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vs

“Geometric Fantasies”:
Weierstrass’ Response to Riemann
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Abstract

In the 1850s Weierstrass succeeded in solving the Jacobi inversion prob-
lem for the hyper-elliptic case, and claimed he was able to solve the general
problem. At about the same time Riemann successfully applied the geometric
methods that he set up in his thesis (1851) to the study of Abelian inte-
grals, and the solution of Jacobi inversion problem. In response to Riemann’s
achievements, by the early 1860s Weierstrass began to build the theory of
analytic functions in a systematic way on arithmetical foundations, and to
present it in his lectures. According to Weierstrass, this theory provided the
foundations of the whole of both elliptic and Abelian function theory, the lat-
ter being the ultimate goal of his mathematical work. Riemann’s theory of
complex functions seems to have been the background of Weierstrass’s work
and lectures. Weierstrass’ unpublished correspondence with his former stu-
dent Schwarz provides strong evidence of this. Many of Weierstrass’ results,
including his example of a continuous non-differentiable function as well as
his counter-example to Dirichlet principle, were motivated by his criticism of
Riemann’s methods, and his distrust in Riemann’s “geometric fantasies”. In-
stead, he chose the power series approach because of his conviction that the
theory of analytic functions had to be founded on simple “algebraic truths”.
Even though Weierstrass failed to build a satisfactory theory of functions of
several complex variables, the contradiction between his and Riemann’s geo-
metric approach remained effective until the early decades of the 20th century.
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In 1854 Crelle’s Journal published a paper on Abelian functions by an un-
known school teacher. This paper announced the entry in the mathematical world
of a major figure, Karl Weierstrass (1815-1897), who was to dominate the scene
for the next forty years to come. His paper presented a solution of Jacobi inver-
sion problem in the hyper-elliptic case. In analogy with the inversion of elliptic
integrals of the first kind, Jacobi unsuccessfully attempted a direct inversion of a
hyper-elliptic integral of the first kind. This led him to consider multi-valued, “un-
reasonable” functions having a “strong multiplicity” of periods, including periods
of arbitrarily small (non-zero) absolute value. Jacobi confessed he was “almost in
despair” about the possibility of the inversion when he realized “by divination”
that Abel’s theorem provided him with the key for resurrecting the analogy with
the inversion of elliptic integrals by considering the sum of a suitable number of
(linearly independent) hyper-elliptic integrals instead of a single integral. In his
memoir submitted to the Paris Academy in 1826 (and published only in 1841) Abel
had stated a theorem which extended Euler’s addition theorem for elliptic integrals
to more general (Abelian) integrals of the form

∫

R(x, y)dx in which R(x, y) is a
rational function and y = y(x) is an algebraic function defined by a (irreducible)
polynomial equation f(x, y) = 0. According to Abel’s theorem, the sum of any
number of such integrals reduces to the sum of a number p of linearly independent
integrals and of an algebraic-logarithmic expression (p was later called by Clebsch
the genus of the algebraic curve f(x, y) = 0). In 1828 Abel published an excerpt of
his Paris memoir dealing with the particular (hyper-elliptic) case of the theorem,
when f(x, y) = y2 − P (x), P is a polynomial of degree n > 4 having no multiple
roots. In this case p = [(n − 1)/2], and for hyper-elliptic integrals of the first kind
∫ Q(x)dx√

P (x)
(Q is a polynomial of degree ≤ p− 1) the algebraic-logarithmic expression

vanishes ([1], vol. 1, 444-456).

