
Edson Yanaga

From Relational Monolith
to Distributed Data

Migrating to
Microservice
Databases

Compliments of

http://developers.redhat.com

Edson Yanaga

Migrating to
Microservice Databases

From Relational Monolith to
Distributed Data

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-97461-2

[LSI]

Migrating to Microservice Databases
by Edson Yanaga

Copyright © 2017 Red Hat, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com/safari). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editors: Nan Barber and Susan Conant
Production Editor: Melanie Yarbrough
Copyeditor: Octal Publishing, Inc.
Proofreader: Eliahu Sussman

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

February 2017: First Edition

Revision History for the First Edition
2017-01-25: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Migrating to
Microservice Databases, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://oreilly.com/safari

You can sell your time, but you can never buy it back. So the price of
everything in life is the amount of time you spend on it.

To my family: Edna, my wife, and Felipe and Guilherme, my two dear
sons. This book was very expensive to me, but I hope that it will help
many developers to create better software. And with it, change the

world for the better for all of you.

To my dear late friend: Daniel deOliveira. Daniel was a DFJUG leader
and founding Java Champion. He helped thousands of Java developers

worldwide and was one of those rare people who demonstrated how
passion can truly transform the world in which we live for the better. I

admired him for demonstrating what a Java Champion must be.

To Emmanuel Bernard, Randall Hauch, and Steve Suehring. Thanks
for all the valuable insight provided by your technical feedback. The

content of this book is much better, thanks to you.

http://danieldeoliveira.org

Table of Contents

Foreword. vii

1. Introduction. 1
The Feedback Loop 1
DevOps 2
Why Microservices? 5
Strangler Pattern 6
Domain-Driven Design 8
Microservices Characteristics 9

2. Zero Downtime. 13
Zero Downtime and Microservices 14
Deployment Architectures 14
Blue/Green Deployment 15
Canary Deployment 17
A/B Testing 19
Application State 19

3. Evolving Your Relational Database. 21
Popular Tools 22
Zero Downtime Migrations 23
Avoid Locks by Using Sharding 24
Add a Column Migration 26
Rename a Column Migration 27
Change Type/Format of a Column Migration 28
Delete a Column Migration 30
Referential Integrity Constraints 31

v

4. CRUD and CQRS. 33
Consistency Models 34
CRUD 35
CQRS 36
Event Sourcing 39

5. Integration Strategies. 43
Shared Tables 44
Database View 45
Database Materialized View 47
Database Trigger 49
Transactional Code 49
Extract, Transform, and Load Tools 51
Data Virtualization 53
Event Sourcing 56
Change Data Capture 58

vi | Table of Contents

Foreword

To say that data is important is an understatement. Does your code
outlive your data, or vice versa? QED. The most recent example of
this adage involves Artificial Intelligence (AI). Algorithms are
important. Computational power is important. But the key to AI is
collecting a massive amount of data. Regardless of your algorithm,
no data means no hope. That is why you see such a race to collect
data by the tech giants in very diverse fields—automotive, voice,
writing, behavior, and so on.

And despite the critical importance of data, this subject is often
barely touched or even ignored when discussing microservices. In
microservices style, you should write stateless applications. But use‐
ful applications are not without state, so what you end up doing is
moving the state out of your app and into data services. You’ve just
shifted the problem. I can’t blame anyone; properly implementing
the full elasticity of a data service is so much more difficult than
doing this for stateless code. Most of the patterns and platforms sup‐
porting the microservices architecture style have left the data prob‐
lem for later. The good news is that this is changing. Some
platforms, like Kubernetes, are now addressing this issue head on.

After you tackle the elasticity problem, you reach a second and more
pernicious one: the evolution of your data. Like code, data structure
evolves, whether for new business needs, or to reshape the actual
structure to cope better with performance or address more use
cases. In a microservices architecture, this problem is particularly
acute because although data needs to flow from one service to the
other, you do not want to interlock your microservices and force
synchronized releases. That would defeat the whole purpose!

vii

This is why Edson’s book makes me happy. Not only does he discuss
data in a microservices architecture, but he also discusses evolution
of this data. And he does all of this in a very pragmatic and practical
manner. You’ll be ready to use these evolution strategies as soon as
you close the book. Whether you fully embrace microservices or just
want to bring more agility to your IT system, expect more and more
discussions on these subjects within your teams—be prepared.

— Emmanuel Bernard
Hibernate Team and Red Hat

Middleware’s data platform
architect

viii | Foreword

CHAPTER 1

Introduction

Microservices certainly aren’t a panacea, but they’re a good solution
if you have the right problem. And each solution also comes with its
own set of problems. Most of the attention when approaching the
microservice solution is focused on the architecture around the code
artifacts, but no application lives without its data. And when distrib‐
uting data between different microservices, we have the challenge of
integrating them.

In the sections that follow, we’ll explore some of the reasons you
might want to consider microservices for your application. If you
understand why you need them, we’ll be able to help you figure out
how to distribute and integrate your persistent data in relational
databases.

The Feedback Loop
The feedback loop is one of the most important processes in human
development. We need to constantly assess the way that we do
things to ensure that we’re on the right track. Even the classic Plan-
Do-Check-Act (PDCA) process is a variation of the feedback loop.

In software—as with everything we do in life—the longer the feed‐
back loop, the worse the results are. And this happens because we
have a limited amount of capacity for holding information in our
brains, both in terms of volume and duration.

Remember the old days when all we had as a tool to code was a text
editor with black background and green fonts? We needed to com‐

1

1 The amount of time between the beginning of a task and its completion.

pile our code to check if the syntax was correct. Sometimes the com‐
pilation took minutes, and when it was finished we already had lost
the context of what we were doing before. The lead time1 in this case
was too long. We improved when our IDEs featured on-the-fly syn‐
tax highlighting and compilation.

We can say the same thing for testing. We used to have a dedicated
team for manual testing, and the lead time between committing
something and knowing if we broke anything was days or weeks.
Today, we have automated testing tools for unit testing, integration
testing, acceptance testing, and so on. We improved because now we
can simply run a build on our own machines and check if we broke
code somewhere else in the application.

These are some of the numerous examples of how reducing the lead
time generated better results in the software development process.
In fact, we might consider that all the major improvements we had
with respect to process and tools over the past 40 years were target‐
ing the improvement of the feedback loop in one way or another.

The current improvement areas that we’re discussing for the feed‐
back loop are DevOps and microservices.

DevOps
You can find thousands of different definitions regarding DevOps.
Most of them talk about culture, processes, and tools. And they’re
not wrong. They’re all part of this bigger transformation that is
DevOps.

The purpose of DevOps is to make software development teams
reclaim the ownership of their work. As we all know, bad things
happen when we separate people from the consequences of their
jobs. The entire team, Dev and Ops, must be responsible for the out‐
comes of the application.

There’s no bigger frustration for developers than watching their
code stay idle in a repository for months before entering into pro‐
duction. We need to regain that bright gleam in our eyes from deliv‐
ering something and seeing the difference that it makes in people’s
lives.

2 | Chapter 1: Introduction

We need to deliver software faster—and safer. But what are the excu‐
ses that we lean on to prevent us from delivering it?

After visiting hundreds of different development teams, from small
to big, and from financial institutions to ecommerce companies, I
can testify that the number one excuse is bugs.

We don’t deliver software faster because each one of our software
releases creates a lot of bugs in production.

The next question is: what causes bugs in production?

This one might be easy to answer. The cause of bugs in production
in each one of our releases is change: both changes in code and in
the environment. When we change things, they tend to fall apart.
But we can’t use this as an excuse for not changing! Change is part
of our lives. In the end, it’s the only certainty we have.

Let’s try to make a very simple correlation between changes and
bugs. The more changes we have in each one of our releases, the
more bugs we have in production. Doesn’t it make sense? The more
we mix the things in our codebase, the more likely it is something
gets screwed up somewhere.

The traditional way of trying to solve this problem is to have more
time for testing. If we delivered code every week, now we need two
weeks—because we need to test more. If we delivered code every
month, now we need two months, and so on. It isn’t difficult to
imagine that sooner or later some teams are going to deploy soft‐
ware into production only on anniversaries.

This approach sounds anti-economical. The economic approach for
delivering software in order to have fewer bugs in production is the
opposite: we need to deliver more often. And when we deliver more
often, we’re also reducing the amount of things that change between
one release and the next. So the fewer things we change between
releases, the less likely it is for the new version to cause bugs in pro‐
duction.

And even if we still have bugs in production, if we only changed a
few dozen lines of code, where can the source of these bugs possibly
be? The smaller the changes, the easier it is to spot the source of the
bugs. And it’s easier to fix them, too.

The technical term used in DevOps to characterize the amount of
changes that we have between each release of software is called batch

DevOps | 3

2 Just make sure to follow the tool’s best practices and do not store sensitive information,
such as passwords, in a way that unauthorized users might have access to it.

size. So, if we had to coin just one principle for DevOps success, it
would be this:

Reduce your batch size to the minimum allowable size you can
handle.

To achieve that, you need a fully automated software deployment
pipeline. That’s where the processes and tools fit together in the big
picture. But you’re doing all of that in order to reduce your batch
size.

Bugs Caused by Environment Differences Are the Worst
When we’re dealing with bugs, we usually have log statements, a
stacktrace, a debugger, and so on. But even with all of that, we still
find ourselves shouting: “but it works on my machine!”

This horrible scenario—code that works on your machine but
doesn’t in production—is caused by differences in your environ‐
ments. You have different operating systems, different kernel ver‐
sions, different dependency versions, different database drivers, and
so forth. In fact, it’s a surprise things ever do work well in produc‐
tion.

You need to develop, test, and run your applications in develop‐
ment environments that are as close as possible in configuration to
your production environment. Maybe you can’t have an Oracle
RAC and multiple Xeon servers to run in your development envi‐
ronment. But you might be able to run the same Oracle version, the
same kernel version, and the same application server version in a
virtual machine (VM) on your own development machine.

Infrastructure-as-code tools such as Ansible, Puppet, and Chef
really shine, automating the configuration of infrastructure in mul‐
tiple environments. We strongly advocate that you use them, and
you should commit their scripts in the same source repository as
your application code.2 There’s usually a match between the envi‐
ronment configuration and your application code. Why can’t they
be versioned together?

Container technologies offer many advantages, but they are partic‐
ularly useful at solving the problem of different environment con‐

4 | Chapter 1: Introduction

https://www.ansible.com
https://puppet.com
https://www.chef.io
https://www.redhat.com/en/containers

figurations by packaging application and environment into a single
containment unit—the container. More specifically, the result of
packaging application and environment in a single unit is called a
virtual appliance. You can set up virtual appliances through VMs,
but they tend to be big and slow to start. Containers take virtual
appliances one level further by minimizing the virtual appliance
size and startup time, and by providing an easy way for distributing
and consuming container images.

