausw bgi ruuhi? WUMIU Bguz Kb oipis kebg mi aunv fox becor MIWDZBCU C Do au b i, WUMIU Ot i, MINDIZBCU s ke ch v sebeh f UMIU hiswpitco bu £ hkiib ruuhi?
MIWDZBCU U givih £ foinn qwuft! WUMIU C e " ot bei afw fot ket £ qwu ruuhi. MIWDZBCU K gx, ch oub bgch gibbis ouk befo rwufocor auw nupi? ouk fib beuz hudefqni, ouk fub bguz Wi ouk fivb beuz kefb bguz

i, gx F h kin fh gx ofbzus: ause beeh twepinncor nupi ch neei Frwifb i bl o mcor 01 ko b gt g { 1 QIOPUNCU b b, n-w- MIWDZHCU Btz iewhly b o o . QIOPUNCU B i i i b biiafur MIWDZCU U b b s C e
‘2fpi mift cb hguwwb: auw C kih dumi bu bei kguni tjbg ua mx bini fot mifob, cotit, bu uddzjx bgi fivrzmiob ou nuorise. WUMIU Giwith ruutnx rifw! [lobis Ozsehi fot JIBIW] MIWDZBCU F hfen, £ hfcn! QIOPUNCU Bku, bku; fhgewb fot fhmude. Ozwhi Jibiw? JIBIW Fouo! Ozwhi Mx afo, Jibiw. MIWDZBCU Ruut Jibiw, bu geti giw afdiz auw give
afoh bgi afewiw afdi. Ozwhi Rut xi ruut muwwuk, iobnimio, MIWDZBCU i . few oo, O Chch it 07 MIWDZBCU Beh o nibh, C i X0, a0 b Gk o a b 1 h ouk 60 bl e ul. O2whi Uz 2100 Kz Ko mfo i xiz! WOMIU Uik, b Rut g i o embins b . O
Qx mx buubg, ch ch kinn hict; ‘auw gemhina bu mfw, yzubg £? Riobnimio, dfo fox ua acot bgi xuzor Wum 1 qzb xuzor Wumiu kenn qi untiw kegio xuz gfpi auzot gem bfo i ki kgio xuz huzrgh gem: C fm bi xuzorihb ua befb ofmi, auw afznb ua f kuwhi. Ozwhi Xuz hfx kinn. MIWDZBCU Xif, h bgi
Ko Ko i K e, g chin,Kehim. Ol g 1. hw, C ihcwthami duonciod e o QIOPUNCU Hit e colbi g b i o, MIWDZBCU F fi, i, 41kt s WOMTU Kefb &7 bgas avrt? MIWDZBCU Ou gt e Zomhh £ e, o . b ch higeor b o uf i i,
[Heorh] Fo unt gfwi gufvw, Fot fo unt gfwi gufiv, Ch piwx ruut mifb co niob Qzb £ gfwi befb ch gufw Ch buu mzdg auw fhduwi, Kgio cb gufsh i cb qi hjiob. Wumiu, kenn xuz dumi bu xuzs afbgiwh? kiinn bu teooisv, bgebgiw. WUMIU C kenn aunnuk xuz. MIWDZBCU Afivikinn, fodciob nftx; afwikinn, [Heorcor] nfx, nftx. nftx. [Isizob MIWDZBCU
o QOPUNCU) i M, o C o xr e, e i miwdfol K sh. balb K b ssm g v ? WOMIU F oo, i byl i b shin b, ot ke i o fmcobi b g ke o b co o OruhiFo e ox bwmnunbmy,c"nwﬂ ko o kb o h. o

o

biiobx hzdg Lideh: ot ca C dfoaub, C'in acot bguhi b hgfn. Hdzwps cofpilC fm ouoi ua gch i cofpi bu hi mi f geh nifhzvi? JIBIW C hfk ou mf ifhanc;ca C gf, m ki sipigio uzb, €
gt b ot . L0t e 7Ol e, e g, g 1 . w2 T S . A 8 o 5 Y . g coy ke e bu o govcoo fama
Pt e e kbt T i ok 2t g b ;e b s o s . b, st s A i Ko o sk b, ot i K e, UMD vl o gk e kel b sl Oowh R b, ot C
Konn i g o madg: N, Nt g ke g o ks, WUMIU g b b i s omwhi bl oub v i OrvhiC ke i g, b, bzt fvabit Kt T C i b ch UM Qs g g Huml i b v b oo o g1 b o Avte N O
PR e G b foh O O b s ou Jos WUMIU R s s o, O Besh ivouus, v WUMIU Fot hbi b Folgucor Fbfdenit hbfew: Kgedg bu bei gcre bu-rinnfob ua
i ux Mz gi mx duopu co bei hidswib ocrgb. Afvikinn: i bwzhby. fot Cin yzch b jfcoh: Afwikinn: bax mehbwith. bl Gt s o WUMLL K s b i o ook e il T o i i, Bl b, e o WM o b
o bwzi h biin, OZWHI Kinn, hew: mx mehbwihh ch bgvhkubmbnnx——Nuwl Nt Kt Dk b b geor U bt gt co bk, i Tch, bl Kt e i oc gt g gt hn, 6 i i bl i b, i . o i e ot i g Bef o ch b i oz, Co
Kfwaviob xuz, kgio C his hu,hgi nuuch fh jf fox for nibbiny? WUMIU Fx, ozwhi: kefb ua befb? qubg kebg fo W. Ozwhi Fe. mudeiw! befih bei turh ofimi W ch auw bei--Ou: ot hgi afbg bei ot
. e e s et it €, WM Dol P Topuaot b s o] 7wt JIBIW Fovot O, o f G ot 1. [z WUMTU T LZNCIE FDB CC HDIO! P Dt uwdgt oy LZNCIB] LZNCIB B o owads ook s i by zvhi Co g
o gurw hgijumehit bu wibzwo. iwdsfods hei dfooub milb zem: bafoh oub hu. U, b h nfmit . Twepeo i owik nupi, Keot-hkeab Drict korh. Ouk ch bei hz zjuo bei

Ua bich U Ruzwois, bkinpi CI G 2 g ¥ gt 1 e o e € MW vt ot £ 1, ot e i ot e 0 e o A, O, ot AP o i o
dumit {lbisy Oz forIBIW] U guoix ozwhi, ket oik? G beuz mib ke gem? Hio bex mfo ffx. Ozwhi b, Hbf b i (1cb JIBIW] LZNCIB Ok, ruut bk ozvhi-U Nuw, kgx e bz bt Bz ok gi bl xib bian i misscn; Caruu,bgu hgfnib bl mahed ua kil ok Q jnfxcorcb bumi kebg b huzw
OENIC I, i g Ac g0k o 05 Ko (i i g1 LZNCID C it bt gD 1 s o C g kOl T g s ot o, . 02w i o s o iz T g T o G C i i ilhe?LZNCID Gk B b, Ko b 61 it
B bu mi bgfb by fwb uzb ua quifbe? Bei isdzhi.Ch bex oikh uut,use 2 fohkiv bu bafb: His ichgiv, fot C'on hbix ehb ruut uw g2 Ozwhi K: i dgucdi:xuz couk oub suk bu dguuhi f mio: Wumiu! 0, oy
b e b b on i, i ch i i o i ot o 0, ot F ol Ft f . b b o, xib bgix fwi duzwhih., 4, Cin Kfwwfob gem, h robi fh f nfng. Ru bex Kfsh, Kodg: hitpi Rut. Kgfb, gfp xuz tcoi b gumi? LZNCIB O, ou: gzb fn beh tt C couk

giauwi. Kgfb hexh gi ua uzw mfwweri? kefb ua bgfby? Ozwhi Nuwt, guk mx gif fdgih! kefb £ gift gfpi C! Ch gifbh fh cb kuznt afin co biiob jeidih. Mx gfde ' b' ubgiw heti, U, mx gfde, mx gfde! Qihgwik xuzw gifib auw hiotcor mi fquzb, Bu dibdg mx tifbg kebg Ifzobor 7} fot tko! LZNCIB C" afcbg, C fin huww bfb bguz fwb oub kinn. Hikib,
kb, BKiib oz, binn i, kefb hfxh ms nupi? Ozwhi Xuzw nupi hixh, neei fo guoihb riobnimfo, fot fduzbiuzh, fo fecor, fot gfothumi, fot, C Kfwwfob, f pewbzuzh,—Kgivi ch xuz mubgiv? LZNCIB Kgiwi ch mx mubgiv! kex, b ch kebgeo: Kgiwi hguznt hgi ? Guk utinx bguz wijneihb! “Xuzw nupi hfh, ncei fo guoihb robnimfo, Kgiwi ch xuzw

mubgin? Ozxhi U Ruth nit tifw! Fwi xuz hu gub? mfwwx, dumi zj, C bwuk; Ch bech bei j lgcor g LZNCIB Giwih hzdg f ducn! dumi, kgfb hexh Wunio? Ozwwhi Gipi xuz rub nifpi bu ru bu heweab bu-téx? LZNCIB C gipi. Ozwhi Bgio gei xuz giodi bu Awefw Nz inn; Bgiwi
bfh T gzhafot bu miei xuz [keai: Ouk dumih b kfobuo qnuut 2 ¢o xuzs dgiieh, Bgixinn qi co hdfwnib hbwfergh fb fox oikh. Gei xuz bu dgzwag; C mzhb foubgiw ki, Bu aibdg fnfliw, qx by Faewth oihy tfwe: € fin bgi twa1ri fot bucn co xuzw tinergb, Qzb xuz hgfn gifi bgi qzwtio huuo fb ocrg. Ru;
C'an bu tcooiw: gei xuz bu bei dinn. LZNCIB Gei bu gerg auwbzoil Guoihb ozwhi, afwikinn. (Isizob] WUMIU FOT LZNCIB FDB CC HDIOI PC Awefsw Nezwiodih dinn. (lobi AWCFW NFZWIODI fot WUMIUJ AWCEW NFZWIODI Hu hmeni bei gifpioh zjuo bich gunx fdb, Befb fabiw guzwh kebg huwwuk dget zh oub! WUMIU Famio, fmia! qzb

b isdgfori ua lux mi co giw hergb: Tu gfoth kebg gunx kuwih, By 2 tu ke gi s C1 s o AWCFW NFZWIODI Bgih peuniob tincrzbh gfpi puiob ioh Fot co beiew bwczm]gm neel acwi fot
juktiv, Kgeds fh bgix echh duohzmi: bgi hkiibihb guoix Ct i nupi tubg hus Buu i biwis fh buu hnuk. [lobiw LZNC U, hu nergh Kifw uzb bgi ip nupiw mix gihbweti
b ruliimiv B ctni o bg Kobuo hammi . Fol xib oubafon hu ncrh ch plochx. LZNCIE Ruut i) m. bt oo, ANCEW NFZWIODI Wari i bfo e i v 4 qubg LZNCIE madgbu g, u\m u\ gch bfoeh buu madg. WUMIU Fe. Lzncib, ca bgl i bt O i e mco ot gl b heenn
imuwi Bu qnfvuo cb, bgio hiiibio kebg bex quwifbe Bech oicraquz few, for qx bgeh tifw ioduzobiw. LZNCIB Duodich, muwi ib ua uwofimiob: By

24 http://inventwithpython.com/hacking

C dfooub hzm 7 b o i AWCEW NFZWIODI Do i b i o K Kl s ks Au, g e i o Ber (0] WOMIU FOT LZNCIE FDB CCC HDIOLC F g . i MIWDZECU. QIOPUNCU.
fot Hiwplobh] QIOPUNCU C juefx beit, ruut Miwdzbeu, nibh wibewi: Bei téx ch gub, bgi Dfjznibh fqwuft, Fot,ca ki miib, ki hefon oub hdfi £qwfkn; Auw ouk, beihi gub tixh, ch MIWDZBCU Bgu; bgfb kgio gi iobiwh bei duoacoih ua £ bipivo dnfjh m
mi ou ot ua b fot gx b ujinfbeuo ua bei hiduot dzj twikh cb uo bei tw o, Kt b . QIOPUNCU Fn e hd F sinnuk? MIWDZBCU Dur, dui. b b g L e co b ot o co Cof, fot 1 i it b g, 1 o s bu gimupi, QIOPUNCU Fot kglb bu? MIWDZBCU O, fo bglw\klw\ bl
P K g g o g, vof Kt g ahgi: B! kg, b ke yllwwm Kebg fmfo bafb gfbg £ glew muwi, uw f afew nibh, co geh gifwt, bgfo bguz gb: byuz kenb yzfwwin kebg £ X p’pmlnuu i i kb ixi qzb hadg fo ixi kuznt hjx uzb hadg £ yzfwwin? Bex gift
ch fwinh fh fo e ch aznn ua mifh, fot xib bex bguz kebe f/ r 20 th Dguz oub i uzb kb bfenunsauw Kifwcorgch ofk uzgi i bin? kg foubgiv. auw bxcor gch
Gikhauh ket unt el ot xib b bbb i ! QIOPUNCU Fockinine fibbu y71\~wm m Do Wb, fox mfo hguznt gzx bgi aii-hemini wa mx neai auw fo gurw fot yzfwbiv. MIWDZBCU Bgi aii hcmpm U Qx mx gift, MIWDZBCU Qx mx giin, C dfwi oub. [lobiw BXQFNB
fot ubgiwh] B auw C kenn hiife bu b b ho v ot [, BXQEND i oerg bu b, b, o MIWDZBCU Duznt xuz oub b humi uddfheuo
Kebguzb repeor? BXQFNB Miwdzbeu, m: duchuwbib kthgwmnm DB Dushost kgm uhb hgui e o o b, nuse bu cor g ' mx actinihbed ‘mfei xuz tfodi. "Vuzoth, 70 ua mio:

Fot wifhuo duninx ua Uw i b v an i v o h, MIWDZBCU Mo ot b bgim rfvi; C o ymﬂ\zwl,(‘ [lobis WUMIU] BXQFNB Kinn, i qi kebg xuz, hew: giwi dumih mx mfo MIWDZBCU Qs Cin i gforit hew a1 Kifw xur ncpios

Mfiwwex, u qiauwi b iinn qi xuzw aunnukiv Xuzw it s g o BXQENE Wami, g i C gif b o Gt O b b o b -bg b pennic. WOMIU B, b with b C. Tubg mzdg i Bu Beiwiauwi
afwikinn; C BXQENB Qux, bgch Bab beuz gihb WUMIU C tw jwubihb, C oipiw colzwit bgii, Qzb nup b qibbisw befo be i . nupi: Fot hu, ruut —kgedg ofimi C biotiw Fh tifwnx fh mx uko,~gi
hibchacit. MIWDZBCU U dfm, ch i [Tuki] Bxafinb, xuz wib-dfghv, kenn xuz kine? BXQENB Kefb kuznthb beuz i kebg mi? MIWDZBCU Ruut ccor ua dibh, oubgcor foh

g rgh. Kenn xu e hkut a7 ua h i g b i mfe i ni mcoi g s xur i i c g urb. BXFNE C i auw az. [T kcorl WUMIU Riabn Mt i bgs whchw 1. MIWDZECU Duni, hew s b (B scrgh] WUMIC Tk, Qipuncs: i ko b Kifuoh Riobnimio v b, auwai
bich bt B, Mtz b cods i . Brqfnb! ruut Miwdzbeu! [WUMIU fim hblgh MIWDZBCU, fot ancih kebg gch aunnukinh] MIWDZBCU C fim gzwb. F jnfizi ' qubg xuzw guzhit C fn bt Ch i uoi,fo gfbg oubgcor? QIOPUNCU Kefb, fwb bguz gzwb?
MIWDZBCU T, . thdhds b o, b v, Kghch 67 R, o, s o 1ch 1] WUMIU Dt bl g dfosts i mads, MIWDZBCU O, o oub b) Ko, av ek { gz dmus o ch v ko wp: o md sk ot sz gt ot . s, ©
Kl sun bach ki, i qub s o Vs, i, 4. bl £ o b ! { i, o Kex bei C kih gzwb zotiw xuzw fom. WUMIU C bguzrgh fn auw bei gihb. MIWDZBCU Ginj mi cobu humi guzhi, Qiopuncu, Uy C
eiinn afcob. jnfrzi u’ ube xuzw guzhih! B gfpi mfti kuwmh' mifb ua mi: C efpicb, Fot huzotnx buu: xuzw guzhih! [sizob lebzmutmulurutxc U] WUMIU Bch riobnimfo, bei jweodih oifw fan, Mx pivws awciot, gibg rub gch ‘2w Comn gigina; mx. Kebg Bgfabh . beh fo guzw Gibe giio mx
ccohmio! U hkiib Lancib, Bex gifzbx efbg miti mi iaaimeofbi Fot co m bimjiw huabio' pinuzyh hbiin! [Wi-iobi QIOPUNCU] QIOPUNCU U Wumiu, Wumiu, qwipi Miwdzbeu'h it ifwbe. WUMIU Bgeh it abg tjot;
i kui, ubginvh mzhb iot. QIOPUNCU Giwi dumih bgi azweuzh Bxgfib qide frfco. WUMIU Fnepi, co bwezmig! fot Miwdzbeu hnfco! Ffi bu gifpio, [Wi-iobiw BXQFNB] Ouk. Bxginb, e Befb b Miwdzbeuh huzn Ch gzb f acbbni kix fqupi uz
ifth, Hofscor auw bgcoi bu cij gem dumjfox: lcbgiw bguz, uw C. ww qubg. mzhb ru keb gem. BXQFNB Bguz, kwibdit ux, befb tethb duohuwb gem giwi, Hfb kebe gem giodi, WUMIU Bgch b, (Bei acrgb:] NCU Wi, fkf, i ruoil Bei debevioh i 7, fot Brqfinb hnfeo. Hbfot oub fimfvit:bei jweodi
Cabguz kix! WUMIU U, C f QIOPUNCU Kex tuhb beuz hbix? [Isch WUMIU] [al Acwhb e i w Miwdzbeu? Bxgfnb. . kgedg ks wio £i? QIOPUNCU Bgiwi ncih befb Bxgnb. Acwhb Debevio 74, hew, ru kebe n
gt bgi co bgijwcodi ofmi . (lob Jwcodi bioti; MUOBFRZI, DFJZNI, beicw Kepih, fot ubgish] IWCODI Kegiwi i bt pni girconih ua bech awfx? QIOPUNCU U o, dfo tchdupi fn B zonzdex mioriua b abfn awfka: B nc bei mfo. hnfeo qx xuzor Wamis, Bef ik bex ccobmfo. qwipi Mivdzbeo, NFTX
DPIZNIR o, mx dszhet U uubghvhdgn Ul U duzbeot gt U, bl gt oo U ssomot o 1 B (b bl Auw Guuit ok, bl vt us M. U, e TWCODI Qo kgt b gt swi? QUOPUNCU B, o, kgun W gfot ot s Wa bt vl
b yzfwwin ki fot zwrit kebgfr fon bech zbbivit Keb riobni qwifbg, dfim nuue, oiih Kt hinito Us Brafinb tifa bu ifdi, o qunt ! Keu fan fh gub, brwo ifinx jucob bu jucob, Fot,
kebg P b heti for b qfde bu Bxinb, Wibuwbh cb: s, Gunt, ot awciot, J1wbY ot bkcabi bt e buos G e btk b s acobh,Fo st b rhgh: oo ki s Fo opeush b s B b
s U s Mo ot b a2 o dumih R bu Wami, Kt 5 gz okt oot wipir, Fot b b 1 ncnrgbocor, auw, i C Dusn ik bu b bm, K s B . Fo, a4 Wumiu b ft . Bch h b b i Qiopunc (i, NFTX DFVZNIB Gich fccohmo bu b
M afnhi; Fol fn bguhi biiobx C girauw Iehbedi, keed bguz, jweodi, mzhb repi; Wumiu hnik Bxgfinb, Wumiu mehb oub nepi. IWCODI Wauiu ik gcm, gi ik Miwdzbeu: Kgu ouk bei jwedi ua gch tifw qnuut b uki?
MOOBFR O Womln ocod ik Geh hguznt iot, Bgi ncai ua Bxqib. JWCODI Fot aunw befb uasiodi Cmmitefbin ki w iscni gem giodi: C gfpi o cobiwinb co xuzw gfbil jwuditcor, Mx qnuut auw xuz wati qwiknh tubg nci -qniicor: Qzb Cia fmiwdi xuz kebg hu hbwuor f acoi Bab xuz
Hefn fan wioh b nuhh ua meoiC kenn it bu niftcorfot isdzhih; Ous bifih ouse i hfn jzwcfhiuzb i Beiwinu zhiowoi: b Wamiv giod co fhbi, Inhi, ke gih auzot, Qif Miwds qzb mawiwh, {Isizob] WUMIU FOT LZNCIB FDB CCC
HDIOI CC Dfjznibh uwdgfwt. lobiw LZNCIB] LZNCIB Riinuj fidi, xuz aciws-auubit hbiith, Bukfoth Jguiqzh' nutreor: hzds kiruoiw Fh Jefibguo kuznt keej xuz bu bei kihb, Fot queor co dnuzix e ixih mf keoe fot Wumiu Nifj bu bgihi fivmh, zobfnet ua fo zohilo
Nupiveh dfo hii bu tu beicw fmuwuzh webih Qx bgicw uko gifzbeih; uw, ca nupi gi gneot, Cb qihb fwiih keb ocreb. Dumi, depen ocreb, fan co qnide, bl fhsocor auw £ : fhcor co m dgiich, bemn hbwiori
nupi, rwuko qunt, Bgcoe bwzi nup fdbit hemjni mutihb. Dumi, ocrgb: dum, Wumiu: dumi, bgu fx co aergb: Auw bguz kenb nci 7juo bgi keorh ua ocrgb Kgcbiw befo oik houk uo f wipio'h qfd eb. d L, R Wi o, g o DI g ot i s <o b, ot ke e
i afdi v gifpio h acoi Befb fin b kvt kenn i co nup kg ocre Fot . o kwhej bu b fsch hzo. U, C gipi quargh bei miohcuo ua fnupi, Qb b jubibcb,fot, bguzr C i b, i i Fot mix oub kifw beim. U, givi
dumih mx ozwhi, Fot hgi qweorh oikh; fot ipiwx fodi. {lobiw Ozwhi, kcbg i ket oikh? K bgiwi? bgi duth Bgfb Wamiu qet bgiiaibdg? Ozwhi Fx. s, bgi duwih. (Bgwukh beim mkn\ LZNCIS F it ke ok S i g koveor b sfoth? OzwhiFa, kinn -
V5! i i it i K o otuo, e,k i zotuot P b ! i o, ccont, i ! LZNCIB Dl Wumiu df U Wumi, Wmiu! Kgu ipiv kuznt gfpi bguzrgh cb? Wamiu! LZNCIB Kefb tipen fvb b tchmin
o G Womio o srbina? B e C: ot g pkinC ion o i oub C. ca bgiwi g hds o C; U beubi iih hesb. belb e b ohkiw € Ca g gi o, bix ' uw ca oub, ou: Qi husoh i . i s Kt O ik bt Kzt € kb ebe ot
Rut hipi bgi mfiwel gini uo gch mfon quwifi F jcbiuzh duwhi, f quuutx jcbiuzh duwhi; Jin, i h fhei LZNCIB U, qwife, mx gifivh! juuw gfociwzjo, qwife fb uodi! Bu jwchuo, iih. Peni ifwbg. Fot bguz for Wamiu jwihh uoi
i it Ot U B, Brgin, b el st U i Pagi! usi ot Bg’h ipiv C hguznt nep bu i bgi ! LZNCIB Kefb hbusnch bgeh bgTo qnukh b daobwiwi? Ch Warmis hfzsghiv,fotch Bl G? M tfw-nupit duzhco, o s tiwis u? Beo, wiftzn bwamji, huzot beiriobwfn uum! Aus kg ch
oo Dashi b i ro? Oz o o, o Wi gfochg Womi by et gfochg. LZNCI U Rt Wamihft gt Babhqnt?OnviCh €, bt fh s . LZNCIB U i i, e {akincor i Tt i i s 2 Qi oo s ol Tt

\a! Tihjchit hzqhb gz Izhbax hiim b, F timoit hicob, o guouzigni pennfco! U ofbzwi, kefb gfthb bguz bu co ginn, Kgio Comuwin in u afcwn quaot? U bgf
g hguan dnn Co b { o il mmmag.m ou bwzhb, Ou afebg, o guumbx <o mioi an vt Fon v, o g, o lchhlmqnmh Fe. keivvih mx mfo? repi mi humi fyzf pebii: Beihi rwciah, beihi kuih, bgmmuwwukh e mi unt. Hefmi dumi bu Wumiu! LZA '\ buorzi Auw hzd Tkehg! gi kih oub
quwo bu hgfmi: Zjuo geh qwuk hgfni ch Mafmit bu heb; Auw beh C bu dgeti fb gem! Ozwhi Kenn xuz hife kinn ua gem hg’h ecnit xuzw duzhco? LZNCIB Hgfan C hjife cnn ua gem bgfb ch mx gzhqfot? Fi, juuw mx nust, kefb buorzi hgfin himuubg bgx.
ofmi, Kgio C, bex b 7 Qb ihb bguz cenn mx duzheo? ‘erhqot: Qfd: g bifwh, qfde b twugh ginuor bu kui, Kegedg xuz, mehbfecor, uaais 2 bu lux. My gzhqfot nepih, befb Bxqfnb kuznt ¢fpi hnfeo: Fot Bxgfabh
i, ‘sehqfot: Fan K ki C bgio? Kuwhio befo B i, Befb mewti mi-C uzn sawr b afco: Qb U, b i b s mimane, Nee moit zcnb.th b oo mcoth: B ch i, o Wamiu--qfochgt Befo ot e ikt q’uch 'z hnfeo bio
hgwlnm Bt B g Kt o, cach gﬂ Jot i Un: e o et <o ainukdg ot K ot kg ubgi i, K aunnk ou, o e Bafibh i, B b, o b mubai, ofs, v bt Qabkebg. i, Woriu
fochgi i Keiwi ch mx afby b hi? Ozwhi Kiljcor fot kicncor upiv qulnbhduwm Koz ubgim? C kenn qeorur
hgrhgw\ LANCIBK e gm P4 ehgik .m.hgmmm,m Kgmhgmulv .wm auw Wmmu‘hqmmgmmh Biei 7} bguhi duwth: juus wiih, xuz f it, Qubg xuz for C: auw i miti xuz auw f gergkfy b 1. Qsb C. Fmiet, D, dusth, dumi, ozwhi; Chnn bu m Kitcor-git; Fot tifbg, oub
hi Ge ‘Gwe xi, xuzw Wumiu kenn qi giwi o ocrgb: C'un bu gems gi ch get fb Nfzawiod'dinn. LZNCIB U, acot gem! repi bech weor bu mx buzi cocrgb, Fot qet gem dumi bu bfei gch i isizob] WOMIU FOT LZNCIB FDOB CCC
||r)|o| (‘LC vt o . |!nhm AWCFW NFZWIODI| AW(W NFZWIOD! o, bguz aifwazn mii ot bt Fo bt it bt flobie WOMIU] WUMI ATgi: et o g b jcodh uun? Kl bk dwipih 1ol i, B C xib
couk oub? AWCFW NEZWIODI fw Ch ma tifw huo s WUMIU Kt it bt s i tur? ANCE NFZWIODI i awom geh nejh, Oub. WUMIU G
Auw iseni gibg muwumwwuumgL e, Madg muwi bgfo b oub i qfochgmioh. AWCFW NFZWIODI G ol v Prvaot i et WUMIU Kebguzb Piwuo Kinnh, Qzb jzsrby inn cbhina, G i kuwn, Fot kuw o
ch i uaa keb Fruntio fsi, AWCIW NEZWIODIU u(mx heo! U wati zobgfocaznoibh! Bex afznb uzw nik dfanh tifbg; zb bei ecot |wcadx. Bfecor ng ,m, b wehgt fheti bei nfk, Fo ey bfb gnfde kuwt tifbg
bu gfochgmiob: Bech ch tifw mivwds, ot bguz hiiib cb oub. WUMIU 'Beh buwbzwi, fot oub miwdl: gifpio ch giwi, Kgiwi Lzncib nepih; fo ipiwx dib pisx zokuwbex bgeor, N co gifpio fot mix + Qzb Wumiu i nepi Co. befo
‘Wumiu: beix mx hicvi Uo bei keebi kuotis ua tif Lzncibh gfot Fot hbifh cmmuwbfn qnilhcor awum giw ncih, Kgu ipio co jzwi fot pibin mutihbx, Hbenn qnzhg, lhbgcocwrbgwwuhﬂcchhmhco. Qzb Wumiu mex oubs gi ch gfochgit: Ancih m t bech, gzb C awum Beix f b C fm qfochgit
chouh iy? Gl b o chuo s, o e ot <o, Ou it i u b, b i, Qb e b e mi-=fochgit? U aclv, b i i bl ; biot cb: guk Qicor ftepea, T rzuhbns duoaibhusy, F heo-fqhunpivs, fot mx aweiot jwuaihht, Bu mforni mi kebe befb kuwt
‘qfochgit? AWCFW NFZWIODI Beguz auot mft mfo, gifw mi qzb hiife £ kuwt, WUMIU AWCEW i uaa befb i dumauwb beil, beuzrg beuz fwb qfochgit, WUMIU Xib ‘gfochgit? Gor 2} jscnuhujex! Zonihh |gcm|)\u|gxdfo miei £
L e buko iphi wcodh wum, CP ginih o, e o bive o0 s AWCEW NEZWIODI U by i ifwh. WUMIU Guk huzat b xi? AWCFW NFZWIODI Nib mi chizbi ihbibi. WUMIU Kiwb bguz i
xuzor th C, Lzncib bex nupi, @ . efcw, Fotafn 1 C tw ouk,] AWCFW NFZWIODI Fuschi: uoi coudeh; ruut Wumiu, gt bexhina. WUMIU Oub C;
Mehb- « hg Inudg i [Eoudecor] ok i coud! Kau b Wamis, wehi Bgas Kenb g bico i fgeni Hbfor 75 [Eodecor] s b s b Q. fo ! Ruth ke, Kafs o ch bgch!C dum, € domil [Eoudecor) K coude hu giwt?

Keiodi dumi xuz? kg xuzw kenn? Ozwhi [Kebgeol Nib mi dumi co, fot xuz hgfnn eouk mx iwwfot; ib. AWCFW NFZWIODI Kindumi, bgio. (Iobis Ozwhi] Ozwhi U gunx awefi, U, bin mi, gunx awefi, Kgiwi ch mx nfix nuw, kgiwih Wumiu? AWCFW NFZWIODI Bgiwi uo bi rwuzot, kebg ach uko bifih mfti twzoe.
Oz U.ich i com B Lt <o g i U kn g e i o hgl. Quaggivcor fot iijcor, Kiijcor Iulqnqumwr Hbfot zj, hbfot 4; hbfot, ot xuz qi £ mfo: Auw Lzncibh hici, auw giw hfei, wehi fot hbfot; Kex heuznt xuz afin cobu hu t fo U? WUMIU Ozwhil Ozwhi Fi hew! fi hew! Kinn, tifbgh
bgi ot ua fan, WUMIU Hifeihb bguz ua Lzneib? guk ch b kebg gin? iw uko? Kgiwi ch hgi? fot guk tubg hi? fot kefb hixh M duodifit nfix bu uzw dfodinn't nupi? Ozwhi U, hei hiih oubgeor, hew, zb kiih fot kiih; Fot ouk
afinh uo giw git: ot bgio hbfwbh 2], Fot Bxgfnb dfinh: fot beio uo Wumiu dweih, Fot beio tuko afnnh fico, OMIU fren befb ofimi, Hub awum bgi s i a7, Tt i i b o dit ot Mt g scchmfo. U, binn i, binn i, Co kgl pen b s bch fofbum Tubg m ot b i, bt C i hide
B gfbiazn mioheuo. [Twikeor geh hkuwt] AWCFW NFZWIODI Gunt b thjiwibi got: Fb bguz f mfo? bex auwm dweih uzb bguz fwb: Bex bifih fwi kumfochg: bex kent fdbh tioubi Bi zowifhuofgni azws ua f gifhb: Zohiimnx kumfo co fhiimeor mfo! Us enn-gihiimeor gifhb co hiimeor qubg! Bguz gfhb fmfvit mi: gx mx gunx uwtiw, C bguzrgb
Pex g binj. Gz o B e g s i Fot BT bt b e ncih <o b, O cor i i bpxhns? K i b uo g e, b i ot Hed et o i, ot b, o bt i Co i o kgl b o K i Ac . b s g

bex nupi, bex keb: Kaedg, neei £ Zhzwiw, fguzothb co fin, by bex keb: Bex Fauwm ua kis, i piouz ua Fmfo; Byx tifw
heii ot nupi, Mchhgfjio co bgi duotzdb ua bgim qubg, Nee jukiw co f! e b v 3 kebg Kefb, wuzhi beii, mfo! bgx Lancib ch ficpi, Alvwkgum e hgukahqzbnlbmxlm Beiwi fwb beuy gfjx: Bxafnb kuznt cenn b, Qzb beuz kb Bxanb: bglwl
i bguz gfjjx buu: Bi nfk bafb bgwibio' awciot iser qihl fwwt; Qzb, ncei £ mehqigfpit fot hznnio kiodg, Bguz juzbib zjuo bgx auwbzoi fot bex nupi: Bfei giit, bfed it auw hzdg tei mehiwfni. Ru, rb b bu bex

nupi, i kih tidwiit, Fhdiot giw dgfmgi, giodi fot dumauwb giv: Qzb nuue beguz hbf oub benn bei kibdg gi hib. - bio bguz dfohb oub jh bu Miobef: Keiwi beuz hgfnb nepi, benn ki dfo acot £ bemi Bu qnivi xuzw mfwweiri, widuodeni xuzw aweioth, Qirjwiuo ua bei jwcodi, ot dfn beii qfde Kebg bkiobx gzotwit bguzhfot bemih mui lu Bgfo

3 nfex; Fotget giw gfhbio fan b guzhi bu qit, Kgedg gifpx huwwuk meih baim b zobu: Ozwhi UNuwt, © (Cgiwi fan bgi ocrgh Bu gifw ruut duzohin: U, kg’hmfwmnuh‘Mxnuw! o binn m nftx xuz kenn dumi, WUMIU Tu hu, ot get my
ki jwijfivi bu deet. Ozwhi Giwi, hew, £ weor hei et mi repi xuz, how: Gei xuz, mifei gfibi, auw cb rwukh piwx nfbi, [Iscb] WUMIU Guk kinn max dumauwb ch wipcpit gx beeh! AWCFW NFZWIODI Ru giodi; ruut ocrgbs fot giwi hbfoth fn xuzw hbibi: g . Uw gx giodi: Huluzwo co
MighyFCan ot s xur o, For i hafn eroci. awam b u b i rt 5 bu s b godih givi Rep i g gfo: b i kit o, WUMTU Qs bt T dfoh 7 uo i, C i e, b i b b Kb bt Awikinn. [1iz0b] WUMIU FOT L ZNCIB FDB CCC HDIOI CPF wauco Donsh i
[lobise DFIZNIB, NFTX DFJZNIB, fot JFWCH] DFJZNIB Bgcorh gfpi afin'o uzb, hew, hu zonzdecnx, Befb ki gfpi gft ou bemi b gi nupit giv ? fgitfo
gz fru. JFWCH Beihi bemih ua kui faauwt ou bemi bu kuu. Mitfm, raut oergh: dumviot mi bu xuzw tfzrghiv. NFTX DEJZNIB C kenn, fot éouk git meot ifwnx bu-muswuk; Bu-oergh hgi ch mik't] bu giw gifpcoibh. DEJZNIB Hew Jfweh, C ke iwibi biotiw Ua mx dgenth nupi: (‘hg:\)e i kenn gi wzait Co fn wihjidbh gx mi; ofx,

muwi, C tuzgb b oub. Keai,ru xuz bu giw i xuz ru bu git; Fdyzfcob giw giwi ua mx huo Jfweh' nupi; Fot qet giw, mfive xuz mi, uo Kitoihtfx oisb-— Qzb, huab! kefb t ch bech? JFWCH Muotfx, mx nuwt, DFIZNIB Muotfx! gf, gf! Kinn, Kitoihtfx ch buu huvo, U' Begzwhtfx nib cb i u' Begzwhifx, binn giw, Hi hefnn gi mfwweit bu bgch oug ifwn,
Kenn xuz gi wiftx? tu xuz ncei bgch gfhbi? Kiin e ou rwifb fu,--f awciot uw bku; Auw, gfwe xuz, Bxgfib gicor hnfco hu nfbi, Cb mf gi bguzrgh ki gint gem dfwinibhny, Qicor uzw ecohmfo, ca ki wipin madg: Bgiwviauwi kinn gfpi humi gfna f twvio awcioth, Fot beiwi fo iot. Qzb kefb hfx xuz bu Bgzwhtfx? JFEWCH Mx nuwt, C kuznt bgfb Bezwhif
i bk DFZNTS Ki i xo 1 b i, bR xur b Ll xu 0 bt MG v e, ot bt Kitor . Ak, st Neh o dfmiv, gu! s i ch o i i, B i v fams g fot s, Rt gy 15700 WUMIU FOT LZNCIB FDB CCCHDIOIP Dt

uwdgfwt. (lobiw WUMIU fot LZNCIB fqupi, f bgi keotuk] LZNCIB fx: Cb ki K ua bgcoi if; Ocrgbnx. £y WUMIU Cb kih b nfive, bei giwfint ua bgi muwo, Ou acrgbeorfni
nuue, nupi, kefb iopeuzh Hbwifeh Tu nfdi by hipieor dnuzth co xuotiw ifhb: Ocrghhdlolmh i oy i ot oot bl e s ety muu\huo bujh. € mehb g ruoi fot nepi, uw hbix fot tei. LZNCIB . C eouk b, C: Cb ch isgfnih, Bugibu uwdg-gifwiv, Fot nergh
bei uo bgx kfx bu Mfobz: Bgiwiauwi hbfs xib: Conhéx ixi, ‘Beh qzb anis Ouw Bgipfznbs. efpi
muwi dfivi bu hbf byfo kenn bu ru: Dumi,tifbg, fot Kindumil Lzncib kennh w hu Guk e, mx buan? sbhbfeschch nnhlh I7NCII! Cb ch, b ch gei giodi, g ruoi, fx! Cb ch 3 tehduwth fot 70j ih. Humi hfi bgi nfive mfeih : Bgch tubg oub hu, auw
Hamibf bpinf ot mubgc b dgor . U cuk C g fcodi faawfx, Gzobeor bgii giodi kebg gzobh-z} bu bei tx, U, ouk i ruoi; WUMIU Muvi thwe fot tfwe zw kuih! [lobis Ozwhi, bu bei dgfmgive] Ozwhi Mftfm! LZNCIB
Ozwhi? Ozawhi Xurw nfex mubgiv ch dumeor bu xuzsw dgfmgio: By (5 ch qwue; gi kfwx, nuue fquzb rmn INCI o cotol, i c. ot i s WOMIU Ak s inn o cch. ot Cim it (1 i ko) LZNCI P bt i ot f. o, it C s i bt o o 807, A o €
meozbi bgiwi fivi o ax bieh dumbChgﬁmq\mzdgcuxllwthC(dcoqvgummx Wamiu! WUMIU Afwikinn! € kenn umcb ou ujjuwbzochx Befb méx duopix ms rwiibcorh, nupi, bu b LZNCIB U bgcoe ipiw mib frfco? WUMIU C tuzgh cb oubs fot fan
duml LZCIB U Rt ¢ g'pl fo cnn- ltp:\):\)rhum' Mibgeoeh C i bgit, ouk bguz fwb ginuk, Fh uoi tft co bgi qubbum ua buma: Iebgiw mx ixihergh afcnh, uw bguz nuuehb jfvi. WUMIU Fot bwzhb mi, nupi, co m ix hu tu xuz: Tws huwwuk tweoeh uzw gnuut. Fciz, ficiz! [1seb] LZNCIB U auwbzoi, auwbzoil fan mio dfi bi acdeni: Ca bguz fwh
Qi seds b bg € g beu o ou g uo, G it gl NFTX DFJZNIB (Kol G trgiv i x5 LZNCIB Kgct bah dfh?ch i mabgi? Ch 2 hu ifwnx? cbgin?
[l\)huw NI DIJANTS] NFTX V7N Ken, sk ok Lonib L7NCIB Mt Cf ot i, NFTX DPFZATS fpmi ior au. i dusheo he? Ke, kb b Keby bifwh? nepi; Bgiviauw P 3 haukih
LZNCIB Xib nib mi kifj NFTX DFIZNIB Hu hgfn xuz aiin bgi nuhh, qzb oub bgi awciot Kgeds xuz kif auw, LZNCIB Aiincor o bei nubh, Dfooub dzuuhi qzb ipiw Kii bei awciot. NFTX DEIZNIB Ki b h ifbg,
I7NCm Kt penico mi? NITX DFZATS Befh i pennfco, Wi LZNCIB] Penic ot i menih i Ra st g, Ko i gfa Fot i mf e g g e s i, NPTX DFSZNTS Bt b G b mesioi ey LANCIB F i, s it i o e s st Kuont
ouoi qzb C mergh piori mx duzhco' titbg! NFTX DFJZNIB Ki kenn Can hiot bu uoi co Mfobf, pi. Hgfon repi gem hzdg Fotbgio, C guji, LZNCIB Corit,C oipiw
hgimqum\uh‘nl Kebg Wumiu, benn C gigunt gem—Gift— Ch mx juuw gifib auw Qe«vhmm IS MItin, ca xuz duznt acot uzb gzb T mfo Bu qifw fjuchuo, C kuznt bimjiw cb: Bgfb Wumiu hguza, 7juo. wnlvthguwvn‘ Huvo h...., o yzeib. U, guk mx gifwb faguwh Bu gifw gem ofimit,fot dfooud dumi bu gem. Bu kwife bi nupi C quwi mx duzhco Zjuo
ch /t gem! NFTX DFJZNIB Acot bguz bgi mifoh, fot C' Qzb ouk Cun binn b luxazn betcorh, rewn. LZNCIB Fot ux dumih kinn co hdg f oiit bemi: Kgfb fv b NFTX DFIZNIB Kinn, kinn, beuz efb fdfwiazn afbgiw, dgent; Uoi keu, bu jzb beii awum bex gifpcoibh, Gibg huwbit

o it s o, B b s o C i s . LZNCIS M. g5 e, g 5 ch bth? NETX DFIZNTE s, i et s il B owo, B i, szor o cw it s Dur .o Hfc Hhih Do g, Hef fcmt i b bt { s et LZNCTB Ok, o oo
Dgzwds fotJibis buu, Gi hgfon oub mici mi baiw flaxazn quet. C kuotiw b kit Iwi . dumilh bu koo, C i xuz, binn mx muset ot afbgiv, i, C kenin oub miwws xibs ot kgio C . C Wk, Cb gl gi Wi, kgum xuz couk C s, Wibgi bgfo Jfwch. Baihi fwi oikh cotitt NFTX DFIZNIB
v Xz i o g s ot i gk o bl < sz o i DFTENIR o O DFIZNIR Kl g bt b g v Q au b i s quibgv b Cb b kovcrgh Gk ok s, v gt b0 bi? v kvt Co ittt B
s Tt £k Auw B bgs i kgl Daii, o ot nk g i e b gt i Ikt cobgh 1t K b brhs K i i, o b Kb, K i dam, e piy B i 3ot s, ek ok, il Gz v 5 s 60w
NS DFIZNTE o ho g o e ot i s o C e b s Ko b s i DFYZNT Mokt i kg . Guk! kean hi o i oub h b ch,beb ki uwbx

avei LI O o, s oo, st i ok K - o oo B s - e, BFENIE Gk, k. i ! Ko hwww. o g it o oo ot o ol A R S Bt 4 e .
jwuzih, Qb i xuz acoi ucobh icoh Bezwhif ois, Bu ru kebg Jfwch bu Hicob Jibiwh Dz, U C kenn twir b wo b, g NFTX DFIZNIB Aci,acil kefb, i xuz mit? LZNCIB Ruut afbgiw, C qiiidg xuz uo m coih, Gifw mi keb jfbciodi qzb bu hiife
K. DFFZNTBGlrbgi ik hughcio vy C i o K b s dgawd B, U i 8w e i bt s v okt 0 ot i st e et K A gt 5 2 i B ot £ i 85 sk F5m, lcC hg bch 5 bet, Ptbg iF w o
fpcor giv: Uzb uo g, gentcor! Ozwhi Rut co gifpio qnih giv! Xuz fvi bu qofs, mx nuw, bu i gie hu. DFJIZNIB Fot kex, m nft kehtu . Ruut jwatiodi . ru. Ozwhi C hiife u bwifhuo. DFJZNIB U, Rut xi rut-io. Ozswhi Mf oub uoi hiife? DFIZNIB Jifdi, xuz mzmancor auun! Zbbiw xuz rwfpchx
wiw bt qukn; Auw givi i ot cb oub, NFTX DFIZNTB Xuz f buu gub. DFIZNTB Ruth qui! cb mfeih mi mi: T, ocrgh, suw, beti, bem, Kuwe,jnf, Fnuo. o dungfos. b B i D' o ok ina s ot i, Us e o, uabga, o o o, ozt b M,
A b, AL o g Mt R 0 Fo o b g kvl gl o, oo it co g bt i, B ok ' ol it oy i, C i bus s C o s, fotsomi- 2, xr Ko L, o vt Rt g s can S o o s g i Nue s, o

o', € 1w oub hi bu b, Bgzwhits choif: s gfot wo ifwb, fipehi: Fo xuz g meoi, Cun repi xuz bu m aveio . glor, gi, b c mx huzn, Cln ofi b eh bl ruut: Buzhb bu, gibgeoe xuz: Cin oub g aunhkuwo. [1sch] LZNCIB Ch biw o jebs hebbeor co
bt dnun, Bt i coa e qubbum s i U, ki s mabgi i miou 1 T bgch i i fnbg. s Ui, ., gt et i Co e e oty gt g e NFTX DFJZNTE Bin o e o 5 kT g ke, i gt g b,) LZCTE U Rt
ozwhi, suk hgfon bech (Mix gzhafot ch uo fy Wb, nifor g Gumasud i o . e e, o b o wtih 2 s {1 il Kt KT b 1 b b Tl
i Bt oo b O At i . Wi ch g o o - Beb g twin o' Uw.cagit, U,gin ! Wamiu'h ftchgdnuzb bu gem: fo
Ko n i i 5t o P g VA v A o % A e it A i 4 A e el 0 A T L, g £ h LZNCIB bex awum m huzn buu; Uw
inhi qihgwik bgim qubg. LZNC Kefb? LZNCIB K R o i X it i, GRpcor i x g Nz G, B e ucihs ot g hang,Ozwhi M, K b Kt o 5] LZNCIB P nofhol U bk i
muwi heo bu kehg, Uw bu tchjwichi Kcdg hgi fb jwichit gem kebe fqupi dumifvi H d Beuz fot mx qubum Cin bu bgi awefv. bu couk gch wimits: Ca fn inhi afen, mxhina gfpi jukio bu tci. [1scb] WUMIU FOT LZNCIB DB CP
IO At . o ATCEw NEHROIR o TR AT ROk G g, Ty e he vt AL B0 g K e ot o i, LAY EZVIDY a2 X S e i g b, e .
Cnmutiibin i Kiih auw Bxgfolsh tibg, Fot beitiauwi fp C ncbbai bine ua nupi. Auw Piozh hmenih oub co f zuzhiua biwh. Ouk,hew, s afbgiv duzobh b toriwuzh Bef b wbg repigiv huwuk hu madg hki, Fot co gch Kehtum afibh uzse miwwef, Bu bifwh; Kecds, b eiwhina fuoi, Méx qi
2w o B Ok b o e AWCE RFZATOD] el ok gt ok Moo b, i o b bk s i e 2CYB]IFCH G i s ot ! LZNCI B i, e ko C i e JPWCH s vl i o B
oish. LZNCIB Kgfb mzhb i hgfon gi. AWCFW NEZWIODI Bgfbh f diwbfco bisb. JFWCH Dumi xuz bu miei duoaibihcuo bu bgch afbgin? LZNCIB Bu fohkiv bgfb, C hguznt duoaibh bu xuz. JFWCH Tu oub tox bu g LaNCIB JFWCH Hu kenn xi, C fm bz, befb xuz nupi mi. LZNCIB Ca
. K oo ot G ittt e 1l b v a0, JEWCH o o ot e g e LZNCIE, it i 1 s 5. A K o oo e, JFWCH B i, . T, LINCTB o kst
buwabg: Fotkafb C hifi, C hfei cb bu m afdi, JFWCH By afdi ch meos,fot bguz efbb hnfortcb. LZNCIB Cb mis i ., auw cb ch oub meoi uko. Fwi xuz o nichzi, gun afbgiv, ouk; Usehifon C dumi bu xuz b ipiocor milh? AWCFW NFZWIODI Mx ouk. M
Fut it C yuen b pubeuo! Lani,uo Bwhif fwn enn C wii xi: B b,z ot b gun e 1] LZNCIB U g bt ot ko b i b Dur i K i b g i i i gint AWCFW NFZWIODI F Lenci, v coukbgs e o e b M
bewz mehb, ot oubgcor mix jwuwurzi b, Uo Bezwhitx LZNCIB Binn mi oub, awcfv. befb bguz gif b Zonihh bguz binn mi zuk C méx jpiob cb: Ca, co bx kehtum, zin, m “an gin cb jvihiobmx. Rutluca' mx gifwb fot Wamiuh,
gz ot ot b o, b bu Womiu i, H b niin bu rmw kBT Khg v i 2o b I, DS 0 b gUBE B i s g o bRl md b s, igunt, Besb m i ot i bech qnu cocai Hgfon jnf bei zmjcw
fuqebwibcor befb Kedg uabgx xifh fot fub D ‘uouzw qweor. Qi oub hu nuor b hjife: € nuor bu ci, Ca WCFW . tErghive: C t i Fecot ua guj, Kecds dwipih th thjiwfbi o isidzbeuo. Fh befb ch uhjiwibi kecds ki kuznt jwipiob. Ca, wibgiw befo bu
s Do v B bu hnfk bexhin, F bech hefimi, buhdﬁwumsb ot g ki, o 1 b wina. LINCIB s Gt i il Wog bgfo iy 1h, Awurua b boratisbh v oy ks Uw
dfco mi kebg waiweor qifwh; Un hgzb mi ocrgbn co f dgfwoin-guzhi, U'w-dupiv t yzcbi kb it miol wibboncor quoih, Kb wiiex hgfoch heznh; Us Fo geti mi kebe ftift Bacorh bgfb, bu g beim bunt,
i e mmmen g e e . B 1 0 0RCOT Ao s A uph AWCTW NFZWIODI Gk Bl g, i s, 71l By i e Ko ciy s stk s i Vg s ol 8 T Ebg 0 SR i PR P, B 0 St

eio juih fon bex picoh hfnn wzo b hzvwdifhi: Ou kfwmbe, 2 hfin bibeax bz nepih: B wabih co bex ncjh fot dgich hgfn afti Bu ji Mgih, b ixi' Keotukh afn, Neei i, kgio i hgzbh 7 b fx a nca g

Jtw, jepic iion Hoca o bt ot dut. et ot . eg o i o o Ok K bex i, baiwi b buz it B, b mfoois ua vz
s h. G bgs G wigh UV o B ol b bl dco i K b < g D c, o i b, con g b 4, i Wi gt ok ok o b Fot s gl 51 4u o0 K g or, o B p x5 g Wi i st g b
i, o bech g i bl v b o i o ool b, o e i, Fibe plou o o . LINCIE NFZWIOI L i hbwuor fot b hiiit Bu Mfobef, keb m nibbisih bu bgx nuvt
i Wowirtgh o i g i it Ak, i i (17ob] WOMIU FOT LZACH P CPDIOLCC i <o Dimin sohi [h»bvw DRIZNIB NFTX nwzms o T bk Hieorm DFIZNTB Hu mfoX i copeb h i i ke T s o uai St kbt sy d.

Xuz hgfon gfpi Cn by ca b beim hu? Hiduot DFIZNIB Ru, giruoi.{1sch Hiduot Hinpfob] Ki hefn qi mds
ok e b i gt ko A MW O, s, DRSS i s g e i e e ch oo K g e St g g e . et LONCID] I Gl ks et 158 it 3 e AT 1
C gipinifwo't mi bu wijiob b heo Ua tchugitciob uijuhcheuo Bu xuz fot xuzw qigihbh, fot fm ioluco't Qx gunx Nfzswiodi bu afnn jwahbwfbi givi, Fo g xuzw jfwtuo jfwtuo, C gihiidg xuz! piw wanit qx xuz. DFIZNIB b g Con g cou o vk muvicor, LZNCIB C b
g e T Nwiod? i Fo 1 m ks g i C e, Ou 0w b ot s i, DFIZNTS K. C e o B ch ot . b 7. s, . 2 g o R, o v A WA het o R e Tt B LENC
Ozwhi_ kenn oz ru kebg mi cobu . dnuhib, Bu gin i uwofmiobh F KTNFTX DFIZA O o b B b ch i o, DFJZN R, i b g i bu gz k. 15v0h LZNCI o Orwhi] NETX DFIZNI Ki i g g coar s
h ok i crh. DEYZATR B, e B 0. P b e in. C Ko b, e R Lone g e g o o gt e i i o i i o b o Ke. gut B fo i aowb.Kinn, € K v i B Dusot e, b i e 5 P

i o, ol bsh b KK w1 WUMIU FOT LZNCIS DI P HDION CCC it g, b LZNCID o O] LZNCIR . b b v b i i vt C g i by i b, A C apof o uvshch B i b o b s

b K, ki b cuii,ch dah, Tt 111 0 ho. b NFTX DFJZNTB] NFTX DFJZNTB K, f x g, 4o 2 if? L7 unw nifhi xuz, Fot 7 kebg xuz; Auw, C fim hawi, xuz
‘fpi xuzw goth aznn fan, Co bch hu hztto qzhcoibh. NFTX DEIZNIB Ruut ocrgb: Rib beii bu git, fot wihb: auw beuz gfib i, [1sizob NFTX DD Ozwhil LZNCIB Afwikinn! i o g bewennh by picol 3 be i s cai C'undfo b e o b
dmanw i Orit Kaf bt it i M s i C it b 0 fuos D pefn. K bash mesbii o oub i fn?Higon C muwocor? Ou, ou: bgch hgf bine. [Nfxcor tko giw .<,,M|Khm.‘b(,‘ Fiuchuo, kgeds bei awefs Hzqbnx efbg meochbint bu gfpi mi if, Nib
't Qidzhi gi ? b ch: fot xib, mibgeoeh, cb hguml oub, Au i gfbg hbenn o bweit £ s Guk ca, kgio C fn nict cobu bg\bumq cue.q.auw.bgmcmmgm Waumiu Dumi bu witiim mi? bghw ih f aifwazn jucob! Hgfn C oub, bgio, g hbcanit co bgi pfznb, B kguhi
auzn muzb ou gifnbghumi few qwifbeih co, Fot beiwi tei hbwhornit iwi mx Wumm dumih? U, ca € nepi, Byi creb, Buribgiy i givi, ‘gzotwit xifwh, b quoih Ua fn mx gzt fodihbush i jideit: K givi gnuuts

i i g2 i o b, e sbiwcorco 2 bt v, T b b, F i g co b gy hewcbh i Fde, e " H i Vot kgt i P i e o b i bei ifwb. Befb nepeor muwbfnh, gifweor beim, wzo mit:-- U, ca C kfei, hgfn C oub qi
ehbuwfzrgb, lopewuoit kebg fn bgihi getiuzh aifiwh? Fot miftnx jnfx kebg mx auwiafbgiwh lucobh? Fot jnzde bgi mfornit Bxqfnb awum gch hgwuzt? Fot, co bech wiri, kebg humi rwifb ecohmforh quo, Fh kebg f dnzq, thg uzb mx thjiwibi quwicoh? U, nuue! mibgeoch C hii mx duzhco'h rauhb Hiiecor uzb Wumiu, befb tt hich gch quix Zjuo f wiiciwh
el B ! o, dunit b oo (i o i it e b bl WOMIU FOT LZNCIB P CPHDION CP Gl o D s (o NFIX DFIZNIE o Orwhi] NTX DFIZNID G, i b i o b i i orwhi Orwhi B i b o yodh o e o, o
DEJZNIB] b, hbew, hbew! bei hiduot dude gfbg dy ‘afbg waor, beh bgwil udnude: Nuue bu bgi qfeit mifbh, ruut Forincds: Hjfwi oub auw bgi duhb. Ozwhi Ru, xuz dub-yzifo, u, Rib xuz bugit; afcbg bdgeor. DFIZNIB Ou, oub { kgcb: gfpi kibdgtiwi ouk.
Fin ocrgb auw nibhis dfzhi,fotof i giio hede. NFTX DFIZNIB Fx. xoz gfvm jio Q2 C kenn ouk Isizob NFTX DFIZNIB fot Ozwhil DFJZNIB F lifauzh guut,fifiuzh guot! lobis bewi us auzss Hiwpeormio, kebg hicbh, nurh, ot qfheibh] Ouk, ainnuk. Kgfbh bglw)" Acwhb Hiwplob

Email questions to the author: al@inventwithpython.com

Chapter 2 — Downloading and Installing Python 25

Bacorh auw bi duve, hew; gzb C couk oub kefb. DFJZNIB Mici gihbi, miei efbi. {Iscb Acwhb Hiwpfob] Hewwfe, aibdg tweit nurh: Dfnn Jibiw, gi kenn hguk bei keiwi bgix fwi. Hiduot Hiwpfob C gfpi f ift, hew, befb kenn acot uzb nurh, Fot oipiw bwuzqni Jibis auw bei mibbiw. [1scb] DEIZNIB M, fot kinn hfet; fmiwwx kguwihuo, gf! Bguz.
e i i Ruatafchg. bt B dusob ke g b mahed g, Auw h g it g kuant: gt g . [Mshed kebgeol 7 Kail K. gul Kt i C i [Wriobiv Orwhil R kil Lancio. 1 o bwem g f Cam r o b ke Jch g, i afii Mg b wetivsuum i chdum i M

b C hix. [1sz0b] WUMIU FOTLZNCIB FDB CP HDIOI P Lencibt dgfmgiv. [1obiv Ozhi] Ozt Mehwih' ke, melibwibh! Lzncib! i, C kfwfo g, gk K. nfng! Kex, nit! aci xuz £ K, nup C ix! mitfim’ bkib-gitwb! ke, qwet! Kefb, oub Fhust? xuz bfei xuzw jiooskuwbeh ouk; i auw ke anw bgi o ocrgh, C
Kfwwiob, Bei Duzobx Jfweh afbg hib 2 gch wihb, Bafb xuz hgfan wihb gzb ncbbni. Rut auwrepi mi, Miwws, fot fimio, guk huzot ch hgi fhnij! C mzhb oiith kfei giv nitfm, mftim! Fx, nib bgi duzobx bfe xuzw qit; 24, afebg. [Zowikh bgi dzwbicoh] Kafb, owihit! fot co xuzw dnubgih! fot ko fifco! C
B il i xu: NI i i i, (1 G, ! o U, K s b i C o Humi b, ! M ! i ol NTX DFIZNI) NETX DFZAS Ka ouchichsi? i Ui ' NFTX DFIZNIB Kefh ch bgi mibbin? Ozwhi Nuue, nouct U gifpx tfx! NFTX DFIZNIB U mi, Umi! Ms dgent,
mx wonx ncai, Wipepi, nuue 7j, uw C kenn i kebg begiil Ginj, ginj! Dinn ginj. [Tobiw DFJZNIB] DEJZNIB Au hgfmi, qweor Lzncib auwbg; git nuwt ch dumi. Ozwhi Hgih G, tidifhit, heit Gt ffde b tx! NFTX DFJZNIB Fnfde bgi tf, heih tit, hgih it heih it DJZNIB G nib mi hii ghw: uzb, ffh! hgih dunt: Giw gnuut ch hibbi, ot giw
lucobh fwi hbeaa: Neai fot bgihi ncjh fpi nuor qiio hijfwibit: Tifbg ncih uo giv ncei fo zobs b o b e, O U i NFTX DFIZNID U ks b DRIz Tifbg, befb efbg bfio giw giodi bu mfci mi kfen, Beih 2} mx buorz, ot kenn oub nib mi hife. lobi AWCFW NFZWIODI fot JEWCH,
Kebg Mzhedefoh] AWCEW NEZWIODI Dumi, ch bgi qweti wift bu ru bu dgzwdg? DEIZNIB Wiftx bu v, qzb oipiw bu wibzwo. U huo! h‘vmcxnhqu.mwmﬂ\kullu)r X Gibg Tive nico eb bgx kesi Bgiw hginc, Anukiv h g kh,tanukiwi g gen. Tifb ch mx huo-co-nfk,Tifbgch mx gicws Mx targbive gi gfog kit C kenn tci,Fot nifpi e
s i, ncpeor, fan ch Tifbg'h. JFWCH Gfpi C bguzrgb nuor bu hi bech muwocorh afdi, Fot tbg cb repi mi hadg f hergh fh bgch? NFTX. Fdd, ! uzw bfb i bemi ik C quzw ua geh jenrwemii! Qzb woi, juuw woi, woi juuw fot nupcor dgent, Qzb woi bgcor bu wilucdi fot hunfdi
o, Fot duwzin tifbg fbg dfbdgt cb awum my hergh! Ozwhi U kuit U kuazn, kuazn, kuazn tix! Muhb nfimiobfqni tx, muhb kuazn tfx, Befb ipi, ipiw, C tet xib qigunt! U tix! U tfs! e ' it Oip ki i b g1 o bt U ks s, U ko 1 TEWCH Qe i, o, it hnfol Mt b g, b iz,
Qx dwzin dwzin bgil yzcbi upiwbgwuko! U nupit U ncail oub neai, qzb nupi co tifbg! DEIZNIB Tihjchit, tchbwinhit, gfbit,mfwbxw, ecnn'! Zodumauwbfgni bemi, kgx dfiihb bguz ouk Bu mzwtiv, mawiiw uzw hunimocbx? U dgent! U dgent! mx huzn, fot oub m dgent! Tit b bguz! Fnfde! mx dgent ch tif; Fot kebg mx dgent m luxh fwi gzweit

AWCFW NFZWIODI Jidi, gu, auw hefimi! ib Co bgihi duoazhcuch. : ouk gifpio fbg fn, Fot fan bgi qibbis ch cb ausy bei met: Xuzw jfwh co giv xuz duznt oub ci awum tifbe, Qzb gifpio cih gh jfwb co ibiwofi ncai. Bgi muhb xuz huzrgh kih giv jsumubeuo; Auw bkih
xuzw gifpio hgi hguznt qi fpfodi: Fot ki i ouk, hiicor hgi ch fipfodit Fqupi bei dnuzah, th gerg i gifpio cbhina? U, co bgch s st e o, Balb xuz wzo mit hicor bab hgich kinn: Hgih oub kinn o mfwweit nuor; xuzor. Twx 7j xuzw bifwh, ot hbede xuzw wuhimfwx
Uo bech afew duwhi; fot, i bei dzhbum ch, Co fin giw qih fwwx gif giv bu dgzwdg: Auw iob, fwi DFJZNIB Fan bgcorh befb ki B: Uzw Fhit gzetn

i, U hanimo gxmoh b i i dfor, U et ki hip 4wt b Fot s b ot bim huhm ducbwivx. AWCEW NEZWIODI Hew, ru xuz cos fot, mifin, ru kebg gem; Fot ru, Hew Jfweh; ipiws uoi jwij wi Bu auanuk bgch afew duwhi zobu giw rwfpi: B gifpioh t nuzw 7ju0 xuz auw humi cun; Mupi bgim ou
muwi g dwublcor bgicw gerg ke [1sizob DFJZNTB, NFTX DFIZNIB, JFWCH, ot AWCFW NFZWIODI] Acwh Mzhedcfo Afchg, ki s 2 2z i ot giroi. Ozwhi Guoi rvtainnukb, . b . j2b 75 Auw ki oz o, bgeh ch jbeazn df. 1scb] Acwhlb Mzhedefo Fx, g m buubg,bei dihi mé i mioti (Tobise JIBIW) JIBIW
Mzhedefoh, U, mzhedefoh, ‘Gifwbh ifhi, Gifwbh ifhi” U, fo xuz kenn gfpi mi nepi, jnfi ‘Gifwb'h ifhi? Acwhb Mzhedefo Kgx ‘Gifwbh ifhi2” JIBIW U, mzhedcfoh, gidfzhi mx gifwb cbhina Jnm "M gifi ch aznn ua kuis U, jnfx mi b tamj, bu dumaueh o, Ftzm ki 'beh ou bemi bu jnf ouk. JIBIW Xuz kenn oub, beio?
Ac

whb Mzhedefo Ou. JIBIW C kenn bgio repi cb xuz huzotnx. Acwhb Mzhedefo Kefb kenn xuz repi 207 JIBIW Ou muois, uo mx afcb, 4zb bgi miic; C kenn Acw enn re JIBIW Bgio kenn C nf. i o xumw i C knn s o bl Con i
. o x5 2 ub? Acis Matdofo B w2 ot . xu ubi . iduon Mol Bt s, 2 1w it 2 o k. JBIW Biglo g oz kg o e qifb xuz kebg fo cwuo keb, fot jzb zj mx cwuo tiri, mio. ‘o wniazn tzmjh bei meot

uijwinh, Beio mzhed kebe git henpiv huzot'- kex henpiw huzot? kex mzhed kebe git henpiw huzot”? Kefb hi xuz, £ hiib huzot, JIBIW Jwibb! Kefb hfx xuz, Gzrg Wigide? Hiduot Mzhedefo C hfx henpiw huzot uarzmmm.km o henpiv. T o oot Kefb hi xuz,
Limih Huzogjuhbs? Bgewt Mzhedefo Afcbg, C eouk oub kefb bu hex. JIBIW U, C dwx xuiz miwdx; xuz f bai heori: C kenn hex auw xuz. Cb ch ‘mzhed kebg giv henpiw huzot, ‘Bgio mzhed keb g Kebg hjiix ginj tbg niot witwihh. [15cb] Acwhb Mzhedefo Knﬂn]u\bcnmb eofpi ch bach
it Hiduot Mzhedcfo Gfor gcm, Lidel Durmi, kifn co giw; bfsws auw bei muzvoiwh, ot bbf tcooiw. Isizob] WUMIU FOT LZNCIB FDB P HDIOI C Miob. F hbwitb [lobiw WUMIU] WUMIU Ca C mfs bwzhb b anfbbivecor Y, M it b gfot: Mx quhunrh o gch bewuoi; Fot fan

beeh tfx fo zofddzhbum' h]mch et v g diva bt C twifmb mx nft dfmi fot auzot mi tf-- Hbwfori twifm, befb l\pmlmlmlnm!plhu bgeo i hdg nc ke e c o i, B C o pept, ot i o . & i 2k ki h i cbhina b, Ko g gk b o

[lobise QFNBGFH] bit] Oikh aw . Qfibgfhiw! awum bei awefw? Guk twbg mx nftx? Ch mx afbgiw kinn? Guk afwih mx Lzncib? befb C fhe frfco; Aus oubgcor dfo gican, ca hgi i kinn. Bgio hgi ch kinn, quix hniih o Dfjinty b, Fot giv

cmmabin i kb Fornh neph ik i itk 0 3 ccou b, Fot o b ol i - Ut i au ncorcor b ok, Hodi st i ! s s, he. WUMIU Ch b i b C i s bl B coukh s e i i co ot . ot 2t ah-suwhih:C e iod o
SEHFW C w qibid xuz, hew, gfpi jfbeiodi: Xuzw nuuch fwi jfni fot kent, fot t cmjuwb Humi mehfipiobzwi. WUMIU Bzhg, beuz fwb tidicpit: Nifpi mi, fot tu bei becor C gt bgi . Gihb bguz ou nibbiwh bu mi awum bei swcfiv? QFNBGFHEW Ou, mx ruut nuwt. WUMIU Ou mibbis rib bgii ruoi, Fot gewi beuhi guwhib; C'un qi kebg b

hbwfergb. [Isch QFNBGFHFW] Kinn, Lzncib, C kenn nci kebe beii bu-ocrgb, Nibh hii auw mifoh: U mehdgcia, bguz fb hkcab Bu fobis co bei beuzrgbh ua tihjisfbi miol C tu wimimiw fo fubgidfos, - o bibbiw' Kiith, kebg. D; i hemjni; mifiwi kiwi gch nuuch, Hefwj
mehiwx it kuwo gem bu bgi quoih: Fot co gch oiitx heuj fbuwbuchi gzor, Fo finerfbuw hbzaat, fot ubgis hecoh Us enn-hgfit achgih fot fquzb geh hginpih F qirrfwn fdduzob ua imjbx qusih, Rwiio ifwbgio jubh, qnfttish fot mzhb hth, Wimofobh ua jidebgwift fot unt dfeih ua wuhih, Kiswi bgconx hdfbbiw't, bu mei 7} £ hguk. Oubeor bgch jiozavx, bu
mxhina C hfet Fo ca fmfo et oiit juchuo ouk, Kguhi hini ch jwihiob tifbg co Miobef, Giwi ncpib f dfcbeaa U it Fot bk imi i o i i C i, b g b i Qior st b i g e, K, ! Gubgdiv! i Fjbgido]
Fjubidfuvx Keu dinnh hu nuzx2 WUMIU Dumi gebgiv, mfo. C hii bgfb bguz fub juus: Gunt, bginvich ausbx tzdfbh: nib mi 2fpi F tefm ua juch i F I bgi picoh bfei mex afan tit Fi peuniobnx fh by juktiv acwit Tubg.

2w avum bei afbfin dfoouo kumq. Fjubgidfx Hdg muwbin twzh C gfpi qzb Mfobzfh nfk Ch it bu o i befb zbbiwh beim, WUMIU Fwb bguz hu qf fo aznn ua kibdsgitoih, Fot aif b bu ci? dgich, Ot fot ixih, Duobimb fot qirfws gforh o bex qfd; Bei kuwnt ch oub bex awciot ouw
bk ik Bkt Fsuh o ik b i i Weds; B g b s b qie o i g Fibgidfv M jupiwbs, b o m ke, dohioh. WUMIUC.i b jupb, ot o by knn, g 2 bech co o neyet bor iz ke, Fot tcne b i ot X g b Howior Us i mincb kant i e

bwfergh, WUMIU Bgivich bex runt, kuwhi juchuo bu mio huzrh, Bufo beihi C hinn b juchuo; beuz gfhb hunt mi ouoi. Afwikinn: qzx auut, Dunt, duwicf fot oub juchuo, ru kebg mi Bu Lzncibh rwp: a
[Isizob] WUMIU FOT LZNCIB FDB P HDIOI CC Awefw Nizwiodih dinn. [lobiw AWCFW LUGO] AWCFW LUGO Gunx Awlodehdfo awefw! qwubgiv, gu! [lobiw AWCFW NFZWIODI] AWCFW NEZWIODI Bgch hfini hguznt qi bgi pucdi va Awefw Lugo. Kindumi awum Mfobf: kefb hfh Wumiu? U, ca geh meot gi kweb, repimi geh nibbiw
AWCFW LUGO Rucor bu acot F fvi-auub qwubgin uzb Uoi ua uzw uwtio, bu thhudcfbi mi, Giwi co bgch debx pe . Fotacotcor . Hifi't 7] b tauwh, fot kuznt oub i zh awwbe; Hu befb mx hiiit bu Mfobf beiwi kih hbixt
AWCEW NEZWIODI Kgu qfwi mx nibbiv, bgio, bu Wumiu? AWCFW LUGO C duznt oub hiot b —givi cb ch frfco,-- Ouw rb fmibhioriw bu qweor cb b, Hu aifwazn kiwi bgix ua coaidbe CFW NFZWIODI Zogfi ! gx ibginvzuut, Bei nibbisv Ua tifw emjuwb, fot bei madg
i Avcte Lugo i hod R fo cv kot o b o lcrgb Zobu mx dinn. AWCFW LUGO Qwubgise, Cin ru fot qwcor cb beii. [1s¢b] AWCFW NFZWIODI Ouk mzhb C bu bei muozmiob fuoi: Kebgco bgwil guzah ken afew Lzncib kfei: Hei kenn 0 3

Kovebi frfco bu Mfobzf, Fot el g fb mx dinn benn W dnubit co f {15¢b] WUMIU FOTLZNCIB FDB P HDIOT CCC F dgzwdgxfw; cocb f buma ginuorcr b b Diznibh o JFWCH, fo g Ji gifweor anukiwh o fbuwd] JFWCH Repimi bex buwlg, qux: i fo ot v Xib b b uzb.
auw C kuznt oub gi hio. Zotiw xuot xik-bwiih nfx bgii fan m.m. Gancor b i dnahibu b K rwuzor: Qi i, zoacwm, kebe terrcor 7] ua rwfpih, Qzb bguz hegfnb gifw cb: kechbn bgio bu mi, Fh Tu th C qet i, ru. JFRT

[Fheti] C fin famuhb fawfet bu Bbfot fuoi Giwi co bgi dgzwdgxfwt; xib C kenn fipiobzwi. [Wibewih] JFWCH Hiiib anukiw, kebg anukiwh bex qwetfn git C Hbwik.-- U kuil bgx dfoujx ch tzhb fot Hbuoih; Kedg kebg hiilb kibiw ocrghnx C ken tk, Uw, Kfobeor b, kebg bifwh tehbenn't qx mufoh: Bgi ughiyzeih bafb C auw beii kenn ei Ocrgbin.
gt qi bu hbwik bex ripi fot ki, [Bei Jiri kechbnih] Bei qux repih kfwocor humlbgmrlubg . Kl i st Kot bich K 05, B dvull o i o s upt weh? Ko Kb g s, o, g (W] o WUMIUfo QENGEHEW. ke s, mibuce, &) WUMIU Repii b mibbuds

fot bgi kwiodgeor ewuo, Gunt, bfei baeh nibbiw ifwnx co bei muwocor Hii bu ncai, C dgfvri bgii, Kefbii bguz gifwhb uw hilhb, hbfo fn fnuua, Fot tw oub cobiwswzjb mi co mx duzwhi. Kgx C Ch jfwbnx bu gigy s bu bfei bgiodi
awum g 1t acoriw F jwideuzh weor, fweor befb € mzhb i Co tif Qrb cabguz, linuzh, o WX Co kb C azavbg cobiot bu , QX gifpio, C ket bifw beii ucob qx lucob Fot hbwik bach gzorws dgzwdgxfi kebg bex nemgh: Bei bemi fot mx cobiobh i hpri-Kent, Muwi acivdi fot muwi
imjbx beriveh u C kenn qi uoi, hew, WUMIU e bgus b Nep. ot g kv o ki, ot sinnukc QPNBGEHIW (Rt A s bish i Co gt i G nuuchme ot ch cobioh C g, (Wi
WO s g ik, b ki v e, Rui Keb b i i o bt e B C o b wobbi 1 b . Fot, i, s dfn b e o st [h PWCHBichch nupih ci; Fot
‘giwi ch dumi bu tu humi pennfouzh hefini Bu bei tift quicih: C kenn fjwigiot gem. Hbuj bgx zogfnuk' b beiw bfo tilbg? w fjwigiot beii: Ugix, ot ru kebg WA C s ot cbiy bimjb oub £

ecbgiv
i o A giodi ot i mi. b 7 b i, Ni b sy b C i b, xuzbe. o oub foubgiv heo 7300 . i, 7wrcor i b arw: U, g ot Q i, C i b bbiv hgm bt A C dom b fumt Ficoh mahin:Hbf ou, g ok ni. Tt 8o s, o mincs g b o k. WCHT
€t g dolcu,Fot g an sinuo g WUMIU Ko g i g f b qus B crgJFR U Nowr, b g C K by b JOWCH U C ol (AT Ca bz giiesan, U b g ik Lnci [Teib] WUMIU Co afcbe, C kenn. Nib mi jiwzhi bgch afdi
Miwdzbeuh ecohmfo, ouqni Duzabx Jiweh! Kafb hfct mx mio, kgio mx qibubhi huzn Tet oub ibiot gem fh ki wut twifin b hu? U fn C mit, gifweor gem bine ua Lzncib, Bu bgcoe cb kih hu? U, repi mi bgx afot, Uoi kweb kebg mi co huzw mehauwbzoih quue! Con

U ou! fnfobiwo, hnfzrgbiv't xuzbe, Auw giwi ncih Lzncib, fot giv qltxbx micih Bech plznbl'ulhbcurjmhmdlamnlm nclgb Tifbg, nc\bguzhmw\ qx F1ift mfo cobiww't. [Nfxcor JFWCH co fwi b b jucob e F ncrgbocor
G g U,k s C Din b fcrgboso? U . it ke T, by 1 hode bt 240 b g, Gl ef o ki i s e i B ¢ qifzbxh ohero xib Ci i fo o bgdgieh, Fo i i anrch ou fpfoitbgiwi B, nihs b b c0 bt hgi? U, kgt mu
afpun o ts b by B K i gt b g s o i ot e b Ko i A, duhco! F i Lanc, K b b xib e b C i B oot h o, Fo bt b il g muo i B givico e g g i A i s b, C ek i
Kebg bgii: Fot oipiv awum bgeh jnfdi ua tem ocrgb Tijfwh frfco: giwi, giwi kenn C wimfco Kebg Kuwmh befb fi bex dgfimaiw-mfeth; U, giwi Kenn C hib 2 mx vpmnlhhcnrmhh Fot hgfei bgi xuei h Awum bgel xuzw nihb! Fwimh, bfei xuzy nfib imquidi fo, ncjh, U xuz Bgi twuwh ua qwifbg, hifn
kebg f wergbiuzh cchh F tbinihh qfwco bu iorwuhhcor tifbg! Dumi, qebbiw duotzdb, dumi, zoh il K b uodi wzo uo hbumx .mp.* [Twcnch]thznyuhzmwx Bex o !w\yzcdc Bezh keb fechh C tci. [Teih] [lobiw, fb bgi ubgiv iot ua bei dgzwdgxfwt, AWCEW.
NFZWIODI, kb { niobiwo, dwuk. ot il AWCFY NFZWIODI Hicab Awfodch g it sk b bu-ocrgb Gii s unt i hovmani wipih! Kguh hmm'QFNB(xFIIF\\’ Giwith o, fawciot, fot uoi bafb eoukh xuz kinn. AWCFW NFZWIODI Qnehih gi juo xuz! Binn mi, ruut ma awciot, Kefb buwdg ch xuot, beb pfeon nioth gch nergh Bu
rwzqh ot ixininh heznnh? th C tehdiwo, Cb qzwoibg co Cbwbg hew: fot bgiwih mx mihbiv, AWCEW NFZWIODI Kguchc5? QENBGFHFW Wami, AWCFW NFZWIODI Gk nuo g bsvi? QFNBGHFW Az i o . AWCEW NFZWIODI Rkt mi b b

C i oub, hew My C fm ruoi giodi; Fot aifwaznn tet miofdi mi kebe tibg, Ca C tet hbfx bu nuue uo geh cobiobh. AWCFW NFZWIODI Hbx, bgios C U, madg C aifw i Z0tiw bech xik-bwii giwi, C owifinb mx miibiw for
foubg ausgh, Fot bt s bbb ik . AWCEW NFZWIODI Wil [Fpfdil P e, kg st bich ke bfoh B hbuos ch hijzndgwi? bech jnfdi ua jifdi? Hubmhbgl bumq]Wumm‘ U, jinil Keu inhi? kefb, Jfweh buu? Fot bt co qnuut?
F. kefb fo zoccot guzw Ch rzenbx ua bech nfimiobfgni dgfodil Bgi nftx hbewh. [LZNCIB kfeih] LZNCIB kgivi ch mx . kgini C heuzat gi, Fot beiwi C fm. Keiwi ch mx. w“m.m [Ouchi kebgeo] AWCFW NFZWIODI C gifw humi ouchi. Nitx, dumi awum befb oihb Us tifbg, duobiicuo, fot zoofbzwin

i il i o i s gt v oA, s . B ot 5 s g ach ol Pt Tweh b D, Co 55 s b e 5 o oo b s, o 0 s D, . kL5 [Oh o]t c o 6 ZNCTS o gt .
aunw C kenn oub k. [1scb AWCFW NFZWIODI] Kefbh giwi?). dnuhit co mx byezi nupih gfot? Juchuo, C hil, gfbg gio gch beminihh ot: U dgzwn! twzoe fan, fotnib ou aweiotns twaj Bu ginj mi fabivw? C kenn echh bex nci Gfins hum juchuo xib b gfor uo bzim, Bu mici ci keb £ wihbuwbepi. [Echhih gem] Bex ncjh fw kfwm. Acwhi
Ko (Keogen] i, qu: g Kx? LZNCIB i oushi b o qwsia. U i [fhdgor WMIU i By b e b i v vt i i At w0 WOMIUN gt fot e o Kibe. ke gt IFWCHI IR B i ik g by v Aculo Ko B

h sivin b ducb ks, Fo Lingicor, v Gt ol i K v g fco e b (it i b b Db Wi hifwdg:
o b et ko o ol Ko ionb et dedmabtodh i, 4o P g K Hiduot Wamiuh mios ki avzot [Wi-iobiw ubgiseh ua bgi Kibds, kebg AWCFW NFZWIODI]
Bgewt Kibdgmfo Giwi ch Fawcfv, befb bwimanih, hergh fot kiiih: Ki buue bech mfbbude fot bech b asvum gcm, Fh gi kih dumcor asum bch dgzwdgxfwt hei Fruiy s bt b (ot g1 TWCOIL o bt IWCOD] KD mehapbovich b . B s o i v,z avosoch
Wi ok DESZAI, NETX DFJZN fofabgh] DFSZAT Kefh o b bl i h hiwcie ol NFTX DISZATI g i o b 1w s Womin,Hrn e, o b ft s 7, Kb s bkt 7 i, IWCODI K i chbich ke bbb o ik Acwht Kibginlo i, v i
bei Duzob Jweh hnfoo: Fot Wami Gt ot Lancib, fl giauwi, K ot oik ccnn't IWCODI Hifwdg, hie, fo couk guk bech auzn mwiv dumib. Acwhi Kibdgmfo Giw ch favwe, fot hnfzrgbin't Wamiu mfo; Kebg cohbwzmiobh zjuo bgim, ach bu ujio Bgii it mios bumah. DFJZNIB U gifpioh! U keai, nuue guk uzw tzrgbiw qnt! Bgch tin
g melibfio-auw,nu, zch guzhi Ch imjbx uo bei qfde ua Muobizi. Fot ¢b melt-heifbgit co m tzgbiwh qubum! NFTX DFJZNTB U mil bgch hrgh ua tifbg ch i gin, Baib kfwoh m unt i bu ijzndwi. [Tobis MUOBFRZI ot ubginh] IWCODI Do, Muobirzi auw bgu fwb ifwn 74, Bu hi bex huo fot gew muw ifwns wko. MUOBFRZL
Frh, o nciri m keaich it bu-ocrgb: Ry ua m huoh iscni b hbuit giv qwibe: Kefb azwbgiw kui duohjcwih frcoh meo fr? JWCODI Nuue, fo bguz hgfib hi. MUOBFRZI U bguz zobfzrgb! kefb mfooish ch co bech? Bu jwihh qiauwi bgx afbgiw bu £ rwfpi? JIWCODI Hil 2] bi muzb ua uzbwir auw kgeni, Benn ki dfo dnifw b
fmqerzchi, Fot couk e hjncor.bgiw i, biew bz hdib: ot bgo e C o ua xur Ko, Fot it X pio b bg: ifobenn i, Fo i mehdifodi b fhcodi Qucor b b b i iahcdeuo. AWCEW NFZWIODI C s bgi . b i, X bl bahjdi,hbgi b ot o Tubg e ol
mi a bgch tewiazn mztiv: Fot giwi C hbfor, qub bu cmiifdg fot zvri Mshina duotimot fot mxhina isdzhit. JWCODI Bio b uadi kg bauz tuhb couk co bech, AWCFW NFZWIODI C kenn gi qwcia, auw mnx hguw b ua qwifbg Ch oub hu nuor f ch fbicuzh i, Wumiu, beii 1, kih gzhafot bu befb Lncib: Fot hg. b it befb Wu
afcbgazn keai: C mfwweit bgim: fot bgiew hbun'o mivwefri-tfs Kih Brgfabh twumh-fx, s i K, 0 i, Ll ol X, b wima b e i i i, Qi o 7 1 e i v B Durobe b dunih i b i Fo.
Keb kent muueh. qet m tpchi humi mifo Bu wet giv zwum bech . Uw co m din bgi Bio rpi C giw. hu bzbuw't qx m fwb. F hniicor jubcuo: kged hu buue iaidb Fh C cobiotit auw ch kyvuzrgh uo giw Bi auwm ua tibg: mifobemi C kyvcb bu Wamiu, Bafb gi hauznt zebgi dumi b bech tew ocrgb, Bu ginj
bu el giv awum i quawult i, Qicor b bemi bei jubeuo auwdi hguzntdihi. Qb i kzed quv m nibbi, Awefiw Lugo, Kl hbf'tqx fadetio, fot ikibisocrgh Wibzwo't m nibbiw gfde. Beio fan fuoi Fb bgijwiacsi guzav a giw Kecor, Dimi C bu bfe g awum giw ccowith pizab: Mifocor bu i giw dnuhin b m. dinn, Benn C
duopiociob duznt hiot bu Wumiu: Qzb kgio C dfini, humi mcozbi ivi bgi bemi Us g fkfecor, giwi zobcminx nfi B ougni Jweh fot bwzi Wumi . Hei kfei fotC iobwilbi gi dumi auwbg, Fot qif bech kunwe ua gifpio kebe fociodi Qzb beio fouchi tet hdfui mi awum bgi bum: Fot hg, buu tihjifbi, kuznt oub ru kebg i, Qzb, h cb himh, tct
peuniodi uo giwhina. Fon bech C couk: ot bu bei mfwwciri Giw ozwhi ch jwep: fot, ca frgh co bgch mx afmb, b mx ipisiib nfk. JWCODI Ki hscan gfp couko bgi auw f zun mi. Keiwih Wamiuh mfo? kefb dfo gi hi co bech? QFNBGFHEW C qwuzrgh
i i oikh ua Lancib b Fot bgio co Miobf B bubgeh Bgch nibbi g iwn qet mirepi g afhgiv, Fot bgwifbiot mi kebe b, ucor co i pfznb, C i wbit oub fo i gem bgii INCODI Repi mi bgimibbiv: C ke e o cb. Kgi ch b duzobh i bef wiehit b ibdg?
Hewwii, kgfb mitixuzw mihbiv co bech jnfdi? JFRI Gi dfni kbg anukivh bu hbvwik gch nftxh rpi fothu C te: uj bgi buma: Fot gx fot g mx mfhbis ik uo gem: Fot bgio C wio fkf bu dfn bi kibdg. JIWCODI Bech Kanwth, Bgiew bei
betcorh ua g b Fot i gi kebih bgfb e q7x Fjuchuo Us Fjuuny jubgidfw, fo beiwikebg Dimi bu bach plznt b e, fot i kebg Lrncib. Kaiwi i b oimei? Dijznib! Muobfizil Hi, kefb fhduzich et 7ju0 xuz a1, B ifpio acoth mifoh bu ecnin xuzs Tuxh keb nupi.Fot C auw keoecor b xuzw tchduth buu Gipi nubb Fawidi
ua ccohmio: i fivijzochgt. DFJZNIB U qwubgin Muabfri, repi mi bex gfot: Bgch ch m térgbinh lucobzvi,auw ou muwi Dfo C timfot. MUOBFRZ1 Qzb C dfo repi bgil murwi: Auw C kenn wichi g Bafh kgcni Pivuofqx . Bivi o hzdg wibi qi hib Fh befb ua bwzi fot afcbgazn Lncib
DFJZNTB i weds higfin Wumiuh qx geh nfoch n: Jouw hweacdih ua uza fomebx! IWCODI F j muvocor Bihzo, sw huwwuk, Ru giodi, bu gfpi muwi bne a bihi Wit bgcorh: Humi hgfon gi jwtuo', fot humi jzochsit: Aus oipiv K busws ua muwi Kui Bgfo beeh ua Lznci fot giv
Wumia. Isizob]

If you tried to encrypt this by hand, working 12 hours a day and taking time off for weekends, it
would take you about three weeks to encrypt. And you would probably make some mistakes. It
would take another three weeks to decrypt the encrypted ciphertext.

Your computer can encrypt or decrypt the entire play perfectly in less than two seconds.

But you need to know how to program a computer to do the encryption. That’s what this book is
for. If you can program a computer, you can also hack ciphertext that other people have encrypted
and tried to keep secret. Learn to program a computer, and you can learn to be a hacker.

Let’s begin!

26 http://inventwithpython.com/hacking

CHAPTER 3

THE INTERACTIVE SHELL

Topics Covered In This Chapter:
Integers and floating point numbers
Expressions

Values

Operators

Evaluating expressions

Storing values in variables
Overwriting variables

Before we start writing encryption programs we should first learn some basic programming
concepts. These concepts are values, operators, expressions, and variables. If you’ve read the
Invent Your Own Computer Games with Python book (which can be downloaded for free from

Let’s start by learning how to use Python’s interactive shell. You should read this book while
near your computer, so you can type in the short code examples and see for yourself what they
do.

Some Simple Math Stuff

Start by opening IDLE. You will see the interactive shell and the cursor blinking next to the >>>
(which is called the prompt). The interactive shell can work just like a calculator. Type 2 + 2
into the shell and press the Enter key on your keyboard. (On some keyboards, this is the Return
key.) As you can see in Figure 3-1, the computer should respond with the number 4.

Email questions to the author: al@inventwithpython.com

Chapter 3 — The Interactive Shell 27

Debug Options Windows Help

@ (¥3.3.0:bd8arbS0ebt2, Sep 25 2012, 10:%7

or "license()” for more info

Figure 3-1. Type 2+2 into the shell.

2 + 2isn’t a program by itself, it’s just a single instruction (we’re just learning the basics right
now). The + sign tells the computer to add the numbers 2 and 2. To subtract numbers use the —
sign. To multiply numbers use an asterisk (*) and to divide numbers use /.

Table 3-1: The various math operators in Python.

Operator Operation
+ addition
- subtraction
* multiplication
/ division

When used in this way, +, —, *, and / are called operators because they tell the computer to
perform an operation on the numbers surrounding them. The 2s (or any other number) are called
values.

