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This article is in two parts, the first of which is a do-it-yourself operation, in
which I'll show you 35 examples of patterns that seem to appear when we look at
several small values of n, in various problems whose answers depend on n. The
question will be, in each case: do you think that the pattern persists for all n, or do
you believe that it is a figment of the smallness of the values of n that are worked
out in the examples?

Caution: examples of both kinds appear; they are not all figments!

In the second part I'll give you the answers, insofar as I know them, together with
references.

Try keeping a scorecard: for each example, enter your opinion as to whether the
observed pattern is known to continue, known not to continue, or not known at all.

This first part contains no information; rather it contains a good deal of
disinformation. The first part contains one theorem:

You can’t tell by looking.

It has wide application, outside mathematics as well as within. It will be proved by
intimidation.
Here are some well-known examples to get you started.

Example 1. The numbers 2* + 1 =3, 22 +1=35, 22 + 1 =17, 2% + 1 = 257,
22" 4+ 1 = 65537, are primes.

Example 2. The number 2" — 1 can’t be prime unless # is prime, but 22 — 1 = 3,
22 —-1=17,25-1=31,27 - 1= 127, are primes.

Example 3. Apart from 2, the oddest prime, all primes are either of shape 4k — 1,
or of shape 4k + 1. In any interval [1, n], the former are at least as numerous as the
latter (4k — 1 wins the “prime number race”):

////////////////

Example 4. Pick several numbers at random (it suffices just to look at odd ones).
Estimate the probability that a number has more divisors of shape 4k — 1, than it
does of shape 4k + 1. For example, 21 has two of the first kind (3 & 7) and two of
the second (1 & 21), while 25 has all three (1, 5,25) of the second kind.

Example 5. The five circles of FiG. 1 have n = 1,2, 3,4,5 points on them. These
points are in general position, in the sense that no three of the (;) chords joining
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them are concurrent. Count the numbers of regions into which the chords partition

each circle.

/Y

F1G. 1. How many regions in each of these circles?

I've been trying to formulate the Strong Law of Small Numbers for many years
[9]. The best I can do so far is

There aren’t enough
small numbers to meet the
many demands made of them.

It is the enemy of mathematical discovery. When you notice a mathematical pattern,
how do you know it’s for real?

Superficial similarities
spawn spurious statements.

Capricious coincidences
cause careless conjectures.

On the other hand, the Strong Law often works the other way:

Early exceptions
eclipse eventual essentials.

Initial irregularities
inhibit incisive intuition.
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Here are some misleading facts about small numbers:
Ten per cent of the first hundred numbers are perfect squares.
A quarter of the numbers less than 100 are primes.
Except for 6, all numbers less than 10 are prime powers.
Half the numbers less than 10 are Fibonacci numbers
0,1,1,2,3,5,8,...

and alternate Fibonacci numbers, 1,2,5,... are both Bell numbers and Catalan
numbers.

Example 6. The numbers 31,331, 3331, 33331, 333331, 3333331, are each prime.

Example 7. The alternating sums of factorials,

=21+ 11=5
41 -31+21-11=19
51—41+31 =21+ 11 =101
6! — 5! +41 =31 +21 — 1! =619
TV — 6!+ 5! — 4l + 31 —21 + 1! = 4421
81 — 71+ 6! — 5!+ 41 — 31 + 2! — 1! = 35899
are each prime.

Example 8. In the table

row 1 1 1 2
row 2 1 2 1 3
row 3 1 3 2 3 1 5
row 4 1 4 3 2 3 4 1 7
row 5 1 5 4 3 525 3 4 5 1 11
row 6 1 65 4 3 5 2 5 3 4 56 1 13
row 7 1 76 5 473 5 72 175 37 4 567 1 19
row8 1 8 7 6 5 47 385 7 2 758 37 4 567 81 23

row9 1 9 8 76 5 9 47 3 85 7 929 75 8 3 7 4 9 5 67 89 129

row n is obtained from row n — 1 by inserting n between each pair of consecutive
numbers which add to #. The number of numbers in each row is shown on the right.
Each is prime.

Example 9. Is there a prime of shape 7013 X 2" + 1?
Example 10. Are all the numbers 78557 X 2" + 1 composite?

