MOCKITO

PROGRAMMING
~ GOOKBOOR

Mockito Programming Cookbook

Mockito Programming Cookbook

Mockito Programming Cookbook ii

Contents

1 Mockito Tutorial for Beginners 1
1.1 Whatismocking? e e e e 1
1.1.1 Why should we mock? e 1

1.2 Project creationot i e e e e e e 2
1.3 Mockitoinstallation Lo e e e e 4
1.3.1 Downloadthe JAR o e 4

1.3.2 Withbuildtools e 5
13221 Maveno e e 5

1.3.22 Gradle e e 5

1.4 Basecode totest e e e 6
1.5 Adding behavior L e 7
1.6 Verifying behavior e e e e e 8
1.6.1 Verify that method hasbeencalled 8

1.6.2 Verify that method has been called ntimes 8

1.6.3 Verifymethod call order e e e 9

1.6.4 Verification with timeout L e 10

1.7 Throwing eXCeptions o v v i it et e e e e e e e e e 10
1.8 Shorthand mock creation L e e e 11
1.9 Mocking void returning methods e 12
1.10 Mocking real objects: @Spy e 14
LIT Summary o .o e e e e e 15
1.12 Download the Eclipse Project e e e 15
2 Test-Driven Development With Mockito 16
2.1 Introduction e e e 16
2.2 TestDriven Development e e e e 16
2.3 Creating @ ProjeCt v v v vt it e e e e e e e e e e e e e e e e 16
2.3.1 Dependencies e e e 18

24 Testfirst o L e 18

2.5 Download the source file L e e e 22

Mockito Programming Cookbook iii
3 Mockito Initmocks Example 23
3.1 IntroducCtion L Lo e e e e e e e e e e e e e 23

3.2 Creating @ projeCt v v v v i i e 23
32,1 Dependencieso i e e e e e e e e 25

33 InitMocks o e 25
3.3.1 Using Mockito.mock() o o e e e e 25

3.3.2 MockitoAnnotations initMocks() e e e 26

3321 Inject Mocks o L e e e e 26

333 MockitoJUnitRunner e e e 27

3.3.4 MockitoRule e 27

3.4 Download the source file L e e e 28

4 Mockito Maven Dependency Example 29
4.1 Introduction oL e e e e e e e e e e 29

42 CreatinZ @ ProjeCt v v v v v e 29

4.3 Addingdependencies e e 34
44 TeStiNg o oo e 35

4.5 Download the source file L e e e 36

5 Writing JUnit Test Cases Using Mockito 37
5.1 Introduction L L e e e e e e e e e e 37

5.2 Creating a projeCt v v v i i e e e e e e e e e e e e e e e e e e 37
52,1 Dependencies e e e e e e e e e e e e e 40

5.3 Verify Interactions e e e e e e e e e 40

54 Stubmethodcalls oL e e e 41

5.5 DY L e 42

5.6 InJectMOCKS o o e e e e e 42

5.7 Argument Matchers L e e 44

5.8 Download the source file L e 45

6 Mockito: How to mock void method call 46
6.1 Introduction e 46

6.2 Creating @ project ottt e e e e e e 46
6.2.1 Dependencies e e e e e e e e 48

6.3 Stub . .o e 48
6.3.1 doThrow() e 49

6.3.2 dOANSWEr() e e e e e e e e e e 49

6.3.3 doNothing() o o e e e 49

6.3.3.1 Stubbing consecutive callsonavoidmethod: 49

6.3.3.2 When you spy real objects and you want the void method to do nothing: 49

6.4 Example e 50

6.5 Download the source file e e 50

Mockito Programming Cookbook

7 Spring Test Mock Example
7.1 Introduction

7.2 Creating a project . . .

7.2.1 Dependencies

73 Code.
74 Test

7.5 Download the source file

Mockito Captor Example

8.1 Introduction

8.2 Creating a project . . .

8.2.1 Dependencies

8.3 ArgumentCaptor class

8.3.1 Methods e e
83.1.1 publicTecapture() o o i e

8.3.1.2 publicTgetValue() o i i e e

8.3.1.3 publicjava.util.List<T> getAllValues()

8.4 Captor annotation e e e e e e e e e e e e e
8.5 Code o

8.5.1 Simple Code
8.5.2 Stub example

8.6 Download the source file

Mockito ThenReturn Example

9.1 Introduction

9.2 Creating a project . . .

9.2.1 Dependencies

9.3 thenReturn.
94 Code..........

9.5 Download the source file

51
51
51
51
52
54
56

57
57
57
57
57
58
58
58
58
58
58
59
59
62

Mockito Programming Cookbook

Copyright (c) Exelixis Media P.C., 2016

All rights reserved. Without limiting the rights under

copyright reserved above, no part of this publication

may be reproduced, stored or introduced into a retrieval system, or
transmitted, in any form or by any means (electronic, mechanical,
photocopying, recording or otherwise), without the prior written
permission of the copyright owner.

Mockito Programming Cookbook vi

Preface

Mockito is an open source testing framework for Java released under the MIT License. The framework allows the creation of
test double objects (mock objects) in automated unit tests for the purpose of Test-driven Development (TDD) or Behavior Driven
Development (BDD).

In software development there is an opportunity of ensuring that objects perform the behaviors that are expected of them. One
approach is to create a test automation framework that actually exercises each of those behaviors and verifies that it performs
as expected, even after it is changed. Developers have created mock testing frameworks. These effectively fake some external
dependencies so that the object being tested has a consistent interaction with its outside dependencies. Mockito intends to
streamline the delivery of these external dependencies that are not subjects of the test. A study performed in 2013 on 10,000
GitHub projects found that Mockito is the 9th most popular Java library. (https://en.wikipedia.org/wiki/Mockito)

In this ebook, we provide a compilation of Mockito programming examples that will help you kick-start your own web projects.
We cover a wide range of topics, from initialization and simple test cases, to integration with JUnit, Maven and other frameworks.
With our straightforward tutorials, you will be able to get your own projects up and running in minimum time.

https://en.wikipedia.org/wiki/Mockito

Mockito Programming Cookbook vii

About the Author

JCGs (Java Code Geeks) is an independent online community focused on creating the ultimate Java to Java developers resource
center; targeted at the technical architect, technical team lead (senior developer), project manager and junior developers alike.

JCGs serve the Java, SOA, Agile and Telecom communities with daily news written by domain experts, articles, tutorials, reviews,
announcements, code snippets and open source projects.

You can find them online at https://www.javacodegeeks.com/

https://www.javacodegeeks.com/

Mockito Programming Cookbook 1/66

Chapter 1

Mockito Tutorial for Beginners

Mocking is a testing technique widely used not only in Java, but in any other object oriented programming language, that consists
in exchanging . There are several mocking testing frameworks for Java, but this tutorial will explain how to use Mockito, probably
the most popular for Java language.

For this tutorial, we will use:

e Java 1.7.0
* Eclipse Mars 2, release 4.5.2.
e JUnit 4.

Mockito 1.10.19.

1.1 What is mocking?

Mocking is a testing technique where real components are replaced with objects that have a predefined behavior (mock objects)
only for the test/tests that have been created for. In other words, a mock object is an object that is configured to return a specific
output for a specific input, without performing any real action.

1.1.1 Why should we mock?

If we start mocking wildly, without understanding why mocking is important and how can it help us, we will probably put on
doubt the usefulness of mocking.

There are several scenarios where we should use mocks:

* When we want to test a component that depends on other component, but which is not yet developed. This happens often
when working in team, and component development is divided between several developers. If mocking wouldn’t exist, we
would have to wait until the other developer/developers end the required component/component for testing ours.

* When the real component performs slow operations, usual with dealing with database connections or other intense disk
read/write operations. It is not weird to face database queries that can take 10, 20 or more seconds in production environments.
Forcing our tests to wait that time would be a considerable waste of useful time that can be spent in other important parts of
the development.

* When there are infrastructure concerns that would make impossible the testing. This is similar in same way to the first
scenario described when, for example, our development connects to a database, but the server where is hosted is not configured
or accessible for some reason.

Mockito Programming Cookbook 2/66

1.2 Project creation

Go to "File/New/Java Project". You will be asked to enter a name for the project. Then, press ""Next'', not '"'Finish''.

In the new window that has appeared, go to "Libraries" tab, select "Add library" button, and then select "JUnit", as shown in the
following images below:

Mockito Programming Cookbook 3/66

Java Settings

Define the Java build settings.

b =i JRE System Library [JavaSE-1.7]

Figure 1.1: Java Settings

Mockito Programming Cookbook

4/66

Add Library
Select the library type to add.

Add Library + X

JRE System Library

Maven Managed Dependencies
User Library

—

o
f
il

(") | Java Code Geeks

@ < Back

|

MNext = | Cancel | [Finish |

You can now finish the project creation.

1.3 Mockito installation

1.3.1 Download the JAR

* Download Mockito JAR file from Maven Repository.

Figure 1.2: Add Library

* Place it inside your working directory, for example, in a lib directory in the directory root.

 Refresh the Package Explorer in Eclipse (F5).

https://mvnrepository.com/artifact/org.mockito/mockito-all/1.10.19

Mockito Programming Cookbook 5/66

* Now, a new lib directory should be displayed, with the Mockito JAR file inside it. Right click on it an select "Build Path/Add
to Build Path" (shown in image below).

Java - Eclipse
File Edit Source Refactor Mavigate Search Project Run Window Help

MevE vl >0~y #O~ ®@CF v N vivdy

5 MNew b
f# Package Explorer 53 =
Open F3
k=) o Open With b
w =} mockito-tutorial Showin ShiteAleew >
8 sre Copy Ctri+C
(8 test £ Copy Qualified Name
» =) |RE System Library [JavaSE-1.7] [Past Ctri+v
9 Paste i
b = JUnit4
. K Delete
w = lib

" mockito-all-1.10.19.jar & Remove from Context
gﬂ Mark as Landmark

Build Path

} (= screenshots

& Add to Build Path

Refactor Shift+tAlt+T » i
@ Configure Build Path...

£ Import... it

1 Export... iy | 1oy "._"mg%'*@
) (uivi uooiio

" Refresh F5

As<inn Wnrkinn Sate

Figure 1.3: Add to Classpath

1.3.2 With build tools
1.3.2.1 Maven

Just declare the dependency as it follows:

<dependency>
<groupId>org.mockito</groupId>
<artifactId>mockito-all</artifactId>
<version>1.10.19</version>
</dependency>

1.3.2.2 Gradle

Declare the dependency as it is shown below:

repositories {
jcenter ()

}

dependencies {

Mockito Programming Cookbook 6/66

testCompile "org.mockito:mockito-core:1.+"

1.4 Base code to test

Let’s suppose that our application is for authenticating users, and that our job is to develop the interface that the final user will
use, and that developing the logic is someone else’s job. For mocking, is indispensable to agree the interfaces to mock, that is,
the method definitions: name, parameters, and return type. For this case, the agreed interface will be a public method authe
nticateUser, that receives two strings, the user name and the password; returning a boolean indicating if the authentication
succeeded or not. So, the interface would be the following:

AuthenticatorInterface.java

package com. javacodegeeks.mockitotutorial.basecode;
public interface AuthenticatorInterface {

/[**
* User authentication method definition.
*
* (@param username The user name to authenticate.
@param password The password to authenticate the user.
* @return True if the user has been authenticated; false if it has not.
* @throws EmptyCredentialsException If the received credentials (user name, password) <

*

are
* empty.
*/

public boolean authenticateUser (String username, String password);

And the source that uses this interface:
AuthenticatorApplication.java

package com. javacodegeeks.mockitotutorial.basecode;
public class AuthenticatorApplication {
private AuthenticatorInterface authenticator;

/ x %
* AuthenticatorApplication constructor.
*
* @param authenticator Authenticator interface implementation.
*/
public AuthenticatorApplication (AuthenticatorInterface authenticator) {
this.authenticator = authenticator;

/ x %
x Tries to authenticate an user with the received user name and password, with the <+
received
* AuthenticatorInterface interface implementation in the constructor.

* @param username The user name to authenticate.
* @param password The password to authenticate the user.
* @return True if the user has been authenticated; false if it has not.
*/
public boolean authenticate (String username, String password) {

Mockito Programming Cookbook 7166

boolean authenticated;
authenticated = this.authenticator.authenticateUser (username, password);

return authenticated;

We will suppose that this piece of code also implements the ma in method, but is not important for this example.