Integers and Floating Point Values

In programming whole numbers like 4, 0, and 99 are called integers. Numbers with fractions or
decimal points (like 3.5 and 42.1 and 5. 0) are floating point numbers. In Python, the

number 5 is an integer, but if we wrote it as 5. 0 it would be a floating point number

Expressions

Try typing some of these math problems into the shell, pressing Enter key after each one:

242424242
8*6

10-5+6

2+ 2

28 http://inventwithpython.com/hacking

Figure 3-2 is what the interactive shell will look like after you type in the previous instructions.

File Edit Shejl Debug Qpﬁpns Windows Help

Iype "copyright®, “credita" or "license()" for more information.
33> 2 + 2

4

>>> 2+2+2+2+2

10

>>> 8%6
48

>>>

11

>>> 2 +
4

>>>

Figure 3-2. What the IDLE window looks like after entering instructions.

These math problems are called expressions. Computers can solve millions of these problems in
seconds. Expressions are made up of values (the numbers) connected by operators (the math

signs). There can be any amount of spaces in between the integers and these operators. But be
sure to always start at the very beginning of the line though, with no spaces in front.

operator
value

wal&e’;=Il \' ~

2+2
expression

Figure 3-3. An expression is made up of values (like 2) and operators (like +).

Order of Operations

Y ou might remember “order of operations” from your math class. For example, multiplication
has a higher priority than addition. Python copies this for the * and + operators. If an expression
has both * and + operators, the * operator is evaluated first. Type the following into the
interactive shell:

>> 2 +4 % 3 +1
15
>>>

Email questions to the author: al@inventwithpython.com

Chapter 3 — The Interactive Shell 29

Because the * operator is evaluated first, 2 + 4 * 3 + 1evaluatesto2 + 12 + 1 and
then evaluates to 15. It does not evaluateto 6 * 3 + 1,thento 18 + 1,andthento 19.
However, you can always use parentheses to change which should operations should happen first.
Type the following into the interactive shell:

>> (2 +4) * 3+ 1
24
>>>

Evaluating Expressions

When a computer solves the expression 10 + 5 and gets the value 15, we say it has evaluated
the expression. Evaluating an expression reduces the expression to a single value, just like solving
a math problem reduces the problem to a single number: the answer.

An expression will always evaluate (that is, shorten down to) a single value.

The expressions 10 + 5and 10 + 3 + 2 have the same value, because they both evaluate to

15. Even single values are considered expressions: The expression 15 evaluates to the value 15.

However, if you type only 5 + into the interactive shell, you will get an error message.

>>> 5 +
i SyntaxError: invalid syntax

This error happened because 5 + is not an expression. Expressions have values connected by
operators, but in the Python language the + operator expects to connect two values. We have only
given it one in “5 + ”. This is why the error message appeared. A syntax error means that the
computer does not understand the instruction you gave it because you typed it incorrectly. This
may not seem important, but a lot of computer programming is not just telling the computer what
to do, but also knowing exactly how to tell the computer to do it.

Errors are Okay!

It’s perfectly okay to make errors! You will not break your computer by typing in bad code that
causes errors. If you type in code that causes an error, Python simply says there was an error and
then displays the >>> prompt again. You can keep typing in new code into the interactive shell.

Until you get more experience with programming, the error messages might not make a lot of
sense to you. You can always Google the text of the error message to find web pages that talk

Python error messages and their meanings.

30 http://inventwithpython.com/hacking

Practice Exercises, Chapter 3, Set A

Every Value has a Data Type

“Integer” and “floating point” are known as data types. Every value has a data type. The value
42 is a value of the integer data type. We will say 42 is an int for short. The value 7.5 is a value
of the floating point data type. We will say 7.5 is a float for short.

There are a few other data types that we will learn about (such as strings in the next chapter), but
for now just remember that any time we say “value”, that value is of a certain data type. It’s
usually easy to tell the data type just from looking at how the value is typed out. Ints are numbers
without decimal points. Floats are numbers with decimal points. So 42 is an int, but 42.0 is a
float.

Storing Values in Variables with Assignment Statements

Our programs will often want to save the values that our expressions evaluate to so we can use
them later. We can store values in variables.

Think of a variable as like a box that can hold values. You can store values inside variables with
the = sign (called the assignment operator). For example, to store the value 15 in a variable
named “spam”, enter spam = 15 into the shell:

| >>> spam = 15
P >>>

Figure 3-4. Variables are like boxes with names that can hold values in them.

Email questions to the author: al@inventwithpython.com

Chapter 3 — The Interactive Shell 31

You can think of the variable like a box with the value 15 inside of it (as shown in Figure 3-4).
The variable name “spam” is the label on the box (so we can tell one variable from another) and
the value stored in it is like a small note inside the box.

When you press Enter you won’t see anything in response, other than a blank line. Unless you see
an error message, you can assume that the instruction has been executed successfully. The next
>>> prompt will appear so that you can type in the next instruction.

This instruction with the = assignment operator (called an assighment statement) creates the

variable spam and stores the value 15 in it. Unlike expressions, statements are instructions that
do not evaluate to any value, they just perform some action. This is why there is no value
displayed on the next line in the shell.

It might be confusing to know which instructions are expressions and which are statements. Just
remember that if a Python instruction evaluates to a single value, it’s an expression. If a
Python instruction does not, then it’s a statement.

An assignment statement is written as a variable, followed by the = operator, followed by an
expression. The value that the expression evaluates to is stored inside the variable. (The value 15
by itself is an expression that evaluates to 15.)

equal sign
variable
name expression

spam = 10 + 5
. 7
Y

assignment statement

Figure 3-5. The parts of an assighment statement.

Remember, variables store single values, not expressions. For example, if we had the statement,
spam = 10 + 5, then the expression 10 + 5 would first be evaluated to 15 and then the
value 15 would be stored in the variable spam. A variable is created the first time you store a
value in it by using an assignment statement.

>>> spam = 15
>>> spam

15

>>>

32 http://inventwithpython.com/hacking

And here’s an interesting twist. If we now enter spam + 5 into the shell, we get the integer 20:

>>> spam = 15
>>> spam + 5
20

>>>

That may seem odd but it makes sense when we remember that we set the value of spam to 15.
Because we’ve set the value of the variable spam to 15, the expression spam + 5 evaluates to
the expression 15 + 5, which then evaluates to 20. A variable name in an expression evaluates
to the value stored in that variable.

Overwriting Variables

We can change the value stored in a variable by entering another assignment statement. For
example, try the following:

>>> spam = 15
>>> spam + 5
20

>>> spam = 3
>>> spam + 5
8

>>>

The first time we enter spam + 5, the expression evaluates to 20, because we stored the value
15 inside the variable spam. But when we enter spam = 3, the value 15 is overwritten (that
is, replaced) with the value 3. Now, when we enter spam + 5, the expression evaluates to 8
because the spam + 5 now evaluates to 3 + 5. The old value in spam is forgotten.

To find out what the current value is inside a variable, enter the variable name into the shell.

>>> spam = 15
>>> spam
15

This happens because a variable by itself is an expression that evaluates to the value stored in the
variable. This is just like how a value by itself is also an expression that evaluates to itself:

>>> 15
15

Email questions to the author: al@inventwithpython.com

Chapter 3 — The Interactive Shell 33

We can even use the value in the spam variable to assign spam a new value:

>>> spam = 15

>>> spam = spam + 5
20

>>>

The assignment statement spam = spam + 5 is like saying, “the new value of the spam
variable will be the current value of spam plus five.” Remember that the variable on the left side
of the = sign will be assigned the value that the expression on the right side evaluates to. We can
keep increasing the value in spam by 5 several times:

>>> spam = 15

>>> spam = spam + 5
>>> spam = spam + 5
>>> spam = spam + 5
>>> spam

30

>>>

Using More Than One Variable

Your programs can have as many variables as you need. For example, let’s assign different values
to two variables named eggs and fizz:

10
15

>>> fizz
>>> eggs

Now the fizz variable has 10 inside it, and eggs has 15 inside it.

34 http://inventwithpython.com/hacking

Figure 3-6. The “fizz” and “eggs” variables have values stored in them.

Let’s try assigning a new value to the spam variable. Enter spam = fizz + eggs into the
shell, then enter spam into the shell to see the new value of spam. Type the following into the
interactive shell:

>>> fizz = 10

>>> eggs = 15

>>> spam = fizz + eggs
>>> spam

25

>>>

The value in spam is now 25 because when we add £izz and eggs we are adding the values
stored inside fizz and eggs.

Variable Names

The computer doesn’t care what you name your variables, but you should. Giving variables
names that reflect what type of data they contain makes it easier to understand what a program
does. Instead of name, we could have called this variable abrahamLincoln or monkey. The
computer will run the program the same (as long as you consistently use abrahamLincoln or
monkey).

Variable names (as well as everything else in Python) are case-sensitive. Case-sensitive means
the same variable name in a different case is considered to be an entirely separate variable. So
spam, SPAM, Spam, and sPAM are considered to be four different variables in Python. They
each can contain their own separate values.

Email questions to the author: al@inventwithpython.com

Chapter 3 — The Interactive Shell 35

It’s a bad idea to have differently-cased variables in your program. If you stored your first name
in the variable name and your last name in the variable NAME, it would be very confusing when
you read your code weeks after you first wrote it. Did name mean first and NAME mean last, or

the other way around?

If you accidentally switch the name and NAME variables, then your program will still run (that is,
it won’t have any “syntax’ errors) but it will run incorrectly. This type of flaw in your code is
called a bug. A lot of programming is not just writing code but also fixing bugs.

Camel Case

It also helps to capitalize variable names if they include more than one word. If you store a string
of what you had for breakfast in a variable, the variable name whatIHadForBreakfast is
much easier to read than whatihadforbreakfast. This is called camel case, since the

casing goes up and down like a camel’s humps. This is a convention (that is, an optional but
standard way of doing things) in Python programming. (Although even better would be
something simple, like todaysBreakfast. Capitalizing the first letter of each word after the
first word in variable names makes the program more readable.

Practice Exercises, Chapter 3, Set B

Summary - But When Are We Going to Start Hacking?

Soon. But before we can hack ciphers, we need to learn some more basic programming concepts.
We won’t need to learn a lot before we start writing encryption programs, but there’s one more
chapter on programming we need to cover.

In this chapter you learned the basics about writing Python instructions in the interactive shell.
Python needs you to tell it exactly what to do in a strict way, because computers don’t have
common sense and only understand very simple instructions. You have learned that Python can
evaluate expressions (that is, reduce the expression to a single value), and that expressions are
values (such as 2 or 5) combined with operators (such as + or —). You have also learned that you
can store values inside of variables so that your program can remember them to use them later on.

The interactive shell is a very useful tool for learning what Python instructions do because it lets
you type them in one at a time and see the results. In the next chapter, we will be creating
programs of many instructions that are executed in sequence rather than one at a time. We will go
over some more basic concepts, and you will write your first program!

36 http://inventwithpython.com/hacking

CHAPTER 4

STRINGS AND WRITING
PROGRAMS

Topics Covered In This Chapter:

Strings

String concatenation and replication
Using IDLE to write source code
Saving and running programs in IDLE
The print () function

The input () function

Comments

That's enough of integers and math for now. Python is more than just a calculator. In this chapter,
we will learn how to store text in variables, combine text together, and display text on the screen.
We will also make our first program, which greets the user with the text, “Hello World!” and lets

the user type in a name.

Strings

In Python, we work with little chunks of text called string values (or simply strings). All of our
cipher and hacking programs deal with string values to turn plaintext like 'One if by land,

two 1f by space.' into ciphertext like 'Tge kg im npgv,

The plaintext and ciphertext are represented in our program as string values, and there’s a lot of

ways that Python code can manipulate these values.

Email questions to the author: al@inventwithpython.com

jst kg im ocapxe.’'.

Chapter 4 — Strings and Writing Programs 37

We can store string values inside variables just like integer and floating point values. When we
type strings, we put them in between two single quotes (') to show where the string starts and
ends. Type this in to the interactive shell:

>>> spam = 'hello’
>>>

The single quotes are not part of the string value. Python knows that 'hello' is a string and
spam is a variable because strings are surrounded by quotes and variable names are not.

If you type spam into the shell, you should see the contents of the spam variable (the "hello'
string.) This is because Python will evaluate a variable to the value stored inside it: in this case,
the string 'hello'.

>>> spam = 'hello’
>>> spam

'hello'

>>>

Strings can have almost any keyboard character in them. (We’ll talk about special “escape
characters” later.) These are all examples of strings:

>>> 'hello’

'hello'

>>> 'Hi there!'

'"Hi there!’

>>> "KITTENS'

"KITTENS'

>>> "'

>>> '7 apples, 14 oranges, 3 lemons'

'7 apples, 14 oranges, 3 Temons'

>>> 'Anything not pertaining to elephants is irrelephant.'
'Anything not pertaining to elephants is irrelephant.'
>>> '0%&#WY%*&0cTsdYO*&gTFCBYO*&%3yc8r2'
'0*&#wY%*&0cFsdYO*&gTC%YO*&%3yc8r2"’

Notice that the ' ' string has zero characters in it; there is nothing in between the single quotes.
This is known as a blank string or empty string.

38 http://inventwithpython.com/hacking

String Concatenation with the + Operator

You can add together two string values into one new string value by using the + operator. Doing
this is called string concatenation. Try entering 'Hello' + 'World! ' into the shell:

>>> 'Hello' + 'World!'
'HelToWorld!'
>>>

To put a space between “Hello” and “World!”, put a space at the end of the 'Hello"' string and
before the single quote, like this:

>>> 'Hello + '"World!"
'Hello World!'
>>>

Remember, Python will concatenate exactly the strings you tell it to concatenate. If you want a
space in the resulting string, there must be a space in one of the two original strings.

The + operator can concatenate two string values into a new string value ('Hello ' +
'"World!'to 'Hello World! "), justlike it could add two integer values into a new integer
value (2 + 2 to 4). Python knows what the + operator should do because of the data types of the
values. Every value is of a data type. The data type of the value 'Hello' is a string. The data
type of the value 5 is an integer. The data type of the data that tells us (and the computer) what
kind of data the value is.

The + operator can be used in an expression with two strings or two integers. If you try to use the
+ operator with a string value and an integer value, you will get an error. Type this code into the
interactive shell:

>>> 'Hello' + 42
Traceback (most recent call last):
File "<stdin>", 1ine 1, in <module>
TypeError: Can't convert 'int' object to str implicitly
>>> 'Hello' + '42'
'Hell042'
>>>

Email questions to the author: al@inventwithpython.com

Chapter 4 — Strings and Writing Programs 39

String Replication with the * Operator

You can also use the * operator on a string and an integer to do string replication. This will
replicate (that is, repeat) a string by however many times the integer value is. Type the following
into the interactive shell:

>>> 'Hello' * 3

'HeTloHeTlToHello'

>>> spam = 'Abcdef'

>>> spam = spam * 3

>>> spam

'AbcdefAbcdefAbcdef'

>>> spam = spam * 2

>>> spam
'AbcdefAbcdefAbcdefAbcdefAbcdefAbcdef'
>>>

The * operator can work with two integer values (it will multiply them). It can also work with a
string value and an integer value (it will replicate the string). But it cannot work with two string
values, which would cause an error:

*

>>> 'Hello' 'world!"'
Traceback (most recent call last):
File "<stdin>", 1ine 1, in <module>
TypeError: can't multiply sequence by non-int of type
>>>

A}]

str

What string concatenation and string replication show is that operators in Python can do different
things based on the data types of the values they operate on. The + operator can do addition or
string concatenation. The * operator can do multiplication or string replication.

Printing Values with the print () Function

There is another type of Python instruction called a print () function call. Type the following
into the interactive shell:

>>> print('Hello!")
Hello!

>>> print(42)

42

>>>

40 http://inventwithpython.com/hacking

A function (like print () in the above example) has code in that performs a task, such as
printing values on the screen. There are many different functions that come with Python. To call
a function means to execute the code that is inside the function.

The instructions in the above example pass a value to the print () function in between the
parentheses, and the print () function will print the value to the screen. The values that are
passed when a function is called are called arguments. (Arguments are the same as values
though. We just call values this when they are passed to function calls.) When we begin to write
programs, the way we make text appear on the screen is with the print () function.

You can pass an expression to the print () function instead of a single value. This is because
the value that is actually passed to the print () function is the evaluated value of that
expression. Try this string concatenation expression in the interactive shell:

>>> spam = "Al'

>>> print('Hello, ' + spam)

HeTllo, Al

>>>

The 'Hello, ' + spam expression evaluatesto 'Hello, ' + spam, which then

evaluates to the string value 'Hello, Al'. This string value is what is passed to the print ()
function call.

Escape Characters

Sometimes we might want to use a character that cannot easily be typed into a string value. For
example, we might want to put a single quote character as part of a string. But we would get an
error message because Python thinks that single quote is the quote ending the string value, and
the text after it is bad Python code instead of just the rest of the string. Type the following into the
interactive shell:

>>> print('Al's cat is named Zophie.')
File "<stdin>", line 1
print('Al's cat is named Zophie.')
A
SyntaxError: invalid syntax
>>>

To use a single quote in a string, we need to use escape characters. An escape character is a
backslash character followed by another character. For example, \t, \n or \ '. The slash tells

Email questions to the author: al@inventwithpython.com

Chapter 4 — Strings and Writing Programs 41

Python that the character after the slash has a special meaning. Type the following into the
interactive shell:

>>> print('Al\'s cat is named Zophie.')
Al's cat is named Zophie.
>>>

An escape character helps us print out letters that are hard to type into the source code. Table 4-1
shows some escape characters in Python:

Table 4-1. Escape Characters

Escape Character What Is Actually Printed

AR Backslash (\)
\! Single quote (')
\" Double quote (")
\n Newline

\t Tab

The backslash always precedes an escape character, even if you just want a backslash in your
string. This line of code would not work:

>>> print('He flew away in a green\teal helicopter.')
He flew away in a green eal helicopter.

This is because the “t” in “teal” was seen as an escape character since it came after a backslash.
The escape character \ t simulates pushing the Tab key on your keyboard. Escape characters are
there so that strings can have characters that cannot be typed in.

Instead, try this code:

>>> print('He flew away in a green\\teal helicopter."')
He flew away in a green\teal helicopter.

Quotes and Double Quotes

Strings don’t always have to be in between two single quotes in Python. You can use double
quotes instead. These two lines print the same thing:

>>> print('Hello world"')
Hello world
>>> print("Hello world")

42 http://inventwithpython.com/hacking

Hello world

But you cannot mix single and double quotes. This line will give you an error:

>>> print('Hello world™)
SyntaxError: EOL while scanning single-quoted string
>>>

I like to use single quotes so I don’t have to hold down the shift key on the keyboard to type
them. It’s easier to type, and the computer doesn’t care either way.

But remember, just like you have to use the escape character \ ' to have a single quote in a string
surrounded by single quotes, you need the escape character \ " to have a double quote in a string
surrounded by double quotes. For example, look at these two lines:

>>> print('I asked to borrow Alice\'s car for a week. She said, "Sure."')
I asked to borrow Alice's car for a week. She said, "Sure."

>>> print("She said, \"I can't believe you let him borrow your car.\"")
She said, "I can't believe you let him borrow your car."

You do not need to escape double quotes in single-quote strings, and you do not need to escape
single quotes in the double-quote strings. The Python interpreter is smart enough to know that if a
string starts with one kind of quote, the other kind of quote doesn’t mean the string is ending.

Practice Exercises, Chapter 4, Set A

Indexing

Your encryption programs will often need to get a single character from a string. Indexing is the
adding of square brackets [and] to the end of a string value (or a variable containing a string)
with a number between them. This number is called the index, and tells Python which position in
the string has the character you want. The index of the first character in a string is 0. The index 1
is for the second character, the index 2 is for the third character, and so on.

Type the following into the interactive shell:

>>> spam = 'Hello'
>>> spam[0]

lHl

>>> spam[1]

e

Email questions to the author: al@inventwithpython.com

Chapter 4 — Strings and Writing Programs 43

>>> spam[2]
I'II

Notice that the expression spam[0] evaluates to the string value 'H', since H is the first
character in the string 'Hello'. Remember that indexes start at 0, not 1. This is why the H’s
index is 0, not 1.

string: ‘“|H|e|1]|1|o
indexes: 0 1 2 3 4

Figure 4-1. The string 'Hello' and its indexes.

Indexing can be used with a variable containing a string value or a string value by itself such as
'Zophie'. Type this into the interactive shell:

>>> 'Zophie'[2]
'p

The expression ' Zophie' [2] evaluates to the string value 'p'. This 'p' string is just like
any other string value, and can be stored in a variable. Type the following into the interactive
shell:

>>> eggs = 'Zopie'[2]
>>> eggs

lpl

>>>

If you enter an index that is too large for the string, Python will display an “index out of range”
error message. There are only 5 characters in the string 'Hello'. If we try to use the index 10,
then Python will display an error saying that our index is “out of range””:

>>> 'Hello'[10]

Traceback (most recent call last):
File "<stdin>", 1ine 1, in <module>

IndexError: string index out of range

>>>

44 http://inventwithpython.com/hacking

Negative Indexes

Negative indexes start at the end of a string and go backwards. The negative index -1 is the index
of the last character in a string. The index -2 is the index of the second to last character, and so
on.

Type the following into the interactive shell:

>>> 'Hello'[-1]

>>> 'Hello'[-2]
l'll
>>> 'Hello'[-3]
|'I|
>>> 'Hello'[-4]
'e
>>> 'Hello'[-5]
lHl
>>> 'Hello'[0]
|H|
>>>

Notice that -5 and 0 are the indexes for the same character. Most of the time your code will use
positive indexes, but sometimes it will be easier to use negative indexes.

Slicing
If you want to get more than one character from a string, you can use slicing instead of indexing.
A slice also uses the [and] square brackets but has two integer indexes instead of one. The two

indexes are separate by a : colon. Type the following into the interactive shell:

>>> "Howdy'[0:3]
"How'
>>>

The string that the slice evaluates to begins at the first index and goes up to, but not including,
the second index. The 0 index of the string value 'Howdy "' is the H and the 3 index is the d.
Since a slice goes up to but not including the second index, the slice 'Howdy ' [0: 3] evaluates
to the string value 'How'.

Try typing the following into the interactive shell:

>>> 'Hello world!'[0:5]

Email questions to the author: al@inventwithpython.com

Chapter 4 — Strings and Writing Programs 45

'Hello'

>>> 'Hello world!'[6:12]
'world!"'

>>> 'Hello world!'[-6:-1]
'world'

>>> 'Hello world!'[6:12][2]
'r
>>>

Notice that the expression 'Hello world!'[6:12] [2] first evaluatesto 'world! ' [2]
which is an indexing that further evaluatesto "r'.

Unlike indexes, slicing will never give you an error if you give it too large of an index for the
string. It will just return the widest matching slice it can:

>>> 'Hello'[0:999]
'Hello'

>>> 'Hello'[2:999]
"o’

>>> "'Hello'[1000:2000]

LI}

>>>

The expression 'Hello' [1000:2000] returns a blank string because the index 1000 is after
the end of the string, so there are no possible characters this slice could include.

Blank Slice Indexes

If you leave out the first index of a slice, Python will automatically think you want to specify
index O for the first index. The expressions 'Howdy' [0:3] and 'Howdy' [: 3] evaluate the
same string:

>>> "Howdy'[:3]
"How'

>>> "Howdy'[0:3]
"How'

>>>

If you leave out the second index, Python will automatically think you want to specify the rest of
the string:

>>> "Howdy'[2:]
lwdyl

46 http://inventwithpython.com/hacking

>>>

Slicing is a simple way to get a “substring” from a larger string. (But really, a “substring” is still
just a string value like any other string.) Try typing the following into the shell:

>>> myName = 'Zophie the Fat Cat'
>>> myName[-7:]

'Fat Cat'

>>> myName[:10]

'Zophie the'

>>> myName[7:]

'the Fat Cat'

>>>

Practice Exercises, Chapter 4, Set B

Writing Programs in IDLE’s File Editor

Until now we have been typing instructions one at a time into the interactive shell. When we
write programs though, we type in several instructions and have them run without waiting on us
for the next one. Let’s write our first program!

The name of the software program that provides the interactive shell is called IDLE, the
Interactive DeveLopement Environment. IDLE also has another part besides the interactive shell
called the file editor.

At the top of the Python shell window, click on the File » New Window. A new blank window
will appear for us to type our program in. This window is the file editor. The bottom right of the
file editor window will show you line and column that the cursor currently is in the file.

Email questions to the author: al@inventwithpython.com

Chapter 4 — Strings and Writing Programs 47

Figure 4-2. The file editor window. The cursor is at line 1, column 0.

You can always tell the difference between the file editor window and the interactive shell
window because the interactive shell will always have the >>> prompt in it.

Hello World!

A tradition for programmers learning a new language is to make their first program display the
text “Hello world!” on the screen. We’ll create our own Hello World program now.

Enter the following text into the new file editor window. We call this text the program’s source

code because it contains the instructions that Python will follow to determine exactly how the
program should behave.

Source Code of Hello World

email me at al@inventwithpython.com if you are still stuck.)

hello.py
. # This program says hello and asks for my name.
. print('Hello world!")
. print('What 1is your name?')
. myName = input()
. print('It is good to meet you,

vl A W N R

+ myName)

The IDLE program will give different types of instructions different colors. After you are done
typing this code in, the window should look like this:

48 http://inventwithpython.com/hacking

File Edit Format Run Options Windows Help

$# This program says hello and asks for my name. -

......

t you, ' + myName)' |

Ln: 5/Col: 42

Figure 4-3. The file editor window will look like this after you type in the code.

Saving Your Program
Once you’ve entered your source code, save it so that you won’t have to retype it each time we
start IDLE. To do so, from the menu at the top of the File Editor window, choose File » Save

As. The Save As window should open. Enter kello.py in the File Name field, then click Save.
(See Figure 4-4.)

You should save your programs every once in a while as you type them. That way, if the
computer crashes or you accidentally exit from IDLE you won’t lose everything you’ve typed. As
a shortcut, you can press Ctrl-S on Windows and Linux or ¢8-S on OS X to save your file.

Savein: | J; Python32

x| eBckEr

Py

ey Name Type Size [
-
o |, DLLs File folder €
Recent Places)
1. Doc File folder €
- . include File folder €
Desktop L Lib File folder 3
o L libs File folder €
&f—:&J 1. Scripts File folder Et
Libraries Lot File folder €
| .. Tools File folder €
E"&‘ 2 hello.py Python File 1KB 7
Computer
Network

< | L

|
File name: Im :_l Save I

Save as type: | Python files (*.py." pyw) =~ Cance

Figure 4-4. Saving the program.

Email questions to the author: al@inventwithpython.com

Chapter 4 — Strings and Writing Programs 49

A video tutorial of how to use the file editor is available from this book's website at

Running Your Program

Now it’s time to run our program. Click on Run » Run Module or just press the F5 key on your
keyboard. Your program should run in the shell window that appeared when you first started
IDLE. Remember, you have to press F5 from the file editor’s window, not the interactive shell’s
window.

When your program asks for your name, go ahead and enter it as shown in Figure 4-5:

Moldiabaa® |
";.;u,.

File Edit Shell Debug Options Windows
Python 3.2 (r32:88445, Feb 20 20!
00 32 bit (Intel)] on win32

Type "copyright", "credits™ or "]
ormation.

>>>

>>>

Hello world!

What is your name?

Albert

It is good to meet you, Albert
>>>

Figure 4-5. What the interactive shell looks like when running the “Hello World” program.

Now when you push Enter, the program should greet you (the user, that is, the one using the
program) by name. Congratulations! You’ve written your first program. You are now a beginning
computer programmer. (You can run this program again if you like by pressing F5 again.)

If you get an error that looks like this:

Hello world!
What is your name?
Albert
Traceback (most recent call last):
File "C:/Python27/hello.py", 1line 4, in <module>
myName = input()
File "<string>", Tine 1, in <module>
NameError: name 'Albert' is not defined

50 http://inventwithpython.com/hacking

...this means you are running the program with Python 2, instead of Python 3. This makes the
penguin in the first chapter sad. (The error is caused by the input () function call, which does

continuing.

Opening The Programs You’ve Saved

Close the file editor by clicking on the X in the top corner. To reload a saved program, choose
File » Open from the menu. Do that now, and in the window that appears choose hello.py and
press the Open button. Your saved hello.py program should open in the File Editor window.

How the “Hello World” Program Works

Each line that we entered is an instruction that tells Python exactly what to do. A computer
program is a lot like a recipe. Do the first step first, then the second, and so on until you reach the
end. Each instruction is followed in sequence, beginning from the very top of the program and
working down the list of instructions. After the program executes the first line of instructions, it
moves on and executes the second line, then the third, and so on.

We call the program’s following of instructions step-by-step the program execution, or just the
execution for short. The execution starts at the first line of code and then moves downward. The
execution can skip around instead of just going from top to bottom, and we’ll find out how to do
this in the next chapter.

Let’s look at our program one line at a time to see what it’s doing, beginning with line number 1.

Comments

hello.py
1. # This program says hello and asks for my name.

This line is called a comment. Comments are not for the computer, but for you, the programmer.
The computer ignores them. They’re used to remind you of what the program does or to tell
others who might look at your code what it is that your code is trying to do. Any text following a
sign (called the pound sign) is a comment. (To make it easier to read the source code, this
book prints out comments in a light gray-colored text.)

Programmers usually put a comment at the top of their code to give the program a title. The IDLE
program displays comments in red text to help them stand out.

Email questions to the author: al@inventwithpython.com

Chapter 4 — Strings and Writing Programs 51

Functions

A function is kind of like a mini-program inside your program. It contains lines of code that are
executed from top to bottom. Python provides some built-in functions that we can use (you’ve
already used the print () function). The great thing about functions is that we only need to
know what the function does, but not how it does it. (You need to know that the print ()
function displays text on the screen, but you don’t need to know how it does this.)

A function call is a piece of code that tells our program to run the code inside a function. For
example, your program can call the print () function whenever you want to display a string on
the screen. The print () function takes the value you type in between the parentheses as input
and displays the text on the screen. Because we want to display Hello world! on the screen,
we type the print function name, followed by an opening parenthesis, followed by the 'Hello

world!" string and a closing parenthesis.

The print () function

hello.py
2. print('HeTllo world!")
3. print('What is your name?')

This line is a call to the print () function (with the string to be printed going inside the
parentheses). We add parentheses to the end of function names to make it clear that we’re
referring to a function named print (), not a variable named print. The parentheses at the
end of the function let us know we are talking about a function, much like the quotes around the
number '42 "' tell us that we are talking about the string ' 42 ' and not the integer 42.

Line 3 is another print () function call. This time, the program displays “What is your name?”’

The input () function

hello.py
4. myName = 1input()

Line 4 has an assignment statement with a variable (myName) and a function call (input ()).
When input () is called, the program waits for the user to type in some text and press Enter.
The text string that the user types in (their name) becomes the string value that is stored in
myName.

Like expressions, function calls evaluate to a single value. The value that the function call

evaluates to is called the return value. (In fact, we can also use the word “returns” to mean the

52 http://inventwithpython.com/hacking

same thing for function calls as “evaluates”.) In this case, the return value of the input ()
function is the string that the user typed in-their name. If the user typed in Albert, the input ()
function call evaluates (that is, returns) to the string 'Albert'.

The function named input () does not need any arguments (unlike the print () function),
which is why there is nothing in between the parentheses.

hello.py

A}

5. print('It is good to meet you, + myName)

For line 5’s print () call, we use the plus operator (+) to concatenate the string 'ITt is
good to meet you, ' and the string stored in the myName variable, which is the name that
our user input into the program. This is how we get the program to greet us by name.

Ending the Program

Once the program executes the last line, it stops. At this point it has terminated or exited and
all of the variables are forgotten by the computer, including the string we stored in myName. If
you try running the program again and typing a different name it will print that name.

Hello world!

What is your name?

Alan

It is good to meet you, Alan

Remember, the computer only does exactly what you program it to do. In this program it is
programmed to ask you for your name, let you type in a string, and then say hello and display the
string you typed.

But computers are dumb. The program doesn’t care if you type in your name, someone else’s
name, or just something silly. You can type in anything you want and the computer will treat it
the same way:

Hello world!

What 1is your name?

poop

It is good to meet you, poop

Practice Exercises, Chapter 4, Set C

Email questions to the author: al@inventwithpython.com

Chapter 4 — Strings and Writing Programs 53

Summary

Writing programs is just about knowing how to speak the computer’s language. While you
learned a little bit of this in the last chapter, in this chapter you’ve put together several Python
instructions to make a complete program that asks for the user’s name and then greets them.

All of our programs later in this book will be more complex and sophisticated, but don’t worry.
The programs will all be explained line by line. And you can always enter instructions into the
interactive shell to see what they do before they are all put into a complete program.

Now let’s start with our first encryption program: the reverse cipher.

54 http://inventwithpython.com/hacking

CHAPTER D

THE REVERSE CIPHER

Topics Covered In This Chapter:
e The len () function
while loops

The Boolean data type
Comparison operators
Conditions

Blocks

“Every man is surrounded by a neighborhood of

voluntary spies.”
Jane Austen

The Reverse Cipher

The reverse cipher encrypts a message by printing it in reverse order. So “Hello world!” encrypts
to “!dlrow olleH”. To decrypt, you simply reverse the reversed message to get the original
message. The encryption and decryption steps are the same.

The reverse cipher is a very weak cipher. Just by looking at its ciphertext you can figure out it is
just in reverse order. .syas ti tahw tuo erugif llits ylbaborp nac uoy ,detpyrcne si siht hguoht neve
,elpmaxe roF

Email questions to the author: al@inventwithpython.com

Chapter 5 — The Reverse Cipher 55

But the code for the reverse cipher program is easy to explain, so we’ll use it as our first
encryption program.

Source Code of the Reverse Cipher Program

In IDLE, click on File » New Window to create a new file editor window. Type in the following
code, save it as reverseCipher.py, and press F5 to run it: (Remember, don’t type in the line
numbers at the beginning of each line.)

Source code for reverseCipher.py

1. # Reverse Cipher

2. # http://inventwithpython.com/hacking (BSD Licensed)
3

4. message = 'Three can keep a secret, if two of them are dead.'
5. translated = "'

6

7. i = lTen(message) - 1

8. while i >= 0:

9. translated = translated + messagel[i]

10. i=1 -1

11.

12. print(translated)

Sample Run of the Reverse Cipher Program
When you run this program the output will look like this:

.daed era meht fo owt fi ,terces a peek nac eerhT

To decrypt this message, copy the “.daed era meht fo owt fi ,terces a peek nac eerhT” text to the

paste it as the string value stored in message on line 4. Be sure to have the single quotes at the
beginning and end of the string. The new line 4 will look like this (with the change in bold):

reverseCipher.py
4. message = '.daed era meht fo owt fi ,terces a peek nac eerhT'

Now when you run the reverseCipher.py program, the output will decrypt to the original
message:

Three can keep a secret, if two of them are dead.

56 http://inventwithpython.com/hacking

Checking Your Source Code with the Online Diff Tool

Even though you could copy and paste or download this code from this book’s website, it is very
helpful to type in this program yourself. This will give you a better idea of what code is in this
program. However, you might make some mistakes while typing it in yourself.

To compare the code you typed to the code that is in this book, you can use the book’s website’s
browser. Paste your code into the text field on this web page, and then click the Compare button.
The diff tool will show any differences between your code and the code in this book. This is an
easy way to find typos that are causing errors.

Step 3

Cick the Torpars Sutton

Corrgers |
The Book's Program Your Program

? Capsar Cipher

How the Program Works

reverseCipher.py
1. Reverse Cipher
2. h

#
http://inventwithpython.com/hacking (BSD Licensed)

The first two lines are comments explaining what the program is, and also the website where you
can find it. The “BSD Licensed” part means that this program is free to copy and modify by
anyone as long as the program retains the credits to the original author (in this case, the book’s

Email questions to the author: al@inventwithpython.com

Chapter 5 — The Reverse Cipher 57

gets copied around the Internet, a person who downloads it will always know where to look for
the original source. They’ll also know this program is open source software and free to distribute
to others.

reverseCipher.py
4. message = 'Three can keep a secret, if two of them are dead.'

Line 4 stores the string we want to encrypt in a variable named message. Whenever we want to
encrypt or decrypt a new string we will just type the string directly into the code on line 4. (The
programs in this book don’t call input (), instead the user will type in the message into the
source code. You can just change the source directly before running the program again to encrypt
different strings.)

reverseCipher.py
T

5. translated =

The translated variable is where our program will store the reversed string. At the start of the
program, it will contain the blank string. (Remember that the blank string is two single quote
characters, not one double quote character.)

The 1len () Function

reverseCipher.py
7. i = len(message) - 1

Line 6 is just a blank line, and Python will simply skip it. The next line of code is on line 7. This
code is just an assignment statement that stores a value in a variable named 1. The expression that
is evaluated and stored in the variable is 1en (message) - 1.

The first part of this expression is 1en (message) . This is a function call to the 1en ()
function. The 1len () function accepts a string value argument (just like the print () function
does) and returns an integer value of how many characters are in the string (that is, the length of
the string). In this case, we pass the message variable to 1en (), so len (message) will tell
us how many characters are in the string value stored in message.

Let’s experiment in the interactive shell with the 1en () function. Type the following into the
interactive shell:

>>> len('Hello")
5

58 http://inventwithpython.com/hacking

>>> len('")

0

>>> spam = 'Al'

>>> len(spam)

2

>>> len('Hello' + " ' + 'world!")
12

>>>

From the return value of 1en (), we know the string '"Hello"' has five characters in it and the
blank string has zero characters in it. If we store the string 'A1"' in a variable and then pass the
variable to 1en (), the function will return 2. If we pass the expression 'Hello' + ' ' +
'world!"' tothe 1len () function, it returns 12. This is because 'Hello' + ' ' +
'world! "' will evaluate to the string value 'Hello world!', which has twelve characters in
it. (The space and the exclamation point count as characters.)

Line 7 finds the number of characters in message, subtracts one, and then stores this number in
the i variable. This will be the index of the last character in the message string.

Introducing the while Loop

reverseCipher.py

8. while i >= 0:

This is a new type of Python instruction called a while loop or while statement. A while
loop is made up of four parts:

1. The while keyword.

2. An expression (also called a condition) that evaluates to the Boolean values True or
False. (Booleans are explained next in this chapter.)

3. A:colon.

4. A block (explained later) of indented code that comes after it, which is what lines 9 and
10 are. (Blocks are explained later in this chapter.)

1. The while keyword
2. A condition

Y

5 >= :I:é___—lAcolon

translated = translated + message(i]
= 1

2 WOy %

4. A block of code

Email questions to the author: al@inventwithpython.com

Chapter 5 — The Reverse Cipher 59

Figure 5-2. The parts of a while loop statement.

To understand while loops, we will first need to learn about Booleans, comparison operators,
and blocks.

The Boolean Data Type

The Boolean data type has only two values: True or False. These values are case-sensitive
(you always need to capitalize the T and F, and leave the rest in lowercase). They are not string
values. You do not put a ' quote character around True or False. We will use Boolean values
(also called bools) with comparison operators to form conditions. (Explained later after
Comparison Operators.)

Like a value of any other data type, bools can be stored in variables. Type this into the interactive
shell:

>>> spam = True
>>> spam
True

>>> spam
>>> spam
False
>>>

False

Comparison Operators

In line 8 of our program, look at the expression after the while keyword:

reverseCipher.py

8. while i >= 0:

The expression that follows the while keyword (the i >= 0 part) contains two values (the
value in the variable i, and the integer value 0) connected by an operator (the >= sign, called the

“greater than or equal” operator). The >= operator is called a comparison operator.

The comparison operator is used to compare two values and evaluate to a True or False
Boolean value. Table 5-1 lists the comparison operators.

60 http://inventwithpython.com/hacking

Table 5-1. Comparison operators.

Operator Sign Operator Name
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
== Equal to

I= Not equal to

Enter the following expressions in the interactive shell to see the Boolean value they evaluate to:

>>> 0 < 6

True

>> 6 < 0

False

>>> 50 < 10.5
False

>>> 10.5 < 11.3
True

>>> 10 < 10
False

The expression 0 < 6 returns the Boolean value True because the number O is less than the
number 6. But because 6 is not less than 0, the expression 6 < 0 evaluates to False. 50 is not
lessthan 10.5,s0 50 < 10.5isFalse.10.5islessthan 11.3,s010 < 11.3 evaluates

to True.

Look againat 10 < 10.Itis False because the number 10 is not smaller than the number 10.
They are exactly the same size. If Alice were the same height as Bob, you wouldn’t say that Alice
is shorter than Bob. That statement would be false.

Try typing in some expressions using the other comparison operators:

>>> 10 <= 20
True
>>> 10 <= 10
True
>>> 10 >= 20
False
>>> 20 >= 20
True

Email questions to the author: al@inventwithpython.com

Chapter 5 — The Reverse Cipher 61

>>>

Remember that for the “less than or equal to” and “greater than or equal to” operators, the < or >
sign always comes before the = sign.

Type in some expressions that use the == (equal to) and ! = (not equal to) operators into the shell
to see how they work:

>>> 10 == 10

True

>>> 10 == 11

False

>>> 11 == 10

False

>>> 10 != 10

False

>>> 10 = 11

True

>>> 'Hello' == 'Hello'
True

>>> 'Hello' == 'Goodbye'
False

>>> 'Hello' == 'HELLO'
False

>>> 'Goodbye' != 'Hello'
True

Notice the difference between the assignment operator (=) and the “equal to” comparison
operator (==). The equal (=) sign is used to assign a value to a variable, and the equal to (==
sign is used in expressions to see whether two values are the same. If you’re asking Python if two
things are equal, use ==. If you are telling Python to set a variable to a value, use =.

String and integer values will always be not-equal to each other. For example, try entering the
following into the interactive shell:

>>> 42 == 'Hello'
False

>>> 42 == '42'
False

>>> 10 == 10.0
True

62 http://inventwithpython.com/hacking

Just remember that every expression with comparison operators always evaluates to the value
True or the value False.

Conditions

A condition is another name for an expression when it is used in a while or if statement. (i f
statements aren’t used in the reverse cipher program, but will be covered in the next chapter.)
Conditions usually have comparison operators, but conditions are still just expressions.

Blocks

A block is one or more lines of code grouped together with the same minimum amount of
indentation (that is, the number of spaces in front of the line). You can tell where a block begins
and ends by looking at the line’s indentation.

A block begins when a line is indented by four spaces. Any following line that is also indented by
at least four spaces is part of the block. When a line is indented with another four spaces (for a
total of eight spaces in front of the line), a new block begins inside the block. A block ends when
there is a line of code with the same indentation before the block started.

Let’s look at some imaginary code (it doesn’t matter what the code is, we are only paying
attention to the indentation of each line). We will replace the indenting spaces with black squares
to make them easier to count:

1. codecodecodecodecodecodecode # zero spaces of indentation

2. wwssscodecodecodecodecodecodecodecodecode # four spaces of indentation

3. =ssscodecodecodecodecodecodecode # four spaces of indentation

4. wsmssssscodecodecodecodecodecodecodecodecode # eight spaces of indentation
5. ==sscodecodecodecodecode # four spaces of indentation
6
7
8

== sscodecodecodecodecodecode # four spaces of indentation
codecodecodecodecodecodecodecodecodecodecode # zero spaces of indentation

You can see that line 1 has no indentation, that is, there are zero spaces in front of the line of
code. But line 2 has four spaces of indentation. Because this is a larger amount of indentation
than the previous line, we know a new block has begun. Line 3 also has four spaces of
indentation, so we know the block continues on line 3.

Line 4 has even more indentation (8 spaces), so a new block has begun. This block is inside the
other blocks. In Python, you can have blocks-within-blocks.

Email questions to the author: al@inventwithpython.com

Chapter 5 — The Reverse Cipher 63

On line 5, the amount of indentation has decreased to 4, so we know that the block on the
previous line has ended. Line 4 is the only line in that block. Since line 5 has the same amount of
indentation as the block from line 3, we know that the block has continue on to line 5.

Line 6 is a blank line, so we just skip it.

Line 7 has four spaces on indentation, so we know that the block that started on line 2 has
continued to line 7.

Line 8 has zero spaces of indentation, which is less indentation than the previous line. This
decrease in indentation tells us that the previous block has ended.

There are two blocks in the above make-believe code. The first block goes from line 2 to line 7.
The second block is just made up of line 4 (and is inside the other block).

(As a side note, it doesn’t always have to be four spaces. The blocks can use any number of
spaces, but the convention is to use four spaces.)

The while Loop Statement

reverseCipher.py
8. while i >= 0:

9. translated = translated + message[i]
10. i=1-1
11.

12. print(translated)

Let’s look at the while statement on line 8 again. What a while statement tells Python to do is
first check to see what the condition (which on line 8 is i >= 0) evaluates to. If the condition
evaluates to True, then the program execution enters the block following the while statement.
From looking at the indentation, this block is made up of lines 9 and 10.

If the while statement’s condition evaluates to False, then the program execution will skip the
code inside the following block and jump down to the first line after the block (which is line 12).

If the condition was True, the program execution starts at the top of the block and executes each
line in turn going down. When it reaches the bottom of the block, the program execution jumps
back to the while statement on line 8 and checks the condition again. If it is still True, the
execution jumps into the block again. If it is False, the program execution will skip past it.

You can think of the while statement while i >= 0: as meaning, “while the variable i is
greater than or equal to zero, keep executing the code in the following block”.

64 http://inventwithpython.com/hacking

“Growing” a String

Remember on line 7 that the 1 variable is first set to the length of the message minus one, and
the while loop on line 8 will keep executing the lines inside the following block until the
condition 1 >= 0is False.

reverseCipher.py
7. i = lTen(message) - 1
8. while i >= 0:

9. translated = translated + messagel[i]
10. i=1-1
11.

12. print(translated)

There are two lines inside the while statement’s block, line 9 and line 10.

Line 9 is an assignment statement that stores a value in the t ranslated variable. The value
that is stored is the current value of t ranslated concatenated with the character at the index 1
in message. In this way, the string value stored in translated “grows” until it becomes the
fully encrypted string.

Line 10 is an assignment statement also. It takes the current integer value in i and subtracts one
from it (this is called decrementing the variable), and then stores this value as the new value of

i.

The next line is line 12, but since this line has less indentation, Python knows that the while
statement’s block has ended. So rather than go on to line 12, the program execution jumps back to
line 8 where the while loop’s condition is checked again. If the condition is True, then the
lines inside the block (lines 9 and 10) are executed again. This keeps happening until the
condition is False (thatis, when 1 is less than 0), in which case the program execution goes to
the first line after the block (line 12).

Let’s think about the behavior of this loop. The variable i starts off with the value of the last
index of message and the translated variable starts off as the blank string. Then inside the
loop, the value of message [1] (which is the last character in the me ssage string, since i will
have the value of the last index) is added to the end of the t ranslated string.

Then the value in i is decremented (that is, reduced) by 1. This means that message [1] will
be the second to last character. So while i as an index keeps moving from the back of the string
in message to the front, the string message [1] is added to the end of translated. This is

Email questions to the author: al@inventwithpython.com

Chapter 5 — The Reverse Cipher 65

what causes translated to hold the reverse of the string in the message. When 1 is finally

set to -1, then the while loop’s condition will be False and the execution jumps to line 12.

12.

print(translated)

reverseCipher.py

At the end of our program on line 12, we print out the contents of the t ranslated variable

(that is, the string ' .daed era meht fo owt fi ,terces a peek nac eerhT')to
the screen. This will show the user what the reversed string looks like.

If you are still having trouble understanding how the code in the while loop reverses the string,

try adding this new line inside the while loop:

8. while i >= 0:

9.
10.
11.
12.
13.

translated = translated + message[i]
print(i, message[i], translated)
. ——

i

print(translated)

=7

reverseCipher.py

This will print out the three expressions i, message[1], and translated each time the

execution goes through the loop (that is, on each iteration of the loop). The commas tell the

print () function that we are printing three separate things, so the function will add a space in

between them. Now when you run the program, you can see how the translated variable

“grows”. The output will look like this:

48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31

o MmN Q-

[I I 1]

+t >0 3

-+

.da
.dae
.daed
.daed
.daed
.daed
.daed
.daed
.daed
.daed
.daed
.daed
.daed
.daed
.daed
.daed

er

era
era
era
era
era
era
era
era
era
era

me
meh
meht
meht
meht
meht
meht

fo
fo

66

http://inventwithpython.com/hacking

30 o .daed
29 w .daed
28 t .daed
27 .daed
26 f .daed
25 1 .daed
24 .daed
23 , .daed
22 t .daed
21 e .daed
20 r .daed
19 c .daed
18 e .daed
17 s .daed
16 .daed
15 a .daed
14 .daed
13 p .daed
12 e .daed
11 e .daed
10 k .daed
9 .daed
8 n .daed
7 a .daed
6 c .daed
5 .daed
4 e .daed
3 e .daed
2 r .daed
1 h .daed
0 T .daed
.daed era

era
era
era
era
era
era
era
era
era
era
era
era
era
era
era
era
era
era
era
era
era
era
era
era
era
era
era
era
era
era
era

meht
meht
meht
meht
meht
meht
meht
meht
meht
meht
meht
meht
meht
meht
meht
meht
meht
meht
meht
meht
meht
meht
meht
meht
meht
meht
meht
meht
meht
meht
meht

fo
fo
fo
fo
fo
fo
fo
fo
fo
fo
fo
fo
fo
fo
fo
fo
fo
fo
fo
fo
fo
fo
fo
fo
fo
fo
fo
fo
fo
fo
fo

meht fo owt

(0]
ow
owt
owt
owt
owt
owt
owt
owt
owt
owt
owt
owt
owt
owt
owt
owt
owt
owt
owt
owt
owt
owt
owt
owt
owt
owt
owt
owt
owt
owt

.F
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi

,te
,ter
,terc
,terce
,terces
,terces
,terces
,terces
,terces
,terces
,terces
,terces
,terces
,terces
,terces
,terces
,terces
,terces
,terces
,terces
,terces
,terces

a
a
a
a
a
a
a
a
a

a

AU <L DR R sV)

p
pe
pee
peek
peek
peek
peek
peek
peek
peek
peek
peek
peek
peek

fi ,terces a peek nac

n
na

nac

nac

nac e

nac ee
nac eer
nac eerh
nac eerhT
eerhT

The first line, which shows “48
translated evaluate to after the string message [1] has been added to the end of

translated but before 1 is decremented. You can see that the first time the program execution
goes through the loop, 1 is setto 48, and so message [1] (thatis, message [48]) is the string
'.'. The translated variable started as a blank string, but when message [1] was added to

.”, is showing what the expressions i, message[i], and

the end of it on line 9, it became the string value ' . '.

On the next iteration of the loop, the print () call displays “47
been decremented from 48 to 47, and so now message [1] is message [47], which is the
'd"' string. (That’s the second “d” in “dead”.) This 'd' gets added to the end of translated

so that translated is now setto ' .d".

Now you can see how the t ranslated variable’s string is slowly “grown” from a blank string

to the reverse of the string stored in message.

Email questions to the author: al@inventwithpython.com

.d”. You can see that 1 has

Chapter 5 — The Reverse Cipher 67

Tracing Through the Program, Step by Step

The previous explanations have gone through what each line does, but let’s go step by step
through the program the same way the Python interpreter does. The interpreter starts at the very
top, executes the first line, then moves down a line to execute the next instruction. The blank lines
and comments are skipped. The while loop will cause the program execution will loop back to
the start of the loop after it finishes.

Here is a brief explanation of each line of code in the same order that the Python interpreter
executes it. Follow along with to see how the execution moves down the lines of the program, but
sometimes jumps back to a previous line.

reverseCipher.py

1. # Reverse Cipher

2. # http://inventwithpython.com/hacking (BSD Licensed)
3.

4. message = 'Three can keep a secret, if two of them are dead.'
5. translated = ''

6.

7. i = lTen(message) - 1

8. while i >= 0:

9. translated = translated + message[i]

10. i=1 -1

11.

12. print(translated)

Step 1 Line 1 This is a comment, so the Python interpreter skips it.
Step 2 Line2 This is a comment, and skipped.
Step 3 Line4 The string value ' Three can keep a secret, if two of

them are dead.' is stored in the message variable.
Step 4 Line 5 The blank string ' ' is stored in the translated variable.

Step 5 Line7 1len (message) - 1 evaluatesto 48. The integer 48 is stored in the 1
variable.

Step 6 Line8 The while loop’s condition i >= 0 evaluates to True. Since the
condition is True, the program execution moves inside the following
block.

Step 7 Line9 translated + message[i] to '.'.The string value '. " is stored

in the translated variable.

Step 8 Line 10 i - 1 evaluatesto 47. The integer 47 is stored in the i variable.

Step 9 Line 8 When the program execution reaches the end of the block, the execution
moves back to the while statement and rechecks the condition. 1 >= 0

68 http://inventwithpython.com/hacking

evaluates to True, the program execution moves inside the block again.

Step 10 Line9 translated + message[i] evaluates '.d'. The string value ' .d"
is stored in the translated variable.

Step 11 Line 10 i - 1 evaluatesto 46. The integer 46 is stored in the 1 variable.

Step 12 Line8 The while statement rechecks the condition. Since 1 >= 0 evaluates to
True, the program execution will move inside the block again.

Step 13 ... The lines of the code continue to loop. We fast-forward to when 1i is set to
to 0 and translatedissetto ' .daed era meht fo owt fi
Step 149 ,terces a peek nac eerh'..

Step 150 Line 8 The while loop’s condition is checked, and 0 >= 0 evaluates to True.

Step 151 Line9 translated + message[i] evaluatesto '.daed era meht fo
owt fi ,terces a peek nac eerhT'. This string is stored in the
translated variable.

Step 152 Line 10 i - 1 evaluatesto O - 1, which evaluates to —1. -1 is stored in the i
variable.

Step 153 Line 8 The while loop’s conditionis i >= 0, which evaluates to -1 >= 0,
which evaluates to False. Because the condition is now False, the
program execution skips the following block of code and goes to line 12.

Step 154 Line 12 translated evaluates to the string value ' .daed era meht fo
owt fi ,terces a peek nac eerhT'.Theprint () function is
called and this string is passed, making it appear on the screen.
There are no more lines after line 12, so the program terminates.

Using input () In Our Programs

The programs in this book are all designed so that the strings that are being encrypted or
decrypted are typed directly into the source code. You could also modify the assignment
statements so that they call the input () function. You can pass a string to the input ()
function to appear as a prompt for the user to type in the string to encrypt. For example, if you
change line 4 in reverseCipher.py to this:

reverseCipher.py
4. message = input('Enter message: ')

Then when you run the program, it will print the prompt to the screen and wait for the user to
type in the message and press Enter. The message that the user types in will be the string value
that is stored in the message variable:

Enter message: Hello world!
!'dlrow olleH

Email questions to the author: al@inventwithpython.com

Chapter 5 — The Reverse Cipher 69

Practice Exercises, Chapter 5, Section A

Summary

Now that we have learned how to deal with text, we can start making programs that the user can
run and interact with. This is important because text is the main way the user and the computer
will communicate with each other.

Strings are just a different data type that we can use in our programs. We can use the + operator
to concatenate strings together. We can use indexing and slicing to create a new string from part
of a different string. The 1en () function takes a string argument and returns an integer of how
many characters are in the string.

The Boolean data type has only two values: True and False. Comparison operators ==, ! =, <,
>, <=, and >= can compare two values and evaluate to a Boolean value.

Conditions are expression that are used in several different kinds of statements. A while loop
statement keeps executing the lines inside the block that follows it as long as its condition
evaluates to True. A block is made up of lines with the same level of indentation, including any
blocks inside of them.

A common practice in programs is to start a variable with a blank string, and then concatenate
characters to it until it “grows” into the final desired string.

70 http://inventwithpython.com/hacking

CHAPTER O

THE CAESAR CIPHER

Topics Covered In This Chapter:

e The import statement

e Constants

e The upper () string method

e for loops

e 1if elif,and else statements
e The in and not in operators
e The find () string method

“BIG BROTHER IS WATCHING YOU.”

“1984” by George Orwell

Implementing a Program

In Chapter 1, we used a cipher wheel, a St. Cyr slide, and a chart of letters and numbers to
implement the Caesar cipher. In this chapter, we will use a computer program to implement the
Caesar cipher.

The reverse cipher always encrypts the same way. But the Caesar cipher uses keys, which encrypt
the message in a different way depending on which key is used. The keys for the Caesar cipher

Email questions to the author: al@inventwithpython.com

Chapter 6 — The Caesar Cipher 71

are the integers from O to 25. Even if a cryptanalyst knows that the Caesar cipher was used, that
alone does not give her enough information to break the cipher. She must also know the key.

Source Code of the Caesar Cipher Program

Type in the following code into the file editor, and then save it as caesarCipher.py. Press FS5 to
run the program. Note that first you will need to download the pyperclip.py module and place this
file in the same directory (that is, folder) as the caesarCipher.py file. You can download this file

NNNNNNRRERRRRRBRRRRER
A WNROWVWOMNOU AWNRO

O oo NOUVLITDS WN =

Source code for caesarCipher.py
Caesar Cipher
http://inventwithpython.com/hacking (BSD Licensed)

import pyperclip

the string to be encrypted/decrypted
message = 'This is my secret message.'

the encryption/decryption key
key = 13

. # tells the program to encrypt or decrypt
. mode = 'encrypt' # set to 'encrypt' or 'decrypt'

. # every possible symbol that can be encrypted
. LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

. # stores the encrypted/decrypted form of the message
. translated =

. # capitalize the string in message
. message = message.upper()

. # run the encryption/decryption code on each symbol in the message string
. for symbol in message:

26.
27.
28.
29.
30.
31.
32.
33.
34.

if symbol in LETTERS:
get the encrypted (or decrypted) number for this symbol
num = LETTERS.find(symbol) # get the number of the symbol

if mode == 'encrypt':
num = num + key
elif mode == 'decrypt':

num = num - key

handle the wrap-around if num is larger than the Tength of

72 http://inventwithpython.com/hacking

35. # LETTERS or Tess than 0

36. if num >= 1en(LETTERS):

37. num = num - 1en(LETTERS)

38. elif num < O:

39. num = num + Ten(LETTERS)

40.

41. # add encrypted/decrypted number's symbol at the end of translated
42. translated = translated + LETTERS[num]

43,

44, else:

45. # just add the symbol without encrypting/decrypting
46. translated = translated + symbol

47.

48. # print the encrypted/decrypted string to the screen
49. print(translated)

50.

51. # copy the encrypted/decrypted string to the clipboard
52. pyperclip.copy(translated)

Sample Run of the Caesar Cipher Program
When you run this program, the output will look like this:

GUVF VF ZL FRPERG ZRFFNTR.

The above text is the string 'This is my secret message.' encrypted with the Caesar
cipher with key 1 3. The Caesar cipher program you just ran will automatically copy this
encrypted string to the clipboard so you can paste it in an email or text file. This way you can
easily take the encrypted output from the program and send it to another person.

To decrypt, just paste this text as the new value stored in the message variable on line 7. Then
change the assignment statement on line 13 to store the string 'decrypt' in the variable mode:

caesarCipher.py

6. # the string to be encrypted/decrypted
7. message = 'GUVF VF ZL FRPERG ZRFFNTR.'
8.

9. # the encryption/decryption key

10. key = 13

11.

12. # tells the program to encrypt or decrypt
13. mode = 'decrypt' # set to 'encrypt' or 'decrypt

When you run the program now, the output will look like this:

Email questions to the author: al@inventwithpython.com

Chapter 6 — The Caesar Cipher 73

THIS IS MY SECRET MESSAGE.

If you see this error message when running the program:

Traceback (most recent call last):
File "C:\Python32\caesarCipher.py", line 4, in <module>
import pyperclip
ImportError: No module named pyperclip

...then you have not downloaded the pyperclip module into the right folder. If you still
cannot get the module working, just delete lines 4 and 52 (which have the text “pyperclip” in
them) from the program. This will get rid of the code that depends on the pyperclip module.

Checking Your Source Code with the Online Diff Tool
To compare the code you typed to the code that is in this book, you can use the online diff tool on

your code into the text field on this web page, and then click the Compare button. The diff tool
will show any differences between your code and the code in this book. This can help you find
any typos you made when typing out the program.

Practice Exercises, Chapter 6, Set A

How the Program Works

Let’s go over exactly what each of the lines of code in this program does.

Importing Modules with the import Statement

caesarCipher.py
. # Caesar Cipher
http://inventwithpython.com/hacking (BSD Licensed)

AW N R

. import pyperclip

Line 4 is a new kind of statement called an import statement. While Python includes many
built-in functions, some functions exist in separate programs called modules. Modules are
Python programs that contain additional functions that can be used by your program. In this case,
we’re importing a module named pyperclip so that we can call the pyperclip.copy ()
function later in this program.

74 http://inventwithpython.com/hacking

The import statement is made up of the import keyword followed by the module name. Line
4 is an import statement that imports the pyperclip module, which contains several
functions related to copying and pasting text to the clipboard.

caesarCipher.py

6. # the string to be encrypted/decrypted
7. message = 'This is my secret message.'
8.

9. # the encryption/decryption key

10. key = 13

11.

12. # tells the program to encrypt or decrypt
13. mode = 'encrypt' # set to 'encrypt' or 'decrypt'

The next few lines set three variables: message will store the string to be encrypted or
decrypted, key will store the integer of the encryption key, and mode will store either the string
'encrypt' (which will cause code later in the program to encrypt the string in message) or
'decrypt' (which will tell the program to decrypt rather than encrypting).

Constants

caesarCipher.py
15. # every possible symbol that can be encrypted
16. LETTERS = "ABCDEFGHIJKLMNOPQRSTUVWXYZ'

We also need a string that contains all the capital letters of the alphabet in order. It would be
tiring to type the full ' ABCDEFGHIJKLMNOPQRSTUVWXYZ ' string value each time we use it in
the program (and we might make typos when typing it, which would cause errors in our
program). So instead we will type the code for the string value once and place it in a variable
named LETTERS. This string contains all the letters that our cipher program can possibly
encrypt. This set of letters (which don’t have to be just letters but can also be numbers,
punctuation, or any other symbol) is called the cipher’s symbol set. The end of this chapter will
tell you how to expand this program’s symbol set to include other characters besides letters.

The LETTERS variable name is in all capitals. This is the programming convention for constant
variables. Constants are variables whose values are not meant to be changed when the program
runs. Although we can change LETTERS just like any other variable, the all-caps reminds the
programmer to not write code that does so.

Email questions to the author: al@inventwithpython.com

Chapter 6 — The Caesar Cipher 75

Like all conventions, we don’t have to follow it. But doing it this way makes it easier for other
programmers to understand how these variables are used. (It even can help you if you are looking
at code you wrote yourself a long time ago.)

The upper () and lower () String Methods

caesarCipher.py
18. # stores the encrypted/decrypted form of the message
19. translated = "'
20.
21. # capitalize the string in message
22. message = message.upper()

On line 19, the program stores a blank string in a variable named translated. Just like in the
reverse cipher from last chapter, by the end of the program the translated variable will
contain the completely encrypted (or decrypted) message. But for now it starts as a blank string.

Line 22 is an assignment statement that stores a value in a variable named message, but the
expression on the right side of the = operator is something we haven’t seen before:

message.upper ().

This is a method call. Methods are just like functions, except they are attached to a non-module
value (or in the case of line 22, a variable containing a value) with a period. The name of this
method is upper (), and it is being called on the string value stored in the message variable.

A function is not a method just because it is in a module. You will see on line 52 that we call
pyperclip.copy (), but pyperclip is a module that was imported on line 4, so copy () is
not a method. It is just a function that is inside the pyperclip module. If this is confusing, then
you can always call methods and functions a “function” and people will know what you’re
talking about.

Most data types (such as strings) have methods. Strings have a method called upper () and
lower () which will evaluate to an uppercase or lowercase version of that string, respectively.
Try typing the following into the interactive shell:

>>> 'Hello world!'.upper()
"HELLO WORLD!'

>>> "'Hello world!'.lower()
'hello world!"

>>>

76 http://inventwithpython.com/hacking

Because the upper () method returns a string value, you can call a method on that string as
well. Try typing 'Hello world!'.upper () .lower () into the shell:

>>> 'Hello world!'.upper().Tower()
'heTllo world!"'
>>>

'"Hello world!'.upper () evaluates to the string ' HELLO WORLD! ', and then we call
the Llower () method on that string. This returns the string 'hello world!', which is the
final value in the evaluation. The order is important. 'Hello world!'.lower () .upper ()
is not the same as 'Hello world!'.upper () .lower ():

>>> 'Hello world'.lower() .upper()
"HELLO WORLD!'
>>>

If a string is stored in a variable, you can call any string method (such as upper () or
lower ()) on that variable. Look at this example:

>>> fizz = "Hello world!'
>>> fizz.upper(Q

'"HELLO WORLD!'

>>> fizz

'HeT1lo world!"

Calling the upper () or lower () method on a string value in a variable does not change the
value inside a variable. Methods are just part of expressions that evaluate to a value. (Think about
it like this: the expression fizz + 'ABC' would not change the string stored in £izz to have
'ABC' concatenated to the end of it, unless we used it in an assignment statement like fizz =
fizz + 'ABC')

Different data types have different methods. You will learn about other methods as you read this

The for Loop Statement

caesarCipher.py
24. # run the encryption/decryption code on each symbol in the message string
25. for symbol in message:

Email questions to the author: al@inventwithpython.com

Chapter 6 — The Caesar Cipher 77

The for loop is very good at looping over a string or list of values (we will learn about lists
later). This is different from the while loop, which loops as long as a certain condition is True.
A for statement has six parts:

1. The for keyword

1. The for keyword. ‘ 3. The in
2. A variable name. 2. A variable name g keyword
3. The in keyword. .
. . aymbol mes3sage:

4. A string value (or a variable i ' cacirter: B

containing a string value). B sy \
3. A colon. 4. Afs.frjmg ortvquable
6. A block of code. Gy il

5. A colon
6. A block of code

Figure 6-1. The parts of a for loop statement.

Each time the program execution goes through the loop (that is, on each iteration through the
loop) the variable in the for statement takes on the value of the next character in the string.

For example, type the following into the interactive shell. Note that after you type the first line,
the >>> prompt will turn into . . . (although in IDLE, it will just print three spaces) because the
shell is expecting a block of code after the for statement’s colon. In the interactive shell, the
block will end when you enter a blank line:

>>> for letter in 'Howdy':
print('The Tletter is ' + letter)

The letter is
The letter is
The letter is
The letter is
The letter is
>>>

< 9= 0=

A while Loop Equivalent of a for Loop

The for loop is very similar to the while loop, but when you only need to iterate over
characters in a string, using a for loop is much less code to type. You can make a while loop
that acts the same way as a for loop by adding a little extra code:

>> 17 =0
>>> while i < Ten('Howdy'):
Tetter = "Howdy'[1]

78 http://inventwithpython.com/hacking

print('The Tetter is ' + letter)
i=1+1

The letter is
The letter is
The letter is
The letter is
The letter is
>>>

< a=so0x

Notice that this while loop does the exact same thing that the for loop does, but is not as short
and simple as the for loop.

Before we can understand lines 26 to 32 of the Caesar cipher program, we need to first learn
aboutthe i f, elif, and else statements, the in and not in operators, and the £ind ()
string method.

Practice Exercises, Chapter 6, Set B

The i f Statement

An 1if statement can be read as “If this condition is True, execute the code in the following
block. Otherwise if it is False, skip the block.” Open the file editor and type in the following
small program. Then save the file as password.py and press F5 to run it.

Source code for password.py

print('Access denied.')
. print('Done.")

1. print('What is the password?')
2. password = input()

3. if password == 'rosebud':

4. print('Access granted.')
5. if password != 'rosebud':

6.

7

When the password = input () line is executed, the user can type in anything she wants and
it will be stored as a string in the variable password. If she typed in “rosebud” (in all lowercase
letters), then the expression password == 'rosebud' will evaluate to True and the
program execution will enter the following block to print the 'Access granted.' string.

If password == 'rosebud' is False, then this block of code is skipped. Next, the second
if statement will have its condition also evaluated. If this condition, password !=

Email questions to the author: al@inventwithpython.com

Chapter 6 — The Caesar Cipher 79

'rosebud' is True, then the execution jumps inside of the following block to print out
'Access denied. '.If the condition is False, then this block of code is skipped.

The else Statement

Often we want to test a condition and execute one block of code if it is True and another block
of code if it is False. The previous password.py example is like this, but it used two 1 £
statements.

An else statement can be used after an i f statement’s block, and its block of code will be
executed if the 1 f statement’s condition is False. You can read the code as “if this condition is
true, execute this block, or else execute this block.

Type in the following program and save it as password2.py. Notice that it does the same thing as
the previous password.py program, except it uses an if and else statement instead of two i f

statements:
Source code for password2.py
1. print('What is the password?')
2. password = input(Q)
3. if password == 'rosebud':
4. print('Access granted."')
5. else:
6. print('Access denied.')
7. print('Done.")

The elif Statement

There is also an “else if” statement called the e 11 f statement. Like an i f statement, it has a
condition. Like an e 1 se statement, it follows an i f (or another e11 f) statement and executes if
the previous if (or e1l1if) statement’s condition was False. Youcanread if,elif and else
statements as, “If this condition is true, run this block. Or else, check if this next condition is true.
Or else, just run this last block.” Type in this example program into the file editor and save it as

elifeggs.py:

Source code for elifeggs.py
. numberOfEggs = 12
. if numberOfEggs < 4:
print('That is not that many eggs.')
. elif numberOfEggs < 20:
print('You have quite a few eggs.')
. elif numberOfEggs == 144:

SV A WN

80 http://inventwithpython.com/hacking

7. print('You have a lot of eggs. Gross!')
8. else:
9. print('Eat ALL the eggs!')

When you run this program, the integer 12 is stored in the variable numberOfEggs. Then the
condition numberOfEggs < 4 is checked to see if it is True. If it isn’t, the execution skips
the block and checks numberOfEggs < 20. Ifitisn’t True, execution skips that block and
checks if numberOfEggs == 144. If all of these conditions have been False, then the
else block is executed.

Notice that one and only one of these blocks will be executed. You can have zero or more
elif statements following an i f statement. You can have zero or one e1se statements, and the
else statement always comes last.

The in and not in Operators

An expression of two strings connected by the in operator will evaluate to True if the first
string is inside the second string. Otherwise the expression evaluates to False. Notice that the
inand not in operators are case-sensitive. Try typing the following in the interactive shell:

>>> 'hello' in 'hello world!'
True

>>> 'ello' in 'hello world!'
True

>>> 'HELLO' in 'hello world!'
False

>>> 'HELLO' in 'HELLO world!'
True

>>> "' in 'Hello'

True

>>> "' 1in
True

>>> 'D' in 'ABCDEF'
True

>>>

The not in operator will evaluate to the opposite of in. Try typing the following into the
interactive shell:

>>> 'hello' not in 'hello world!'
False
>>> 'ello' not in 'hello world!'
False

Email questions to the author: al@inventwithpython.com

Chapter 6 — The Caesar Cipher 81

>>> 'HELLO' not in 'hello world!'
True

>>> "HELLO' not in 'HELLO world!'
False

>>> "' not in 'Hello'

False

>>> "' not 1in
False

>>> 'D' not in 'ABCDEF'
False

>>>

(]

Expressions using the in and not in operators are handy for conditions of i f statements so that
we can execute some code if a string exists inside of another string.

Also, the in keyword used in for statements is not the same as the in operator used here. They
are just typed the same.

The £ind () String Method

Just like the upper () method can be called on a string values, the find () method is a string
method. The find () method takes one string argument and returns the integer index of where
that string appears in the method’s string. Try typing the following into the interactive shell:

>>> 'hello'.find('e")
>>> 'hello'.find('0")

>>> fizz = 'hello'
>>> fizz.find('h'")

>>>

If the string argument cannot be found, the £ind () method returns the integer —1. Notice that
the £ind () method is case-sensitive. Try typing the following into the interactive shell:

>>> 'hello'.find('x")
-1
>>> 'hello'.find('H")
-1
>>>

82 http://inventwithpython.com/hacking

The string you pass as an argument to £ind () can be more than one character. The integer that
find () returns will be the index of the first character where the argument is found. Try typing
the following into the interactive shell:

>>> 'hello'.find('ello")

1

>>> 'hello'.find('To")

3

>>> 'hello hello'.find('e")
1

>>>

The £ind () string method is like a more specific version of using the in operator. It not only
tells you if a string exists in another string, but also tells you where.

Practice Exercises, Chapter 6, Set C

Back to the Code

Now that we understand how 1 f, e11if, else statements, the i n operator, and the £ind ()
string method works, it will be easier to understand how the rest of the Caesar cipher program
works.

caesarCipher.py

26. if symbol in LETTERS:
27. # get the encrypted (or decrypted) number for this symbol
28. num = LETTERS.find(symbol) # get the number of the symbol

If the string in symbol (which the for statement has set to be only a single character) is a
capital letter, then the condition symbol in LETTERS will be True. (Remember that on line
22 we converted message to an uppercase version with message = message.upper (), so
symbol cannot possibly be a lowercase letter.) The only time the condition is False is if
symbol is something like a punctuation mark or number string value, suchas '?"' or '4"'.

We want to check if symbol is an uppercase letter because our program will only encrypt (or
decrypt) uppercase letters. Any other character will be added to the translated string without
being encrypted (or decrypted).

Email questions to the author: al@inventwithpython.com

Chapter 6 — The Caesar Cipher 83

There is a new block that starts after the i £ statement on line 26. If you look down the program,
you will notice that this block stretches all the way to line 42. The el se statement on line 44 is
paired to the i f statement on line 26.

caesarCipher.py

29. if mode == 'encrypt':
30. num = num + key

31. elif mode == 'decrypt':
32. num = num - key

Now that we have the current symbol’s number stored in num, we can do the encryption or
decryption math on it. The Caesar cipher adds the key number to the letter’s number to encrypt it,
or subtracts the key number from the letter’s number to decrypt it.

The mode variable contains a string that tells the program whether or not it should be encrypting
or decrypting. If this string is 'encrypt ', then the condition for line 29’s i f statement will be
True and line 30 will be executed (and the block after the e11 f statement will be skipped). If
this string is any other value besides 'encrypt ', then the condition for line 29’s i f statement
is False and the program execution moves on to check the e11 f statement’s condition.

This is how our program knows when to encrypt (where it is adding the key) or decrypt (where it
is subtracting the key). If the programmer made an error and stored 'pineapples’ in the
mode variable on line 13, then both of the conditions on lines 29 and 31 would be False and
nothing would happen to the value stored in num. (You can try this yourself by changing line 13
and re-running the program.)

caesarCipher.py

34. # handle the wrap-around if num is larger than the Tength of
35. # LETTERS or Tless than 0

36. if num >= 1en(LETTERS):

37. num = num - 1en(LETTERS)

38. elif num < 0:

39. num = num + 1en(LETTERS)

Remember that when we were implementing the Caesar cipher with paper and pencil, sometimes
the number after adding or subtracting the key would be greater than or equal to 26 or less than 0.
In those cases, we had to add or subtract 26 to the number to “wrap-around” the number. This
“wrap-around” is what lines 36 to 39 do for our program.

84 http://inventwithpython.com/hacking

If num is greater than or equal to 26, then the condition on line 36 is True and line 37 is
executed (and the e11 f statement on line 38 is skipped). Otherwise, Python will check if num is
less than 0. If that condition is True, then line 39 is executed.

The Caesar cipher adds or subtracts 26 because that is the number of letters in the alphabet. If
English only had 25 letters, then the “wrap-around” would be done by adding or subtracting 25.

Notice that instead of using the integer value 2 6 directly, we use 1len (LETTERS) . The function
call len (LETTERS) will return the integer value 26, so this code works just as well. But the
reason that we use len (LETTERS) instead of 26 is that the code will work no matter what
characters we have in LETTERS.

We can modify the value stored in LETTERS so that we encrypt and decrypt more than just the
uppercase letters. How this is done will be explained at the end of this chapter.

caesarCipher.py
41. # add encrypted/decrypted number's symbol at the end of translated
42. translated = translated + LETTERS[num]

Now that the integer in num has been modified, it will be the index of the encrypted (or
decrypted) letter in LETTERS. We want to add this encrypted/decrypted letter to the end of the
translated string, so line 42 uses string concatenation to add it to the end of the current value
of translated.

caesarCipher.py

44, else:
45. # just add the symbol without encrypting/decrypting
46. translated = translated + symbol

Line 44 has four spaces of indentation. If you look at the indentation of the lines above, you’ll see
that this means it comes after the i £ statement on line 26. There’s a lot of code in between this
if and else statement, but it all belongs in the block of code that follows the 1 f statement on
line 26. If that i f statement’s condition was False, then the block would have been skipped and
the program execution would enter the e 1 se statement’s block starting at line 46. (Line 45 is
skipped because it is a comment.)

This block has just one line in it. It adds the symbol string as it is to the end of translated.
This is how non-letter strings like ' ' or '. "' are added to the translated string without being
encrypted or decrypted.

Email questions to the author: al@inventwithpython.com

Chapter 6 — The Caesar Cipher 85

Displaying and Copying the Encrypted/Decrypted String

caesarCipher.py
48. # print the encrypted/decrypted string to the screen
49. print(translated)
50.
51. # copy the encrypted/decrypted string to the clipboard
52. pyperclip.copy(translated)

Line 49 has no indentation, which means it is the first line after the block that started on line 26
(the for loop’s block). By the time the program execution reaches line 49, it has looped through
each character in the message string, encrypted (or decrypted) the characters, and added them to

translated.

Line 49 will call the print () function to display the t ranslated string on the screen. Notice
that this is the only print () call in the entire program. The computer does a lot of work
encrypting every letter in message, handling wrap-around, and handling non-letter characters.
But the user doesn’t need to see this. The user just needs to see the final string in translated.

Line 52 calls a function that is inside the pyperclip module. The function’s name is copy ()
and it takes one string argument. Because copy () is a function in the pyperclip module, we
have to tell Python this by putting pyperclip. in front of the function name. If we type

copy (translated) instead of pyperclip.copy (translated), Python will give us an
error message.

You can see this error message for yourself by typing this code in the interactive shell:

>>> copy('Hello")

Traceback (most recent call last):
File "<stdin>", 1ine 1, in <module>

NameError: name 'copy' is not defined

>>>

Also, if you forget the import pyperclip line before trying to call pyperclip.copy (),
Python will give an error message. Try typing this into the interactive shell:

>>> pyperclip.copy('Hello")
Traceback (most recent call last):

File "<stdin>", 1line 1, in <module>
NameError: name 'pyperclip' is not defined
>>>

86 http://inventwithpython.com/hacking

That’s the entire Caesar cipher program. When you run it, notice how your computer can execute
the entire program and encrypt the string in less than a second. Even if you type in a very, very
long string for the value to store in the message variable, your computer can encrypt or decrypt
a message within a second or two. Compare this to the several minutes it would take to do this
with a cipher wheel or St. Cyr slide. The program even copies the encrypted text to the clipboard
so the user can simply paste it into an email to send to someone.

Encrypt Non-Letter Characters

One problem with the Caesar cipher that we’ve implemented is that it cannot encrypt non-letters.
For example, if you encrypt the string ' The password is 31337."' with the key 20, it will
encryptto 'Dro zkccgybn sc 31337."' This encrypted message doesn’t keep the
password in the message very secret. However, we can modify the program to encrypt other
characters besides letters.

If you change the string that is stored in LETTERS to include more than just the uppercase letters,
then the program will encrypt them as well. This is because on line 26, the condition symbol

in LETTERS will be True. The value of num will be the index of symbol in this new, larger
LETTERS constant variable. The “wrap-around” will need to add or subtract the number of
characters in this new string, but that’s already handled because we use 1en (LETTERS) instead
of typing in 2 6 directly into the code. (This is why we programmed it this way.)

The only changes you have to make are to the LETTERS assignment statement on line 16 and
commenting out line 22 which capitalizes all the letters in message.

caesarCipher.py
15. # every possible symbol that can be encrypted

16. LETTERS = " !"#$%&\' (O *+,-./0123456789: ; <=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ [\\]
A_"a bcdefghijkImnopgrstuvwxyz{|}~"
17.

18. # stores the encrypted/decrypted form of the message
19. translated = "'

20.

21. # capitalize the string in message

22. #message = message.upper()

Notice that this new string has the escape characters \ ' and \\ in it. You can download this new

This modification to our program is like if we had a cipher wheel or St. Cyr slide that had not
only uppercase letters but numbers, punctuation, and lowercase letters on it as well.

Email questions to the author: al@inventwithpython.com

Chapter 6 — The Caesar Cipher 87

Even though the value for LETTERS has to be the same when running the program for decryption
as when it encrypted the message, this value doesn’t have to be secret. Only the key needs to be
kept secret, while the rest of program (including the code for the Caesar cipher program) can be
shared with the world.

Summary

You’ve had to learn several programming concepts and read through quite a few chapters to get
to this point, but now you have a program that implements a secret cipher. And more importantly,
you can understand how this code works.

Modules are Python programs that contain useful functions we can use. To use these functions,
you must first import them with an import statement. To call functions in an imported module,
put the module name and a period before the function name, like: module. function ().

Constant variables are by convention written in UPPERCASE. These variables are not meant to
have their value changed (although nothing prevents the programmer from writing code that does
this). Constants are helpful because they give a “name” to specific values in your program.

Methods are functions that are attached to a value of a certain data type. The upper () and
lower () string methods return an uppercase or lowercase version of the string they are called
on. The £ind () string method returns an integer of where the string argument passed to it can
be found in the string it is called on.

A for loop will iterate over all the characters in string value, setting a variable to each character
on each iteration. The 1 f, elif, and else statements can execute blocks of code based on
whether a condition is True or False.

The in and not in operators can check if one string is or isn’t in another string, and evaluates

to True or False accordingly.

Knowing how to program gives you the power to take a process like the Caesar cipher and put it
down in a language that a computer can understand. And once the computer understands how to
do it, it can do it much faster than any human can and with no mistakes (unless there are mistakes
in your programming.) This is an incredibly useful skill, but it turns out the Caesar cipher can
easily be broken by someone who knows computer programming. In the next chapter we will use
our skills to write a Caesar cipher “hacker” so we can read ciphertext that other people encrypted.
So let’s move on to the next chapter, and learn how to hack encryption.

88 http://inventwithpython.com/hacking

CHAPTER 7

HACKING THE CAESAR CIPHER
WITH THE BRUTE-FORCE
TECHNIQUE

Topics Covered In This Chapter:

o Kerckhoffs’s Principle and Shannon’s Maxim
e The brute-force technique

e The range () function

e String formatting (string interpolation)

Hacking Ciphers

We can hack the Caesar cipher by using a cryptanalytic technique called “brute-force”. Because
our code breaking program is so effective against the Caesar cipher, you shouldn’t use it to
encrypt your secret information.

Ideally, the ciphertext would never fall into anyone’s hands. But Kerckhoffs’s Principle (named
after the19th-century cryptographer Auguste Kerckhoffs) says that a cipher should still be secure
even if everyone else knows how the cipher works and has the ciphertext (that is, everything
except the key). This was restated by the 20" century mathematician Claude Shannon as
Shannon’s Maxim: “The enemy knows the system.”

Email questions to the author: al@inventwithpython.com

Chapter 7 — Hacking the Caesar Cipher with the Brute Force Technique 89

Figure 7-1. Auguste Kerckhoffs Figure 7-2. Claude Shannon
January 19, 1835 - August 9, 1903 April 30, 1916 - February 24, 2001
“A cryptosystem should be secure even if “The enemy knows the system.”
everything about the system, except the key, is
public knowledge.”

The Brute-Force Attack

Nothing stops a cryptanalyst from guessing one key, decrypting the ciphertext with that key,
looking at the output, and if it was not the correct key then moving on to the next key. The
technique of trying every possible decryption key is called a brute-force attack. It isn’t a very
sophisticated hack, but through sheer effort (which the computer will do for us) the Caesar cipher
can be broken.

Source Code of the Caesar Cipher Hacker Program

Open a new file editor window by clicking on File » New Window. Type in the following code
into the file editor, and then save it as caesarHacker.py. Press FS5 to run the program. Note that
first you will need to download the pyperclip.py module and place this file in the same directory

Source code for caesarHacker.py
Caesar Cipher Hacker
http://inventwithpython.com/hacking (BSD Licensed)

N wNpR

message = 'GUVF VF ZL FRPERG ZRFFNTR.'

90 http:/inventwithpython.com/hacking

5. LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

6.

7. # loop through every possible key

8. for key in range(len(LETTERS)):

9.

10. # It is important to set translated to the blank string so that the
11. # previous iteration's value for translated is cleared.

12. translated = "'

13.

14. # The rest of the program is the same as the original Caesar program:
15.

16. # run the encryption/decryption code on each symbol in the message
17. for symbol in message:

18. if symbol in LETTERS:

19. num = LETTERS.find(symbol) # get the number of the symbol
20. num = num - key
21.
22. # handle the wrap-around if num is 26 or larger or less than 0
23. if num < O:
24. num = num + len(LETTERS)
25.
26. # add number's symbol at the end of translated
27. translated = translated + LETTERS[num]
28.
29. else:

30. # just add the symbol without encrypting/decrypting

31. translated = translated + symbol

32.

33. # display the current key being tested, along with its decryption
34. print('Key #%s: %s' % (key, translated))

You will see that much of this code is the same as the code in the original Caesar cipher program.
This is because the Caesar cipher hacker program does the same steps to decrypt the key.

Sample Run of the Caesar Cipher Hacker Program

Here is what the Caesar cipher program looks like when you run it. It is trying to break the
ciphertext, “GUVF VF ZL FRPERG ZRFFNTR.” Notice that the decrypted output for key 13 is
plain English, so the original encryption key must have been 13.

Key #0: GUVF VF ZL FRPERG ZRFFNTR.
Key #1: FTUE UE YK EQODQF YQEEMSQ.
Key #2: ESTD TD XJ DPNCPE XPDDLRP.
Key #3: DRSC SC WI COMBOD WOCCKQO.
Key #4: CQRB RB VH BNLANC VNBBIJPN.

Email questions to the author: al@inventwithpython.com

Chapter 7 — Hacking the Caesar Cipher with the Brute Force Technique 91

Key
Key
Key
Key
Key
Key
Key
Key
Key
Key
Key
Key
Key
Key
Key
Key
Key
Key
Key
Key
Key

#5:
#6:
#7:
#8:
#9:

#10:
#11:
#12:
#13:
#14:
#15:
#16:
#17:
#18:
#19:
#20:
#21:
#22:
#23:
#24:
#25:

BPQA QA UG AMKZMB UMAAIOM.
AOPZ PZ TF ZLJYLA TLZZHNL.
ZNOY OY SE YKIXKZ SKYYGMK.
YMNX NX RD XJHWJY RIXXFLJ.
XLMW Mw QC WIGVIX QIWWEKI.

WKLV
VIKU
uIiT
THIS
SGHR
RFGQ
QEFP
PDEO
OCDN
NBCM
MABL
LZAK
KYZ3J
JXYI
IwXH
HVWG

LV
KU
T
IS
HR
GQ
FP
EO
DN
M
BL
AK
73
Y1
XH
WG

PB
OA
NZ
MY
LX
Kw
v
Iu
HT
GS
FR
EQ
DP
Cco
BN
AM

VHFUHW
UGETGV
TFDSFU
SECRET
RDBQDS
QCAPCR
PBZOBQ
OAYNAP
NZXMZ0
MYWLYN
LXVKXM
KwWUJwL
JVTIVK
TUSHUJ
HTRGTI
GSQFSH

PHVVDJH.
OGUUCIG.
NFTTBHF.
MESSAGE.
LDRRZFD.
KCQQYEC.
JBPPXDB.
TAOOWCA.
HZNNVBZ.
GYMMUAY .
FXLLTZX.
EWKKSYW.
DVJJRXV.
CUIIQWU.
BTHHPVT.
ASGGOUS.

How the Program Works

v A W N R

Caesar Cipher Hacker

http://inventwithpython.com/hacking (BSD Licensed)

. message

LETTERS =

"GUVF VF ZL FRPERG ZRFFNTR.'
'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

caesarHacker.py

The hacker program will create a message variable that stores the ciphertext string the program

tries to decrypt. The LETTERS constant variable contains every character that can be encrypted
with the cipher. The value for LETTERS needs to be exactly the same as the value for LETTERS
used in the Caesar cipher program that encrypted the ciphertext we are trying to hack, otherwise

the hacker program won’t work.

The range () Function

7. # loop through every possible key
8. for key in range(len(LETTERS)):

caesarHacker.py

92 http://inventwithpython.com/hacking

Line 8 is a for loop that does not iterate over a string value, but instead iterates over the return
value from a call to a function named range (). The range () function takes one integer
argument and returns a value of the range data type. These range values can be used in for loops
to loop a specific number of times. Try typing the following into the interactive shell:

>>> for i in range(4):
print('Hello")

Hello

Hello

Hello

Hello
>>>

More specifically, the range value returned from the range () function call will set the for
loop’s variable to the integers 0 up to, but not including, the argument passed to range (). Try
typing the following into the interactive shell:

>>> for i in range(6):
print(i)

v WN R O -

>>>

Line 8 is a for loop that will set the key variable with the values 0 up to (but not including) 26.
Instead of hard-coding the value 26 directly into our program, we use the return value from

len (LETTERS) so thatif we modify LETTERS the program will still work. See the “Encrypt
Non-Letter Characters” section in the last chapter to read why.

So the first time the program execution goes through this loop, key will be set to 0 and the
ciphertext in message will be decrypted with key 0. (The code inside the for loop does the
decrypting.) On the next iteration of line 8’s for loop, key will be set to 1 for the decryption.

You can also pass two integer arguments to the range () function instead of just one. The first
argument is where the range should start and the second argument is where the range should stop
(up to but not including the second argument). The arguments are separated by a comma:

Email questions to the author: al@inventwithpython.com

Chapter 7 — Hacking the Caesar Cipher with the Brute Force Technique 93

>>> for i in range(2, 6):
print(i)

vT A WN

>>>

The range () call evaluates to a value of the “range object” data type.

Back to the Code

caesarHacker.py
7. # loop through every possible key
8. for key in range(len(LETTERS)):

9.

10. # It is important to set translated to the blank string so that the
11. # previous iteration's value for translated is cleared.