On the basis of Abel’s theorem in 1832 Jacobi formulated the problem of
investigating the inversion of a system of p hyper-elliptic integrals

uk =

p−1
∑

j=0

∫ xj

0

xkdx
√

P (x)
(0 ≤ k ≤ p − 1) (degP = 2p + 1 or 2p + 2)

by studying x0, x1, · · · , xp−1 as functions of the variables u0, u1, · · · , up−1. These
functions xi = λi(u0, u1, · · · , up−1) generalized the elliptic functions to 2p-periodic
functions of p variables. Jacobi’s “general theorem” claimed that x0, x1, · · · , xp−1

were the roots of an algebraic equation of degree p whose coefficient were single-
valued, 2p-periodic functions of u0, u1, · · · , up−1. Therefore, the elementary sym-
metric functions of x0, x1, · · · , xp−1 could be expressed by means of single-valued
functions in Cp. In particular, Jacobi considered the case p = 2 ([4], vol. 2,
7-16). His ideas were successfully developed by A. Göpel in 1847 (and, indepen-
dently of him, J. G. Rosenhain in 1851). The required 4-fold periodic functions of
two complex variables were expressed as the ratio of two θ-series of two complex
variables obtained by a direct and cumbersome computation. This involved an im-
pressive amount of calculations and could hardly be extended to the case p > 2.
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Following a completely different route Weierstrass was able to solve the problem
for any p. Because of his achievements he was awarded a doctor degree honoris

causa from the Königsberg University, and two years later he was hired to teach at
the Berlin Gewerbeinstitut (later Gewerbeakademie, today Technische Universität).
Eventually, in the Fall of 1856 Weierstrass was named Extraordinarius at the Berlin
University.

1. Weierstrass’ early papers

In the address he gave in 1857 upon entering the Berlin Academy, Weierstrass
recognized the “powerful attraction” which the theory of elliptic functions had ex-
erted on him since his student days. In order to become a school teacher in 1839
Weierstrass had entered the Theological and Philosophical Academy of Münster,
where he attended for one semester Gudermann’s lectures on elliptic functions and
became familiar with the concept of uniform convergence which Gudermann had
introduced in his papers in 1838. Elliptic functions constituted the subject of Weier-
strass’ very first paper, an essay he wrote in autumn 1840 for obtaining his venia

docendi. His starting point was Abel’s claim that the elliptic function which is the
inverse of the elliptic integral of first kind (snu in the symbolism Weierstrass took
from Gudermann) could be expressed as the ratio of two convergent power series of
u, whose coefficients are entire functions of the modulus of the integral. Weierstrass
succeeded in proving that snu (and similarly cnu and dnu) could be represented as
quotient of certain functions, which he named Al-functions in honor of Abel and
which he was able to expand in convergent power series.

Working in complete isolation without any knowledge of Cauchy’s related re-
sults, two years before Laurent, Weierstrass (1841) succeeded in establishing the
Laurent expansion of a function in an annulus. In the paper he made an essential
use of integrals, and proved the Cauchy integral theorem for annuli ([10], vol. 1,
51-66). In a subsequent paper he stated and proved three theorems on power series.
Theorems A) and B) provided estimates (Cauchy inequalities) for the coefficients
of a Laurent series in one (and several) complex variables, while Theorem C) was
the double series theorem nowadays called after him. As a consequence of it Weier-
strass obtained the theorem on uniform differentiation of convergent series ([10], vol.
1, 67-74). Apparently, this paper marked a turning point in Weierstrass’ analytic
methods for he gave up integrals and choose the power series approach to treat the
theory of function of one or more variables on a par. This work was completed
by a paper he wrote in spring 1842. There Weierstrass proved that a system of n
differential equations

dx

dt
= Gi(x1, · · · , xn) (i = 1, · · · , n) (Gi(x1, · · · , xn) polynomials)

can be solved by a system of n unconditionally and uniformly convergent power
series satisfying prescribed initial conditions for t=0. In addition, he also showed
how the power series

xi = Pi(t − t0, a1, · · · , an) (i = 1, · · · , n; t0, a1, · · · , an fixed)
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convergent in a disk centered at t0 could be analytically continued outside the disk.
Thus, by the early 1840s the essential results of Weierstrass’ approach to the theory
of analytic functions were already established. His papers, however, remained in
manuscript and had no influence on the contemporary development of mathematics.