Example 11. When you use Euclid’s method to show that there are unboundedly
many primes:

24+1=3
2x3)+1=7
2x3x5)+1=31
2x3x5x7)+1=211
(2XxX3x5x7x11)+1=2311
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you don’t always get primes:

(2Xx3x5x7x11x13)+1=30031 =59 X 509
(2X3x5x7x11x13x17) +1=>510511 =19 X 97 X 277
(2X3X5%X7x11X13X17X19) + 1= 9699691 = 347 X 27953

but if you go to the next prime, its difference from the product is always a prime:
5-2=3
11-(2x%x3)=5
37-(2%xX3%x5)=7
223 - (2Xx3x5%x7)=13
2333 - (2X3xX5%Xx7x%x11)=23
30047 — (2 X3 X5%x7x11x13) =17
510529 — (2 X 3 X 5X7x 11 x13%x17) =19
9699713 — (2 X3 X 5 X 7Xx 11 X 13 X 17 X 19) =23

Example 12. From the sequence of primes, form the first differences, then the
absolute values of the second, third, fourth, ... differences:

235 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67
1224 2 4 2 4 6 2 6 4 2 4 6 6 2 6
102 2 2 2 2 2 4 4 2 2 2 2 0 4 4 2

120 0 0 0 0 2 0 2 0 0 0 2 40 2
12 0 0 0 0 2 2 2 2 0 0 2 2 4 2 2
12 0 0 0 2 0 0 0 2 0 2 0 2 2 0

12 0 0 2 2 0 0 2 2 2 2 2 0 2 0
1 2 0 2 0 2 0 2 0 0 0 0 2 2 2
1 2 2 2 2 2 2 2 00 0 2 0 0O
1 0 0 0 0 00 2 00 2 2 00
1 0 0 0 0 0 2 2 0 2 0 2 00
1 0 0 0 0 2 0 2 2 2 2 2 0

Is the first term in each sequence of differences always 1?

Example 13. 2" is never congruent to 1 (mod n) for n > 1. 2" is congruent to 2
(mod n) whenever 7 is prime, and occasionally when it isn’t (n = 341,561,...). Is
2" ever congruent to 3 (mod r) for n > 1?7

Example 14. The good approximations to 5'/ 3, namely, the convergents to

1 1 1 1 1 13 4 7 11 29

+ S T, T, T e
It Ty T+ 172+ ™12y 8

which have Fibonacci numbers for denominators and Lucas numbers for numera-
tors.
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Example 15.

(x + )’ = x>+ + 3p(x + ) (x2 + xp + »2)°

(x+y)Y =x+y5+5xp(x +y) (x> + xp +y2)1

(x +p) =x7+y7 + Txy(x + y)(x* + xp +y2)2

Example 16. The sequence of hex numbers (so named fo distinguish them from the
hexagonal numbers, n(2n — 1)) are depicted in FIG. 2.
The partial sums of this sequence, 1, 8,27, 64,125, appear to be perfect cubes.

F1G. 2. The hex numbers.

Example 17. Write down the positive integers, delete every second, and form the
partial sums of those remaining;:

1 2 3 5 £ 7 & 9 W 11
1 4 9 16 25 36

Example 18. As before, but delete every third, then delete every second partial sum:
1234 5 67 8 &1 11 ¥ 13 14 18 16

13 1M 19 21 37 48 61 75 91
1 8 27 64 125 216

Example 19. Again, but delete every fourth, then every third partial sum, then every
second of their partial sums:

123 45 6 7 &9 1011 12 13 14 15 ¥ 17
1 3 ¢ 11 17 A4 33 43 54 67 81 96 113

1 A 15 32 65 108 175 256 369
1 16 81 256 625
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Example 20. Again, but circle the first number of the sequence, delete the second
after that, the third after that, and so on. Form the partial sums and repeat:

@ 224 567 89K 11 12 131415 16 17 18 19 20 ¥
@ 6 U 18 2635 46 58 7185 101 118 136 155 115
® 24 56 96 154 245 326 444 580 745

