Taxicabs and Sums of Two Cubes

Joseph H. Silverman*

Our story begins in 1913, when the distinguished British mathematician G. H.
Hardy received a bulky envelope from India full of page after page of equations.
Every famous mathematician periodically receives letters from cranks who claim to
have proven the most wonderous results. Sometimes the proofs, incorrect or
incoherent, are included. At other times the writer solicits a reward in return for
revealing his discoveries. Now this letter to Hardy, which was from a poor clerk in
Madras by the name of Ramanujan, was filled with equations, all given without any
sort of proof. Some of the formulas were well-known, mere exercises; while many
of the others looked preposterous to Hardy’s trained eye.

Who would have blamed Hardy if he had returned this missive to the sender,
unread? And in fact, Ramanujan had previously sent his results to two other
British mathematicians, each of whom had done just that! But instead Hardy gave
some thought to these “wild theorems. Theorems such as he had never seen
before, nor imagined.”' And together, he and J. E. Littlewood, another eminent
mathematician with whom Hardy often worked, succeeded in proving some of
Ramanujan’s amazing identities. At this point Hardy realized that this letter was
from a true mathematical genius, and he became determined that Ramanujan
should come to England to pursue his mathematical researches. Using travel
money provided by Hardy’s college, Ramanujan arrived in 1914. Over the next
several years he continued to produce and publish highly original material, and he
also collaborated with Hardy on a number of outstanding papers.

In 1918, at the age of 30, Ramanujan was elected a Fellow of the Royal Society
and also of Trinity College, both signal honors which he richly deserved. Unfortu-
nately, in the colder climate of England he contracted tuberculosis. He returned to
his native Madras and died, in 1920, at the age of 33.

During all of Ramanujan’s life, he considered numbers to be his personal
friends. To illustrate, Hardy tells the story of how one day he visited Ramanujan in
the hospital. At a loss for something to say, Hardy remarked that he had arrived at
the hospital in taxicab number 1729. “It seemed to me,” he continued, “a rather
dull number.” To which Ramanujan replied “No, Hardy! It is a very interesting
number. It is the smallest number expressible as a sum of two cubes in two
different ways:”?

1729 = 13 + 123 = 9% + 10°.

*This article is an expanded version of talks given at M.I.T. and Brown University
{10}, page 32
2[10), page 37
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Hardy then asked for the smallest number which is a sum of two fourth powers in
two different ways, but Ramanujan did not happen to know.?

Rather than studying sums of higher powers, we will instead concern ourselves
with another question that Hardy could just as easily have asked, namely for the
smallest number which is a sum of two cubes in three (or more) distinct ways. In
this case the answer is given in [3],

87,539,319 = 436° + 167° = 4233 + 228% = 4143 + 255%,

although if one is willing to allow both positive and negative integers there is the
much smaller solution

4104 = 16% + 23 = 15% + 93 = (—12)° + 183

In this note we will be taking a leisurely number-theoretic stroll centered
around the problem of writing numbers as sums of two cubes, specifically the
search for integers with many such representations. It will be some time before we
actually return to this specific question, but along the way we will view some
beautiful mathematics which illustrates some of the interplay that can occur
between geometry, algebra, and number theory.

We will thus be looking at solutions of the equation

X’ +Y*=A.

What can be said about such solutions? First we have the elementary result that if
A is a non-zero integer, then there are only finitely many solutions in integers X
and Y. Of course, if X and Y are restricted to be positive integers, then this is
obvious. But in any case we can use the factorization

A=X*+Y3 = (X+Y)(X?- XY +Y?)
to see that 4 must factor as 4 = BC in such a way that

B=X+Y and C=X?-XY+Y?2

Now there are only finitely many ways of factoring 4 as 4 = BC, and for each
such factorization we substitute the first equation (i.e. Y = B — X)) into the second
to obtain

X2-X(B-X)+(B-X)"=C.

Thus each factorization of A4 yields at most two values for X, each of which gives
one value for Y = B — X. Therefore there are only finitely many integer solutions
(X, )4

[Aside: This proof that the equation X° + Y3 =4 has only finitely many
solutions in integers depends heavily on the factorization of the polynomial
X3+ Y3, It is similarly true, but quite difficult to prove, that an equation like
X3+ 2Y3 = A4 has only finitely many integer solutions. This was first proven by
A. Thue in 1909 [11]. By way of contrast, note that the equation X2 —2Y2 =1
has infinitely many solutions.]

The answer, 635,318,657 = 59% + 1584 = 1334 + 134*, appears to have been discovered by Euler.
And it does not seem to be known if there are any numbers which are a sum of two fifth powers in two
different ways.