2. Abelian functions and integrals

Weierstrass’ 1854 paper ([10], vol. 1, 133-152) gave “a short overview” of the
work on Abelian functions which he had developed “several years ago” and summa-
rized in the annual report of the Braunsberg Gymnasium for 1848-49. Weierstrass
began by considering the polynomial R(x) = (x − a0)(x − a1) · · · (x − a2n), with ai

real numbers satisfying the inequalities ai > ai+1. He decomposed R(x) into the
factors P (x) =

∏n
k=1(x− a2k−1), Q(x) =

∏n
k=1(x− a2k) and considered the system

um =

n
∑

j=1

∫ xj

a2j−1

P (x)

x − a2m−1

dx

2
√

R(x)
(m = 1, · · · , n). (2.1)

The task Weierstrass gave himself was to “establish in detail” Jacobi’s theorem
which he considered “the foundations of the whole theory”. As Jacobi had re-
marked, for given values of x1, x2, · · · , xn the quantities u1, u2, · · · , un have in-
finitely many different values. “Conversely, if the values of u1, u2, · · · , un are
given, then the values of x1, x2, · · · , xn as well as the corresponding values of
√

R(x1),
√

R(x2), · · · ,
√

R(xn) are uniquely determined”. Moreover, “x1, x2, · · · , xn

are roots of a (polynomial) equation of degree n whose coefficient are completely
determined, single-valued functions of the variables u1, u2, · · · , un”. Analogously,
Weierstrass added, there exists a polynomial function of x, whose coefficients are
also single-valued functions of u1, u2, · · · , un which gives the corresponding values
of

√

R(x1),
√

R(x2), · · · ,
√

R(xn) for x = x1, x2, · · · , xn. Every rational symmet-
ric function of x1, x2, · · · , xn could consequently be regarded as a single-valued
function of u1, u2, · · · , un. Weierstrass considered the product L(x) = (x− x1)(x−
x2) · · · (x−xn) and the 2n+1 single-valued functions Al(u1, u2, un)m =

√

hmL(am)
(m = 0, · · · , 2n+1), with hm suitable constants, which he called Abelian functions,
“since they are the ones which completely correspond to the elliptic functions” to
which they reduce when n = 1.

He was able to expand his Al-functions in convergent power series and, on the
basis of Abel’s theorem, he succeeded in establish the “principal property” of such
functions, i.e. an addition theorem according to which Al(u1 +v1, u2 +v2, · · · , un +
vn)m are rationally expressed in terms of Al(u1, u2, · · · , un)m, Al(v1, v2, · · · , vn)m

and their first-order partial derivatives. Eventually, he determined the algebraic
equation whose coefficients were expressed in terms of Al-functions, and whose roots
were the quantities x1, x2, · · · , xn satisfying equations 2.1) for arbitrary u1, u2, · · · , un.
However, as Dirichlet commented, in his paper Weiertrass “gave only partial proofs
of his results and lacked the intermediate explanations” ([3], 52).

Two years later Weierstrass resumed this work and published in Crelle’s Jour-

nal the first part of an expanded and detailed version of it ([10], vol. 1, 297-355).
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As he had done in his 1854 paper, Weierstrass considered the polynomial R(x) =
A(x− a1)(x− a2) · · · (x− a2ρ+1), and the analogous product P (x) =

∏ρ
j=1(x− aj),

(j = 1, · · · , ρ) where this time the aj were any complex numbers such that aj 6= ak

for j 6= k. Instead of equations 2.1) he considered the corresponding system of
differential equations

dum =

ρ
∑

j=1

1

2

P (xj)

xj − am

dx
√

R(xj)
(m = 1, · · · , ρ) (2.2)

and formulated Jacobi inversion problem as the question to find solutions xj =
xj(u1, · · · , uρ) of the system 2.2) satisfying the initial conditions xj(0, · · · , 0) = aj

(j = 1, · · · , ρ). In order to obtain the elliptic functions as a special case (ρ = 1), he
also gave a slightly different form to his Al-functions with respect to his previous
paper. Weierstrass succeeded in proving that the solutions xj = xj(u1, · · · , uρ) are
single-valued functions of u1, · · · , uρ in the neighborhood of the origin. They could
be considered as the roots of a polynomial equation of degree ρ, whose coefficients
were given in terms of Al-functions which, for any bounded value of (u1, · · · , uρ), are
single-valued functions expressed as quotient of power series. Then, the symmetric
functions of xj = xj(u1, · · · , uρ) have “the character of rational functions”. From
these results, however, Weierstrass was unable to show that each Abelian function
could be represented as the ratio of two everywhere convergent power series. “Here
we encounter a problem that, as far as I know, has not yet been studied in its general
form, but is nevertheless of particular importance for the theory of functions” ([10],
vol. 1, 347).