120 274 600 1044 1624
720 1764

Example 21. Write down the odd numbers starting with 43. Circle 43, delete one
number, circle 47, delete two numbers, circle 53, delete three numbers, circle 61, and
so on. The circled numbers are prime (F1G. 3)

@FE@AAD A A A K AAS)E LA
HAA@ A A A A A ADS A AA S AW
Ko A L) E A A A A AN
&/ S sSS S SSSSBDS S S S S
S S SIS S S S S S S S S S S S
@/ /S S S S S S S S SSESSS
S S S S S S S S S S S S S S S
SIS S S S S S S S S S S S S
S S S S S S ST S S S S S S S S
S S S S S SIS S S S S S S S S
oSS S S S S S S S S S S S S
SIS S S S S S S S SE s SS S S
SIS S S S S S S S S S S S S S S
S S S S S S S S S S S S S S S ST
&/ S S S S S S S S S S SSSSS
SIS S SIS S S S S S S S S S S
oSS S S S S S S S S @

Fi1G. 3. Parabolas of primes remain.
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Example 22. In Table 1 the odd prime values of n* + 1 and of 17 X 2" — 1 are

printed in bold. They occur simultaneously for n = 2,4, 6, 16, 20.

TABLE 1

n nt+1 17x2"-1

0 16 = 2¢

1 2 33=3x11
2 17 67

3 82=2x41 135 = 3° X
4 257 271

5 626 = 2 X 543 = 3 X

6 1297 1087

7 2402 = 2 X 2175 =3 X
8 4097 = 17 X 4351 = 19 X
9 6562 = 2 X 8703 = 32 x
10 10001 = 73 X 17407 = 132 X
11 14642 = 2 X 34815 =3 X -
12 20737 = 89 X 69631 = 179 X
13 28562 = 2 X 139263 = 3 X
14 38417 = 41 X 278527 = 223 X
15 50626 = 2 X 557055 = 32 X
16 65537 1114111
17 83522 = 2 X 2228223 = 3 X
18 104977 = 113 X 4456447 = 59 X
19 130322 = 2 X 8912895 = 3 X
20 160001 17825791
21 194482 = 2 X 35651583 = 3* x
2 234257 = 73 X 71303167 = 13 X
23 279842 = 2 X 142606335 = 3 X

Example 23. In Table 2 the prime values of 21 X 2" — 1 and of 7 X 4" + 1 are

printed in bold. They occur simultaneously for n = 1,2, 3,7,10,13.

TABLE 2

n 20x2" -1 TX4"+1

0 20=22x%x5 8§ =2

1 41 29

2 83 113

3 167 449

4 335 =5 X 1793 = 11 X
5 671 = 11 X 7169 = 67 X
6 1343 =17 X 28673 = 53 X
7 2687 114689

8 5375 = 5% x 458753 = 79 X
9 10751 = 13 X 1835009 = 11 X
10 21503 7340033
11 43007 = 29 X 29360129 = 37 X
12 86015 = 5 X 117440513 = 3907 X
13 172031 469762049
14 344063 = 17 X 1879048193 = 11 X
15 688127 = 11% X 7516192769 = 29% X
16 1376255 = 5 X 30064771073 = 113 X
17 2752511 = 19 X 120259084289 = 379 X
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Example 24. Consider the sequence

xo=1,  x,=(1+xt+xt+--+x3)/(n+1) (n>0).
n O 1 2 3 4 5 6 7 8 9
x, 1 2 3 5 10 28 154 3520 1551880 267593772160

Is x, always an integer?

Example 25. The same, but with cubes in place of squares: y, =1, y,,.; = (1 + 3
+y3 4+ - +93)/(n + 1) (n > 0). Same question.

n 0 1 2 3 4 5
y, 1 2 5 45 22815 2375152056927

Example 26. Also for fourth powers, z, ., = (1 + z§ + z§ + -+ +z3)/(n + 1).
n 0 1 2 3 4
z 1 2 9 2193 5782218987645

n

And for fifth powers, and so on.

Example 27. The irreducible factors of x” — 1 are cyclotomic polynomials, i.e.,
x" = 1=11,,8,(x),s0that ®;(x) = x — 1, ®y(x) = x + 1, By(x) = x> + x + 1,
®,(x) = x2 + 1. The cyclotomic polynomial of order n, ®,(x), has degree @(n),
Euler’s totient function. It is easy to write down ®,(x) if » is prime, twice a prime,
or a power of a prime, and for many other cases. Are the coefficients always +1 or
0?