4Exercise: Show that any solution in integers satisfies max{| X[, |Y|} < 2y/|41/3.
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As is generally the case in mathematics, when a person wants to work on a
difficult mathematical problem, it is nearly always best to start with a related easier
problem. Then, step by step, one approaches the original goal. In our case we are
confronted with the equation

X3+Y3=4,
and a natural first question is to ask for the solutions in real numbers. In other
words, what does the graph of this curve look like? Since dY/dX = —(X/Y)?, the
graph is always falling. Further, it is symmetric about the line Y = X and has the

line Y = —X as an asymptote. With this information it is easy to sketch the graph,
which is illustrated in Figure 1. We will denote the resulting curve by C.

Y

Figure 1. The curve C: X3 + Y3 =4

If (X,Y) is a point on this curve C, then so is the reflected point (Y, X). But
there is another, less obvious, way to produce new points on the curve C which will
be very important for the sequel. Thus suppose that P = (X, Y;) and Q = (X,,Y;)
are two (distinct) points on C, and let L be the line connecting P to Q. Then L
will (usually) intersect C at exactly one other point. To see this, suppose that L is
given by the equation Y = mX + b. Then substituting the equation of L into the
equation of C gives the cubic equation

X3+ (mX+b) =4.

By assumption, this equation already has the solutions X; and X,, since P and Q
lie on the intersection C N L, so the cubic equation has exactly one other solution
X;. (We run into a problem if m = —1, but we’ll deal with that later.) Then letting
Y, = mX; + b, we have produced a new point R = (X3,Y3) on C. Further, even if
P = Q, the same procedure will work provided we take L to be the tangent line to
C at P. Thus given any two points P and Q on C, we have produced a third point
R. Finally we define an ‘“addition law” on C by setting

P + Q = (reflection of R about the line Y = X).

In other words, if R = (X;,Y3), then P+ Q = (Y3, X;). (See Figure 2.) The
reason we define P + Q with this reflection will soon become clear, but first we
have to deal with the pesky problem that sometimes our procedure fails to yield a
third point.

1993] TAXICABS AND SUMS OF TWO CUBES 333



A P=Q A
?\ R \ 2P
0 L

Y
\/

Figure 2. The addition law on the curve C: X3 + Y3 =4

This problem arises whenever the line connecting P and Q has slope —1, and
thus is parallel to the asymptote Y = —X. We solve the problem in cavalier
fashion; since there is no actual third intersection point we create one by fiat. To
be precise, we take the XY-plane and add an extra point, which we will denote by
@ . This point has the property that the lines going through & are exactly the lines
with slope —1. Further, if P is a point in the XY-plane, then the unique line
through P and & is the line through P having slope — 1. Having done this, we are
now in the happy position of being able to assert that given any two points P and
Q on C, the above procedure will yield a unique third point R on C, so we are
able to define P + Q for any P and Q. (By definition, we set &+ &= &.)

[Aside. Some readers will doubtless recognize that what we have done is start
the construction of the real projective plane. The projective plane consists of the
usual XY-plane together with one point for each direction. In our case, we only
needed the direction with slope —1. The projective plane has the agreeable
property that any two lines, even “parallel” ones, intersect at exactly one point.
This is true because if two lines are parallel, then they intersect at the point
corresponding to their common direction.]

The justification for our use of the symbol “+” is now this:

The addition law P + Q described above makes the points of C into an abelian
group.

To be more precise, if P = (X,Y) is a point on C, we define its inverse to be its
reflection, —P = (Y, X). Then for all points P, Q, R on C we have

P+0O=0+P=P (identity)
P+(-P)=0 (inverse)
P+Q=Q+P (commutativity)

(P+Q)+R=P+(Q+R) (associativity).

All of these properties are quite easy to check except for the associativity, which
we will return to in a moment.
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Note that the addition procedure outlined above is entirely mechanical. We can
write down explicit formulas for the sum of two points, although there are a
number of special cases. For example, if P = (X,Y), then

Y(X3+A) X(Y?+A4)
P+P=2P= |5 s

The formula for the sum of two distinct points P, = (X,,Y;) and P, = (X,,Y,) is
somewhat more complicated:

_ A(Yl - YZ) - X1X2(Y1X2 - YZXI) A(Xl - XZ) - YIYZ(XIYZ - XZYI) )

XIXZ(XI - X2) + YIYZ(YI - YZ) ’ XIXZ(XI - XZ) + YIYZ(YI - YZ)
And now that we are in possession of these formulas, verification of the associative
law is a tedious, but straightforward, task.