In the course of his life he returned many times to this problem in an at-
tempt to solve it (see below). Even the factorization theorem for entire functions
that Weierstrass was able to establish some 20 years later (see Section 5) can be
regarded as an outcome of this research for it provided a positive answer to the
problem in the case of one variable ([5], 247). In order to show that his approach
permitted one to treat the theory of elliptic and Abelian function on a par, in the
concluding part of his 1856 paper Weierstrass presented a detour on elliptic func-
tions, where he summarized the main results he had obtained in 1840. However, the
promised continuation of Weierstrass’ paper never appeared. Instead, a completely
new approach to the theory of Abelian integrals was published by Bernhard Rie-
mann (1826-1866) in 1857 ([7], 88-144) which surpassed by far anything Weierstrass
had been able to produce.

In the introductory paragraphs of his paper Riemann summarized the geo-
metric approach to complex function theory he had set up in his 1851 thesis ([7],
3-48). There he defined a complex variable w as a function of x + iy when w varies
according to the equation i∂w

∂x = ∂w
∂y “without assuming an expression of w in terms

x and y”. Accordingly, “by a well known theorem” - Riemann observed without
mentioning Cauchy - a function w can be expanded in a power series

∑

an(z − a)n

in a suitable disk and “can be continued analytically outside it in only one way”
([7], 88). For dealing with multi-valued functions such as algebraic functions and
their integrals Riemann introduced one of his deepest achievements, the idea of
representing the branches of a function by a surface multiply covering the complex
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plane (or the Riemann sphere). Thus, “the multi-valued function has only one value
defined at each point of such a surface representing its branching, and can therefore
be regarded as a completely determined (=single-valued) function of position on
this surface” ([7], 91). Having introduced such basic topological concepts as cross-
cuts and order of connectivity of a surface, Riemann could state the fundamental
existence theorem of a complex function on the surface, which he had proved in his
dissertation by means of a suitable generalization of the Dirichlet principle. This
theorem establishes the existence of a complex function in terms of boundary con-
ditions and behavior of the function at the branch-points and singularities. Then
Riemann developed the theory of Abelian functions proper. It is worth noting that,
in spite of the fact that both Weierstrass and Riemann gave their paper the same
title and used the same wording, they gave it a different meaning. Whereas the for-
mer defined Abelian functions to be the single-valued, analytic functions of several
complex variables related to his solution of the Jacobi inversion problem, the latter
understood Abelian functions to be the integrals of algebraic functions introduced
by Abel’s theorem. In the first part of his paper Riemann developed a general
theory of such functions and integrals on a surface of any genus p, ”insofar as this
does not depend on the consideration of θ-series” ([7], 100). He was able to classify
Abelian functions (integrals) into three classes according to their singularities, to
determine the meromorphic functions on a surface, and to formulate Abel’s theo-
rem in new terms, thus throwing new light on the geometric theory of birational
transformations. The second part of the paper was devoted to the study of θ-series
of p complex variables, which express “the Jacobi inverse functions of p variables
for an arbitrary system of finite integrals of equiramified, (2p + 1)-connected alge-
braic functions” ([7], 101). In this part Riemann gave a complete solution of Jacobi
inversion problem without stating it as a special result. He regarded the work of
Weierstrass as a particular case, and mentioned the “beautiful results” contained
in the latter’s 1856 paper, whose continuation could show “how much their results
and their methods coincided”. However, after the publication of Riemann’s paper
Weierstrass decided to withdraw the continuation of his own. Even though Rie-
mann’s work “was based on foundations completely different from mine, one can
immediately recognize that his results coincide completely with mine” Weierstrass
later stated ([10], vol. 4, 9-10). “The proof of this requires some research of alge-
braic nature”. By the end of 1869 he had not been able to overcome all the related
“algebraic difficulties”. Yet, Weierstrass thought he had succeeded in finding the
way to represent any single-valued 2p-periodic (meromorphic) function as the ra-
tio of two suitable θ-series, thus solving the general inversion problem. However,
Weierstrass’ paper ([10], vol. 2, 45-48) was flawed by some inaccuracies that he
himself later recognized in a letter to Borchardt in 1879 (ibid., 125-133). In partic-
ular, Weierstrass (mistakenly) stated that any domain of Cn is the natural domain
of existence of a meromorphic function. (This mistake was to be pointed out in
papers by F. Hartogs and E.E. Levi in the first decade of the 20th century). By
1857, in his address to the Berlin Academy Weierstrass limited himself to state that
“one of the main problems of mathematics” which he decided to investigate was
“to give an actual representation” of Abelian functions. He recognized that he had