Now, we are going to code the tests for AuthenticatorApplication. The testing method returns a boolean, so we will
code tests for covering both possible cases: failed login, and succeeded one.

As the code that handles the authentication is not developed, we have to make some suppositions. We are not doing any real
authentication. We have to define for which values the function will succeed, and for which not.

1.5 Adding behavior

Let’s see how we can mock the Authenticator:
AuthenticatorApplicationTest.java

package com. javacodegeeks.mockitotutorial.basecode;

import org.junit.Test;
import org.mockito.Mockito;

import static org.junit.Assert.x;
import static org.mockito.Mockito.x;

public class AuthenticatorApplicationTest {

@Test

public void testAuthenticate () {
AuthenticatorInterface authenticatorMock;
AuthenticatorApplication authenticator;
String username = "JavaCodeGeeks";
String password = "unsafePassword";

authenticatorMock = Mockito.mock (AuthenticatorInterface.class);
authenticator = new AuthenticatorApplication (authenticatorMock) ;

when (authenticatorMock.authenticateUser (username, password))
.thenReturn (false);

boolean actual = authenticator.authenticate (username, password);

assertFalse (actual);

Let’s see carefully what we are doing:

* We import the required stuff, as in lines 4 and 7. The IDE will help us to do it.
¢ We define the mock object, in line 18. This is how the mock "learns" the method definitions to mock.

e The key part is when we add the behavior, as in lines 21 and 22, with the when () and thenReturn () functions. Is quite
expressive: "When the mock object is called for this method with this parameters, then it returns this value". Note that we are
defining the behavior in the mock object, not to the class calling the mock object.

Mockito Programming Cookbook 8/66

As we are adding the behavior to the reference that has been passed to AuthenticatorApplication instance, it doesn’t
matter if we first add the behavior and then we pass the reference, or reverse.

When the AuthenticatorApplication calls toits AuthenticatorInterface, it won’t know what is actually hap-
pening, the only thing it knows is just how to deal with the defined interface, which for this case has been designed to return
false whenitreceives "JavaCodeGeeks" and "unsafePassword" as inputs.

1.6 Verifying behavior

Mockito allows to make several verifications about our mock objects. Let’s see which are they.

1.6.1 Verify that method has been called

We can check if a method has been called with certain parameters. For that, we would do something similar to the following:
AuthenticatorApplicationTest.java

//
verify (authenticatorMock) .authenticateUser (username, password);

//

To verify that authenticatorMock mock’s authenticateUser method, with username and password parameters.
Of course, this verification only makes sense if we make it after the call is supposed to be done.

Apart from checking that the method is actually being called, this verifications are useful to check that the parameters arrive
to the method call as they are supposed to arrive. So, for example, if you run the test with the following verification:

AuthenticatorApplicationTest.java

//
verify (authenticatorMock) .authenticateUser (username, "not the original password");

//

The test will fail.

1.6.2 Verify that method has been called n times

Apart from checking that the method has been called or not, we have many possibilities regarding to number of method calls.
Let’s see how we can do it:

AuthenticatorApplicationTest.java

//

verify (authenticatorMock, times(1l)).authenticateUser (username, password);
verify (authenticatorMock, atLeastOnce()) .authenticateUser (username, password);
verify (authenticatorMock, atLeast (l)) .authenticateUser (username, password);
verify (authenticatorMock, atMost (1)) .authenticateUser (username, password);

//

As you can see, we have different notations available to make the verifications: specifying the number of times that the mocking
method should be called, how much times should be called at least, and how much at most.

Mockito Programming Cookbook 9/66

As in the previous example, the verifications are made for the exact parameters that the mocking method uses.
We can also verify that the method has never been called:
AuthenticatorApplicationTest.java

//

verify (authenticatorMock, never()) .authenticateUser (username, password); // This will make <+
the test fail!

//

Which, actually, is equivalent to times (0), but would be more expressive when we really want to verify that a method has
never been called.

1.6.3 Verify method call order

We can also verify in which order have been executed the mock methods.
To see how it works, let’s add a dummy method in the interface:
AuthenticatorInterface.java

//
public void foo();

//

And also call it from the original AuthenticatorApplication.authenticate () method:
AuthenticatorApplication.java

//

public boolean authenticate (String username, String password) throws <
EmptyCredentialsException{
boolean authenticated;

this.authenticator.foo();
authenticated = this.authenticator.authenticateUser (username, password);

return authenticated;

/7

Now, let’s see how we would verify that the foo () method is called before authenticateUser () method:
AuthenticatorApplicationTest.java

//

InOrder inOrder = inOrder (authenticatorMock) ;

inOrder.verify (authenticatorMock) .foo();
inOrder.verify (authenticatorMock) .authenticateUser (username, password);

//

We just have to create an InOrder instance for the mock object to make the verification, and then call its verify () method in
the same order we want to make the verification. So, the following snippet, for the current AuthenticatorApplication.
authenticate () method, will make the test fail:

AuthenticatorApplicationTest.java

Mockito Programming Cookbook 10/66

//

InOrder inOrder = inOrder (authenticatorMock);

inOrder.verify (authenticatorMock) .authenticateUser (username, password); // This will make <=
the test fail!

inOrder.verify (authenticatorMock) .foo () ;

//

Because in the method the mocking object is used, authenticateUser () is called after foo ().

1.6.4 Verification with timeout

Mockito verification also allows to specify a timeout for the mock methods execution. So, if we want to ensure that our authe
nticateUser () method runs in, for example, 100 milliseconds or less, we would do the following:

AuthenticatorApplicationTest.java

//

verify (authenticatorMock, timeout (100)) .authenticateUser (username, password);

//

The timeout verification can be combined with the method call, so, we could verify the timeout for n method calls:
AuthenticatorApplicationTest.java

//

verify (authenticatorMock, timeout (100).times (1)) .authenticateUser (username, password);

//

And any other method call verifier.

1.7 Throwing exceptions

Mockito allows its mocks to throw exceptions. Is possible to make a mock method throw an exception that is not defined in the
method signature, but is better to agree in a common method definition from the beginning, including exception throwing.

We could create an exception class to be thrown when, for example, empty credentials are provided:
EmptyCredentialsException.java

package com. javacodegeeks.mockitotutorial.basecode;
public class EmptyCredentialsException extends Exception {

public EmptyCredentialsException () {
super ("Empty credentials!");

We add it to the method signature of our AuthenticatorInterface, and also toits call in AuthenticatorApplicat
ion:

AuthenticatorInterface.java

Mockito Programming Cookbook 11/66

package com.javacodegeeks.mockitotutorial.basecode;
public interface AuthenticatorInterface {
/[*x

* User authentication method definition.
*

*

@param username The user name to authenticate.
@param password The password to authenticate the user.
* @return True if the user has been authenticated; false if it has not.
@throws EmptyCredentialsException If the received credentials (user name, password) <
are
* empty.
*/
public boolean authenticateUser (String username, String password) throws <
EmptyCredentialsException;

3+

*

For the test, we will create another test case for expecting the exception:
AuthenticatorApplicationTest.java

//

@Test (expected = EmptyCredentialsException.class)

public void testAuthenticateEmptyCredentialsException() throws EmptyCredentialsException {
AuthenticatorInterface authenticatorMock;
AuthenticatorApplication authenticator;

authenticatorMock = Mockito.mock (AuthenticatorInterface.class);
authenticator = new AuthenticatorApplication (authenticatorMock);

when (authenticatorMock.authenticateUser ("", ""))
.thenThrow (new EmptyCredentialsException());

authenticator.authenticate("", "");

As you can see, is almost identical to adding return values to the mock. The only difference is that we have to call thenThr
ow (), passing the exception instance we want to be thrown. And, of course, we have to handle the exception; in this case, we
have used the expected rule to "assert" the exception.

1.8 Shorthand mock creation

For a few mocks, creating every mock object is not a problem. But, when there is a considerable number of them, it can be quite
tedious to create every mock.

Mockito provides a shorthand notation, which is really expressive, to inject the mock dependencies.

If we want to inject dependencies with Mockito, we have to take the two things into account:

* Only works for class scope, not for function scope.

¢ We must run the test class with MockitoJUnitRunner.class.

So, we would have to do the following:

AuthenticatorApplicationTest.java

Mockito Programming Cookbook 12/66

//

@RunWith (MockitoJUnitRunner.class)
public class AuthenticatorApplicationTest {

@Mock
private AuthenticatorInterface authenticatorMock;

@InjectMocks
private AuthenticatorApplication authenticator;

//

With the @Mock annotation, we define the dependencies to inject. And then, with @InjectMocks, we specify where to inject
the defined dependencies. With only those annotations, we have an instance of AuthenticatorApplication with the
AuthenticatorInterface injected.

To perform the injection, Mockito tries the following ways, in order:

* By constructor (as we have).
* By setter.

* By class field.

If Mockito is unable to do the injection, the result will be a null reference to the object to be injected, which in this case, would
be AuthenticatorApplication.

But, as we have a constructor where the interface is passed, Mockito is supposed to do the injection properly. So now, we could
make another test case to test it:

AuthenticatorApplicationTest.java

@Test

public void testAuthenticateMockInjection() throws EmptyCredentialsException ({
String username = "javacodegeeks";
String password = "s4f3 pdsswOrd";

when (this.authenticatorMock.authenticateUser (username, password))
.thenReturn (true);

boolean actual = this.authenticator.authenticate (" javacodegeeks", "s4f3 pdsswOrd");

assertTrue (actual) ;

We don’t have to do anything more than the test itself, Mockito has created an instance for the AuthenticatorApplication
with the injected mock.

1.9 Mocking void returning methods

In the previous examples, we have used when () for adding behavior to the mocks. But this way won’t work for methods that
return void. If we try to use when () with a void method, the IDE will mark an error, and it won’t let us compile the code.

First, we are going to change the previous example to make AuthenticatorInterface method return void, and make it
throw an exception if the user has not been successfully authenticated, to give sense to the void return. We are going to create
another package com. javacodegeeks.mockitotutorial.voidmethod, not to modify the previous working code.

AuthenticatorInterface.java

Mockito Programming Cookbook 13/66

package com. javacodegeeks.mockitotutorial.voidmethod;
public interface AuthenticatorInterface {

/[*x
* User authentication method definition.
*
* @param username The user name to authenticate.
* (@param password The password to authenticate the user.
* @throws NotAuthenticatedException If the user can’t be authenticated.
*/
public void authenticateUser (String username, String password) throws <>
NotAuthenticatedException;

And also, its call:
AuthenticatorApplication.java

package com. javacodegeeks.mockitotutorial.voidmethod;
public class AuthenticatorApplication {
private AuthenticatorInterface authenticator;

/ x %
* AuthenticatorApplication constructor.
*
* @param authenticator Authenticator interface implementation.
*/
public AuthenticatorApplication (AuthenticatorInterface authenticator) {
this.authenticator = authenticator;

/ x %
x Tries to authenticate an user with the received user name and password, with the <+
received
* AuthenticatorInterface interface implementation in the constructor.
*
* @param username The user name to authenticate.
* @param password The password to authenticate the user.
* @throws NotAuthenticatedException If the user can’t be authenticated.
*/
public void authenticate (String username, String password) throws <+
NotAuthenticatedException {
this.authenticator.authenticateUser (username, password);

The required exception class also:
NotAuthenticatedException.java

package com. javacodegeeks.mockitotutorial.voidmethod;
public class NotAuthenticatedException extends Exception {

public NotAuthenticatedException () {
super ("Could not authenticate!");

Mockito Programming Cookbook 14 /66

Now, to mock AuthenticatorInterface.authenticateUser, we have to use the do family methods:
AuthenticatorApplicationTest.java

package com. javacodegeeks.mockitotutorial.voidmethod;
import static org.mockito.Mockito.doThrow;

import org.junit.Test;
import org.mockito.Mockito;

public class AuthenticatorApplicationTest {

@Test (expected = NotAuthenticatedException.class)

public void testAuthenticate () throws NotAuthenticatedException {
AuthenticatorInterface authenticatorMock;
AuthenticatorApplication authenticator;
String username = "JavaCodeGeeks";
String password = "wrong password";

authenticatorMock = Mockito.mock (AuthenticatorInterface.class);
authenticator = new AuthenticatorApplication (authenticatorMock) ;

doThrow (new NotAuthenticatedException())
.when (authenticatorMock)
.authenticateUser (username, password);

authenticator.authenticate (username, password);

We are doing the same thing as in the previous example, but using a different notation (lines 20, 21, 22). We could say that it’s
almost the same syntax, but inverted: first, we add the behavior (a throw behavior); and then, we specify the method we are
adding the behavior to.