Example 28. If two people play Beans-Don’t-Talk, the typical position is a whole
number, n, and there are just two options, from n to (3n + 1)/2*, where 2* means
the highest power of 2 that divides the numerator. The winner is the player who
moves to 1. For example, 7 is a Z-position, a previous-player-winning position,
because the opponent must go to
Bx7+1)/2=11or(3x7-1)/22=5

and 11 and 5 are A“positions, next-player-winning positions, since they have the
options 3 X 11 —1)/25=1and 3 X 5 + 1)/2* = 1.

If 7 is the probability that a number is an A“position, and there are no
O-positions (from which neither player can force a win), then the probability that a
number is a Zposition is 1 — 7. This happens just if both options are A“positions,
so1 — 7 =12 and 7 is the golden ratio, (V5 — 1)/2 = 0 - 618.

So it is no surprise that 5 out of the first § numbers are #“positions, 8§ out of the
first 13, 13 of the first 21, 21 of the first 34, and 34 of the first 55, since the ratio of
consecutive Fibonacci numbers tends to the golden ratio.

Example 29. Does each of the two diophantine equations
2x2(x2=1) =3(y*-1)and x(x - 1)/2=2"-1

have just the five positive solutions x = 1, 2, 3, 6, and 91?
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Example 30. Consider the sequence a; = 1, a,,; = [‘/2an(an + l)l (n>1)
n 1234567 8 9101112 13 14 15 16 17 18 19 20 21
a, 1234691319 27 38 54 77 109 154 218 309 437 618 874 1236 1748
1 2 4 8 16 32 64 128 256 512

Are alternate differences, a,,.; — a,;, the powers of two, 2?

Example 31. In the same sequence, are the even ranked members, a,, ,, given by
2a,, + ¢, where ¢, is the kth digit in the binary expansion of 2 =
1.01101010000010... ?

Example 32. Is this the same sequenceas a, = 1,a,=2,a;,=3,4,,,=a,+a,_,
(n>=3)

Example 33. The nth derivative of x*, evaluated at x = 1, is an integer. Is it always
a multiple of n? Values for n = 1,2,3,... are
1x1,2%x1,3x1,4%X2,5X2,6x9,7%(—6),8x118,9 X (—568),
10 x 4716,11 x (—38160),12 X 358126,13 X (—3662088),14 X 41073096,

15 x (—500013528),16 X 6573808200,17 X (—92840971200),
18 X 1402148010528, ... .

Example 34. In how many ways, c,, can you arrange n pennies in rows, where every
penny in a row above the first must touch two adjacent pennies in the row below?

n 0123456 7 8 9 10 11 12 13 14 15 16
c, 1. 1 1 2 3 5 9 15 26 45 78 135 234 406 704 1222 2120

n

To throw more light on such sequences, partition theorists often express their
generating function

o0
Yoox"=1+x+x>+2x>+3x* + 5x>+ 9x + 15x" + - -+

n=0
o 0 oo &

cooo &o oD 00000 &boo 0o 00&d &

oo Bxoo oo o oo Fo BB oD &

F1G. 4. Propp’s penny partitions.



706 RICHARD K. GUY [October

as an infinite product,

[e¢]
[1(1 -~
n=1
In this case, a(n) are consecutive Fibonacci numbers:
n 1 2 3 4 5 6 7 8 9 10