“Algebraic Truths” vs “Geometric Fantasies” 929

published results “in an incomplete form”. “However - Weierstrass continued - it
would be foolish if I were to try to think only about solving such a problem, with-
out being prepared by a deep study of the methods that I am to use and without
first practicing on the solution of less difficult problems” ([10], vol. 1, 224). The
realization of this program became the scope of his University lectures.

3. Weierstrass’ lectures

In response to Riemann’s achievements, Weierstrass devoted himself to “a
deep study of the methods” of the theory of analytic functions which in his view
provided the foundations of the whole building of the theory of both elliptic and
Abelian functions. As Poincaré once stated, Weierstrass’ work could be summarized
as follows: 1) To develop the general theory of functions, of one, two and several
variables. This was “the basis on which the whole pyramid should be built”. 2)
To improve the theory of the elliptic functions and to put them into a form which
could be easily generalized to their “natural extension”, the Abelian functions. 3)
Eventually, to tackle the Abelian functions themselves.

Over the years the aim of establishing the foundations of analytic function
theory with absolute rigor on an arithmetic basis became one of Weierstrass’ major
concerns. From the mid-1860s to the end of his teaching career Weierstrass used to
present the whole of analysis in a two-year lecture cycle as follows:

1. Introduction to analytic function theory,
2. Elliptic functions,
3. Abelian functions,
4. Applications of elliptic functions or, alternatively, Calculus of variations.

All of these lectures, except for the introduction to analytic function theory,
have been published in Weierstrass’ Werke. For some twenty years he worked out
his theory of analytic functions through continuous refinements and improvements,
without deciding to publish it himself. Weierstrass used to present his discoveries in
his lectures, and only occasionally communicated them to the Berlin Academy. This
attitude, combined with his dislike of publishing his results in printed papers and
the fact that he discouraged his students from publishing lecture notes of his courses,
eventually gave Weierstrass’ lectures an aura of uniqueness and exceptionality.

4. Conversations in Berlin

In the Fall of 1864, when Riemann was staying in Pisa because of his poor
health conditions, the Italian mathematician F. Casorati travelled to Berlin to meet
Weierstrass and his colleagues. Rumors about new discoveries made by Weierstrass,
combined with lack of publications, motivated Casorati’s journey.

“Riemann’s things are creating difficulties in Berlin”, Casorati recorded in his
notes. Kronecker claimed that “mathematicians · · · are a bit arrogant (hochmütig)
in using the concept of function”. Referring to Riemann’s proof of the Dirichlet
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principle, Kronecker remarked that Riemann himself, “who is generally very precise,
is not beyond censure in this regard” ([2], 262).