1.10 Mocking real objects: @Spy

Exists the possibility of creating mocks that wrap objects, i.e., instances of implemented classes. This is called "spying" by
Mockito.

When you call the method of a spied object, the real method will be called, unless a predefined behavior was defined.
Let’s create a new test case in a new package to see how it works:
SpyExampleTest.java

package com. javacodegeeks.mockitotutorial.spy;
import static org.mockito.Mockito.x;

import java.util.HashMap;
import java.util.Map;

import org.junit.Test;
public class SpyExampleTest {

@Test

public void spyExampleTest () {
Map<String, String> hashMap = new HashMap<String, String>();
Map<String, String> hashMapSpy = spy (hashMap) ;

Mockito Programming Cookbook 15/66

System.out.println (hashMapSpy.get ("key")); // Will print null.

hashMapSpy.put ("key", "A value");
System.out.println (hashMapSpy.get ("key")); // Will print "A value".

when (hashMapSpy.get ("key")) .thenReturn ("Another value");
System.out.println (hashMapSpy.get ("key")); // Will print "Another value".

As you can see, we can both delegate the method call to the real implementation, or define a behavior.

You might think that this is a quite odd feature. And you’ll probably right. In fact, Mockito documentation recommends to
use this only occasionally.

1.11 Summary

This tutorial has explained what mocking is, and how to put in practice this technique in Java with Mockito framework. We have
seen how to add predefined behaviors to our mock objects, and several ways of verifying that those mock objects behave as they
are supposed to do. We also have seen the possibility of mocking real objects, a feature that should be used carefully.

1.12 Download the Eclipse Project

This was a tutorial of Mockito.

Download

You can download the full source code of this example here: MockitoTutorialForBeginners

https://examples.javacodegeeks.com/wp-content/uploads/2016/05/MockitoTutorialForBeginners.zip

Mockito Programming Cookbook 16 /66

Chapter 2

Test-Driven Development With Mockito

In this example we will learn how to do Test Driven Development (TDD) using Mockito. A unit test should test a class in
isolation. Side effects from other classes or the system should be eliminated if possible. Mockito lets you write beautiful tests
with a clean & simple API. Tools and technologies used in this example are Java 1.8, Eclipse Luna 4.4.2

2.1 Introduction

Mockito is a popular mocking framework which can be used in conjunction with JUnit. Mockito allows us to create and configure
mock objects. Using Mockito simplifies the development of tests for classes with external dependencies significantly. We can
create the mock objects manually or we can use the mocking framewors like Mockito, EasyMock. jMock etc. Mock frameworks
allow us to create mock objects at runtime and define their behavior. The classical example for a mock object is a data provider.
In production a real database is used, but for testing a mock object simulates the database and ensures that the test conditions are
always the same.

2.2 Test Driven Development

Test-Driven Development (TDD) is an evolutionary approach to development. It offers test-first development where the produc-
tion code is written only to satisfy a test. TDD is the new way of programming. Here the rule is very simple; it is as follows:

* Write a test to add a new capability (automate tests).

* Write code only to satisfy tests.

* Re-run the tests-if any test is broken, revert the change.
* Refactor and make sure all tests are green.

* Continue with step 1.

2.3 Creating a project

Below are the steps required to create the project.

* Open Eclipse. Go to File=New=>Java Project. In the ‘Project name’ enter ‘TDDMockito’.

Mockito Programming Cookbook

17 /66

ﬂ Mew Java Project

O X
Create a Java Project
Create a Java project in the workspace orin an external location.
Project name: |
Uze default location
Location: | Evmeraj\studyeclipse-workspace\TDDMockito Browse...
JRE
(®) Use an execution envirenment JRE: -.JauaSE-1 §: el
() Use a project specific JRE: jrel.8.0 45

() Use default JRE {cu rrently 'jrel.8.0_43)

Project layout

() Use project folder as root for sources and class files

(®) Create separate folders for sources and class files

Working sets
[Add project to working sets

Waorking sets:

Configure JREs...

Configure default...

Select...

Nanle
Joony

® < Back | _ﬂen‘tb

Figure 2.1: Create Java Project

» Eclipse will create a ‘src’ folder. Right click on the ‘src’ folder and choose New=-Package. In the ‘Name’ text-box enter
‘com.javacodegeeks’. Click ‘Finish’.

Mockito Programming Cookbook 18/66

i@ New Java Package O et

Java Package

Bl
Bl

Create a new Java package.

Creates folders corresponding to packages.

Source folder: | TODMockito/src | Browse...

Marme: | com.javacodegeeks |

[] Create package-info.java

Figure 2.2: New Java Package

* Right click on the package and choose New=-Class. Give the class name and click ‘Finish’. Eclipse will create a default class
with the given name.

2.3.1 Dependencies

For this example we need the junit and mockito jars. These jars can be downloaded from Maven repository. We are using
‘junit-4.12jar’ and ‘mockito-all-1.10.19.jar’. There are the latests (non-beta) versions available as per now. To add these jars
in the classpath right click on the project and choose Build Path=-Configure Build Path. The click on the ‘Add External JARs’
button on the right hand side. Then go to the location where you have downloaded these jars. Then click ok.

2.4 Test first

Let’s say we want to build a tool for Report generation. Please note that this is a very simple example of showing how to use
mockito for TDD. It does not focus on developing a full report generation tool.

For this we will need three classes. The first one is the interface which will define the API to generate the report. The second one
is the report entity itself and the third one is the service class. First we will start with writing the test.

We will inject the service class by using @InjectMocks.

@InjectMocks private ReportGeneratorService reportGeneratorService;

https://search.maven.org/

Mockito Programming Cookbook 19/66

@InjectMocks mark a field on which injection should be performed. It allows shorthand mock and spy injection. Mockito will
try to inject mocks only either by constructor injection, setter injection, or property injection in order and as described below. If
any of the following strategy fail, then Mockito won’t report failure i.e. you will have to provide dependencies yourself.

Constructor injection: the biggest constructor is chosen, then arguments are resolved with mocks declared in the test only. If
the object is successfully created with the constructor, then Mockito won’t try the other strategies. Mockito has decided not to
corrupt an object if it has a parametered constructor. If arguments can not be found, then null is passed. If non-mockable types
are wanted, then constructor injection won’t happen. In these cases, you will have to satisfy dependencies yourself.

Property setter injection: mocks will first be resolved by type (if a single type matches injection will happen regardless of the
name), then, if there are several property of the same type, by the match of the property name and the mock name. If you have
properties with the same type (or same erasure), it’s better to name all @Mock annotated fields with the matching properties,
otherwise Mockito might get confused and injection won’t happen. If @InjectMocks instance wasn’t initialized before and have
a no-arg constructor, then it will be initialized with this constructor.

Field injection: mocks will first be resolved by type (if a single type matches injection will happen regardless of the name),
then, if there is several property of the same type, by the match of the field name and the mock name. If you have fields with the
same type (or same erasure), it’s better to name all @Mock annotated fields with the matching fields, otherwise Mockito might
get confused and injection won’t happen. If @InjectMocks instance wasn’t initialized before and have a no-arg constructor, then
it will be initialized with this constructor.

Now we will mock the interface using @Mock annotation:

@Mock private IReportGenerator reportGenerator;

Now we will define the argument captor on report entity:

@Captor private ArgumentCaptor<ReportEntity> reportCaptor;

The ArgumentCaptor class is used to capture argument values for further assertions. Mockito verifies argument values in natural
java style: by using an equals() method. This is also the recommended way of matching arguments because it makes tests clean
& simple. In some situations though, it is helpful to assert on certain arguments after the actual verification.

Now we will define a setup method which we will annotate with @Before. This we will use to initialize the mocks.

MockitoAnnotations.initMocks (this) ;

initMocks() initializes objects annotated with Mockito annotations for given test class.
In the test method we will call the generateReport() method of the ReportGeneratorService class passing the required parameters:

reportGeneratorService.generateReport (startDate.getTime (), endDate.getTime (), reportContent <
.getBytes ()) ;

Below is the snippet of the whole test class:
ReportGeneratorServiceTest.java

package com.javacodegeeks;
import static org.junit.Assert.assertEquals;
import java.util.Calendar;

import org.junit.Before;

import org.junit.Test;

import org.mockito.ArgumentCaptor;
import org.mockito.Captor;

import org.mockito.InjectMocks;

import org.mockito.Mock;

import org.mockito.Mockito;

import org.mockito.MockitoAnnotations;

public class ReportGeneratorServiceTest {

Mockito Programming Cookbook 20 /66

@InjectMocks private ReportGeneratorService reportGeneratorService;
@Mock private IReportGenerator reportGenerator;
@Captor private ArgumentCaptor<ReportEntity> reportCaptor;

@Before

public void setUp () {
MockitoAnnotations.initMocks (this) ;

@SuppressWarnings ("deprecation")

@Test

public void test () {
Calendar startDate = Calendar.getInstance();
startDate.set (2016, 11, 25);
Calendar endDate = Calendar.getInstance();
endDate.set (9999, 12, 31);
String reportContent = "Report Content";

reportGeneratorService.generateReport (startDate.getTime (), endDate.getTime (), —
reportContent.getBytes());

Mockito.verify (reportGenerator) .generateReport (reportCaptor.capture());
ReportEntity report = reportCaptor.getValue();

assertEquals (116, report.getStartDate().getYear());
assertEquals (11, report.getStartDate().getMonth());
assertEquals (25, report.getStartDate().getDate());

assertEquals (8100, report.getEndDate () .getYear());
assertEquals (0, report.getEndDate().getMonth());
assertEquals (31, report.getEndDate () .getDate());

assertEquals ("Report Content", new String(report.getContent()));

The test class will not compile as the required classes are missing here. Don’t worry as this is how TDD works. First we write
the test then we build our classes to satisfy the test requirements.

Now lets start adding the classes. First we will add the interface. This is the same interface which we mocked in our test class.
The service class will have reference to this interface.

IReportGenerator.java

package com. javacodegeeks;

[**

* Interface for generating reports.
* @author Meraj

*/

public interface IReportGenerator {

/%%

* Generate report.

*+ (@param report Report entity.

*/

void generateReport (ReportEntity report);

Mockito Programming Cookbook 21/66

Please note that this interface will also not compile as the ReportEntity class is still missing. Now lets add the entity class. This
class represents the domain object in our design.

ReportEntity.java

package com. javacodegeeks;
import java.util.Date;

/ %%

* Report entity.

* @author Meraj

*/

public class ReportEntity {

private Long reportId;
private Date startDate;
private Date endDate;

private byte[] content;

public Long getReportId() {
return reportId;

public void setReportId(Long reportId) {
this.reportId = reportId;

public Date getStartDate() {
return startDate;

public void setStartDate (Date startDate) {
this.startDate = startDate;

public Date getEndDate () {
return endDate;

public void setEndDate (Date endDate) {
this.endDate = endDate;

public byte[] getContent () {
return content;

public void setContent (byte[] content) {
this.content = content;

Now lets add the service class:
ReportGeneratorService.java
package com. javacodegeeks;

import java.util.Date;

/ %%

* Service class for generating report.

Mockito Programming Cookbook 22 /66

* @author Meraj
*/
public class ReportGeneratorService {

private IReportGenerator reportGenerator;

/ %%

* Generate report.

* @param startDate start date

* @param endDate end date

* @param content report content

x/

public void generateReport (Date startDate, Date endDate, byte[] content) {
ReportEntity report = new ReportEntity();
report.setContent (content) ;
report.setStartDate (startDate) ;
report.setEndDate (endDate) ;
reportGenerator.generateReport (report) ;

Now all the classes will compile and we can run our test class.