12. translated = "'

On line 12, translated is set to the blank string. The decryption code on the next few lines
adds the decrypted text to the end of the string in translated. It is important that we reset
translated to the blank string at the beginning of this for loop, otherwise the decrypted text will
be added to the decrypted text in t ranslated from the last iteration in the loop.

caesarHacker.py

14. # The rest of the program is the same as the original Caesar program:
15.

16. # run the encryption/decryption code on each symbol in the message
17. for symbol in message:

18. if symbol in LETTERS:

19. num = LETTERS.find(symbol) # get the number of the symbol

Lines 17 to 31 are almost exactly the same as the code in the Caesar cipher program from the last
chapter. It is slightly simpler, because this code only has to decrypt instead of decrypt or encrypt.

First we loop through every symbol in the ciphertext string stored in message on line 17. On
each iteration of this loop, line 18 checks if symbol is an uppercase letter (that is, it exists in the
LETTERS constant variable which only has uppercase letters) and, if so, decrypts it. Line 19

94 http://inventwithpython.com/hacking

locates where symbol is in LETTERS with the £ind () method and stores it in a variable called

num.

caesarHacker.py
20. num = num - key
21.
22. # handle the wrap-around if num is 26 or larger or Tless than 0
23. if num < O:
24. num = num + len(LETTERS)

Then we subtract the key from num on line 20. (Remember, in the Caesar cipher, subtracting the
key decrypts and adding the key encrypts.) This may cause num to be less than zero and require
“wrap-around”. Line 23 checks for this case and adds 26 (which is what 1en (LETTERS)
returns) if it was less than 0.

caesarHacker.py
26. # add number's symbol at the end of translated
27. translated = translated + LETTERS[num]

Now that num has been modified, LETTERS [num] will evaluate to the decrypted symbol. Line
27 adds this symbol to the end of the string stored in translated.

caesarHacker.py

29. else:
30. # just add the symbol without encrypting/decrypting
31. translated = translated + symbol

Of course, if the condition for line 18’s condition was False and symbol was not in
LETTERS, we don’t decrypt the symbol at all. If you look at the indentation of line 29’s else
statement, you can see that this e 1 se statement matches the if statement on line 18.

Line 31 just adds symbol to the end of translated unmodified.

String Formatting

caesarHacker.py
33. # display the current key being tested, along with its decryption
34. print('Key #%s: %s' % (key, translated))

Although line 34 is the only print () function call in our Caesar cipher hacker program, it will
print out several lines because it gets called once per iteration of line 8’s for loop.

Email questions to the author: al@inventwithpython.com

Chapter 7 — Hacking the Caesar Cipher with the Brute Force Technique 95

The argument for the print () function call is something we haven’t used before. It is a string
value that makes use of string formatting (also called string interpolation). String formatting
with the % s text is a way of placing one string inside another one. The first $s text in the string
gets replaced by the first value in the parentheses after the % at the end of the string.

Type the following into the interactive shell:

>>> 'Hello %s!' % ('world")
'HeT1lo world!"
>>> 'Hello ' + 'world' +
'HeTllo world!"'

>>> 'The %s ate the %s that ate the %s.' % ('dog', 'cat', 'rat')
'The dog ate the cat that ate the rat.'
>>>

String formatting is often easier to type than string concatenation with the + operator, especially
for larger strings. And one benefit of string formatting is that, unlike string concatenation, you
can insert non-string values such as integers into the string. Try typing the following into the
interactive shell:

>>> '%s had %s pies.' % ('Alice', 42)
'Alice had 42 pies.'
>>> 'Alice' + ' had ' + 42 + ' pies.'
Traceback (most recent call Tast):
File "<stdin>", 1line 1, in <module>
TypeError: Can't convert 'int' object to str implicitly
>>>

Line 34 uses string formatting to create a string that has the values in both the key and
translated variables. Because key stores an integer value, we’ll use string formatting to put
it in a string value that is passed to print ().

Practice Exercises, Chapter 7, Set A

Summary

The critical failure of the Caesar cipher is that there aren’t that many different possible keys that
can be used to encrypt a message. Any computer can easily decrypt with all 26 possible keys, and
it only takes the cryptanalyst a few seconds to look through them to find the one that is in
English. To make our messages more secure, we will need a cipher that has more possible keys.
That transposition cipher in the next chapter can provide this for us.

96 http://inventwithpython.com/hacking

CHAPTER 8

ENCRYPTING WITH THE
TRANSPOSITION CIPHER

Topics Covered In This Chapter:

e Creating functions with de f statements.

main () functions

Parameters

The global and local scope, and global and local variables
The global statement

The list data type, and how lists and strings are similar
The 1ist () function

Lists of lists

Augmented assignment operators (+=, —=, *=, /=)
The join () string method

e Return values and the return statement

e Thespecial name variable

The Caesar cipher isn’t secure. It doesn’t take much for a computer to brute-force through all
twenty-six possible keys. The transposition cipher has many more possible keys to make a brute-
force attack more difficult.

Encrypting with the Transposition Cipher

Instead of replacing characters with other characters, the transposition cipher jumbles up the
message’s symbols into an order that makes the original message unreadable. Before we start
writing code, let’s encrypt the message “Common sense is not so common.” with pencil and

Email questions to the author: al@inventwithpython.com

Chapter 8 — The Transposition Cipher, Encrypting 97

paper. Including the spaces and punctuation, this message has 30 characters. We will use the
number 8 for the key.

The first step is to draw out a number of boxes equal to the key. We will draw 8 boxes since our
key for this example is 8:

The second step is to start writing the message you want to encrypt into the boxes, with one
character for each box. Remember that spaces are a character (this book marks the boxes with (s)
to indicate a space so it doesn’t look like an empty box).

[Clo[m|m[on|®]s |

We only have 8 boxes but there are 30 characters in the message. When you run out of boxes,
draw another row of 8 boxes under the first row. Keep creating new rows until you have written
out the full message:

ISI 2nd 3rd 4Ih Sth 6Lh 7th 8Lh
m| o | n|[(s)]| s
e | ()| 1 s | (s)

)| s |o|(s)]| ¢

oz |00
Slo|=s|o
Bl—~|=»|B

We shade in the two boxes in the last row to remind us to ignore them. The ciphertext is the
letters read from the top left box going down the column. “C”, “e”, “n”, and “0” are from the 1*
column. When you get to the last row of a column, move to the top row of the next column to the

€e 9% CC_ 9% ¢ 9 (¢

right. The next characters are “0”, “n”, “o0”, “m”. Ignore the shaded boxes.

The ciphertext is “Cenoonommstmme 00 snnio. s s ¢”, which is sufficiently scrambled to keep
someone from figuring out the original message by looking at it.

The steps for encrypting are:

1. Count the number of characters in the message and the key.

2. Draw a number of boxes equal to the key in a single row. (For example, 12 boxes for a
key of 12.)

3. Start filling in the boxes from left to right, with one character per box.

4. When you run out of boxes and still have characters left, add another row of boxes.

98 http://inventwithpython.com/hacking

5. Shade in the unused boxes in the last row.

6. Starting from the top left and going down, write out the characters. When you get to the
bottom of the column, move to the next column to the right. Skip any shaded boxes. This
will be the ciphertext.

Practice Exercises, Chapter 8, Set A

A Transposition Cipher Encryption Program

Encrypting with paper and pencil involves a lot of work and it’s easy to make mistakes. Let’s
look at a program that can implement transposition cipher encryption (a decryption program will
be demonstrated later in this chapter).

Using the computer program has a slight problem, however. If the ciphertext has space characters
at the end, then it is impossible to see them since a space is just empty... well, space. To fix this,
the program adds a | character at the end of the ciphertext. (The | character is called the “pipe”
character and is above the Enter key on your keyboard.) For example:

Hello| # There are no spaces at the end of the message.
Hello | # There is one space at the end of the message.
Hello | # There are two spaces at the end of the message.

Source Code of the Transposition Cipher Encryption Program

Open a new file editor window by clicking on File » New Window. Type in the following code
into the file editor, and then save it as transpositionEncrypt.py. Press F5 to run the program. Note
that first you will need to download the pyperclip.py module and place this file in the same
directory as the transpositionEncrypt.py file. You can download this file from

Source code for transpositionEncrypt.py

1. # Transposition Cipher Encryption

2. # http://inventwithpython.com/hacking (BSD Licensed)
3.

4. import pyperclip

5.

6. def main(Q:

7. myMessage = 'Common sense is not so common.'

8. myKey = 8

9.
10. ciphertext = encryptMessage(myKey, myMessage)

Email questions to the author: al@inventwithpython.com

Chapter 8 — The Transposition Cipher, Encrypting

99

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.

def

Print the encrypted string in ciphertext to the screen, with

a | (called "pipe" character) after it in case there are spaces at
the end of the encrypted message.

print(ciphertext + '|")

Copy the encrypted string in ciphertext to the clipboard.
pyperclip.copy(ciphertext)

encryptMessage(key, message):
Each string in ciphertext represents a column in the grid.
ciphertext = [''] * key

Loop through each column in ciphertext.
for col in range(key):
pointer = col

Keep Tooping until pointer goes past the length of the message.
while pointer < len(message):
Place the character at pointer in message at the end of the
current column in the ciphertext list.
ciphertext[col] += message[pointer]

move pointer over
pointer += key

Convert the ciphertext list into a single string value and return it.

return .join(ciphertext)

If transpositionEncrypt.py is run (instead of imported as a module) call
the main() function.
if _name__ == '_main__":

main()

Sample Run of the Transposition Cipher Encryption Program

When you run the above program, it produces this output:

Cenoonommstmme oo snnio. s s c|

This ciphertext (without the pipe character at the end) is also copied to the clipboard, so you can
paste it into an email to someone. If you want to encrypt a different message or use a different

100 http://inventwithpython.com/hacking

key, change the value assigned to the myMessage and myKey variables on lines 7 and 8. Then
run the program again.

How the Program Works

transpositionEncrypt.py
. # Transposition Cipher Encryption
http://inventwithpython.com/hacking (BSD Licensed)

A WN R

. import pyperclip

The transposition cipher program, like the Caesar cipher program, will copy the encrypted text to
the clipboard. So first we will import the pyperclip module so it can call

pyperclip.copy ().

Creating Your Own Functions with de f Statements

transpositionEncrypt.py
6. def main(Q:
7. myMessage = 'Common sense is not so common.'
8. myKey = 8

A function (like print ()) is a sort of mini-program in your program. When the function is
called, the execution moves to the code inside that function and then returns to the line after the
function call. You can create your own functions with a de f statement like the one on line 6.

The def statement on line 6 isn't a call to a function named main (). Instead, the de f statement
means we are creating, or defining, a new function named main () that we can call later in our
program. When the execution reaches the de £ statement Python will define this function. We can
then call it the same way we call other functions. When we call this function, the execution
moves inside of the block of code following the de f statement.

Open a new file editor window and type the following code into it:

Source code for helloFunction.py
1. def hello(Q):
2 print('Hello!")
3 total =42 + 1
4. print('42 plus 1 is %s' % (total))
5. print('Start!')
6. helloO
7. print('Call it again.')
8. hello(Q)

Email questions to the author: al@inventwithpython.com

Chapter 8 — The Transposition Cipher, Encrypting 101

9. print('Done.")

Save this program with the name helloFunction.py and run it by pressing F5. The output looks
like this:

Start!

Hello!

42 plus 1 1is 43
Call it again.
Hello!

42 plus 1 1is 43
Done.

When the helloFunction.py program runs, the execution starts at the top. The first line is a de f
statement that defines the hello () function. The execution skips the block after the de £
statement and executes the print ('Start!"') line. Thisis why 'Start!"' is the first string
printed when we run the program.

The next line after print ('Start! ') is a function call to our hello () function. The
program execution jumps to the first line in the hel1lo () function’s block on line 2. This
function will cause the strings 'Hello! ' and '42 plus 1 is 43" to be printed to the
screen.

When the program execution reaches the bottom of the de £ statement, the execution will jump
back to the line after the line that originally called the function (line 7). In helloFunction.py, this
isthe print ('Call it again. ") line. Line 8 is another call to the hello () function. The
program execution will jump back into the hello () function and execute the code there again.
This is why 'Hello! ' and '42 plus 1 is 43" are displayed on the screen two times.

After that function returns to line 9, the print ('Done. ") line executes. This is the last line in
our program, so the program exits.

The Program’s main () Function

transpositionEncrypt.py
6. def main(Q:
7. myMessage = 'Common sense is not so common.'
8. myKey = 8

102 http://inventwithpython.com/hacking

The rest of the programs in this book have a function named main () which is called at the start
of program. The reason is explained at the end of this chapter, but for now just know that the
main () function in the programs in this book are always called soon after the programs are run.

On lines 7 and 8, the variables myMessage and myKey will store the plaintext message to
encrypt and the key used to do the encryption.

transpositionEncrypt.py
10. ciphertext = encryptMessage(myKey, myMessage)

The code that does the actual encrypting will be put into a function we define on line 21 named
encryptMessage (). This function will take two arguments: an integer value for the key and a
string value for the message to encrypt. When passing multiple arguments to a function call,
separate the arguments with a comma.

The return value of encryptMessage () will be a string value of the encrypted ciphertext.
(The code in this function is explained next.) This string will be stored in a variable named

ciphertext.
transpositionEncrypt.py
12. # Print the encrypted string in ciphertext to the screen, with
13. # a | (called "pipe" character) after it in case there are spaces at
14. # the end of the encrypted message.
15. print(ciphertext + '|")
16.
17. # Copy the encrypted string in ciphertext to the clipboard.
18. pyperclip.copy(ciphertext)

The ciphertext message is printed to the screen on line 15 and copied to the clipboard on line 18.
The program prints a | character (called the “pipe” character) at the end of the message so that the
user can see any empty space characters at the end of the ciphertext.

Line 18 is the last line of the main () function. After it executes, the program execution will
return to the line after the line that called it. The call to main () is on line 45 and is the last line

in the program, so after execution returns from main () the program will exit.

Parameters

transpositionEncrypt.py
21. def encryptMessage(key, message):

Email questions to the author: al@inventwithpython.com

Chapter 8 — The Transposition Cipher, Encrypting 103

The code in the encryptMessage () function does the actual encryption. The key and
message text in between the parentheses next to encryptMessage () ’s def statement
shows that the encryptMessage () function takes two parameters.

Parameters are the variables that contain the arguments passed when a function is called.
Parameters are automatically deleted when the function returns. (This is just like how variables
are forgotten when a program exits.)

When the encryptMessage () function gets called from line 10, two argument values are
passed (on line 10, they are the values in myKey and myMessage). These values get assigned to
the parameters key and message (which you can see on line 21) when the execution moves to
the top of the function.

A parameter is a variable name in between the parentheses in the de f statement. An
argument is a value that is passed in between the parentheses for a function call.

Python will raise an error message if you try to call a function with too many or too few
arguments for the number of parameters the function has. Try typing the following into the
interactive shell:

>>> len('hello', 'world'")
Traceback (most recent call last):
File "<stdin>", 1ine 1, in <module>
TypeError: Ten() takes exactly one argument (2 given)
>>> len()
Traceback (most recent call Tast):
File "<stdin>", 1line 1, in <module>
TypeError: Ten() takes exactly one argument (0 given)
>>>

Changes to Parameters Only Exist Inside the Function

Look at the following program, which defines and then calls a function named func () :

def func(param):
param = 42
spam = 'Hello'
func(spam)
print(spam)

When you run this program, the print () call on the last line will print out 'Hello"', not 42.
When func () is called with spam as the argument, the spam variable is not being sent into the

104 http://inventwithpython.com/hacking

func () function and having 42 assigned to it. Instead, the value inside spam is being copied
and assigned to param. Any changes made to param inside the function will not change the
value in the spam variable.

(There is an exception to this rule when you are passing something called a list or dictionary
value, but this will be explained in chapter 10 in the “List References” section.)

This is an important idea to understand. The argument value that is “passed” in a function call is
copied to the parameter. So if the parameter is changed, the variable that provided the argument
value is not changed.

Variables in the Global and Local Scope

You might wonder why we even have the key and message parameters to begin with, since we
already have the variables myKey and myMessage from the main () function. The reason is
because myKey and myMessage are in the main () function’s local scope and can’t be used

outside of the main () function.

Every time a function is called, a local scope is created. Variables created during a function call
exist in this local scope. Parameters always exist in a local scope. When the function returns, the
local scope is destroyed and the local variables are forgotten. A variable in the local scope is still
a separate variable from a global scope variable even if the two variables have the same name.

Variables created outside of every function exist in the global scope. When the program exits,
the global scope is destroyed and all the variables in the program are forgotten. (All the variables
in the reverse cipher and Caesar cipher programs were global.)

The global Statement

If you want a variable that is assigned inside a function to be a global variable instead of a local
variable, put a global statement with the variable’s name as the first line after the de f
statement.

Here are the rules for whether a variable is a global variable (that is, a variable that exists in the
global scope) or local variable (that is, a variable that exists in a function call’s local scope):

1. Variables outside of all functions are always global variables.

2. [Ifavariable in a function is never used in an assignment statement, it is a global variable.

3. If avariable in a function is not used in a global statement and but is used in an
assignment statement, it is a local variable.

4. If a variable in a function is used in a global statement, it is a global variable when
used in that function.

Email questions to the author: al@inventwithpython.com

Chapter 8 — The Transposition Cipher, Encrypting 105

For example, type in the following short program, save it as scope.py, and press F5 to run it:

=
o

20.
21.
22.
23.
24,
25.
26.

O oo NOUVI DA WN

Source code for scope.py

spam = 42

def

def

. def
11.
12.
13.
14.
15.
16.
17.
18.
19.

def

eggs:
spam = 99 # spam in this function is Tlocal
print('In eggs():', spam)

ham(Q):
print('In ham(Q):', spam) # spam in this function is global

bacon():

global spam # spam in this function is global
print('In bacon():', spam)

spam = 0

CRASHQ) :
print(spam) # spam in this function 1is Tlocal
spam = 0

print(spam)
eggs O
print(spam)
ham()
print(spam)
bacon()
print(spam)
CRASHQO)

The program will crash when Python executes line 16, and the output will look like this:

42

In eggs(: 99
42

In ham(): 42
42

In bacon(): 42

0

Traceback (most recent call last):

File "C:\scope.py", Tine 27, in <module>

CRASHQO)

File "C:\scope.py", 1line 16, in CRASH

106 http://inventwithpython.com/hacking

print(spam)
UnboundLocalError: Tocal variable 'spam' referenced before assignment

When the spam variable is used on lines 1, 19, 21, 23, 25 it is outside of all functions, so this is
the global variable named spam. In the eggs () function, the spam variable is assigned the
integer 99 on line 4, so Python regards this spam variable as a local variable named spam.
Python considers this local variable to be completely different from the global variable that is also
named spam. Being assigned 99 on line 4 has no effect on the value stored in the global spam
variable since they are different variables (they just happen to have the same name).

The spam variable in the ham () function on line 8 is never used in an assignment statement in
that function, so it is the global variable spam.

The spam variable in the bacon () function is used in a global statement, So we know it is
the global variable named spam. The spam = 0 assignment statement on line 13 will change the

value of the global spam variable.

The spam variable in the CRASH () function is used in an assignment statement (and not in a
global statement) so the spam variable in that function is a local variable. However, notice that
itis used in the print () function call on line 16 before it is assigned a value on line 17. This is
why calling the CRASH () function causes our program to crash with the error,
UnboundLocalError: local variable 'spam' referenced before

assignment.

It can be confusing to have global and local variables with the same name, so even if you
remember the rules for how to tell global and local variables apart, you would be better off using
different names.

Practice Exercises, Chapter 8, Set B

The List Data Type

transpositionEncrypt.py
22. # Each string in ciphertext represents a column in the grid.
23. ciphertext = [''] * key

Line 23 uses a new data type called the list data type. A list value can contain other values. Just

like how strings begin and end with quotes, a list value begins with a [open bracket and ends

Email questions to the author: al@inventwithpython.com

Chapter 8 — The Transposition Cipher, Encrypting 107

with] close bracket. The values stored inside the list are typed within the brackets. If there is
more than one value in the list, the values are separated by commas.

108 http://inventwithpython.com/hacking

Type the following into the interactive shell:

>>> animals = ['aardvark',6 'anteater', 'antelope', 'albert']
>>> animals

['aardvark', 'anteater', 'antelope',6 'albert']

>>>

The animals variable stores a list value, and in this list value are four string values. The
individual values inside of a list are also called items. Lists are very good when we have to store
lots and lots of values, but we don't want variables for each one. Otherwise we would have
something like this:

>>> animalsl = 'aardvark'
>>> animals2 = 'anteater'
>>> animals3 = 'antelope'
>>> animals4 = 'albert'

>>>

This makes working with all the strings as a group very hard, especially if you have hundreds,
thousands, or millions of different values that you want stored in a list.

Many of the things you can do with strings will also work with lists. For example, indexing
and slicing work on list values the same way they work on string values. Instead of individual
characters in a string, the index refers to an item in a list. Try typing the following into the
interactive shell:

>>> animals = ['aardvark', 'anteater', 'antelope', 'albert']
>>> animals[0]
'aardvark'

>>> animals[1]
'anteater'

>>> animals[2]
'antelope'

>>> animals[3]

'albert'

>>> animals[1:3]
['anteater', 'antelope']
>>>

Remember, the first index is 0 and not 1. While using slices with a string value will give you a
string value of part of the original string, using slices with a list value will give you a list value of
part of the original list.

Email questions to the author: al@inventwithpython.com

Chapter 8 — The Transposition Cipher, Encrypting 109

A for loop can also iterate over the values in a list, just like it iterates over the characters in a
string. The value that is stored in the for loop’s variable is a single value from the list. Try
typing the following into the interactive shell:

>>> for spam in ['aardvark', 'anteater', 'antelope', 'albert']:
print('For dinner we are cooking ' + spam)

For dinner we are cooking aardvark
For dinner we are cooking anteater
For dinner we are cooking antelope
For dinner we are cooking albert
>>>

Using the 1ist () Function to Convert Range Objects to Lists

If you need a list value that has increasing integer amounts, you could have code like this to build
up a list value using a for loop:

>>> myList = []
>>> for i in range(10):
myList = myList + [i]

>>> myList
[Ol 1’ 2, 3! 4! 5’ 6! 7’ 8’ 9]

>>>

However, it is simpler to directly make a list from a range object that the range () function
returned by using the 1ist () function:

| >>> myList = 1ist(range(10))

i >>> myList

[0, 1, 2, 3, 4,5,6, 7,8, 9]
§>>>

The 1ist () function can also convert strings into a list value. The list will have several single-
character strings that were in the original string:

>>> myList = Tist('Hello world!")

>>> myList

[lHl’ le" I'II’ I'II’ 'O', \l |’ 'W" lol’ |r|’ "I" ldl’ l!l]
>>>

110 http://inventwithpython.com/hacking

We won’t be using the 1ist () function on strings or range objects in this program, but it will
come up in later in this book.

Reassigning the Items in Lists

The items inside a list can also be modified. Use the index with a normal assignment statement.
Try typing the following into the interactive shell:

>>> animals = ['aardvark', 'anteater', 'antelope', 'albert']
>>> animals
['aardvark', 'anteater', 'antelope', 'albert']

>>> animals[2] = 9999

>>> animals

['aardvark', 'anteater',k 9999, 'albert']
>>>

Reassigning Characters in Strings

While you can reassign items in a list, you cannot reassign a character in a string value. Try
typing the following code into the interactive shell to cause this error:

>>> 'Hello world!'[6] = 'x'
Traceback (most recent call last):
File "<stdin>", 1ine 1, in <module>
TypeError: 'str' object does not support item assignment
>>>

To change a character in a string, use slicing instead. Try typing the following into the interactive
shell:

>>> spam = 'Hello world!'

>>> spam = spam[:6] + 'x' + spam[7:]
>>> spam

'HeTllo xorld!’

>>>

Lists of Lists

List values can even contain other list values. Try typing the following into the interactive shell:

>>> spam = [['dog', 'cat'], [1, 2, 3]]
>>> spam[0]

['dog', 'cat']

>>> spam[0] [0]

Email questions to the author: al@inventwithpython.com

Chapter 8 — The Transposition Cipher, Encrypting 111

'dog"
>>> spam[0] [1]
'cat'

>>> spam[1][0]
1

>>> spam[1][1]
2

>>>

The double index brackets used for spam[0] [0] work because spam[0] evaluates to
['dog', 'cat']and ['dog', 'cat'][0] evaluatesto 'dog'. You could even use

another set of index brackets, since string values also use them:

>>> spam = [['dog', 'cat']l, [1, 2, 3]]
>>> spam[0] [1][1]

'a
>>>

Say we had a list of lists stored in a variable named x. Here are the indexes for each of the items
in x. Notice that x [0], x[1],x[2], and x [3] refer to list values:

~ ~ ~ ~
o ™ ~ M
e [W—1 | S— e
> > > >
~ ~ ~ r~<= o ks B e !
© ™ N ~ ~N —~ N ™M -
| — | W— | S— —_—d —d —_d Jd Jd
{ e | ™ ™~ ~ ™M™ ree
o O O ~ ~N NN i~
— d | —] bd bneed d d bd
> > x xX X x X X
[{ioc, 20, 30}, [3, 2, 1], [B8, B, 8, 8], [42]

Figure 8-1. A list of lists with every item’s index labeled.

Practice Exercises, Chapter 8, Set C

Using 1en () and the in Operator with Lists

We’ve used the 1en () function to tell us how many characters are in a string (that is, the length
of the string). The 1en () function also works on list values and returns an integer of how many

items are in the list.

112 http://inventwithpython.com/hacking

Try typing the following into the interactive shell:

>>> animals = ['aardvark',6 'anteater', 'antelope', 'albert']
>>> len(animals)

4

>>>

We’ve used the in operator to tell us if a string exists inside another string value. The in
operator also works for checking if a value exists in a list. Try typing the following into the
interactive shell:

>>> animals = ['aardvark', 'anteater', 'antelope', 'albert']
>>> 'anteater' in animals

True

>>> 'anteater' not in animals

False

>>> 'anteat' in animals

False

>>> 'delicious spam' in animals

False

>>>

Just like how a set of quotes next to each other represents the blank string value, a set of brackets
next to each other represents a blank list. Try typing the following into the interactive shell:

>>> animals = []
>>> len(animals)
0

>>>

List Concatenation and Replication with the + and * Operators

Just like how the + and * operators can concatenate and replicate strings, the same operators can
concatenate and replicate lists. Try typing the following into the interactive shell:

>>> ['hello'] + ['world']

["hello', 'world']

>>> ['hello'] * 5

['hello', 'hello', 'hello', 'hello', 'hello']
>>>

That’s enough about the similarities between strings and lists. Just remember that most things you
can do with string values will also work with list values.

Email questions to the author: al@inventwithpython.com

Chapter 8 — The Transposition Cipher, Encrypting 113

Practice Exercises, Chapter 8, Set D

The Transposition Encryption Algorithm

We need to translate these paper-and-pencil steps into Python code. Let’s take a look at
encrypting the string ' Common sense is not so common.' with the key 8. If we wrote
out the boxes with pencil and paper, it would look like this:

Clo|m|m|o|n/|(s)]| s
e|n|s|e|@®|1]|s|()
n|o|t || s|ol|@G)|c
olm mlo ol . DN

Add the index of each letter in the string to the boxes. (Remember, indexes begin with 0, not 1.)

m|m /| o |n|(s)]| s
2 1314 |5]6|7
s |le |G| 1 s | (s)

1011 1211314 |15

)| s | o]|(s)]| c
18119 |20 |21 (2223

m|o | n| .
25126272829

We can see from these boxes that the first column has the characters at indexes 0, 8, 16, and 24
(whichare 'C', 'e', 'n"',and 'o"'). The next column has the characters at indexes 1, 9, 17,
and 25 (whichare 'o', 'n', 'o' and 'm'). We can see a pattern emerging: The n" column
will have all the characters in the string at indexes O + n, 8 + n, 16 + n, and 24 + n:

Rolmxs|xrolon
BlGQolos|—o
=t

C 0 m m 0 n (s) S
0+0=0 1+0=1 2+0=2 3+0=3 4+0=4 5+0=5 6+0=6 7+0=7
e n S e (s) 1 S (s)
0+8=8 1+8=9 2+8=10 | 3+8=11 4+8=12 | 5+8=13 | 6+8=14 | 7+8=15
n o t (s) S 0 (s) c
0+16=16 | 1+16=17 | 2+16=18 | 3+16=19 | 4+16=20 | 5+16=21 | 6+16=22 | 7+16=23
0 m m 0 n .
0+24=24 | 1+24=25 | 2+24=26 | 3+24=27 | 4+24=28 | 5+24=29

There is an exception for the 6™ and 7" columns, since 24 + 6 and 24 + 7 are greater than 29,
which is the largest index in our string. In those cases, we only use 0, 8, and 16 to add to n (and

skip 24).

114 http://inventwithpython.com/hacking

What’s so special about the numbers 0, 8, 16, and 24? These are the numbers we get when,
starting from 0, we add the key (which in this example is 8). 0 + 8 is 8, 8 + 8 is 16, 16 + 8 is 24.
24 + 8 would be 32, but since 32 is larger than the length of the message, we stop at 24.

So, for the n™ column’s string we start at index n, and then keep adding 8 (which is the key) to get
the next index. We keep adding 8 as long as the index is less than 30 (the message length), at
which point we move to the next column.

If we imagine a list of 8 strings where each string is made up of the characters in each column,
then the list value would look like this:

v 1 v

['Ceno', 'onom', 'mstm', 'me o', 'o sn', 'nio.', s ', 'sc']

This is how we can simulate the boxes in Python code. First, we will make a list of blank strings.
This list will have a number of blank strings equal to the key because each string will represent a
column of our paper-and-pencil boxes. (Our list will have 8 blank strings since we are using the
key 8 in our example.) Let’s look at the code.

transpositionEncrypt.py
22. # Each string in ciphertext represents a column in the grid.
23. ciphertext = [''] * key

The ciphertext variable will be a list of string values. Each string in the ciphertext
variable will represent a column of the grid. So ciphertext [0] is the leftmost column,
ciphertext [1] is the column to the right of that, and so on.

The string values will have all the characters that go into one column of the grid. Let’s look again
at the grid from the “Common sense is not so common.” example earlier in this chapter (with
column numbers added to the top):

2 3 4 5 6 7
m|m| o |n|[(s)]| s
]
t
m

e | ()| 1| s |(s)
S| s |o|(s)]| ¢

The ciphertext variable for this grid would look like this:

ol ||

1

0
n
0
m

>>> ciphertext = ['Ceno', 'onom', 'mstm', 'me o', 'o sn', 'nio.', s ', 's c']
>>> ciphertext[0]
'Ceno’

Email questions to the author: al@inventwithpython.com

Chapter 8 — The Transposition Cipher, Encrypting 115

The first step to making this list is to create as many blank strings in the ciphertext list as
there are columns. Since the number of columns is equal to the key, we can use list replication to
multiply a list with one blank string value in it by the value in key. This is how line 23 evaluates
to a list with the correct number of blank strings.

transpositionEncrypt.py

25. # Loop through each column 1in ciphertext.
26. for col in range(key):
27. pointer = col

The next step is to add text to each string in ciphertext. The for loop on line 26 will iterate
once for each column, and the col variable will have the correct integer value to use for the
index to ciphertext. The col variable will be set to O for the first iteration through the for
loop, then 1 on the second iteration, then 2 and so on. This way the expression

ciphertext [col] will be the string for the col"™ column of the grid.

Meanwhile, the pointer variable will be used as the index for the string value in the message
variable. On each iteration through the loop, pointer will start at the same value as col (which
is what line 27 does.)

Augmented Assignment Operators

Often when you are assigning a new value to a variable, you want it to be based off of the
variable’s current value. To do this you use the variable as the part of the expression that is
evaluated and assigned to the variable, like this example in the interactive shell:

>>> spam = 40

>>> spam = spam + 2
>>> print(spam)

42

>>>

But you can instead use the += augmented assignment operator as a shortcut. Try typing the
following into the interactive shell:

>>> spam = 40

>>> spam += 2

>>> print(spam)

42

>>> spam = 'Hello'
>>> spam += ' world!'
>>> print(spam)

116 http://inventwithpython.com/hacking

Hello world!

>>> spam = ['dog']
>>> spam += ['cat']
>>> print(spam)
['dog', 'cat']

>>>

The statement spam += 2 does the exact same thing as spam = spam + 2. It’s just a little
shorter to type. The += operator works with integers to do addition, strings to do string
concatenation, and lists to do list concatenation. Table 8-1 shows the augmented assignment
operators and what they are equivalent to:

Table 8-1. Augmented Assignment Operators

Augmented Assignment Equivalent Normal
Assignment

spam += 42 spam = spam + 42

spam -= 42 spam = spam - 42

spam *= 42 spam = spam * 42

spam /= 42 spam = spam / 42
Back to the Code

transpositionEncrypt.py

29. # Keep looping until pointer goes past the length of the message.
30. while pointer < len(message):
31. # Place the character at pointer in message at the end of the
32. # current column in the ciphertext Tist.
33. ciphertext[col] += message[pointer]
34.
35. # move pointer over
36. pointer += key

Inside the foxr loop that started on line 26 is a while loop that starts on line 30. For each
column, we want to loop through the original me ssage variable and pick out every key"
character. (In the example we’ve been using, we want every 8" character since we are using a key
of 8.) On line 27 for the first iteration of the for loop, pointer was set to 0.

While the value in pointer is less than the length of the message string, we want to add the
character at message [pointer] to the end of the col1™ string in ciphertext. We add 8
(that is, the value in key) to pointer each time through the loop on line 36. The first time it is
message [0], the second time message [8], the third time message [16], and the fourth
time message [24]. Each of these single character strings are concatenated to the end of

Email questions to the author: al@inventwithpython.com

Chapter 8 — The Transposition Cipher, Encrypting 117

ciphertext[col] (and since col is O on the first time through the loop, this is
ciphertext[0]).

1' 2nd 3vd 4!I|

[c[o]m|m[o[n] [s[eln]s[e[[i[s] [nfolt[Ts[o] clo[m[m[o[n].
011‘2 3/4|5(6(7(8/9{1|1/1f1|1|1|1|1|1f1]/2(2|2{2]2 212|2|2|2
\11 '7 051'2}314‘567890‘112 3|4 5i6‘789‘

Figure 8-2. Arrows pointing to what message [pointer] refers to during the first iteration of
the for loop when col is set to 0.

Figure 8-2 shows the characters at these indexes, they will be concatenated together to form the
string ' Ceno'. Remember that we want the value in ciphertext to eventually look like this:

>>> ciphertext = ['Ceno', 'onom', 'mstm', 'me o', 'o sn', 'nio.', s ', 'sc']
>>> ciphertext[0]
'Ceno’

>>>

Storing 'Ceno' as the first string in the ciphertext list is our first step.

On the next iteration of the for loop, col will be set to 1 (instead of 0) and pointer will start
at the same value as col. Now when we add 8 to pointer on each iteration of line 30’s
while loop, the indexes will be 1, 9, 17, and 25.

13t 2nd 3rd 4t
[c[o]m[m[o]nl TsTe[n[sTe[Ti[s[[nfo[t] TsTol TcTo[mIm[olnl.
‘ofz'z 3|4 s,»s 7|8|9 1§1f1;1‘1‘1 1|11/1]1 2‘2 21212(2|2(2|2|2
L] |-lid) 0/1/2|3[4[s[6]7/8[9]0] ,l_l_?_3 [a|s(6[7]8]9

Figure 8-3. Arrows pointing to to what message [pointer] refers to during the second
iteration of the for loop when col is set to 1.

Asmessage[l],message[9],message[17], and message[25] are concatenated to the
end of ciphertext [1], they form the string ' onom'. This is the second column of our grid.

118 http://inventwithpython.com/hacking

Once the for loop has finished looping for the rest of the columns, the value in ciphertext
willbe ['Ceno', 'onom', 'mstm', 'me o', 'o sn', 'nio.', ' s ', 's c'].

We will use the join () string method to convert this list of strings into a single string.

The join () String Method

The join () method is used later on line 39. The join () method takes a list of strings and
returns a single string. This single string has all of the strings in the list concatenated (that is,
joined) together. The string that the join () method gets called on will be placed in between the
strings in the list. (Most of the time, we will just use a blank string for this.) Try typing the
following into the interactive shell:

>>> eggs = ['dogs', 'cats', 'moose']
>>> ''.join(eggs)

'dogscatsmoose’

>>> ' '.join(eggs)

'dogs cats moose'

>>> 'XYZ'.join(eggs)
'dogsXYZcatsXYZmoose'

>>> .join(eggs) .upper() .join(eggs)
'dogsDOGSCATSMOOSEcatsDOGSCATSMOOSEmoose'
>>>

That last expression, ' ' . join (eggs) .upper () .join (eggs), looks a little tricky, but if
you go through the evaluation one step at a time, it will look like this:

"'.join(eggs) .upper().join(eggs)

"'.join(['dogs', 'cats', 'moose']).upper().join(eggs)

=

'dogscatsmoose’ .upper().join(eggs)

=

'DOGSCATSMOOSE ' . join(eggs)

G

"DOGSCATSMOOSE ' . join(['dogs', 'cats', 'moose'])

' dogsDOGSCATSMOOSEcat sDOGSCATSMOOSEmoose '

Figure 8-4. The steps of evaluation for ' ' . Join (eggs) .upper () . join (eggs)

Email questions to the author: al@inventwithpython.com

Chapter 8 — The Transposition Cipher, Encrypting 119
This is why ' ' .join (eggs) .upper () .join (eggs) returns the string,
'dogsDOGSCATSMOOSEcatsDOGSCATSMOOSEmoose'.

Whew!

Remember, no matter how complicated an expression looks, you can just evaluate it step by step
to get the single value the expression evaluates to.

Return Values and return Statements

transpositionEncrypt.py
38. # Convert the ciphertext list into a single string value and return it.
39. return ''.join(ciphertext)

Our use of the join () method isn’t nearly as complicated as the previous example. We just
want to call join () on the blank string and pass ciphertext as the argument so that the

strings in the ciphertext list are joined together (with nothing in between them).

Remember that a function (or method) call always evaluates to a value. We say that this is the
value returned by the function or method call, or that it is the return value of the function. When
we create our own functions with a de f statement, we use a return statement to tell what the
return value for our function is.

A return statement is the return keyword followed by the value to be returned. We can also
use an expression instead of a value. In that case the return value will be whatever value that
expression evaluates to. Open a new file editor window and type the following program in and
save it as addNumbers.py, then press F5 to run it:

Source code for addNumbers.py

. def addNumbers(a, b):
return a + b

. spam = addNumbers(2, 40)

1
2
3.
4
5. print(spam)

When you run this program, the output will be:

42

That’s because the function call addNumbers (2, 40) will evaluate to 42. The return
statement in addNumbers () will evaluate the expression a + b and then return the evaluated

120 http://inventwithpython.com/hacking

value. That is why addNumbers (2, 40) evaluates to 42, which is the value stored in spam
on line 4 and next printed to the screen on line 5.

Practice Exercises, Chapter 8, Set E

Back to the Code

transpositionEncrypt.py
38. # Convert the ciphertext 1list into a single string value and return it.
39. return ''.join(ciphertext)

The encryptMessage () function’s return statement returns a string value that is created
by joining all of the strings in the ciphertext list. This final string is the result of our
encryption code.

The great thing about functions is that a programmer only has to know what the function does,
but not how the function’s code does it. A programmer can understand that if she calls the
encryptMessage () function and pass it an integer and a string for the key and message
parameters, the function call will evaluate to an encrypted string. She doesn’t need to know
anything about how the code in encryptMessage () actually does this.

The Special __name _ Variable

transpositionEncrypt.py
42. # If transpositionEncrypt.py is run (instead of imported as a module) call
43, # the main() function.
44, if _name_ == '_main_":
45, main()

We can turn our transposition encryption program into a module with a special trick involving the
main () function and a variable named name .

When a Python program is run, there is a special variable with the name name _ (that’s two
underscores before “name” and two underscores after) that is assigned the string value

' main_ ' (again, two underscores before and after “main”) even before the first line of your
program is run.

At the end of our script file (and, more importantly, after all of our de £ statements), we want to
have some code that checks if the name variable hasthe ' main ' string assigned to
it. If so, we want to call the main () function.

Email questions to the author: al@inventwithpython.com

Chapter 8 — The Transposition Cipher, Encrypting 121

This 1f statement on line 44 ends up actually being one of the first lines of code executed when
we press F5 to run our transposition cipher encryption program (after the import statement on
line 4 and the de f statements on lines 6 and 21).

The reason we set up our code this way is although Python sets name to' main '
when the program is run, it sets it to the string ' transpositionEncrypt' if our program is
imported by a different Python program. This is how our program can know if it is being run as a
program or imported by a different program as a module.

Just like how our program imports the pyperclip module to call the functions in it, other
programs might want to import transpositionEncrypt.py to call its encryptMessage ()
function. When an import statement is executed, Python will look for a file for the module by
adding “.py” to the end of the name. (This is why import pyperclip will import the

pyperclip.py file.)

When a Python program is imported, the name variable is set to the filename part before
“.py” and then runs the program. When our transpositionEncrypt.py program is imported, we
want all the de £ statements to be run (to define the encryptMessage () function that the
importing program wants to use), but we don’t want it to call the main () function because that
will execute the encryption code for ' Common sense is not so common. ' with key 8.

That is why we put that part of the code inside a function (which by convention is named
main ()) and then add code at the end of the program to call main (). If we do this, then our
program can both be run as a program on its own and also imported as a module by
another program.

Key Size and Message Length

Notice what happens when the message length is less than twice the key size:

Clo|m|m|o|n|(s)|s|e|n|s|e|(s)|i|s|)|n|o|t]|(s)|s|]o|(s)|c]|o

m|m| O |n

When using a key of 25, the “Common sense is not so common.” message encrypts to
“Cmommomno.n sense is not so co”. Part of the message isn’t encrypted! This happens whenever
key size becomes more than twice the message length, because that causes there to only be one
character per column and no characters get scrambled for that part of the message.

Because of this, the transposition cipher’s key is limited to half the length of the message it is
used to encrypt. The longer a message is, the more possible keys that can be used to encrypt it.

122 http://inventwithpython.com/hacking

Summary

Whew! There were a lot of new programming concepts introduced in this chapter. The
transposition cipher program is much more complicated (but much more secure) than the Caesar
cipher program in the last chapter. The new concepts, functions, data types, and operators we’ve
learned in this chapter let us manipulate data in much more sophisticated ways. Just remember
that much of understanding a line of code is just evaluating it step by step the way Python will.

We can organize our code into groups called functions, which we create with de f statements.
Argument values can be passed to functions for the function’s parameters. Parameters are local
variables. Variables outside of all functions are global variables. Local variables are different
from global variables, even if they have the same name as the global variable.

List values can store multiple other values, including other list values. Many of the things you can
do with strings (such as indexing, slicing, and the 1en () function) can be used on lists. And
augmented assignment operators provide a nice shortcut to regular assignment operators. The
join () method can join a list that contains multiple strings to return a single string.

Feel free to go over this chapter again if you are not comfortable with these programming
concepts. In the next chapter, we will cover decrypting with the transposition cipher.

Email questions to the author: al@inventwithpython.com

Chapter 9 — The Transposition Cipher, Decrypting

CHAPTER 9

DECRYPTING WITH THE
TRANSPOSITION CIPHER

123

Topics Covered In This Chapter:

Decrypting with the transposition cipher

The math.ceil (), math.floor () and round () functions
The and and or boolean operators

Truth tables

“When stopping a terrorist attack or seeking to
recover a kidnapped child, encountering
encryption may mean the difference between

success and catastrophic failures.”
Attorney General Janet Reno, September 1999

“Even the Four Horsemen of Kid Porn, Dope
Dealers, Mafia and Terrorists don’t worry me
as much as totalitarian governments. It’s been a

long century, and we've had enough of them.”
Bruce Sterling, 1994 Computers, Freedom, and Privacy
conference

124 http://inventwithpython.com/hacking

Unlike the Caesar cipher, the decryption process for the transposition cipher is very different
from the encryption process. In this chapter we will create a separate program,
transpositionDecrypt.py, to handle decryption.

Decrypting with the Transposition Cipher on Paper

Let’s pretend we send the ciphertext “Cenoonommstmme 00 snnio. s s ¢” to a friend (and she
already knows that the secret key is 8). The first step for her to decrypt the ciphertext is to
calculate how many boxes she needs to draw. To find this amount, divide the length of the
ciphertext message by the key and round up. The length of our ciphertext is 30 characters (exactly
the same as the plaintext) and the key is 8. So calculate 30 divided by 8 to get 3.75.

3.75 rounds up to 4. This means we want to draw a grid of boxes with 4 columns (the number we
just calculated) and 8 rows (the key). It will look like this:

(Note that if the length divided by the key was a whole number, like in 30 /5 = 6.0, then 6.0
would not “round up” to 7.)

The second thing we need to calculate is how many boxes on the rightmost column to shade in.
Take the total number of boxes (32) and subtract the length of the ciphertext (30). 32 — 30 =2, so
shade in the bottom 2 boxes on the rightmost column:

Email questions to the author: al@inventwithpython.com

Chapter 9 — The Transposition Cipher, Decrypting 125

Then start filling in the boxes with one character of the ciphertext per box. Start at the top left and
go right, just like we did when we were encrypting. The ciphertext is “Cenoonommstmme 00
snnio. s s ¢”, and so “Ceno” goes in the first row, then “onom” in the second row, and so on.
After we are done, the boxes will look like this (where the (s) represents a space):

Cle|n|o
o|n| o |m
m| s t | m
m|e [(s)| o
o |[(8)| s |n
n i o
)] s [(s)
s | (s)]| c

Our friend who received the ciphertext will see that if she reads the text going down the columns,
the original plaintext has been restored: “Common sense is not so common.”

The steps for decrypting are:

1. Calculate the number of columns you will have by taking the length of the message and
dividing by the key, then rounding up.

2. Draw out a number of boxes. The number of columns was calculated in step 1. The
number of rows is the same as the key.

3. Calculate the number of boxes to shade in by taking the number of boxes (this is the
number of rows and columns multiplied) and subtracting the length of the ciphertext
message.

4. Shade in the number of boxes you calculated in step 3 at the bottom of the rightmost
column.

5. Fill in the characters of the ciphertext starting at the top row and going from left to right.
Skip any of the shaded boxes.

6. Get the plaintext by reading from the leftmost column going from top to bottom, and
moving over to the top of the next column.

Note that if you use a different key, you will be drawing out the wrong number of rows. Even if
you follow the other steps in the decryption process correctly, the plaintext will come out looking
like random garbage (just like when you use the wrong key with the Caesar cipher).

Practice Exercises, Chapter 9, Set A

126 http://inventwithpython.com/hacking

A Transposition Cipher Decryption Program

Open a new file editor window and type out the following code in it. Save this program as
transpositionDecrypt.py.

Source Code of the Transposition Cipher Decryption Program
Open a new file editor window by clicking on File » New Window. Type in the following code
into the file editor, and then save it as transpositionDecrypt.py. Press FS to run the program. Note
that first you will need to download the pyperclip.py module and place this file in the same
directory as the transpositionDecrypt.py file. You can download this file from

Source code for transpositionDecrypt.py
. # Transposition Cipher Decryption
. # http://inventwithpython.com/hacking (BSD Licensed)

. import math, pyperclip

1
2
3
4
5.
6. def main(Q:
7
8
9
0

myMessage = 'Cenoonommstmme oo shnio. s s c'

myKey = 8
10. plaintext = decryptMessage(myKey, myMessage)
11.
12. # Print with a | (called "pipe" character) after it in case
13. # there are spaces at the end of the decrypted message.
14. print(plaintext + "|")
15.
16. pyperclip.copy(plaintext)
17.
18.
19. def decryptMessage(key, message):
20. # The transposition decrypt function will simulate the "columns" and
21. # "rows" of the grid that the plaintext is written on by using a 1ist
22. # of strings. First, we need to calculate a few values.
23.
24 . # The number of "columns" in our transposition grid:
25. numOfColumns = math.ceil(len(message) / key)
26. # The number of "rows" in our grid will need:
27. numOfRows = key
28. # The number of "shaded boxes" in the last "column" of the grid:
29. numOfShadedBoxes = (numOfColumns * numOfRows) - Ten(message)
30.
31. # Each string in plaintext represents a column in the grid.

Email questions to the author: al@inventwithpython.com

Chapter 9 — The Transposition Cipher, Decrypting 127

32. plaintext = [''] * numOfColumns

33.

34. # The col and row variables point to where in the grid the next
35. # character in the encrypted message will go.

36. col =0

37. row = 0

38.

39. for symbol in message:

40. plaintext[col] += symbol

41. col += 1 # point to next column

42.

43. # If there are no more columns OR we're at a shaded box, go back to
44, # the first column and the next row.

45. if (col == numOfColumns) or (col == numOfColumns - 1 and row >=
numOfRows - numOfShadedBoxes):

46. col =0

47. row += 1

48.

49, return ''.join(pTlaintext)

50.

51.

52. # If transpositionDecrypt.py is run (instead of imported as a module) call
53. # the main() function.

54. if _name_ == '_main_":

55. main()

When you run the above program, it produces this output:

Common sense is not so common. |

If you want to decrypt a different message, or use a different key, change the value assigned to
the myMessage and myKey variables on lines 5 and 6.

How the Program Works

transpositionDecrypt.py
. # Transposition Cipher Decryption
. # http://inventwithpython.com/hacking (BSD Licensed)

1
2
3.
4. dimport math, pyperclip
5.
6
7
8
9

. def main(Q):
myMessage = 'Cenoonommstmme oo snnio. s s c'
myKey = 8

128 http://inventwithpython.com/hacking

10. plaintext = decryptMessage(myKey, myMessage)

11.

12. # Print with a | (called "pipe" character) after it in case
13. # there are spaces at the end of the decrypted message.

14. print(plaintext + '|")

15.

16. pyperclip.copy(plaintext)

The first part of the program is very similar to the first part of transpositionEncrypt.py. The
pyperclip module is imported along with a different module named math. If you separate the
module names with commas, you can import multiple modules with one import statement.

The main () function creates variables named myMessage and myKey, and then calls the
decryption function decryptMessage (). The return value of this function is the decrypted
plaintext of the ciphertext and key that we passed it. This is stored in a variable named
plaintext, which is then printed to the screen (with a pipe character at the end in case there
are spaces at the end of the message) and copied to the clipboard.

transpositionDecrypt.py
19. def decryptMessage(key, message):

Look at the six steps to decrypting from earlier in this chapter. For example, if we are decrypting
“Cenoonommstmme 00 snnio. s s ¢’ (which has 30 characters) with the key 8, then the final set of
boxes will look like this:

Cle|nj|o
o|n| o |m
m S t | m
m|e |[(s)| o
o |(s)| s | n
n i| o
)]s [(s)
s |(s)]| ¢

The decryptMessage () function implements each of the decryption steps as Python code.

Themath.ceil (), math.floor () and round () Functions

When you divide numbers using the / operator, the expression returns a floating point number
(that is, a number with a decimal point). This happens even if the number divides evenly. For
example, 21 / 7 will evaluate to 3.0, not 3.

Email questions to the author: al@inventwithpython.com

Chapter 9 — The Transposition Cipher, Decrypting 129

>> 21/ 7
3.0
>>>

This is useful because if a number does not divide evenly, the numbers after the decimal point
will be needed. For example, 22 / 5 evaluates to 4. 4:

>> 22 /5
4.4
>>>

(If the expression 22 / 5 evaluates to 4 instead of 4. 4, then you are using version 2 of Python

3)

If you want to round this number to the nearest integer, you can use the round () function. Type
the following into the interactive shell:

>>> round(4.2)
4

>>> round(4.5)
4

>>> round(4.9)
5

>>> round(5.0)
5

>>> round(22 / 5)
4

>>>

If you only want to round up then use the math.ceil () function, which stands for “ceiling”. If
you only want to round down then use the math.floor () function. These functions exist in
the math module, so you will need to import the math module before calling them. Type the
following into the interactive shell:

>>> import math
>>> math.floor(4.0)
4

>>> math.floor(4.2)

>>> math.floor(4.9)

>>> math.ceil(4.0)

130 http://inventwithpython.com/hacking

4
>>> math.ceil(4.2)
5

>>> math.ceil(4.9)
5

>>>

The math.ceil () function will implement step 1 of the transposition decryption.

transpositionDecrypt.py
19. def decryptMessage(key, message):

20. # The transposition decrypt function will simulate the "columns" and
21. # "rows" of the grid that the plaintext is written on by using a Tist
22. # of strings. First, we need to calculate a few values.

23.

24. # The number of "columns" 1in our transposition grid:

25. numOfColumns = math.ceil(len(message) / key)

26. # The number of "rows" in our grid will need:

27. numOfRows = key

28. # The number of "shaded boxes" in the Tast "column" of the grid:

29. numOfShadedBoxes = (numOfColumns * numOfRows) - len(message)

Line 25 calculates the number of columns (step 1 of decrypting) by dividing 1en (message) by
the integer in key. This value is passed to the math.ceil () function, and that return value is

stored in numOfColumns.

Line 27 calculates the number of rows (step 2 of decrypting), which is the integer stored in key.
This value gets stored in the variable numOfRows.

Line 29 calculates the number of shaded boxes in the grid (step 3 of decrypting), which will be
the number of columns times rows, minus the length of the message.

If we are decrypting “Cenoonommstmme 00 snnio. s s ¢’ with key 8, numOfColumns will be
set to 4, numOfRows will be set to 8, and numOfShadedBoxes will be set to 2.

transpositionDecrypt.py
31. # Each string in plaintext represents a column in the grid.
32. plaintext = [''] * numOfColumns

Just like the encryption program had a variable named ciphertext that was a list of strings to
represent the grid of ciphertext, the decryptMessage () function will have a variable named
plaintext thatis a list of strings. These strings start off as blank strings, and we will need one

Email questions to the author: al@inventwithpython.com

Chapter 9 — The Transposition Cipher, Decrypting 131

string for each column of the grid. Using list replication, we can multiply a list of one blank string
by numOfColumns to make a list of several blank strings.

(Remember that each function call has its own local scope. The plaintext in
decryptMessage () exists in a different local scope than the plaintext variable in
main (), so they are two different variables that just happen to have the same name.)

Remember that the grid for our 'Cenconommstmme oo snnio. s s c' example looks
like this:

Cle|nj|o
o|n|o|m
m S t | m
m|e [(s)]| o
o |(s)| s | n
n i| o
)| s |(s)

s | (s)]| c

The plaintext variable will have a list of strings. Each string in the list is a single column of
this grid. For this decryption, we want plaintext to end up with this value:

>>> plaintext = ['Common s', 'ense is ', 'not so c', 'ommon.']
>>> plaintext[0]
'Common s'

That way, we can join all the list’s strings together to get the ' Common sense is not so

common. ' string value to return.

transpositionDecrypt.py

34. # The col and row variables point to where in the grid the next
35. # character in the encrypted message will go.

36. col =0

37. row = 0

38.

39. for symbol in message:

The col and row variables will track the column and row where the next character in message
should go. We will start these variables at 0. Line 39 will start a for loop that iterates over the
characters in the message string. Inside this loop the code will adjust the col and row
variables so that we concatenate symbol to the correct string in the plaintext list.

132 http://inventwithpython.com/hacking

transpositionDecrypt.py
40. plaintext[col] += symbol
41. col += 1 # point to next column

As the first step in this loop we concatenate symbol to the string at index col in the
plaintext list. Then we add 1 to col (that is, we increment col) on line 41 so that on the
next iteration of the loop, symbol will be concatenated to the next string.

The and and or Boolean Operators

The Boolean operators and and or can help us form more complicated conditions for i f and
while statements. The and operator connects two expressions and evaluates to True if both
expressions evaluate to True. The or operator connects two expressions and evaluates to True
if one or both expressions evaluate to True. Otherwise these expressions evaluate to False.
Type the following into the interactive shell:

>> 10 > 5 and 2 < 4
True

>>> 10 > 5 and 4 !'= 4
False

>>>

The first expression above evaluates to True because the two expressions on the sides of the
and operator both evaluate to True. This means that the expression 10 > 5 and 2 < 4

evaluates to True and True, which in turn evaluates to True.

However, for the second above expression, although 10 > 5 evaluates to True the expression
4 '= 4 evaluates to False. This means the whole expression evaluates to True and
False. Since both expressions have to be True for the and operator to evaluate to True,
instead they evaluate to False.

Type the following into the interactive shell:

>>> 10 > 5 or 4 =4
True

>>> 10 < 5 0r 4 1= 4
False

>>>

For the or operator, only one of the sides must be True for the or operator to evaluate them
both to True. Thisiswhy 10 > 5 or 4 != 4 evaluatesto True. However, because both

Email questions to the author: al@inventwithpython.com

Chapter 9 — The Transposition Cipher, Decrypting 133

the expression 10 < 5 and the expression 4 != 4 are both False, this makes the second
above expression evaluate to False or False, which in turn evaluates to False.

The third Boolean operator is not. The not operator evaluates to the opposite Boolean value of
the value it operates on. So not True is False and not False is True. Type the following
into the interactive shell:

>>> not 10 > 5
False

>>> not 10 < 5
True

>>> not False
True

>>> not not False
False

>>> not not not not not False
True

>>>

Practice Exercises, Chapter 9, Set B

Truth Tables

If you ever forget how the Boolean operators work, you can look at these charts, which are called
truth tables:

Table 6-1: The and operator's truth table.

A and B is Entire statement
True and True is True
True and False is False
False and True is False
False and False is False

Table 6-2: The or operator's truth table.

A or B is Entire statement
True or True is True
True or False is True
False or True is True

False or False is False

134 http://inventwithpython.com/hacking

Table 6-3: The not operator's truth table.

not A is Entire statement
not True is False
not False is True

The and and or Operators are Shortcuts

Just like for loops let us do the same thing as while loops but with less code, the and and or
operators let us shorten our code also. Type in the following into the interactive shell. Both of
these bits of code do the same thing:

>>> if 10 > 5:
if 2 < 4:
print('Hello!")
Hello!
>>>
>>> if 10 > 5 and 2 < 4:
print('Hello!")
Hello!
>>>

So you can see that the and operator basically takes the place of two if statements (where the
second i f statement is inside the first i f statement’s block.)

You can also replace the or operator with an if and elif statement, though you will have to
copy the code twice. Type the following into the interactive shell:

>>> if 4 1= 4:

print('Hello!")
. elif 10 > 5:

print('Hello!")

Hello!

>>>

>>> if 4 = 4 or 10 > 5:
print('Hello!")

Hello!

>>>

Email questions to the author: al@inventwithpython.com

Chapter 9 — The Transposition Cipher, Decrypting 135

Order of Operations for Boolean Operators

Just like the math operators have an order of operations, the and, or, and not operators also
have an order of operations: first not, then and, and then or. Try typing the following into the
interactive shell:

>>> not False and False # not False evaluates first

False

>>> not (False and False) # (False and False) evaluates first
True

Back to the Code

transpositionDecrypt.py

43. # If there are no more columns OR we're at a shaded box, go back to
44, # the first column and the next row.

45, if (col == numOfColumns) or (col == numOfColumns - 1 and row >=
numOfRows - numOfShadedBoxes):

46. col =0

47 . row += 1

There are two cases where we want to reset col back to O (so that on the next iteration of the
loop, symbol is added to the first string in the list in plaintext). The first is if we have
incremented col past the last index in plaintext. In this case, the value in col will be equal
to numOfColumns. (Remember that the last index in plaintext will be numOfColumns
minus one. So when col is equal to numOfColumns, it is already past the last index.)

The second case is if both col is at the last index and the row variable is pointing to a row that
has a shaded box in the last column. Here’s the complete decryption grid with the column indexes
along the top and the row indexes down the side:

136 http://inventwithpython.com/hacking

o 1 2 3
0l Cle|n|o
0O]1]2]|3
1o | n|o|m
4 15|16 |7
2| m| s t | m
819 10|11
3Im| e |(s)]| o
12 |13 |14 | 15
41 0 |(s)| s | n
16 | 17 | 18 | 19
5|/ n i| o .
20 (2122 |23
6((@6)| s |(s)
24 | 25 | 26
71 s | ()] ¢
27 | 28 | 29

You can see that the shaded boxes are in the last column (whose index will be numOfColumns
- 1) and rows 6 and 7. To have our program calculate which row indexes are shaded, we use the
expression row >= numOfRows - numOfShadedBoxes. If this expression is True, and
col is equal to numOfColumns - 1,then we know that we want to reset col to O for the
next iteration.

These two cases are why the condition on line 45 is (col == numOfColumns) or (col
== numOfColumns - 1 and row >= numOfRows - numOfShadedBoxes). That
looks like a big, complicated expression but remember that you can break it down into smaller
parts. The block of code that executes will change col back to the first column by setting it to O.

We will also increment the row variable.

transpositionDecrypt.py
\l

49, return ''.join(pTlaintext)

By the time the for loop on line 39 has finished looping over every character in message, the
plaintext list’s strings have been modified so that they are now in the decrypted order (if the
correct key was used, that is). The strings in the plaintext list are joined together (with a
blank string in between each string) by the join () string method. The string that this call to
join () returns will be the value that our decryptMessage () function returns.

Email questions to the author: al@inventwithpython.com

Chapter 9 — The Transposition Cipher, Decrypting 137

For our example decryption, plaintext will be ['Common s', 'ense is ', 'not so
c', 'ommon.'],so''.join(plaintext) will evaluate to 'Common sense is not

so common.'.

transpositionDecrypt.py
52. # If transpositionDecrypt.py is run (instead of imported as a module) call
53. # the main() function.
54. if _name__ == "_main__":
55. main()

The first line that our program runs after importing modules and executing the de £ statements is
the 1f statement on line 54. Just like in the transposition encryption program, we check if this
program has been run (instead of imported by a different program) by checking if the special
__name__ variable is set to the string value ' main '.If so, we execute the main ()
function.

Practice Exercises, Chapter 9, Set C

Summary

That’s it for the decryption program. Most of the program is in the decryptMessage ()
function. We can see that our programs can encrypt and decrypt the message “Common sense is
not so common.” with the key 8. But we should try several other messages and keys to see that a
message that is encrypted and then decrypted will result in the same thing as the original
message. Otherwise, we know that either the encryption code or the decryption code doesn’t
work.

We could start changing the key and message variables in our transpositionEncrypt.py and
transpositionDecrypt.py and then running them to see if it works. But instead, let’s automate this
by writing a program to test our program.

138 http://inventwithpython.com/hacking

Cuarter 10

PROGRAMMING A PROGRAM TO
TEST OUR PROGRAM

Topics Covered In This Chapter:

e The random.seed () function

e The random.randint () function
e Listreferences

e The copy.deepcopy () Functions
e The random.shuffle () function
e Randomly scrambling a string

e The sys.exit () function

“It 1s poor civic hygiene to install technologies that
could someday facilitate a police state.”

Bruce Schneier, cryptographer

We can try out the transposition encryption and decryption programs from the previous chapter
by encrypting and decrypting a few messages with different keys. It seems to work pretty well.
But does it always work?

Email questions to the author: al@inventwithpython.com

Chapter 10 — Programming a Program to Test Our Program 139

You won’t know unless you test the encryptMessage () and decryptMessage ()
functions with different values for the message and key parameters. This would take a lot of
time. You’ll have to type out a message in the encryption program, set the key, run the encryption
program, paste the ciphertext into the decryption program, set the key, and then run the
decryption program. And you’ll want to repeat that with several different keys and messages!

That’s a lot of boring work. Instead we can write a program to test the cipher programs for us.
This new program can generate a random message and a random key. It will then encrypt the
message with the encryptMessage () function from transpositionEncrypt.py and then pass
the ciphertext from that to the decryptMessage () in transpositionDecrypt.py. If the plaintext
returned by decryptMessage () is the same as the original message, the program can know
that the encryption and decryption messages work. This is called automated testing.

There are several different message and key combinations to try, but it will only take the
computer a minute or so to test thousands different combinations. If all of those tests pass, then
we can be much more certain that our code works.

Source Code of the Transposition Cipher Tester Program

Open a new file editor window by clicking on File » New Window. Type in the following code
into the file editor, and then save it as transpositionTest.py. Press F5 to run the program. Note
that first you will need to download the pyperclip.py module and place this file in the same
directory as the transpositionTest.py file. You can download this file from

Source code for transpositionTest.py
1. # Transposition Cipher Test
2. # http://inventwithpython.com/hacking (BSD Licensed)
3.
4. dimport random, sys, transpositionEncrypt, transpositionDecrypt
5

6. def main(Q:

7. random.seed(42) # set the random "seed" to a static value

8.

9. for i in range(20): # run 20 tests
10. # Generate random messages to test.
11.

12. # The message will have a random length:

13. message = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' * random.randint(4, 40)
14.

15. # Convert the message string to a list to shuffle it.

16. message = list(message)

17. random.shuffle(message)

140 http://inventwithpython.com/hacking

18. message = ''.join(message) # convert list to string

19.

20. print('Test #%s: "%s...""' % (i+1, message[:50]))

21.

22. # Check all possible keys for each message.

23. for key in range(1l, len(message)):

24 . encrypted = transpositionEncrypt.encryptMessage(key, message)
25. decrypted = transpositionDecrypt.decryptMessage(key, encrypted)
26.

27. # If the decryption doesn't match the original message, display
28. # an error message and quit.

29. if message != decrypted:

30. print('Mismatch with key %s and message %s.' % (key,
message))

31. print(decrypted)

32. sys.exit()

33.

34. print('Transposition cipher test passed.')

35.

36.

37. # If transpositionTest.py is run (instead of imported as a module) call
38. # the main() function.

39. if _name__ == '_main__":

40. main()

Sample Run of the Transposition Cipher Tester Program
When you run this program, the output will look like this:

Test #1: "KQDXSFQDBPMMRGXFKCGIQUGWFFLAJIJKFIGSYOSAWGYBGUNTQX. .."
Test #2: "IDDXEEWUMWUJIPJSZFJSGAOMFIOWWEYANRXISCIKXZRHMRNCFYW. .."
Test #3: "DKAYRSAGSGCSIQWKGARQHAOZDLGKJIISQVMDFGYXKCRMPCMQWIM. . ."
Test #4: "MZIBCOEXGRDTFXZKVNFQWQMWIROJAOKTWISTDWAHZRVIGXOLZA..."
Test #5: "TINIECNCBFKIBRDIUTNGDINHULYSVTGHBAWDQMZCNHZOTNYHSX. .."
Test #6: "JZQIHCVNDWRDUFHZFXCIASYDSTGQATQOYLIHUFPKEXSOZXQGPP. .."
Test #7: "BMKJUERFNGIDGWAPQMDZNHOQPLEOQDYCIIWRKPVEIPLAGZCIVN..."
Test #8: "IPASTGZSLPYCORCVEKWHOLOVUFPOMGQWZVINYQIYVEOFLUWLMQ..."
Test #9: "AHRYJAPTACZQNNFOTONMIPYECOORDGEYESYFHROZDASFIPKSOP..."
Test #10: "FSXAAPLSQHSFUPQZGTIXXDLDMOIVMWFGHPBPJROOSEGPEVRXSX. .."
Test #11: "IVBCXBIHLWPTDHGEGANBGXWQZMVXQPNJZQPKMRUMPLLXPAFITN..."
Test #12: "LLNSYMNRXZVYNPRTVNIBFRSUGIWUJREMPZVCMJATMLAMCEEHNW. .."
Test #13: "IMWRUJJHRWAABHYIHGNPSJUOVKRRKBSJKDHOBDLOUJDGXIVDME. .."
Test #14: "IZVXWHTIGKGHKIGGWMOBAKTWZWIPHGNEQPINYZIBERJPUNWIMX. .."
Test #15: "BQGFNMGQCIBOTRHZZOBHZFJZVSRTVHIUJFOWRFBNWKRNHGOHEQ. . ."
Test #16: "LNKGKSYIPHMCDVKDLNDVFCIFGEWQGUJYJICUYIVXARMUCBNUWM. .."

Email questions to the author: al@inventwithpython.com

Chapter 10 — Programming a Program to Test Our Program 141

Test #17: "WGNRHKIQZMOPBQTCRYPSEPWHLRDXZMJOUTJCLECKEZZRRMQRNI..."
Test #18: "PPVTELDHIRZFPBNMJIRLAZWRXRQVKHUUMRPNFKXJCUKFOXAGEHM. .."
Test #19: "UXUIGAYKGLYUQTFBWQUTFNSOPEGMIWMQYEZAVCALGOHUXJZPTY..."
Test #20: "JSYTDGLVLBCVVSITPTQPHBCYIZHKFOFMBWOZNFKCADHDKPJSJA..."
Transposition cipher test passed.

Our testing program works by importing the transpositionEncrypt.py and transpositionDecrypt.py
programs as modules. This way, we can call the encryptMessage () and
decryptMessage () functions in these programs. Our testing program will create a random
message and choose a random key. It doesn’t matter that the message is just random letters, we
just need to check that encrypting and then decrypting the message will result in the original
message.

Our program will repeat this test twenty times by putting this code in a loop. If at any point the
returned string from transpositionDecrypt () is not the exact same as the original
message, our program will print an error message and exit.

How the Program Works

transpositionTest.py
. # Transposition Cipher Test
. # http://inventwithpython.com/hacking (BSD Licensed)

1
2
3.
4. dimport random, sys, transpositionEncrypt, transpositionDecrypt
5
6

. def main(Q:

First our program imports two modules that come with Python, random and sys. We also want
to import the transposition cipher programs we’ve written: transpositionEncrypt.py and
transpositionDecrypt.py. Note that we don’t put the .py extension in our import statement.

Pseudorandom Numbers and the random. seed () Function

transpositionTest.py
7. random.seed(42) # set the random "seed" to a static value

Technically, the numbers produced by Python’s random. randint () function are not really
random. They are produced from a pseudorandom number generator algorithm, and this
algorithm is well known and the numbers it produces are predictable. We call these random-
looking (but predictable) numbers pseudorandom numbers because they are not truly random.

142 http://inventwithpython.com/hacking

The pseudorandom number generator algorithm starts with an initial number called the seed. All
of the random numbers produced from a seed are predictable. You can reset Python’s random
seed by calling the random. seed () function. Type the following into the interactive shell:

>>> import random

>>> random.seed(42)

>>> for i in range(5):
print(random.randint(1l, 10))

o W Wk -

>>> random.seed(42)
>>> for i in range(5):
print(random.randint(1, 10))

o W WwWkE N -

>>>

When the seed for Python’s pseudorandom number generator is set to 42, the first “random”
number between 1 and 10 will always be 7. The second “random” number will always be 1, and
the third number will always be 3, and so on. When we reset the seed back to 42 again, the same
set of pseudorandom numbers will be returned from random. randint ().

Setting the random seed by calling random. seed () will be useful for our testing program,
because we want predictable numbers so that the same pseudorandom messages and keys are
chosen each time we run the automated testing program. Our Python programs only seem to
generate “unpredictable” random numbers because the seed is set to the computer’s current clock
time (specifically, the number of seconds since January 1%, 1970) when the random module is
first imported.

It is important to note that not using truly random numbers is a common security flaw of
encryption software. If the “random” numbers in your programs can be predicted, then this can
provide a cryptanalyst with a useful hint to breaking your cipher. More information about
generating truly random numbers with Python using the os.urandom () function can be found

Email questions to the author: al@inventwithpython.com

Chapter 10 — Programming a Program to Test Our Program 143

The random. randint () Function

transpositionTest.py

9. for i in range(20): # run 20 tests

10. # Generate random messages to test.

11.

12. # The message will have a random length:

13. message = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' * random.randint(4, 40)

The code that does a single test will be in this for loop’s block. We want this program to run
multiple tests since the more tests we try, the more certain that we know our programs work.

Line 13 creates a random message from the uppercase letters and stores it in the message
variable. Line 13 uses string replication to create messages of different lengths. The

random.randint () function takes two integer arguments and returns a random integer
between those two integers (including the integers themselves). Type the following into the
interactive shell:

>>> import random

>>> random.randint(1l, 20)
20

>>> random.randint(1, 20)
18

>>> random.randint(1l, 20)

>>> random.randint(1l, 20)
18

>>> random.randint(100, 200)
107

>>>

Of course, since these are pseudorandom numbers, the numbers you get will probably be different
than the ones above. Line 13 creates a random message from the uppercase letters and stores it in
the message variable. Line 13 uses string replication to create messages of different lengths.

References

Technically, variables do not store list values in them. Instead, they store reference values to list
values. Up until now the difference hasn’t been important. But storing list references instead of
lists becomes important if you copy a variable with a list reference to another variable. Try
entering the following into the shell:

144 http://inventwithpython.com/hacking

>>> spam = 42

>>> cheese = spam
>>> spam = 100
>>> spam

100

>>> cheese

42

>>>

This makes sense from what we know so far. We assign 42 to the spam variable, and then we
copy the value in spam and assign it to the variable cheese . When we later change the value in
spam to 100, this doesn’t affect the value in cheese. This is because spam and cheese are
different variables that each store their own values.

But lists don’t work this way. When you assign a list to a variable with the = sign, you are
actually assigning a list reference to the variable. A reference is a value that points to some bit

of data, and a list reference is a value that points to a list. Here is some code that will make this
easier to understand. Type this into the shell:

>>> gspam = [0, 1, 2, 3, 4, 5]
>>> cheese = spam

>>> cheese[l] = 'Hello!'

>>> spam

[0, 'Hello!', 2, 3, 4, 5]
>>> cheese
[0, 'Hello!', 2, 3, 4, 5]

This looks odd. The code only changed the cheese list, but it seems that both the cheese and

spam lists have changed.

Notice that the line cheese = spam copies the list reference in spam to cheese, instead of
copying the list value itself. This is because the value stored in the spam variable is a list
reference, and not the list value itself. This means that the values stored in both spam and
cheese refer to the same list. There is only one list because the list was not copied, the reference
to the list was copied. So when you modify cheese in the cheese[1] = 'Hello!' line,
you are modifying the same list that spam refers to. This is why spam seems to have the same

list value that cheese does.

Email questions to the author: al@inventwithpython.com

Chapter 10 — Programming a Program to Test Our Program 145

Remember that variables are like boxes that contain values. List variables don’t actually contain
lists at all, they contain references to lists. Here are some pictures that explain what happens in
the code you just typed in:

@ spam = [0, 1, 2, 3, 4, 5]

) @ list value
[0,1, 2, 3,4, 5]

Reference |

Figure 10-1. Variables do not store lists, but rather references to lists.

On the first line, the actual list is not contained in the spam variable but a reference to the list.
The list itself is not stored in any variable.

@ cheese = spam

l(a list value)
[0,1, 2, 3,4, 5]

Reference

Figure 10-2. Two variables store two references to the same list.

146 http://inventwithpython.com/hacking

When you assign the reference in spam to cheese, the cheese variable contains a copy of the
reference in spam. Now both cheese and spam refer to the same list.

@ cheese[1] = ‘Hello’

1 (@ list value)
[0, 'Hello’, 2, 3, 4, 5]

Figure 10-3. Changing the list changes all variables with references to that list.

When you alter the list that cheese refers to, the list that spam refers to is also changed because
they refer to the same list. If you want spam and cheese to store two different lists, you have to
create two different lists instead of copying a reference:

>>> gpam = [0, 1, 2, 3, 4, 5]
>>> cheese = [0, 1, 2, 3, 4, 5]

In the above example, spam and cheese have two different lists stored in them (even though
these lists are identical in content). Now if you modify one of the lists, it will not affect the other
because spam and cheese have references to two different lists:

>>> gpam = [0, 1, 2, 3, 4, 5]
>>> cheese = [0, 1, 2, 3, 4, 5]
>>> cheese[l] = 'Hello!'

>>> spam

(0, 1, 2, 3, 4, 5]
>>> cheese
[0, 'Hello!', 2, 3, 4, 5]

Email questions to the author: al@inventwithpython.com

Chapter 10 — Programming a Program to Test Our Program 147

Figure 10-4 shows how the two references point to two different lists:

1(0. list+ value)

0,1, 2, 3,4, 9]

AHGS list value)
[0, "Hello', 2, 3, 4, 5]

Figure 10-4. Two variables each storing references to two different lists.

The copy .deepcopy () Functions

As we saw in the previous example, the following code only copies the reference value, not the
list value itself:

>>> spam = [0, 1, 2, 3, 4, 5]
>>> cheese = spam # copies the reference, not the Tist

If we want to copy the list value itself, we can import the copy module to call the
copy.deepcopy () function, which will return a separate copy of the list it is passed:

>>> spam = [0, 1, 2, 3, 4, 5]
>>> import copy

>>> cheese = copy.deepcopy(spam)
>>> cheese[1l] = 'Hello!'

>>> spam

[o, 1, 2, 3, 4, 5]

>>> cheese

[0, 'Hello!', 2, 3, 4, 5]

>>>

148 http://inventwithpython.com/hacking

The copy.deepcopy () function isn’t used in this chapter’s program, but it is helpful when
you need to make a duplicate list value to store in a different variable.

Practice Exercises, Chapter 10, Set A

The random. shuffle () Function

The random.shuffle () function is also in the random module. It accepts a list argument,
and then randomly rearranges items in the list. Type the following into the interactive shell:

>>> import random

>>> spam = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> spam

[o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> random.shuffle(spam)

>>> spam

[3, 0, 5, 9, 6, 8, 2, 4, 1, 7]

>>> random.shuffle(spam)

>>> spam
[1l 2’ 5’ 9! 4! 7’ O! 3’ 6! 8]
>>>

An important thing to note is that shuffle () does not return a list value. Instead, it changes
the list value that is passed to it (because shuffle () modifies the list directly from the list
reference value it is passed.) We say that the shuffle () function modifies the list in-place.
This is why we only need to execute random. shuffle (spam) instead of spam =

random.shuffle (spam).

Remember that you can use the 1ist () function to convert a string or range object to a list
value. Type the following into the interactive shell:

>>> import random
>>> eggs = list('Hello")
>>> eggs

['H', 'e"', "1", "1", "o']
>>> random.shuffle(eggs)
>>> eggs

['o', "H', "T"', "1', 'e']
>>>

Email questions to the author: al@inventwithpython.com

Chapter 10 — Programming a Program to Test Our Program 149

And also remember you can use the join () string method to pass a list of strings and return a
single string:

>>> eggs
['o', '"H', "1", "1", 'e']
>>> eggs = ''.join(eggs)
>>> eggs

'oH11e'

>>>

Randomly Scrambling a String

transpositionTest.py

15. # Convert the message string to a Tist to shuffle it.
16. message = list(message)

17. random.shuffle(message)

18. message = ''.join(message) # convert list to string

In order to shuffle the characters in a string value, first we convert the string to a list with
list (), then shuffle the items in the list with shuffle (), and then convert back to string
value with the join () string method. Try typing the following into the interactive shell:

>>> import random

>>> spam = 'Hello world!'
>>> spam = list(spam)

>>> random.shuffle(spam)
>>> spam = ''.join(spam)
>>> spam

wl delHo'!or1'

>>>

We use this technique to scramble the letters in the message variable. This way we can test
many different messages just in case our transposition cipher can encrypt and decrypt some
messages but not others.

Back to the Code

transpositionTest.py

20. print('Test #%s: "%s..."" % (i+l, message[:50]))

Line 20 has aprint () call that displays which test number we are on (we add one to i because
1 starts at 0 and we want the test numbers to start at 1). Since the string in message can be very
long, we use string slicing to show only the first 50 characters of message.

150 http://inventwithpython.com/hacking

Line 20 uses string interpolation. The value that 1 +1 evaluates to will replace the first s in the
string and the value that message [: 50] evaluates to will replace the second %s. When using
string interpolation, be sure the number of $s in the string matches the number of values that are
in between the parentheses after it.

transpositionTest.py
22. # Check all possible keys for each message.
23. for key in range(1l, len(message)):

While the key for the Caesar cipher could be an integer from 0 to 25, the key for the
transposition cipher can be between 1 and the length of the message. We want to test every
possible key for the test message, so the for loop on line 23 will run the test code with the keys
1 up to (but not including) the length of the message.

transpositionTest.py
transpositionEncrypt.encryptMessage(key, message)
transpositionDecrypt.decryptMessage(key, encrypted)

24 . encrypted
25. decrypted

Line 24 encrypts the string in message using our encryptMessage () function. Since this
function is inside the franspositionEncrypt.py file, we need to add transpositionEncrypt.
(with the period at the end) to the front of the function name.

The encrypted string that is returned from encryptMessage () is then passed to
decryptMessage (). We use the same key for both function calls. The return value from
decryptMessage () is stored in a variable named decrypted. If the functions worked, then
the string in me ssage should be the exact same as the string in decrypted.

The sys.exit () Function

transpositionTest.py

27. # If the decryption doesn't match the original message, display
28. # an error message and quit.

29. if message != decrypted:

30. print('Mismatch with key %s and message %s.' % (key,
message))

31. print(decrypted)

32. sys.exit()

33.

34. print('Transposition cipher test passed.')

Email questions to the author: al@inventwithpython.com

Chapter 10 — Programming a Program to Test Our Program 151

Line 29 tests if message and decrypted are equal. If they aren’t, we want to display an error
message on the screen. We print the key, message, and decrypted values. This information
could help us figure out what happened. Then we will exit the program.

Normally our programs exit once the execution reaches the very bottom and there are no more
lines to execute. However, we can make the program exit sooner than that by calling the
sys.exit () function. When sys.exit () is called, the program will immediately end.

But if the values in message and decrypted are equal to each other, the program execution
skips the 1 f statement’s block and the call to sys.exit (). The next line is on line 34, but you
can see from its indentation that it is the first line after line 9°s for loop.

This means that after line 29’s i f statement’s block, the program execution will jump back to
line 23’s for loop for the next iteration of that loop. If it has finished looping, then instead the
execution jumps back to line 9’s for loop for the next iteration of that loop. And if it has
finished looping for that loop, then it continues on to line 34 to print out the string

'Transposition cipher test passed.'.

transpositionTest.py
37. # If transpositionTest.py is run (instead of imported as a module) call
38. # the main() function.

39. if _name__ == '_main__":
40. main()
Here we do the trick of checking if the special variable name issetto ' main ' andif

so, calling the main () function. This way, if another program imports transpositionTest.py, the
code inside main () will not be executed but the de f statements that create the main ()
function will be.

Testing Our Test Program

We’ve written a test program that tests our encryption programs, but how do we know that the
test program works? What if there is a bug with our test program, and it is just saying that our
transposition cipher programs work when they really don’t?

We can test our test program by purposefully adding bugs to our encryption or decryption
functions. Then when we run the test program, if it does not detect a problem with our cipher
program, then we know that the test program is not correctly testing our cipher programs.

Change transpositionEncrypt.py’s line 36 from this:

transpositionEncrypt.py

152 http://inventwithpython.com/hacking

35. # move pointer over
36. pointer += key
...to this:
transpositionEncrypt.py
35. # move pointer over
36. pointer += key + 1

Now that the encryption code is broken, when we run the test program it should give us an error:

Test #1: "JEQLDFKJZWALCOYACUPLTRRMLWHOBXQNEAWSLGWAGQQSRSIUIQ..."

Mismatch with key 1 and message
JEQLDFKJZWALCOYACUPLTRRMLWHOBXQNEAWSLGWAGQQSRSIUIQTRGIHDVCZECRESZJARAVIPFOBWZXX
TBFOFHVSIGBWIBBHGKUWHEUUDYONYTZVKNVVTYZPDDMIDKBHTYJAHBNDVJUZDCEMFMLUXEONCZXWAWG
XZSFTMINLJOKKIJXLWAPCQNYCIQOFTEAUHRJIODKLGRIZSIBXQPBMQPPFGMVUZHKFWPGNMRYXROMSCEE
XLUSCFHNELYPYKCNYTOUQGBFSRDDMVIGXNYPHVPQISTATKVKM.
JQDKZACYCPTRLHBQEWLWGQRIITGHVZCEZAAIFBZXBOHSGWBHKWEUYNTVNVYPDIKHYABDJZCMMUENZWW
XSTJILOKJLACNCQFEUROKGISBQBQPGVZKWGMYRMCELSFNLPKNTUGFRDVGNPVQSAKK

Summary

We can use our programming skills for more than just writing programs. We can also program
the computer to test those programs to make sure they work for different inputs. It is a common
practice to write code to test code.

This chapter covered a few new functions such as the random. randint () function for
producing pseudorandom numbers. Remember, pseudorandom numbers aren’t random enough
for cryptography programs, but they are good enough for this chapter’s testing program. The
random.shuffle () function is useful for scrambling the order of items in a list value.

The copy.deepcopy () function will create copies of list values instead of reference values.
The difference between a list and list reference is explained in this chapter as well.

All of our programs so far have only encrypted short messages. In the next chapter, we will learn
how to encrypt and decrypt entire files on your hard drive.

Email questions to the author: al@inventwithpython.com

Chapter 11 — Encrypting and Decrypting Files 153

Cuaprter 11

ENCRYPTING AND DECRYPTING
FILES

Topics Covered In This Chapter:

e Reading and writing files

e The open () function

e The read () file object method

e The close () file object method

e Thewrite () file object method

e Theos.path.exists () function

e The startswith () string method

e Thetitle () string method

e The time module and time.time () function

“Why do security police grab people and torture them? To get their
information. If you build an information management system that
concentrates information from dozens of people, you’ve made that
dozens of times more attractive. You’ve focused the repressive regime’s
attention on the hard disk. And hard disks put up no resistance to torture.
You need to give the hard disk a way to resist. That’s cryptography.”

154 http://inventwithpython.com/hacking

Patrick Ball

Up until now our programs have only worked on small messages that we type directly into the
source code as string values. The cipher program in this chapter will use the transposition cipher
to encrypt and decrypt entire files, which can be millions of characters in size.

Plain Text Files

This program will encrypt and decrypt plain text files. These are the kind of files that only have
text data and usually have the .txt file extension. Files from word processing programs that let
you change the font, color, or size of the text do not produce plain text files. You can write your
own text files using Notepad (on Windows), TextMate or TextEdit (on OS X), or gedit (on Linux)
or a similar plain text editor program. You can even use IDLE’s own file editor and save the files
with a .txt extension instead of the usual .py extension.

For some samples, you can download the following text files from this book’s website:

e http://invpy.com/devilsdictionary.txt

e http://invpy.com/frankenstein.txt

e http://invpy.com/siddhartha.txt

e http://invpy.com/thetimemachine.txt

These are text files of some books (that are now in the public domain, so it is perfectly legal to
download them.) For example, download Mary Shelley’s classic novel “Frankenstein” from

are over 78,000 words in this text file! It would take some time to type this into our encryption
program. But if it is in a file, the program can read the file and do the encryption in a couple
seconds.

If you get an error that looks like “UnicodeDecodeError: 'charmap' codec can't
decode byte 0x90 in position 148: character maps to <undefined>”
then you are running the cipher program on a non-plain text file, also called a “binary file”.

To find other public domain texts to download, go to the Project Gutenberg website at

Source Code of the Transposition File Cipher Program

Like our transposition cipher testing program, the transposition cipher file program will import
our transpositionEncrypt.py and transpositionDecrypt.py files so we can use the

Email questions to the author: al@inventwithpython.com

Chapter 11 — Encrypting and Decrypting Files 155

encryptMessage () and decryptMessage () functions in them. This way we don’t have
to re-type the code for these functions in our new program.

Open a new file editor window by clicking on File » New Window. Type in the following code

into the file editor, and then save it as transpositionFileCipher.py. Press F5 to run the program.
Note that first you will need to download frankenstein.txt and place this file in the same directory

as the transpositionFileCipher.py file. You can download this file from

Source code for transpositionFileCipher.py

1. # Transposition Cipher Encrypt/Decrypt File
2. # http://inventwithpython.com/hacking (BSD Licensed)
3.
4. import time, os, sys, transpositionEncrypt, transpositionDecrypt
5.
6. def main(Q):
7. inputFilename = 'frankenstein.txt'
8. # BE CAREFUL! If a file with the outputFilename name already exists,
9. # this program will overwrite that file.
10. outputFilename = 'frankenstein.encrypted.txt’
11. myKey = 10
12. myMode = 'encrypt' # set to 'encrypt' or 'decrypt'
13.
14. # If the input file does not exist, then the program terminates early.
15. if not os.path.exists(inputFilename):
16. print('The file %s does not exist. Quitting...' % (inputFilename))
17. sys.exit(Q)
18.
19. # If the output file already exists, give the user a chance to quit.
20. if os.path.exists(outputFilename):
21. print('This will overwrite the file %s. (Qontinue or (Quit?' %
(outputFilename))
22. response = input('> ')
23. if not response.lower().startswith('c'):
24. sys.exit()
25.
26. # Read in the message from the input file
27. fileObj = open(inputFilename)
28. content = fileObj.read()
29. fileObj.close()
30.
31. print('%sing..." % (myMode.title()))
32.
33. # Measure how Tong the encryption/decryption takes.
34. startTime = time.time()

156 http://inventwithpython.com/hacking

35. if myMode == 'encrypt':

36. translated = transpositionEncrypt.encryptMessage(myKey, content)
37. elif myMode == 'decrypt':

38. translated = transpositionDecrypt.decryptMessage(myKey, content)
39. totalTime = round(time.time() - startTime, 2)

40. print('%sion time: %s seconds' % (myMode.title(), totalTime))

41.

42. # Write out the translated message to the output file.

43. outputFileObj = open(outputFilename, 'w')

44 outputFiTeObj.write(translated)

45, outputFiTeObj.close()

46.

47 . print('Done %sing %s (%s characters).' % (myMode, inputFilename,
Ten(content)))

48. print('%sed file is %s.' % (myMode.title(), outputFilename))

49,

50.

51. # If transpositionCipherFile.py is run (instead of imported as a module)
52. # call the main() function.

53. if _name__ == "_main__":

54. main()

In the directory that frankenstein.txt and transpositionFileCipher.py files are in, there will be a
new file named frankenstein.encrypted.txt that contains the content of frankenstein.txt in
encrypted form. If you double-click the file to open it, it should look something like this:

PtFiyedleo a arnvmt eneeGLchongnes MmuyedlsuO#uiSHTGA r sy,n t ys
s nuaoGelL

sc7s,

(the rest has been cut out for brevity)

To decrypt, make the following changes to the source code (written in bold) and run the
transposition cipher program again:

transpositionFileCipher.py

7. inputFilename = 'frankenstein.encrypted.txt'

8. # BE CAREFUL! If a file with the outputFilename name already exists,
9. # this program will overwrite that file.