an) 1 0 1 1 2 3 5 8 13 21

Example 35. If p, is the kth prime, p, =2, p, = 3,..., does

) ) ) xPitpat o Fp
1—xP)y " =1+ ?
1= =00 =) (0=
Answers

1. No less a person than Fermat was fooled by the Strong Law! Euler gave the
factorization 232 + 1 = 641 X 6700417. All other known examples of Fermat num-
bers are composite; Jeff Young & Duncan Buell [32] have recently shown that
22 4+ 1 is composite.
2. There are very few Mersenne primes, 2”7 — 1. No one can prove that there are
infinitely many; 2!! — 1 = 23 X 89 is not one. See A3 in [12] and sequence 1080 in
[28].
3. In the “prime number race,” 4k — 1 and 4k + 1 alternately take the lead
infinitely often. This was proved by Littlewood [18]. For many papers on this
subject see N-12 of Reviews in Number Theory, for example, Chen [4].
4. A theorem of Legendre (see [6], for example) states that if D, and D_ are the
numbers of divisors of n of shapes 4k + 1 and 4k — 1, then the number of
representations of n as the sum of two squares is 4 D,— D_). So D,> D_ for
every number!
5. Before we reveal all, here is a circle (FIG. 5) with ten points to further confuse
you. It has 256 regions.

If the circle has n points, there are (;) intersections of chords inside the circle,
since each set of four points gives just one such intersection. The number of vertices
in the figure is V=n + (Z) To find the number of edges, count their ends. There

n

are n + 1 at each of the n points and four at each of the ( "
2E=n(n+1)+ 4(:). By Euler’s formula, the number of regions inside the circle

) intersections, so

1S

1
n n
E+1—V——2(4)+5n(n+l)+1—(4)—n

T )

A direct proof, by labelling the regions with at most four of the numbers 1,2,...,

=(n)+;n(n—l)+l
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Fi6. 5. Circle partitioned into 28 regions.

n — 1, will appear in [5]. The answer is just five of the n terms in the binomial
expansion of (1 + 1)"~1. For n < 6, this is all the terms, and the number is a power
of 2. For n = 6, only 1 is missing. For n = 10 just half the terms are missing, and
the number of regions is 1 - 2° = 256.

#ofpoints=1234 5 6 7 8 9 10 11 12 13 14
# of regions =1 2 4 8 16 31 57 99 163 256 386 562 794 1093

Some other famous numbers, e.g. 163 and 1093, also occur in this sequence, number
427 in [28].
6. No member of this sequence is divisible by 2,3, 5,7,11,13, or 37, as may be seen
immediately from well known divisibility tests. On the other hand, 17, 19, 23, 29,
31,... divide 33...331 just if the number of threes is respectively 16k + 8,
18k + 11, 22k + 20, 28k + 19, 15k + 1,..., while 41, 43, 53, 67, 71, 73, 79,...
divide no members of the sequence. I don’t think that there is a simple description
of which primes do, and which primes don’t, divide. The next member, 33333331, is
also prime, but 333333331 = 17 X 19607843
7. We've again given ourselves a good start, since X} _,(—1)"~*k! is not divisible by
any prime < n. However,

91 — 814+ 71 —6! 4+ 5! — 41 + 3! — 21 + 1! = 326981 = 79 X 4139.
8. This example, as well as example 5., was first shown to me by Leo Moser, a
quarter of a century ago. Row n is the list of denominators of the Farey series of
order n, i.e., the set of rational fractions r, 0 < r < 1, whose denominators do not
exceed n. In getting row n from row n — 1, just ¢(n) numbers are inserted, where
¢(n) is Euler’s totient function, the number of numbers not exceeding n which are
prime to n. It is fortuitous that 1 + X} _,p(k)is prime for1 < n < 9. As ¢(10) = 4,
the number of numbers in row 10 is 29 + 4 = 33, and is not prime.
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9. The expression 7013 X 2" + 1 is composite for 0 < n < 24160 [15]. Duncan
Buell & Jeff Young have sieved out 325 further candidates n < 10° which might
yield a prime. None is known, though it’s likely that there is one.
10. The number 78557 X 2" + 1 is always divisible by at least one of
3,5,7,13,19, 37,73 [26,27]. For this and the previous example, see also B21 in [12].
11. R. F. Fortune conjectured that these differences are always prime: see [8], [9]
and A2 in [12]. The next few are 37,61,67,61,71,47,107,59, 61,109, 89,103, 79.
There’s a high probability that the conjecture is true, because the difference can’t be
divisible by any of the first k primes, so the smallest composite candidate for
P =Tlp, is p?,,, which is approximately (k In k)? in size. The product of the first
k primes is about e*: to find a counter example we need a gap in the primes near N
of size at least (In N Inln N)2 Such gaps are believed not to exist, but it'’s beyond
our present means to prove this.
12. This is N. L. Gilbreath’s conjecture, which has been verified for k < 63419 [16].
Hallard Croft has suggested that it has nothing to do with primes as such, but will
be true for any sequence consisting of 2 and odd numbers, which doesn’t increase
too fast, or have too large gaps: Al0 in [12]. In an 87-08-03 letter, Andy Odlyzko
reported that he had verified the conjecture for k < 10°.
13. D. H. & Emma Lehmer discovered that 2" = 3 (mod n) for n = 4700063497,
but for no smaller n > 1.
14. The kth Lucas number and the (k + 1)th Fibonacci number are