2.5 Download the source file

This was an example of using Mockito to do Test Driven Development.
Download

You can download the full source code of this example here: TDD Mockito

https://examples.javacodegeeks.com/wp-content/uploads/2016/07/TDDMockito.zip

Mockito Programming Cookbook 23/66

Chapter 3

Mockito Initmocks Example

In this example we will learn how to initialize mocks in Mockito. A unit test should test a class in isolation. Side effects from
other classes or the system should be eliminated if possible. Mockito lets you write beautiful tests with a clean & simple API.
Tools and technologies used in this example are Java 1.8, Eclipse Luna 4.4.2

3.1 Introduction

Mockito is a popular mocking framework which can be used in conjunction with JUnit. Mockito allows us to create and configure
mock objects. Using Mockito simplifies the development of tests for classes with external dependencies significantly. We can
create the mock objects manually or can use the mocking frameworks like Mockito, EasyMock, jMock etc. Mock frameworks
allow us to create mock objects at runtime and define their behavior. The classical example for a mock object is a data provider.
In production a real database is used, but for testing a mock object simulates the database and ensures that the test conditions are
always the same.

3.2 Creating a project

Below are the steps we need to take to create the project.

* Open Eclipse. Go to File=-New=>Java Project. In the ‘Project name’ enter ‘MockitoInitmocks’.

Mockito Programming Cookbook

24 /66

E Mew Java Project

JRE

Use an execution environment JRE: JawaSE-1.8

Use a project specific JRE: jrel.8.0 45

Use default JRE (currently 'jrel.8.0_43"

Project layout

Use project folder as root for sources and class files

Create separate folders for sources and class files

Working sets
[Add project to working sets

Waorking sets:

existing source.

L

d
Create a Java Project
Create a Java project in the workspace orin an external location.
Project name: | Mockitelnitmocks|
Uze default location
Location: | Evmeraj\studyleclipse-workspace\Mockitolnitmocks Browse...

b

Configure JREs..,

Configure default...

Select...

(i) The wizard will automatically configure the JRE and the project layout based on the

® < Back i

Einish

| | Cancel

Figure 3.1: Create a Java Project

» Eclipse will create a ‘src’ folder. Right click on the ‘src’ folder and choose New=-Package. In the ‘Name’ text-box enter

‘com.javacodegeeks’. Click ‘Finish’.

Mockito Programming Cookbook 25 /66

i@ New Java Package O et

Java Package

Bl
Bl

Create a new Java package.

Creates folders corresponding to packages.

Source folder: | Mockitolnitmocks/src | Browse...

Mame: | com.javacodegeeks| |

[Create package-info.java

Figure 3.2: New Java Package

3.2.1 Dependencies
For this example we need the junit and mockito jars. These jars can be downloaded from Maven repository. We are using
‘junit-4.12.jar’ and ‘mockito-all-1.10.19.jar’. There are the latests (non-beta) versions available as per now. To add these jars

in the classpath right click on the project and choose Build Path=-Configure Build Path. The click on the ‘Add External JARs’
button on the right hand side. Then go to the location where you have downloaded these jars. Then click ok.

3.3 Init Mocks

There are various ways how we can initialize the mocks.

3.3.1 Using Mockito.mock()

The first option is to use mock () method of org.mockito.Mockito class. For this example we will mock the java.
util.LinkedList class.

LinkedList mocklinkedList = Mockito.mock (LinkedList.class);

https://search.maven.org/

Mockito Programming Cookbook 26 /66

The mock () method is used to creates mock object of given class or interface. By default, for all methods that return a value,
a mock will return either null, a primitive/primitive wrapper value, or an empty collection, as appropriate. For example O for an
int/Integer and false for a boolean/Boolean. Now we will define the expectation of the get () method as below:

Mockito.when (mocklinkedList.get (0)) .thenReturn ("First Value");

when () enables stubbing methods. Use it when you want the mock to return particular value when particular method is called.
when () is a successor of deprecated Mockito.stub (Object). Stubbing can be overridden: for example common stubbing
can go to fixture setup but the test methods can override it. Please note that overridding stubbing is a potential code smell that
points out too much stubbing.

Once stubbed, the method will always return stubbed value regardless of how many times it is called. Last stubbing is more
important - when you stubbed the same method with the same arguments many times. Although it is possible to verify a stubbed
invocation, usually it’s just redundant. Now we will do the verification as below:

Assert.assertEquals ("First Value", mocklinkedList.get (0));
Mockito.verify (mocklinkedList) .get (0);

Below is the snippet of whole test method

@Test
public void testMock () {
// Mock
LinkedList mocklinkedList = Mockito.mock (LinkedList.class);
// Stub
Mockito.when (mocklinkedList.get (0)) .thenReturn ("First Value");
// Verify
Assert.assertEquals ("First Value", mocklinkedList.get (0));
Mockito.verify (mocklinkedList) .get (0);

3.3.2 MockitoAnnotations initMocks()

We can initialize mock by calling initMocks () method of org.mockito.MockitoAnnotations

MockitoAnnotations.initMocks (this) ;

This initializes objects annotated with Mockito annotations for given testClass. This method is useful when you have a lot of
mocks to inject. It minimizes repetitive mock creation code, makes the test class more readable and makes the verification error
easier to read because the field name is used to identify the mock.

@Test

public void testFindById() {
MockitoAnnotations.initMocks (this) ;
MyService myService = new MyService (myDao) ;
myService.findById(1L);
Mockito.verify (myDao) ;

initMocks () is generally called in @Before (JUnit4) method of test’s base class. For JUnit3 initMocks () can go to
setup () method of a base class. You can also put initMocks () in your JUnit runner (@RunWith) or use built-in runner:

3.3.2.1 Inject Mocks

Mark a field on which injection should be performed. It allows shorthand mock and spy injection and minimizes repetitive mock
and spy injection. Mockito will try to inject mocks only either by constructor injection, setter injection, or property injection in
order and as described below. If any of the following strategy fail, then Mockito won’t report failure; i.e. you will have to provide
dependencies yourself.

Mockito Programming Cookbook 27 /66

* Constructor injection: The biggest constructor is chosen, then arguments are resolved with mocks declared in the test only. If
the object is successfully created with the constructor, then Mockito won’t try the other strategies. Mockito has decided to no
corrupt an object if it has a parametered constructor. Note: If arguments can not be found, then null is passed. If non-mockable
types are wanted, then constructor injection won’t happen. In these cases, you will have to satisfy dependencies yourself.

* Property setter injection: Mocks will first be resolved by type (if a single type match injection will happen regardless of the
name), then, if there is several property of the same type, by the match of the property name and the mock name. Note: If
you have properties with the same type (or same erasure), it’s better to name all @Mock annotated fields with the matching
properties, otherwise Mockito might get confused and injection won’t happen. If @ InjectMocks instance wasn’t initialized
before and have a no-arg constructor, then it will be initialized with this constructor.

* Field injection: Mocks will first be resolved by type (if a single type match injection will happen regardless of the name),
then, if there is several property of the same type, by the match of the field name and the mock name. Note: If you have
fields with the same type (or same erasure), it’s better to name all @Mock annotated fields with the matching fields, otherwise
Mockito might get confused and injection won’t happen. If @InjectMocks instance wasn’t initialized before and have a
no-arg constructor, then it will be initialized with this constructor.

3.3.3 MockitoJUnitRunner

Another way to initialize mocks is to use @RunWith (org.mockito.runners.MockitoJUnitRunner.class) an-
notation at the test class level. This is compatible with JUNit 4.4 and higher. It initializes mocks annotated with @Mock. Mock
itoJUnitRunner so that explicit usage of MockitoAnnotations.initMocks (Object) is not necessary. Mocks are
initialized before each test method.

It validates framework usage after each test method. Runner is completely optional - there are other ways you can get Mock
working, for example by writing a base class. Explicitly validating framework usage is also optional because it is triggered
automatically by Mockito every time you use the framework.

MyServiceJUnitRunnerTest.java

package com.javacodegeeks;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.mockito.Mock;

import org.mockito.Mockito;

import org.mockito.runners.MockitoJUnitRunner;

QRunWith (MockitoJUnitRunner.class)
public class MyServicedUnitRunnerTest {

private MyService myService;
@Mock private MyDao myDao;

@Test
public void testFindById() {
myService = new MyService (myDao) ;

myService.findById(1L);
Mockito.verify (myDao) .findById (1lL);

3.3.4 MockitoRule

Another way of initializing the mocks is to use the org.mockito. junit.MockitoRule class. You first annotate the class
reference which needs to be mocked with @Mock annotation:

@Mock private MyDao myDao;

Mockito Programming Cookbook 28 /66

Then you define the rule as below:

@Rule public MockitoRule rule = MockitoJdUnit.rule();

It initializes mocks annotates with @Mock so that explicit usage of org.mockito.MockitoAnnotations#initMocks
(Object) is not necessary. Mocks are initialized before each test method. It validates framework usage after each test method.

MyServiceRuleTest.java

package com. javacodegeeks;

import org.junit.Assert;

import org.junit.Rule;

import org.junit.Test;

import org.mockito.Mock;

import org.mockito.Mockito;

import org.mockito.junit.MockitoJUnit;
import org.mockito.junit.MockitoRule;

public class MyServiceRuleTest {
@Mock private MyDao myDao;
@Rule public MockitoRule rule = MockitoJUnit.rule();

@Test

public void test () {
MyService myService = new MyService (myDao) ;
Mockito.when (myDao.findById(1L)) .thenReturn (createTestEntity());
MyEntity actual = myService.findById(1lL);
Assert.assertEquals ("My first name", actual.getFirstName());
Assert.assertEquals ("My surname", actual.getSurname());
Mockito.verify (myDao) .findById(1L);

private MyEntity createTestEntity () {
MyEntity myEntity = new MyEntity();
myEntity.setFirstName ("My first name");
myEntity.setSurname ("My surname");
return myEntity;

3.4 Download the source file

In this example we saw the various methods of initializing mock objects.
Download

You can download the full source code of this example here: MockitoInitmocks

https://examples.javacodegeeks.com/wp-content/uploads/2016/06/MockitoInitmocks.zip

Mockito Programming Cookbook 29/66

Chapter 4

Mockito Maven Dependency Example

A unit test should test a class in isolation. Side effects from other classes or the system should be eliminated if possible. Mockito
lets you write beautiful tests with a clean & simple API. In this example we will learn how to define Mockito dependency in
maven and how to use it. Tools and technologies used in this example are Java 1.8, Eclipse Luna 4.4.2

4.1 Introduction

Mockito is a popular mocking framework which can be used in conjunction with JUnit. Mockito allows us to create and configure
mock objects. Using Mockito simplifies the development of tests for classes with external dependencies significantly. We can
create the mock objects manually or can use the mocking framewors like Mockito, EasyMock. jMock etc. Mock frameworks
allow us to create mock objects at runtime and define their behavior. The classical example for a mock object is a data provider.
In production a real database is used, but for testing a mock object simulates the database and ensures that the test conditions are
always the same.

Apache Maven is a software project management and comprehension tool. Based on the concept of a project object model
(POM), Maven can manage a project’s build, reporting and documentation from a central piece of information. When creating a
project in Eclipse, one may use Maven to manage dependencies more easily and to resolve transitive dependencies automatically

4.2 Creating a project

In this section we will see how Eclipse can help us create a simple maven project. Below are the steps we need to take to create
the project.

* Open Eclipse. Go to File=-New=-Other. Type Maven in the search wizard and choose Maven Project under Maven folder.

Mockito Programming Cookbook 30/66

i New O X

Select a wizard <>

l

Create a Maven Project

Wizards:

Mawven

w = Maven
T.::I‘ Check out Maven Projects from SCM
% Maven Module
M4¢ Maven Project

\ layn NPaple
N IR doiuno
® < Back Mest = Einish Cancel

Figure 4.1: Create Maven Project

* Click Next. In the next section you need to select the project name and location. Tick the checkbox Create a simple project
(skip archetype selection). For the purposes of this tutorial, we will choose the simple project. This will create a basic, Maven-
enabled Java project. If you require a more advanced setup, leave this setting unchecked, and you will be able to use more
advanced Maven project setup features. Leave other options as is, and click Next.