10. outputFilename = 'frankenstein.decrypted.txt'

11. myKey = 10

12. myMode = 'decrypt' # set to 'encrypt' or 'decrypt'

This time when you run the program a new file will appear in the folder named
[frankenstein.decrypted.txt that is identical to the original frankenstein.txt file.

Email questions to the author: al@inventwithpython.com

Chapter 11 — Encrypting and Decrypting Files 157

Sample Run of the Transposition File Cipher Program

When you run the above program, it produces this output:

Encrypting...

Encryption time: 1.21 seconds

Done encrypting frankenstein.txt (441034 characters).
Encrypted file is frankenstein.encrypted.txt.

A new frankenstein.encrypted.txt file will have been created in the same directory as
transpositionFileCipher.py. If you open this file with IDLE’s file editor, you will see the
encrypted contents of frankenstein.py. You can now email this encrypted file to someone for them
to decrypt.

Reading From Files

Up until now, any input we want to give our programs would have to be typed in by the user.
Python programs can open and read files directly off of the hard drive. There are three steps to
reading the contents of a file: opening the file, reading into a variable, and then closing the file.

The open () Function and File Objects

The open () function’s first parameter is a string for the name of the file to open. If the file is in
the same directory as the Python program then you can just type in the name, such as
'"thetimemachine.txt'. You can always specify the absolute path of the file, which
includes the directory that it is in. For example, 'c:\\Python32\\frankenstein.txt'
(on Windows) and ' /usr/foobar/frankenstein.txt' (on OS X and Linux) are
absolute filenames. (Remember that the \ backslash must be escaped with another backslash
before it.)

The open () function returns a value of the “file object” data type. This value has several
methods for reading from, writing to, and closing the file.

The read () File Object Method

The read () method will return a string containing all the text in the file. For example, say the
file spam.txt contained the text “Hello world!”. (You can create this file yourself using IDLE’s
file editor. Just save the file with a .txt extension.) Run the following from the interactive shell
(this codes assumes you are running Windows and the spam.zxt file is in the c¢:\ directory):

>>> fo = open('c:\\spam.txt', 'r')
>>> content = fo.read()
>>> print(content)

158 http://inventwithpython.com/hacking

Hello world!
>>>

If your text file has multiple lines, the string returned by read () will have \n newline
characters in it at the end of each line. When you try to print a string with newline characters, the
string will print across several lines:

>>> print('Hello\nworld!")
Hello

world!

>>>

If you get an error message that says “IOError: [Errno 2] No such file or
directory” then double check that you typed the filename (and if it is an absolute path, the
directory name) correctly. Also make sure that the file actually is where you think it is.

The close () File Object Method

After you have read the file’s contents into a variable, you can tell Python that you are done with
the file by calling the close () method on the file object.

>>> fo.close()
>>>

Python will automatically close any open files when the program terminates. But when you want
to re-read the contents of a file, you must close the file object and then call the open () function
on the file again.

Here’s the code in our transposition cipher program that reads the file whose filename is stored in
the inputFilename variable:

transpositionFileCipher.py

26. # Read in the message from the input file
27. fileObj = open(inputFilename)

28. content = fileObj.read()

29. fileObj.close()

Writing To Files
We read the original file and now will write the encrypted (or decrypted) form to a different file.
The file object returned by open () has awrite () function, although you can only use this

Email questions to the author: al@inventwithpython.com

Chapter 11 — Encrypting and Decrypting Files 159

function if you open the file in “write”” mode instead of “read” mode. You do this by passing the
string value 'w' as the second parameter. For example:

>>> fo = open('filename.txt', 'w')
>>>

Along with “read” and “write”, there is also an “append” mode. The “append” is like “write”
mode, except any strings written to the file will be appended to the end of any content that is
already in the file. “Append” mode will not overwrite the file if it already exists. To open a file in
append mode, pass the string 'a' as the second argument to open () .

(Just in case you were curious, you could pass the string ' r' to open () to open the file in read
mode. But since passing no second argument at all also opens the file in read mode, there’s no
reason to pass 'r'.)

The write () File Object Method

You can write text to a file by calling the file object’s write () method. The file object must
have been opened in write mode, otherwise, you will get a “io.UnsupportedOperation:
not readable” error message. (And if you try to call read () on a file object that was
opened in write mode, you will geta “io.UnsupportedOperation: not readable”
error message.)

The write () method takes one argument: a string of text that is to be written to the file. Lines
43 to 45 open a file in write mode, write to the file, and then close the file object.

transpositionFileCipher.py

42. # Write out the translated message to the output file.
43, outputFileObj = open(outputFilename, 'w')

44, outputFileObj.write(translated)

45, outputFileObj.close()

Now that we have the basics of reading and writing files, let’s look at the source code to the
transposition file cipher program.

How the Program Works

transpositionFileCipher.py
1. # Transposition Cipher Encrypt/Decrypt File
2. # http://inventwithpython.com/hacking (BSD Licensed)
3.
4. import time, os, sys, transpositionEncrypt, transpositionDecrypt
5

160 http://inventwithpython.com/hacking

6. def main(Q:

7. inputFilename = 'frankenstein.txt'

8. # BE CAREFUL! If a file with the outputFilename name already exists,
9. # this program will overwrite that file.

10. outputFilename = 'frankenstein.encrypted.txt'’

11. myKey = 10

12. myMode = 'encrypt' # set to 'encrypt' or 'decrypt'

The first part of the program should look familiar. Line 4 is an import statement for our
transpositionEncrypt.py and transpositionDecrypt.py programs. It also imports the Python’s
time, os, and sys modules.

The main () function will be called after the de £ statements have been executed to define all
the functions in the program. The inputFilename variable holds a string of the file to read,
and the encrypted (or decrypted) text is written to the file with the name in cutputFilename.

The transposition cipher uses an integer for a key, stored in myKey. If 'encrypt"' is stored in
myMode, the program will encrypt the contents of the inputFilename file. If 'decrypt' is
stored in myMode, the contents of inputFilename will be decrypted.

The os.path.exists () Function

Reading files is always harmless, but we need to be careful when writing files. If we call the
open () function in write mode with a filename that already exists, that file will first be deleted
to make way for the new file. This means we could accidentally erase an important file if we pass
the important file’s name to the open () function. Using the os.path.exists () function,
we can check if a file with a certain filename already exists.

The os.path.exists () file has a single string parameter for the filename, and returns True
if this file already exists and False if it doesn’t. The os.path.exists () function exists
inside the path module, which itself exists inside the os module. But if we import the os
module, the path module will be imported too.

Try typing the following into the interactive shell:

>>> import os

>>> os.path.exists('abcdef')

False

>>> os.path.exists('C:\\Windows\\System32\\calc.exe')
True

>>>

Email questions to the author: al@inventwithpython.com

Chapter 11 — Encrypting and Decrypting Files 161

(Of course, you will only get the above results if you are running Python on Windows. The
calc.exe file does not exist on OS X or Linux.)

transpositionFileCipher.py

14. # If the input file does not exist, then the program terminates early.
15. if not os.path.exists(inputFilename):

16. print('The file %s does not exist. Quitting..."' % (inputFilename))
17. sys.exit()

We use the os.path.exists () function to check that the filename in inputFilename
actually exists. Otherwise, we have no file to encrypt or decrypt. In that case, we display a
message to the user and then quit the program.

The startswith () and endswith () String Methods

transpositionFileCipher.py

19. # If the output file already exists, give the user a chance to quit.
20. if os.path.exists(outputFilename):

21. print('This will overwrite the file %s. (Qontinue or (Quit?' %
(outputFilename))

22. response = input('> ')

23. if not response.lower().startswith('c'):

24. sys.exit(Q)

If the file the program will write to already exists, the user is asked to type in “C” if they want to
continue running the program or “Q” to quit the program.

The string in the response variable will have 1ower () called on it, and the returned string from
lower () will have the string method startswith () called onit. The startswith ()
method will return True if its string argument can be found at the beginning of the string. Try
typing the following into the interactive shell:

>>> 'hello'.startswith('h')

True

>>> 'hello world!'.startswith('hello wo')
True

>>> 'hello'.startswith('H")

False

>>> spam = 'Albert'

>>> spam.startswith('AT")
True

162 http://inventwithpython.com/hacking

>>>

On line 23, if the user did not type in 'c', 'continue', 'C"', or another string that begins
with C, then sys.exit () will be called to end the program. Technically, the user doesn’t have
to enter “Q” to quit; any string that does not begin with “C” will cause the sys.exit() function to
be called to quit the program.

There is also an endswith () string method that can be used to check if a string value ends with
another certain string value. Try typing the following into the interactive shell:

>>> 'Hello world!'.endswith('world!")
True

>>> 'Hello world!'.endswith('world")
False

>>>

The title () String Method

Just like the 1ower () and upper () string methods will return a string in lowercase or
uppercase, the title () string method returns a string in “title case”. Title case is where every
word is uppercase for the first character and lowercase for the rest of the characters. Try typing
the following into the interactive shell:

>>> 'hello'.title()

'Hello'
>>> 'HELLO'.title(Q)
'Hello'
>>> 'hElLo'.title()
'Hello'

>>> 'hello world! HOW ARE YOU?'.title()
'HeTllo World! How Are You?'

>>> 'extra! extra! man bites shark!'.title()
'Extra! Extra! Man Bites Shark!'

>>>
transpositionFileCipher.py

26. # Read in the message from the input file

27. fileObj = open(inputFilename)

28. content = fileObj.read()

29. fileObj.close()

30.

31. print('%sing..." % (myMode.title()))

Email questions to the author: al@inventwithpython.com

Chapter 11 — Encrypting and Decrypting Files 163

Lines 27 to 29 open the file with the name stored in inputFilename and read in its contents
into the content variable. On line 31, we display a message telling the user that the encryption
or decryption has begun. Since myMode should either contain the string 'encrypt' or
'decrypt', calling the title () string method will either display 'Encrypting..."' or
'Decrypting..."'.

The time Module and time. time () Function

All computers have a clock that keeps track of the current date and time. Your Python programs
can access this clock by calling the t ime . time () function. (This is a function named time ()
that is in a module named time.)

The time.time () function will return a float value of the number of seconds since January 1%,

1970. This moment is called the Unix Epoch. Try typing the following into the interactive shell:

>>> import time
>>> time.time()
1349411356.892
>>> time.time()
1349411359.326
>>>

The float value shows that the time . time () function can be precise down to a millisecond
(that is, 1/1,000 of a second). Of course, the numbers that time.time () displays for you will
depend on the moment in time that you call this function. It might not be clear that
1349411356.892 is Thursday, October 4™ 2012 around 9:30 pm. However, the time.time ()
function is useful for comparing the number of seconds between calls to time.time (). We can
use this function to determine how long our program has been running.

transpositionFileCipher.py

33. # Measure how Tong the encryption/decryption takes.

34. startTime = time.time()

35. if myMode == 'encrypt':

36. translated = transpositionEncrypt.encryptMessage(myKey, content)
37. elif myMode == 'decrypt':

38. translated = transpositionDecrypt.decryptMessage(myKey, content)
39. totalTime = round(time.time() - startTime, 2)

40. print('%sion time: %s seconds' % (myMode.title(), totalTime))

We want to measure how long the encryption or decryption process takes for the contents of the
file. Lines 35 to 38 call the encryptMessage () or decryptMessage () (depending on
whether 'encrypt' or 'decrypt' is stored in the myMode variable). Before this code

164 http://inventwithpython.com/hacking

however, we will call time.time () and store the current time in a variable named
startTime.

On line 39 after the encryption or decryption function calls have returned, we will call
time.time () again and subtract startTime from it. This will give us the number of seconds
between the two calls to time.time ().

For example, if you subtract the floating point values returned when I called time.time ()
before in the interactive shell, you would get the amount of time in between those calls while I
was typing:

>>> 1349411359.326 - 1349411356.892
2.434000015258789
>>>

(The difference Python calculated between the two floating point values is not precise due to
rounding errors, which cause very slight inaccuracies when doing math with floats. For our
programs, it will not matter. But you can read more about rounding errors at

The time.time () - startTime expression evaluates to a value that is passed to the
round () function which rounds to the nearest two decimal points. This value is stored in
totalTime. On line 40, the amount of time is displayed to the user by calling print ().

Back to the Code
transpositionFileCipher.py
42. # Write out the translated message to the output file.
43, outputFileObj = open(outputFilename, 'w')
44, outputFileObj.write(translated)
45, outputFileObj.close()

The encrypted (or decrypted) file contents are now stored in the t ranslated variable. But this
string will be forgotten when the program terminates, so we want to write the string out to a file
to store it on the hard drive. The code on lines 43 to 45 do this by opening a new file (passing
'w' to open () to open the file in write mode) and then calling the write () file object
method.

transpositionFileCipher.py

47. print('Done %sing %s (%s characters).' % (myMode, inputFilename,
len(content)))
48. print('%sed file is %s.' % (myMode.title(), outputFilename))

Email questions to the author: al@inventwithpython.com

Chapter 11 — Encrypting and Decrypting Files 165

49,

50.

51. # If transpositionCipherFile.py is run (instead of imported as a module)
52. # call the main() function.

53. if _name_ == "_main__":

54. main()

Afterwards, we print some more messages to the user telling them that the process is done and
what the name of the written file is. Line 48 is the last line of the main () function.

Lines 53 and 54 (which get executed after the de f statement on line 6 is executed) will call the
main () function if this program is being run instead of being imported. (This is explained in
Chapter 8’s “The Special name _ Variable” section.)

Practice Exercises, Chapter 11, Set A

Summary

Congratulations! There wasn’t much to this new program aside from the open (), write (),
read (), and close () functions, but this lets us encrypt text files on our hard drive that are
megabytes or gigabytes in size. It doesn’t take much new code because all of the implementation
for the cipher has already been written. We can extend our programs (such as adding file reading
and writing capabilities) by importing their functions for use in new programs. This greatly
increases our ability to use computers to encrypt information.

There are too many possible keys to simply brute-force and examine the output of a message
encrypted with the transposition cipher. But if we can write a program that recognizes English (as
opposed to strings of gibberish), we can have the computer examine the output of thousands of
decryption attempts and determine which key can successfully decrypt a message to English.

166 http://inventwithpython.com/hacking

CHaPTER 12

DETECTING ENGLISH
PROGRAMMATICALLY

Topics Covered In This Chapter:

e Dictionaries

o The split () Method

e The None Value

e "Divide by Zero" Errors

e The float (), int (), and str () Functions and Python 2 Division
e The append () List Method

e Default Arguments

e Calculating Percentage

The gaffer says something longer and more
complicated. After a while, Waterhouse (now
wearing his cryptoanalyst hat, searching for
meaning midst apparent randomness, his neural
circuits exploiting the redundancies in the signal)
realizes that the man is speaking heavily accented
English.

“Cryptonomicon” by Neal Stephenson

Email questions to the author: al@inventwithpython.com

Chapter 12 — Detecting English Programmatically 167

A message encrypted with the transposition cipher can have thousands of possible keys. Your
computer can still easily brute-force this many keys, but you would then have to look through
thousands of decryptions to find the one correct plaintext. This is a big problem for the brute-
force method of cracking the transposition cipher.

When the computer decrypts a message with the wrong key, the resulting plaintext is garbage
text. We need to program the computer to be able to recognize if the plaintext is garbage text or
English text. That way, if the computer decrypts with the wrong key, it knows to go on and try the
next possible key. And when the computer tries a key that decrypts to English text, it can stop and
bring that key to the attention of the cryptanalyst. Now the cryptanalyst won’t have to look
through thousands of incorrect decryptions.

How Can a Computer Understand English?

It can’t. At least, not in the way that human beings like you or I understand English. Computers
don’t really understand math, chess, or lethal military androids either, any more than a clock
understands lunchtime. Computers just execute instructions one after another. But these
instructions can mimic very complicated behaviors that solve math problems, win at chess, or
hunt down the future leaders of the human resistance.

Ideally, what we need is a Python function (let’s call it isEnglish ()) that has a string passed
to it and then returns True if the string is English text and False if it’s random gibberish. Let’s
take a look at some English text and some garbage text and try to see what patterns the two have:

Robots are your friends. Except for RX-686. She will try to eat you.

ai-pey e. xrx ne augur iirl6é Rtiyt fhubE6d hrSei t8..ow eo.telyoosEs t

One thing we can notice is that the English text is made up of words that you could find in a
dictionary, but the garbage text is made up of words that you won’t. Splitting up the string into
individual words is easy. There is already a Python string method named split () that will do
this for us (this method will be explained later). The split () method just sees when each word
begins or ends by looking for the space characters. Once we have the individual words, we can
test to see if each word is a word in the dictionary with code like this:

if word == 'aardvark' or word == 'abacus' or word == 'abandon' or word ==
'abandoned' or word == 'abbreviate' or word == 'abbreviation' or word ==
'abdomen' or ..

We can write code like that, but we probably shouldn’t. The computer won’t mind running
through all this code, but you wouldn’t want to type it all out. Besides, somebody else has already

168 http://inventwithpython.com/hacking

typed out a text file full of nearly all English words. These text files are called dictionary files.

So we just need to write a function that checks if the words in the string exist somewhere in that
file.

Remember, a dictionary file is a text file that contains a large list of English words. A dictionary
value is a Python value that has key-value pairs.

Not every word will exist in our “dictionary file”. Maybe the dictionary file is incomplete and
doesn’t have the word, say, “aardvark”. There are also perfectly good decryptions that might have
non-English words in them, such as “RX-686” in our above English sentence. (Or maybe the
plaintext is in a different language besides English. But we’ll just assume it is in English for
now.)

And garbage text might just happen to have an English word or two in it by coincidence. For
example, it turns out the word “augur” means a person who tries to predict the future by studying
the way birds are flying. Seriously.

So our function will not be foolproof. But if most of the words in the string argument are English
words, it is a good bet to say that the string is English text. It is a very low probability that a
ciphertext will decrypt to English if decrypted with the wrong key.

The dictionary text file will have one word per line in uppercase. It will look like this:

AARHUS
AARON

ABABA

ABACK

ABAFT
ABANDON
ABANDONED
ABANDONING
ABANDONMENT
ABANDONS

...and so on. You can download this entire file (which has over 45,000 words) from

Our isEnglish () function will have to split up a decrypted string into words, check if each
word is in a file full of thousands of English words, and if a certain amount of the words are
English words, then we will say that the text is in English. And if the text is in English, then
there’s a good bet that we have decrypted the ciphertext with the correct key.

And that is how the computer can understand if a string is English or if it is gibberish.

Email questions to the author: al@inventwithpython.com

Chapter 12 — Detecting English Programmatically 169

Practice Exercises, Chapter 12, Section A

The Detect English Module

The detectEnglish.py program that we write in this chapter isn’t a program that runs by itself.
Instead, it will be imported by our encryption programs so that they can call the
detectEnglish.isEnglish () function. This is why we don’t give detectEnglish.py a
main () function. The other functions in the program are all provided for 1sEnglish () to
call.

Source Code for the Detect English Module

Open a new file editor window by clicking on File » New Window. Type in the following code
into the file editor, and then save it as detectEnglish.py. Press F5 to run the program.

Source code for detectEnglish.py

1. # Detect English module

2. # http://inventwithpython.com/hacking (BSD Licensed)

3.

4. # To use, type this code:

5. # import detectEnglish

6. # detectEnglish.isEnglish(someString) # returns True or False
7. # (There must be a "dictionary.txt" file in this directory with all English
8. # words in it, one word per line. You can download this from

9. # http://invpy.com/dictionary.txt)
10. UPPERLETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
11. LETTERS_AND_SPACE = UPPERLETTERS + UPPERLETTERS.Tower() + ' \t\n'
12.
13. def ToadDictionary():
14. dictionaryFile = open('dictionary.txt')

15. englishWords = {}

16. for word in dictionaryFile.read().split('\n'):

17. englishWords[word] = None

18. dictionaryFile.close()

19. return englishWords

20.

21. ENGLISH_WORDS = TloadDictionary()

22.

23.

24. def getEnglishCount(message):

25. message = message.upper()

26. message = removeNonlLetters(message)

27. possibleWords = message.split(Q)

170 http://inventwithpython.com/hacking

28.

29. if possibleWords == []:

30. return 0.0 # no words at all, so return 0.0

31.

32. matches = 0

33. for word in possibleWords:

34. if word in ENGLISH_WORDS:

35. matches += 1

36. return float(matches) / Ten(possibleWords)

37.

38.

39. def removeNonlLetters(message):

40. TettersOnly = []

41. for symbol in message:

42. if symbol in LETTERS_AND_SPACE:

43. lettersOnly.append(symboT)

44, return ''.join(lettersOnly)

45,

46.

47. def isEnglish(message, wordPercentage=20, letterPercentage=85):

48. # By default, 20% of the words must exist in the dictionary file, and
49. # 85% of all the characters in the message must be letters or spaces
50. # (not punctuation or numbers).

51. wordsMatch = getEnglishCount(message) * 100 >= wordPercentage

52. numLetters = len(removeNonLetters(message))

53. messagelLettersPercentage = float(numLetters) / len(message) * 100
54, TettersMatch = messagelettersPercentage >= TetterPercentage

55. return wordsMatch and lettersMatch

How the Program Works

detectEnglish.py
. # Detect English module
http://inventwithpython.com/hacking (BSD Licensed)

To use, type this code:

import detectEnglish

detectEnglish.isEnglish(someString) # returns True or False
(There must be a "dictionary.txt" file in this directory with all English
words in it, one word per Tine. You can download this from
http://invpy.com/dictionary.txt)

O oo NOUUTD WNR
HoH o H OB H

These comments at the top of the file give instructions to programmers on how to use this
module. They give the important reminder that if there is no file named dictionary.txt in the same

Email questions to the author: al@inventwithpython.com

Chapter 12 — Detecting English Programmatically 171

directory as detectEnglish.py then this module will not work. If the user doesn’t have this file, the

detectEnglish.py
10. UPPERLETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

11. LETTERS_AND_SPACE = UPPERLETTERS + UPPERLETTERS.lower() + ' \t\n'

Lines 10 and 11 set up a few variables that are constants, which is why they have uppercase
names. UPPERLETTERS is a variable containing the 26 uppercase letters, and
LETTERS AND_SPACE contain these letters (and the lowercase letters returned from
UPPERLETTERS. lower ()) but also the space character, the tab character, and the newline
character. The tab and newline characters are represented with escape characters \t and \n.

detectEnglish.py
13. def ToadDictionary(Q):
14. dictionaryFile = open('dictionary.txt')

The dictionary file sits on the user’s hard drive, but we need to load the text in this file as a string
value so our Python code can use it. First, we get a file object by calling open () and passing the
string of the filename 'dictionary.txt'. Before we continue with the

loadDictionary () code, let’s learn about the dictionary data type.

Dictionaries and the Dictionary Data Type

The dictionary data type has values which can contain multiple other values, just like lists do. In
list values, you use an integer index value to retrieve items in the list, like spam[42]. For each
item in the dictionary value, there is a key used to retrieve it. (Values stored inside lists and
dictionaries are also sometimes called items.) The key can be an integer or a string value, like
spam['hello'] or spam[42] . Dictionaries let us organize our program’s data with even
more flexibility than lists.

Instead of typing square brackets like list values, dictionary values (or simply, dictionaries) use
curly braces. Try typing the following into the interactive shell:

>>> emptyList = []
>>> emptyDictionary = {}
>>>

A dictionary’s values are typed out as key-value pairs, which are separated by colons. Multiple
key-value pairs are separated by commas. To retrieve values from a dictionary, just use square

172 http://inventwithpython.com/hacking

brackets with the key in between them (just like indexing with lists). Try typing the following
into the interactive shell:

>>> spam = {'keyl':'This is a value', 'key2':42}
>>> spam['keyl']

'This is a value'

>>> spam['key2']

42

>>>

It is important to know that, just as with lists, variables do not store dictionary values themselves,
but references to dictionaries. The example code below has two variables with references to the
same dictionary:

>>> spam {'hello': 42}
>>> eggs = spam
>>> eggs['hello'] = 99

>>> eggs
{'hello': 99}
>>> spam
{'hello': 99}
>>>

Adding or Changing Items in a Dictionary

You can add or change values in a dictionary with indexes as well. Try typing the following into
the interactive shell:

>>> spam = {42:'hello'}
>>> print(spam[42])
hello

>>> spam[42] = 'goodbye'
>>> print(spam[42])
goodbye

>>>

And just like lists can contain other lists, dictionaries can also contain other dictionaries (or lists).
Try typing the following into the interactive shell:

>>> foo = {'fizz': {'name': 'A1', 'age': 144}, 'moo':['a', 'brown', 'cow']}
>>> foo['fizz']

{'age': 144, 'name': 'Al1'}

>>> foo['fizz']['name']

Email questions to the author: al@inventwithpython.com

Chapter 12 — Detecting English Programmatically = 173

INE
>>> foo['moo']

['a', '"brown', 'cow']
>>> foo['moo'][1]
'"brown'

>>>

Practice Exercises, Chapter 12, Set B

Using the 1en () Function with Dictionaries

The 1en () function can tell you how many items are in a list or how many characters are in a
string, but it can also tell you how many items are in a dictionary as well. Try typing the
following into the interactive shell:

>>> spam = {}

>>> len(spam)

0

>>> spam['name'] = 'Al'

>>> spam['pet'] = 'Zophie the cat'
>>> spam['age'] = 89

>>> len(spam)

3

>>>

Using the in Operator with Dictionaries

The in operator can also be used to see if a certain key value exists in a dictionary. It is important
to remember that the in operator checks if a key exists in the dictionary, not a value. Try typing
the following into the interactive shell:

>>> eggs = {'foo': 'milk', 'bar': 'bread'}
>>> 'foo' in eggs

True

>>> 'blah blah blah' in eggs

False

>>> 'milk' in eggs

False

>>> 'bar' in eggs

True

>>> 'bread' in eggs
False

174 http://inventwithpython.com/hacking

>>>

The not in operator works with dictionary values as well.

Using for Loops with Dictionaries

You can also iterate over the keys in a dictionary with for loops, just like you can iterate over
the items in a list. Try typing the following into the interactive shell:

>>> spam = {'name':'Al', 'age':99}
>>> for k in spam:
print(k)
print(spam[k])
pr"| nt(')
age
99
name
Al
>>>

The Difference Between Dictionaries and Lists

Dictionaries are like lists in many ways, but there are a few important differences:

1. Dictionary items are not in any order. There is no “first” or “last” item in a dictionary like

there is in a list.

2. Dictionaries do not have concatenation with the + operator. If you want to add a new
item, you can just use indexing with a new key. For example, foo['a new key']
'a string'

3. Lists only have integer index values that range from 0 to the length of the list minus one.
But dictionaries can have any key. If you have a dictionary stored in a variable spam,
then you can store a value in spam [3] without needing values for spam[0],
spam[1],or spam[2] first.

Email questions to the author: al@inventwithpython.com

Chapter 12 — Detecting English Programmatically 175

Finding Items is Faster with Dictionaries Than Lists

detectEnglish.py
15. englishWords = {}

In the 1loadDictionary () function, we will store all the words in the “dictionary file” (as in,
a file that has all the words in an English dictionary book) in a dictionary value (as in, the Python
data type.) The similar names are unfortunate, but they are two completely different things.

We could have also used a list to store the string values of each word from the dictionary file. The
reason we use a dictionary is because the in operator works faster on dictionaries than lists.
Imagine that we had the following list and dictionary values:

>>> TlistVal = ['spam', 'eggs', 'bacon']
>>> dictionaryVal = {'spam':0, 'eggs':0, 'bacon':0}

Python can evaluate the expression 'bacon' in dictionaryVal alittle bit faster than
'bacon' in listVal. The reason is technical and you don’t need to know it for the

speed doesn’t make that much of a difference for lists and dictionaries with only a few items in
them like in the above example. But our detectEnglish module will have tens of thousands
of items, and the expression word in ENGLISH WORDS will be evaluated many times when
the 1sEnglish () function is called. The speed difference really adds up for the
detectEnglish module.

The split () Method

The split () string method returns a list of several strings. The “split” between each string
occurs wherever a space is. For an example of how the split () string method works, try typing
this into the shell:

>>> 'My very energetic mother just served us Nutella.'.split(Q)
['My', 'very', 'energetic', 'mother', 'just', 'served', 'us', 'Nutella.']
>>>

The result is a list of eight strings, one string for each of the words in the original string. The
spaces are dropped from the items in the list (even if there is more than one space). You can pass
an optional argument to the split () method to tell it to split on a different string other than just
a space. Try typing the following into the interactive shell:

>>> "helToXXXworTdXXXhowXXXareXXyou?'.spTit('XXX")

176 http://inventwithpython.com/hacking

['"hello', 'world', 'how', 'areXXyou?']
>>>

detectEnglish.py
16. for word in dictionaryFile.read().split('\n'):

Line 16 is a for loop that will set the word variable to each value in the list
dictionaryFile.read () .split ('\n"). Let’s break this expression down.
dictionaryFile is the variable that stores the file object of the opened file. The
dictionaryFile.read () method call will read the entire file and return it as a very large
string value. On this string, we will call the spl1it () method and split on newline characters.
This split () call will return a list value made up of each word in the dictionary file (because
the dictionary file has one word per line.)

This is why the expression dictionaryFile.read () .split ('\n"') will evaluate to a
list of string values. Since the dictionary text file has one word on each line, the strings in the list
that split () returns will each have one word.

The None Value

None is a special value that you can assign to a variable. The None value represents the lack of
a value. None is the only value of the data type NoneType. (Just like how the Boolean data type
has only two values, the NoneType data type has only one value, None.) It can be very useful to
use the None value when you need a value that means “does not exist”. The None value is
always written without quotes and with a capital “N” and lowercase “one”.

For example, say you had a variable named quizAnswer which holds the user's answer to some
True-False pop quiz question. You could set quizAnswer to None if the user skipped the
question and did not answer it. Using None would be better because if you set it to True or
False before assigning the value of the user's answer, it may look like the user gave an answer
for the question even though they didn't.

Calls to functions that do not return anything (that is, they exit by reaching the end of the function
and not from a return statement) will evaluate to None.

detectEnglish.py

Email questions to the author: al@inventwithpython.com

Chapter 12 — Detecting English Programmatically 177

17. englishWords[word] = None

In our program, we only use a dictionary for the englishWords variable so that the in
operator can find keys in it. We don’t care what is stored for each key, so we will just use the
None value. The for loop that starts on line 16 will iterate over each word in the dictionary file,
and line 17 will use that word as a key in englishWords with None stored for that key.

Back to the Code

detectEnglish.py
18. dictionaryFile.close()
19. return englishWords

After the for loop finishes, the englishWords dictionary will have tens of thousands of keys
in it. At this point, we close the file object since we are done reading from it and then return

englishWords.

detectEnglish.py
21. ENGLISH_WORDS = loadDictionary()

Line 21 calls 1loadDictionary () and stores the dictionary value it returns in a variable
named ENGLISH WORDS. We want to call loadDictionary () before the rest of the code in
the detectEnglish module, but Python has to execute the de f statement for
loadDictionary () before we can call the function. This is why the assignment for
ENGLISH WORDS comes after the loadDictionary () function’s code.

detectEnglish.py
24. def getEnglishCount(message):

25. message = message.upper()
26. message = removeNonlLetters(message)
27. possibleWords = message.split(Q)

The getEnglishCount () function will take one string argument and return a float value
indicating the amount of recognized English words in it. The value 0 . 0 will mean none of the
words in message are English words and 1. 0 will mean all of the words in message are
English words, but most likely getEnglishCount () will return something in between 0. 0
and 1.0. The isEnglish () function will use this return value as part of whether it returns

True or False.

178 http://inventwithpython.com/hacking

First we must create a list of individual word strings from the string in message. Line 25 will
convert it to uppercase letters. Then line 26 will remove the non-letter characters from the string,
such as numbers and punctuation, by calling removeNonLetters (). (We will see how this
function works later.) Finally, the split () method on line 27 will split up the string into
individual words that are stored in a variable named possibleWords.

Soif the string 'Hello there. How are you?' was passed when
getEnglishCount () was called, the value stored in possibleWords after lines 25 to 27
execute would be ['HELLO', 'THERE', 'HOW', 'ARE', 'YOU'].

detectEnglish.py
29. if possibleWords == []:
30. return 0.0 # no words at all, so return 0.0

If the string in message was something like '12345", all of these non-letter characters would
have been taken out of the string returned from removeNonLetters (). The call to
removeNonLetters () would return the blank string, and when split () is called on the
blank string, it will return an empty list.

Line 29 does a special check for this case, and returns O . 0. This is done to avoid a “divide-by-
zero” error (which is explained later on).

detectEnglish.py

32. matches = 0

33. for word in possibleWords:
34. if word in ENGLISH_WORDS:
35. matches += 1

The float value that is returned from getEnglishCount () ranges between 0.0 and 1.0. To
produce this number, we will divide the number of the words in possibleWords that are
recognized as English by the total number of words in possibleWords.

The first part of this is to count the number of recognized English words in possibleWords,
which is done on lines 32 to 35. The matches variable starts off as 0. The for loop on line 33
will loop over each of the words in possibleWords, and checks if the word exists in the
ENGLISH WORDS dictionary. If it does, the value in matches is incremented on line 35.

Once the for loop has completed, the number of English words is stored in the matches
variable. Note that technically this is only the number of words that are recognized as English
because they existed in our dictionary text file. As far as the program is concerned, if the word
exists in dictionary.txt, then it is a real English word. And if it doesn’t exist in the dictionary file,

Email questions to the author: al@inventwithpython.com

Chapter 12 — Detecting English Programmatically 179

it is not an English word. We are relying on the dictionary file to be accurate and complete in
order for the detectEnglish module to work correctly.

“Divide by Zero” Errors

detectEnglish.py
36. return float(matches) / Ten(possibleWords)

Returning a float value between 0.0 and 1. 0 is a simple matter of dividing the number of
recognized words by the total number of words.

However, whenever we divide numbers using the / operator in Python, we should be careful not
to cause a “divide-by-zero” error. In mathematics, dividing by zero has no meaning. If we try to
get Python to do it, it will result in an error. Try typing the following into the interactive shell:

>> 42 / 0
Traceback (most recent call last):
File "<pyshel1#0>", 1ine 1, in <module>
42 / 0
ZeroDivisionError: int division or modulo by zero
>>>

But a divide by zero can’t possibly happen on line 36. The only way it could is if

len (possibleWords) evaluated to 0. And the only way that would be possible is if
possibleWords were the empty list. However, our code on lines 29 and 30 specifically checks
for this case and returns 0. 0. So if possibleWords had been set to the empty list, the
program execution would have never gotten past line 30 and line 36 would not cause a “divide-
by-zero” error.

The float (), int (), and str () Functions and Integer
Division

detectEnglish.py
36. return float(matches) / Ten(possibleWords)

The value stored in matches is an integer. However, we pass this integer to the £1oat ()
function which returns a float version of that number. Try typing the following into the interactive
shell:

>>> float(42)
42.0

180 http://inventwithpython.com/hacking

>>>

The int () function returns an integer version of its argument, and the str () function returns a
string. Try typing the following into the interactive shell:

>>> float(42)
42.0

>>> int(42.0)
42

>>> int(42.7)
42

>>> int("42")
42

>>> str(42)
l42'

>>> str(42.7)
'42.7"

>>>

The float (), int (), and str () functions are helpful if you need a value’s equivalent in a
different data type. But you might be wondering why we pass matches to float () on line 36
in the first place.

The reason is to make our detectEnglish module work with Python 2. Python 2 will do
integer division when both values in the division operation are integers. This means that the result
will be rounded down. So using Python 2, 22 / 7 will evaluate to 3. However, if one of the
values is a float, Python 2 will do regular division: 22.0 / 7 will evaluate to
3.142857142857143. This is why line 36 calls £1oat (). This is called making the code
backwards compatible with previous versions.

Python 3 always does regular division no matter if the values are floats or ints.

Practice Exercises, Chapter 12, Set D

Back to the Code

detectEnglish.py
39. def removeNonLetters(message):
40. TettersOnly = []
41. for symbol in message:

Email questions to the author: al@inventwithpython.com

Chapter 12 — Detecting English Programmatically 181

The previously explained getEnglishCount () function calls the removeNonLetters ()

function to return a string that is the passed argument, except with all the numbers and
punctuation characters removed.

The code in removeNonLetters () starts with a blank list and loops over each character in
the message argument. If the character exists in the LETTERS AND SPACE string, then it is
added to the end of the list. If the character is a number or punctuation mark, then it won’t exist in
the LETTERS AND_ SPACE string and won’t be added to the list.

182 http://inventwithpython.com/hacking

The append() List Method

detectEnglish.py
42. if symbol in LETTERS_AND_SPACE:
43, lettersOnly.append(symboT)

Line 42 checks if symbol (which is set to a single character on each iteration of line 41°s for
loop) exists in the LETTERS AND SPACE string. If it does, then it is added to the end of the
lettersOnly list with the append () list method.

If you want to add a single value to the end of a list, you could put the value in its own list and
then use list concatenation to add it. Try typing the following into the interactive shell, where the
value 42 is added to the end of the list stored in spam:

>>> spam = [2, 3, 5, 7, 9, 11]
>>> spam

[2, 3, 5, 7, 9, 11]

>>> spam = spam + [42]

>>> spam
[2, 3, 5, 7, 9, 11, 42]
>>>

When we add a value to the end of a list, we say we are appending the value to the list. This is
done with lists so frequently in Python that there is an append () list method which takes a
single argument to append to the end of the list. Try typing the following into the shell:

>>> eggs = []
>>> eggs.append('hovercraft')
>>> eggs

["hovercraft']
>>> eggs.append('eels')

>>> eggs

["hovercraft', 'eels']

>>> eggs.append(42)

>>> eggs

["hovercraft', 'eels', 42]
>>>

For technical reasons, using the append () method is faster than putting a value in a list and
adding it with the + operator. The append () method modifies the list in-place to include the
new value. You should always prefer the append () method for adding values to the end of a
list.

Email questions to the author: al@inventwithpython.com

Chapter 12 — Detecting English Programmatically 183

detectEnglish.py

A}

44, return ''.join(lettersOnly)

After line 41°s for loop is done, only the letter and space characters are in the lettersOnly
list. To make a single string value from this list of strings, we call the join () string method on
a blank string. This will join the strings in 1ettersOnly together with a blank string (that is,
nothing) between them. This string value is then returned as removeNonLetters () ’s return
value.

Default Arguments

detectEnglish.py
47. def isEnglish(message, wordPercentage=20, letterPercentage=85):

48. # By default, 20% of the words must exist in the dictionary file, and
49. # 85% of all the characters in the message must be Tetters or spaces
50. # (not punctuation or numbers).

The isEnglish () function will accept a string argument and return a Boolean value that
indicates whether or not it is English text. But when you look at line 47, you can see it has three
parameters. The second and third parameters (wordPercentage and letterPercentage)
have equal signs and values next to them. These are called default arguments. Parameters that
have default arguments are optional. If the function call does not pass an argument for these
parameters, the default argument is used by default.

If isEnglish () is called with only one argument, the default arguments are used for the
wordPercentage (the integer 20) and letterPercentage (the integer 85) parameters.
Table 12-1 shows function calls to 1 sEnglish (), and what they are equivalent to:

Table 12-1. Function calls with and without default arguments.

Function Call Equivalent To
isEnglish('Hello"') isEnglish ('Hello', 20, 85)
isEnglish('Hello', 50) isEnglish('Hello', 50, 85)

isEnglish ('Hello', 50, 60) isEnglish ('Hello', 50, 60)

isEnglish('Hello"', isEnglish('Hello', 20, 60)
letterPercentage=60)

184 http://inventwithpython.com/hacking

When isEnglish () is called with no second and third argument, the function will require that
20% of the words in message are English words that exist in the dictionary text file and 85% of
the characters in message are letters. These percentages work for detecting English in most
cases. But sometimes a program calling 1 sEnglish () will want looser or more restrictive
thresholds. If so, a program can just pass arguments for wordPercentage and
letterPercentage instead of using the default arguments.

Calculating Percentage

A percentage is a number between 0 and 100 that shows how much of something there is
proportional to the total number of those things. In the string value 'Hello cat MOOSE
fsdkl ewpin' there are five “words” but only three of them are English words. To calculate
the percentage of English words, you divide the number of English words by the total
number of words and multiply by 100. The percentage of English words in 'Hello cat
MOOSE fsdkl ewpin'is3 / 5 * 100, whichis 60.

Table 12-2 shows some percentage calculations:

Table 12-2. Some percentage calculations.

Number of Total Number English *100 = Percentage
English Words of Words Words / Total
3 5 0.6 *100 = 60
6 10 0.6 *100 = 60
300 500 0.6 *100 = 60
32 87 0.3678 *100 = 36.78
87 87 1.0 *100 = 100
0 10 0 * 100 = 0

The percentage will always be between 0% (meaning none of the words) and 100% (meaning all
of the words). Our 1sEnglish () function will consider a string to be English if at least 20% of
the words are English words that exist in the dictionary file and 85% of the characters in the
string are letters (or spaces).

detectEnglish.py
51. wordsMatch = getEnglishCount(message) * 100 >= wordPercentage

Line 51 calculates the percentage of recognized English words in message by passing
message to getEnglishCount (), which does the division for us and returns a float
between 0.0 and 1. 0. To get a percentage from this float, we just have to multiply it by 100. If
this number is greater than or equal to the wordPercentage parameter, then True is stored in

Email questions to the author: al@inventwithpython.com

Chapter 12 — Detecting English Programmatically 185

wordsMatch. (Remember, the >= comparison operator evaluates expressions to a Boolean
value.) Otherwise, False is stored in wordsMatch.

detectEnglish.py

52. numLetters = len(removeNonlLetters(message))
53. messagelLettersPercentage = float(numLetters) / len(message) * 100
54. TettersMatch = messagelettersPercentage >= TetterPercentage

Lines 52 to 54 calculate the percentage of letter characters in the message string. To determine
the percentage of letter (and space) characters in message, our code must divide the number of
letter characters by the total number of characters in message. Line 52 calls
removeNonLetters (message) . This call will return a string that has the number and
punctuation characters removed from the string. Passing this string to 1en () will return the
number of letter and space characters that were in message. This integer is stored in the
numLetters variable.

Line 53 determines the percentage of letters getting a float version of the integer in
numLetters and dividing this by 1en (message) . The return value of 1en (message) will
be the total number of characters in message. (The call to f1oat () was made so that if the
programmer who imports our detectEnglish module is running Python 2, the division done
on line 53 will always be regular division instead of integer division.)

Line 54 checks if the percentage in messageLettersPercentage is greater than or equal to
the letterPercentage parameter. This expression evaluates to a Boolean value that is stored
in lettersMatch.

detectEnglish.py
55. return wordsMatch and TettersMatch

We want isEnglish () to return True only if both the wordsMatch and lettersMatch
variables contain True, so we put them in an expression with the and operator. If both the
wordsMatch and lettersMatch variables are True, then 1sEnglish () will declare that
the message argument is English and return True. Otherwise, isEnglish () will return

False.

Practice Exercises, Chapter 12, Set E

186 http://inventwithpython.com/hacking

Summary

The dictionary data type is useful because like a list it can contain multiple values. However
unlike the list, we can index values in it with string values instead of only integers. Most of the
the things we can do with lists we can also do with dictionaries, such as pass itto 1en () or use
the in and not in operators on it. In fact, using the in operator on a very large dictionary
value executes much faster than using in on a very large list.

The NoneType data type is also a new data type introduced in this chapter. It only has one value:
None. This value is very useful for representing a lack of a value.

We can convert values to other data types by using the int (), float (), and str () functions.
This chapter brings up “divide-by-zero” errors, which we need to add code to check for and
avoid. The split () string method can convert a single string value into a list value of many
strings. The split () string method is sort of the reverse of the join () list method. The
append () list method adds a value to the end of the list.

When we define functions, we can give some of the parameters “default arguments”. If no
argument is passed for these parameters when the function is called, the default argument value is
used instead. This can be a useful shortcut in our programs.

The transposition cipher is an improvement over the Caesar cipher because it can have hundreds
or thousands of possible keys for messages instead of just 26 different keys. A computer has no
problem decrypting a message with thousands of different keys, but to hack this cipher, we need
to write code that can determine if a string value is valid English or not.

Since this code will probably be useful in our other hacking programs, we will put it in its own
module so it can be imported by any program that wants to call its isEnglish () function. All
of the work we’ve done in this chapter is so that any program can do the following:

>>> import detectEnglish

>>> detectEnglish.isEnglish('Is this sentence English text?')
True

>>>

Now armed with code that can detect English, let’s move on to the next chapter and hack the
transposition cipher!

Email questions to the author: al@inventwithpython.com

Chapter 13 — Hacking the Transposition Cipher 187

CHaprter 13

HACKING THE TRANSPOSITION
CIPHER

Topics Covered In This Chapter:
e Multi-line Strings with Triple Quotes
e The strip () String Method

To hack the transposition cipher, we will use a brute-force approach. Of the thousands of keys,
the correct key is most likely that only one that will result in readable English. We developed
English-detection code in the last chapter so the program can realize when it has found the correct
key.

Source Code of the Transposition Cipher Hacker Program

Open a new file editor window by clicking on File » New Window. Type in the following code
into the file editor, and then save it as transpositionHacker.py. Press F5 to run the program. Note
that first you will need to download the pyperclip.py module and place this file in the same
directory as the transpositionHacker.py file. You can download this file from

Source code for transpositionHacker.py
1. # Transposition Cipher Hacker
2. # http://inventwithpython.com/hacking (BSD Licensed)
3.
4. import pyperclip, detectEnglish, transpositionDecrypt
5

188 http://inventwithpython.com/hacking

6. def main(Q:

7. # You might want to copy & paste this text from the source code at
8. # http://invpy.com/transpositionHacker.py
9. myMessage = """Cb b rssti aieih rooaopbrtnsceee er es no npfgcwu plri

ch nitaalr eiuengiteehb(el hilincegeoamn fubehgtarndcstudmd nM eu eacBoltaetee
oinebcdkyremdteghn.aa2r8la condari fmps" tad 1 t oisn sit ulrnd stara nvhn fs
edbh ee,n e necrg6b 8nmisv 1 nc muiftegiitm tutmg cm shSs9fcie ebintcaets h a
ihda cctrhe ele 107 aaoem waoaatdahretnhechaopnooeapece9etfncdbgsoeb uuteitgna.
rteoh add e,D7clEtnpneehtn beete" evecoal 1sfmcrl julcifgo ai. sllrchdnheev sh
meBd ies e9t)nh,htcnoecplirrh ,ide hmtime. phealLem,toeinfgn t e9yce da' eN eMp a
ffn Fclo ge eohg dere.eec s nfap yox hla yon. InrnsreaBoa t,e eitsw il ulpbdofg
BRe bwlmprraio po droB wtinue r Pieno nc ayieeto'lulcih sfnc ownaSserbereiaSm
-eaiah, nnrttgcC maciiritvledastinideI nn rms iehn tsigaBmuoetcetias rn"""
10.

11. hackedMessage = hackTransposition(myMessage)

12.

13. if hackedMessage == None:

14. print('Failed to hack encryption.')

15. else:

16. print('Copying hacked message to clipboard:"')

17. print(hackedMessage)

18. pyperclip.copy(hackedMessage)

19.

20.

21. def hackTransposition(message):

22. print('Hacking...")

23.

24. # Python programs can be stopped at any time by pressing Ctr1-C (on
25. # Windows) or Ctr1-D (on Mac and Linux)

26. print('(Press Ctr1-C or Ctrl1-D to quit at any time.)")

27.

28. # brute-force by looping through every possible key

29. for key in range(l, len(message)):

30. print('Trying key #%s..."' % (key))

31.

32. decryptedText = transpositionDecrypt.decryptMessage(key, message)
33.

34. if detectEnglish.isEnglish(decryptedText):

35. # Check with user to see if the decrypted key has been found.
36. printQ)

37. print('Possible encryption hack:")

38. print('Key %s: %s' % (key, decryptedText[:100]))

39. print()

40. print('Enter D for done, or just press Enter to continue
hacking: ")

41. response = input('> ')

Email questions to the author: al@inventwithpython.com

Chapter 13 — Hacking the Transposition Cipher 189

42.
43.
44,
45,
46.
47.

if response.strip().upper().startswith('D'):
return decryptedText

return None

48. if _name__ == '_main__":
main()

49.

Sample Run of the Transposition Breaker Program
When you run this program, the output will look this:

Hacking. ..
Ctr1-C or Ctr1-D to quit at any time.)

(Press
Trying
Trying
Trying
Trying
Trying
Trying
Trying
Trying
Trying
Trying

key
key
key
key
key
key
key
key
key
key

#1...
#2...
#3...
#4...
#5...
#6...
#7...
#8...
#9...
#10...

Possible encryption hack:
Key 10: Charles Babbage, FRS (26 December 1791 - 18 October 1871) was an
English mathematician, philosopher,

Enter D for done, or just press Enter to continue hacking:

> D

Copying hacked message to clipboard:

Charles Babbage, FRS (26 December 1791 - 18 October 1871) was an English
mathematician, philosopher, inventor and mechanical engineer who originated the
concept of
Babbage is
eventually
on display
difference
tolerances
indicated that Babbage's machine would have worked. Nine years later, the
Science Museum completed the printer Babbage had designed for the difference

engine.

a programmable computer. Considered a "father of the computer”,
credited with inventing the first mechanical computer that

led to more complex designs. Parts of his uncompleted mechanisms are
in the London Science Museum. In 1991, a perfectly functioning
engine was constructed from Babbage's original plans. Built to
achievable in the 19th century, the success of the finished engine

190 http://inventwithpython.com/hacking

When the hacker program has found a likely correct decryption, it will pause and wait for the user
to press “D” and then Enter. If the decryption is a false positive, the user can just press Enter and
the program will continue to try other keys.

Run the program again and skip the correct decryption by just pressing Enter. The program
assumes that it was not a correct decryption and continues brute-forcing through the other
possible keys. Eventually the program runs through all the possible keys and then gives up,
telling the user that it was unable to hack the ciphertext:

Trying key #757...
Trying key #758...
Trying key #759...
Trying key #760...
Trying key #761...
Failed to hack encryption.

How the Program Works

transpositionHacker.py
Transposition Cipher Hacker
http://inventwithpython.com/hacking (BSD Licensed)

AWN R

. import pyperclip, detectEnglish, transpositionDecrypt

The transposition hacker program is under 50 lines of code because much of it exists in other
programs. Several modules are imported on line 4.

Multi-line Strings with Triple Quotes

transpositionHacker.py

6. def main(Q):

7. # You might want to copy & paste this text from the source code at
8. # http://invpy.com/transpositionHacker.py
9. myMessage = """Cb b rssti aieih rooaopbrtnsceee er es no npfgcwu plri

ch nitaalr eiuengiteehb(el hilincegeoamn fubehgtarndcstudmd nM eu eacBoltaetee
oinebcdkyremdteghn.aa2r8la condari fmps" tad 1 t oisn sit ulrnd stara nvhn fs
edbh ee,n e necrgb 8nmisv 1 nc muiftegiitm tutmg cm shSs9fcie ebintcaets h a
ihda cctrhe ele 107 aaoem waoaatdahretnhechaopnooeapece9etfncdbgsoeb uuteitgna.
rteoh add e,D7clEtnpneehtn beete" evecoal 1sfmcrl julcifgo ai. sllrchdnheev sh

meBd ies e9t)nh,htcnoecplirrh ,ide hmtime. phealLem,toeinfgn t e9yce da' eN eMp a
ffn Fclo ge eohg dere.eec s nfap yox hla yon. InrnsreaBoa t,e eitsw il ulpbdofg
BRe bwlmprraio po droB wtinue r Pieno nc ayieeto'lulcih sfnc ownaSserbereiaSm
-eaiah, nnrttgcC maciiritvledastinideIl nn rms iehn tsigaBmuoetcetias rn"""

Email questions to the author: al@inventwithpython.com

Chapter 13 — Hacking the Transposition Cipher 191

The ciphertext to be hacked is stored in the myMessage variable. Line 9 has a string value that
begins and ends with triple quotes. These strings do not have to have literal single and double
quotes escaped inside of them. Triple quote strings are also called multi-line strings, because they
can also contain actual newlines within them. Try typing the following into the interactive shell:

>>> spam = """Dear Alice,

Why did you dress up my hamster in doll clothing?

I Took at Mr. Fuzz and think, "I know this was Alice's doing."
Sincerely,

Bob"""

>>> print(spam)

Dear Alice,

Why did you dress up my hamster in doll clothing?

I Took at Mr. Fuzz and think, "I know this was Alice's doing."
Sincerely,

Bob

>>>

Notice that this string value can span over multiple lines. Everything after the opening triple
quotes will be interpreted as part of the string until it reaches triple quotes ending it. Multi-line
strings can either use three double quote characters or three single quote characters.

Multi-line strings are useful for putting very large strings into the source code for a program,
which is why it is used on line 9 to store the ciphertext to be broken.

Back to the Code

transpositionHacker.py
11. hackedMessage = hackTransposition(myMessage)

The ciphertext hacking code exists inside the hackTransposition () function. This function
takes one string argument: the encrypted ciphertext message to be broken. If the function can
hack the ciphertext, it returns a string of the decrypted text. Otherwise, it returns the None value.
This value is stored in the hackedMessage variable.

transpositionHacker.py
13. if hackedMessage == None:
14. print('Failed to hack encryption.')

If None was stored in hackedMessage, the program prints that it was unable to break the
encryption on the message.

192 http://inventwithpython.com/hacking

transpositionHacker.py

15. else:

16. print('Copying hacked message to clipboard:")
17. printChackedMessage)

18. pyperclip.copy(hackedMessage)

Otherwise, the text of the decrypted message is printed to the screen on line 17 and also copied to
the clipboard on line 18.

transpositionHacker.py
21. def hackTransposition(message):

22. print('Hacking...")

23.

24. # Python programs can be stopped at any time by pressing Ctr1-C (on
25. # Windows) or Ctrl1-D (on Mac and Linux)

26. print('(Press Ctr1-C or Ctrl1-D to quit at any time.)")

Because there are many keys the program can go through, the program displays a message to the
user telling her that the hacking has started. The print () call on line 26 also tells her that she
can press Ctrl-C (on Windows) or Ctrl-D (on OS X and Linux) to exit the program at any point.
(Pressing these keys will always exit a running Python program.)

transpositionHacker.py

28. # brute-force by looping through every possible key
29. for key in range(l, len(message)):
30. print('Trying key #%s..."' % (key))

The range of possible keys for the transposition cipher is the integers between 1 and the length of
the message. The for loop on line 29 will run the hacking part of the function with each of these
keys.

To provide feedback to the user, the key that is being tested is printed to the string on line 30,

using string interpolation to place the integer in key inside the ' Trying key #%s...

(key) string.

transpositionHacker.py
32. decryptedText = transpositionDecrypt.decryptMessage(key, message)

Using the decryptMessage () function in the transpositionDecrypt.py program that we’ve
already written, line 32 gets the decrypted output from the current key being tested and stores it in
the decryptedText variable.

Email questions to the author: al@inventwithpython.com

Chapter 13 — Hacking the Transposition Cipher 193

transpositionHacker.py

34. if detectEnglish.isEnglish(decryptedText):

35. # Check with user to see if the decrypted key has been found.
36. print(

37. print('Possible encryption hack:"')

38. print('Key %s: %s' % (key, decryptedText[:100]))

39. print()

40. print('Enter D for done, or just press Enter to continue
hacking: ")

41. response = input('> ')

The decrypted output in decryptedText will most likely only be English if the correct key
was used (otherwise, it will appear to be random garbage). The string in decryptedText is
passed to the detectEnglish.isEnglish () function we wrote in the last chapter.

But just because detectEnglish.isEnglish () returns True (making the program
execution enter the block following the i £ statement on line 34) doesn’t mean the program has
found the correct key. It could be a “false positive”. To be sure, line 38 prints out the first 100
characters of the decryptedText string (by using the slice decryptedText[:100]) on
the screen for the user to look at.

The program pauses when line 41 executes, waiting for the user to type something in either D on
nothing before pressing Enter. This input is stored as a string in response.

The strip () String Method

The strip() string method returns a version of the string that has any
whitespace at the beginning and end of the string stripped out. Try typing in
the following into the interactive shell:

>>> ! Hello'.strip(Q)

'Hello'

>>> 'Hello '.strip(Q)

'Hello'

>>> ' Hello World '.stripQ
'HeTllo World'

>>> 'Hello x'.stripQ

'Hello x'

>>>

The strip () method can also have a string argument passed to it that tells the method which
characters should be removed from the start and end of the string instead of removing whitespace.

194 http://inventwithpython.com/hacking

The whitespace characters are the space character, the tab character, and the newline
character. Try typing the following into the interactive shell:

>>> "HelTloxxxxxx'.strip('x")

'Hello'
>>> 'aaaaaHELLOaa'.strip('a')
"HELLO'
>>> 'ababaHELLOab'.strip('ab')
"HELLO'
>>> 'abccabcbacbXYZabcXYZacccab'.strip('abc')
'XYZabcXYZ'
>>>
transpositionHacker.py
43. if response.strip().upper().startswith('D'):
44 return decryptedText

The expression on line 43 used for the i f statement’s condition lets the user have some
flexibility with what has to be typed in. If the condition were response == 'D', then the user
would have to type in exactly “D” and nothing else in order to end the program.

If the user typedin 'd' or ' D' or 'Done" then the condition would be False and the
program would continue. To avoid this, the string in response has any whitespace removed
from the start or end with the call to strip (). Then the string that response.strip ()
evaluates to has the upper () method called on it. If the user typed in either “d” or “D”, the
string returned from uppexr () will be ' D"'. Little things like this make our programs easier for
the user to use.

If the user has indicated that the decrypted string is correct, the decrypted text is returned from
hackTransposition () on line 44.

transpositionHacker.py
46. return None

Line 46 is the first line after the for loop that began on line 29. If the program execution reaches
this point, it’s because the return statement on line 44 was never reached. That would only
happen if the correctly decrypted text was never found for any of the keys that were tried.

In that case, line 46 returns the None value to indicate that the hacking has failed.

transpositionHacker.py
48. if _name_ == '_main_"':

Email questions to the author: al@inventwithpython.com

Chapter 13 — Hacking the Transposition Cipher 195

49. main()

Lines 48 and 49 call the main () function if this program was run by itself, rather than imported
by another program that wants to use its hackTransposition () function.

Practice Exercises, Chapter 13, Set A

Summary

This chapter was short like the “Breaking the Caesar Cipher with the Brute-Force Technique”
chapter because (also like that chapter) most of the code was already written in other programs.
Our hacking program can import functions from these other programs by importing them as
modules.

The strip () string method is useful for removing whitespace (or other) characters from the
beginning or end of a string. If we use triple quotes, then a string value can span across multiple
lines in our source code.

The detectEnglish.py program removes a lot of the work of inspecting the decrypted output to see
if it’s English. This allows the brute-force technique to be applied to a cipher that can have
thousands of keys.

Our programs are becoming more sophisticated. Before we learn the next cipher, we should learn
how to use Python’s debugger tool to help us find bugs in our programs.

196 http://inventwithpython.com/hacking

CHarTer 14

MODULAR ARITHMETIC WITH
THE MULTIPLICATIVE AND
AFFINE CIPHERS

Topics Covered In This Chapter:

Modular Arithmetic

“Mod” is “Remainder Of’(Sort Of)

GCD: Greatest Common Divisor (aka Greatest Common Factor)
Multiple Assignment Trick

Euclid’s Algorithm for Finding the GCD of Two Numbers
“Relatively Prime”

The Multiplicative Cipher

Finding Modular Inverses

The cryptomath Module

“People have been defending their own privacy for centuries
with whispers, darkness, envelopes, closed doors, secret
handshakes, and couriers. The technologies of the past did
not allow for strong privacy, but electronic technologies do.”

Eric Hughes, “A Cypherpunk's Manifesto”, 1993

Email questions to the author: al@inventwithpython.com

Chapter 14 — Modular Arithmetic and the Multiplicative Cipher 197

The multiplicative and affine ciphers are similar to the Caesar cipher, except instead of adding a
key to a symbol’s index in a string, these ciphers use multiplication. But before we learn how to
encrypt and decrypt with these ciphers, we’re going to need to learn a little math. This knowledge
is also needed for the last cipher in this book, the RSA cipher.

Oh No Math!

Don’t let it scare you that you need to learn some math. The principles here are easy to learn from
pictures, and we’ll see that they are directly useful in cryptography.

Math Oh Yeah!

That’s more like it.

Modular Arithmetic (aka Clock Arithmetic)

This is a clock in which I’ve replaced the 12 with a 0. (I’'m a programmer. I think it’s weird that
the day begins at 12 AM instead of 0 AM.) Ignore the hour, minute, and second hands. We just
need to pay attention to the numbers.

Figure 14-1. A clock with a zero o’clock.

198 http://inventwithpython.com/hacking

3 O’Clock + 5 Hours = 8 O’Clock

If the current time is 3 o’clock, what time will it be in 5 hours? This is
easy enough to figure out. 3 + 5 = 8. It will be 8 o’clock. Think of the
hour hand on the clock in Figure 14-1 starting at 3, and then moving 5
hours clockwise. It will end up at 8. This is one way we can double-
check our math.

10 O’Clock + 5 Hours = 3 O’Clock

If the current time is 10 o’clock, what time will it be in 5 hours? If you
add 10 + 5, you get 15. But 15 o’clock doesn’t make sense for clocks
like the one to the right. It only goes up to 12. So to find out what time
it will be, we subtract 15 — 12 = 3. The answer is it will be 3 o’clock.
(Whether or not it is 3 AM or 3PM depends on if the current time is 10
AM or 10 PM. But it doesn’t matter for modular arithmetic.)

+5 Hours
If you think of the hour hand as starting at 10 and then moving forward

5 hours, it will land on 3. So double-checking our math by moving the
hour hand clockwise shows us that we are correct.

10 O’Clock + 200 Hours = 6 O’Clock

If the current time is 10 o’clock, what time will it be in 200 hours? 200
+ 10 =210, and 210 is larger than 12. So we subtract 210 — 12 = 198.
But 198 is still larger than 12, so we subtract 12 again. 198 — 12 = 186.
If we keep subtracting 12 until the difference is less than 12, we end up
with 6. If the current time is 10 o’clock, the time 200 hours later will be
6 o’clock.

+200 Hours

If we wanted to double check our 10 o’clock + 200 hours math, we
would keep moving the hour hand around and around the clock face.
When we’ve moved the hour hand the 200" time, it will end up landing
on 6.

Email questions to the author: al@inventwithpython.com

Chapter 14 — Modular Arithmetic and the Multiplicative Cipher 199

The % Mod Operator

This sort of “wrap-around” arithmetic is called modular arithmetic. We say “fifteen mod
twelve” is equal to 3. (Just like how “15 o’clock” mod twelve would be “3 o’clock.) In Python,
the mod operator is the % percent sign. Try typing the following into the interactive shell:

>>> 15 % 12
3
>>> 210 % 12
6
>>> 10 % 10
0
>>> 20 % 10
0

>>>

“Mod” is “Division Remainder”(Sort Of)

You can think of the mod operator as a “division remainder” operator. 21 + 5 = 4 remainder 1.
And 21 % 5 = 1. This works pretty well for positive numbers, but not for negative numbers. -21 +
5 = -4 remainder -1. But the result of a mod operation will never be negative. Instead, think of
that -1 remainder as being the same as 5 — 1, which comes to 4. This is exactly what -21 % 5
evaluates to:

>> -21 % 5
4
>>>

But for the purposes of cryptography in this book, we’ll only be modding positive numbers.

Practice Exercises, Chapter 14, Set A

GCD: Greatest Common Divisor (aka Greatest Common Factor)

Factors are the numbers that can be multiplied to produce a particular number. Look at this
simple multiplication:

4%6=24

In the above math problem, we say 4 and 6 are factors of 24. (Another name for factor is
divisor.) The number 24 also has some other factors:

200 http://inventwithpython.com/hacking

8§x3=24
12x2=24
24 x1=24

From the above three math problems, we can see that 8 and 3 are also factors of 24, as are 12 and
2, and 24 and 1. So we can say the factors of 24 are: 1, 2, 3, 4, 6, 8, 12, and 24.

Let’s look at the factors of 30:

1 x30=30
2x15=30
3x10=30
5x6=30

So the factors of 30 are 1, 2, 3, 5, 6, 10, 15, and 30. (Notice that any number will always have 1
and itself as factors.) If you look at the list of factors for 24 and 30, you can see that the factors
that they have in common are 1, 2, 3, and 6. The greatest number of these is 6, so we call 6 the
greatest common factor (or, more commonly, the greatest common divisor) of 24 and 30.

Visualize Factors and GCD with Cuisenaire Rods

e

Figure 14-2. Each Cuisenaire rod has a different color for each integer length.

Email questions to the author: al@inventwithpython.com

Chapter 14 — Modular Arithmetic and the Multiplicative Cipher 201

Above are some rectangular blocks with a width of 1 unit, 2 units, 3 units, and so on. The block’s
length can be used to represent a number. You can count the number of squares in each block to
determine the length and number. These blocks (sometimes called Cuisenaire rods) can be used to
visualize math operations, like 3+2=50r5x3 =15:

ok N o ol ok
bl Bl Bl B B
-l

SN - B
SREEE
3+2=5 5x3=15

Figure 14-3. Using Cuisenaire rods to demonstrate addition and multiplication.

If we represent the number 30 as a block that is 30 units long, a number is a factor of 30 if the
number’s blocks can evenly fit with the 30-block. You can see that 3 and 10 are factors of 30:

[)

——T T T T
AR SN S SN S] SIS

10 and 3 are factors of 30, since they evenly fit into 30.

Figure 14-4. Cuisenaire rods demonstrating factors.

But 4 and 7 are not factors of 30, because the 4-blocks and 7-blocks won’t evenly fit into the 30-
block:

. Too much!

4 and 7 are not factors of 30
since they can’t evenly fit into 30.

Figure 14-5. Cuisenaire rods demonstrating numbers that are not factors of 30.

The Greatest Common Divisor of two blocks (that is, two numbers represented by those blocks)
is the longest block that can evenly fit both blocks.

202 http://inventwithpython.com/hacking

The greatest common divisor of 32 and
24 is 8, since 8 is the longest block that
can evenly fit into both 32 and 24.

Figure 14-6. Cuisenaire rods demonstrating Greatest Common Divisor.

Multiple Assignment

Our GCD function will use Python’s multiple assignment trick. The multiple assignment trick lets
you assign more than one variable with a single assignment statement. Try typing the following
into the interactive shell:

>>> spam, eggs = 42, 'Hello'
>>> spam

42

>>> eggs
'Hello'

>>> a, b, c, d
>>> a

'Alice’

>>> b

'Bob’

>>> C

'Carol’

>>> d

'David’

>>>

['Alice', 'Bob', 'Carol', 'David']

The variable names on the left side of the = operator and the values on the right side of the =
operator are separated by a comma. You can also assign each of the values in a list to its own
variable, if the number of items in the list is the same as the number of variables on the left side
of the = operator.

Email questions to the author: al@inventwithpython.com

Chapter 14 — Modular Arithmetic and the Multiplicative Cipher ~ 203

Be sure to have the same number of variables as you have values, otherwise Python will raise an
error that says the call needs more or has too many values:

>>a, b, c =1, 2
Traceback (most recent call last):
File "<pyshell1#8>", 1ine 1, in <module>
a, b, c=1, 2
ValueError: need more than 2 values to unpack

>>a, b, c=1, 2, 3, 4, 5, 6
Traceback (most recent call last):
File "<pyshel1#9>", 1ine 1, in <module>
a, b, c=1, 2, 3, 4, 5, 6
ValueError: too many values to unpack
>>>

Swapping Values with the Multiple Assignment Trick

One of the main uses of the multiple assignment trick is to swap the values in two variables. Try
typing the following into the interactive shell:

>>> spam = 'hello’

>>> eggs = 'goodbye'

>>> spam, eggs = eggs, spam
>>> spam

'goodbye’

>>> eggs

'hello'

We will use this swapping trick in our implementation of Euclid’s algorithm.

Euclid’s Algorithm for Finding the GCD of Two Numbers

Figuring out the GCD of two numbers will be important for doing the multiplicative and affine
ciphers. It seems simple enough: just look at the numbers and write down any factors you can
think of, then compare the lists and find the largest number that is in both of them.

But to program a computer to do it, we’ll need to be more precise. We need an algorithm (that is,
a specific series of steps we execute) to find the GCD of two numbers.

A mathematician who lived 2,000 years ago named Euclid came up with an algorithm for finding
the greatest common divisor of two numbers. Here’s a statue of Euclid at Oxford University:

204 http://inventwithpython.com/hacking

Figure 14-7. Euclid may or may not have looked like this.

Of course since no likeness or description of Euclid exists in any historical document, no one
knows what he actually looked like at all. (Artists and sculptors just make it up.) This statue could
also be called, “Statue of Some Guy with a Beard”.

Euclid’s GCD algorithm is short. Here’s a function that implements his algorithm as Python code,
which returns the GCD of integers a and b:

def gcd(a, b):

while a !'= 0:
a, b=b%a, a
return b

If you call this function from the interactive shell and pass it 24 and 30 for the a and b
parameters, the function will return 6. You could have done this yourself with pencil and paper.
But since you’ve programmed a computer to do this, it can easily handle very large numbers:

>>> gcd(24, 30)

6

>>> gcd (409119243, 87780243)
6837

>>>

How Euclid’s algorithm works is beyond the scope of this book, but you can rely on this function
to return the GCD of the two integers you pass it.

Email questions to the author: al@inventwithpython.com

Chapter 14 — Modular Arithmetic and the Multiplicative Cipher 205

“Relatively Prime”

Relatively prime numbers are used for the multiplicative and affine ciphers. We say that two
numbers are relatively prime if their greatest common divisor is 1. That is, the numbers a and b
are relatively prime to each other if gcd (a, b) ==

Practice Exercises, Chapter 14, Set C

The Multiplicative Cipher

In the Caesar cipher, encrypting and decrypting symbols involved converting them to numbers,
adding or subtracting the key, and then converting the new number back to a symbol.

What if instead of adding the key to do the encryption, we use multiplication? There would be a
“wrap-around” issue, but the mod operator would solve that. For example, let’s use the symbol
set of just uppercase letters and the key 7. Here’s a list of the letters and their numbers:

o 1 2 3 4 5 6 7 9 10 11 12
A B C D EF G H T J K L M

13 14 15 16 17 18 19 20 21 22 23 24 25
N O P Q R S T U V W X Y Z

To find what the symbol F encrypts to with key 7, multiply its number (5) by 7 and mod by 26 (to
handle the “wrap-around” with our 26-symbol set). Then use that number’s symbol. (5 X 7) mod
26 =9, and 9 is the number for the symbol J. So F encrypts to J in the multiplicative cipher with
key 7. Do the same with all of the letters:

206 http://inventwithpython.com/hacking

Table 14-1. Encrypting each letter with the multiplicative cipher with key 7.

Plaintext

Symbol

Number

Ciphertext

Symbol

NKXE<LCHAOUWOZICNR—=—~IQmmUAOw»

[NS T N T NG I NS I NS I N I e e e e e
Ul-lku-)[\)'—‘OOOO\]O\U}AUJ[\),_.OQOO\]O\UILWNHO

Encryption with
Key 7

O*7N%2 =0
A*7D%2 =7
2*7 %2 = 14
B*7)%26 =21
@*7 %2 =2
G*D%20 =9
6*7) %26 =16
T*7) %26 =23
@B*7) %2 =4
O*7) %26 =11
(10*7)% 26 = 18
(A1 *7)% 26 = 25
(12*7)%26 = 6
(13*7) %26 = 13
(14 *7)% 26 = 20
(A5*7) %26 =1
(16*7)%26 = 8
(A7*7) %26 = 15
(18*7) %26 = 22
(19*7)%26 =3
20*7) %26 = 10
Q21*7)%26 = 17
22*7)% 26 = 24
23*7)%26 =5
24*7)%26 = 12
25*7)%26 = 19

HEM<KAIARTE T~ WCZAKNCOXO =N <O I >

You will end up with this mapping for the key 7: to encrypt you replace the top letter with the

letter under it, and vice versa to decrypt:

A B C D E

117111
AHOVC

F
)
J

G

H I
11
X E

e —

> x

c 0O

N
!
N

e
Qe Z

W

»—4(—)0
>

g<—>m

T
)
D

AN

Ao <L

W X
T 1
Y F

< o <

It wouldn’t take long for an attacker to brute-force through the first 7 keys. But the good thing
about the multiplicative cipher is that it can work with very large keys, like 8,953,851 (which has
the letters of the alphabet map to the letters AXUROLIFCZWTQNKHEBYVSPMIJGD). It would

take quite some time for a computer to brute-force through nearly nine million keys.

Email questions to the author: al@inventwithpython.com

—H e N

Chapter 14 — Modular Arithmetic and the Multiplicative Cipher 207

Practice Exercises, Chapter 14, Set D

Multiplicative Cipher + Caesar Cipher = The Affine Cipher

One downside to the multiplicative cipher is that the letter A always maps to the letter A. This is
because A’s number is 0, and 0 multiplied by anything will always be 0. We can fix this by
adding a second key that performs a Caesar cipher encryption after the multiplicative cipher’s
multiplication and modding is done.

This is called the affine cipher. The affine cipher has two keys. “Key A” is the integer that the
letter’s number is multiplied by. After modding this number by 26, “Key B” is the integer that is
added to the number. This sum is also modded by 26, just like in the original Caesar cipher.

This means that the affine cipher has 26 times as many possible keys as the multiplicative cipher.
It also ensures that the letter A does not always encrypt to the letter A.

Encryption Multiply Add Mod by
Process: Plaintext * by Key A Key B * symbol Ciphertext
set size
Decryption Mod by Multiply Subtract
Process: Plaintext symbol by mod Key B « Ciphertext
set size inverse
of Key A

Figure 14-8. The encryption and decryption are mirrors of each other.

The First Affine Key Problem

There are two problems with the multiplicative cipher’s key and affine cipher’s Key A. You
cannot just use any number for Key A. For example, if you chose the key 8, here is the mapping
you would end up with:

ABCDEFGHTIIJKLMNOPQRSTUV WXYZ
L e A T
Al QYGOWEMUCKSAI QYGOWEMUCKS

This mapping doesn’t work at all! Both the letters C and P encrypt to Q. When we encounter a Q
in the ciphertext, how do we know which it decrypts to?! The same problem exists for encrypting
A and N, F and S, and many others.

208 http://inventwithpython.com/hacking

So some keys will work in the affine cipher while others will not. The secret to determining
which key numbers will work is this:

In the affine cipher, the Key A number and the size of the symbol set must be relatively
prime to each other. That is, gcd(key, size of symbol set) == 1.

We can use the gcd () function we wrote earlier to test this. The key 7 works as an affine cipher
key because gcd (7, 26) returns 1. The larger key 8,953,851 will also work because

gcd (8953851, 26) alsoreturns 1. However, the key 8 did not work because gcd (8, 26)
is 2. If the GCD of the key and the symbol set size is not 1, then they are not relatively prime and
the key won’t work.

The math we learned earlier sure is coming in handy now. We need to know how mod works
because it is part of the GCD and affine cipher algorithms. And we need to know how GCD
works because that will tell us if a pair of numbers is relatively prime. And we need to know if a
pair of numbers is relatively prime or not in order to choose valid keys for the affine cipher.

The second problem with affine cipher’s key is discussed in the next chapter.

Decrypting with the Affine Cipher

In the Caesar cipher, we used addition to encrypt and subtraction to decrypt. In the affine cipher,
we use multiplication to encrypt. You might think that we need to divide to decrypt with the
affine cipher. But if you try this yourself, you’ll quickly see that it doesn’t work. To decrypt with
the affine cipher, we need to multiply by the key’s modular inverse.

A modular inverse (which we will call i) of two numbers (which we will call a and m) is such
that (a * 1) % m == 1.Forexample, let’s find the modular inverse of 5 mod 7. There is
some number i where (5 * i) % 7 will equal “1”. We will have to brute-force this
calculation:

e 1 isn’t the modular inverse of 5 mod 7, because (5 * 1) % 7 = 5.
e 2 isn’t the modular inverse of 5 mod 7, because (5 * 2) % 7 = 3.
e 3 is the modular inverse of 5 mod 7, because (5 *3) % 7 = 1.

The encryption key and decryption keys for the affine cipher are two different numbers. The
encryption key can be anything we choose as long as it is relatively prime to 26 (which is the size
of our symbol set). If we have chosen the key 7 for encrypting with the affine cipher, the
decryption key will be the modular inverse of 7 mod 26:

e 1 is not the modular inverse of 7 mod 26, because (7 * 1) % 26 = 7.
e 2 is not the modular inverse of 7 mod 26, because (7 * 2) % 26 = 14.

Email questions to the author: al@inventwithpython.com

Chapter 14 — Modular Arithmetic and the Multiplicative Cipher 209

e 3 is not the modular inverse of 7 mod 26, because (7 * 3) % 26 = 21.

e 4 is not the modular inverse of 7 mod 26, because (7 * 4) % 26 = 2.

e 5 is not the modular inverse of 7 mod 26, because (7 * 5) % 26 = 9.

e 6 is not the modular inverse of 7 mod 26, because (7 * 6) % 26 = 16.

e 7 is not the modular inverse of 7 mod 26, because (7 * 7) % 26 = 23.

e 8 is not the modular inverse of 7 mod 26, because (7 * 8) % 26 = 4.

e 9 is not the modular inverse of 7 mod 26, because (7 * 9) % 26 = 11.

e 10 is not the modular inverse of 7 mod 26, because (7 * 10) % 26 = 18.
e 11 is not the modular inverse of 7 mod 26, because (7 * 11) % 26 = 25.
e 12 is not the modular inverse of 7 mod 26, because (7 * 12) % 26 = 6.
e 13 is not the modular inverse of 7 mod 26, because (7 * 13) % 26 = 13.
e 14 is not the modular inverse of 7 mod 26, because (7 * 14) % 26 = 20.
e 15 is the modular inverse of 7 mod 26, because (7 * 15) % 26 = 1.

So the affine cipher decryption key is 15. To decrypt a ciphertext letter, we take that letter’s
number and multiply it by 15, and then mod 26. This will be the number of the original
plaintext’s letter.

Finding Modular Inverses

In order to calculate the modular inverse to get the decryption key, we could take a brute-force
approach and start testing the integer 1, and then 2, and then 3, and so on like we did above. But
this will be very time-consuming for large keys like 8,953,851.

There is an algorithm for finding the modular inverse just like there was for finding the Greatest
Common Divisor. Euclid’s Extended Algorithm can be used to find the modular inverse of a
number:

def findModInverse(a, m):
if gcd(a, m) !'= 1:
return None # no mod inverse exists if a & m aren't relatively prime
ul, u2, u3 =1, 0, a
vl, v2, v3 =0, 1, m
while v3 != 0:
qg=u3 // v3 # // is the integer division operator
vl, v2, v3, ul, u2, u3 = (ul - g * vl), (U2 - g * v2), (U3 - g * v3),
vl, v2, v3
return ul % m

You don’t have to understand how Euclid’s Extended Algorithm works in order to make use of it.
We’re just going to have our programs call this function. If you’d like to learn more about how it

210 http://inventwithpython.com/hacking

The // Integer Division Operator

You may have noticed the // operator used in the findModInverse () function above. This
is the integer division operator. It divides two numbers and rounds down. Try typing the
following into the interactive shell:

>> 41 // 7

5

>> 41 / 7
5.857142857142857
>> 10 // 5

2

>> 10 / 5

2.0

>>>

Notice that an expression with the // integer division operator always evaluates to an int, not a
float.

Source Code of the cryptomath Module

The gcd () and findModInverse () functions will be used by more than one of our cipher
programs later in this book, so we should put this code into a separate module. In the file editor,
type in the following code and save it as cryptomath.py:

Source code for cryptomath.py

1. # Cryptomath Module

2. # http://inventwithpython.com/hacking (BSD Licensed)

3.

4. def gcd(a, b):

5. # Return the GCD of a and b using Euclid's Algorithm
6. while a !'= 0:

7. a, b=b%a, a

8. return b

9.

10.

11. def findModInverse(a, m):

12. # Returns the modular inverse of a % m, which is

13. # the number x such that a*x % m = 1

14.

15. if gcd(a, m) != 1:

16. return None # no mod inverse if a & m aren't relatively prime
17.

18. # Calculate using the Extended Euclidean Algorithm:

Email questions to the author: al@inventwithpython.com

Chapter 14 — Modular Arithmetic and the Multiplicative Cipher 211

19. ul, u2, u3 =1, 0, a

20. vl, v2, v3 =0, 1, m

21. while v3 != 0:

22. q=u3 // v3 # // is the integer division operator

23. vl, v2, v3, ul, u2, u3 = (ul - g *vl), (U2 -q*v2), (U3 -q*
v3), vl, v2, v3

24. return ul % m

The GCD algorithm is described earlier in this chapter. The findModInverse () function
implements an algorithm called Euclid’s Extended Algorithm. How these functions work is
beyond the scope of this book, but you don’t have to know how the code works in order to make
use of it.

From the interactive shell, you can try out these functions after importing the module. Try typing
the following into the interactive shell:

>>> import cryptomath

>>> cryptomath.gcd(24, 32)

8

>>> cryptomath.gcd(37, 41)

1

>>> cryptomath.findModInverse(7, 26)

15

>>> cryptomath.findModInverse(8953851, 26)
17

>>>

Practice Exercises, Chapter 14, Set E

Summary

Since the multiplicative cipher is the same thing as the affine cipher except using Key B of 0, we
won’t have a separate program for the multiplicative cipher. And since it is just a less secure
version of the affine cipher, you shouldn’t use it anyway. The source code to our affine cipher
program will be presented in the next chapter.

The math presented in this chapter isn’t so hard to understand. Modding with the % operator finds
the “remainder” between two numbers. The Greatest Common Divisor function returns the
largest number that can divide two numbers. If the GCD of two numbers is 1, we say that those
numbers are “relatively prime” to each other. The most useful algorithm to find the GCD of two
numbers is Euclid’s Algorithm.

212 http://inventwithpython.com/hacking

The affine cipher is sort of like the Caesar cipher, except it uses multiplication instead of addition
to encrypt letters. Not all numbers will work as keys though. The key number and the size of the
symbol set must be relatively prime towards each other.

To decrypt with the affine cipher we also use multiplication. To decrypt, the modular inverse of
the key is the number that is multiplied. The modular inverse of “a mod m” is a number i such
that (a * 1) % m == 1. To write a function that finds the modular inverse of a number, we
use Euclid’s Extended Algorithm.

Once we understand these math concepts, we can write a program for the affine cipher in the next
chapter.

Email questions to the author: al@inventwithpython.com

Chapter 15 — The Affine Cipher 213

CHarTER 15

THE AFFINE CIPHER

Topics Covered In This Chapter:

e The Affine Cipher

e Generating random keys

e How many different keys can the affine cipher have?

“I should be able to whisper something in your ear,
even if your ear is 1000 miles away, and the
government disagrees with that.”

Philip Zimmermann, creator of Pretty Good Privacy (PGP), the
most widely used email encryption software in the world.

This chapter’s programs implement the multiplicative and affine ciphers. The multiplicative
cipher is like the Caesar cipher from Chapter 6, except it uses multiplication instead of addition.
The affine cipher is the multiplicative cipher, which is then encrypted by the Caesar cipher on top
of that. The affine cipher needs two keys: one for the multiplicative cipher multiplication and the
other for the Caesar cipher addition.

For the affine cipher program, we will use a single integer for the key. We will use some simple
math to split this key into the two keys, which we will call Key A and Key B.

214 http://inventwithpython.com/hacking

Source Code of the Affine Cipher Program

How the affine cipher works was covered in the last chapter. Here is the source code for a Python
program that implements the affine cipher. Open a new file editor window by clicking on File »
New Window. Type in the following code into the file editor, and then save it as affineCipher.py.
Press F5 to run the program. Note that first you will need to download the pyperclip.py module
and place this file in the same directory as the affineCipher.py file. You can download this file

Source code for affineCipher.py

1. # Affine Cipher

2. # http://inventwithpython.com/hacking (BSD Licensed)

3.

4. import sys, pyperclip, cryptomath, random

5. SYMBOLS = """ 1"#$%&"' O *+,-./0123456789: ; <=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]
A_"abcdefghijklmnopqrstuvwxyz{|}~""" # note the space at the front

6.

7.

8. def main(Q:

9. myMessage = """"A computer would deserve to be called intelligent if it
could deceive a human into believing that it was human." -Alan Turing"""
10. myKey = 2023
11. myMode = 'encrypt' # set to 'encrypt' or 'decrypt'

12.

13. if myMode == 'encrypt':

14. translated = encryptMessage(myKey, myMessage)
15. elif myMode == 'decrypt':

16. translated = decryptMessage(myKey, myMessage)
17. print('Key: %s' % (myKey))

18. print('%sed text:' % (myMode.title()))

19. print(translated)

20. pyperclip.copy(translated)

21. print('Full %sed text copied to clipboard.' % (myMode))
22.

23.

24. def getKeyParts(key):

25. keyA = key // 1en(SYMBOLS)

26. keyB = key % 1en(SYMBOLS)

27. return (keyA, keyB)

28.

29.

30. def checkKeys(keyA, keyB, mode):

31. if keyA == 1 and mode == 'encrypt':

32. sys.exit('The affine cipher becomes incredibly weak when key A is

set to 1. Choose a different key.')

Email questions to the author: al@inventwithpython.com

Chapter 15 — The Affine Cipher 215

33. if keyB == 0 and mode == 'encrypt':

34. sys.exit('The affine cipher becomes incredibly weak when key B is
set to 0. Choose a different key.')

35. if keyA < 0 or keyB < 0 or keyB > 1en(SYMBOLS) - 1:

36. sys.exit('Key A must be greater than 0 and Key B must be between 0
and %s.' % (1en(SYMBOLS) - 1))

37. if cryptomath.gcd(keyA, 1en(SYMBOLS)) != 1:

38. sys.exit('Key A (%s) and the symbol set size (%s) are not

relatively prime. Choose a different key.' % (keyA, 1en(SYMBOLS)))
39.

40.

41. def encryptMessage(key, message):

42. keyA, keyB = getKeyParts(key)

43. checkKeys(keyA, keyB, 'encrypt')

44, ciphertext = "'

45. for symbol in message:

46. if symbol in SYMBOLS:

47. # encrypt this symbol

48. symIndex = SYMBOLS.find(symboTl)

49, ciphertext += SYMBOLS[(symIndex * keyA + keyB) % 1en(SYMBOLS)]
50. else:

51. ciphertext += symbol # just append this symbol unencrypted
52. return ciphertext

53.

54.

55. def decryptMessage(key, message):

56. keyA, keyB = getKeyParts(key)

57. checkKeys (keyA, keyB, 'decrypt')

58. plaintext = "'

59. modInverseOfKeyA = cryptomath.findModInverse(keyA, 1en(SYMBOLS))
60.

61. for symbol in message:

62. if symbol in SYMBOLS:

63. # decrypt this symbol

64. symIndex = SYMBOLS.find(symboTl)

65. plaintext += SYMBOLS[(symIndex - keyB) * modInverseOfKeyA %
Ten(SYMBOLS)]

66. else:

67. plaintext += symbol # just append this symbol undecrypted
68. return plaintext

69.

70.

71. def getRandomKey():

72. while True:

73. keyA = random.randint(2, 1en(SYMBOLS))

74. keyB = random.randint(2, 1en(SYMBOLS))

216 http://inventwithpython.com/hacking

75. if cryptomath.gcd(keyA, 1en(SYMBOLS)) == 1:
76. return keyA * Ten(SYMBOLS) + keyB

77.

78.

79. # If affineCipher.py is run (instead of imported as a module) call
80. # the main() function.

81. if _name_ == '_main__":

82. main()

Sample Run of the Affine Cipher Program

When you press F5 from the file editor to run this program, the output will look like this:

Key: 2023

Encrypted text:

X<*h>} (rTH<Rh () ?<?T]TH=T<rh<tT<*_))T?<ISrT)) I~TSr<Ii<Ir<*h () ?<?T*TI=T<_<4(>_S<
ISrh<tT)IT=IS~<rd4_r<Ir<R_]<4(>_SEf<0X)_S<

k(HIS~

Full encrypted text copied to clipboard.

The message “" A computer would deserve to be called intelligent if it could deceive a human into
believing that it was human." -Alan Turing” gets encrypted with the key 2023 into the above
ciphertext.

To decrypt, paste this text as the new value to be stored in myMessage and change myMode to

the string 'decrypt'.

Practice Exercises, Chapter 15, Set A

How the Program Works

affineCipher.py
Affine Cipher
http://inventwithpython.com/hacking (BSD Licensed)

. import sys, pyperclip, cryptomath, random
. SYMBOLS = """ 1"#$%&' O *+,-./0123456789: ; <=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]
A_"abcdefghijkImnopgrstuvwxyz{|}~""" # note the space at the front

v WN R

Lines 1 and 2 are the usual comments describing what the program is. There is also an import
statement for the modules used in this program.

Email questions to the author: al@inventwithpython.com

Chapter 15 — The Affine Cipher 217

e The sys module is imported for the exit () function.

e The pyperclip module is imported for the copy () clipboard function.

e The cryptomath module that we created in the last chapter is imported for the gcd ()
and findModInverse () function.

In our program, the string stored in the SYMBOLS variable is the symbol set. The symbol set is
the list of all characters that can be encrypted. Any characters in the message to be encrypted that
don’t appear in SYMBOLS will be added to the ciphertext unencrypted.

affineCipher.py
8. def main(Q):

9. myMessage = """"A computer would deserve to be called intelligent if it
could deceive a human into believing that it was human." -Alan Turing"""

10. myKey = 2023

11. myMode = 'encrypt' # set to 'encrypt' or 'decrypt'

The main () function is almost exactly the same as the one from the transposition cipher
programs. The message, key, and mode are stored in variables on lines 9, 10, and 11.

affineCipher.py

13. if myMode == 'encrypt':

14. translated = encryptMessage(myKey, myMessage)
15. elif myMode == 'decrypt':

16. translated = decryptMessage(myKey, myMessage)

If myMode is setto 'encrypt', then line 14 will be executed and the return value of
encryptMessage () is stored in translated. Or else, if myMode is setto 'decrypt',
then decryptMessage () is called on line 16 and the return value is stored in translated.