Kronecker added that in Riemann’s paper on Abelian functions the θ-series in
several variables “came out of the blue”. Weierstrass claimed that “he understood
Riemann, because he already possessed the results of his [Riemann’s] research”.
As for Riemann surfaces, they were nothing other than “geometric fantasies”. Ac-
cording to Weierstrass, “Riemann’s disciples are making the mistake of attributing
everything to their master, while many [discoveries] had already been made by
and are due to Cauchy, etc.; Riemann did nothing more than to dress them in his
manner for his convenience”. Analytic continuation was a case in point. Riemann
had referred to it in various places but, in Weierstrass’s and Kronecker’s opinion,
nowhere he had treated it with the necessary rigor. Weierstrass observed that Rie-
mann apparently shared the idea that it is always possible to continue a function
to any point of the complex plane along a path that avoids critical points (branch-
points, and singularities). “But this is not possible”, Weierstrass added. “It was
precisely while searching for the proof of the general possibility that he realized it
was in general impossible”. Kronecker provided Casorati with the example of the
(lacunary) series

θ0(q) = 1 + 2
∑

n≥1

qn2

(4.1)

which is convergent for |q| < 1, and has the unit circle as a natural boundary. Its
unit circle is “entirely made of points where the function is not defined, it can take
any value there”, Weierstrass observed. He had believed that points in which a
function “ceases to be definite” - as was the case of the function e1/x at x = 0
because “it can have any possible value” there - “could not form a continuum, and
consequently that there is at least one point P where one can always pass from one
closed portion of the plane to any other point of it”. θ0(q) provided an excellent
example of this unexpected behavior. This series also played a significant role in
Weierstrass’ counter-example of a continuous nowhere differentiable function (see
Section 6).

5. Further criticism of Riemann’s methods

Apparently, Riemann’s theory of complex functions seems to have been the
background of Weierstrass’ work and lectures. Evidence of this is provided by his
(unpublished) correspondence with his former student H. A. Schwarz from 1867
up to 1893. One of the first topics they discussed was Riemann mapping theo-
rem. In his thesis Riemann had claimed that “two given simply connected plane
surfaces can always be mapped onto one another in such a way that each point of
the one corresponds to a unique point of the other in a continuous way and the
correspondence is conformal; moreover, the correspondence between an arbitrary
interior point of the one and the other may be given arbitrarily, but when this is
done the correspondence is determined completely” ([7], 40). Riemann’s proof of
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the mapping theorem rested on a suitable application of Dirichlet’s principle. Be-
cause of his criticism of this principle, in Weierstrass’ view the Riemann mapping
theorem remained a still-open question, worthy of a rigorous answer. Following
Weierstrass’ suggestion, Schwarz tackled this question after his student days and
succeeded in establishing the theorem in particular cases, without resorting to the
questionable principle. In a number of papers he gave the solution of the prob-
lem of the conformal mapping of an ellipse - or, more generally, of a plane, simply
connected figure, with boundaries given by pieces of analytic curves which meet to
form non-zero angles - onto the unit disk, by using suitable devices as the lemma
and the reflection principle, both named after him ([8], vol. 2, 65-132).

In 1870 Schwarz discovered his alternating method. “With this method - he
stated by presenting it in a lecture - all the theorems which Riemann has tried to
prove in his papers by means of the Dirichlet principle, can be proved rigorously”
([8], vol. 2, 133). He submitted to Weierstrass an extended version of the paper, and
in a letter of July 11, 1870 Schwarz asked him whether he had “objections to raise”.
Apparently, Weierstrass’ answer has been lost. It is quite significant, however, that
three days later, on July 14, 1870 Weierstrass presented to the Berlin Academy his
celebrated counterexample to the Dirichlet principle ([10], vol. 2, 49-54), and then
submitted Schwarz’s 1870 paper for publication in the Monatshefte of the Academy.
Two years later, in a letter of June 20, 1872 Schwarz called Weierstrass’ attention to
the still widespread idea that a continuous function always is differentiable. As the
French mathematician Joseph Bertrand had made this claim in the opening pages
of his Traité, Schwarz ironically wondered about asking Bertrand to prove that

f(x) =
∑

n≥1

sin n2x

n2
(5.1)

has a derivative. One month later, on July 18, 1872 Weierstrass presented the
Academy with his celebrated example of a continuous, nowhere differentiable func-
tion

f(x) =
∑

n≥0

bn cos anxπ (5.2)

where a= is an odd integer, 0 < b < 1, and ab > 1 + 3
2π. According to Riemann’s

students, Weierstrass remarked, the very same function 5.1) mentioned by Schwarz
had been presented by Riemann in 1861 or perhaps even earlier in his lectures as an
example of continuous nowhere differentiable function. “Unfortunately Riemann’s
proof has not been published”, Weierstrass added, and “it is somewhat difficult to
prove” that 5.1) has this property, he concluded before producing his own example
([10], vol. 2, 71-74).