Mockito Programming Cookbook 31/66

i@ Mew Maven Project O et
New Maven project e
Select project name and location M

[]iCreate a simple project (skip archetype selection}:

Use default Workspace location

Browse...
[]Add project(s) to working set
Maore...
¢ Advanced
':?;' = Back Mext = Einish Cancel

Figure 4.2: New Maven Project

* Now, you will need to enter information regarding the Maven Project you are creating. You may visit the Maven documentation
for a more in-depth look at the Maven Coordinates (Maven Coordinates). In general, the Group Id should correspond to your
organization name, and the Artifact Id should correspond to the project’s name. The version is up to your discretion as is the
packing and other fields. If this is a stand-alone project that does not have parent dependencies, you may leave the Parent
Project section as is. Fill out the appropriate information, and click Finish.

https://maven.apache.org/pom.html#Maven_Coordinates

Mockito Programming Cookbook

32/66

i@ Mew Maven Project O et
MNew Maven project T
Configure project
Artifact
Group |d: | com.javacodegesks V|
Artifact Id: | mockito v|
Version: | 0.0.1-SNAPSHOT v]
Packaging: |jar v|
Mame: | Mockite Maven Dependency v|
Description: | Example of Mockito Maven Dependency |
Parent Project
Group Id: | v|
Artifact 1d: | v|
Version: | ~ | Browse... | Clear
¥ Advanced e,
Jaya Geeks
N) |ulE duoio
@ <Back | Neas [Fmshn || Cancel |

Figure 4.3: Configure Project

* You will now notice that your project has been created. You will place your Java code in /src¢/main/java, resources in /src/-
main/resources, and your testing code and resources in /src/test/java and /src/test/resources respectively.

Mockito Programming Cookbook 33/66

{2 Package Explorer 53 = <.}==§>| 4 BT

8 src/main/java

[src/main/resources

[src/test/java

[srcftest/resources

=i, JRE System Library [J25E-1.5]
= src

[= target

M| pom.ml

Figure 4.4: Maven Project Structure

Open the pom.xml file to view the structure Maven has set up. In this file, you can see the information entered in the steps
above. You may also use the tabs at the bottom of the window to change to view Dependencies, the Dependency Hierarchy,
the Effective POM, and the raw xml code for the pom file in the pom.xml tab.

[mockite/pom.aml 2 = 0
Overview B |
Artifact * Project
Group Id: | com.javacodegeeks | Mame: | Meckite Maven Dependency |
Arntifact |d: Ft| mockite | URL: []
Version: | 0.0.1-5NAPSHOT | Description: | Example of Mockito Maven Dependency
Packaging: |jar v
b Parent &
» Properties
» Modules Mew madu et
Inception:
b Organization
» SCM

b Issue Management

¢ Continuous Integration

Overview | Dependencies Dependency Hierarchy | Effective POM pom.\:mll

Figure 4.5: POM

Mockito Programming Cookbook 34 /66

4.3 Adding dependencies

Dependencies can be added in two ways. Either directly specifying the dependencies in the pom.xml tab or using Dependencies
tab to add dependencies. We will use the later.

Open the pom.xml file and click on the Dependencies tab. Click on the Add. .. button. Eclipse will open a popup where you can
define dependencies. Enter the details as below:

Group Id: org.mockito
Artifact Id: mockito-all
Version: 1.9.5

i8] Select Dependency O et

Group |d: *| org.mockito

|
Artifact Ik # mockito-all |
| Scoper | compile

Version: ?| 1.8.5

Enter groupld, artifactld or shal prefix or pattern (*):

1 Index downloads are disabled, search results may be incomplete.

Search Results:

Figure 4.6: Select dependency

Click OK. Check the pom.xml file. Eclipse will add the below section:

<dependencies>
<dependency>
<groupld>org.mockito</groupId>
<artifactId>mockito-all</artifactId>
<version>1.9.5</version>
</dependency>
</dependencies>

Mockito Programming Cookbook 35/66

Repeat the same steps to add the JUnit dependency
Group Id: junit

Artifact Id: junit

Version: 4.12

Now our final pom will look like below:

<project xmlns="https://maven.apache.org/POM/4.0.0" xmlns:xsi="https://www.w3.0rg/2001/ <
XMLSchema—-instance" xsi:schemalocation="https://maven.apache.org/POM/4.0.0 https://maven <
.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com. javacodegeeks</groupId>
<artifactId>mockito</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>Mockito Maven Dependency</name>
<description>Example of Mockito Maven Dependency</description>
<dependencies>
<dependency>
<groupld>org.mockito</groupId>
<artifactId>mockito-all</artifactId>
<version>1.9.5</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
</dependency>
</dependencies>
</project>

4.4 Testing

Now we will test if our maven project has been set up correctly or not. We will create a simple test class to test this.
MockitoExample.java

package mockito;
import java.util.List;
import org.junit.Test;

import static org.mockito.Mockito.x;
import static org.junit.Assert.x;

public class MockitoExample {

@Test

public void test () {
List<String> mockList = mock (List.class);
mockList.add ("First");
when (mockList.get (0)) .thenReturn ("Mockito") ;
when (mockList.get (1)) .thenReturn ("JCG") ;
assertEquals ("Mockito", mockList.get (0));
assertEquals ("JCG", mockList.get (1l));

Run this class as JUnit test and it should run successfully. This will prove that your dependencies are setup correctly.

Mockito Programming Cookbook 36 /66

4.5 Download the source file

In this example we saw how to setup a maven dependency for Mockito using Eclipse
Download

You can download the full source code of this example here: Mockito Maven Dependency

https://examples.javacodegeeks.com/wp-content/uploads/2016/06/Mockito-Maven-Dependency.zip

Mockito Programming Cookbook 37 /66

Chapter 5

Writing JUnit Test Cases Using Mockito

In this example we will learn how to write JUnit tests using Mockito. A unit test should test a class in isolation. Side effects from
other classes or the system should be eliminated if possible. Mockito lets you write beautiful tests with a clean & simple API.
Tools and technologies used in this example are Java 1.8, Eclipse Luna 4.4.2

5.1 Introduction

Mockito is a popular mocking framework which can be used in conjunction with JUnit. Mockito allows us to create and configure
mock objects. Using Mockito simplifies the development of tests for classes with external dependencies significantly. We can
create the mock objects manually or can use the mocking framewors like Mockito, EasyMock. jMock etc. Mock frameworks
allow us to create mock objects at runtime and define their behavior. The classical example for a mock object is a data provider.
In production a real database is used, but for testing a mock object simulates the database and ensures that the test conditions are
always the same.

5.2 Creating a project

Below are the steps we need to take to create the project.

* Open Eclipse. Go to File=-New=>Java Project. In the ‘Project name’ enter ‘MockitoJUnitExample’.

Mockito Programming Cookbook

38 /66

ﬂ Mew Java Project

d
Create a Java Project —
Create a Java project in the workspace orin an external location.
Project name: | Mockito)UnitfExample
Uze default location
Location: | Evmerajistudy'eclipse-workspace\MockitolUnitExample Browse...

JRE
(®) Use an execution environment JRE: JavaSE-1.8
() Use a project specific JRE: jrel.8.0 45

() Use default JRE {cu rrently 'jrel.8.0_43)

Project layout

() Use project folder as root for sources and class files

(®) Create separate folders for sources and class files

Working sets
[Add project to working sets

Waorking sets:

Configure JREs...

Configure default...

Select...

'f;_-ulql::x- ﬂ-ﬂ.iﬂr'.ﬂ'ﬂ

\ J ol duino

@ | mew>

Figure 5.1: New Java Project

* Eclipse will create a ‘src’ folder. Right click on the ‘src’ folder and choose New=-Package. In the ‘Name’ text-box enter
‘com.javacodegeeks’. Click ‘Finish’.

Mockito Programming Cookbook

39/66

E Mew Java Package

Java Package

Create a new Java package.

Creates folders corresponding to packages.

Source folder: | MockitolUnitExample/src | | Browse...
Mame: | com.javacodegeeks| |
[Create package-info.java
Ia Ronle
V) Ul Jdouio
@ [Enish || cancel |

Figure 5.2: New Java Package

* Right click on the package and choose New=-Class. Give the class name as JUnitMockitoExample. Click ‘Finish’. Eclipse

will create a default class with the given name.

Mockito Programming Cookbook

'@} Mew Java Class O et
Java Class
Create a new Java class. @
Source folder: | Mackite)UnitExample/src | Browse...
Package: | com.javacodegeeks | Browse...
[] Enclosing type: Browse...
Mame: | IUnithockitoExample |
Muodifiers: (®) public () package private protected
[]abstract []final ctatic
Superclass: | java.lang.Object | Browse...
Interfaces: Add...
Eemowve
Which methed stubs would you like to create?
] public static woid main(String[] args)
[] Constructors from superclass
Inherited abstract methods
Do you want to add comments? (Configure templates and default value here
|:| Generate comments :
varg ity

Figure 5.3: New Java Class

5.2.1 Dependencies

For this example we need the junit and mockito jars. These jars can be downloaded from Maven repository. We are using
‘junit-4.12jar’ and ‘mockito-all-1.10.19.jar’. There are the latests (non-beta) versions available as per now. To add these jars
in the classpath right click on the project and choose Build Path=-Configure Build Path. The click on the ‘Add External JARs’

button on the right hand side. Then go to the location where you have downloaded these jars. Then click ok.

5.3 Verify interactions

In this section we will see how we can verify the mock object interactions. We will make use of the java.util. Set interface
for this. First we will create the mock Set by calling the org.mockito.Mockito.mock () method and passing the Set

https://search.maven.org/

Mockito Programming Cookbook 41/66

class to it as a parameter.

Set mockSet = mock (Set.class);

The mock () method creates mock object of given class or interface.
Now we will call two methods (addA1l () and clear ()) of the Set class on this mock object as shown below:

mockSet.addAll (toAdd) ;
mockSet.clear();

Now we will verify that these methods have been called

verify (mockSet) .addAll (toAdd) ;
verify (mockSet) .clear();

This verifies certain behavior happened once. Argument passed are compared using equals () method. Below is the snippet
of the full method:

@Test
public void verifyInteractions () {
Set mockSet = mock (Set.class);

Set<String> toAdd = new HashSet<String>();

mockSet.addAll (toAdd) ;
mockSet.clear () ;

verify (mockSet) .addAll (toAdd) ;
verify (mockSet) .clear();

5.4 Stub method calls

In this section we will see how to stub method calls. We will again make use of the Set class for to demonstrate this. First we
will create a mock of the Set class by calling the mock () method:

Set mockSet = mock (Set.class);

Now we will use the when () and thenReturn () method to define the behavior of size () method as below:

when (mockSet.size ()) .thenReturn(10);

To check that the stubbing is done correctly we will call the size () method to see what it returns.

Assert.assertEquals (10, mockSet.size());

Below is the snippet of the whole test method:

@Test

public void stubMethodCalls () {
Set mockSet = mock (Set.class);
when (mockSet.size ()) .thenReturn(10);
Assert.assertEquals (10, mockSet.size());

Mockito Programming Cookbook 42 /66

5.5 Spy

Spy is used for partial mocking. It creates a spy of the real object. The spy calls real methods unless they are stubbed. Real spies
should be used carefully and occasionally, for example when dealing with legacy code. Sometimes it’s impossible or impractical
to use when (ObJject) for stubbing spies. Therefore for spies it is recommended to always use doReturn |Answer | Thro
w () |CallRealMethod family of methods for stubbing.

@Test

public void testSpy () {
List list = new LinkedList ();
List spy = spy(list);

try {
when (spy.get (0)) .thenReturn ("foo") ;
} catch (IndexOutOfBoundsException e) {
// Expected
}

doReturn ("foo") .when (spy) .get (0) ;

Mockito does not delegate calls to the passed real instance, instead it actually creates a copy of it. So if you keep the real instance
and interact with it, don’t expect the spied to be aware of those interaction and their effect on real instance state. The corollary is
that when an unstubbed method is called on the spy but not on the real instance, you won’t see any effects on the real instance.
Note that the spy won’t have any annotations of the spied type, because CGLIB won’t rewrite them. It may troublesome for code
that rely on the spy to have these annotations.