Another popular tool is Vagrant. Vagrant currently does much
more than that, but it was created as a provisioning tool with which
you can easily set up a development environment that closely mim‐
ics as your production environment. You literally just need a
Vagrantfile, some configuration scripts, and with a simple
vagrant up command, you can have a full-featured VM or con‐
tainer with your development dependencies ready to run.

Why Microservices?
Some might think that the discussion around microservices is about
scalability. Most likely it’s not. Certainly we always read great things
about the microservices architectures implemented by companies
like Netflix or Amazon. So let me ask a question: how many compa‐
nies in the world can be Netflix and Amazon? And following this
question, another one: how many companies in the world need to
deal with the same scalability requirements as Netflix or Amazon?

The answer is that the great majority of developers worldwide are
dealing with enterprise application software. Now, I don’t want to
underestimate Netflix’s or Amazon’s domain model, but an enter‐
prise domain model is a completely wild beast to deal with.

So, for the majority of us developers, microservices is usually not
about scalability; it’s all about again improving our lead time and
reducing the batch size of our releases.

But we have DevOps that shares the same goals, so why are we even
discussing microservices to achieve this? Maybe your development
team is so big and your codebase is so huge that it’s just too difficult
to change anything without messing up a dozen different points in
your application. It’s difficult to coordinate work between people in
a huge, tightly coupled, and entangled codebase.

Why Microservices? | 5

https://www.vagrantup.com

With microservices, we’re trying to split a piece of this huge mono‐
lithic codebase into a smaller, well-defined, cohesive, and loosely
coupled artifact. And we’ll call this piece a microservice. If we can
identify some pieces of our codebase that naturally change together
and apart from the rest, we can separate them into another artifact
that can be released independently from the other artifacts. We’ll
improve our lead time and batch size because we won’t need to wait
for the other pieces to be “ready”; thus, we can deploy our microser‐
vice into production.

You Need to Be This Tall to Use Microservices
Microservices architectures encompasses multiple artifacts, each of
which must be deployed into production. If you still have issues
deploying one single monolith into production, what makes you
think that you’ll have fewer problems with multiple artifacts? A
very mature software deployment pipeline is an absolute require‐
ment for any microservices architecture. Some indicators that you
can use to assess pipeline maturity are the amount of manual inter‐
vention required, the amount of automated tests, the automatic
provisioning of environments, and monitoring.

Distributed systems are difficult. So are people. When we’re dealing
with microservices, we must be aware that we’ll need to face an
entire new set of problems that distributed systems bring to the
table. Tracing, monitoring, log aggregation, and resilience are some
of problems that you don’t need to deal with when you work on a
monolith.

Microservices architectures come with a high toll, which is worth
paying if the problems with your monolithic approaches cost you
more. Monoliths and microservices are different architectures, and
architectures are all about trade-off.

Strangler Pattern
Martin Fowler wrote a nice article regarding the monolith-first
approach. Let me quote two interesting points of his article:

• Almost all the successful microservice stories have started with
a monolith that grew too big and was broken up.

6 | Chapter 1: Introduction

http://bit.ly/2jclLet
http://bit.ly/2jclLet

• Almost all the cases I’ve heard of a system that was built as a
microservice system from scratch, it has ended up in serious
trouble.

For all of us enterprise application software developers, maybe we’re
lucky—we don’t need to throw everything away and start from
scratch (if anybody even considered this approach). We would end
up in serious trouble. But the real lucky part is that we already have
a monolith to maintain in production.

The monolith-first is also called the strangler pattern because it
resembles the development of a tree called the strangler fig. The
strangler fig starts small in the top of a host tree. Its roots then start
to grow toward the ground. Once its roots reach the ground, it
grows stronger and stronger, and the fig tree begins to grow around
the host tree. Eventually the fig tree becomes bigger than the host
tree, and sometimes it even kills the host. Maybe it’s the perfect anal‐
ogy, as we all have somewhere hidden in our hearts the deep desire
of killing that monolith beast.

Having a stable monolith is a good starting point because one of the
hardest things in software is the identification of boundaries
between the domain model—things that change together, and things
that change apart. Create wrong boundaries and you’ll be doomed
with the consequences of cascading changes and bugs. And bound‐
ary identification is usually something that we mature over time. We
refactor and restructure our system to accommodate the acquired
boundary knowledge. And it’s much easier to do that when you have
a single codebase to deal with, for which our modern IDEs will be
able to refactor and move things automatically. Later you’ll be able
to use these established boundaries for your microservices. That’s
why we really enjoy the strangler pattern: you start small with
microservices and grow around a monolith. It sounds like the wisest
and safest approach for evolving enterprise application software.

The usual candidates for the first microservices in your new archi‐
tecture are new features of your system or changing features that are
peripheral to the application’s core. In time, your microservices
architecture will grow just like a strangler fig tree, but we believe
that the reality of most companies will still be one, two, or maybe
even up to half-dozen microservices coexisting around a monolith.

Strangler Pattern | 7

The challenge of choosing which piece of software is a good candi‐
date for a microservice requires a bit of Domain-Driven Design
knowledge, which we’ll cover in the next section.

Domain-Driven Design
It’s interesting how some methodologies and techniques take years
to “mature” or to gain awareness among the general public. And
Domain-Driven Design (DDD) is one of these very useful techni‐
ques that is becoming almost essential in any discussion about
microservices. Why now? Historically we’ve always been trying to
achieve two synergic properties in software design: high cohesion
and low coupling. We aim for the ability to create boundaries
between entities in our model so that they work well together and
don’t propagate changes to other entities beyond the boundary.
Unfortunately, we’re usually especially bad at that.

DDD is an approach to software development that tackles complex
systems by mapping activities, tasks, events, and data from a busi‐
ness domain to software artifacts. One of the most important con‐
cepts of DDD is the bounded context, which is a cohesive and well-
defined unit within the business model in which you define the
boundaries of your software artifacts.

From a domain model perspective, microservices are all about
boundaries: we’re splitting a specific piece of our domain model that
can be turned into an independently releasable artifact. With a badly
defined boundary, we will create an artifact that depends too much
on information confined in another microservice. We will also cre‐
ate another operational pain: whenever we make modifications in
one artifact, we will need to synchronize these changes with another
artifact.

We advocate for the monolith-first approach because it allows you
to mature your knowledge around your business domain model
first. DDD is such a useful technique for identifying the bounded
contexts of your domain model: things that are grouped together
and achieve high cohesion and low coupling. From the beginning,
it’s very difficult to guess which parts of the system change together
and which ones change separately. However, after months, or more
likely years, developers and business analysts should have a better
picture of the evolution cycle of each one of the bounded contexts.

8 | Chapter 1: Introduction

These are the ideal candidates for microservices extraction, and that
will be the starting point for the strangling of our monolith.

To learn more about DDD, check out Eric Evan’s book,
Domain-Driven Design: Tackling Complexity in the
Heart of Software, and Vaughn Vernon’s book, Imple‐
menting Domain-Driven Design.

Microservices Characteristics
James Lewis and Martin Fowler provided a reasonable common set
of characteristics that fit most of the microservices architectures:

• Componentization via services
• Organized around business capabilities
• Products not projects
• Smart endpoints and dumb pipes
• Decentralized governance
• Decentralized data management
• Infrastructure automation
• Design for failure
• Evolutionary design

All of the aforementioned characteristics certainly deserve their own
careful attention. But after researching, coding, and talking about
microservices architectures for a couple of years, I have to admit
that the most common question that arises is this:

How do I evolve my monolithic legacy database?

This question provoked some thoughts with respect to how enter‐
prise application developers could break their monoliths more effec‐
tively. So the main characteristic that we’ll be discussing throughout
this book is Decentralized Data Management. Trying to simplify it to
a single-sentence concept, we might be able to state that:

Each microservice should have its own separate database.

This statement comes with its own challenges. Even if we think
about greenfield projects, there are many different scenarios in
which we require information that will be provided by another ser‐

Microservices Characteristics | 9

http://bit.ly/2jcmlsA
http://bit.ly/2jcmlsA

vice. Experience has taught us that relying on remote calls (either
some kind of Remote Procedure Call [RPC] or REST over HTTP)
usually is not performant enough for data-intensive use cases, both
in terms of throughput and latency.

This book is all about strategies for dealing with your relational
database. Chapter 2 addresses the architectures associated with
deployment. The zero downtime migrations presented in Chapter 3
are not exclusive to microservices, but they’re even more important
in the context of distributed systems. Because we’re dealing with dis‐
tributed systems with information scattered through different arti‐
facts interconnected via a network, we’ll also need to deal with how
this information will converge. Chapter 4 describes the difference
between consistency models: Create, Read, Update, and Delete
(CRUD); and Command and Query Responsibility Segregation
(CQRS). The final topic, which is covered in Chapter 5, looks at how
we can integrate the information between the nodes of a microservi‐
ces architecture.

10 | Chapter 1: Introduction

What About NoSQL Databases?
Discussing microservices and database types different than rela‐
tional ones seems natural. If each microservice must have is own
separate database, what prevents you from choosing other types of
technology? Perhaps some kinds of data will be better handled
through key-value stores, or document stores, or even flat files and
git repositories.

There are many different success stories about using NoSQL data‐
bases in different contexts, and some of these contexts might fit
your current enterprise context, as well. But even if it does, we still
recommend that you begin your microservices journey on the safe
side: using a relational database. First, make it work using your
existing relational database. Once you have successfully finished
implementing and integrating your first microservice, you can
decide whether you (or) your project will be better served by
another type of database technology.

The microservices journey is difficult and as with any change, you’ll
have better chances if you struggle with one problem at a time. It
doesn’t help having to simultaneously deal with a new thing such as
microservices and new unexpected problems caused by a different
database technology.

Microservices Characteristics | 11

CHAPTER 2

Zero Downtime

Any improvement that you can make toward the reduction of your
batch size that consequently leads to a faster feedback loop is impor‐
tant. When you begin this continuous improvement, sooner or later
you will reach a point at which you can no longer reduce the time
between releases due to your maintenance window—that short time‐
frame during which you are allowed to drop the users from your
system and perform a software release.

Maintenance windows are usually scheduled for the hours of the day
when you have the least concern disrupting users who are accessing
your application. This implies that you will mostly need to perform
your software releases late at night or on weekends. That’s not what
we, as the people responsible for owning it in production, would
consider sustainable. We want to reclaim our lives, and if we are
now supposed to release software even more often, certainly it’s not
sustainable to do it every night of the week.