Let us now look at an example, and what better choice than Ramanujan’s
equation

X3 +Y3=1729.
We already know two interesting points on this curve, namely
P=(1,12) and Q = (9,10).

Using the addition law, we can easily compute some more points, such as

46 —37 453 —397 20760 —3457
P+Q=(?’T)’ P‘Q=(§’T)’ 2P=(W’ 1727 )
24580 —24561 —5150812031 5177701439
20 = (W 271 ) - ( 107557668 ° 107557668 )

As the discerning reader will notice, the numbers produced seem to grow with
frightening rapidity. But of far more importance is the fact that although we have
not produced any new integer solutions, all of the new solutions are at least in
rational numbers.

This is a consequence of the fact that the addition law on C is given by rational
functions. That is, the coordinates of P + Q are given by quotients of polynomials
in the coordinates of P and Q. Thus if the coordinates of P and Q are rational
numbers, then so are the coordinates of P + Q. (If this is not clear, look for
example at the formula for 2P given above. If A, X, and Y are all rational
numbers, then the formula shows that the coordinates of 2 P are also rational.) Let
us define

C(Q) = {(X,Y): X and Y are rational numbers and X> + Y? = 4} U {&}.

Here Q is the usual symbol for the field of rational numbers. Then the remarks
given above provide a proof of the following fact, first noted by Poincaré around
1900 [6]:

The set C(Q) is a subgroup of C. In other words, C(Q) supplied with the
addition law from C becomes a group in its own right.
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The sum of two cubes “Hall of Fame”

The following material gives the smallest intcger I know with the indicated
property. It has been collected from various sources, including [3] and [12].
Note that we are counting X* + Y? and Y3 + X? as being the same
representation.
Positive integers, 2 represcentations, cube-free
1729 =1+ 12°=93+10°=7-13- 19
Any integers, 3 representations, not cubce-frec
4104 =16+ 2° =15+ 9 = (- 12 + 183 =2%-33- |9
Any integers, 3 representations, cube-free
3,242,197 = 141° + 76® = 138> + 85% = (—171) + 202* = 7 - 31 - 67 - 223
Positive integers, 3 representations, not cube-free
87,539,319 = 436> + 167 = 423° + 228" = 414> + 255°
=3%7-31-67-223
Positive integers, 3 representations, cube-free
15,170,835,645 = 517° + 2468% = 7093 + 2456° = 1733% + 21523
=32.5-7-31-37-199 211
Any integers, 4 representations, not cube-frce
42,549,416 = 348° + 743 = 2823 + 2723
= (—2662)% + 2664 = (—475)° + 5313
=2%-7-13-211-277
Positive intcgers, 4 rcprescntations, not cube-free
26,059,452,841,000 = 29620* + 41703 = 288107 + 1290073
= 28423° + 145777 = 24940° + 219303
=2%-5%-31-43%-97- 109
Any integers, 4 representations, cube-free

Unknown!
Any integers, S representations, not cube-free
1,148,834,232 = 1044° + 2223 = 9203 + 718
= 846% + 816% = (—7986)° + 7992° = (—1425)* + 1593°
=2%-3%.7-13-211-277

We have come a long way in our study of the solutions of the equation
X3 + Y3 = A. What we have found is that the set of solutions in rational numbers
becomes, in a very natural way, an abelian group. So if we can say something
significant about this group, then we might feel that at last we have some
understanding about this set of rational solutions. An answer to this problem is
provided by one of the most celebrated theorems of the twentieth century. Aside
from its intrinsic interest, this result has been the starting point for much of the
study of Diophantine equations over the past 70 years. The theorem, as we state it,
was first proven by L. J. Mordell in 1922 [5]. It was subsequently vastly generalized
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by A. Weil in his 1928 thesis, and so is usually called the Mordell-Weil Theorem:

There exists a finite set of points Py, ..., P, in C(Q) so that every point in C(Q)
can be obtained from P,,..., P, by addition and subtraction. In fancier
language, the group C(Q) is finitely generated. The points P,, ..., P, are called
generators for C(Q).

This seems fairly satisfactory. Even though our equation may have infinitely
many rational solutions, they can all be obtained by starting with some finite subset
and applying a completely mechanical procedure. For example, on the curve

X3+v3=7,
every rational point is a multiple of the single generating point (2, —1). Similarly, it
is probably true that every rational point on Ramanujan’s curve has the form
nP + mQ, where P = (1,12), Q = (9,10), and n and m are allowed to range over
all integers, although I am not aware that anyone has verified this probable fact.