5.6 InjectMocks

@InjectMock allows shorthand mock and spy injection. Mockito will try to inject mocks only either by constructor injection,
setter injection, or property injection in order and as described below. If any of the following strategy fail, then Mockito won’t
report failure; i.e. you will have to provide dependencies yourself.

Constructor injection: the biggest constructor is chosen, then arguments are resolved with mocks declared in the test only. If
the object is successfully created with the constructor, then Mockito won’t try the other strategies. Mockito has decided to no
corrupt an object if it has a parametered constructor. If arguments can not be found, then null is passed. If non-mockable types
are wanted, then constructor injection won’t happen. In these cases, you will have to satisfy dependencies yourself.

Property setter injection: mocks will first be resolved by type (if a single type match injection will happen regardless of the
name), then, if there is several property of the same type, by the match of the property name and the mock name. If you have
properties with the same type (or same erasure), it’s better to name all @Mock annotated fields with the matching properties,
otherwise Mockito might get confused and injection won’t happen. If @InjectMocks instance wasn’t initialized before and have
a no-arg constructor, then it will be initialized with this constructor.

Field injection: mocks will first be resolved by type (if a single type match injection will happen regardless of the name), then,
if there is several property of the same type, by the match of the field name and the mock name. If you have fields with the same
type (or same erasure), it’s better to name all @Mock annotated fields with the matching fields, otherwise Mockito might get
confused and injection won’t happen. If @InjectMocks instance wasn’t initialized before and have a no-arg constructor, then it
will be initialized with this constructor.

Now we will see an example of this. First we will create a domain class. This class represents the Report entity.
ReportEntity.java
package com.javacodegeeks.initmocks;

import java.util.Date;

/ * %

Mockito Programming Cookbook

43 /66

* Report entity.

* @author Meraj

*/

public class ReportEntity {

private Long reportId;
private Date startDate;
private Date endDate;

private byte[] content;

public Long getReportId() {
return reportId;

}

public void setReportId(Long reportId) {
this.reportId = reportIld;

public Date getStartDate() {
return startDate;

public void setStartDate (Date startDate)
this.startDate = startDate;

public Date getEndDate () {
return endDate;

public void setEndDate (Date endDate) {
this.endDate = endDate;

public byte[] getContent () {
return content;

public void setContent (byte[] content) {
this.content = content;

Now we will create create an interface which will refer to the above defined entity class.

IReportGenerator.java

package com. javacodegeeks.initmocks;

[**

* Interface for generating reports.
* @author Meraj

*/

public interface IReportGenerator {

/ %%

* Generate report.

*+ (@param report Report entity.

*/

void generateReport (ReportEntity report);

Mockito Programming Cookbook 44 /66

Now we will define a service which will have reference to this interface.
ReportGeneratorService.java

package com. javacodegeeks.initmocks;
import java.util.Date;

/ %%

* Service class for generating report.
* @author Meraj

*/

public class ReportGeneratorService {

private IReportGenerator reportGenerator;

[* %

* Generate report.

* @param startDate start date

x @param endDate end date

* (@param content report content

x/

public void generateReport (Date startDate, Date endDate, byte[] content) {
ReportEntity report = new ReportEntity();
report.setContent (content) ;
report.setStartDate (startDate) ;
report.setEndDate (endDate) ;
reportGenerator.generateReport (report) ;

Now we will define out test class. In the test class we will will annotate the ReportGeneratorService class with @
InjectMocks.

@InjectMocks private ReportGeneratorService reportGeneratorService;

The IReportGenerator class will be annotated with the @Mock annotation.

@Mock private IReportGenerator reportGenerator;

In the setup method we will initialize the mocks.

@Before
public void setUp () {
MockitoAnnotations.initMocks (this) ;

5.7 Argument Matchers

Mockito verifies argument values in natural java style: by using an equals () method. Sometimes, when extra flexibility is
required then you might use argument matchers. Argument matchers allow flexible verification or stubbing. If you are using
argument matchers, all arguments have to be provided by matchers. Matcher methods like anyObject(), eq() do not return
matchers. Internally, they record a matcher on a stack and return a dummy value (usually null). This implementation is due to
static type safety imposed by the java compiler. The consequence is that you cannot use anyObject(), eq() methods outside of
verified/stubbed method.

ArgumentCaptor is a special implementation of an argument matcher that captures argument values for further assertions:

ArgumentCaptor<Report> argument = ArgumentCaptor.forClass (Report.class);
verify (mock) .doSomething (argument.capture());
assertEquals (ReportType.PAYMENT_REPORT, argument.getValue () .getTypel());

Mockito Programming Cookbook 45/ 66

5.8 Download the source file

In this example we saw how we can use Mockito to write JUnit tests.
Download

You can download the full source code of this example here: Mockito JUnit Example

https://examples.javacodegeeks.com/wp-content/uploads/2016/06/MockitoJUnitExample.zip

Mockito Programming Cookbook 46 /66

Chapter 6

Mockito: How to mock void method call

A unit test should test a class in isolation. Side effects from other classes or the system should be eliminated if possible. Mockito
lets you write beautiful tests with a clean & simple API. In this example we will learn how to mock a void method call using
Mockito. Tools and technologies used in this example are Java 1.8, Eclipse Luna 4.4.2

6.1 Introduction

Mockito is a popular mocking framework which can be used in conjunction with JUnit. Mockito allows us to create and configure
mock objects. Using Mockito simplifies the development of tests for classes with external dependencies significantly. We can
create the mock objects manually or we can use the mocking framewors like Mockito, EasyMock. jMock etc. Mock frameworks
allow us to create mock objects at runtime and define their behavior. The classical example for a mock object is a data provider.
In production a real database is used, but for testing a mock object simulates the database and ensures that the test conditions are
always the same.

6.2 Creating a project

Below are the steps required to create the project.

* Open Eclipse. Go to File=-New=-Java Project. In the ‘Project name’ enter ‘MockitoMock VoidMethod’.

Mockito Programming Cookbook

47 /66

E Mew Java Project

Create a Java Project

Create a Java project in the workspace or in an external location.

MplSa i El R M ockitoMockVoidMethod

[«] Use default location

Location: | Evmeraj\study\eclipse-workspace\MockitoMockVoidMethc Browse...

Project layout

() Use project folder as root for sources and class files

(@) Create separate folders for sources and class files

Working sets
[] Add project to working sets

Warking sets:

JRE
(@) Use an execution envircnment JRE: ;.Faﬂ.raSE-'I B e
() Use a project specific JRE: jre1.8.0_45 i
() Use default JRE (cu rrently 'jre1.8.0_45") Configure JREs...

Configure default...

@ < Back Net> | | Finish

Cancel

Figure 6.1: Create Java Project

Mockito Programming Cookbook 48 /66

* Eclipse will create a ‘src’ folder. Right click on the ‘src’ folder and choose New=-Package. In the ‘Name’ text-box enter
‘com.javacodegeeks’. Click ‘Finish’.

58 New Java Package O >
Java Package E2
Create a new Java package. _i
-
Creates folders corresponding to packages.
Source folder: | MockitoMockVoidMethod/src | Browse...

MName: | cum.javacndegeekﬂ |

[] Create package-info.java

Figure 6.2: Java Package

* Right click on the package and choose New=>Class. Give the class name and click ‘Finish’. Eclipse will create a default class
with the given name.

6.2.1 Dependencies

For this example we need the junit and mockito jars. These jars can be downloaded from Maven repository. We are using
‘junit-4.12.jar’ and ‘mockito-all-1.10.19.jar’. There are the latests (non-beta) versions available as per now. To add these jars
in the classpath right click on the project and choose Build Path=-Configure Build Path. The click on the ‘Add External JARs’
button on the right hand side. Then go to the location where you have downloaded these jars. Then click ok.

6.3 Stub

The role of the test stub is to return controlled values to the object being tested. These are described as indirect inputs to the test.
We replace a real object with a test-specific object that feeds the desired indirect inputs into the system under test.

https://search.maven.org/

Mockito Programming Cookbook 49 /66

6.3.1 doThrow()

In this section we will see how we can mock void methods which throw exceptions. To do this we make use of doThrow ()
method of Mockito class. Stubbing void methods requires a different approach from when (Object) because the compiler
does not like void methods inside brackets.

doThrow (new Exception()) .when (mockObject) .methodWhichThrowException () ;
mockedObject .methodWhichThrowException () ;

6.3.2 doAnswer()

Use doAnswer () when you want to stub a void method with generic org.mockito.stubbing.Answer. Answer spec-
ifies an action that is executed and a return value that is returned when you interact with the mock.

doAnswer (new Answer () {
public Object answer (InvocationOnMock invocation) {
Object[] args = invocation.getArguments();
Mock mock = invocation.getMock () ;
return null;

}

}) .when (mock) .someMethod () ;

6.3.3 doNothing()

Use doNothing () for setting void methods to do nothing. Beware that void methods on mocks do nothing by default!
However, there are rare situations when doNothing () comes handy:

6.3.3.1 Stubbing consecutive calls on a void method:

doNothing () .doThrow (new IllegalArgumentException()) .when (mockObject) .someVoidMethod () ;

//does nothing the first time:
mockObject .someVoidMethod () ;

//throws IllegalArgumentException the next time:
mockObject .someVoidMethod () ;

6.3.3.2 When you spy real objects and you want the void method to do nothing:

Map map = new HashMap () ;
Map spy = spy (map);

//let’s make clear () do nothing
doNothing () .when (spy) .clear () ;

spy.put ("one", "1");

//clear () does nothing, so the map still contains "one", "1"
spy.clear();

Mockito Programming Cookbook 50/ 66

6.4 Example

In this section we will see the working example of mocking a void method. First we will create a simple class with one void
method.

VoidMethodClass.java
package com.javacodegeeks;

public class VoidMethodClass {

public void voidMethodThrowingExcetion (boolean check) {
if (check) {
throw new IllegalArgumentException();

Now we will create a test class for this where we will mock this method using Mockito.
VoidMethodClassTest.java
package com. javacodegeeks;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.Mockito;
public class VoidMethodClassTest {
private VoidMethodClass mock;
@Test

public void testVoidMethodThrowingExcetion () {
mock = Mockito.mock (VoidMethodClass.class);

Mockito.doThrow (new IllegalArgumentException()) .when (mock) .voidMethodThrowingExcetion (<
false);

mock.voidMethodThrowingExcetion (true) ;

Mockito.doThrow (new IllegalArgumentException()) .when (mock) .voidMethodThrowingExcetion (<
true);

try {

mock.voidMethodThrowingExcetion (true);
Assert.fail();

} catch (IllegalArgumentException e) {
// Expected

6.5 Download the source file

In this example we saw how we can mock void classes using Mockito
Download

You can download the full source code of this example here: MockitoMock VoidMethod

https://examples.javacodegeeks.com/wp-content/uploads/2016/07/MockitoMockVoidMethod.zip

Mockito Programming Cookbook 51/66

Chapter 7

Spring Test Mock Example

A unit test should test a class in isolation. Side effects from other classes or the system should be eliminated if possible. Mockito
lets you write beautiful tests with a clean & simple API. In this example we will learn how to mock spring components using
Mockito. Tools and technologies used in this example are Java 1.8, Eclipse Luna 4.4.2

7.1 Introduction

Mockito is a popular mocking framework which can be used in conjunction with JUnit. Mockito allows us to create and configure
mock objects. Using Mockito simplifies the development of tests for classes with external dependencies significantly. We can
create the mock objects manually or can use the mocking framewors like Mockito, EasyMock. jMock etc. Mock frameworks
allow us to create mock objects at runtime and define their behavior. The classical example for a mock object is a data provider.
In production a real database is used, but for testing a mock object simulates the database and ensures that the test conditions are
always the same.

The Spring Framework provides a comprehensive programming and configuration model for modern Java-based enterprise ap-
plications - on any kind of deployment platform.

Be able to unit test spring components without the need of loading the full spring-context is a very useful behavior provided by
Mockito.

7.2 Creating a project

Below are the steps we need to take to create the project.

* Open Eclipse. Go to File=-New=-Java Project. In the ‘Project name’ enter ‘SpringTestMock’.

* Eclipse will create a ‘src’ folder. Right click on the ‘src’ folder and choose New=-Package. In the ‘Name’ text-box enter
‘com.javacodegeeks’. Click ‘Finish’.