Zero downtime is the property of your software deployment pipeline
by which you release a new version of your software to your users
without disrupting their current activities—or at least minimizing
the extent of potential disruptions.

In a deployment pipeline, zero downtime is the feature that will
enable you to eliminate the maintenance window. Instead of having
a strict timeframe with in which you can deploy your releases, you
might have the freedom to deploy new releases of software at any
time of the day. Most companies have a maintenance window that
occurs once a day (usually at night), making your smallest release

13

cycle a single day. With zero downtime, you will have the ability to
deploy multiple times per day, possibly with increasingly smaller
batches of change.

Zero Downtime and Microservices
Just as we saw in “Why Microservices?” on page 5, we’re choosing
microservices as a strategy to release faster and more frequently.
Thus, we can’t be tied to a specific maintenance window.

If you have only a specific timeframe in which you can release all of
your production artifacts, maybe you don’t need microservices at all;
you can keep the same release pace by using your old-and-gold
monolith.

But zero downtime is not only about releasing at any time of day. In
a distributed system with multiple moving parts, you can’t allow the
unavailability caused by a deployment in a single artifact to bring
down your entire system. You’re not allowed to have downtime for
this reason.

Deployment Architectures
Traditional deployment architectures have the clients issuing
requests directly to your server deployment, as pictured in
Figure 2-1.

Figure 2-1. Traditional deployment architecture

Unless your platform provides you with some sort of “hot deploy‐
ment,” you’ll need to undeploy your application’s current version
and then deploy the new version to your running system. This will
result in an undesirable amount of downtime. More often than not,

14 | Chapter 2: Zero Downtime

it adds up to the time you need to wait for your application server to
reboot, as most of us do that anyway in order to clean up anything
that might have been left by the previous version.

To allow our deployment architecture to have zero downtime, we
need to add another component to it. For a typical web application,
this means that instead of allowing users to directly connect to your
application’s process servicing requests, we’ll now have another pro‐
cess receiving the user’s requests and forwarding them to your appli‐
cation. This new addition to the architecture is usually called a proxy
or a load balancer, as shown in Figure 2-2.

If your application receives a small amount of requests per second,
this new process will mostly be acting as a proxy. However, if you
have a large amount of incoming requests per second, you will likely
have more than one instance of your application running at the
same time. In this scenario, you’ll need something to balance the
load between these instances—hence a load balancer.

Figure 2-2. Deployment architecture with a proxy

Some common examples of software products that are used today as
proxies or load balancers are haproxy and nginx, even though you
could easily configure your old and well-known Apache web server
to perform these activities to a certain extent.

After you have modified your architecture to accommodate the
proxy or load balancer, you can upgrade it so that you can create
blue/green deployments of your software releases.

Blue/Green Deployment
Blue/green deployment is a very interesting deployment architecture
that consists of two different releases of your application running

Blue/Green Deployment | 15

http://www.haproxy.org
https://nginx.org
https://httpd.apache.org

concurrently. This means that you’ll require two identical environ‐
ments: one for the production stage, and one for your development
platform, each being capable of handling 100% of your requests on
its own. You will need the current version and the new version run‐
ning in production during a deployment process. This is repre‐
sented by the blue deployment and the green deployment,
respectively, as depicted in Figure 2-3.

Figure 2-3. A blue/green deployment architecture

Blue/Green Naming Convention

Throughout this book, we will always consider the blue
deployment as the current running version, and the
green deployment as the new version of your artifact.
It’s not an industry-standard coloring; it was chosen at
the discretion of the author.

In a usual production scenario, your proxy will be forwarding to
your blue deployment. After you start and finish the deployment of
the new version in the green deployment, you can manually (or even
automatically) configure your proxy to stop forwarding your
requests to the blue deployment and start forwarding them to the
green one. This must be made as an on-the-fly change so that no
incoming requests will be lost between the changes from blue
deployment to green.

This deployment architecture greatly reduces the risk of your soft‐
ware deployment process. If there is anything wrong with the new
version, you can simply change your proxy to forward your requests
to the previous version—without the implication of having to wait
for it to be deployed again and then warmed up (and experience

16 | Chapter 2: Zero Downtime

tells us that this process can take a terrifyingly long amount of time
when things go wrong).

Compatibility Between Releases

One very important issue that arises when using a
blue/green deployment strategy is that your software
releases must be forward and backward compatible to
be able to consistently coexist at the same time running
in production. From a code perspective, it usually
implies that changes in exposed APIs must retain com‐
patibility. And from the state perspective (data), it
implies that eventual changes that you execute in the
structure of the information must allow both versions
to read and write successfully in a consistent state.
We’ll cover more of this topic in Chapter 3.

Canary Deployment
The idea of routing 100% of the users to a new version all at once
might scare some developers. If anything goes wrong, 100% of your
users will be affected. Instead, we could try an approach that gradu‐
ally increases user traffic to a new version and keeps monitoring it
for problems. In the event of a problem, you roll back 100% of the
requests to the current version.

This is known as a canary deployment, the name borrowed from a
technique employed by coal miners many years ago, before the
advent of modern sensor safety equipment. A common issue with
coal mines is the build up of toxic gases, not all of which even have
an odor. To alert themselves to the presence of dangerous gases,
miners would bring caged canaries with them into the mines. In
addition to their cheerful singing, canaries are highly susceptible to
toxic gases. If the canary died, it was time for the miners to get out
fast, before they ended up like the canary.

Canary development draws on this analogy, with the gradual
deployment and monitoring playing the role of the canary: if prob‐
lems with the new version are detected, you have the ability to revert
to the previous version and avert potential disaster.

We can make another distinction even within canary deployments.
A standard canary deployment can be handled by infrastructure
alone, as you route a certain percentage of all the requests to your

Canary Deployment | 17

new version. On the other hand, a smart canary requires the pres‐
ence of a smart router or a feature-toggle framework.

Smart Routers and Feature-Toggle Frameworks
A smart router is a piece of software dedicated to routing requests
to backend endpoints based on business logic. One popular imple‐
mentation in the Java world for this kind of software is Netflix’s
OSS Zuul.

For example, in a smart router, you can choose to route only the
iOS users first to the new deployment—because they’re the users
having issues with the current version. You don’t want to risk break‐
ing the Android users. Or else you might want to check the log
messages on the new version only for the iOS users.

Feature-toggle frameworks allow you to choose which part of your
code will be executed, depending on some configurable toggles.
Popular frameworks in the Java space are FF4J and Togglz.

The toggles are usually Boolean values that are stored in an external
data source. They can be changed online in order to modify the
behavior of the application dynamically.

Think of feature toggles as an if/else framework configured exter‐
nally through the toggles. It’s an over-simplification of the concept,
but it might give you a notion of how it works.

The interesting thing about feature toggles is that you can separate
the concept of a deployment from the release of a feature. When
you flip the toggle to expose your new feature to users, the codebase
has already been deployed for a long time. And if anything goes
wrong, you can always flip it back and hide it from your users.

Feature toggles also come with many downsides, so be careful when
choosing to use them. The new code and the old code will be main‐
tained in the same codebase until you do a cleanup. Verifiability
also becomes very difficult with feature toggles because knowing in
which state the toggles were at a given point in time becomes tricky.
If you work in a field governed by regulations, it’s also difficult to
audit whether certain pieces of the code are correctly executed on
your production system.

18 | Chapter 2: Zero Downtime

https://github.com/Netflix/zuul
https://github.com/Netflix/zuul
http://ff4j.org
https://www.togglz.org

A/B Testing
A/B testing is not related directly to the deployment process. It’s an
advanced scenario in which you can use two different and separate
production environments to test a business hypothesis.

When we think about blue/green deployment, we’re always releasing
a new version whose purpose is to supersede the previous one.

In A/B testing, there’s no relation of current/new version, because
both versions can be different branches of source code. We’re run‐
ning two separate production environments to determine which one
performs better in terms of business value.

We can even have two production environments, A and B, with each
of them implementing a blue/green deployment architecture.

One strong requirement for using an A/B testing strategy is that you
have an advanced monitoring platform that is tied to business
results instead of just infrastructure statistics.

After we have measured them long enough and compared both to a
standard baseline, we get to choose which version (A or B) per‐
formed better and then kill the other one.

Application State
Any journeyman who follows the DevOps path sooner or later will
come to the conclusion that with all of the tools, techniques, and
culture that are available, creating a software deployment pipeline is
not that difficult when you talk about code, because code is stateless.
The real problem is the application state.

From the state perspective, the application has two types of state:
ephemeral and persistent. Ephemeral state is usually stored in mem‐
ory through the use of HTTP sessions in the application server. In
some cases, you might even prefer to not deal with the ephemeral
state when releasing a new version. In a worst-case scenario, the
user will need to authenticate again and restart the task he was exe‐
cuting. Of course, he won’t exactly be happy if he loses that 200-line
form he was filling in, but you get the point.

To prevent ephemeral state loss during deployments, we must exter‐
nalize this state to another datastore. One usual approach is to store
the HTTP session state in in-memory, key-value solutions such as

A/B Testing | 19

Infinispan, Memcached, or Redis. This way, even if you restart your
application server, you’ll have your ephemeral state available in the
external datastore.

It’s much more difficult when it comes to persistent state. For enter‐
prise applications, the number one choice for persistent state is
undoubtedly a relational database. We’re not allowed to lose any
information from persistent data, so we need some special techni‐
ques to be able to deal with the upgrade of this data. We cover these
in Chapter 3.

20 | Chapter 2: Zero Downtime

http://infinispan.org
https://memcached.org
https://redis.io

1 If it got your attention, the statement’s mission was accomplished!

CHAPTER 3

Evolving Your Relational Database

Code is easy; state is hard.
—Edson Yanaga

The preceding statement is a bold one.1 However, code is not easy.
Maybe bad code is easy to write, but good code is always difficult. Yet,
even if good code is tricky to write, managing persistent state is
tougher.

From a very simple point of view, a relational database comprises
tables with multiple columns and rows, and relationships between
them. The collection of database objects’ definitions associated
within a certain namespace is called a schema. You can also consider
a schema to be the definition of your data structures within your
database.

Just as our data changes over time with Data Manipulation Lan‐
guage (DML) statements, so does our schema. We need to add more
tables, add and remove columns, and so on. The process of evolving
our database structure over time is called schema evolution.

Schema evolution uses Data Definition Language (DDL) statements
to transition the database structure from one version to the other.
The set of statements used in each one of these transitions is called
database migrations, or simply migrations.