It may come as a surprise, then, to learn that the Mordell-Weil Theorem is far
less satisfactory than it appears. This is due to the fact that it is not effective. What
this means is that currently we do not have an algorithm which will determine, for
every value of A, a set of generators Py, ..., P, for C(Q). In fact, there is not even
a procedure for determining exactly how many generators are needed, although it
is possible to give a rather coarse upper bound. This problem of making the
Mordell-Weil Theorem effective is one of the major outstanding problems in the
subject.

Another open problem concerns the number of generators needed. As
mentioned above, the curve X3 + Y3 = 7 requires only one generator, while
Ramanujan’s curve X3 + Y3 = 1729 needs at least two. The question is whether
there are curves which require a large number of generators. More precisely, is it
true that for every integer r there is some value of A so that the rational points on
the curve X + Y3 = A require at least r generators?

We now return to our original problem, namely the study of integer solutions to
the equation X3 + Y3 = A4. Specifically, we seck values of A for which this
equation has many solutions. We have observed that the equation

X*+y3=7

has the solution P = (2, —1), and by taking multiples of P we can produce a
sequence of points

5 4 -17 73 —1256 1265
P=(2,-1), 2P=(§,§), 3P=( ) 4P=( )

38 ' 38 183 ’ 183
Further, it is true (but moderately difficult to prove) that this sequence of points
P,2P,3P,... never repeats. Each point in the sequence has rational coordinates,

so we can write nP in the form

n-terms

P=P+P P @ b
=P+P+ - +P=(—,—],
" d,’ d,

where a,, b,, and d, are integers. We are going to take the first N of these

rational solutions and multiply our original equation by a large integer so as to
clear the denominators of all of them. Thus let

B=dd, - dy.
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Then the equation
X3 +Y3=1B3

has at least N solutions in integers, namely

a,B b,B
, 1<n<N.

d,’ d, -
(Actually 2 N solutions, since we can always switch X and Y, but for simplicity we
will generally count pairs of solutions (X,Y) and (Y, X).) We have thus found the
following answer to our original problem:

Given any integer N, there exists a positive integer A for which the equation
X3+ Y3 = A has at least N solutions in integers.

Of course, Ramanujan and Hardy were probably talking about solutions in positive
integers; but with a bit more work one can show that infinitely many of the points
P,2P,3P,... have positive coordinates, so we even get positive solutions.
Naturally, it is of some interest to make this result quantitative, that is, to
describe how large A must be for a given value of N. The following estimate is
essentially due to K. Mahler [4], with the improved exponent appearing in [8]:

There is a constant ¢ > 0 such that for infinitely many positive integers A, the
number of positive integer solutions to the equation X> + Y> = A exceeds

c3\/log A.

In some sense we have now answered our original question. There are indeed
integers which are expressible as a sum of two cubes in many different ways. But a
nagging disquiet remains. We have not really produced a large number of intrinsi-
cally integral solutions. Rather, we have cleared the denominators from a lot of
rational solutions. In the solutions produced above, the X and Y coordinates will
generally have a large common factor whose cube will divide 4. What happens if
we rule out this situation? The simplest way to do so is to restrict attention to
integers A that are cube-free; that is, A should not be divisible by the cube of any
integer greater than 1. This is a reasonable restriction since if D> divides A4, then
an integer solution (X,Y) to X3 + Y3 = A really arises from the rational solution
(X/D,Y/D) to the “smaller” equation X3 + Y3 = A4/D3,
Notice Ramanujan’s example

1729 = 1 + 123 =93+ 103=7-13- 19
is cube-free. But the example with three representations given earlier,
87,539,319 = 4363 + 167° = 423> + 2283 = 4143 + 255> = 3%-7-31 - 67 - 223,

is not cube-free. As far as I have been able to determine, the smallest cube-free
integer which can be expressed as a sum of two positive cubes in three distinct
ways was unearthed by P. Vojta in 1983 [12]:

15,170,835,645 = 5173 + 2468% = 7093 + 2456 = 1733% + 21523
=32.5-7-31-37-199 - 211.
And now our problem has become so difficult that Vojta’s number holds the

current record! There is no cube-free number known today which can be written as
a sum of two positive cubes in four or more distinct ways.
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We are going to conclude by describing a relationship between the two prob-
lems that we have been studying. The first problem was that of expressing a
number as a sum of two rational cubes, and in that case we saw that all solutions
arise from a finite generating set and speculated as to how large this generating set
might be. The second problem was that of writing a cube-free number as a sum of
two integral cubes, and here we saw that there are only finitely many solutions and
we wondered how many solutions there could be. It is not-a priori clear that these
two problems are related, beyond the obvious fact that an integral solution is also a
rational solution. In 1974 V. A. Dem’janenko stated that if there are a large
number of integer solutions, then any generating set for the group of rational
points must also be large, but his proof was incomplete. (See [2, page 140] for
Lang’s commentary on and generalization of Dem’janenko’s conjecture.) The
following more precise version of the conjecture was proven in 1982 [8]:

For each integer A, let N(A) be the number of solutions in integers to the
equation X3 + Y3 = A, and let r(A) be the minimal number of rational points
on this curve needed to generate the complete group of rational points (as in the
Mordell-Weil Theorem). There is a constant ¢ > 1 such that for every cube-free
integer A,

N(A) <™.