Either way, after the execution has passed line 16, the t ranslated variable will have the
encrypted or decrypted version of the message in myMessage.

affineCipher.py

17. print('Key: %s' % (myKey))

18. print('%sed text:' % (myMode.title()))

19. print(translated)

20. pyperclip.copy(translated)

21. print('Full %sed text copied to clipboard.' % (myMode))

The string in translated (which is the encrypted or decrypted version of the string in
myMessage) is displayed on the screen on line 19 and copied to the clipboard on line 20.

218 http://inventwithpython.com/hacking

Splitting One Key into Two Keys

affineCipher.py
24. def getKeyParts(key):

25. keyA = key // 1en(SYMBOLS)
26. keyB = key % 1en(SYMBOLS)
27. return (keyA, keyB)

The affine cipher is like the Caesar cipher, except that it uses multiplication and addition (with
two integer keys, which we called Key A and Key B) instead of just addition (with one key). It’s
easier to remember just one number, so we will use a mathematical trick to convert between two
keys and one key.

The getKeyParts () function splits a single integer key into two integers for Key A and Key
B. The single key (which is in the parameter key) is divided by the size of the symbol set, and
Key A is the quotient and Key B is the remainder. The quotient part (without any remainder) can
be calculated using the // integer division operator, which is what line 25 does. The remainder
part (without the quotient) can be calculated using the $ mod operator, which is what line 26
does.

It is assumed that the symbol set, as well as the size of the symbol set, is publicly known along
with the rest of the source code.

For example, with 2023 as the key parameter and a SYMBOLS string of 95 characters, Key A
would be 2023 // 95o0r 21 and Key B would be 2023 % 95 or 28.

To combine Key A and Key B back into the single key, multiply Key A by the size of the symbol
setand add Key B: (21 * 95) + 28 evaluatesto 2023.

The Tuple Data Type

affineCipher.py
27. return (keyA, keyB)

A tuple value is similar to a list: it is a value that can store other values, which can be accessed
with indexes or slices. However, the values in a tuple cannot be modified. There is no
append () method for tuple values. A tuple is written using parentheses instead of square
brackets. The value returned on line 27 is a tuple.

For technical reasons beyond the scope of this book, the Python interpreter can execute code
faster if it uses tuples compared to code that uses lists.

Email questions to the author: al@inventwithpython.com

Chapter 15 — The Affine Cipher 219

Input Validation on the Keys

affineCipher.py
30. def checkKeys(keyA, keyB, mode):

31. if keyA == 1 and mode == 'encrypt':

32. sys.exit('The affine cipher becomes incredibly weak when key A is
set to 1. Choose a different key.')

33. if keyB == 0 and mode == 'encrypt':

34. sys.exit('The affine cipher becomes incredibly weak when key B is

set to 0. Choose a different key.')

Encrypting with the affine cipher involves a character’s index in SYMBOLS being multiplied by
Key A and added to Key B. But if keyA is 1, the encrypted text will be very weak because
multiplying the index by 1 does not change it. Similarly, if keyB is 0, the encrypted text will be
weak because adding the index to 0 does not change it. And if both keyA was 1 and keyB was
0, the “encrypted” message would be the exact same as the original message. It wouldn’t be
encrypted at all!

The 1if statements on line 31 and 33 check for these “weak key” conditions, and exit the program
with a message telling the user what was wrong. Notice on lines 32 and 34, a string is being
passed to the sys.exit () call. The sys.exit () function has an optional parameter of a
string that will be printed to the screen before terminating the program. This can be used to
display an error message on the screen before the program quits.

Of course, these checks only apply to prevent you from encrypting with weak keys. If mode is set
to 'decrypt', then the checks on lines 31 and 33 don’t apply.

affineCipher.py
35. if keyA < 0 or keyB < 0 or keyB > 1en(SYMBOLS) - 1:
36. sys.exit('Key A must be greater than 0 and Key B must be between 0
and %s.' % (1en(SYMBOLS) - 1))

The condition on line 35 checks if keyA is a negative number (that is, it is less than 0) or if
keyB is greater than O or less than the size of the symbol set minus one. (The reason the Key B
check has this range is described later in the “How Many Keys Does the Affine Cipher Have?”
section.) If any of these things are True, the keys are invalid and the program exits.

affineCipher.py
37. if cryptomath.gcd(keyA, 1en(SYMBOLS)) != 1:
38. sys.exit('Key A (%s) and the symbol set size (%s) are not
relatively prime. Choose a different key.' % (keyA, 1en(SYMBOLS)))

220 http://inventwithpython.com/hacking

Finally, Key A must be relatively prime with the symbol set size. This means that the greatest
common divisor of keyA and len (SYMBOLS) must be equal to 1. Line 37’s i f statement
checks for this and exits the program if they are not relatively prime.

If all of the conditions in the checkKeys () function were False, there is nothing wrong with
the key and the program will not exit. Line 38 is the last line in the function, so the program
execution next returns to the line that originally called checkKeys ().

The Affine Cipher Encryption Function

affineCipher.py
41. def encryptMessage(key, message):
42. keyA, keyB = getKeyParts(key)
43. checkKeys (keyA, keyB, 'encrypt')

First we get the integer values for Key A and Key B from the getKeyParts () function. These
values are checked if they are valid keys or not by passing them to the checkKeys () function.
If the checkKeys () function does not cause the program to exit, then the rest of the code in the
encryptMessage () function after line 43 can assume that the keys are valid.

affineCipher.py

44, ciphertext =
45. for symbol in message:

The ciphertext variable will eventually hold the encrypted string, but starts off as a blank
string. The foxr loop that begins on line 45 will iterate through each of the characters in
message, and then add the encrypted character to ciphertext. By the time the for loop is
done looping, the ciphertext variable will have the complete string of the encrypted message.

affineCipher.py

46. if symbol in SYMBOLS:

47. # encrypt this symbol

48. symIndex = SYMBOLS.find(symboTl)

49, ciphertext += SYMBOLS[(symIndex * keyA + keyB) % 1en(SYMBOLS)]
50. else:

51. ciphertext += symbol # just append this symbol unencrypted

On each iteration of the loop, the symbo1l variable is assigned the single character from
message. If this character exists in SYMBOLS (that is, our symbol set), then the index in
SYMBOLS is found and assigned to symIndex. The value in symIndex is the “number”
version of the character.

Email questions to the author: al@inventwithpython.com

Chapter 15 — The Affine Cipher 221

To encrypt it, we need to calculate the index of the encrypted letter. We multiply this symIndex
by keyA and add ke yB, and mod the number by the size of the symbol set (that is, the
expression len (SYMBOLS)). We mod by 1en (SYMBOLS) because the affine cipher has a
similar “wrap-around” issue that the Caesar cipher had. Modding by 1en (SYMBOLS) handles
the “wrap-around” by ensuring the calculated index is always between 0 up to (but not including)
len (SYMBOLS) . The number that we calculate will be the index in SYMBOLS of the encrypted
character, which is concatenated to the end of the string in ciphertext.

Everything that happens in the above paragraph was done on line 49.

If symbol was not in our symbol set, then symbol is concatenated to the end of the
ciphertext string on line 51.

affineCipher.py
52. return ciphertext

Once we have iterated through each character in the message string, the ciphertext variable
should contain the full encrypted string. This string is returned from encryptMessage ().

The Affine Cipher Decryption Function

affineCipher.py
55. def decryptMessage(key, message):

56. keyA, keyB = getKeyParts(key)

57. checkKeys (keyA, keyB, 'decrypt')

58. plaintext = "'

59. modInverseOfKeyA = cryptomath.findModInverse(keyA, Ten(SYMBOLS))

The decryptMessage () function is almost the same as the encryptMessage (). Lines 56
to 58 are equivalent to lines 44 to 46.

However, instead of multiplying by Key A, the decryption process needs to multiply by the
modular inverse of Key A. The mod inverse can be calculated by calling
cryptomath. findModInverse (). This function was explained in the previous chapter.

affineCipher.py

61. for symbol in message:

62. if symbol in SYMBOLS:

63. # decrypt this symbol

64. symIndex = SYMBOLS.find(symbol)

65. plaintext += SYMBOLS[(symIndex - keyB) * modInverseOfKeyA %

Ten(SYMBOLS)]

222 http://inventwithpython.com/hacking

66. else:
67. plaintext += symbol # just append this symbol undecrypted
68. return plaintext

Lines 61 to 68 are almost identical to the encryptMessage () function’s lines 45 to 52. The
only difference is on line 65. In the encryptMessage () function, the symbol index was
multiplied by Key A and then had Key B added to it. In decryptMessage () ’s line 65, the
symbol index first has Key B subtracted from it, and then is multiplied by the modular inverse.
Then this number is modded by the size of the symbol set, 1en (SYMBOLS) . This is how the
decryption process undoes the encryption.

Generating Random Keys

It can be difficult to come up with a valid key for the affine cipher, so we will create a
getRandomKey () function that generates a random (but valid) key for the user to use. To use
this, the user simply has to change line 10 to store the return value of getRandomKey () in the

myKey variable:

affineCipher.py
10. myKey = getRandomKey()

Now the key that is used to encrypt is randomly selected for us. It will be printed to the screen
when line 17 is executed.

affineCipher.py
71. def getRandomKey():

72. while True:
73. keyA = random.randint(2, 1en(SYMBOLS))
74. keyB = random.randint(2, 1en(SYMBOLS))

The code in getRandomKey () enters a while loop on line 72 where the condition is True.
This is called an infinite loop, because the loop’s condition is never False. If your program
gets stuck in an infinite loop, you can terminate it by pressing Ctrl-C or Ctrl-D.

The code on lines 73 and 74 determine random numbers between 2 and the size of the symbol set
for keyA and for keyB. This way there is no chance that Key A or Key B are equal to the invalid
values O or 1.

affineCipher.py
75. if cryptomath.gcd(keyA, 1en(SYMBOLS)) == 1:
76. return keyA * Ten(SYMBOLS) + keyB

Email questions to the author: al@inventwithpython.com

Chapter 15 — The Affine Cipher 223

The if statement on line 75 checks to make sure that ke yA is relatively prime with the size of
the symbol set by calling the gcd () function in the cryptomath module. If it is, then these
two keys are combined into a single key by multiplying ke yA by the symbol set size and adding
keyB. (This is the opposite of what the getKeyParts () function does.) This value is returned
from the getRandomKey () function.

If the condition on line 75 was False, then the code loops back to the start of the while loop
on line 73 and picks random numbers for keyA and keyB again. The infinite loop ensures that
the program keeps looping again and again until it finds random numbers that are valid keys.

affineCipher.py
79. # If affineCipher.py is run (instead of imported as a module) call
80. # the main() function.
81. if _name__ == "'_main__":
82. main()

Lines 81 and 82 call the main () function if this program was run by itself, rather than imported
by another program.

The Second Affine Key Problem: How Many Keys Can the Affine

Cipher Have?

Key B of the affine cipher is limited to the size of the symbol set (in the case of affineCipher.py,
len (SYMBOLS) is 95). But it seems like Key A could be as large as we want it to be (as long as
it is relatively prime to the symbol set size). Therefore the affine cipher should have an infinite
number of keys and therefore cannot be brute-forced.

As it turns out, no. Remember how large keys in the Caesar cipher ended up being the same as
smaller keys due to the “wrap-around” effect. With a symbol set size of 26, the key 27 in the
Caesar cipher would produce the same encrypted text as the key 1. The affine cipher also “wraps
around”.

Since the Key B part of the affine cipher is the same as the Caesar cipher, we know it is limited
from 1 to the size of the symbol set. But to find out if the affine cipher’s Key A is also limited, we
can write a small program to encrypt a message with several different integers for Key A and see
what the ciphertext looks like.

Open a new file editor window and type the following source code. Save this file as
affineKeyTest.py, and then press F5 to run it.

224 http://inventwithpython.com/hacking

10.
11.

Source code for affineKeyTest.py

. # This program proves that the keyspace of the affine cipher is Timited
. # to Ten(SYMBOLS) A 2.

1
2
3.
4. import affineCipher, cryptomath

5.

6. message = 'Make things as simple as possible, but not simpler.'
7. for keyA 1in range(2, 100):

8
9

key = keyA * len(affineCipher.SYMBOLS) + 1

if cryptomath.gcd(keyA, len(affineCipher.SYMBOLS)) == 1:
print(keyA, affineCipher.encryptMessage(key, message))

This is a fairly simple program. It imports the affineCipher module for its

encryptMessage () function and the cryptomath module for its gcd () function. We will

always encrypt the string stored in the message variable. The for loop will range between 2

(since 0 and 1 are not allowed as valid Key A integers) and 100.

On each iteration of the loop, we calculate the key from the current keyA value and always use 1
for Key B (this is why 1 is added on line 8). Remember that it is not valid to use a Key A that is

not relatively prime with the symbol set size. So if the greatest common divisor of the key and the

symbol set size is not equal to 1, the i f statement on line 10 will skip the call to

encryptMessage () online 11.

Basically, this program will print out the same message encrypted with several different integers
for Key A. The output of this program will look like this:

2 {DXL!jRTAPh!Dh!hT\bZL!Dh!b hhTFZL9!F1j!A"jIhT\bZLf=
3 I&D2!_;>M8\!&\!\>JSGC2!&\!SP\\>)G2E!)b_IMP_!\>JSG2YK
4 vgOw!T$(< P!gP!P(8D4w!gP!D@PP(k4wQ!kXT!<@T!P(8D4wLY
6 g+gC!>U[y08!+8!8[s&mC!+8!& 88[1mCi!1D>!y >!8[s&mC2u

92
93
94
96
97
98
99

skipped for brevity...

X{Jo!BfcTiE!{E!'EcCWNZo! {E!NQEEcxZo\!x?B!TQB!EcWNZoHV
&]JIU!70MCQ9!]9!9ME?GU!]9!?A99M[GUN! [57!CA7!9ME?GU;d
S?5;1,8729-17-1-7304;!17-101--7>4;t!>+,121,!-7304; .r
Nb1f!luijoht!bt!tjngmf!bt!qpttjcmf-!cvulopu! tjngmfs/
{DXL!jRTAPh!Dh!hT\bZL!Dh!b hhTFZL9!F1j!A"jIhT\bZLf=
I&D2!_;>M8\!&\!\>]ISG2!&\ !SP\\>)G2E!)b_!MP_I\>JISG2YK
vgow!T$(< P!gP!P(8D4w!gP!D@PP(k4wQ!kXT!<@T!P(8D4wLY

Email questions to the author: al@inventwithpython.com

Chapter 15 — The Affine Cipher 225

Look carefully at the output. You’ll notice that the ciphertext for Key A of 2 is the exact same as
the ciphertext for Key A of 97! In fact, the ciphertext from keys 3 and 98 are the same, as are the
ciphertext from keys 4 and 99!

Notice that 97 - 95 is 2. This is why a Key A of 97 does the same thing as a Key A of 2: the
encrypted output repeats itself (that is, “wraps around”) every 95 keys. The affine cipher has the
same “wrap-around” for the Key A as it does for Key B! It seems like it is limited to the symbol
set size.

95 possible Key A keys multiplied by 95 possible Key B keys means there are 9,025 possible
combinations. If you subtract the integers that can’t be used for Key A (because they are not
relatively prime with 95), this number drops to 7,125 possible keys.

Summary

7,125 is about the same number of keys that’s possible with most transposition cipher messages,
and we’ve already learned how to program a computer to hack that number of keys with brute-
force. This means that we’ll have to toss the affine cipher onto the heap of weak ciphers that are
easily hacked.

The affine cipher isn’t any more secure than the previous ciphers we’ve looked at. The
transposition cipher can have more possible keys, but the number of possible keys is limited to
the size of the message. For a message with only 20 characters, the transposition cipher can only
have at most 18 keys (the keys 2 to 19). The affine cipher can be used to encrypt short messages
with more security than the Caesar cipher provided, since its number of possible keys is based on
the symbol set.

But we did learn some new mathematical concepts that we will use later on. The concepts of
modular arithmetic, greatest common divisor, and modular inverses will help us in the RSA
cipher at the end of this book.

But enough about how the affine cipher is weak in theory. Let’s write a brute-force program that
can actually break affine cipher encrypted messages!

226 http://inventwithpython.com/hacking

CuareErR 16

HACKING THE AFFINE CIPHER

Topics Covered In This Chapter:
e The ** Exponent Operator
e The continue Statement

We know that the affine cipher is limited to only a few thousand keys. This means it is trivial to
perform a brute-force attack against it. Open a new File Editor and type in the following code.
Save the file as affineHacker.py.

Source Code of the Affine Cipher Hacker Program

Open a new file editor window by clicking on File » New Window. Type in the following code
into the file editor, and then save it as affineHacker.py. Press F5 to run the program. Note that
first you will need to download the pyperclip.py module and place this file in the same directory

Source Code for affineHacker.py

. # Affine Cipher Hacker
http://inventwithpython.com/hacking (BSD Licensed)

. import pyperclip, affineCipher, detectEnglish, cryptomath

SILENT_MODE = False

NO v A WN R

Email questions to the author: al@inventwithpython.com

Chapter 16 — Hacking the Affine Cipher 227

8. def main(Q):

9. # You might want to copy & paste this text from the source code at
10. # http://invpy.com/affineHacker.py
11. myMessage = """U&'<3dJAGjx'-3AMS'SjOjxuj'G3'%]"'<mMMjS"'g{GjMMg9j{G"'g" 'gG

'<3AMS'Sj<jguj 'm'PAdm{'g{G3'%jMgjug{9'GPmG'gG' -m0' PAdm{LU" 5&Mm{ ' _Axg{9"""
12.

13. hackedMessage = hackAffine(myMessage)

14.

15. if hackedMessage != None:

16. # The plaintext is displayed on the screen. For the convenience of
17. # the user, we copy the text of the code to the clipboard.
18. print('Copying hacked message to clipboard:")

19. printChackedMessage)

20. pyperclip.copy(hackedMessage)

21. else:

22. print('Failed to hack encryption.')

23.

24.

25. def hackAffine(message):

26. print('Hacking...")

27.

28. # Python programs can be stopped at any time by pressing Ctr1-C (on
29. # Windows) or Ctr1-D (on Mac and Linux)

30. print('(Press Ctr1-C or Ctrl-D to quit at any time.)")

31.

32. # brute-force by looping through every possible key

33. for key in range(len(affineCipher.SYMBOLS) ** 2):

34. keyA = affineCipher.getKeyParts(key)[0]

35. if cryptomath.gcd(keyA, len(affineCipher.SYMBOLS)) != 1:

36. continue

37.

38. decryptedText = affineCipher.decryptMessage(key, message)

39. if not SILENT_MODE:

40. print('Tried Key %s... (%s)' % (key, decryptedText[:40]))
41.

42. if detectEnglish.isEnglish(decryptedText):

43. # Check with the user if the decrypted key has been found.
44, print()

45, print('Possible encryption hack:")

46. print('Key: %s' % (key))

47. print('Decrypted message: ' + decryptedText[:200])

48. print(Q)

49. print('Enter D for done, or just press Enter to continue
hacking: ")

50. response = input('> ')

51.

228 http://inventwithpython.com/hacking

52. if response.strip().upper().startswith('D'):
53. return decryptedText

54. return None

55.

56.

57. # If affineHacker.py is run (instead of imported as a module) call
58. # the main() function.

59. if _name__ == '_main__":

60. main()

Sample Run of the Affine Cipher Hacker Program
When you press F5 from the file editor to run this program, the output will look like this:

Hacking...

(Press Ctr1-C or Ctr1-D to quit at any time.)

Tried Key 95... (U&'<3dJAGjx'-3AMS'SjOjxuj'G3'%]j"'<mMMjS"'g)
Tried Key 96... (T%&;2cI]Fiw&,2]LR&R1/iwti&F2&$i&;TLL1R&T)
Tried Key 97... (S5%%:1bH\Ehv%+1\KQ%Qh.hvsh%E1%#h%: kKKhQ%e)

...Skipped for brevity...
Tried Key 2190... (?A=!-+.32#0=5-3*"="#1#04#=2-= #=1~**#"=")
Tried Key 2191... (" ABNLOTSDQAVNTKCACDRDQUDASNAADAB@KKDCAH)

Tried Key 2192... ("A computer would deserve to be called i)

Possible encryption hack:

Key: 2192
Decrypted message: "A computer would deserve to be called intelligent if it
could deceive a human into believing that it was human." -Alan Turing

Enter D for done, or just press Enter to continue hacking:

> d

Copying hacked message to clipboard:

"A computer would deserve to be called intelligent if it could deceive a human
into believing that it was human." -Alan Turing

How the Program Works

affineHacker.py
. # Affine Cipher Hacker
http://inventwithpython.com/hacking (BSD Licensed)

. import pyperclip, affineCipher, detectEnglish, cryptomath

v WN R

Email questions to the author: al@inventwithpython.com

Chapter 16 — Hacking the Affine Cipher 229

6. SILENT_MODE = False

Our affine cipher hacking program fits in 60 lines of code because we’ve already written much of
the code it uses.

When you run the hacker program, you can see that this program produces a lot of output as it
works its way through all the possible decryptions. However, printing out this input does slow
down the program. If you change line 6 to set the STLENT MODE variable to True, the program
will be silenced and not print out all these messages. This will speed up the program immensely.

But showing all that text while your hacking program runs makes it look cool. (And if you want
your programs to look cool by printing out text slowly one character at a time for a “typewriter”

affineHacker.py
8. def main(Q):

9. # You might want to copy & paste this text from the source code at
10. # http://invpy.com/affineHacker.py
11. myMessage = """U&'<3dJAGjx'-3AMS'SjOjxuj'G3'%]"'<mMMjS"'g{GjMMg9j{G"'g" 'gG

'<3AMS'Sj<jguj 'm'PAdm{"'g{G3'%jMgjug{9'GPmG'gG" -mO0 ' PAdm{LU"' 5&Mm{ ' _Axg{9"""
12.

13. hackedMessage = hackAffine(myMessage)

14.

15. if hackedMessage != None:

16. # The plaintext is displayed on the screen. For the convenience of
17. # the user, we copy the text of the code to the clipboard.

18. print('Copying hacked message to clipboard:")

19. print(hackedMessage)

20. pyperclip.copy(hackedMessage)

21. else:

22. print('Failed to hack encryption.')

The ciphertext to be hacked is stored as a string in myMessage, and this string is passed to the
hackAffine () function (described next). The return value from this call is either a string of
the original message (if the ciphertext was hacked) or the None value (if the hacking failed).

The code on lines 15 to 22 will check if hackedMessage was set to None or not. If
hackedMessage is not equal to None, then the message will be printed to the screen on line
19 and copied to the clipboard on line 20. Otherwise, the program will simply print that it was
unable to hack the message.

230 http://inventwithpython.com/hacking

The Affine Cipher Hacking Function

affineHacker.py
25. def hackAffine(message):

26. print('Hacking...")

27.

28. # Python programs can be stopped at any time by pressing Ctr1-C (on
29. # Windows) or Ctrl1-D (on Mac and Linux)

30. print('(Press Ctr1-C or Ctr1-D to quit at any time.)"')

The hackAffine () function has the code that does the decryption. This can take a while, so if
the user wants to exit the program early, she can press Ctrl-C (on Windows) or Ctrl-D (on OS X
and Linux).

The ** Exponent Operator

There is another math operator besides the basic +, —, *, /, and // operators. The * * operator is
Python’s exponent operator. This does “to the power of” math on two numbers. For example,
“two to the power of five” would be 2 ** 5 in Python code. This is equivalent to two
multiplied by itself five times: 2 * 2 * 2 * 2 * 2. Both the expressions 2 ** 5and 2 *
2 * 2 * 2 * 2 evaluate to the integer 32.

Try typing the following into the interactive shell:

>>> 2 *% 6

64

>>> 4%%)

16

>>> 2%%4

16

>>> 123%*10
792594609605189126649
>>>

affineHacker.py
32. # brute-force by Tooping through every possible key
33. for key in range(len(affineCipher.SYMBOLS) ** 2):
34, keyA = affineCipher.getKeyParts(key)[0]

The range of integers for the keys used to brute-force the ciphertext will range from 0 to the size
of the symbol set to the second power. The expression:

len(affineCipher.SYMBOLS) ** 2

Email questions to the author: al@inventwithpython.com

Chapter 16 — Hacking the Affine Cipher 231

...1s the same as:
len (affineCipher.SYMBOLS) * len(affineCipher.SYMBOLS)

We multiply this because there are at most 1en (affineCipher.SYMBOLS) possible integers
for Key A and 1len (affineCipher.SYMBOLS) possible integers for Key B. To get the
entire range of possible keys, we multiply these values together.

Line 34 calls the getKeyParts () function that we made in affineCipher.py to get the Key A
part of the key we are testing. Remember that the return value of this function call is a tuple of
two integers (one for Key A and one for Key B). Since hackAffine () only needs Key A, the
[0] after the function call works on the return value to evaluate to just the first integer in the
returned tuple.

Thatis, affineCipher.getKeyParts (key) [0] will evaluate to (for example), the tuple
(42, 22) [0], which will then evaluate to 42. This is how we can get just the Key A part of
the return value. The Key B part (that is, the second value in the returned tuple) is just ignored
because we don’t need Key B to calculate if Key A is valid.

The continue Statement

The continue statement is simply the continue keyword by itself. A continue statement
is found inside the block of a while or for loop. When a continue statement is executed, the
program execution immediately jumps to the start of the loop for the next iteration.

This is exactly the same thing that happens when the program execution reaches the end of the
loop’s block. But a continue statement makes the program execution jump back to the start of
the loop early.

Try typing the following into the interactive shell:

>>> for i in range(3):
print(i)
print('Hello!")

0
Hello!
1
Hello!
2
Hello!
>>>

232 http://inventwithpython.com/hacking

This is pretty obvious. The for loop will loop through the range object, and the value in 1
becomes each integer between O and 4. Also on each iteration, the print ('Hello!")
function call will display “Hello!” on the screen.

Try typing in this code, which adds a continue statement before the print ('Hello!")
line:

>>> for i in range(3):
print(i)
continue
print('Hello!")

N RO -

>>>

Notice that “Hello!” never appears, because the continue statement causes the program
execution to jump back to the start of the for loop for the next iteration. So the execution never
reaches the print ('"Hello! ") line.

A continue statement is often put inside an 1 statement’s block so that execution will
continue at the beginning of the loop based on some condition.

affineHacker.py
35. if cryptomath.gcd(keyA, len(affineCipher.SYMBOLS)) != 1:
36. continue

With the Key A integer stored in the variable keyA, line 35 uses the gcd () function in our
cryptomath module to determine if Key A is not relatively prime with the symbol set size.
Remember, two numbers are relatively prime if their GCD (greatest common divisor) is one.

If Key A and the symbol set size are not relatively prime, then the condition on line 35 is True
and the continue statement on line 36 is executed. This will cause the program execution to
jump back to the start of the loop for the next iteration. This way, the program will skip line 38’s
call to decryptMessage () if the key is invalid, and continue to the next key.

affineHacker.py

38. decryptedText = affineCipher.decryptMessage(key, message)
39. if not SILENT_MODE:
40. print('Tried Key %s... (%s)' % (key, decryptedText[:40]))

Email questions to the author: al@inventwithpython.com

Chapter 16 — Hacking the Affine Cipher 233

The message is then decrypted with the key by calling decryptMessage (). If
SILENT MODE is False the “Tried Key” message will be printed on the screen. If
SILENT_ MODE was set to True, the print () call on line 40 will be skipped.

affineHacker.py

42. if detectEnglish.isEnglish(decryptedText):

43. # Check with the user if the decrypted key has been found.
44 print()

45. print('Possible encryption hack:")

46. print('Key: %s' % (key))

47. print('Decrypted message: ' + decryptedText[:200])

48. print(Q

Next, we use the 1sEnglish () function from our detectEnglish module to check if the
decrypted message is recognized as English. If the wrong decryption key was used, then the
decrypted message will look like random characters and i sEnglish () will return False.

But if the decrypted message is recognized as readable English (by the 1sEnglish () function
anyway), then we will display this to the user.

affineHacker.py

49. print('Enter D for done, or just press Enter to continue
hacking: ")

50. response = input('> ')

51.

52. if response.strip().upper().startswith('D"):

53. return decryptedText

The program might not have found the correct key, but rather a key that produces gibberish that
the isEnglish () function mistakenly thinks is English. To prevent false positives, the
decrypted text is printed on the screen for the user to read. If the user decides that this is the
correct decryption, she can type in D and press Enter. Otherwise, she can just press Enter (which
returns a blank string from the input () call) and the hackAffine () function will continue
trying more keys.

affineHacker.py
54. return None

From the indentation of line 54, you can see that this is line is executed after the for loop on line
33 has completed. If this loop has finished, then it has gone through every possible decryption

234 http://inventwithpython.com/hacking
key without finding the correct key. (If the program had found the correct key, then the execution
would have previously returned from the function on line 53.)

But at this point, the hackAffine () function returns the None value to signal that it was
unsuccessful at hacking the ciphertext.

affineHacker.py
57. # If affineHacker.py is run (instead of imported as a module) call
58. # the main() function.
59. if _name__ == '_main__":
60. main()

Just like the other programs, we want the affineHacker.py file to be run on its own or be imported
as a module. If affineHacker.py is run as a program, then the special name variable will be
settothe string ' main ' (instead of 'affineHacker"). In this case, we want to call the

main () function.

Practice Exercises, Chapter 16, Set A

Summary

This chapter was fairly short because it hasn’t introduced any new hacking techniques. As long as
the number of possible keys is less than a million or so, it won’t take long for our computers to
brute-force through every possible key and use isEnglish () to check if it has found the right
key.

And a lot of the code we use for the affine cipher hacker has already been written in
affineCipher.py, detectEnglish.py, cryptomath.py, and pyperclip.py. The main () function trick
is really helpful in making the code in our programs reusable.

The ** exponent operator can be used to raise a number to the power of another number. The
continue statement sends the program execution back to the beginning of the loop (instead of
waiting until the execution reaches the end of the block).

In the next chapter, we will learn a new cipher that cannot be brute-forced by our computers. The
number of possible keys is more than a trillion trillion! A single laptop couldn’t possible go
through a fraction of those keys in our life time. This makes it immune to brute-forcing. Let’s
learn about the simple substitution cipher.

Email questions to the author: al@inventwithpython.com

Chapter 17 — The Simple Substitution Cipher

CHAPTER 17

THE SIMPLE SUBSTITUTION
CIPHER

235

Topics Covered In This Chapter:

The sort () list method

Getting rid of duplicate characters from a string
The isupper () and islower () string methods
Wrapper functions

“In my role as Wikileaks editor, I've been involved
in fighting off many legal attacks. To do that, and
keep our sources safe, we have had to spread
assets, encrypt everything, and move
telecommunications and people around the world
to activate protective laws in different national
jurisdictions.”

Julian Assange, editor-in-chief of Wikileaks

236 http://inventwithpython.com/hacking

The transposition and affine ciphers have thousands of possible keys, but a computer can still
brute-force through all of them easily. We’ll need a cipher that has so many possible keys, no
computer can possibly brute-force through them all.

The simple substitution cipher is effectively invulnerable to a brute-force attack. Even if your
computer could try out a trillion keys every second, it would still take twelve million years for it
to try out every key.

The Simple Substitution Cipher with Paper and Pencil

To implement the simple substitution cipher, choose a random letter to encrypt each letter of the
alphabet. Use each letter once and only once. The key will end up being a string of 26 letters of
the alphabet in random order. There are 403,291,461,126,605,635,584,000,000 possible orderings

Let’s do the simple substitution cipher with paper and pencil first. For example, let’s encrypt the
message, “Attack at dawn.” with the key VIZBGNFEPLITMXDWKQUCRYAHSO. First write
out the letters of the alphabet and then write the key underneath it.

ABCDEFGHIIJKLMNOPA QRSTUVWXYZ
L A e N A A R
VIZBGNFEPLITMXDWE KQUC CRYAHS SO

To encrypt a message, find the letter from the plaintext in the top row and substitute it with the
letter in the bottom row. A encrypts to V, and T encrypts to C, C encrypts to Z, and so on. So the
message “Attack at dawn.” encrypts to “Vcevzi ve bvax.”

To decrypt, find the letter from the ciphertext in the bottom row and replace it with the letter from
the top row. V decrypts to A, C decrypts to T, Z decrypts to C, and so on.

This is very similar to how the Caesar cipher works with the St. Cyr slide, except the bottom row
is scrambled instead of in alphabetical order and just shifted over. The advantage of the simple
substitution cipher is that there are far more possible keys. The disadvantage is that the key is 26
characters long and harder to memorize. If you write down the key, make sure that this key is
never read by anyone else!

Practice Exercises, Chapter 17, Set A

Email questions to the author: al@inventwithpython.com

Chapter 17 — The Simple Substitution Cipher 237

Source Code of the Simple Substitution Cipher

Open a new file editor window by clicking on File » New Window. Type in the following code
into the file editor, and then save it as simpleSubCipher.py. Press F5 to run the program. Note that
first you will need to download the pyperclip.py module and place this file in the same directory

Source code for simpleSubCipher.py

1. # Simple Substitution Cipher

2. # http://inventwithpython.com/hacking (BSD Licensed)

3.

4. dimport pyperclip, sys, random

5.

6.

7. LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

8.

9. def main(Q:
10. myMessage = 'If a man is offered a fact which goes against his

instincts, he will scrutinize it closely, and unless the evidence is
overwhelming, he will refuse to believe it. If, on the other hand, he is
offered something which affords a reason for acting in accordance to his
instincts, he will accept it even on the slightest evidence. The origin of
myths is explained in this way. -Bertrand Russell'

11. myKey = 'LFWOAYUISVKMNXPBDCRITQEGHZ'

12. myMode = 'encrypt' # set to 'encrypt' or 'decrypt'
13.

14. checkValidKey(myKey)

15.

16. if myMode == 'encrypt':

17. translated = encryptMessage(myKey, myMessage)
18. elif myMode == 'decrypt':

19. translated = decryptMessage(myKey, myMessage)
20. print('Using key %s' % (myKey))

21. print('The %sed message is:' % (myMode))

22. print(translated)

23. pyperclip.copy(translated)

24. print()

25. print('This message has been copied to the clipboard.")
26.

27.

28. def checkvalidKey(key):

29. keyList = Tlist(key)

30. TettersList = 1ist(LETTERS)

31. keyList.sort()

32. lettersList.sort()

238 http://inventwithpython.com/hacking

33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.

if keylList != letterslList:
sys.exit('There is an error in the key or symbol set.')

def encryptMessage(key, message):
return translateMessage(key, message, 'encrypt')

def decryptMessage(key, message):
return translateMessage(key, message, 'decrypt')

def translateMessage(key, message, mode):

translated = "'
charsA = LETTERS
charsB = key

if mode == 'decrypt':

For decrypting, we can use the same code as encrypting. We
just need to swap where the key and LETTERS strings are used.
charsA, charsB = charsB, charsA

loop through each symbol in the message
for symbol in message:
if symbol.upper() in charsA:
encrypt/decrypt the symbol
symIndex = charsA.find(symboTl.upper())
if symbol.isupper():
translated += charsB[symIndex].upper()
else:
translated += charsB[symIndex].Tower()
else:
symbol 1is not in LETTERS, just add it
translated += symbol

return translated
def getRandomKey():

key = 1ist(LETTERS)
random.shuffle(key)

return ''.join(Ckey)
if __name__ == '_main__":
main()

Email questions to the author: al@inventwithpython.com

Chapter 17 — The Simple Substitution Cipher 239

Sample Run of the Simple Substitution Cipher Program
When you run this program, the output will look like this:

Using key LFWOAYUISVKMNXPBDCRITQEGHZ

The encrypted message 1is:

Sy 1 nlx sr pyyacao 1 ylwj eiswi upar Tulsxrj isr sxrjsxwjr, ia esmm rwctjsxsza
sj wmpramh, 1xo txmarr jia agsoaxwa sr pgaceiamnsxu, ia esmm caytra jp famsaqa
sj. Sy, px jia pjiac ilxo, ia sr pyyacao rpnajisxu eiswi lyypcor 1 calrpx ypc
Twjsxu sx Twwpcolxwa jp isr sxrjsxwjr, ia esmm Twwabj sj agax px jia rmsuijarj
agsoaxwa. Jia pcsusx py nhjir sr agbmlsxao sx jisr elh. -Facjclxo Ctrramm

This message has been copied to the clipboard.

Notice that if the letter in the plaintext was lowercase, it will be lowercase in the ciphertext. If the
letter was uppercase in the plaintext, it will be uppercase in the ciphertext. The simple
substitution cipher does not encrypt spaces or punctuation marks. (Although the end of this
chapter explains how to modify the program to encrypt those characters too.)

To decrypt this ciphertext, paste it as the value for the myMessage variable on line 10 and
change myMode to the string 'decrypt'. Then run the program again. The output will look
like this:

Using key LFWOAYUISVKMNXPBDCRJITQEGHZ

The decrypted message is:

If a man is offered a fact which goes against his instincts, he will scrutinize
it closely, and unless the evidence is overwhelming, he will refuse to believe
it. If, on the other hand, he is offered something which affords a reason for
acting in accordance to his instincts, he will accept it even on the slightest
evidence. The origin of myths is explained in this way. -Bertrand Russell

This message has been copied to the clipboard.

How the Program Works

simpTleSubCipher.py
. # Simple Substitution Cipher
. # http://inventwithpython.com/hacking (BSD Licensed)

1
2
3.
4. import pyperclip, sys, random
5.
6
7

. LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

240 http://inventwithpython.com/hacking

The first few lines are comments describing the program. Then the pyperclip, sys, and
random modules are imported. Finally, the LETTERS constant variable is set to a string of all
the uppercase letters. The LETTERS string will be our symbol set for the simple substitution
cipher program.

The Program’s main () Function

simpTleSubCipher.py

9. def main(Q):

10. myMessage = 'If a man is offered a fact which goes against his
instincts, he will scrutinize it closely, and unless the evidence is
overwhelming, he will refuse to believe it. If, on the other hand, he is
offered something which affords a reason for acting in accordance to his
instincts, he will accept it even on the slightest evidence. The origin of
myths is explained in this way. -Bertrand Russell’

11. myKey = 'LFWOAYUISVKMNXPBDCRITQEGHZ'

12. myMode = 'encrypt' # set to 'encrypt' or 'decrypt'

The main () function is similar to the main () function of cipher programs in the previous
chapters. It contains the variables that store the message, key, and mode that will be used for
the program.

simpTleSubCipher.py
14. checkValidKey(myKey)

The keys for simple substitution ciphers are easy to get wrong. For example, the key might not
have every letter of the alphabet. Or the key may have the same letter twice. The
checkValidKey () function (which is explained later) makes sure the key is usable by the
encryption and decryption functions, and will exit the program with an error message if they are

not.
simpleSubCipher.py
16. if myMode == 'encrypt':
17. translated = encryptMessage(myKey, myMessage)
18. elif myMode == 'decrypt':
19. translated = decryptMessage(myKey, myMessage)

If the program execution returns from checkValidKey () instead of terminating, we can
assume the key is valid. Lines 16 through 19 check whether the myMode variable is set to
'encrypt' or 'decrypt' and calls either encryptMessage () or

decryptMessage (). The return value of encryptMessage () and decryptMessage ()

Email questions to the author: al@inventwithpython.com

Chapter 17 — The Simple Substitution Cipher 241

(which is explained later) will be a string of the encrypted (or decrypted) message. This string
will be stored in the translated variable.

simpTleSubCipher.py

20. print('Using key %s' % (myKey))

21. print('The %sed message is:' % (myMode))

22. print(translated)

23. pyperclip.copy(translated)

24 . print()

25. print('This message has been copied to the clipboard.")

The key that was used is printed to the screen on line 20. The encrypted (or decrypted) message is
printed on the screen and also copied to the clipboard. Line 25 is the last line of code in the

main () function, so the program execution returns after line 25. Since the main () call is done
at the last line of the program, the program will then exit.

The sort () List Method

simpTleSubCipher.py
28. def checkvalidKey(key):

29. keyList = Tist(key)

30. TettersList = 1ist(LETTERS)
31. keyList.sort()

32. TettersList.sort()

A simple substitution key string value is only valid if it has each of the characters in the symbol
set with no duplicate or missing letters. We can check if a string value is a valid key by sorting it
and the symbol set into alphabetical order and checking if they are equal. (Although LETTERS is
already in alphabetical order, we still need to sort it since it could be expanded to contain other
characters.)

On line 29 the string in key is passed to 1ist (). The list value returned is stored in a variable
named keyList. On line 30, the LETTERS constant variable (which, remember, is the string

' ABCDEFGHI JKLMNOPQRSTUVWXYZ ") is passed to 1ist () which returns the list ['A"',
's', 'c', 'D', 'E', 'F', 'G', 'HW', 'I', 'J', 'K', 'L', 'M', 'N',
o', 'p', 'Q', 'R', 'S', 'T', 'U', 'V', 'w', 'X', 'y', 'z'].

The sort () list method will rearrange the order of items in the list into alphabetical order. The
lists in keyList and lettersList are then sorted in alphabetical order by calling the

sort () list method on them. Note that just like the append () list method, the sort () list
method modifies the list in place and does not have a return value. You want your code to look
like this:

242 http://inventwithpython.com/hacking

keyList.sort ()

...and not look like this:

keyList = keyList.sort()

simpTleSubCipher.py
33. if keylList != letterslList:
34. sys.exit('There is an error in the key or symbol set.')

Once sorted, the keyList and lettersList values should be the same, since keyList was
just the characters in LETTERS with the order scrambled. If keyList and lettersList are
equal, we also know that keyList (and, therefore, the key parameter) does not have any
duplicates in it, since LETTERS does not have any duplicates in it.

However, if the condition on line 33 is True, then the value in myKey was set to an invalid

value and the program will exit by calling sys.exit ().

Wrapper Functions

simpleSubCipher.py
37. def encryptMessage(key, message):
38. return translateMessage(key, message, 'encrypt')
39.
40.
41. def decryptMessage(key, message):
42. return translateMessage(key, message, 'decrypt')
43,
44
45. def translateMessage(key, message, mode):

The code for encrypting and the code for decrypting are almost exactly the same. It’s always a
good idea to put code into a function and call it twice rather than type out the code twice. First,
this saves you some typing. But second, if there’s ever a bug in the duplicate code, you only have
to fix the bug in one place instead of multiple places. It is (usually) much more reasonable to
replace duplicate code with a single function that has the code.

Wrapper functions simply wrap the code of another function, and return the value the wrapped
function returns. Often the wrapper function might make a slight change to the arguments or
return value of wrapped function (otherwise you would just call the wrapped function directly.) In
this case, encryptMessage () and decryptMessage () (the wrapper functions) calls

Email questions to the author: al@inventwithpython.com

Chapter 17 — The Simple Substitution Cipher 243

translateMessage () (the wrapped function) and returns the value
translateMessage () returns.

On line 45 notice that translateMessage () has the parameters key and message, but also
a third parameter named mode. When it calls translateMessage (), the call in
encryptMessage () function passes 'encrypt' for the mode parameter, and the call in
decryptMessage () function passes 'decrypt'. This is how the

translateMessage () function knows whether it should encrypt or decrypt the message it is
passed.

With these wrapper functions, someone who imports the simpleSubCipher.py program can call
functions named encryptMessage () and decryptMessage () like they do with all the
other cipher programs in this book. They might create a program that encrypts with various
ciphers, like below:

import affineCipher, simpleSubCipher, transpositionCipher
...some other code here...

ciphertextl = affineCipher.encryptMessage(enckeyl, 'Hello!")
ciphertext2 = transpositionCipher.encryptMessage(encKey2, 'Hello!')
ciphertext3 = simpTleSubCipher.encryptMessage(encKey3, 'Hello!")

The wrapper functions give the simple substitution cipher program function names that are
consistent with the other cipher programs. Consistent names are very helpful, because it makes it
easier for someone familiar with one of the cipher programs in this book to already be familiar
with the other cipher programs. (You can even see that the first parameter was always made the
key and the second parameter is always the message.) This is the reason we have these wrapper
functions, because making the programmer call the translateMessage () function would be
inconsistent with the other programs.

The Program’s translateMessage () Function

simpleSubCipher.py
45. def translateMessage(key, message, mode):

46. translated = "'

47. charsA = LETTERS

48. charsB = key

49, if mode == 'decrypt':

50. # For decrypting, we can use the same code as encrypting. We
51. # just need to swap where the key and LETTERS strings are used.

52. charsA, charsB = charsB, charsA

244 http://inventwithpython.com/hacking

The translateMessage () function does the encryption (or decryption, if the mode
parameter is set to the string 'decrypt). The encryption process is very simple: for each letter
in the me ssage parameter, we look up its index in LETTERS and replace it with the letter at that
same index in the key parameter. To decrypt we do the opposite: we look up the index in key
and replace it with the letter at the same index in the LETTERS.

The table below shows why using the same index will encrypt or decrypt the letter. The top row
shows the characters in charsA (which is set to LETTERS on line 47), the middle row shows
the characters in charsB (which is set to key on line 48), and the bottom row are the integer
indexes (for our own reference in this example).

ABCDETFGHTIIJ KL M
L T A S A
VIZBGNTFETPLTITM
01 23 45 6 7 8 9 10 11 12
N OP QR S TUV WX Y Z
L T
X DWZK QU CR Y A H S O
13 14 15 16 17 18 19 20 21 22 23 24 25

The code in translateMessage () will always look up the message character’s index in

charsA and replace it with the character at that index in charsB.

So to encrypt, we can just leave charsA and charsB as they are. This will replace the character
in LETTERS with the character in key, because charsA is set to LETTERS and charsB is set
to key.

When decrypting, the values in charsA and charsB (thatis, LETTERS and key) are swapped
on line 52, so the table would look like this:

VIZBGNTFETPLTITM
L S A S
ABCDETFGHTIIJ KL M
0 1 23 4 5 6 7 8 9 10 11 12
X DWIK QUG CRYAHS SO
L S A A
N OP QR S T UV WX Y Z
13 14 15 16 17 18 19 20 21 22 23 24 25

Email questions to the author: al@inventwithpython.com

Chapter 17 — The Simple Substitution Cipher 245

Remember, our code in translateMessage () always replaces the character in charsA (the
top row) with the character at that same index in charsB (the middle row). So when lines 47 and
48 will swap the values in charsA and charsB, the code in translateMessage () will be
doing the decryption process instead of the encryption process.

simpleSubCipher.py

54. # Toop through each symbol in the message

55. for symbol in message:

56. if symbol.upper() in charsA:

57. # encrypt/decrypt the symbol

58. symIndex = charsA.find(symbol.upper())

The for loop on line 55 will set the symbol variable to a character in the message string on
each iteration through the loop. If the uppercase form of this symbol exists in charsA
(remember that both the key and LETTERS only have uppercase characters in them), then we
will find the index of the uppercase form of symbol in charsA. This index will be stored in a

variable named symIndex.

We already know that the £ind () method will never return -1 (remember, a =1 from the
find () method means the argument could not be found the string) because the i f statement on
line 56 guarantees that symbol . upper () will exist in charsA. Otherwise line 58 wouldn’t
have been executed in the first place.

The isupper () and islower () String Methods

The isupper () string method returns True if:

1. The string has at least one uppercase letter.
2. The string does not have any lowercase letters in it.

The islower () string method returns True if:

1. The string has at least one lowercase letter.
2. The string does not have any uppercase letters in it.

Non-letter characters in the string do not affect whether these methods return True or False.
Try typing the following into the interactive shell:

>>> "HELLO'.isupper(Q)
True

246 http://inventwithpython.com/hacking

>>> "HELLO WORLD 123'.1isupper()
True

>>> "hELLO'.isupper(Q)
False

>>> "hELLO'.isTower()
False

>>> 'hello'.isTower()
True

>>> '123"'.isupper()
False

>>> ''".islower()
False

>>>

simpleSubCipher.py
59. if symbol.isupper():
60. translated += charsB[symIndex].upper()
61. else:
62. translated += charsB[symIndex].Tower()

If symbol is an uppercase letter, than we want to concatenate the uppercase version of the
character at charsB [symIndex] to translated. Otherwise we will concatenate the
lowercase version of the character at charsB[symIndex] to translated.

If symbol was a number or punctuation mark like '5" or ' ? ', then the condition on line 59
would be False (since those strings don’t have at least one uppercase letter in them) and line 62
would have been executed. In this case, line 62’s 1ower () method call would have no effect on
the string since it has no letters in it. Try typing the following into the interactive shell:

>>> '5'".Tower()
l5l
>>> '"?' . Tower()
l?l

>>>

So line 62 in the e1se block takes care of translating any lowercase characters and non-letter

characters.
simpleSubCipher.py
63. else:
64. # symbol is not in LETTERS, just add it
65. translated += symbol

Email questions to the author: al@inventwithpython.com

Chapter 17 — The Simple Substitution Cipher 247

By looking at the indentation, you can tell that the e 1se statement on line 63 is paired with the
if statement on line 56. The code in the block that follows (that is, line 65) is executed if
symbol is not in LETTERS. This means that we cannot encrypt (or decrypt) the character in
symbol, so we will just concatenate it to the end of translated as is.

simpleSubCipher.py
67. return translated

At the end of the translateMessage () function we return the value in the translated
variable, which will contain the encrypted or decrypted message.

Practice Exercises, Chapter 17, Set B

Generating a Random Key

simpTleSubCipher.py
70. def getRandomKey():

71. key = 1ist(LETTERS)
72. random.shuffle(key)
73. return ''.join(key)

Typing up a string that contains each letter of the alphabet once and only once can be difficult. To
aid the user, the getRandomKey () function will return a valid key to use. Lines 71 to 73 do
this by randomly scrambling the characters in the LETTERS constant. See the “Randomly
Scrambling a String” section in Chapter 10 for an explanation of how to scramble a string using
list (), random.shuffle(),and join ().

To use the getRandomKey () function, line 11 can be changed to this:

11. myKey = getRandomKey ()

Remember that our cipher program will print out the key being used on line 20. This is how the
user can find out what key the getRandomKey () function returned.

simpleSubCipher.py
76. if _name__ == '_main__":
77. main()

248 http://inventwithpython.com/hacking

Lines 76 and 77 are at the bottom of the program, and call main () if simpleSubCipher.py is
being run as a program instead of imported as a module by another program.

Encrypting Spaces and Punctuation

The simple substitution cipher in this chapter only encrypts the letters in the plaintext. This
artificial limitation is here because the hacking program in the next chapter only works if the
letters alone have been substituted.

If you want the simple substitution program to encrypt more than just the letter characters, make
the following changes:

simpleSubCipher.py
7. LETTERS = r""" 1"#$%&' Q*+,-./0123456789: ; <=>?@ABCDEFGHIJKLMNOPQRSTUVWXY
Z[\1A_ abcdefghijklmnopgrstuvwxyz{|}~"""

Line 7’s value stored in the LETTERS constant is changed to a string of all the characters Using a
triple-quotes raw string so you do not have to escape the quotes and \ slash character makes
typing this easier.

The key used must also have all of these characters, so line 11 changes to something like this:

simpTleSubCipher.py
11. myKey = r"""/{9@6hUf:q?_)AeTd|W1,NLD7xk(-
SF>Iz0E=d;Bu#c]w~'VVvHKmpJ+}s8y& XtP43.b[0A!*\Q<M%$ZgG52YT1oaRCn" "rj"""

The code that differentiates between upper and lowercase letters on lines 58 to 62 can be replaced
with these two lines:

simpleSubCipher.py

58. symindex—=—charsAfindtsymbotupperO>

59. fF—symbot—istupperO—+

60. transtated—+=—charsBisymIndext—uppetrO-
61. elser

62. transtated—+=——charsBisymIndex}—tower-
58. symIndex = charsA.find(symbol)

59. translated += charsB[symIndex]

Now when you run the simple substitution cipher program, the ciphertext looks much more like
random gibberish:

Email questions to the author: al@inventwithpython.com

Chapter 17 — The Simple Substitution Cipher 249

Using key /{9@6hUf:q?_)AeTi|W1l,NLD7xk(-SF>Iz0E=d;Bu#c]w~"'VVvHKmpl+}s8y&
XtP43.b[0A!*\Q<M%$ZgG52YToaRCn" "rj

The encrypted message 1is:
#A/3/%3%/\2/ZAA050[/3/A3bY/a*\b*/1Z02/3!13\$2Y/*\2/\$2Y\$bY2) /*0/a\MM/2b5TY\$\n0O
/\Y/bMZ20MC) /3$[/13M022/Y*0/00\[0$b0/\2/Z005a*0M%\$!) /*0/a\MM/50A120/YZ/ .OM\0oO
/\Ye/#A) /Z$/Y*0/ZY*05/*3%[) /*0/\2/ZAA050[/22%0Y*\$!/a*\b*/3AAZ5[2/3/50322%$/AZ5/
3bY\$!/\$/3bbZ5[3%$b0/YZ/*\2/\$2Y\$bY2) /*0/a\MM/3bb0gY/\Y/000$/Z2%$/Y*0/2M\ ! *YO2Y/
00\[0$b0e/p*0/Z5\'\$/ZA/%CY*2/\2/0RgM3\$0[/\$/Y*\2/a3Ce/A005Y53$[/K1220MM

This message has been copied to the clipboard.

Practice Exercises, Chapter 17, Set C

Summary

In this chapter, we have learned about the new “set” data type. In many of our programs, lists are
much easier to use than sets, but sets are a simple way to get rid of duplicate values from lists or
strings.

The isupper () and islower () string methods can tell us if a string value is made up of only
uppercase or lowercase letters. And the sort () list method is very useful at putting the items in
a list in order.

The simple substitution cipher has far too many possible keys to brute-force through. This makes
it impervious to the techniques that our previous cipher hacking programs have used. We are
going to have to make smarter programs in order to break this code.

In the next chapter, we will learn how to hack the simple substitution cipher. Instead of brute-
forcing through all the keys, we will use a much more intelligent and sophisticated algorithm.

250 http://inventwithpython.com/hacking

CHAPTER 18

HACKING THE SIMPLE
SUBSTITUTION CIPHER

Topics Covered In This Chapter:

e Word patterns, candidates, potential decryption letters, and cipherletter mappings.
The pprint.pprint () and pprint.pformat () functions

Building strings using the list-append-join process

Regular expressions

The sub () regex method

“Cypherpunks deplore regulations on cryptography,
for encryption is fundamentally a private act. The
act of encryption, in fact, removes information from
the public realm. Even laws against cryptography
reach only so far as a nation’s border and the arm of
its violence.”

Eric Hughes, “A Cypherpunk’s Manifesto”, 1993

Email questions to the author: al@inventwithpython.com

Chapter 18 — Hacking the Simple Substitution Cipher 251

Computing Word Patterns

There are too many possible keys to brute-force a simple substitution cipher-encrypted message.
We need to employ a more intelligent attack if we want to crack a substitution ciphertext. Let’s
examine one possible word from an example ciphertext:

HGHHU

Think about what we can learn from this one word of ciphertext (which we will call a
cipherword in this book). We can tell that whatever the original plaintext word is, it must:

1. Be five letters long.

2. Have the first, third, and fourth letters be the same.

3. Have exactly three different letters in the word, where the first, second, and fifth letters in
the word are all different from each other.

What words in the English language fit this pattern? “Puppy” is one word that fits this pattern. It
is five letters long (P, U, P, P, Y) using three different letters (P, U, Y) in that same pattern (P for
the first, third, and fourth letter and U for the second letter and Y for the fifth letter). “Mommy”,
“Bobby”, “lulls”, “nanny”, and “lilly” fit the pattern too. (“Lilly” is a name, not to be confused
with “Lily” the flower. But since “Lilly” can appear in an Engish message it is a possible word
that fits the pattern.) If we had a lot of time on our hands, we could go through an entire
dictionary and find all the words that fit this pattern. Even better, we could have a computer go
through a dictionary file for us.

In this book a word pattern will be a set of numbers with periods in between the numbers that
tells us the pattern of letters for a word, in either ciphertext or plaintext.

Creating word patterns for cipherwords is easy: the first letter gets the number 0 and the first
occurrence of each different letter after that gets the next number. For example:

e The word pattern for “cat” is 0.1.2.

e The word pattern for “catty” is 0.1.2.2.3.

e The word pattern for “roofer” is 0.1.1.2.3.0.

e The word pattern for “blimp” is 0.1.2.3.4.

e The word pattern for “classification” is 0.1.2.3.3.4.5.4.0.2.6.4.7.8.

A plaintext word and its cipherword will always have the same word pattern, no matter
which simple substitution key was used to do the encryption.

252 http://inventwithpython.com/hacking

Getting a List of Candidates for a Cipherword

To take a guess at what HGHHU could decrypt to, we can go through the dictionary file and find
all of the words that also have a word pattern of 0.1.0.0.2. In this book, we will call these
plaintext words (that have the same word pattern as the cipherword) the candidates for that
cipherword:

Ciphertext word:

Word pattern:
Candidates:

— 35 4T 3T |O| T
~pcooc|klo
s ooc3T|Ol T
—'3—'63_0.01
<< un<<x<|N e

So if we look at the letters in the cipherword (which will be called cipherletters in this book),
we can guess which letters they may decrypt to (we will call these letters the cipherletter’s
potential decryption letters in this book):

Cipherletters:
Potential decryption letters:

-0 C OO0 Cc|O
<K<K nK<kKk\K |

From this table we can create a cipherletter mapping:

o The cipher letter H has the potential decryption letters P, M, B, L., and N

e The cipher letter G has the potential decryption letters U, O, A, and I

e The cipher letter U has the potential decryption letters Y and S

e All of the other cipher letters besides H, G, and U will have no potential decryption letters.

When we represent a cipherletter mapping in Python code, we will use a dictionary value:

Email questions to the author: al@inventwithpython.com

Chapter 18 — Hacking the Simple Substitution Cipher 253

{'A": [1, 'B': [1, 'C': [, 'D': [1, "E': [1, 'F': [1, 'G's ['U', '0", 'A",
'T'], 'H': ['P', 'B', 'L', 'N'], 'I': [1, '3': [1, 'K': [1, 'L': [1, 'M': [1,
‘N': [, 'o': 1, 'P': [T, 'Q': (1, 'R': [1, 'S': (1, 'T': [1, 'U': ['Y', 'S'],
Vi oI, twhe [, X 0, YU [, 'zt [0

In our program, a cipherletter mapping dictionary will have 26 keys, one for each letter. The
mapping above has potential decryption letters for 'H', 'G', and 'U' above. The other keys
have no potential decryption letters, which is why they have empty lists for values.

If we reduce the number of potential decryption letters for a cipherletter to just one letter, then we
have solved what that cipherletter decrypts to. Even if we do not solve all 26 cipherletters, we
might be able to hack most of the ciphertext’s cipherletters.

But first we must find the pattern for every word in the dictionary file and sort them in a list so it
will be easy to get a list of all the candidates for a given cipherword’s word pattern. We can use
the same dictionary file from Chapter 12, which you can download from

LR INT

(Note that the terms “word pattern”, “candidate”, and “cipherletter mapping” are terms I came up
with to describe things in this particular hacking program. These are not general cryptography
terms.)

Practice Exercises, Chapter 18, Set A

Source Code of the Word Pattern Module

Since the word patterns for words never change, we can just calculate the word pattern for every
word in a dictionary file once and store them in another file. Our make WordPatterns.py program
creates a file named wordPatterns.py that will contain a dictionary value with the word pattern for
every word in the dictionary file. Our hacking program can then just import wordPatterns to
look up the candidates for a certain word pattern.

Source code for makeWordPatterns.py

. # Makes the wordPatterns.py File
. # http://inventwithpython.com/hacking (BSD Licensed)

. # text file, dictionary.txt. (Download this file from

1
2
3
4. # Creates wordPatterns.py based on the words in our dictionary
5
6. # http://invpy.com/dictionary.txt)

7

8

. import pprint

254 http://inventwithpython.com/hacking

9.
10.
11. def getWordPattern(word):
12. # Returns a string of the pattern form of the given word.
13. #e.g. '0.1.2.3.4.1.2.3.5.6" for 'DUSTBUSTER'
14. word = word.upper()
15. nextNum = 0
16. letterNums = {}
17. wordPattern = []
18.
19. for letter in word:
20. if letter not in letterNums:
21. TetterNums[letter] = str(nextNum)
22. nextNum += 1
23. wordPattern.append(letterNums[letter])
24. return '.'.join(wordPattern)
25.
26.
27. def main(Q:
28. allPatterns = {}
29.
30. fo = open('dictionary.txt')
31. wordList = fo.read().split('\n")
32. fo.close()
33.
34. for word in wordList:
35. # Get the pattern for each string in wordList.
36. pattern = getWordPattern(word)
37.
38. if pattern not in allPatterns:
39. alTPatterns[pattern] = [word]
40. else:
41. allPatterns[pattern].append(word)
42.
43. # This is code that writes code. The wordPatterns.py file contains
44 . # one very, very large assignment statement.
45. fo = open('wordPatterns.py', 'w')
46. fo.write('allPatterns = ')
47. fo.write(pprint.pformat(allPatterns))
48. fo.close()
49,
50.
51. if _name__ == '_main__":
52. main()

Email questions to the author: al@inventwithpython.com

Chapter 18 — Hacking the Simple Substitution Cipher 255

Sample Run of the Word Pattern Module

Running this program doesn’t print anything out to the screen. Instead it silently creates a file
named wordPatterns.py in the same folder as makeWordPatterns.py. Open this file in IDLE’s file
editor, and you will see it looks like this:

allPatterns = {'0.0.1': ["EEL'],
'0.0.1.2': ['EELS', 'OOZE'],
'0.0.1.2.0': ['"EERIE'],

'0.0.1.2.3": ["AARON', 'LLOYD', 'OOZED'],
...the rest has been cut for brevity...

The makeWordPatterns.py program creates wordPatterns.py. Our Python program creates a
Python program! The entire wordPatterns.py program is just one (very big) assignment statement
for a variable named al1Patterns. Even though this assignment statement stretches over
many lines in the file, it is considered one “line of code” because Python knows that if a line ends
with a comma but it is currently in the middle of a dictionary value, it ignores the indentation of
the next line and just considers it part of the previous line. (This is a rare exception for Python’s
significant indentation rules.)

The allPatterns variable contains a dictionary value where the keys are all the word patterns
made from the English words in the dictionary file. The keys’ values are lists of strings of English
words with that pattern. When wordPatterns.py is imported as a module, our program will be able
to look up all the English words for any given word pattern.

After running the makeWordPatterns.py program to create the wordPatterns.py file, try typing the
following into the interactive shell:

>>> import wordPatterns
>>> wordPatterns.allPatterns['0.1.2.1.1.3.4"]
['BAZAARS', 'BESEECH', 'REDEEMS', 'STUTTER']
>>>
>>> wordPatterns.allPatterns['0.1.2.2.3.2.4.1.5.5"]
["CANNONBALL ']
>>>
>>> wordPatterns.allPatterns['0.1.0.1.0.1"]
Traceback (most recent call last):

File "<stdin>", 1line 1, in <module>
KeyError: '0.1.0.1.0.1"
>>>
>>> '0.1.0.1.0.1" in wordPatterns.allPatterns
False
>>>

256 http://inventwithpython.com/hacking

The pattern '0.1.0.1.0.1" does not exist in the dictionary. This is why the expression
wordPatterns.allPatterns['0.1.0.1.0.1"'] causes an error (because there is no
'0.1.0.1.0.1"keyinallPatterns)andwhy '0.1.0.1.0.1"in
wordPatterns.allPatterns evaluates to False.

How the Program Works

makeWordPatterns.py
Makes the wordPatterns.py File
http://inventwithpython.com/hacking (BSD Licensed)

Creates wordPatterns.py based on the words in our dictionary
text file, dictionary.txt. (Download this file from
http://invpy.com/dictionary.txt)

VT A WN R

The top part of this file has the usual comments describing what the program is.

The pprint.pprint () and pprint.pformat () Functions

makeWordPatterns.py
8. import pprint

The pprint module has functions for pretty printing values, which is useful for printing
dictionary and list values on the screen. The print () function simply prints these values going
left to right:

>>> print(somelListOfListsVar))

[['ant'], ['baboon', 'badger', 'bat', 'bear', 'beaver'], ['camel', 'cat',
'clam', 'cobra', 'cougar', 'coyote', 'crow'], ['deer', 'dog', ‘'donkey',
"duck'], ['eagle'], ['ferret', 'fox', 'frog'l, ['goat']]

The pprint module has a function named pprint (). The value passed to
pprint.pprint () will be “pretty printed” to the screen so that it is easier to read:

>>> import pprint
>>> pprint.pprint(someListOfListsVar))

[['ant'],

['baboon', 'badger', 'bat', 'bear', 'beaver'],

['camel', 'cat', 'clam', 'cobra', 'cougar', 'coyote', 'crow'],
['deer', 'dog', 'donkey', 'duck'],

['eagle'],

['ferret', 'fox', 'frog'l],

['goat']]

Email questions to the author: al@inventwithpython.com

Chapter 18 — Hacking the Simple Substitution Cipher 257

However, if you want to have this “prettified” text as a string value instead of displaying it on the
screen, you can use the pprint.pformat () function, which returns the prettified string:

>>> import pprint
>>> prettifiedString = pprint.pformat(someListOfListsVar)
>>> print(prettifiedString)

[['ant'],

['baboon', 'badger', 'bat', 'bear', 'beaver'],

['camel', 'cat', 'clam', 'cobra', 'cougar', 'coyote', 'crow'],
['deer', 'dog', 'donkey', 'duck'],

['eagle'],

['ferret', 'fox', 'frog'l],

['goat']]

>>>

When we write the value of al1Patterns to the wordPatterns.py file, we will use the

pprint module to prevent it from being printed crammed together all on one line.

Building Strings in Python with Lists

Almost all of our programs have done some form of “building a string” code. That is, a variable
will start as a blank string and then new characters are added with string concatenation. (We’ve
done this in many previous cipher programs with the translated variable.) This is usually
done with the + operator to do string concatenation, as in the following short program:

The slow way to build a string using string concatenation.
building = "'
for ¢ in 'Hello world!":
building += ¢
print(building)

The above program loops through each character in the string 'Hello world! "' and
concatenates it to the end of the string stored in building. At the end of the loop, building
holds the complete string.

This seems like a straightforward way to do this. However, it is very inefficient for Python to
concatenate strings. The reasons are technical and beyond the scope of this book, but it is much
faster to start with a blank list instead of a blank string, and then use the append () list
method instead of string concatenation. After you are done building the list of strings, you can
convert the list of strings to a single string value with the join () method. The following short
program does exactly the same thing as the previous example, but faster:

258 http://inventwithpython.com/hacking

The fast way to build a string using a Tist, append(), and join().
building = []
for c in 'Hello world!":

building.append(c)

building = ''.join(building)
print(building)

Using this approach for building up strings in your code will result in much faster programs. We
will be using this list-append-join process to build strings in the remaining programs of this book.

Calculating the Word Pattern

11.
12.
13.
14.
15.
16.
17.

makeWordPatterns.py

def getWordPattern(word):

Returns a string of the pattern form of the given word.

e.g. '0.1.2.3.4.1.2.3.5.6" for 'DUSTBUSTER'

word = word.upper()

nextNum = 0

TetterNums = {}

wordPattern = []

The getWordPattern () function takes one string argument and returns a string of that

word’s pattern. For example, if getWordPattern () were passed the string 'Buffoon' as

an argument then getWordPattern () would return the string '0.1.2.2.3.3.4".

First, in order to make sure all the letters have the same case, line 14 changes the word parameter

to an uppercase version of itself. We then need three variables:

nextNum stores the next number used when a new letter is found.

letterNums stores a dictionary with keys of single-letter strings of single letters, and
values of the integer number for that letter. As we find new letters in the word, the letter and
its number are stored in letterNums.

wordPattern will be the string that is returned from this function. But we will be building
this string one character at a time, so we will use the list-append-join process to do this. This
is why wordPattern starts as a blank list instead of a blank string.

19.
20.
21.
22.

. makeWordPatterns.py
for letter in word:
if letter not in letterNums:
TetterNums[letter] = str(nextNum)
nextNum += 1

Email questions to the author: al@inventwithpython.com

Chapter 18 — Hacking the Simple Substitution Cipher 259

Line 19’s for loop will loop through each character in the word parameter, assigning each
character to a variable named letter.

Line 20 checks if 1etter has not been seen before by checking that 1etter does not exist as a
key in the letterNums dictionary. (On the first iteration of the loop, the condition on line 20
will always be True because letterNums will be a blank dictionary that doesn’t have
anything in it.)

If we have not seen this letter before, line 21 adds this letter as the key and the string form of
nextNum as the key’s value to the 1etterNums dictionary. For the next new letter we find we
want to use the next integer after the one currently in nextNum anymore, so line 22 increments

the integer in nextNum by 1.

makeWordPatterns.py
23. wordPattern.append(letterNums[letter])

On line 23, letterNums [letter] evaluates to the integer used for the letter in the letter
variable, so this is appended to the end of wordPattern. The letterNums dictionary is
guaranteed to have letter for a key, because if it hadn’t, then lines 20 to 22 would have
handled adding it to 1etterNums before line 23.

makeWordPatterns.py
Al

24. return '.'.join(wordPattern)

After the for loop on line 19 is finished looping, the wordPattern list will contain all the
strings of the complete word pattern. Our word patterns have periods separating the integers, so
that we could tell the difference between “1.12” and “11.2”. To put these periods in between each
of the strings in the wordPattern list, line 24 calls the join () method on the string ' . '.
This will evaluate to a string suchas '0.1.2.2.3.3.4"'. The completely-built string that
Join () returns will be the return value of getWordPattern ().

The Word Pattern Program’s main () Function

makeWordPatterns.py
27. def main(Q:
28. allPatterns = {}

The value stored in allPatterns is what we will write to the wordPatterns.py file. It is a
dictionary whose keys are strings of word patterns (suchas '0.1.2.3.0.4.5" or

260 http://inventwithpython.com/hacking

'0.1.1.2") and the keys’ values are a list of strings of English words that match that pattern.
For example, here’s one of the key-value pairs that will end up in al1Patterns:

'0.1.0.2.3.1.4": ['DEDUCER', 'DEDUCES', 'GIGABIT', 'RARITAN']

But at the beginning of the main () function on line 28, the al1Patterns variable will start
off as a blank dictionary value.

makeWordPatterns.py

30. fo = open('dictionary.txt')
31. wordList = fo.read().split('\n")
32. fo.close()

Lines 30 to 32 read in the contents of the dictionary file into wordList. Chapter 11 covered
these file-related functions in more detail. Line 30 opens the dictionary.txt file in “reading” mode
and returns a file object. Line 31 calls the file object’s read () method which returns a string of
all text from this file. The rest of line 31 splits it up whenever there is a \n newline character, and
returns a list of strings: one string per line in the file. This list value returned from split () is
stored in the wordList variable. At this point we are done reading the file, so line 34 calls the
file object’s close () method.

The wordList variable will contain a list of tens of thousands of strings. Since the
dictionary.txt file has one English word per line of text, each string in the wordList variable
will be one English word.

makeWordPatterns.py

34. for word in wordList:
35. # Get the pattern for each string in wordList.
36. pattern = getWordPattern(word)

The for loop on line 34 will iterate over each string in the wordList list and store it in the
word variable. The word variable is passed to the getWordPattern () function, which
returns a word pattern string for the string in word. The word pattern string is stored in a variable

named pattern.

makeWordPatterns.py

38. if pattern not in allPatterns:

39. allPatterns[pattern] = [word]

40. else:

41. allPatterns[pattern].append(word)

Email questions to the author: al@inventwithpython.com

Chapter 18 — Hacking the Simple Substitution Cipher 261

There must be a value for the pattern key first before we can append word to
allPatterns|[pattern], otherwise this would cause an error. So, first line 38 will check if
the pattern is not already in al1Patterns. If patternisnotakeyinallPatterns yet,
line 39 creates a list with word in it to store in al1Patterns [pattern].

If the pattern already is in al 1Patterns, we do not have to create the list. Line 41 will just
append the word to the list value that is already there.

By the time the for loop that started on line 34 finishes, the al1Patterns dictionary will
contain the word pattern of each English word that was in wordList as its keys. Each of these
keys has a value that is a list of the words that produce the word pattern. With our data organized
this way, given a word pattern we can easily look up all the English words that produce that
particular pattern.

makeWordPatterns.py

43. # This is code that writes code. The wordPatterns.py file contains
44, # one very, very large assignment statement.

45, fo = open('wordPatterns.py', 'w')

46. fo.write('allPatterns = ')

47. fo.write(pprint.pformat(allPatterns))

48. fo.close()

Now that we have this very large dictionary in al1lPatterns, we want to save it to a file on the
hard drive. The last part of the main () function will create a file called wordPatterns.py which
will just have one huge assignment statement in it.

Line 45 creates a new file by passing the 'wordPatterns.py"' string for the filename and
'w' to indicate that this file will be opened in “write” mode. If there is already a file with the
name 'wordPatterns.py', opening it in write mode will cause the file to be deleted to make
way for the new file we are creating.

Line 46 starts the file off with 'allPatterns = ', which is the first part of the assignment
statement. Line 47 finishes it by writing a prettified version of al1Patterns to the file. Line
48 closes the file since we are done writing to it.

makeWordPatterns.py
51. if _name__ == '_main__":
52. main()

262 http://inventwithpython.com/hacking

Lines 51 and 52 call the main () function if this program was run by itself (to create the
wordPattern.py file) rather than imported by another program that wants to use its
getWordPattern () function.

Hacking the Simple Substitution Cipher

The hacking program uses the abstract concepts of “word patterns” and “cipherletter mappings”.
But don’t worry, in our Python program “word patterns” are represented by string values and
“cipherletter mappings” are represented with dictionary values. The previous sections explained
what word patterns are and how to generate them from a string. Cipherletter mappings are used in
the hacking program to keep track of the possible letters that each of the 26 cipherletters could
decrypt to. Go ahead and type in the source code for the simpleSubHacker.py program.

Source Code of the Simple Substitution Hacking Program

Source code for simpleSubHacker.py
. # Simple Substitution Cipher Hacker
. # http://inventwithpython.com/hacking (BSD Licensed)

1
2
3
4. dimport os, re, copy, pprint, pyperclip, simpleSubCipher, makeWordPatterns
5.

6. if not os.path.exists('wordPatterns.py'):

7 makeWordPatterns.main() # create the wordPatterns.py file

8. import wordPatterns

9

10. LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
11. nonLettersOrSpacePattern = re.compile('[AA-Z\s]")

12.
13. def main(Q:
14. message = 'Sy 1 nlx sr pyyacao 1 ylwj eiswi upar lulsxrj isr

sxrjsxwjr, ia esmm rwctjsxsza sj wmpramh, I1xo txmarr jia agsoaxwa sr
pgaceiamnsxu, ia esmm caytra jp famsaga sj. Sy, px jia pjiac ilxo, ia sr
pyyacao rpnajisxu eiswi lyypcor 1 calrpx ypc Twjsxu sx Twwpcolxwa jp isr
sxrjsxwjr, ia esmm lwwabj sj aqax px jia rmsuijarj aqgsoaxwa. Jia pcsusx py
nhjir sr agbmlsxao sx jisr elh. -Facjcixo Ctrramm'

15.

16. # Determine the possible valid ciphertext translations.
17. print('Hacking...")

18. letterMapping = hackSimpleSub(message)

19.

20. # Display the results to the user.

21. print('Mapping:"')

22. pprint.pprint(letterMapping)

23. print()

24. print('Original ciphertext:')

Email questions to the author: al@inventwithpython.com

Chapter 18 — Hacking the Simple Substitution Cipher 263

25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
"H':

1,

"Y'
36.
37.
38.
39.
40.
41.
42.
43,
44,
45.
46.
47 .
48.
49,
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.

def

1,
IQI:
1,

def

def

print(message)

print(Q)

print('Copying hacked message to clipboard:")

hackedMessage = decryptWithCipherletterMapping(message, letterMapping)
pyperclip.copy(hackedMessage)

print(hackedMessage)

getBlankCipherletterMapping():

Returns a dictionary value that is a blank cipherletter mapping.
return {'A': [], 'B': [], 'C': [1, 'D': [1, 'E': []1, 'F': []1, 'G': [],
' 1, '3': 1, 'k': (1, "L': [1, '™M': [1, 'N':[], 'O': [1, 'P":
(1, '‘R': 01, 'S': 101, 'T': 1, ‘v 1, 'v': 01, 'w': [1, 'X': [1,
'Zz': [1%

addLettersToMapping(letterMapping, cipherword, candidate):

The TetterMapping parameter is a "cipherletter mapping" dictionary
value that the return value of this function starts as a copy of.
The cipherword parameter is a string value of the ciphertext word.
The candidate parameter is a possible English word that the
cipherword could decrypt to.

H OH K KR

+H

This function adds the letters of the candidate as potential
decryption Tetters for the cipherletters in the cipherletter
mapping.

B3

letterMapping = copy.deepcopy(letterMapping)
for i in range(len(cipherword)):
if candidate[i] not in letterMapping[cipherword[i]]:
TetterMapping[cipherword[i]].append(candidate[i])
return letterMapping

intersectMappings(mapA, mapB):

To intersect two maps, create a blank map, and then add only the
potential decryption letters if they exist in BOTH maps.
intersectedMapping = getBlankCipherletterMapping()

for letter in LETTERS:

An empty list means "any Tetter 1is possible". In this case just
copy the other map entirely.
if mapA[letter] == []:
intersectedMapping[letter]
elif mapB[letter] == []:
intersectedMapping[letter]

copy.deepcopy(mapB[letter])

copy.deepcopy(mapA[letter])

264 http://inventwithpython.com/hacking

68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.

def

else:
If a Tetter in mapA[letter] exists in mapB[letter], add
that Tetter to intersectedMapping[letter].
for mappedLetter in mapA[letter]:
if mappedLetter in mapB[letter]:
intersectedMapping[letter].append(mappedLetter)

return intersectedMapping

removeSolvedLettersFromMapping(letterMapping):

HOH K K W KR K

#

Cipher letters in the mapping that map to only one letter are
"solved" and can be removed from the other Tletters.

For example, if 'A' maps to potential Tetters ['M', 'N'], and 'B'
maps to ['N'], then we know that 'B' must map to 'N', so we can
remove 'N' from the Tlist of what 'A' could map to. So 'A' then maps
to ['M']. Note that now that 'A' maps to only one letter, we can
remove 'M' from the 1list of Tetters for every other

letter. (This is why there is a loop that keeps reducing the map.)

letterMapping = copy.deepcopy(letterMapping)
ToopAgain = True
while ToopAgain:

First assume that we will not Toop again:
ToopAgain = False

solvedLetters will be a 1list of uppercase letters that have one
and only one possible mapping in TetterMapping
solvedLetters = []
for cipherletter in LETTERS:
if len(letterMapping[cipherletter]) ==
solvedLetters.append(letterMapping[cipherletter][0])

If a letter is solved, than it cannot possibly be a potential
decryption letter for a different ciphertext Tetter, so we
should remove it from those other Tists.
for cipherletter in LETTERS:
for s in solvedLetters:
if Ten(letterMapping[cipherletter]) != 1 and s 1in

letterMapping[cipherletter]:

106.
107.
108.
109.
110.
111.
112.

TetterMapping[cipherletter].remove(s)

if len(letterMapping[cipherletter]) ==
A new letter is now solved, so loop again.
ToopAgain = True

return letterMapping

Email questions to the author: al@inventwithpython.com

Chapter 18 — Hacking the Simple Substitution Cipher 265

113.
114.
115.

def

hackSimpleSub(message):
intersectedMap = getBlankCipherletterMapping()
cipherwordList = nonLettersOrSpacePattern.sub('',

message.upper()).split()

116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144,
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.

def

for cipherword in cipherwordList:
Get a new cipherletter mapping for each ciphertext word.
newMap = getBlankCipherletterMapping()

wordPattern = makeWordPatterns.getWordPattern(cipherword)
if wordPattern not in wordPatterns.allPatterns:
continue # This word was not in our dictionary, so continue.

Add the letters of each candidate to the mapping.
for candidate in wordPatterns.allPatterns[wordPattern]:
newMap = addLettersToMapping(newMap, cipherword, candidate)

Intersect the new mapping with the existing intersected mapping.
intersectedMap = intersectMappings(intersectedMap, newMap)

Remove any solved Tetters from the other Tists.
return removeSolvedLettersFromMapping(intersectedMap)

decryptWithCipherletterMapping(ciphertext, letterMapping):
Return a string of the ciphertext decrypted with the letter mapping,
with any ambiguous decrypted letters replaced with an _ underscore.

First create a simple sub key from the letterMapping mapping.
key = ['x'] * 1en(LETTERS)
for cipherletter in LETTERS:
if len(letterMapping[cipherletter]) ==
If there's only one letter, add it to the key.
keyIndex = LETTERS.find(letterMapping[cipherletter][0])
key[keyIndex] = cipherletter
else:
ciphertext
ciphertext
key = ''.join(key)

ciphertext.replace(cipherletter.lower(), '_")
ciphertext.replace(cipherletter.upper(, '_")

With the key we've created, decrypt the ciphertext.
return simpleSubCipher.decryptMessage(key, ciphertext)

266 http://inventwithpython.com/hacking

Hacking the Simple Substitution Cipher (in Theory)

Hacking the simple substitution cipher is pretty easy. The five steps are:

1. Find the word pattern for each cipherword in the ciphertext.

2. Find the list of English word candidates that each cipherword could decrypt to.

3. Create one cipherletter mapping for each cipherword using the cipherword’s list of
candidates. (A cipherletter mapping is just a dictionary value.)

4. Intersect each of the cipherletter mappings into a single intersected cipherletter mapping.

5. Remove any solved letters from the intersected cipherletter mapping.

The more cipher words that are in the ciphertext, the more cipherletter mappings we have that can
be intersected. The more cipherletter mappings we intersect together, the fewer the number of
potential decryption letters there will be for each cipher letter. This means that the longer the
ciphertext message, the more likely we are to hack and decrypt it.

Explore the Hacking Functions with the Interactive Shell

We’ve already described the steps used to hack a simple substitution encrypted message by using
word patterns. Before we learn how the code in these functions works, let’s use the interactive
shell to call them and see what values they return depending on what arguments we pass them.

Here is the example we will hack: OLQIHXIRCKGNZ PLQRZKBZB MPBKSSIPLC

The getBlankCipherletterMapping () function returns a cipherletter mapping. A
cipherletter mapping is just a dictionary with 26 keys of uppercase single-letter strings and
values of lists of single-letter uppercase strings like 'A' or 'Q'. We will store this blank
cipherletter mapping in a variable named letterMappingl. Try typing the following into the
interactive shell:

>>> letterMappingl = simpleSubHacker.getBlankCipherletterMapping()

>>> letterMappingl

{'A': 1, '¢':], 'B': [], '"E': [], 'D': [1, 'G': [1, "F': [1, '"I': []1, 'H':
(1, 'k [1, 'J'« 01, 'm*: (1, ‘L'« (1, '0': [1, 'N": [1, 'Q": [1, "P": [1,

's'+ 1, 'R': [1, 'U': L1, 'T": [1, 'W': [], "V': [], 'Y': [1, 'X': [], 'Z":
[1}

>>>

Let’s start hacking the first cipherword, OLQIHXIRCKGNZ. First we will need to get the word
pattern for this cipherword by calling the makeWordPattern module’s
getWordPattern () function. Try typing the following into the interactive shell:

>>> import makeWordPatterns

Email questions to the author: al@inventwithpython.com

Chapter 18 — Hacking the Simple Substitution Cipher 267

>>> wordPat = makeWordPatterns.getWordPattern('OLQIHXIRCKGNZ")
>>> wordPat
0.1.2.3.4.5.3.6.7.8.9.10.11

>>>

To figure out which English words in the dictionary have the word pattern
0.1.2.3.4.5.3.6.7.8.9.10.11 (that is, to figure out the candidates for the cipherword
OLQIHXIRCKGNZ) we will import the wordPatterns module and look up this pattern. Try
typing the following into the interactive shell:

>>> import wordPatterns

>>> candidates = wordPatterns.allPatterns['0.1.2.3.4.5.3.6.7.8.9.10.11"']
>>> candidates

["UNCOMFORTABLE', 'UNCOMFORTABLY']

>>>

There are two English words that OLQIHXIRCKGNZ could decrypt to (that is, only two English
words that have the same word pattern that OLQIHXIRCKGNZ does): UNCOMFORTABLE and
UNCOMFORTABLY. (It’s also possible that the cipherword decrypts to a word that does not
exist in our dictionary, but we will just have to assume that’s not the case.) We need to create a
cipherletter mapping that has the cipherletters in OLQIHXIRCKGNZ map to letters in
UNCOMFORTABLE and UNCOMFORTABLY as potential decryption letters. That is, O maps
to U, L maps to N, Q maps to C, and so on. Z will map to two different letters: E and Y.

We can do this with the addLettersToMapping () function. We will need to pass it our
(currently blank) cipherletter mapping in letterMappingl, the string ' OLQIHXIRCKGNZ ',
and the string ' UNCOMFORTABLE ' (which is the first string in the candidates list). Try
typing the following into the interactive shell:

>>> letterMappingl = simpleSubHacker.addLettersToMapping(letterMappingl,
'"OLQIHXIRCKGNZ', candidates[0])
>>> TetterMappingl

{'A 11, ‘¢ 't'1, '8': [, 'E': (1, 'D': [1, 'G': ['B'], 'F': [1, 'I':
['O'], lHl: [lMl], lKl: [lAl], IJI: []’ IMI: []’ ILI: [lNl]’ lol: [lUl], INI:
'e'l, 'Q': ['C'y, ‘P L1, 'S*: L1, 'R': ['RUI, U [T, T [D, 'w':o[D,

VAR []’ VAR []’ 'R ['F'], AR [lEl]}
>>>

From the 1letterMappingl value, you can see that the letters in OLQIHXIRCKGNZ map to
the letters in UNCOMFORTABLE: 'O' mapsto ['U'], 'L' mapsto ['N'], "Q' maps to
['C"'], and so on.

268 http://inventwithpython.com/hacking

But since the letters in OLQIHXIRCKGNZ could also possibly decrypt to UNCOMFORTABLY,
we also need to add UNCOMFORTABLY to the cipherletter mapping. Try typing the following
into the interactive shell:

>>> letterMappingl = simpleSubHacker.addLettersToMapping(letterMappingl,
'"OLQIHXIRCKGNZ', candidates[1])

>>> letterMappingl

{'A': 1], '¢:['T"], 'B': [], '"E': []1, 'D': [1, 'G"': ['B'], "F': [], 'I':
['‘o'y, 'WH': ['™M'1, 'K': ['A'], "3': [1, 'M": [], 'L": ['N'], 'O': ['U'], 'N':
c'e'1, 'Q': f'ct1, Pt [1, 'S*: L1, 'R': ['R'I, 'UT: LD, 'TT:O[D, 'WU': O[O,
'v': [1, 'Y': [1, 'X': ['F'], 'Z': ['E', 'Y']}

>>>

You’ll notice that not much has changed in 1etterMappingl. The cipherletter mapping in
letterMappingl now has 'Z' map to both 'E' and 'Y '. That’s because the candidates for
OLQIHXIRCKGNZ (that is, UNCOMFORTABLE and UNCOMFORTABLY) are very similar
to each other and addLettersToMapping () only adds the letter to the list if the letter is not
already there. This is why 'O' mapsto ['U'] insteadof ['U', 'U'].

We now have a cipherletter mapping for the first of the three cipherwords. We need to get a new
mapping for the second cipherword, PLQRZKBZB. Call
getBlankCipherletterMapping () and store the returned dictionary value in a variable
named letterMapping2. Get the word pattern for PLQRZKBZB and use it to look up all the
candidates in wordPatterns.allPatterns. This is done by typing the following into the
interactive shell:

>>> letterMapping2 = simpleSubHacker.getBlankCipherletterMapping()
>>> wordPat = makeWordPatterns.getWordPattern('PLQRZKBZB")

>>> candidates = wordPatterns.allPatterns[wordPat]

>>> candidates

["CONVERSES', "INCREASES', 'PORTENDED', 'UNIVERSES']

>>>

Instead of typing out four calls to addLettersToMapping () for each of these four candidate
words, we can write a for loop that will go through the list in candidates and call
addLettersToMapping () each time.

>>> for candidate in candidates:
letterMapping2 = simpleSubHacker.addLettersToMapping(letterMapping2,
'PLQRZKBZB', candidate)

>>> letterMapping?2

Email questions to the author: al@inventwithpython.com

Chapter 18 — Hacking the Simple Substitution Cipher 269

{'A': [, 'C': 01, 'B': ['S', 'D'1, 'E': [1, 'D': [0, 'G': [1, 'F': [1, 'I':
[1, "H': [1, 'K': ['R', A", 'N'D, "3': [0, M': [1, L'z ['0%, 'N'D, 'O': [J,
'N': [], 'Q': [lNl, ICI’ IRI’ lIl]’ lPl: ['C', III’ IPI’ 'U']’ ISI: []’ IR':
[V, R, T, U O, T [, W LD, VU: 0D, Y': 0D, X 01,2
['E'}

>>>

This finishes the cipherletter mapping for our second cipherword. Now we need to get the
intersection of the cipherletter mappings in letterMappingl and letterMapping?2 by
passing them to intersectMappings (). Try typing the following into the interactive shell:

>>> intersectedMapping = simpleSubHacker.intersectMappings(letterMappingl,
letterMapping2)

>>> intersectedMapping

{IAI: [], lcv: [le]’ lBl: I:ISI, lDl]’ IEI: []’ |D|: []’ IGI: I:IBI:I, vFv: []’
'I': ['0'], 'H': ['M'], 'K': ['A'], '"2': [1, 'M': [, 'L": ['N'], 'O': ['U'],
INI: [lLl], IQI: ['C'], lPl: ['C', III, IPI’ IUI]’ ISI: []’ lRl: [lRl]’ lUl:
[]’ ITI: [], IWI: []’ lVl: [], lYl: [], IXI: [lFl], IZI: [lEl]}

>>>

The intersected mapping is just a cipherletter mapping. The list of potential decryption letters for
any cipherletter in the intersected mapping will only be the potential decryption letters that were
in the cipherletter’s list in both letterMappingl and letterMapping2.

For example, this is why intersectedMapping’s list forthe 'Z ' keyisjust ['E"']:
because letterMappingl had ['E', 'Y'] but letterMapping2 had ['E']. The
intersectionof ['E', 'Y'] and ['E'] is just the potential decryption letters that exist in both
mappings: ['E"]

There is an exception. If one of the mapping’s lists was blank, then all of the potential decryption
letters in the other mapping are put into the intersected mapping. This is because in our program a
blank map represents any possible letter can be used since nothing is known about the mapping.