21

It’s not unusual to have teams applying database migrations man‐
ually between releases of software. Nor is it unusual to have some‐
one sending an email to the Database Administrator (DBA) with the
migrations to be applied. Unfortunately, it’s also not unusual for
those instructions to get lost among hundreds of other emails.

Database migrations need to be a part of our software deployment
process. Database migrations are code, and they must be treated as
such. They need to be committed in the same code repository as
your application code. They must be versioned along with your
application code. Isn’t your database schema tied to a specific appli‐
cation version, and vice versa? There’s no better way to assure this
match between versions than to keep them in the same code reposi‐
tory.

We also need an automated software deployment pipeline and tools
that automate these database migration steps. We’ll cover some of
them in the next section.

Popular Tools
Some of the most popular tools for schema evolution are Liquibase
and Flyway. Opinions might vary, but the current set of features that
both offer almost match each other. Choosing one instead of the
other is a matter of preference and familiarity.

Both tools allow you to perform the schema evolution of your rela‐
tional database during the startup phase of your application. You
will likely want to avoid this, because this strategy is only feasible
when you can guarantee that you will have only a single instance of
your application starting up at a given moment. That might not be
the case if you are running your instances in a Platform as a Service
(PaaS) or container orchestration environment.

Our recommended approach is to tie the execution of the schema
evolution to your software deployment pipeline so that you can
assure that the tool will be run only once for each deployment, and
that your application will have the required schema already upgra‐
ded when it starts up.

In their latest versions, both Liquibase and Flyway provide locking
mechanisms to prevent multiple concurrent processes updating the
database. We still prefer to not tie database migrations to application
startup: we want to stay on the safe side.

22 | Chapter 3: Evolving Your Relational Database

http://liquibase.org
http://flywaydb.org

2 You might argue that we’re just moving information, but if you try to access the old col‐
umn, it’s not there anymore!

Zero Downtime Migrations
As pointed out in the section “Application State” on page 19, you can
achieve zero downtime for ephemeral state by externalizing the state
data in a storage external to the application. From a relational data‐
base perspective, zero downtime on a blue/green deployment
requires that both your new and old schemas’ versions continue to
work correctly at the same time.

Schema versions between consecutive releases must be mutually
compatible. It also means that we can’t create database migrations
that are destructive. Destructive here means that we can’t afford to
lose any data, so we can’t issue any statement that can potentially
cause the loss of data.

Suppose that we needed to rename a column in our database
schema. The traditional approach would be to issue this kind of
DDL statement:

ALTER TABLE customers RENAME COLUMN wrong TO correct;

But in the context of zero downtime migrations, this statement is
not allowable for three reasons:

• It is destructive: you’re losing the information that was present
in the old column.2

• It is not compatible with the current version of your software.
Only the new version knows how to manipulate the new col‐
umn.

• It can take a long time to execute: some database management
systems (DBMS) might lock the entire table to execute this
statement, leading to application downtime.

Instead of just issuing a single statement to achieve a single column
rename, we’ll need to get used to breaking these big changes into
multiple smaller changes. We’re again using the concept of baby
steps to improve the quality of our software deployment pipeline.

Zero Downtime Migrations | 23

The previous DDL statement can be refactored to the following
smaller steps, each one being executed in multiple sequential ver‐
sions of your software:

ALTER TABLE customers ADD COLUMN correct VARCHAR(20);
UPDATE customers SET correct = wrong
 WHERE id BETWEEN 1 AND 100;
UPDATE customers SET correct = wrong
 WHERE id BETWEEN 101 AND 200;
ALTER TABLE customers DELETE COLUMN wrong;

The first impression is that now you’re going to have a lot of work
even for some of the simplest database refactorings! It might seem
like a lot of work, but it’s work that is possible to automate. Luckily,
we have software that can handle this for us, and all of the automa‐
ted mechanisms will be executed within our software deployment
pipeline.

Because we’re never issuing any destructive statement, you can
always roll back to the previous version. You can check application
state after running a database migration, and if any data doesn’t look
right to you, you can always keep the current version instead of pro‐
moting the new one.

Avoid Locks by Using Sharding
Sharding in the context of databases is the process of splitting very
large databases into smaller parts, or shards. As experience can tell
us, some statements that we issue to our database can take a consid‐
erable amount of time to execute. During these statements’ execu‐
tion, the database becomes locked and unavailable for the
application. This means that we are introducing a period of down‐
time to our users.

We can’t control the amount of time that an ALTER TABLE statement
is going to take. But at least on some of the most popular DBMSs
available in the market, issuing an ALTER TABLE ADD COLUMN state‐
ment won’t lead to locking. Regarding the UPDATE statements that we
issue to our database during our migrations, we can definitely
address the locking time.

It is probably safe to assume that the execution time for an UPDATE
statement is directly proportional to the amount of data being upda‐
ted and the number of rows in the table. The more rows and the
more data that you choose to update in a single statement, the

24 | Chapter 3: Evolving Your Relational Database

3 It might be an oversimplification for the execution time calculation, but it’s a fair bet for
instructional purposes.

longer it’s going to take to execute. To minimize the lock time in
each one of these statements, we must split our updates into smaller
shards.

Suppose that our Account table has 1,000,000 rows and its number
column is indexed and sequential to all rows in the table. A tradi‐
tional UPDATE statement to increase the amount column by 10%
would be as follows:

UPDATE Account SET amount = amount * 1.1;

Suppose that this statement is going to take 10 seconds, and that 10
seconds is not a reasonable amount of downtime for our users.
However, two seconds might be acceptable. We could achieve this
two-second downtime by splitting the dataset of the statement into
five smaller shards.3 Then we would have the following set of UPDATE
statements:

UPDATE Account SET amount = amount * 1.1
 WHERE number BETWEEN 1 AND 200000;
UPDATE Account SET amount = amount * 1.1
 WHERE number BETWEEN 200001 AND 400000;
UPDATE Account SET amount = amount * 1.1
 WHERE number BETWEEN 400001 AND 600000;
UPDATE Account SET amount = amount * 1.1
 WHERE number BETWEEN 600001 AND 800000;
UPDATE Account SET amount = amount * 1.1
 WHERE number BETWEEN 800001 AND 1000000;

That’s the reasoning behind using shards: minimize application
downtime caused by database locking in UPDATE statements. You
might argue that if there’s any kind of locking, it’s not real “zero”
downtime. However the true purpose of zero downtime is to achieve
zero disruption to our users. Your business scenario will dictate the
maximum period of time that you can allow for database locking.

How can you know the amount of time that your UPDATE statements
are going to take into production? The truth is that you can’t. But we
can make safer bets by constantly rehearsing the migrations that we
release before going into production.

Avoid Locks by Using Sharding | 25

Rehearse Your Migrations Up to Exhaustion

We cannot emphasize enough the fact that we must
rehearse our migrations up to exhaustion in multiple
steps of your software deployment pipeline. Migrations
manipulate persistent data, and sometimes wrong
statements can lead to catastrophic consequences in
production environments.
Your Ops team will probably have a backup in hand
just in case something happens, but that’s a situation
you want to avoid at all costs. First, it leads to applica‐
tion unavailability—which means downtime. Second,
not all mistakes are detected early enough so that you
can just replace your data with a backup. Sometimes it
can take hours or days for you to realize that your data
is in an inconsistent state, and by then it’s already too
late to just recover everything from the last backup.
Migration rehearsal should start in your own develop‐
ment machine and then be repeated multiple times in
each one of your software deployment pipeline stages.

Check Your Data Between Migration Steps

We want to play on the safe side. Always. Even though
we rehearsed our migrations up to exhaustion, we still
want to check that we didn’t blow anything up in pro‐
duction.
After each one of your releases, you should check if
your application is behaving correctly. This includes
not only checking it per se, but also checking the data
in your database. Open your database’s command-line
interface (CLI), issue multiple SELECT statements, and
ensure that everything is OK before proceeding to the
next version.

Add a Column Migration
Adding a column is probably the simplest migration we can apply to
our schema, and we’ll start our zero downtime migrations journey
with this. The following list is an overview of the needed steps:

ALTER TABLE ADD COLUMN

Add the column to your table. Be aware to not add a NOT NULL
constraint to your column at this step, even if your model

26 | Chapter 3: Evolving Your Relational Database

requires it, because it will break the INSERT/UPDATE statements
from your current version—the current version still doesn’t pro‐
vide a value for this newly added column.

Code computes the read value and writes to new column
Your new version should be writing to the new column, but it
can’t assume that a value will be present when reading from it.
When your new version reads an absent value, you have the
choice of either using a default value or computing an alterna‐
tive value based on other information that you have in the
application.

Update data using shards
Issue UPDATE statements to assign values to the new column.

Code reads and writes from the new column
Finally, use the new column for read and writes in your applica‐
tion.

NOT NULL Constraints

Any NOT NULL constraint must be applied only after a
successful execution of all the migration steps. It can
be the final step of any of the zero downtime migra‐
tions presented in this book.

Rename a Column Migration
Renaming a column requires more steps to successfully execute the
migration because we already have data in our table and we need to
migrate this information from one column to the other. Here is a list
of these steps:

ALTER TABLE ADD COLUMN

Add the column to your table. Be careful to not add a NOT NULL
constraint to your column at this step, even if your model
requires it, because it will break the INSERT/UPDATE statements
from your current version—the current version still doesn’t pro‐
vide a value for this newly added column.

Code reads from the old column and writes to both
Your new version will read values from the old column and
write to both. This will guarantee that all new rows will have
both columns populated with correct values.

Rename a Column Migration | 27

Copy data using small shards
Your current version is still reading values from the old column
and guaranteeing that new rows are being added with both col‐
umns populated. However, you need to copy the data from the
old column to the new column so that all of your current rows
also have both columns populated.

Code reads from the new column and writes to both
Your new version will read values from the new column but still
keep writing to both old and new columns. This step is neces‐
sary to guarantee that if something goes wrong with your new
version, the current version will still be able to work properly
with the old column.

Code reads and writes from the new column
After some period of monitoring and automated or manual
checking of the values, you can release a new version of your
code that finally reads and writes from your new column. At
this point you have already successfully refactored your column
name.

Delete the old column (later)
Deleting a column is a destructive operation because data will
be lost and no longer recoverable. You should never delete a col‐
umn in a directly subsequent release of your code. You might
realize that you made a mistake in the refactoring a few days or
even weeks later. As a precaution, you should delete only after a
quarantine period. Following the quarantine, you can use your
routine maintenance period to delete all the columns in your
database that are no longer used by your code. Of course, you
should be using some tracking system to ensure that nothing is
left behind, because we all know that human memory is less
than ideally suited for that task.