1+‘/-5—k 1_‘/5—1( 1 1+‘/—5—k+1 1_‘/—5—k+1
e R e B e I
Their ratio, as k gets large, approaches (5 — V5)/2 = 1 - 381966011, whereas
51/% = 1 - 379729661. The next few convergents to 5'/3,

40 109 912 1021 26437 27458

297 79 ° 661° 740 ’ 19161° 19901°
do not involve Fibonacci or Lucas numbers. Compare sequences 256 & 260 and 924
& 925 in [28]. This example goes back to 1866 [25].
15. This is quite fortuitous [30]. Put x = y = 1, giving 22"*! — 2 = 2n + 1) X 2 X
37~1 It’s true that

22 -1=3x 3% 24—-1=5x 13, 26-1=7x32

but it’s clear that the pattern can’t continue.

16. The (n + 1)th hex number, 1 + 6 + 12 + - -+ +6n = 3n? + 3n + 1, when ad-
ded to n?, gives (n + 1), so the pattern is genuine. It is instructive to regard the nth
hex number as comprising the three faces at one corner of a cubic stack of n* unit
cubes (FiG. 6).

17, 18, 19, and 20 are examples of Moessner’s process, which does indeed produce
the square, cubes, fourth powers and factorials. Moessner’s paper [20] is followed by
a proof by Perron. Subsequent generalizations are due to Paasche [22]: see [19] for a
more recent exposition.

21. A thinly disguised arrangement of Euler’s formula, n? + n + 41, which gives
primes for —40 < n < 39. For n = 40, n?> + n + 41 = 412, See Al and Fig. 1 in
[12]. For remarkable connexions with quadratic fields, continued fractions, modular
functions and class numbers, see [29].
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F1G. 6. The fifth hex number.

22. The initial pattern is explained by the facts that if n is odd, n* + 1 is even, and
17 X 2" — 1 is a multiple of 3. Thereafter it’s largely coincidence until n = 24, for
which n* + 1 = 331777 is prime, while 17 X 2" — 1 = 285212671 = 149 X
1914179. See [17], [24] and sequences 386 and 387 in [28].
23. This is also a coincidence, until we reach n = 18, for which 21 X 2" — 1 =
5505023 is prime, while

7 X 4" + 1 = 481036337153 = 166609 x 2887217.

See [31], [23] and sequences 314 & 315 in [28].

24. A sequence introduced by Fritz Gobel. A more convenient recursion for
calculation is (n + 1)x,,, = x,(x, + n),(n > 1). If you work modulo 43, you’ll
find that for

n =01234 56 7 8 9 10111213141516 17 18 19 20 21
, =12351028 25371020 15 38 19 42 36 34 2 3539 3113 2
n=22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
x,=6 262829 4 1442 5 2017 4 20 16 29 42 13 42 20 8 23 33

and x,,(x4, + 42) = —10(—10 + 42) = — 320, which is not divisible by 43, so x;
is not an integer, although x, is an integer for 0 < n < 42.