Then we do all these steps for the third cipherword, MPBKSSIPLC. Try typing the following into
the interactive shell:

>>> letterMapping3 = simpleSubHacker.getBlankCipherletterMapping()
>>> wordPat = makeWordPatterns.getWordPattern('MPBKSSIPLC')

>>> candidates = wordPatterns.allPatterns[wordPat]

>>> candidates

["ADMITTEDLY', 'DISAPPOINT']

>>> for i in range(len(candidates)):

270 http://inventwithpython.com/hacking

letterMapping3 = simpleSubHacker.addLettersToMapping(letterMapping3,
'"MPBKSSIPLC', candidates[i])

>>> letterMapping3

{"A*: 1, 'C': 'y, 'T'], 'B': ['M", 'S'], 'E': [1, 'D': [1, 'G': [1, "F': [1,
III: [lEl, 'O'], IHI: []’ IKI: [lIl’ lAl]’ IJI: []’ IMI: [lAl’ lDl]’ lLl: [lLl,
'N'1, 'O': [1, '*N': [1, 'Q': [1, 'P': ['D", 'I'1, 'S': ['T", '"P'], 'R"': [1,
'ut: 1, 'T': 01, 'w': 1, 'v': 1, 'y': [1, 'X': [1, 'Z": [1}

We intersect letterMapping3 with intersectedMapping. This also ends up indirectly
intersecting letterMapping3 with letterMappingl and letterMapping2, since
intersectedMapping is currently the intersection of letterMappingl and
letterMapping2. Try typing the following into the interactive shell:

>>> intersectedMapping = simpleSubHacker.intersectMappings(intersectedMapping,
letterMapping3)

>>> intersectedMapping

{'A': 1, '¢': ['T'], 'B": ['S'], '"E': [], 'D': []1, 'G': ['B'], '"F': [], 'I':
['‘o'l, 'H': ['M'], 'K': ['A'], '"2': [], 'M': ['A', 'D'], "L"': ['N'], 'O':
[‘u'y, 'N': C'L'], 'Q': ['C'], '"P': ['T'], 'S': ['T", '"P'], '"R': ['R'], "U':
[, 'T': 03, "w's [, 'V': [0, 'Y': 01, X' [UF'D, 'Z': [UE'DY

>>>

We can now pass the intersected cipherletter mapping to
decryptWithCipherletterMapping () to decrypt the ciphertext. Try typing the
following into the interactive shell:

>>> simpleSubHacker.decryptWithCipherletterMapping('OLQIHXIRCKGNZ PLQRZKBZB
MPBKSSIPLC', intersectedMapping)

UNCOMFORTABLE INCREASES _ISA__OINT

>>>

The intersected mapping is not yet complete. Notice how the intersected mapping has a solution
for the cipherletter K, because the key 'K"'’s value to a list with just one string init: ['A"'].
Because we know that the K cipherletters will decrypt to A, no other cipherletter can possibly
decrypt to A.

In the intersected mapping, the cipherletter M mapsto ['A', 'D']. This means that judging
from the candidates for the cipherwords in our encrypted message, the cipherletter M could
decrypt to A or D.

Email questions to the author: al@inventwithpython.com

Chapter 18 — Hacking the Simple Substitution Cipher 271

But since we know K decrypts to A, we can remove A from the list of potential decryption letters
for cipherletter M. This shortens the list down to just ['D"']. Because this new list only has one
string in it, we’ve also solved the cipherletter M!

The removeSolvedLettersFromMapping () function takes a cipherletter mapping and
removes these solved potential decryption letters from the other cipherletters’ lists. Try typing the
following into the interactive shell:

>>> letterMapping =
simpleSubHacker.removeSolvedLettersFromMapping(letterMapping)

>>> intersectedMapping

{'A': 1, ‘¢ ['T'], 'B": ['S"'], 'E': [1, 'D': [1, 'G': ['B'], '"F': [], 'I':
['O0'], 'H': ['M'], 'K': ['A'], "J': [1, 'M

': ['D'], 'L': ['N'], 'O': ['U'], 'N": ['L"'], 'Q': ['C'], 'P': ['I'], 'S":
['P'1, 'R': ['R'I, Ut LD, CTU:OLD, Wi LD,

V' o[1, 'Y': [1, 'X': ['F'], 'Z': ['E']}

>>>

Now when we pass the intersected mapping to decryptWithCipherletterMapping (), it
gives us the full solution. Try typing the following into the interactive shell:

>>> simpleSubHacker.decryptWithCipherletterMapping('OLQIHXIRCKGNZ PLQRZKBZB
MPBKSSIPLC', intersectedMapping)

UNCOMFORTABLE INCREASES DISAPPOINT

>>>

The ciphertext OLQIHXIRCKGNZ PLQRZKBZB MPBKSSIPLC decrypts to the message,
“Uncomfortable increases disappoint”.

This is a rather short ciphertext to hack. Normally the encrypted messages we hack will be much
longer. (Messages as short as our example usually cannot be hacked with our word pattern
method.) We’ll have to create a cipherletter mapping for each cipherword in these longer
messages and then intersect them all together, which is exactly what the hackSimpleSub ()
function does.

Now that we know the basic steps and what each function does, let’s learn how the code in these
functions work.

How the Program Works

simpleSubHacker.py
1. # Simple Substitution Cipher Hacker

272 http://inventwithpython.com/hacking

2. # http://inventwithpython.com/hacking (BSD Licensed)

The comments at the top of the source code explain what the program is.

Import All the Things

simpleSubHacker. py
4. dimport os, re, copy, pprint, pyperclip, simpleSubCipher, makeWordPatterns

Our simple substitution hacking program imports eight different modules, more than any other
program so far. By reusing the code in these modules, our hacking program becomes much
shorter and easier to write.

The re module is a module we haven’t seen before. This is the regular expression module which
lets our code do sophisticated string manipulation. Regular expressions are explained in the next
section.

simpTleSubHacker. py
6. if not os.path.exists('wordPatterns.py'):
7. makeWordPatterns.main() # create the wordPatterns.py file
8. import wordPatterns

The simple substitution cipher also needs the wordPatterns module. The .py file for this
module is created when the makeWordPatterns.py program is run. But
makeWordPatterns.py might not have been run before our hacking program has. In this case, our
hacking program checks if this file exists on line 6 and if it doesn’t, the
makeWordPatterns.main () function is called.

Remember, the main () function is the function that is run in our programs when they are run as
programs (rather than just imported with an import statement.) When we imported the
makeWordPatterns module on line 4, the main () function in makeWordPatterns.py was
not run. Since main () is the function that creates the wordPatterns.py file, we will call
makeWordPatterns.main () if wordPatterns.py does not yet exist.

Either way, by the time the program execution reaches line 8, the wordPatterns module will
exist and can be imported.

A Brief Intro to Regular Expressions and the sub() Regex Method

simpleSubHacker. py
10. LETTERS = "ABCDEFGHIJKLMNOPQRSTUVWXYZ'

Email questions to the author: al@inventwithpython.com

Chapter 18 — Hacking the Simple Substitution Cipher 273

11. nonLettersOrSpacePattern = re.compile('[AA-Z\s]")

The simple substitution hacking program will have a LETTERS global variable like many of our
previous cipher programs.

The re.compile () function is new. This function compiles (that is, creates) a new regular
expression pattern object, or “regex object” or “pattern object” for short. Regular expressions are
strings that define a specific pattern that matches certain strings. Regular expressions can do
many special things with strings that are beyond the scope of this book, but you can learn about

The string ' ["A-Za-z\s] ' is a regular expression that matches any character that is not a
letter from A to Z or a “whitespace” character (e.g. a space, tab, or newline character). The
pattern object has a sub () method (short for “substitute) that works very similar to the
replace () string method. The first argument to sub () is the string that replaces any instances
of the pattern in the second string argument. Try typing the following into the interactive shell:

>>> pat = re.compile('[AA-Z\s]")
>>> pat.sub('abc', 'ALL! NON!LETTERS? AND123 NONSPACES. REPLACED'")
'ALLabc NONabcLETTERSabc ANDabcabcabc NONSPACESabc REPLACED'

>>> pat.sub('', "ALL! NON!LETTERS? AND123 NONSPACES. REPLACED")
"ALL NONLETTERS AND NONSPACES REPLACED'
>>>

There are many sophisticated string manipulations you can perform if you learn more about
regular expressions, but we will only use them in this book to remove characters from a string
that are not uppercase letters or spaces.

The Hacking Program’s main () Function

simpleSubHacker.py
13. def main(Q:
14. message = 'Sy 1 nlx sr pyyacao 1 ylwj eiswi upar lulsxrj isr
sxrjsxwjr, ia esmm rwctjsxsza sj wmpramh, Txo txmarr jia agsoaxwa sr
pgaceiamnsxu, ia esmm caytra jp famsaqa sj. Sy, px jia pjiac ilxo, ia sr
pyyacao rpnajisxu eiswi lyypcor 1 calrpx ypc Twjsxu sx lwwpcolxwa jp isr
sxrjsxwjr, ia esmm Twwabj sj aqax px jia rmsuijarj agsoaxwa. Jia pcsusx py
nhjir sr agbmlsxao sx jisr elh. -Facjclxo Ctrramm'

15.
16. # Determine the possible valid ciphertext translations.
17. print('Hacking...")

18. letterMapping = hackSimpleSub(message)

274 http://inventwithpython.com/hacking

Like all our previous hacking programs, the main () function will store the ciphertext to be
hacked in a variable named message. We will pass this variable to the hackSimpleSub ()

function. However, unlike our previous hacking programs, the hacking function will not return a

string of the decrypted message (or None if it was unable to decrypt it).

Instead, hackSimpleSub () will return a cipherletter mapping (specifically, an intersected

cipherletter mapping that had the solved letters removed, like the kind we made in our interactive

shell exercise). This returned cipherletter mapping will be passed to
decryptWithCipherletterMapping () to decrypt the ciphertext in message.

Partially Hacking the Cipher

simpleSubHacker.py

20. # Display the results to the user.
21. print('Mapping:"')

22. pprint.pprint(letterMapping)

23. print(Q)

Since the cipherletter mapping stored in letterMapping is a dictionary, we can use the

pprint.pprint () “pretty print” function to display it on the screen. It will look something
like this:

{'A":
'B':
'c':
'D':
'E':
'F':
'G':
'H':
'I':
‘1
"K'
'L':
'M':
'N':
'0':
'P':
IQI:
'R":
'St
'T':
'U':
'V':

X~ 0 m

- - m oewm ld -
— T ™ W W™ R -

- - - - - @ - @ - @ =- @oam om bkd
N0OCHW<OUXETrX>»-

rhrrorararmaraararmrarrerrarerrerrerarre e

[S]

—_

'W', lPl]’

—

~O U =

—_ -

—

Email questions to the author: al@inventwithpython.com

Chapter 18 — Hacking the Simple Substitution Cipher 275

W[,
X' [N'D,
Y LF',
7' 7'}

In the above example, the cipherletters A, C, L J, L, M, N, O, P, Q,R, S, T, U, X, Y, and Z all
have one and only one potential decryption letter. These cipher letters have been solved. The
decryptWithCipherletterMapping () function, explained later, will print underscores
for any cipherletters that have not been solved (that is, B, D, E, F, G, H, K, and V.)

simpleSubHacker.py

24. print('Original ciphertext:')
25. print(message)
26. print()

First the original encrypted message is displayed on the screen so the programmer can compare it

to the decryption.
simpTleSubHacker. py
27. print('Copying hacked message to clipboard:"')
28. hackedMessage = decryptWithCipherletterMapping(message, letterMapping)
29. pyperclip.copy(hackedMessage)
30. print(hackedMessage)

Next the decrypted message is returned from the decryptWithCipherletterMapping ()
function on line 28. This hacked message is copied to the clipboard on line 29 and printed to the
screen on line 30.

Next, let’s look at all the functions that are called by main ().

Blank Cipherletter Mappings

simpleSubHacker. py
33. def getBlankCipherletterMapping():
34. # Returns a dictionary value that is a blank cipherletter mapping.
35. return {'A': [], 'B': [], 'C': [], 'D': [1, 'E': []1, '"F': []1, 'G': [],
'H': 1, 'r': 1, '‘3':- 11, 'Kk': (31, 'L': (1, 'M': [1, 'N': [, 'O': [], 'P":
(1, 'Q': [1, 'R*: [1, 'S': 1, 'T": [1, "U': [1, 'vV': [1, 'W': [1, 'X": [],
Yo [1, 'zZ': [1}

Our program will need a cipherletter mapping for each cipherword in the ciphertext, so we will
create the getBlankCipherletterMapping () function which can return a new, blank
mapping when called.

276 http://inventwithpython.com/hacking

Adding Letters to a Cipherletter Mapping

simpTleSubHacker. py
38. def addLettersToMapping(letterMapping, cipherword, candidate):

The addLettersToMapping () function attempts to make sure that every letter in the
candidate can be mapped to a letter in the cipherword. It checks over each letter in candidate
and adds its corresponding letter in cipherword to letterMapping if it wasn't already
there.

For example, if ' PUPPY "' is our candidate word for the ' HGHHU' cipherword, the
addLettersToMapping () function will change letterMapping so that the key 'H' has
'P' added to its list of potential decryption letters. Then the function will change the key 'G' so
that its list has 'U' appended to it.

If the letter is already in the list of potential decryption letters, the addLettersToMapping ()
will not add a letter to the list. We can skip adding 'P"' to the 'H' key the next two times since
it’s already been done. Finally, the function will change the key 'U"' so thatithas 'Y "' in its list
of potential decryption letters.

The code in this function assumes that 1en (cipherword) is the same as 1en (candidate).

simpleSubHacker.py
49. letterMapping = copy.deepcopy(letterMapping)

To avoid changing the original dictionary value passed for the 1etterMapping parameter, line
49 will copy the dictionary in letterMapping and make this copy the new value in
letterMapping. (We have to do this because letterMapping was passed a copy of a
dictionary reference value, instead of a copy of the dictionary value. See the “List Reference”
section in Chapter 10 for an explanation of references.)

simpleSubHacker. py
50. for i in range(len(cipherword)):

Line 50 will iterate over each index in the string in cipherword. We need the index (which is
stored in the variable i) because the potential decryption letter to be added will be
candidate [1i] for the cipherletter cipherword[1i].

simpTleSubHacker. py
51. if candidate[i] not in letterMapping[cipherword[i]]:

Email questions to the author: al@inventwithpython.com

Chapter 18 — Hacking the Simple Substitution Cipher 277

52. TetterMapping[cipherword[i]].append(candidate[i])

The if statement on line 51 checks that the potential decryption letter is not already in the list of
potential decryption letters for the cipherletter. This prevents the list of potential decryption
letters in the cipherletter mapping from having duplicate letters in it. For example, we never want
the list to be a value like ['U"', 'U'].

Line 52 adds the new potential decryption letter (that is, candidate [1i]) to the list of potential
decryption letters in the cipherletter mapping (that is, letterMapping[cipherword[1]]).

simpleSubHacker.py
53. return letterMapping

After looping through all the indexes in cipherword, the additions to the cipherletter mapping
are complete and the dictionary in letterMapping is returned.

Intersecting Two Letter Mappings

simpTleSubHacker. py
56. def intersectMappings(mapA, mapB):

57. # To intersect two maps, create a blank map, and then add only the
58. # potential decryption letters if they exist in BOTH maps.

59. intersectedMapping = getBlankCipherletterMapping()

60. for letter in LETTERS:

The intersectMappings () function will return a new cipherletter mapping that is an
intersection of the two cipherletter mappings passed for the mapA and mapB parameters. Line 59
creates a new cipherletter mapping by calling getBlankCipherletterMapping () and
storing the returned value in the intersectedMapping variable.

The for loop will loop through each of the uppercase letters in the LETTERS constant variable,
and the 1etter variable can be used for the keys of the mapA and mapB dictionaries.

simpTleSubHacker. py

62. # An empty 1list means "any Tetter 1is possible". In this case just
63. # copy the other map entirely.

64. if mapA[letter] == []:

65. intersectedMapping[letter] = copy.deepcopy(mapB[letter])

66. elif mapB[letter] == []:

67. intersectedMapping[letter] = copy.deepcopy(mapA[letter])

278 http://inventwithpython.com/hacking

If the list of potential decryption letters for a cipherletter in a cipherletter mapping is blank, this
means that this cipherletter could potentially decrypt to any letter. In this case, the intersected
cipherletter mapping will just be a copy of the other mapping’s list of potential decryption letters.

That is, if mapA’s list of potential decryption letters is blank, then set the intersected mapping’s
list to be a copy of mapB’s list. Or if mapB’s list is blank, then set the intersected mapping’s list
to be a copy of mapA’s list.

(If both mappings’ lists were blank, then line 65 will simply copy mapB’s blank list to the
intersected mapping. This is the behavior we want: if both lists are blank then the intersected
mapping will have a blank list.)

simpleSubHacker. py

68. else:

69. # If a Tetter in mapA[letter] exists in mapB[Tletter], add
70. # that Tetter to intersectedMapping[letter].

71. for mappedLetter in mapA[letter]:

72. if mappedLetter in mapB[letter]:

73. intersectedMapping[letter].append(mappedLetter)

The e1se block handles the case where neither mapA nor mapB are blank. In this case, line 71
loops through the uppercase letter strings in the list at mapA [letter]. Line 72 checks if this
uppercase letter in mapA[letter] also exists in the list of uppercase letter strings in

mapB [letter]. If it does, then line 73 will add this common letter to the list of potential
decryption letters at intersectedMapping[letter].

simpleSubHacker.py
75. return intersectedMapping

Once the for loop that started on line 60 has finished, the cipherletter mapping in
intersectedMapping will only have the potential decryption letters that exist in the lists of
potential decryption letters of both mapA and mapB. This completely intersected cipherletter
mapping is returned on line 75.

Removing Solved Letters from the Letter Mapping

simpTleSubHacker. py
78. def removeSolvedLettersFromMapping(letterMapping):

79. # Cipher Tetters in the mapping that map to only one Tletter are

80. # "solved" and can be removed from the other letters.

81. # For example, if 'A' maps to potential Tetters ['M', 'N'], and 'B'
82. # maps to ['N'], then we know that 'B' must map to 'N', so we can

Email questions to the author: al@inventwithpython.com

Chapter 18 — Hacking the Simple Substitution Cipher 279

83. # remove 'N' from the 1ist of what 'A' could map to. So 'A' then maps
84. # to ['M']. Note that now that 'A' maps to only one Tetter, we can
85. # remove 'M' from the Tist of potential Tetters for every other

86. # key. (This 1is why there 1is a loop that keeps reducing the map.)

87. letterMapping = copy.deepcopy(letterMapping)

88. ToopAgain = True

The removeSolvedLettersFromMapping () function searches for any cipherletters in the
letterMapping parameter which have one and only one potential decryption letter. These
cipherletters are considered solved: the cipherletter must decrypt to that one potential decryption
letter. This means that any other cipherletters that have this solved letter can have that letter
removed from their lists of potential decryption letters.

This could cause a chain reaction, because when the one potential decryption letter is removed
from other lists of potential decryption letters, it could result in a new solved cipherletter. In that
case, the program will loop and perform the solved letter removal over the whole cipherletter
mapping again.

The cipherletter mapping in letterMapping is copied on line 87 so that changes made to it in the
function do not affect the dictionary value outside the function. Line 88 creates 1oopAgain,
which is a variable that holds a Boolean value that tells us if the code found a new solved letter
and needs to loop again. In that case the 1oopAgain variable is set to True on line 88 so that
the program execution will enter the while loop on line 89.

simpTleSubHacker. py

89. while ToopAgain:
90. # First assume that we will not loop again:
91. ToopAgain = False

At the very beginning of the loop, line 91 will set 1loopAgain to False. The code assumes that
this will be the last iteration through line 89°s while loop. The 1oopAgain variable is only set
to True if we find a new solved cipherletter during this iteration.

simpleSubHacker. py

93. # solvedLetters will be a Tist of uppercase Tletters that have one
94. # and only one possible mapping in TetterMapping

95. solvedLetters = []

96. for cipherletter in LETTERS:

97. if len(letterMapping[cipherletter]) ==

98. solvedLetters.append(letterMapping[cipherletter][0])

280 http://inventwithpython.com/hacking

The next part of the code creates a list of cipherletters that have exactly one potential decryption
letter. We will put these cipherletter strings in a list that is in solvedLetters. The
solvedLetters variable starts off as a blank list on line 95.

The for loop on line 96 goes through all 26 possible cipherletters and looks at the cipherletter
mapping’s list of potential decryption letters for that cipherletter. (That is, the list is at
letterMapping[cipherletter].)

If the length of this list is 1 (which is checked on line 97), then we know that there is only one
letter that the cipherletter could decrypt to and the cipherletter is solved. We will add the letter
(the potential decryption letter, not the cipherletter) to the solvedLetters list on line 98. The
solved letter will always be at 1letterMapping[cipherletter] [0] because
letterMapping[cipherletter] is alist of potential decryption letters that only has one
string value in it at index O of the list.

simpleSubHacker. py

100. # If a letter is solved, than it cannot possibly be a potential
101. # decryption Tetter for a different ciphertext letter, so we
102. # should remove it from those other Tists.

103. for cipherletter in LETTERS:

104. for s in solvedLetters:

105. if Ten(letterMapping[cipherletter]) != 1 and s 1in
letterMapping[cipherletter]:

106. TetterMapping[cipherletter].remove(s)

After the previous for loop that started on line 96 has finished, the solvedLetters variable
will be a list of all the letters that are solved decryptions of a cipherletter. The for loop on line
103 loops through all 26 possible cipherletters and looks at the cipherletter mapping’s list of
potential decryption letters.

For each cipherletter that is examined, the letters in solvedLetters are looped through on
line 104 to check if each of them exist in the list of potential decryption letters for
letterMapping[cipherletter]. Line 105 checks if a list of potential decryption letters is
not solved (that is, if 1en (letterMapping[cipherletter]) != 1) and the solved
letter exists in the list of potential decryption letters. If this condition is True, then the solved
letter in s is removed from the list of potential decryption letters on line 106.

simpleSubHacker. py

107. if len(letterMapping[cipherletter]) ==
108. # A new Tetter 1is now solved, so Toop again.
109. ToopAgain = True

Email questions to the author: al@inventwithpython.com

Chapter 18 — Hacking the Simple Substitution Cipher 281

If by chance this removal caused the list of potential decryption letters to now only have one
letter in it, then the 1oopAgain variable is set to True on line 109 so that the code will check
for this new solved letter in the cipherletter mapping on the next iteration.

simpTleSubHacker. py
110. return letterMapping

After the code in line 89’s while loop has gone through a full iteration without loopAgain
being set to True, the program execution goes past the loop and returns the cipherletter mapping
stored in letterMapping.

Hacking the Simple Substitution Cipher

simpleSubHacker. py
113. def hackSimpleSub(message):
114. intersectedMap = getBlankCipherletterMapping()

Now that we’ve created the getBlankCipherletterMapping (),
addLettersToMapping (), intersectMappings (), and
removeSolvedLettersFromMapping () functions that can manipulate the cipherletter
mappings we pass them, we can use them all together to hack a simple substitution message.

Remember the steps from our interactive shell exercise for hacking a simple substitution cipher
message: for each cipherword, get all the candidates based on the cipherword’s word pattern, then
add these candidates to a cipherletter mapping. Then take the cipherletter mapping for each
cipherword and intersect them together.

The intersectedMap variable will hold the intersected cipherletter mapping of each
cipherword’s cipherletter mapping. At the beginning of the hackSimpleSub () function, it
will start as a blank cipherletter mapping.

simpTleSubHacker. py
115. cipherwordList = nonLettersOrSpacePattern.sub('',
message.upper()).split(

The sub () regex method will substitute (that is, replace) any occurrences of the string pattern in
the second argument (message . upper ()) with the first argument (a blank string). Regular
expressions and the sub () method were explained earlier in this chapter.

On line 115, the regex object in nonLettersOrSpacePattern matches any string that is not
a letter or whitespace character. The sub () method will return a string that is the message

282 http://inventwithpython.com/hacking

variable with all non-letter and non-space characters replaced by a blank string. This effectively
returns a string that has all punctuation and number characters removed from message.

This string then has the upper () method called on it to return an uppercase version of the
string, and that string has the split () method called on it to return the individual words in the

string in a list. To see what each part of line 115 does, type the following into the interactive
shell:

>>> import re

>>> nonLettersOrSpacePattern = re.compile('[AA-Z\s]"')

>>> message = 'Hello, this is my 1lst test message.'

>>> message = nonLettersOrSpacePattern.sub('', message.upper())
>>> message

"HELLO THIS IS MY ST TEST MESSAGE'

>>> cipherwordList = message.split()

>>> cipherwordList

['HELLO', 'THIS', 'IS', 'MY', 'ST', 'TEST', 'MESSAGE']

After line 115 executes, the cipherwordList variable will contain a list of uppercase strings
of the individual words that were previously in message.

simpleSubHacker.py

116. for cipherword in cipherwordList:
117. # Get a new cipherletter mapping for each ciphertext word.
118. newMap = getBlankCipherletterMapping()

The for loop on line 116 will assign each string in the message list to the cipherword
variable. Inside this loop we will get the cipherword’s candidates, add the candidates to a
cipherletter mapping, and then intersect this mapping with intersectedMap.

First, line 118 will get a new, blank cipherletter mapping from
getBlankCipherletterMapping () and store it in the newMap variable.

simpleSubHacker. py

120. wordPattern = makeWordPatterns.getWordPattern(cipherword)
121. if wordPattern not in wordPatterns.allPatterns:
122. continue # This word was not in our dictionary, so continue.

To find the candidates for the current cipherword, we call getWordPattern () in the
makeWordPatterns module on line 120. If the word pattern of the cipherword does not exist
in the keys of the wordPatterns.allPatterns dictionary, then whatever the cipherword

Email questions to the author: al@inventwithpython.com

Chapter 18 — Hacking the Simple Substitution Cipher 283

decrypts to does not exist in our dictionary file. In that case the cont inue statement on line 122
will skip back to line 116, to the next cipherword in the list.

simpTleSubHacker. py

124. # Add the letters of each candidate to the mapping.
125. for candidate in wordPatterns.allPatterns[wordPattern]:
126. newMap = addLettersToMapping(newMap, cipherword, candidate)

On line 125, we know the word pattern exists in wordPatterns.allPatterns. The values
in the allPatterns dictionary are lists of strings of the English words with the pattern in
wordPattern. Since it is a list, we can use a for loop to iterate over this list. The variable
candidate will be set to each of these English word strings on each iteration of the loop.

The only line inside line 125’s for loop is the call to addLettersToMapping () on line 126.
We will use this to update the cipherletter mapping in newMap with the letters in each of the

candidates.

simpleSubHacker.py
128. # Intersect the new mapping with the existing intersected mapping.
129. intersectedMap = intersectMappings(intersectedMap, newMap)

Once all of the letters in the candidates are added to the cipherletter mapping in newMap, line
129 will intersect newMap with intersectedMap, and make the return value the new value of

intersectedMap.

At this point the program execution jumps back to the beginning of the for loop on line 116 to
run the code on the next cipherword in the cipherwordList list.

simpleSubHacker.py
131. # Remove any solved letters from the other Tists.
132. return removeSolvedLettersFromMapping(intersectedMap)

Once we have the final intersected cipherletter mapping, we can remove any solved letters from it
by passing it to removeSolvedLettersFromMapping (). The cipherletter mapping that is
returned from the function will be the return value for hackSimpleSubstitution ().

Creating a Key from a Letter Mapping

simpleSubHacker. py
135. def decryptWithCipherletterMapping(ciphertext, letterMapping):
136. # Return a string of the ciphertext decrypted with the Tetter mapping,
137. # with any ambiguous decrypted letters replaced with an _ underscore.

284 http://inventwithpython.com/hacking

138.
139. # First create a simple sub key from the TetterMapping mapping.
140. key = ['x'] * 1en(LETTERS)

Since the simpleSubstitutionCipher.decryptMessage () function only decrypts
with keys instead of letter mappings, we need the decryptWithCipherletterMapping ()
function to convert a letter mapping into a string key.

The simple substitution keys are strings of 26 characters. The character at index 0 in the key
string is the substitution for A, the character at index 1 is the substitution for B, and so on.

Since the letter mapping might only have solutions for some of the letters, we will start out with a
keyof ['x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x',
'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x',
'x ']. This list is created on line 140 by using list replication to replicate the list ['x'] 26
times. Since LETTERS is a string of the letters of the alphabet, 1en (LETTERS) evaluates to
26. When the multiplication operator is used on a list and integer, it does list replication.

We don’t have to use 'x ', we can use any lowercase letter. The reason we need to use a
lowercase letter is because it acts as a “placeholder” for the simple substitution key. The way
simpleSubCipher.py works, since LETTERS only contains uppercase letters, any lowercase letters
in the key will not be used to decrypt a message.

The 26-item list in key will be joined together into a 26-character string at the end of the
decryptWithCipherletterMapping () function.

simpTleSubHacker. py

141. for cipherletter in LETTERS:

142. if len(letterMapping[cipherletter]) ==

143. # If there's only one letter, add it to the key.

144 . keyIndex = LETTERS.find(letterMapping[cipherletter][0])
145. key[keyIndex] = cipherletter

The for loop on line 141 will let us go through each of the letters in LETTERS for the
cipherletter variable, and if the cipherletter is solved (that is,
letterMapping[cipherletter] has only one letter in it) then we can replace an 'x' in
the key with the letter.

Soon line 144 1letterMapping[cipherletter] [0] is the decryption letter, and
keyIndex is the index of the decryption letter in LETTERS (which is returned from the
find () call). This index in the key list is set to the decryption letter on line 145.

Email questions to the author: al@inventwithpython.com

Chapter 18 — Hacking the Simple Substitution Cipher 285

simpleSubHacker. py

146. else:
147. ciphertext = ciphertext.replace(cipherletter.lower(), '_")
148. ciphertext = ciphertext.replace(cipherletter.upper(), '_")

Or else, if the cipherletter does not have a solution, then we want to replace everywhere that
cipherletter appears in the ciphertext with an underscore so the user can tell which characters
were unsolved. Line 147 handles replacing the lowercase form of cipherletter with an
underscore and line 148 handles replacing the uppercase form of cipherletter with an

underscore.
simpTleSubHacker. py
149. key = ''.join(key)
150.
151. # With the key we've created, decrypt the ciphertext.
152. return simpleSubCipher.decryptMessage(key, ciphertext)

When we have finally replaced all the parts in the list in key with the solved letters, we convert
the list of strings into a single string with the join () method to create a simple substitution key.
This string is passed to the decryptMessage () function in our simpleSubCipher.py program.

The decrypted message string returned from decryptMessage () is then returned from

decryptWithCipherletterMapping () on line 152.

simpTleSubHacker. py
155. if _name__ == '_main__":
156. mainQ)

That completes all the functions our hacking program needs. Lines 155 and 156 just call the
main () function to run the program if simpleSubHacker.py is being run directly, instead of
being imported as a module by another Python program.

Couldn’t We Just Encrypt the Spaces Too?

Yes. Our hacking approach only works if the spaces were not encrypted. You can modify the
simple substitution cipher from the previous chapter to encrypt spaces, numbers, and punctuation
characters as well as letters, and it would make your encrypted messages harder (but not
impossible) to hack. However, since the spaces will probably be the most common symbol in the
ciphertext, you can write a program to replace it back to spaces, and then hack the ciphertext as
normal. So encrypting the space characters would not offer much more protection.

286 http://inventwithpython.com/hacking

Summary

Whew! This hacking program was fairly complicated. The cipherletter mapping is the main tool
for modeling the possible letters that each ciphertext letter can decrypt to. By adding letters
(based on the candidates for each cipherword) to the mapping, and then intersecting mappings
and removing solved letters from other lists of potential decryption letters, we can narrow down
the number of possible keys. Instead of trying all 403,291,461,126,605,635,584,000,000 possible
keys we can use some sophisticated Python code to figure out exactly what most (if not all) of the
original simple substitution key was.

The main strength of the simple substitution cipher is the large number of possible keys. But the
downfall is that it is easy enough to compare the cipherwords to words in a dictionary file to
slowly figure out which cipherletters decrypt to which letters. The next chapter’s cipher is much
more powerful. For several hundred years, it was considered impossible to break. It is a
“polyalphabetic” substitution cipher called the Vigenere cipher.

Email questions to the author: al@inventwithpython.com

Chapter 19 — The Vigenere Cipher

CHaPTER 19

THE VIGENERE CIPHER

287

Topics Covered In This Chapter:

“I believed then, and continue to believe now, that
the benefits to our security and freedom of widely
available cryptography far, far outweigh the
inevitable damage that comes from its use by
criminals and terrorists... I believed, and continue
to believe, that the arguments against widely
available cryptography, while certainly advanced
by people of good will, did not hold up against the
cold light of reason and were inconsistent with the
most basic American values.”

Matt Blaze, AT&T Labs, September 2001

288 http://inventwithpython.com/hacking

Le Chiffre Indéchiffrable

The Vigenére cipher is a stronger cipher than the ones we’ve seen before. There are too many
possible keys to brute-force, even with English detection. It cannot be broken with the word
pattern attack that worked on the simple substitution cipher. It was possibly first described in
1553 by Italian cryptographer Giovan Battista Bellaso (though it has been reinvented many times,
including by Blaise de Vigenere). It is thought to have remained unbroken until Charles Babbage,
considered to be the father of computers, broke it in the 19" century. It was called “le chiffre
indéchiffrable”, French for “the indecipherable cipher”.

Figure 19-1. Blaise de Vigenére Figure 19-2. Charles Babbage
April 5,1523 - 1596 December 26, 1791 - October 18, 1871

Multiple “Keys” in the Vigenére Key

The Vigenére cipher is similar to the Caesar cipher, except with multiple keys. Because it uses
more than one set of substitutions, it is also called a polyalphabetic substitution cipher.
Remember that the Caesar cipher had a key from 0 to 25. For the Vigeneére cipher, instead of
using a numeric key, we will use a letter key. The letter A will be used for key 0. The letter B will
be used for key 1, and so on up to Z for the key 25.

0|1]2|3|4|5]6]|7|8]|9]10]11] 12
A|IB|C|D|IE|F|G|H|T|J|K|L | M

Email questions to the author: al@inventwithpython.com

Chapter 19 — The Vigenere Cipher 289

The key in a Vigenere cipher is a series of letters, such as a single English word. This single
word key will be split into multiple subkeys. If we use a Vigeneére key of “PIZZA”, then the
first subkey is P, the second subkey is I, the third and fourth subkeys are both Z and the fifth
subkey is A. We will use the first subkey to encrypt the first letter of the plaintext, and the second
subkey to encrypt the second letter, and so on. When we get to the sixth letter of the plaintext, we
will go back to using the first subkey.

The Vigeneére cipher is the same as using multiple Caesar ciphers in the same message.

Figure 19-3. Multiple Caesar ciphers combine to make the Vigenére cipher

1st 2nd 3rd 4th 5th
Subkey Subkey Subkey Subkey Subkey

The following shows which subkey will encrypt which letters in the message, “Common sense is
not so common.” with the Vigenére key, “PIZZA”.

| COMMONSENSEISNOTSOCOMMON
| PIZZAPIZZAPIZZAPIZZAPIZZ

To encrypt the first C with the subkey P, encrypt it with the Caesar cipher using numeric key 15
(15 is the number for the letter P) which creates the ciphertext R, and so on. Do this for each of
the letters of the plaintext. The following table shows this process:

290 http://inventwithpython.com/hacking

Table 19-1. Numbers of the letters before and after encryption.

Plaintext Subkey Ciphertext
Letter Letter

C(2) P(15 — R17)
0 (14) 1(8) - W (22
M (12) Z(25 — LA
M (12) Z(25 — L{D
0 (14) A (0) — 04
N (13) P15 — C(Q®
S (18) 1(8) — A(0)
E (4) Z(25 — D@3
N (13) Z(25 — M(12)
S (18) A (0) — S (18)
E (4) P15 — T@19
1(8) 1(8) — QQ6)
S (18) Z(25 — RUT)
N (13) Z(25 — M(12)
0 (14) A (0) — 04
T (19) P15 — I®

S (18) 1(8) — A
0 (14) Z(25 — N(3)
C©2) Z(25 — B(1)
0 (14) A (0) — 04
M (12) P15 — B(1)
M (12) 1(8) — U (0)
0 (14) Z(25 — N(13)
N (13) Z(25 — M(2)

So using the Vigenére cipher with the key “PIZZA” (which is made up of the subkeys 15, 8, 25,
25, 0) the plaintext “Common sense is not so common.” becomes the ciphertext “Rwlloc admst qr
moi an bobunm.”

The more letters in the Vigenére key, the stronger the encrypted message will be against a brute-
force attack. The choice of “PIZZA” is a poor one for a Vigenere key, because it only has five
letters. A key with only five letters has 11,881,376 possible combinations. (26 5 =26 X 26 X 26
X 26 x 26 = 11,881,376) Eleven million keys is far too many for a human to try out, but a
computer could try them all in a few hours. It would first try to decrypt the message with the key
“AAAAA” and check if the resulting decryption was in English. Then it could try “AAAAB”,
then “AAAAC”, until it got to “PIZZA”.

Email questions to the author: al@inventwithpython.com

Chapter 19 — The Vigenere Cipher 291

The good news is that for every additional letter the key has, the number of possible keys
multiplies by 26. Once there are quadrillions of possible keys, it would take a computer years to
break. Table 19-2 shows how many possible keys there are for each length:

Table 19-2. Number of possible keys based on Vigenére key length.

Key Length Equation Possible Keys
1 26 =26
2 26 % 26 =676
3 676 x 26 =17,576
4 17,576 x 26 =456,976
5 456,976 x 26 =11,881,376
6 11,881,376 x 26 =308,915,776
7 308,915,776 x 26 =8,031,810,176
8 8,031,810,176 x 26 =208,827,064,576
9 208,827,064,576 x 26 =5,429,503,678,976
10 5,429,503,678,976 x 26 =141,167,095,653,376
11 141,167,095,653,376 X 26 =3,670,344,486,987,776
12 3,670,344,486,987,776 x 26 =95,428,956,661,682,176
13 95,428,956,661,682,176 x 26 =2,481,152,873,203,736,576
14 2,481,152,873,203,736,576 X 26 =64,509,974,703,297,150,976

Once we get to keys that are twelve or more letters long, then it becomes impossible for most
consumer laptops to crack in a reasonable amount of time.

A Vigeneére key does not have to be a word like “PIZZA”. It can be any combination of letters,
such as “DURIWKNMFICK”. In fact, it is much better not to use a word that can be found in the
dictionary. The word “RADIOLOGISTS” is a 12-letter key that is easier to remember than
“DURIWKNMFICK” even though they have the same number of letters. But a cryptanalyst
might anticipate that the cryptographer is being lazy by using an English word for the Vigenére
key. There are 95,428,956,661,682,176 possible 12-letter keys, but there are only about 1,800 12-
letter words in our dictionary file. If you are using a 12-letter English word, it would be easier to
brute-force that ciphertext than it would be to brute-force the ciphertext from a 3-letter random
key.

Of course, the cryptographer is helped by the fact that the cryptanalyst does not know how many
letters long the Vigenére key is. But the cryptanalyst could try all 1-letter keys, then all 2-letter
keys, and so on.

Source Code of Vigenere Cipher Program

Open a new file editor window by clicking on File » New Window. Type in the following code
into the file editor, and then save it as vigenereCipher.py. Press F5 to run the program. Note that

292 http://inventwithpython.com/hacking

first you will need to download the pyperclip.py module and place this file in the same directory

Source code for vigenereCipher.py

1. # Vigenere Cipher (Polyalphabetic Substitution Cipher)

2. # http://inventwithpython.com/hacking (BSD Licensed)

3.

4. dimport pyperclip

5.

6. LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

7.

8. def main(Q):

9 # This text can be copy/pasted from http://invpy.com/vigenereCipher.py
10. myMessage = """Alan Mathison Turing was a British mathematician,

logician, cryptanalyst, and computer scientist. He was highly influential in
the development of computer science, providing a formalisation of the concepts
of "algorithm" and "computation" with the Turing machine. Turing is widely
considered to be the father of computer science and artificial intelligence.
During World War II, Turing worked for the Government Code and Cypher School
(GCCS) at Bletchley Park, Britain's codebreaking centre. For a time he was head
of Hut 8, the section responsible for German naval cryptanalysis. He devised a
number of techniques for breaking German ciphers, including the method of the
bombe, an electromechanical machine that could find settings for the Enigma
machine. After the war he worked at the National Physical Laboratory, where he
created one of the first designs for a stored-program computer, the ACE. In
1948 Turing joined Max Newman's Computing Laboratory at Manchester University,
where he assisted in the development of the Manchester computers and became
interested in mathematical biology. He wrote a paper on the chemical basis of
morphogenesis, and predicted oscillating chemical reactions such as the
Belousov-Zhabotinsky reaction, which were first observed in the 1960s. Turing's
homosexuality resulted in a criminal prosecution in 1952, when homosexual acts
were still illegal in the United Kingdom. He accepted treatment with female
hormones (chemical castration) as an alternative to prison. Turing died in
1954, just over two weeks before his 42nd birthday, from cyanide poisoning. An
inquest determined that his death was suicide; his mother and some others
believed his death was accidental. On 10 September 2009, following an Internet
campaign, British Prime Minister Gordon Brown made an official public apology
on behalf of the British government for "the appalling way he was treated."” As
of May 2012 a private member's bill was before the House of Lords which would
grant Turing a statutory pardon if enacted."""

11. myKey = 'ASIMOV'

12. myMode = 'encrypt' # set to 'encrypt' or 'decrypt'
13.

14. if myMode == 'encrypt':

15. translated = encryptMessage(myKey, myMessage)
16. elif myMode == 'decrypt':

Email questions to the author: al@inventwithpython.com

Chapter 19 — The Vigenere Cipher

293

17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.

def

def

def

translated = decryptMessage(myKey, myMessage)

print('%sed message:' % (myMode.title()))
print(translated)

pyperclip.copy(translated)

print()

print('The message has been copied to the clipboard."')

encryptMessage(key, message):
return translateMessage(key, message, 'encrypt')

decryptMessage(key, message):
return translateMessage(key, message, 'decrypt')

translateMessage(key, message, mode):
translated = [] # stores the encrypted/decrypted message string

keyIndex = 0
key = key.upper()

for symbol in message: # loop through each character in message
num = LETTERS.find(symbol.upper())

if num != -1: # -1 means symbol.upper() was not found in LETTERS
if mode == 'encrypt':
num += LETTERS.find(key[keyIndex]) # add if encrypting
elif mode == 'decrypt':

num -= LETTERS.find(key[keyIndex]) # subtract if decrypting

num %= len(LETTERS) # handle the potential wrap-around

add the encrypted/decrypted symbol to the end of transTlated.

if symbol.isupper():
translated.append(LETTERS [num])

elif symbol.islower():
translated.append(LETTERS[num] . Tower())

keyIndex += 1 # move to the next letter in the key
if keyIndex == len(key):
keyIndex = 0
else:

The symbol was not in LETTERS, so add it to translated as is.

translated.append(symboTl)

294 http://inventwithpython.com/hacking

63. return
64.

65.

66. # If vigenereCipher.py is run (instead of imported as a module) call
67. # the main() function.

68. if _name__ == '_main__":

69. main()

.join(translated)

Sample Run of the Vigenére Cipher Program

Encrypted message:

Adiz Avtzgeci Tmzubb wsa m Pmilgev halpgavtakuoi, Tgouqdaf, kdmktsvmztsl, izr
xoexghzr kkusitaaf. Vz wsa twbhdg ubalmmzhdad gz hce vmhsgohugbo ox kaakulmd
gxiwvos, krgdurdny i rcmmstugvtawz ca tzm ocicwxfg jf "stscmilpy" oid

...Skipped for brevity...

uiydviyv, Nfdtaat Dmiem Ywiikbqf Bojlab Wrgez avdw iz cafakuog pmjxwx ahwxcby
gv nscadn at ohw Jdwoikp scqejvysit xwd "hce sxboglavs kvy zm ion tjmmhzd." Sa
at Haq 2012 i bfdvsbgq azmtmd'g widt ion bwnafz tzm Tcpsw wr Zjrva ivdcz eaigd
yzmbo Tmzubb a kbmhptgzk dvrvwz wa efiohzd.

The message has been copied to the clipboard.

How the Program Works

vigenereCipher.py
1. # Vigenere Cipher (Polyalphabetic Substitution Cipher)
2. # http://inventwithpython.com/hacking (BSD Licensed)
3.
4. dimport pyperclip
5
6

. LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

The beginning of the program has the usual comments to describe the program, an import
statement for the pyperclip module, and creates a variable called LETTERS with a string of
every uppercase letter.

vigenereCipher.py
8. def main(Q:
9. # This text can be copy/pasted from http://invpy.com/vigenereCipher.py
10. myMessage = """Alan Mathison Turing was a British mathematician,

...Skipped for brevity...

Email questions to the author: al@inventwithpython.com

Chapter 19 — The Vigenere Cipher 295

grant Turing a statutory pardon if enacted."""

11. myKey = 'ASIMOV'

12. myMode = 'encrypt' # set to 'encrypt' or 'decrypt'
13.

14. if myMode == 'encrypt':

15. translated = encryptMessage(myKey, myMessage)
16. elif myMode == 'decrypt':

17. translated = decryptMessage(myKey, myMessage)
18.

19. print('%sed message:' % (myMode.title()))

20. print(translated)

21. pyperclip.copy(translated)

22. print()

23. print('The message has been copied to the clipboard.")

The main () function for the Vigenére cipher is exactly like the other main () functions in this
book: there are variables for message, key, and mode. The user sets these variables on lines
10, 11, and 12 before running the program. The encrypted or decrypted message (depending on
what myMode is set to) is stored in a variable named translated so that it can be printed to
the screen (on line 20) and copied to the clipboard (on line 21).

The code that does the actual encryption and decryption is in translateMessage (), which is
explained later.

vigenereCipher.py
26. def encryptMessage(key, message):

27. return translateMessage(key, message, 'encrypt')
28.

29.

30. def decryptMessage(key, message):

31. return translateMessage(key, message, 'decrypt')

Since the encryption and decryption use much of the same code as the other, we put them both in
translateMessage (). The encryptMessage () and decryptMessage () functions
are wrapper functions for translateMessage (). (Wrapper functions were covered in
Chapter 17.)

vigenereCipher.py
34. def translateMessage(key, message, mode):
35. translated = [] # stores the encrypted/decrypted message string
36.
37. keyIndex = 0

296 http://inventwithpython.com/hacking

38.

key = key.upper()

In the translateMessage () function, we will slowly build the encrypted (or decrypted)

string one character at a time. The list in translated will store these characters so that they
can be joined together once the string building is done. (The reason we use a list instead of just
appending the characters to a string is explained in the “Building Strings in Python with Lists”

section in Chapter 18.)

Remember, the Vigenére cipher is just the Caesar cipher except that a different key is used

depending on the position of the letter in the message. The keyIndex variable keeps track of

which subkey to use. The keyIndex variable starts off as 0, because the letter used to encrypt

or decrypt the first character of the message will be the one at key [0].

Our code assumes that the key has only uppercase letters. To make sure the key is valid, line 38

sets the key to be the uppercase version of it.

40.
41.
42.
43.
44 .
45.
46.

vigenereCipher.py

for symbol in message: # Toop through each character in message

num = LETTERS.find(symbol.upper())

if num != -1: # -1 means symbol.upper() was not found in LETTERS
if mode == 'encrypt':
num += LETTERS.find(key[keyIndex]) # add if encrypting
elif mode == 'decrypt':

num -= LETTERS.find(key[keyIndex]) # subtract if decrypting

The rest of the code in translateMessage () is similar to the Caesar cipher code. The for

loop on line 40 sets the characters in message to the variable symbol on each iteration of the

loop. On line 41 we find the index of the uppercase version of this symbol in LETTERS. (This is

how we translate a letter into a number).

If num was not set to =1 on line 41, then the uppercase version of symbol was found in

LETTERS (meaning that symbol is a letter). The keyIndex variable keeps track of which

subkey to use, and the subkey itself will always be what key [keyIndex] evaluates to.

Of course, this is just a single letter string. We need to find this letter’s index in the LETTERS to

convert the subkey into an integer. This integer is then added (if encrypting) to the symbol’s
number on line 44 or subtracted (if decrypting) to the symbol’s number on line 46.

48.

vigenereCipher.py
num %= 1en(LETTERS) # handle the potential wrap-around

Email questions to the author: al@inventwithpython.com

Chapter 19 — The Vigenere Cipher 297

In the Caesar cipher code, we checked if the new value of num was less than 0 (in which case, we
added 1en (LETTERS) to it) or if the new value of num was 1en (LETTERS) or greater (in
which case, we subtracted 1en (LETTERS) from it). This handles the “wrap-around” cases.

However, there is a simpler way that handles both of these cases. If we mod the integer stored in
num by len (LETTERS), then this will do the exact same thing except in a single line of code.

For example, if num was -8 we would want to add 26 (thatis, 1en (LETTERS)) to it to get 18.
Or if num was 31 we would want to subtract 26 to get 5. However -8 % 26 evaluates to 18
and 31 % 26 evaluates to 5. The modular arithmetic on line 48 handles both “wrap-around”
cases for us.

vigenereCipher.py

50. # add the encrypted/decrypted symbol to the end of translated.
51. if symbol.isupper():

52. translated.append(LETTERS [num])

53. elif symbol.islower():

54. translated.append(LETTERS[num] . Tower())

The encrypted (or decrypted) character exists at LETTERS [num]. However, we want the
encrypted (or decrypted) character’s case to match symbol’s original case. So if symbol is an
uppercase letter, the condition on line 51 will be True and line 52 will append the character at
LETTERS [num] to translated. (Remember, all the characters in the LETTERS string are
already uppercase.)

However, if symbol is a lowercase letter, than the condition on line 53 will be True instead and
line 54 will append the lowercase form of LETTERS [num] to translated instead. This is
how we can get the encrypted (or decrypted) message to match the casing of the original

message.
vigenereCipher.py
56. keyIndex += 1 # move to the next letter in the key
57. if keyIndex == len(key):
58. keyIndex = 0

Now that we have translated the symbol, we want to make sure that on the next iteration of the
for loop we use the next subkey. Line 56 increments keyIndex by one. This way when the
next iteration uses key [keyIndex] to get the subkey, it will be the index to the next subkey.

298 http://inventwithpython.com/hacking

However, if we were on the last subkey in the key, then keyIndex would be equal to the length
of key. Line 57 checks for this condition, and resets keyIndex back to O on line 58. That way
key[keyIndex] will point back to the first subkey.

vigenereCipher.py

59. else:
60. # The symbol was not in LETTERS, so add it to translated as is.
61. translated.append(symbol)

From the indentation you can tell that the e 1 se statement on line 59 is paired with the 1 f
statement on line 42. The code on line 61 executes if the symbol was not found in the LETTERS
string. This happens if symbol is a number or punctuation mark such as '5"' or ' ?'. In this
case, line 61 will just append the symbol untranslated.

vigenereCipher.py
LI]

63. return .join(translated)

Now that we are done building the string in translated, we call the join () method on the
blank string to join together all the strings in translated (with a blank in between them).

vigenereCipher.py
66. # If vigenereCipher.py is run (instead of imported as a module) call
67. # the main() function.
68. if _name_ == '_main__":
69. main()

Lines 68 and 69 call the main () function if this program was run by itself, rather than imported
by another program that wants to use its encryptMessage () and decryptMessage ()
functions.

Summary

We are close to the end of the book, but notice how the Vigenére cipher isn’t that much more
complicated than the second cipher program in this book, the Caesar cipher. With just a few
changes, we can create a cipher that has exponentially many more possible keys than can be
brute-forced.

The Vigenére cipher is not vulnerable to the dictionary word pattern attack that our Simple
Substitution hacker program uses. The “indecipherable cipher” kept secret messages secret for
hundreds of years. The attack on the Vigenére cipher was not widely known until the early 20"
century. But of course, this cipher too eventually fell. In the next couple of chapters, we will learn
new “frequency analysis” techniques to hack the Vigenére cipher.

Email questions to the author: al@inventwithpython.com

Chapter 20 — Frequency Analysis

CHarTer 20

FREQUENCY ANALYSIS

299

Topics Covered In This Chapter:

Letter Frequency and ETAOIN
The sort () Method’s key and reverse Keyword Arguments
Passing Functions as Values Instead of Calling Functions

Converting Dictionaries to Lists with the keys (), values (), items () Dictionary
Methods

The ineffable talent for finding patterns in chaos
cannot do its thing unless he immerses himself in
the chaos first. If they do contain patterns, he does
not see them just now, in any rational way. But
there may be some subrational part of his mind
that can go to work, now that the letters have
passed before his eyes and through his pencil, and
that may suddenly present him with a gift-wrapped
clue--or even a full solution--a few weeks from
now while he is shaving or antenna-twiddling.

“Cryptonomicon” by Neal Stephenson

300 http://inventwithpython.com/hacking

A coin has 2 sides, and when you flip a coin, about half the time it will come up heads and half of
the time it comes up tails. The frequency (that is, how often) that the coin flip ends up heads is
the same as the frequency that it ends up tails: about one-half or 50%.

There are 26 letters in the English alphabet, but they don’t each appear an equal amount of the
time in English text. Some letters are used more often than others. For example, if you look at the
letters in this book you will find that the letters E, T, A and O occur very frequently in English
words. But the letters J, X, Q, and Z are rarely found in English text. We can use this fact to help
crack Vigenere-encrypted messages. This technique is called frequency analysis.

Here are the frequencies of the 26 letters in average English text. This graph is compiled by
grabbing English text from books, newspapers, and other sources to count often each letter
appears:

Figure 20-1. Letter frequency of normal English.

0.14
0,12

Q.1

0.08

0.06

0.04

0.02

abcdeftghl | kKIimnopgrstueuvwssye:z

If we sort these in order of greatest frequency to least, we find that E is the most frequent letter,
followed by T, followed by A, and so on:

Email questions to the author: al@inventwithpython.com

Chapter 20 — Frequency Analysis 301

Figure 20-2. Letter frequency of normal English, sorted.
0.14
012
0.1
0.08
0.06
0.04

0.02

etaoinshrdlecumwlgyphbyvk|xagsz

The word “ETAOIN” is a handy way to remember the six most frequent letters. The full list of
letters ordered by frequency is “ETAOINSHRDLCUMWFGYPBVKIXQZ”.

Think about the transposition cipher: Messages encrypted with the transposition cipher contain all
the original letters of the original English plaintext, except in a different order. But the frequency
of each letter in the ciphertext remains the same: E, T, and A should occur much more often than
Q and Z. Because they are the same letters, the frequencies of these letters in the ciphertext are
the same as the plaintext.

The Caesar and simple substitution ciphers have their letters replaced, but you can still count the
frequency of the letters. The letters may be different but the frequencies are the same. There
should be letters that occur the most often in the ciphertext. These letters are good candidates for
being cipherletters for the E, T, or A letters. The letters in the ciphertext that occur least are more
likely to be X, Q, and Z.

This counting of letters and how frequently they appear in both plaintexts and ciphertexts is
called frequency analysis.

Since the Vigenére cipher is essentially multiple Caesar cipher keys used in the same message,
we can use frequency analysis to hack each subkey one at a time based on the letter frequency of
the attempted decryptions. We can’t use English word detection, since any word in the ciphertext
will have been encrypted with multiple subkeys. But we don’t need full words, we can analyze

302 http://inventwithpython.com/hacking

the letter frequency of each subkey’s decrypted text. (This will be explained more in the next
chapter.)

Matching Letter Frequencies

By “matching the letter frequency of regular English” we could try several different algorithms.
The one used in our hacking program will simply order the letters from most frequent to least
frequent. We will calculate what we will call in this book a frequency match score for this
ordering of frequencies. To calculate the frequency match score for a string, the score starts at 0
and each time one of the letters E, T, A, O, I, N appears among the six most frequent letters of the
string, we add a point to the score. And each time one of the letters V, K, J, X, Q, or Z appears
among the six least frequent letters of the string, we add a point to the score. The frequency match
score for a string will be an integer from 0 (meaning the letter frequency of the string is
completely unlike regular English’s letter frequency) to 12 (meaning it is identical to regular
English’s letter frequency).

An Example of Calculating Frequency Match Score

For example, look at this ciphertext which was encrypted with a simple substitution cipher:

“Sy 1 nlx sr pyyacao 1 ylwj eiswi upar lulsxrj isr sxrjsxwjr, ia esmm
rwctjsxsza sj wmpramh, Txo txmarr jia agsoaxwa sr pgaceiamnsxu, ia esmm caytra
jp famsaga sj. Sy, px jia pjiac ilxo, ia sr pyyacao rpnajisxu eiswi lyypcor 1
calrpx ypc Twjsxu sx Twwpcolxwa jp isr sxrjsxwjr, ia esmm lwwabj sj agax px jia
rmsuijarj agsoaxwa. Jia pcsusx py nhjir sr agbmlsxao sx jisr elh. -Facjclxo
Ctrramm”

If we count the frequency of each letter and then arrange them by order of its frequency, we end
up with this ordering: ASRXJILPWMCYOUEQNTHBFZGKVD. That is, A is the most frequent
letter, S is the 2™ most frequent letter, and so on down to the letter D, which appears the least
frequently.

The six most frequent letters in this ordering are A, S, R, X, J, and L. Only two of these letters (A
and I) appear in the ETAOIN set of letters. The six least frequent letters in the ordering are F, Z,
G, K, V, and D. Only three of these letters (Z, K, and V) appear in the VKIXQZ set of letters. So
the frequency ordering ASRXJILPWMCYOUEQNTHBFZGKVD (which comes from the above
ciphertext) has a frequency match score of 5.

Email questions to the author: al@inventwithpython.com

Chapter 20 — Frequency Analysis 303

ASRXJT FZGKVD 4=5 matches

ETAOIN VKIXQZ
(Top 6) (Bottom 6)

Figure 20-3. How the frequency match score of ASRXJILPWMCYOUEQNTHBFZGKVD is calculated.

The above ciphertext was encrypted with a simple substitution cipher, which is why the
frequency match score isn’t very high. The letter frequencies of simple substitution ciphertext
won’t match regular English’s letter frequencies.

Another Example of Calculating Frequency Match Score
For another example, look at this ciphertext which was encrypted with a transposition cipher:

“I rc ascwuiluhnviwuetnh,osgaa ice tipeeeee sTnatsfietgi tittynecenisl. e fo f
fnc isltn sn o a yrs sd onisli ,1 erglei trhfmwfrogotn,1 stcofiit.aea
wesn,Inc ee w,1 eIh eeehoer ros 1iol er snh nl oahsts idilasvih tvfeh rtira id
thatnie.im ei-dimf i thszonsisehroe, aiehcdsanahiec gv gyedsB affcahiecesd d
Tee onsdihsoc nin cethiTitx eRneahgin r e teom fbiotd n
ntacscwevhtdhnhpiwru”

The ordering of most to least frequent letters in the above ciphertext is:
EISNTHAOCLRFDGWVMUYBPZXQIJK. (That is, E is the most frequent letter, I the 2™ most
frequent letter, and so on.)

Of the top and bottom six letters in this ordering, the four letters E, I, N, and T appear in ETAOIN
and the five letters Z, X, Q, J, and K appear in VKIXQZ. This gives the ordering a frequency
match score of 9.

EISNTH PZXQIK 4=9 matches

ETAOIN VKIXQZ
(Top 6) (Bottom 6)

Figure 20-4. How the frequency match score of EISNTHAOCLRFDGWVMUYBPZXQJK is calculated.

304 http://inventwithpython.com/hacking

The above ciphertext was encrypted with a transposition cipher, so it has all the same letters as
the original English plaintext (their order has just been switched around.) This is why the
frequency ordering has a much higher frequency match score.

Hacking Each Subkey

When hacking the Vigenére cipher, we try to decrypt the letters for the first subkey with each of
the 26 possible letters and find out which decrypted ciphertext produces a letter frequency that
closest matches that of regular English. This is a good indication that we have found the correct
subkey.

We can do this same thing for the second, third, fourth, and fifth subkey as well. Since we are
only doing 26 decryptions for each subkey individually, our computer only has to perform 26 +
26 + 26 + 26 + 26, or 156, decryptions. This is much easier than trying to do 11,881,376
decryptions!

So, hacking the Vigenére cipher sounds simple in theory. Just try all 26 possible subkeys for each
subkey in the key, and see which one produces decrypted text that has a letter frequency that
closest matches the letter frequency of English.

It turns out that there are a few more steps than this, though, but we can cover them when we
write the hacking program in the next chapter. For this chapter, we will write a module with
several helpful functions that perform frequency analysis. This module will have these functions:

e getLetterCount () — This function will take a string parameter and return a dictionary
that has the count of how often each letter appears in the string.

e getFrequencyOrder () — This function will take a string parameter and return a string of
the 26 letters ordered from those that appear most frequently to least frequently in the string
parameter.

e englishFregMatchScore () — This function will take a string parameter and return an
integer from 0 to 12 of the string’s letter frequency match score.

The Code for Matching Letter Frequencies

Type in the following code into the file editor, and then save it as freqAnalysis.py. Press F5 to run
the program.

Source code for fregAnalysis.py

. # Frequency Finder

1
2. # http://inventwithpython.com/hacking (BSD Licensed)
3.
4

Email questions to the author: al@inventwithpython.com

Chapter 20 — Frequency Analysis 305

5.

6. # frequency taken from http://en.wikipedia.org/wiki/Letter_frequency

7. englishLetterFreq = {'E': 12.70, 'T': 9.06, 'A': 8.17, '0': 7.51, 'I':
6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C':
2.78, 'U': 2.76, 'M': 2.41, 'wW': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P":
1.93, 'B': 1.29, 'v': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z':
0.07}

8. ETAOIN = 'ETAOINSHRDLCUMWFGYPBVKJIXQZ'

9. LETTERS = "ABCDEFGHIJKLMNOPQRSTUVWXYZ'

10.

11.

12.

13. def getLetterCount(message):

14. # Returns a dictionary with keys of single letters and values of the
15. # count of how many times they appear in the message parameter.

16. letterCount = {'A': O, 'B': 0, 'C': 0, 'D': O, "E': O, "F': 0, 'G":
'H': o, 'r': o, '3': 0, 'Kk': 0, 'L'+ 0, 'M': 0, 'N': 0, 'O':0, 'P':0, 'Q":
'R': 0, 'S': 0, 'T': 0, 'U': 0, 'V': 0, 'W:0, 'X'20, 'Y': 0, '"Z": O}

17.

18. for letter in message.upper():

19. if Tetter in LETTERS:

20. TetterCount[Tetter] += 1

21.

22. return letterCount

23.

24.

25. def getItemAtIndexZero(x):

26. return x[0]

27.

28.

29. def getFrequencyOrder(message):

30. # Returns a string of the alphabet letters arranged in order of most
31. # frequently occurring in the message parameter.

32.

33. # first, get a dictionary of each letter and its frequency count
34. letterToFreq = getLetterCount(message)

35.

36. # second, make a dictionary of each frequency count to each letter(s
37. # with that frequency

38. freqToLetter = {}

39. for letter in LETTERS:

40. if letterToFreq[letter] not in freqTolLetter:

41. freqToLetter[letterToFreq[letter]] = [letter]

42. else:

43. freqToLetter[letterToFreq[letter]].append(letter)

44,

0,
0,

)

306 http://inventwithpython.com/hacking

45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.

def

third, put each Tist of letters in reverse "ETAOIN" order, and then
convert it to a string
for freq in freqTolLetter:
freqToLetter[freq].sort(key=ETAOIN.find, reverse=True)
freqToLetter[freq] = ''.join(freqTolLetter[freq])

fourth, convert the freqTolLetter dictionary to a Tist of tuple
pairs (key, value), then sort them

fregPairs = list(freqToLetter.items())
fregPairs.sort(key=getItemAtIndexZero, reverse=True)

fifth, now that the letters are ordered by frequency, extract all
the letters for the final string
freqOrder = []
for fregPair in freqPairs:
freqOrder.append(freqPair[1])

return ''.join(freqOrder)

englishFregMatchScore(message) :

Return the number of matches that the string in the message

parameter has when its Tetter frequency is compared to English

letter frequency. A "match" is how many of its six most frequent
and six least frequent Tetters 1is among the six most frequent and
six least frequent letters for English.
freqOrder = getFrequencyOrder(message)

matchScore = 0
Find how many matches for the six most common Tletters there are.
for commonLetter in ETAOIN[:6]:
if commonLetter in freqOrder[:6]:
matchScore += 1
Find how many matches for the six least common letters there are.
for uncommonLetter in ETAOIN[-6:]:
if uncommonLetter in freqOrder[-6:]:
matchScore += 1

return matchScore

How the Program Works

1. #
2. #
3.

F
h

freqAnalysis.py

requency Finder
ttp://inventwithpython.com/hacking (BSD Licensed)

Email questions to the author: al@inventwithpython.com

Chapter 20 — Frequency Analysis 307

frequency taken from http://en.wikipedia.org/wiki/Letter_frequency
englishLetterFreq = {'E': 12.70, 'T': 9.06, 'A': 8.17, '0': 7.51, 'I':
.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C':
.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P':
.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z':
.07}

~

O R NO

The englishLetterFreq dictionary will contain strings of the letters of the alphabet as keys
and a float for their percentage frequency as the value. (These values come from the Wikipedia

englishLetterFreq value isn’t actually used by our program. It is simply here for your
future reference in case you write a program that needs it.

The Most Common Letters, “ETAOIN”

freqAnalysis.py
8. ETAOIN = 'ETAOINSHRDLCUMWFGYPBVKJIXQZ'

We will create a variable named ETAOIN on line 8 which will have the 26 letters of the alphabet
in order of most frequent to least frequent. The word ETAOIN is a handy way to remember the
six most common letters in English. Of course, this ordering isn’t always going to be perfect. You
could easily find a book that has a set of letter frequencies where Z is used more often than Q, for
example. Gadsby by Ernest Vicent Wright is a novel that never uses the letter E, which gives it a
very odd set of letter frequencies. But in most cases, the “ETAOIN order” will be accurate.

freqAnalysis.py
9. LETTERS = "ABCDEFGHIJKLMNOPQRSTUVWXYZ'

Our module will also need a string of all the uppercase letters of the alphabet for a few different
functions, so we set the LETTERS constant variable on line 9.

The Program’s getLettersCount () Function

fregAnalysis.py
13. def getLetterCount(message):

14. # Returns a dictionary with keys of single letters and values of the
15. # count of how many times they appear in the message parameter.
16. letterCount = {'A': 0, 'B': 0, 'C': 0, 'D': O, '"E': 0, '"F': 0, 'G': O,

'H': o, 'r': o, 'J': 0, 'kK': 0, '': 0, 'M':0, 'N': 0, 'O':0, 'P'":0, 'Q': O,
'R': 0, 'S': 0, 'T': 0, 'U': 0, 'V': 0, '"W:0, 'X':0, 'Y':0, '"Z": O}

308 http://inventwithpython.com/hacking

The getLetterCount () function returns a dictionary value where the keys are single
uppercase letter strings, and the values are an integer showing how many times that letter occurs
in the me s sage parameter. For example, a certain string value for the message parameter with
135 A’s, 30 B’s, and so on will cause getLetterCount () toreturn { 'A': 135, 'B': 30,
'c': 74, 'D': 58, 'E': 196, 'F':37, 'G':39, 'H': 87, 'I':139, 'J': 2,
'K': 8, 'L': 62, 'M': 58, 'N': 122, 'O': 113, 'P': 36, 'Q': 2, 'R': 106,
's': 89, 'T': 140, 'U': 37, 'V': 14, '"W': 30, 'X':3, 'Y': 21, '2':1}

Line 16 starts the 1etterCount variable with a dictionary that has all keys with a value of 0.

freqAnalysis.py

18. for letter in message.upper():
19. if Tetter in LETTERS:
20. TetterCount[Tetter] += 1

The for loop on line 18 iterates through each character in the uppercase version of message.
On line 19, if the character exists in the LETTERS string, we know it is an uppercase letter. In
that case line 20 will increment the value at letterCount [letter].

freqAnalysis.py
22. return letterCount

After the for loop on line 18 finishes, the letterCount dictionary will have a count of how
often each letter appeared in message. This dictionary is returned from getLetterCount ().

The Program’s getItemAtIndexZero () Function

freqAnalysis.py
25. def getItemAtIndexZero(x):
26. return x[0]

The getItemAtIndexZero () function is very simple: it is passed a tuple and returns the
items at index 1. This function will be passed as the key keyword argument for the sort ()
method. (The reason for this will be explained later.)

The Program’s getFrequencyOrder () Function

fregAnalysis.py
29. def getFrequencyOrder(message):
30. # Returns a string of the alphabet letters arranged in order of most

Email questions to the author: al@inventwithpython.com

Chapter 20 — Frequency Analysis 309

31. # frequently occurring in the message parameter.

32.

33. # first, get a dictionary of each Tetter and its frequency count
34. letterToFreq = getlLetterCount(message)

The getFrequencyOrder () function will return a string with the 26 uppercase letters of the
alphabet arranged in order of how frequently they appear in the message parameter. If
message is readable English instead of random gibberish, this string will most likely be similar
(if not identical to) the string in the ETAOIN constant.

For example, if the “Alan Mathison Turing was a British mathematician...” text from Chapter
19°s vigenereCipher.py program was passed as a string to getFrequencyOrder (), the
function would return the string ' ETTANORSHCLMDGFUPBWYVKXQJZ ' because E is the most
common letter in that paragraph, followed by T, then I, then A, and so on.

This function is somewhat complicated, but it breaks down to five simple steps.

The first step of get FrequencyOrdexr (), line 34 gets a dictionary value of the letter
frequency count from getLetterCount () for the string in the message parameter. (The

getLetterCount () function was described previously.)

If the “Alan Mathison Turing...” text was passed as a string value for the message parameter,
then line 34 would assign letterToFreq the dictionary value, { 'A': 135, 'C': 74,
'B': 30, 'E': 196, 'D': 58, 'G': 39, '¥': 37, 'I': 139, '"H': 87, 'K': 8,
'‘gt.: 2, '"M': 58, 'L': 62, 'O':113, 'N': 122, 'Q': 2, "P': 36, 'S': 89,
'R': 106, 'U': 37, 'T': 140, '"W': 30, 'V': 14, 'Y': 21, 'X':3, 'Z2':1}.

freqAnalysis.py

36. # second, make a dictionary of each frequency count to each Tetter(s)
37. # with that frequency

38. freqToLetter = {}

39. for letter in LETTERS:

40. if TetterToFreq[letter] not in freqTolLetter:

41. freqToLetter[letterToFreq[letter]] = [letter]

42. else:

43. freqToLetter[letterToFreq[letter]].append(letter)

For the second step of getFrequencyOrder (), while the letterToFreq dictionary has
keys of each of the 26 letters and values of their frequency count, what we need is a dictionary
value that maps the opposite: a dictionary where the keys are the frequency count and values are a
list of letters that appear that many times. While the 1etterToFreq dictionary maps letter keys

310 http://inventwithpython.com/hacking

to frequency values, the freqToLetter dictionary will map frequency keys to list of letter
values.

Line 38 creates a blank dictionary. Line 39 loops over all the letters in LETTERS. The i f
statement on line 40 checks if the letter’s frequency (that is, letterToFreqg[letter])
already exists as a key in freqToLetter. If not, then line 41 adds this key with a list of the
letter as the value. Or else, line 43 appends the letter to the end of the list that is already at
letterToFreqg[letter].

If we continue to use our “Alan Mathison Turing...” example value of letterToFreq then
freqToLetter would end up looking like this: {1: ['Z'], 2: ['J', 'Q'], 3: ['X"'],
135: ['A'], 8: ['K"], 139: ['T"], 140: ['T"'], 14: ['V'], 21:['Y"'], 30:
[('s', 'wW'], 36: ('P'], 37: ['F', 'U"'"], 39: ['G"'], 58: ['D', 'M'], 62:
['L'], 196: ['E'], 74:['C"'"], 87: ['H'], 89: ['S"'"], 106: ['R"], 113:
['O'], 122: ['N']}

The sort () Method’s key and reverse Keyword Arguments

freqAnalysis.py

45. # third, put each 1ist of letters in reverse "ETAOIN" order, and then
46. # convert it to a string

47. for freq in freqTolLetter:

48. freqToLetter[freq].sort(key=ETAOIN.find, reverse=True)

49, freqToLetter[freq] = ''.join(freqTolLetter[freq])

The third step of getFrequencyOrder () to is sort the letter strings in each list in
freqgToLetter inreverse ETAOIN order (as opposed to alphabetical order).

Remember that freqToLetter [freq] will evaluate to a list of letters that have a frequency
count of freq. A list is used because it’s possible that two or more letters have the exact same
frequency count, in which case this list will have two-or-more-letters strings in it.

When multiple letters are tied for frequency, we want these tied letters to be sorted in the reverse
order that they appear in the ETAOIN string. We need this so that we have a consistent way of
breaking ties. Otherwise messages with the same letter frequencies might produce different return
values from getFrequencyOrder () !

For example, if E appears 15 times, D and W appear 8§ times each, and H appears 4 times, we
would want them to be sorted as ' EWDH' and not 'EDWH '. This is because while E is the most
frequent, D and W have the same frequency count but W comes after D in the ETAOIN string.

Email questions to the author: al@inventwithpython.com

Chapter 20 — Frequency Analysis 311

Python’s sort () function can do this sorting for us if we pass it a function or method for its
key keyword argument. Normally the sort () function simply sorts the list it is called on into
alphabetical (or numeric) order. However, we can change this by passing the £ind () method of
the ETAOIN string as the key keyword argument. This will sort the items in the
freqToLetter [freq] list by the integer returned from the ETAOIN. find () method, that
is, the order that they appear in the ETAOIN string.

Normally the sort () method sorts the values in a list in ascending order (that is, lowest to
highest or the letter A first and letter Z last). If we pass True for the sort () method’s
reverse keyword argument, it will sort the items in descending order instead. The reason we
want to sort the letters in reverse ETAOIN order is so that ties result in lower match scores in the
englishFregMatchScore () function rather than higher match scores. (This function is
explained later.)

If we continue using our “Alan Mathison Turing...” example value for freqToLetter, then
after the loop finishes the value stored in freqToLetter wouldbe: {1: 'Z', 2: 'QJ"', 3:
'X', 135: 'A', 8: 'K', 139: 'T', 140: 'T', 14: 'V', 21:'Y', 30: 'BW', 36:
'p', 37: 'FU', 39: 'G', 58: 'MD', 62: 'L', 196: 'E', 74: 'C', 87: 'H', 89:
's', 106: 'R', 113: 'O', 122: 'N"'}

Notice that the strings for the 30, 37, and 58 keys are all sorted in reverse ETAOIN order.

Passing Functions as Values

freqAnalysis.py
48. freqToLetter[freq].sort(key=ETAOIN.find, reverse=True)

If you look on line 47, you’ll notice that we are not calling the £ind () method but instead using
the find method itself as a value that is passed to the sort () method call. In Python, functions

themselves are values just like any other values. For example, try typing this into the interactive
shell:

>>> def foo():
print('Hello!")

>>> bar = foo
>>> bar()
Hello!

In the above code, we define a function named foo () that prints out the string 'Hello! '. But
this is basically defining a function and then storing it in a variable named foo. Then we copy

312 http://inventwithpython.com/hacking

the function in foo to the variable bar. This means we can call bar () just like we can call
foo () ! Note that in this assignment statement we do not have parentheses after foo. If we did,
we would be calling the function foo () and setting bar to its return value. Just like spam[42]
has the [42] index operating on spam, the parentheses means, “Call the value in foo as a
function.”

You can also pass functions as values just like any other value. Try typing the following into the
interactive shell:

>>> def doMath(func):
return func(10, 5)

>>> def adding(a, b):
return a + b

>>> def subtracting(a, b):
return a - b

>>> doMath(adding)
15
>>> doMath(subtracting)

>>>

When the function in adding is passed to the doMath () call, the func (10, 5) lineis
calling adding () and passing 10 and 5 to it. So the call func (10, 5) is effectively the
same as the call adding (10, 5). Thisis why doMath (adding) returns 15.

When subtracting is passed to the doMath () call, func (10, 5) isthe same as
subtracting (10, 5).Thisis why doMath (subtracting) returns 5.

Passing a function or method to a function or method call is how the sort () method lets you
implement different sorting behavior. The function or method that is passed to sort () should
accept a single parameter and returns a value that is used to alphabetically sort the item.

To put it another way: normally sort () sorts the values in a list by the alphabetical order of the
list values.. But if we pass a function (or method) for the key keyword argument, then the values
in the list are sorted by the alphabetical or numeric order of the return value of the function when
the value in the list is passed to that function.

You can think of a normal sort () call such as this:

Email questions to the author: al@inventwithpython.com

Chapter 20 — Frequency Analysis 313

somelListVariable.sort()

...as being equivalent to this:

def func(x):
return x # sorting based on the value itself
somelListVariable.sort(key=func)

So when the sort () method call is passed ETAOIN. £ind, instead of sorting the strings like
'"A', 'B',and 'C"' by the alphabetical order the sort () method sorts them by the numeric
order of the integers returned from ETAOIN. find ('A'), ETAOIN.find ('B"), and
ETAOIN.find ('C"):thatis, 2,19, and 11 respectively. Sothe 'A"', 'B',and 'C"' strings
getsortedas 'A', 'C', and then 'B"' (the order they appear in ETAOIN).

Converting Dictionaries to Lists with the keys(), values(), items()
Dictionary Methods

If you want to get a list value of all the keys in a dictionary, the keys () method will return a
dict_keys object that can be passed to 1ist () to get a list of all the keys. There is a similar
dictionary method named values () that returns a dict_values object. Try typing the following
into the interactive shell:

>>> spam = {'cats': 10, 'dogs': 3, 'mice': 3}
>>> spam.keys()

dict_keys(['mice', 'cats', 'dogs'])

>>> Tlist(spam.keys())

['mice', 'cats', 'dogs']
>>> list(spam.values())
[3, 10, 3]

>>>

Remember, dictionaries do not have any ordering associated with the key-value pairs they
contain. When getting a list of the keys or values, they will be in a random order in the list. If you
want to get the keys and values together, the items () dictionary method returns a dict_items
object that can be passedto 1ist (). The 1ist () function will then return a list of tuples
where the tuples contain a key and value pair of values. Try typing the following into the
interactive shell:

>>> spam = {'cats': 10, 'dogs': 3, 'mice': 3}
>>> list(spam.items())

314 http://inventwithpython.com/hacking

[("mice', 3), ('cats', 10), ('dogs', 3)]

We will be using the items () method in our getFrequencyOrder () function, but you
should know about the keys () and values () methods too. Remember, in order to use the
return values from these methods as lists, they must be passed to the 1ist () function. The
1list () function then returns a list version of the dict_keys, dict_values, or dict_items object.

Email questions to the author: al@inventwithpython.com

Chapter 20 — Frequency Analysis 315

Sorting the Items from a Dictionary

fregAnalysis.py

51. # fourth, convert the freqTolLetter dictionary to a list of tuple
52. # pairs (key, value), then sort them
53. freqPairs = list(freqTolLetter.items())

The fourth step of getFrequencyOrder () is to sort the strings from the freqToLetter
dictionary by the frequency count. Remember that the freqToLetter dictionary has integer
frequency counts for the keys and lists of single-letter strings for the values. But since dictionaries
do not have an ordering for the key-value pairs in them, we will call the i tems () method and
list () function to create a list of tuples of the dictionary’s key-value pairs. This list of tuples
(stored in a variable named fregPairs on line 53) is what we will sort.

freqgAnalysis.py
54. freqPairs.sort(key=getItemAtIndexZero, reverse=True)

The sort () method call is passed the getItemAt IndexZero function value itself. This
means the items in the fregPairs will be sorted by the numeric order of the value at index 0 of
the tuple value, which is the frequency count integer. Line 54 also passes True for the reverse
keyword argument so that the tuples are reverse ordered from largest frequency count to smallest.

If we continue using the previous “Alan Mathison Turing...” example, the value of freqPairs
willbe [(196, 'E'), (140, 'T"'), (139, 'T'), (135, 'A"), (122, 'N"), (113,
'o'), (106, 'R"), (89, 'S"), (87, 'H"), (74, 'C"), (62, 'L"), (58,
'MD'), (39, 'G'"), (37, 'FU'"), (36, 'P"), (30, 'BW'"), (21, 'Y"'), (14,
'V'), (8, 'K"), (3, 'X"), (2, 'QJ"), (1, 'Z2")]

freqAnalysis.py

56. # fifth, now that the letters are ordered by frequency, extract all
57. # the Tetters for the final string

58. freqOrder = []

59. for fregPair in freqPairs:

60. freqOrder.append(freqPair[1])

The fifth step is to create a list of all the strings from the sorted list in fregPairs. The variable
fregOrder will start as a blank list on line 58, and the string at index 1 of the tuple in
fregPairs will be appended to the end of freqOrder.

If we continue with the “Alan Mathison Turing was a British mathematician...” example from
before, after this loop has finished, freqOrder will contain the value ['E', 'T', 'I"',

316 http://inventwithpython.com/hacking

'A', 'N', lol’ 'R', lsl’ 'H', lcl’ 'L', 'MD', lGl’ 'FU', 'P', lel, 'Y',
lvl, 'K', lxl, ‘QJ'I lzl]

freqAnalysis.py

62. return ''.join(freqOrder)

Line 62 creates a string from the list of strings in fregOrder by joining them together with the
join () method. If we continue using the previous example, getFrequencyOrder () will
return the string ' ETTANORSHCLMDGFUPBWYVKXQJZ'. According to this ordering, E is the
most frequent letter in the “Alan Mathison Turing...” example string, T is the second most
frequent letter, I is the third most frequent, and so on.

The Program’s englishFregMatchScore () Function

fregAnalysis.py
65. def englishFregMatchScore(message) :
66. # Return the number of matches that the string in the message

67. # parameter has when its letter frequency is compared to English
68. # letter frequency. A "match" 1is how many of its six most frequent
69. # and six least frequent letters is among the six most frequent and
70. # six Teast frequent letters for English.

71. freqOrder = getFrequencyOrder(message)

The englishFregMatchScore () function takes a string for message, and then returns an
integer between 0 and 12 to show message’s frequency match score with readable English’s
letter frequency. The higher the integer, the more that the frequency of the letters in message
matches the frequency of normal English text.

The first step in calculating the match score is to get the letter frequency ordering of message
by calling the getFrequencyOrder () function.

fregAnalysis.py

73. matchScore = 0

74. # Find how many matches for the six most common Tletters there are.
75. for commonLetter in ETAOIN[:6]:

76. if commonLetter in freqOrder[:6]:

77. matchScore += 1

The matchScore variable starts off at 0 on line 73. The for loop on line 75 goes through each
of the first 6 letters of the ETAOIN string. Remember that the [: 6] slice is the same thing as
[0:06].Ifone of these E, T, A, O, I, or N letters is in the first six letters in the freqOrder
string, then line 76’s condition is True and line 77 will increment matchScore.

Email questions to the author: al@inventwithpython.com

Chapter 20 — Frequency Analysis 317

freqAnalysis.py

78. # Find how many matches for the six least common letters there are.
79. for uncommonlLetter in ETAOIN[-6:]:

80. if uncommonLetter in freqOrder[-6:]:

81. matchScore += 1

Lines 79 to 81 are much like lines 75 to 77, except the last six letters in ETAOIN (V, K, J, X, Q,
and Z) are checked to see if they are in the /ast six letters in the freqOrder string. If they are,
then matchScore is incremented.

fregAnalysis.py
83. return matchScore

The integer in matchScore is returned on line 83.

The 14 letters in the middle of the frequency ordering are ignored with our frequency match score
calculation. This approach to comparing letter frequencies is pretty simple, but it works well
enough for our hacking program in the next chapter.

Summary

The sort () function is useful for sorting the values in a list. Normally sort () will sort them
in alphabetical or numerical order. But the reverse and key keyword arguments can be used to
sort them in different orders. This chapter also explains how functions themselves can be passed
as values in function calls.

Let’s use the frequency analysis module to hack the Vigenére cipher, a cipher that perplexed
cryptanalysts for hundreds of years!

318 http://inventwithpython.com/hacking

CHAPTER 21

HACKING THE VIGENERE CIPHER

Topics Covered In This Chapter:

e The extend () list method

e The Set data type and set () function

e The itertools.product () function

Alan says, “When we want to sink a convey, we send out an
observation plane first. It is ostensibly an observation plane. Of
course, to observe is not its real duty—We already know exactly
where the convoy is. Its real duty is to be observed—That is, to fly
close enough to the convoy that it will be noticed by the lookouts on
the ships. The ships will then send out a radio message to the effect
that they have been sighted by an Allied observation plane. Then,
when we come round and sink them, the Germans will not find it
suspicious—At least, not quite so monstrously suspicious that we
knew exactly where to go.”

Alan says, “Unless we continue to do stunningly idiotic things like
sinking convoys in the fog, they will never receive any clear and
unmistakable indications that we have broken Enigma.”

“Cryptonomicon” by Neal Stephenson

Email questions to the author: al@inventwithpython.com

Chapter 21 — Hacking the Vigenere Cipher 319

There are two different methods to hack the Vigenere cipher. The first is a brute-force attack that
tries every word in the dictionary file as the Vigenere key. This method will only work if an
English word like “RAVEN” or “DESK” was used for the key instead of a random key like
“VUWEFE” or “PNFJ”. The second is a more sophisticated method that works even if a random
key was used. The earliest record of its use was by the mathematician Charles Babbage in the 19"
century.

The Dictionary Attack

If the Vigenere key is an English word it is very easy to memorize. But never use an English
word for the encryption key. This makes your ciphertext vulnerable to a dictionary attack.

A dictionary attack is a brute-force technique where a hacker attempts to decrypt the ciphertext
using the words from a dictionary file as the keys. The dictionary.txt dictionary file available on
less than 5 minutes for my computer to run through all of these decryptions for a message the size
of a long paragraph.

Source Code for a Vigenére Dictionary Attack Program

Open a new file editor window by clicking on File » New Window. Type in the following code
into the file editor, and then save it as vigenereDictionaryHacker.py. Press F5 to run the program.
Note that first you will need to download the pyperclip.py module and place this file in the same
directory as the vigenereDictionaryHacker.py file. You can download this file from

Source code for vigenereDictionaryHacker.py

1. # Vigenere Cipher Dictionary Hacker

2. # http://inventwithpython.com/hacking (BSD Licensed)
3.

4. import detectEnglish, vigenereCipher, pyperclip

5.

6. def main(Q):

7. ciphertext = """Tzx isnz eccjxkg nfg Tol mys bbgqq I Txcz."""
8. hackedMessage = hackVigenere(ciphertext)

9.
10. if hackedMessage != None:
11. print('Copying hacked message to clipboard:")
12. print(hackedMessage)
13. pyperclip.copy(hackedMessage)
14. else:
15. print('Failed to hack encryption.')

16.

320 http://inventwithpython.com/hacking

17.

18. def hackVigenere(ciphertext):

19. fo = open('dictionary.txt')

20. words = fo.readlines()

21. fo.close()

22.

23. for word in words:

24. word = word.strip() # remove the newline at the end

25. decryptedText = vigenereCipher.decryptMessage(word, ciphertext)
26. if detectEnglish.isEnglish(decryptedText, wordPercentage=40):
27. # Check with user to see if the decrypted key has been found.
28. print(Q

29. print('Possible encryption break:"')

30. print('Key ' + str(word) + ': ' + decryptedText[:100])
31. print(Q

32. print('Enter D for done, or just press Enter to continue
breaking:"')

33. response = input('> ')

34.

35. if response.upper().startswith('D'):

36. return decryptedText

37.

38. if _name__ == '_main__":

39. main()

Sample Run of the Vigenére Dictionary Hacker Program
When you run this program the output will look like this:

Possible encryption break:
Key ASTROLOGY: The recl yecrets crk not the gnks I tell.

Enter D for done, or just press Enter to continue breaking:
>

Possible encryption break:
Key ASTRONOMY: The real secrets are not the ones I tell.

Enter D for done, or just press Enter to continue breaking:
> d

Copying hacked message to clipboard:

The real secrets are not the ones I tell.

The first keyword it suggests (“ASTROLOGY”) doesn’t quite work, so the user presses Enter to
let the hacking program continue until it gets the correct decryption key (“ASTRONOMY”).

Email questions to the author: al@inventwithpython.com

Chapter 21 — Hacking the Vigenere Cipher 321

The readlines () File Object Method

20. words = fo.readlines()

File objects returned from open () have a readlines () method. Unlike the read () method
which returns the full contents of the file as a single string, the readlines () method will
return a list of strings, where each string is a single line from the file. Note that each of the strings
in the list will end with a \n newline character (except for possibly the very last string, since the
file might not have ended with a newline).

The source code for this program isn’t anything we haven’t seen in previous hacking programs in
this book, aside from the new readlines () method. The hackVigenere () function reads
in the contents of the dictionary file, uses each word in that file to decrypt the ciphertext, and if
the decrypted text looks like readable English it will prompt the user to quit or continue.

As such, we won’t do a line-by-line explanation for this program, and instead continue on with a
program that can hack the Vigenére cipher even when the key was not a word that can be found
in the dictionary.

The Babbage Attack & Kasiski Examination

Charles Babbage is known to have broken the Vigenére cipher, but he never published his results.
Later studies revealed he used a method that was later published by early 20™-century
mathematician Friedrich Kasiski.

“Kasiski Examination” is a process used to determine how long the Vigenére key used to encrypt
a ciphertext was. After this is determined, frequency analysis can be used to break each of the
subkeys.