7.2.1 Dependencies
For this example we need the below mentioned jars:

* junit-4.1.2

* mockito-all-1.10.19

* spring-beans-4.2.5.RELEASE
* spring-context-4.2.5.RELEASE

Mockito Programming Cookbook 52 /66

These jars can be downloaded from Maven repository. These are the latest (non-beta) versions available as per now. To add these
jars in the classpath right click on the project and choose Build Path=-Configure Build Path. The click on the ‘Add External
JARs’ button on the right hand side. Then go to the location where you have downloaded these jars. Then click ok.

. i8] Properties for SpringTestMock O x
Java Build Path - -

Resource o
Builders (*# Source L= Projects B Libraries % Order and Export
Google JARs and class folders on the build path:
ta Pl Pl @ junit-4.12,jar - E\merajistudy’javacodegeeks\Mockito - Add JARs...
e St_',rle g mockite-all-1.10.19,jar - E\meraj\study\javacodegeeks'
Java Compiler g spring-beans-4.2,5.RELEASE jar - E\meraj\study’\javaco Add External JARs...

o e [spring-contesxt-4.2,5.RELEASE jar - E:\meraj\study\javac

i Add Variable...
dayie Bl =) JRE System Library [JavaSE-1.8] =
Project Facets Add Lib
ibrary...
Project References —
Run/Debug Settings Add Class Folder...
Task Repository
Task Tags Add External Class Folder...
Walidation
WikiText Edit...
Remove
Migrate JAR File...

Figure 7.1: Dependencies

7.3 Code

To show how to use Mockito for mocking the Spring components we will use the User maintenance example. We will create a
service class (UserMaintenanceService) with one method. This class will call the corresponding Data Access Object (DAO) to
serve the request. First we will create a simple POJO class which represents the User domain entity.

User.java

package com.javacodegeeks;

https://search.maven.org/

Mockito Programming Cookbook

53 /66

import java.util.Date;

[x*

*

*

Class representing the user domain.
@author Meraj

*/

public class User {

private Long userId;
private String firstName;
private String surname;
private Date dateOfBirth;

public Long getUserId() {
return userId;

public void setUserId(Long userId) {
this.userId = userId;

public String getFirstName () {
return firstName;

public void setFirstName (String firstName)
this.firstName = firstName;

public String getSurname () {
return surname;

public void setSurname (String surname) {
this.surname = surname;

public Date getDateOfBirth () {
return dateOfBirth;

public void setDateOfBirth (Date dateOfBirth)

this.dateOfBirth = dateOfBirth;

Now we will see how the DAO class looks like. The DAO class will be responsible for talking to the database. We will skip that
part for this example. This class will be annotated as @Component. Such classes are considered as candidates for auto-detection

when using annotation-based configuration and classpath scanning

UserDao.java

package com.javacodegeeks;

import org.springframework.stereotype.Component;

/ *

*

*/

*
DAO class for User related actions.
@author Meraj

@Component
public class UserDao {

Mockito Programming Cookbook

54 /66

/ *x

* Search for user using the id.

* @param id user id

* @return Retrieved user

x/

public User findUserById(Long id) {
// Find user details from database
return new User();

Now we will see how the service class looks like. This class will also be annotated with @Component. It has the reference to

the UserDao class which it injects using the @Aut owired annotation.

Autowire marks a constructor, field, setter method or config method as to be autowired by Spring’s dependency injection facilities.
Only one constructor (at max) of any given bean class may carry this annotation, indicating the constructor to autowire when
used as a Spring bean. Such a constructor does not have to be public. Fields are injected right after construction of a bean, before
any config methods are invoked. Such a config field does not have to be public. Config methods may have an arbitrary name
and any number of arguments; each of those arguments will be autowired with a matching bean in the Spring container. Bean
property setter methods are effectively just a special case of such a general config method. Such config methods do not have to

be public.
UserMaintenanceService.java

package com. javacodegeeks;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Component;

[x %

* Service class for User related actions.
* @author Meraj

*/

@Component

public class UserMaintenanceService {

@Autowired private UserDao userDao;

/x*
* Find user.
*+ @param userId user id
* @return Retrieved user
*/
public User findUserById(Long userId) {
// Do business validations.
return userDao.findUserById (userId);

7.4 Test

Below is the test class which we will use to test in this example.
UserMaintenanceServiceTest.java

package com.javacodegeeks;

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNotNull;

Mockito Programming Cookbook

55/66

import
import
import

import
import
import

import

public

@InjectMocks private UserMaintenanceService userMaintenanceService;

static org.junit.Assert.fail;
static org.mockito.Mockito.when;
static org.mockito.MockitoAnnotations.initMocks;

java.util.Date;
org.junit.Test;
org.mockito.InjectMocks;

org.mockito.Mock;

class UserMaintenanceServiceTest {

@Mock private UserDao userDao;

@Test

public void testFindUserByIdPositive () {
initMocks (this) ;

when (userDao.findUserById(1000L)) .thenReturn (getMeTestUser ()) ;

User user = userMaintenanceService.findUserById(1000L) ;
assertNotNull (user) ;

assertEquals ("Test first name", user.getFirstName());
assertEquals ("Test surname", user.getSurname());

@Test

(expected = NullPointerException.class)

public void testFindUserByIdNegetive () {
userMaintenanceService = new UserMaintenanceService () ;
userMaintenanceService.findUserById (1000L) ;
fail();

private User getMeTestUser () {
User user = new User();
user.setUserId (1000L) ;
user.setFirstName ("Test first name");
user.setSurname ("Test surname'");
user.setDateOfBirth (new Date());
return user;

Now we will discuss few things in this class. If you would have notice you will see that the UserMaintenanceService class is
annotated with @InjectMocks. This marks a field on which injection should be performed. It minimizes repetitive mock and
spy injection. Mockito will try to inject mocks only either by constructor injection, setter injection, or property injection in order
and as described below. If any of the following strategy fail, then Mockito won’t report failure; i.e. you will have to provide
dependencies yourself.

* Constructor injection: the biggest constructor is chosen, then arguments are resolved with mocks declared in the test only.
Note: If arguments can not be found, then null is passed. If non-mockable types are wanted, then constructor injection won’t
happen. In these cases, you will have to satisfy dependencies yourself.

* Property setter injection: mocks will first be resolved by type, then, if there is several property of the same type, by the
match of the property name and the mock name. Note: If you have properties with the same type (or same erasure), it’s better
to name all @Mock annotated fields with the matching properties, otherwise Mockito might get confused and injection won’t
happen. If @InjectMocks instance wasn’t initialized before and have a no-arg constructor, then it will be initialized with
this constructor.

¢ Field injection mocks will first be resolved by type, then, if there is several property of the same type, by the match of
the field name and the mock name. Note: If you have fields with the same type (or same erasure), it’s better to name all

Mockito Programming Cookbook 56 / 66

@Mock annotated fields with the matching fields, otherwise Mockito might get confused and injection won’t happen. If @
InjectMocks instance wasn’t initialized before and have a no-arg constructor, then it will be initialized with this constructor.

The UserDao class is annotated with @Mock. This is the class which we want to mock.

In the first test method the first thing we do is call the MockitoAnnotations.initMocks () method. It initializes objects
annotated with @Mock for given test class. Then we define the behaviour of the DAO class method by using the org.mockito.
Mockito.when (). We return our own test User object here.

In the second test we are not calling the MockitoAnnotations.initMocks () so the DAO class will not be injected in
this case hence it will throw NullPointerException.

7.5 Download the source file

This was an example of mocking spring components.
Download

You can download the full source code of this example here: SpringTestMock

https://examples.javacodegeeks.com/wp-content/uploads/2016/04/SpringTestMock.zip

Mockito Programming Cookbook 57 /66

Chapter 8

Mockito Captor Example

A unit test should test a class in isolation. Side effects from other classes or the system should be eliminated if possible. Mockito
lets you write beautiful tests with a clean & simple API. In this example we will learn how to use ArgumentCaptor class/ Captor
annotation of Mockito. Tools and technologies used in this example are Java 1.8, Eclipse Luna 4.4.2

8.1 Introduction

Mockito is a popular mocking framework which can be used in conjunction with JUnit. Mockito allows us to create and configure
mock objects. Using Mockito simplifies the development of tests for classes with external dependencies significantly. We can
create the mock objects manually or can use the mocking framewors like Mockito, EasyMock. jMock etc. Mock frameworks
allow us to create mock objects at runtime and define their behavior. The classical example for a mock object is a data provider.
In production a real database is used, but for testing a mock object simulates the database and ensures that the test conditions are
always the same.

8.2 Creating a project

Below are the steps we need to take to create the project.

* Open Eclipse. Go to File=-New=-Java Project. In the ‘Project name’ enter ‘MockitoCaptorExample’.

 Eclipse will create a ‘src’ folder. Right click on the ‘src’ folder and choose New=-Package. In the ‘Name’ text-box enter
‘com.javacodegeeks’. Click ‘Finish’.

* Right click on the package and choose New=-Class. Give the class name as MockitoCaptorExample. Click ‘Finish’. Eclipse
will create a default class with the given name.

8.2.1 Dependencies

For this example we need the junit and mockito jars. These jars can be downloaded from Maven repository. We are using
‘junit-4.12.jar’ and ‘mockito-all-1.10.19.jar’. There are the latests (non-beta) versions available as per now. To add these jars
in the classpath right click on the project and choose Build Path=-Configure Build Path. The click on the ‘Add External JARs’
button on the right hand side. Then go to the location where you have downloaded these jars. Then click ok.

8.3 ArgumentCaptor class

ArgumentCaptor class is used to capture argument values for further assertions. Mockito verifies argument values in natural
java style: by using an equals () method. This is also the recommended way of matching arguments because it makes tests
clean & simple. In some situations though, it is helpful to assert on certain arguments after the actual verification. For example:

https://search.maven.org/

Mockito Programming Cookbook 58 /66

ArgumentCaptor<Contact> argument = ArgumentCaptor.forClass (Contact.class);
verify (mockClass) .doSomething (argument.capture());
assertEquals ("Meraij", argument.getValue () .getName());

It is recommended to use Argument Capt or with verification but not with stubbing. Using ArgumentCaptor with stubbing
may decrease test readability because captor is created outside of assert (aka verify or then) block. Also it may reduce defect
localization because if stubbed method was not called then no argument is captured.

In a way ArgumentCaptor is related to custom argument matchers. Both techniques can be used for making sure certain
arguments where passed to mocks. However, ArgumentCaptor may be a better fit if:

* custom argument matcher is not likely to be reused

* you just need it to assert on argument values to complete verification

Custom argument matchers via ArgumentMat cher are usually better for stubbing.

8.3.1 Methods

In this section we will describe the methods defined in the ArgumentCaptor class.

8.3.1.1 public T capture()
Use it to capture the argument. This method must be used inside of verification. Internally, this method registers a special

implementation of an ArgumentMatcher. This argument matcher stores the argument value so that you can use it later to
perform assertions.

8.3.1.2 public T getValue()

Returns the captured value of the argument. If the method was called multiple times then it returns the latest captured value.

8.3.1.3 public java.util.List<T> getAllValues()

Returns all captured values. Use it in case the verified method was called multiple times.

8.4 Captor annotation

Captor annotation allows shorthand Argument Captor creation on fields. One of the advantages of using @Capt or annotation
is that you can avoid warnings related capturing complex generic types. The Captor annotation is defined as below:

@Retention (value=RUNTIME)
@Target (value=FIELD)
@Documented

public @interface Captor

8.5 Code

In this section first we wee see a simple example of using the @Captor annotation. Then we will discuss a more complex one.