Change Type/Format of a Column Migration
The migrations steps required for changing the type or format of a
column are not different from those used in renaming a column.
This is a good thing: it’s easier to get used to something when we’re
repeating the same steps, no matter which kind of change we’re
making. The following list is an overview of the process:

28 | Chapter 3: Evolving Your Relational Database

ALTER TABLE ADD COLUMN

Add the column to your table. Be careful to not add a NOT NULL
constraint to your column at this step, even if your model
requires it, because it will break the INSERT/UPDATE statements
from your current version—the current version still doesn’t pro‐
vide a value for this newly added column.

Code reads from the old column and writes to both
Your new version will read values from the old column and
write to both. This will guarantee that all new rows will have
both columns populated with correct values.

Copy data using small shards
Your current version is still reading values from the old column
and guaranteeing that new rows are being added with both col‐
umns populated. However, you need to copy the data from the
old column to the new column so that all of your current rows
also have both columns populated.

Code reads from the new column and writes to both
Your new version will read values from the new column but still
keep writing to both old and new columns. This step is neces‐
sary to guarantee that if something goes wrong with your new
version, the current version will still be able to work properly
with the old column.

Code reads and writes from the new column
After some period of monitoring and automated or manual
checking of the values, you can release a new version of your
code that finally reads and writes from your new column. At
this point you have already successfully refactored your column
name.

Delete the old column (later)
As pointed out earlier, deleting a column is a destructive opera‐
tion because data will be lost and no longer recoverable. You
should never delete a column in a directly subsequent release of
your code. You might realize that you made a mistake in the
refactoring a few days or even weeks later. As a precaution, you
should delete only after a quarantine period. Following the
quarantine, you can use your routine maintenance period to
delete all the columns in your database that are no longer used
by your code. Of course, you should be using some tracking sys‐

Change Type/Format of a Column Migration | 29

tem to ensure that nothing is left behind, because we all know
that human memory is less than ideally suited for that task.

Delete a Column Migration
Sometimes we just don’t need a column anymore. You’re already
aware that deleting a column is a destructive operation, but some‐
times we need to do it. We collected some steps to make this migra‐
tion a bit safer:

DON’T
Never delete a column in your database when you’re releasing a
new version. It’s not the first time we mention it, but we can’t
emphasize this point enough. Deleting a column is a destructive
operation, and you always want to guarantee that your current
version will still be running smoothly in production even if
your new release messes up something.

Stop using the read value but keep writing to the column
Instead of deleting the column, you should just stop using the
value in your code for read operations. However, write opera‐
tions should still be writing to the column in case you need it to
keep your current version running.

Stop writing to the column (optional)
Keep the column with the data there for safety reasons. If you
decide to execute this step, make sure to drop any NOT NULL
constraint or else you will prevent your code from inserting new
rows.

Delete the column (later)
Quarantine your column to be deleted later. After the quaran‐
tine period, you can use your routine maintenance period to
delete all the columns in your database that are no longer used
by your code. Of course, you should be using some tracking sys‐
tem to ensure that nothing is left behind because…that’s right,
human memory is less than ideally suited for this task.

30 | Chapter 3: Evolving Your Relational Database

4 It can sound terrifying to suggest disabling the safety net exactly when things are more
likely to break, as this defeats the purpose of using a safety net. But then again, it’s all
about trade-offs. Sometimes you need to break some walls to make room for improve‐
ment.

Referential Integrity Constraints
Referential integrity constraints are one of the features of DBMSs we
become acquainted with. We use them because they make us feel
comfortable. These constraints guarantee that you will never mis‐
takenly insert a value that doesn’t exist in the referenced column. It
also prevents you from deleting a row whose column is referenced
on the other side of the constraint.

If you have seconds thoughts about using referential integrity con‐
straints, their use is not tied to business requirements for your run‐
ning software. They act as safety nets, preventing your code from
sustaining mistaken behavior and beginning to write uncorrelated
data to your database. Because we are applying zero-downtime
migrations to our schema and none of our migrations are destruc‐
tive, you still have another safety net: you never lose any data, and
you are always capable of deploying your previous version into pro‐
duction without the fear of losing or corrupting anything. In this
sense, we believe that it is safe to simply drop your referential integ‐
rity constraints before applying your series of migrations. Later,
when everything is deployed into production and you know that
you are done with the refactorings, you will recreate the constraints
using the new columns.4

Referential Integrity Constraints | 31

CHAPTER 4

CRUD and CQRS

Two of the most popular patterns for dealing with data manipula‐
tion are Create, Read, Update, and Delete (CRUD) and Command
and Query Responsibility Segregation (CQRS). Most developers are
familiar with CRUD because the majority of the material and tools
available try to support this pattern in one way or another. Any tool
or framework that is promoted as a fast way to deliver your software
to market provides some sort of scaffolding or dynamic generation
of CRUD operations.

Things start to get blurry when we talk about CQRS. Certainly the
subject of microservices will usually invoke CQRS in many different
discussions between people at conferences and among members of
development teams, but personal experience shows that we still have
plenty of room for clarification. If you look for the term “CQRS” on
a search engine, you will find many good definitions. But even after
reading those, it might be difficult to grasp exactly the “why” or even
the “how” of CQRS.

This chapter will try to present clear distinction between and moti‐
vation behind using both CRUD and CQRS patterns. And any dis‐
cussion about CQRS won’t be complete if we do not understand the
different consistency models that are involved in distributed systems
—how these systems handle read and write operations on the data
state in different nodes. We’ll start our explanation with these con‐
cepts.

33

1 Convergence is the state in which all the nodes of the system have eventually achieved
consistency.

Consistency Models
When we’re talking about consistency in distributed systems, we are
referring to the concept that you will have some data distributed in
different nodes of your system, and each one of those might have a
copy of your data. If it’s a read-only dataset, any client connecting to
any of the nodes will always receive the same data, so there is no
consistency problem. When it comes to read-write datasets, some
conflicts can arise. Each one of the nodes can update its own copy of
the data, so if a client connects to different nodes in your system, it
might receive different values for the same data.

The way that we deal with updates on different nodes and how we
propagate the information between them leads to different consis‐
tency models. The description presented in the next sections about
eventual consistency and strong consistency is an over-simplification
of the concepts, but it should paint a sufficiently complete picture of
them within the context of information integration between micro‐
services and relational databases.

Eventual Consistency
Eventual consistency is a model in distributed computing that guar‐
antees that given an update to a data item in your dataset, eventually,
at a point in the future, all access to this data item in any node will
return the same value. Because each one of the nodes can update its
own copy of the data item, if two or more nodes modify the same
data item, you will have a conflict. Conflict resolution algorithms are
then required to achieve convergence.1 One example of a conflict
resolution algorithm is last write wins. If we are able to add a
synchronized timestamp or counter to all of our updates, the last
update always wins the conflict.

One special case for eventual consistency is when you have your
data distributed in multiple nodes, but only one of them is allowed
to make updates to the data. If one node is the canonical source of
information for the updates, you won’t have conflicts in the other
nodes as long as they are able to apply the updates in the exact same
order as the canonical information source. You add the possibility of

34 | Chapter 4: CRUD and CQRS

write unavailability, but that’s a bearable trade-off for some business
use cases. We explore this subject in greater detail in “Event Sourc‐
ing” on page 56.

Strong Consistency
Strong consistency is a model that is most familiar to database
developers, given that it resembles the traditional transaction model
with its Atomicity, Consistency, Isolation, and Durability (ACID)
properties. In this model, any update in any node requires that all
nodes agree on the new value before making it visible for client
reads. It sounds naively simple, but it also introduces the require‐
ment of blocking all the nodes until they converge. It might be espe‐
cially problematic depending on network latency and throughput.

Applicability
There are always exceptions to any rule, but eventual consistency
tends to be favored for scenarios in which high throughput and
availability are more important requirements than immediate con‐
sistency. Keep in mind that most real-world business use cases are
already eventual consistency. When you read a web page or receive a
spreadsheet or report through email, you are already looking at
information as it was some seconds, minutes, or even hours ago.
Eventually all information converges, but we’re used to this even‐
tuality in our lives. Shouldn’t we also be used to it when developing
our applications?

CRUD
CRUD architectures are certainly the most common architectures in
traditional data manipulation applications. In this scenario, we use
the same data model for both read and write operations, as shown in
Figure 4-1. One of the key advantages of this architecture is its sim‐
plicity—you use the same common set of classes for all operations.
Tools can easily generate the scaffolding code to automate its imple‐
mentation.

CRUD | 35

Figure 4-1. A traditional CRUD architecture (Source)

If we implemented a Customer class in our project and wanted to
change the Customer’s name, we would retrieve a Customer entity
from our data store, change the property, and then issue an update
statement to our data store to have the representation persisted.

It’s a very common practice nowadays to see a CRUD architecture
being implemented through REST endpoints exposed over HTTP.

Probably the majority of basic data manipulation operations will be
best served using a CRUD architecture, and in fact that’s our recom‐
mended approach for that. However, when complexity begins to
arise in your use cases, you might want to consider something dif‐
ferent. One of the things missing in a CRUD architecture is intent.

Suppose that we wanted to change the Customer’s address. In a
CRUD architecture, we just update the property and issue an update
statement. We can’t figure out if the change was motivated by an
incorrect value or if the customer moved to another city. Maybe we
have a business scenario in which we were required to trigger a noti‐
fication to an external system in case of a relocation. In this case, a
CQRS architecture might be a better fit.

CQRS
CQRS is a fancy name for an architecture that uses different data
models to represent read and write operations.

Let’s look again at the scenario of changing the Customer’s address.
In a CQRS architecture (see Figure 4-2), we could model our write
operations as Commands. In this case, we can implement a WrongAd

36 | Chapter 4: CRUD and CQRS

http://bit.ly/2k7MGfx

2 We’re using the DTO term here not in the sense of an anemic domain model, but to
address its sole purpose of being the container of information.

dressUpdateCommand and a RelocationUpdateCommand. Internally,
both would be changing the Customer data store. But now that we
know the intent of the update, we can fire the notification to the
external system only in the RelocationUpdateCommand code.

For the read operations, we will be invoking some query methods on
a read interface, such as CustomerQueryService, and we would be
returning Data Transfer Objects (DTOs)2 to be exposed to our pre‐
sentation layer.

Things start to become even more interesting when we realize that
we don’t need to use the same data store for both models. We can
use a simple CQRS architecture, such as the one represented in
Figure 4-2, or we can split the read and write data stores into sepa‐
rate tables, schemas, or even database instances or technologies, as
demonstrated in Figure 4-3. The possibility of using data stores in
different nodes with different technologies sounds tempting for a
microservices architecture.