Kasiski Examination, Step 1 — Find Repeat Sequences’ Spacings

The first part of Kasiski Examination is to find every repeated set of letters at least three letters
long in the ciphertext. These are significant, because they could indicate that they were the same
letters of plaintext encrypted with the same subkeys of the key. For example, if the ciphertext is
“Ppqca xqvekg ybnkmazu ybngbal jon i tszm jyim. Vrag voht vrau ¢ tksg. Ddwuo xitlazu vavv
raz ¢ vkb gp iwpou.” and we remove the non-letters, the ciphertext looks like this:

PPOCAXQVEKGYBNKMAZUYBNGBALJONITSZMJY IMVRAGVOHTVRAUCTKSGDDWUOXITLA
ZUVAVVRAZCVKBQPIWPOU

You can see that the sequences VRA, AZU, and YBN repeat in this ciphertext:

322 http://inventwithpython.com/hacking

PPOCAXQVEKGYBNKMAZUYBNGBALJONITSZMJYIMVRAGVOHTVRAUCTKSGDDWUOXITLA
ZUVAVVRAZCVKBQPIWPOU

PPQCAXQVEKGYBNKMAZUYBNGBALJONITSZMJY IMVRAGVOHTVRAUCTKSGDDWUOXITLA
ZUVAVVRAZCVKBQPIWPOU

PPOCAXQVEKGYBNKMAZUYBNGBALJONITSZMJY IMVRAGVOHTVRAUCTKSGDDWUOXITLA
ZUVAVVRAZCVKBQPIWPOU

After finding the repeated sequences, get a count of the spacing between the sequences. If we
count the number of letters between the start of each of these sequences, we find that:

e Between the first and second VRA sequences there are 8 letters.

e Between the second and third VRA sequences there are 24 letters.
e Between the first and third VRA sequences there are 32 letters.

e Between the first and second AZU there are 48 letters.

e Between the first and second YBN there are 8 letters.

Kasiski Examination, Step 2 — Get Factors of Spacings
So the spacings are 8, 8, 24, 32, and 48. Let’s find the factors of each of these numbers (not
including one):

e The factors of 8 are 2, 4, and 8.

e The factors of 24 are 2, 4, 6, 8, 12, and 24.

e The factors of 32 are 2, 4, 8, and 16.

e The factors of 48 are 2, 4, 6, 8, 12, 24, and 48.

So the spacings of 8, 8, 24, 32, and 48 expand to this list of factors: 2, 2,2,2,4,4,4,4,6,6, 8, 8,
8,8, 12,12, 16, 24, 24, and 48. If we do a count of these factors, we get this:

Table 21-1. Factor count from our “Ppqca xqvekg...” example.

Factor Count
2 Appears 4 times.
4 Appears 4 times.
6 Appears 2 times.
8 Appears 4 times.
12 Appears 2 times.
16 Appears 1 time.
24 Appears 2 times.
48 Appears 1 time.

Email questions to the author: al@inventwithpython.com

Chapter 21 — Hacking the Vigenere Cipher 323

The factors that have the highest count are the most likely lengths of the Vigenére key. In
our example above, these are 2, 4, and 8. The Vigenere key is probably 2, 4, or 8 letters long.

Get Every Nth Letters from a String

For this example, we will guess that the key length is 4. Next we will want to split up the
ciphertext into every 4" letter. This means we want the following underlined letters as a separate
string:

h . . .
Every 4" letter starting with the first letter:
PPQCAXQVEKGYBNKMAZUYBNGBALJONITSZMJY IMVRAGVOHTVRAUCTKSGDDWUOXITLAZUVAVVRAZCVKBOPIWPOU

h . .
Every 4" letter starting with the second letter:
PPQCAXQVEKGYBNKMAZUYBNGBALJONITSZMJY IMVRAGVOHTVRAUCTKSGDDWUOXITLAZUVAVVRAZCVKBQPIWPOU

h . . .
Every 4" letter starting with the third letter:
PPQCAXQVEKGYBNKMAZUYBNGBALJONITSZMJY IMVRAGVOHTVRAUCTKSGDDWUOX ITLAZUVAVVRAZCVKBQPIWPOU

th . .
Every 4" letter starting with the fourth lettter:
PPQCAXQVEKGYBNKMAZUYBNGBALJONITSZMJIY IMVRAGVOHTVRAUCTKSGDDWUOX I TLAZUVAVVRAZCVKBQPIWPOU

When combined, they become these four strings:

Every 4" letter starting with the first letter: PAEBABANZIAHAKDXAAAKIU
Every 4" letter starting with the second letter: PXKNZNLIMMGTUSWIZVZBW
Every 4™ letter starting with the third letter: QQGKUGJTJVVVCGUTUVCQP
Every 4" letter starting with the fourth letter: CVYMYBOSYRORTDOLVRVPO

If our guess from Kasiski Examination was correct and the decryption key was in fact 4
characters long, then the first subkey of the key would have been used to encrypt the characters in
the first string above, the second subkey of the key would have been used to encrypt the
characters in the second string above, and so on.

Frequency Analysis

Remember, the Vigenére cipher is the same as the Caesar cipher, except it uses multiple subkeys.
Kasiski Examination tells us how many subkeys were used for the ciphertext, now we just have to
hack each subkey one at a time. Let’s try to hack the first of these four ciphertext strings:
PAEBABANZIAHAKDXAAAKIU

We will decrypt this string 26 times, once for each of the 26 possible subkeys, and then see what
English frequency match score the decrypted text has. In the table below, the first column is the
subkey used to decrypt the PAEBABANZ IAHAKDXAAAKIU string. The second column is the
returned decrypted text value from vigenereCipher.decryptMessage (subkey,

324 http://inventwithpython.com/hacking

' PAEBABANZIAHAKDXAAAKIU') where subkey is the subkey from the first column. The
third column is the returned value from

fregAnalysis.englishFregMatchScore (decryptedText) where
decryptedText is the value from the second column.

Table 21-2. English frequency match score for each decryption.

English
Frequency

Text When PAEB... is Decrypted Match

Subkey with the Subkey Score
'A ' PAEBABANZIAHAKDXAAAKIU' 2
'B' 'OZDAZAZMYHZGZJICWZZZJHT' 1
'c! '"NYCZYZYLXGYFYIBVYYYIGS' 1
'D' '"MXBYXYXKWEFXEXHAUXXXHER' 0
'E! 'LWAXWXWIVEWDWGZ TWWWGEQ ' 1
'F! '"KVZWVWVIUDVCVFYSVVVFDP' 0
'G! 'JUYVUVUHTCUBUEXRUUUECO' 1
'H' 'ITXUTUTGSBTATDWQTTTDRBN' 1
' '"HSWTSTSFRASZSCVPSSSCAM' 2
'J! 'GRVSRSREQZRYRBUORRRBZL' 0
'K! 'FQURQRQODPYQXQATNQQQAYK' 1
'L 'EPTQPQPCOXPWPZSMPPPZXJ' 0
'M! 'DOSPOPOBNWOVOYRLOOOYWI ' 1
'N' ' CNRONONAMVNUNXQKNNNXVH ' 2
'o! ' BMONMNMZ LUMTMWP JIJMMMWUG ' 1
'p! 'ALPMLMLYKTLSLVOILLLVTE' 1
'Q! ' ZKOLKLKXJSKRKUNHKKKUSE' 0
'R '"YINKJKIJWIRJQJITMGJJJTRD' 1
'S '"XIMJIJIVHQIPISLFIIISQC' 1
‘T '"WHLIHITHUGPHOHRKEHHHRPRB' 1
'u’ 'VGKHGHGTFOGNGQJDGGGQOA' 1
'v! 'UFJGFGFSENFMFPICFEFFPNZ' 1
‘W' 'TEIFEFERDMELEOHBEEEOMY ' 2
'X! ' SDHEDEDQCLDKDNGADDDNLX ' 2
'y'! 'RCGDCDCPBKCJCMFEZCCCMKW' 0
'z 'QBFCBCBOAJBIBLEYBBBLJV' 0

Email questions to the author: al@inventwithpython.com

Chapter 21 — Hacking the Vigenere Cipher 325

The subkeys that produce decryptions with the closest frequency match to English are the ones
that are most likely to be the real subkey. In the above decryptions (for the 1% of the four
ciphertext strings), 'A', "I', 'N', 'W', and 'X' are the subkeys that have the highest
frequency matches with English. Note that these scores are low in general because there isn’t
enough ciphertext to give us a large sample of text, but it still ends up working well.

We need to repeat this 26-decryptions-and-frequency-match for the other three strings to
find out their most likely subkeys. After this frequency analysis, we find:

The most likely subkeys for the first string are: A, I, N, W, and X
The most likely subkeys for the second string are: 1and Z
The most likely subkey for the third string is: C
The most likely subkeys for the fourth string are: K, N, R, V,and Y

Brute-Force through the Possible Keys

Next we will brute-force the key by trying out every combination of subkey. Because there are 5
possible subkeys for the first subkey, 2 for the second subkey, 1 for the third subkey, and 5 for the
fourth subkey, the number of combinations is 5 X 2 X 1 X 5 or 50 possible keys to brute-force
through. This is much better than the 26 x 26 X 26 X 26 or 456,976 possible keys we would have
to brute-force through if we had not narrowed the list of possible subkeys. This difference
becomes even greater if the Vigenére key had been longer!

AICK [ICK NICK WICK XICK

AICN [ICN NICN WICN XICN
AICR [ICR NICR WICR XICR

AICV [ICV NICV WICV XICV
AICY [cy NICY WICY XICY

AZCK 1ZCK NZCK WZCK XZCK
AZCN IZCN NZCN WZCN XZCN
AZCR IZCR NZCR WZCR XZCR
AZCV IZCV NZCV WzCv XZev
AZCY 1ZCY NZCY WZCY XZCY

Now it’s just a matter of going through all 50 of these decryption keys for the full ciphertext and
seeing which one produces a readable English plaintext. If you do this, you’ll find that the key to
the “Ppqca xqvekg...” ciphertext is “WICK”.

326 http://inventwithpython.com/hacking

Source Code for the Vigenére Hacking Program

Open a new file editor window by clicking on File » New Window. Type in the following code
into the file editor, and then save it as vigenereHacker.py. Press F5 to run the program. Note that
first you will need to download the pyperclip.py module and place this file in the same directory

Source code for vigenereHacker.py
. # Vigenere Cipher Hacker
. # http://inventwithpython.com/hacking (BSD Licensed)

1
2
3
4. dimport itertools, re

5. import vigenereCipher, pyperclip, fregAnalysis, detectEnglish
6

7

8

9

. LETTERS = '"ABCDEFGHIJKLMNOPQRSTUVWXYZ'
. SILENT_MODE = False # if set to True, program doesn't print attempts
. NUM_MOST_FREQ_LETTERS = 4 # attempts this many letters per subkey
10. MAX_KEY_LENGTH = 16 # will not attempt keys Tlonger than this
11. NONLETTERS_PATTERN = re.compile('[AA-Z]")

12.

13.

14. def mainQ):

15. # Instead of typing this ciphertext out, you can copy & paste it
16. # from http://invpy.com/vigenereHacker.py

17. ciphertext = """Adiz Avtzgeci Tmzubb wsa m Pmilqev halpgavtakuoi,

Tgouqdaf, kdmktsvmztsl, izr xoexghzr kkusitaaf. Vz wsa twbhdg ubalmmzhdad qz
hce vmhsgohugbo ox kaakulmd gxiwvos, krgdurdny i rcmmstugvtawz ca tzm ocicwxfg
jf "stscmilpy" oid "uwydptsbuci” wabt hce Lcdwig eiovdnw. Bgfdny ge kddwtk
gjnkgpsmev ba pz tzm roohwz at xoexghzr kkusicw izr vrlgrwxist uboedtuuznum.
Pimifo Icmlv Emf DI, Lcdwig owdyzd xwd hce Ywhsmnemzh Xovm mby Cgxtsm Supacg
(GUKE) oo Bdmfqclwg Bomk, Tzuhvif'a ocyetzqofifo ositjm. Rcm a lqys ce oie vzav
wr Vpt 8, 1pg gzclqab mekxabnittg tjr Ymdavn fihog cjgbhvnstkgds. Zm psqikmp o
iuejqf jf Tmoviiicqg aoj jdsvkavs Uzreiz qdpzmdg, dnutgrdny bts helpar jf Tpq
pjmtm, mb zlwkffjmwktoiiuix avczgqzs ohsb ocplv nuby swbfwigk naf ohw Mzwbms
umgcifm. Mtoej bts raj pgq kjrcmp oo tzm Zooigvmz Khgauqvl Dincmalwdm, rhwzq vz
cjmmhzd gvg ca tzm rwms1l Tqgdgfa rcm a kbafzd-hzaumae kaakulmd, hce SKQ. Wi
1948 Tmzubb jgqzsy Msf Zsrmsv'e Qjmhcfwig Dincmalwdm vt Eizqcekbgf Pnadqfnilg,
ivzrw pq onsaafsy if bts yenmxckmwvf ca tzm Yoiczmehzr uwydptwze oid tmoohe
avfsmekbgr dn eifvzmsbuqvl tqazjgg. Pg kmolm m dvpwz ab ohw ktshiuix pvsaa at
hojxtcbefmewn, afl bfzdakfsy okkuzgalqzu xhwuuqvl jmmgoigve gpcz ie hce

Email questions to the author: al@inventwithpython.com

Chapter 21 — Hacking the Vigenere Cipher 327

Tmxcpsgd-Lvvbgbubnkq zgoxtawz, kciup isme xqdgo otaqfgev qz hce 1960k. Bgfdny'a
tchokmjivlabk fzsmtfsy if i ofdmavmz krgaqgptawz wi 1952, wzmz vjmgaqlpad <iohn
wwzq goidt uzgeyix wi tzm Gbdtwl Wwigvwy. Vz aukqdoev bdsvtemzh rilp rshadm
tcmmgvqg (xhwuuqvl uiehmalgab) vs sv mzoejvmhdvw ba dmikwz. Hpravs rdev qz
1954, xps1 whsm tow iszkk jgtjrw pug 42id tqdhcdsg, rfjm ugmbddw xawnofqzu. Vn
avcizsl lghzreqzsy tzif vds vmmhc wsa eidcalq; vds ewfvzr svp gjmw wfvzrk
jgzdenmp vds vmmhc wsa mgxivmzhvl. Gv 10 Esktwunsm 2009, fgtxcrifo mb Dnlmdbzt
uiydviyv, Nfdtaat Dmiem Ywiikbqf Bojlab Wrgez avdw iz cafakuog pmjxwx ahwxcby
gv nscadn at ohw Jdwoikp scgejvysit xwd "hce sxboglavs kvy zm ion tjmmhzd." Sa
at Haq 2012 i bfdvsbq azmtmd'g widt ion bwnafz tzm Tcpsw wr Zjrva ivdcz eaigd
yzmbo Tmzubb a kbmhptgzk dvrvwz wa efiohzd."""

18. hackedMessage = hackVigenere(ciphertext)

19.

20. if hackedMessage != None:

21. print('Copying hacked message to clipboard:")

22. print(hackedMessage)

23. pyperclip.copy(hackedMessage)

24. else:

25. print('Failed to hack encryption.')

26.

27.

28. def findRepeatSequencesSpacings(message):

29. # Goes through the message and finds any 3 to 5 letter sequences
30. # that are repeated. Returns a dict with the keys of the sequence and
31. # values of a Tist of spacings (num of letters between the repeats).
32.

33. # Use a regular expression to remove non-letters from the message.
34. message = NONLETTERS_PATTERN.sub('', message.upper())

35.

36. # Compile a list of seqlLen-Tetter sequences found in the message.
37. seqSpacings = {} # keys are sequences, values are list of int spacings
38. for seqglLen in range(3, 6):

39. for seqStart in range(len(message) - seqlLen):

40. # Determine what the sequence is, and store it in seq

41. seq = message[seqStart:seqStart + seqlen]

42.

43. # Look for this sequence in the rest of the message

44 for i in range(seqStart + seqlLen, len(message) - seqlen):
45. if message[i:i + seqlLen] == seq:

46. # Found a repeated sequence.

47. if seq not in seqSpacings:

48. seqSpacings[seq] = [] # initialize blank Tist
49,

50. # Append the spacing distance between the repeated
51. # sequence and the original sequence.

52. seqSpacings[seq].append(i - seqStart)

53. return seqSpacings

328 http://inventwithpython.com/hacking

54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64 .
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

def

def

def

getUsefulFactors(num):

Returns a Tist of useful factors of num. By "useful" we mean factors
less than MAX_KEY_LENGTH + 1. For example, getUsefulFactors(144)

returns [2, 72, 3, 48, 4, 36, 6, 24, 8, 18, 9, 16, 12]

if num < 2:
return [] # numbers less than 2 have no useful factors

factors = [] # the 1ist of factors found

When finding factors, you only need to check the integers up to
MAX_KEY_LENGTH.
for i in range(2, MAX_KEY_LENGTH + 1): # don't test 1
if num % i == 0:
factors.append(i)
factors.append(int(num / 1))
if 1 in factors:
factors.remove(l)
return list(set(factors))

getItemAtIndexOne(x) :
return x[1]

getMostCommonFactors(seqFactors):
First, get a count of how many times a factor occurs in seqFactors.
factorCounts = {} # key is a factor, value is how often if occurs

seqFactors keys are sequences, values are Tlists of factors of the
spacings. seqFactors has a value 1like: {'GFD': [2, 3, 4, 6, 9, 12,
18, 23, 36, 46, 69, 92, 138, 207], 'ALwW': [2, 3, 4, 6, ...], ...}
for seq in seqgFactors:
factorList = seqFactors[seq]
for factor in factorlList:
if factor not in factorCounts:
factorCounts[factor] = 0
factorCounts[factor] += 1

Second, put the factor and its count into a tuple, and make a Tist
of these tuples so we can sort them.
factorsByCount = []
for factor in factorCounts:
exclude factors larger than MAX_KEY_LENGTH

Email questions to the author: al@inventwithpython.com

Chapter 21 — Hacking the Vigenére Cipher 329

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144,
145.

def

def

if factor <= MAX_KEY_LENGTH:
factorsByCount 1is a Tist of tuples: (factor, factorCount)
factorsByCount has a value like: [(3, 497), (2, 487), ...]
factorsByCount.append((factor, factorCounts[factor]))

Sort the Tist by the factor count.
factorsByCount.sort(key=getItemAtIndexOne, reverse=True)

return factorsByCount

kasiskiExamination(ciphertext):

Find out the sequences of 3 to 5 letters that occur multiple times
in the ciphertext. repeatedSeqSpacings has a value Tike:

{'EXG': [192], 'NAF': [339, 972, 633], ... }

repeatedSeqSpacings = findRepeatSequencesSpacings(ciphertext)

See getMostCommonFactors() for a description of seqFactors.
seqFactors = {}
for seq in repeatedSeqSpacings:
seqFactors[seq] = []
for spacing in repeatedSeqSpacings[seq]:
seqFactors[seq] .extend(getUsefulFactors(spacing))

See getMostCommonFactors() for a description of factorsByCount.
factorsByCount = getMostCommonFactors(seqFactors)

Now we extract the factor counts from factorsByCount and

put them in allLikelyKeylLengths so that they are easier to

use later.

allLikelyKeyLengths = []

for twoIntTuple in factorsByCount:
allLikelyKeylLengths.append(twoIntTuple[0])

return allLikelyKeyLengths

getNthSubkeysLetters(n, keylLength, message):

Returns every Nth letter for each keyLength set of Tetters in text.
E.g. getNthSubkeyslLetters(l, 3, "ABCABCABC') returns 'AAA'
getNthSubkeyslLetters(2, 3, 'ABCABCABC') returns 'BBB'
getNthSubkeyslLetters(3, 3, 'ABCABCABC') returns 'CCC'
getNthSubkeyslLetters(l, 5, 'ABCDEFGHI') returns 'AF'

* H W

Use a regular expression to remove non-letters from the message.
message = NONLETTERS_PATTERN.sub('', message)

330 http://inventwithpython.com/hacking

146.

147. i=n-1

148. letters = []

149. while i < len(message):

150. Tetters.append(message[i])

151. i += keylLength

152. return ''.join(letters)

153.

154.

155. def attemptHackWithKeylLength(ciphertext, mostLikelyKeylLength):

156. # Determine the most 1likely Tletters for each letter in the key.
157. ciphertextUp = ciphertext.upper(

158. # allFreqScores is a list of mostLikelyKeylLength number of Tists.
159. # These 1inner Tists are the freqScores Tists.

160. allFreqScores = []

161. for nth in range(l, mostLikelyKeyLength + 1):

162. nthLetters = getNthSubkeysLetters(nth, mostLikelyKeylLength,
ciphertextUp)

163.

164. # freqScores is a list of tuples Tike:

165. # [(<letter>, <Eng. Freq. match score>), ...]

166. # List is sorted by match score. Higher score means better match.
167. # See the englishFregMatchScore() comments in fregAnalysis.py.
168. freqScores = []

169. for possibleKey in LETTERS:

170. decryptedText = vigenereCipher.decryptMessage(possibleKey,
nthLetters)

171. keyAndFregMatchTuple = (possibleKey,
fregAnalysis.englishFregMatchScore(decryptedText))

172. freqgScores.append(keyAndFregMatchTuple)

173. # Sort by match score

174. freqScores.sort(key=getItemAtIndexOne, reverse=True)

175.

176. al1FreqgScores.append(freqScores[:NUM_MOST_FREQ_LETTERS])

177.

178. if not SILENT_MODE:

179. for i in range(len(allFreqScores)):

180. # use i + 1 so the first Tetter is not called the "Oth" Tetter
181. print('Possible letters for Tetter %s of the key: ' % (i + 1),
end="")

182. for freqScore in allFreqScores[i]:

183. print('%s ' % freqScore[0], end='")

184. print() # print a newline

185.

186. # Try every combination of the most likely letters for each position
187. # in the key.

Email questions to the author: al@inventwithpython.com

Chapter 21 — Hacking the Vigenere Cipher 331

188.

for indexes in itertools.product(range(NUM_MOST_FREQ_LETTERS),

repeat=mostLikelyKeylLength):

189. # Create a possible key from the Tetters in allFreqgScores
190. possibleKey = "'

191. for i in range(mostLikelyKeylLength):

192. possibleKey += allFreqScores[i][indexes[i]][0]

193.

194. if not SILENT_MODE:

195. print('Attempting with key: %s' % (possibleKey))

196.

197. decryptedText = vigenereCipher.decryptMessage(possibleKey,
ciphertextUp)

198.

199. if detectEnglish.isEnglish(decryptedText):

200. # Set the hacked ciphertext to the original casing.
201. origCase = []

202. for i in range(len(ciphertext)):

203. if ciphertext[i].isupper(:

204. origCase.append(decryptedText[i].upper())

205. else:

206. origCase.append(decryptedText[i].Tower())

207. decryptedText = ''.join(origCase)

208.

209. # Check with user to see if the key has been found.
210. print('Possible encryption hack with key %s:' % (possibleKey))
211. print(decryptedText[:200]) # only show first 200 characters
212. print(Q)

213. print('Enter D for done, or just press Enter to continue
hacking: ")

214. response = input('> ')

215.

216. if response.strip().upper().startswith('D"):

217. return decryptedText

218.

219. # No English-Tooking decryption found, so return None.

220. return None

221.

222.

223. def hackVigenere(ciphertext):

224. # First, we need to do Kasiski Examination to figure out what the
225. # Tength of the ciphertext's encryption key is.

226. allLikelyKeylLengths = kasiskiExamination(ciphertext)

227. if not SILENT_MODE:

228. keyLengthStr = "'

229. for keyLength in alllLikelyKeylLengths:

230. keyLengthStr += '%s ' % (keyLength)

332 http://inventwithpython.com/hacking

231. print('Kasiski Examination results say the most likely key lengths
are: ' + keyLengthStr + '\n')

232.

233. for keylLength in allLikelyKeylLengths:

234. if not SILENT_MODE:

235. print('Attempting hack with key Tength %s (%s possible
keys)..."' % (keyLength, NUM_MOST_FREQ_LETTERS ** keyLength))

236. hackedMessage = attemptHackWithKeylLength(ciphertext, keylLength)
237. if hackedMessage != None:

238. break

239.

240. # If none of the key lengths we found using Kasiski Examination
241. # worked, start brute-forcing through key lengths.

242. if hackedMessage == None:

243. if not SILENT_MODE:

244, print('UnabTe to hack message with Tikely key length(s).
Brute-forcing key length...")

245. for keyLength in range(l, MAX_KEY_LENGTH + 1):

246. # don't re-check key Tengths already tried from Kasiski
247. if keyLength not in allLikelyKeylLengths:

248. if not SILENT_MODE:

249. print('Attempting hack with key length %s (%s possible
keys)..."' % (keyLength, NUM_MOST_FREQ_LETTERS ** keylLength))

250. hackedMessage = attemptHackWithKeylLength(ciphertext,
keyLength)

251. if hackedMessage != None:

252. break

253. return hackedMessage

254.

255.

256. # If vigenereHacker.py is run (instead of imported as a module) call
257. # the main() function.

258. if _name__ == '__main__":

259. main()

Sample Run of the Vigenére Hacking Program
When you run the vigenereHacker.py program, the output will look like this:

Kasiski Examination results say the most Tikely key lengths are: 3 2 6 4 12

Attempting hack with key length 3 (27 possible keys)...
Possible Tetters for letter 1 of the key: AL M
Possible Tletters for letter 2 of the key: S N O
Possible Tetters for letter 3 of the key: VI Z

Email questions to the author: al@inventwithpython.com

Chapter 21 — Hacking the Vigenere Cipher

333

Attempting with
Attempting with
Attempting with
Attempting with
Attempting with
Attempting with
Attempting with
Attempting with
Attempting with
Attempting with
Attempting with
Attempting with
Attempting with
Attempting with
Attempting with
Attempting with
Attempting with
Attempting with
Attempting with
Attempting with
Attempting with
Attempting with
Attempting with
Attempting with
Attempting with
Attempting with
Attempting with
Attempting hack
Possible Tletters
Possible Tletters
Attempting with
Attempting with
Attempting with
Attempting with
Attempting with
Attempting with
Attempting with
Attempting with
Attempting with
Attempting hack
Possible Tletters
Possible Tletters
Possible Tetters
Possible Tletters
Possible Tletters
Possible Tetters

key:
key:
key:
key:
key:
key:
key:
key:
key:
key:
key:
key:
key:
key:
key:
key:
key:
key:
key:
key:
key:
key:
key:
key:
key:
key:
key:
with

for

for
key:
key:
key:
key:
key:
key:
key:
key:
key:
with

for

for

for

for

for

for

ASV
ASI
ASZ
ANV
ANI
ANZ
AQOV
AOI
AOZ
LSV
LST
LSz
LNV
LNI
LNZ
LoV
LOI
LOZ
MSV
MSI
MSZ
MNV
MNI
MNZ
MOV
MOI
M0Z

key Tength 2 (9 possible keys)...

Tetter 1 of the key: O A E
Tetter 2 of the key: M S I

oM
0S
oI
AM
AS
AT
EM
ES
ET

key Tength 6 (729 possible keys)...
key:
key:
key:
key:
key:
key:

Tetter
Tetter
letter
Tetter
letter
letter

1

SV A WN

of
of
of
of
of
of

the
the
the
the
the
the

AEDO

<O=EZHW
HmmN<O
ANO XO

334 http://inventwithpython.com/hacking

Attempting with key: ASIMOV

Possible encryption hack with key ASIMOV:

ALAN MATHISON TURING WAS A BRITISH MATHEMATICIAN, LOGICIAN, CRYPTANALYST, AND
COMPUTER SCIENTIST. HE WAS HIGHLY INFLUENTIAL IN THE DEVELOPMENT OF COMPUTER
SCIENCE, PROVIDING A FORMALISATION OF THE CON

Enter D for done, or just press Enter to continue hacking:

> d

Copying hacked message to clipboard:

Alan Mathison Turing was a British mathematician, logician, cryptanalyst, and
computer scientist. He was highly influential in the development of computer

...Skipped for brevity...

his death was accidental. On 10 September 2009, following an Internet campaign,
British Prime Minister Gordon Brown made an official public apology on behalf
of the British government for "the appalling way he was treated." As of May
2012 a private member's bill was before the House of Lords which would grant
Turing a statutory pardon if enacted.

How the Program Works

vigenereHacker.py
. # Vigenere Cipher Hacker

. # http://inventwithpython.com/hacking (BSD Licensed)

. import itertools, re
. import vigenereCipher, pyperclip, freqgAnalysis, detectEnglish

LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

. SILENT_MODE = False # if set to True, program doesn't print attempts
. NUM_MOST_FREQ_LETTERS = 4 # attempts this many letters per subkey

. MAX_KEY_LENGTH = 16 # will not attempt keys longer than this

. NONLETTERS_PATTERN = re.compile('[AA-Z]")

O o0 NOUVIA WN B

=
R o

The hacking program imports many different modules, including a new module named
itertools. The constants will be explained as they are used in the program.

vigenereHacker.py

14. def main(Q:

15. # Instead of typing this ciphertext out, you can copy & paste it
16. # from http://invpy.com/vigenereHacker.py
17. ciphertext = """Adiz Avtzqeci Tmzubb wsa m Pmilgev halpgavtakuoi,

Tgouqgdaf, kdmktsvmztsl, izr xoexghzr kkusitaaf. Vz wsa twbhdg ubalmmzhdad gz

Email questions to the author: al@inventwithpython.com

Chapter 21 — Hacking the Vigenere Cipher 335

...Skipped for brevity...

at Haq 2012 i bfdvsbgq azmtmd'g widt ion bwnafz tzm Tcpsw wr Zjrva ivdcz eaigd
yzmbo Tmzubb a kbmhptgzk dvrvwz wa efiohzd."""

18. hackedMessage = hackVigenere(ciphertext)

19.

20. if hackedMessage != None:

21. print('Copying hacked message to clipboard:"')
22. print(hackedMessage)

23. pyperclip.copy(hackedMessage)

24. else:

25. print('Failed to hack encryption.')

The main () function of the hacking program is similar to the main () functions of previous
hacking functions. The ciphertext is passed to the hackVigenere () cipher, which either
returns the decrypted string (if the hack was successful) or the None value (if the hack failed). If
successful, the hacked message is printed to the screen and copied to the clipboard.

Finding Repeated Sequences

vigenereHacker.py
28. def findRepeatSequencesSpacings(message):

29. # Goes through the message and finds any 3 to 5 letter sequences

30. # that are repeated. Returns a dict with the keys of the sequence and
31. # values of a Tist of spacings (num of letters between the repeats).
32.

33. # Use a regular expression to remove non-letters from the message.

34. message = NONLETTERS_PATTERN.sub('', message.upper())

35.

36. # Compile a Tist of seqlLen-letter sequences found in the message.

37. seqSpacings = {} # keys are sequences, values are list of int spacings
38. for seglLen 1in range(3, 6):

The findRepeatSequencesSpacings () locates all the repeated sequences of letters in the
message string and counts the spacings (that is, the number of letters) between the sequences.
First, line 34 converts the message to uppercase and removes any non-letter characters from
message using the sub () regular expression method.

The segSpacings dictionary will have keys of the sequence strings and values of a list with
the integer number of letters between all the occurrences of that sequence in the key. The
previous “PPQCAXQV...” example string from earlier in the “Kasiski Examination, Step 1”
section, if passed as message, would cause findRepeatSequenceSpacings () to return
{'"VRA': [8, 24, 32], 'AzU': [48], 'YBN': [8]}.

336 http://inventwithpython.com/hacking

The code inside line 38’s for loop will find the repeated sequences in message and calculate
the spacings. On the first iteration, it will find sequences that are exactly 3 letters long. On the
next iteration it will find sequences exactly 4 letters long, and then 5 letters long. (You can
change what sequence lengths the code searches for by modifying the range (3, 6) call on
line 38, but finding repeated sequences of length 3, 4 and 5 seems to work for most ciphertexts.)

vigenereHacker.py

39. for seqgStart in range(len(message) - seqlen):
40. # Determine what the sequence is, and store it in seq
41. seq = message[seqStart:seqStart + seqlLen]

The for loop on line 39 makes sure that we iterate over every possible substring of length
seqgLen in the message string. Line 41 sets the seq variable with the sequence we are looking
for. For example, if segqLen is 3 and message is ' PPQCAXQ"', we would want to search for the
following sequences (notice the indexes at the top of the ' PPQCAXQ"' string):

Table 21-3. Values of seq from message depending on the value in segStart.

Indexes: 0123456

On 1" iteration, seqStart is 0: 'PPQCAXQ' (PPQ starts at index 0.)

On 2™ jteration, seqStart is 1: 'PPQCAXQ' (PQC starts at index 1.)

On 3" iteration, seqStart is 2: "PPQCAXQ' (QCA starts at index 2.)

On 4" iteration, seqStart is 3: 'PPQCAXQ' (CAX starts at index 3.)

On 5" iteration, seqStart is 4: 'PPQCAXQ' (AXQ starts at index 4, which is
what 1en (message) - seglLen
evaluates to and is the last index.)

vigenereHacker.py

43. # Look for this sequence in the rest of the message
44 for i in range(seqgStart + seqlLen, len(message) - seqlen):
45. if message[i:i + seglLen] == seq:

The for loop on line 44 is inside line 39’s for loop and sets i to be the indexes of every
possible sequence of length segqLen in message. These indexes start at segStart +
seqLen (that is, after the sequence currently in seq) and goup to 1len (message) -
seqLen (which is the last index where a sequence of length segLen can be found).

The expression message[1i:1 + segLen] will evaluate to the substring of message that
gets checked for being a repeat of seq on line 45. If it is, then we need to calculate the spacing
and add it to the segqSpacings dictionary. This is done on lines 46 to 52.

Email questions to the author: al@inventwithpython.com

Chapter 21 — Hacking the Vigenere Cipher 337

vigenereHacker.py

46. # Found a repeated sequence.

47. if seq not in seqSpacings:

48. seqSpacings[seq] = [] # initialize blank Tist
49,

50. # Append the spacing distance between the repeated
51. # sequence and the original sequence.

52. seqSpacings[seq] .append(i - seqStart)

The spacing between the sequence we’ve found at message [i:1 + seqgLen] and the
original sequence at message [seqgStart:seqStart+seqglen] issimply 1 -
segStart. Notice that 1 and segStart are the beginning indexes before the colons. So the
integer that 1 - seqgStart evaluates to is the spacing between the two sequences, which is
appended to the list stored at segSpacings|[seq].

(Lines 47 and 48 guarantee there is a list at this key by checking beforehand if seq exists as a
key in segSpacings. If it does not, then segqSpacings [seq] is set as a key with a blank
list as its value.)

vigenereHacker.py
53. return seqSpacings

By the time all these for loops have finished, the segqSpacings dictionary will contain every
repeated sequence of length 3, 4, and 5 and their spacings. This dictionary is returned from
findRepeatSequencesSpacings () on line 53.

Calculating Factors

vigenereHacker.py
56. def getUsefulFactors(num):

57. # Returns a list of useful factors of num. By "useful" we mean factors
58. # less than MAX_KEY_LENGTH + 1. For example, getUsefulFactors(144)

59. # returns [2, 72, 3, 48, 4, 36, 6, 24, 8, 18, 9, 16, 12]

60.

61. if num < 2:

62. return [] # numbers less than 2 have no useful factors

63.

64. factors = [] # the 1list of factors found

The only useful factors for the hacking program’s Kasiski Examination code are of length
MAX KEY LENGTH and under, not including 1. The getUsefulFactors () takes a num

338 http://inventwithpython.com/hacking
parameter and returns a list of “useful” factors. The function does not necessarily return all the
factors of num in this list.

Line 61 checks for the special case where num is less than 2. In this case, line 62 returns the
empty list because these numbers have no useful factors.

vigenereHacker.py

66. # When finding factors, you only need to check the integers up to
67. # MAX_KEY_LENGTH.

68. for i in range(2, MAX_KEY_LENGTH + 1): # don't test 1

69. if num % i ==

70. factors.append(i)

71. factors.append(int(num / 1))

The for loop on line 68 loops through the integers 2 up to MAX KEY LENGTH (including the
value in MAX KEY LENGTH itself, since the second argument to range () is
MAX KEY LENGTH + 1).

If num % 1 isequalto 0, then we know that i evenly divides (that is, has 0 remainder) num and
is a factor of num. In this case, line 70 appends i to the list of factors in the factors variable.
Line 71 also appends num / 1 (after converting it from a float to an int, since the / operator
always evaluates to a float value).

vigenereHacker.py
72. if 1 in factors:
73. factors.remove (1)

The value 1 is not a useful factor, so we remove it from the factozrs list. (If the Vigenére key
had a length of 1, the Vigenére cipher would be no different from the Caesar cipher!)

Removing Duplicates with the set() Function

vigenereHacker.py
74. return list(set(factors))

The factors list might contain duplicates. For example, if getUsefulFactors () was
passed 9 for the num parameter, then 9 $ 3 == 0 would be True and both 1 and int (num
/ 1) (both of which evaluate to 3) would have been appended to factors. But we don’t want
duplicate numbers to appear in our factors list.

Line 74 passes the list value in factors to set () which returns a set form of the list. The set
data type is similar to the list data type, except a set value can only contain unique values. You

Email questions to the author: al@inventwithpython.com

Chapter 21 — Hacking the Vigenere Cipher 339

can pass a list value to the set () function and it will return a set value form of the list. This set
value will not have any duplicate values in it. If you pass this set value to 1ist (), it will return
a list value version of the set. This is how line 74 removes duplicate values from the factors list.
Try typing the following into the interactive shell:

>>> set([1, 2, 3, 3, 41
set([1, 2, 3, 41
>>> spam = list(set([2, 2, 2, 'cats', 2, 2]))

>>> spam
[2, 'cats']
>>>

This 1ist (set (factors)) code is an easy way to remove duplicate factors from the
factors list. The final list value is then returned from the function.

vigenereHacker.py
77. def getItemAtIndexOne(x):
78. return x[1]

The getItemAtIndexOne () is almost identical to getItemAtIndexZero () from the
freqAnalysis.py program in the previous chapter. This function is passed to sort () to sort based
on the item at index 1 of the items being sorted. (See the “The Program’s
getItemAtIndexZero () Function” section in Chapter 20.)

vigenereHacker.py
81. def getMostCommonFactors(seqFactors):

82. # First, get a count of how many times a factor occurs in seqFactors.
83. factorCounts = {} # key is a factor, value is how often if occurs

84.

85. # seqFactors keys are sequences, values are lists of factors of the

86. # spacings. seqFactors has a value 1ike: {'GFD': [2, 3, 4, 6, 9, 12,
87. # 18, 23, 36, 46, 69, 92, 138, 207], 'ALw': [2, 3, 4, 6, ...1, ...}

Remember, we need to know the most common factor of the sequence spacings as a part of the
Kasiski Examination because the most common factor is most likely going to be the length of the
Vigenére key.

The segFactors parameter is a dictionary value created in the kasiskiExamination ()
function, which is explained later. This dictionary has strings of sequences for keys and a list of
integer factors for the value of each key. (These are factors of the spacing integers found by
findRepeatSequencesSpacings ().) For example, seqFactors could contain a

340 http://inventwithpython.com/hacking

dictionary value like { 'VRA': [8, 2, 4, 2, 3, 4, 6, 8, 12, 16, 8, 2, 41,
'aAzu': (2, 3, 4, o, 8, 12, 16, 2471, 'YBN': [8, 2, 471}.

The getMostCommonFactors () function will find the most common factors in
segFactors and return a list of two-integer tuples. The first integer in the tuple will be the
factor and the second integer will be how many times it was in seqFactors.

For example, getMostCommonFactors () may return a list value such as [(3, 556),

(2, 541), (6, 529), (4, 331), (12, 325), (8, 171), (9, 156), (le,
105), (5, 9%8), (11, 8e6), (10, 84), (15, 84), (7, 83), (14, 68),
(13, 52)].This means that in the seqFactors dictionary passed to
getMostCommonFactors (), the factor 3 showed up 556 times, the factor 2 showed up 541
times, the factor 5 showed up 529 times, and so on. Note that 3 is the most frequent factor in the
list and appears first in the list. 13 is the least frequent factor and is last in the list.

vigenereHacker.py

88. for seq in seqgFactors:

89. factorList = seqFactors[seq]

90. for factor in factorlList:

91. if factor not in factorCounts:
92. factorCounts[factor] = 0
93. factorCounts[factor] += 1

For the first step of getMostCommonFactors () the for loop on line 88 loops over every
sequence in seqFactors, storing it in a variable named seq on each iteration. The list of
factors in segFactors for seq is stored in a variable named factorList on line 89.

The factors in this list are looped over with a for loop on line 90. If a factor does not exist as a
key in factorCounts, it is added on line 92 with a value of 0. On line 93,
factorCounts[factor] (thatis, the factor’s value in factorCounts) is incremented.

vigenereHacker.py

95. # Second, put the factor and its count into a tuple, and make a Tist
96. # of these tuples so we can sort them.

97. factorsByCount = []

98. for factor in factorCounts:

99. # exclude factors larger than MAX_KEY_LENGTH

100. if factor <= MAX_KEY_LENGTH:

101. # factorsByCount is a 1list of tuples: (factor, factorCount)
102. # factorsByCount has a value like: [(3, 497), (2, 487), ...]
103. factorsByCount.append((factor, factorCounts[factor]))

Email questions to the author: al@inventwithpython.com

Chapter 21 — Hacking the Vigenere Cipher 341

For the second step of getMostCommonFactors (), we need to sort the values in the
factorCounts dictionary by their count. But dictionaries do not have an order, so we must
first convert the dictionary into a list of two-integer tuples. (We did something similar in Chapter
20 in the getFrequencyOrder () function of the freqAnalaysis.py module.) This list value
will be stored in a variable named factorsByCount, which starts as an empty list on line 97.

The for loop on line 98 goes through each of the factors in factorCounts and appends this
(factor, factorCounts|[factor]) tupletothe factorsByCount listas long as the
factor is less than or equal to MAX KEY LENGTH.

vigenereHacker.py

105. # Sort the 1list by the factor count.

106. factorsByCount.sort(key=getItemAtIndexOne, reverse=True)
107.

108. return factorsByCount

After the for loop finishes adding all the tuples to factorsByCount, the last step of
getMostCommonFactors () is that the factorsByCount list is sorted on line 106.
Because the get ItemAt IndexOne function is passed for the key keyword argument and
True is passed for the reverse keyword argument, the list is sorted in descending order by the
factor counts.

After being sorted, the list in factorsByCount is returned on line 108.

The Kasiski Examination Algorithm

vigenereHacker.py
111. def kasiskiExamination(ciphertext):

112. # Find out the sequences of 3 to 5 letters that occur multiple times
113. # in the ciphertext. repeatedSeqSpacings has a value 1like:

114. # {"EXG': [192], 'NAF': [339, 972, 633], ... }

115. repeatedSeqSpacings = findRepeatSequencesSpacings(ciphertext)

The kasiskiExamination () function returns a list of the most likely key lengths for the
given ciphertext argument. The key lengths are integers in a list, with the first integer in the
list being the most likely key length, the second integer the second most likely, and so on.

The first step is to find the spacings between repeated sequences in the ciphertext. This is
returned from findRepeatSequencesSpacings () as a dictionary with keys of the
sequence strings and values of a list with the spacings as integers.

342 http://inventwithpython.com/hacking

The extend () List Method

The extend () list method is very similar to the append () list method. While the append ()
method adds a single value passed to it to the end of the list, the extend () method will add

every item in a list argument to the end of the list. Try typing the following into the interactive
shell:

>>> spam = []

>>> eggs = ['cat', 'dog', 'mouse']
>>> spam.extend(eggs)

>>> spam

['cat', 'dog', 'mouse']

>>> spam.extend([1, 2, 3])

>>> spam

['cat', 'dog', 'mouse', 1, 2, 3]
>>>

Notice the difference if you pass a list to the append () list method. The list itself gets appended
to the end instead of the values in the list:

>>> spam = []

>>> eggs = ['cat', 'dog', 'mouse']
>>> spam.append(eggs)
>>> spam
[['cat', 'dog', 'mouse']]
>>> spam.append([1, 2, 3])
>>> spam
[['cat', 'dog', 'mouse']l, [1, 2, 3]]
>>>
vigenereHacker.py
117. # See getMostCommonFactors() for a description of seqFactors.
118. seqFactors = {}
119. for seq in repeatedSeqSpacings:
120. segFactors[seq] = []
121. for spacing in repeatedSeqSpacings[seq]:
122. seqFactors[seq].extend(getUsefulFactors(spacing))

While repeatedSegSpacings is a dictionary that maps sequence strings to lists of integer
spacings, we actually need a dictionary that maps sequence strings to lists of factors of those
integer spacings. Lines 118 to 122 do this.

Email questions to the author: al@inventwithpython.com

Chapter 21 — Hacking the Vigenere Cipher 343

Line 118 starts with an empty dictionary in segqFactors. The for loop on line 119 iterates
over every key (which is a sequence string) in repeatedSeqgSpacings. For each key, line
120 sets a blank list to be the value in seqFactors.

The for loop on line 121 iterates over all the spacing integers, which are each passed to a
getUsefulFactors () call. The list returned from getUsefulFactors () has each of its
items appended to segFactors[seq].

When all the for loops are finished, segFactors is a dictionary that maps sequence strings to
lists of factors of integer spacings.

vigenereHacker.py
123. # See getMostCommonFactors() for a description of factorsByCount.
124. factorsByCount = getMostCommonFactors(seqFactors)

The segFactors dictionary is passed to getMostCommonFactors () on line 124. A list of
two-integer tuples (the first integer in the tuple being the factor, the second integer being the
count of how often that factor appeared in segFactors) is returned and stored in

factorsByCount.
vigenereHacker.py
126. # Now we extract the factor counts from factorsByCount and
127. # put them in allLikelyKeyLengths so that they are easier to
128. # use later.
129. allLikelyKeylLengths = []
130. for twoIntTuple in factorsByCount:
131. allLikelyKeyLengths.append(twoIntTuple[0])
132.
133. return allLikelyKeyLengths

The kasiskiExamination () function doesn’t return a list of two-integer tuples though, it
returns a list of integer factors. These integer factors are in the first item of the two-integer tuples
listin factorsByCount, so we need code to pull these integer factors out and put them in a
separate list.

This separate list will be stored in al1LikelyKeyLengths, which to begin with is set to an
empty list on line 129. The for loop on line 130 iterates over each of the tuples in
factorsByCount, and appends the tuple’s index O item to the end of
alllLikelyKeyLengths.

344 http://inventwithpython.com/hacking

After this for loop completes, the a11LikelyKeyLengths variable contains all the factor
integers that were in factorsByCount. This list is returned from

kasiskiExamination ().

vigenereHacker.py

137. def getNthSubkeyslLetters(n, keyLength, message):

138. # Returns every Nth Tletter for each keylLength set of Tetters in text.
139. # E.g. getNthSubkeyslLetters(l, 3, "ABCABCABC') returns 'AAA'

140. # getNthSubkeyslLetters(2, 3, 'ABCABCABC') returns 'BBB'

141. # getNthSubkeyslLetters(3, 3, 'ABCABCABC') returns 'CCC'

142. # getNthSubkeyslLetters(l, 5, 'ABCDEFGHI') returns 'AF'

143.

144. # Use a regular expression to remove non-letters from the message.
145. message = NONLETTERS_PATTERN.sub('', message)

In order to pull out the letters from a ciphertext that were encrypted with the same subkey, we
need a function that can create a string for the 1%, 2™, or “N ™ subkey’s letters from a message.
The first part of getting these letters is to remove the non-letter characters from message using a
regular expression object and its sub () method on line 145. (Regular expressions were first
discussed in Chapter 18’s “A Brief Intro to Regular Expressions and the sub() Regex Method”.)
This letters-only string is stored as the new value in message.

vigenereHacker.py

147. i=n-1

148. letters = []

149. while i < len(message):

150. Tetters.append(message[i])
151. i += keylLength

152. return ''.join(letters)

Next we will build up a string by appending the letter strings to a list and using the join () list
method to create the final string value. This approach executes much faster than string
concatenation with the + operator. (This approach was first discussed in Chapter 18’s “Building
Strings in Python with Lists” section.)

The i variable will point to the index of the letter in message that we want to append to our
string-building list. This list is stored in a variable named letters. The i variable starts with
the value n - 1 on line 147 and the 1etters variable starts with a blank list on line 148.

The while loop on line 149 keeps looping while 1 is less than the length of message. On each
iteration the letter at message [1] is appended to the listin 1etters. Then 1 is updated to
point to the next of the subkey’s letters by adding keyLength to i on line 151.

Email questions to the author: al@inventwithpython.com

Chapter 21 — Hacking the Vigenere Cipher 345

After this loop finishes, the code on line 152 joins the single-letter string values in the letters
list together to form a single string, and this string is returned from
getNthSubkeysLetters ().

vigenereHacker.py
155. def attemptHackWithKeylLength(ciphertext, mostLikelyKeylLength):
156. # Determine the most Tikely Tetters for each letter in the key.
157. ciphertextUp = ciphertext.upper()

Recall that our kasiskiExamination () function isn’t guaranteed to return the one true
integer length of the Vigenére key, but rather the function returns a list of several lengths sorted
in order of most likely to be the key length. If our code has guessed the wrong key length, then it
will have to try again with a different key length. The attemptHackWithKeyLength ()
function is passed the ciphertext and the key length guess. If successful, this function returns a
string of the hacked message. If the hacking fails, the function returns None.

The hacking code works on uppercase letters but the original string will also be needed, so the
uppercase form of the ciphertext string will be stored in a separate variable named

ciphertextUp.
vigenereHacker.py
158. # allFreqScores is a Tist of mostLikelyKeyLength number of Tists.
159. # These inner Tists are the freqScores Tists.
160. al1FreqScores = []
161. for nth in range(l, mostLikelyKeyLength + 1):
162. nthLetters = getNthSubkeyslLetters(nth, mostLikelyKeylLength,
ciphertextUp)

If we assume the value in the mostLikelyKeyLength is the correct key length, the hack
algorithm calls getNthSubkeysLetters () for each subkey and then brute-forces through
the 26 possible letters for each subkey to find the one that produces decrypted text whose letter
frequency closest matches the letter frequency of English.

First, an empty list is stored in al1FregScores on line 160. What this list stores will be
explained a little later.

The for loop on line 161 sets the nth variable to each integer from 1 to the
mostLikelyKeyLength value. (Remember, that when range () is passed two arguments,
the range goes up to, but not including, the second argument. The + 1 is put into the code so that
the integer value in mostLikelyKeyLength itself is included in the range object returned.)

346 http://inventwithpython.com/hacking

The letters of the Nth subkey are returned from getNthSubkeysLetters () on line 162.

vigenereHacker.py

164. # freqScores is a list of tuples Tike:

165. # [(<letter>, <Eng. Freq. match score>), ...]

166. # List is sorted by match score. Higher score means better match.
167. # See the englishFregMatchScore() comments in fregAnalysis.py.
168. freqScores = []

169. for possibleKey in LETTERS:

170. decryptedText = vigenereCipher.decryptMessage(possibleKey,
nthLetters)

171. keyAndFregMatchTuple = (possibleKey,
fregAnalysis.englishFregMatchScore(decryptedText))

172. fregScores.append(keyAndFregMatchTuple)

Next, a list of English frequency match scores is stored in a list in a variable named
fregScores. This variable starts as an empty list on line 168 and then the £or loop on line
169 loops through each of the 26 uppercase letter from the LETTERS string. The possibleKey
value is used to decrypt the ciphertext by calling vigenereCipher.decryptMessage ()

on line 170. The subkey in possibleKey is only one letter, but the string in nthLetters is
made up of only the letters from message that would have been encrypted with that subkey if
we’ve guessed the key length correctly.

The decrypted text is then passed to fregAnalysis.englishFreqMatchScore () to see
how closely the frequency of the letters in decryptedText matches the letter frequency of
regular English. (Remember from the last chapter that the return value will be an integer between
0 and 12, with a higher number meaning a closer match.)

This frequency match score, along with the key used to decrypt, are put into a tuple that is stored
in a variable named keyAndFregMatchTuple on line 171. This tuple is appended to the end
of fregScores on line 172.

vigenereHacker.py
173. # Sort by match score
174. freqScores.sort(key=getItemAtIndexOne, reverse=True)

After the for loop on line 169 completes, the fregScores list will contain 26 key-and-
frequency-match-score tuples: one tuple for each of the 26 subkeys. We need to sort this so that
the tuples with the largest English frequency match scores are first in the list.

This means that we want to sort by the value at index 1 of the tuples in fregScores and in
reverse (that is, descending) order. We call the sort () method on the fregqScores list,

Email questions to the author: al@inventwithpython.com

Chapter 21 — Hacking the Vigenere Cipher 347

passing the function value getItemAtIndexOne (not calling the function: note the lack of
parentheses) for the key keyword argument. The value True is passed for the reverse
keyword argument to sort in reverse (that is, descending) order.

vigenereHacker.py

176. al1FreqgScores.append(freqScores[:NUM_MOST_FREQ_LETTERS])

The NUM MOST FREQ LETTERS constant was set to the integer value 3 on line 9. Once the
tuples in fregScores are sorted, a list containing only the first 3 tuples (that is, the tuples with
the three highest English frequency match scores) is appended to al1FregScores.

After the for loop on line 161 completes, al1FregScores will contain a number of list
values equal to the integer value in mostLikelyKeyLength. (For example, since
mostLikelyKeyLength was 3, allFregScores would be a list of three lists.) The first
list value will hold the tuples for the top three highest matching subkeys for the first subkey of the
full Vigenere key. The second list value will hold the tuples for the top three highest matching
subkeys for the second subkey of the full Vigenére key, and so on.

Originally, if we wanted to brute-force through the full Vigenere key, there would be (26 » key
length) number of possible keys. For example, if the key was ROSEBUD (with a length of 7)
there would be 26 ~ 7 (that is, 8,031,810,176) possible keys.

But by checking the English frequency matching, we’ve narrowed it down to the 4 most likely
letters for each subkey, meaning that there are now only (4 * key length) possible keys. Using the
example of ROSEBUD (with a length of 7) for a Vigenére key, now we only need to check 4 A 7
(that is, 16,384) possible keys. This is a huge improvement over 8 billion!

The end Keyword Argument for print ()

vigenereHacker.py

178. if not SILENT_MODE:

179. for i in range(len(allFreqScores)):

180. # use i + 1 so the first Tetter is not called the "O0th" Tetter
181. print('Possible letters for Tetter %s of the key: ' % (i + 1),
end="")

182. for fregScore in allFreqScores[i]:

183. print('%s ' % fregScore[0], end='")

184. print() # print a newline

348 http://inventwithpython.com/hacking

At this point, the user might want to know which letters are in the top three most likely list for
each subkey. If the SILENT MODE constant was set to False, then the code on lines 178 to 184
will print out the values in al1FregScores to the screen.

Whenever the print () function is called, it will print the string passed to it on the screen along
with a newline character. If we want something else printed at the end of the string instead of a
newline character, we can specify the string for the print () function’s end keyword argument.
Try typing the following into the interactive shell:

>>> print('HE11o', end='\n")

HE1lo

>>> print('Hello', end="\n")

Hello

>>> print('Hello', end="")
Hello>>> print('Hello', end='XYZ')
HeTloXYZ>>>

(The above was typed into the python.exe interactive shell rather than IDLE. IDLE will always
add a newline character before printing the >>> prompt.)

The itertools.product () Function

The itertools.product () function produces every possible combination of items in a list
or list-like value, such as a string or tuple. (Though the itertools.product () function
returns a “itertools product” object value, this can be converted to a list by passing itto 1ist ().)
This combination of things is called a Cartesian product, which is where the function gets its
name. Try typing the following into the interactive shell:

>>> import itertools

>>> itertools.product('ABC', repeat=4)

<itertools.product object at 0x02C40170>

>>> Tist(itertools.product('ABC', repeat=4))

[C'A", 'A", 'A", "A"YD, (A", 'A', 'A'", 'B"), ('A', 'A', A", 'C"H, ('A', 'A",

'B', 'AY), ('A', 'A', 'B', 'B"), ('A', 'A', 'B', 'C"), ('A', 'A', 'C', A",

C'A', 'AY, 'C', 'B"), (C'A", A", 'C', 'CYD, ('A', 'B', 'A', 'A"), ('A', 'B'",

'A', 'B'D), ('A', 'B', 'A', 'C"), ('A', 'B', 'B', 'A'D, ('A', 'B', 'B', 'B"),
...Skipped for brevity...

c'c, 'B', 'c', 'B", (C'C', 'B', 'C', 'CYH), ('c", 'C', A", 'A"H, ('C, ',

'A', 'B"), C'C', 'Cc', 'A"', 'C", ('C', 'C', 'B', A", (C'C', 'Cc', 'B", 'B"),

ccy, 'c, 'B', 'cH, ccy, 'cy, 'c', 'AYH, ('C', 'c', 'Cc', 'BY, CC", 'c",

'cr, e

Email questions to the author: al@inventwithpython.com

Chapter 21 — Hacking the Vigenere Cipher 349

As you can see, by passing ' ABC' and the integer 4 for the repeat keyword argument,
itertools.product () returns an “itertools product” object that, when converted to a list,
has tuples of four values with every possible combination of "A"', 'B', and 'C"'. (This results in
a list with a total of 3 ~ 4 or 81 tuples in it.)

Since range objects returned from range () are also list-like, they can be passed to
itertools.product () as well. Try typing the following into the interactive shell:

>>> import itertools
>>> list(itertools.product(range(8), repeat=5))
[co, o, o, o, 0, (o, o, 0o, 0, 1, o, 0, 0, 0, 2>, (0, 0, 0, 0, 3, (0, 0, 0,
o, 49, (o, o, 0o, 0, 5, (¢, o0, o0, 0, 6), (0, 0, 0, 0, 7», (0, 0, 0, 1, OO, (O,
o, 0o, 1, 1, (o, 0, 0, 1, 2, (0, 0, 0, 1, 3), (0, 0, 0, 1, B,

...Skipped for brevity...
z,7,7,6,6), (7,7,7,6, 7, (7,7,7,7, 0, (7,7,7,7, 1D, (7,7, 7,
7,2, (7,7,7,7,3), (7,7,7,7,4%, (7,7,7,7,5), (7,7,7,7, 6), (7,
7,7, 7, 7]

When the range object returned from range (8) is passed to itertools.product () (along
with 5 for the repeat keyword argument), the list that is generated has tuples of 5 values, and

each value are from the integers O to 7.

The itertools.product () function is an easy way to generate a list with every possible
combination of some group of values. This is how our hacking program will create integer
indexes to test every possible combination of possible subkeys.

vigenereHacker.py

186. # Try every combination of the most likely letters for each position
187. # in the key.
188. for indexes in itertools.product(range(NUM_MOST_FREQ_LETTERS),

repeat=mostLikelyKeylLength):

The allFregScores variable is a list of lists of tuples such that al1FregScores [1] will
evaluate to a list of tuples of possible letters for a single subkey. That is, al1FreqgScores [0]
has a list of tuples for the first subkey, al1FregScores[1] has alist of tuples for the second
subkey, and so on.

Also, since the NUM MOST FREQ LETTERS constant is set to 4,

itertools.product (range (NUM MOST FREQ LETTERS),
repeat=mostLikelyKeyLength) will cause the for loop to have a tuple of integers (from
0 to 3) for the indexes variable. If 5 was passed for mostLikelyKeyLength, then the
following values would be set to indexes for each iteration:

350 http://inventwithpython.com/hacking

Table 21-4. Value of indexes on each iteration.

On the 1" iteration, indexesissetto: (0, 0, 0, 0, 0)

On the 2™ iteration, indexes issetto: (0, 0, 0, 0, 1)

On the 3" iteration, indexes issetto: (0, 0, 0, 0, 2)

On the 4™ iteration, indexes issetto: (0, 0, 0, 1, 0)

On the 5" iteration, indexes issetto: (0, 0, 0, 1, 1)

And so on...
vigenereHacker.py

189. # Create a possible key from the Tetters in allFreqScores
190. possibleKey = "'
191. for i in range(mostLikelyKeylLength):
192. possibleKey += allFreqScores[i][indexes[i]][0]

The full Vigenere key will be constructed from the subkeys in al1FregScores using the
indexes supplied by indexes. The key starts off as a blank string on line 190, and the for loop
on line 191 will iterate through the integers from 0 up to, but not including,
mostLikelyKeyLength.

As the 1 variable changes for each iteration of the for loop, the value at indexes [1i] will be
the index of the tuple we want to use in al1FregScores [1]. This is why
allFregScores|[i] [indexes[1]] evaluates to the correct tuple we want (and the subkey
we want is at index 0 in that tuple).

vigenereHacker.py
194. if not SILENT_MODE:
195. print('Attempting with key: %s' % (possibleKey))

If SILENT MODE is False, the key created by the for loop on line 191 is printed to the
screen.

vigenereHacker.py

197. decryptedText = vigenereCipher.decryptMessage(possibleKey,
ciphertextUp)

198.

199. if detectEnglish.isEnglish(decryptedText):

200. # Set the hacked ciphertext to the original casing.
201. origCase = []

202. for i in range(len(ciphertext)):

203. if ciphertext[i].isupper():

204. origCase.append(decryptedText[i].upper())
205. else:

206. origCase.append(decryptedText[i].Tower())

Email questions to the author: al@inventwithpython.com

Chapter 21 — Hacking the Vigenere Cipher 351

207. decryptedText = ''.join(origCase)

Now that we have a complete Vigenére key, lines 197 to 208 will decrypt the ciphertext and
check if the decrypted text is readable English. If it is, then it is printed to the screen for the user
to confirm it is English (since 1 sEnglish () might produce a false positive).

But decryptedText is in all uppercase letters. The code on lines 201 to 207 builds a new
string by appending the origCase list with an uppercase or lowercase form of the letters in
decryptedText. The for loop on line 202 goes through each of the indexes in the
ciphertext string (which, unlike ciphertextUp, has the original casing of the
ciphertext). If ciphertext[i] is uppercase, then the uppercase form of
decryptedText [1i] is appended to origCase. Otherwise, the lowercase form of
decryptedText [i] is appended. The list in origCase is then joined together on line 207 to
become the new value of decryptedText.

This table shows how the ciphertext and decryptedText values produce the strings that
go into origCase:

ciphertext Adiz Avtzgeci Tmzubb wsa m Pmilgev halpgavtakuoi
decryptedText ALAN MATHISON TURING WAS A BRITISH MATHEMATICIAN
''.join(origCase) Alan Mathison Turing was a British mathematician

vigenereHacker.py
209. # Check with user to see if the key has been found.
210. print('Possible encryption hack with key %s:' % (possibleKey))
211. print(decryptedText[:200]) # only show first 200 characters
212. print()
213. print('Enter D for done, or just press Enter to continue
hacking: ")
214. response = input('> ')
215.
216. if response.strip().upper().startswith('D"):
217. return decryptedText

The correctly-cased decrypted text is printed to the screen for the user to confirm it is English. If
the user enters 'D' then the function returns the decryptedText string.

vigenereHacker.py
219. # No English-Tooking decryption found, so return None.
220. return None

352 http://inventwithpython.com/hacking

Otherwise, after the for loop on line 188 iterates through all of the possible indexes to use and
none of the decryptions look like English, the hacking has failed and the None value is returned.

vigenereHacker.py

223. def hackVigenere(ciphertext):

224. # First, we need to do Kasiski Examination to figure out what the
225. # Tength of the ciphertext's encryption key is.
226. allLikelyKeylLengths = kasiskiExamination(ciphertext)

Now we define the hackVigenere () function, which calls all of the previous functions.
We’ve already defined all the work it will do. Let’s run through the steps it goes through to
perform the hacking. The first step is to get the most likely lengths of the Vigenere key based on
Kasiski Examination of ciphertext.

vigenereHacker.py

227. if not SILENT_MODE:

228. keyLengthStr = "'

229. for keylLength in allLikelyKeylLengths:

230. keyLengthStr += '%s ' % (keyLength)

231. print('Kasiski Examination results say the most likely key lengths

are: ' + keylLengthStr + '\n')

The likely key lengths are printed to the screen if SILENT MODE is False.

The break Statement

Similar to how the continue statement is used inside of a loop to continue back to the start of
the loop, the break statement (which is just the break keyword by itself) is used inside of a
loop to immediately exit the loop. When the program execution “breaks out of a loop”, it
immediately moves to the first line of code after the loop ends.

vigenereHacker.py

233. for keyLength in allLikelyKeylLengths:

234. if not SILENT_MODE:

235. print('Attempting hack with key length %s (%s possible
keys)..."' % (keyLength, NUM_MOST_FREQ_LETTERS ** keylLength))

236. hackedMessage = attemptHackWithKeylLength(ciphertext, keylLength)
237. if hackedMessage != None:

238. break

For each possible key length, the code calls the attemptHackWithKeyLength () function
on line 236. If attemptHackWithKeyLength () does not return None, then the hack was
successful and the program execution should break out of the for loop on line 238.

Email questions to the author: al@inventwithpython.com

Chapter 21 — Hacking the Vigenere Cipher 353

vigenereHacker.py

240. # If none of the key Tengths we found using Kasiski Examination
241. # worked, start brute-forcing through key lengths.

242. if hackedMessage == None:

243. if not SILENT_MODE:

244 print('Unable to hack message with Tikely key length(s).
Brute-forcing key length...")

245. for keyLength in range(l, MAX_KEY_LENGTH + 1):

246. # don't re-check key Tengths already tried from Kasiski
247 . if keyLength not in allLikelyKeylLengths:

248. if not SILENT_MODE:

249. print('Attempting hack with key Tength %s (%s possible
keys)..."' % (keyLength, NUM_MOST_FREQ_LETTERS ** keylLength))

250. hackedMessage = attemptHackWithKeylLength(ciphertext,
keyLength)

251. if hackedMessage != None:

252. break

If the hack had failed for all the possible key lengths that kasiskiExamination () returned,
hackedMessage will be set to None when the i f statement on line 242 executes. In this case,
all the other key lengths up to MAX KEY LENGTH are tried. If Kasiski Examination failed to
calculate the correct key length, then we can just brute-force through the key lengths.

Line 245 starts a for loop that will call attemptHackWithKeyLength () for each value of
keyLength (which ranges from 1 to MAX KEY LENGTH) as long as it was not in
allLikelyKeyLengths. (This is because the key lengths in al11LikelyKeyLengths
have already been tried in the code on lines 233 to 238.)

vigenereHacker.py
253. return hackedMessage

Finally, the value in hackedMessage is returned on line 253.

vigenereHacker.py
256. # If vigenereHacker.py is run (instead of imported as a module) call
257. # the main() function.
258. if _name_ == '__main__":
259. main()

Lines 258 and 259 call the main () function if this program was run by itself rather than
imported by another program.

354 http://inventwithpython.com/hacking

That’s the full Vigenere hacking program. Whether it is successful or not depends on the
characteristics of the ciphertext. Also, the closer the original plaintext’s letter frequency is to
regular English’s letter frequency and the longer the plaintext, the more likely our hacking
program will work.

Practice Exercises, Chapter 21, Set A

Modifying the Constants of the Hacking Program

There are a few things we can modify if the hacking program doesn’t work though. There are
three constants we set on lines 8 to 10 that affect how our hacking program runs:

vigenereHacker.py
8. MAX_KEY_LENGTH = 16 # will not attempt keys Tlonger than this

If the Vigenere key was longer than the integer in MAX KEY LENGTH, there is no possible way
the hacking program will find the correct key. However, if we have MAX KEY LENGTH set very
high and the kasiskiExamination () function mistakenly thinks that the key length could
be a very large integer, the program could be spending hours (or days or months) attempting to
hack the ciphertext with wrong key lengths.

Trying to hack the wrong key length that is small is not that big of a problem: it will only take
seconds or minutes to go through the likely keys of that length. If the hacking program fails to
hack the ciphertext, try increasing this value and running the program again.

vigenereHacker.py

9. NUM_MOST_FREQ_LETTERS = 3 # attempts this many letters per subkey

The NUM MOST FREQ LETTERS limits the number of possible letters tried for each subkey.
By increasing this value, the hacking program tries many more keys (which is needed if the
fregAnalysis.englishFregMatchScore () was inaccurate for the original plaintext
message), but this will also cause the program to slow down. And setting

NUM MOST FREQ LETTERS to 26 will cause the program to not narrow down the number of
possible letters for each subkey at all!

Table 21-5. Tradeoffs for the MAX_KEY_LENGTH and NUM_MOST_FREQ_LETTERS.

Smaller value: | Larger value:
Faster to execute. | Slower to execute.
Less likely to hack. | More likely to hack.

Email questions to the author: al@inventwithpython.com

Chapter 21 — Hacking the Vigenere Cipher 355

vigenereHacker.py
10. SILENT_MODE = False # if set to True, program doesn't print attempts

While your computer can perform calculations very fast, displaying characters on the screen is
relatively slow. If you want to speed up your program, you can set SILENT MODE to True so
that the program does not waste time printing information to the screen. On the downside, you
will not know how the program is doing until it has completely finished running.

Summary

Hacking the Vigenere cipher requires several detailed steps to follow. There are also many parts
where our hacking program could fail: perhaps the Vigenére key used for encryption was larger
in length than MAX KEY LENGTH, or perhaps the English frequency matching function got
inaccurate results because the plaintext doesn’t follow normal letter frequency, or maybe the
plaintext has too many words that aren’t in our dictionary file and 1 sEnglish () doesn’t
recognize it as English.

If you identify different ways that the hacking program could fail, you could change the code to
become ever more sophisticated to handle these other cases. But the hacking program in this book
does a pretty good job at reducing billions or trillions of possible keys to brute-force through to
mere thousands.

However, there is one trick to make the Vigeneére cipher mathematically impossible to break, no
matter how powerful your computer or how clever your hacking program is. We’ll learn about
these “one-time pads” in the next chapter.

356 http://inventwithpython.com/hacking

CHAPTER 22

THE ONE-TIME PAD CIPHER

Topics Covered In This Chapter:
e The Unbreakable One-Time Pad Cipher
e The Two-Time Pad is the Vigenere Cipher

“I’ve been over it a thousand times,” Waterhouse
says, “and the only explanation I can think of is
that they are converting their messages into large
binary numbers and then combining them with
other large binary numbers —one-time pads, most
likely —to produce the ciphertext.”

“In which case your project is doomed," Alan says,
"because you can't break a one-time pad.”

“Cryptonomicon” by Neal Stephenson

Email questions to the author: al@inventwithpython.com

Chapter 22 — The One-Time Pad Cipher 357

The Unbreakable One-Time Pad Cipher

There is one cipher that is impossible to crack, no matter how powerful your computer is, how
much time you have to crack it, or how clever of a hacker you are. We won’t have to write a new
program to use it either. Our Vigenére program can implement this cipher without any changes.
But this cipher is so inconvenient to use on a regular basis that it is often only used for the most
top-secret of messages.

The one-time pad cipher is an unbreakable cipher. It is a Vigenére cipher where:

1. The key is exactly as long as the message that is encrypted.
2. The key is made up of truly random symbols.
3. The key is used one time only, and never used again for any other message.

By following these three rules, your encrypted message will be invulnerable to any cryptanalyst’s
attack. Even with literally an infinite amount of computing power, the cipher cannot be broken.

The key for the one-time pad cipher is called a pad because they were printed on pads of paper.
The top sheet of paper would be torn off the pad after it was used to reveal the next key to use.

Why the One-Time Pad is Unbreakable

To see why the one-time pad (OTP) cipher is unbreakable, let’s think about why the regular
Vigenére cipher is vulnerable to breaking. Our Vigenere cipher hacking program works by doing
frequency analysis. But if the key is the same length as the message, then every possible
ciphertext letter is equally probable to be for the same plaintext letter.

Say that we want to encrypt the message, “If you want to survive out here, you've got to know
where your towel is.” If we remove the spaces and punctuation, this message has 55 letters. So to
encrypt it with a one-time pad, we need a key that is also 55 letters long. Let’s use the key
“keqyzhepxautigekxejmoretzhztrwwqdylbttvejmedbsanybpxqik”. Encrypting the string looks like
this:

Plaintext ifyouwanttosurviveouthereyouvegottoknowwhereyourtowelis
Key kcgyzhepxautigekxejmoretzhztrwwgdylbttvejmedbsanybpxgik
Ciphertext shomtdecqgtilchzssixghyikdfnnmacewrzlghraggvhzguerplbbgc

Now imagine a cryptanalyst got a hold of the ciphertext (“shomtdec...”). How could she attack
the cipher? Brute-forcing through the keys would not work, because there are too many even for a
computer. The number of keys is 26 » (number of letters in the message), so if the message has 55
letters, there would be a total of 26 * 55, or 666,091,878,431,395,624,153,823,182,526,730,590,
376,250,379,52 8,249,805,353,030,484,209,594,192,101,376 possible keys.

358 http://inventwithpython.com/hacking

But it turns out that even if she had a computer that was powerful enough to try all the keys, it
still would not break the one-time pad cipher. This is because for any ciphertext, all possible
plaintext messages are equally likely.

For example, given the ciphertext “shomtdec...”, we could easily say the original plaintext was
“The myth of Osiris was of importance in ancient Egyptian religion.” encrypted with the key
“zakavkxolfqdlzhwsqjbzmtwmmnakwurwexdcuywksgorghnnedvtcp™:

Plaintext themythofosiriswasofimportanceinancientegyptianreligion
Key zakavkxolfgdlzhwsgjbzmtwmmnakwurwexdcuywksgorghnnedvtcp
Ciphertext shomtdecqgtilchzssixghyikdfnnmacewrzlghraqgvhzguerplbbgc

The way we are able to hack encryption is because there is usually only one key that can be used
to decrypt the message to sensible English. But we’ve just shown that the same ciphertext could
have been made from two very different plaintext messages. For the one-time pad, the
cryptanalyst has no way of telling which was the original message. In fact, any readable English
plaintext message that is exactly 55 letters long is just as likely to be the original plaintext. Just
because a certain key can decrypt the ciphertext to readable English does not mean it was
the original encryption key.

Since any English plaintext could have been used to create a ciphertext with equal likelihood, it is
completely impossible to hack a message encrypted with a one-time pad.

Beware Pseudorandomness

The random module that comes with Python does not generate truly random numbers. They are
computed from an algorithm that creates numbers that only appear random (which is often good
enough). If the pad is not generated from a truly random source, then it loses its mathematically-
perfect secrecy.

The os.urandom () function can provide truly random numbers but is a bit more difficult to

Beware the Two-Time Pad

If you do use the same one-time pad key to encrypt two different messages, you have introduced
a weakness into your encryption. Using the one-time pad cipher this way is sometimes called a
“two-time pad cipher”. It’s a joke name though, the two-time pad cipher is really just using the
one-time pad cipher incorrectly.

Just because a key decrypts the one-time pad ciphertext to readable English does not mean it is
the correct key. However, if you use the same key for two different messages, now the hacker can

Email questions to the author: al@inventwithpython.com

Chapter 22 — The One-Time Pad Cipher 359

know that if a key decrypts the first ciphertext to readable English, but that same key decrypts the
second message to random garbage text, it must not be the original key. In fact, it is highly likely
that there is only one key that will decrypt both messages to English.

If the hacker only had one of the two messages, then it is still perfectly encrypted. But, you must
always assume that all of your encrypted messages are being intercepted by hackers and/or
governments (otherwise, you wouldn’t need to bother encrypting your messages.) Remember
Shannon’s Maxim: The enemy knows the system! This includes knowing the ciphertext.

The Two-Time Pad is the Vigenére Cipher

To see why the two-time pad is hackable just like the Vigenere Cipher, let’s think about how the
Vigenere cipher works when it encrypts a message that is longer than the key. Once we run out of
characters in the key to encrypt with, we go back to the first character of the key and continue
encrypting. So to encrypt a 20-character message like “AABBCCDDEEVVWWXXYYZZ” with
a 10-character long key such as “PRECOCIOUS?”, the first ten characters (AABBCCDDEE) are
encrypted with “PRECOCIOUS” and then the next ten characters (VVWWXXYYZZ) are also
encrypted with “PRECOCIOUS”.

Plaintext AABBCCDDEEVVWWXXYYZZ
Vigenére Key PRECOCIOUSPRECOCIOUS
Vigenere Ciphertext PRFDQELRYWKMAYLZGMTR

We have already learned how to break Vigenére ciphers. If we can show that a two-time pad
cipher is the same thing as a Vigenére cipher, then we can prove that it is breakable using the
same techniques used to break Vigeneére cipher.

Using the one-time pad cipher, let’s say the 10-character message “AABBCCDDEE” was
encrypted with the one-time pad key “PRECOCIOUS”. Then the cryptographer makes the
mistake of encrypting a second 10-character message “VVWWXXYYZZ” with the same one-
time pad key, “PRECOCIOUS”.

Message 1 Message 2
Plaintext AABBCCDDEE VVWWXXYYZZ

One-Time Pad Key PRECOCIOUS PRECOCIOUS
One-Time Pad Ciphertext PRFDQELRYW KMAYLZGMTR

If we compare the ciphertext of the Vigenére cipher and the ciphertexts of the one-time pad
cipher, we can see they are the exact same. The two-time pad cipher has the same properties as
the Vigenére cipher, which means that the same techniques could be used to hack it!

This also tells us that if we do the Vigenére cipher but use a key that is as long as the message it
is encrypting (and only use this key once for this message), then it will be perfectly unbreakable.

360 http://inventwithpython.com/hacking

This is why we don’t need to write a separate one-time pad cipher program. Our Vigenére cipher
program already does it!

Practice Exercises, Chapter 22, Set A

Summary

In short, a one-time pad is just the Vigenére cipher with a key that is the same length as the
message and is only used once. As long as these two conditions are followed, it is literally
impossible to break the one-time pad. However, it is so inconvenient to use the one-time pad that
it is not generally used except for the most top-secret of secrets. Usually a large list of one-time
pad keys are generated and shared in person, with the keys marked for specific dates. This way, if
you receive a message from your collaborator on October 31*, you can just look through the list
of one-time pads to find the one for that day. But be sure this list doesn’t fall into the wrong
hands!

Email questions to the author: al@inventwithpython.com

Chapter 23 — Finding Prime Numbers 361

CHAPTER 23

FINDING PRIME NUMBERS

Topics Covered In This Chapter:

e Prime and Composite Numbers
e The Sieve of Eratosthenes

e The Rabin-Miller Primality Test

“Mathematicians have tried in vain to this day to
discover some order in the sequence of prime
numbers, and we have reason to believe that it is a
mystery into which the human mind will never
penetrate.”

Leonhard Euler, 18" century mathematician

All of the ciphers described in this book so far have been around for hundreds of years, and all of
them (with the exception of the one-time pad) are easily broken by computers. These ciphers
worked very well when hackers had to rely on pencil and paper to hack them, but computers can
now manipulate data trillions of times faster than a person with a pencil.

The RSA cipher has several improvements over these old ciphers, and it will be detailed in the
next chapter. However, the RSA cipher will require us to learn about prime numbers first.

362 http://inventwithpython.com/hacking

Prime Numbers

A prime number is an integer (that is, a whole number) that is greater than 1 and has only two
factors: 1 and itself. Remember that the factors of a number are the numbers that can be
multiplied to equal the original number. The numbers 3 and 7 are factors of 21. The number 12
has factors 2 and 6, but also 3 and 4.

Every number has factors of 1 and itself. The numbers 1 and 21 are factors of 21. The numbers 1
and 12 are factors of 12. This is because 1 times any number will always be that same number.
But if no other factors exist for that number, then that number is prime.

Here’s a list of prime numbers (note that 1 is not considered a prime number):

2,3,5,7,11, 13,17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103,
107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281 ...and so on, FOREVER.

There are an infinite number of prime numbers. This means there is no “largest” prime. They just

for a proof of this.) The RSA cipher makes use of very large prime numbers in the keys it uses.
Because of this, there will be far too many keys to brute-force through.

A googol is the number that has a one with a hundred zeros behind it:

10,00
0,000,000,000,000,000,000,000,000,000,000,000

(As a bit of history: the name of the search engine company Google came from misspelling
“googol”, but they decided they liked that spelling better and kept it.)

A billion billion billion googols has twenty-seven more zeros than a googol:

10,00
0,000

But these are tiny numbers. A typical prime number used in our RSA program will have hundreds
of digits:

112,829,754,900,439,506,175,719,191,782,841,802,172,556,768,253,593,054,977,186,2355,84,9

79,780,304,652,423,405,148,425,447,063,090,165,759,070,742,102,132,335,103,295,947,000,71

8,386,333,756,395,799,633,478,227,612,244,071,875,721,006,813,307,628,061,280,861,610,153,
485,352,017,238,548,269,452,852,733,818,231,045,171,038,838,387,845,888,589,411,762,622,0

41,204,120,706,150,518,465,720,862,068,595,814,264,819

Email questions to the author: al@inventwithpython.com

Chapter 23 — Finding Prime Numbers 363

The above number is so big, I’'m going to guess you didn’t even read it to notice the typo in it.

Composite Numbers

Integers that are not prime numbers are called composite numbers, because they are composed
of at least two factors besides 1 and the number itself. They are called composite numbers
because these number are composed of prime numbers multiplied together, such as the composite
number 1,386 being composed of the prime numbers in 2 X 3 X3 x 7 x 11.

Here are four facts about prime numbers:

1. Prime numbers are integers greater than 1that have only 1 and themselves as factors.

2. Two is the only even prime number. (Though I guess that makes two a very odd
prime number.)

3. There are an infinite number of prime numbers. There is no “largest prime number”.

4. Multiplying two prime numbers will give a number that only has two pairs of
factors, 1 and itself (like all numbers do), and the two prime numbers that were
multiplied. For example, 3 and 7 are prime numbers. 3 times 7 is 21. The only
factors for 21 are 1, 21, 3, and 7.

Source Code for The Prime Sieve Module

First we will create a module that has functions related to prime numbers:

e isPrime () will return either True or False if the number passed to it is prime or not. It will
use the “divides test” algorithm.

e primeSieve () will use the “Sieve of Eratosthenes” algorithm (explained later) to generate
numbers.

Like cryptomath.py, the primeSieve.py program is only meant to be imported as a module to our
other programs. It does not do anything when run on its own.

Open a new file editor window by clicking on File » New Window. Type in the following code
into the file editor, and then save it as primeSieve.py.

Source code for primeSieve.py
. # Prime Number Sieve
. # http://inventwithpython.com/hacking (BSD Licensed)

1

2

3.

4. dimport math
5

6

7

. def isPrime(num):

364 http://inventwithpython.com/hacking

8.

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.

def

Returns True if num is a prime number, otherwise False.
Note: Generally, isPrime() is sTower than primeSieve().

all numbers Tess than 2 are not prime
if num < 2:
return False

see if num is divisible by any number up to the square root of num
for i in range(2, int(math.sqrt(num)) + 1):
if num % i ==
return False
return True

primeSieve(sieveSize):
Returns a list of prime numbers calculated using
the Sieve of Eratosthenes algorithm.

sieve = [True] * sieveSize
sieve[0] False # zero and one are not prime numbers
sieve[1l] False

create the sieve
for i in range(2, int(math.sqrt(sieveSize)) + 1):
pointer = i * 2
while pointer < sieveSize:
sieve[pointer] = False

pointer += i

compile the Tist of primes
primes = []
for i in range(sieveSize):
if sieve[i] == True:
primes.append(i)

return primes

How the Program Works

A wWN R

primeSieve.py

. # Prime Number Sieve

http://inventwithpython.com/hacking (BSD Licensed)

import math

Email questions to the author: al@inventwithpython.com

Chapter 23 — Finding Prime Numbers 365

The only module primeSieve.py needs is the math module.

How to Calculate if a Number is Prime

primeSieve.py
7. def isPrime(num):

8. # Returns True if num 1is a prime number, otherwise False.
9.

10. # Note: Generally, isPrime() 1is sTower than primeSieve().
11.

12. # all numbers Tess than 2 are not prime

13. if num < 2:

14. return False

We will program the 1 sPrime () function to return False if the num parameter is a composite
number and True if the num parameter is a prime number. If num is less than 2 we know it is

not prime and can simply return False.

primeSieve.py

16. # see if num is divisible by any number up to the square root of num
17. for i in range(2, int(math.sqrt(num)) + 1):

18. if num % i ==

19. return False

20. return True

A prime number has no factors besides 1 and itself. So to find out if a given number is prime or
not, we just have to keep dividing it by integers and see if any of them evenly divide the number
with 0 remainder.

The math.sqrt () function will return a float value of the square root of the number it is
passed. The square root of a number can be multiplied by itself to get the number. For example,
the square root of 49 is 7, because 7 x 7 is 49.

For example, to find out if 49 is prime, divide it by the integers starting with 2:
49 + 2 = 24 remainder 1
49 + 3 = 16 remainder 1
49 + 4 = 12 remainder 1
49 + 5 =9 remainder 4

49 + 6 = 8 remainder 1

366 http://inventwithpython.com/hacking

49 =7 =7 remainder 0

Actually, you only need to divide the number by prime numbers. For example, there’s no reason
to see if 6 divides 49, because if it did then 2 would have divided 49 since 2 is a factor of 6. Any
number that 6 divides evenly can also be divided by 2 evenly:

If 2 divides 6 evenly...

i

...then any number that
6 divides, 2 divides also.

(where x is any
amount of length)

Figure 23-1. 2 divides 6, and 6 divides X, therefore 2 divides X.

Because there’s an integer (that is not 1 or 49) that evenly divides 49 (that is, has a remainder of
0), we know that 49 is not a prime number. For another example, let’s try 13:

13 + 2 = 6 remainder 1
13 + 3 =4 remainder 1
13 + 4 =3 remainder 1

No integer divides 13 with a remainder of 0 (except for 1 and 13, which don’t count). Actually,
we don’t even have to divide all the numbers up to 13. We only have to test the integers up to
(and including) the square root of the number we are testing for primality. The square root of a
number is the number that is multiplied by itself to get that first number. The square root of 25 is
5, because 5 X 5 = 25. The square root of 13 is about 3.6055512754639, because
3.6055512754639 X 3.6055512754639 = 13. This means that when we were testing 13 for
primality, we only had to divide 2 and 3 because 4 is larger than the square root of 13.

Line 18 checks if the remainder of division is 0 by using the $ mod operator. If line 17°s for

loop never returns False, the function will return True on line 20.

The Sieve of Eratosthenes

The sieve of Eratosthenes (pronounced “era, taws, thuh, knees”) is an algorithm for calculating
prime numbers. Imagine a bunch of boxes for each integer, all marked “prime”:

Email questions to the author: al@inventwithpython.com

Chapter 23 — Finding Prime Numbers 367

Table 23-1. A blank sieve of Eratosthenes, with each number marked as “prime”.

Prime Prime Prime Prime Prime Prime Prime Prime Prime Prime
1 2 3 4 5 6 7 8 9 10

Prime Prime Prime Prime Prime Prime Prime Prime Prime Prime
11 12 13 14 15 16 17 18 19 20

Prime Prime Prime Prime Prime Prime Prime Prime Prime Prime
21 22 23 24 25 26 27 28 29 30

Prime Prime Prime Prime Prime Prime Prime Prime Prime Prime
31 32 33 34 35 36 37 38 39 40

Prime Prime Prime Prime Prime Prime Prime Prime Prime Prime
41 42 43 44 45 46 47 48 49 50

Mark 1 as “Not Prime” (since one is never prime). Then mark all the multiples of two (except for
two itself) as “Not Prime”. This means we will mark the integers 4 (2 X 2), 6 (2 X 3), 8 (2 X 4),
10, 12, and so on up to 50 (the largest number we have) are all marked as “Not Prime”:

Table 23-2. The sieve with one and the multiples of 2 (except 2 itself) marked as “not prime”.

Then repeat this with all the multiples of three, except for three itself: 6, 9, 12, 15, 18, 21, and so
on are all marked “Not Prime”. Then do this for all of the multiples of four (except for four
itself), and all of the multiples of five (except for five itself), up until eight. We stop at 8 because

368 http://inventwithpython.com/hacking

it is larger than 7.071, the square root of 50). We can do this because all the multiples of 9, 10,
11, and so on will already have been marked.

The completed sieve looks like this:

Table 23-3. A completed sieve of Eratosthenes.

By using the sieve of Erastothenes, we’ve calculated that the prime numbers under 50 are 2, 3, 5,
7,11, 13,17, 19, 23, 29, 31, 37, 41, 43, and 47. This sieve algorithm is good when we want to
quickly find out all the prime numbers in a certain range of numbers. It is much faster than using
the previous “divides test” algorithm to test if 2 is prime, then test if 3 is prime, then test if 4 is
prime, and so on.

The primeSieve () Function

23. def primeSieve(sieveSize):

24. # Returns a list of prime numbers calculated using
25. # the Sieve of Eratosthenes algorithm.

26.

27. sieve = [True] * sieveSize

28. sieve[0] = False # zero and one are not prime numbers
29. sieve[l] = False

The primeSieve () function returns a list of all prime numbers between 1 and sieveSize.
First, line 27 creates a list of Boolean True values that is the length of sieveSize. The 0 and
1 indexes are marked as False because 0 and 1 are not prime numbers.

Email questions to the author: al@inventwithpython.com

Chapter 23 — Finding Prime Numbers 369

31. # create the sieve

32. for i in range(2, int(math.sqrt(sieveSize)) + 1):
33. pointer = i * 2

34. while pointer < sieveSize:

35. sieve[pointer] = False

36. pointer += i

The for loop on line 32 goes through each integer from 2 up to the square root of sieveSize.
The variable pointer will start at the first multiple of i after 1 (which will be 1 * 2). Then
the while loop will set the pointer index in the sieve list to False, and line 36 will
change pointer to point to the next multiple of i.

38. # compile the Tist of primes
39. primes = []

40. for i in range(sieveSize):
41. if sieve[i] == True:

42. primes.append(i)

After the for loop on line 32 completes, the sieve list will contain True for each index that is
a prime number. We can create a new list (which starts as an empty list in primes) and loop over
the entire sieve list, and appends and numbers if sieve[1] is True (meaning i is prime).

44. return primes

The list of prime numbers is returned on line 44.

Detecting Prime Numbers

The isPrime () function in primeSieve.py checks if the number can be divided evenly by a
range of numbers from 2 to the square root of the number. But what about a number like
1,070,595,206,942,983? If you pass this integer to 1 sPrime (), it takes several seconds to
determine if it is prime or not. And if the number is hundreds of digits long (like the prime
numbers in next chapter’s RSA cipher program are), it would take over a trillion years to figure
out if that one number is prime or not.

The isPrime () function in primeSieve.py is too slow for the large numbers we will use in the
RSA cipher. Fortunately there is an algorithm called the Rabin-Miller Primality Test than can
calculate if such large numbers are prime or not. We will create a new isPrime () function in
rabinMiller.py that makes use of this better algorithm.

370 http://inventwithpython.com/hacking

The code for this algorithm uses advanced mathematics, and how the algorithm works is beyond
the scope of this book. Like the gcd () function in cryptomath.py, this book will just present the
code for the algorithm for you to use without explanation.

Source Code for the Rabin-Miller Module

Open a new file editor window and type in the following code. Save this file as rabinMiller.py.
This program will be a module that is meant to be imported by other programs.