Mockito Programming Cookbook 59 /66

8.5.1 Simple Code

For this simple example we will make use of the java.util.Stack class. We will create a stack of strings then add one value to it.
Then we will capture he argument and verify it. Below is the code snippet for this:

stack.add ("Java Code Geeks");
Mockito.verify (stack) .add (argumentCaptor.capture());
assertEquals ("Java Code Geeks", argumentCaptor.getValue());

In the second example we will add two values in the Stack and will extract all the values using the getAllValues() method. Below
is the code snippet for this:

stack.add ("Java Code Geeks");

stack.add ("Mockito");

Mockito.verify (stack, Mockito.times (2)) .add(argumentCaptor.capture());
List<String> values = argumentCaptor.getAllValues();

assertEquals ("Java Code Geeks", wvalues.get (0));

assertEquals ("Mockito", wvalues.get (l));

Below is the code which shows the usage of @Captor annotation
MockitoCaptorExample.java

package com.javacodegeeks;
import static org.junit.Assert.assertEquals;
import java.util.Stack;

import org.junit.Before;

import org.junit.Test;

import org.mockito.ArgumentCaptor;
import org.mockito.Captor;

import org.mockito.Mock;

import org.mockito.Mockito;

import org.mockito.MockitoAnnotations;

public class MockitoCaptorExample {

@Mock Stack<String> stack;
@Captor ArgumentCaptor<String> argumentCaptor;

@Before
public void setUp () {
MockitoAnnotations.initMocks (this) ;

@Test

public void test () throws Exception {
stack.add ("Java Code Geeks");
Mockito.verify(stack) .add(argumentCaptor.capture());
assertEquals ("Java Code Geeks", argumentCaptor.getValue());

8.5.2 Stub example

In this section we will see how we can use @Captor for stubbing. We will use the report generation example.
Create an interface with one method.

IReportGenerator.java

Mockito Programming Cookbook 60 /66

package com. javacodegeeks;

[x*

* Interface for generating reports.
* @author Meraj

*/

public interface IReportGenerator {

/ x %

* Generate report.

* @param report Report entity.

*/

void generateReport (ReportEntity report);

Now we will create the report entity class which is a simple POJO class.
ReportEntity.java

package com. javacodegeeks;
import java.util.Date;

[**

* Report entity.

* @author Meraj

*/

public class ReportEntity {

private Long reportId;
private Date startDate;
private Date endDate;

private byte[] content;

public Long getReportId() {

return reportId;

public void setReportId(Long reportId) {
this.reportId = reportId;

public Date getStartDate() {
return startDate;

public void setStartDate (Date startDate) {
this.startDate = startDate;

public Date getEndDate () {
return endDate;

public void setEndDate (Date endDate) {
this.endDate = endDate;

public byte[] getContent () {
return content;

Mockito Programming Cookbook

61/66

public void setContent (byte[] content) {
this.content = content;

Now we will have a look at the service class which we will use to generate the report.

ReportGeneratorService.java

package com. javacodegeeks;

import java.util.Date;

/ %%

* Service class for generating report.
* @author Meraj

*/

public class ReportGeneratorService {

private IReportGenerator reportGenerator;

/%%

* Generate report.

* @param startDate start date

* @param endDate end date

* @param content report content

*/

public void generateReport (Date startDate, Date endDate,
ReportEntity report = new ReportEntity();
report.setContent (content) ;
report.setStartDate (startDate) ;
report.setEndDate (endDate) ;
reportGenerator.generateReport (report) ;

Now we will look at the test.

ReportGeneratorServiceTest.java

package com.javacodegeeks;

import static org.junit.Assert.assertEquals;

import

import
import
import
import
import
import
import
import

public

java.util.Calendar;

org.
org.
org.
org.
org.
.mockito.Mock;
org.
org.

org

junit.Before;
junit.Test;
mockito.ArgumentCaptor;
mockito.Captor;
mockito.InjectMocks;

mockito.Mockito;
mockito.MockitoAnnotations;

class ReportGeneratorServiceTest {

byte[] content)

@InjectMocks private ReportGeneratorService reportGeneratorService;
@Mock private IReportGenerator reportGenerator;
@Captor private ArgumentCaptor<ReportEntity> reportCaptor;

@Before
public void setUp() ({

Mockito Programming Cookbook

62 /66

MockitoAnnotations.initMocks (this) ;

@SuppressWarnings ("deprecation")

@Test
public void test () {
Calendar startDate = Calendar.getInstance();

startDate.set (2016, 11, 25);

Calendar endDate = Calendar.getInstance();

endDate.set (9999, 12, 31);

String reportContent = "Report Content";

reportGeneratorService.generateReport (startDate.getTime (), endDate.getTime(),
reportContent.getBytes());

Mockito.verify (reportGenerator) .generateReport (reportCaptor.capture());
ReportEntity report = reportCaptor.getValue();

assertEquals (116, report.getStartDate() .getYear());

assertEquals (11, report.getStartDate().getMonth());

assertEquals (25, report.getStartDate().getDate());

assertEquals (8100, report.getEndDate().getYear());

assertEquals (0, report.getEndDate () .getMonth());

assertEquals (31, report.getEndDate () .getDate());

assertEquals ("Report Content", new String(report.getContent()));

8.6 Download the source file

This was an example of Mockito Captor annotation.
Download

You can download the full source code of this example here: Mockito Captor Example

<o

https://examples.javacodegeeks.com/wp-content/uploads/2016/03/MockitoCaptorxample.zip

Mockito Programming Cookbook 63 /66

Chapter 9

Mockito ThenReturn Example

In this example we will learn how to use thenReturn method of Mockito. A unit test should test a class in isolation. Side effects
from other classes or the system should be eliminated if possible. Mockito lets you write beautiful tests with a clean & simple
API. Tools and technologies used in this example are Java 1.8, Eclipse Luna 4.4.2

9.1 Introduction

Mockito is a popular mocking framework which can be used in conjunction with JUnit. Mockito allows us to create and configure
mock objects. Using Mockito simplifies the development of tests for classes with external dependencies significantly. We can
create the mock objects manually or can use the mocking framewors like Mockito, EasyMock. jMock etc. Mock frameworks
allow us to create mock objects at runtime and define their behavior. The classical example for a mock object is a data provider.
In production a real database is used, but for testing a mock object simulates the database and ensures that the test conditions are
always the same.

9.2 Creating a project

Below are the steps we need to take to create the project.

* Open Eclipse. Go to File=-New=-Java Project. In the Project name enter MockitoThenReturnExample.

* Eclipse will create a src folder. Right click on the src folder and choose New=-Package. In the Name text-box enter
com.javacodegeeks. Click Finish.

* Right click on the package and choose New=-Class. Give the class name as ThenReturnExampleTest. Click Finish. Eclipse
will create a default class with the given name.

9.2.1 Dependencies

For this example we need the junit and mockito jars. These jars can be downloaded from Maven repository. We are using
Jjunit-4.12.jar and mockito-all-1.10.19.jar. There are the latests (non-beta) versions available as per now. To add these jars in the
classpath right click on the project and choose Build Path=-Configure Build Path. The click on the Add External JARs button on
the right hand side. Then go to the location where you have downloaded these jars. Then click ok.

https://search.maven.org/

Mockito Programming Cookbook 64 /66

i8] Properties for MockitoThenReturnExample O x
| Java Build Path - Dv -
Rezource i —
Builders (# Source (= Projects B Libraries 5 Order and Export
Google JARs and class folders on the build path:
tava bl ol @ junit-4.12,jar - Emerajistudy'javacodegeeks\Mockito ™ Add JARs...
ke Stj,rle [mockite-all-1.10.19,jar - E:\meraj\study\javacodegeeks'
R =), JRE System Library [JavaSE-1.8] Add External JARs...
lava Editor
Javadoc Location Add Varnable...
Project Facets 2
Add Library...
Project References sk
R P Add Class Folder...
Run/Debug Settings
Task Repository Add Bxternal Class Folder...
Task Tags
Yalidation Edit...
WikiText
Remove
Migrate JAR File...
£ >

Figure 9.1: Add External JAR

9.3 thenReturn

The thenReturn () methods lets you define the return value when a particular method of the mocked object is been called.
The below snippet shows how we use thenReturn to check for multiple values.

Iterator i = mock (Iterator.class);

when (i.next ()) .thenReturn ("Java Code Geeks") .thenReturn ("Mockito");
String result = i.next() + " " + i.next();
System.out.println(result) ;

The first time next () method is called Java Code Geeks is returned and when it’s called the second time Mockito is returned.
So the result is Java Code Geeks Mockito.

The below code snippet shows how to return values based on input parameter.

Mockito Programming Cookbook 65/ 66

Comparable c= mock (Comparable.class);

when (c.compareTo ("Java Code Geeks")) .thenReturn(100) ;
when (c.compareTo ("Mockito")) .thenReturn (200) ;
assertEquals (200, c.compareTo ("Mockito")) ;

The code snippet below shows how you can return the same value independent of the value of the parameter passed.

Comparable c¢ = mock (Comparable.class);
when (c.compareTo (anyInt ())) .thenReturn (0) ;
assertEquals (0 ,c.compareTo(9));

9.4 Code

Below is the test class we will use to show the usage of thenReturn(). This class can be run as a JUnit test from eclipse.
ThenReturnExampleTest.java

package com. javacodegeeks;
import static org.junit.Assert.assertEquals;
import static org.mockito.Mockito.mock;

import static org.mockito.Mockito.when;
import static org.mockito.Matchers.anyInt;

import java.util.Iterator;
import org.junit.Test;

@SuppressWarnings ({"rawtypes", "unchecked"})
public class ThenReturnExampleTest {

/ x %
* This will test multiple return values.
* Q@Qthrows Exception

*/
@Test
public void testl() throws Exception {
Iterator i = mock (Iterator.class);
when (i.next ()) .thenReturn ("Java Code Geeks") .thenReturn ("Mockito");
String result = i.next() + " " + i.next();
assertEquals ("Java Code Geeks Mockito", result);
}
/ x %
* This test demonstrates how to return values based on the input
*/
@Test

public void test2() {
Comparable c= mock (Comparable.class);
when (c.compareTo ("Java Code Geeks")) .thenReturn (100);

when (c.compareTo ("Mockito")) .thenReturn (200) ;
assertEquals (200, c.compareTo ("Mockito"));
}
/ x %
* This test demonstrates how to return values independent of the input value
*/
@Test

public void test3() {

Mockito Programming Cookbook 66 / 66

Comparable ¢ = mock (Comparable.class);
when (c.compareTo (anyInt ())) .thenReturn (0) ;
assertEquals (0 ,c.compareTo(9));

}

9.5 Download the source file

This was an example of Mockito thenReturn ().
Download

You can download the full source code of this example here Mockito thenReturn Example

https://examples.javacodegeeks.com/wp-content/uploads/2016/03/MockitoThenReturnExample.zip

	Mockito Tutorial for Beginners
	What is mocking?
	Why should we mock?

	Project creation
	Mockito installation
	Download the JAR
	With build tools
	Maven
	Gradle

	Base code to test
	Adding behavior
	Verifying behavior
	Verify that method has been called
	Verify that method has been called n times
	Verify method call order
	Verification with timeout

	Throwing exceptions
	Shorthand mock creation
	Mocking void returning methods
	Mocking real objects: @Spy
	Summary
	Download the Eclipse Project

	Test-Driven Development With Mockito
	Introduction
	Test Driven Development
	Creating a project
	Dependencies

	Test first
	Download the source file

	Mockito Initmocks Example
	Introduction
	Creating a project
	Dependencies

	Init Mocks
	Using Mockito.mock()
	MockitoAnnotations initMocks()
	Inject Mocks

	MockitoJUnitRunner
	MockitoRule

	Download the source file

	Mockito Maven Dependency Example
	Introduction
	Creating a project
	Adding dependencies
	Testing
	Download the source file

	Writing JUnit Test Cases Using Mockito
	Introduction
	Creating a project
	Dependencies

	Verify interactions
	Stub method calls
	Spy
	InjectMocks
	Argument Matchers
	Download the source file

	Mockito: How to mock void method call
	Introduction
	Creating a project
	Dependencies

	Stub
	doThrow()
	doAnswer()
	doNothing()
	Stubbing consecutive calls on a void method:
	When you spy real objects and you want the void method to do nothing:

	Example
	Download the source file

	Spring Test Mock Example
	Introduction
	Creating a project
	Dependencies

	Code
	Test
	Download the source file

	Mockito Captor Example
	Introduction
	Creating a project
	Dependencies

	ArgumentCaptor class
	Methods
	public T capture()
	public T getValue()
	public java.util.List<T> getAllValues()

	Captor annotation
	Code
	Simple Code
	Stub example

	Download the source file

	Mockito ThenReturn Example
	Introduction
	Creating a project
	Dependencies

	thenReturn
	Code
	Download the source file