Figure 4-2. A basic CQRS architecture (Source)

CQRS | 37

http://bit.ly/2k7MGfx

Figure 4-3. A CQRS architecture with separate read and write stores
(Source)

Some motivations for using separate data stores for read and write
operations are performance and distribution. Your write operations
might generate a lot of contention on the data store. Or your read
operations may be so intensive that the write operations degrade sig‐
nificantly. You also might need to consolidate the information of
your model using information provided by other data stores. This
can be time consuming and won’t perform well if you try to update
the read model together with your write model. You might want to
consider doing that asynchronously. Your read operations could be
implemented in a separate service (remember microservices?), so
you would need to issue the update request to the read model in a
remote data store.

38 | Chapter 4: CRUD and CQRS

http://bit.ly/2k7MGfx

CQRS and Multiple Read Data Stores

It’s not unusual for an application to use the same
information in a number of different ways. Sometimes
you need one subset of the information; at other times,
you might need another subset of the information.
Sometimes different features of your application con‐
sume different aggregate information from the same
data store. Different requirements also allow you to
have different consistency models between read data
stores, even though the write data store might be the
same.
When you design your application with CQRS, you’re
not tied to having a single read data store in your
model. If you have different requirements for different
features of your application, you can create more than
one read data store, each one with a read model opti‐
mized for the specific use case being implemented.

Whenever we’re issuing the update requests to another component
of our system, we are creating an event. It’s not a strict requirement,
but when events come to play, that’s the moment we strongly con‐
sider adding a message broker to our architecture. You could be stor‐
ing the events in a separate table and keep polling for new records,
but for most implementations, a message broker will be the wisest
choice because it favors a decoupled architecture. And if you’re
using a Java Platform, Enterprise Edition (Java EE) environment,
you already have that for free anyway.

Event Sourcing
Sometimes one thing leads to another, and now that we’ve raised the
concept of events, we will also want to consider the concept of event
sourcing.

Event sourcing is commonly used together with CQRS. Even though
neither one implies the use of the other, they fit well together and
complement each other in interesting ways. Traditional CRUD and
CQRS architectures store only the current state of the data in the
data stores. It’s probably OK for most situations, but this approach
also has its limitations:

Event Sourcing | 39

• Using a single data store for both operations can limit scalability
due to performance problems.

• In a concurrent system with multiple users, you might run into
data update conflicts.

• Without an additional auditing mechanism, you have neither
the history of updates nor its source.

Other Auditing Approaches

Event sourcing is just one of the possible solutions
when auditing is a requirement for your application.
Some database patterns implemented by your applica‐
tion or through triggers can keep an audit trail of what
has changed and when, creating some sort of event
sourcing in the sense that the change events are recor‐
ded.
You can add triggers to the database in order to create
these change events, or you can use an open source
tool like Hibernate Envers to achieve that if you’re
already using Hibernate in your project. With Hiber‐
nate Envers, you even have the added benefit of built-
in query capabilities for you versioned entities.

To solve this limitation in event sourcing, we model the state of the
data as a sequence of events. Each one of these events is stored in an
append-only data store. In this case, the canonical source of infor‐
mation is the sequence of events, not a single entity stored in the
data store.

We’ll use the classic example of the amount of money stored in a
bank account. Without using event sourcing, a credit() operation
to the amount of a bank account would need to do the following:

1. Query the bank account to get the current value
2. Add the supplied amount to the current value of the entity
3. Issue an update to the data store with the new value

All of the preceding operations would probably be executed inside a
single method within the scope of a single transaction.

40 | Chapter 4: CRUD and CQRS

http://hibernate.org/orm/envers/

With event sourcing, there’s no single entity responsible for the
amount of money stored in the bank account. Instead of updating
the bank account directly, we would need to create another entity
that represents the credit() operation. We can call it CreditOpera
tion and it contains the value to be credited. Then we would be
required to do the following:

1. Create a CreditOperation with the amount to be credited
2. Issue an insert to the data store with the CreditOperation

Assuming that all bank accounts start with a zero balance, it’s just a
matter of sequentially applying all the credit() and debit() opera‐
tions to compute the current amount of money. You probably
already noticed that this is not a computational-intensive operation
if the number of operations is small, but the process tends to
become very slow as the size of the dataset grows. That’s when
CQRS comes to the assistance of event sourcing.

With CQRS and event sourcing, you can store the credit() and
debit() operations (the write operations) in a data store and then
store the consolidated current amount of money in another data
store (for the read operations). The canonical source of information
will still be the set of credit() and debit() operations, but the read
data store is created for performance reasons. You can update the
read data store synchronously or asynchronously. In a synchronous
operation, you can achieve strong or eventual consistency; in an
asynchronous operation, you will always have eventual consistency.
There are many different strategies for populating the read data
store, which we cover in Chapter 5.

Notice that when you combine CQRS and event sourcing you get
auditing for free: in any given moment of time, you can replay all
the credit() and debit() operations to check whether the amount
of money in the read data store is correct. You also get a free time
machine: you can check the state of your bank account at any given
moment in the past.

Event Sourcing | 41

Synchronous or Asynchronous Updates?
Synchronously updating the read model sounds like the obvious
choice at first glance but in fact, it turns out that in the real world
asynchronous updates are generally more flexible and powerful,
and they have added benefits. Let’s take another look at the banking
example.

Real banking systems update the read models asynchronously
because they have a lot more control with their procedures and pol‐
icies. Banks record operations as they occur, but they reconcile
those operations at night and often in multiple passes. For example,
reconciliation often first applies all credit operations and then all
debit operations, which eliminates any improper ordering in the
actual recording of the transactions due to technical reasons (like a
store or ATM couldn’t post its transactions for a few hours) or user
error (like depositing money into an account after an expensive
purchase to prevent overdrawing the account).

42 | Chapter 4: CRUD and CQRS

CHAPTER 5

Integration Strategies

Using the Decentralized Data Management characteristic of micro‐
services architectures, each one of our microservices should have its
own separate database—which could possibly, again, be a relational
database or not. However, a legacy monolithic relational database is
very unlikely to simply migrate the tables and the data from your
current schema to a new separate schema or database instance, or
even a new database technology.

We want to evolve our architecture as smoothly as possible: it
requires baby steps and carefully considered migrations in each one
of these steps to minimize disruption and, consequently, downtime.
Moreover, a microservice is not an island; it requires information
provided by other services, and also provides information required
by other services. Therefore, we need to integrate the data between
at least two separate services: one can be your old monolithic appli‐
cation and the other one will be your new microservice artifact.

In this chapter, we will present a set of different integration strate‐
gies collected from personal experience and from successful integra‐
tions delivered by companies worldwide. Most of these strategies
assume that you will be also using a relational database in your new
microservice. And you should not be surprised with this choice of
technology: relational databases are a solid, mature, battle-tested
technology. I would even suggest it as your first choice when dealing
with breaking monolithic database into a microservices database.
We can play on the safe side and we will have many more integra‐
tion options for the journey between your current legacy, mono‐

43

lithic, tightly coupled, and entangled database to your decoupled
microservices database. Later on, when you have already success‐
fully decoupled the data from each one of the endpoints, you will be
free to explore and use another technology, which might be a better
fit for your specific use case.

The following sections will present a brief description and set of
considerations when using each one of these integration strategies:

• Shared Tables
• Database View
• Database Materialized View
• Database Trigger
• Transactional Code
• ETL Tools
• Data Virtualization
• Event Sourcing
• Change Data Capture

Some of these strategies require features that might or might not be
implemented in your current choice of database management sys‐
tem. We’ll leave you to check the features and restrictions imposed
by each product and version.

Shared Tables
Shared tables is a database integration technique that makes two or
more artifacts in your system communicate through reading and
writing to the same set of tables in a shared database. This certainly
sounds like a bad idea at first. And you are probably right. Even in
the end, it probably will still be a bad idea. We can consider this to
be in the quick-and-dirty category of solutions, but we can’t discard
it completely due to its popularity. It has been used for a long time
and is probably also the most common integration strategy used
when you need to integrate different applications and artifacts that
require the same information.

Sam Newman did a great job explaining the downsides of this
approach in his book Building Microservices. We’ll list some of them
later in this section.

44 | Chapter 5: Integration Strategies

http://shop.oreilly.com/product/0636920033158.do

1 Represented by a SELECT statement.

Shared Tables Applicability
Shared tables strategy (or technique) is suitable for very simple cases
and is the fastest to implement an integration approach. Sometimes
your project schedule makes you consider adding some technical
debt in order to deliver value into production in time. If you’re using
shared tables consciously for a quick hack and then plan to pay this
debt later, you’ll be greatly served by this integration strategy before
you can plan and implement a more robust strategy.

Shared Tables Considerations
Here is a list of some of the elements of shared tablets that you
should consider:

Fastest data integration
Shared tables is by far the most common form of data integra‐
tion because it is probably the fastest and easiest to implement.
Just put everything inside the same database schema!

Strong consistency
All of the data will be modified in the same database schema
using transactions. You’ll achieve strong consistency semantics.

Low cohesion and high coupling
Remember some desirable properties behind good software,
such as high cohesion and low coupling? With shared tables you
have none. Everything is accessible and modifiable by all the
artifacts sharing the data. You control neither behavior nor the
semantics. Schema migrations tend to become so difficult that
they will be used as an excuse for not changing at all.

Database View
Database views are a concept that can be interpreted in at least two
different ways. The first interpretation is that a view is just a Result
Set for a stored Query.1 The second interpretation is that a view is a
logical representation of one or more tables—these are called base
tables. You can use views to provide a subset or superset of the data
that is stored in tables.

Database View | 45

Database View Applicability
A database view is a better approach than shared tables for simple
cases because it allows you to create another representation of your
model suited to your specific artifact and use case. It can help to
reduce the coupling between the artifacts so that later you can more
easily choose a more robust integration strategy.

You might not be able to use this strategy if you have write require‐
ments and your DBMS implementation doesn’t support it, or if the
query backing your view is too costly to be run in the frequency
required by your artifact.

Database View Considerations
Here are some things to keep in mind with respect to database
views:

Easiest strategy to implement
You can create database views via a simple CREATE VIEW state‐
ment in which you just need to supply a single SELECT state‐
ment. We can see the CREATE VIEW statement as a way for telling
the DBMS to store the supplied query to be run later, as it is
required.

Largest support from DBMS vendors
As of this writing, even embeddable database engines such as
H2 or SQLite support the CREATE VIEW statement, so it is safe to
consider that all DBMSs used by enterprise applications have
this feature.