Only by the end of 1874 was Weierstrass able to overcome a major difficulty
which for a long time had prevented him from building a satisfactory theory of
single-valued functions of one variable. This was the proof of the representation
theorem of a single-valued function as a quotient of two convergent power series. As
he wrote on the same day (December 16, 1874) to both Schwarz and S. Kovalevskaya,
this was related to the following question: given an infinite sequence of constants
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{an} with lim |an| = ∞ does there always exist an entire, transcendental function
G(x) which vanishes at {an} and only there? He had been able to find a positive
answer to it by expressing G(x) as the product

∏

n≥1 E(x, n) of ”prime functions”

E(x, 0) = 1 + x,

· · ·
E(x, n)=(1 + x) exp(x

1 + x2

2 + · · · + xn

n )

which he introduced there for the first time. The “until now only conjectured”
representation theorem followed easily. This theorem constituted the core of Weier-
strass’s 1876 paper on the “systematic foundations” of the theory of analytic func-
tions of one variable ([10], vol. 2, 77-124). In spite of his efforts, however, he was
not able to extend his representation theorem to single-valued functions of several
variables. “This is regarded as unproved in my theory of Abelian functions” Weier-
strass admitted in his letter to Kovalevskaya. (For 2 variables this was done by
Poincaré in 1883 and later extended by Cousin in 1895 following different methods
from Weierstrass’). Four days later Weierstrass wrote to Schwarz stating that Rie-
mann’s (and Dirichlet’s) proof of Cauchy integral theorem by means of a double
integration process was in his opinion not a ”completely methodical” one. On the
contrary, a rigorous proof could be obtained by assuming the fundamental concept
of analytic element (and its analytic continuation) and by resorting to Poisson inte-
gral for the disk, as Schwarz himself had shown in his paper on the integration of the
Laplace equation. Criticism of Riemann’s ideas and methods were also occasionally
expressed by Weierstrass in his letters to Kovalevskaya [6]. On August 20, 1873 he
was pleased to quote an excerpt from a letter of Richelot to himself “in which a
decisive preference was expressed for the route chosen by Weierstrass in the theory
of Abelian functions as opposed to Riemann’s and Clebsch’s”. On January 12, 1875
Weierstrass announced to Kovalevskaya his intention of presenting the essentials of
his approach to Abelian functions in a series of letters to Richelot where he hoped
“to point out the uniqueness of my method without hesitation and to get into a
criticism of Riemann and Clebsch”.

Weierstrass openly stated his criticism of Riemann’s methods in a often-quoted
“confession of faith” he produced to Schwarz on October 3, 1875: “The more I think
about the principles of function theory - and I do it incessantly - the more I am
convinced that this must be built on the basis of algebraic truths, and that it is
consequently not correct when the ‘transcendental’, to express myself briefly, is
taken as the basis of simple and fundamental algebraic propositions. This view
seems so attractive at first sight, in that through it Riemann was able to discover
so many of the important properties of algebraic functions”. Of course, Weierstrass
continued, it was not a matter of methods of discovery. It was “only a matter of
systematic foundations” ([10], vol. 2, 235). It is worth remarking that Weierstrass
added he had been “especially strengthened [in his belief] by his continuing study
of the theory of analytic functions of several variable”.

6. Weierstrass’ last papers

After Mittag-Leffler, Poincaré and Picard had deeply extended the results of
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his 1876 paper following “another way” different from his own, Weierstrass felt it
necessary to explain his approach to complex function theory and to compare it
with those of Cauchy and Riemann. He did this in a lecture that he delivered at
the Berlin Mathematical Seminar on May 28, 1884 [11] . Even though “much can be
done more easily by means of Cauchy’s theorem”, Weierstrass admitted, he strongly
maintained that the general concept of a single-valued analytic function had to be
based on simple, arithmetical operations. His discovery of both continuous nowhere
differentiable functions and series having natural boundaries strengthened him in
this view. “All difficulties vanish”, he stated, “when one takes an arbitrary power
series as the foundation of an analytic function” ([11], 3).