X
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25. Similar calculations, mod 89, using the relation (n + 1)y,., = y(»2 + n),
show that yg, is not an integer. For this, and the previous example, see E15 is [12].
26. Since this question was asked, Henry Ibstedt has made extensive calculations,
and found the first noninteger term, x,, in the sequence involving k th powers, to be

kK 2 3 4 5 6 7 8 9 10 11
n 43 8 97 214 19 239 37 79 83 239

He also found corresponding results with different initial values. The longest to hold
out (n = 610) are the cubes (k = 3, Example 25) with x, = 1, x; = 11.
27. The first cyclotomic polynomial to display a coefficient other than +1 and 0 is
q)los(x) = x% 4 x4 4 x4 x4 9yl 40 _ (39 4 (36 4 (35 4 (34
FxP g 32 Bl g2 24 22 420 L 417 4 od6 4 (15 L (14
+xP+ x2 =X =X 2xT - xf - X+ X2+ x+1
Coefficients can be unboundedly large, but require n to contain a large number of
distinct odd prime factors; see [8]. More recently, Montgomery & Vaughan [33] have
shown that if ®, = Xa(m, n)x™ and L(n) = Inmax,, |a(m, n)| then, for m large,
"« L(n) < "~

(In2m)/* (nm)7*"

28. This game was misremembered by John Conway from John Isbell’s game of
Beanstalk [13]. The Fibonacci pattern is not maintained: only 52 of the first 89
numbers, 81 of the first 144, 126 of the first 233, and 201 of the first 377, are
A~-positions. The probability argument is fallacious: the probabilities of the status of
the two options are not independent.

29. True, but why the coincidence?

30 and 31. The patterns of powers of 2 and of binary digits of V2 both continue;
see [11], [14] and sequence 206 in [28].

32. A different sequence, number 207 in [28], which agrees for n < 9, but then
continues 28, 41, 60, 88,129,189, 277, 406, 595, 872, 1278, . ...

33. If y = x* and y,(1) denotes the value of d"y/dx" at x = 1, then

31 @) = 3D + (1 )32 = (3)320) + 2(5) 320 = 3 ) -4 (D)

F—t e (=1)"(n = 1.

This was not known to be a multiple of #» + 1 when it was submitted to the
Unsolved Problems section of this MONTHLY by Richard Patterson & Gaurar Suri.
But in an 87-05-28 letter, Herb Wilf gives a proof, using the generating function for
Stirling numbers of the first kind. His proof in fact shows that n(n — 1) divides
(1) just if n — 1 divides (n — 2)!, which it does for n > 7, provided that n — 1 is
not prime.

34. This sequence was investigated by Jim Propp. Except that a(12) = 55, the
pattern of Fibonacci numbers does not continue:

n=11 12 13 14 15 16 17 18
a(n) =35 55 93 149 248 403 670 1082

Since this was written, Wilf [21] has linked the generating function with Ramanujan’s
continued fraction, and he observes that the numbers of propper partitions with &
coins in the lowest row are yet another manifestation of the Catalan numbers,
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1,2,5,14,42,... [7]. These partitions are a variant of some considered by Auluck
[1]. Auluck’s partitions have the pennies contiguous in every row, not just the
lowest. Their numbers 1,1,2,3,5,8,... are another good example of the Strong
Law.

35. The expansion of the product as a power series, is

1+ x2+ x%+ x4+ 2x5 4+ 2x5 4+ 3x7 + 3x® + 4x° + 5x1° + 6x!! + 7x!2 + 9x13
10x™ + 12x1° + 14x16 + 17xY7 + 19x'8 + 23x1% + 26x2° + 30x2! + 35x22
+40x2 + 46x%* + 52x% + 60x% + 67x27 + TTx® + 8Ix® + --- .

The sum is the same, until. .. +31x2 + 35x%2
+41x2 + 46x%* + 54x% + 60x% + 69x% + 78x28 + 89x% + .- - .

This was entry 29 in Chapter 5 of Ramanujan’s second notebook [2], [3]: but he had
crossed it out! :
Let me know if I've missed out your favorite example!
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A BIRTHDAY GREETING

The readers and editors of the MONTHLY send their warm best wishes to Professor I. J.
Schoenberg, who has contributed so much to mathematics in general, and to the MONTHLY,
in particular, on the occasion of his 85th birthday.

The American Romanian Academy has recognized the occasion by conferring on him an
award, “In recognition of his distinguished contributions to the advancement of scholarship
in the sciences, in the spirit of free exchanges of values and ideas.” His publisher, Birkhauser,
has recognized the occasion by publishing two volumes of Dr. Schoenberg’s mathematical
writings, edited by Carl de Boor.
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