Possible performance issues
Performance issues might arise, depending on the stored query
and the frequency of view accesses. It’s a common performance
optimization scenario in which you’ll need to apply your stan‐
dard query optimization techniques to achieve the desired per‐
formance.

Strong consistency
All operations on a view are executed against the base tables, so
when we’re updating any row on a database view, in fact, you’re
applying these statements to the underlying base tables. You’ll
be using the standard transactions and Atomicity, Consistency,

46 | Chapter 5: Integration Strategies

http://www.h2database.com
https://sqlite.org

2 Like Oracle’s DBLink feature.
3 The tables that are the source of the information being replicated.

Isolation, and Durability (ACID) behavior provided by your
DBMS to ensure strong consistency between your models.

One database must be reachable by the other
The schema on which you are creating the database view must
be able to read the base tables. Maybe you are using a different
schema inside a common database instance. You might also be
able to use tables on remote database instances, provided that
your DBMS has this feature.2

Updatable depending on DBMS support
Traditionally, database views were read-only structures against
which you issued your SELECT statements. Again, depending on
your DBMS, you might be able to issue update statements
against your views. Some requirements for this to work on your
DBMS might include that your view have all the primary keys of
the base tables and that you must reference all of them on your
update statement being executed on the database view.

Database Materialized View
A database materialized view is a database object that stores the
results of a query. It’s a tool that is usually only familiar to database
administrators (DBAs) because most developers tend to specialize in
coding. From the developer’s perspective, there is no difference
between a materialized view and a view or a table, because you can
query both in the same way that you have always been issuing your
SELECT statements. Indeed, some DBMSs implement materialized
views as true physical tables. Their structure only differs from tables
in the sense that they are used as replication storage for other local
or even remote tables using a synchronization or snapshotting mech‐
anism.

The data synchronization between the master tables3 and the materi‐
alized view can usually be triggered on demand, based on an inter‐
val timer by a transaction commit.

Database Materialized View | 47

Database Materialized View Applicability
Database materialized views are probably already used in most
enterprise applications for aggregation and reporting features as
cached read data stores. This fact makes it the perfect candidate
when the DBAs in your organization are already familiar with this
tool and willing to collaborate on new tools. Database materialized
views have the benefits of a plain database view without the perfor‐
mance implications. It’s usually a better alternative when you have
multiple JOINs or aggregations and you can deal with eventual con‐
sistency.

Database Materialized View Considerations
What follows is a synopsis of database materialized views:

Better performance
Database materialized views are often implemented as true
physical tables, so data is already stored in the same format as
the query (and often in a denormalized state). Because you don’t
have any joins to execute, performance can improve signifi‐
cantly. And you also have the possibility of optimizing your
database materialized views with indexes for your queries.

Strong or eventual consistency
If you’re able to configure your DBMS to update your material‐
ized views in each commit inside the same transaction, you’ll
achieve strong consistency. Or you’ll have eventual consistency
when updating your materialized view on demand or with an
interval timer trigger.

One database must be reachable by the other
The source of information for materialized views are the base
tables, so they must be reachable by your schema for them to be
created successfully. The base tables can be local or remote data‐
bases, and the reachability depends on DBMS features.

Updatable depending on DBMS support
Your DBMS might support updatable materialized views. Some
restrictions might apply for this feature to be available, and you
might need to build your materialized view with all the primary
keys of the base tables that you want to update.

48 | Chapter 5: Integration Strategies

Database Trigger
Database triggers are code that is automatically executed in response
to database events. Some common database events in which we
might be interested are AFTER INSERT, AFTER UPDATE, and AFTER
DELETE, but there are many more events we can respond to. We can
use code within a trigger to update the integrated tables in a very
similar way to that of a database materialized view.

Database Trigger Applicability
Database triggers are good candidates if the type of data being inte‐
grated is simple and if you already have the legacy of maintaining
other database triggers in your application. They will quickly
become impractical if your integration requires multiple JOINs or
aggregations.

We don’t advise adding triggers as an integration strategy to your
application if you’re not already using them for other purposes.

Database Trigger Considerations
Here are some things to consider regarding database triggers:

Depends on DBMS support
Even though triggers are a well-known feature, not all available
DMBSs support them as of this writing.

Strong consistency
Trigger code is executed within the same transaction of the
source table update, so you’ll always achieve strong consistency
semantics.

One database must be reachable by the other
Trigger code is executed against default database structures, so
they must be reachable by your schema for them to be created
successfully. The structures can be local or remote, and the
reachability depends on DBMS features.

Transactional Code
Integration can always be implemented in our own source code
instead of relying on software provided by third parties. In the same
way that a database trigger or a materialized view can update our

Database Trigger | 49

target tables in response to an event, we can code this logic in our
update code.

Sometimes the business logic resides in a database stored procedure:
in this case, the code is not much different from the code that would
be implemented in a trigger. We just need to ensure that everything
is run within the same transaction to guarantee data integrity.

If we are using a platform such as Java to code our business logic, we
can achieve similar results using distributed transactions to guaran‐
tee data integrity.

Transactional Code Applicability
Using transactional code for data integration is much more difficult
than expected. It might be feasible for some simple use cases, but it
can quickly become impractical if more than two artifacts need to
share the same data. The synchronous requirement and network
issues like latency and unavailability also minimize the applicability
of this strategy.

Transactional Code Considerations
Here are some things to keep in mind about transactional code:

Any code: usually stored procedures or distributed transactions
If you’re not relying on database views or materialized views,
you will probably be dealing with stored procedures or other
technology that supports distributed transactions to guarantee
data integrity.

Strong consistency
The usage of transactions with ACID semantics guarantees that
you will have strong consistency in both ends of the integration.

Possible cohesion/coupling issues
Any technology can be used correctly or incorrectly, but experi‐
ence shows that most of the times when we’re distributing trans‐
actional code between different artifacts, we’re also coupling
both sides with a shared domain model. This can lead to a
maintenance nightmare known as cascading changes. Any
change to your code in one artifact leads to a change in the
other artifact. Cascading changes in a microservices architec‐
ture also leads to another anti-pattern called synchronized relea‐

50 | Chapter 5: Integration Strategies

ses, as the artifacts usually will only work properly with specific
versions on each side.

Possible performance issues
Transactions with ACID semantics on distributed endpoints
might require fine-tuning optimizations to not affect opera‐
tional performance.

Updatable depending on how it is implemented
Because it’s just code, you can implement bidirectional updates
on both artifacts if your requirements demand it. There are no
restrictions on the technology side of this integration strategy.

Extract, Transform, and Load Tools
Extract, Transform, and Load (ETL) tools are popular at the man‐
agement level, where they are used to generate business reports and
sometimes dashboards that provide consolidated strategic informa‐
tion for decision making. That’s one of the reasons why many of
these tools are marketed as business intelligence tools.

Some examples of open source implementations are Pentaho and
Dashbuilder. Most of the available tools will allow you to use plain
old SQL to extract the information you want from different tables
and schemas of your database transform and consolidate this infor‐
mation, and then load them to the result tables. Based on the result
tables, you can later generate spreadsheet or HTML reports, or even
present this information in a beautiful visual representation such as
the one depicted in Figure 5-1.

In the ETL cycle you extract your information from a data source
(likely to be your production database), transform your information
to the format that you desire (aggregating the results or correlating
them), and finally, you load the information on a target data source.
The target data source usually contains highly denormalized infor‐
mation to be consumed by reporting engines.

ETL Tools Applicability
ETL tools are a good candidate when you are already using them for
other purposes. ETL can handle more complex scenarios with mul‐
tiple JOINs and aggregations, and it’s feasible if the latency of the
eventual consistency is bearable for the business use case.

Extract, Transform, and Load Tools | 51

http://www.pentaho.com
http://dashbuilder.org

If the long-term plan is to support more integrations between other
systems and microservices, alternative approaches such as event
sourcing, data virtualization, or change data capture might be better
solutions.

Figure 5-1. Dashbuilder panel displaying consolidated information
(Source)

ETL Tools Considerations
Here are some ETL tools considerations:

Many available tools
Dozens of open source projects and commercially supported
products make ETL tools the most widely available integration
strategy. The options for solutions can range from free to very
expensive. Success on ETL tools usage depends much more on
the implementation project than the tool, per se, even though
vendor-specific features might help this process.

Requires external trigger (usually time-based)
The ETL cycle can take a long time to execute, so in most cases
it’s unusual to keep it running continuously. ETL tools provide
mechanisms to trigger the start of the ETL cycle on demand or
through time-based triggers with cron semantics.

52 | Chapter 5: Integration Strategies

http://dashbuilder.org

Can aggregate from multiple data sources
You are not restricted to a single data source. The most com‐
mon use case will be the aggregation of information from multi‐
ple schemas in the same database instance through SQL queries.

Eventual consistency
Because the update of the information on your ETL tool is usu‐
ally triggered on demand or on a time-based schedule, the
information is potentially always outdated. You can achieve
eventual consistency only with this integration strategy. It’s also
worth noting that even though the information is outdated, it
can be consistent if the reading of the information was all done
in the same transaction (not all products support this feature).

Read-only integration
The ETL process is not designed to allow updates to the data
source. Information flows only one way to the target data
source.

Data Virtualization
Data virtualization is a strategy that allows you to create an abstrac‐
tion layer over different data sources. The data source types can be
as heterogeneous as flat files, relational databases, and nonrelational
databases.

With a data virtualization platform, you can create a Virtual Data‐
base (VDB) that provides real-time access to data in multiple heter‐
ogeneous data sources. Unlike ETL tools that copy the data into a
different data structure, VDBs access the original data sources in
real time and do not need to make copies of any data.

You can also create multiple VDBs with different data models on top
of the same data sources. For example, each client application
(which again might be a microservice) might want its own VDB
with data structured specifically for what that client needs. Data vir‐
tualization is a powerful tool for an integration scenario in which
you have multiple artifacts consuming the same data in different
ways.

The VDB abstraction also allows you to create multiple VDBs with
different data models from the same data sources. It’s a powerful
tool in an integration scenario in which you have multiple different
artifacts consuming the same data but in different ways.

Data Virtualization | 53

One open source data virtualization platform is Teiid. Figure 5-2
illustrates Teiid’s architecture, but it is also a good representation of
the general concept of VDBs in a data virtualization platform.

Figure 5-2. Teiid’s data virtualization architecture (Source)

Data Virtualization Applicability
Data virtualization is the most flexible integration strategy covered
in this book. It allows you to create VDBs from any data source and
to accommodate any model that your application requires. It’s also a
convenient strategy for developers because it allows them to use
their existing and traditional development skills to craft an artifact
that will simply be accessing a database (in this case, a virtual one).