Note that the requirement that A4 be cube-free is essential. For as we saw above,
we can make N(7B?) as large as we want by choosing an appropriate value of B.
On the other hand, r(7B3) = r(7) for every value of B, so an inequality of the form
N(A) < ¢"“D cannot be true if we allow arbitrary values of A. (To see that
r(7B%) = r(7), note that the groups of rational points on the curves X* + Y3 =7
and X3 + Y3 = 7B? are the same via the map (X,Y) — (BX, BY).)

Final Remark. The cubic curve X3 + Y3 = A4 is an example of what is called an
elliptic curve. Those readers interested in learning more about the geometry,
algebra, and number theory of elliptic curves might begin with [9] and continue
with the references listed there. Elliptic curves and the related theory of elliptic
functions appear frequently in areas as diverse as number theory, physics, com-
puter science, and cryptography.
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Added in proof: Richard Guy has pointed out to the author that Rosenstiel, Dardis
and Rosenstiel have recently found the non-cube-free example
6963472309248 = 2421% + 19083° = 5436° + 18948 + 10200 + 180723
= 133223 + 166303

which is smaller than the example in the above table, and which is in fact the
smallest such example. See Bull. Inst. Math. Appl. 27(1991), 155-157.
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Five Borromean Square Frames
William W. Chernoff

In [R. Brown and J. Robinson, Borromean circles, Amer. Math. Monthly, 99
(1992), 376377}, R. Brown and J. Robinson gave a Borromcan arrangement of three
square frames in R>. In figure 1, we give a Borromean arrangement consisting of five
square frames. In addition, we have constructed models consisting of seven hexagonal
frames and of nine octagonal frames. A paper discussing Borromean arrangements in
R® of 2n + 1 frames each with 2n sides is to appear.

Fig. 1

Department of Mathematics and Statistics
University of New Brunswick
Frederiction, N.B.

Canada E3B 5A3

340 TAXICABS AND SUMS OF TWO CUBES [April



	Article Contents
	p. 331
	p. 332
	p. 333
	p. 334
	p. 335
	p. 336
	p. 337
	p. 338
	p. 339
	p. 340

	Issue Table of Contents
	American Mathematical Monthly, Vol. 100, No. 4 (Apr., 1993), pp. 329-424
	Front Matter [pp. 329-329]
	Comments [p. 330]
	Taxicabs and Sums of Two Cubes [pp. 331-340]
	The Evil Twin Strategy for a Football Pool [pp. 341-343]
	Six, Lies, and Calculators [pp. 344-350]
	What is a Napierian Logarithm? [pp. 351-364]
	The Tyranny of Tests [pp. 365-369]
	A Really Trivial Proof of the Lucas-Lehmer Test [pp. 370-371]
	Pascal's Matrices [pp. 372-376]
	Symmetries of the Cube and Outer Automorphisms of S [pp. 377-380]
	Isogonal Configurations [pp. 381-384]
	Notes
	PSL(Z) = Z * Z [pp. 385-386]
	Generators for the Algebra of Symmetric Polynomials [pp. 386-388]
	A Formula and a Proof of the Infinitude of the Primes [pp. 388-392]

	Picture Puzzle [pp. 393+410]
	The Authors [pp. 394-395]
	Letters [pp. 396-397]
	News and Notices [p. 397]
	Unsolved Problems
	Are There Only Finitely Many Binomial Coefficients With Positive Deficiency? [pp. 398-399]

	Problems and Solutions
	Problems: 10298-10305 [pp. 400-402]
	Notes
	10301 [p. 402]
	10302 [p. 402]
	10303 [p. 402]
	10304 [p. 402]
	10305 [p. 402]

	Solutions
	6656 [pp. 402-404]
	E3452 [p. 404]
	E3453 [pp. 404-405]
	6665 [pp. 405-407]
	6669 [pp. 407-408]
	E3466 [pp. 409-410]


	Reviews
	Review: untitled [pp. 411-413]
	Review: untitled [pp. 414-416]
	Telegraphic Reviews [pp. 417-424]

	Back Matter