Instead of typing out the list of numbers on line 43, just temporarily add the lines import
pyperclipand pyperclip.copy (primeSieve (1000)) in the primeSieve.py file and
run it. This will copy the list of primes to the clipboard, and then you can paste it into the
rabinMiller.py file.

Open a new file editor window by clicking on File » New Window. Type in the following code
into the file editor, and then save it as rabinMiller.py.

Source code for rabinMiller.py

1. # Primality Testing with the Rabin-Miller Algorithm
2. # http://inventwithpython.com/hacking (BSD Licensed)
3.

4. dimport random

5.

6.

7. def rabinMiller(num):

8. # Returns True if num is a prime number.

9.

10. s =num -1

11. t=0

12. while s % 2 == 0:

13. # keep halving s while it is even (and use t
14. # to count how many times we halve s)

15. s=s//2

16. t+=1

17.

18. for trials in range(5): # try to falsify num's primality 5 times
19. a = random.randrange(2, num - 1)

20. v = pow(a, s, hum)

21. if v I= 1: # this test does not apply if v 1is 1.
22. i=0

23. while v != (num - 1):

24. ifi=1t- 1:

25. return False

26. else:

Email questions to the author: al@inventwithpython.com

Chapter 23 — Finding Prime Numbers 371

27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
53,

139,
229,
317,
421,
521,
619,
733,
839,
953,

44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.

def

59,

i=1+1
= (v ** 2) % num

<
|

return True

isPrime(num):
Return True if num is a prime number. This function does a quicker
prime number check before calling rabinMiller().

if (num < 2):
return False # 0, 1, and negative numbers are not prime

About 1/3 of the time we can quickly determine if num is not prime

by dividing by the first few dozen prime numbers. This is quicker

than rabinMiTler(), but unlike rabinMiller() is not guaranteed to

prove that a number 1is prime.

TowPrimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137,

149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227,
233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313,
331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419,
431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509,
523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617,
631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727,
739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829,
853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947,
967, 971, 977, 983, 991, 997]

def

if num in TowPrimes:
return True

See if any of the Tow prime numbers can divide num
for prime in TowPrimes:
if (num % prime == 0):
return False

If all else fails, call rabinMiller() to determine if num is a prime.
return rabinMiTller(num)

generatelLargePrime(keysize=1024):
Return a random prime number of keysize bits in size.
while True:
num = random.randrange(2%*(keysize-1), 2**(keysize))
if isPrime(num):
return num

372 http://inventwithpython.com/hacking

Sample Run of the Rabin Miller Module

If you run the interactive shell, you can import the rabinMiller.py module and call the functions
in it. Try typing the following into the interactive shell:

>>> import rabinMiller

>>> rabinMiller.generatelLargePrime()
1228811683422110410305236835154432390074842906007015553694882717483780547440094
6375131251147129101194573241337844666680914050203700367321105215349360768161999
0563076859566835016382556518967124921538212397036345815983641146000671635019637
218348455544435908428400192565849620509600312468757953899553441648428119

>>> rabinMiller.isPrime(45943208739848451)

False

>>> rabinMiller.isPrime(13)

True

>>>

How the Program Works

rabinMiller.py
. # Primality Testing with the Rabin-Miller Algorithm
http://inventwithpython.com/hacking (BSD Licensed)

D wN R

import random

The Rabin-Miller algorithm uses random numbers, so we import the random module on line 4.

The Rabin-Miller Primality Algorithm

rabinMiller.py
7. def rabinMiller(num):

8. # Returns True if num is a prime number.

9.

10. s =num - 1

11. t=20

12. while s % 2 ==

13. # keep halving s while it is even (and use t

14. # to count how many times we halve s)

15. s=s//2

16. t+=1

17.

18. for trials in range(5): # try to falsify num's primality 5 times
19. a = random.randrange(2, num - 1)

20. v = pow(a, s, hum)

21. if v I= 1: # this test does not apply if v 1is 1.

Email questions to the author: al@inventwithpython.com

Chapter 23 — Finding Prime Numbers 373

22. i=0

23. while v != (num - 1):

24. ifi==1t- 1:

25. return False

26. else:

27. i=1+1

28. v = (v ** 2) % num
29. return True

The mathematics of the Rabin-Miller Primality algorithm are beyond the scope of this book, so
the code in this function will not be explained.

The Rabin-Miller algorithm is also not a surefire test for primality; however, you can be
extremely certain that it is accurate. (Although this is not good enough for commercial encryption
software, it is good enough for the purposes of the programs in this book.) The main benefit of
the Rabin-Miller algorithm is that it is a relatively simple primality test and only takes a few
seconds to run on a normal computer.

If rabinMiller () returns True, then the num argument is extremely likely to be prime. If
rabinMiller () returns False, then num is definitely composite.

The New and Improved isPrime () Function

rabinMiller.py
32. def isPrime(num):

33. # Return True if num is a prime number. This function does a quicker
34. # prime number check before calling rabinMiller().

35.

36. if (hum < 2):

37. return False # 0, 1, and negative numbers are not prime

All numbers that are less than two (such as one, zero, and negative numbers) are all not prime, so
we can immediately return False.

rabinMiller.py

39. # About 1/3 of the time we can quickly determine if num is not prime
40. # by dividing by the first few dozen prime numbers. This 1is quicker
41. # than rabinMiller(), but unlike rabinMiller() 1is not guaranteed to
42. # prove that a number 1is prime.

43, TowPrimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137,
139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227,
229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313,
317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419,

374 http://inventwithpython.com/hacking

421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509,
521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617,
619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727,
733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829,
839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947,
953, 967, 971, 977, 983, 991, 997]

44.
45. if num in TowPrimes:
46. return True

The numbers in the 1owPrimes list are primes. (Duh.) We can immediately return True if num
is in the lowPrimes list.

rabinMiller.py

48. # See if any of the Tow prime numbers can divide num
49, for prime in TowPrimes:

50. if (num % prime == 0):

51. return False

Line 49 loops through each of the prime numbers in the 1lowPrimes list. The integer in num is
modded with the $ mod operator by each prime number on line 50, and if this evaluates to O then
we know that prime divides num and so num is not prime. In that case, line 51 returns False.

Checking if num is divisible by all the primes under 1000 won’t tell us if the number is prime, but
it might tell us if the number is composite. About 30% of the random numbers that
generatelLargePrime () creates that are composite will be detected as composite by
dividing by the low prime numbers. Dividing by the low prime numbers is much faster than
executing the full Rabin-Miller algorithm on the number, so this shortcut can make our program
execute much more quickly.

rabinMiller.py
53. # If all else fails, call rabinMiller() to determine if num is a prime.
54. return rabinMiTlTer(num)

Those are all the quick tests to determine if a number is prime or not. But if num does not match
any of those tests, then it is passed to the rabinMiller () function to check if it is prime or
not. The return value of rabinMiller () will be returned by i sPrime ().

The comment on line 53 means call the rabinMiller () function to determine if the number is
prime. Please do not call Dr. Rabin or Dr. Miller personally to ask them if your number is prime.

rabinMiller.py

Email questions to the author: al@inventwithpython.com

Chapter 23 — Finding Prime Numbers 375

57. def generatelLargePrime(keysize=1024):

58. # Return a random prime number of keysize bits in size.
59. while True:

60. num = random.randrange(2**(keysize-1), 2**(keysize))
61. if isPrime(num):

62. return num

The generateLargePrime () function will return an integer that is prime. It does this by
coming up with a large random number, storing it in num, and then passing numto 1 sPrime ().
The isPrime () function will then test to see if num is composite and then pass the num to
rabinMiller () for a more thorough (and computationally expensive) primality test.

If the number num is prime, then line 62 returns num. Otherwise the infinite loop goes back to
line 60 to try a new random number. This loop keeps trying over and over again until it finds a
number that the 1 sPrime () function says is prime.

Summary

Prime numbers have fascinating properties in mathematics. As you will learn in the next chapter,
they are also the backbone of ciphers used in actual professional encryption software. The
definition of a prime number is simple enough: a number that only has one and itself as factors.
But determining which numbers are prime and which are composite (that is, not prime) takes
some clever code.

Modding a number with all the numbers from two up to the square root of the number is how our
isPrime () function determines if that number is prime or not. A prime number will never have
a remainder of 0 when it is modded by any number (besides its factors, 1 and itself.) But this can
take a while for the computer to calculate when testing large numbers for primality.

The sieve of Erastothenes can be used to quickly tell if a range of numbers is prime or not, but
this requires a lot of memory.

The RSA cipher makes use of extremely large prime numbers that are hundreds of digits long.
The Sieve of Erastothenes and the basic 1sPrime () function we have in primeSieve.py aren’t
sophisticated enough to handle numbers this large.

The Rabin-Miller algorithm uses some mathematics which has simple code (but the mathematical
reasoning behind it is too complex for this book), but it allows us to determine if a number that is
hundreds of digits long is prime.

376 http://inventwithpython.com/hacking

In the next chapter, we will use the prime number code we developed for the rabinMiller.py
module in our RSA Cipher program. At last, we will have a cipher easier to use than the one-time
pad cipher but that cannot be hacked by the simple hacker techniques in this book!

Email questions to the author: al@inventwithpython.com

Chapter 24 — Public Key Cryptography and the RSA Cipher 377

Warning to Time Travelers:

Should you travel back to the early 1990’s with this book, the contents of Chapter 24 would be
illegal to possess in the United States. Strong crypto (that is, cryptography strong enough not to
be hacked) was regulated at the same level as tanks, missiles, and flamethrowers and the export of
encryption software would require State Department approval. They said that this was a matter of
national security.

Daniel J. Bernstein, a student at the University of California, Berkeley at the time, wanted to
publish an academic paper and associated source code on his “Snuffle” encryption system. He
was told by the U.S. government that he would first need to become a licensed arms dealer before
he could post his source code on the Internet. They also told him that they would deny him an
export license if he actually applied for one, because his technology was too secure.

The Electronic Frontier Foundation, in its second major case as a young digital civil liberties
organization, brought about the Bernstein v. United States court cases. The court ruled, for the
first time ever, that written software code is speech protected by the First Amendment, and that
the export control laws on encryption violated Bernstein’s First Amendment rights by prohibiting
his constitutionally protected speech.

Today, strong crypto is used to safeguard businesses and e-commerce used by millions of Internet
shoppers everyday. Cryptography is at the foundation of a large part of the global economy. But
in the 1990’s, spreading this knowledge freely (as this book does) would have landed you in
prison for arms trafficking.

A more detailed history of the legal battle for cryptography can be found in Steven Levy’s book,
Crypto: How the Code Rebels Beat the Government, Saving Privacy in the Digital Age.

The fears and predictions made by the “experts” of the intelligence community that encryption
software would become a grave national security threat turned out to be... less than well-founded.

378 http://inventwithpython.com/hacking

CHAPTER 24

PuBLIC KEY CRYPTOGRAPHY
AND THE RSA CIPHER

Topics Covered In This Chapter:

e Public key cryptography

e Man-in-the-middle attacks

e ASCII

e The chr () and ord () functions

e The bytes data type and bytes () function

e The encode () string and decode () bytes method
e Themin () and max () functions

e The insert () list method

e The pow () function

“Why shouldn’t I work for the NSA? That’s a tough one, but I'll take a
shot. Say I’'m working at the NSA and somebody puts a code on my desk,
something no one else can break. Maybe I take a shot at it, and maybe |
break it. I’'m real happy with myself, ‘cause I did my job well. But maybe
that code was the location of some rebel army in North Africa or the
Middle East and once they have that location they bomb the village where
the rebels are hiding. Fifteen hundred people that I never met, never had
no problem with, get killed.

Email questions to the author: al@inventwithpython.com

Chapter 24 — Public Key Cryptography and the RSA Cipher 379

Now the politicians are saying ‘Oh, send in the Marines to secure the
area,” ‘cause they don’t give a shit. It won’t be their kid over there getting
shot just like it wasn’t them when their number got called ‘cause they
were pulling a tour in the National Guard. It’ll be some kid from Southie
over there taking shrapnel in the ass. He comes back to find that the plant
he used to work at got exported to the country he just got back from, and
the guy that put the shrapnel in his ass got his old job, ‘cause he’ll work
for fifteen cents a day and no bathroom breaks.

Meanwhile he realizes that the only reason he was over there in the first
place was so we could install a government that would sell us oil at a good
price. And of course the oil companies use the little skirmish to scare up
domestic oil prices, a cute little ancillary benefit for them, but it ain’t
helping my buddy at two-fifty a gallon. They’re taking their sweet time
bringing the oil back, of course, and maybe they took the liberty of hiring
an alcoholic skipper who likes to drink martinis and fucking play slalom
with the icebergs. It ain’t too long until he hits one, spills the oil, and kills
all the sea life in the North Atlantic.

So now my buddy’s out of work, he can’t afford to drive, so he’s walking
to the fucking job interviews which sucks because the shrapnel in his ass
is giving him chronic hemorrhoids. And meanwhile he’s starving ‘cause
any time he tries to get a bite to eat the only Blue Plate Special they’re
serving is North Atlantic Scrod with Quaker State.

So what did I think? I’'m holding out for something better.”

“Good Will Hunting”

Public Key Cryptography

All of the ciphers in this book so far have one thing in common: the key used for encryption is the
same key used for decryption. This leads to a tricky problem: How do you share encrypted
messages with someone you’ve never talked to before?

380 http://inventwithpython.com/hacking

Say someone on the other side of the world wants to communicate with you. But you both know
that spy agencies are monitoring all emails, letters, texts, and calls that you send. You could send
them encrypted messages, however you would both have to agree on a secret key to use. But if
one of you emailed the other a secret key to use, then the spy agency would be able to see this key
and then decrypt any future messages you send with that key. Normally you would both secretly
meet in person and exchange the key then. But you can’t do this if the person is on the other side
of the world. You could try encrypting the key before you send it, but then you would have to
send the secret key for that message to the other person and it would also be intercepted.

This is a problem solved by public key cryptography. Public key cryptography ciphers have
two keys, one used for encryption and one used for decryption. A cipher that uses different keys
for encryption and decryption is called an asymmetric cipher, while the ciphers that use the
same key for encryption and decryption (like all the previous ciphers in this book) are called
symmetric ciphers.

The important thing to know is that a message encrypted with one key can only be decrypted
with the other key. So even if someone got their hands on the encryption key, they would not be
able to read an encrypted message because the encryption key can only encrypt; it cannot be used
to decrypt messages that it encrypted.

So when we have these two keys, we call one the public key and one the private key. The public
key is shared with the entire world. However, the private key must be kept secret.

If Alice wants to send Bob a message, Alice finds Bob’s public key (or Bob can give it to her).
Then Alice encrypts her message to Bob with Bob’s public key. Since the public key cannot
decrypt a message that was encrypted with it, it doesn’t matter that everyone else has Bob’s
public key.

When Bob receives the encrypted message, he uses his private key to decrypt it. If Bob wants to
reply to Alice, he finds her public key and encrypts his reply with it. Since only Alice knows her
own private key, Alice will be the only person who can decrypt the encrypted message.

Remember that when sending encrypted messages using a public key cipher:

e The public key is used for encrypting.
e The private key is used for decrypting.

To go back to the example of communicating with someone across the world, now it doesn’t
matter if you send them your public key. Even if the spy agency has your public key, they cannot
read messages that were encrypted with the public key. Only your private key can decrypt those
messages, and you keep that key a secret.

Email questions to the author: al@inventwithpython.com

Chapter 24 — Public Key Cryptography and the RSA Cipher 381

The particular public key cipher that we will implement is called the RSA cipher, which was
invented in 1977 and named after its inventors: Ron Rivest, Adi Shamir and Leonard Adleman.

The Dangers of “Textbook” RSA

While we don’t write a hacking program for the RSA cipher program in this book, don’t make the
mistake of thinking the rsaCipher.py program featured in this chapter is secure. Getting
cryptography right is very hard and requires a lot of experience to know if a cipher (and a
program that implements it) is truly secure.

The RSA program in this chapter is known as textbook RSA because, while it does implement
the RSA algorithm correctly using large prime numbers, there are several subtle faults with it that
can lead to its encrypted messages being hacked. The difference between pseudorandom and truly
random number generation functions is one such fault. But there are many others.

So while you might not be able to hack the ciphertext created by rsaCipher.py, don’t think that no
one else can. The highly accomplished cryptographer Bruce Schneier once said, “Anyone, from
the most clueless amateur to the best cryptographer, can create an algorithm that he himself can’t
break. It’s not even hard. What is hard is creating an algorithm that no one else can break, even
after years of analysis. And the only way to prove that is to subject the algorithm to years of
analysis by the best cryptographers around.”

The program in this book is a fun example, but stick to professional encryption software to secure
your files. You can find a list of (usually free) encryption software here:

A Note About Authentication

There is a slight problem with public key ciphers. Imagine you got an email that said this:

“Hello. I am Emmanuel Goldstein, leader of the resistance. I would
like to communicate secretly with you about very important matters.
Attached is my public key.”

Using the public key, you can be sure that the messages you send cannot be read by anyone other
than “Emmanuel Goldstein”. But how do you know the person who sent you this is actually
Emmanuel Goldstein? Maybe it is Emmanuel Goldstein that you are sending encrypted messages
to, or maybe it is a spy agency that is pretending to be Emmanuel Goldstein to lure you into a
trap.

382 http://inventwithpython.com/hacking

So while public key ciphers (and, in fact, all the ciphers in this book) can provide
confidentiality (that is, keeping the message a secret), they don’t provide authentication (that
is, proof that who you are communicating with really is who they say they are).

Normally this isn’t a problem with symmetric ciphers, because when you exchange keys with the
person you can see them for yourself. However, you don’t need to see a person in order to get
their public key and begin sending them encrypted messages. This is something to keep in mind
when using public key cryptography.

There is an entire field called PKI (Public Key Infrastructure) that deals with authentication so
that you can match public keys to people with some level of security; however, PKI is beyond the
scope of this book.

The Man-In-The-Middle Attack

Even more insidious than hacking our encrypted messages is a man-in-the-middle attack. Say
Emmanuel Goldstein really did want to communicate with you and sent you the above message,
but the spy agency intercepted it. They could then replace the public key Emmanuel attached to
the email with their own public key, and then send it on to you. You would think the spy agency’s
key was Emmanuel’s key!

Now when you encrypt a reply to Emmanuel, they intercept that message, decrypt it (since you
really encrypted the message with the spy agency’s public key, not Emmanuel’s public key) and
read it, and then they re-encrypt it with Emmanuel’s actual public key and send it to him. They do
the same thing with any messages that Emmanuel sends to you.

Figure 24-1. A man-in-the-middle attack.

Email questions to the author: al@inventwithpython.com

Chapter 24 — Public Key Cryptography and the RSA Cipher 383

To both you and Emmanuel, it looks like you are communicating secretly with each other. But
actually, the spy agency is doing a man-in-the-middle attack and reading all of your messages.
You and Emmanuel are actually encrypting your messages public keys generated by the spy
agency! Again, this problem is caused by the fact that the public key cipher only provides
confidentiality, but does not provide authentication.

Generating Public and Private Keys

A key in the RSA scheme is made of two numbers. There are three steps to creating the keys:

1. Create two random, very large prime numbers. These numbers will be called p and q.
Multiply these numbers to get a number which we will call n.

2. Create a random number, called e, which is relatively prime with (p — 1) X (q — 1).

3. Calculate the modular inverse of e. This number will be called d.

The public key will be the two numbers n and e. The private key will be the two numbers n and d.
(Notice that both keys have the number n in them.) We will cover how to encrypt and decrypt
with these numbers when the RSA cipher program is explained. First let’s write a program to
generate these keys.

Source Code for the RSA Key Generation Program

Open a new file editor window by clicking on File » New Window. Type in the following code
into the file editor, and then save it as makeRsaKeys.py.

Source code for makeRsaKeys.py

. # RSA Key Generator
. # http://inventwithpython.com/hacking (BSD Licensed)

1
2
3
4. import random, sys, os, rabinMiller, cryptomath
5
6.
7. def mainQ):

8

. # create a public/private keypair with 1024 bit keys
9. print('Making key files...")
10. makeKeyFiles('al_sweigart', 1024)
11. print('Key files made.')
12.
13. def generateKey(keySize):
14. # Creates a public/private key pair with keys that are keySize bits in
15. # size. This function may take a while to run.
16.
17. # Step 1: Create two prime numbers, p and q. Calculate n = p * (.

18. print('Generating p prime...")

384 http://inventwithpython.com/hacking

19. p = rabinMiller.generatelLargePrime(keySize)

20. print('Generating q prime...")

21. g = rabinMiller.generatelLargePrime(keySize)

22. n=p*q

23.

24. # Step 2: Create a number e that is relatively prime to (p-1)*(q-1).
25. print('Generating e that is relatively prime to (p-1)*(g-1)...")

26. while True:

27. # Keep trying random numbers for e until one is valid.

28. e = random.randrange(2 ** (keySize - 1), 2 ** (keySize))

29. if cryptomath.gcd(e, (p - 1) * (q - 1)) == 1:

30. break

31.

32. # Step 3: Calculate d, the mod inverse of e.

33. print('Calculating d that is mod inverse of e...")

34. d = cryptomath.findModInverse(e, (p - 1) * (q - 1))

35.

36. publicKey = (n, e)

37. privateKey = (n, d)

38.

39. print('Public key:', publicKey)

40. print('Private key:', privateKey)

41.

42. return (publicKey, privateKey)

43,

44,

45. def makeKeyFiles(name, keySize):

46. # Creates two files 'x_pubkey.txt' and 'x_privkey.txt' (where x is the
47 . # value in name) with the the n,e and d,e integers written in them,
48. # delimited by a comma.

49,

50. # Our safety check will prevent us from overwriting our old key files:
51. if os.path.exists('%s_pubkey.txt' % (name)) or
os.path.exists('%s_privkey.txt' % (name)):

52. sys.exit("WARNING: The file %s_pubkey.txt or %s_privkey.txt already

exists! Use a different name or delete these files and re-run this program.' %
(name, name))

53.

54, publicKey, privateKey = generateKey(keySize)

55.

56. print()

57. print('The public key is a %s and a %s digit number.' %
(len(str(publicKey[0])), len(str(pubTlicKey[1]))))

58. print('Writing public key to file %s_pubkey.txt...' % (name))
59. fo = open('%s_pubkey.txt' % (name), 'w')

60. fo.write('%s,%s,%s' % (keySize, publicKey[0], publicKey[1]))

Email questions to the author: al@inventwithpython.com

Chapter 24 — Public Key Cryptography and the RSA Cipher 385

61. fo.close()

62.

63. print()

64. print('The private key is a %s and a %s digit number.' %
(len(str(publicKey[0])), len(str(publicKey[1]))))

65. print('Writing private key to file %s_privkey.txt...' % (name))
66. fo = open('%s_privkey.txt' % (name), 'w')

67. fo.write('%s,%s,%s' % (keySize, privateKey[0], privateKey[1]))
68. fo.close()

69.

70.

71. # If makeRsaKeys.py is run (instead of imported as a module) call
72. # the main() function.

73. if _name__ == '_main__":

74. main()

Sample Run of the RSA Key Generation Program

When you run the makeRsaKeys.py program, the output will look something like this (of course,
the numbers for your keys will be different since they are random numbers):

Making key files...

Generating p prime...

Generating q prime...

Generating e that is relatively prime to (p-1)*(g-1)...

Calculating d that is mod inverse of e...

Public key:
(210902406316700502401968491406579417405090396754616926135810621216116191338086
5678407459875355468897928072386270510720443827324671435893274858393749685062411
6776147241821152026946322876869404394483922202407821672864242478920813182699000
8473526711744296548563866768454251404951960805224682425498975230488955908086491
8521163487778495362706850854469709529156400505222122042218037444940658810103314
8646830531744960702788478777031572995978999471326531132766377616771007701834003
6668306612665759417207845823479903440572724068125211002329298338718615859542093
72109725826359561748245019920074018549204468791300114315056117093,
1746023076917516102173184545923683355383240391086912905495420037367858093524760
6622265764388235752176654737805849023006544732896308685513669509917451195822611
3980989513066766009588891895645995814564600702703936932776834043548115756816059
906591453170741270845572335375041024799371425300216777273298110097435989)
Private key:
(210902406316700502401968491406579417405090396754616926135810621216116191338086
5678407459875355468897928072386270510720443827324671435893274858393749685062411
6776147241821152026946322876869404394483922202407821672864242478920813182699000
8473526711744296548563866768454251404951960805224682425498975230488955908086491
8521163487778495362706850854469709529156400505222122042218037444940658810103314

386 http://inventwithpython.com/hacking

8646830531744960702788478777031572995978999471326531132766377616771007701834003
6668306612665759417207845823479903440572724068125211002329298338718615859542093
72109725826359561748245019920074018549204468791300114315056117093,
4767673579813771041216688491698376504317312028941690434129597155228687099187466
6099933371008075948549008551224760695942666962465968168995404993934508399014283
0537106767608359489023128886399384026861870750523607730623641626642761449656525
5854533116668173598098138449334931305875025941768372702963348445191139635826000
8181223734862132564880771928931192572481077942568188460364002867327313529283117
0178614206817165802812291528319562200625082557261680470845607063596018339193179
7437503163601143217769616471700002543036826990539739057474642785416933878499897
014777481407371328053001838085314443545845219087249544663398589)

The pubTic key 1is a 617 and a 309 digit number.
Writing public key to file al_sweigart_pubkey.txt...

The private key is a 617 and a 309 digit number.
Writing private key to file al_sweigart_privkey.txt...

These two keys are written out to two different files, al_sweigart_pubkey.txt and
al_sweigart_privkey.txt. These filenames are used because the string 'al sweigart' was
passed to the makeKeyFiles () function. You can specify a different filenames by passing a
different string. These key files will be used by the RSA cipher program to encrypt and decrypt
messages.

If you try to run makeRsaKeys.py again with the same string being passed to
makeKeyFiles (), the output of the program will look like this:

Making key files...
WARNING: The file al_sweigart_pubkey.txt or al_sweigart_privkey.txt already
exists! Use a different name or delete these files and re-run this program.

This warning is here so you don’t accidentally overwrite your key files, making any files you
encrypted with them impossible to recover. Keep your keys safe!

How the Key Generation Program Works

makeRsaKeys. py
1. # RSA Key Generator
2. # http://inventwithpython.com/hacking (BSD Licensed)
3
4

. import random, sys, os, rabinMiller, cryptomath

The program imports the rabinMiller and cryptomath modules that we created in the last
chapter, along with a few others.

Email questions to the author: al@inventwithpython.com

Chapter 24 — Public Key Cryptography and the RSA Cipher 387

makeRsaKeys . py
7. def main(Q):

8. # create a public/private keypair with 1024 bit keys
9. print('Making key files...")

10. makeKeyFiles('al_sweigart', 1024)

11. print('Key files made.")

When makeRsaKeys.py is run, the main () function is called, which will create the key files.
Since the keys might take a while for the computer to generate, we print a message on line 9
before the makeKeyFiles () call so the user knows what the program is doing.

The makeKeyFiles () call online 10 passes the string 'al sweigart' and the integer
1024. This will generate keys with a size of 1024 bits and store them in files named
al_sweigart_pubkey.txt and al_sweigart_privkey.txt.

The Program’s generateKey () Function

makeRsaKeys . py
13. def generateKey(keySize):

14. # Creates a public/private key pair with keys that are keySize bits in
15. # size. This function may take a while to run.

16.

17. # Step 1: Create two prime numbers, p and gq. Calculate n = p * q.

18. print('Generating p prime...")

19. p = rabinMiller.generatelLargePrime(keySize)

20. print('Generating q prime...")

21. g = rabinMiller.generatelLargePrime(keySize)

22. n=p=%q

The first step of creating keys is coming up with two random prime numbers which are called p
and q. The generateLargePrime () function we wrote in the last chapter’s rabinMiller.py
program will return a prime number (as an integer value) of the size determined by the value in
keySize on line 19 and line 21. These integer values are stored in variables named p and qg.

On line 22, the number n is calculated by multiplying p and g, and stored in n.

makeRsaKeys. py

24 . # Step 2: Create a number e that is relatively prime to (p-1)*(q-1).
25. print('Generating e that is relatively prime to (p-1)*(g-1)...")

26. while True:

27. # Keep trying random numbers for e until one is valid.

28. e = random.randrange(2 ** (keySize - 1), 2 ** (keySize))

29. if cryptomath.gcd(e, (p - 1) * (q - 1)) == 1:

388 http://inventwithpython.com/hacking

30. break

The second step is calculating a number e which is relatively prime to the productof p — 1 and
g — 1.The while loop on line 26 is an infinite loop. The random. randrange () call on
line 28 returns a random integer (stored in the e variable) and line 29 tests if this random number
is relatively prime to (p - 1) * (g - 1).Ifitis, the break statement on line 30 breaks
out of the infinite loop. Otherwise, the program execution jumps back to line 26 and will keep
trying different random numbers until it finds one that is relatively prime with (p - 1) * (g -
1).

This way we can guarantee that when the program execution gets past this while loop, the
variable e will contain a number that is relatively prime to (p - 1) * (g-1).

makeRsaKeys. py

32. # Step 3: Calculate d, the mod inverse of e.
33. print('Calculating d that is mod inverse of e...")
34. d = cryptomath.findModInverse(e, (p - 1) * (q - 1))

The third step is to find the mod inverse of e. The findModInverse () function that we wrote
for our cryptomath module in Chapter 14 will do this calculation for us. The mod inverse of e

is stored in a variable named d.

makeRsaKeys . py
36. publicKey = (n, e)
37. privateKey = (n, d)

In the RSA cipher, each key is made up of two numbers. The public key will be the integers
stored in n and e, and the private key will be the integers stored in n and d. Lines 36 and 37 store
these integers as tuples in the variables publicKey and privateKey.

There’s no reason e has to be in the public key and d in the private key, and you could swap
them. However, once you make the public key public, you must keep the private key a secret.

makeRsaKeys. py

39. print('Public key:', publicKey)
40. print('Private key:', privateKey)
41.

42. return (publicKey, privateKey)

Email questions to the author: al@inventwithpython.com

Chapter 24 — Public Key Cryptography and the RSA Cipher 389

The remaining lines in the generateKey () function print the keys on the screen with
print () calls on lines 39 and 40. Then line 42’s generateKey () call returns a tuple with
publicKey and privateKey.

makeRsaKeys . py
45. def makeKeyFiles(name, keySize):

46. # Creates two files 'x_pubkey.txt' and 'x_privkey.txt' (where x is the
47. # value in name) with the the n,e and d,e integers written in them,
48. # delimited by a comma.

While the generateKey () function will generate the actual integers for the public and private
keys, we need to store these numbers in a file so that our RSA cipher program can use them later
to encrypt and decrypt. Each of the keys are made of two integers that are hundreds of digits long;
that’s too many to memorize or conveniently write down. The easiest way to store them is as text
files on your computer.

This means that you have to be sure that nobody hacks your computer and copies these key files.
It might be a good idea to store these files on a USB thumb drive instead of on your computer.
However, this is also risky. If someone borrows the thumb drive then they could copy the key
files, or if you accidentally break or lose the thumb drive then you will lose your own private key!

makeRsaKeys . py

50. # Our safety check will prevent us from overwriting our old key files:
51. if os.path.exists('%s_pubkey.txt' % (name)) or
os.path.exists('%s_privkey.txt' % (name)):

52. sys.exit("WARNING: The file %s_pubkey.txt or %s_privkey.txt already

exists! Use a different name or delete these files and re-run this program.' %
(name, name))

To prevent us from accidentally deleting our key files by running the program again, line 51
checks to see if the public or private key files with the given name already exist. If they do, the
program will exit with a warning message.

makeRsaKeys. py
54, publicKey, privateKey = generateKey(keySize)

After the check, line 54 has a call to generateKey () to get the public and private keys using
the multiple assignment trick. The generateKey () function returns a tuple of two tuples. The
first tuple has two integers for the public key and the second tuple has two integers for the private
key. These are stored in the variables publicKey and privateKey.

390 http://inventwithpython.com/hacking

RSA Key File Format

makeRsaKeys . py

56. print()

57. print('The public key is a %s and a %s digit number.' %
(len(str(publicKey[0])), len(str(publicKey[1]))))

58. print('Writing public key to file %s_pubkey.txt...' % (name))
59. fo = open('%s_pubkey.txt' % (name), 'w')

60. fo.write('%s,%s,%s' % (keySize, publicKey[0], publicKey[1]))
61. fo.close()

Line 57 prints some information about the public key. It can tell how many digits are in the
integer in publicKey[0] and publicKey[1] by converting those values to strings with the
str () function, and then finding the length of the string with the 1en () function.

The key file’s contents will be the key size, a comma, the n integer, another comma, and the e (or
d) integer. The file’s contents will look like: <key size integer>,<n integer>,<e or d integer>

Lines 59 to 61 open a file in write mode, as you can tell from the 'w"' string passed to open ().

makeRsaKeys . py

63. print()

64. print('The private key is a %s and a %s digit number.' %
(len(str(publicKey[0])), Ten(str(publicKey[1]))))

65. print('Writing private key to file %s_privkey.txt...' % (name))
66. fo = open('%s_privkey.txt' % (name), 'w')

67. fo.write('%s,%s,%s' % (keySize, privateKey[0], privateKey[1]))
68. fo.close()

Lines 63 to 68 do the exact same thing as lines 56 and 61, except for writing the private key out to
a file.

makeRsaKeys. py
71. # If makeRsaKeys.py is run (instead of imported as a module) call
72. # the main() function.
73. if _name__ == '_main__":
74. main()

Lines 73 and 74 are at the bottom of the program, and call main () if makeRsaKeys.py is being
run as a program instead of imported as a module by another program.

Email questions to the author: al@inventwithpython.com

Chapter 24 — Public Key Cryptography and the RSA Cipher 391

Hybrid Cryptosystems

In real life, the complicated mathematics make RSA and public-key encryption slow to compute.
This is especially true for servers that need to make hundreds or thousands of encrypted
connections a second. Instead, the RSA cipher is often used to encrypt the key for a symmetric
key cipher. The encrypted key is then sent to the other person, and that key is used to pass
messages that are encrypted using the (faster) symmetric cipher. Using a symmetric key cipher
and an asymmetric key cipher to securely communicate like this is called a hybrid

cryptosystem. More information about hybrid cryptosystems can be found at

It’s not recommended to use the rsaCipher.py program to encrypt the keys for, say, the
vigenereCipher.py program. We’ve already proven that the Vigenére cipher is hackable. A strong
symmetric key cipher isn’t covered in this book, but you can still use rsaCipher.py to encrypt
your files anyway.

Source Code for the RSA Cipher Program

Now that you can create key files, let’s write the program that does encryption and decryption
with the RSA cipher. Open a new file editor window by clicking on File » New Window. Type
in the following code into the file editor, and then save it as rsaCipher.py.

Source code for rsaCipher.py

1. # RSA Cipher

2. # http://inventwithpython.com/hacking (BSD Licensed)

3

4. dimport sys

5.

6. # IMPORTANT: The block size MUST be Tess than or equal to the key size!
7. # (Note: The block size is in bytes, the key size is in bits. There

8. # are 8 bits in 1 byte.)

9. DEFAULT_BLOCK_SIZE = 128 # 128 bytes
10. BYTE_SIZE = 256 # One byte has 256 different values.
11.
12. def main(Q:
13. # Runs a test that encrypts a message to a file or decrypts a message
14. # from a file.
15. filename = 'encrypted_file.txt' # the file to write to/read from
16. mode = 'encrypt' # set to 'encrypt' or 'decrypt'
17.
18. if mode == 'encrypt':
19. message = '''"Journalists belong in the gutter because that is

where the ruling classes throw their guilty secrets." -Gerald Priestland "The

392 http://inventwithpython.com/hacking

Founding Fathers gave the free press the protection it must have to bare the

secrets of government and inform the people." -Hugo Black'''

20. pubKeyFilename = 'al_sweigart_pubkey.txt'

21. print('Encrypting and writing to %s...' % (filename))

22. encryptedText = encryptAndWriteToFile(filename, pubKeyFilename,
message)

23.

24. print('Encrypted text:')

25. print(encryptedText)

26.

27. elif mode == 'decrypt':

28. privKeyFilename = 'al_sweigart_privkey.txt'

29. print('Reading from %s and decrypting...' % (filename))

30. decryptedText = readFromFiTleAndDecrypt(filename, privKeyFilename)
31.

32. print('Decrypted text:')

33. print(decryptedText)

34.

35.

36. def getBlocksFromText(message, blockSize=DEFAULT_BLOCK_SIZE):

37. # Converts a string message to a list of block integers. Each integer
38. # represents 128 (or whatever blockSize is set to) string characters.
39.

40. messageBytes = message.encode('ascii') # convert the string to bytes
41.

42. blockInts = []

43, for blockStart in range(0, len(messageBytes), blockSize):

44, # Calculate the block integer for this block of text

45. blockInt = 0

46. for i in range(blockStart, min(blockStart + blockSize,
Ten(messageBytes))):

47. blockInt += messageBytes[i] * (BYTE_SIZE ** (i % blockSize))
48. blockInts.append(bTlockInt)

49, return blockInts

50.

51.

52. def getTextFromBlocks(blockInts, messagelLength,
bTockSize=DEFAULT_BLOCK_SIZE):

53. # Converts a list of block integers to the original message string.
54. # The original message length is needed to properly convert the Tlast
55. # block integer.

56. message = []

57. for blockInt in blockInts:

58. blockMessage = []

59. for i in range(blockSize - 1, -1, -1):

60. if len(message) + i < messagelength:

61. # Decode the message string for the 128 (or whatever

Email questions to the author: al@inventwithpython.com

Chapter 24 — Public Key Cryptography and the RSA Cipher 393

62.
63.
64 .
65.
66.
67.
68.
69.
70.
71.
72.
73.
74 .
75.
76.
77.
78.
79.
80.
81.

def

blockSize is set to) characters from this block integer.
asciiNumber = blockInt // (BYTE_SIZE ** 1)
blockInt = blockInt % (BYTE_SIZE ** i)
blockMessage.insert(0, chr(asciiNumber))
message.extend(bTockMessage)
return ''.join(message)

encryptMessage(message, key, blockSize=DEFAULT_BLOCK_SIZE):

Converts the message string into a list of block integers, and then
encrypts each block integer. Pass the PUBLIC key to encrypt.
encryptedBlocks = []

n, e = key

for block in getBlocksFromText(message, blockSize):
ciphertext = plaintext A e mod n
encryptedBlocks.append(pow(block, e, n))

return encryptedBlocks

82. def decryptMessage(encryptedBlocks, messagelLength, key,
bTockSize=DEFAULT_BLOCK_SIZE):

83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.

def

Decrypts a Tist of encrypted block ints into the original message
string. The original message length is required to properly decrypt
the Tast block. Be sure to pass the PRIVATE key to decrypt.
decryptedBlocks = []
n, d = key
for block in encryptedBlocks:
plaintext = ciphertext A d mod n
decryptedBlocks.append(pow(bTlock, d, n))
return getTextFromBlocks(decryptedBlocks, messagelLength, blockSize)

readKeyFiTle(keyFilename):

Given the filename of a file that contains a public or private key,
return the key as a (n,e) or (n,d) tuple value.

fo = open(keyFilename)

content = fo.read()

fo.close()

keySize, n, EorD = content.split(',")

return (int(keySize), int(n), int(EorD))

104. def encryptAndwWriteToFile(messageFilename, keyFilename, message,
blockSize=DEFAULT_BLOCK_SIZE):

105.

Using a key from a key file, encrypt the message and save it to a

394 http://inventwithpython.com/hacking

106.
107.
108.
109.
110.
111.

file. Returns the encrypted message string.
keySize, n, e = readKeyFile(keyFilename)

Check that key size 1is greater than block size.
if keySize < blockSize * 8: # * 8 to convert bytes to bits
sys.exit('ERROR: Block size is %s bits and key size is %s bits.

The RSA cipher requires the block size to be equal to or less than the key
size. Either increase the block size or use different keys.' % (blockSize * 8,

keySize))

112.

113.

114. # Encrypt the message

115. encryptedBlocks = encryptMessage(message, (n, e), blockSize)
116.

117. # Convert the Targe int values to one string value.

118. for i in range(len(encryptedBlocks)):

119. encryptedBlocks[i] = str(encryptedBlocks[i])

120. encryptedContent = ',"'.join(encryptedBlocks)

121.

122. # Write out the encrypted string to the output file.

123. encryptedContent = '%s_%s_%s' % (len(message), blockSize,
encryptedContent)

124. fo = open(messageFilename, 'w')

125. fo.write(encryptedContent)

126. fo.close()

127. # Also return the encrypted string.

128. return encryptedContent

129.

130.

131. def readFromFileAndDecrypt(messageFilename, keyFilename):

132. # Using a key from a key file, read an encrypted message from a file
133. # and then decrypt it. Returns the decrypted message string.
134. keySize, n, d = readKeyFile(keyFilename)

135.

136.

137. # Read in the message length and the encrypted message from the file.
138. fo = open(messageFilename)

139. content = fo.read()

140. messagelLength, blockSize, encryptedMessage = content.split('_')
141. messageLength = int(messagelLength)

142. blockSize = int(blockSize)

143.

144. # Check that key size 1is greater than block size.

145. if keySize < blockSize * 8: # * 8 to convert bytes to bits

146. sys.exit('ERROR: Block size 1is %s bits and key size is %s bits.

The RSA cipher requires the block size to be equal to or less than the key

Email questions to the author: al@inventwithpython.com

Chapter 24 — Public Key Cryptography and the RSA Cipher 395

size. Did you specify the correct key file and encrypted file?' % (blockSize *
8, keySize))

147.

148. # Convert the encrypted message into large int values.
149. encryptedBlocks = []

150. for block in encryptedMessage.split(',"'):

151. encryptedBlocks.append(int(block))

152.

153. # Decrypt the Targe int values.

154. return decryptMessage(encryptedBlocks, messagelLength, (n, d),
blockSize)

155.

156.

157. # If rsaCipher.py is run (instead of imported as a module) call
158. # the main() function.

159. if _name__ == '_main__"':

160. main()

Sample Run of the RSA Cipher Program

Once you have a public and private key file, you can send anyone your public file (or post it
somewhere online) so others can send you messages. If you want to send a secret message to
someone, first get their public key file and place it in the same directory as the rsaCipher.py
program. Set the message variable on line 19 to the string of the message to encrypt.

Make sure the mode variable is set to the string 'encrypt' on line 16, and set the
pubKeyFilename variable to the public key file’s filename on line 20. The £ilename
variable holds a string of the file that the ciphertext will be written to.

When you run the program, the output will look like this:

Encrypting and writing to encrypted_file.txt...

Encrypted text:
262_128_99261588918914129248869521413561361425429438626950729912505980066002708
9830015533870663668185646157509007528457226336261821873976954531347724960840148
5234147843064609273929706353514554444810285427183303767133366827434264155196422
0917826499299282445350219039270525853857169256807439317455881433369973441896615
9641434946805896304802494813292321784924727694126957902732539670170912919151008
4539012275457327046892059514600198713235394985023008043572425418307615110483262
2796568393228930000619315738939341534920563203314816419962044702016227849752350
41470244964996075123464854629954207517620745550909143567815440815430367,6684261
3553841756289795361296785769122909029892643608575548034344009592725547265584325
2331933112765122922637923600156910575424723444966430139306688707256391991191466
4504822721492217530056774346964092597494522555496959638903763181124233744530745

396 http://inventwithpython.com/hacking

2041948917261094688708004245747998030244635761849845611609053856921438831555343
2751213283486646600584040245146570901217502941710992503572482408074196762322544
6680099823178790059243202224297039960462494558200472899766913932921695002362188
1996217713713494770944644417894970293643840346744192412614346008019737829011867
03144271104078294839144290043228508639879193883889311384,7277016624458973047704
0806680156575455285570435553143790299815533233656061333313422971390933175290260
5817773458688756774589737014227054621841244485285514206025269405528441594535085
0536174716382559790627193026256934316461174349640238168693204610463496242533658
4736211406286896178786120454116459075038688037119234659059503824465257190001591
9094263967757274610514128826270203357049019841335033192183418122067029417580137
3024013553583624428117568253845170657841567369678118510784447456725765265002966
2854459043617323327066630863887606386875040688709377112851144150781493772858323
25922978358897651126143551277531003851780

At the start of the text is 262 (which is the original message length), followed by an underscore
and then 128 (which is the “block size”; block sizes are explained later). If you look carefully at
the long string of digits after that, you will find two commas. The message is encrypted into three
very large integers, separated by commas. These integers are the encrypted form of the string in
the message variable on line 19.

To decrypt, change the mode variable to 'decrypt' and run the program again. Make sure
privKeyFilename on line 28 is set to the filename of the private key file and that this file is
in the same folder as rsaCipher.py. When you run the program, the output on the screen will look
like this:

Reading from encrypted_file.txt and decrypting...

Decrypted text:

"Journalists belong in the gutter because that is where the ruling classes
throw their guilty secrets." -Gerald Priestland "The Founding Fathers gave the
free press the protection it must have to bare the secrets of government and
inform the people." -Hugo Black

Note that the way the RSA cipher program is implemented, it can only encrypt and decrypt
plaintext files. A plaintext file (not to be confused with “plaintext” in the cryptography sense) is
a file that only contains text characters (like the kind that you can type on your keyboard). For
example, the .py files that you type for your Python programs are plaintext files. Plaintext files
are the type created with text editor software such as Notepad (on Windows), TextMate (on OS
X), or Gedit (on Ubuntu). Specifically, plaintext files are files that only contain ASCII values
(which are described later in this chapter).

Files such as images, videos, executable programs, or word processor files are called binary

files.(Word processor files are binary files because their text has font, color, and size information

Email questions to the author: al@inventwithpython.com

Chapter 24 — Public Key Cryptography and the RSA Cipher 397

bundled with the text.) More information about plaintext files and binary files can be found at

Digital Signatures
Digital signatures is a very large topic of its own, but we can cover a little of it here. Let’s say
Alice sent this email to Bob:

From: alice@inventwithpython.com
To: bob@coffeeghost.net
Subject: Our agreement.

Dear Bob,
I promise to buy your old broken Taptop for one
million dollars.

Sincerely,
Alice

This is great news to Bob, who wants to get rid of his worthless laptop for any price. But what if
Alice later claims that she didn’t make this promise, and that the email Bob has is a forgery that
didn’t really come from her. The email just exists as some file on Bob’s computer. Bob could
have easily created this file himself.

If they had met in person, Alice and Bob could have signed a contract. The handwritten signature
is not easy to forge and provides some proof that Alice really did make this promise. But even if

Alice signed such a paper, took a photo of it with her digital camera, and sent Bob the image file,
it is still believable for Alice to say that the image was photoshopped.

The RSA cipher (and any public key cipher) not only provides encryption, but it can also provide
a way to digitally sign a file or string. Remember that RSA has a public key and a private key,
and that any string that is encrypted with one key produces ciphertext that can only be decrypted
with the other key. Normally we encrypt with the public key, so that only the owner of the private
key can decrypt this ciphertext.

But we can also do the reverse. If Alice writes this message, and then “encrypts” it with her
private key, this will produce “ciphertext” that only Alice’s public key can decrypt. This
“ciphertext” isn’t really so secret since everyone in the world has access to Alice’s public key to

398 http://inventwithpython.com/hacking

decrypt it. But by encrypting a message with her own private key, Alice has digitally signed
the message in a way that cannot be forged. Everyone can decrypt this signed message with her
public key, and since only Alice has access to her private key, only Alice could have produced
this ciphertext. Alice has to stick to her digital signature; she can’t say that Bob forged or
photoshopped it!

This feature is called nonrepudiation. Nonrepudiation is where someone who has made a
statement or claim cannot later refute that they made that statement or claim. Alice could always
claim that her computer was hacked and somebody else had access to her private key, but this
would mean that any other documents she signed could be called into question. (And it would be
very suspicious if Alice’s computer kept “getting hacked” each time she wanted to back out of a
promise.)

Digital signatures can also provide authentication, which allows someone to prove they are who
they say they are. If Alice gets an email claiming to be from the President but wants to be sure it
really is the President, she could always respond with, “Prove you’re the President! Encrypt the
string 'SIMTAVOKXVAHXXSLBGZXVPKNMQMHOYGWFQMXEBCC' with the President’s
private key.” and Alice would be able to decrypt the reply with the President’s public key to see if

it decrypted to her random string. This is called a challenge-response authentication system.

Digital signatures can be used to do many important things, including digital cash, authentication
of public keys, or anonymous web surfing. If you’d like to find out more, go to

How the RSA Cipher Program Works

rsaCipher.py

1. # RSA Cipher

2. # http://inventwithpython.com/hacking (BSD Licensed)

3.

4. dimport sys

5.

6. # IMPORTANT: The block size MUST be less than or equal to the key size!
7. # (Note: The block size is in bytes, the key size is in bits. There

8. # are 8 bits in 1 byte.)

9. DEFAULT_BLOCK_SIZE = 128 # 128 bytes
10. BYTE_SIZE = 256 # One byte has 256 different values.

A single “byte” can hold a number between 0 and 255, that is, 256 different numbers. We will use
this fact in some of the block-related math explained later. This is why the BYTE SIZE constant
issetto 256. The DEFAULT BLOCK_SIZE constant is set to 128 because we will be using
block sizes of 128 bytes by default in our program. (Block sizes are explained later.)

Email questions to the author: al@inventwithpython.com

Chapter 24 — Public Key Cryptography and the RSA Cipher 399

rsaCipher.py
12. def mainQ:

13. # Runs a test that encrypts a message to a file or decrypts a message
14. # from a file.

15. filename = 'encrypted_file.txt' # the file to write to/read from

16. mode = 'encrypt' # set to 'encrypt' or 'decrypt'

If mode issetto 'encrypt' the program encrypts a message (and writes it to the file that is
named in filename). If mode is setto 'decrypt' the program reads the contents of an
encrypted file (specified by the string in £ilename) to decrypt it.

rsaCipher.py

18. if mode == 'encrypt':

19. message = '''"Journalists belong in the gutter because that is
where the ruling classes throw their guilty secrets." -Gerald Priestland "The
Founding Fathers gave the free press the protection it must have to bare the
secrets of government and inform the people." -Hugo Black'''

20. pubKeyFilename = 'al_sweigart_pubkey.txt'

21. print('Encrypting and writing to %s...' % (filename))

22. encryptedText = encryptAndWriteToFile(filename, pubKeyFilename,
message)

23.

24. print('Encrypted text:')

25. print(encryptedText)

The message variable contains the text to be encrypted, and pubKeyFilename contains the
filename of the public key file. Line 22 calls the encryptAndWriteToFile () function,
which will encrypt message using the key, and write the encrypted message to the file named in

filename.
rsaCipher.py
27. elif mode == 'decrypt':
28. privKeyFilename = 'al_sweigart_privkey.txt'
29. print('Reading from %s and decrypting...' % (filename))
30. decryptedText = readFromFileAndDecrypt(filename, privKeyFilename)
31.
32. print('Decrypted text:')
33. print(decryptedText)

The code that handles calling the decryption function is similar to the code on lines 18 to 33. The
filename of the private key file is set in privKeyFilename. The encrypted file’s filename is
stored in the £i1lename variable. These two variables are passed to a call to

400 http://inventwithpython.com/hacking

readFromFileAndDecrypt (). The return value is stored in decryptedText and then
printed to the screen.

ASCII: Using Numbers to Represent Characters

All data is stored on your computer as numbers. A code called the American Standard Code for
Information Interchange, or ASCII (pronounced “ask-ee””) maps numbers to characters. Table 24-
1 shows how ASCII maps numbers and characters (only numbers 32 to 126 are used):

Table 24-1. The ASCII table.

32 (space) 48 0 64 @ 80 P 96) 112
33 ! 49 1 65 A 81 Q 97 a 113
34 " 50 2 66 B 82 R 98 b 114
35 # 51 3 67 C 83 S 99 c 115
36 S 52 4 68 D 84 T 100 d 116
37 % 53 5 69 E 85 U 101 e 117
38 & 54 6 70 F 86 \Y 102 f 118
39 ! 55 7 71 G 87 W 103 g 119
40 (56 8 72 H 88 X 104 h 120
41) 57 9 73 I 89 Y 105 i 121
42 * 58 : 74 J 90 7 106 J 122
43 + 59 ; 75 K 91 [107 k 123
44 ’ 60 < 76 L 92 \ 108 1 124
45 - 61 = 77 M 93] 109 m 125
46 . 62 > 78 N 94 ~ 110 n 126
47 / 63 ? 79 o) 95 _ 111 o

P~ — N X s < o QT

A single ASCII character uses one byte of memory to store. A byte is enough memory to store a
number from O to 255 (for a total of 256 different values.) So the string 'Hello"' is actually
stored on your computer as the numbers 72, 101, 108, 108, and 111. These numbers take up 5
bytes. ASCII provides a standard way to convert string characters to numbers and back.

ASCII works fine for English messages, but not so much for other European languages that have
special characters such as the ¢ in “Vigeneére”, or languages such as Chinese and Arabic. ASCII
doesn’t even work well outside of America, since ASCII includes the $ dollar sign but not the €
euro or £ pound signs. If you want to learn about Unicode, the international system of character

The chr () and oxrd () Functions

Remember from the first chapter where a code was a publicly-known way of translating
information from one format to another format? For example, Morse code was a way of

Email questions to the author: al@inventwithpython.com

Chapter 24 — Public Key Cryptography and the RSA Cipher 401

translating English letters into electric pulses of dots and dashes. ASCII is just a code. We can
encode characters into ASCII numbers and decode ASCII numbers back to characters.

The chr () function (pronounced “char”, short for “character”) takes an integer ASCII number
as the argument and returns a single-character string. The ord () function (short for “ordinal”)
takes a single-character string as the argument, and returns the integer ASCII value for that
character. Try typing the following into the interactive shell:

>>> chr (65)

Ta

>>> ord('A')

65

>>> chr (73)

v

>>> chr (65+8)
v

>>> chr (52)

14

>>> chr (oxrd('F'))
TR

>>> ord(chr(68))
68

>>>

But if you have a string with many letters, it may be easier to use the encode () and
decode () string methods explained later in this chapter.

Practice Exercises, Chapter 24, Set B

Blocks

In cryptography, a “block” is a fixed length of bits. In our RSA cipher program, a block is
represented by an integer. We’ve set the block size to 128 bytes, or 1024 bits (since there are 8
bits in 1 byte). Our message string value will be converted into several integer values (i.e. several
blocks).

e [tis important to note that the RSA encryption algorithm requires that the block size be
equal or less than the key size. Otherwise, the math doesn’t work and you won’t be able
to decrypt the ciphertext the program produced.

402 http://inventwithpython.com/hacking

So a cryptographic block is really just a very large integer. Since our block size is 128 bytes, it
can represent any integer between 0 and up to (but not including) 256 * 128, which is
179,769,313,486,231,590,772,930,519,078,902,473,361,797,697,894,230,657,273,430,081,157,7
32,675,805,500,963,132,708,477,322,407,536,021,120,113,879,871,393,357,658,789,768,814,41
6,622,492,847,430,639,474,124,377,767,893,424,865,485,276,302,219,601,246,094,119,453,082,
952,085,005,768,838,150,682,342,462,881,473,913,110,540,827,237,163,350,510,684,586,298,2
39,947,245,938,479,716,304,835,356,329,624,224,137,216.

(You might have noticed that the RSA cipher uses a lot of big numbers.)

The reason RSA needs to work on a block (which represents multiple characters) is because if we
used the RSA encryption algorithm on a single character, the same plaintext characters would
always encrypt to the same ciphertext characters. In that case, the RSA cipher just becomes a
simple substitution cipher with fancy mathematics, kind of like the affine and Caesar ciphers.

The RSA cipher works by encrypting an integer that is hundreds of digits long (that is, a block)
into a new integer that is hundreds of digits long (that is, a new block). The mathematics of
encrypting a large plaintext integer to a large ciphertext integer are simple enough. But first we
will need a way to convert between a string and a large integer (that is, a block).

We can use ASCII as a system to convert between a single character and a small integer (between
0 and 255). But we will also need a way to combine several small integers into a large integer that
we perform RSA encryption on.

Remember how the affine cipher in Chapter 15 had two keys, Key A and Key B, but they were
combined by multiplying Key A by the symbol set size (which was 95) and then adding Key B?
This was how we combined two small key integers into one larger key integer.

This worked because the ranges of both Key A and Key B were from 0 to 94. In the RSA
program, each character’s ASCII integer ranges from O to 255. To combine ASCII integers
together into one large number we use the following formula:

Take the ASCII integer of the character at index O of the string and multiply it by 256 ~ 0 (but
since 256 ” 0 is 1, and multiplying by 1 leaves you with just the original number, this one is
easy). Take the ASCII integer of the character at index 1 and multiply it by 256 ~ 1. Take the
ASCII integer of the character at index 2 and multiply it by 256 ~ 2, and so on and so on. To get
the final large integer, add all of these products together. This integer is the ciphertext’s block.

Table 24-2 has an example using the string, 'Hello world!':

Email questions to the author: al@inventwithpython.com

Chapter 24 — Public Key Cryptography and the RSA Cipher 403

Table 24-2. Encoding a string into a block.
Index Character ASCII Multiplied Number

Number By
0 H 72 x 256720 =72
1 e 101 x 25671 =25,856
2 1 108 x 25672 =7,077,888
3 1 108 x 25673 =1,811,939,328
4 0 111 x 25674 =476,741,369,856
5 (space) 32 x 25675 =35,184,372,088,832
6 w 119 x 256726 =33,495,522,228,568,064
7 0 111 x 25677 =7,998,392,938,210,000,896
8 r 114 x 25678 =2,102,928,824,402,888,884,224
9 1 108 x 25679 =510,015,580,149,921,683,079,168
10 d 100 x 256710 =120,892,581,961,462,917,470,617,600
11 ! 33 x 256711 =10,213,005,324,104,387,267,917,774,848

SUM: 10,334,410,032,606,748,633,331,426,632

(You might have noticed that the RSA cipher does a lot of math with big numbers.)

So the string 'Hello world! ' when putinto a single large integer “block” becomes the
integer 10,334,410,032,606,748,633,331,426,632. This integer uniquely refers to the string
'Hello world!'. By continuing to use larger and larger powers of 256, any string possible
has exactly one large integer. For example, 2,175,540 is the integer for '42! "' and
17,802,628,493,700,941 is the integer for 'Moose??"' and
23,071,981,395,336,227,453,293,155,570,939,985,398,502,658,016,284,755,880,397,214,576,11
0,064,091,578,359,739,349,325 is the integer for 'My cat's breath smells like cat
food."'.

Because our block size is 128 bytes, we can only encrypt up to 128 characters in a single block.
But we can just use more blocks if the message is longer than 128 characters. The RSA cipher
program will separate the blocks it outputs with commas so we can tell when one block ends and
the next one begins.

As an example, here’s a message that is split into blocks, and the integer that represents each
block (calculated using the same method in Table 24-2.). Each block has at most 128 characters
of the message.

404 http://inventwithpython.com/hacking

Table 24-3. A message split into blocks, with each block’s integer.

1** Block
(128 characters)

2" Block
(128 characters)

3" Block
(128 characters)

4™ Block
(107 characters)

Message
Alan Mathison Turing
was a British
mathematician,
logician, cryptanalyst,
and computer scientist.
He was highly
influential in t

he development of
computer science,
providing a
formalisation of the
concepts of "algorithm"
and "computation" with
the Turing m

achine. Turing is
widely considered to be
the father of computer
science and artificial
intelligence. During
World War II, Turin

g worked for the
Government Code and
Cypher School (GCCS)
at Bletchley Park,
Britain's codebreaking
centre.

Block Integer
81546931218178010029845817915569188970228
63503588092404856861189798874246340656702
38839432215827478831941988018897629951268
20043055718365161172430048774726604180301
48768604258244651074200425332013985856895
55969506391783606289711328048889254351125
31133886746309774148590001157056903849858
716430520524535327809
76631289268154712859022451851447083030531
65677349319343558638588471345037404319956
45932085093160422349968619052225062492420
68799766044149679741160521638235464390814
93343748091892111084834682008279498952509
54725768834415584340223896902248947030025
14434767442075089828357797890134106785932
701869224970151814504
77533874832922662837221187157031815413218
69665618828947923728504232931792998759025
56568632161704130179292825376098664640739
13897327838474709028475738093888688583459
78166272494460147358283858671447396525449
89137517820478280435270940014295674175014
93130489686652467441331220556610652015232
230994266943673361249
87080208891262703930798322686594857958157
73519113112470129994578811890430257029137
88108716196921960428416274796671334547332
64625727703476738415017881880631980435061
77034123161704448596151119133333044771426
77343891157354079822547964726407323487308
38206586983

Converting Strings to Blocks with getBlocksFromText ()

rsaCipher.py

36. def getBlocksFromText(message, blockSize=DEFAULT_BLOCK_SIZE):
37. # Converts a string message to a list of block integers. Each integer
38. # represents 128 (or whatever blockSize is set to) string characters.

The getBlocksFromText () function takes the message and returns a list of blocks (that is, a

list of very large integer values) that represents the message. It is trivially easy to convert between

Email questions to the author: al@inventwithpython.com

Chapter 24 — Public Key Cryptography and the RSA Cipher 405

strings to blocks and blocks to strings, so this step isn’t encrypting anything. The encryption will
be done later in the encryptMessage () function.

The encode () String Method and the Bytes Data Type

rsaCipher.py
40. messageBytes = message.encode('ascii') # convert the string to bytes

First, we need to convert the characters in the message string into ASCII integers. The

encode () string method will return a “bytes” object. Because a byte is represented as a number
from 0 to 255, a bytes value is like a list of integers (although these integers have a very limited
range of 0 to 255). The 1en () function and indexing work with a bytes object in the same way a
list of integers would. A bytes value can be turned into a list value of integer values by passing it
tothe 1ist () function. Try typing the following into the interactive shell:

>>> spam = 'hello'.encode('ascii')
>>> spam

b'hello'

>>> Tist(spam)

[104, 101, 108, 108, 111]

>>> len(spam)

5

>>> spam[2]

108

>>>

Note that a single bytes value is a collection of values, just like a single list value can contain
multiple values. If you try to get a single “byte” from a bytes object (like spam[2] does above),
this just evaluates to an integer value.

Line 40 places the bytes form of the message string in a variable named messageBytes.

The bytes () Function and decode () Bytes Method

Just like you can create a list by calling the 1ist () function, you can also create a bytes object
by calling the bytes () function. The bytes () function is passed a list of integers for the byte
values. Try typing the following into the interactive shell:

>>> spam = bytes([104, 101, 108, 108, 111])
>>> spam

b'hello’

>>> Tist(spam)

[104, 101, 108, 108, 111]

406 http://inventwithpython.com/hacking

>>>

You can also directly type a bytes object into your source code just like you type a string or list.
A bytes object has the letter b right before what looks like an ordinary string value. But
remember, the letter b right before the quotes means that this is a bytes value, not a string value.
Try typing the following into the interactive shell, making sure that there is no space between the
b and the quote characters:

>>> spam = b'hello’

>>> Tist(spam)

[104, 101, 108, 108, 111]
>>>

We don’t use the decode () bytes method in this program, but you should know about it. It does
the opposite of the encode () string method. When called on a bytes object, the decode ()
method returns a string made from the values stored in the bytes object. Try typing the following
into the interactive shell:

>>> spam = bytes([104, 101, 108, 108, 111])
>>> spam.decode('ascii')
'hello'

>>>

Practice Exercises, Chapter 24, Set C

Back to the Code

rsaCipher.py
42. blockInts = []
43. for blockStart in range(0, len(messageBytes), blockSize):

The blockInts list will contain the large integer “blocks” form of the characters in message.
The blockSize parameter is set to DEFAULT BLOCK SIZE by default, and the

DEFAULT BLOCK_ SIZE constant was set to 128 (meaning, 128 bytes) on line 9. This means
that each large integer block can only store 128 string characters at most (since 1 ASCII character
takes up 1 byte). See Table 24-3 for an example of a message split into 128-character blocks.

Line 43’s for loop will set the value in blockStart so that on each iteration it will be set to
the index of the block being created. For example, if blockSize is set to 128, then the index of

Email questions to the author: al@inventwithpython.com

Chapter 24 — Public Key Cryptography and the RSA Cipher 407

the start of the first block will be 0, the index of the start of the second block will be 128, the
index of the start of the third block will be 256, and so on as long as the index is less than
len (messageBytes).

Themin () and max () Functions

The min () function returns the smallest (that is, the minimum) value of its arguments. Try
typing the following into the interactive shell:

>>> min(13, 32, 13, 15, 17, 39)
13

>>> min(21, 45, 18, 10)

10

You can also pass min () a single argument if the argument is a list or tuple value. In this case,

min () returns the smallest value in that list or tuple. Try typing the following into the interactive
shell:

>>> min([31, 26, 20, 13, 12, 36])
12

>>> spam = (10, 37, 37, 43, 3)
>>> min(spam)

3

>>>

The max () function will return the largest (that is, the maximum) value of its arguments:

>>> max(18, 15, 22, 30, 31, 34)

34
>>>

rsaCipher.py
44 . # Calculate the block integer for this block of text
45. blockInt = 0
46. for i in range(blockStart, min(blockStart + blockSize,
Ten(messageBytes))):

The code inside line 43°s for loop will create the very large integer for a single block. Recall
from earlier in this chapter that this is done by multiplying the ASCII value of the character by
(256 ™ index-of-character).

408 http://inventwithpython.com/hacking

The very large integer will eventually be stored in blockInt, which starts at O on line 45. (This
is much like how our previous cipher programs had a translated variable that started as a
blank string but eventually held the encrypted or decrypted message by the end of the program.)
Line 46’s for loop sets i to be the index of all the characters in message for this block. This
index should start at blockStart and goup to blockStart + blockSize (thatis,
blockSize characters after blockStart) or len (messageBytes), whichever is smaller.
The min () call on line 46 will return the smaller of these two expressions.

The second argument to range () on line 46 should be the smaller of these values because each
block will always be made up of 128 (or whatever value is in blockSize) characters, except for
the last block. The last block might be exactly 128 characters, but more likely it is less than the
full 128 characters. In that case we want i to stop at len (messageBytes) because that will
be the last index in messageBytes.

rsaCipher.py
47 . blockInt += messageBytes[i] * (BYTE_SIZE ** (i % blockSize))

The value that is added to the block integer in blockInt is the ASCII value of the character
(which is what messageBytes [1] evaluates to) multiplied by (256 » index-of-character).

The variable i cannot directly be used for the index-of-character part of the equation, because it
is the index in the entire messageBytes object which has indexes from 0 up to

len (messageBytes). We only want the index relative to the current iteration’s block, which
will always be from 0 to blockSize. This table shows the difference between these indexes:

Table 24-4. The indexes of the full message on top, and indexes relative to the block on bottom.

1" Block’s Indexes 2™ Block’s Indexes 3" Block’s Indexes
0 1 2 . 1271129 130 ... 255 | 257 258 ... 511
0 1 2 127 0 1 . 127 0 1 o127

By modding i by blockSize, we can get the position relative to the block. This is why line 47
iISBYTE SIZE ** (i $ blockSize) instead of BYTE SIZE ** i.

rsaCipher.py
48. blockInts.append(bTlockInt)
49, return blockInts

After line 46’s for loop completes, the very large integer for the block has been calculated. We
want to append this block integer to the blockInts list. The next iteration of line 43’s for
loop will calculate the block integer for the next block of the message.

Email questions to the author: al@inventwithpython.com

Chapter 24 — Public Key Cryptography and the RSA Cipher 409

After line 43’s for loop has finished, all of the block integers have been calculated and are
stored in the blockInts list. Line 49 returns blockInts from getBlocksFromText ().

rsaCipher.py
52. def getTextFromBlocks(blockInts, messagelength,
blockSize=DEFAULT_BLOCK_SIZE):

53. # Converts a list of block integers to the original message string.
54. # The original message length is needed to properly convert the Tlast
55. # block integer.

56. message = []

57. for blockInt in blockInts:

The getTextFromBlocks () function does the opposite of getBlocksFromText (). This
function is passed a list of block integers (as the blockInts parameter) and returns the string
value that these blocks represent. The function needs the length of the message encoded in
messageLength, since this information is needed to get the string from the last block integer if
it is not a full 128 characters in size.

Just as before, blockSize will default to DEFAULT BLOCK_ SIZE if no third argument is
passed to getTextFromBlocks (), and DEFAULT BLOCK SIZE was setto 128 on line 9.

The message list (which starts as blank on line 56) will contain a string value for each character
that was computed from each block integer in blockInts. (This list of strings will be joined
together to form the complete string at the end of getTextFromBlocks ().) The message
list starts off empty on line 56. The for loop on line 57 iterates over each block integer in the
blockInts list.

rsaCipher.py
58. blockMessage = []
59. for i in range(blockSize - 1, -1, -1):

Inside the for loop, the code from lines 58 to 65 calculates the letters that are in the current
iteration’s block. Recall from Chapter 15’s affine cipher program how one integer key was split
into two integer keys:

24. def getKeyParts(key):

25. keyA = key // 1en(SYMBOLS)
26. keyB = key % 1en(SYMBOLS)
27. return (keyA, keyB)

The code in getTextFromBlocks () works in a similar way, except the single integer (i.e. the
block integer) is split into 128 integers (and each is the ASCII value for a single character). The

410 http://inventwithpython.com/hacking

way the ASCII numbers are extracted from blockInt has to work backwards, which is why the
for loop on line 59 starts at blockSize - 1, and then subtracts 1 on each iteration down to
(but not including) —1. This means the value of i on the last iteration will be 0.

rsaCipher.py

60. if len(message) + i < messagelength:

61. # Decode the message string for the 128 (or whatever

62. # blockSize is set to) characters from this block integer.
63. asciiNumber = blockInt // (BYTE_SIZE ** 1)

64. blockInt = blockInt % (BYTE_SIZE ** i)

The length of the message list will be how many characters have been translated from blocks so
far. The i f statement on line 60 makes sure the code does not keep computing text from the
block after i has reached the end of the message.

The ASCII number of the next character from the block is calculated by integer dividing
blockInt by (BYTE SIZE ** 1i).Now that we have calculated this character, we can
“remove” it from the block by setting blockInt to the remainder of blockInt divided by
(BYTE SIZE ** 1i).The % mod operator is used to calculate the remainder.

The insert () List Method

While the append () list method only adds values to the end of a list, the insexrt () list
method can add a value anywhere in the list. The arguments to insert () are an integer index
of where in the list to insert the value, and the value to be inserted. Try typing the following into
the interactive shell:

>>> spam = [2, 4, 6, 8]

>>> spam.insert(0, 'hello')
>>> spam

['hello', 2, 4, 6, 8]

>>> spam.insert(2, 'world')

>>> spam
['hello', 2, 'world', 4, 6, 8]
>>>
rsaCipher.py
65. blockMessage.insert(0, chr(asciiNumber))

Using the chr () function, the character that asciiNumber is the ASCII number of is inserted
to the beginning of the list at index 0.

Email questions to the author: al@inventwithpython.com

Chapter 24 — Public Key Cryptography and the RSA Cipher 411

rsaCipher.py
66. message.extend(bTockMessage)

After the for loop on line 59 completes, blockMessage will be a list of single-character
strings that were computed from the current block integer. The strings in this list are appended to
the end of the message list with the extend () method.

rsaCipher.py

67. return ''.join(message)

After the for loop on line 57 completes, the single-character strings in message are joined
together into a single string which is the complete message. This string is then returned from the
getTextFromBlocks () function.

The Mathematics of RSA Encrypting and Decrypting

With the numbers for e, d, and n from the public and private keys, the mathematics done on the
block integers to encrypt and decrypt them can be summarized as follows:

e Encrypted Block = Plaintext Block * € mod n
e Decrypted Block = Ciphertext Block * d mod n

rsaCipher.py
70. def encryptMessage(message, key, blockSize=DEFAULT_BLOCK_SIZE):

71. # Converts the message string into a list of block integers, and then
72. # encrypts each block integer. Pass the PUBLIC key to encrypt.

73. encryptedBlocks = []

74. n, e = key

The encryptMessage () function is passed the plaintext string along with the two-integer
tuple of the private key. The function returns a list of integer blocks of the encrypted ciphertext.
First, the encryptedBlocks variable starts as an empty list that holds the integer blocks and
the two integers in key are assigned to variables n and e.

The pow () Function

While the * * operator does exponents, the pow () function handles exponents and mod. The
expression pow (a, b, c) isequivalentto (a ** b) % c.However, the code inside the
pow () function knows how to intelligently handle very large integers and is much faster than

Q.

typing the expression (a ** b) % c. Try typing the following into the interactive shell:

>>> pow(2, 8)

412 http://inventwithpython.com/hacking

256
>>> (2 ** 8)
256
>>> pow(2, 8, 10)
6
>>> (2 ** 8) % 10
6
>>>
rsaCipher.py
76. for block in getBlocksFromText(message, blockSize):
77. # ciphertext = plaintext A e mod n
78. encryptedBlocks.append(pow(bTlock, e, n))
79. return encryptedBlocks

While creating the public and private keys involved a lot of math, the actual math of the
encryption is simple. The very large integer of the block created from the string in message is
raised to e and then modded by n. This expression evaluates to the encrypted block integer, and
is then appended to encryptedBlocks on line 78.

After all the blocks have been encrypted, the function returns encryptedBlocks on line 79.

rsaCipher.py
82. def decryptMessage(encryptedBlocks, messagelLength, key,
blockSize=DEFAULT_BLOCK_SIZE):

83. # Decrypts a list of encrypted block ints into the original message
84. # string. The original message length 1is required to properly decrypt
85. # the last block. Be sure to pass the PRIVATE key to decrypt.

86. decryptedBlocks = []

87. n, d = key

The math used in the decryptMessage () function is also simple. The decryptedBlocks
variable will store a list of the decrypted integer blocks, and the two integers of the key tuple are

placed in n and d respectively using the multiple assignment trick.

rsaCipher.py

88. for block in encryptedBlocks:
89. # plaintext = ciphertext A d mod n
90. decryptedBlocks.append(pow(bTlock, d, n))

The math of the decryption on line 90 is the same as the encryption’s math, except the integer
block is being raised to d instead of e.

Email questions to the author: al@inventwithpython.com

Chapter 24 — Public Key Cryptography and the RSA Cipher 413

rsaCipher.py
91. return getTextFromBlocks(decryptedBlocks, messageLength, blockSize)

The decrypted blocks along with the messageLength and blockSize parameters are passed
getTextFromBlocks () so that the decrypted plaintext as a string is returned from
decryptMessage ().

Reading in the Public & Private Keys from their Key Files

rsaCipher.py
94. def readKeyFile(keyFilename):

95. # Given the filename of a file that contains a public or private key,
96. # return the key as a (n,e) or (n,d) tuple value.

97. fo = open(keyFilename)

98. content = fo.read()

99, fo.close()

The key files that makeRsakeys.py creates look like this:
<key size as an integer>,<big integer for N>,<big integer for E or D>

The readKeyFile () function is called to read the key size, n, and e (for the public key) or d
(for the private key) values from the key file. Lines 97 to 99 open this file and read in the contents
as a string into the content variable.

rsaCipher.py
100. keySize, n, EorD = content.split(',")
101. return (int(keySize), int(n), int(EorD))

The split () string method splits up the string in content along the commas. The list that
split () returns will have three items in it, and the multiple assignment trick will place each of
these items into the keySize, n, and EorD variables respectively on line 100.

Remember that content was a string when it was read from the file, and the items in the list
that split () returns will also be string values. So before returning the keySize, n, and EorD
values, they are each passed to int () to return an integer form of the value. This is how

readKeyFile () returns three integers that were read from the key file.

The Full RSA Encryption Process

rsaCipher.py
104. def encryptAndwWriteToFile(messageFilename, keyFilename, message,
blockSize=DEFAULT_BLOCK_SIZE):

414 http://inventwithpython.com/hacking

105. # Using a key from a key file, encrypt the message and save it to a
106. # file. Returns the encrypted message string.
107. keySize, n, e = readKeyFile(keyFilename)

The encryptAndWriteToFile () function is passed three string arguments: a filename to
write the encrypted message in, a filename of the public key to use, and a message to be
encrypted. This function handles not just encrypting the string with the key, but also creating the
file that contains the encrypted contents. (The blockSize parameter can also be specified, but
it will be set to DEFAULT BLOCK_SIZE by default, whichis 128.)

The first step is to read in the values for keySize, n, and e from the key file by calling
readKeyFile () on line 107.

rsaCipher.py

109. # Check that key size 1is greater than block size.
110. if keySize < blockSize * 8: # * 8 to convert bytes to bits
111. sys.exit('ERROR: Block size is %s bits and key size is %s bits.

The RSA cipher requires the block size to be equal to or less than the key
size. Either increase the block size or use different keys.' % (blockSize * 8,
keySize))

In order for the mathematics of the RSA cipher to work, the key size must be equal to or greater
than the block size. The blockSize value is in bytes, while the key size that was stored in the
key file was in bits, so we multiply the integer in blockSize by 8 on line 110 so that both of
these values represent number of bits.

If keySizeisless than blockSize * 8, the program exits with an error message. The user
will either have to decrease the value passed for blockSize or use a larger key.

rsaCipher.py
114. # Encrypt the message
115. encryptedBlocks = encryptMessage(message, (n, e), blockSize)

Now that we have the n and e values for the key, we call the encryptMessage () function
which returns a list of integer blocks on line 115. The encryptMessage () is expecting a two-
integer tuple for the key, which is why the n and e variables are placed inside a tuple that is then
passed as the second argument for encryptMessage ().

rsaCipher.py
117. # Convert the Targe int values to one string value.
118. for i in range(len(encryptedBlocks)):

Email questions to the author: al@inventwithpython.com

Chapter 24 — Public Key Cryptography and the RSA Cipher 415

119. encryptedBlocks[i] = str(encryptedBlocks[i])
120. encryptedContent = ','.join(encryptedBlocks)

The join () method will return a string of the blocks separated by commas, but join () only
works on lists with string values, and encryptedBlocks is a list of integers. These integers
will have to first be converted into strings.

The for loop on line 118 iterates through each index in encryptedBlocks, replacing the
integer at encryptedBlocks [1] with a string form of the integer. When the loop completes,
encryptedBlocks now contains a list of string values instead of a list of integer values.

The list of string values is passed to the join () method, which returns a single string of the
list’s strings joined together with commas. Line 120 stores this string in a variable named

encryptedContent.

rsaCipher.py
122. # Write out the encrypted string to the output file.
123. encryptedContent = '%s_%s_%s' % (len(message), blockSize,
encryptedContent)

We want to write out more than just the encrypted integer blocks to the file though, so line 123
changes the encryptedContent variable to include the size of the message (as an integer),
followed by an underscore, followed by the blockSize (which is also an integer), followed by
another underscore, and then followed by the encrypted integer blocks.

rsaCipher.py

124. fo = open(messageFilename, 'w')
125. fo.write(encryptedContent)
126. fo.close()

The last step is to write out the contents of the encrypted file. The filename provided by the
messageFilename parameter is created with the call to open () on line 124. (The 'w'
argument tells open () to open the file in “write mode”.) Note that if a file with this name
already exists, then it will be overwritten by the new file.

The string in encryptedContent is written to the file by calling the write () method on
line 125. Now that we are done writing the file’s contents, line 126 closes the file object in fo.

rsaCipher.py
127. # Also return the encrypted string.
128. return encryptedContent

416 http://inventwithpython.com/hacking

Finally, the string in encryptedContent is returned from the
encryptAndWriteToFile () function on line 128. (This is so that the code that calls the
function can use this string to, for example, print it on the screen.)

The Full RSA Decryption Process

rsaCipher.py
131. def readFromFileAndDecrypt(messageFilename, keyFilename):

132. # Using a key from a key file, read an encrypted message from a file
133. # and then decrypt it. Returns the decrypted message string.
134. keySize, n, d = readKeyFile(keyFilename)

The readFromFileAndDecrypt () function, like encryptAndWriteToFile (), has
parameters for the encrypted message file’s filename and the key file’s filename. (Be sure to pass
the filename of the private key for keyFilename, not the public key.)

The first step is the same as encryptAndWriteToFile (): the readKeyFile () function
is called to get the values for the keySize, n, and d variables.

rsaCipher.py

137. # Read in the message Tength and the encrypted message from the file.
138. fo = open(messageFilename)

139. content = fo.read()

140. messagelLength, blockSize, encryptedMessage = content.split('_')

141. messagelLength = int(messagelength)

142. blockSize = int(blockSize)

The second step is to read in the contents of the file. The messageFilename file is opened for
reading (the lack of a second argument means open () will use “read mode”) on line 138. The
read () method call on line 139 will return a string of the full contents of the file.

Remember that the encrypted file’s format has an integer of the message length, an integer for the
block size used, and then the encrypted integer blocks (all separated by underscore characters).
Line 140 calls the split () method to return a list of these three values, and the multiple
assignment trick places the three values into the messageLength, blockSize, and

message variables respectively.

Because the values returned by split () will be strings, lines 141 and 142 will set
messageLength and blockSize to their integer form, respectively.

rsaCipher.py
144. # Check that key size is greater than block size.

Email questions to the author: al@inventwithpython.com

Chapter 24 — Public Key Cryptography and the RSA Cipher 417

145. if keySize < blockSize * 8: # * 8 to convert bytes to bits

146. sys.exit('ERROR: Block size is %s bits and key size is %s bits.
The RSA cipher requires the block size to be equal to or less than the key
size. Did you specify the correct key file and encrypted file?' % (blockSize *
8, keySize))

The readFromFileAndDecrypt () function also has a check that the block size is equal to
or less than the key size. This should always pass, because if the block size was too small, then it
would have been impossible to create this encrypted file. Most likely the wrong private key file
was specified for the keyFilename parameter, which means the key would not have decrypted
the file correctly anyway.

rsaCipher.py

148. # Convert the encrypted message into large int values.
149. encryptedBlocks = []

150. for block in encryptedMessage.split(',"'):

151. encryptedBlocks.append(int(block))

The encryptedMessage string contains many integer characters joined together with
commas. Line 150’s for loop iterates over the list returned by the split () method. This list
contains strings of individual blocks. The integer form of these strings is appended to the
encryptedBlocks list (which starts as an empty list on line 149) each time line 151 is
executed. After the for loop on line 150 completes, the encryptedBlocks list contains
integer values of the numbers that were in the encryptedMessage string.

rsaCipher.py

153. # Decrypt the Targe int values.
154. return decryptMessage(encryptedBlocks, messageLength, (n, d),
blockSize)

The list in encryptedBlocks is passed to decryptMessage (), along with
messageLength, the private key (which is a tuple value of the two integers in n and d), and
the block size. The decryptMessage () function returns a single string value of the decrypted
message, which itself is returned from readFileAndDecrypt () on line 154.

rsaCipher.py
157. # If rsaCipher.py is run (instead of imported as a module) call
158. # the main() function.
159. if _name_ == '_main__":
160. main()

418 http://inventwithpython.com/hacking

Lines 159 and 160 call the main () function if this program was run by itself rather than
imported by another program.

Practice Exercises, Chapter 24, Set D

Why Can’t We Hack the RSA Cipher

All the different types of cryptographic attacks we’ve used in this book can’t be used against the
RSA cipher:

1. The brute-force attack won’t work. There are too many possible keys to go through.

2. A dictionary attack won’t work because the keys are based on numbers, not words.

3. A word pattern attack can’t be used because the same plaintext word can be encrypted
differently depending on where in the block it appears.

4. Frequency analysis can’t be used. Since a single encrypted block represents several
characters, we can’t get a frequency count of the individual characters.

There are no mathematical tricks that work, either. Remember, the RSA decryption equation is:
M = CAd mod n

Where M is the message block integer, C is the ciphertext block integer, and the private key is
made up of the two numbers (d, n). Everyone (including a cryptanalyst) has the public key file,
which provides (e, n), so the n number is known. If the cryptanalyst can intercept the ciphertext
(which we should always assume is possible), then she knows C as well. But without knowing d,
it is impossible to do the decryption and calculate M, the original message.

A cryptanalyst knows that d is the inverse of e mod (p — 1) X (q — 1) and also knows e from the
public key. But there’s no way she knows what (p— 1) X (q — 1) is. There are some hints to figure
it out though.

The key sizes are known (it’s in the public key file), so the cryptanalyst knows that p and q are
less than 2 A 1024 and that e is relatively prime with (p — 1) X (q — 1). But e is relatively prime
with a lot of numbers, and with a range of 0 to 2 * 1024 possible numbers, it is too large to brute-
force.

The cryptanalyst has another hint from the public key, though. The public key is two numbers (e,
n). And from the RSA algorithm she knows that n = p X q. And since p and q are both prime
numbers, for the given n number there can be only two numbers for p and q.

Email questions to the author: al@inventwithpython.com

Chapter 24 — Public Key Cryptography and the RSA Cipher 419

(Remember, prime numbers have no factors besides 1 and themselves. If you multiply two prime
numbers, that new number will only have the factors of 1 and itself, and also the two prime
numbers.)

So to solve everything and hack the RSA cipher, all we need to do is figure out what the factors

are for n. Since there are two and only two numbers that multiply to n, we won’t have several
different numbers to choose from. Then we can calculate (p — 1) X (q — 1) and then calculate d.
This seems pretty easy. We already have code that finds factors in primeSieve.py’s isPrime ()

function:
Source code from primeSieve.py

7. def isPrime(num):

8. # Returns True if num 1is a prime number, otherwise False.

9.

10. # Note: Generally, isPrime() is slower than primeSieve().

11.

12. # all numbers Tess than 2 are not prime

13. if num < 2:

14. return False

15.

16. # see if num is divisible by any number up to the square root of num
17. for i in range(2, int(math.sqrt(num)) + 1):

18. if num % i == 0:

19. return False

20. return True

We can just modify this code to return the first factors it finds (since we know that there can be

only two factors for n besides 1 and n):

def isPrime(num):

Returns (p,q) where p and g are factors of num

see if num is divisible by any number up to the square root of num
for i in range(2, int(math.sqrt(num)) + 1):
if num % i ==
return (i, num / 1)
return None # no factors exist for num, num must be prime

We can just call this function, pass it n (which we get from the public key file), and wait for it to
find our factors, p and q. Then we can know what (p — 1) X (q — 1) is, which means we can
calculate the mod inverse of e mod (p — 1) X (q — 1), which is d, the decryption key. Then it
would be easy to calculate M, the plaintext message.

420 http://inventwithpython.com/hacking

There’s a problem, though. Remember that n is a number that is around 600 digits long. In fact,
Python’s math.sqgrt () function can’t even handle a number that big (it will give you an error
message). But even if it could, Python would be executing that for loop for a very, very long
time.

Our Sun doesn’t have enough mass to eventually go supernova, but in 5 billion years it will
expand into a red giant star and utterly destroy the Earth. Even if your computer was still running
then, there’s still no chance that 5 billion years is long enough to find the factors of n. That is how
big the numbers we are dealing with are.

And here’s where the strength of the RSA cipher comes from: Mathematically, there is no
shortcut to finding the factors of a number. It’s easy to look at a small number like 15 and say,
“Oh, 5 and 3 are two numbers that multiply to 15. Those are factors of 15.” But it’s another thing
entirely to take a (relatively small) number like 178,565,887,643,607,245,654,502,737 and try to
figure out the factors for it. The only way we can try is by brute-forcing through numbers, but
there are too many numbers.

It is really easy to come up with two prime numbers p and q and multiply them together to get n.
But it is reasonably impossible to take a number n and figure out what p and q are. These facts
make the RSA cipher usable as a cryptographic cipher.

Summary

That’s it! This is the last chapter of the book! There is no “Hacking the RSA Cipher” chapter
because there’s no straightforward attack on the mathematics behind the RSA cipher. And any
brute-force attack would fail, because there are far too many possible keys to try: the keys are
literally hundreds of digits long. If you had a trillion buildings each with a trillion computers that
each tried a trillion keys every nanosecond, it would still take longer than the universe as been in
existence to go through a fraction of the possible keys. (And the electric bill for all those
computers would bankrupt every industrialized nation on the planet.)

That’s a lot of possible keys.

The RSA algorithm is a real encryption cipher used in professional encryption software. When
you log into a website or buy something off the Internet, the RSA cipher (or one like it) is used to
keep passwords and credit card numbers secret from anyone who may be intercepting your
network traffic.

Actually, while the basic mathematics used for professional encryption software are the same as
described in this chapter, you probably don’t want to use this program for your secret files. The
hacks against an encryption program like rsaCipher.py are pretty sophisticated, but they do exist.
(For example, the “random” numbers returned from random. randint () aren’t truly random

Email questions to the author: al@inventwithpython.com

Chapter 24 — Public Key Cryptography and the RSA Cipher 421

and can be predicted, meaning that a hacker could figure out which “random” numbers were used
for the prime numbers of your private key.)

You’ve seen how all the previous ciphers in this book have each been hacked and rendered
worthless. In general, you don’t want to write your own cryptography code for things you want to
keep secret, because you will probably make subtle mistakes in the implementation of these
programs. And hackers and spy agencies use these mistakes to hack your encrypted messages.

A cipher is only secure if everything but the key can be revealed but still keep the message a
secret. You cannot rely on a cryptanalyst not having access to the same encryption software or
knowing what cipher you used. Remember Shannon’s Maxim: The enemy knows the system!

Professional encryption software is written by cryptographers who have spent years studying the
mathematics and potential weaknesses of various ciphers. Even then, the software they write is
inspected by other cryptographers to check for mistakes or potential weaknesses. You are
perfectly capable of learning about these cipher systems and cryptographic mathematics too. It’s
not about being the smartest hacker, but spending the time to study to become the most
knowledgeable hacker.

I hope you’ve found this book to be a helpful start on becoming an elite hacker and programmer.
There is a lot more to learn about programming and cryptography than what is in this book, but I
encourage you explore and learn more! One great book about the general history of cryptography
that I highly recommend is “The Code Book” by Simon Singh. You can go to

cryptography. Feel free to email me your programming or cryptography questions at
al@inventwithpython.com.

Good luck!

422 http://inventwithpython.com/hacking

ABOUT THE AUTHOR

3 y

Albert Sweigart (but you can call him Al), is a software developer in San Francisco, California
who enjoys haunting coffee shops and making useful software. Hacking Secret Ciphers with
Python is his third book.

His first two books, Invent Your Own Computer Games with Python and Making Games with

He is originally from Houston, Texas. He laughs out loud when watching park squirrels, which
makes people think he’s a simpleton.

e Email: al@inventwithpython.com
o Twitter: @AlSweigart

Email questions to the author: al@inventwithpython.com