54 | Chapter 5: Integration Strategies

http://teiid.jboss.org
http://teiid.jboss.org

4 Note that real-time access here means that information is consumed online, not in the
sense of systems with strictly defined response times as real-time systems.

If you’re not ready to jump on the event sourcing bandwagon, or
your business use case does not require that you use events, data vir‐
tualization is probably the best integration strategy for your artifact.
It can handle very complex scenarios with JOINs and aggregations,
even with different database instances or technologies.

It’s also very useful for monolithic applications, and it can provide
the same benefits of database materialized views for your applica‐
tion, including caching. If you first decide to use data virtualization
in your monolith, the path to future microservices will also be easier
—even when you decide to use a different database technology.

Data Virtualization Considerations
Here are some factors to consider regarding data virtualization:

Real-time access option
Because you’re not moving the data from the data sources and
you have direct access to them, the information available on a
VDB is available with real-time access.4 Keep in mind that even
with the access being online, you still might have performance
issues depending on the tuning, scale, and type of the data sour‐
ces. The real-time access property doesn’t hold true when your
VDB is defined to materialize and/or cache data. One of the rea‐
sons for doing that is when the data source is too expensive to
process. In this case, your client application can still access the
materialized/cached data anytime without hitting the actual
data sources.

Strong or eventual consistency
If you’re directly accessing the data sources in real time, there is
no data replication: you achieve strong consistency with this
strategy. On the other hand, if you choose to define your VDB
with materialized or cached data, you will achieve only eventual
consistency.

Can aggregate from multiple datasources
Data aggregation from multiple heterogeneus data sources is
one of the premises of data virtualization platforms.

Data Virtualization | 55

Updatable depending on data virtualization platform
Depending on the features of your data virtualization platform,
your VDB might provide a read-write data source for you to
consume.

Event Sourcing
We covered this in “Event Sourcing” on page 39, and it is of special
interest in the scope of distributed systems such as microservices
architectures—particularly the pattern of using event sourcing and
Command Query Responsibility Segregation (CQRS) with different
read and write data stores. If we’re able to model our write data store
as a stream of events, we can use a message bus to propagate them.
The message bus clients can then consume these messages and build
their own read data store to be used as a local replica.

Event Sourcing Applicability
Event sourcing is a good candidate for your integration technique
given some requirements:

• You already have experience with event sourcing
• Your domain model is already modeled as events
• You’re already using a message broker to distributed messages

through the system
• You’re already using asynchronous processing in some routines

of your application
• Your domain model is consolidated enough to not expect new

events in the foreseeable future

If you need to modify your existing application to fit most if not all
of the aforementioned requirements, it’s probably safer to choose
another integration strategy instead of event sourcing.

56 | Chapter 5: Integration Strategies

Event Sourcing Is Harder Than It Seems

It’s never enough to warn any developer that software
architecture is all about trade-offs. There’s no such
thing as a free lunch in this area. Event sourcing might
seems like the best approach for decoupling and scal‐
ing your system, but it certainly also has its drawbacks.
Properly designing event sourcing is hard. More often
than not, you’ll find badly modeled event sourcing,
which leads to increased coupling instead of the
desired low coupling. The central point of integration
in an event-sourcing architecture are the events. You’ll
probably have more than one type of event in your sys‐
tem. Each one of these events carry information, and
this information has a type composed of a schema (it
has a structure to hold the data) and a meaning
(semantics). This type is the coupling between the sys‐
tems. Adding a new event potentially means a cascade
of changes to the consumers.

Event Sourcing Considerations
Here are some issues about event sourcing you might want to con‐
sider:

State of data is a stream of events
If the state of the write data store is already modeled as a stream
of events, it becomes even simpler to get these same events and
propagate them throughout our distributed system via a mes‐
sage bus.

Eases auditing
Because the current state of the data is the result of applying the
event stream one after another, we can easily check the correct‐
ness of the model by reapplying all the events in the same order
since the initial state. It also allows easy reconstruction of the
read model based on the same principle.

Eventual consistency
Distributing the events through a message bus means that the
events are going to be processed asynchronously. This leads to
eventual consistency semantics.

Event Sourcing | 57

Usually combined with a message bus
Events are naturally modeled as messages propagated and con‐
sumed through a message bus.

High scalability
The asynchronous nature of a message bus makes this strategy
highly scalable. We don’t need to handle throttling because the
message consumers can handle the messages at their own pace.
It eliminates the possibility of a producer overwhelming the
consumer by sending a high volume of messages in a short
period of time.

Change Data Capture
Another approach is to use Change Data Capture (CDC), which is a
data integration strategy that captures the individual changes being
committed to a data source and makes them available as a sequence
of events. We might even consider CDC to be a poor man’s event
sourcing with CQRS. In this approach, the read data store is updated
through a stream of events as in event sourcing, but the write data
store is not a stream of events.

It lacks some of the characteristics of true event sourcing, as covered
in “Event Sourcing” on page 39, but most of the CDC tools offer
pluggable mechanisms that prevent you from changing the domain
model or code of your connected application. It’s an especially val‐
uable feature when dealing with legacy systems because you don’t
want to mess with the old tables and code, which could have been
written in an ancient language or platform. Not having to change
either the source code or the database makes CDC one of the first
and most likely candidates for you to get started in breaking your
monolith into smaller parts.

CDC Applicability
If your DBMS is supported by the CDC tool, this is the least intru‐
sive integration strategy available. You don’t need to change the
structure of your existing data or your legacy code. And because the
CDC events are already modeled as change events such as Create,
Update, and Delete, it’s unlikely that you’ll need to implement newer
types of events later—minimizing coupling. This is our favorite inte‐
gration strategy when dealing with legacy monolithic applications
for nontrivial use cases.

58 | Chapter 5: Integration Strategies

CDC Considerations
Keep the following in mind when implementing CDC:

Read data source is updated through a stream of events
Just as in “Event Sourcing” on page 56, we’ll be consuming the
update events in our read data stores, but without the need to
change our domain model to be represented as a stream of
events. It’s one the best recommended approaches when dealing
with legacy systems.

Eventual consistency
Distributing the events through a message bus means that the
events are going to be processed asynchronously. This leads to
eventual consistency semantics.

Usually combined with a message bus
Events are naturally modeled as messages propagated and con‐
sumed through a message bus.

High scalability
The asynchronous nature of a message bus makes this strategy
highly scalable. We don’t need to handle throttling because the
message consumers can handle the messages at their own pace.
It eliminates the possibility of a producer overwhelming the
consumer by sending a high volume of messages in a short
period of time.

Debezium
Debezium is a new open source project that implements CDC. As of
this writing, it supports pluggable connectors for MySQL and Mon‐
goDB for version 0.3; PostgreSQL support is coming for version 0.4.
Designed to persist and distribute the stream of events to CDC cli‐
ents, i’s built on top of well-known and popular technologies such as
Apache Kafka to persist and distribute the stream of events to CDC
clients.

Debezium fits very well in data replication scenarios such as those
used in microservices architectures. You can plug the Debezium
connector into your current database, configure it to listen for
changes in a set of tables, and then stream it to a Kafka topic.

Debezium messages have an extensive amount of information,
including the structure of the data, the new state of the data that was

Change Data Capture | 59

http://debezium.io
https://kafka.apache.org

modified, and whenever possible, the prior state of the data before it
was modified. If we’re watching the stream for changes to a “Cus‐
tomers” table, we might see a message payload that contains the
information shown in Example 5-1 when an UPDATE statement is
committed to change the value of the first_name field from "Anne"
to "Anne Marie" for row with id 1004.

Example 5-1. Payload information in a Debezium message

{
 "payload": {
 "before": {
 "id": 1004,
 "first_name": "Anne",
 "last_name": "Kretchmar",
 "email": "annek@noanswer.org"
 },
 "after": {
 "id": 1004,
 "first_name": "Anne Marie",
 "last_name": "Kretchmar",
 "email": "annek@noanswer.org"
 },
 "source": {
 "name": "dbserver1",
 "server_id": 223344,
 "ts_sec": 1480505,
 "gtid": null,
 "file": "mysql-bin.000003",
 "pos": 1086,
 "row": 0,
 "snapshot": null
 },
 "op": "u",
 "ts_ms": 1480505875755
 }
}

It’s not hard to imagine that we can consume this message and pop‐
ulate our local read data store in our microservice as a local replica.
The information broadcast in the message can be huge depending
on the data that was changed, but the best approach is to process
and store only the information that is relevant to your microservice.

60 | Chapter 5: Integration Strategies

About the Author
Edson Yanaga, Red Hat’s director of developer experience, is a Java
Champion and a Microsoft MVP. He is also a published author and
a frequent speaker at international conferences, where he discusses
Java, microservices, cloud computing, DevOps, and software crafts‐
manship.

Yanaga considers himself a software craftsman and is convinced that
we can all create a better world for people with better software. His
life’s purpose is to deliver and help developers worldwide to deliver
better software, faster and more safely—and he feels lucky to also
call that a job!

	Microservices
	Copyright
	Table of Contents
	Foreword
	Chapter 1. Introduction
	The Feedback Loop
	DevOps
	Why Microservices?
	Strangler Pattern
	Domain-Driven Design
	Microservices Characteristics

	Chapter 2. Zero Downtime
	Zero Downtime and Microservices
	Deployment Architectures
	Blue/Green Deployment
	Canary Deployment
	A/B Testing
	Application State

	Chapter 3. Evolving Your Relational Database
	Popular Tools
	Zero Downtime Migrations
	Avoid Locks by Using Sharding
	Add a Column Migration
	Rename a Column Migration
	Change Type/Format of a Column Migration
	Delete a Column Migration
	Referential Integrity Constraints

	Chapter 4. CRUD and CQRS
	Consistency Models
	Eventual Consistency
	Strong Consistency
	Applicability

	CRUD
	CQRS
	Event Sourcing

	Chapter 5. Integration Strategies
	Shared Tables
	Shared Tables Applicability
	Shared Tables Considerations

	Database View
	Database View Applicability
	Database View Considerations

	Database Materialized View
	Database Materialized View Applicability
	Database Materialized View Considerations

	Database Trigger
	Database Trigger Applicability
	Database Trigger Considerations

	Transactional Code
	Transactional Code Applicability
	Transactional Code Considerations

	Extract, Transform, and Load Tools
	ETL Tools Applicability
	ETL Tools Considerations

	Data Virtualization
	Data Virtualization Applicability
	Data Virtualization Considerations

	Event Sourcing
	Event Sourcing Applicability
	Event Sourcing Considerations

	Change Data Capture
	CDC Applicability
	CDC Considerations
	Debezium

	About the Author