Having summarized the main features of his own theory, including in partic-
ular the method of analytic continuation, he advanced his criticism of Riemann’s
general definition of a complex function (see Section 2). This was based on the
existence of first-order partial derivatives of functions of two real variables, whereas
“in the current state of knowledge” the class of functions having this property could
not be precisely delimited. Moreover, the existence of partial derivatives required
an increasing number of assumptions when passing from one to several complex
variables. On the contrary, Weierstrass concluded, his own theory could “easily” be
extended to functions of several variables.

A major flaw in Riemann’s concept of a complex function had been discovered
and published by Weierstrass in 1880. The main theorem of his paper stated that
a series of rational functions, converging uniformly inside a disconnected domain
may represent different analytic functions on disjoint regions of the domain ([10],
vol. 2, 221). Thus, Weierstrass commented, “the concept of a monogenic function
of a complex variable does not coincide completely with the concept of dependence
expressed by (arithmetic) operations on quantities”, and in a footnote he pointed
out that “the contrary statement had been made by Riemann” in his thesis. Before
proving his theorem Weierstrass discussed an example he had expounded in his
lectures “for many years”. By combining the theory of linear transformations of
elliptic θ-functions with the properties of the lacunary series 4.1), Weierstrass was
able to prove that the series

F (x) =
∑

n≥0

1

xn + x−n
(6.1)

is convergent for |x| < 1, and |x| > 1, but “in each region of its domain of conver-
gence it represents a function which cannot be continued outside the boundary of
the region” ([10], vol. 2, 211). (It is worth noting that 1 + 4F (x) = θ2

0(x)).
This remark allowed Weierstrass to clarify an essential point of function the-

ory, which deeply related the problem of the analytical continuation of a complex
function to the existence of real, continuous nowhere differentiable functions. In
order to explain this relation Weierstrass considered the series

∑

n≥0 bnxan

which is
absolutely and uniformly convergent in the compact disk |x| ≤ 1, when a is an odd
integer, 0 < b < 1. By a suitable use of his example of a continuous nowhere differ-
entiable function 5.2), he concluded that under the additional condition ab > 1+ 3

2π
the circle |x| = 1 reveals to be the natural boundary of the series. Contrary to his
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habit, in 1886 Weierstrass reprinted this paper in a volume which collected some of
his last articles, including a seminal paper where he stated his celebrated “prepa-
ration theorem” together with other theorems on single-valued functions of several
variables that he used to expound in his lectures on Abelian functions [9].

7. Conclusion

From the 1840s to the end of his life Weierstrass continued to study the theory
of Abelian functions, devoting an incredible amount of work to the topic. This
theory was the background of many of the results he presented in his papers and
lectures, or discussed in his letters to colleagues. In spite of his efforts, however,
Weierstrass never succeeded in giving it the complete, rigorous treatment he was
looking for. The huge fourth volume of his Mathematishe Werke (published posthu-
mously) collects the lectures on Abelian functions he gave in Winter semester 1875-
76 and Summer semester 1876. Two thirds of it is devoted to algebraic functions
and Abelian integrals, and only the remaining one third to the (general) Jacobi
inversion problem. Thus, the editors of the volume, Weierstrass’ former students
G. Hettner and J. Knoblauch, could aptly state in the preface that the theory of
Abelian functions (in Weierstrass’ sense) “is sketched only briefly” there. It was
not an irony of the history if Weierstrass failed in his pursuit of his his main math-
ematical goal whereas the machinery that he created to attain it in response to
Riemann’s “geometric fantasies” became an essential ingredient of modern analy-
sis. The contradiction between Weierstrass’ approach, in which all geometric insight
was lacking, and Riemann’s geometric one remained effective until the early decades
of the 20th century, when the theory of functions of several complex variables began
to be established in modern terms.
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